
Beginning Deep
Learning with
TensorFlow

Work with Keras, MNIST Data Sets,
and Advanced Neural Networks
—
Liangqu Long
Xiangming Zeng

Beginning Deep
Learning with
TensorFlow

Work with Keras, MNIST
Data Sets, and Advanced

Neural Networks

Liangqu Long
Xiangming Zeng

Beginning Deep Learning with TensorFlow: Work with Keras, MNIST Data

Sets, and Advanced Neural Networks

ISBN-13 (pbk): 978-1-4842-7914-4 ISBN-13 (electronic): 978-1-4842-7915-1
https://doi.org/10.1007/978-1-4842-7915-1

Copyright © 2022 by Liangqu Long and Xiangming Zeng

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository: https://github.com/Apress/
Beginning- Deep-Learning- with- TensorFlow. For more detailed information,
please visit http://www.apress.com/source- code.

Printed on acid-free paper

Liangqu Long
Shenzhen, Guangdong, China

Xiangming Zeng
State College, PA, USA

https://doi.org/10.1007/978-1-4842-7915-1

iii

Chapter 1: Introduction to Artificial Intelligence ����������������������������������1

1.1 Artificial Intelligence in Action...1

1.1.1 Artificial Intelligence Explained ..2

1.1.2 Machine Learning ...4

1.1.3 Neural Networks and Deep Learning ..5

1.2 The History of Neural Networks ..6

1.2.1 Shallow Neural Networks ...7

1.2.2 Deep Learning ..10

1.3 Deep Learning Characteristics ..12

1.3.1 Data Volume ...12

1.3.2 Computing Power ...14

1.3.3 Network Scale ..15

1.3.4 General Intelligence ..16

1.4 Deep Learning Applications ..17

1.4.1 Computer Vision ...17

1.4.2 Natural Language Processing ...20

1.4.3 Reinforcement Learning ...21

Table of Contents

About the Authors ��xix

About the Technical Reviewer ���xxi

Acknowledgments ���xxiii

iv

1.5 Deep Learning Framework ..22

1.5.1 Major Frameworks ...23

1.5.2 TensorFlow 2 and 1.x ..26

1.5.3 Demo ..28

1.6 Development Environment Installation ...32

1.6.1 Anaconda Installation ...32

1.6.2 CUDA Installation ..35

1.6.3 TensorFlow Installation ...40

1.6.4 Common Editor Installation ..44

1.7 Summary...45

1.8 Reference ..45

Chapter 2: Regression ��47
2.1 Neuron Model ..47

2.2 Optimization Method ...52

2.3 Linear Model in Action ..55

2.4 Summary...62

2.5 References ..63

Chapter 3: Classification ��65
3.1 Handwritten Digital Picture Dataset ..65

3.2 Build a Model ..70

3.3 Error Calculation ...74

3.4 Do We Really Solve the Problem? ...75

3.5 Nonlinear Model ..76

3.6 Model Complexity..77

3.7 Optimization Method ...78

3.8 Hands-On Handwritten Digital Image Recognition ..79

3.8.1 Build the Network ...80

3.8.2 Model Training ..80

Table of ConTenTs

v

3.9 Summary...82

3.10 Reference ..83

Chapter 4: Basic TensorFlow ��85

4.1 Data Types ...85

4.1.1 Numeric ..86

4.1.2 String ..89

4.1.3 Boolean ...90

4.2 Numerical Precision ..91

4.3 Tensors to Be Optimized ...93

4.4 Create Tensors ..95

4.4.1 Create Tensors from Arrays and Lists ...95

4.4.2 Create All-0 or All-1 Tensors ...96

4.4.3 Create a Customized Numeric Tensor ...98

4.4.4 Create a Tensor from a Known Distribution ..99

4.4.5 Create a Sequence ...101

4.5 Typical Applications of Tensors ...101

4.5.1 Scalar ...102

4.5.2 Vector ...103

4.5.3 Matrix ...105

4.5.4 Three-Dimensional Tensor ..106

4.5.5 Four-Dimensional Tensor ..108

4.6 Indexing and Slicing ..110

4.6.1 Indexing ..110

4.6.2 Slicing ...112

4.6.3 Slicing Summary ..117

4.7 Dimensional Transformation ...118

4.7.1 Reshape ..120

Table of ConTenTs

vi

4.7.2 Add and Delete Dimensions ..125

4.7.3 Swap Dimensions ...128

4.7.4 Copy Data ...130

4.8 Broadcasting ...132

4.9 Mathematical Operations ..137

4.9.1 Addition, Subtraction, Multiplication and Division137

4.9.2 Power Operations ...138

4.9.3 Exponential and Logarithmic Operations ..139

4.9.4 Matrix Multiplication ...141

4.10 Hands-On Forward Propagation ..142

Chapter 5: Advanced TensorFlow ���147

5.1 Merge and Split ...147

5.1.1 Merge ...147

5.1.2 Split ..152

5.2 Common Statistics ..155

5.2.1 Norm ...155

5.2.2 Max, Min, Mean, and Sum ..156

5.3 Tensor Comparison ...160

5.4 Fill and Copy ...162

5.4.1 Fill ...162

5.4.2 Copy ..166

5.5 Data Limiting ...166

5.6 Advanced Operations ..167

5.6.1 tf.gather ..168

5.6.2 tf.gather_nd ..171

5.6.3 tf.boolean_mask ...172

5.6.4 tf.where ..175

Table of ConTenTs

vii

5.6.5 tf.scatter_nd ...178

5.6.6 tf.meshgrid ...180

5.7 Load Classic Datasets ...182

5.7.1 Shuffling ...185

5.7.2 Batch Training ...185

5.7.3 Preprocessing ...186

5.7.4 Epoch Training ..187

5.8 Hands-On MNIST Dataset..188

Chapter 6: Neural Networks ���191

6.1 Perceptron ..191

6.2 Fully Connected Layer ...194

6.2.1 Tensor Mode Implementation ...196

6.2.2 Layer Implementation ...197

6.3 Neural Network ...200

6.3.1 Tensor Mode Implementation ...201

6.3.2 Layer Mode Implementation ...203

6.3.3 Optimization ...204

6.4 Activation function ..206

6.4.1 Sigmoid ..206

6.4.2 ReLU ...208

6.4.3 LeakyReLU ..210

6.4.4 Tanh ..212

6.5 Design of Output Layer ...213

6.5.1 Common Real Number Space ...214

6.5.2 [0, 1] Interval ..214

6.5.3 [0,1] Interval with Sum 1 .. 216

6.5.4 (-1, 1) Interval ...220

Table of ConTenTs

viii

6.6 Error Calculation ...220

6.6.1 Mean Square Error Function ...221

6.6.2 Cross-Entropy Error Function ...222

6.7 Types of Neural Networks ...225

6.7.1 Convolutional Neural Network ..226

6.7.2 Recurrent Neural Network ..226

6.7.3 Attention Mechanism Network ...227

6.7.4 Graph Convolutional Neural Network ...227

6.8 Hands-On of Automobile Fuel Consumption Prediction228

6.8.1 Dataset ...228

6.8.2 Create a Network ..231

6.8.3 Training and Testing ..232

6.9 References ..234

Chapter 7: Backward Propagation Algorithm �����������������������������������235

7.1 Derivatives and Gradients ...236

7.2 Common Properties of Derivatives ..240

7.2.1 Common Derivatives ...240

7.2.2 Common Property of Derivatives ..240

7.2.3 Hands-On Derivative Finding ..241

7.3 Derivative of Activation Function...242

7.3.1 Derivative of Sigmoid Function ...242

7.3.2 Derivative of ReLU Function ...244

7.3.3 Derivative of LeakyReLU Function ..245

7.3.4 Derivative of Tanh Function ..246

7.4 Gradient of Loss Function ...247

7.4.1 Gradient of Mean Square Error Function ..248

7.4.2 Gradient of Cross-Entropy Function ...249

Table of ConTenTs

ix

7.5 Gradient of Fully Connected Layer ..253

7.5.1 Gradient of a Single Neuron ...253

7.5.2 Gradient of Fully Connected Layer ..255

7.6 Chain Rule ...258

7.7 Back Propagation Algorithm ...261

7.8 Hands-On Optimization of Himmelblau ...265

7.9 Hands-On Back Propagation Algorithm ...269

7.9.1 Dataset ...270

7.9.2 Network Layer ..273

7.9.3 Network model ...276

7.9.4 Network Training ..278

7.9.5 Network Performance ..280

7.10 References ..281

Chapter 8: Keras Advanced API ��283

8.1 Common Functional Modules..284

8.1.1 Common Network Layer Classes ..285

8.1.2 Network Container ..286

8.2 Model Configuration, Training, and Testing ...289

8.2.1 Model Configuration ...289

8.2.2 Model Training ..291

8.2.3 Model Testing ...292

8.3 Model Saving and Loading ..293

8.3.1 Tensor Method ..293

8.3.2 Network Method ...295

8.3.3 SavedModel method ...296

Table of ConTenTs

x

8.4 Custom Network ...297

8.4.1 Custom Network Layer ...297

8.4.2 Customized Network ..300

8.5 Model Zoo ...302

8.5.1 Load Model ...302

8.6 Metrics ..305

8.6.1 Create a Metrics Container ...305

8.6.2 Write Data ...305

8.6.3 Read Statistical Data ..306

8.6.4 Clear the Container ...306

8.6.5 Hands-On Accuracy Metric ...306

8.7 Visualization ..307

8.7.1 Model Side ..308

8.7.2 Browser Side ..309

8.8 Summary...314

Chapter 9: Overfitting ���315

9.1 Model Capacity ...316

9.2 Overfitting and Underfitting...317

9.2.1 Underfitting ...321

9.2.2 Overfitting ...322

9.3 Dataset Division ..323

9.3.1 Validation Set and Hyperparameters ..324

9.3.2 Early Stopping ..326

9.4 Model Design ..330

9.5 Regularization ...333

9.5.1 L0 Regularization ..334

9.5.2 L1 Regularization ..335

Table of ConTenTs

xi

9.5.3 L2 Regularization ..335

9.5.4 Regularization Effect ..336

9.6 Dropout ...342

9.7 Data Augmentation ...345

9.7.1 Rotation ..347

9.7.2 Flip ..348

9.7.3 Cropping ...349

9.7.4 Generate Data ...350

9.7.5 Other Methods ..351

9.8 Hands-On Overfitting ..353

9.8.1 Build the Dataset ..353

9.8.2 Influence of the Number of Network Layers355

9.8.3 Impact of Dropout ...356

9.8.4 Impact of Regularization ..357

9.9 References ..360

Chapter 10: Convolutional Neural Networks �������������������������������������361

10.1 Problems with Fully Connected N ...362

10.1.1 Local Correlation ..366

10.1.2 Weight Sharing ...369

10.1.3 Convolution Operation ..371

10.2 Convolutional Neural Network ..376

10.2.1 Single-Channel Input and Single Convolution Kernel377

10.2.2 Multi-channel Input and Single Convolution Kernel381

10.2.3 Multi-channel Input and Multi- convolution Kernel385

10.2.4 Stride Size ..387

10.2.5 Padding ..389

Table of ConTenTs

xii

10.3 Convolutional Layer Implementation ...393

 10.3.1 Custom Weights ...393

 10.3.2 Convolutional Layer Classes ..395

10.4 Hands-On LeNet-5 .. 397

10.5 Representation Learning ...403

10.6 Gradient Propagation ..405

10.7 Pooling Layer ..407

10.8 BatchNorm Layer ..410

10.8.1 Forward Propagation ..414

10.8.2 Backward Propagation ...415

10.8.3 Implementation of BatchNormalization layer417

10.9 Classical Convolutional Network ...418

10.9.1 AlexNet ...419

10.9.2 VGG Series ..421

10.9.3 GoogLeNet ..422

10.10 Hands-On CIFAR10 and VGG13 .. 425

10.11 Convolutional Layer Variants ...430

10.11.1 Dilated/Atrous Convolution ...430

10.11.2 Transposed Convolution ..433

10.11.3 Separate Convolution ...445

10.12 Deep Residual Network ...447

10.12.1 ResNet Principle ...448

10.12.2 ResBlock Implementation ...450

10.13 DenseNet...452

10.14 Hands-On CIFAR10 and ResNet18... 453

10.15 References ..459

Table of ConTenTs

xiii

Chapter 11: Recurrent Neural Network ��461

11.1 Sequence Representation Method ..462

11.1.1 Embedding Layer ..464

11.1.2 Pre-trained Word Vectors ..466

11.2 Recurrent Neural Network ..467

11.2.1 Is a Fully Connected Layer Feasible? ...468

11.2.2 Shared Weight ..470

11.2.3 Global Semantics ..471

11.2.4 Recurrent Neural Network ..472

11.3 Gradient Propagation ..474

11.4 How to Use RNN Layers ..476

11.4.1 SimpleRNNCell ...476

11.4.2 Multilayer SimpleRNNCell Network ..479

11.4.3 SimpleRNN Layer ..481

11.5 Hands-On RNN Sentiment Classification ..483

11.5.1 Dataset ...484

11.5.2 Network Model ...487

11.5.3 Training and Testing ..489

11.6 Gradient Vanishing and Gradient Exploding ..490

11.6.1 Gradient Clipping ..494

11.6.2 Gradient Vanishing ..498

11.7 RNN Short-Term Memory ..498

11.8 LSTM Principle ..499

11.8.1 Forget Gate ...501

11.8.2 Input Gate ...502

11.8.3 Update Memory ..503

11.8.4 Output Gate ...504

11.8.5 Summary ..505

Table of ConTenTs

xiv

11.9 How to Use the LSTM Layer ..506

11.9.1 LSTMCell ...506

11.9.2 LSTM layer ..507

11.10 GRU Introduction ...508

11.10.1 Reset Door ..509

11.10.2 Update Gate ..510

11.10.3 How to Use GRU ..511

11.11 Hands-On LSTM/GRU Sentiment Classification512

11.11.1 LSTM Model ..513

11.11.2 GRU model ..513

11.12 Pre-trained Word Vectors ..514

11.13 Pre-trained Word Vectors ..516

11.14 References ..517

Chapter 12: Autoencoder ��519

12.1 Principle of Autoencoder ...520

12.2 Hands-On Fashion MNIST Image Reconstruction523

12.2.1 Fashion MNIST Dataset ..523

12.2.2 Encoder ..525

12.2.3 Decoder ..526

12.2.4 Autoencoder ...527

12.2.5 Network Training ..528

12.2.6 Image Reconstruction...530

12.3 Autoencoder Variants ..533

12.3.1 Dropout Autoencoder ..534

12.3.2 Adversarial Autoencoder ...534

12.4 Variational Autoencoder ..535

12.4.1 Principle of VAE...536

12.4.2 Reparameterization Trick ..540

Table of ConTenTs

xv

12.5 Hands-On VAE Image Reconstruction ...542

12.5.1 VAE model ...543

12.5.2 Reparameterization Trick ..545

12.5.3 Network Training ..545

12.5.4 Image Generation ...547

12.6 Summary...550

12.7 References ..551

Chapter 13: Generative Adversarial Networks ���������������������������������553

13.1 Examples of Game Learning ...554

13.2 GAN Principle ..556

13.2.1 Network Structure ..556

13.2.2 Network Training ..559

13.2.3 Unified Objective Function ..560

13.3 Hands-On DCGAN ..561

13.3.1 Cartoon Avatar Dataset ...562

13.3.2 Generator ..563

13.3.3 Discriminator ..565

13.3.4 Training and Visualization ...568

13.4 GAN Variants ...573

13.4.1 DCGAN ..574

13.4.2 InfoGAN ...574

13.4.3 CycleGAN ..575

13.4.4 WGAN ..576

13.4.5 Equal GAN ...576

13.4.6 Self-Attention GAN ..577

13.4.7 BigGAN ...577

Table of ConTenTs

xvi

13.5 Nash Equilibrium ...578

13.5.1 Discriminator State ...580

13.5.2 Generator State ..581

13.5.3 Nash Equilibrium Point ...584

13.6 GAN Training Difficulty ..584

13.6.1 Hyperparameter Sensitivity ..584

13.6.2 Model Collapse ...585

13.7 WGAN Principle ...587

13.7.1 JS Divergence Disadvantage ..588

13.7.2 EM Distance ..590

13.8 Hands-On WGAN-GP ..595

13.9 References ..597

Chapter 14: Reinforcement Learning ��601

14.1 See It Soon ..602

14.1.1 Balance Bar Game ..602

14.1.2 Gym Platform ..603

14.1.3 Policy Network ..607

14.1.4 Gradient Update ..609

14.1.5 Hands-On Balance Bar Game ...612

14.2 Reinforcement Learning Problems ...614

14.2.1 Markov Decision Process ...616

14.2.2 Objective Function ..619

14.3 Policy Gradient Method ...621

14.3.1 Reinforce Algorithm ..624

14.3.2 Improvement of the Original Policy Gradient Method625

14.3.3 REINFORCE Algorithm with Bias ...627

14.3.4 Importance Sampling ...629

Table of ConTenTs

xvii

14.3.5 PPO Algorithm ...632

14.3.6 Hands-On PPO ..633

14.4 Value Function Method ..641

14.4.1 Value Function ..641

14.4.2 Value Function Estimation ..649

14.4.3 Policy Improvement ..651

14.4.4 SARSA Algorithm ..653

14.4.5 DQN Algorithm ..653

14.4.6 DQN Variants ...655

14.4.7 Hands-On DQN ..656

14.5 Actor-Critic Method ...662

14.5.1 Advantage AC Algorithm ...663

14.5.2 A3C Algorithm ...664

14.5.3 Hands-On A3C ..665

14.6 Summary...672

14.7 References ..673

Chapter 15: Customized Dataset ��675

15.1 Pokémon Go Dataset ...676

15.2 Customized Dataset Loading ..677

15.2.1 Create Code Table ...678

15.2.2 Create Sample and Label Form ..679

15.2.3 Dataset Division ..682

15.3 Hands-On Pokémon Dataset ...683

15.3.1 Create Dataset Object ...684

15.3.2 Data Preprocessing ..685

15.3.3 Create Model ..688

15.3.4 Network Training and Testing ...689

Table of ConTenTs

xviii

15.4 Transfer Learning ..691

15.4.1 Principles of Transfer Learning ...691

15.4.2 Hands-On Transfer Learning ...693

15.5 Summary...695

 Index ���697

Table of ConTenTs

xix

About the Authors

Liangqu Long is a well-known deep learning educator and engineer in

China. He is a successfully published author in the topic area with years of

experience in teaching machine learning concepts. His two online video

tutorial courses, “Deep Learning with PyTorch” and “Deep Learning with

TensorFlow 2,” have received massive positive comments and allowed him

to refine his deep learning teaching methods.

Xiangming Zeng is an experienced data scientist and machine learning

practitioner. He has over ten years of experience in using machine learning

and deep learning models to solve real-world problems both in academia

and industry. Xiangming is familiar with deep learning fundamentals

and mainstream machine learning libraries such as TensorFlow and

scikit-learn.

xxi

About the Technical Reviewer

Vishwesh Ravi Shrimali graduated in 2018 from BITS Pilani, where he

studied mechanical engineering. Since then, he has worked with Big

Vision LLC on deep learning and computer vision and was involved

in creating official OpenCV AI courses. Currently, he is working at

Mercedes- Benz Research and Development India Pvt. Ltd. He has a

keen interest in programming and artificial intelligence (AI) and has

applied that interest in mechanical engineering projects. He has also

written multiple blogs on OpenCV and deep learning on LearnOpenCV,

a leading blog on computer vision. He has also coauthored Machine

Learning for OpenCV 4 (second edition) by Packt. When he is not writing

blogs or working on projects, he likes to go on long walks or play his

acoustic guitar.

xxiii

Acknowledgments

It’s been a long journey writing this book. This is definitely a team

effort, and we would like to thank everyone who is part of this process,

especially our families for their support and understanding, the reviewers

of this book for providing valuable feedback, and of course the Apress

crew – especially Aaron and Jessica for working with us and making this

book possible! We are also grateful for the open source and machine

learning communities who shared and continue sharing their knowledge

and great work!

1© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_1

CHAPTER 1

Introduction to
Artificial Intelligence

What we want is a machine that can learn from experience.

—Alan Turing

1.1 Artificial Intelligence in Action
Information technology is the third industrial revolution in human history.

The popularity of computers, the Internet, and smart home technology

has greatly facilitated people’s daily lives. Through programming, humans

can hand over the interaction logic designed in advance to the machine

to execute repeatedly and quickly, thereby freeing humans from simple

and tedious repetitive labor. However, for tasks that require a high level

of intelligence, such as face recognition, chat robots, and autonomous

driving, it is difficult to design clear logic rules. Therefore, traditional

programming methods are powerless to those kinds of tasks, whereas

artificial intelligence (AI), as the key technology to solve this kind of

problem, is very promising.

With the rise of deep learning algorithms, AI has achieved or even

surpassed humanlike intelligence on some tasks. For example, the

AlphaGo program has defeated Ke Jie, one of the strongest human Go

https://doi.org/10.1007/978-1-4842-7915-1_1#DOI

2

players, and OpenAI Five has beaten the champion team OG on the Dota

2 game. In the meantime, practical technologies such as face recognition,

intelligent speech, and machine translation have entered people’s daily

lives. Now our lives are actually surrounded by AI. Although the current

level of intelligence that can be reached is still a long way from artificial

general intelligence (AGI), we still firmly believe that the era of AI has

arrived.

Next, we will introduce the concepts of AI, machine learning, and deep

learning, as well as the connections and differences between them.

1.1.1 Artificial Intelligence Explained
AI is a technology that allows machines to acquire intelligent and

inferential mechanisms like humans. This concept first appeared at

the Dartmouth Conference in 1956. This is a very challenging task. At

present, human beings cannot yet have a comprehensive and scientific

understanding of the working mechanism of the human brain. It is

undoubtedly more difficult to make intelligent machines that can reach

the level of the human brain. With that being said, machines that archive

similar to or even surpass human intelligence in some way have been

proven to be feasible.

How to realize AI is a very broad question. The development of AI

has mainly gone through three stages, and each stage represents the

exploration footprint of the human trying to realize AI from different

angles. In the early stage, people tried to develop intelligent systems by

summarizing and generalizing some logical rules and implementing

them in the form of computer programs. But such explicit rules are often

too simple and are difficult to be used to express complex and abstract

concepts and rules. This stage is called the inference period.

In the 1970s, scientists tried to implement AI through knowledge

database and reasoning. They built a large and complex expert system

to simulate the intelligence level of human experts. One of the biggest

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

3

difficulties with these explicitly specified rules is that many complex,

abstract concepts cannot be implemented in concrete code. For example,

the process of human recognition of pictures and understanding of

languages cannot be simulated by established rules at all. To solve such

problems, a research discipline that allowed machines to automatically

learn rules from data, known as machine learning, was born. Machine

learning became a popular subject in AI in the 1980s. This is the

second stage.

In machine learning, there is a direction to learn complex, abstract

logic through neural networks. Research on the direction of neural

networks has experienced two ups and downs. Since 2012, the applications

of deep neural network technology have made major breakthroughs

in fields like computer vision, natural language processing (NLP), and

robotics. Some tasks have even surpassed the level of human intelligence.

This is the third revival of AI. Deep neural networks eventually have a

new name – deep learning. Generally speaking, the essential difference

between neural networks and deep learning is not large. Deep learning

refers to models or algorithms based on deep neural networks. The

relationship between artificial intelligence, machine learning, neural

networks, and deep learning is shown in Figure 1-1.

Artificial
Intelligence

Machine
Learning

Neural
Network

Deep Learning

Figure 1-1. Relationship of artificial intelligence, machine learning,
neural networks, and deep learning

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

4

1.1.2 Machine Learning
Machine learning can be divided into supervised learning, unsupervised

learning, and reinforcement learning, as shown in Figure 1-2.

Machine
Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Figure 1-2. Categories of machine learning

Supervised Learning. The supervised learning data set contains

samples x and sample labels y. The algorithm needs to learn the mapping

relationship fθ: x → y, where fθ represents the model function and θ are

the parameters of the model. During training, the model parameters θ are

optimized by minimizing errors between the model prediction and the real

value y, so that the model can have more accurate prediction. Common

supervised learning models include linear regression, logistic regression,

support vector machines (SVMs), and random forests.

Unsupervised Learning. Collecting labeled data is often more

expensive. For a sample-only data set, the algorithm needs to discover the

modalities of the data itself. This kind of algorithm is called unsupervised

learning. One type of algorithm in unsupervised learning uses itself as

a supervised signal, that is, fθ: x → x, which is known as self-supervised

learning. During training, parameters are optimized by minimizing the

error between the model’s predicted value fθ(x) and itself x. Common

unsupervised learning algorithms include self-encoders and generative

adversarial networks (GANs).

Reinforcement Learning. This is a type of algorithm that learns

strategies for solving problems by interacting with the environment. Unlike

supervised and unsupervised learning, reinforcement learning problems

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

5

do not have a clear “correct” action supervision signal. The algorithm

needs to interact with the environment to obtain a lagging reward signal

from the environmental feedback. Therefore, it is not possible to calculate

the errors between model Reinforcement Learning prediction and

“correct values” to optimize the network directly. Common reinforcement

learning algorithms are Deep Q-Networks (DQNs) and Proximal Policy

Optimization (PPO).

1.1.3 Neural Networks and Deep Learning
Neural network algorithms are a class of algorithms that learn from data

based on neural networks. They still belong to the category of machine

learning. Due to the limitation of computing power and data volume,

early neural networks were shallow, usually with around one to four

layers. Therefore, the network expression ability was limited. With the

improvement of computing power and the arrival of the big data era,

highly parallelized graphics processing units (GPUs) and massive data

make training of large-scale neural networks possible.

In 2006, Geoffrey Hinton first proposed the concept of deep learning.

In 2012, AlexNet, an eight-layer deep neural network, was released and

achieved huge performance improvements in the image recognition

competition. Since then, neural network models with dozens, hundreds,

and even thousands of layers have been developed successively, showing

strong learning ability. Algorithms implemented using deep neural

networks are generally referred to as deep learning models. In essence,

neural networks and deep learning can be considered the same.

Let’s simply compare deep learning with other algorithms. As shown

in Figure 1-3, rule-based systems usually write explicit logic, which is

generally designed for specific tasks and is not suitable for other tasks.

Traditional machine learning algorithms artificially design feature

detection methods with certain generality, such as SIFT and HOG

features. These features are suitable for a certain type of tasks and have

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

6

certain generality. But the performance highly depends on how to design

those features. The emergence of neural networks has made it possible

for computers to design those features automatically through neural

networks without human intervention. Shallow neural networks typically

have limited feature extraction capability, while deep neural networks

are capable of extracting high-level, abstract features and have better

performance.

Handcrafed
Rules

Output Logic

Handcrafted
Features

Output Logic

Shallow
Network

Output Sub-
Network

Low-level
Network

Mid-level
Network

High-level
Network

Output Sub-
Network

Rule-based System Traditional ML Neural Network Deep Learning

Figure 1-3. Comparison of deep learning and other algorithms

1.2 The History of Neural Networks
We divide the development of neural networks into shallow neural

network stages and deep learning stages, with 2006 as the dividing point.

Before 2006, deep learning developed under the name of neural networks

and experienced two ups and two downs. In 2006, Geoffrey Hinton first

named deep neural networks as deep learning, which started its third

revival.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

7

1.2.1 Shallow Neural Networks
In 1943, psychologist Warren McCulloch and logician Walter Pitts

proposed the earliest mathematical model of neurons based on the

structure of biological neurons, called MP neuron models after their last

name initials. The model f (x) = h(g(x)), where g(x) = ∑i xi, xi ∈ {0, 1}, takes

values from g(x) to predict output values as shown in Figure 1-4. If g(x) ≥ 0,

output is 1; if g(x) < 0, output is 0. The MP neuron models have no learning

ability and can only complete fixed logic judgments.

ℎ
∈ {0,1}

Figure 1-4. MP neuron model

In 1958, American psychologist Frank Rosenblatt proposed the first

neuron model that can automatically learn weights, called perceptron. As

shown in Figure 1-5, the error between the output value o and the true value

y is used to adjust the weights of the neurons {w1, w2, …, wn}. Frank Rosenblatt

then implemented the perceptron model based on the “Mark 1 perceptron”

hardware. As shown in Figures 1-6 and 1-7, the input is an image sensor with

400 pixels, and the output has eight nodes. It can successfully identify some

English letters. It is generally believed that 1943–1969 is the first prosperous

period of artificial intelligence development.

Error

Figure 1-5. Perceptron model

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

8

Figure 1-6. Frank Rosenblatt and Mark 1 perceptron1

Figure 1-7. Mark 1 perceptron network architecture2

1 Picture source: https://slideplayer.com/slide/12771753/
2 Picture source: www.glass-bead.org/article/machines-that-morph-logic/?
lang=enview

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

https://slideplayer.com/slide/12771753/
http://www.glass-bead.org/article/machines-that-morph-logic/?lang=enview
http://www.glass-bead.org/article/machines-that-morph-logic/?lang=enview

9

In 1969, the American scientist Marvin Minsky and others pointed

out the main flaw of linear models such as perceptrons in the book

Perceptrons. They found that perceptrons cannot handle simple linear

inseparable problems such as XOR. This directly led to the trough period of

perceptron-related research on neural networks. It is generally considered

that 1969–1982 was the first winter of artificial intelligence.

Although it was in the trough period of AI, there were still many

significant studies published one after another. The most important one

is the backpropagation (BP) algorithm, which is still the core foundation

of modern deep learning algorithms. In fact, the mathematical idea of the

BP algorithm has been derived as early as the 1960s, but it had not been

applied to neural networks at that time. In 1974, American scientist Paul

Werbos first proposed that the BP algorithm can be applied to neural

networks in his doctoral dissertation. Unfortunately, this result has not

received enough attention. In 1986, David Rumelhart et al. published a

paper using the BP algorithm for feature learning in Nature. Since then, the

BP algorithm started gaining widespread attention.

In 1982, with the introduction of John Hopfield’s cyclically connected

Hopfield network, the second wave of artificial intelligence renaissance

was started from 1982 to 1995. During this period, convolutional neural

networks, recurrent neural networks, and backpropagation algorithms

were developed one after another. In 1986, David Rumelhart, Geoffrey

Hinton, and others applied the BP algorithm to multilayer perceptrons.

In 1989, Yann LeCun and others applied the BP algorithm to handwritten

digital image recognition and achieved great success, which is known as

LeNet. The LeNet system was successfully commercialized in zip code

recognition, bank check recognition, and many other systems. In 1997, one

of the most widely used recurrent neural network variants, Long Short-

Term Memory (LSTM), was proposed by Jürgen Schmidhuber. In the same

year, a bidirectional recurrent neural network was also proposed.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

10

Unfortunately, the study of neural networks has gradually entered

a trough with the rise of traditional machine learning algorithms

represented by support vector machines (SVMs), which is known as the

second winter of artificial intelligence. Support vector machines have

a rigorous theoretical foundation, require a small number of training

samples, and also have good generalization capabilities. In contrast, neural

networks lack theoretical foundation and are hard to interpret. Deep

networks are difficult to train, and the performance is normal. Figure 1-8

shows the significant time of AI development between 1943 and 2006.

1943

Neuron

Turing Test
1950

1958

Perceptron

XOR Problem

1969

1974

Backpropagation

Hopfield
Network
1982

1985

Boltzmann
Machine

Restricted
Boltzmann
1986

RNN
1986

1986

MLP
1990

LeNet

Bi-directional
RNN
1997

1997

LSTM
2006

Deep Belief
Network

Figure 1-8. Shallow neural network development timeline

1.2.2 Deep Learning
In 2006, Geoffrey Hinton et al. found that multilayer neural networks can

be better trained through layer-by-layer pre-training and achieved a better

error rate than SVM on the MNIST handwritten digital picture data set,

turning on the third artificial intelligence revival. In that paper, Geoffrey

Hinton first proposed the concept of deep learning. In 2011, Xavier Glorot

proposed a Rectified Linear Unit (ReLU) activation function, which is one

of the most widely used activation functions now. In 2012, Alex Krizhevsky

proposed an eight-layer deep neural network AlexNet, which used the

ReLU activation function and Dropout technology to prevent overfitting.

At the same time, it abandoned the layer-by-layer pre-training method

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

11

and directly trained the network on two NVIDIA GTX580 GPUs. AlexNet

won the first place in the ILSVRC-2012 picture recognition competition,

showing a stunning 10.9% reduction in the top-5 error rate compared with

the second place.

Since the AlexNet model was developed, various models have been

published successively, including VGG series, GoogleNet series, ResNet

series, and DenseNet series. The ResNet series models increase the

number of layers in the network to hundreds or even thousands while

maintaining the same or even better performance. Its algorithm is simple

and universal, and it has significant performance, which is the most

representative model of deep learning.

In addition to the amazing results in supervised learning, huge

achievements have also been made in unsupervised learning and

reinforcement learning. In 2014, Ian Goodfellow proposed generative

adversarial networks (GANs), which learned the true distribution of

samples through adversarial training to generate samples with higher

approximation. Since then, a large number of GAN models have been

proposed. The latest image generation models can generate images that

reach a degree of fidelity hard to discern from the naked eye. In 2016,

DeepMind applied deep neural networks to the field of reinforcement

learning and proposed the DQN algorithm, which achieved a level

comparable to or even higher than that of humans in 49 games in the Atari

game platform. In the field of Go, AlphaGo and AlphaGo Zero intelligent

programs from DeepMind have successively defeated human top Go

players Li Shishi, Ke Jie, etc. In the multi-agent collaboration Dota 2 game

platform, OpenAI Five intelligent programs developed by OpenAI defeated

the TI8 champion team OG in a restricted game environment, showing a

large number of professional high-level intelligent operations. Figure 1-9

lists the major time points between 2006 and 2019 for AI development.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

12

2006

Deep Belief
Network

ImageNet
2009

2012

AlexNet

GAN
2014

2015

DQN

AlphaGO
2016

2017

AlphaGO
Zero

2019

OpenAI
Five

ResNet
2015

2014

VGG
GoogLeNet

2015

Batch
Normalization

Pluribus
2019

BERT
2018

TensorFlow
2015

TensorFlow
2.0
2019

Figure 1-9. Timeline for deep learning development

1.3 Deep Learning Characteristics
Compared with traditional machine learning algorithms and shallow

neural networks, modern deep learning algorithms usually have the

following characteristics.

1.3.1 Data Volume
Early machine learning algorithms are relatively simple and fast to train,

and the size of the required dataset is relatively small, such as the Iris

flower dataset collected by the British statistician Ronald Fisher in 1936,

which contains only three categories of flowers, with each category having

50 samples. With the development of computer technology, the designed

algorithms are more and more complex, and the demand for data volume

is also increasing. The MNIST handwritten digital picture dataset collected

by Yann LeCun in 1998 contains a total of ten categories of numbers from

0 to 9, with up to 7,000 pictures in each category. With the rise of neural

networks, especially deep learning networks, the number of network layers

is generally large, and the number of model parameters can reach one

million, ten million, or even one billion. To prevent overfitting, the size of

the training dataset is usually huge. The popularity of modern social media

also makes it possible to collect huge amounts of data. For example,

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

13

the ImageNet dataset released in 2010 included a total of 14,197,122

pictures, and the compressed file size of the entire dataset was

154GB. Figures 1-10 and 1-11 list the number of samples and the size of the

data set over time.

Although deep learning has a high demand for large datasets,

collecting data, especially collecting labeled data, is often very expensive.

The formation of a dataset usually requires manual collection, crawling of

raw data and cleaning out invalid samples, and then annotating the data

samples with human intelligence, so subjective bias and random errors

are inevitably introduced. Therefore, algorithms with small data volume

requirement are very hot topics.

Figure 1-11. Dataset size change over time

Figure 1-10. Dataset sample size change over time

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

14

1.3.2 Computing Power
The increase in computing power is an important factor in the third

artificial intelligence renaissance. In fact, the basic theory of modern

deep learning was proposed in the 1980s, but the real potential of deep

learning was not realized until the release of AlexNet based on training on

two GTX580 GPUs in 2012. Traditional machine learning algorithms do

not have stringent requirements on data volume and computing power

like deep learning. Usually, serial training on CPU can get satisfactory

results. But deep learning relies heavily on parallel acceleration computing

devices. Most of current neural networks use parallel acceleration chips

such as NVIDIA GPU and Google TPU to train model parameters. For

example, the AlphaGo Zero program needs to be trained on 64 GPUs from

scratch for 40 days before surpassing all AlphaGo historical versions. The

automatic network structure search algorithm used 800 GPUs to optimize

a better network structure.

At present, the deep learning acceleration hardware devices that

ordinary consumers can use are mainly from NVIDIA GPU graphics cards.

Figure 1-12 illustrates the variation of one billion floating-point operations

per second (GFLOPS) of NVIDIA GPU and x86 CPU from 2008 to 2017. It

can be seen that the curve of x86 CPU changes relatively slowly, and the

floating-point computing capacity of NVIDIA GPU grows exponentially,

which is mainly driven by the increasing business of game and deep

learning computing.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

15

Figure 1-12. NVIDIA GPU FLOPS change (data source: NVIDIA)

1.3.3 Network Scale
Early perceptron models and multilayer neural networks only have one

or two to four layers, and the network parameters are also around tens of

thousands. With the development of deep learning and the improvement

of computing capabilities, models such as AlexNet (8 layers), VGG16 (16

layers), GoogleNet (22 layers), ResNet50 (50 layers), and DenseNet121

(121 layers) have been proposed successively, while the size of inputting

pictures has also gradually increased from 28×28 to 224×224 to 299×299

and even larger. These changes make the total number of parameters of

the network reach ten million levels, as shown in Figure 1-13.

The increase of network scale enhances the capacity of the neural

networks correspondingly, so that the networks can learn more complex

data modalities and the model performance can be improved accordingly.

On the other hand, the increase of the network scale also means that we

need more training data and computational power to avoid overfitting.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

16

1.3.4 General Intelligence
In the past, in order to improve the performance of an algorithm on a

certain task, it is often necessary to use prior knowledge to manually

design corresponding features to help the algorithm better converge to the

optimal solution. This type of feature extraction method is often strongly

related to the specific task. Once the scenario changes, these artificially

designed features and prior settings cannot adapt to the new scenario, and

people often need to redesign the algorithms.

Designing a universal intelligent mechanism that can automatically

learn and self-adjust like the human brain has always been the common

vision of human beings. Deep learning is one of the algorithms closest to

general intelligence. In the computer vision field, previous methods that

need to design features for specific tasks and add a priori assumptions

have been abandoned by deep learning algorithms. At present, almost

all algorithms in image recognition, object detection, and semantic

segmentation are based on end-to-end deep learning models, which

present good performance and strong adaptability. On the Atari game

platform, the DQN algorithm designed by DeepMind can reach human

4 4
8 8

19
22

152

28.2 25.8

16.4
11.7

7.3 6.7
3.57

ILSVRC10 ILSVRC11 ILSVRC12 ILSVRC13 ILSVRC14 ILSVRC14 ILSVRC15

ILSVRC ImageNet Classification Task

Network Layers Top-5 Error Rate

Figure 1-13. Change of network layers

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

17

equivalent level in 49 games under the same algorithm, model structure,

and hyperparameter settings, showing a certain degree of general

intelligence. Figure 1-14 is the network structure of the DQN algorithm. It

is not designed for a certain game but can control 49 games on the Atari

game platform.

Figure 1-14. DQN network structure [1]

1.4 Deep Learning Applications
Deep learning algorithms have been widely used in our daily life, such as

voice assistants in mobile phones, intelligent assisted driving in cars, and

face payments. We will introduce some mainstream applications of deep

learning starting with computer vision, natural language processing, and

reinforcement learning.

1.4.1 Computer Vision
Image classification is a common classification problem. The input of

the neural network is pictures, and the output value is the probability that

the current sample belongs to each category. Generally, the category with

the highest probability is selected as the predicted category of the sample.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

18

Image recognition is one of the earliest successful applications of deep

learning. Classic neural network models include VGG series, Inception

series, and ResNet series.

Object detection refers to the automatic detection of the approximate

location of common objects in a picture by an algorithm. It is usually

represented by a bounding box and classifies the category information

of objects in the bounding box, as shown in Figure 1-15. Common object

detection algorithms are RCNN, Fast RCNN, Faster RCNN, Mask RCNN,

SSD, and YOLO series.

Semantic segmentation is an algorithm to automatically segment

and identify the content in a picture. We can understand semantic

segmentation as the classification of each pixel and analyze the category

information of each pixel, as shown in Figure 1-16. Common semantic

segmentation models include FCN, U-net, SegNet, and DeepLab series.

Figure 1-15. Object detection example

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

19

Figure 1-16. Semantic segmentation example

Video Understanding. As deep learning achieves better results on

2D picture–related tasks, 3D video understanding tasks with temporal

dimension information (the third dimension is sequence of frames)

are receiving more and more attention. Common video understanding

tasks include video classification, behavior detection, and video subject

extraction. Common models are C3D, TSN, DOVF, and TS_LSTM.

Image generation learns the distribution of real pictures and samples

from the learned distribution to obtain highly realistic generated pictures.

At present, common image generation models include VAE series and

GAN series. Among them, the GAN series of algorithms have made

great progress in recent years. The picture effect produced by the latest

GAN model has reached a level where it is difficult to distinguish the

authenticity with the naked eye, as shown in Figure 1-17.

In addition to the preceding applications, deep learning has also

achieved significant results in other areas, such as artistic style transfer

(Figure 1-18), super-resolution, picture de-nosing/hazing, grayscale

picture coloring, and many others.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

20

Figure 1-18. Artistic style transfer image

1.4.2 Natural Language Processing
Machine Translation. In the past, machine translation algorithms were

usually based on statistical machine translation models, which were

also the technology used by Google’s translation system before 2016. In

November 2016, Google launched the Google Neural Machine Translation

(GNMT) system based on the Seq2Seq model. For the first time, the

direct translation technology from source language to target language

was realized with 50–90% improvement on multiple tasks. Commonly

used machine translation models are Seq2Seq, BERT, GPT, and GPT-2.

Among them, the GPT-2 model proposed by OpenAI has about 1.5 billion

Figure 1-17. Model-generated image

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

21

parameters. At the beginning, OpenAI refused to open-source the GPT-2

model due to technical security reasons.

Chatbot is also a mainstream task of natural language processing.

Machines automatically learn to talk to humans, provide satisfactory

automatic responses to simple human demands, and improve customer

service efficiency and service quality. Chatbot is often used in consulting

systems, entertainment systems, and smart homes.

1.4.3 Reinforcement Learning
Virtual Games. Compared with the real environment, virtual game

platforms can both train and test reinforcement learning algorithms and

can avoid interference from irrelevant factors while also minimizing the

cost of experiments. Currently, commonly used virtual game platforms

include OpenAI Gym, OpenAI Universe, OpenAI Roboschool, DeepMind

OpenSpiel, and MuJoCo, and commonly used reinforcement learning

algorithms include DQN, A3C, A2C, and PPO. In the field of Go, the

DeepMind AlphaGo program has surpassed human Go experts. In Dota 2

and StarCraft games, the intelligent programs developed by OpenAI and

DeepMind have also defeated professional teams under restriction rules.

Robotics. In the real environment, the control of robots has also made

some progress. For example, UC Berkeley Lab has made a lot of progress in

the areas of imitation learning, meta learning, and few-shot learning in the

field of robotics. Boston Dynamics has made gratifying achievements in

robot applications. The robots it manufactures perform well on tasks such

as complex terrain walking and multi-agent collaboration (Figure 1-19).

Autonomous driving is considered as an application direction of

reinforcement learning in the short term. Many companies have invested

a lot of resources in autonomous driving, such as Baidu, Uber, and Google.

Apollo from Baidu has begun trial operations in Beijing, Xiong’an, Wuhan,

and other places. Figure 1-20 shows Baidu’s self-driving car Apollo.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

22

Figure 1-20. Baidu’s self-driving car Apollo4

1.5 Deep Learning Framework
If a workman wants to be good, he must first sharpen his weapon. After

learning about the basic knowledge of deep learning, let’s pick the tools

used to implement deep learning algorithms.

Figure 1-19. Robots from Boston Dynamics3

3 Picture source: www.bostondynamics.com/
4 Picture source: https://venturebeat.com/2019/01/08/baidu-announces-
apollo-3-5-and-apollo-enterprise-says-it-has-over-130-partners/

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

http://www.bostondynamics.com/
https://venturebeat.com/2019/01/08/baidu-announces-apollo-3-5-and-apollo-enterprise-says-it-has-over-130-partners/
https://venturebeat.com/2019/01/08/baidu-announces-apollo-3-5-and-apollo-enterprise-says-it-has-over-130-partners/

23

1.5.1 Major Frameworks
• Theano is one of the earliest deep learning frameworks.

It was developed by Yoshua Bengio and Ian

Goodfellow. It is a Python-based computing library

for positioning low-level operations. Theano supports

both GPU and CPU operations. Due to Theano’s low

development efficiency, long model compilation time,

and developers switching to TensorFlow, Theano has

now stopped maintenance.

• Scikit-learn is a complete computing library for

machine learning algorithms. It has built-in support

for common traditional machine learning algorithms,

and it has rich documentation and examples. However,

scikit-learn is not specifically designed for neural

networks. It does not support GPU acceleration, and

the implementation of neural network–related layers is

also lacking.

• Caffe was developed by Jia Yangqing in 2013. It is

mainly used for applications using convolutional

neural networks and is not suitable for other types of

neural networks. Caffe’s main development language is

C ++, and it also provides interfaces for other languages

such as Python. It also supports GPU and CPU. Due to

the earlier development time and higher visibility in

the industry, in 2017 Facebook launched an upgraded

version of Caffe, Caffe2. Caffe2 has now been integrated

into the PyTorch library.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

24

• Torch is a very good scientific computing library,

developed based on the less popular programming

language Lua. Torch is highly flexible, and it is easy to

implement a custom network layer, which is also an

excellent gene inherited by PyTorch. However, due to

the small number of Lua language users, Torch has

been unable to obtain mainstream applications.

• MXNet was developed by Chen Tianqi and Li Mu and

is the official deep learning framework of Amazon. It

adopts a mixed method of imperative programming

and symbolic programming, which has high flexibility,

fast running speed, and rich documentation and

examples.

• PyTorch is a deep learning framework launched by

Facebook based on the original Torch framework

using Python as the main development language.

PyTorch borrowed the design style of Chainer and

adopted imperative programming, which made it

very convenient to build and debug the network.

Although PyTorch was only released in 2017, due to its

sophisticated and compact interface design, PyTorch

has received wide acclaim in the academic world.

After the 1.0 version, the original PyTorch and Caffe2

were merged to make up for PyTorch’s deficiencies in

industrial deployment. Overall, PyTorch is an excellent

deep learning framework.

• Keras is a high-level framework implemented based

on the underlying operations provided by frameworks

such as Theano and TensorFlow. It provides a large

number of high-level interfaces for rapid training and

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

25

testing. For common applications, developing with

Keras is very efficient. But because there is no low-level

implementation, the underlying framework needs to be

abstracted, so the operation efficiency is not high, and

the flexibility is average.

• TensorFlow is a deep learning framework released

by Google in 2015. The initial version only supported

symbolic programming. Thanks to its earlier release

and Google’s influence in the field of deep learning,

TensorFlow quickly became the most popular deep

learning framework. However, due to frequent changes

in the interface design, redundant functional design,

and difficulty in symbolic programming development

and debugging, TensorFlow 1.x was once criticized

by the industry. In 2019, Google launched the official

version of TensorFlow 2, which runs in dynamic graph

priority mode and can avoid many defects of the

TensorFlow 1.x version. TensorFlow 2 has been widely

recognized by the industry.

At present, TensorFlow and PyTorch are the two most widely used

deep learning frameworks in industry. TensorFlow has a complete

solution and user base in the industry. Thanks to its streamlined and

flexible interface design, PyTorch can quickly build and debug networks,

which has received rave reviews in academia. After TensorFlow 2 was

released, it makes it easier for users to learn TensorFlow and seamlessly

deploy models to production. This book uses TensorFlow 2 as the main

framework to implement deep learning algorithms.

Here are the connections and differences between TensorFlow

and Keras. Keras can be understood as a set of high-level API design

specifications. Keras itself has an official implementation of the

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

26

specifications. The same specifications are also implemented in

TensorFlow, which is called the tf.keras module, and tf.keras will be used

as the unique high-level interface to avoid interface redundancy. Unless

otherwise specified, Keras in this book refers to tf.keras.

1.5.2 TensorFlow 2 and 1.x
TensorFlow 2 is a completely different framework from TensorFlow 1.x in

terms of user experience. TensorFlow 2 is not compatible with TensorFlow

1.x code. At the same time, it is very different in programming style and

functional interface design. TensorFlow 1.x code needs to rely on artificial

migration, and automated migration methods are not reliable. Google is

about to stop updating TensorFlow 1.x. It is not recommended to learn

TensorFlow 1.x now.

TensorFlow 2 supports the dynamic graph priority mode. You can

obtain both the computational graph and the numerical results during the

calculation. You can debug the code and print the data in real time. The

network is built like a building block, stacked layer by layer, which is in line

with software development thinking.

Taking simple addition 2.0 + 4.0 as an example, in TensorFlow 1.x, we

need to create a calculation graph first as follows:

import tensorflow as tf

1. Create computation graph with tf 1.x

Create 2 input variables with fixed name and type

a_ph = tf.placeholder(tf.float32, name='variable_a')

b_ph = tf.placeholder(tf.float32, name='variable_b')

Create output operation and name

c_op = tf.add(a_ph, b_ph, name='variable_c')

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

27

The process of creating a computational graph is analogous to the

process of establishing a formula c = a + b through symbols. It only records

the computational steps of the formula and does not actually calculate the

numerical results. The numerical results can only be obtained by running

the output c and assigning values a = 2.0 and b = 4.0 as follows:

2.Run computational graph with tf 1.x

Create running environment

sess = tf.InteractiveSession()

Initialization

init = tf.global_variables_initializer()

sess.run(init) # Run the initialization

Run the computation graph and return value to c_numpy

c_numpy = sess.run(c_op, feed_dict={a_ph: 2., b_ph: 4.})

print out the output

print('a+b=',c_numpy)

It can be seen that it is so tedious to perform simple addition

operations in TensorFlow 1, let alone to create complex neural network

algorithms. This programming method of creating a computational graph

and then running it later is called symbolic programming.

Next, we use TensorFlow 2 to complete the same operation as follows:

import tensorflow as tf

Use TensorFlow 2 to run

1.Create and initialize variable

a = tf.constant(2.)

b = tf.constant(4.)

2.Run and get result directly

print('a+b=',a+b)

As you can see, the calculation process is very simple, and there are no

extra calculation steps.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

28

The method of getting both computation graphs and numerical

results at the same time is called imperative programming, also known

as dynamic graph mode. TensorFlow 2 and PyTorch are both developed

using dynamic graph priority mode, which is easy to debug. In general,

the dynamic graph mode is highly efficient for development, but it may

not be as efficient as the static graph mode for running. TensorFlow 2 also

supports converting the dynamic graph mode to the static graph mode

through tf.function, achieving a win-win situation of both development

and operation efficiency. In the remaining part of this book, we use

TensorFlow to represent TensorFlow 2 in general.

1.5.3 Demo
The core of deep learning is the design idea of algorithms, and deep

learning frameworks are just our tools for implementing algorithms. In the

following, we will demonstrate the three core functions of the TensorFlow

deep learning framework to help us understand the role of frameworks in

algorithm design.

 a) Accelerated Calculation
The neural network is essentially composed of a large number

of basic mathematical operations such as matrix multiplication and

addition. One important function of TensorFlow is to use the GPU to

conveniently implement parallel computing acceleration functions. In

order to demonstrate the acceleration effect of GPU, we can compare

mean running time for multiple matrix multiplications on CPU and GPU

as follows.

We create two matrices A and B with shape [1, n] and [n, 1], separately.

The size of the matrices can be adjusted using parameter n. The code is as

follows:

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

29

 # Create two matrices running on CPU

 with tf.device('/cpu:0'):

 cpu_a = tf.random.normal([1, n])

 cpu_b = tf.random.normal([n, 1])

 print(cpu_a.device, cpu_b.device)

 # Create two matrices running on GPU

 with tf.device('/gpu:0'):

 gpu_a = tf.random.normal([1, n])

 gpu_b = tf.random.normal([n, 1])

 print(gpu_a.device, gpu_b.device)

Let’s implement the functions of the CPU and GPU operations and

measure the computation time of the two functions through the timeit.

timeit () function. It should be noted that additional environment

initialization work is generally required for the first calculation, so this time

cannot be counted. We remove this time through the warm-up session and

then measure the calculation time as follows:

 def cpu_run(): # CPU function

 with tf.device('/cpu:0'):

 c = tf.matmul(cpu_a, cpu_b)

 return c

 def gpu_run():# GPU function

 with tf.device('/gpu:0'):

 c = tf.matmul(gpu_a, gpu_b)

 return c

 # First calculation needs warm-up

 cpu_time = timeit.timeit(cpu_run, number=10)

 gpu_time = timeit.timeit(gpu_run, number=10)

 print('warmup:', cpu_time, gpu_time)

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

30

 # Calculate and print mean running time

 cpu_time = timeit.timeit(cpu_run, number=10)

 gpu_time = timeit.timeit(gpu_run, number=10)

 print('run time:', cpu_time, gpu_time)

We plot the computation time under CPU and GPU environments at

different matrix sizes as shown in Figure 1-21. It can be seen that when the

matrix size is small, the CPU and GPU times are almost the same, which

does not reflect the advantages of GPU parallel computing. When the

matrix size is larger, the CPU computing time significantly increases, and

the GPU takes full advantage of parallel computing without almost any

change of computation time.

Figure 1-21. CPU/GPU matrix multiplication time

 b) Automatic Gradient Calculation

When using TensorFlow to construct the forward calculation process,

in addition to being able to obtain numerical results, TensorFlow also

automatically builds a computational graph. TensorFlow provides

automatic differentiation that can calculate the derivative of the output on

network parameters without manual derivation. Consider the expression

of the following function:

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

31

 y aw bw c� � �2

The derivative relationship of the output y to the variable w is

dy

dw
aw b� �2

Consider the derivative at (a, b, c, w) = (1, 2, 3, 4). We

can get
dy

dw
� � � � �2 1 4 2 10.

With TensorFlow, we can directly calculate the derivative given

the expression of a function without manually deriving the expression

of the derivatives. TensorFlow can automatically derive it. The code is

implemented as follows:

import tensorflow as tf

Create 4 tensors

a = tf.constant(1.)

b = tf.constant(2.)

c = tf.constant(3.)

w = tf.constant(4.)

with tf.GradientTape() as tape:# Track derivative

 tape.watch([w]) # Add w to derivative watch list

 # Design the function

 y = a * w**2 + b * w + c

Auto derivative calculation

[dy_dw] = tape.gradient(y, [w])

print(dy_dw) # print the derivative

The result of the program is

tf.Tensor(10.0, shape=(), dtype=float32)

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

32

It can be seen that the result of TensorFlow’s automatic differentiation

is consistent with the result of manual calculation.

 c) Common Neural Network Interface

In addition to the underlying mathematical functions such as matrix

multiplication and addition, TensorFlow also has a series of convenient

functions for deep learning systems such as commonly used neural

network operation functions, commonly used network layers, network

training, model saving, loading, and deployment. Using TensorFlow, you

can easily use these functions to complete common production processes,

which is efficient and stable.

1.6 Development Environment Installation
After knowing the convenience brought by the deep learning framework,

we are now ready to install the latest version of TensorFlow in the local

desktop. TensorFlow supports a variety of common operating systems,

such as Windows 10, Ubuntu 18.04, and Mac OS. It supports both GPU

version running on NVIDIA GPU and CPU version that uses only the CPU

to do calculations. We take the most common operating system, Windows

10, NVIDIA GPU, and Python as examples to introduce how to install the

TensorFlow framework and other development software.

Generally speaking, the development environment installation is

divided into four major steps: the Python interpreter Anaconda, the CUDA

acceleration library, the TensorFlow framework, and commonly used

editors.

1.6.1 Anaconda Installation
The Python interpreter is the bridge that allows code written in Python to

be executed by CPU and is the core software of the Python language. Users

can download the appropriate version (Python 3.7 is used here) of the

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

33

interpreter from www.python.org/. After the installation is completed, you

can call the python.exe program to execute the source code file written in

Python (.py files).

Here we choose to install Anaconda software that integrates a series of

auxiliary functions such as the Python interpreter, package management,

and virtual environment. We can download Anaconda from www.

anaconda.com/distribution/#download-section and select the latest

version of Python to download and install. As shown in Figure 1-22, check

the “Add Anaconda to my PATH environment variable” option, so that

you can call the Anaconda program through the command line. As shown

in Figure 1-23, the installer asks whether to install the VS Code software

together. Select Skip. The entire installation process lasts about 5 minutes,

and the specific time depends on the computer performance.

Figure 1-22. Anaconda installation 1

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

http://www.python.org/
http://www.anaconda.com/distribution/#download-section
http://www.anaconda.com/distribution/#download-section

34

Figure 1-23. Anaconda installation 2

After the installation is complete, how can we verify that Anaconda

was successfully installed? Pressing the Windows+R key combination on

the keyboard, you can bring up the running program dialog box, enter

“cmd,” and press Enter to open the command-line program “cmd.exe” that

comes with Windows. Or click the Start menu and enter “cmd” to find the

“cmd.exe” program and open it. Enter the “conda list” command to view

the installed libraries in the Python environment. If it is a newly installed

Python environment, the listed libraries are all libraries that come with

Anaconda, as shown in Figure 1-24. If the “conda list” can pop up a series

of library list information normally, the Anaconda software installation is

successful. Otherwise, the installation failed, and you need to reinstall.

Figure 1-24. Anaconda installation test

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

35

1.6.2 CUDA Installation
Most of the current deep learning frameworks are based on NVIDIA’s GPU

graphics card for accelerated calculations, so you need to install the GPU

acceleration library CUDA provided by NVIDIA. Before installing CUDA,

make sure your computer has an NVIDIA graphics device that supports

the CUDA program. If your computer does not have an NVIDIA graphics

card – for example, some computer graphics card manufacturers are AMD

or Intel – the CUDA program won’t work, and you can skip this step and

directly install the TensorFlow CPU version.

The installation of CUDA is divided into three steps: CUDA software

installation, cuDNN deep neural network acceleration library installation,

and environment variable configuration. The installation process is a

bit tedious. We will go through them step by step using the Windows 10

system as an example.

CUDA Software Installation Open the official downloading website

of the CUDA program: https://developer.nvidia.com/cuda-10.0-

download-archive. Here we use CUDA 10.0 version: select the Windows

platform, x86_64 architecture, 10 system, and exe (local) installation

package and then select “Download” to download the CUDA installation

software. After the download is complete, open the software. As shown in

Figure 1-25, select the “Custom” option and click the “NEXT” button to

enter the installation program selection list as shown in Figure 1-26. Here

you can select the components that need to be installed and unselect those

that do not need to be installed. Under the “CUDA” category, unselect the

“Visual Studio Integration” item. Under the “Driver components” category,

compare the version number of “Current Version” and “New Version”

at the “Display Driver” row. If “Current Version” is greater than “New

Version,” you need to uncheck the “Display Driver.” If “Current Version”

is less than or equal to “New Version,” leave “Display Driver” checked, as

shown in Figure 1-27. After the setup is complete, you can click “NEXT”

and follow the instructions to install.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

https://developer.nvidia.com/cuda-10.0-download-archive
https://developer.nvidia.com/cuda-10.0-download-archive

36

Figure 1-25. CUDA installation 1

Figure 1-26. CUDA installation 2

After the installation is complete, let’s test whether the CUDA software

is successfully installed. Open the “cmd” terminal and enter “nvcc -V” to

print the current CUDA version information, as shown in Figure 1-28. If

the command is not recognized, the installation has failed. We can find

the “nvcc.exe” program from the CUDA installation path “C:\Program

Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin”, as shown in

Figure 1-29.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

37

Figure 1-28. CUDA installation test 1

Figure 1-29. CUDA installation test 2

Figure 1-27. CUDA installation 3

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

38

cuDNN Neural Network Acceleration Library Installation. CUDA is

not a special GPU acceleration library for neural networks; it is designed

for a variety of applications that require parallel computing. If you want

to accelerate for neural network applications, you need to install an

additional cuDNN library. It should be noted that the cuDNN library is not

an executable program. You only need to download and decompress the

cuDNN file and configure the Path environment variable.

Open the website https://developer.nvidia.com/cudnn and select

“Download cuDNN.” Due to NVIDIA regulations, users need to log in or

create a new user to continue downloading. After logging in, enter the

cuDNN download interface and check “I Agree To the Terms of the cuDNN

Software License Agreement,” and the cuDNN version download option

will pop up. Select the cuDNN version that matches CUDA 10.0, and click

the “cuDNN Library for Windows 10” link to download the cuDNN file, as

shown in Figure 1-30. It should be noted that cuDNN itself has a version

number, and it also needs to match the CUDA version number.

Figure 1-30. cuDNN version selection interface

After downloading the cuDNN file, unzip it and rename the folder

“cuda” to “cudnn765”. Then copy the “cudnn765” folder to the CUDA

installation path “C:\Program Files\NVIDIA GPU Computing Toolkit\

CUDA\v10.0” (Figure 1-31). A dialog box that requires administrator rights

may pop up here. Select Continue to paste.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

https://developer.nvidia.com/cudnn

39

Figure 1-31. cuDNN installation path

Environment Variable Configuration. We have completed the

installation of cuDNN, but in order for the system to be aware of the

location of the cuDNN file, we need to configure the Path environment

variable as follows. Open the file browser, right-click “My Computer,” select

“Properties,” select “Advanced system settings,” and select “Environment

Variables,” as shown in Figure 1-32. Select the “Path” environment

variable in the “System variables” column and select “Edit,” as shown in

Figure 1-33. Select “New,” enter the cuDNN installation path “C:\Program

Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\cudnn765\bin”, and

use the “Move Up” button to move this item to the top.

Figure 1-32. Environment variable configuration 1

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

40

Figure 1-33. Environment variable configuration 2

After the CUDA installation is complete, the environment variables

should include “C:\Program Files\NVIDIA GPU Computing Toolkit\

CUDA\v10.0\bin”, “C:\Program Files\NVIDIA GPU Computing Toolkit\

CUDA\v10.0\libnvvp”, and “C:\Program Files\NVIDIA GPU Computing

Toolkit\CUDA\v10.0\cudnn765\bin”. The preceding path may differ

slightly according to the actual path, as shown in Figure 1-34. After

confirmation, click “OK” to close all dialog boxes.

Figure 1-34. CUDA-related environment variables

1.6.3 TensorFlow Installation
TensorFlow, like other Python libraries, can be installed using the Python

package management tool “pip install” command. When installing

TensorFlow, you need to determine whether to install a more powerful

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

41

GPU version or a general-performance CPU version based on whether

your computer has an NVIDIA GPU graphics card.

Install numpy

pip install numpy

With the preceding command, you should be able to automatically

download and install the numpy library. Now let’s install the latest GPU

version of TensorFlow. The command is as follows:

Install TensorFlow GPU version

pip install -U tensorflow

The preceding command should automatically download and install

the TensorFlow GPU version, which is currently the official version of

TensorFlow 2.x. The “-U” parameter specifies that if this package is

installed, the upgrade command is executed.

Now let’s test whether the GPU version of TensorFlow is successfully

installed. Enter “ipython” on the “cmd” command line to enter the

ipython interactive terminal, and then enter the “import tensorflow as tf”

command. If no errors occur, continue to enter “tf.test.is_gpu_available

()” to test whether the GPU is available. This command will print a

series of information. The information beginning with “I” (Information)

contains information about the available GPU graphics devices and will

return “True” or “False” at the end, indicating whether the GPU device is

available, as shown in Figure 1-35. If True, the TensorFlow GPU version is

successfully installed; if False, the installation fails. You may need to check

the steps of CUDA, cuDNN, and environment variable configuration again

or copy the error and seek help from the search engine.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

42

Figure 1-35. TensorFlow GPU installation test

If you don’t have GPU, you can install the CPU version. The

CPU version cannot use the GPU to accelerate calculations, and

the computational speed is relatively slow. However, because the

models introduced as learning purposes in this book are generally

not computationally expensive, the CPU version can also be used. It

is also possible to add the NVIDIA GPU device after having a better

understanding of deep learning in the future. If the installation of the

TensorFlow GPU version fails, we can also use the CPU version directly.

The command to install the CPU version is

Install TensorFlow CPU version

pip install -U tensorflow-cpu

After installation, enter the “import tensorflow as tf” command in the

ipython terminal to verify that the CPU version is successfully installed.

After TensorFlow is installed, you can view the version number through

“tf .__ version__”. Figure 1-36 shows an example. Note that even the code

works for all TensorFlow 2.x versions.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

43

Figure 1-36. TensorFlow version test

The preceding manual process of installing CUDA and cuDNN,

configuring the Path environment variable, and installing TensorFlow is

the standard installation method. Although the steps are tedious, it is of

great help to understand the functional role of each library. In fact, for

the novice, you can complete the preceding steps by two commands as

follows:

Create virtual environment tf2 with tensorflow-gpu setup

required

to automatically install CUDA,cuDNN,and TensorFlow GPU

conda create -n tf2 tensorflow-gpu

Activate tf2 environment

conda activate tf2

This quick installation method is called the minimal installation

method. This is also the convenience of using the Anaconda distribution.

TensorFlow installed through the minimal version requires activation

of the corresponding virtual environment before use, which needs to be

distinguished from the standard version. The standard version is installed

in Anaconda’s default environment base and generally does not require

manual activation of the base environment.

Common Python libraries can also be installed by default. The

command is as follows:

Install common python libraries

pip install -U ipython numpy matplotlib pillow pandas

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

44

When TensorFlow is running, it will consume all GPU resources by

default, which is very computationally unfriendly, especially when the

computer has multiple users or programs using GPU resources at the

same time. Occupying all GPU resources will make other programs unable

to run. Therefore, it is generally recommended to set the GPU memory

usage of TensorFlow to the growth mode, that is, to apply for GPU memory

resources based on the actual model size. The code implementation is as

follows:

Set GPU resource usage method

Get GPU device list

gpus = tf.config.experimental.list_physical_devices('GPU')

if gpus:

 try:

 # Set GPU usage to growth mode

 for gpu in gpus:

 tf.config.experimental.set_memory_growth(gpu, True)

 except RuntimeError as e:

 # print error

 print(e)

1.6.4 Common Editor Installation
There are many ways to write programs in Python. You can use IPython

or Jupyter Notebook to write code interactively. You can also use Sublime

Text, PyCharm, and VS Code to develop medium and large projects. This

book recommends using PyCharm to write and debug code and using VS

Code for interactive project development. Both of them are free. Users can

download and install them by themselves.

Next, let’s start the deep learning journey!

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

45

1.7 Summary

1.8 Reference

 [1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,

J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,

A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran,

D. Wierstra, S. Legg, and D. Hassabis, “Human-

level control through deep reinforcement learning,”

Nature, 518, pp. 529–533, 2 2015.

Chapter 1 IntroduCtIon to artIfICIal IntellIgenCe

47© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_2

CHAPTER 2

Regression
Some people worry that artificial intelligence will make us
feel inferior, but then, anybody in his right mind should have
an inferiority complex every time he looks at a flower.

—Alan Kay

2.1 Neuron Model
An adult brain contains about 100 billion neurons. Each neuron obtains

input signals through dendrites and transmits output signals through

axons. The neurons are interconnected to form a huge neural network,

thus forming the human brain, the basis of perception and consciousness.

Figure 2-1 is a typical biological neuron structure. In 1943, the psychologist

Warren McCulloch and mathematical logician Walter Pitts proposed

a mathematical model of artificial neural networks to simulate the

mechanism of biological neurons [1]. This research was further developed

by the American neurologist Frank Rosenblatt into the perceptron model

[2], which is also the cornerstone of modern deep learning.

https://doi.org/10.1007/978-1-4842-7915-1_2#DOI

48

Dendrite

Cell body

Nucleus

Axon

Myelin sheath

Schwann cell

Node of
Ranvier

Axon Terminal

Figure 2-1. Typical biological neuron structure1

Starting from the structure of biological neurons, we will revisit the

exploration of scientific pioneers and gradually unveil the mystery of

automatic learning machines.

First, we can abstract the neuron model into the mathematical

structure as shown in Figure 2-2 (a). The neuron input vector

x = [x1, x2, x3, …, xn]T maps to y through function fθ : x → y, where θ represents

the parameters in the function f. Consider a simplified case, such as linear

transformation: f (x) = wTx + b. The expanded form is

 f w x w x w x w x bn nx� � � � � ��� �1 1 2 2 3 3

The preceding calculation logic can be intuitively shown in

Figure 2-2 (b).

1 Source: https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg

1

2

3

1

2

3

1

2

3

(a) Mathematical neuron model (b) Linear neuron model

Figure 2-2. Mathematical neuron model

Chapter 2 regression

https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg

49

The parameters θ = {w1, w2, w3, …, wn, b} determine the state of the

neuron, and the processing logic of this neuron can be determined by

fixing those parameters. When the number of input nodes n = 1 (single

input), the neuron model can be further simplified as

 y wx b� �

Then we can plot the change of y as a function of x as shown in

Figure 2-3. As the input signal x increases, the output y also increases

linearly. Here parameter w can be understood as the slope of the straight

line, and b is the bias of the straight line.

= 1. + 0.089

(
(1)

,
(1)

)

(
(2)

,
(2)

)

Figure 2-3. Single-input linear neuron model

For a certain neuron, the mapping relationship fw, b between x and y

is unknown but fixed. Two points can determine a straight line. In order

to estimate the value of w and b, we only need to sample any two data

points (x(1), y(1)) and (x(2), y(2)) from the straight line in Figure 2-3, where the

superscript indicates the data point number:

 y wx b1 1� � � �� �

 y wx b2 2� � � �� �

Chapter 2 regression

50

If (x(1), y(1)) ≠ (x(2), y(2)), we can solve the preceding equations to

get the value of w and b. Let’s consider a specific example: x(1) = 1,

y(1) = 1.567, x(2) = 2, y(2) = 3.043. Substituting the numbers in the preceding

formulas gives

 1 567 1. � � �w b

 3 043 2. � � �w b

This is the system of binary linear equations that we learned in junior

or high school. The analytical solution can be easily calculated using the

elimination method, that is, w = 1.477, b = 0.089.

You can see that we only need two different data points to perfectly

solve the parameters of a single-input linear neuron model. For linear

neuron models with N input, we only need to sample N + 1 different data

points. It seems that the linear neuron models can be perfectly resolved. So

what’s wrong with the preceding method? Considering that there may be

observation errors for any sampling point, we assume that the observation

error variable ϵ follows a normal distribution � �, 2� �with μ as mean and

σ2 as variance. Then the samples follow:

y wx b� � � � �ε ε, ~N � �, 2

Once the observation error is introduced, even if it is as simple

as a linear model, if only two data points are sampled, it may bring a

large estimation bias. As shown in Figure 2-4, the data points all have

observation errors. If the estimation is based on the two blue rectangular

data points, the estimated blue dotted line would have a large deviation

from the true orange straight line. In order to reduce the estimation bias

introduced by observation errors, we can sample multiple data points

 � � � � � � � �� �� � � � � � � � � � � �x y x y x yn n1 1 2 2, , , , , , and then find a “best” straight line,

so that it minimizes the sum of errors between all sampling points and the

straight line.

Chapter 2 regression

51

= 1. + 0.089

(
(1)

,
(1)

)

(
(2)

,
(2)

)

Figure 2-4. Model with observation errors

Due to the existence of observation errors, there may not be a straight

line that perfectly passes through all the sampling points . Therefore,

we hope to find a “good” straight line close to all sampling points. How

to measure “good” and “bad”? A natural idea is to use the mean squared

error (MSE) between the predicted value wx(i) + b and the true value y(i) at

all sampling points as the total error, that is

 � � �� �

�

� � � ��1
1

2

n
wx b y

i

n
i i

Then search a set of parameters w∗ and b∗ to minimize the total error

. The straight line corresponding to the minimal total error is the

optimal straight line we are looking for, that is

w b

n
wx b y

w b i

n
i i� �

�

� � � �� � �� ��, arg min
,

1

1

2

Here n represents the number of sampling points.

Chapter 2 regression

52

2.2 Optimization Method
Now let’s summarize the preceding solution: we need to find the

optimal parameters w∗ and b∗, so that the input and output meet

a linear relationship y(i) = wx(i) + b, i ∈ [1, n]. However, due to the

existence of observation errors ϵ, it is necessary to sample a data set

 � � � � � � � �� �� � � � � � � � � � � �x y x y x yn n1 1 2 2, , , , , , , composed of a sufficient number of

data samples, to find an optimal set of parameters w∗ and b∗ to minimize

the mean squared error � � �� �
�

� � � ��1
1

2

n
wx b y

i

n
i i .

For a single-input neuron model, only two samples are needed to

obtain the exact solution of the equations by the elimination method. This

exact solution derived by a strict formula is called an analytical solution.

However, in the case of multiple data points (n ≫ 2), there is probably no

analytical solution. We can only use numerical optimization methods to

obtain an approximate numerical solution. Why is it called optimization?

This is because the computer’s calculation speed is very fast. We can

use the powerful computing power to “search” and “try” multiple times,

thereby reducing the error step by step. The simplest optimization

method is brute-force search or random experiment. For example, to find

the most suitable w∗ and b∗, we can randomly sample any w and b from the

real number space and calculate the error value of the corresponding

model. Pick out the smallest error ∗ from all the experiments � � , and its

corresponding w∗ and b∗ are the optimal parameters we are looking for.

This brute-force algorithm is simple and straightforward, but it is

extremely inefficient for large-scale, high-dimensional optimization

problems. Gradient descent is the most commonly used optimization

algorithm in neural network training. With the parallel acceleration

capability of powerful graphics processing unit (GPU) chips, it is very

suitable for optimizing neural network models with massive data.

Naturally it is also suitable for optimizing our simple linear neuron

model. Since the gradient descent algorithm is the core algorithm of

Chapter 2 regression

53

deep learning, we will first apply the gradient descent algorithm to solve

simple neuron models and then detail its application in neural networks in

Chapter 7.

With the concept of derivative, if we want to solve the maximum and

minimum values of a function, we can simply set the derivative function to

be 0 and find the corresponding independent variable values, that is, the

stagnation point, and then check the stagnation type. Taking the function

f (x) = x2 · sin (x) as an example, we can plot the function and its derivative

in the interval x ∈ [−10, 10], where the blue solid line is f (x) and the yellow

dotted line is
d

d

f x

x

� �
 as shown in Figure 2-5. It can be seen that the points

where the derivative (dashed line) is 0 are the stagnation points, and both

the maximum and minimum values of f (x) appear in the stagnation points.

Figure 2-5. Function f(x) = x2 ∙ sin (x) and its derivative

The gradient of a function is defined as a vector of partial derivatives

of the function on each independent variable. Considering a three-

dimensional function z = f (x, y), the partial derivative of the function with

respect to the independent variable x is
∂
∂
z

x
, the partial derivative of the

function with respect to the independent variable y is recorded as
∂
∂
z

y
,

and the gradient ∇f is a vector
�
�

�
�

�

�
�

�

�
�

z

x

z

y
, . Let’s look at a specific function

f (x, y) = − (cos2x + cos2y)2. As shown in Figure 2-6, the length of the red

arrow in the plane represents the modulus of the gradient vector, and the

direction of the arrow represents the direction of the gradient vector. It

Chapter 2 regression

54

can be seen that the direction of the arrow always points to the function

value increasing direction. The steeper the function surface, the longer the

length of the arrow, and the larger the modulus of the gradient.

Figure 2-6. A function and its gradient2

Through the preceding example, we can intuitively feel that the

gradient direction of the function always points to the direction in which

the function value increases. Then the opposite direction of the gradient

should point to the direction in which the function value decreases.

 � � � ��x x � f (2.1)

To take advantage of this property, we just need to follow the preceding

equation to iteratively update x′. Then we can get smaller and smaller

function values. η is used to scale the gradient vector, which is known as

learning rate and generally set to a smaller value, such as 0.01 or 0.001. In

particular, for one-dimensional functions, the preceding vector form can

be written into a scalar form:

� � � �x x

y

x
�

d

d

2 Picture source: https://en.wikipedia.org/wiki/Gradient?oldid=747127712

Chapter 2 regression

https://en.wikipedia.org/wiki/Gradient?oldid=747127712

55

By iterating and updating x′several times through the preceding

formula, the function value y′ at x′ is always more likely to be smaller than

the function value at x.

The method of optimizing parameters by the formula (2.1) is called the

gradient descent algorithm. It calculates the gradient ∇f of the function f

and iteratively updates the parameters θ to obtain the optimal numerical

solution of the parameters θ when the function f reaches its minimum

value. It should be noted that model input in deep learning is generally

represented as x and the parameters to be optimized are generally

represented by θ, w, and b.

Now we will apply the gradient descent algorithm to calculate the

optimal parameters w∗ and b∗ in the beginning of this session. Here the

mean squared error function is minimized:

 � � �� �

�

� � � ��1
1

2

n
wx b y

i

n
i i

The model parameters that need to be optimized are w and b, so we

update them iteratively using the following equations:

� � �

�
�

w w
w

�

� � �

�
�

b b
b

�

2.3 Linear Model in Action
Let’s actually train a single-input linear neuron model using the gradient

descent algorithm. First, we need to sample multiple data points. For a

toy example with a known model, we directly sample from the specified

real model:

 y x� �1 477 0 089. .

Chapter 2 regression

56

 01. Sampling data

In order to simulate the observation errors, we add an independent

error variable ϵ to the model, where ϵ follows a Gaussian distribution with

a mean value of 0 and a standard deviation of 0.01 (i.e., variance of 0.012):

y x� � � � � �1 477 0 089 0 0 012. . , .ε ε N ,

By randomly sampling n = 100 times, we obtain a training data set

train using the following code:

data = [] # A list to save data samples

for i in range(100): # repeat 100 times

 # Randomly sample x from a uniform distribution

 x = np.random.uniform(-10., 10.)

 # Randomly sample from Gaussian distribution

 eps = np.random.normal(0., 0.01)

 # Calculate model output with random errors

 y = 1.477 * x + 0.089 + eps

 data.append([x, y]) # save to data list

data = np.array(data) # convert to 2D Numpy array

In the preceding code, we performed 100 samples in a loop, and each

time we randomly sampled one data point x from the uniform distribution

U(−10, 10) and then randomly sampled noise ϵ from the Gaussian

distribution 0 0 12, .� � . Finally, we generated the data using the true

model and random noise ϵ and save it as a Numpy array.

 02. Calculating the mean squared error

Now let’s calculate the mean squared error on the training set by

averaging the squared difference between the predicted value and the true

value at each data point. We can achieve this using the following function:

Chapter 2 regression

57

def mse(b, w, points):

 # Calculate MSE based on current w and b

 totalError = 0

 # Loop through all points

 for i in range(0, len(points)):

 x = points[i, 0] # Get ith input

 y = points[i, 1] # Get ith output

 # Calculate the total squared error

 totalError += (y - (w * x + b)) ** 2

 # Calculate the mean of the total squared error

 return totalError / float(len(points))

 03. Calculating gradient

According to the gradient descent algorithm, we need to calculate the

gradient at each data point
�
�

�
�

�
�
�

�
�
�

w b

, . First, consider expanding the mean

squared error function
∂
∂

w

:

�
�

�
� � �� �

�
�

� � �� �
�

�
� � � �

�

� � � ��
�

w
n

wx b y

w n

wx b y

w

i

n i i

i

n
i i

1
11

2

1

2

Because

�
�

� � �
�
�

g

w
g

g

w

2

2

we have

�
�

� � �� ��
� � �� �

��

� � � �
� � � �

�
w n

wx b y
wx b y

wi

n
i i

i i
1

2
1

� � �� ��

�

� � � � � ��1 2
1n

wx b y x
i

n
i i i

Chapter 2 regression

58

� � �� ��

�

� � � � � ��2
1n
wx b y x

i

n
i i i

(2.2)

If it is difficult to understand the preceding derivation, you can

review the gradient-related courses in mathematics. The details will

also be introduced in Chapter 7 of this book. We can remember the final

expression of
∂
∂

w

 for now. In the same way, we can derive the expression

of the partial derivative
∂
∂

b

:

�
�

�
� � �� �

�
�

� � �� �
�

�
� � � �

�

� � � ��
�

b
n

wx b y

b n

wx b y

b

i

n i i

i

n
i i

1
11

2

1

2

� � �� ��

� � �� �
��

� � � �
� � � �

�1 2
1n

wx b y
wx b y

bi

n
i i

i i

� � �� ��

�

� � � ��1 2 1
1n

wx b y
i

n
i i

� � �� �

�

� � � ��2
1n
wx b y

i

n
i i

(2.3)

According to the expressions (2.2) and (2.3), we only need to calculate

the mean value of (wx(i) + b − y(i)) · x(i) and (wx(i) + b − y(i)) at each data

point. The implementation is as follows:

def step_gradient(b_current, w_current, points, lr):

 # Calculate gradient and update w and b.

 b_gradient = 0

 w_gradient = 0

 M = float(len(points)) # total number of samples

 for i in range(0, len(points)):

 x = points[i, 0]

 y = points[i, 1]

Chapter 2 regression

59

 # dL/db:grad_b = 2(wx+b-y) from equation (2.3)

 b_gradient += (2/M) * ((w_current * x + b_current) - y)

 # dL/dw:grad_w = 2(wx+b-y)*x from equation (2.2)

 w_gradient += (2/M) * x * ((w_current * x + b_

current) - y)

 # Update w',b' according to gradient descent algorithm

 # lr is learning rate

 new_b = b_current - (lr * b_gradient)

 new_w = w_current - (lr * w_gradient)

 return [new_b, new_w]

 04. Gradient update

After calculating the gradient of the error function at w and b, we

can update the value of w and b according to equation (2.1). Training all

samples of the data set once is known as one epoch. We can iterate multiple

epochs using previous defined functions. The implementation is as follows:

def gradient_descent(points, starting_b, starting_w, lr, num_

iterations):

 # Update w, b multiple times

 b = starting_b # initial value for b

 w = starting_w # initial value for w

 # Iterate num_iterations time

for step in range(num_iterations):

 # Update w, b once

 b, w = step_gradient(b, w, np.array(points), lr)

 # Calculate current loss

 loss = mse(b, w, points)

 if step%50 == 0: # print loss and w, b

 print(f"iteration:{step}, loss:{loss},

w:{w}, b:{b}")

 return [b, w] # return the final value of w and b

Chapter 2 regression

60

The main training function is defined as follows:

def main():

 # Load training dataset

 data = []

 for i in range(100):

 x = np.random.uniform(3., 12.)

 # mean=0, std=0.1

 eps = np.random.normal(0., 0.1)

 y = 1.477 * x + 0.089 + eps

 data.append([x, y])

 data = np.array(data)

 lr = 0.01 # learning rate

 initial_b = 0 # initialize b

 initial_w = 0 # initialize w

 num_iterations = 1000

 # Train 1000 times and return optimal w*,b* and

corresponding loss

 [b, w]= gradient_descent(data, initial_b, initial_w, lr,

num_iterations)

 loss = mse(b, w, data) # Calculate MSE

 print(f'Final loss:{loss}, w:{w}, b:{b}')

After 1000 iterative updates, the final w and b are the “optimal”

solution we are looking for. The results are as follows:

iteration:0, loss:11.437586448749, w:0.88955725981925,

b:0.02661765516748428

iteration:50, loss:0.111323083882350, w:1.48132089048970,

b:0.58389075913875

iteration:100, loss:0.02436449474995, w:1.479296279074,

b:0.78524532356388

...

Chapter 2 regression

61

iteration:950, loss:0.01097700897880, w:1.478131231919,

b:0.901113267769968

Final loss:0.010977008978805611, w:1.4781312318924746,

b:0.901113270434582

It can be seen that at the 100th iteration, the values of w and b are

already close to the real model values. The w and b obtained after 1000

updates are very close to the real model. The mean squared error of the

training process is shown in Figure 2-7.

Figure 2-7. MSE change during the training process

The preceding example shows the power of the gradient descent

algorithm in solving model parameters. It should be noted that for

complex nonlinear models, the parameters solved by the gradient descent

algorithm may be a local minimum solution instead of a global minimum

solution, which is determined by the function non-convexity. However, we

found in practice that the performance of the numerical solution obtained

by the gradient descent algorithm can often be optimized very well and the

corresponding solution can be directly used to approximate the optimal

solution.

Chapter 2 regression

62

2.4 Summary
A brief review of our exploration: We first assume that the neuron model

with n input is a linear model, and then we can calculate the exact solution

of w and b through n + 1 samples. After introducing the observation error,

we can sample multiple sets of data points and optimize through the

gradient descent algorithm to obtain the numerical solution of w and b.

If we look at this problem from another angle, it can actually be

understood as a set of continuous value (vector) prediction problems.

Given a data set , we need to learn a model from the data set in order

to predict the output value of an unseen sample. After assuming the

type of model, the learning process becomes a problem of searching for

model parameters. For example, if we assume that the neuron is a linear

model, then the training process is the process of searching the linear

model parameters w and b. After training, we can use the model output

value as an approximation of the real value for any new input. From this

perspective, it is a continuous value prediction problem.

In real life, continuous value prediction problems are very common,

such as the prediction of stock price trends, the prediction of temperature

and humidity in weather forecasts, the prediction of age, the prediction

of traffic flow, and so on. We call it a regression problem if its predictions

are in a continuous range of real numbers or belong to a certain

continuous range of real numbers. In particular, if a linear model is used

to approximate the real model, then we call it linear regression, which is a

specific implementation of regression problems.

In addition to the continuous value prediction problem, is there a

discrete value prediction problem? For example, the prediction of the

front and back of a coin can only have two types of prediction: front and

back. Given a picture, the type of objects in this picture can only be some

discrete categories such as cats or dogs. Problems like those are known as

classification problems, which will be introduced in the next chapter.

Chapter 2 regression

63

2.5 References

 [1]. W. S. McCulloch and W. Pitts, “A logical calculus

of the ideas immanent in nervous activity,” The

Bulletin of Mathematical Biophysics, 5, pp. 115–133,

01 12 1943.

 [2]. F. Rosenblatt, The Perceptron, a Perceiving and

Recognizing Automaton Project Para, Cornell

Aeronautical Laboratory, 1957.

Chapter 2 regression

65© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_3

CHAPTER 3

Classification
A year spent in artificial intelligence is enough to make one
believe in God.

—Alan Perlis

The linear regression model for continuous variable prediction has been

introduced previously. Now let’s dive into the classification problem. A

typical application of the classification problem is to teach computers

how to automatically recognize objects in images. Let’s consider one of

the simplest tasks in image classification: 0–9 digital picture recognition,

which is relatively simple and also has a very wide range of applications,

such as postal code, courier number, and mobile phone number

recognition. We will take 0–9 digital picture recognition as an example to

explore how to use machine learning to solve the classification problem.

3.1 Handwritten Digital Picture Dataset
Machine learning needs to learn from the data, so it first needs to collect

a large amount of real data. Taking handwritten digital picture recognition

as an example, as shown in Figure 3-1, we need to collect a large number of

0–9 digital pictures written by real people. In order to facilitate storage and

calculation, the collected pictures are generally scaled to a fixed size, such

as 224 × 224 or 96 × 96 pixels. These pictures will be used as the input data x.

https://doi.org/10.1007/978-1-4842-7915-1_3#DOI

66

At the same time, we need to label each image, which will be used as the

real value of the image. This label indicates which specific category the

image belongs to. For handwritten digital picture recognition, the labels

are numbers 0–9 to represent pictures of 0–9.

Figure 3-1. Handwritten digital pictures

If we want the model to perform well on new samples, that is, achieve

good model generalization ability, then we need to increase the size and

diversity of the data set as much as possible, so that the training data set is

as close as possible to the real population distribution and the model can

also perform well on unseen samples.

In order to facilitate algorithm evaluation, Lecun et al. [1] released a

handwritten digital picture data set named MNIST, which contains real

handwritten pictures of numbers 0–9. Each number has a total of 7,000

pictures, collected from different writing styles. The total number of

pictures is 70,000. Among them, 60,000 pictures are used for training, and

the remaining 10,000 pictures are used as a test set.

Because the information in handwritten digital pictures is relatively

simple, each picture is scaled to the same size 28 × 28 pixels while retaining

only grayscale information, as shown in Figure 3-2. These pictures are

written by real people, including rich information such as font size, writing

style, and line thickness, to ensure that the distribution of these pictures

is as close as possible to the population distribution of real handwritten

digital pictures, thereby ensuring model generalization ability.

Chapter 3 ClassifiCation

67

Figure 3-2. MNIST dataset examples

Now let’s look at the representation of a picture. A picture contains

h rows and w columns with h×w pixel values. Generally, pixel values are

integers ranging from 0 to 255 to express color intensity information.

For example, 0 represents the lowest intensity, and 255 indicates the

highest intensity. If it is a color picture, each pixel contains the intensity

information of the three channels R, G, and B, which, respectively,

represent the color intensity of colors red, green, and blue. Therefore,

unlike a grayscale image, each pixel of a color picture is represented

by a one-dimensional vector with three elements, which represent the

intensity of R, G, and B colors. As a result, a color image is saved as a tensor

with dimension [h, w, 3], while a grayscale picture only needs a two-

dimensional matrix with shape [h, w] or a three-dimensional tensor with

shape [h, w, 1] to represent its information. Figure 3-3 shows the matrix

content of a picture for number 8. It can be seen that the black pixels in the

picture are represented by 0 and the grayscale information is represented

by 0–255. The whiter pixels in the picture correspond to the larger values in

the matrix.

Chapter 3 ClassifiCation

68

Figure 3-3. How a picture is represented1

Deep learning frameworks like TensorFlow and PyTorch can easily

download, manage, and load the MNIST dataset through a few lines of

code. Here we use TensorFlow to automatically download the MNIST

dataset and convert it to a Numpy array format:

import os

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers, optimizers, datasets

load MNIST dataset

(x, y), (x_val, y_val) = datasets.mnist.load_data()

convert to float type and rescale to [-1, 1]

x = 2*tf.convert_to_tensor(x, dtype=tf.float32)/255.-1

convert to integer tensor

y = tf.convert_to_tensor(y, dtype=tf.int32)

one-hot encoding

y = tf.one_hot(y, depth=10)

print(x.shape, y.shape)

1 Data source: https://towardsdatascience.com/how-to-teach-a-computer-
to-see- with- convolutional-neural-networks-96c120827cd1

Chapter 3 ClassifiCation

https://towardsdatascience.com/how-to-teach-a-computer-to-see-with-convolutional-neural-networks-96c120827cd1
https://towardsdatascience.com/how-to-teach-a-computer-to-see-with-convolutional-neural-networks-96c120827cd1

69

create training dataset

train_dataset = tf.data.Dataset.from_tensor_slices((x, y))

train in batch

train_dataset = train_dataset.batch(512)

The load_data () function returns two tuple objects: the first is

the training set, and the second is the test set. The first element of the

first tuple is the training picture data X, and the second element is the

corresponding category number Y. Similar to Figure 3-3, each image in

the training set Xconsists of 28×28 pixels, and there are 60,000 images in

the training set X, so the final dimension of Xis (60000,28,28). The size of

Y is (60,000), representing the 60,000 digital numbers ranging from 0–9.

Similarly, the test set contains 10,000 test pictures and corresponding

digital numbers with dimensions (10000,28,28) and (10,000) separately.

The MNIST dataset loaded from TensorFlow contains images with

values from 0 to 255. In machine learning, it is generally desired that

the range of data is distributed in a small range around 0. Therefore, we

rescale the pixel range to interval [−1, 1], which will benefit the model

optimization process.

The calculation process of each picture is universal. Therefore, we

can calculate multiple pictures at once, making full use of the parallel

computing power of CPU or GPU. We use a matrix of shape [h, w] to

represent a picture. For multiple pictures, we can add one more dimension

in front and use a tensor of shape [b, h, w] to represent them. Here b

represents the batch size. Color pictures can be represented by a tensor

with the shape of [b, h, w, c], where c represents the number of channels,

which is 3 for color pictures. TensorFlow’s Dataset object can be used to

conveniently convert a dataset into batches using the batch() function.

Chapter 3 ClassifiCation

70

3.2 Build a Model
Recall the biological neuron structure we discussed in the last chapter.

We reduce the input vector x x x xd

T

in
� ��� ��1 2, , , to a single input scalar x,

and the model can be expressed as y = xw + b. If it is a multi-input, single-

output model structure, we need to use the vector form:

y w x b w w w w x x x x bT

d din in
� � � ��� �� � �� �� �1 2 3 1 2 3, , , ,

More generally, by combining multiple multi-input, single-output

neuron models, we can build a multi-input, multi-output model:

 y Wx b� �

where x Rdin∈ , b Rdout∈ , y Rdout∈ , andW Rd dout in� � .

For multiple-output and batch training, we write the model in

batch form:

 Y X W b� �@ (3.1)

where X Rb din� � , b Rdout∈ , Y Rb dout� � , W Rd din out� � , din represents input

dimension, and dout indicates output dimension. X has shape [b, din], b

is the number of samples and din is the length of each sample. W has

shape [din, dout], containing din ∗ dout parameters. Bias vector b has shape

dout. The @ symbol means matrix multiplication. Since the result of the

operation X @ W is a matrix of shape [b, dout], it cannot be directly added

to the vector b. Therefore, the + sign in batch form needs to support

broadcasting, that is, expand the vector b into a matrix of shape [b, dout] by

replicating b.

Consider two samples with din = 3 and dout = 2. Equation 3.1 is

expanded as follows:

o o o o x x x x x x1
1

2
1

1
2

2
2

1
1

2
1

3
1

1
2

2
2

3
2� � � � � � � � � � � � � � � � � � � ��

�
�
� �

�
�

�
��� �

�� �
w w w w w w

b b

11 12 21 22 31 32

1 2

Chapter 3 ClassifiCation

71

where superscripts like (1) and (2) represent the sample index and

subscripts such as 1 and 2 indicate the elements of a certain sample vector.

The corresponding model structure is shown in Figure 3-4.

1

2

3

112

21

32

11

1

231

22

Figure 3-4. A neural network with three inputs and two outputs

It can be seen that the matrix form is more concise and clearer, and at

the same time, the parallel acceleration capability of matrix calculation can

be fully utilized. So how to transform the input and output of the image

recognition task into a tensor form?

A grayscale image is stored using a matrix with shape [h, w], and b

pictures are stored using a tensor with shape [b, h, w]. However, our model

can only accept vectors, so we need to flatten the [h, w] matrix into a vector

of length [h ⋅ w], as shown in Figure 3-5, where the length of the input

features din = h ⋅ w.

0 1 2

3 4 5

6 7 8

0

1

2

3

4

5

6

7

8

flatten

Figure 3-5. Flatten a matrix

Chapter 3 ClassifiCation

72

For the output label y, the digital coding has been introduced

previously. It can use a number to represent the label information. The

output only needs one number to represent the predicted category value of

the network, such as number 1 for cat and number 3 for fish. However, one

of the biggest problems with digital coding is that there is a natural order

relationship between numbers. For example, if the tags corresponding to 1,

2, and 3 are cat, dog, and fish, there is no order relationship between them,

but 1 < 2 < 3. Therefore, if digital coding is used, it will force the model to

learn this unnecessary constraint. In other words, digital coding would

change nominal scale (i.e., no specific order) to ordinal scale (i.e., has a

specific order), which is not suitable for this case.

So how to solve this problem? The output actually can be set to a

set of vectors with length dout, where dout is the same as the number of

categories. For example, if the output belongs to the first category, then the

corresponding index is set to 1, and the other positions are set to 0. This

encoding method is called one-hot encoding. Taking the “cat, dog, fish,

and bird” recognition system in Figure 3-6 as an example, all the samples

belong to only one of the four categories of “cat, dog, fish, and bird.” We

use the index positions to indicate the categories of cat, dog, fish, and bird,

respectively. For all pictures of cats, their one-hot encoding is [1, 0, 0, 0]; for

all dog pictures, their one-hot encoding is [0, 1, 0, 0]; and so on. One-hot

encoding is widely used in classification problems.

Chapter 3 ClassifiCation

73

cat dog fish bird

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Figure 3-6. One-hot encoding example

The total number of categories of handwritten digital pictures is ten,

that is, dout = 10. For a sample, suppose it belongs to a category i, that is,

number i. Using one-hot encoding, we can represent it using a vector y

with length 10, where the ith element in this vector is 1 and the rest is 0.

For example, the one-hot encoding of picture 0 is [1, 0, 0, …, 0], and the

one-hot encoding of picture 2 is [0, 0, 1, …, 0], and the one-hot encoding of

picture 9 is [0, 0, 0, …, 1]. One-hot encoding is very sparse. Compared with

digital encoding, it needs more storage, so digital encoding is generally

used for storage. During calculation, digital encoding is converted to one-

hot encoding, which can be achieved through the tf.one_hot() function as

follows:

y = tf.constant([0,1,2,3]) # digits 0-3

y = tf.one_hot(y, depth=10) # one-hot encoding with length 10

print(y)

Out[1]:

tf.Tensor(

Chapter 3 ClassifiCation

74

[[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] # one-hot encoding of

number 0

 [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] # one-hot encoding of

number 1

 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] # one-hot encoding of

number 2

 [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]], shape=(4, 10),

dtype=float32)

Now let’s return to the task of handwritten digital picture recognition.

The input is a flattened picture vector x ∈ R784, and the output is a vector

of length 10 o ∈ R10 corresponding one-hot encoding of a certain number,

which forms a multi-input, multi-output linear model o = WTx + b. We

hope that the model output is closer to the real label.

3.3 Error Calculation
For classification problems, our goal is to maximize a certain performance

metric, such as accuracy. But when accuracy is used as a loss function,

it is in fact indifferentiable. As a result, the gradient descent algorithm

cannot be used to optimize the model parameters. The general approach

is to establish a smooth and derivable proxy objective function, such as

optimizing the distance between the output of the model and the one-hot

encoded real label. The model obtained by optimizing the proxy objective

function generally also performs well on a testing dataset. Compared

with the regression problem, the optimization and evaluation objective

functions of the classification problem are inconsistent. The goal of

training a model is to find the optimal numerical solution W∗ and b∗ by

optimizing the loss function L:

Chapter 3 ClassifiCation

75

For the error calculation of a classification problem, it is more common

to use the cross-entropy loss function instead of the mean squared error

loss function introduced in the regression problem. We will introduce

the cross-entropy loss function in future chapters. Here we still use the

mean squared error loss function to solve the handwritten digital picture

recognition problem for simplicity. The mean squared error loss function

for n samples can be expressed as

L o y

n
o y

i

n

j
j
i

j
i,� � � �� �

� �

� � � �� �1

1 1

10 2

Now we only need to use the gradient descent algorithm to optimize

the loss function to get the optimal solution W and b and then use the

obtained model to predict the unknown handwritten digital pictures

x ∈ Dtest.

3.4 Do We Really Solve the Problem?
According to the preceding solution, is the problem of handwritten

digital picture recognition really solved perfectly? There are at least two

major issues:

• A linear model is one of the simplest models in

machine learning. It has only a few parameters and

can only express linear relationships. The perception

and decision-making of complex brains are far more

complex than a linear model. Therefore, the linear

model is clearly not enough.

• Complexity is the model ability to approximate

complex distributions. The preceding solution only

uses a one-layer neural network model composed of

Chapter 3 ClassifiCation

76

a small number of neurons. Compared with the 100

billion neuron interconnection structure in the human

brain, its generalization ability is obviously weaker.

Figure 3-7 shows an example of model complexity and data

distribution. The distribution of sampling points with observation errors

is plotted. The actual distribution may be a quadratic parabolic model.

As shown in Figure 3-7 (a), if you use a linear model to fit the data, it is

difficult to learn a good model; if you use a suitable polynomial function

model to learn, such as a quadratic polynomial, you can learn a suitable

model as shown in Figure 3-7 (b). But when the model is too complex,

such as a ten-degree polynomial, it is likely to overfit and hurt the

generalization ability of the model, as shown in Figure 3-7 (c).

(a) Linear model (b) Matching model (c) Complex model

Figure 3-7. Model complexity

The multi-neuronal model we currently use is still a linear model with

weak generalization ability. Next, we’ll try to solve these two problems.

3.5 Nonlinear Model
Since a linear model is not feasible, we can embed a nonlinear function

in the linear model and convert it to a nonlinear model. We call this

nonlinear function the activation function, which is represented by σ:

 o Wx b� �� ��

Chapter 3 ClassifiCation

77

Here σ represents a specific nonlinear activation function, such as the

Sigmoid function (Figure 3-8 (a)) and the ReLU function (Figure 3-8 (b)).

0

5.0

1

−6 −4 −2 0 2 4 6

(a)Sigmoid (b)ReLU

Figure 3-8. Common activation functions

The ReLU function only retains the positive part of function y = x

and sets the negative part to be zeros. It has a unilateral suppression

characteristic. Although simple, the ReLU function has excellent nonlinear

characteristics, easy gradient calculation, and stable training process. It is

one of the most widely used activation functions for deep learning models.

Here we convert the model to a nonlinear model by embedding the ReLU

function:

 o ReLU Wx b� �� �

3.6 Model Complexity
To increase the model complexity, we can repeatedly stack multiple

transformations such as

 h ReLU W x b1 1 1� �� �

 h ReLU W h b2 2 1 2� �� �

 o W h b� �3 2 3

Chapter 3 ClassifiCation

78

In the preceding equations, we take the output value h1 of the first-

layer neuron as the input of the second-layer neuron and then take the

output h2 of the second-layer neuron as the input of the third-layer neuron,

and the output of the last-layer neuron is the model output.

As shown in Figure 3-9, the function embedding appears as the

connected network one after the other. We call the layer where the input

node x is located the input layer. The output of each nonlinear module hi

along with its parameters Wi and bi is called a network layer. In particular,

the layer in the middle of the network is called the hidden layer, and the

last layer is called the output layer. This network structure formed by

the connection of a large number of neurons is called a neural network.

The number of nodes in each layer and the number of layers determine the

complexity of the neural network.

Input layer: Hidden layer: Hidden layer: Output layer:

Figure 3-9. Three-layer neural network architecture

Now our network model has been upgraded to a three-layer neural

network, which has a descent complexity and good nonlinear generalization

ability. Next, let’s discuss how to optimize the network parameters.

3.7 Optimization Method
We’ve introduced the detailed optimization process in Chapter 2 for

regression problems. Actually, similar optimization methods can also

be used to solve classification problems. For a network model with only

Chapter 3 ClassifiCation

79

one layer, we can directly derive the partial derivative expression of ∂
∂
L

w

and
∂
∂
L

b
 and then calculate the gradient for each step and update the

parameters w and b using the gradient descent algorithm. However, as

complex nonlinear functions are embedded, the number of network layers

and the length of data features also increase, the model becomes very

complicated, and it is difficult to manually derive the gradient expressions.

Besides, once the network structure changes, the model function and

corresponding gradient expressions also change. Therefore, it is obviously

not feasible to rely on the manual calculation of the gradient.

That is why we have the invention of deep learning frameworks. With

the help of autodifferentiation technology, deep learning frameworks can

build the neural network’s computational graph during the calculation

of each layer’s output and corresponding loss function and then

automatically calculate the gradient
�
�

L

�
of any parameter θ. Users only

need to set up the network structure, and the gradient will automatically

be calculated and updated, which is very convenient and efficient to use.

3.8 Hands-On Handwritten Digital
Image Recognition

In this section, we will experience the fun of neural networks without

introducing too much detail of TensorFlow. The main purpose of this

section is not to teach every detail, but to give readers a comprehensive

and intuitive experience of neural network algorithms. Let’s start

experiencing the magical image recognition algorithm!

Chapter 3 ClassifiCation

80

3.8.1 Build the Network
For the first layer, the input is x ∈ R784,and the output h1 ∈ R256 is a vector

of length 256. We don’t need to explicitly write the calculation logic of

h1 = ReLU(W1x + b1). It can be achieved in TensorFlow with a single line

of code:

Create one layer with 256 output dimension and ReLU

activation function

layers.Dense(256, activation='relu')

Using TensorFlow’s Sequential function, we can easily build a

multilayer network. For a three-layer network, it can be implemented as

follows:

Build a 3-layer network. The output of 1st layer is the input

of 2nd layer.

model = keras.Sequential([

 layers.Dense(256, activation='relu'),

 layers.Dense(128, activation='relu'),

 layers.Dense(10)])

The number of output nodes in the three layers is 256, 128, and

10, respectively. Calling model (x) can directly return the output of the

last layer.

3.8.2 Model Training
After building the three-layer neural network, given the input x, we can call

model(x) to get the model output o and calculate the current loss L:

 with tf.GradientTape() as tape: # Record the gradient

calculation

 # Flatten x, [b, 28, 28] => [b, 784]

Chapter 3 ClassifiCation

81

 x = tf.reshape(x, (-1, 28*28))

 # Step1. get output [b, 784] => [b, 10]

 out = model(x)

 # [b] => [b, 10]

 y_onehot = tf.one_hot(y, depth=10)

 # Calculate squared error, [b, 10]

 loss = tf.square(out-y_onehot)

 # Calculate the mean squared error, [b]

 loss = tf.reduce_sum(loss) / x.shape[0]

Then we use the autodifferentiation function from TensorFlow

tape.gradient(loss, model.trainable_variables) to calculate all the

gradients
�
�

�� �L
W b W b W b

�
�, 1 1 2 2 3 3, , , , , 。:

 # Step3. Calculate gradients w1, w2, w3, b1, b2, b3

 grads = tape.gradient(loss, model.trainable_variables)

The gradient results are saved using the grads list variable. Then we

use the optimizer object to automatically update the model parameters θ

according to the gradient update rule.

� � � �

�
�

� � �
�
L

Code is as follows:

 # Auto gradient calculation

 grads = tape.gradient(loss, model.trainable_variables)

 # w' = w - lr * grad, update parameters

 optimizer.apply_gradients(zip(grads, model.trainable_

variables))

After multiple iterations, the learned model f θ can be used to predict

the categorical probability of unknown pictures. The model testing part is

not discussed here for now.

Chapter 3 ClassifiCation

82

The training error curve of the MNIST data set is shown in Figure 3-10.

Because the three-layer neural network has relatively strong generalization

ability and the task of handwritten digital picture recognition is relatively

simple, the training error decreases quickly. In Figure 3-10, the x-axis

represents the number of times of iterating over all training samples, which

is called epoch. Iterating all training samples once is called one epoch. We

can test the model’s accuracy and other indicators after several epochs to

monitor the model training effect.

Figure 3-10. Training error of MNIST dataset

3.9 Summary
In this chapter, by analogizing a one-layer linear regression model

to the classification problem, we proposed a three-layer nonlinear

neural network model to solve the problem of handwritten digital

picture recognition. After this chapter, everyone should have a good

understanding of the (shallow) neural network algorithms. Besides

digital picture recognition, classification models also have a variety of

applications. For example, classification models are used to separate spam

and non-spam emails, conduct sentiment analysis with unstructured text,

and process images for segmentation purposes. We will run into more

classification problems and applications in future chapters.

Chapter 3 ClassifiCation

83

Next, we will learn some basic knowledge of TensorFlow and lay a solid

foundation for subsequent learning and implementation of deep learning

algorithms.

3.10 Reference

 [1]. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner,

“Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, 1998.

Chapter 3 ClassifiCation

85© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_4

CHAPTER 4

Basic TensorFlow
I envision that in the future, we may be equivalent to robot
pet dogs, and by then I will also support robots.

—Claude Shannon

TensorFlow is a scientific computing library of deep learning algorithms.

All operations are performed based on tensor objects. Complex neural

network algorithms are essentially a combination of basic operations

such as multiplication and addition of tensors. Therefore, it is important

to get familiar with the basic tensor operation in TensorFlow. Only by

mastering these operations can we realize various complex and novel

network models at will and understand the essence of various models and

algorithms.

4.1 Data Types
The basic data types in TensorFlow include numeric, string, and Boolean.

https://doi.org/10.1007/978-1-4842-7915-1_4#DOI

86

4.1.1 Numeric
A numeric tensor is the main data format of TensorFlow. According to the

dimension, it can be divided into

• Scalar: A single real number, such as 1.2 and 3.4, has a

dimension of 0 and a shape of [].

• Vector: An ordered set of real numbers, wrapped

by square brackets, such as [1.2] and [1.2, 3.4], has

a dimension of 1 and a shape of [n] depending on

the length.

• Matrix: An ordered set of real numbers in n rows and

m columns, such as [[1, 2], [3, 4]], has a dimension of 2

and a shape of [n, m].

• Tensor: An array with dimension greater than 2. Each

dimension of the tensor is also known as the axis.

Generally, each dimension represents specific physical

meaning. For example, a tensor with a shape of

[2,32,32,3] has four dimensions. If it represents image

data, each dimension or axis represents the number

of images, image height, image width, and number

of color channels, that is, 2 represents two pictures,

image height and width are both 32, and 3 represents a

total of three color channels, that is, RGB. The number

of dimensions of the tensor and the specific physical

meaning represented by each dimension need to be

defined by users.

In TensorFlow, scalars, vectors, and matrices are also collectively

referred to as tensors without distinction. You need to make your

own judgment based on the dimension or shape of tensors. The same

convention applies in this book.

Chapter 4 BasiC tensorFlow

87

First, let’s create a scalar in TensorFlow. The implementation is as

follows:

In [1]:

a = 1.2 # Create a scalar in Python

aa = tf.constant(1.2) # Create a scalar in TensorFlow

type(a), type(aa), tf.is_tensor(aa)

Out[1]:

 (float, tensorflow.python.framework.ops.EagerTensor, True)

If we want to use the functions provided by TensorFlow, we must

create tensors in the way specified by TensorFlow, not the standard Python

language. We can print out the relevant information of tensor x through

print (x) or x. The code is as follows:

In [2]: x = tf.constant([1,2.,3.3])

x # print out x

Out[2]:

<tf.Tensor: id=165, shape=(3,), dtype=float32,

numpy=array([1. , 2. , 3.3], dtype=float32)>

In the output, id is the index of the internal object in TensorFlow,

shape represents the shape of the tensor, and dtype represents the

numerical precision of the tensor. The numpy() method can return data in

the type of Numpy.array, which is convenient for exporting data to other

modules in the system.

In [3]: x.numpy() # Convert TensorFlow (TF) tensor to

numpy array

Out[3]:

array([1. , 2. , 3.3], dtype=float32)

Chapter 4 BasiC tensorFlow

88

Unlike scalars, the definition of a vector must be passed to the

tf.constant () function through a list container. For example, here’s how to

create a vector:

In [4]:

a = tf.constant([1.2]) # Create a vector with one element

a, a.shape

Out[4]:

(<tf.Tensor: id=8, shape=(1,), dtype=float32, numpy=array([1.2],

dtype=float32)>,

 TensorShape([1]))

Create a vector with three elements:

In [5]:

a = tf.constant([1,2, 3.])

a, a.shape

Out[5]:

 (<tf.Tensor: id=11, shape=(3,), dtype=float32,

numpy=array([1., 2., 3.], dtype=float32)>,

 TensorShape([3]))

Similarly, the implementation of a matrix is as follows:

In [6]:

a = tf.constant([[1,2],[3,4]]) # Create a 2x2 matrix

a, a.shape

Out[6]:

(<tf.Tensor: id=13, shape=(2, 2), dtype=int32, numpy=

 array([[1, 2],

 [3, 4]])>, TensorShape([2, 2]))

Chapter 4 BasiC tensorFlow

89

A three-dimensional tensor can be defined as

In [7]:

a = tf.constant([[[1,2],[3,4]],[[5,6],[7,8]]])

Out[7]:

<tf.Tensor: id=15, shape=(2, 2, 2), dtype=int32, numpy=

array([[[1, 2],

 [3, 4]],

 [[5, 6],

 [7, 8]]])>

4.1.2 String
In addition to numeric types, TensorFlow also supports a string type. For

example, when processing image data, we can first record the path string of

the images and then read the image tensors according to the path through

the preprocessing function. A string tensor can be created by passing in a

string object, for example:

In [8]:

a = tf.constant('Hello, Deep Learning.')

a

Out[8]:

<tf.Tensor: id=17, shape=(), dtype=string, numpy=b'Hello,

Deep Learning.'>

The tf.strings module provides common utility functions for strings,

such as lower(), join(), length(), and split(). For example, we can convert

all strings to lowercase:

In [9]:

tf.strings.lower(a) # Convert string a to lowercase

Out[9]:

<tf.Tensor: id=19, shape=(), dtype=string, numpy=b'hello,

deep learning.'>

Chapter 4 BasiC tensorFlow

90

Deep learning algorithms are mainly based on numerical tensor

operations, and string data is used less frequently, so we won't go into too

much detail here.

4.1.3 Boolean
In order to facilitate the comparison operation, TensorFlow also supports

Boolean tensors. We can easily convert Python standard Boolean data into

a TensorFlow internal Boolean as follows:

In [10]: a = tf.constant(True)

a

Out[10]:

<tf.Tensor: id=22, shape=(), dtype=bool, numpy=True>

Similarly, we can create a Boolean vector as follows:

In [1]:

a = tf.constant([True, False])

Out[1]:

<tf.Tensor: id=25, shape=(2,), dtype=bool, numpy=array([True,

False])>

It should be noted that the Tensorflow and standard Python Boolean

types are not always equivalent and cannot be used universally, for

example:

In [1]:

a = tf.constant(True) # Create TF Boolean data

a is True # Whether a is a Python Boolean

Out[1]:

False # TF Boolean is not a Python Boolean

In [2]:

a == True # Are they numerically the same?

Chapter 4 BasiC tensorFlow

91

Out[2]:

<tf.Tensor: id=8, shape=(), dtype=bool, numpy=True> # Yes,

numerically, they are equal.

4.2 Numerical Precision
For a numeric tensor, it can be saved with a different byte length

corresponding to a different precision. For example, a floating-point

number 3.14 can be saved with 16-bit, 32-bit, or 64-bit precision.

The longer the bit, the higher the accuracy and, of course, the larger

memory space the number occupies. Commonly used precision types in

TensorFlow are tf.int16, tf.int32, tf.int64, tf.float16, tf.float32, and tf.float64

where tf.float64 is known as tf.double.

When creating a tensor, we can specify its precision, for example:

In [12]:

tf.constant(123456789, dtype=tf.int16)

tf.constant(123456789, dtype=tf.int32)

Out[12]:

<tf.Tensor: id=33, shape=(), dtype=int16, numpy=-13035>

<tf.Tensor: id=35, shape=(), dtype=int32, numpy=123456789>

Note that when precision is too low, the data 123456789 overflows, and

the wrong result is returned. Generally, tf.int32 and tf.int64 precisions are

used more often for integers. For floating-point numbers, high-precision

tensors can represent data more accurately. For example, when tf.float32 is

used for π, the actual data saved is 3.1415927:

In [1]:

import numpy as np

tf.constant(np.pi, dtype=tf.float32) # Save pi with 32 byte

Out[1]:

<tf.Tensor: id=29, shape=(), dtype=float32, numpy=3.1415927>

Chapter 4 BasiC tensorFlow

92

If we use tf.float64, we can get higher precision:

In [2]:

tf.constant(np.pi, dtype=tf.float64) # Save pi with 64 byte

Out[2]:

<tf.Tensor: id=31, shape=(), dtype=float64,

numpy=3.141592653589793>

For most deep learning algorithms, tf.int32 and tf.float32 are able to

generally meet the accuracy requirements. Some algorithms that require

higher accuracy, such as reinforcement learning, can use tf.int64 and

tf.float64.

The tensor precision can be accessed through the dtype property.

For some operations that can only handle a specified precision type, the

precision type of the input tensor needs to be checked in advance, and the

tensor that does not meet the requirements should be converted to the

appropriate type using the tf.cast function, for example:

In [3]:

a = tf.constant(3.14, dtype=tf.float16)

print('before:',a.dtype) # Get a's precision

if a.dtype != tf.float32: # If a is not tf.float32, convert it

to tf.float32.

 a = tf.cast(a,tf.float32) # Convert a to tf.float32

print('after :',a.dtype) # Get a's current precision

Out[3]:

before: <dtype: 'float16'>

after : <dtype: 'float32'>

When performing type conversion, you need to ensure the legality of

the conversion operation. For example, when converting a high-precision

tensor into a low-precision tensor, hidden data overflow risks may occur:

Chapter 4 BasiC tensorFlow

93

In [4]:

a = tf.constant(123456789, dtype=tf.int32)

tf.cast(a, tf.int16) # Convert a to lower precision and we

have overflow

Out[4]:

<tf.Tensor: id=38, shape=(), dtype=int16, numpy=-13035>

Conversions between Boolean and integer types are also legal and

are common:

In [5]:

a = tf.constant([True, False])

tf.cast(a, tf.int32) # Convert boolean to integers

Out[5]:

<tf.Tensor: id=48, shape=(2,), dtype=int32,

numpy=array([1, 0])>

In general, 0 means False and 1 means True during type conversion. In

TensorFlow, non-zero numbers are treated as True, for example:

In [6]:

a = tf.constant([-1, 0, 1, 2])

tf.cast(a, tf.bool) # Convert integers to booleans

Out[6]:

<tf.Tensor: id=51, shape=(4,), dtype=bool, numpy=array([True,

False, True, True])>

4.3 Tensors to Be Optimized
In order to distinguish tensors that need to calculate gradient information

from tensors that do not need to calculate gradient information,

TensorFlow adds a special data type to support the recording of gradient

information: tf.Variable. tf.Variable adds attributes such as name and

Chapter 4 BasiC tensorFlow

94

trainable on the basis of ordinary tensors to support the construction of

computational graphs. Since the gradient operation consumes a large

amount of computing resources and automatically updates related

parameters, tf.Variable does not need to be encapsulated for tensors that

don’t need gradient information, such as the input X of a neural network.

Instead, tensors that need to calculate the gradient, such as the W and b

of neural network layers, need to be wrapped by tf.Variable in order for

TensorFlow to track relevant gradient information.

The tf.Variable() function can be used to convert an ordinary tensor

into a tensor with gradient information, for example:

In [20]:

a = tf.constant([-1, 0, 1, 2]) # Create TF tensor

aa = tf.Variable(a) # Convert to tf.Variable type

aa.name, aa.trainable # Get tf.Variable properties

Out[20]:

 ('Variable:0', True)

The name and trainable attributes are specific for the tf.Variable type.

The name attribute is used to name the variables in the computational

graph. This naming system is maintained internally by TensorFlow and

generally does not require users to do anything about it. The trainable

attribute indicates whether the gradient information needs to be recorded

for the tensor. When the Variable object is created, the trainable flag is

enabled by default. You can set the trainable attribute to be False to avoid

recording the gradient information.

In addition to creating tf.Variable tensors through ordinary tensors, you

can also create them directly, for example:

In [21]:

a = tf.Variable([[1,2],[3,4]]) # Directly create Variable

type tensor

a

Chapter 4 BasiC tensorFlow

95

Out[21]:

<tf.Variable 'Variable:0' shape=(2, 2) dtype=int32, numpy=

array([[1, 2],

 [3, 4]])>

The tf.Variable tensors can be considered as a special type of ordinary

tensors. In fact, ordinary tensors can also be temporarily added to a list of

tracking gradient information through the GradientTape.watch() method

in order to support the automatic differentiation function.

4.4 Create Tensors
In TensorFlow, you can create tensors in a variety of ways, such as from a

Python list, from a Numpy array, or from a known distribution.

4.4.1 Create Tensors from Arrays and Lists
Numpy array and Python list are very important data containers in Python.

Many data are loaded into arrays or lists before being converted to tensors.

The output data of TensorFlow are also usually exported to arrays or lists,

which makes them easy to use for other modules.

The tf.convert_to_tensor function can be used to create a new tensor

from a Python list or Numpy array, for example:

In [22]:

Create a tensor from a Python list

tf.convert_to_tensor([1,2.])

Out[22]:

<tf.Tensor: id=86, shape=(2,), dtype=float32, numpy=array([1.,

2.], dtype=float32)>

In [23]:

Create a tensor from a Numpy array

tf.convert_to_tensor(np.array([[1,2.],[3,4]]))

Chapter 4 BasiC tensorFlow

96

Out[23]:

<tf.Tensor: id=88, shape=(2, 2), dtype=float64, numpy=

array([[1., 2.],

 [3., 4.]])>

Note that Numpy floating-point arrays store data with 64-bit precision

by default. When converting to a tensor type, the precision is tf.float64.

You can convert it to tf.float32 when needed. In fact, both tf.constant() and

tf.convert_to_tensor() can automatically convert Numpy arrays or Python

lists to tensor types.

4.4.2 Create All-0 or All-1 Tensors
Creating tensors with all 0s or 1s is a very common tensor initialization

method. Consider linear transformation y = Wx + b. The weight matrix

W can be initialized with a matrix of all 1s, and b can be initialized

with a vector of all 0s. So the linear transformation changes to y = x. We

can use tf.zeros() or tf.ones() to create all-zero or all-one tensors with

arbitrary shapes:

In [24]: tf.zeros([]),tf.ones([])

Out[24]:

 (<tf.Tensor: id=90, shape=(), dtype=float32, numpy=0.0>,

 <tf.Tensor: id=91, shape=(), dtype=float32, numpy=1.0>)

Create a vector of all 0s and all 1s:

In [25]: tf.zeros([1]),tf.ones([1])

Out[25]:

(<tf.Tensor: id=96, shape=(1,), dtype=float32,

numpy=array([0.], dtype=float32)>,

 <tf.Tensor: id=99, shape=(1,), dtype=float32,

numpy=array([1.], dtype=float32)>)

Chapter 4 BasiC tensorFlow

97

Create a matrix of all zeros:

In [26]: tf.zeros([2,2])

Out[26]:

<tf.Tensor: id=104, shape=(2, 2), dtype=float32, numpy=

array([[0., 0.],

 [0., 0.]], dtype=float32)>

Create a matrix of all 1s:

In [27]: tf.ones([3,2])

Out[27]:

<tf.Tensor: id=108, shape=(3, 2), dtype=float32, numpy=

array([[1., 1.],

 [1., 1.],

 [1., 1.]], dtype=float32)>

With tf.zeros_like and tf.ones_like, you can easily create a tensor with

all 0s or 1s that is consistent with the shape of another tensor. For example,

here’s how to create an all-zero tensor with the same shape as the tensor a:

In [28]: a = tf.ones([2,3]) # Create a 2x3 tensor with all 1s

tf.zeros_like(a) # Create a all zero tensor with the same

shape of a

Out[28]:

<tf.Tensor: id=113, shape=(2, 3), dtype=float32, numpy=

array([[0., 0., 0.],

 [0., 0., 0.]], dtype=float32)>

Create an all-one tensor with the same shape as the tensor a:

In [29]: a = tf.zeros([3,2]) # Create a 3x2 tensor with all

0s tf.ones_like(a) # Create a all 1 tensor with the same

shape of a

Chapter 4 BasiC tensorFlow

98

Out[29]:

<tf.Tensor: id=120, shape=(3, 2), dtype=float32, numpy=

array([[1., 1.],

 [1., 1.],

 [1., 1.]], dtype=float32)>

4.4.3 Create a Customized Numeric Tensor
In addition to initializing a tensor with all 0s or 1s, sometimes it is also

necessary to initialize the tensor with a specific value, such as –1. With

tf.fill(shape, value), we can create a tensor with a specific numeric value,

where the dimension is specified by the shape parameter. For example,

here’s how to create a scalar with element –1:

In [30]:tf.fill([], -1) #

Out[30]:

<tf.Tensor: id=124, shape=(), dtype=int32, numpy=-1>

Create a vector with all elements –1:

In [31]:tf.fill([1], -1)

Out[31]:

<tf.Tensor: id=128, shape=(1,), dtype=int32, numpy=array([-1])>

Create a matrix with all elements 99:

In [32]:tf.fill([2,2], 99) # Create a 2x2 matrix with all 99s

Out[32]:

<tf.Tensor: id=136, shape=(2, 2), dtype=int32, numpy=

array([[99, 99],

 [99, 99]])>

Chapter 4 BasiC tensorFlow

99

4.4.4 Create a Tensor from a Known Distribution
Sometimes, it is very useful to create tensors sampled from common

distributions such as normal (or Gaussian) and uniform distributions.

For example, in convolutional neural networks, the convolution kernel

W is usually initialized from a normal distribution to facilitate the training

process. In adversarial networks, hidden variables z are generally sampled

from a uniform distribution.

With tf.random.normal(shape, mean=0.0, stddev=1.0), we can create

a tensor with dimension defined by the shape parameter and values

sampled from a normal distribution N(mean, stddev2). For example,

here’s how to create a tensor from a normal distribution with mean 0 and

standard deviation of 1:

In [33]: tf.random.normal([2,2]) # Create a 2x2 tensor from a

normal distribution

Out[33]:

<tf.Tensor: id=143, shape=(2, 2), dtype=float32, numpy=

array([[-0.4307344 , 0.44147003],

 [-0.6563149 , -0.30100572]], dtype=float32)>

Create a tensor from a normal distribution with mean of 1 and

standard deviation of 2:

In [34]: tf.random.normal([2,2], mean=1,stddev=2)

Out[34]:

<tf.Tensor: id=150, shape=(2, 2), dtype=float32, numpy=

array([[-2.2687864, -0.7248812],

 [1.2752185, 2.8625617]], dtype=float32)>

Chapter 4 BasiC tensorFlow

100

With tf.random.uniform(shape, minval=0, maxval=None, dtype=tf.

float32), we can create a uniformly distributed tensor sampled from the

interval [minval, maxval). For example, here’s how to create a matrix

uniformly sampled from the interval [0, 1) with shape of [2, 2]:

In [35]: tf.random.uniform([2,2])

Out[35]:

<tf.Tensor: id=158, shape=(2, 2), dtype=float32, numpy=

array([[0.65483284, 0.63064325],

 [0.008816 , 0.81437767]], dtype=float32)>

Create a matrix uniformly sampled from an interval [0, 10) with shape

of [2, 2]:

In [36]: tf.random.uniform([2,2],maxval=10)

Out[36]:

<tf.Tensor: id=166, shape=(2, 2), dtype=float32, numpy=

array([[4.541913 , 0.26521802],

 [2.578913 , 5.126876]], dtype=float32)>

If we need to uniformly sample integers, we must specify the maxval

parameter and set the data type as tf.int*:

In [37]:

Create a integer tensor from a uniform distribution with

interval [0,100)

tf.random.uniform([2,2],maxval=100,dtype=tf.int32)

Out[37]:

<tf.Tensor: id=171, shape=(2, 2), dtype=int32, numpy=

array([[61, 21],

 [95, 75]])>

Please notice that these outputs from all random functions may be

distinct. However, it does not affect the usage of these functions.

Chapter 4 BasiC tensorFlow

101

4.4.5 Create a Sequence
When looping or indexing a tensor, it is often necessary to create a

continuous sequence of integers, which can be implemented by the

tf.range() function. The function tf.range(limit, delta=1) can create integer

sequences with delta steps and within interval [0, limit). For example,

here’s how to create an integer sequence of 0–10 with step of 1:

In [38]: tf.range(10) # 0~10, 10 is not included

Out[38]:

<tf.Tensor: id=180, shape=(10,), dtype=int32, numpy=array([0,

1, 2, 3, 4, 5, 6, 7, 8, 9])>

Create an integer sequence between 0 and 10 with step of 2:

In [39]: tf.range(10,delta=2) # 10 is not included

Out[39]:

<tf.Tensor: id=185, shape=(5,), dtype=int32, numpy=array([0, 2,

4, 6, 8])>

With tf.range(start, limit, delta=1), we can create an integer sequence

within interval [start, limit) and step of delta:

In [40]: tf.range(1,10,delta=2) # 1~10, 10 is not included

Out[40]:

<tf.Tensor: id=190, shape=(5,), dtype=int32, numpy=array([1, 3,

5, 7, 9])>

4.5 Typical Applications of Tensors
After introducing the properties and creation methods of tensors,

the following will introduce the typical application of tensors in each

dimension, so that readers can intuitively think of their main physical

Chapter 4 BasiC tensorFlow

102

meaning and purpose and lay the foundation for the study of a series of

abstract operations such as the dimensional transformation of subsequent

tensors.

This section will inevitably mention the network models or algorithms

that will be learned in future chapters. You don't need to fully understand

them now, but can have a preliminary impression.

4.5.1 Scalar
In TensorFlow, a scalar is the easiest to understand. It is a simple

number with 0 dimension and a shape of []. Typical uses of scalars are

the representation of error values and various metrics, such as accuracy,

precision, and recall.

Consider the training curve of a model. As shown in Figure 4-1, the

x-axis is the number of training steps, and the y-axis is Loss per Query

Image error change (Figure 4-1 (a)) and accuracy change (Figure 4-1 (b)),

where the loss value and accuracy are scalars generated by tensor

calculation.

(a)Training/validation error curves (b)Training/validation accuracy curves

Figure 4-1. Loss and accuracy curves

Chapter 4 BasiC tensorFlow

103

Take the mean squared error function as an example. After tf.keras.

losses.mse (or tf.keras.losses.MSE, the same function) returns the error

value on each sample and finally takes the average value of the error as the

error of the current batch, it automatically becomes a scalar:

In [41]:

out = tf.random.uniform([4,10]) # Create a model output example

y = tf.constant([2,3,2,0]) # Create a real observation

y = tf.one_hot(y, depth=10) # one-hot encoding

loss = tf.keras.losses.mse(y, out) # Calculate MSE for

each sample

loss = tf.reduce_mean(loss) # Calculate the mean of MSE

print(loss)

Out[41]:

tf.Tensor(0.19950335, shape=(), dtype=float32)

4.5.2 Vector
Vectors are very common in neural networks. For example, in fully

connected networks and convolutional neural networks, bias tensors b are

represented by vectors. As shown in Figure 4-2, a bias value is added to the

output nodes of each fully connected layer, and the bias of all output nodes

is represented as a vector form b = [b1, b2]T:

1

2

3

112

21

32

11

1

231

22

Figure 4-2. Application of bias vectors

Chapter 4 BasiC tensorFlow

104

Considering a network layer of two output nodes, we create a bias

vector of length 2 and add back on each output node:

In [42]:

Suppose z is the output of an activation function

z = tf.random.normal([4,2])

b = tf.zeros([2]) # Create a bias vector

z = z + b

Out[42]:

<tf.Tensor: id=245, shape=(4, 2), dtype=float32, numpy=

array([[0.6941646 , 0.4764454],

 [-0.34862405, -0.26460952],

 [1.5081744 , -0.6493869],

 [-0.26224667, -0.78742725]], dtype=float32)>

Note that the tensor z with shape [4, 2] and the vector b with shape [2]

can be added directly. Why is this? We will reveal it in the “Broadcasting”

section later.

For a network layer created through the high-level interface class

Dense(), the tensors W and b are automatically created and managed by

the class internally. The bias variable b can be accessed through the bias

member of the fully connected layer. For example, if a linear network layer

with four input nodes and three output nodes is created, then its bias

vector b should have length of 3 as follows:

In [43]:

fc = layers.Dense(3) # Create a dense layer with output

length of 3

Create W and b through build function with input nodes of 4

fc.build(input_shape=(2,4))

fc.bias # Print bias vector

Chapter 4 BasiC tensorFlow

105

Out[43]:

<tf.Variable 'bias:0' shape=(3,) dtype=float32,

numpy=array([0., 0., 0.], dtype=float32)>

It can be seen that the bias member of the class is a vector of length 3

and is initialized to all 0s. This is also the default initialization scheme of

the bias b. Besides, the type of the bias vector is Variable, because gradient

information is needed for both W and b.

4.5.3 Matrix
A matrix is also a very common type of tensor. For example, the shape of a

batch input tensor X of a fully connected layer is [b, din], where b represents

the number of input samples, that is, batch size, and din represents the

length of the input feature. For example, the feature length 4 and the input

containing a total of two samples can be expressed as a matrix:

x = tf.random.normal([2,4]) # A tensor with 2 samples and 4

features

Let the number of output nodes of the fully connected layer be three

and then the shape of its weight tensor W [4,3]. We can directly implement

a network layer using the tensors X, W and vector b. The code is as follows:

In [44]:

w = tf.ones([4,3])

b = tf.zeros([3])

o = x@w+b # @ means matrix multiplication

Out[44]:

<tf.Tensor: id=291, shape=(2, 3), dtype=float32, numpy=

array([[2.3506963, 2.3506963, 2.3506963],

 [-1.1724043, -1.1724043, -1.1724043]], dtype=float32)>

Chapter 4 BasiC tensorFlow

106

In the preceding code, both X and W are matrices. The preceding code

implements a linear transformation network layer, and the activation

function is empty. In general, the network layer σ(X @ W + b) is called a

fully connected layer, which can be directly implemented by the Dense()

class in TensorFlow. In particular, when the activation function σ is empty,

the fully connected layer is also called a linear layer. We can create a

network layer with four input nodes and three output nodes through the

Dense() class and view its weight matrix W through the kernel member of

the fully connected layer:

In [45]:

fc = layers.Dense(3) # Create fully-connected layer with 3

output nodes

fc.build(input_shape=(2,4)) # Define the input nodes to be 4

fc.kernel # Check kernel matrix W

Out[45]:

<tf.Variable 'kernel:0' shape=(4, 3) dtype=float32, numpy=

array([[0.06468129, -0.5146048 , -0.12036425],

 [0.71618867, -0.01442951, -0.5891943],

 [-0.03011459, 0.578704 , 0.7245046],

 [0.73894167, -0.21171576, 0.4820758]],

dtype=float32)>

4.5.4 Three-Dimensional Tensor
A typical application of a three-dimensional tensor is to represent a

sequence signal. Its format is

 X b sequence length feature length�� �, ,

where the number of sequence signals is b, sequence length represents

the number of sampling points or steps in the time dimension, and feature

length represents the feature length of each point.

Chapter 4 BasiC tensorFlow

107

Consider the representation of sentences in natural language

processing (NLP), such as the sentiment classification network that

evaluates whether a sentence is a positive sentiment or not, as shown

in Figure 4-3. In order to facilitate the processing of strings by neural

networks, words are generally encoded into vectors of fixed length through

the embedding layer. For example, "a" is encoded as a vector of length 3.

Then two sentences with equal length (each sentence has five words) can

be expressed as a three-dimensional tensor with shape of [2,5,3], where

2 represents the number of sentences, 5 represents the number of words,

and 3 represents the length of the encoded word vector. We demonstrate

how to represent sentences through the IMDB dataset as follows:

In [46]: # Load IMDB dataset

from tensorflow import keras

(x_train,y_train),(x_test,y_test)=keras.datasets.imdb.load_

data(num_words=10000)

Convert each sentence to length of 80 words

x_train = keras.preprocessing.sequence.pad_sequences(x_

train,maxlen=80)

x_train.shape

Out [46]: (25000, 80)

We can see that the shape of the x_train is [25000, 80], where 25000

represents the number of sentences, 80 represents a total of 80 words

in each sentence, and each word is represented by a numeric encoding

method. Next, we use the layers.Embedding function to convert each

numeric encoded word into a vector of length 100:

In [47]: # Create Embedding layer with 100 output length

embedding=layers.Embedding(10000, 100)

Convert numeric encoded words to word vectors

out = embedding(x_train)

out.shape

Out[47]: TensorShape([25000, 80, 100])

Chapter 4 BasiC tensorFlow

108

Through the embedding layer, the shape of the sentence tensor

becomes [25000,80,100], where 100 represents that each word is encoded

as a vector of length 100.

For a sequence signal with one feature, such as the price of a product

within 60 days, only one scalar is required to represent the product price,

so the price change of two products can be expressed using a tensor of

shape [2, 60]. In order to facilitate the uniform format, the price change

can also be expressed as a tensor of shape [2,60,1], where 1 represents the

feature length of 1.

4.5.5 Four-Dimensional Tensor
Most times we only use tensors with dimension less than five. For larger-

dimension tensors, such as five-dimensional tensor representation in meta

learning, a similar principle can be applied. Four-dimensional tensors

are widely used in convolutional neural networks. They are used to save

feature maps. The format is generally defined as

 b h w c, , ,� �

What

[0.5,0.2,0.3]

Embedding

Cell

a

[0.2,-0.2,-0.3]

Embedding

Cell

great

[0.9,-0.2,1.3]

Embedding

Cell

product

[-2.5,0.2,4.3]

Embedding

Cell

!

[1.5,-2.2,1.3]

Embedding

Cell

Classifier

Figure 4-3. Sentiment classification network

Chapter 4 BasiC tensorFlow

109

where b indicates the number of input samples; h and w represent the

height and width of the feature map, respectively; and c is the number

of channels. Some deep learning frameworks also use the format of

[b, c, h, w], such as PyTorch. Image data is a type of feature map. A color

image with three channels of RGB contains h rows and w columns of

pixels. Each point requires three values to represent the color intensity of

the RGB channel, so a picture can be expressed using a tensor of shape

[h, w, 3]. As shown in Figure 4-4, the top picture represents the original

image, which contains the intensity information of the three lower

channels.

Figure 4-4. Feature maps of RGB images

In neural networks, multiple inputs are generally calculated in parallel

to improve the computation efficiency, so the tensor of b pictures can be

expressed as [b, h, w, 3]:

In [48]:

Create 4 32x32 color images

x = tf.random.normal([4,32,32,3])

Create convolutional layer

layer = layers.Conv2D(16,kernel_size=3)

out = layer(x)

out.shape

Out[48]: TensorShape([4, 30, 30, 16])

Chapter 4 BasiC tensorFlow

110

The convolution kernel tensor is also a four-dimensional tensor, which

can be accessed through the kernel member variable:

In [49]: layer.kernel.shape

Out[49]: TensorShape([3, 3, 3, 16])

4.6 Indexing and Slicing
Part of the tensor data can be extracted through indexing and slicing

operations, which are used very frequently.

4.6.1 Indexing
In TensorFlow, the standard Python indexing method is supported, such

as [i][j] and comma and “:”. Consider four color pictures with 32 × 32 size

(for convenience, most of the tensors are generated by random normal

distribution, the same hereinafter). The corresponding tensor has shape

[4,32,32,3] as follows:

x = tf.random.normal([4,32,32,3])

Next, we use the indexing method to read part of the data from

the tensor.

• Read the first image data:

x = tf.random.normal ([4,32,32,3]) # Create a 4D tensor

In [51]: x[0] # Index 0 indicates the 1st element in Python

Out[51]:<tf.Tensor: id=379, shape=(32, 32, 3),

dtype=float32, numpy=

array([[[1.3005302 , 1.5301839 , -0.32005513],

 [-1.3020388 , 1.7837263 , -1.0747638], ...

 [-1.1092019 , -1.045254 , -0.4980363],

 [-0.9099222 , 0.3947732 , -0.10433522]]], dtype=float32)>

Chapter 4 BasiC tensorFlow

111

• Read the second row of the first picture:

In [52]: x[0][1]

Out[52]:

<tf.Tensor: id=388, shape=(32, 3), dtype=float32, numpy=

array([[4.2904025e-01, 1.0574218e+00, 3.1540772e-01],

 [1.5800388e+00, -8.1637271e-02, 6.3147342e-01], ...,

 [2.8893018e-01, 5.8003378e-01, -1.1444757e+00],

 [9.6100050e-01, -1.0985689e+00, 1.0827581e+00]],

dtype=float32)>

• Read the second row and third column of the first

picture:

In [53]: x[0][1][2]

Out[53]:

<tf.Tensor: id=401, shape=(3,), dtype=float32,

numpy=array([-0.55954427, 0.14497331, 0.46424514],

dtype=float32)>

• Select the second row, first column, and second (B)

channel of the third picture:

In [54]: x[2][1][0][1]

Out[54]:

<tf.Tensor: id=418, shape=(), dtype=float32, numpy=-0.84922135>

When the number of dimensions is large, the way of using [i][j]...[k]

is inconvenient. Instead, we can use the [i, j, ..., k] for indexing. They are

equivalent.

Chapter 4 BasiC tensorFlow

112

• Read the tenth row and third column of the second

picture:

In [55]: x[1,9,2]

Out[55]:

<tf.Tensor: id=436, shape=(3,), dtype=float32, numpy=array([

1.7487534 , -0.41491988, -0.2944692], dtype=float32)>

4.6.2 Slicing
A slice of data can be easily extracted using the format start : end : step,

where start is the index of the starting position, end is the index of the

ending position (excluding), and step is the sampling step size.

Taking the image tensor with shape [4,32,32,3] as an example, we’ll

explain how to use slicing to obtain data at different positions. For

example, read the second and third pictures as follows:

In [56]: x[1:3]

Out[56]:

<tf.Tensor: id=441, shape=(2, 32, 32, 3), dtype=float32, numpy=

array([[[[0.6920027 , 0.18658352, 0.0568333],

 [0.31422952, 0.75933754, 0.26853144],

 [2.7898 , -0.4284912 , -0.26247284],...

There are many abbreviations for the start : end : step slicing method.

The start, end, and step parameters can be selectively omitted as needed.

When all of them are omitted like ::, it indicates that the reading is from

the beginning to the end and the step size is 1. For example, x [0, ::] means

read all the rows of the first picture, where :: means all the rows in the row

dimension, which is equivalent to x [0]:

Chapter 4 BasiC tensorFlow

113

In [57]: x[0,::] # Read 1st picture

Out[57]:

<tf.Tensor: id=446, shape=(32, 32, 3), dtype=float32, numpy=

array([[[1.3005302 , 1.5301839 , -0.32005513],

 [-1.3020388 , 1.7837263 , -1.0747638],

 [-1.1230233 , -0.35004002, 0.01514002],

 ...

For brevity, :: can be shortened to a single colon :, for example:

In [58]: x[:,0:28:2,0:28:2,:]

Out[58]:

<tf.Tensor: id=451, shape=(4, 14, 14, 3), dtype=float32, numpy=

array([[[[1.3005302 , 1.5301839 , -0.32005513],

 [-1.1230233 , -0.35004002, 0.01514002],

 [1.3474811 , 0.639334 , -1.0826371],

 ...

The preceding code represents reading all pictures, interlaced

sampling, and reading all channel data, which is equivalent to scaling 50%

of the original height and width of the picture.

Let’s summarize different ways of slicing, where “start” can be omitted

when reading from the first element, that is, “start = 0” can be omitted,

“end” can be omitted when the last element is taken, and “step” can be

omitted when the step length is 1. The details are summarized in Table 4-1.

Chapter 4 BasiC tensorFlow

114

Table 4-1. Summary of slicing methods

Method Meaning

start:end:step read from “start” to “end” (excluding) with step length of “step.”

start:end read from “start” to “end” (excluding) with step length of 1.

start: read from “start” to the end of object with step length of 1.

start::step read from “start” to the end of object with step length of “step.”

:end:step read from the 0th item to “end” (excluding) with step length of “step.”

:end read from 0th item to “end” (excluding) with step length of 1.

::step read from 0th item to the last item with step length of “step.”

:: read all items.

: read all items.

In particular, step can be negative. For example, start : end : − 1 means

starting from “start,” reading in reverse order, and ending with “end”

(excluding), and the index “end” is smaller than “start.” Consider a simple

sequence vector from 0 to 9, and take the first element in reverse order,

excluding the first element:

In [59]: x = tf.range(9) # Create the vector

x[8:0:-1] # Reverse slicing

Out[59]:

<tf.Tensor: id=466, shape=(8,), dtype=int32, numpy=array([8, 7,

6, 5, 4, 3, 2, 1])>

Fetch all elements in reverse order as follows:

In [60]: x[::-1]

Out[60]:

<tf.Tensor: id=471, shape=(9,), dtype=int32, numpy=array([8, 7,

6, 5, 4, 3, 2, 1, 0])>

Chapter 4 BasiC tensorFlow

115

Reverse sampling every two items is implemented as follows:

In [61]: x[::-2]

Out[61]:

<tf.Tensor: id=476, shape=(5,), dtype=int32, numpy=array([8, 6,

4, 2, 0])>

Read all the channels of each picture, where both rows and columns

are sampled every two elements in reverse order. The implementation is as

follows:

In [62]: x = tf.random.normal([4,32,32,3])

x[0,::-2,::-2]

Out[62]:

<tf.Tensor: id=487, shape=(16, 16, 3), dtype=float32, numpy=

array([[[0.63320625, 0.0655185 , 0.19056146],

 [-1.0078577 , -0.61400175, 0.61183935],

 [0.9230892 , -0.6860094 , -0.01580668],

 ...

When the tensor has large dimensions, the dimensions that do not

need to be sampled generally use a single colon “:” to indicate that all

elements are selected. As a result, a lot of “:” may appear. Consider the

image tensor with shape [4,32,32,3]. When the data on the green channel

needs to be read, all the previous dimensions are extracted as

In [63]: x[:,:,:,1] # Read data on Green channel

Out[63]:

<tf.Tensor: id=492, shape=(4, 32, 32), dtype=float32, numpy=

array([[[0.575703 , 0.11028383, -0.9950867 ,

..., 0.38083118, -0.11705163, -0.13746642],

 ...

Chapter 4 BasiC tensorFlow

116

In order to avoid the situation of too many colons like x[:, : , : , 1], we

can use the symbol “⋯" to take all the data in multiple dimensions, where

the number of dimensions needs to be automatically inferred according

to the rules: When the symbol ⋯ appears in slice mode, the dimension

to the left of “⋯” will be automatically aligned to the left maximum. The

dimension to the right of the symbol “⋯” will be automatically aligned to

the far right. The system will automatically infer the number of dimensions

represented by the symbol “⋯”. The details are summarized in Table 4-2.

Table 4-2. “...” slicing method summary

Method Meaning

a,⋯,b select 0 to a for dimension a, b to end for dimension b, and all elements

for other dimensions.

a,⋯ select 0 to a for dimension a and all elements for other dimensions.

⋯,b select b to end for dimension b and all elements for other dimensions.

⋯ read all elements.

We list more examples as follows:

• Read the green and blue channel data of the first and

second pictures:

In [64]: x[0:2,...,1:]

Out[64]:

<tf.Tensor: id=497, shape=(2, 32, 32, 2), dtype=float32, numpy=

array([[[[0.575703 , 0.8872789],

 [0.11028383, -0.27128693],

 [-0.9950867 , -1.7737272],

 ...

Chapter 4 BasiC tensorFlow

117

• Read the last two pictures:

In [65]: x[2:,...] # equivalent to x[2:]

Out[65]:

<tf.Tensor: id=502, shape=(2, 32, 32, 3), dtype=float32, numpy=

array([[[[-8.10753584e-01, 1.10984087e+00, 2.71821529e-01],

 [-6.10031188e-01, -6.47952318e-01, -4.07003373e-01],

 [4.62206364e-01, -1.03655539e-01, -1.18086267e+00],

 ...

• Read red and green channel data:

In [66]: x[...,:2]

Out[66]:

<tf.Tensor: id=507, shape=(4, 32, 32, 2), dtype=float32, numpy=

array([[[[-1.26881 , 0.575703],

 [0.98697686, 0.11028383],

 [-0.66420585, -0.9950867],

 ...

4.6.3 Slicing Summary
Tensor indexing and slicing methods are various, especially the slicing

operation, which is easy for beginners to get confused. In essence, the

slicing operation has only this basic form of start : end : step. Through

this basic form, some default parameters are purposefully omitted, and

multiple abbreviated methods are derived. So it is easier and faster to

write. Since the number of dimensions that deep learning generally deals

with is within four dimensions, you will find that the tensor slice operation

is not that complicated in deep learning.

Chapter 4 BasiC tensorFlow

118

4.7 Dimensional Transformation
In neural networks, dimensional transformation is the core tensor

operation. Through dimensional transformation, the data can be

arbitrarily switched to meet the computing needs of different situations.

Consider the batch form of the linear layer:

 Y X W b� �@

Assume that two samples, each of which has a feature length of 4, are

included in X, with a shape of [2, 4]. The number of output nodes of the

linear layer is three, that is, the shape of W is [4, 3] and the shape of b is

defined [3]. Then the result of X @ W has shape of [2, 3]. Note that we also

need to add b with shape [3]. How to add two tensors of different shapes

directly?

Recall that what we want to do is adding a bias to each output node

of each layer. This bias is shared by all samples at each node. In other

words, each sample should add the same bias at each node as shown in

Figure 4-5.

= , 10 , 2

Input Output

Figure 4-5. Bias of a linear layer

Chapter 4 BasiC tensorFlow

119

Therefore, for the input X of two samples, we need to copy the bias

 b b b b�� �1 2 3

to the number of samples into the following matrix form

� � � �B b b b b b b1 2 3 1 2 3

and then add X′ = X @ W

� � �� ��

� � � � � �X x x x x x x11 12 13 21 22 23

Because they have the same shape at this time, this satisfies the

requirement of matrix addition:

Y X B x x x x x x b b b b b b� � � �� �� �� �� � � � � � � �

11 12 13 21 22 23 1 2 3 1 2 3

In this way, it not only satisfies the requirement that the matrix

addition needs to be consistent in shape but also achieves the logic of

sharing the bias vector to the output nodes of each input sample. In order

to achieve this, we insert a new dimension, batch, to the bias vector b and

then copy the data in the batch dimension to get a transformed version

B′ with shape of [2, 3]. This series of operations is called dimensional

transformation.

Each algorithm has different logical requirements for tensor

format. When the existing tensor format does not meet the algorithm

requirements, the tensor needs to be adjusted to the correct format

through dimensional transformation. Basic dimensional transformation

includes functions such as changing the view (reshape()), inserting new

dimensions (expand_dims()), deleting dimensions (squeeze()), and

exchanging dimensions (transpose()).

Chapter 4 BasiC tensorFlow

120

4.7.1 Reshape
Before introducing the reshape operation, let's first understand the

concept of tensor storage and view. The view of the tensor is the way

we understand the tensor. For example, the tensor of shape [2, 4, 4, 3] is

logically understood as two pictures, each picture having four rows and

four columns and each pixel having three channels of RGB data. The

storage of a tensor is reflected in that the tensor is stored in the memory

as a continuous area. For the same storage, we can have different ways

of view. For the [2, 4, 4, 3] tensor, we can consider it as two samples, each

of which is characterized by a vector of length 48. The same tensor can

produce different views. This is the relationship between storage and view.

View generation is very flexible, but needs to be reasonable.

We can generate a vector through tf.range() and generate different

views through the tf.reshape() function, for example:

In [67]: x=tf.range(96)

x=tf.reshape(x,[2,4,4,3]) # Change view to [2,4,4,3] without

change storage

Out[67]: # Data is not changed, only view is changed.

<tf.Tensor: id=11, shape=(2, 4, 4, 3), dtype=int32, numpy=

array([[[[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8],

 [9, 10, 11]],...

When storing data, memory does not support this dimensional

hierarchy concept, and data can only be written to memory in a tiled and

sequential manner. Therefore, this hierarchical relationship needs to be

managed manually, that is, the storage order of each tensor needs to be

manually tracked. For ease of expression, we refer to the dimension on the

left side of the tensor shape list as the large dimension and the dimension

on the right side of the shape list as the small dimension. For example,

Chapter 4 BasiC tensorFlow

121

in a tensor of shape [2, 4, 4, 3], the number of images 2 is called the large

dimension, and the number of channels 3 is called the small dimension.

Under the setting of priority to write in small dimension first, the memory

layout of the preceding tensor x is

1 2 3 4 5 6 7 8 9 93 94 95

Changing the view of the tensor only changes the way the tensor is

understood. It does not change the storage order. Because the writing of

a large amount of data consumes more computing resources, this is done

to increase the computation efficiency. Because the data has only a flat

structure when stored and it is separate from the logical structure, the new

logical structure (view) does not need to change the data storage mode,

which can save a lot of computing resources. While changing the view

operation provides convenience, it also brings a lot of logical dangers. The

default premise of changing the view operation is that the storage does

not change; otherwise, changing the view operation is illegal. We first

introduce legal view transformation operations and then introduce some

illegal view transformations.

For example, tensor A is written into the memory according to the

initial view of [b, h, w, c]. If we change the way of understanding, it can have

the following format:

• Tensor [b, h ⋅ w, c] represents b pictures with h ⋅ w pixels

and c channels.

• Tensor [b, h, w ⋅ c] represents b pictures with h lines,

and the feature length of each line is w ⋅ c.

• Tensor [b, h ⋅ w ⋅ c] represents b pictures, and the

feature length of each picture is h ⋅ w ⋅ c.

The storage of the preceding views does not need to be changed, so it

is all correct.

Chapter 4 BasiC tensorFlow

122

Syntactically, the view transformation only needs to make sure the

total number of elements of the new view and the size of the storage area

are equal, that is, the element number of the new view is equal to

 b h w c⋅ ⋅ ⋅

It is precisely because the view design has very few grammatical

constraints and is completely defined by the user, which makes it prone to

logical risks when changing the view.

Now let’s consider illegal view transformations. For example, if the

new view is defined as [b, w, h, c], [b, c, h ∗ w], or [b, c, h, w], the storage

order of the tensor needs to be changed. If the storage order is not updated

synchronously, the recovered data will be inconsistent with the new view,

resulting in data disorder. This requires the user to understand the data

in order to determine whether the operation is legal. We will show how to

change the storage of tensors in the “Swap Dimensions” section.

One technique for using view transformation operations correctly is

to track the order of the stored dimensions. For example, for tensors saved

in the initial view of “number of pictures-rows-columns-channels,” the

storage is also written in the order of “number of pictures-rows-columns-

channels.” If the view is restored in the “number of pictures-pixels-

channels” method, it does not conflict with the “number of pictures-rows-

columns-channels,” so correct data can be obtained. However, if the data

is restored in the “number of pictures-channels-pixels” method, because

the memory layout is in the order of “number of pictures-rows-columns-

channels,” the order of the view dimensions is inconsistent with the order

of the storage dimensions, which leads to disordered data.

Changing views is a very common operation in neural networks.

You can implement complex logic by concatenating multiple reshape

operations. However, when changing views through reshape, you must

always remember the storage order of the tensor. The dimensional order of

the new view must be the same as the storage order. Otherwise, you need

Chapter 4 BasiC tensorFlow

123

to synchronize the storage order through the swap dimension operation.

For example, for image data with shape [4,32,32,3], shape can be adjusted

to [4,1024,3] by reshape operations. The view's dimensional order is

b − pixel − c, and the tensor's storage order is [b, h, w, c]. The tensor with

shape [4,1024,3] can be restored to the following:

• When [b, h, w, c] = [4,32,32,3], the dimensional order of

the new view and the storage order are consistent, and

data can be recovered without disorders.

• When [b, w, h, c] = [4,32,32,3], the dimensional order of

the new view conflicts with the storage order.

• When [h ∙ w ∙ c, b] = [3072, 4], the dimensional order of

the new view conflicts with the storage order.

In TensorFlow, we can obtain the number of dimensions and shape of

a tensor through the tensor's ndim and shape attributes:

In [68]: x.ndim,x.shape # Get the tensor's dimension and shape

Out[68]:(4, TensorShape([2, 4, 4, 3]))

With tf.reshape (x, new_shape), we can legally change the view of the

tensor arbitrarily, for example:

In [69]: tf.reshape(x,[2,-1])

Out[69]:<tf.Tensor: id=520, shape=(2, 48), dtype=int32, numpy=

array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15,

 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31,...

 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,

93, 94, 95]])>

Chapter 4 BasiC tensorFlow

124

The parameter –1 indicates that the length on the current axis needs

to be automatically derived according to the rule that the total elements

of the tensor are not changed. For example, the preceding –1 can be

derived as

2 4 4 3

2
48

� � �
�

Change the view of the data again to [2, 4, 12] as follows:

In [70]: tf.reshape(x,[2,4,12])

Out[70]:<tf.Tensor: id=523, shape=(2, 4, 12),

dtype=int32, numpy=

array([[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],...

 [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]],

 [[48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59], ...

 [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95]]])>

Change the view of the data to [2,16,3] again as follows:

In [71]: tf.reshape(x,[2,-1,3])

Out[71]:<tf.Tensor: id=526, shape=(2, 16, 3),

dtype=int32, numpy=

array([[[0, 1, 2], ...

 [45, 46, 47]],

 [[48, 49, 50],...

 [93, 94, 95]]])>

Through the preceding series of continuous view transformation

operations, we need to be aware that the storage order of the tensor has

not changed and the data is still stored in the order of the initial order of

0, 1, 2, ⋯, 95 in memory.

Chapter 4 BasiC tensorFlow

125

4.7.2 Add and Delete Dimensions
Add a Dimension. Adding a dimension with a length of 1 is equivalent

to adding the concept of a new dimension to the original data. The

dimension length is 1, so the data does not need to be changed; it is only a

change of view.

Consider a specific example. The data of a large grayscale image is

saved as a tensor of shape 28 × 28. At the end, a new dimension is added to

the tensor, which is defined as the number of channels. Then the shape of

the tensor becomes [28,28,1] as follows:

In [72]: # Generate a 28x28 matrix

x = tf.random.uniform([28,28],maxval=10,dtype=tf.int32)

Out[72]:

<tf.Tensor: id=11, shape=(28, 28), dtype=int32, numpy=

array([[6, 2, 0, 0, 6, 7, 3, 3, 6, 2, 6, 2, 9, 3, 0, 3, 2, 8,

1, 3, 6, 2, 3, 9, 3, 6, 1, 7],...

With tf.expand_dims (x, axis), we can insert a new dimension before

the specified axis:

In [73]: x = tf.expand_dims(x,axis=2)

Out[73]:

<tf.Tensor: id=13, shape=(28, 28, 1), dtype=int32, numpy=

array([[[6],

 [2],

 [0],

 [0],

 [6],

 [7],

 [3],...

Chapter 4 BasiC tensorFlow

126

It can be seen that after inserting a new dimension, the storage order

of the data has not changed. Only the view of the data is changed after

inserting a new dimension.

In the same way, we can insert a new dimension at the front indicating

the number of images dimension with a length of 1. At this time, the shape

of the tensor becomes [1,28,28,1]:

In [74]: x = tf.expand_dims(x,axis=0) # Insert a dimension at

the beginning

Out[74]:

<tf.Tensor: id=15, shape=(1, 28, 28, 1), dtype=int32, numpy=

array([[[[6],

 [2],

 [0],

 [0],

 [6],

 [7],

 [3],...

Note that when the axis of tf.expand_dims is positive, it means that

a new dimension is inserted before the current dimension; when it is

negative, it means that a new dimension is inserted after the current

dimension. Taking tensor [b, h, w, c] as an example, the actual insertion

position of different axis parameters is shown in Figure 4-6.

[b, c, h, w]
0 1 2 3 4

-5 -4 -3 -2 -1

Figure 4-6. Insertion position of different axis parameters

Chapter 4 BasiC tensorFlow

127

Delete a Dimension. Deleting a dimension is the inverse operation of

adding a dimension. As with adding a dimension, deleting a dimension

can only delete a dimension of length 1, and it does not change the

storage order of the tensor. Continue to consider the example of the shape

[1,28,28,1]. If we want to delete the number of pictures dimension, we

can use the tf.squeeze (x, axis) function. The axis parameter is the index

number of the dimension to be deleted:

In [75]: x = tf.squeeze(x, axis=0) # Delete the image number

dimension

Out[75]:

<tf.Tensor: id=586, shape=(28, 28, 1), dtype=int32, numpy=

array([[[8],

 [2],

 [2],

 [0],...

Continue to delete the channel number dimension. Since the

image number dimension has been deleted, the shape of x at this time

is [28,28,1]. When deleting the channel number dimension, we should

specify axis = 2 as follows:

In [76]: x = tf.squeeze(x, axis=2) # Delete channel dimension

Out[76]:

<tf.Tensor: id=588, shape=(28, 28), dtype=int32, numpy=

array([[8, 2, 2, 0, 7, 0, 1, 4, 9, 1, 7, 4, 8, 2, 7, 4, 8, 2,

9, 8, 8, 0, 9, 9, 7, 5, 9, 7],

 [3, 4, 9, 9, 0, 6, 5, 7, 1, 9, 9, 1, 2, 7, 2, 7, 5, 3,

3, 7, 2, 4, 5, 2, 7, 3, 8, 0],...

Chapter 4 BasiC tensorFlow

128

If we do not specify the dimension parameter axis, that is,

tf.squeeze(x), it will delete all dimensions with a length of 1 by default, for

example:

In [77]:

x = tf.random.uniform([1,28,28,1],maxval=10,dtype=tf.int32)

tf.squeeze(x) # Delete all dimensions with length 1

Out[77]:

<tf.Tensor: id=594, shape=(28, 28), dtype=int32, numpy=

array([[9, 1, 4, 6, 4, 9, 0, 0, 1, 4, 0, 8, 5, 2, 5, 0, 0, 8,

9, 4, 5, 0, 1, 1, 4, 3, 9, 9],...

It is recommended to specify the dimension parameters to be deleted

one by one, in order to prevent TensorFlow from accidentally deleting

certain dimensions with length of 1, resulting in invalid calculation results.

4.7.3 Swap Dimensions
Changing the view or adding or deleting dimensions will not affect

the storage of the tensor. Sometimes it is not enough to change the

understanding of the tensor without changing the order of the dimensions.

That is, the storage order needs to be adjusted directly. By swapping the

dimensions, both the storage order and the view of the tensor are changed.

Swapping dimension operations are very common. For example,

the default storage format of an image tensor is the [b, h, w, c] format

in TensorFlow, but the image format of some libraries is the [b, c, h, w]

format. We take transformation from [b, h, w, c] to [b, c, h, w] as an example

to introduce how to use the tf.transpose(x, perm) function to complete

the dimension swap operation, where the parameter perm represents

the order of the new dimensions. Considering the image tensor with

shape [2,32,32,3], the dimensional indexes of “number of pictures, rows,

columns, and channels” are 0, 1, 2, and 3, respectively. If the order of the

Chapter 4 BasiC tensorFlow

129

new dimensions is “number of pictures, number of channels, rows, and

columns,” the corresponding index number becomes [0, 3, 1, 2], so the

parameter perm needs to be set to [0, 3, 1, 2]. The implementation is as

follows:

In [78]: x = tf.random.normal([2,32,32,3])

tf.transpose(x,perm=[0,3,1,2]) # Swap dimension

Out[78]:

<tf.Tensor: id=603, shape=(2, 3, 32, 32), dtype=float32, numpy=

array([[[[-1.93072677e+00, -4.80163872e-01, -8.85614634e-01, ...,

 1.49124235e-01, 1.16427064e+00, -1.47740364e+00],

 [-1.94761145e+00, 7.26879001e-01, -4.41877693e-01, ...

If we want to change [b, h, w, c] to [b, w, h, c], that is, exchange the

height and width dimensions, the new dimension index becomes [0, 2, 1, 3]

as follows:

In [79]:

x = tf.random.normal([2,32,32,3])

tf.transpose(x,perm=[0,2,1,3]) # Swap dimension

Out[79]:

<tf.Tensor: id=612, shape=(2, 32, 32, 3), dtype=float32, numpy=

array([[[[2.1266546 , -0.64206547, 0.01311932],

 [0.918484 , 0.9528751 , 1.1346699],

 ...,

It should be noted that after the dimension swap is completed through

tf.transpose, the storage order of the tensor has changed, and the view

has changed accordingly. All subsequent operations must be based on

the new order and view. Compared with the changing view operation, the

dimension swap operation is more computationally expensive.

Chapter 4 BasiC tensorFlow

130

4.7.4 Copy Data
After inserting a new dimension, we may want to copy data on the new

dimension to meet the requirements of subsequent calculations. Consider

the example Y = X @ W + b. After inserting a new dimension with the

number of samples for b, we need to copy the batch size data in the new

dimension and change the shape of b to be consistent with X @ W to

complete the tensor addition operation.

We can use the tf.tile(x, multiples) function to complete the data

replication operation in the specified dimensions. The parameter

multiples specifies the replication number for each dimension,

respectively. For example, 1 indicates that the data will not be copied, and

2 indicates that the new length is twice of the original length.

Taking the input [2, 4] and a three–output node linear transformation

layer as an example, the bias b is defined as

 b b b b�� �1 2 3

Insert a new dimension through tf.expand_dims(b, axis = 0) and turn it

into a matrix:

 B b b b�� �1 2 3

Now the shape of B becomes [1, 3]. We need to copy data in the

dimension of axis = 0 according to the number of input samples. The batch

size here is 2, that is, a copy is made and it becomes

 B b b b b b b�� �1 2 3 1 2 3

Through tf.tile(b, multiples = [2,1]), it can be copied once in the axis =

0 dimension and not copied in the axis = 1 dimension. First, insert a new

dimension as follows:

Chapter 4 BasiC tensorFlow

131

In [80]:

b = tf.constant([1,2]) # Create tensor b

b = tf.expand_dims(b, axis=0) # Insert new dimension

b

Out[80]:

<tf.Tensor: id=645, shape=(1, 2), dtype=int32,

numpy=array([[1, 2]])>

Copy one replicate of the data in the batch dimension to achieve the

following:

In [81]: b = tf.tile(b, multiples=[2,1])

Out[81]:

<tf.Tensor: id=648, shape=(2, 2), dtype=int32, numpy=

array([[1, 2],

 [1, 2]])>

Now the shape of B becomes [2, 3], and B can be directly added to

X @ W. Consider another example with a 2×2 matrix. The implementation

is as follows:

In [82]: x = tf.range(4)

x=tf.reshape(x,[2,2]) # Create 2x2 matrix

Out[82]:

<tf.Tensor: id=655, shape=(2, 2), dtype=int32, numpy=

array([[0, 1],

 [2, 3]])>

First, copy one replicate of the data in the column dimension as follows:

In [83]: x = tf.tile(x,multiples=[1,2])

Out[83]:

<tf.Tensor: id=658, shape=(2, 4), dtype=int32, numpy=

array([[0, 1, 0, 1],

 [2, 3, 2, 3]])>

Chapter 4 BasiC tensorFlow

132

Then copy one replicate of the data in the row dimension:

In [84]: x = tf.tile(x,multiples=[2,1])

Out[84]:

<tf.Tensor: id=672, shape=(4, 4), dtype=int32, numpy=

array([[0, 1, 0, 1],

 [2, 3, 2, 3],

 [0, 1, 0, 1],

 [2, 3, 2, 3]])>

After the replication operation in two dimensions, we can see the

shape of the data has doubled. This example helps us understand the

process of data replication more intuitively.

It should be noted that tf.tile will create a new tensor to save the copied

tensor. Since the copy operation involves a large amount of data reading

and writing operations, the computational cost is relatively high. The

tensor operations between different shapes in the neural network are very

common, so is there a lightweight copy operation? This is the broadcasting

operation to be introduced next.

4.8 Broadcasting
Broadcasting is a lightweight tensor copying method, which logically

expands the shape of the tensor data, but only performs the actual storage

copy operation when needed. For most scenarios, the broadcasting

mechanism can complete logical operations by avoiding the actual data

copying, thereby reducing a large amount of computational cost compared

with the tf.tile function.

For all dimensions of length 1, broadcasting has the same effect as

tf.tile. The difference is that tf.tile creates a new tensor by performing

the copy IO operation. Broadcasting does not immediately copy the

data; instead, it will logically change the shape of the tensor, so that the

Chapter 4 BasiC tensorFlow

133

view becomes the copied shape. Broadcasting will use the optimization

methods of the deep learning framework to avoid the actual copying of

data and complete the logical operations. For the user, the final effect of

broadcasting and tf.tile copy is the same, but the broadcasting mechanism

saves a lot of computational resources. It is recommended to use

broadcasting as much as possible in the calculation process to improve

efficiency.

Continuing to consider the preceding example Y = X @ W + b, the

shape of X @ W is [2, 3], and the shape of b is [3]. We can manually

complete the copy data operation by combining tf.expand_dims and tf.tile,

that is, transform b to shape [2, 3] and then add it to X @ W. But in fact, it is

also correct to add X @ W directly to b with shape [3], for example:

x = tf.random.normal([2,4])

w = tf.random.normal([4,3])

b = tf.random.normal([3])

y = x@w+b # Add tensors with different shapes directly

The preceding addition does not throw a logical error. This is because

it automatically calls the broadcasting function tf.broadcast_to(x, new_

shape), expanding the shape of b to [2,3]. The preceding operation is

equivalent to

y = x@w + tf.broadcast_to(b,[2,3])

In other words, when the operator + encounters two tensors with

inconsistent shapes, it will automatically consider expanding the two

tensors to a consistent shape and then call tf.add to complete the tensor

addition operation. By automatically calling tf.broadcast_to(b, [2,3]), it

not only achieves the purpose of increasing dimension but also avoids the

expensive computational cost of actually copying the data.

The core idea of the broadcasting mechanism is universality. That is,

the same data can be generally suitable for other locations. Before verifying

universality, we need to align the tensor shape to the right first and then

Chapter 4 BasiC tensorFlow

134

perform universality check: for a dimension of length 1, by default this

data is generally suitable for other positions in the current dimension; for

dimensions that do not exist, after adding a new dimension, the default

current data is also universally applicable to the new dimension, so that it

can be expanded into a tensor shape of any number of dimensions.

Considering the tensor A with shape [w, 1], it needs to be extended

to shape [b, h, w, c]. As shown in Figure 4-7, the first line is the expanded

shape, and the second line is the existing shape.

ℎ w
w 1

length is 1,assuming it’s
the same

Empty dimension,
assuming it exists

Figure 4-7. Broadcasting example 1

First, align the two shapes to the right. For the channel dimension c,

the current length of the tensor is 1. By default, this data is also suitable

for other positions in the current dimension. The data is logically copied,

and the length becomes c; for the nonexisting dimensions b and h, a new

dimension is automatically inserted, the length of the new dimension is 1,

and at the same time, the current data is generally suitable for other

positions in the new dimension, that is, for other pictures and other

rows, it is completely consistent with the data of the current row. This

automatically expands the corresponding dimensions to b and h, as shown

in Figure 4-8.

Chapter 4 BasiC tensorFlow

135

Check broadcasting condition Insert new dimension Expand to same
dimensions

Repeat to same
length

ℎ w
w

w
w

w
w1

ℎ

1 1 1

ℎ

ℎ

Figure 4-8. Broadcasting example 2

The tf.broadcast_to(x, new_shape) function can be used to explicitly

perform the automatic expansion function to expand the existing shape to

new_shape. The implementation is as follows:

In [87]:

A = tf.random.normal([32,1]) # Create a matrix

tf.broadcast_to(A, [2,32,32,3]) # Expand to 4 dimensions

Out[87]:

<tf.Tensor: id=13, shape=(2, 32, 32, 3), dtype=float32, numpy=

array([[[[-1.7571245 , -1.7571245 , -1.7571245],

 [1.580159 , 1.580159 , 1.580159],

 [-1.5324328 , -1.5324328 , -1.5324328],...

It can be seen that, under the guidance of the universality principle, the

broadcasting mechanism has become intuitive and easy to understand.

Let us consider an example that does not satisfy the principle of

universality, as shown in Figure 4-9.

ℎ w
w

Length is 2! Unsatisfied!

Figure 4-9. Broadcasting bad example

Chapter 4 BasiC tensorFlow

136

In the c dimension, the tensor already has two features, and the length

of the corresponding dimension of the new shape is c(c ≠ 2, such as c= 3).

Then these two features in the current dimension cannot be universally

applied to other positions, so it does not meet the universality principle. If

we apply broadcasting, it will trigger errors, such as

In [88]:

A = tf.random.normal([32,2])

tf.broadcast_to(A, [2,32,32,4])

Out[88]:

InvalidArgumentError: Incompatible shapes: [32,2] vs.

[2,32,32,4] [Op:BroadcastTo]

When performing tensor operations, some operations will

automatically call the broadcasting mechanism when processing tensors

of different shapes, such as +,-, *, and /, to broadcast the corresponding

tensors into a common shape and then do the calculation accordingly.

Figure 4-10 demonstrates some examples of tensor addition in three

different shapes.

Figure 4-10. Automatic broadcasting example

Chapter 4 BasiC tensorFlow

137

Let’s test the automatic broadcasting mechanism of basic operators,

for example:

a = tf.random.normal([2,32,32,1])

b = tf.random.normal([32,32])

a+b,a-b,a*b,a/b # Test automatic broadcasting for operations +,

-, *, and /

These operations can be broadcasted into a common shape before

the actual calculation. Using the broadcasting mechanism can make code

more concise and efficient.

4.9 Mathematical Operations
We’ve used some basic mathematical operations such as addition,

subtraction, multiplication, and division in previous chapters. In this

section, we will systematically introduce the common mathematical

operations in TensorFlow.

4.9.1 Addition, Subtraction, Multiplication
and Division

Addition, subtraction, multiplication, and division are the most basic

mathematical operations. They are implemented by the tf.add, tf.subtract,

tf.multiply, and tf.divide functions, respectively, in TensorFlow.

TensorFlow has overloaded operators +, − , ∗ , and/. It is generally

recommended to use those operators directly. Floor dividing and

remainder dividing are two other common operations, implemented

by the //and % operators, respectively. Let's demonstrate the division

operations, for example:

Chapter 4 BasiC tensorFlow

138

In [89]:

a = tf.range(5)

b = tf.constant(2)

a//b # Floor dividing

Out[89]:

<tf.Tensor: id=115, shape=(5,), dtype=int32, numpy=array([0, 0,

1, 1, 2])>

In [90]: a%b # Remainder dividing

Out[90]:

<tf.Tensor: id=117, shape=(5,), dtype=int32, numpy=array([0, 1,

0, 1, 0])>

4.9.2 Power Operations
The power operation can be conveniently completed through the tf.pow(x,

a) function, or the operator ** as x**a:

In [91]:

x = tf.range(4)

tf.pow(x,3)

Out[91]:

<tf.Tensor: id=124, shape=(4,), dtype=int32, numpy=array([

0, 1, 8, 27])>

In [92]: x**2

Out[92]:

<tf.Tensor: id=127, shape=(4,), dtype=int32, numpy=array([0,

1, 4, 9])>

Set the exponent to the form of
1

a
 to implement the root operation xa ,

for example:

In [93]: x=tf.constant([1.,4.,9.])

x**(0.5) # square root

Chapter 4 BasiC tensorFlow

139

Out[93]:

<tf.Tensor: id=139, shape=(3,), dtype=float32, numpy=array([1.,

2., 3.], dtype=float32)>

In particular, for common square and square root operations,

tf.square(x) and tf.sqrt(x) can be used. The square operation is

implemented as follows:

In [94]:x = tf.range(5)

x = tf.cast(x, dtype=tf.float32) # convert to float type

x = tf.square(x)

Out[94]:

<tf.Tensor: id=159, shape=(5,), dtype=float32, numpy=array([

0., 1., 4., 9., 16.], dtype=float32)>

The square root operation is implemented as follows:

In [95]:tf.sqrt(x)

Out[95]:

<tf.Tensor: id=161, shape=(5,), dtype=float32, numpy=array([0.,

1., 2., 3., 4.], dtype=float32)>

4.9.3 Exponential and Logarithmic Operations
Exponential operations can also be easily implemented using tf.pow(a, x)

or the ** operator, for example:

In [96]: x = tf.constant([1.,2.,3.])

2**x

Out[96]:

<tf.Tensor: id=179, shape=(3,), dtype=float32, numpy=array([2.,

4., 8.], dtype=float32)>

Chapter 4 BasiC tensorFlow

140

In particular, for natural exponents ex, this can be achieved with

tf.exp(x), for example:

In [97]: tf.exp(1.)

Out[97]:

<tf.Tensor: id=182, shape=(), dtype=float32, numpy=2.7182817>

In TensorFlow, natural logarithms x can be implemented with tf.math.

log(x), for example:

In [98]: x=tf.exp(3.)

tf.math.log(x)

Out[98]:

<tf.Tensor: id=186, shape=(), dtype=float32, numpy=3.0>

If you want to calculate the logarithm of other bases, you can use the

logarithmic base-changing formula:

x

x

a
=

For example, the calculation of
x

10
 can be achieved by

In [99]: x = tf.constant([1.,2.])

x = 10**x

tf.math.log(x)/tf.math.log(10.)

Out[99]:

<tf.Tensor: id=6, shape=(2,), dtype=float32, numpy=array([1.,

2.], dtype=float32)>

Chapter 4 BasiC tensorFlow

141

4.9.4 Matrix Multiplication
The neural network contains a large number of matrix multiplication

operations. We have previously introduced that the matrix multiplication

can be easily implemented by the @ operator and the tf.matmul(a, b)

function. It should be noted that the matrix multiplication in TensorFlow

can use the batch method, that is, tensors A and B can have dimensions

greater than 2. When the dimensions are greater than 2, TensorFlow selects

the last two dimensions of A and B to perform matrix multiplication, and

all the previous dimensions are considered as batch dimensions.

According to the definition of matrix multiplication, the condition of

A being able to multiply a matrix B is that the length of the penultimate

dimension (column) of A and the length of the penultimate dimension

(row) of B must be equal. For example, tensor a with shape [4, 3, 28, 32] can

be multiplied by tensor b with shape [4, 3, 32, 2]. The code is as follows:

In [100]:

a = tf.random.normal([4,3,28,32])

b = tf.random.normal([4,3,32,2])

a@b

Out[100]:

<tf.Tensor: id=236, shape=(4, 3, 28, 2), dtype=float32, numpy=

array([[[[-1.66706240e+00, -8.32602978e+00],

 [9.83304405e+00, 8.15909767e+00],

 [6.31014729e+00, 9.26124632e-01],...

Matrix multiplication also supports the automatic broadcasting

mechanism, for example:

In [101]:

a = tf.random.normal([4,28,32])

b = tf.random.normal([32,16])

Chapter 4 BasiC tensorFlow

142

tf.matmul(a,b) # First broadcast b to shape [4, 32, 16] and

then multiply a

Out[101]:

<tf.Tensor: id=264, shape=(4, 28, 16), dtype=float32, numpy=

array([[[-1.11323869e+00, -9.48194981e+00, 6.48123884e+00, ...,

 6.53280640e+00, -3.10894990e+00, 1.53050375e+00],

 [4.35898495e+00, -1.03704405e+01, 8.90656471e+00, ...,

The preceding operation automatically expands the variable b to a

common shape [4,32,16] and then multiplies the variable a in batch form

to obtain the results with shape [4,28,16].

4.10 Hands-On Forward Propagation
So far, we have introduced tensor creation, index slicing, dimensional

transformations, and common mathematical operations. Finally, we will

use the knowledge we have learned to complete the implementation of the

three-layer neural network:

out = ReLU{ReLU{ReLU[X @ W1 + b1] @ W2 + b2} @ W3 + b3}

The data set we use is the MNIST handwritten digital picture data set.

The number of input nodes is 784. The output node numbers of the first,

second, and third layers are 256, 128, and 10, respectively. First, let’s create

the tensor parameters W and b for each nonlinear layer as follows:

Every layer's tensor needs to be optimized. Set initial bias

to be 0s.

w and b for first layer

w1 = tf.Variable(tf.random.truncated_normal([784, 256],

stddev=0.1))

b1 = tf.Variable(tf.zeros([256]))

Chapter 4 BasiC tensorFlow

143

w and b for second layer

w2 = tf.Variable(tf.random.truncated_normal([256, 128],

stddev=0.1))

b2 = tf.Variable(tf.zeros([128]))

w and b for third layer

w3 = tf.Variable(tf.random.truncated_normal([128, 10],

stddev=0.1))

b3 = tf.Variable(tf.zeros([10]))

In forward calculation, the view of the input tensor with shape

[b, 28, 28] is first adjusted to a matrix with shape [b, 784], so that it is

suitable for the input format of the network:

 # Change view[b, 28, 28] => [b, 28*28]

 x = tf.reshape(x, [-1, 28*28])

Next, finish the calculation of the first layer. We perform the automatic

expansion operation here:

 # First layer calculation, [b, 784]@[784, 256] +

[256] => [b, 256] + [256] => [b, 256] + [b, 256]

 h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])

 h1 = tf.nn.relu(h1) # apply activation function

Use the same method for the second and third nonlinear function

layers. The output layer can use the ReLU activation function:

 # Second layer calculation, [b, 256] => [b, 128]

 h2 = h1@w2 + b2

 h2 = tf.nn.relu(h2)

 # Output layer calculation, [b, 128] => [b, 10]

 out = h2@w3 + b3

Chapter 4 BasiC tensorFlow

144

Transform the real labeled tensor into one-hot encoding and calculate

the mean squared error from out as follows:

 # Calculate mean square error, mse =

mean(sum(y-out)^2)

 # [b, 10]

 loss = tf.square(y_onehot - out)

 # Error metrics, mean: scalar

 loss = tf.reduce_mean(loss)

The preceding forward calculation process needs to be wrapped in

the context of “with tf.GradientTape() as tape,” so that the computational

graph information can be saved during forward calculation for the

automatic differentiation operation.

Use the tape.gradient() function to get the gradient information of

the network parameters. The result is stored in the grads list variable as

follows:

 # Calculate gradients for [w1, b1, w2, b2, w3, b3]

 grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])

Then we need to update the parameters by

� � � �

�
�

� � �
�
L

 # Update parameters using assign_sub (subtract the update

and assign back to the original parameter)

 w1.assign_sub(lr * grads[0])

 b1.assign_sub(lr * grads[1])

 w2.assign_sub(lr * grads[2])

 b2.assign_sub(lr * grads[3])

 w3.assign_sub(lr * grads[4])

 b3.assign_sub(lr * grads[5])

Chapter 4 BasiC tensorFlow

145

Among them, assign_sub() subtracts itself from a given parameter

value to implement an in-place update operation. The variation of the

network training error is shown in Figure 4-11.

Figure 4-11. Training error of the forward calculation

Chapter 4 BasiC tensorFlow

147© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_5

CHAPTER 5

Advanced TensorFlow
Artificial intelligence would be the ultimate version of
Google. The ultimate search engine that would understand
everything on the Web. It would understand exactly what
you wanted, and it would give you the right thing.

—Larry Page

After introducing the basic tensor operations, let’s further explore the

advanced operations, such as tensor merging and segmentation, norm

statistics, tensor filling, and clipping. We will also use the MNIST dataset

again to enhance our understanding of tensor operations in TensorFlow.

5.1 Merge and Split
5.1.1 Merge
Merging means combining multiple tensors into one tensor in a certain

dimension. Taking the data of a school’s gradebooks as an example, tensor

A is used to save the gradebooks of classes 1–4. There are 35 students in

each class with a total of eight subjects. The shape of tensor A is [4,35,8].

Similarly, tensor B keeps the gradebooks of the other six classes, with

a shape of [6,35,8]. By merging these two gradebooks, you can get the

gradebooks of all the classes in the school, recorded as tensor C, and the

corresponding shape should be [10,35,8], where 10 represents ten classes,

35 represents 35 students, and 8 represents eight subjects.

https://doi.org/10.1007/978-1-4842-7915-1_5#DOI

148

Tensors can be merged using concatenate and stack operations.

The concatenate operation does not generate new dimensions. It only

merges along existing dimensions. But the stack operation creates new

dimensions. Whether to use the concatenate or stack operation to merge

tensors depends on whether a new dimension needs to be created for a

specific scene. We will discuss both of them in the following session.

Concatenate. In TensorFlow, tensors can be concatenated using the

tf.concat(tensors, axis) function, where the first parameter holds a list of

tensors that need to be merged and the second parameter specifies the

dimensional index on which to merge. Back to the preceding example, we

merge the gradebooks in the class dimension. Here, the index number of

the class dimension is 0, that is, axis = 0. The code for merging A and B is as

follows:

In [1]:

a = tf.random.normal([4,35,8]) # Create gradebook A

b = tf.random.normal([6,35,8]) # Create gradebook B

tf.concat([a,b],axis=0) # Merge gradebooks

Out[1]:

<tf.Tensor: id=13, shape=(10, 35, 8), dtype=float32, numpy=

array([[[1.95299834e-01, 6.87859178e-01, -5.80048323e-01, ...,

 1.29430830e+00, 2.56610274e-01, -1.27798581e+00],

 [4.29753691e-01, 9.11329567e-01, -4.47975427e-01, ...,

In addition to the class dimension, we can also merge tensors in other

dimensions. Consider that tensor A saves the first four subjects’ scores

of all students in all classes, with shape [10,35,4] and tensor B saves the

remaining 4 subjects’ scores, with shape [10,35,4]. We can get the total

gradebook tensor by merging A and B as in the following:

In [2]:

a = tf.random.normal([10,35,4])

b = tf.random.normal([10,35,4])

Chapter 5 advanCed tensorFlow

149

tf.concat([a,b],axis=2) # Merge along the last dimension

Out[2]:

<tf.Tensor: id=28, shape=(10, 35, 8), dtype=float32, numpy=

array([[[-5.13509691e-01, -1.79707789e+00, 6.50747120e- 01, ...,

 2.58447856e-01, 8.47878829e-02, 4.13468748e-01],

 [-1.17108583e+00, 1.93961406e+00, 1.27830813e- 02, ...,

Syntactically, the concatenate operation can be performed on any

dimension. The only constraint is that the length of the non-merging

dimension must be the same. For example, the tensors with shape [4,32,8]

and shape [6,35,8] cannot be directly merged in the class dimension,

because the length of the number of students’ dimension is not the same –

one is 32 and the other is 35, for example:

In [3]:

a = tf.random.normal([4,32,8])

b = tf.random.normal([6,35,8])

tf.concat([a,b],axis=0) # Illegal merge. Second dimension is

different.

Out[3]:

InvalidArgumentError: ConcatOp : Dimensions of inputs

should match: shape[0] = [4,32,8] vs. shape[1] = [6,35,8]

[Op:ConcatV2] name: concat

Stack. The concatenate operation merges data directly on existing

dimensions and does not create new dimensions. If we want to create a

new dimension when merging data, we need to use the tf.stack operation.

Consider that tensor A saves the gradebook of one class with the shape of

[35, 8] and tensor B saves the gradebook of another class with the shape of

[35, 8]. When merging the data of these two classes, we need to create a new

dimension, defined as the class dimension. The new dimension can be placed

in any position. Generally, the class dimension is placed before the student

dimension, that is, the new shape of the merged tensor should be [2,35,8].

Chapter 5 advanCed tensorFlow

150

The tf.stack(tensors, axis) function can be used to combine multiple

tensors. The first parameter represents the tensor list to be merged, and

the second parameter specifies the position where the new dimension

is inserted. The usage of axis is the same as that of the tf.expand_dims

function. When axis ≥ 0, a new dimension is inserted before axis. When

axis < 0, we insert a new dimension after axis. Figure 5-1 shows the new

dimension position corresponding to different axis parameter settings for a

tensor with shape [b, c, h, w].

[b, c, h, w]
0 1 2 3 4

-5 -4 -3 -2 -1

Figure 5-1. New dimension insertion position for stack operation
with different axis values

Merge the two classes’ gradebooks using the stack operation and insert

the class dimension at the axis = 0 position. The code is as follows:

In [4]:

a = tf.random.normal([35,8])

b = tf.random.normal([35,8])

tf.stack([a,b],axis=0) # Stack a and b and insert new dimension

at axis=0

Out[4]:

<tf.Tensor: id=55, shape=(2, 35, 8), dtype=float32, numpy=

array([[[3.68728966e-01, -8.54765773e-01, -4.77824420e-01,

 -3.83714020e-01, -1.73216307e+00, 2.03872994e-02,

 2.63810277e+00, -1.12998331e+00],...

Chapter 5 advanCed tensorFlow

151

We can also choose to insert new dimensions elsewhere. For example,

insert the class dimension at the end:

In [5]:

a = tf.random.normal([35,8])

b = tf.random.normal([35,8])

tf.stack([a,b],axis=-1) # Insert new dimension at the end

Out[5]:

<tf.Tensor: id=69, shape=(35, 8, 2), dtype=float32, numpy=

array([[[0.3456724 , -1.7037214],

 [0.41140947, -1.1554345],

 [1.8998919 , 0.56994915],...

Now the class dimension is on axis = 2, and we need to understand

the data according to the view represented by the latest dimension order.

If we choose to use tf.concat to merge the preceding transcripts, then it

would be

In [6]:

a = tf.random.normal([35,8])

b = tf.random.normal([35,8])

tf.concat([a,b],axis=0) # No class dimension

Out[6]:

<tf.Tensor: id=108, shape=(70, 8), dtype=float32, numpy=

array([[-0.5516891 , -1.5031327 , -0.35369992,

 0.31304857, 0.13965549,

 0.6696881 , -0.50115544, 0.15550546],

 [0.8622069 , 1.0188094 , 0.18977325, 0.6353301 ,

 0.05809061,...

It can be seen that tf.concat can also merge data smoothly, but we

need to understand the tensor data in the way that the first 35 students

come from the first class and the last 35 students come from the second

Chapter 5 advanCed tensorFlow

152

class, which is not very intuitive. For this example, it is obviously more

reasonable to create a new dimension through the tf.stack method.

The tf.stack function also needs to meet a certain condition to use. It

needs all the tensors to be merged to have the same shape. Let’s see what

happens when stacking two tensors with different shapes:

In [7]:

a = tf.random.normal([35,4])

b = tf.random.normal([35,8])

tf.stack([a,b],axis=-1) # Illegal use of stack function.

Different shapes.

Out[7]:

InvalidArgumentError: Shapes of all inputs must match:

values[0].shape = [35,4] != values[1].shape = [35,8] [Op:Pack]

name: stack

The preceding operation attempts to merge two tensors whose shapes

are [35, 4] and [35, 8], respectively. Because the shapes of the two tensors

are not the same, the merge operation cannot be completed.

5.1.2 Split
The inverse process of the merge operation is split, which splits a tensor

into multiple tensors. Let’s continue the gradebook example. We get the

gradebook tensor of the entire school with shape of [10,35,8]. Now we need

to cut the data into ten tensors in the class dimension, and each tensor

holds the gradebook data of the corresponding class. tf.split(x, num_or_

size_splits, axis) can be used to complete the tensor split operation. The

meaning of the parameters in the function is as follows:

• x: The tensor to be split.

• num_or_size_splits: Cutting scheme. When num_or_

size_splits is a single value, such as 10, it means that

Chapter 5 advanCed tensorFlow

153

the tensor x is cut into ten parts with equal length.

When num_or_size_splits is a list, each element of the

list represents the length of each part. For example,

num_or_size_splits=[2, 4, 2, 2] means that the tensor is

cut into four parts, with the length of each part as 2, 4,

2, and 2.

• axis: Specifies the dimension index of the split.

Now we cut the total gradebook tensor into ten pieces as follows:

In [8]:

x = tf.random.normal([10,35,8])

Cut into 10 pieces with equal length

result = tf.split(x, num_or_size_splits=10, axis=0)

len(result) # Return a list with 10 tensors of equal length

Out[8]: 10

We can view the shape of a tensor after cutting, and it should be all

gradebook data of one class with shape of [1, 35, 8]:

In [9]: result[0] # Check the first class gradebook

Out[9]: <tf.Tensor: id=136, shape=(1, 35, 8),

dtype=float32, numpy=

array([[[-1.7786729 , 0.2970506 , 0.02983334, 1.3970423 ,

 1.315918 , -0.79110134, -0.8501629 , -1.5549672],

 [0.5398711 , 0.21478991, -0.08685189, 0.7730989 ,...

It can be seen that the shape of the first class tensor is [1,35,8],

which still has the class dimension. Let’s perform unequal length cutting.

For example, split the data into four parts with each length as [4, 2, 2, 2] for

each part:

In [10]: x = tf.random.normal([10,35,8])

Split tensor into 4 parts

Chapter 5 advanCed tensorFlow

154

result = tf.split(x, num_or_size_splits=[4,2,2,2] ,axis=0)

len(result)

Out[10]: 4

Check the shape of the first split tensor. According to our splitting

scheme, it should contain the gradebooks of four classes. The shape

should be [4,35,8]:

In [10]: result[0]

Out[10]: <tf.Tensor: id=155, shape=(4, 35, 8),

dtype=float32, numpy=

array([[[-6.95693314e-01, 3.01393479e-01, 1.33964568e-01, ...,

In particular, if we want to divide one certain dimension by a length

of 1, we can use the tf.unstack(x, axis) function. This method is a special

case of tf.split. The splitting length is fixed as 1. We only need to specify the

index number of the splitting dimension. For example, unstack the total

gradebook tensor in the class dimension:

In [11]: x = tf.random.normal([10,35,8])

result = tf.unstack(x,axis=0)

len(result) # Return a list with 10 tensors

Out[11]: 10

View the shape of the split tensor:

In [12]: result[0] # The first class tensor

Out[12]: <tf.Tensor: id=166, shape=(35, 8),

dtype=float32, numpy=

array([[-0.2034383 , 1.1851563 , 0.25327438,

-0.10160723, 2.094969 ,

 -0.8571669 , -0.48985648, 0.55798006],...

Chapter 5 advanCed tensorFlow

155

It can be seen that after splitting through tf.unstack, the split tensor

shape becomes [35, 8], that is, the class dimension disappears, which is

different from tf.split.

5.2 Common Statistics
During the neural network calculations, various statistical attributes need

to be computed, such as maximum, minimum, mean, and norm. Because

tensors usually contain a lot of data, it is easier to infer the distribution of

tensor values by obtaining the statistical information of these tensors.

5.2.1 Norm
Norm is a measure of the “length” of a vector. It can be generalized to

tensors. In neural networks, it is often used to represent the tensor weight

and the gradient magnitude. Commonly used norms are:

• L1 norm, defined as the sum of the absolute values of

all the elements of the vector:

|| ||x x

i
i1��

• L2 norm, defined as the root sum of the squares of all

the elements of the vector:

|| ||x x

i
i2

2� �

• ∞ norm, defined as the maximum of the absolute

values of all elements of a vector:

|| ||x xi i� � � �max

Chapter 5 advanCed tensorFlow

156

For matrices and tensors, the preceding formulas can also be used

after flattening the matrices and tensors into a vector. In TensorFlow, the

tf.norm(x, ord) function can be used to solve the L1, L2, and ∞norms,

where the parameter ord is specified as 1, 1, and np.inf for L1, L2, and ∞

norms, respectively:

In [13]: x = tf.ones([2,2])

tf.norm(x,ord=1) # L1 norm

Out[13]: <tf.Tensor: id=183, shape=(), dtype=float32,

numpy=4.0>

In [14]: tf.norm(x,ord=2) # L2 norm

Out[14]: <tf.Tensor: id=189, shape=(), dtype=float32,

numpy=2.0>

In [15]: import numpy as np

tf.norm(x,ord=np.inf) # ∞ norm

Out[15]: <tf.Tensor: id=194, shape=(), dtype=float32,

numpy=1.0>

5.2.2 Max, Min, Mean, and Sum
The tf.reduce_max, tf.reduce_min, tf.reduce_mean, and tf.reduce_sum

functions can be used to get the maximum, minimum, mean, and sum of

tensors in a certain dimension or in all dimensions.

Consider a tensor of shape [4, 10], where the first dimension represents

the number of samples and the second dimension represents the

probability that the current sample belongs to each of the ten categories.

The maximum value of each sample’s probability can be obtained through

the tf.reduce_max function:

In [16]: x = tf.random.normal([4,10])

tf.reduce_max(x,axis=1) # get maximum value at 2nd dimension

Chapter 5 advanCed tensorFlow

157

Out[16]:<tf.Tensor: id=203, shape=(4,), dtype=float32,

numpy=array([1.2410722 , 0.88495886, 1.4170984 , 0.9550192],

dtype=float32)>

The preceding code returns a vector of length 4, which represents the

maximum probability value of each sample. Similarly, we can find the

minimum value of the probability for each sample as follows:

In [17]: tf.reduce_min(x,axis=1) # get the minimum value at 2nd

dimension

Out[17]:<tf.Tensor: id=206, shape=(4,), dtype=float32,

numpy=array([-0.27862206, -2.4480672 , -1.9983795 , -1.5287997],

dtype=float32)>

Find the mean probabilities of each sample:

In [18]: tf.reduce_mean(x,axis=1)

Out[18]:<tf.Tensor: id=209, shape=(4,), dtype=float32,

numpy=array([0.39526337, -0.17684573, -0.148988 ,

-0.43544054], dtype=float32)>

When the axis parameter is not specified, the tf.reduce_* functions will

find the maximum, minimum, mean, and sum of all the data:

In [19]:x = tf.random.normal([4,10])

tf.reduce_max(x),tf.reduce_min(x),tf.reduce_mean(x)

Out [19]: (<tf.Tensor: id=218, shape=(), dtype=float32,

numpy=1.8653786>,

 <tf.Tensor: id=220, shape=(), dtype=float32,

numpy=-1.9751656>,

 <tf.Tensor: id=222, shape=(), dtype=float32,

numpy=0.014772797>)

Chapter 5 advanCed tensorFlow

158

When solving the error function, the error of each sample can be

obtained through the MSE function, and the average error of the sample

needs to be calculated. Here we can use tf.reduce_mean function as

follows:

In [20]:

out = tf.random.normal([4,10]) # Simulate output

y = tf.constant([1,2,2,0]) # Real labels

y = tf.one_hot(y,depth=10) # One-hot encoding

loss = keras.losses.mse(y,out) # Calculate loss of each sample

loss = tf.reduce_mean(loss) # Calculate mean loss

loss

Out[20]:

<tf.Tensor: id=241, shape=(), dtype=float32, numpy=1.1921183>

Similar to the tf.reduce_mean function, the sum function tf.reduce_

sum(x, axis) can calculate the sum of all features of the tensor on the

corresponding axis:

In [21]:out = tf.random.normal([4,10])

tf.reduce_sum(out,axis=-1) # Calculate sum along the last

dimension

Out[21]:<tf.Tensor: id=303, shape=(4,), dtype=float32,

numpy=array([-0.588144 , 2.2382064, 2.1582587, 4.962141],

dtype=float32)>

In addition, to obtain the maximum or minimum value of the tensor,

we sometimes also want to obtain the corresponding position index. For

example, for the classification tasks, we need to know the position index

of the maximum probability, which is usually used as the prediction

category. Considering the classification problem with ten categories, we

get the output tensor with shape [2, 10], where 2 represents two samples

and 10 indicates the probability of belonging to ten categories. Since the

position index of the element represents the probability that the current

Chapter 5 advanCed tensorFlow

159

sample belongs to this category, we often use the index corresponding to

the largest probability as the predicted category.

In [22]:out = tf.random.normal([2,10])

out = tf.nn.softmax(out, axis=1) # Use softmax to convert to

probability

out

Out[22]:<tf.Tensor: id=257, shape=(2, 10),

dtype=float32, numpy=

array([[0.18773547, 0.1510464 , 0.09431915, 0.13652141, 0.06579739,

 0.02033597, 0.06067333, 0.0666793 , 0.14594753, 0.07094406],

 [0.5092072 , 0.03887136, 0.0390687 , 0.01911005, 0.03850609,

 0.03442522, 0.08060656, 0.10171875, 0.08244187, 0.05604421]],

 dtype=float32)>

Taking the first sample as an example, it can be seen that the index

with the highest probability (0.1877) is 0. Because the probability on each

index represents the probability that the sample belongs to this category,

the probability that the first sample belongs to class 0 is the largest.

Therefore, the first sample should most likely belong to class 0. This is a

typical application where the index number of the maximum needs to

be solved.

We can use tf.argmax(x, axis) and tf.argmin(x, axis) to find the index

of the maximum and minimum values of x on the axis parameter. For

example:

In [23]:pred = tf.argmax(out, axis=1)

pred

Out[23]:<tf.Tensor: id=262, shape=(2,), dtype=int64,

numpy=array([0, 0], dtype=int64)>

It can be seen that the maximum probability of the two samples

appears on index 0, so it is most likely that they both belong to category 0.

We can use category 0 as the predicted category for the two samples.

Chapter 5 advanCed tensorFlow

160

5.3 Tensor Comparison
In order to get the classification metrics such as accuracy, it is generally

necessary to compare the prediction result with the real label. Considering

the prediction results of 100 samples, the predicted category can be

obtained through tf.argmax.

In [24]:out = tf.random.normal([100,10])

out = tf.nn.softmax(out, axis=1) # Convert to probability

pred = tf.argmax(out, axis=1) # Find corresponding category

Out[24]:<tf.Tensor: id=272, shape=(100,), dtype=int64, numpy=

array([0, 6, 4, 3, 6, 8, 6, 3, 7, 9, 5, 7, 3, 7, 1, 5, 6, 1, 2,

9, 0, 6,

 5, 4, 9, 5, 6, 4, 6, 0, 8, 4, 7, 3, 4, 7, 4, 1, 2, 4,

9, 4,...

The pred variable holds the predicted category of the 100 samples. We

compare them with the true labels to get a boolean tensor representing

whether each sample predicts the correct one. The tf.equal(a, b) (or

tf.math.equal(a, b), which is equivalent) function can compare whether

the two tensors are equal, for example:

In [25]: # Simiulate the true labels

y = tf.random.uniform([100],dtype=tf.int64,maxval=10)

Out[25]:<tf.Tensor: id=281, shape=(100,), dtype=int64, numpy=

array([0, 9, 8, 4, 9, 7, 2, 7, 6, 7, 3, 4, 2, 6, 5, 0, 9, 4, 5,

8, 4, 2,

 5, 5, 5, 3, 8, 5, 2, 0, 3, 6, 0, 7, 1, 1, 7, 0, 6, 1, 2,

1, 3, ...

In [26]:out = tf.equal(pred,y) # Compare true and prediction

Out[26]:<tf.Tensor: id=288, shape=(100,), dtype=bool, numpy=

array([False, False, False, False, True, False, False, False, False,

 False, False, False, False, False, True, False,

False, True,...

Chapter 5 advanCed tensorFlow

161

The tf.equal function returns the comparison result as a boolean

tensor. We only need to count the number of True elements to get the

correct number of predictions. In order to achieve this, we first convert the

boolean type to an integer tensor, that is, True corresponds to 1, and False

corresponds to 0, and then sum the number of 1 to get the number of True

elements in the comparison result:

In [27]:out = tf.cast(out, dtype=tf.float32) # convert to int type

correct = tf.reduce_sum(out) # get the number of True elements

Out[27]:<tf.Tensor: id=293, shape=(), dtype=float32, numpy=12.0>

It can be seen that the number of correct predictions in our randomly

generated prediction data is 12, so its accuracy is:

accuracy = =

12

100
12%

This is the normal level of random prediction models.

Except for the tf.equal function, other commonly used comparison

functions are shown in Table 5-1.

Table 5-1. Common comparison functions

Function Comparison logic

tf.math.greater a > b

tf.math.less a < b

tf.math.greater_equal a ≥ b

tf.math.less_equal a ≤ b

tf.math.not_equal a ≠ b

tf.math.is_nan a = nan

Chapter 5 advanCed tensorFlow

162

5.4 Fill and Copy
5.4.1 Fill
The height and width of images and the length of the sequence signals

may not be the same. In order to facilitate parallel computing of the

network, it is necessary to expand data of different lengths to the same. We

previously introduced that the length of data can be increased by copying.

However, repeatedly copying data will destroy the original data structure

and is not suitable for some situations. A common practice is to fill in a

sufficient number of specific values at the beginning or end of the data.

These specific values (e.g., 0) generally represent invalid meanings. This

operation is called padding.

Consider a two-sentence tensor that each word is represented by a

digital code, such as 1 for I, 2 for like, and so on. The first sentence is “I like

the weather today.” We assume that the sentence number is encoded as

[1, 2, 3, 4, 5, 6]. The second sentence is “So do I.” with encoding as [7, 8, 1, 6].

In order to store the two sentences in one tensor, we need to keep the

length of these two sentences consistent, that is, we need to expand the

length of the second sentence to 6. A common padding scheme is to pad

a number of zeros at the end of the second sentence, that is, [7, 8, 1, 6, 0, 0].

Now the two sentences can be stacked and combined into a tensor of

shape [2, 6].

The padding operation can be implemented by the tf.pad(x,

paddings) function. The parameter paddings is a list of multiple nested

schemes with the format of [Left Padding, Right Padding]. For example,

paddings = [[0, 0], [2, 1], [1, 2]] indicates that the first dimension is not filled,

and the left (the beginning) of the second dimension is filled with two

units, and fill one unit on the right (end) of the second dimension, fill one

unit on the left of the third dimension, and fill two units on the right of the

third dimension. Considering the example of the preceding two sentences,

Chapter 5 advanCed tensorFlow

163

two units need to be filled to the right of the first dimension of the second

sentence, and the paddings scheme is [[0, 2]]:

In [28]:a = tf.constant([1,2,3,4,5,6]) # 1st sentence

b = tf.constant([7,8,1,6]) # 2nd sentence

b = tf.pad(b, [[0,2]]) # Pad two 0's in the end of 2nd sentence

b

Out[28]:<tf.Tensor: id=3, shape=(6,), dtype=int32,

numpy=array([7, 8, 1, 6, 0, 0])>

After filling, the shape of the two tensors is consistent, and we can

stack them together. The code is as follows:

In [29]:tf.stack([a,b],axis=0) # Stack a and b

Out[29]:<tf.Tensor: id=5, shape=(2, 6), dtype=int32, numpy=

array([[1, 2, 3, 4, 5, 6],

 [7, 8, 1, 6, 0, 0]])>

In natural language processing, sentences with different lengths need

to be loaded. Some sentences are shorter, such as only ten words, and

some sentences are longer, such as more than 100 words. In order to be

able to save in the same tensor, a threshold that can cover most of the

sentence length is generally selected, such as 80 words. For sentences

with less than 80 words, we fill with 0s at the end of those sentences. For

sentences with more than 80 words, we truncate the sentence to 80 words

by removing some words at the end. We will use the IMDB dataset as an

example to demonstrate how to transform sentences of unequal length

into a structure of equal length. The code is as follows:

In [30]:total_words = 10000 # Set word number

max_review_len = 80 # Maximum length for each sentence

embedding_len = 100 # Word vector length

Load IMDB dataset

Chapter 5 advanCed tensorFlow

164

(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.

load_data(num_words=total_words)

Pad or truncate sentences to the same length with end padding

and truncation

x_train = keras.preprocessing.sequence.pad_sequences(x_train,

maxlen=max_review_len,truncating='post',padding='post')

x_test = keras.preprocessing.sequence.pad_sequences(x_test,

maxlen=max_review_len,truncating='post',padding='post')

print(x_train.shape, x_test.shape)

Out[30]: (25000, 80) (25000, 80)

In the preceding code, we set the maximum length of the sentence

max_review_len to 80 words. Through the keras.preprocessing.sequence.

pad_sequences function, we can quickly complete the padding and

truncation implementation. Take one of the sentences as an example, and

the transformed vector is like this:

[1 778 128 74 12 630 163 15 4 1766 7982 1051 2 32

 85 156 45 40 148 139 121 664 665 10 10 1361 173 4

 749 2 16 3804 8 4 226 65 12 43 127 24 2 10

 10 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0]

We can see that the final part of the sentence is filled with 0s so that

the length of the sentence is exactly 80. In fact, we can also choose to fill

the beginning part of the sentence when the length of the sentence is not

enough. After processing, all sentence length becomes 80, so that the

training set can be uniformly stored in the tensor of shape [25000, 80] and

the test set can be stored in the tensor of shape [25000, 80].

Let’s introduce an example of filling in multiple dimensions at the

same time. Consider padding the height and width dimensions of images.

If we have pictures with dimension 28 × 28 and the input layer shape of

Chapter 5 advanCed tensorFlow

165

neural network is 32 × 32, we need to fill the images to get the shape of

32 × 32. We can choose to fill 2 units each in the upper, lower, left, and right

of the image matrix as shown in Figure 5-2.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-2. Image padding example

The preceding padding scheme can be implemented as follows:

In [31]:

x = tf.random.normal([4,28,28,1])

Pad two units at each edge of the image

tf.pad(x,[[0,0],[2,2],[2,2],[0,0]])

Out[31]:

<tf.Tensor: id=16, shape=(4, 32, 32, 1), dtype=float32, numpy=

array([[[[0.],

 [0.],

 [0.],...

After the padding operation, the size of the picture becomes 32 × 32,

which meets the input requirements of the neural network.

Chapter 5 advanCed tensorFlow

166

5.4.2 Copy
In the dimensional transformation section, we introduced the tf.tile

function of copying the dimension of length 1. Actually, the tf.tile function

can be used to repeatedly copy multiple copies of data in any dimension.

For example, for image data with shape [4,32,32,3], if the copy scheme

is multiples=[2, 3, 3, 1], that means the channel dimension is not copied,

three copies in the height and width dimensions, and two copies in the

image number dimension. The implementation is as follows:

In [32]:x = tf.random.normal([4,32,32,3])

tf.tile(x,[2,3,3,1])

Out[32]:<tf.Tensor: id=25, shape=(8, 96, 96, 3),

dtype=float32, numpy=

array([[[[1.20957184e+00, 2.82766962e+00, 1.65782201e+00],

 [3.85402292e-01, 2.00732923e+00, -2.79068202e-01],

 [-2.52583921e-01, 7.82584965e-01, 7.56870627e-01],...

5.5 Data Limiting
Consider how to implement the nonlinear activation function ReLU. In

fact, it can be implemented by simple data limiting operations with the

range of elements being limited to x ∈ [0, +∞).

In TensorFlow, the lower limit of the data can be set through

tf.maximum (x, a), that is, the upper limit of the data can be set through

tf.minimum (x, a).

In [33]:x = tf.range(9)

tf.maximum(x,2) # Set lower limit of x to 2

Out[33]:<tf.Tensor: id=48, shape=(9,), dtype=int32,

numpy=array([2, 2, 2, 3, 4, 5, 6, 7, 8])>

In [34]:tf.minimum(x,7) # Set x upper limit to 7

Chapter 5 advanCed tensorFlow

167

Out[34]:<tf.Tensor: id=41, shape=(9,), dtype=int32,

numpy=array([0, 1, 2, 3, 4, 5, 6, 7, 7])>

Based on tf.maximum function, we can implement ReLU as follows:

def relu(x): # ReLU function

 return tf.maximum(x,0.) # Set lower limit of x to be 0

By combining tf.maximum(x, a) and tf.minimum(x, b), you can limit

the upper and lower boundaries of the data at the same time, that is,

x ∈ [a, b].

In [35]:x = tf.range(9)

tf.minimum(tf.maximum(x,2),7) # Set x range to be [2, 7]

Out[35]:<tf.Tensor: id=57, shape=(9,), dtype=int32,

numpy=array([2, 2, 2, 3, 4, 5, 6, 7, 7])>

More conveniently, we can use the tf.clip_by_value function to achieve

upper and lower clipping:

In [36]:x = tf.range(9)

tf.clip_by_value(x,2,7) # Set x range to be [2, 7]

Out[36]:<tf.Tensor: id=66, shape=(9,), dtype=int32,

numpy=array([2, 2, 2, 3, 4, 5, 6, 7, 7])>

5.6 Advanced Operations
Most of the preceding functions are common and easy to understand.

Next, we will introduce some commonly used but slightly more

complicated functions.

Chapter 5 advanCed tensorFlow

168

5.6.1 tf.gather
The tf.gather function can collect data according to the index number.

Consider the example of grade books. Assume that there are four classes,

35 students in each class, eight subjects in total, and the tensor shape of

the grade books is [4,35,8].

x = tf.random.uniform([4,35,8],maxval=100,dtype=tf.int32)

Now we need to collect the grade books of the first and second classes.

We can give the index number of the class we want to collect (e.g., [0, 1])

and specify the dimension of the class (e.g., axis = 0). And then collect the

data through the tf.gather function.

In [38]:tf.gather(x,[0,1],axis=0) # Collect data for 1st and

2nd classes

Out[38]:<tf.Tensor: id=83, shape=(2, 35, 8),

dtype=int32, numpy=

array([[[43, 10, 93, 85, 75, 87, 28, 19],

 [52, 17, 44, 88, 82, 54, 16, 65],

 [98, 26, 1, 47, 59, 3, 59, 70],...

In fact, the preceding requirements can be more conveniently

achieved through slicing. However, for irregular indexing methods, such as

the need to spot check the grade data of students 1, 4, 9, 12, 13, and 27, the

slicing method is not suitable. The tf.gather function is designed for this

situation and is more convenient to use. The implementation is as follows:

In [39]: # Collect the grade of students 1,4,9,12,13 and 27

tf.gather(x,[0,3,8,11,12,26],axis=1)

Out[39]:<tf.Tensor: id=87, shape=(4, 6, 8), dtype=int32, numpy=

array([[[43, 10, 93, 85, 75, 87, 28, 19],

 [74, 11, 25, 64, 84, 89, 79, 85],...

Chapter 5 advanCed tensorFlow

169

If we need to collect the grades of the third and fifth subjects of all

students, we can specify the subject dimension axis = 2 to achieve the

following:

Collect the grades of the 3rd and 5th subjects of all

students

In [40]:tf.gather(x,[2,4],axis=2)

Out[40]:<tf.Tensor: id=91, shape=(4, 35, 2),

dtype=int32, numpy=

array([[[93, 75],

 [44, 82],

 [1, 59],...

It can be seen that tf.gather is very suitable for situations where the

index numbers are not regular. The index numbers can be arranged out of

order, and the data collected will also be in the corresponding order. For

example:

In [41]:a=tf.range(8)

a=tf.reshape(a,[4,2])

Out[41]:<tf.Tensor: id=115, shape=(4, 2), dtype=int32, numpy=

array([[0, 1],

 [2, 3],

 [4, 5],

 [6, 7]])>

In [42]:tf.gather(a,[3,1,0,2],axis=0) # Collect element 4,2,1,3

Out[42]:<tf.Tensor: id=119, shape=(4, 2), dtype=int32, numpy=

array([[6, 7],

 [2, 3],

 [0, 1],

 [4, 5]])>

Chapter 5 advanCed tensorFlow

170

We will make the problem a little more complicated. If we want to

check the subject scores of students [3, 4, 6, 27] in class [2, 3], we can do

this by combining multiple tf.gather operations. First extract data for

class [2, 3]:

In [43]:

students=tf.gather(x,[1,2],axis=0) # Collect data for

class 2 and 3

Out[43]:<tf.Tensor: id=227, shape=(2, 35, 8),

dtype=int32, numpy=

array([[[0, 62, 99, 7, 66, 56, 95, 98],...

Then we extract the corresponding data for selected students:

In [44]:

tf.gather(students,[2,3,5,26],axis=1) # Collect data for

students 3,4,6,27

Out[44]:<tf.Tensor: id=231, shape=(2, 4, 8),

dtype=int32, numpy=

array([[[69, 67, 93, 2, 31, 5, 66, 65], ...

Now we get the selected tensor with shape [2, 4, 8].

This time we want to spot check all subjects of the second classmate of

the second class, all subjects of the third classmate of the third class, and

all subjects of the fourth classmate of the fourth class. So how does it work?

Data can be manually extracted one by one in a clumsy way. First extract

the data of the first sampling point: x[1, 1].

In [45]: x[1,1]

Out[45]:<tf.Tensor: id=236, shape=(8,), dtype=int32,

numpy=array([45, 34, 99, 17, 3, 1, 43, 86])>

Then extract the data of the second sampling point x[2, 2] and the data

of the third sampling point x[3, 3], and finally combine the sampling results

together.

Chapter 5 advanCed tensorFlow

171

In [46]: tf.stack([x[1,1],x[2,2],x[3,3]],axis=0)

Out[46]:<tf.Tensor: id=250, shape=(3, 8), dtype=int32, numpy=

array([[45, 34, 99, 17, 3, 1, 43, 86],

 [11, 25, 84, 95, 97, 95, 69, 69],

 [0, 89, 52, 29, 76, 7, 2, 98]])>

Using the preceding method, we can correctly obtain the result of

shape [3, 8], where 3 represents the number of sampling points and 4

represents the data of each sampling point. The biggest problem is that

the sampling is performed manually and serially, and the calculation

efficiency is extremely low. Is there a better way to achieve this?

5.6.2 tf.gather_nd
With the tf.gather_nd function, we can sample multiple points by

specifying the multidimensional coordinates of each sampling point.

Going back to the preceding challenge, we want to spot check all the

subjects of the second classmate of the second class, all the subjects of

the third classmate of the third class, and all the subjects of the fourth

classmate of the fourth class. Then the index coordinates of the three

sampling points can be recorded as [1, 1], [2, 2], and [3, 3], and we can

combine this sampling scheme into a list [[1, 1], [2, 2], [3, 3]].

In [47]:

tf.gather_nd(x,[[1,1],[2,2],[3,3]])

Out[47]:<tf.Tensor: id=256, shape=(3, 8), dtype=int32, numpy=

array([[45, 34, 99, 17, 3, 1, 43, 86],

 [11, 25, 84, 95, 97, 95, 69, 69],

 [0, 89, 52, 29, 76, 7, 2, 98]])>

The result is consistent with the serial sampling method, and the

implementation is more concise and efficient.

Chapter 5 advanCed tensorFlow

172

Generally, when using tf.gather_nd to sample multiple samples, for

example, if we want to sample class i, student j, and subject k, we can use

the expression [..., [i, j, k], ...]. The inner list contains the corresponding

index coordinates of each sampling point, for example:

In [48]:

tf.gather_nd(x,[[1,1,2],[2,2,3],[3,3,4]])

Out[48]:<tf.Tensor: id=259, shape=(3,), dtype=int32,

numpy=array([99, 95, 76])>

In the preceding code, we extracted the grades of subject 1 of class 1

student 2, subject 2 of class 2 student 3, and class 3 of student 3 subject 4.

There are a total of three grade data, and the results are summarized into a

tensor with shape of [3].

5.6.3 tf.boolean_mask
In addition to sampling by a given index number, sampling can also be

performed by a given mask. Continue to take the gradebook tensor with

shape [4,35,8] as an example; this time we use the mask method for data

extraction.

Consider sampling in the class dimension and set the corresponding

mask as:

 mask True False False True�� �, , ,

That is, the first and fourth classes are sampled. Using the function

tf.boolean_mask(x, mask, axis), the sampling can be performed on the

corresponding axis according to the mask scheme, which is realized as:

In [49]:

tf.boolean_mask(x,mask=[True, False,False,True],axis=0)

Chapter 5 advanCed tensorFlow

173

Out[49]:<tf.Tensor: id=288, shape=(2, 35, 8),

dtype=int32, numpy=

array([[[43, 10, 93, 85, 75, 87, 28, 19],...

Note that the length of the mask must be the same as the length of the

corresponding dimension. If we are sampling in the class dimension, we

must specify the mask with length 4 to specify whether the four classes are

sampling.

If mask sampling is performed on eight subjects, we need to set the

mask sampling scheme to

 mask True False False True True False False True�� �, , , , , , ,

That is, sample the first, fourth, fifth, and eighth subjects:

In [50]:

tf.boolean_mask(x,mask=[True,False,False,True,True,False,False,

True],axis=2)

Out[50]:<tf.Tensor: id=318, shape=(4, 35, 4),

dtype=int32, numpy=

array([[[43, 85, 75, 19],...

It is not difficult to find that the usage of tf.boolean_mask here is

actually very similar to tf.gather, except that one is sampled by the mask

method, and the other is directly given the index number.

Now let’s consider a multidimensional mask sampling method similar

to tf.gather_nd. In order to facilitate the demonstration, we reduced the

number of classes to two and the number of students to three. That is, a

class has only three students and the tensor shape is [2, 3, 8]. If we want to

Chapter 5 advanCed tensorFlow

174

sample students 1 to 2 of the first class and students 2 to 3 of the second

class, we can achieve it using tf.gather_nd:

In [51]:x = tf.random.uniform([2,3,8],maxval=100,dtype

=tf.int32)

tf.gather_nd(x,[[0,0],[0,1],[1,1],[1,2]])

Out[51]:<tf.Tensor: id=325, shape=(4, 8), dtype=int32, numpy=

array([[52, 81, 78, 21, 50, 6, 68, 19],

 [53, 70, 62, 12, 7, 68, 36, 84],

 [62, 30, 52, 60, 10, 93, 33, 6],

 [97, 92, 59, 87, 86, 49, 47, 11]])>

A total of four students' results were sampled with a shape of [4, 8].

If we use a mask, how do we express it? Table 5-2 expresses the

sampling of the corresponding position:

Table 5-2. Sampling using mask method

Student 0 Student 1 Student 2

Class 0 true true False

Class 1 False true true

Therefore, through this table, the sampling scheme using the mask

method can be well expressed. The code is implemented as follows:

In [52]:

tf.boolean_mask(x,[[True,True,False],[False,True,True]])

Out[52]:<tf.Tensor: id=354, shape=(4, 8), dtype=int32, numpy=

array([[52, 81, 78, 21, 50, 6, 68, 19],

 [53, 70, 62, 12, 7, 68, 36, 84],

 [62, 30, 52, 60, 10, 93, 33, 6],

 [97, 92, 59, 87, 86, 49, 47, 11]])>

Chapter 5 advanCed tensorFlow

175

The result is exactly the same as tf.gather_nd method. It can be

seen that tf.boolean_mask method can be used for both one- and

multidimensional samplings.

The preceding three operations are more commonly used, especially

tf.gather and tf.gather_nd. Three additional advanced operations are

added in the following.

5.6.4 tf.where
Through the tf.where(cond, a, b) function, we can read data from the

parameter a or b according to the true and false conditions of the cond

condition. The condition determination rule is as follows:

 {i i i i io a cond True b cond False= 为 为

Among them i is the element index of the tensor. The size of the

returned tensor is consistent with a and b. When the corresponding

position of condi is True, the data is copied from ai to oi. Otherwise, the

data is copied from bi to oi. Consider extracting data from two tensors

A and B of all 1’s and 0’s, where the position of True in中condi extracts

element 1 from the corresponding position of A, otherwise extracts 0 from

the corresponding position of B. The code is as follows:

In [53]:

a = tf.ones([3,3]) # Tensor A

b = tf.zeros([3,3]) # Tensor B

Create condition matrix

cond = tf.constant([[True,False,False],[False,True,False],[True,

True,False]])

tf.where(cond,a,b)

Out[53]:<tf.Tensor: id=384, shape=(3, 3), dtype=float32, numpy=

array([[1., 0., 0.],

Chapter 5 advanCed tensorFlow

176

 [0., 1., 0.],

 [1., 1., 0.]], dtype=float32)>

It can be seen that the positions of 1 in the returned tensor are all from

tensor A, and the positions of 0 in the returned tensor are from tensor B.

When the parameter a=b=None, that is, a and b parameters are not

specified; tf.where returns the index coordinates of all True elements in the

cond tensor. Consider the following cond tensor:

In [54]: cond

Out[54]:<tf.Tensor: id=383, shape=(3, 3), dtype=bool, numpy=

array([[True, False, False],

 [False, True, False],

 [True, True, False]])>

True appears four times in total, and the index at the position of

each True element is [0, 0], [1, 1], [2, 0], and [2, 1] respectively. The index

coordinates of these elements can be obtained directly through the form of

tf.where(cond) as follows:

In [55]:tf.where(cond)

Out[55]:<tf.Tensor: id=387, shape=(4, 2), dtype=int64, numpy=

array([[0, 0],

 [1, 1],

 [2, 0],

 [2, 1]], dtype=int64)>

So what’s the use of this? Consider a scenario where we need to extract

all the positive data and indexes in a tensor. First construct tensor a and

obtain the position masks of all positive numbers through comparison

operations:

In [56]:x = tf.random.normal([3,3]) # Create tensor a

Out[56]:<tf.Tensor: id=403, shape=(3, 3), dtype=float32, numpy=

Chapter 5 advanCed tensorFlow

177

array([[-2.2946844 , 0.6708417 , -0.5222212],

 [-0.6919401 , -1.9418817 , 0.3559235],

 [-0.8005251 , 1.0603906 , -0.68819374]],

dtype=float32)>

By comparison operation, we get the mask of all positive numbers:

In [57]:mask=x>0 # equivalent to tf.math.greater()

mask

Out[57]:<tf.Tensor: id=405, shape=(3, 3), dtype=bool, numpy=

array([[False, True, False],

 [False, False, True],

 [False, True, False]])>

Extract the index coordinates of the True element in the mask tensor

via tf.where:

In [58]:indices=tf.where(mask) # Extract all element

greater than 0

Out[58]:<tf.Tensor: id=407, shape=(3, 2), dtype=int64, numpy=

array([[0, 1],

 [1, 2],

 [2, 1]], dtype=int64)>

After getting the index, we can restore all positive elements through

tf.gather_nd:

In [59]:tf.gather_nd(x,indices) # Extract all positive elements

Out[59]:<tf.Tensor: id=410, shape=(3,), dtype=float32,

numpy=array([0.6708417, 0.3559235, 1.0603906], dtype=float32)>

Chapter 5 advanCed tensorFlow

178

In fact, after we get the mask, we can also get all the positive elements

directly through tf.boolean_mask:

In [60]:tf.boolean_mask(x,mask) # Extract all positive elements

Out[60]:<tf.Tensor: id=439, shape=(3,), dtype=float32,

numpy=array([0.6708417, 0.3559235, 1.0603906], dtype=float32)>

Through the preceding series of comparisons, we can intuitively feel

that this function has great practical applications and also get a deep

understanding of their nature to be able to achieve our purpose in a more

flexible, simple, and efficient way.

5.6.5 tf.scatter_nd
The tf.scatter_nd(indices, updates, shape) function can efficiently

refresh part of the tensor data, but this function can only perform refresh

operations on all 0 tensors, so it may be necessary to combine other

operations to implement the data refresh function for non-zero tensors.

Figure 5-3 shows the refresh calculation principle of the one-

dimensional all-zero tensor. The shape of the whiteboard is represented

by the shape parameter, the index number of the data to be refreshed is

represented by indices, and updates parameter contains the new data. The

tf.scatter_nd(indices, updates, shape) function writes the new data to the

all-zero tensor according to the index position given by indices and returns

the updated result tensor.

new data:updates whiteboard:shapes output

indices

Figure 5-3. scatter_nd function for refreshing data

Chapter 5 advanCed tensorFlow

179

We implement a refresh example of the tensor in Figure 5-3 as follows:

In [61]: # Create indices for refreshing data

indices = tf.constant([[4], [3], [1], [7]])

Create data for filling the indices

updates = tf.constant([4.4, 3.3, 1.1, 7.7])

Refresh data for all 0 vector of length 8

tf.scatter_nd(indices, updates, [8])

Out[61]:<tf.Tensor: id=467, shape=(8,), dtype=float32,

numpy=array([0. , 1.1, 0. , 3.3, 4.4, 0. , 0. , 7.7],

dtype=float32)>

It can be seen that on the all-zero tensor of length 8, the data of the

corresponding positions are filled in with values from updates.

Consider an example of a three-dimensional tensor. As shown in

Figure 5-4, the shape of the all-zero tensor is a feature map with four

channels in total, and each channel has a size 4 × 4. New data updates have

a shape [2, 4, 4], which needs to be written in indices [1, 3].

new data:updates whiteboard:shapes output

indices

Figure 5-4. 3D tensor data refreshing

We write the new feature map into the existing tensor as follows:

In [62]:

indices = tf.constant([[1],[3]])

updates = tf.constant([

 [[5,5,5,5],[6,6,6,6],[7,7,7,7],[8,8,8,8]],

 [[1,1,1,1],[2,2,2,2],[3,3,3,3],[4,4,4,4]]

Chapter 5 advanCed tensorFlow

180

])

tf.scatter_nd(indices,updates,[4,4,4])

Out[62]:<tf.Tensor: id=477, shape=(4, 4, 4),

dtype=int32, numpy=

array([[[0, 0, 0, 0],

 [0, 0, 0, 0],

 [0, 0, 0, 0],

 [0, 0, 0, 0]],

 [[5, 5, 5, 5], # New data 1

 [6, 6, 6, 6],

 [7, 7, 7, 7],

 [8, 8, 8, 8]],

 [[0, 0, 0, 0],

 [0, 0, 0, 0],

 [0, 0, 0, 0],

 [0, 0, 0, 0]],

 [[1, 1, 1, 1], # New data 2

 [2, 2, 2, 2],

 [3, 3, 3, 3],

 [4, 4, 4, 4]]])>

It can be seen that the data is refreshed onto the second and fourth

channel feature maps.

5.6.6 tf.meshgrid
The tf.meshgrid function can easily generate the coordinates of the

sampling points of the two-dimensional grid, which is convenient for

applications such as visualization. Consider the Sinc function with two

independent variables x and y as:

z

sin sin x y

x y
�

�� �
�

2 2

2 2

Chapter 5 advanCed tensorFlow

181

If we need to draw a 3D surface of the Sinc function in the interval

x ∈ [−8, 8], y ∈ [−8, 8], as shown in Figure 5-5, we first need to generate the

grid point coordinate set of the x and y axes, so that the output value of the

function at each position can be calculated by the expression of the Sinc

function z. We can generate 10,000 coordinate sampling points by:

points = []

for x in range(-8,8,100): # Loop to generate 100 sampling point

for x-axis

for y in range(-8,8,100): # Loop to generate 100 sampling point

for y-axis

 z = sinc(x,y)

 points.append([x,y,z])

Obviously, this serial sampling method is extremely inefficient. Is there

a simple and efficient way to generate grid coordinates? The answer is the

tf.meshgrid function.

By sampling 100 data points on the x-axis and y-axis, respectively, the

tf.meshgrid(x, y) can be used to generate tensor data of these 10,000 data

points and save them in a tensor of shape [100,100,2]. For the convenience

of calculation, tf.meshgrid will return two tensors after cutting in the

Figure 5-5. Sinc function

Chapter 5 advanCed tensorFlow

182

axis = two-dimensional, where tensor A contains the x-coordinates of all

points and tensor B contains the y-coordinates of all points.

In [63]:

x = tf.linspace(-8.,8,100) # x-axis

y = tf.linspace(-8.,8,100) # y-axis

x,y = tf.meshgrid(x,y)

x.shape,y.shape

Out[63]: (TensorShape([100, 100]), TensorShape([100, 100]))

Using the generated grid point coordinate tensors, the Sinc function is

implemented in TensorFlow as follows:

z = tf.sqrt(x**2+y**2)

z = tf.sin(z)/z # sinc function

The matplotlib library can be used to draw the 3D surface of the

function as shown in Figure 5-5.

import matplotlib

from matplotlib import pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()

ax = Axes3D(fig)

Plot Sinc function

ax.contour3D(x.numpy(), y.numpy(), z.numpy(), 50)

plt.show()

5.7 Load Classic Datasets
So far, we have learned the common tensor operations and are ready

to implement most of the deep networks. Finally, we will complete this

chapter with a classification network model implemented in a tensor

Chapter 5 advanCed tensorFlow

183

format. Before that, we first formally introduce how to use the tools

provided by TensorFlow to load datasets conveniently for commonly used

classic datasets. For loading custom datasets, we will introduce in the

subsequent chapters.

In TensorFlow, the keras.datasets module provides automatic

download, management, loading, and conversion functions of commonly

used classic datasets, as well as the corresponding Dataset objects, which

facilitates multi-threading, preprocessing, shuffling, and batch-training.

Some commonly used classic datasets:

• Boston Housing: the Boston housing price

trend dataset, used for training and testing of

regression models.

• CIFAR10/100: a real picture dataset for picture

classification tasks.

• MNIST/Fashion_MNIST: a handwritten digital picture

dataset, used for picture classification tasks.

• IMDB: sentiment classification task dataset, for text

classification tasks.

These datasets are used very frequently in machine learning or deep

learning. For the newly proposed algorithms, it is generally preferred to

test on classic datasets, and then try to migrate to larger and more complex

data sets.

We can use the datasets.xxx.load_data() function to automatically

load classic datasets, where xxx represents the specific dataset name, such

as “CIFAR10” and “MNIST”. TensorFlow will cache the data in the .keras/

datasets folder in the user directory by default, as shown in Figure 5-6.

Users do not need to care about how the dataset is saved. If the current

dataset is not in the cache, it will be downloaded, decompressed, and

loaded automatically from the network. If it is already in the cache, the

Chapter 5 advanCed tensorFlow

184

load is automatically completed. For example, to automatically load the

MNIST dataset:

In [66]:

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import datasets # Load dataset

loading module

Load MNIST dataset

(x, y), (x_test, y_test) = datasets.mnist.load_data()

print('x:', x.shape, 'y:', y.shape, 'x test:', x_test.shape, 'y

test:', y_test)

Out [66]:

x: (60000, 28, 28) y: (60000,) x test: (10000, 28, 28) y test:

[7 2 1 ... 4 5 6]

The load_data() function will return data in the corresponding format.

For the image datasets MNIST and CIFAR10, two tuples will be returned.

The first tuple holds the training data x and y objects; the second tuple is

the test data x_test and y_test objects. All data is stored in a Numpy array

container.

Figure 5-6. TensorFlow classic dataset saving directory

Chapter 5 advanCed tensorFlow

185

After data is loaded into the memory, it needs to be converted into

a Dataset object in order to take advantage of the various convenient

functions provided by TensorFlow. Dataset.from_tensor_slices can be used

to convert the training data image x and label y into Dataset objects:

Convert to Dataset objects

train_db = tf.data.Dataset.from_tensor_slices((x, y))

After converting data into a Dataset object, we generally need to add

a series of standard processing steps for the dataset, such as random

shuffling, preprocessing, and batch loading.

5.7.1 Shuffling
Using the Dataset.shuffle(buffer_size) function, we can randomly shuffle

the Dataset objects to prevent the data from being generated in a fixed

order during each training, so that the model will not “remember” the

label information. The code is implemented as follows:

train_db = train_db.shuffle(10000)

Here the buffer_size parameter specifies the size of the buffer pool,

which is generally set to a larger constant. Calling these utility functions

provided by the Dataset will return a new Dataset object.

 db db step step step= . (). (). .()1 2 3

This method completes all data processing steps in order, which is very

convenient to implement.

5.7.2 Batch Training
In order to take advantage of the parallel computing capabilities of GPUs,

multiple samples are generally calculated simultaneously during the

Chapter 5 advanCed tensorFlow

186

network calculation process. We call this training method batch training,

and the number of samples in one batch is called batch size. In order to

generate batch size samples from the Dataset at one time, the dataset

needs to be set to batch training mode. The implementation is as follows:

train_db = train_db.batch(128) # batch size is 128

Here 128 is the batch size parameter, that is, 128 samples are calculated

at one time in parallel. Batch sis generally set according to the user’s GPU

memory resources. When the GPU memory is insufficient, the batch size

can be appropriately reduced.

5.7.3 Preprocessing
The format of the dataset loaded from keras.datasets cannot meet the

model input requirements in most cases, so it is necessary to implement

the preprocessing step according to the user’s logic. The Dataset object

can call the user-defined preprocessing logic very conveniently by

providing the map(func) utility function, while the preprocessing logic is

implemented in the func function. For example, the following code calls a

function named preprocess to complete the preprocessing of each sample:

Preprocessing is implemented in the preprocess function

train_db = train_db.map(preprocess)

Considering the MNIST handwritten digital picture dataset, image x

loaded from keras.datasets after .batch () operation has shape [b, 28, 28],

where the pixels are represented by integers from 0 to 255 and the label

shape is [b] with digital encoding. The actual neural network input

generally needs to normalize the image data to the interval [0, 1] or [−1, 1]

around 0. At the same time, according to the network settings, the input

view of shape [28, 28] needs to be adjusted to an appropriate format. For

Chapter 5 advanCed tensorFlow

187

label information, we can choose one-hot encoding during preprocessing

or the error calculation.

Here we map the MNIST image data to interval [0, 1] and adjust the

view to [b, 28 ∗ 28]. For label data, we choose to perform one-hot encoding

in the preprocessing function. The preprocess function is implemented as

follows:

def preprocess(x, y): # Customized preprocessing function

 x = tf.cast(x, dtype=tf.float32) / 255.

 x = tf.reshape(x, [-1, 28*28]) # flatten

 y = tf.cast(y, dtype=tf.int32) # convert to int

 y = tf.one_hot(y, depth=10) # one-hot encoding

 return x,y

5.7.4 Epoch Training
For the Dataset object, we can iterate through the following ways:

 for step, (x,y) in enumerate(train_db): # Iterate with step

or

 for x,y in train_db: # Iterate without step

The x and y objects returned each time are batch samples and labels.

When one iteration is completed for all samples of train_db, the for loop

terminates. Completing a batch of data training is called a Step, and

completing an iteration of the entire training set through multiple steps

is called an Epoch. In training, it is usually necessary to iterate multiple

Epochs on the data set to obtain better training results. For example, fixed

training of 20 Epoch is implemented as follows:

 for epoch in range(20): # Epoch number

 for step, (x,y) in enumerate(train_db): # Iteration

step number

 # training...

Chapter 5 advanCed tensorFlow

188

In addition, we can also set a Dataset object so that the dataset will

traverse multiple times before exiting such as:

train_db = train_db.repeat(20) # Dataset iteration 20 times

The preceding code makes the for x, y in train_db iterates 20 Epochs

before exiting. No matter which of these methods is used, the same effect

can be achieved. Since the previous chapter has completed the actual

calculation of forward calculation, we skip it here.

5.8 Hands-On MNIST Dataset
We have already introduced and implemented the forward propagation

and dataset. Now let’s finish the remaining classification task logic. In the

training process, the error data can be effectively monitored by printing

out after several steps. The code is as follows:

 # Print training error every 100 steps

 if step % 100 == 0:

 print(step, 'loss:', float(loss))

Since loss is a tensor type of TensorFlow, it can be converted to a

standard Python floating-point number through the float() function.

After several Steps or several Epoch trainings, a test (verification) can be

performed to obtain the current performance of the model, for example:

 if step % 500 == 0: # Do a test every 500 steps

 # evaluate/test

Now let’s use the tensor operation functions to complete the actual

calculation of accuracy. First consider a batch sample x. The network’s

predicted value can be obtained through forward calculation as follows:

 for x, y in test_db: # Iterate through test dataset

 h1 = x @ w1 + b1 # 1st layer

 h1 = tf.nn.relu(h1) # Activation function

Chapter 5 advanCed tensorFlow

189

 h2 = h1 @ w2 + b2 # 2nd layer

 h2 = tf.nn.relu(h2) # Activation function

 out = h2 @ w3 + b3 # Output layer

The shape of the predicted value is [b, 10]. It represents the probability

that the sample belongs to each category. We select the index number

where the maximum probability occurs according to the tf.argmax

function, which is the most likely category number of the sample:

 # Select the max probability category

 pred = tf.argmax(out, axis=1)

Since y has already been one-hot encoded in preprocessing, we can get

the category number for y similarly:

 y = tf.argmax(y, axis=1)

With tf.equal, we can compare whether the two results are equal:

 correct = tf.equal(pred, y)

Sum the number of all True (converted to 1) element in the result,

which is the correct number of predictions:

 total_correct += tf.reduce_sum(tf.cast(correct,

dtype=tf.int32)).numpy()

Divide the correct number of predictions by the total number of tests

to get the accuracy, and print it out as follows:

 # Calcualte accuracy

 print(step, 'Evaluate Acc:', total_correct/total)

After training a simple three-layer neural network with 20 Epochs, we

achieved an accuracy of 87.25% on the test set. If we use complex neural

network models and fine-tune network hyperparameters, we can get better

Chapter 5 advanCed tensorFlow

190

accuracy. The training error curve is shown in Figure 5-7, and the test

accuracy curve is shown in Figure 5-8.

Figure 5-7. MNIST training loss

Figure 5-8. MNIST testing accuracy

Chapter 5 advanCed tensorFlow

191© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_6

CHAPTER 6

Neural Networks
It is difficult to imagine which big industry will not be changed
by artificial intelligence. Artificial intelligence will play a
major role in these industries, and this trend is very obvious.

—Andrew Ng

The ultimate goal of machine learning is to find a good set of parameters,

so that the model can learn the mapping relationship fθ : x → y, x, y ∈ Dtrain

from the training set and use the trained relationship to predict new

samples. Neural networks belong to a branch of research in machine

learning. It specifically refers to a model that uses multiple neurons to

parameterize the mapping function fθ.

6.1 Perceptron
In 1943, American neuroscientist Warren Sturgis McCulloch and

mathematical logician Walter Pitts were inspired by the structure of

biological neurons and proposed a mathematical model of artificial

neurons, which was further developed and proposed by American

neurophysicist Frank Rosenblatt, which is known as perceptron model. In

1957, Frank Rosenblatt implemented the perceptron model on an IBM-704

computer. This model can complete some simple visual classification

tasks, such as distinguishing triangles, circles, and rectangles [1].

https://doi.org/10.1007/978-1-4842-7915-1_6#DOI

192

The structure of the perceptron model is shown in Figure 6-1. It accepts

a one-dimensional vector of length n, x = [x1, x2, …, xn], and each input node is

aggregated as a variable through a connection of weights wi, iϵ[1, n], namely:

 z w x w x w x bn n� � � � �1 1 2 2

Among them, b is called the bias of the perceptron, and the one-

dimensional vector w = [w1, w2, …, wn] is called the weight of the

perceptron, while z is called the net activation value of the perceptron.

1

2

3

∑

1

2

3

Input Output

⋮

Figure 6-1. Perception model

The preceding formula can be written in vector form:

 z w x bT� �

Perceptron is a linear model and cannot deal with linear inseparability.

The activation value is obtained by adding the activation function after the

linear model:

a z w x bT� � � � �� �� �

The activation function can be a step function. As shown in Figure 6-2,

the output of the step function is only 0/1. When z < 0, 0 was then output,

representing category 0; when z ≥ 0, 1 was the output, representing

category 1, namely:

 a w x b w x bT T� � � � �{1 0 0 0

Chapter 6 Neural Networks

193

It can also be a sign function as shown in Figure 6-3, and the

expression is:

 a w x b w x bT T� � � � � �{1 0 1 0

Figure 6-3. Sign function

After adding the activation function, the perceptron model can be used

to complete the binary classification task. The step and the sign functions

are discontinuous at z = 0, so the gradient descent algorithm cannot be

used to optimize the parameters.

In order to enable the perceptron model to automatically learn from

the data, Frank Rosenblatt proposed a perceptron learning algorithm, as

shown in Algorithm 1.

Figure 6-2. Step function

Chapter 6 Neural Networks

194

algorithm 1: perceptron training algorithm

Initialize w = 0,b = 0
repeat

 randomly select a sample (xi, yi) from training set

 Calculate the output a = sign (wTxi + b)

 If a ≠ yi:
 w′ ← w + η ∙ yi ∙ xi
 b′ ← b + η ∙ yi
until you reach the required number of steps

Output:parameters w and b

Here η is learning rate.

Although the perceptron model has been put forward with good

development potential, Marvin Lee Minsky and Seymour Papert proved

that the linear model represented by the perceptron cannot solve the linear

inseparability problem (XOR) in the “Perceptrons” book in 1969, which

directly led to the emergence of neural network research to a bottom at the

time. Although the perceptron model cannot solve the linear inseparable

problem, the book also mentions that it can be solved by nesting multiple

layers of neural networks.

6.2 Fully Connected Layer
The underivable nature of the perceptron model severely constrains its

potential, making it only capable of solving extremely simple tasks. In fact,

modern deep learning models have a parameter scale of millions or even

hundreds of millions, but the core structure is not much different from

the perceptron model. On the basis of the perceptron model, they replace

the discontinuous step activation function with other smooth continuous

derivable activation functions and stack multiple network layers to

enhance the expressive power of the network.

Chapter 6 Neural Networks

195

In this section, we replace the activation function of the perceptron

model and stack multiple neurons in parallel to achieve a multi-input and

multi-output network layer structure. As shown in Figure 6-4, two neurons

are stacked in parallel, that is, two perceptrons with replaced activation

functions, forming a network layer of three input nodes and two output

nodes. The first output node is:

 o w x w x w x b1 11 1 21 2 31 3 1� � � �� �� � ��

The output of the second node is:

 o w x w x w x b2 12 1 22 2 32 3 2� � � �� �� � ��

Putting them together, the output vector is o = [o1, o2]. The entire

network layer can be expressed by the matrix relationship:

 o o x x x w w w w w w b b1 2 1 2 3 11 12 21 22 31 32 1 2� � � � � � � � � �@ (6-1)

That is:

 O X W b� �@

The shape of the input matrix X is defined as [b, din], while the number

of samples is b and the number of input nodes is din. The shape of the

weight matrix W is defined as [din, dout], while the number of output nodes

is dout, and the shape of the offset vector b is [dout].

Considering two samples, x x x x1
1
1

2
1

3
1� � � � � � � �� �

�
�
�, , , x x x x2

1
2

2
2

3
2� � � � � � � �� �

�
�
�, , , the

preceding equation can also be written as:

o o o o x x x x x x1
1

2
1

1
2

2
2

1
1

2
1

3
1

1
2

2
2

3
2� � � � � � � � � � � � � � � � � � � ��

�
�
� �

�
�

�
�� � �

�� �
@ w w w w w w

b b

11 12 21 22 31 32

1 2

Chapter 6 Neural Networks

196

Among it, the output matrix O contains the output of b samples, and

the shape is [b, dout]. Since each output node is connected to all input

nodes, this network layer is called a fully connected layer, or a dense layer,

with W as weight matrix and b is the bias vector.

6.2.1 Tensor Mode Implementation
In TensorFlow, to achieve a fully connected layer, you only need to

define the weight tensor W and bias tensor b and use the batch matrix

multiplication function tf.matmul() provided by TensorFlow to complete

the calculation of the network layer. For example, for an input matrix X

with two samples and input feature length of each sample din = 784 and

the number of output nodes dout = 256, the shape of the weight matrix W

is [784,256]. The shape of the bias vector b is [256]. After the addition, the

shape of the output layer is [2,256], that is, the features of the two samples

with each feature length as 256. The code is implemented as follows:

In [1]:

x = tf.random.normal([2,784])

w1 = tf.Variable(tf.random.truncated_normal([784, 256],

stddev=0.1))

b1 = tf.Variable(tf.zeros([256]))

o1 = tf.matmul(x,w1) + b1 # linear transformation

o1 = tf.nn.relu(o1) # activation function

1

2

∑

∑

11

21

31

12

22

32

1

2

1

Figure 6-4. Fully connected layer

Chapter 6 Neural Networks

197

Out[1]:

 <tf.Tensor: id=31, shape=(2, 256), dtype=float32, numpy=

 array([[1.51279330e+00, 2.36286330e+00, 8.16453278e-01,

 1.80338228e+00, 4.58602428e+00, 2.54454136e+00,...

In fact, we have used the preceding code many times to implement

network layers.

6.2.2 Layer Implementation
The fully connected layer is essentially matrix multiplication and addition

operations. But as one of the most commonly used network layers,

TensorFlow has a more convenient implementation method: layers.

Dense(units, activation). Through the layer.Dense class, you only need

to specify the number of output nodes (units) and activation function

type (activation). It should be noted that the number of input nodes will

be determined according to the input shape during the first operation,

and the weight tensor and bias tensor will be automatically created

and initialized based on the number of input and output nodes. The

weight tensor and bias tensor will not be created immediately due to

lazy evaluation. The build function or direct calculation will be required

to complete the creation of the network parameters. The activation

parameter specifies the activation function of the current layer, which can

be a common activation function or a custom activation function, or be

specified as none, that is, no activation function.

In [2]:

x = tf.random.normal([4,28*28])

from tensorflow.keras import layers

Create fully-connected layer with output nodes and activation

function

fc = layers.Dense(512, activation=tf.nn.relu)

Chapter 6 Neural Networks

198

h1 = fc(x) # calculate and return a new tensor

Out[2]:

<tf.Tensor: id=72, shape=(4, 512), dtype=float32, numpy=

array([[0.63339347, 0.21663809, 0. , ..., 1.7361937 ,

0.39962345, 2.4346168],...

We can create a fully connected layer fc with a single line of code in the

preceding code with the number of output nodes as 512 and the number of

input nodes automatically obtained during calculation. The code creates

internal weight tensor and bias tensor automatically as well. We can obtain

the weight and bias tensor object through the class member kernel and

bias within the class:

In [3]: fc.kernel # Get the weight tensor

Out[3]:

<tf.Variable 'dense_1/kernel:0' shape=(784, 512)

dtype=float32, numpy=

array([[-0.04067389, 0.05240148, 0.03931375, ...,

-0.01595572, -0.01075954, -0.06222073],

In [4]: fc.bias # Get the bias tensor

Out[4]:

<tf.Variable 'dense_1/bias:0' shape=(512,)

dtype=float32, numpy=

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0.,...])

It can be seen that the shape of the weight and the bias tensor are in

line with our understanding. When optimizing parameters, we need to

obtain a list of all tensor parameters to be optimized in the network, which

can be done through the class trainable_variables.

Chapter 6 Neural Networks

199

In [5]: fc.trainable_variables

Out[5]: # Return all parameters to be optimized

 [<tf.Variable 'dense_1/kernel:0' shape=(784, 512)

dtype=float32,...,

 <tf.Variable 'dense_1/bias:0' shape=(512,) dtype=float32,

numpy=...]

In fact, the network layer saves not only the list of trainable_variables

to be optimized but also tensors that do not participate in gradient

optimization. For example, the batch normalization layer can return all

parameter lists that do not need optimization through the non_trainable_

variables member. If you want to get a list of all parameters, you can get all

internal tensors through the variables member of the class, for example:

In [6]: fc.variables # Get all parameters

Out[6]:

[<tf.Variable 'dense_1/kernel:0' shape=(784, 512)

dtype=float32,...,

 <tf.Variable 'dense_1/bias:0' shape=(512,) dtype=float32,

numpy=...]

For fully connected layers, all internal tensors participate in gradient

optimization, so the list returned by variables is the same as trainable_

variables.

When using the network layer class object for forward calculation,

you only need to call the __call__ method of the class, that is, write it in

the fc(x) mode, it will automatically call the __call__ method. This setting

is automatically completed by the TensorFlow framework. For a fully

connected layer class, the operation logic implemented in the call method

is very simple.

Chapter 6 Neural Networks

200

6.3 Neural Network
By stacking the fully connected layers in Figure 6-4 and ensuring that the

number of output nodes of the previous layer matches the number of

input nodes of the current layer, a network of any number of layers can be

created, which is known as neural networks. As shown in Figure 6-5, by

stacking four fully connected layers, a neural network with four layers can

be obtained. Since each layer is a fully connected layer, it is called a fully

connected network. Among them, the first to third fully connected layers

are called hidden layers, and the output of the last fully connected layer

is called the output layer of the network. The number of output nodes of

the hidden layers is [256,128,64], respectively, and the nodes of the output

layer is 10.

When designing a fully connected network, the hyperparameters such

as the configuration of the network can be set freely according to the rule

of thumb, and only a few constraints need to be followed. For example,

the number of input nodes in the first hidden layer needs to match the

actual feature length of the data. The number of input layers in each layer

matches the number of output nodes in the previous layer. The activation

function and number of nodes in the output layer need to be set according

to the specific settings of the required output. In general, the design of

the neural network models has a greater degree of freedom. As shown

in Figure 6-5, the number of output nodes in each layer does not have to

be [256,128,64,10] and can be freely matched, such as [256,256,64,10] or

[512,64,32,10]. As for which set of hyperparameters is optimal, it requires a

lot of field experience and experimentation.

Chapter 6 Neural Networks

201

6.3.1 Tensor Mode Implementation
For a multi-layer neural network such as Figure 6-5, the weight matrix and

bias vector of each layer need to be defined separately. The parameters of

each layer can only be used for the corresponding layer and should not be

mixed. The network model in Figure 6-5 is implemented as follows:

Hidden layer 1

w1 = tf.Variable(tf.random.truncated_normal([784, 256],

stddev=0.1))

b1 = tf.Variable(tf.zeros([256]))

Hidden layer 2

w2 = tf.Variable(tf.random.truncated_normal([256, 128],

stddev=0.1))

b2 = tf.Variable(tf.zeros([128]))

Hidden layer 3

w3 = tf.Variable(tf.random.truncated_normal([128, 64],

stddev=0.1))

b3 = tf.Variable(tf.zeros([64]))

Input: Hidden layer 1: Hidden layer 2: Hidden layer 3: Output layer:

Figure 6-5. Four-layer neural network

Chapter 6 Neural Networks

202

Hidden layer 4

w4 = tf.Variable(tf.random.truncated_normal([64, 10],

stddev=0.1))

b4 = tf.Variable(tf.zeros([10]))

When calculating, you only need to use the output of the previous

layer as the input of the current layer, repeat until the last layer, and use the

output of the output layer as the output of the network.

 with tf.GradientTape() as tape:

 # x: [b, 28*28]

 # Hidden layer 1 forward calculation, [b, 28*28]

=> [b, 256]

 h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])

 h1 = tf.nn.relu(h1)

 # Hidden layer 2 forward calculation, [b, 256]

=> [b, 128]

 h2 = h1@w2 + b2

 h2 = tf.nn.relu(h2)

 # Hidden layer 3 forward calculation, [b, 128]

=> [b, 64]

 h3 = h2@w3 + b3

 h3 = tf.nn.relu(h3)

 # Output layer forward calculation, [b, 64]

=> [b, 10]

 h4 = h3@w4 + b4

Whether the activation function needs to be added in the last layer

usually depends on the specific task.

When using the TensorFlow automatic derivation function to calculate

the gradient, the forward calculation process needs to be placed in the

tf.GradientTape() environment, so that the gradient() method of the

GradientTape object can be used to automatically solve the gradient of the

parameter, and the parameter is updated by the optimizers object.

Chapter 6 Neural Networks

203

6.3.2 Layer Mode Implementation
For the conventional network layer, it is more concise and efficient to

implement through the layer method. First, create new network layer

classes and specify the activation function types of each layer:

Import layers modules

from tensorflow.keras import layers,Sequential

fc1 = layers.Dense(256, activation=tf.nn.relu)

Hidden layer 1

fc2 = layers.Dense(128, activation=tf.nn.relu)

Hidden layer 2

fc3 = layers.Dense(64, activation=tf.nn.relu) # Hidden layer 3

fc4 = layers.Dense(10, activation=None) # Output layer

x = tf.random.normal([4,28*28])

h1 = fc1(x) # Get output of hidden layer 1

h2 = fc2(h1) # Get output of hidden layer 2

h3 = fc3(h2) # Get output of hidden layer 3

h4 = fc4(h3) # Get the network output

For such a network where data forwards in turn, it can also be

encapsulated into a network class object through the sequential container,

and the forward calculation function of the class can be called once to

complete the forward calculation of all layers. It is more convenient to use

and is implemented as follows :

from tensorflow.keras import layers,Sequential

Encapsulate a neural network through Sequential container

model = Sequential([

 layers.Dense(256, activation=tf.nn.relu) , # Hidden layer 1

 layers.Dense(128, activation=tf.nn.relu) , # Hidden layer 2

Chapter 6 Neural Networks

204

 layers.Dense(64, activation=tf.nn.relu) , # Hidden layer 3

 layers.Dense(10, activation=None) , # Output layer

])

In forward calculation, you only need to call the large network objects

once to complete the sequential calculation of all layers:

out = model(x)

6.3.3 Optimization
We call the calculation process of the neural network from input to output

as forward propagation. The forward propagation process of the neural

network is also the process of the flow of the data tensor from the first layer

to the output layer. That is, from the input data, tensors are passed through

each hidden layer, until the output is obtained and the error is calculated,

which is also the origin of the TensorFlow framework name.

The final step of forward propagation is to complete the error

calculation:

L g f x y� � �� �� ,

In the preceding formula, fθ(.) represents a neural network model

with parameters θ. g(.) called an error function, used to describe the gap

between the predicted value of the current network fθ(x) and the real label

y, such as the commonly used mean square error function. L is called

the error or loss of the network, which is generally a scalar. We hope

to minimize the training error L by learning a set of parameters on the

training set Dtrain:

Chapter 6 Neural Networks

205

The preceding minimization problem generally uses the backward

propagation algorithm to solve and uses the gradient descent algorithm to

iteratively update the parameters:

 � � � ��� � � � L

where η is the learning rate.

From another perspective to understand the neural network, it

completes the function of feature dimension transformation, such as the

four-layer MNIST handwritten digital image recognition fully connected

network, which in turn completes the feature dimensionality reduction

process of 784 → 256 → 128 → 64 → 10. The original features usually

have higher dimensions and contain many low-level features and useless

information. Through the layer-by-layer feature transformation, higher

dimensions are reduced to lower dimensions where high-level abstract

feature information highly correlated to the task is generally generated and

specific task can be completed through simple logical determination of

these features, such as the classification of pictures.

The amount of network parameters is an important indicator to

measure the scale of the network. So how to calculate the amount of

parameters of the fully connected layer? Consider a network layer with

weight matrix W, bias vector b, input feature length din, and output feature

length dout. The number of parameters for W is din ∙ dout. Adding the bias

parameter, the total number of parameter is din ∙ dout + dout. For a multilayer

fully connected neural network, for example, 784 → 256 → 128 → 64 → 10,

the expression of the total parameter amount is:

256 784 256 128 256 128 64 128 64 10 64 10 242762� � � � � � � � � � � �

The fully connected layer is the most basic type of neural network. It

is very important for the research of subsequent neural network models,

such as convolutional neural networks and recurrent neural networks.

Through learning other network types, we will find that they, more or

Chapter 6 Neural Networks

206

less, originate from the idea of a fully connected layer network. Because

Geoffrey Hinton, Yoshua Bengio, and Yann LeCun have insisted on

research in the frontline of neural networks, they have made outstanding

contributions to the development of artificial intelligence and won the

Turing Award in 2018 (Figure 6-6, from the right are Yann LeCun, Geoffrey

Hinton, and Yoshua Bengio).

Figure 6-6. 2018 Turing Award Winners1

6.4 Activation function
In the following, we introduce common activation functions in neural

networks. Unlike step and symbolic functions, these functions are smooth

and derivable and are suitable for gradient descent algorithms.

6.4.1 Sigmoid
The Sigmoid function is also called the logistic function, which is

defined as:

Sigmoid x

e x� �
� �

1

1

1 Image source: www.theverge.com/2019/3/27/18280665/ai-godfathers-
turing-award-2018-yoshua-bengio-geoffrey-hinton-yann-lecun

Chapter 6 Neural Networks

207

One of its excellent features is the ability to “compress” the input x ∈ R

to an interval x ∈ (0, 1). The value of this interval is commonly used in

machine learning to express the following meanings:

• Probability distribution The output of the interval

(0, 1) matches the distribution range of probability.

The output can be translated into a probability by the

Sigmoid function

• Signal strength Usually, 0~1 can be understood as

the strength of a certain signal, such as the color

intensity of the pixel: 1 represents the strongest color

of the current channel, and 0 represents the current

channel without color. It can also be used to represent

the current Gate status, that is, 1 means open and 0

indicates closed.

The Sigmoid function is continuously derivable, as shown in

Figure 6-7. The gradient descent algorithm can be directly used to

optimize the network parameters.

Figure 6-7. Sigmoid function

Chapter 6 Neural Networks

208

In TensorFlow, the Sigmoid function can be implemented through

tf.nn.sigmoid function as follows:

In [7]:x = tf.linspace(-6.,6.,10)

x # Create input vector -6~6

Out[7]:

<tf.Tensor: id=5, shape=(10,), dtype=float32, numpy=

array([-6. , -4.6666665, -3.3333333, -2. ,

-0.6666665,

 0.666667 , 2. , 3.333334 , 4.666667 ,

 6.]...

In [8]:tf.nn.sigmoid(x) # Pass x to Sigmoid function

Out[8]:

<tf.Tensor: id=7, shape=(10,), dtype=float32, numpy=

array([0.00247264, 0.00931597, 0.03444517, 0.11920291,

0.33924365, 0.6607564 , 0.8807971 , 0.96555483, 0.99068403,

0.9975274],

 dtype=float32)>

As you can see, the range [−6, 6] of element values in the vector is

mapped to the interval (0, 1).

6.4.2 ReLU
Before the ReLU (rectified linear unit), activation function was proposed;

the Sigmoid function was usually the first choice for activation functions

of neural networks. However, when the input value of Sigmoid function

is too large or too small, the gradient value is close to 0, which is known

as the gradient dispersion phenomenon. When this phenomenon

occurs, the network parameters will not be updated for a long time,

which leads to the phenomenon that the training does not converge.

The gradient dispersion phenomenon is more likely to occur in deeper

Chapter 6 Neural Networks

209

network models. The eight-layer AlexNet model proposed in 2012 uses

an activation function called ReLU, which makes the number of network

layers reach 8. Since then, the ReLU function has become more and more

widely used. The ReLU function is defined as:

 ReLU x x� � � �max 0,

The function curve is shown in Figure 6-8. It can be seen that ReLU

suppresses all values less than 0 to 0; for positive numbers, it outputs those

directly. This unilateral suppression characteristic comes from biology. In

2001, neuroscientists Dayan and Abott simulated a more accurate model

of brain neuron activation, as shown in Figure 6-9. It has characteristics

such as unilateral suppression and relatively loose excitation boundaries.

The design of the ReLU function is very similar to it [2].

Figure 6-8. ReLU function

Figure 6-9. Human brain activation function [2]

Chapter 6 Neural Networks

210

In TensorFlow, the ReLU function can be implemented through tf.nn.

relu function as follows:

In [9]:tf.nn.relu(x)

Out[9]:

<tf.Tensor: id=11, shape=(10,), dtype=float32, numpy=

array([0. , 0. , 0. , 0. , 0. ,

0.666667, 2. , 3.333334, 4.666667, 6.],

dtype=float32)>

It can be seen that after the ReLU activation function, the negative

numbers are all suppressed to 0, and the positive numbers are retained.

In addition to using the functional interface tf.nn.relu to implement

the ReLU function, the ReLU function can also be added to the network

as a network layer like the dense layer. The corresponding class is layers.

ReLU(). Generally speaking, the activation function class is not the

main network computing layer and does not count into the number of

network layers.

The design of the ReLU function is derived from neuroscience. The

calculation of function values and derivative values is very simple. At the

same time, it has excellent gradient characteristics. It has been verified to

be very effective in a large number of deep learning applications.

6.4.3 LeakyReLU
The derivative of the ReLU function is always 0 when x < 0, which may

also cause gradient dispersion. To overcome this problem, the LeakyReLU

function (Figure 6-10) is proposed.

 LeakyReLU x x px x { � �0 0

Chapter 6 Neural Networks

211

where p is a small value set by users, such as 0.02. When p = 0, the

LeakyReLU function degenerates to the ReLU function. When p ≠ 0,

a small derivative value can be obtained at x < 0, thereby avoiding the

phenomenon of gradient dispersion.

Figure 6-10. LeakyReLU function

In TensorFlow, LeakyReLU function can be implemented through

tf.nn.leaky_relu as follows:

In [10]:tf.nn.leaky_relu(x, alpha=0.1)

Out[10]:

<tf.Tensor: id=13, shape=(10,), dtype=float32, numpy=

array([-0.6 , -0.46666667, -0.33333334, -0.2 ,

-0.06666666,

 0.666667 , 2. , 3.333334 , 4.666667 ,

6.],

 dtype=float32)>

The alpha parameter represents p. The corresponding class of tf.nn.

leaky_relu is layers.LeakyReLU. You can create a LeakyReLU network layer

through LeakyReLU(alpha) and set the parameter p. Like the Dense layer,

the LeakyReLU layer can be placed in a suitable position on the network.

Chapter 6 Neural Networks

212

6.4.4 Tanh
The Tanh function can “compress” the input x ∈ R to an interval (−1, 1),

defined as:

tanh tanh x
e e

e e

x x

x x
� � �

�� �
�� �

�

�

 � � � � �2 2 1sigmoid x

It can be seen that the Tanh activation function can be realized after

zooming and translated by the Sigmoid function, as shown in Figure 6-11.

Figure 6-11. Tanh function

In Tensorflow, the Tanh function can be implemented using tf.nn.tanh

as follows:

In [11]:tf.nn.tanh(x)

Out[11]:

<tf.Tensor: id=15, shape=(10,), dtype=float32, numpy=

array([-0.9999877 , -0.99982315, -0.997458 , -0.9640276 ,

-0.58278286, 0.5827831 , 0.9640276 , 0.997458 , 0.99982315,

0.9999877],

 dtype=float32)>

Chapter 6 Neural Networks

213

You can see that the range of vector element values is mapped to

(−1, 1).

6.5 Design of Output Layer
Let's discuss the design of the last layer of network in particular. In

addition to all hidden layers, it completes the functions of dimensional

transformation and feature extraction, and it is also used as an output

layer. It is necessary to decide whether to use the activation function and

what type of activation function to use according to the specific tasks.

We will classify the discussions based on the range of output values.

Common types of output include:

• oi ∈ Rd The output belongs to the entire real number

space, or a certain part of real number space, such as

function value trend prediction and age prediction

problems.

• oi ∈ [0, 1] The output value falls in the interval [0, 1],

such as image generation, and the pixel value of the

image is generally expressed by values in interval [0, 1]

or the probability of the binary classification problem,

such as the probability of the tail or face of a coin.

• oi ∈ [0, 1], ∑ioi = 1 The output value falls within the

interval [0, 1], and the sum of all output values is

1. Common problems include multi-classification

problems, such as MNIST handwritten digital picture

recognition, which the sum of the probability that the

picture belongs to ten categories should be 1.

• oi ∈ [−1, 1] output value is between -1 and 1.

Chapter 6 Neural Networks

214

6.5.1 Common Real Number Space
This type of problem is more common. For example, sine function curve,

age prediction, and stock trend prediction all belong to the whole or part

of continuous real number space, and the output layer may not have an

activation function. The calculation of the error is directly based on the

output o of the last layer and the true value y. For example, the mean

square error function is used to measure the distance between the output

value o and the true value y:

 L g o y� � �,

where g represents a specific error calculation function, such as MSE.

6.5.2 [0, 1] Interval
It is also common for output values to belong to interval [0, 1], such

as image generation, and binary classification problems. In machine

learning, image pixel values are generally normalized to intervals [0, 1].

If the values of the output layer are used directly, the pixel value range

will be distributed in the entire real number space. In order to map the

pixel values to the effective real number space [0, 1], a suitable activation

function needs to be added after the output layer. The Sigmoid function is

a good choice here.

Similarly, for binary classification problems, such as the prediction of

the face and tail of coins, the output layer can only be one node which is

the probability of an event A occurring P(x) giving the network input x. If

we use the output scalar o of the network to represent the probability of

the occurrence of positive events, then the probability of the occurrence of

negative events is 1 − o. The network structure is shown in Figure 6-12.

Chapter 6 Neural Networks

215

 P x o� � �

 P x o� � � �1

Probability: (|)

Figure 6-12. Binary classification network with single output node

In this case, you only need to add the Sigmoid function after the value

of the output layer to translate the output into a probability value. For the

binary classification problem, in addition to using a single output node to

represent the probability of the occurrence of event A P(x), you can also

separately predict P(x) and P(x), and satisfy the constraints:

 P x P x� � � � � �1

where A indicates the opposite event of event A. As shown in Figure 6-13,

the output layer of the binary classification network is two nodes. The

output value of the first node represents the probability of the occurrence

of event A P(x), and the output value of the second node represents the

probability of the occurrence of the opposite event P(x). The function

can only compress a single value to the interval (0, 1) and does not

Chapter 6 Neural Networks

216

consider the relationship between the two node values. We hope that in

addition to satisfy oi ∈ [0, 1], they can satisfy the constraint that the sum of

probabilities is 1:

 i
io� �1

This situation is the problem setting to be introduced in the next

section.

(|)

(A|)

Figure 6-13. Binary classification network with two outputs

6.5.3 [0,1] Interval with Sum 1
For cases that the output value oi ∈ [0, 1], and the sum of all output values

is 1, it is the most common problem with multi-classification. As shown

in Figure 6-15, each output node of the output layer represents a category.

The network structure in the figure is used to handle three classification

tasks. The output value distribution of the three nodes represents the

probability that the current sample belongs to category A, B, and C:

P(x), P(B| x), and P(C| x). Because the sample in the multi-classification

problem can only belong to one of the categories, so the sum of the

probabilities of all categories should be 1.

How to implement this constraint logic? This can be achieved by

adding a Softmax function to the output layer. The Softmax function is

defined as:

Chapter 6 Neural Networks

217

Softmax z
e

e
i

z

j

d z

i

out j
� �

��

1

The Softmax function can not only map the output value to the interval

[0, 1] but also satisfy the characteristic that the sum of all output values is

1. As shown in the example in Figure 6-14, the output of the output layer is

[2.0,1.0,0.1]. After going through the Softmax function, the output becomes

[0.7,0.2,0.1]. Each value represents the probability that the current sample

belongs to each category, and the sum of the probability values is 1. The

output of the output layer can be translated into category probabilities

through the Softmax function, which is used very often in classification

problems.

=
e

∑ e

2.0

1.0

0.1

= 0.7

= 0.2

= 0.1

Logits Softmax Probability

Figure 6-14. Softmax function example

(|)

(|)

(|)

+ =1

Figure 6-15. Multi-classification network structure

Chapter 6 Neural Networks

218

In TensorFlow, the Softmax function can be implemented through

tf.nn.softmax as follows:

In [12]: z = tf.constant([2.,1.,0.1])

tf.nn.softmax(z)

Out[12]:

<tf.Tensor: id=19, shape=(3,), dtype=float32,

numpy=array([0.6590012, 0.242433 , 0.0985659], dtype=float32)>

Similar to the dense layer, the Softmax function can also be used as a

network layer class. It is convenient to add the Softmax layer through the

layers.Softmax (axis = -1) class, where the axis parameter specifies the

dimension to be calculated.

In the numerical calculation process of the Softmax function, the

numerical overflow phenomenon is likely to occur due to the large input

value. Similar problem may happen when calculating the cross-entropy.

For the stability of numerical calculation, TensorFlow provides a unified

interface that implements Softmax and cross-entropy loss function at the

same time and also handles the anomalies of numerical instability. It is

generally recommended to use these interface functions. The functional

interface is tf.keras.losses.categorical_crossentropy(y_true, y_pred,

from_logits = False), where y_true represents the one-hot encoded true

label and y_pred represents the predicted value of the network. When

from_logits is set to True, y_pred represents the variable z that has not

went through the Softmax function. When from_logits is set to False,

y_pred is expressed as the output of the Softmax function. For numerical

calculation stability, generally set from_logits to True, so that tf.keras.

losses.categorical_crossentropy will perform Softmax function calculation

internally, and there is no need to explicitly call the Softmax function in the

model explicitly. For example:

Chapter 6 Neural Networks

219

In [13]:

z = tf.random.normal([2,10]) # Create output of the

output layer

y_onehot = tf.constant([1,3]) # Create real label

y_onehot = tf.one_hot(y_onehot, depth=10) # one-hot encoding

The Softmax function is not explicitly used in output

layer, so

from_logits=True. categorical_cross-entropy function will

use Softmax

function first in this case.

loss = keras.losses.categorical_crossentropy(y_onehot,z,from_

logits=True)

loss = tf.reduce_mean(loss) # calculate the loss

loss

Out[13]:

<tf.Tensor: id=210, shape=(), dtype=float32, numpy= 2.4201946>

In addition to the functional interface, you can also use the losses.

CategoricalCrossentropy(from_logits) class method to simultaneously

calculate the Softmax and cross-entropy loss functions. For example:

In [14]:

criteon = keras.losses.CategoricalCrossentropy(from_

logits=True)

loss = criteon(y_onehot,z)

loss

Out[14]:

<tf.Tensor: id=258, shape=(), dtype=float32, numpy= 2.4201946>

Chapter 6 Neural Networks

220

6.5.4 (-1, 1) Interval
If you want the range of output values to be distributed in intervals (−1, 1),

you can simply use the tanh activation function:

In [15]:

x = tf.linspace(-6.,6.,10)

tf.tanh(x)

Out[15]:

<tf.Tensor: id=264, shape=(10,), dtype=float32, numpy=

array([-0.9999877 , -0.99982315, -0.997458 , -0.9640276 ,

-0.58278286, 0.5827831 , 0.9640276 , 0.997458 , 0.99982315,

0.9999877],

 dtype=float32)>

The design of the output layer has a certain flexibility, which can be

designed according to the actual application scenario, and make full use of

the characteristics of the existing activation function.

6.6 Error Calculation
After building the model structure, the next step is to select the appropriate

error function to calculate the error. Common error functions are mean

square error, cross-entropy, KL divergence, and hinge loss. Among them,

the mean square error function and cross-entropy function are more

common in deep learning. The mean square error function is mainly used

for regression problems, and the cross-entropy function is mainly used for

classification problem.

Chapter 6 Neural Networks

221

6.6.1 Mean Square Error Function
Mean square error (MSE) function maps the output vector and the true

vector to two points in the Cartesian coordinate system, by calculating the

Euclidean distance between these two points (to be precise, the square of

Euclidean distance) to measure the difference between the two vectors:

MSE y o

d
y o

out i

d

i i

out

,� � �� �
�
�

1

1

2

The value of MSE is always greater than or equal to 0. When the MSE

function reaches the minimum value of 0, the output is equal to the true

label, and the parameters of the neural network reach the optimal state.

The MSE function is widely used in regression problems. In fact, the

MSE function can also be used in classification problems. In TensorFlow,

MSE calculation can be implemented in a functional or layer manner. For

example, implement MSE calculation using a function as follows:

In [16]:

o = tf.random.normal([2,10]) # Network output

y_onehot = tf.constant([1,3]) # Real label

y_onehot = tf.one_hot(y_onehot, depth=10)

loss = keras.losses.MSE(y_onehot, o) # Calculate MSE

loss

Out[16]:

<tf.Tensor: id=27, shape=(2,), dtype=float32,

numpy=array([0.779179 , 1.6585705], dtype=float32)>

Chapter 6 Neural Networks

222

In particular, the MSE function returns the mean square error of each

sample. You need to average again in the sample dimension to obtain

the mean square error of the average sample. The implementation is as

follows:

In [17]:

loss = tf.reduce_mean(loss)

loss

Out[17]:

<tf.Tensor: id=30, shape=(), dtype=float32, numpy=1.2188747>

It can also be implemented in layer mode. The corresponding class is

keras.losses.MeanSquaredError(). Like other classes, the __call__ function

can be called to complete the forward calculation. The code is as follows:

In [18]:

criteon = keras.losses.MeanSquaredError()

loss = criteon(y_onehot,o)

loss

Out[18]:

<tf.Tensor: id=54, shape=(), dtype=float32, numpy=1.2188747>

6.6.2 Cross-Entropy Error Function
Before introducing the cross-entropy loss function, we first introduce the

concept of entropy in informatics. In 1948, Claude Shannon introduced the

concept of entropy in thermodynamics into information theory to measure

the uncertainty of information. Entropy is also called information entropy

or Shannon entropy in information science. The greater the entropy, the

greater the uncertainty and the greater the amount of information. The

entropy of a distribution P(i) is defined as:

H P P i P i

i

� � � � � � ��

Chapter 6 Neural Networks

223

In fact, other base functions can also be used. For example, for the

four- category classification problem, if the true label of a sample is

category 4, then the one-hot encoding of the label is [0, 0, 0, 1]. That is,

the classification of this picture is uniquely determined, and it belongs to

category 4 with uncertainty 0, and its entropy can be simply calculated as:

 � � � � � � � � �0 0 0 0 0 0 1 1 0

That is to say, for a certain distribution, the entropy is 0 and the

uncertainty is the lowest.

If the predicted probability distribution is [0.1,0.1,0.1,0.7], its entropy

can be calculated as:

 � � � � � � � � �0 1 0 1 0 1 0 1 0 1 0 1 0 7 0 7 1 356.

Considering a random classifier, its prediction probability for each

category is equal: [0.25,0.25,0.25,0.25]. In the same way, its entropy can be

calculated to be about 2, and the uncertainty in this case is slightly larger

than the preceding case.

Because, the entropy is always greater than or equal to 0. When

the entropy reaches a minimum value of 0, the uncertainty is 0. The

distribution of one-hot coding for classification problems is a typical

example of entropy of 0. In TensorFlow, we can use tf.math.log to calculate

entropy.

After introducing the concept of entropy, we’ll derive the definition of

cross-entropy based on entropy:

H p q p i q i

i

||� � � � � � ��

Through transformation, cross-entropy can be decomposed into the

sum of entropy and KL divergence (Kullback-Leibler divergence):

 H p q H p D p qKL|| ||� � � � � � � �

Chapter 6 Neural Networks

224

where KL divergence is:

D p q p i
p i

q iKL
i

||� � � � � � �
� �

�

�
��

�

�
��� log

KL divergence is an indicator used by Solomon Kullback and Richard

A. Leibler in 1951 to measure the distance between two distributions.

When p = q, the minimum value of DKL(p‖q) is 0. The greater the difference

between p and q, the greater DKL(p‖q) is. It should be noted that neither

the cross- entropy nor the KL divergence is symmetrical, namely:

 H p q H q p|| ||� � � � �

 D p q D q pKL KL|| ||� � � � �

Cross-entropy is a good measure of the “distance” between two

distributions. In particular, when the distribution of y in the classification

problem uses one-hot coding, H(p) = 0. Then,

 H p q H p D p q D p qKL KL|| || ||� � � � � � � � � � �

That is, cross-entropy degenerates to the KL divergence between the

true label distribution and the output probability distribution.

According to the definition of KL divergence, we derive the calculation

expression of cross-entropy in the classification problem:

H p q D p q y
y

oKL
j

j
j

j

|| ||� � � � � �
�

�
��

�

�
��� log

� � � �
�

�
��

�

�
��

�
�1

1
0

0
log log

o oi j i j

 � �logoi

Chapter 6 Neural Networks

225

where i is the index number of 1 in the one-hot encoding, which is also

the real category. It can be seen that the cross-entropy is only related to

the probability on the real category oi, and the larger the corresponding

probability oi, the smaller H(p‖q) is. When the probability on the

corresponding category is 1, the cross-entropy achieves the minimum

value of 0. At this time, the network output is completely consistent with

the real label, and the neural network obtains the optimal state.

Therefore, the process of minimizing the cross-entropy loss function

is also the process of maximizing the prediction probability of the correct

category. From this perspective, understanding the cross-entropy loss

function is very intuitive and easy.

6.7 Types of Neural Networks
The fully connected layer is the most basic type of neural network, and it

has made a tremendous contribution to the subsequent research of neural

networks. The forward calculation process of the fully connected layer is

relatively simple, and the gradient derivation is also relatively simple, but

it has one of the biggest defects. When processing data with a large feature

length, the parameter amount of the fully connected layer is often large,

making the number of parameters of the fully connected network huge

and difficult to train. In recent years, the development of social media has

produced a large number of digital resources such as pictures, videos,

and texts, which has greatly promoted the research of neural networks in

the fields of computer vision and natural language processing, and has

successively proposed a series of neural network types.

Chapter 6 Neural Networks

226

6.7.1 Convolutional Neural Network
How to identify, analyze, and understand data such as pictures and videos

is a core problem of computer vision. When the fully connected layer

processes high-dimensional pictures and video data, it often has problems

such as huge network parameters and very difficult to train. By using

the idea of local correlation and weight sharing, Yann Lecun proposed

convolutional neural network (CNN) in 1986. With the prosperity of deep

learning, the performance of convolutional neural networks in computer

vision has greatly surpassed other algorithms, showing a tendency

to dominate the field of computer vision. Popular models for image

classification include AlexNet, VGG, GoogLeNet, ResNet, and DenseNet.

For objective recognition, there are RCNN, Fast RCNN, Faster RCNN, Mask

RCNN, YOLO, and SSD. We will introduce the principles of convolutional

neural networks in detail in Chapter 10.

6.7.2 Recurrent Neural Network
In addition to data such as pictures and videos with spatial structure,

sequence signals are also a very common type of data. One of the most

representative sequence signals is text. How to process and understand

text data is a core issue of natural language processing. Convolutional

neural networks are not good at processing sequence signals due to the

lack of memory mechanism and the ability to process signals of indefinite

length. Recurrent neural network (RNN), under continuous research by

Yoshua Bengio, Jürgen Schmidhuber, and others, is proved to be very good

at processing sequence signals. In 1997, Jürgen Schmidhuber proposed

the LSTM network. As a variant of RNN, it better overcomes the problems

of RNN that lacks long-term memory and is not good at processing long

sequences. LSTM has been widely used in natural language processing.

Based on the LSTM model, Google has proposed the Seq2Seq model

for machine translation, and it has been successfully used in the Google

Chapter 6 Neural Networks

227

Neural Machine Translation System (GNMT). Other RNN variants include

GRU and bidirectional RNN. We will introduce the principles of recurrent

neural networks in detail in Chapter 11.

6.7.3 Attention Mechanism Network
RNN is not the ultimate solution for natural language processing. In

recent years, with the attention mechanism proposed, it overcomes

the deficiencies of RNN such as training instability and difficulty in

parallelization. It has gradually emerged in the fields of natural language

processing and image generation. The attention mechanism was originally

proposed on the image classification task, but gradually began to become

more effective in natural language processing. In 2017, Google proposed

the first network model Transformer using a pure attention mechanism,

and then based on the Transformer model, a series of attention network

models for machine translation, such as GPT, BERT, and GPT-2, were

successively proposed. In other fields, the network based on the attention

mechanism, especially the self-attention mechanism, has also achieved

good results, such as the BigGAN model.

6.7.4 Graph Convolutional Neural Network
Data such as pictures and texts have a regular spatial or temporal structure

called Euclidean data. Convolutional neural networks and recurrent

neural networks are very good at handling this type of data. For data like

a series of irregular spatial topologies, social networks, communication

networks, and protein molecular structures, those networks seem to be

powerless. In 2016, Thomas Kipf et al. proposed a graph convolution

network (GCN) model based on the first-order approximate spectral

convolution algorithm. The GCN algorithm is simple to implement and

can be intuitively understood from the perspective of spatial first-order

Chapter 6 Neural Networks

228

neighbor information aggregation and therefore has achieved good results

on semi-supervised tasks. Subsequently, a series of network models have

been proposed, such as GAT, EdgeConv, and DeepGCN.

6.8 Hands-On of Automobile Fuel
Consumption Prediction

In this section, we will use the fully connected network model to complete

the prediction of MPG (mile per gallon) of the car.

6.8.1 Dataset
We use the auto MPG dataset, which include the real data of various

vehicle performance indicators and other factors such as the number

of cylinders, weight, and horsepower. The first five items of the dataset

is shown in Table 6-1. In addition, the numeric field of origin indicates

the category, the other fields are numeric types. For the place of origin, 1

indicates the USA, 2 indicates Europe, and 3 indicates Japan.

Table 6-1. First five items of the auto MPG dataset

MPG Cylinders Displacement Horsepower Weight Acceleration Model
Year

Origin

18.0 8 307.0 130.0 3504.0 12.0 70 1

15.0 8 350.0 165.0 3693.0 11.5 70 1

18.0 8 318.0 150.0 3436.0 11.0 70 1

16.0 8 304.0 150.0 3433.0 12.0 70 1

17.0 8 302.0 140.0 3449.0 10.5 70 1

Chapter 6 Neural Networks

229

The auto MPG dataset includes a total of 398 records. We download

and read the dataset from the UCI server to a DataFrame object. The code

is as follows:

Download the dataset online

dataset_path = keras.utils.get_file("auto-mpg.data", "http://

archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/

auto-mpg.data")

Use Pandas library to read the dataset

column_names = ['MPG','Cylinders','Displacement','Horsepower','

Weight', 'Acceleration', 'Model Year', 'Origin']

raw_dataset = pd.read_csv(dataset_path, names=column_names,

 na_values = "?", comment='\t',

 sep=" ", skipinitialspace=True)

dataset = raw_dataset.copy()

Show some data

dataset.head()

The data in the original table may contain missing values. These record

items need to be cleared:

dataset.isna().sum() # Calculate the number of missing values

dataset = dataset.dropna() # Drop missing value records

dataset.isna().sum() # Calculate the number of missing

values again

After clearing, the dataset record items were reduced to 392 items.

Since the origin field is categorical data, we first remove it and then

convert it into three new fields, USA, Europe, and Japan, which represent

whether they are from this origin:

origin = dataset.pop('Origin')

dataset['USA'] = (origin == 1)*1.0

dataset['Europe'] = (origin == 2)*1.0

Chapter 6 Neural Networks

230

dataset['Japan'] = (origin == 3)*1.0

dataset.tail()

Split the data into training (80%) and testing (20%) datasets:

train_dataset = dataset.sample(frac=0.8,random_state=0)

test_dataset = dataset.drop(train_dataset.index)

Move MPG out and use its real label:

train_labels = train_dataset.pop('MPG')

test_labels = test_dataset.pop('MPG')

Calculate the mean and standard deviation of each field value of the

training set and complete the standardization of the data, through the

norm() function; the code is as follows:

train_stats = train_dataset.describe()

train_stats.pop("MPG")

train_stats = train_stats.transpose()

Normalize the data

def norm(x): # minus mean and divide by std

 return (x - train_stats['mean']) / train_stats['std']

normed_train_data = norm(train_dataset)

normed_test_data = norm(test_dataset)

Print the shape of training and testing datasets:

print(normed_train_data.shape,train_labels.shape)

print(normed_test_data.shape, test_labels.shape)

(314, 9) (314,) # 314 records in training dataset with 9

features.

(78, 9) (78,) # 78 records in training dataset with 9 features.

Chapter 6 Neural Networks

231

Create TensorFlow dataset:

train_db = tf.data.Dataset.from_tensor_slices((normed_train_

data.values, train_labels.values))

train_db = train_db.shuffle(100).batch(32) # Shuffle and batch

We can observe the influence of each field on MPG by simply

observing the distribution between each field in the dataset, as shown in

Figure 6-16. It can be roughly observed that the relationship between car

displacement, weight, and MPG is relatively simple. As the displacement

or weight increases, the MPG of the car decreases and the energy

consumption increases; the smaller the number of cylinders, the better

MPG can be, which is in line with our life experience.

Figure 6-16. Relations between features

6.8.2 Create a Network
Considering the small size of the auto MPG dataset, we only create a three-

layer fully connected network to complete the MPG prediction task. There

are nine input features, so the number of input nodes in the first layer is

9. The number of output nodes of the first layer and the second layer is

designed as 64 and 64. Since there is only one kind of prediction value, the

output node of the output layer is designed as 1. Because MPG belong to

the real number space, the activation function of the output layer may not

be added.

Chapter 6 Neural Networks

232

We implement the network as a custom network class. We only need to

create each sub-network layer in the initialization function and implement

the calculation logic of the custom network class in the forward calculation

function. The custom network class inherits from the keras.Model class,

which is also the standard writing method of the custom network class,

in order to conveniently use the various convenient functions such as

trainable_variables and save_weights provided by the keras.Model class.

The network model class is implemented as follows:

class Network(keras.Model):

 # regression network

 def __init__(self):

 super(Network, self).__init__()

 # create 3 fully-connected layers

 self.fc1 = layers.Dense(64, activation='relu')

 self.fc2 = layers.Dense(64, activation='relu')

 self.fc3 = layers.Dense(1)

 def call(self, inputs, training=None, mask=None):

 # pass through the 3 layers sequentially

 x = self.fc1(inputs)

 x = self.fc2(x)

 x = self.fc3(x)

 return x

6.8.3 Training and Testing
After the creation of the main network model class, let's instantiate the

network object and create the optimizer as follows:

model = Network() # Instantiate the network

Build the model with 4 batch and 9 features

model.build(input_shape=(4, 9))

Chapter 6 Neural Networks

233

model.summary() # Print the network

Create the optimizer with learning rate 0.001

optimizer = tf.keras.optimizers.RMSprop(0.001)

Next, implement the network training part. Through the double-layer

loop training network composed of Epoch and Step, a total of 200 Epochs

are trained.

for epoch in range(200): # 200 Epoch

 for step, (x,y) in enumerate(train_db): # Loop through

training set once

 # Set gradient tape

 with tf.GradientTape() as tape:

 out = model(x) # Get network output

 loss = tf.reduce_mean(losses.MSE(y, out))

Calculate MSE

 mae_loss = tf.reduce_mean(losses.MAE(y, out))

Calculate MAE

 if step % 10 == 0: # Print training loss every 10 steps

 print(epoch, step, float(loss))

 # Calculate and update gradients

 grads = tape.gradient(loss, model.trainable_variables)

 optimizer.apply_gradients(zip(grads, model.trainable_

variables))

For regression problems, in addition to the mean square error

(MSE), the mean absolute error (MAE) can also be used to measure the

performance of the model.

mae

d
y o

out i
i i

1 � �

Chapter 6 Neural Networks

234

We can record the MAE at the end of each Epoch for the training and

testing dataset and draw the change curve as shown in Figure 6-17.

Figure 6-17. MAE curve

It can be seen that when training reaches about the 25th Epoch, the

decline of MAE becomes slower, in which the MAE of the training set

continues to decline slowly, but the MAE of the test set remains almost

unchanged, so we can end the training around the 25th Epoch and use the

network parameters at this time to predict new input.

6.9 References

 [1]. Nick, 2017. A brief history of artificial intelligence.

 [2]. X. Glorot, A. Bordes and Y. Bengio, “Deep Sparse

Rectifier Neural Networks,”Proceedings of the

Fourteenth International Conference on Artificial

Intelligence and Statistics, Fort Lauderdale, FL,

USA, 2011.

 [3]. J. Mizera-Pietraszko and P. Pichappan, Lecture

Notes in Real-Time Intelligent Systems, Springer

International Publishing, 2017.

Chapter 6 Neural Networks

235© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_7

CHAPTER 7

Backward
Propagation
Algorithm

The longer you look back, the farther you can look forward.

—Winston S. Churchill

In Chapter 6, we have systematically introduced the basic neural network

algorithm: starting from the representation of inputs and outputs;

introducing the perceptron model, multi-input and multi-output fully

connected layers; and then expanding to multilayer neural networks. We

also introduced the design of the output layer under different scenarios

and the commonly used loss functions and their implementation.

In this chapter, we will learn one of the core algorithms in the neural

network from the theoretical level: error back propagation (BP). In fact, the

back propagation algorithm has been proposed in the early 1960s, but it

has not attracted the attention of the industry. In 1970, Seppo Linnainmaa

proposed an automatic chain derivation method in his master’s thesis and

implemented the back propagation algorithm. In 1974, Paul Werbos first

proposed the possibility of applying the back propagation algorithm to

neural networks in his doctoral thesis, but unfortunately, Paul Werbos did

https://doi.org/10.1007/978-1-4842-7915-1_7#DOI

236

not publish subsequent related research. In fact, Paul Werbos believes that

this research idea is meaningful for solving perceptron problems, but due

to the cold winter of artificial intelligence, the community has generally

lost its belief in solving those problems. Until about 10 years later in 1986,

Geoffrey Hinton et al. applied the back propagation algorithm to neural

networks[1], making the back propagation algorithm vigorous in the

neural network community.

With the functions of automatic derivation and automatic parameter

updating of deep learning frameworks, algorithm designers can build

complex models and networks with little need for in-depth knowledge

of back propagation algorithms and can easily train network models by

calling optimization tools. However, the back propagation algorithm and

gradient descent algorithm are the core of the neural network, and it is

very important to deeply understand its principle. We first review the

mathematical concepts such as derivatives and gradients, and then derive

the gradient forms of commonly used activation and loss functions, and

begin to gradually derive the gradient propagation methods of perceptron

and multilayer neural networks. If you want to refresh your memory or

learn more about linear algebra and calculus, [2] and [3] have more details.

7.1 Derivatives and Gradients
In high school, we came into contact with the concept of derivative, which

is defined as the limit of the ratio of the increment ∆y of the function

output value to the increment ∆x of the independent variable x when the

independent variable x produces a slight disturbance ∆x as ∆x approaches

to zero:

a y

x
f x x f x

x
�
�
�

�
� �� � � � �

�

Chapter 7 BaCkward propagation algorithm

237

The derivative of the function f (x) can be written as f′(x) or
dy
dx

. From

a geometric point of view, the derivative of a univariate function is the

slope of the tangent of the function here, that is, the rate of change of the

function value along the direction of x. Consider an example in physics, for

example, the expression of the displacement function of free-fall motion

y gt=
1

2

2 . The derivative with respect to time is
dy
dt

d gt

dt
gt= =

1

2

2

.

Considering that velocity v is defined as the rate of change of

displacement, so the derivative of displacement with respect to time is

velocity, that is, v = gt.

In fact, the derivative is a very broad concept. Because most of the

functions we have encountered before are univariate functions, the

independent variable has only two directions: x+ and x−. When the number

of independent variables of a function is greater than one, the concept

of the derivative of the function is extended to the rate of change of the

function value in any direction. The derivative itself is a scalar and has

no direction, but the derivative characterizes the rate of change of the

function value in a certain direction. Among these arbitrary directions,

several directions along the coordinate axis are relatively special, which

is also called partial derivative. For univariate functions, the derivative is

written as
dy
dx

. For the partial derivative of the multivariate function, it is

recorded as
∂
∂

∂
∂

y
x

y
x

1 2

, , . Partial derivatives are special cases of derivatives

and have no direction.

Consider a neural network model that is essentially a multivariate

function, such as a weight matrix W of shape [784, 256], which contains a

connection weight of 784 × 256, and we need to ask for a partial derivative

of 784 × 256. It should be noted that in mathematical expression habits,

the independent variables to be discussed are generally recorded as x, but

Chapter 7 BaCkward propagation algorithm

238

in neural networks, they are generally used to represent inputs, such as

pictures, text, and voice data. The independent variables of the network

are network parameter sets θ = {w1, b1, w2, b2, ⋯}. When the gradient

descent algorithm is used to optimize the network, all partial derivatives of

the network need to be requested. Therefore, we are also concerned about

the derivative of the error function L output along the direction of the

independent variable θi, that is,
∂
∂

∂
∂

L
w

L
b

1 1

, , . Write all partial derivatives of

the function in vector form:

�� � � � �

L L L L L

n

�
�
�

�
�

�
�

�
�

�

�
�

�

�
�

1 2 3

, , , ,

The gradient descent algorithm can be updated in the form of a vector:

 � � � �� � � �� L

η is learning rate. The gradient descent algorithm is generally to find

the minimum value of the function L, and sometimes it is also desirable

to solve the maximum value of the function, which need to update the

gradient in the following way:

 � � � �� � � �� L

This update method is called the gradient ascent algorithm. The

gradient descent algorithm and the gradient ascent algorithm are the same

in principle. One is to update in the opposite direction of the gradient,

and the other is to update in the direction of the gradient. Both need to

solve partial derivatives. Here, the vector
�
�

�
�

�
�

�
�

�

�
�

�

�
�

L L L L

n� � � �
1 2 3

, , , , is called

the gradient of the function, which is composed of all partial derivatives
and represents the direction. The direction of the gradient indicates the

direction in which the function value rises fastest, and the reverse of the

gradient indicates the direction in which the function value decreases

fastest.

Chapter 7 BaCkward propagation algorithm

239

The gradient descent algorithm does not guarantee the global optimal

solution, which is mainly caused by the non-convexity of the objective

function. Consider the non-convex function in Figure 7-1. The dark blue

area is the minimum area. Different optimization trajectories may obtain

different optimal numerical solutions. These numerical solutions are not

necessarily global optimal solutions.

Figure 7-1. Non-convex function example

Neural network model expressions are usually very complex,

and the model parameters can reach tens or hundreds of millions of

levels. Almost all neural network optimization problems rely on deep

learning frameworks to automatically calculate the gradient of network

parameters and then use gradient descent to iteratively optimize the

network parameters until the performance meets the requirement. The

main algorithms implemented in deep learning frameworks are back

propagation and gradient descent algorithms. So understanding the

principles of these two algorithms is helpful to understand the role of deep

learning frameworks.

Before introducing the back propagation algorithm of the multilayer

neural network, we first introduce the common attributes of the derivative,

the gradient derivation of the common activation function, and the loss

function and then derive the gradient propagation law of the multilayer

neural network.

Chapter 7 BaCkward propagation algorithm

240

7.2 Common Properties of Derivatives
This section introduces the derivation rules and sample explanations

of common functions, which paves the way for the derivation of neural

network related functions.

7.2.1 Common Derivatives
• The derivative of constant function c is 0. For example,

the derivative of y = 2 is
dy
dx

= 0 .

• The derivative of linear function y = ax + c is a. For

example, the derivative of y = 2x + 1 is
dy
dx

= 2 .

• The derivative of function xa is axa − 1. For example, the

derivative of y = x2 is
dy
dx

x= 2 .

• The derivative of exponential function ax is ax ln ln a.

For example, the derivative of y = ex is
dy
dx

e ln ln e ex x= =

• The derivative of log function x is
1

xln a
. For example,

the derivative of y = lnln x is
dy
dx xln e x

= =
1 1

7.2.2 Common Property of Derivatives
• (f + g)′ = f ′ + g′

• (fg)′ = f ′ ∙ g + f ∙ g′

•
f
g

f g fg
g

�

�
�

�

�
� �

�� �
�

2 , g ≠ 0

Chapter 7 BaCkward propagation algorithm

241

• Consider function of function f (g(x)), let u = g(x), the

derivative is:

df g x
dx

df u
du

dg x
dx

f u g x
� �� �

�
� � � �

� � � � � �� �

7.2.3 Hands-On Derivative Finding
Considering objective function L = x ⋅ w2 + b2, its derivative is:

�
�

�
� �
�

� �
L
w

x w
w

x w
2

2

�
�

�
�
�

�
L
b

b
b

b
2

2

Considering objective function L = x ⋅ ew + eb, its derivative is:

�
�

�
� �
�

� �
L
w

x e
w

x e
w

w

�
�

�
�
�

�
L
b

e
b

e
b

b

Considering objective function L = [y − (xw + b)]2 = [(xw + b) − y]2, let

g = xw + b − y, and the derivative is:

�
�

� �
�
�

� � � � �� � �L
w

g g
w

g x xw b y x2 2 2

�
�

� �
�
�

� � � � �� �L
b

g g
b

g xw b y2 2 1 2

Chapter 7 BaCkward propagation algorithm

242

Considering objective function L = aln (xw + b) , let g = xw + b, and the

derivative is:

�
�

� �
� � �
�

�
�
�

� � �
�
�

�
�

�
L
w

a
g

g
g
w

a
g

g
w

a
xw b

x
ln 1

�
�

� �
� � �
�

�
�

� � �
�
�

�
�

L
b

a
g

g
g
b

a
g

g
b

a
xw b

ln 1

7.3 Derivative of Activation Function
Here we introduce the derivation of the activation function commonly

used in neural networks.

7.3.1 Derivative of Sigmoid Function
The expression of Sigmoid function is:

� x

e x� � �
� �

1
1

Let’s derive the derivative expression of the Sigmoid function:

d
dx

x d
dx e x� � � �

�
�
�
�

�
�
��

1
1

�
�� �

�

�

e

e

x

x
1

2

�
�� � �
�� �

�

�

1 1

1
2

e

e

x

x

Chapter 7 BaCkward propagation algorithm

243

�
�

�� �
�

�
�
�
�

�
�
�

�

� �

1

1

1

1
2

2e

e e

x

x x

 � � � � � �� �x x 2

 � �� �� �1

It can be seen that the derivative expression of the Sigmoid function

can finally be expressed as a simple operation of the output value of the

activation function. Using this property, we can calculate its derivate

by caching the output value of the Sigmoid function of each layer in the

gradient calculation of the neural network. The derivative function of the

Sigmoid function is shown in Figure 7-2.

Figure 7-2. Sigmoid function and its derivative

In order to help understand the implementation details of the

backpropagation algorithm, this chapter chooses not to use TensorFlow’s

automatic derivation function. This chapter uses Numpy to implement a

multilayer neural network optimized by back propagation algorithm. Here

the derivative of the Sigmoid function is implemented by Numpy:

import numpy as np # import numpy library

def sigmoid(x): # implement sigmoid function

 return 1 / (1 + np.exp(-x))

Chapter 7 BaCkward propagation algorithm

244

def derivative(x): # calculate derivative of sigmoid

 # Using the derived expression of the derivatives

 return sigmoid(x)*(1-sigmoid(x))

7.3.2 Derivative of ReLU Function
Recall the expression of the ReLU function:

 ReLU x x� � � � �max 0,

The derivation of its derivative is very simple:

d
dx

ReLU x x� � �{1 0 0 0

It can be seen that the derivative calculation of the ReLU function

is simple. When x is greater than or equal to zero, the derivative value is

always 1. In the process of back propagation, it will neither amplify the

gradient, causing gradient exploding, nor shrink the gradient, causing

gradient vanishing phenomenon. The derivative curve of the ReLU

function is shown in Figure 7-3.

Figure 7-3. ReLU function and its derivative

Before the ReLU function was widely used, the activation function in

neural networks was mostly Sigmoid. However, the Sigmoid function was

prone to gradient dispersion. When the number of layers of the network

Chapter 7 BaCkward propagation algorithm

245

increased, because the gradient values become very small, the parameters

of the network cannot be effectively updated. As a result, deeper neural

networks cannot be trained, resulting in the research of neural networks

staying at the shallow level. With the introduction of the ReLU function,

the phenomenon of gradient dispersion is well alleviated, and the number

of layers of the neural network can reach deeper layers. For example, the

ReLU activation function is used in AlexNet, and the number of layers

reaches eight. Some convolutional neural networks with over 100 layers

also mostly uses the ReLU activation function.

Through Numpy, we can easily achieve the derivative of the ReLU

function, the code is as follows:

def derivative(x): # Derivative of ReLU

 d = np.array(x, copy=True)

 d[x < 0] = 0

 d[x >= 0] = 1

 return d

7.3.3 Derivative of LeakyReLU Function
Recall the expression of LeakyReLU function:

 LeakyReLU x x px x� � �{ 0 0

Its derivative can be derived as:

d
dx

LeakyReLU x p x� � �{1 0 0

It’s different from the ReLU function because when x is less than zero,

the derivative value of the LeakyReLU function is not 0, but a constant

p, which is generally set to a smaller value, such as 0.01 or 0.02. The

derivative curve of the LeakyReLU function is shown in Figure 7-4.

Chapter 7 BaCkward propagation algorithm

246

Figure 7-4. LeakyReLU function and its derivative

The LeakyReLU function effectively overcomes the defects of the ReLU

function and is also widely used. We can implement the derivative of

LeakyReLU function through Numpy as follows:

def derivative(x, p): # p is the slope of negative part of

LeakyReLU

 dx = np.ones_like(x) # initialize a vector with 1

 dx[x < 0] = p # set negative part to p

 return dx

7.3.4 Derivative of Tanh Function
Recall the expression of the Tanh function:

tanh x
e e

e e

x x

x x� � �
�� �
�� �

�

�

 � � � � �2 2 1sigmoid x

Its derivative expression is:

d
dx

tanh tanh x
e e e e e e e e

e e

x x x x x x x x

x x
� � �

�� � �� � � �� � �� �
�� �

� � � �

� 2

Chapter 7 BaCkward propagation algorithm

247

� �
�� �
�� �

� � � �
�

�
1 1

2

2

e e

e e
x

x x

x x

The Tanh function and its derivative curve are shown in Figure 7-5.

Figure 7-5. Tanh function and its derivative

In Numpy, the derivative of the Tanh function is implemented through

the Sigmoid function as follows:

def sigmoid(x): # sigmoid function

 return 1 / (1 + np.exp(-x))

def tanh(x): # tanh function

 return 2*sigmoid(2*x) - 1

def derivative(x): # derivative of tanh

 return 1-tanh(x)**2

7.4 Gradient of Loss Function
The common loss functions have been introduced previously. Here we

mainly derive the gradient expressions of the mean square error loss

function and the cross-entropy loss function.

Chapter 7 BaCkward propagation algorithm

248

7.4.1 Gradient of Mean Square Error Function
The mean square error loss function expression is:

L y o

k

K

k k� �� �
�
�1

2 1

2

The terms
1

2
 in the preceding formula are used to simplify the

calculation, and
1
K

 can also be used for averaging instead. None of these

scaling operations will change the gradient direction. Then its partial

derivative
∂
∂
L
oi

 can be expanded to:

�
�

�
�
�

�� �
�
�L

o o
y o

i k

K

i
k k

1

2 1

2

Decomposition by the law of derivative of composite function:

�
�

� � �� � � � �� �
��

�L
o

y o
y o
oi k

K

k k
k k

i

1

2
2

1

That is:

�
�

� �� � � � �
�
��

�L
o

y o o
oi k

K

k k
k

i1

1

� �� � � �

��
�
k

K

k k
k

i

o y o
o1

Considering that
∂
∂
o
o
k

i

 is 1 when k = i and
∂
∂
o
o
k

i

 is 0 for other cases,

that is, the partial derivative
∂
∂
L
oi

 is only related to the ith node, so the

summation symbol in the preceding formula can be removed. The

derivative of the mean square error function can be expressed as:

Chapter 7 BaCkward propagation algorithm

249

�
�

� �� �L
o

o y
i

i i

7.4.2 Gradient of Cross-Entropy Function
When calculating the cross-entropy loss function, the Softmax function

and the cross-entropy function are generally implemented in a unified

manner. We first derive the gradient of the Softmax function, and then

derive the gradient of the cross-entropy function.

Gradient of Softmax Recall of the expression of Softmax:

p e
e

i

z

k

K z

i

k
�

�� 1

Its function is to convert the values of the output nodes into

probabilities and ensure that the sum of probabilities is 1, as shown in

Figure 7-6.

=
∑

2.0

1.0

0.1

= 0.7

= 0.2

= 0.1

Logits Softmax Probability

Figure 7-6. Softmax illustration

Recall:

f x

g x
h x

� � � � �
� �

Chapter 7 BaCkward propagation algorithm

250

The derivative of the function is:

�
� �

� � � � � � � � � � � �
� �

f x
g x h x h x g x

h x 2

For Softmax function, g x ezi� � � , h x e
k

K
zk� � �

�
�

1

. We’ll derive its gradient

at two conditions: i = j and i ≠ j.

• i = j. The derivative of Softmax
∂
∂
p
z
i

j

 is:

�
�

�

�

�
�

�

� �
� �

�

� �
�

p
z

e
e

z
e e e e

e
i

j

z

k

K z

j

z
k

K z z z

k

K z

i

k i k j i

k

1 1

1

2

�
�� �

� �
�

�

�

�

e e e

e

z
k

K z z

k

K z

i k j

k

1

1

2

� �
�� �

�

�

��
�
�

e
e

e e

e

z

k

K z

k

K z z

k

K z

i

k

k j

k

1

1

1

The preceding expression is the multiplication of pi and 1 − pj, and

pi = pj. So when i = j, the derivative of Softmax
∂
∂
p
z
i

j

 is:

�
�

� �� � �
p
z

p p i ji

j
i j1 ,

• i ≠ j. Extend the Softmax function:

�
�

�

�

�
�

�

� �
�

�

�
�

p
z

e
e

z
e e

e
i

j

z

k

K z

j

z z

k

K z

i

k j i

k

1

1

2

0

Chapter 7 BaCkward propagation algorithm

251

�
�

�
� �� �
e
e

e
e

z

k

K z

z

k

K z

j

k

i

k

1 1

That is:

�
�

� � �
p
z

p pi

j
j i

It can be seen that although the gradient derivation process of the

Softmax function is slightly complicated, the final expression is still very

concise. The partial derivative expression is as follows:

�
�

� �� � � � �
p
z

p p when i j p p when i ji

j
i j i j{ ·1

Gradient of cross-entropy function Consider the expression of the

cross- entropy loss function:

L y log log p

k
k k� � � ��

Here we directly derive the partial derivative of the final loss value L to

the logits variable zi of the network output, which expands to:

�
�

� �
� � �

��L
z

y
log log p

zi k
k

k

i

Decompose the composite function log log h into:

� �

� � �
�

�
�
��

k
k

k

k

k

i

y
log log p

p
p
z

Chapter 7 BaCkward propagation algorithm

252

That is:

� � �

�
��

k
k

k

k

i

y
p

p
z

1

where
∂
∂
p
z
k

i

 is the partial derivative of the Softmax function that we have

derived.

Split the summation symbol into the two cases: k = i and k ≠ i, and

substitute the expression of
∂
∂
p
z
k

i

, we can get:

�
�

� � �� � � � �� �
�
�L

z
y p y

p
p p

i
i i

k i
k

k
k i1 1

� � �� � � �

�
�y p y pi i
k i

k i1

� � � � �

�
�y y p y pi i i
k i

k i

That is:

�
�

� �
�

�
�

�

�
� �

�
�L

z
p y y y

i
i i

k i
k i

In particular, the one-hot encoding method for the label in the

classification problem has the following relationship:

 k
ky� �1

y yi

k i
k� �

�
� 1

Therefore, the partial derivative of cross-entropy can be further

simplified to:

�
�

� �
L
z

p y
i

i i

Chapter 7 BaCkward propagation algorithm

253

7.5 Gradient of Fully Connected Layer
After introducing the basic knowledge of gradients, we formally entered

the derivation of the neural network’s back propagation algorithm. The

structure of the neural network is diverse, and it is impossible to analyze

the gradient expressions one by one. We will use a neural network with

a fully connected layer network, a Sigmoid function as the activation

function, and a softmax + MSE loss function as the error function to derive

the gradient propagation law.

7.5.1 Gradient of a Single Neuron
For a neuron model using Sigmoid activation function, its mathematical

model can be written as:

o w x bT1 1 1� � � � � �� �� ��

The superscript of the variable represents the number of layers. For

example, o(1) represents the output of the first layer and x is the input of the

network. We take the partial derivative derivation
∂
∂
L
wj1

 of the weight

parameter wj1 as an example. For the convenience of demonstration, we
draw the neuron model as shown in Figure 7-7. Bias b is not shown in the

figure, and the number of input nodes is J. The weight connection from the

input of the jth node to the output o(1) is denoted as wj1
1� � , where the

superscript indicates the number of layers to which the weight parameter

belongs, and the subscript indicates the starting node number and the

ending node number of the current connection. For example, the subscript

j1 indicates the jth node of the previous layer to the first node of the

current layer. The variable before the activation function σ is called z1
1� � ,

Chapter 7 BaCkward propagation algorithm

254

and the variable after the activation function σ is called o1
1� � . Because there

is only one output node, so o o o1
1 1� � � �� � . The error value L is calculated by

the error function between the output and the real label.

1

2

j

11

(1)

21

(1)

(1)

(1)

1

(1)

1

(1)

Input nodes

=
T

+ Sigmoid Error Ground truth
(real value)

∑ ℒ

Figure 7-7. Neuron model

If we use the mean square error function, considering that a single

neuron has only one output o1
1� � , then the loss can be expressed as:

L o t o t� �� � � �� �� �1

2

1

2
1

1
2

1

2

Among them, t is the real label value. Adding
1

2
 does not affect the

direction of the gradient, and the calculation is simpler. We take the weight

variable wj1 of the jth (j ∈ [1, J]) node as an example and consider the

partial derivative
∂
∂
L
wj1

 of the loss function L:

�
�

� �� � �
�

L
w

o t o
wj j1

1
1

1

Chapter 7 BaCkward propagation algorithm

255

Considering o1 = σ(z1) and the derivative of the Sigmoid function is

σ′ = σ(1 − σ), we have:

�
�

� �� � � � �
�

L
w

o t
z

wj j1
1

1

1

�

� �� � � � � � �� � �

�

� �
o t z z z

wj
1 1 1

1
1

1

1� �

Write σ(z1) as o1:

�
�

� �� � �� � �
�

� �L
w

o t o o z
wj j1

1 1 1
1
1

1

1

Consider
�
�

�
� �z
w

x
j

j
1
1

1

, we have:

�
�

� �� � �� �L
w

o t o o x
j

j
1

1 1 11

It can be seen from the preceding formula that the partial derivative

of the error to the weight wj1 is only related to the output value o1, the true

value t, and the input xj connected to the current weight.

7.5.2 Gradient of Fully Connected Layer
We generalize the single neuron model to a single-layer network of fully

connected layers, as shown in Figure 7-8. The input layer obtains the

output vector o(1) through a fully connected layer and calculates the mean

square error with the real label vector t. The number of input nodes is J,

and the number of output nodes is K.

Chapter 7 BaCkward propagation algorithm

256

∑

ℒ

1

(1)

1

(1)

1

(1)

1

∑

∑

(1) (1)

(1)(1)
⋮ ⋮ ⋮

⋮ ⋮

Input nodes Output nodes Ground truth

Figure 7-8. Fully connected layer

The multi-output fully connected network layer model differs

from the single neuron model in that it has many more output nodes

o o o oK1

1

2

1

3

1 1� � � � � � � �
, , , , , and each output node corresponds to a real label t1,

t2, …, tK. wjk is the connection weight of the jth input node and the kth

output node. The mean square error can be expressed as:

L o t

i

K

i i� �� �
�

� ��1
2 1

1
2

Since
∂
∂
L
wjk

 is only associated with node ok
1� � , the summation symbol in

the preceding formula can be removed, that is, i = k:

�
�

� �� � �
�

L
w

o t o
wjk

k k
k

jk

Substitute ok = σ(zk):

�
�

� �� � � � �
�

L
w

o t
z

wjk
k k

k

jk

�

Chapter 7 BaCkward propagation algorithm

257

Consider the derivative of the Sigmoid function σ′ = σ(1 − σ):

�
�

� �� � � � � � �� � �
�

� �L
w

o t z z z
wjk

k k k k
k

jk

� �1
1

Write σ(zk) as ok:

�
�

� �� � �� � �
�

� �L
w

o t o o z
wjk

k k k k
k

jk

1
1

Consider
�
�

�
� �z

w
xk

jk
j

1

:

�
�

� �� � �� �L
w

o t o o x
jk

k k k k j1

It can be seen that the partial derivative of wjk is only related to

the output node ok
1� � of the current connection, the label tk

1� � of the

corresponding true, and the corresponding input node xj.

Let δk = (ok − tk)ok(1 − ok),
∂
∂
L
wjk

 becomes:

�
�

�
L
w

x
jk

k j�

The variable δk characterizes a certain characteristic of the error

gradient propagation of the end node of the connection line. After using

the representation δk, the partial derivative
∂
∂
L
wjk

 is only related to the start

node xj and the end node δk of the current connection. Later we will see the

role of δk in cyclically deriving gradients.

Now that the gradient propagation method of the single-layer neural

network (i.e., the output layer) has been derived, next we try to derive the

gradient propagation method of the penultimate layer. After completing

the propagation derivation of the penultimate layer, similarly, the gradient

Chapter 7 BaCkward propagation algorithm

258

propagation mode of all hidden layers can be derived cyclically to obtain

gradient calculation expressions of all layer parameters.

Before introducing the back propagation algorithm, we first learn a

core rule of derivative propagation – the chain rule.

7.6 Chain Rule
Earlier, we introduced the gradient calculation method of the output layer.

We now introduce the chain rule, which is a core formula that can derive

the gradient layer by layer without explicitly deducing the mathematical

expression of the neural network.

In fact, the chain rule has been used more or less in the process

of deriving the gradient. Considering the compound function y = f(u),

u = g(x), we can derive
dy
dx

 from
dy
du

 and
du
dx

:

dy
dx

dy
du

du
dx

f g x g x� � � � �� � � � �� �

Consider the compound function with two variables z = f (x, y), where

x = g(t), y = h(t), then the derivative
dz
dt

 can be derived from
∂
∂
z
x

 and
∂
∂
z
y

:

dz
dt

z
x
dx
dt

z
y
dy
dt

�
�
�

�
�
�

For example, z t et� �� � �2 1
2 2

, let x = 2t + 1, y = t2, then z = x2 + ey. Using

preceding formula, we have:

dz
dt

z
x
dx
dt

z
y
dy
dt

x e ty�
�
�

�
�
�

� � � �2 2 2

Let x = 2t + 1, y = t2:

dz
dt

t e tt� �� � � � �2 2 1 2 2
2

Chapter 7 BaCkward propagation algorithm

259

That is:

dz
dt

t tet� �� � �4 2 1 2
2

The loss function L of the neural network comes from each output

node ok
K� � , as shown in Figure 7-9, where the output node ok

K� � is

associated with the output node oj
J� � of the hidden layer, so the chain rule

is very suitable for the gradient derivation of the neural network. Let us

consider how to apply the chain rule to the loss function.

∑ ∑

() ()

()
()

Figure 7-9. Gradient propagation illustration

In forward propagation, the data goes through wij
J� � to the node oj

J� � in

the penultimate layer and then propagates to the node ok
K� � in the output

layer. When there is only one node per layer, the chain rule can be used to

decompose
�

� � �
L

wij
J layer by layer into:

�
�

�
�
�

�

�
�

�
�

�
�

�
� � � �

� �

� � � �

� �

� �

� �L
w

L
o

o
w

L
o

o
o

o

ij
J

j
J

j
J

ij
J

k
K

k
K

j
J

j
J

�� � �wij
J

where中
�
� � �
L
ok

K can be directly derived from the error function and
�
�

� �

� �
o
o
k
K

j
J

can be derived from the fully connected layer formula. The derivative
�

�

� �

� �

o
w

j
J

ij
J is the input xi

I� � . It can be seen that through the chain rule, we

do not need specific mathematical expressions for the derivative of

L f wij
J� � �� � ; instead, we can directly decompose the partial derivatives

and iteratively derive the derivatives layer by layer.

Chapter 7 BaCkward propagation algorithm

260

Here we simply use TensorFlow automatic derivation function to

experience the charm of the chain rule.

import tensorflow as tf

Create vectors

x = tf.constant(1.)

w1 = tf.constant(2.)

b1 = tf.constant(1.)

w2 = tf.constant(2.)

b2 = tf.constant(1.)

Create gradient recorder

with tf.GradientTape(persistent=True) as tape:

 # Manually record gradient info for non-tf.Variable

variables

 tape.watch([w1, b1, w2, b2])

 # Create two layer neural network

 y1 = x * w1 + b1

 y2 = y1 * w2 + b2

Solve partial derivatives

dy2_dy1 = tape.gradient(y2, [y1])[0]

dy1_dw1 = tape.gradient(y1, [w1])[0]

dy2_dw1 = tape.gradient(y2, [w1])[0]

Valdiate chain rule

print(dy2_dy1 * dy1_dw1)

print(dy2_dw1)

In the preceding code, we calculated
∂
∂
y
y
2

1

,
∂
∂
y
w

1

1

, and
∂
∂
y
w
2

1

 through

auto- gradient calculation in Tensorflow and through chain rule we know
�
�

�
�
�

y
y

y
w

2

1

1

1

 and
∂
∂
y
w
2

1

 should be equal. Their results are as follows:

tf.Tensor(2.0, shape=(), dtype=float32)

tf.Tensor(2.0, shape=(), dtype=float32)

Chapter 7 BaCkward propagation algorithm

261

7.7 Back Propagation Algorithm
Now let’s derive the gradient propagation law of the hidden layer. Briefly

review the partial derivative formula of the output layer:

�
�

� �� � �� � �
L
w

o t o o x x
jk

k k k k j k j1 �

Consider the partial derivative of the penultimate layer
∂
∂
L
wij

, as shown

in Figure 7-10. The number of output layer nodes is K, and the output is

o o o oK K K
K
K� � � � � � � �� �

�
�
�1 2

, , , . The penultimate layer has J nodes, and output

is o o o oJ J J
J
J� � � � � � � �� �

�
�
�1 2

, , , . The antepenultimate layer has I nodes, and the

output is o o o oI I I
I
I� � � � � � � �� �

�
�
�1 2

, , , .

∑

ℒ

1
()

()

()

1
()

1
()

1

∑

() ()
()

∑|σ

∑|σ

∑|σ

⋯

1

⋮

⋮ ⋮

⋮

1
()

()

() ()

⋮

⋮ ⋮ ⋮

⋮⋮

() ()

⋮

Input Hidden layer I Hidden layer J Output layer K Error Ground truth

Figure 7-10. Back propagation algorithm

In order to express conciseness, the superscripts of some variables are

sometimes omitted. First, expand the mean square error function:

�
�

�
�

�
�� ��L

w w
o t

ij ij k
k k

1

2

2

Chapter 7 BaCkward propagation algorithm

262

Because L is associated with wij through each output node ok, the

summation sign cannot be removed here, and the mean square error

function can be disassembled using the chain rule:

�
�

� �� � �
��L

w
o t

w
o

ij k
k k

ij
k

Substitute ok = σ(zk):

�
�

� �� � �
�

� ��L
w

o t
w

z
ij k

k k
ij

k�

The derivative of the Sigmoid function is σ′ = σ(1 − σ), so:

�
�

� �� � � � � � �� � �
��L

w
o t z z z

wij k
k k k k

k

ij

� �1

Write σ(zk) as ok, and consider chain rule, we have:

�
�

� �� � �� � �
�

�

��L
w

o t o o z
o

o
wij k

k k k k
k

j

j

ij

1 ·

where
�
�

�
z
o

wk

j
jk , so:

�
�

� �� � �� �
�

��L
w

o t o o w
o
wij k

k k k k jk
j

ij

1

Because
∂

∂

o
w

j

ij

 is not associated with k, we have:

�
�

�
�

�
�� � �� ��L

w
o
w

o t o o w
ij

j

ij k
k k k k jk1

Chapter 7 BaCkward propagation algorithm

263

Because oj = σ(zj) and σ′ = σ(1 − σ), we have:

�
�

� �� � �
�

�� � �� ��L
w

o o
z
w

o t o o w
ij

j j
j

ij k
k k k k jk1 1

where
∂

∂

z
w

j

ij

 is oi, so:

�
�

� �� � �� � �� � �� � �
L
w

o o o o t o o w
ij

j j i
k

k k k k jk
k
K1 1

�

where �k
K

k k k ko t o o� � � �� � �� �1 , so:

�
�

� �� � � � �L
w

o o o w
ij

j j i
k

k
K

jk1 �

Similarly as the format of
�
�

� � �L
w

x
jk

k
K

j� , define δ j
J as:

� �j

J
j j

k
k
K

jko o w 1�� �� � �

At this time,
∂
∂
L
wij

 can be written as a simple multiplication of the

output value oi of the currently connected start node and the gradient

variable information � j
J� � of the end node:

�
�

� � � � �L
w

o
ij

j
J

i
I�

It can be seen that by defining variable δ, the gradient expression

of each layer becomes more clear and concise, where δ can be simply

understood as the contribution value of the current weight wij to the error

function.

Chapter 7 BaCkward propagation algorithm

264

Let’s summarize the propagation law of the partial derivative of

each layer.

Output layer:

�
�

� � �L
w

o
jk

k
K

j�

 �k
K

k k k ko o o t� � � �� � �� �1

Penultimate layer:

�
�

� � �L
w

o
ij

j
J

i�

� �j

J
j j

k
k
K

jko o w� � � �� �� ��1

Antepenultimate layer:

�
�

� � �L
w

o
ni

i
I

n�

� �i

I
i i

j
j
J

ijo o w� � � �� �� ��1

where on is the input of the antepenultimate layer.

According to this law, the partial derivative of the current layer can be

obtained only by calculating the values �k
K� � , � j

J� � , and � i
I� � of each node of

each layer iteratively, so as to obtain the gradient of the weight matrix W of

each layer, and then iteratively optimize the network parameters through

the gradient descent algorithm.

So far, the back propagation algorithm is fully introduced.

Next, we will conduct two hands-on cases: the first case is to use the

automatic derivation provided by TensorFlow to optimize the extreme

Chapter 7 BaCkward propagation algorithm

265

value of the Himmelblau function. The second case is to implement the

back propagation algorithm based on Numpy and complete the multi-

layer neural network training for binary classification problem.

7.8 Hands-On Optimization of Himmelblau
The Himmelblau function is one of the commonly used sample functions

for testing optimization algorithms. It contains two independent variables

x and y, and the mathematical expression is:

f x y x y x y,� � � � �� � � � �� �2

2
2

2

11 7

First, we implement the expression of the Himmelblau function

through the following code:

def himmelblau(x):

 # Himmelblau function implementation. Input x is a list

with 2 elements.

 return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] **

2 - 7) ** 2

Then we complete the visualization of the Himmelblau function. Use

np.meshgrid function (meshgrid function is also available in TensorFlow)

to generate two-dimensional plane grid point coordinates as follows:

x = np.arange(-6, 6, 0.1) # x-axis

y = np.arange(-6, 6, 0.1) # y-axis

print('x,y range:', x.shape, y.shape)

X, Y = np.meshgrid(x, y)

print('X,Y maps:', X.shape, Y.shape)

Z = himmelblau([X, Y])

Chapter 7 BaCkward propagation algorithm

266

Use the Matplotlib library to visualize the Himmelblau function, as

shown in Figure 7-11:

Plot the Himmelblau function

fig = plt.figure('himmelblau')

ax = fig.gca(projection='3d')

ax.plot_surface(X, Y, Z)

ax.view_init(60, -30)

ax.set_xlabel('x')

ax.set_ylabel('y')

plt.show()

Figure 7-11. Himmelblau function

Figure 7-12 is a contour map of the Himmelblau function. It can

be roughly seen that it has four local minimum points, and the local

minimum values are all 0, so these four local minimum values are also

global minimum values. We can calculate the precise coordinates of the

local minimum by analytical methods; they are:

 3 2 2 805 3 131 3 779 3 283 3 584 1 848, , , ,� � �� � � �� � �� �, . . , . . , . .

Knowing the analytical solution of the extreme value, we now use the

gradient descent algorithm to optimize the minimum numerical solution

of the Himmelblau function.

Chapter 7 BaCkward propagation algorithm

267

We can use TensorFlow automatic derivation to find the partial

derivative of the sum of the function and iteratively update the sum value

as follows:

The influence of the initialization value of the parameter

on the optimization cannot be ignored, you can try different

initialization values # Test the minimum value of function

optimization

[1., 0.], [-4, 0.], [4, 0.]

x = tf.constant([4., 0.]) # Initialization

for step in range(200):# Loop 200 times

 with tf.GradientTape() as tape: #record gradient

 tape.watch([x]) # Add to the gradient recording list

 y = himmelblau(x) # forward propagation

 # backward propagration

 grads = tape.gradient(y, [x])[0]

 # update paramaters with learning rate of 0.01

 x -= 0.01*grads

 # print info

Figure 7-12. Himmelblau function contour plot

Chapter 7 BaCkward propagation algorithm

268

 if step % 20 == 19:

 print ('step {}: x = {}, f(x) = {}'

 .format(step, x.numpy(), y.numpy()))

After 200 iterations of updating, the program can find a minimum

solution, at which point the function value is close to zero. The numerical

solution is

step 199: x = [3.584428 -1.8481264], f(x) =

1.1368684856363775e-12

This is almost the same as one of the analytical solutions

(3.584, −1.848).

In fact, by changing the initialization state of the network parameters,

the program can obtain a variety of minimum numerical solutions. The

initialization state of the parameters may affect the search trajectory of

the gradient descent algorithm, and it may even search out completely

different numerical solutions, as shown in Table 7-1. This example explains

the effect of different initial states on the gradient descent algorithm.

Table 7-1. The effect of initial values on optimization results

Initial value of x Numerical solution Analytical solution

(4, 0) (3.58,-1.84) (3.58,-1.84)

(1,0) (3,1.99) (3,2)

(-4,0) (-3.77,-3.28) (-3.77,-3.28)

(-2,2) (-2.80,3.13) (-2.80,3.13)

Chapter 7 BaCkward propagation algorithm

269

7.9 Hands-On Back Propagation Algorithm
In this section, we will use the gradient derivation results of the multi-layer

fully connected network introduced earlier, and directly use Python to

calculate the gradient of each layer, and manually update according to the

gradient descent algorithm. Since TensorFlow has an automatic derivation

function, we choose Numpy without the automatic derivation functionality

to implement the network, and use Numpy to manually calculate the

gradient, and manually update the network parameters.

It should be noted that the gradient propagation formula derived

in this chapter is for multiple fully connected layers with only Sigmoid

function, and the loss function is a network type of mean square error

function. For other types of networks, such as networks with ReLU

activation function and cross- entropy loss function, the gradient

propagation expression needs to be derived again, but the method is

similar. It is precisely because the method of manually deriving the

gradient is more limited, it is rarely used in practice.

We will implement a four-layer fully connected network to complete

the binary classification task. The number of network input nodes is 2, and

the number of nodes in the hidden layer is designed as 20, 50, and 25. The

two nodes in the output layer represent the probability of belonging to

categories 1 and 2, respectively, as shown in Figure 7-13. Here, the Softmax

function is not used to constrain the sum of the network output probability

values. Instead, the mean square error function is directly used to calculate

the error between prediction and the one-hot encoded real label. All

activation functions are Sigmoid. This design is to directly use our gradient

propagation formula.

Chapter 7 BaCkward propagation algorithm

270

Input:2 Hidden layer 1:25 Hidden layer 2:50 Hidden layer:25 Output layer:2

Figure 7-13. Network structure

7.9.1 Dataset
Through the convenient tool provided by the scikit-learn library, 2000

linear inseparable 2-class datasets are generated. The feature length of

the data is 2. The sampled data distribution is shown in Figure 7-14. The

red points are in one category, and the blue points belong to the other

category. The distribution of each category is crescent-shaped and is

linearly inseparable, which means a linear network cannot be used to

obtain good results. In order to test the performance of the network,

we divide the training set and the test set according to the ratio 7:3.

Two thousand . 0·s3 = 600 sample points are used for testing and do not

participate in the training. The remaining 1400 points are used for network

training.

Chapter 7 BaCkward propagation algorithm

271

Figure 7-14. Dataset distribution

The collection of the data set is directly generated using the make_

moons function provided by scikit-learn, and the number of sampling

points and testing ratio are set as follows:

N_SAMPLES = 2000 # number of sampling points

TEST_SIZE = 0.3 # testing ratio

Use make_moons function to generate data set

X, y = make_moons(n_samples = N_SAMPLES, noise=0.2, random_

state=100)

Split traning and testing data set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=TEST_SIZE, random_state=42)

print(X.shape, y.shape)

Chapter 7 BaCkward propagation algorithm

272

The distribution of the dataset can be drawn by the following

visualization code, as shown in Figure 7-14.

Make a plot

def make_plot(X, y, plot_name, file_name=None, XX=None,

YY=None, preds=None, dark=False):

 if (dark):

 plt.style.use('dark_background')

 else:

 sns.set_style("whitegrid")

 plt.figure(figsize=(16,12))

 axes = plt.gca()

 axes.set(xlabel="x_1", ylabel="x_2")

 plt.title(plot_name, fontsize=30)

 plt.subplots_adjust(left=0.20)

 plt.subplots_adjust(right=0.80)

 if(XX is not None and YY is not None and preds is

not None):

 plt.contourf(XX, YY, preds.reshape(XX.shape), 25,

alpha = 1, cmap=cm.Spectral)

 plt.contour(XX, YY, preds.reshape(XX.shape),

levels=[.5], cmap="Greys", vmin=0, vmax=.6)

 # Use color to distinguish labels

 plt.scatter(X[:, 0], X[:, 1], c=y.ravel(), s=40, cmap=plt.

cm.Spectral, edgecolors='none')

 plt.savefig('dataset.svg')

 plt.close()

Make distribution plot

make_plot(X, y, "Classification Dataset Visualization ")

plt.show()

Chapter 7 BaCkward propagation algorithm

273

7.9.2 Network Layer
A new layer class is used to implement a network layer. Parameters such as

the number of input nodes, the number of output nodes, and the type of

activation function are passed into the network layer. The weights and bias

tensor bias are automatically generated based on the number of input and

output nodes during initialization as in the following:

class Layer:

 # Fully connected layer

 def __init__(self, n_input, n_neurons, activation=None,

weights=None, bias=None):

 """

 :param int n_input: input nodes

 :param int n_neurons: output nodes

 :param str activation: activation function

 :param weights: weight vectors

 :param bias: bias vectors

 """

 # Initialize weights through Normal distribution

 self.weights = weights if weights is not None else

np.random.randn(n_input, n_neurons) * np.sqrt(1 / n_

neurons)

 self.bias = bias if bias is not None else np.random.

rand(n_neurons) * 0.1

 self.activation = activation # activation function,

e.g. ’sigmoid’

 self.last_activation = None # output of activation

function o

 self.error = None

 self.delta = None

Chapter 7 BaCkward propagation algorithm

274

The forward propagation function of the network layer is implemented

as follows, where the last_activation variable is used to save the output

value of the current layer:

 def activate(self, x):

 # Forward propagation function

 r = np.dot(x, self.weights) + self.bias # X@W+b

 # Get output through activation function

 self.last_activation = self._apply_activation(r)

 return self.last_activation

The self._apply_activation function in the preceding code implements

the forward calculation process of different types of activation functions,

although here we only use the Sigmoid activation function.

 def _apply_activation(self, r):

 # Calculate output of activation function

 if self.activation is None:

 return r # No activation function

 # ReLU

 elif self.activation == 'relu':

 return np.maximum(r, 0)

 # tanh

 elif self.activation == 'tanh':

 return np.tanh(r)

 # sigmoid

 elif self.activation == 'sigmoid':

 return 1 / (1 + np.exp(-r))

 return r

Chapter 7 BaCkward propagation algorithm

275

For different types of activation functions, their derivatives are

calculated as follows:

 def apply_activation_derivative(self, r):

 # Calculate the derivative of activation functions

 # If no activation function, derivative is 1

 if self.activation is None:

 return np.ones_like(r)

 # ReLU

 elif self.activation == 'relu':

 grad = np.array(r, copy=True)

 grad[r > 0] = 1.

 grad[r <= 0] = 0.

 return grad

 # tanh

 elif self.activation == 'tanh':

 return 1 - r ** 2

 # Sigmoid

 elif self.activation == 'sigmoid':

 return r * (1 - r)

 return r

It can be seen that the derivative of the Sigmoid function is

implemented as r (1 − r), where r is σ(z).

Chapter 7 BaCkward propagation algorithm

276

7.9.3 Network model
After creating a single-layer network class, we implement the

NeuralNetwork class of the network model, which internally maintains the

network layer object of each layer. You can add the network layer through

the add_layer function to achieve the purpose of creating a network model

with different structures as in the following:

class NeuralNetwork:

 # Neural Network Class

 def __init__(self):

 self._layers = [] # list of network class

 def add_layer(self, layer):

 # Add layers

 self._layers.append(layer)

The forward propagation of the network only needs to cyclically adjust

the forward calculation function of each network layer object. The code is

as follows:

 def feed_forward(self, X):

 # Forward calculation

 for layer in self._layers:

 # Loop through every layer

 X = layer.activate(X)

 return X

According to the network structure configuration in Figure 7-13, we

use the NeuralNetwork class to create a network object and add a four-

layer fully connected network. The code is as follows:

nn = NeuralNetwork()

nn.add_layer(Layer(2, 25, 'sigmoid')) # Hidden layer 1, 2=>25

nn.add_layer(Layer(25, 50, 'sigmoid')) # Hidden layer 2, 25=>50

Chapter 7 BaCkward propagation algorithm

277

nn.add_layer(Layer(50, 25, 'sigmoid')) # Hidden layer 3, 50=>25

nn.add_layer(Layer(25, 2, 'sigmoid')) # Hidden layer, 25=>2

The back propagation of the network model is slightly more

complicated. We need to start from the last layer and calculate the variable

δ of each layer, and then store the calculated variable δ in the delta variable

of the Layer class according to the derived gradient formula as in the

following:

 def backpropagation(self, X, y, learning_rate):

 # Back propagation

 # Get result of forward calculation

 output = self.feed_forward(X)

 for i in reversed(range(len(self._layers))):

reverse loop

 layer = self._layers[i] # get current layer

 # If it’s output layer

 if layer == self._layers[-1]: # output layer

 layer.error = y - output

 # calculate delta

 layer.delta = layer.error * layer.apply_

activation_derivative(output)

 else: # For hidden layer

 next_layer = self._layers[i + 1]

 layer.error = np.dot(next_layer.weights,

next_layer.delta)

 # Calculate delta

 layer.delta = layer.error * layer.apply_

activation_derivative(layer.last_activation)

 ... # See following code

Chapter 7 BaCkward propagation algorithm

278

After the reverse calculation of the variable δ of each layer, it is only

necessary to calculate the gradient of the parameters of each layer

according to the formula
�
�

� � �L
w

o
ij

i j
J� and update the network parameters.

Because the delta in the code is actually calculated as −δ, the plus sign is

used when updating. The code is as follows:

 def backpropagation(self, X, y, learning_rate):

 ... # Continue above code

 # Update weights

 for i in range(len(self._layers)):

 layer = self._layers[i]

 # o_i is output of previous layer

 o_i = np.atleast_2d(X if i == 0 else self._

layers[i - 1].last_activation)

 # Gradient descent

 layer.weights += layer.delta * o_i.T *

learning_rate

Therefore, in the back propagation function, the variable δ of each

layer is reversely calculated, and the gradient values of the parameters

of each layer are calculated according to the gradient formula, and

the parameter update is completed according to the gradient descent

algorithm.

7.9.4 Network Training
The binary classification network here is designed with two output nodes,

so the real label needs to be one-hot encoded. The code is as follows:

 def train(self, X_train, X_test, y_train, y_test, learning_

rate, max_epochs):

 # Train network

 # one-hot encoding

Chapter 7 BaCkward propagation algorithm

279

 y_onehot = np.zeros((y_train.shape[0], 2))

 y_onehot[np.arange(y_train.shape[0]), y_train] = 1

Calculate the mean square error of the one-hot encoded real label

and the output of the network, and call the back propagation function to

update the network parameters, and iterate the training set 1000 times as

in the following:

 mses = []

 for i in range(max_epochs): # Train 1000 epoches

 for j in range(len(X_train)): # Train one sample

per time

 self.backpropagation(X_train[j], y_onehot[j],

learning_rate)

 if i % 10 == 0:

 # Print MSE Loss

 mse = np.mean(np.square(y_onehot - self.feed_

forward(X_train)))

 mses.append(mse)

 print('Epoch: #%s, MSE: %f' % (i, float(mse)))

 # Print accuracy

 print('Accuracy: %.2f%%' % (self.accuracy(self.

predict(X_test), y_test.flatten()) * 100))

 return mses

Chapter 7 BaCkward propagation algorithm

280

7.9.5 Network Performance
We record the training loss value L of each Epoch and draw it as a curve, as

shown in Figure 7-15.

Figure 7-15. Training error plot

After training 1000 Epochs, the accuracy rate obtained on 600 samples

in the test set is:

Epoch: #990, MSE: 0.024335

Accuracy: 97.67%

It can be seen that by manually calculating the gradient formula and

manually updating the network parameters, we can also obtain a lower

error rate for simple binary classification tasks. Through fine-tuning

network hyperparameters and other techniques, you can also get better

network performance.

In each Epoch, we complete an accuracy test on the test set and draw it

into a curve, as shown in Figure 7-16. It can be seen that with the progress

of Epoch, the accuracy of the model has been steadily improved, the initial

stage is faster, and the subsequent improvement is relatively smooth.

Chapter 7 BaCkward propagation algorithm

281

Figure 7-16. Testing accuracy

Through this binary classification of fully connected network based

on Numpy’s manual calculation of gradients, I believe readers can more

deeply appreciate the role of deep learning frameworks in algorithm

implementation. Without frameworks such as TensorFlow, we can also

implement complex neural networks, but flexibility, stability, development

efficiency, and computational efficiency are poor. Algorithm design and

training based on these deep learning frameworks will greatly improve the

work of algorithm developers’ effectiveness. At the same time, we can also

realize that the framework is just a tool. More importantly, our understanding

of the algorithm itself is the most important ability of algorithm developers.

7.10 References

 [1]. D. E. Rumelhart, G. E. Hinton and R. J. Williams,

“Learning Representations by Back-propagating

Errors”, Nature, 323, 6088, pp. 533-536, 1986.

 [2]. Singh, Kuldeep. Linear Algebra: Step by Step. 1st

edition. Oxford, United Kingdom: Oxford University

Press, 2013.

 [3]. Stewart, James. Calculus: Early Transcendentals. 8th

edition. Boston, MA, USA: Cengage Learning, 2015.

Chapter 7 BaCkward propagation algorithm

283© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_8

CHAPTER 8

Keras Advanced API
The problem of artificial intelligence is not only a problem of
computer science, but also a problem of mathematics, cog-
nitive science and philosophy.

—François Chollet

Keras is an open-source neural network computing library mainly

developed in the Python language. It was originally written by François

Chollet. It is designed as a highly modular and extensible high-level neural

network interface, so that users can quickly complete model building and

training without excessive professional knowledge. The Keras library is

divided into a frontend and a backend. The backend generally calls the

existing deep learning framework to implement the underlying operations,

such as Theano, CNTK, and TensorFlow. The frontend interface is a set

of unified interface functions abstracted by Keras. Users can easily switch

between different backend operations through Keras. Because of Keras’s

high abstraction and ease of use, according to KDnuggets, Keras market

share reached 26.6% as of 2019, an increase of 19.7%, second only to

TensorFlow in deep learning frameworks.

There is a staggered relationship between TensorFlow and Keras that

is both competitive and cooperative. Even the founder of Keras works

at Google. As early as November 2015, TensorFlow was added to Keras

backend support. Since 2017, most components of Keras have been

https://doi.org/10.1007/978-1-4842-7915-1_8#DOI

284

integrated into the TensorFlow framework. In 2019, Keras was officially

identified as the only high-level interface API for TensorFlow 2, replacing

the high-level interfaces such as tf.layers included in the TensorFlow 1.

In other words, now you can only use the Keras interface to complete

TensorFlow layer model building and training. In TensorFlow 2, Keras is

implemented in the tf.keras submodule.

What is the difference and connection between Keras and tf.keras?

In fact, Keras can be understood as a set of high-level API protocols

for building and training neural networks. Keras itself has already

implemented this protocol. Installing the standard Keras library can easily

call TensorFlow, CNTK, and other backends to complete accelerated

calculations. In TensorFlow, a set of Keras protocol is also implemented

through tf.keras, which is deeply integrated with TensorFlow, and is only

based on TensorFlow backend operations, and supports TensorFlow more

perfectly. For developers using TensorFlow, tf.keras can be understood as

an ordinary submodule, which is no different from other submodules such

as tf.math and tf.data. Unless otherwise specified, Keras refers to tf.keras

instead of the standard Keras library in the following chapters.

8.1 Common Functional Modules
Keras provides a series of high-level neural network-related classes

and functions, such as classic dataset loading function, network layer

class, model container, loss function class, optimizer class, and classic

model class.

For classic datasets, one line of code can download, manage, and load

datasets. These datasets include Boston house price prediction dataset,

CIFAR picture dataset, MNIST/FashionMNIST handwritten digital picture

dataset, and IMDB text dataset. We have already introduced some of them

in previous chapters.

Chapter 8 Keras advanCed apI

285

8.1.1 Common Network Layer Classes
For the common neural network layer, we can use the tensor mode of the

underlying interface functions to achieve, which are generally included

in the tf.nn module. For common network layers, we generally use the

layer method to complete the model construction. A large number of

common network layers are provided in the tf.keras.layers namespace

(hereinafter using layers to refer to tf.keras.layers), such as fully connected

layers, activation function layers, pooling layers, convolutional layers, and

recurrent neural network layers. For these network layer classes, you only

need to specify the relevant parameters of the network layer at the time of

creation and use the __call__ method to complete the forward calculation.

When using the __call__ method, Keras will automatically call the forward

propagation logic of each layer, which is generally implemented in the call

function of the class.

Taking the Softmax layer as an example, it can use the tf.nn.softmax

function to complete the Softmax operation in the forward propagation,

or it can build the Softmax network layer through the layers. Softmax(axis)

class, where the axis parameter specifies the dimension for Softmax

operation. First, import the relevant sub-modules as follows:

import tensorflow as tf

Do not use "import keras" which will import the standard

Keras, not the one in Tensorflow

from tensorflow import keras

from tensorflow.keras import layers # import common layer class

Then create a Softmax layer and use the __call__ method to complete

the forward calculation:

In [1]:

x = tf.constant([2.,1.,0.1]) # create input tensor

layer = layers.Softmax(axis=-1) # create Softmax layer

out = layer(x) # forward propagation

Chapter 8 Keras advanCed apI

286

After passing through the Softmax network layer, the probability

distribution output is:

Out[1]:

<tf.Tensor: id=2, shape=(3,), dtype=float32,

numpy=array([0.6590012, 0.242433 , 0.0985659], dtype=float32)>

Of course, we can also directly complete the calculation through the

tf.nn.softmax() function as follows:

out = tf.nn.softmax(x)

8.1.2 Network Container
For common networks, we need to manually call the class instance of each

layer to complete the forward propagation operation. When the network

layer becomes deeper, this part of the code appears very bloated. Multiple

network layers can be encapsulated into a large network model through

the network container Sequential provided by Keras. Only the instance

of the network model needs to be called once to complete the sequential

propagation operation of the data from the first layer to the last layer.

For example, the two-layer fully connected network with a separate

activation function layer can be encapsulated as a network through the

Sequential container.

from tensorflow.keras import layers, Sequential

network = Sequential([

 layers.Dense(3, activation=None), # Fully-connected layer

without activation function

 layers.ReLU(),# activation function layer

 layers.Dense(2, activation=None), # Fully-connected layer

without activation function

 layers.ReLU() # activation function layer

])

Chapter 8 Keras advanCed apI

287

x = tf.random.normal([4,3])

out = network(x)

The Sequential container can also continue to add a new network layer

through the add() method to dynamically create a network:

In [2]:

layers_num = 2

network = Sequential([]) # Create an empty container

for _ in range(layers_num):

 network.add(layers.Dense(3)) # add fully-connected layer

 network.add(layers.ReLU())# add activation layer

network.build(input_shape=(4, 4))

network.summary()

The preceding code can create a network structure with the number of

layers specified by the layers_num parameter. When the network creation

is completed, the network layer class does not create member variables

such as internal weight tensors. Using the build method, you can specify

the input size which will automatically create internal tensors for all layers.

Through the summary() function, you can easily print out the network

structure and parameters. The results are as follows:

Out[2]:

Model: "sequential_2"

Layer (type) Output

Shape Param Number

===

dense_2 (Dense) multiple 15

re_lu_2 (ReLU) multiple 0

dense_3 (Dense) multiple 12

Chapter 8 Keras advanCed apI

288

re_lu_3 (ReLU) multiple 0

===

Total params: 27

Trainable params: 27

Non-trainable params: 0

The layer column includes the name of each layer which is maintained

internally by TensorFlow and is not the same as the object name of Python.

The output shape column indicates the output shape of each layer. Note

that the values for the output shape column are all “multiple” because we

only built or compiled the network at this point and haven’t really trained

or executed the network. After we call the network with real inputs, the

real out shape of each layer will be reflected in the output shape column.

Param number column is the number of parameters of each layer. Total

params counts the total number of parameters. Trainable params is the

total number of parameters to be optimized. Non-trainable params is the

total number of parameters that do not need to be optimized.

When we encapsulate multiple network layers through Sequential

container, the parameter list of each layer will be automatically

incorporated into the Sequential container. The trainable_variables

and variables of the Sequential object contain the list of tensors to be

optimized and tensors of all layers, for example:

In [3]: # print name and shape of trainable variables

for p in network.trainable_variables:

 print(p.name, p.shape)

Out[3]:

dense_2/kernel:0 (4, 3)

dense_2/bias:0 (3,)

dense_3/kernel:0 (3, 3)

dense_3/bias:0 (3,)

Chapter 8 Keras advanCed apI

289

The Sequential container is one of the most commonly used classes.

It is very useful for quickly building multi-layer neural networks. It

should be used as much as possible to simplify the implementation of

network models.

8.2 Model Configuration, Training,
and Testing

When training the network, the general process is to obtain the output

value of the network through forward calculation, then calculate the

network error through the loss function, and then calculate and update

the gradients through automatic differentiation tool, and test the network

performance occasionally. For this commonly used training logic, it can be

directly implemented through high-level interfaces provided by Keras.

8.2.1 Model Configuration
In Keras, there are two special classes: keras.Model and keras.layers.Layer.

The Layer class is the parent class of the network layer, and it defines

some common functions of the network layer, such as adding weights and

managing weight lists. The model class is the parent class of the network.

In addition to the functions of the layer class, convenient functions such as

saving model, loading model, and training and testing model are added.

Sequential is also a subclass of model, so it has all the functions of the

model class.

Let’s introduce the model configuration and training functions of

the model class and its subclasses. Taking the network encapsulated by

the Sequential container as an example, we first create a five-layer fully

Chapter 8 Keras advanCed apI

290

connected network for MNIST handwritten digital picture recognition. The

code is as follows:

Create a 5-layer fully connected network

network = Sequential([layers.Dense(256, activation='relu'),

 layers.Dense(128, activation='relu'),

 layers.Dense(64, activation='relu'),

 layers.Dense(32, activation='relu'),

 layers.Dense(10)])

network.build(input_shape=(4, 28*28))

network.summary()

After the network is created, the normal process is to iterate over

multiple Epochs in the dataset, generate training data in batches, do

forward propagation calculation, then calculate the error value through

the loss function, and automatically calculate the gradient and update the

network parameters by back propagation. Since this part of the logic is very

general, the compile() and fit() functions are provided in Keras to facilitate

the logic. We can specify the optimizer, loss function, evaluation metrics,

and other settings used by the network through the compile function

directly. This step is called configuration.

Import optimizer, loss function module

from tensorflow.keras import optimizers,losses

Use Adam optimizer with learning rate of 0.01

Use cross-entropy loss function with Softmax

network.compile(optimizer=optimizers.Adam(lr=0.01),

 loss=losses.CategoricalCrossentropy(from_logits=True),

 metrics=['accuracy'] # Set accuracy as

evaluation metric

)

Chapter 8 Keras advanCed apI

291

The optimizer, loss function, and other parameters specified in the

compile() function are also the parameters that we need to set during our

own training. Keras implements this part of the common logic internally to

improve development efficiency.

8.2.2 Model Training
After the model is configured, the datasets for training and validation can

be sent through the fit() function. This step is called model training.

Training dataset is train_db, and validation dataset is val_db

Train 5 epochs and validate every 2 epoch

Training record and history is saved in history variable

history = network.fit(train_db, epochs=5, validation_data=val_db,

validation_freq=2)

train_db can be a tf.data.Dataset object or a Numpy array. The Epochs

parameter specifies the number of Epochs for training iterations. The

validation_data parameter specifies the dataset used for validation, and

the validation frequency is controlled by validation_freq.

The preceding code can achieve the network training and validation

functions. The fit function will return the history of the training process

data records, where history.history is a dictionary object, including the loss

of the training process, evaluation metrics, and other records, such as:

In [4]: history.history # print training record

Out[4]:

{'loss': [0.31980024444262184, # training loss

 0.1123824894875288,

 0.07620834542314212,

 0.05487803366283576,

 0.041726120284820596], # training accuracy

Chapter 8 Keras advanCed apI

292

'accuracy': [0.904, 0.96638334, 0.97678334, 0.9830833,

0.9870667],

 'val_loss': [0.09901347314302303, 0.09504951824009701],

validation loss

 'val_accuracy': [0.9688, 0.9703]} # validation accuracy

The operation of the fit() function represents the training process of

the network, so it will consume considerable training time and return after

the training is completed. The historical data generated during the training

can be obtained through the return value object. It can be seen that the

code implemented through the Compile&Fit method is very concise and

efficient, which greatly reduces the development time. However, because

the interface is very high level, the flexibility is also reduced, and it is up to

the user to decide whether to use it.

8.2.3 Model Testing
The model class can not only easily complete the network configuration,

training, and validation, but also is very convenient for prediction and

testing. We will elaborate on the difference between validation and

testing in the chapter of overfitting. Here, validation and testing can be

understood as a way of model evaluation.

The Model.predict(x) method can complete the model prediction, for

example:

Load one batch of test dataset

x,y = next(iter(db_test))

print('predict x:', x.shape) # print the batch shape

out = network.predict(x) # prediction

print(out)

Chapter 8 Keras advanCed apI

293

where the out is the output of the network. Through the preceding

code, the trained model can be used to predict the label information of

new samples.

If you simply need to test the performance of the model, you can use

Model.evaluate(db) to test all the samples on the db dataset and print out

the performance indicators, for example:

network.evaluate(db_test)

8.3 Model Saving and Loading
After the model training is completed, the model needs to be saved to a file

system to facilitate subsequent model testing and deployment. In fact, it is

also a good habit to save the model state during training, which is especially

important for training large-scale networks. Generally, a large- scale

network requires several days or even weeks of training. Once the training

process is interrupted or an accident occurs, the previous training progress

will be lost. If the model state can be saved to the file system intermittently,

even if an accident such as a downtime occurs, it can be recovered from the

latest network state file, thereby avoiding wasting a lot of training time and

computing resources. Therefore, the preservation and loading of the model

is very important.

In Keras, there are three commonly used methods for saving and

loading models.

8.3.1 Tensor Method
The state of the network is mainly reflected in the structure of the network

and tensor data within the network layer. Therefore, under the condition

of having the source file of the network structure, it is the most lightweight

way to directly save the network tensor parameters to the file system.

Chapter 8 Keras advanCed apI

294

Taking the MNIST handwritten digital picture recognition model as an

example, the current network parameters can be saved by calling the

Model.save_weights(path) method. The code is as follows:

network.save_weights('weights.ckpt') # Save tensor data of

the model

The preceding code saves the network model to the weights.ckpt file.

When needed, first we create a network object, and then call the load_

weights(path) method of the network object to load the tensor value saved

in the specified model file to the current network parameters, for example:

Save tensor data of the model

network.save_weights('weights.ckpt')

print('saved weights.')

del network # delete network object

Create similar network

network = Sequential([layers.Dense(256, activation='relu'),

 layers.Dense(128, activation='relu'),

 layers.Dense(64, activation='relu'),

 layers.Dense(32, activation='relu'),

 layers.Dense(10)])

network.compile(optimizer=optimizers.Adam(lr=0.01),

 loss=tf.losses.CategoricalCrossentropy(from_

logits=True),

 metrics=['accuracy']

)

Load weights from file

network.load_weights('weights.ckpt')

print('loaded weights!')

This method of saving and loading the network is the most lightweight.

The file only saves the values of the tensor parameters, and there are

no other additional structural parameters. But it needs to use the same

Chapter 8 Keras advanCed apI

295

network structure to be able to restore the network state correctly, so it is

generally used in the case of having network source files.

8.3.2 Network Method
Let’s introduce a method that does not require network source files

and only needs model parameter files to recover the network model.

The model structure and model parameters can be saved to the path

file through the Model.save(path) function, and the network structure

and network parameters can be restored through keras.models.load_

model(path) without the need for network source files .

First, save the MNIST handwritten digital picture recognition model to

a file, and delete the network object:

Save model and parameters to a file

network.save('model.h5')

print('saved total model.')

del network # Delete the network

The structure and state of the network can be recovered through the

model.h5 file, and there is no need to create network objects in advance.

The code is as follows:

Recover the model and parameters from a file

network = keras.models.load_model('model.h5')

As you can see, in addition to storing model parameters, the model.

h5 file should also save network structure information. You can directly

recover the network object from the file without creating a model in

advance.

Chapter 8 Keras advanCed apI

296

8.3.3 SavedModel method
TensorFlow is favored by the industry, not only because of the excellent

neural network layer API support, but also because it has powerful

ecosystem, including mobile and web support. When the model needs

to be deployed to other platforms, the SavedModel method proposed by

TensorFlow is platform-independent.

By tf.saved_model.save(network, path), the model can be saved to the

path directory as follows:

Save model and parameters to a file

tf.saved_model.save(network, 'model-savedmodel')

print('saving savedmodel.')

del network # Delete network object

The following network files appear in the file system model-

savedmodel directory, as shown in Figure 8-1:

Figure 8-1. SavedModel method directory

Users don’t need to care about the file saving format, they only need to

restore the model object through the tf.saved_model.load function. After

recovering the model instance, we complete the calculation of the test

accuracy rate and achieve the following:

print('load savedmodel from file.')

Recover network and parameter from files

network = tf.saved_model.load('model-savedmodel')

Accuracy metrics

acc_meter = metrics.CategoricalAccuracy()

Chapter 8 Keras advanCed apI

297

for x,y in ds_val: # Loop through test dataset

 pred = network(x) # Forward calculation

 acc_meter.update_state(y_true=y, y_pred=pred)

Update stats

Print accuracy

print("Test Accuracy:%f" % acc_meter.result())

8.4 Custom Network
Although Keras provides many common network layer classes, the

network used for deep learning are far more than that. Researchers

generally implement relatively new network layers on their own.

Therefore, it is very important to master the custom network layer and the

implementation of the network.

For the network layer that needs to create customized logic, it can

be implemented through a custom class. When creating a customized

network layer class, you need to inherit from the layers.Layer base class.

When creating a custom network class, you need to inherit from the keras.

Model base class, so the custom class created in this way can easily use the

Layer/Model base class. The parameter management and other functions

provided by the class can also be used interactively with other standard

network layer classes.

8.4.1 Custom Network Layer
For a custom network layer, we at least need to implement the

initialization (__init__) method and the forward propagation logic. Let’s

take a specific custom network layer as an example, assuming that a fully

connected layer without bias vectors is needed, that is, bias is 0, and the

fixed activation function is ReLU. Although this can be created through the

standard dense layer, we still explain how to implement a custom network

layer by implementing this “special” network layer class.

Chapter 8 Keras advanCed apI

298

First, create a class and inherit from the base layer class. Create an

initialization method, and call the initialization function of the parent

class. Because it is a fully connected layer, two parameters need to be set:

the length of the input feature inp_dim and the length of the output feature

outp_dim, and the shape size is created by self.add_variable(name, shape).

The name tensor W is set to be optimized.

class MyDense(layers.Layer):

 # Custom layer

 def __init__(self, inp_dim, outp_dim):

 super(MyDense, self).__init__()

 # Create weight tensor and set to be trainable

 self.kernel = self.add_variable('w', [inp_dim,

outp_dim], trainable=True)

It should be noted that self.add_variable will return a Python reference

to the tensor W, and the variable name is maintained internally by

TensorFlow and is used less often. We instantiate the MyDense class and

view its parameter list, for example:

In [5]: net = MyDense(4,3) # Input dimension is 4 and output

dimension is 3.

net.variables,net.trainable_variables # Check the trainable

parameters

Out[5]:

All parameters

([<tf.Variable 'w:0' shape=(4, 3) dtype=float32, numpy=...

Trainable parameters

 [<tf.Variable 'w:0' shape=(4, 3) dtype=float32, numpy=...

You can see that the tensor W is automatically included in the

parameter list.

Chapter 8 Keras advanCed apI

299

By modifying to self.kernel = self.add_variable(‘w’, [inp_dim, outp_

dim], trainable = False), we can set the tensor W not to be trainable and

then observe the management state of the tensor:

([<tf.Variable 'w:0' shape=(4, 3) dtype=float32, numpy=...],

All parameters

[])# Trainable parameters

As you can see, the tensor is not managed by trainable_variables at

this time. In addition, class member variables created as tf.Variable in class

initialization are also automatically included in tensor management, for

example:

 self.kernel = tf.Variable(tf.random.normal([inp_dim,

outp_dim]), trainable=False)

The list of managed tensors is printed out as follows:

All parameters

([<tf.Variable 'Variable:0' shape=(4, 3) dtype=float32, numpy=...],

[])# Trainable parameters

After the initialization of the custom class, we will design the forward

calculation logic. For this example, only the matrix operation O = X @ W

needs to be completed and the fixed ReLU activation function can be used.

The code is as follows:

 def call(self, inputs, training=None):

 # Forward calculation

 # X@W

 out = inputs @ self.kernel

 # Run activation function

 out = tf.nn.relu(out)

 return out

Chapter 8 Keras advanCed apI

300

As aforementioned, the forward calculation logic is implemented

in the call(inputs, training = None) function, where inputs parameter

represents input and is passed in by the user. The training parameter is

used to specify the state of the model: True means training mode and False

indicates testing mode, and default value is None, which is the test mode.

Since the training and test modes of the fully connected layer are logically

consistent, no additional processing is required here. For the network layer

whose test and training modes are inconsistent, the logic to be executed

needs to be designed according to the training parameters.

8.4.2 Customized Network
After completing the custom fully connected layer class implementation,

we created the MNIST handwritten digital picture model based on the

“unbiased fully connected layer” described previously.

The custom network class can be easily encapsulated into a network

model through the Sequential container like other standard classes:

network = Sequential([MyDense(784, 256), # Use custom layer

 MyDense(256, 128),

 MyDense(128, 64),

 MyDense(64, 32),

 MyDense(32, 10)])

network.build(input_shape=(None, 28*28))

network.summary()

It can be seen that by stacking our custom network layer classes, a

five- layer fully connected layer network can also be realized. Each layer of

the fully connected layer has no bias tensor, and the activation function

uses the ReLU function.

The Sequential container is suitable for a network model in which

data propagates in order from the first layer to the second layer, and then

from the second layer to the third layer, and propagates in this manner. For

Chapter 8 Keras advanCed apI

301

complex network structures, for example, the input of the third layer is not

only the output of the second layer, but also the output of the first layer.

At this time, it is more flexible to use a customized network. First, create a

class that inherits from the model base class, and then respectively create

the corresponding network layer object as follows:

class MyModel(keras.Model):

 # Custom network class

 def __init__(self):

 super(MyModel, self).__init__()

 # Create the network

 self.fc1 = MyDense(28*28, 256)

 self.fc2 = MyDense(256, 128)

 self.fc3 = MyDense(128, 64)

 self.fc4 = MyDense(64, 32)

 self.fc5 = MyDense(32, 10)

Then implement the forward operation logic of the custom network as

follows:

 def call(self, inputs, training=None):

 # Forward calculation

 x = self.fc1(inputs)

 x = self.fc2(x)

 x = self.fc3(x)

 x = self.fc4(x)

 x = self.fc5(x)

 return x

This example can be implemented directly using the Sequential

container method. But the forward calculation logic of the customized

network can be freely defined and more general. We will see the

superiority of the customized network in the chapter of convolutional

neural networks.

Chapter 8 Keras advanCed apI

302

8.5 Model Zoo
For commonly used network models, such as ResNet and VGG, you do not

need to manually create them. They can be implemented directly with the

keras.applications submodule with a line of code. At the same time, you

can also load pre-trained models by setting the weights parameters.

8.5.1 Load Model
Taking the ResNet50 network model as an example, the network after

removing the last layer of ResNet50 is generally used as the feature

extraction subnetwork for the new task, that is, using the pre-trained

network parameters on the ImageNet dataset to initialize and appending

one fully connected layer corresponding to the number of data categories

according to the category of the task, so that new tasks can be learned

quickly and efficiently on the basis of the pre-trained network.

First, use the Keras model zoo to load the pre-trained ResNet50

network by ImageNet. The code is as follows:

Load ImageNet pre-trained network. Exclude the last layer.

resnet = keras.applications.ResNet50(weights='imagenet',inclu

de_top=False)

resnet.summary()

test the output

x = tf.random.normal([4,224,224,3])

out = resnet(x) # get output

out.shape

The preceding code automatically downloads the model structure and

pre-trained network parameters on the ImageNet dataset from the server.

By setting the include_top parameter to False, we choose to remove the

last layer of ResNet50. The size of the output feature map of the network

Chapter 8 Keras advanCed apI

303

is [b, 7, 7, 2048]. For a specific task, we need to set a custom number of

output nodes. Taking 100 classification tasks as an example, we rebuild a

new network based on ResNet50. Create a new pooling layer (the pooling

layer here can be understood as a function of downsampling in high and

wide dimensions) and reduce the features dimension from [b, 7, 7, 2048] to

[b, 2048] as in the following.

In [6]:

New pooling layer

global_average_layer = layers.GlobalAveragePooling2D()

Use last layer's output as this layer's input

x = tf.random.normal([4,7,7,2048])

Use pooling layer to reduce dimension from [4,7,7,2048] to

[4,1,1,2048],and squeeze to [4,2048]

out = global_average_layer(x)

print(out.shape)

Out[6]: (4, 2048)

Finally, create a new fully connected layer and set the number of

output nodes to 100. The code is as follows:

In [7]:

New fully connected layer

fc = layers.Dense(100)

Use last layer's output as this layer's input

x = tf.random.normal([4,2048])

out = fc(x)

print(out.shape)

Out[7]: (4, 100)

Chapter 8 Keras advanCed apI

304

After creating a pre-trained ResNet50 feature sub-network, a new

pooling layer, and a fully connected layer, we re-use the Sequential

container to encapsulate a new network:

Build a new network using previous layers

mynet = Sequential([resnet, global_average_layer, fc])

mynet.summary()

You can see the structure information of the new network model is:

Layer (type) Output

Shape Param Number

===

resnet50 (Model) (None, None, None, 2048) 23587712

global_average_pooling2d (Gl (None, 2048) 0

dense_4 (Dense) (None, 100) 204900

===

Total params: 23,792,612

Trainable params: 23,739,492

Non-trainable params: 53,120

By setting resnet.trainable = False, you can choose to freeze the

network parameters of the ResNet part and only train the newly created

network layer, so that the network model training can be completed

quickly and efficiently. Of course, you can also update all the parameters of

the network.

Chapter 8 Keras advanCed apI

305

8.6 Metrics
In the training process of the network, metrics such as accuracy and recall

rate are often required. Keras provides some commonly used metrics in

the keras.metrics module.

There are four main steps in the use of Keras metrics: creating a new

metrics container, writing data, reading statistical data, and clearing the

measuring container.

8.6.1 Create a Metrics Container
In the keras.metrics module, it provides many commonly used metrics

classes, such as mean, accuracy, and cosine similarity. In the following, we

take the mean error as an example.

loss_meter = metrics.Mean()

8.6.2 Write Data
New data can be written through the update_state function, and the metric

will record and process the sampled data according to its own logic. For

example, the loss value is collected once at the end of each step:

 # Record the sampled data, and convert the tensor to an

ordinary value through the float() function

 loss_meter.update_state(float(loss))

After the preceding sampling code is placed at the end of each batch

operation, the meter will automatically calculate the average value based

on the sampled data.

Chapter 8 Keras advanCed apI

306

8.6.3 Read Statistical Data
After sampling multiple times of data, you can choose to call the

measurer’s result() function to obtain statistical values. For example, the

interval statistical loss average is as follows:

 # Print the average loss during the statistical period

 print(step, 'loss:', loss_meter.result())

8.6.4 Clear the Container
Since the metric container will record all historical data, it is necessary to

clear the historical status when starting a new round of statistics. It can be

realized by reset_states() function. For example, after reading the average

error every time, clear the statistical information to start the next round of

statistics as follows:

 if step % 100 == 0:

 # Print the average loss

 print(step, 'loss:', loss_meter.result())

 loss_meter.reset_states() # reset the state

8.6.5 Hands-On Accuracy Metric
According to the method of using the metric tool, we use the accuracy

metric to count the accuracy rate during the training process. First, create a

new accuracy measuring container as follows:

acc_meter = metrics.Accuracy()

After each forward calculation is completed, record the training

accuracy rate. It should be noted that the parameters of the update_state

function of the accuracy class are the predicted value and the true

Chapter 8 Keras advanCed apI

307

value, not the accuracy rate of the current batch. We write the label and

prediction result of the current batch sample into the metric as follows:

 # [b, 784] => [b, 10, network output

 out = network(x)

 # [b, 10] => [b], feed into argmax()

 pred = tf.argmax(out, axis=1)

 pred = tf.cast(pred, dtype=tf.int32)

 # record the accuracy

 acc_meter.update_state(y, pred)

After counting the predicted values of all batches in the test set, print

the average accuracy of the statistics and clear the metric container. The

code is as follows:

 print(step, 'Evaluate Acc:', acc_meter.result().

numpy())

 acc_meter.reset_states() # reset metric

8.7 Visualization
In the process of network training, it is very important to improve the

development efficiency and monitor the training progress of the network

through the web terminal and visualize the training results. TensorFlow

provides a special visualization tool called TensorBoard, which writes

monitoring data to the file system through TensorFlow and uses the web

backend to monitor the corresponding file directory, thus allowing users to

view network monitoring data.

Chapter 8 Keras advanCed apI

308

The use of TensorBoard requires cooperation between the model

code and the browser. Before using TensorBoard, you need to install the

TensorBoard library. The installation command is as follows:

Install TensorBoard

pip install tensorboard

Next, we introduce how to use the TensorBoard tool to monitor the

progress of network training in the model side and the browser side.

8.7.1 Model Side
On the model side, you need to create a summary class that writes

monitoring data when needed. First, create an instance of the monitoring

object class through tf.summary.create_file_writer, and specify the

directory where the monitoring data is written. The code is as follows:

Create a monitoring class, the monitoring data will be

written to the log_dir directory

summary_writer = tf.summary.create_file_writer(log_dir)

We take monitoring error and visual image data as examples to

introduce how to write monitoring data. After the forward calculation is

completed, for the scalar data such as error, we record the monitoring

data through the tf.summary.scalar function and specify the time stamp

step parameter. The step parameter here is similar to the time scale

information corresponding to each data and can also be understood as the

coordinates of the data curve, so it should not be repeated. Each type of

data is distinguished by the name of the string, and similar data needs to

be written to the database with the same name. For example:

 with summary_writer.as_default():

 # write the current loss to train-loss database

 tf.summary.scalar('train-loss', float(loss),

step=step)

Chapter 8 Keras advanCed apI

309

TensorBoard distinguishes different types of monitoring data by string

ID, so for error data, we named it “train-loss”; other types of data cannot be

written to prevent data pollution.

For picture-type data, you can write monitoring picture data through

the tf.summary.image function. For example, during training, the sample

image can be visualized by the tf.summary.image function. Since the

tensor in TensorFlow generally contains multiple samples, the tf.summary.

image function accepts tensor data of multiple pictures and sets the max_

outputs parameter to select the maximum number of displayed pictures.

The code is as follows:

 with summary_writer.as_default():

 # log accuracy

 tf.summary.scalar('test-acc', float(total_correct/

total), step=step)

 # log images

 tf.summary.image("val-onebyone-images:",

val_images, max_outputs=9, step=step)

Run the model program, and the corresponding data will be written to

the specified file directory in real time.

8.7.2 Browser Side
When running the program, the monitoring data is written to the specified

file directory. If you want to remotely view and visualize these data in real

time, you also need to use a browser and a web backend. The first step is

to open the web backend. Run command “tensorboard --logdir path” in

terminal and specify the file directory path monitored by the web backend,

then you can open the web backend monitoring process, as shown in

Figure 8-2:

Chapter 8 Keras advanCed apI

310

Figure 8-2. Open web server

Open a browser and enter the URL http://localhost: 6006 (you can

also remotely access through the IP address, the specific port number

may change depending on the command prompt) to monitor the progress

of the network training. TensorBoard can display multiple monitoring

records at the same time. On the left side of the monitoring page, you can

select monitoring records, as shown in Figure 8-3:

Figure 8-3. Snapshot of TensorBoard

On the upper end of the monitoring page, you can choose different

types of data monitoring pages, such as scalar monitoring page SCALARS

and picture visualization page IMAGES. For this example, we need to

monitor the training error and test accuracy rate for scalar data, and its

curve can be viewed on the SCALARS page, as shown in Figure 8-4 and

Figure 8-5.

Chapter 8 Keras advanCed apI

311

Figure 8-4. Training loss curve

Figure 8-5. Training accuracy curve

On the IMAGES page, you can view images at each step as shown in

Figure 8-6.

Chapter 8 Keras advanCed apI

312

Figure 8-6. Pictures from each step

In addition to monitoring scalar data and image data, TensorBoard

also supports functions such as viewing histogram distribution of tensor

data through tf.summary.histogram, and printing text information through

tf.summary.text. For example:

 with summary_writer.as_default():

 tf.summary.scalar('train-loss', float(loss),

step=step)

 tf.summary.histogram('y-hist',y, step=step)

 tf.summary.text('loss-text',str(float(loss)))

You can view the histogram of the tensor on the HISTOGRAMS page,

as shown in Figure 8-7, and you can view the text information on the TEXT

page, as shown in Figure 8-8.

Figure 8-7. TensorBoard histogram

Chapter 8 Keras advanCed apI

313

Figure 8-8. TensorBoard text visualization

In fact, in addition to TensorBoard, the Visdom tool developed by

Facebook can also facilitate the visualization of data, and supports a

variety of visualization methods in real time, and is more convenient to

use. Figure 8-9 shows the visualization of Visdom data. Visdom can directly

accept PyTorch’s tensor-type data but cannot directly accept TensorFlow’s

tensor-type data. It needs to be converted to a Numpy array. For readers

pursuing rich visualization methods and real-time monitoring, Visdom

may be a better choice.

Chapter 8 Keras advanCed apI

314

Figure 8-9. Visdom snapshot1

8.8 Summary
In this chapter, we introduced the usage of Keras advanced API which

can save us a lot of time during network development. We can use the

container method to construct networks easily. Training and testing a

neural network can be quickly implemented using the Keras built-in

functions. After the network is trained and tested, we can also save the

trained model and reload the model in the future using Keras. Besides

common network layers, Keras also provides functionalities to build

customized network layers for different use cases. We also discussed

how to load popular network models using Keras as well as setting up

evaluation metrics and visualizing model performance using TensorBoard.

The tools we learned through this chapter can help us increase network

development efficiency significantly.

1 Image source: https://github.com/facebookresearch/visdom

Chapter 8 Keras advanCed apI

https://github.com/facebookresearch/visdom

315© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_9

CHAPTER 9

Overfitting
Everything should be made as simple as possible, but not
simpler.

—Albert Einstein

The main purpose of machine learning is to learn the real model of the

data from the training set, so that it can perform well on the unseen

test set. We call this the generalization ability. Generally speaking, the

training set and the test set are sampled from the same data distribution.

The sampled samples are independent of each other, but come from the

same distribution. We call this assumption the independent identical

distribution (i.i.d.) assumption.

The expressive power of the model has been mentioned earlier, also

known as the capacity of the model. When the model’s expressive power

is weak, such as a single linear layer, it can only learn a linear model

and cannot approximate the nonlinear model well. When the model’s

expressive power is too strong, it may be possible to reduce the noise

modalities of the training set, but leads to poor performance on the test

set (generalization ability is weak). Therefore, for different tasks, designing

a model with appropriate capacity can achieve better generalization

performance.

https://doi.org/10.1007/978-1-4842-7915-1_9#DOI

316

9.1 Model Capacity
In layman’s terms, the capacity or expressive capacity of a model refers

to the model’s ability to fit complex functions. An indicator reflecting the

capacity of the model is the size of the hypothesis space of the model, that

is, the size of the set of functions that the model can represent. The larger

and more complete the hypothesis space, the more likely it is to search

from the hypothesis space for a function that approximates the real model.

Conversely, if the hypothesis space is very limited, it is difficult to find a

function that approximates the real model.

Consider sampling from real distribution:

p x y y x xdata � � � � � � � �� �, | , ,sin []5 5

A small number of points are sampled from the real distribution to

form the training set, which contains the observation error ϵ, as shown

by the small dots in Figure 9-1. If we only search the model space of all

first-degree polynomials and set the bias to 0, that is, y = ax, as shown by

the straight line of the first-degree polynomial in Figure 9-1. Then it is

difficult to find a straight line that closely approximates the distribution

of real data. Slightly increase the hypothesis space so that the hypothesis

space is all third-degree polynomial functions, that is, y = ax3 + bx2 + cx, it is

obvious that this hypothesis space is obviously larger than the hypothesis

space of the first-degree polynomial, we can find a curve (as shown in

Figure 9-1) that reflects the relationship of the data better than the first-

order polynomial model, but it is still not good enough. Increase the

hypothesis space again so that the searchable function is a polynomial

of degree 5, that is, y = ax5 + bx4 + cx3 + dx2 + ex. In this hypothesis space,

a better function can be searched, as shown by the polynomial of degree

5 in Figure 9-1. After increasing the hypothesis space again, as shown in

the polynomial curves of 7, 9, 11, 13, 15, and 17 in Figure 9-1, the larger

the hypothesis space of the function, the more likely it is to find a function

model that better approximates the real distribution.

Chapter 9 Overfitting

317

Figure 9-1. Polynomial capability

However, an excessively large hypothesis space will undoubtedly

increase the search difficulty and computational cost. In fact, under the

constraints of limited computing resources, a larger hypothesis space may

not necessarily be able to search for a better model. Due to the existence of

observation errors, a larger hypothesis space may contain a larger number

of functions with too strong expression ability, which can also learn the

observation errors of the training samples, thus hurting the generalization

ability of the model. Choosing the right model capacity is a difficult problem.

9.2 Overfitting and Underfitting
Because the distribution of real data is often unknown and complicated,

it is impossible to deduce the type of distribution function and related

parameters. Therefore, when choosing the capacity of the learning model,

people often choose a slightly larger model capacity based on empirical

values. However, when the capacity of the model is too large, it may appear

to perform better on the training set, but perform worse on the test set,

as shown in Figure 9-2. When the capacity of the model is too small, it

may have poor performance in both the training set and the testing set as

shown in the area to the left of the red vertical line in Figure 9-2.

Chapter 9 Overfitting

318

Figure 9-2. The relation between model capacity and error [1]

When the capacity of the model is too large, in addition to learning

the modalities of the training set data, the network model also learns

additional observation errors, resulting in the learned model performing

better on the training set, but poor in unseen samples, that is, the

generalization ability of the model is weak. We call this phenomenon

overfitting. When the capacity of the model is too small, the model

cannot learn the modalities of the training set data well, resulting in poor

performance on both the training set and the unseen samples. We call this

phenomenon underfitting.

Here is a simple example to explain the relationship between the

model’s capacity and the data distribution. Figure 9-3 plots the distribution

of certain data. It can be roughly speculated that the data may belong

to a certain degree 2 polynomial distribution. If we use a simple linear

function to learn, we will find it difficult to learn a better function, resulting

in the underfitting phenomenon that the training set and the test set do

not perform well, as shown in Figure 9-3 (a). However, if you use a more

complex function model to learn, it is possible that the learned function

will excessively “fit” the training set samples, but resulting in poor

performance on the test set, that is, overfitting, as shown in Figure 9-3 (c).

Only when the capacity of the learned model and the real model roughly

match, the model can have a good generalization ability, as shown in

Figure 9-3 (b).

Chapter 9 Overfitting

319

(a) Underfitting (b) Matching capacity (c) Overfitting

Figure 9-3. Overfitting and underfitting

Consider the distribution pdata of data points (x, y), where

 y x� � �� �sin 1 2. �

During sampling, random Gaussian noise is added to obtain a dataset

of 120 points, as shown in Figure 9-4. The curve in the figure is the real

model function, the black round points are the training samples, and the

green matrix points are the test samples.

Figure 9-4. Dataset and the real function

Chapter 9 Overfitting

320

In the case of a known real model, it is natural to design a function

space with appropriate capacity to obtain a good learning model. As

shown in Figure 9-5, we assume that the model is a second-degree

polynomial model, and the learned function curve is approximating the

real model. However, in actual scenarios, the real model is often unknown,

so if the design hypothesis space is too small, it will be impossible to search

for a suitable learning model. If the design hypothesis space is too large, it

will result in poor model generalization ability.

Figure 9-5. Appropriate model capability

So how to choose the capacity of the model? Statistical learning theory

provides us with some ideas. The VC dimension (Vapnik-Chervonenkis

dimension) is a widely used method to measure the capacity of functions.

Although these methods provide a certain degree of theoretical guarantee

for machine learning, these methods are rarely applied to deep learning.

Part of the reason is that the neural network is too complicated to

determine the VC dimension of the mathematical model behind the

network structure.

Chapter 9 Overfitting

321

Although statistical learning theory is difficult to give the minimum

capacity required by a neural network, it can be used to guide the design

and training of a neural network based on Occam’s razor. Occam’s

razor principle was a rule of solution proposed by William of Occam, a

fourteenth-century logician and Franciscan monk of the Franciscans.

He stated in his book that “Don’t waste more things and do things that

you can do well with less.” In other words, if the two-layer neural network

structure can express the real model well, then the three-layer neural

network can also express well, but we should prefer to use the simpler two-

layer neural network because its parameters’ amount is smaller, it is easier

to train, and it is easier to get a good generalization error through fewer

training samples.

9.2.1 Underfitting
Let us consider the phenomenon of underfitting. As shown in Figure 9-6,

black dots and green rectangles are independently sampled from the

distribution of a parabolic function. Because we already know the real

model, if we use a linear function with lower capacity than the real model

to fit the data, it is difficult for the model to perform well. The specific

performance is that the learned linear model has a larger error (such as

the mean square error) on the training set, and the error on the test set is

also larger.

Chapter 9 Overfitting

322

Figure 9-6. A typical underfitting model

When we find that the current model has maintained a high error

on the training set, it is difficult to optimize and reduce the error, and it

also performs poorly on the test set, we can consider whether there is a

phenomenon of underfitting. The problem of underfitting can be solved

by increasing the number of layers of the neural network or increasing

the size of the intermediate dimension. However, because modern deep

neural network models can easily reach deeper layers, the capacity of the

model used for learning is generally sufficient. In real applications, more

overfitting phenomena occur.

9.2.2 Overfitting
Consider the same problem, the black dots of the training set and the

green rectangles of the test machine are independently sampled from a

parabolic model with the same distribution. When we set the hypothesis

space of the model to 25th polynomial, it is much larger than the

functional capacity of the real model. It is found that the learned model is

likely to overfit the training sample, resulting in the error of the learning

model on the training sample is very small, even smaller than the error

Chapter 9 Overfitting

323

of the real model on the training set. But for the test sample, the model

performance drops sharply, and the generalization ability is very poor, as

shown in Figure 9-7.

Figure 9-7. A typical overfitting model

The phenomenon of overfitting in modern deep neural networks is

very easy to occur, mainly because the neural network has a very strong

expressive ability and the number of samples in the training set is not

enough, it is easy to appear that the capacity of the neural network is too

large. So how to effectively detect and reduce overfitting?

Next, we will introduce a series of methods to help detect and suppress

overfitting.

9.3 Dataset Division
Earlier we introduced that the dataset needs to be divided into a training

set and a test set. In order to select model hyperparameters and detect

overfitting, it is generally necessary to split the original training set into

a new training set and a validation set, that is, the dataset needs to be

divided into three subsets: training set, validation set, and test set.

Chapter 9 Overfitting

324

9.3.1 Validation Set and Hyperparameters
The difference between the training set and the test set has been

introduced earlier. The training set Dtrain is used to train model parameters,

and the test set Dtest is used to test the generalization ability of the model.

The samples in the test set cannot participate in the model training,

preventing the model from “memorizing” the characteristics of the data

and damaging the generalization ability of the model. Both the training

set and the test set are sampled from the same data distribution. For

example, the MNIST handwritten digital picture set has a total of 70,000

sample pictures, of which 60,000 pictures are used as the training set, and

the remaining 10,000 pictures are used for the test set. The separation

ratio of the training set and the test set can be defined by the user. For

example, 80% of the data is used for training, and the remaining 20% is

used for testing. When the size of the data set is small, in order to test the

generalization ability of the model more accurately, the proportion of

the test set can be increased appropriately. Figure 9-8 demonstrates the

division of the MNIST handwritten digital picture collection: 80% is used

for training, and the remaining 20% is used for testing.

Figure 9-8. Training and testing dataset division

Chapter 9 Overfitting

325

However, it is not enough to divide the dataset into only the training set

and the test set. Because the performance of the test set cannot be used as

feedback for model training, we need to be able to pick out more suitable

model hyperparameters during model training to determine whether

the model is overfitting. Therefore, we need to divide the training set into

training set and validation set, as shown in Figure 9-9. The divided training

set has the same function as the original training set and is used to train

the parameters of the model, while the validation set is used to select the

hyperparameters of the model. Its functions include:

• Adjust the learning rate, weight decay coefficient,

training times, etc. according to the performance of the

validation set.

• Readjust the network topology according to the

performance of the validation set.

• According to the performance of the validation set,

determine whether it is overfitting or underfitting.

Figure 9-9. Training, validation, and test dataset

Similar to the division of the training set-test set, the training set,

validation set, and test set can be divided according to a custom ratio,

such as the common 60%-20%-20% division. Figure 9-9 shows the MNIST

handwriting dataset schematic diagram of the division.

Chapter 9 Overfitting

326

The difference between the validation set and the test set is that the

algorithm designer can adjust the settings of various hyperparameters of

the model according to the performance of the validation set to improve

the generalization ability of the model, but the performance of the test set

cannot be used to adjust the model. Otherwise, the functions of the test set

and the validation set will overlap, so the performance on the test set will

not represent the generalization ability of the model.

In fact, some developers will incorrectly use the test set to select

the best model, and then use it as a model generalization performance

report. For those cases, the test set is actually the validation set, so the

“generalization performance” reported is essentially the performance on

the validation set, not the real generalization performance. In order to

prevent this kind of “cheating,” you can choose to generate multiple test

sets, so that even if the developer uses one of the test sets to select the

model, we can also use other test sets to evaluate the model, which is also

commonly used in Kaggle competitions.

9.3.2 Early Stopping
Generally, we call one batch updating in the training set one Step, and

iterating through all the samples in the training set once is called an Epoch.

The validation set can be used after several Steps or Epochs to calculate

the validation performance of the model. If the validation steps are too

frequent, it can accurately observe the training status of the model, but it

also introduces additional computation costs. It is generally recommended

to perform a validation operation after several Epochs.

Taking the classification task as an example, the training performance

indicators include training error, training accuracy, etc. Correspondingly,

there are also validation error and validation accuracy during validation

process, and test error and test accuracy during testing process. The

training accuracy and validation accuracy can roughly infer whether the

model is overfitting and underfitting. If the training error of the model is

Chapter 9 Overfitting

327

low and the training accuracy is high, but the validation error is high and

the validation accuracy rate is low, overfitting may occur. If the errors on

both the training set and the validation set are high and the accuracy is

low, then underfitting may occur.

When overfitting is observed, the capacity of the network model can

be redesigned, such as reducing the number of layers of the network,

reducing the number of parameters of the network, adding regularization

methods, and adding constraints on the hypothesis space, so that the

actual capacity of the model reduces to solve the overfitting phenomenon.

When the underfitting phenomenon is observed, you can try to increase

the capacity of the network, such as deepening the number of layers of the

network, increasing the number of network parameters, and trying more

complicated network structures.

In fact, since the actual capacity of the network can change as the

training progresses, even with the same network settings, different

overfitting and underfitting conditions may be observed. Figure 9-10

shows a typical training curve for classification problems. The red curve

is the training accuracy, and the blue curve is the test accuracy. As we can

see from the figure, as the training progresses in the early stage of training,

the training accuracy and test accuracy of the model show an increasing

trend, and there is no overfitting phenomenon at this time. In the later

stage of training, even with the same network structure, due to the change

in the actual capacity of the model, we observed the phenomenon of

overfitting. That is, the training accuracy continues to improve, but the

generalization ability becomes weaker (the test accuracy decreases).

This means that for neural networks, even if the network

hyperparameters amount remains unchanged (i.e., the maximum capacity

of the network is fixed), the model may still appear to be overfitting,

because the effective capacity of the neural network is closely related to

the state of the network parameters. The effective capacity of the neural

network can be very large, and the effective capacity can also be reduced

by means of sparse parameters and regularization. In the early and middle

Chapter 9 Overfitting

328

stages of training, the phenomenon of overfitting did not appear. As the

number of training Epochs increased, the overfitting became more and

more serious. In Figure 9-10, the vertical dotted line is in the best state

of the network, there is no obvious overfitting phenomenon, and the

generalization ability of the network is the best.

So how to choose the right Epoch to stop training early (early

stopping) to avoid overfitting? We can predict the possible position of the

most suitable Epoch by observing the change of the validation metric.

Specifically, for the classification problem, we can record the validation

accuracy of the model and monitor its change. When it is found that

the validation accuracy has not decreased for successive Epochs, we

can predict that the most suitable Epoch may have been reached, so we

can stop training. Figure 9-11 plots the curve of training and validation

accuracy with training Epoch during a specific training process. It can be

observed that when Epoch is around 30, the model reaches its optimal

state and we can stop training in advance.

Figure 9-10. Training process diagram

Chapter 9 Overfitting

329

Figure 9-11. Training curve example

Algorithm 1 is a pseudo-code that uses an early stop model training

algorithm.

Algorithm 1:Network training with early stopping

Initialize parameter θ
repeat
 for step = 1, …,N do
 random select Batch {(x, y)}~D train

 θ ← θ − η∇θL(f(x), y)

 end
 if every n th Epoch do
 Calculate validation set {(x, y)}~D val performance
 if validation performance doesn’t increase for certain successive steps do
 save the network and stop training
 end

Chapter 9 Overfitting

330

 do
until training reaches maximum Epoch
Use the saved network to calculate test set {(x, y)}~Dtest performance
Output:Network parameter θ and testing accuracy

9.4 Model Design
The validation set can determine whether the network model is overfitting

or underfitting, which provides a basis for adjusting the capacity of

the network model. For neural networks, the numbers of layers and

parameters of the network are very important reference indicators for

network capacity. By reducing the number of layers and reducing the

size of the network parameters in each layer, the network capacity can be

effectively reduced. Conversely, if the model is found to be underfitting,

we can increase the capacity of the network by increasing the number of

layers and the amount of parameters in each layer.

To demonstrate the effect of the number of network layers on network

capacity, we visualized the decision boundary of a classification task.

Figure 9-12, Figure 9-13, Figure 9-14, and Figure 9-15, respectively,

demonstrate the decision boundary map for training two-category

classification task under different network layers, where the red

rectangular block and the blue circular block, respectively, represent

the two types of samples on the training set. Only adjust the number of

layers of the network while keeping other hyperparameters consistent.

As shown in the figure, you can see that as the number of network layers

increases, the learned model decision boundary is more and more close to

training samples, indicating overfitting. For this task, the two-layer neural

network can obtain good generalization ability. The deeper layer of the

Chapter 9 Overfitting

331

network does not improve the overall model performance. Instead, it can

lead to overfitting, and the generalization ability becomes worse, and the

computation cost is also higher.

Figure 9-12. Two layers

Figure 9-13. Three layers

Chapter 9 Overfitting

332

Figure 9-14. Four layers

Figure 9-15. Six layers

Chapter 9 Overfitting

333

9.5 Regularization
By designing network models with different layers and sizes, the initial

function hypothesis space can be provided for the optimization algorithm, but

the actual capacity of the model can change as the network parameters are

optimized and updated. Take the polynomial function model as an example:

 y x x x xn
n� � � � � � �� � � � � �0 1 2

2
3

3

The capacity of the preceding model can be simply measured

through n. During the training process, if the network parameters βk + 1,

⋯, βn are all 0, then the actual capacity of the network degenerates to

the function capacity of the kth polynomial. Therefore, by limiting the

sparsity of network parameters, the actual capacity of the network can be

constrained.

This constraint is generally achieved by adding additional parameter

sparsity penalties to the loss function. The optimization goal before the

constraint added is:

min L f x y x y Dtrain

� � �� � � ��, ,,

After adding additional constraints to the parameters of the model, the

goal of optimization becomes:

min L f x y x y Dtrain

� � �� �� � � � � � � ��, ,� ,

where Ω(θ) represents the sparsity constraint function on the network

parameters θ. Generally, the sparsity constraint of the parameter θ is

achieved by constraining the L norm of the parameter, that is:

� � �

�
� � ��

i

i l|| ||

where ‖θi‖l represents the l norm of the parameter θi.

Chapter 9 Overfitting

334

In addition to minimizing the original loss function L(x, y), the

new optimization goal also needs to constrain the sparsity Ω(θ) of the

network parameters. The optimization algorithm will reduce the network

parameter sparsity Ω(θ) as much as possible while reducing L(x, y). Here

λ is the weight parameter to balance the importance of L(x, y) and Ω(θ).

Larger λ means that the sparsity of the network is more important; smaller

λ means that the training error of the network is more important. By

selecting the appropriate λ, you can get better training performance, while

ensuring the sparsity of the network, which lead to a good generalization

ability.

Commonly used regularization methods are L0, L1, and L2

regularization.

9.5.1 L0 Regularization
L0 regularization refers to the regularization calculation method using the

L0 norm as the sparsity penalty term Ω(θ), namely:

� � �

�
� � ��

i

i|| ||0

The L0 norm ‖θi‖0 is defined as the number of non-zero elements in

θi. The constraint of
�

�
i

i� || ||0 can force the connection weights in the

network to be mostly 0, thereby reducing the actual amount of network

parameters and network capacity. However, because the L0 norm is not

derivable, gradient descent algorithm cannot be used for optimization. L0

norm is not often used in neural networks.

Chapter 9 Overfitting

335

9.5.2 L1 Regularization
The regularization calculation method using the L1 norm as the sparsity

penalty term Ω(θ) is called L1 regularization, that is:

� � �

�
� � ��

i

i|| ||1

The L1 norm ‖θi‖1 is defined as the sum of the absolute values

of all elements in the tensor θi. L1 regularization is also called Lasso

regularization, which is continuously derivable and widely used in neural

networks.

L1 regularization can be implemented as follows:

Create weights w1,w2

w1 = tf.random.normal([4,3])

w2 = tf.random.normal([4,2])

Calculate L1 regularization term

loss_reg = tf.reduce_sum(tf.math.abs(w1))\

 + tf.reduce_sum(tf.math.abs(w2))

9.5.3 L2 Regularization
The regularization calculation method using the L2 norm as the sparsity

penalty term Ω(θ) is called L2 regularization, that is:

� � �

�
� � ��

i

i|| ||2

The L2 norm ‖θi‖2 is defined as the sum of squares of all elements in

the tensor θi. L2 regularization is also called ridge regularization, which

is continuous and derivable like L1 regularization, and is widely used in

neural networks.

Chapter 9 Overfitting

336

The L2 regularization term is implemented as follows:

Create weights w1,w2

w1 = tf.random.normal([4,3])

w2 = tf.random.normal([4,2])

Calculate L2 regularization term

loss_reg = tf.reduce_sum(tf.square(w1))\

 + tf.reduce_sum(tf.square(w2))

9.5.4 Regularization Effect
Continue to take the crescent-shaped two-class data as an example.

Under the condition that the other hyperparameters such as the network

structure remain unchanged, the L2 regularization term is added to the

loss function, and different regularization hyperparameter λ are used to

obtain regularization effects of different degrees.

After training 500 Epochs, we obtain the classification decision

boundaries of the learning model, as shown in Figure 9-16, Figure 9-17,

Figure 9-18, and Figure 9-19. The distribution represents the classification

effect when the regularization coefficient λ = 0.00001, 0.001, 0.1, and 0.13

is used. It can be seen that as the regularization coefficient increases,

the network penalties for parameter sparsity become larger, thus forcing

the optimization algorithm to search for models that make the network

capacity smaller. When λ = 0.00001, the regularization effect is relatively

weak, and the network is overfitting. However, when在λ = 0.1, the network

has been optimized to the appropriate capacity, and there is no obvious

overfitting or underfitting.

In actual training, it is generally preferred to try smaller regularization

coefficients to observe whether the network is overfitting. Then try to

increase the parameter λ gradually to increase the sparsity of the network

parameters and improve the generalization ability. However, excessively

Chapter 9 Overfitting

337

large λ may cause the network to not converge and need to be adjusted

according to the actual task.

Figure 9-16. Regularization parameter:0.00001

Figure 9-17. Regularization parameter:0.001

Chapter 9 Overfitting

338

Figure 9-18. Regularization parameter:0.1

Figure 9-19. Regularization parameter:0.13

Chapter 9 Overfitting

339

Under different regularization coefficients, we counted the value range

of each connection weight in the network. Consider the weight matrix W

of second layer of the network, whose shape is [256,256], that is, to convert

a vector with an input length of 256 to an output vector of 256. From the

perspective of the weight connection of the fully connected layer, the

weight W include 256 ∙ 256 connection lines. We correspond them to the

XY grids in Figure 9-20, Figure 9-21, Figure 9-22, and Figure 9-23, where

the X axis range is [0,255] and the range of the Y axis is [0,255]. All integer

points of the XY grid respectively represent each position of the weight

tensor W of shape [256,256], and each grid point indicates the weight of the

current connection. From the figure, we can see the influence of different

degrees of regularization constraints on the network weights. When

λ = 0.00001, the effect of regularization is relatively weak, and the weight

values in the network are relatively large, and are mainly distributed in

interval [−1.6088,1.1599]. After increasing the value to λ = 0.13, the network

weight values are constrained in a smaller range [−0.1104,0.0785]. As

shown in Table 9-1, the sparseness of the weights after regularization can

also be observed.

Table 9-1. Weight variation after regularization

λ min(W) max(W) mean(W)

0.00001 -1.6088 1.1599 0.0026

0.001 -0.1393 0.3168 0.0003

0.1 -0.0969 0.0832 0

0.13 -0.1104 0.0785 0

Chapter 9 Overfitting

340

Figure 9-20. Regularization parameter:0.00001

Figure 9-21. Regularization parameter:0.001

Chapter 9 Overfitting

341

Figure 9-22. Regularization parameter:0.1

Figure 9-23. Regularization parameter:0.13

Chapter 9 Overfitting

342

9.6 Dropout
In 2012, Hinton et al. used the dropout method in their paper “Improving

neural networks by preventing co-adaptation of feature detectors” to

improve model performance. Dropout method reduces the number of

parameters of the model that actually participates in the calculation during

each training by randomly disconnecting the neural network. However,

during testing, dropout method will restore all connections to ensure the

best performance during model testing.

Figure 9-24 is a schematic diagram of the connection status of a

fully connected layer network during a certain forward calculation.

Figure 9-24(a) is a standard fully connected neural network. The current

node is connected to all input nodes in the previous layer. In the network

layer to which the dropout function is added, as shown in Figure 9-24(b),

whether each connection is disconnected conforms to a certain preset

probability distribution, such as a Bernoulli distribution with a disconnect

probability Figure 9-24(b) shows a specific sampling result. The dotted line

indicates that the sampling result is a disconnected line, and the solid line

indicates the sampling result is not disconnected.

(a) Fully connected network (b) With dropout

Figure 9-24. Dropout diagram

Chapter 9 Overfitting

343

In TensorFlow, you can implement the dropout function through

the tf.nn.dropout(x, rate) function, where the rate parameter sets the

probability p of disconnection. For example:

Add dropout operation with disconnection rate of 0.5

x = tf.nn.dropout(x, rate=0.5)

You can also use dropout as a network layer and insert a Dropout layer

in the middle of the network. For example:

Add Dropout layer with disconnection rate of 0.5

model.add(layers.Dropout(rate=0.5))

In order to explore the influence of the Dropout layer on network

training, we maintained the hyperparameters such as the number of

network layers unchanged, and observed the impact of dropout on

network training by inserting different numbers of Dropout layers in

the five fully connected layers. As shown in Figure 9-25, Figure 9-26,

Figure 9-27, and Figure 9-28, the distribution draws the decision boundary

effect of the network model without adding Dropout layers, adding one,

two, and four Dropout layers. It can be seen that when the Dropout layer

is not added, the network model has the same result as the previous

observation. With the increase of the Dropout layer, the actual capacity of

the network model during training decreases and the generalization ability

becomes stronger.

Chapter 9 Overfitting

344

Figure 9-25. Without Dropout layer

Figure 9-26. With one Dropout layer

Chapter 9 Overfitting

345

Figure 9-27. With two Dropout layer

Figure 9-28. With four Dropout layer

9.7 Data Augmentation
In addition to the methods described previously, which can effectively

detect and suppress overfitting, increasing the size of the dataset is the

most important way to solve overfitting problem. However, collecting

sample data and labels is often costly. For a limited dataset, the number

Chapter 9 Overfitting

346

of training samples can be increased through data augmentation

technology to obtain a certain degree of performance improvement. Data

augmentation refers to changing the characteristics of the sample based

on a priori knowledge while keeping the sample label unchanged, so that

the newly generated sample also conforms or approximately conforms to

the true distribution of the data.

Taking image data as an example, let’s introduce how to do data

augmentation. The size of the pictures in the dataset is often inconsistent.

In order to facilitate the processing of the neural network, the pictures

need to be rescaled to a fixed size, as shown in Figure 9-29, which

is a fixed size 224 × 224 picture after rescaling. For the person in the

picture, according to a priori knowledge, we know that rotation, scaling,

translation, cropping, changing the angle of view, and blocking a certain

local area will not change the main category label of the picture, so for the

picture data, there are a variety of data augmentation methods.

Figure 9-29. A picture after rescaling to 224 × 224 pixels

TensorFlow provides common image processing functions, located

in the tf.image submodule. Through the tf.image.resize function, we can

zoom the pictures. We generally implement data augmentation in the

preprocessing step. After reading the picture from the file system, the

image data augmentation operation can be performed. For example:

Chapter 9 Overfitting

347

def preprocess(x,y):

 # Preprocess function

 # x: picture path, y:picture label

 x = tf.io.read_file(x)

 x = tf.image.decode_jpeg(x, channels=3) # RGBA

 # rescale pictures to 244x244

 x = tf.image.resize(x, [244, 244])

9.7.1 Rotation
Rotating pictures is a very common way of augmenting picture data. By

rotating the original picture at a certain angle, new pictures at different

angles can be obtained, and the label information of these pictures

remains unchanged, as shown in Figure 9-30.

Figure 9-30. Image rotation

Through tf.image.rot90(x, k = 1), the picture can be rotated by 90

degrees counterclockwise k times, for example:

 # Picture rotates 180 degrees counterclockwise

 x = tf.image.rot90(x,2)

Chapter 9 Overfitting

348

9.7.2 Flip
The flip of the picture is divided into flip along the horizontal axis

and along the vertical axis, as shown in Figure 9-31 and Figure 9-32,

respectively. In TensorFlow, you can use tf.image.random_flip_left_right

and tf.image.random_flip_up_down to randomly flip the image in the

horizontal and vertical directions, for example:

 # Random horizontal flip

 x = tf.image.random_flip_left_right(x)

 # Random vertical flip

 x = tf.image.random_flip_up_down(x)

Figure 9-31. Horizontal flip

Figure 9-32. Vertical flip

Chapter 9 Overfitting

349

9.7.3 Cropping
By removing part of the edge pixels in the left, right, or up and down

directions of the original image, the main body of the image can be kept

unchanged, and new image samples can be obtained at the same time.

When actually cropping, the picture is generally scaled to a size slightly

larger than the network input size, and then cropped to a suitable size. For

example, if the input size of the network is 224 × 224, then you can use the

resize function to rescale the picture to 244 × 244, and then randomly crop

to the size 224 × 224. The code is implemented as follows:

 # Rescale picture to larger size

 x = tf.image.resize(x, [244, 244])

 # Then randomly crop the picture to the desired size

x = tf.image.random_crop(x, [224,224,3])

Figure 9-33 is a picture zoomed to 244 × 244, Figure 9-34 is an example

of random cropping to 244 × 244, and Figure 9-35 is also an example of

random cropping.

Figure 9-33. Before cropping

Chapter 9 Overfitting

350

Figure 9-34. After cropping and rescaling-1

Figure 9-35. After cropping and rescaling-2

9.7.4 Generate Data
By training the generative model on the original data and learning the

distribution of the real data, the generative model can be used to obtain

new samples. This method can also improve network performance to a

certain extent. For example, conditional generation adversarial network

(conditional GAN, CGAN for short) can generate labeled sample data, as

shown in Figure 9-36.

Chapter 9 Overfitting

351

Figure 9-36. CGAN generated numbers

9.7.5 Other Methods
In addition to the typical picture data augmentation methods described

previously, the picture data can be arbitrarily transformed to obtain

new pictures based on a priori knowledge without changing the

picture tag information. Figure 9-37 demonstrates the picture data

after superimposing Gaussian noise on the original picture, Figure 9-38

demonstrates the new picture obtained by changing the viewing angle of

the picture, and Figure 9-39 demonstrates the new picture obtained by

randomly blocking parts of the original picture.

Chapter 9 Overfitting

352

Figure 9-37. Adding Gaussian noise

Figure 9-38. Changing viewing angle

Figure 9-39. Randomly blocking parts

Chapter 9 Overfitting

353

9.8 Hands-On Overfitting
Earlier, we used a large amount of crescent-shaped two-class datasets

to demonstrate the performance of the network model under various

measures to prevent overfitting. In this section, we will complete the

exercise based on the overfitting and underfitting models of the two

classification datasets of crescent shape.

9.8.1 Build the Dataset
The feature vector length of the sample dataset we used is 2, and the label

is 0 or 1, which represents two categories. With the help of the make_

moons tool provided in the scikit-learn library, we can generate a training

set of any number of data. First open the cmd command terminal and

install the scikit-learn library. The command is as follows:

Install scikit-learn library

pip install -U scikit-learn

To demonstrate the phenomenon of overfitting, we only sampled 1000

samples, and added Gaussian noise with a standard deviation of 0.25 as in

the following:

Import libraries

from sklearn.datasets import make_moons

Randomly choose 1000 samples, and split them into training

and testing sets

X, y = make_moons(n_samples = N_SAMPLES, noise=0.25, random_

state=100)

X_train, X_test, y_train, y_test = train_test_split(X, y,

 test_size = TEST_SIZE,

random_state=42)

Chapter 9 Overfitting

354

The make_plot function can easily draw the distribution map of

the data according to the coordinate X of the sample and the label y of

the sample:

def make_plot(X, y, plot_name, file_name, XX=None, YY=None,

preds=None):

 plt.figure()

 # sns.set_style("whitegrid")

 axes = plt.gca()

 axes.set_xlim([x_min,x_max])

 axes.set_ylim([y_min,y_max])

 axes.set(xlabel="x_1", ylabel="x_2")

 # Plot prediction surface

 if(XX is not None and YY is not None and preds is

not None):

 plt.contourf(XX, YY, preds.reshape(XX.shape), 25,

alpha = 0.08, cmap=cm.Spectral)

 plt.contour(XX, YY, preds.reshape(XX.shape),

levels=[.5], cmap="Greys", vmin=0, vmax=.6)

 # Plot samples

 markers = ['o' if i == 1 else 's' for i in y.ravel()]

 mscatter(X[:, 0], X[:, 1], c=y.ravel(), s=20,

 cmap=plt.cm.Spectral, edgecolors='none',

m=markers)

 # Save the figure

 plt.savefig(OUTPUT_DIR+'/'+file_name)

Draw the distribution of 1000 samples for sampling, as shown in

Figure 9-40, the red square points are one category, and the blue circles are

another category.

Chapter 9 Overfitting

355

Plot data points

make_plot(X, y, None, "dataset.svg")

Figure 9-40. Moon-shape two-class data points

9.8.2 Influence of the Number of Network Layers
In order to explore the degree of overfitting at different network depths, we

conducted a total of five training experiments. When n ∈ [0, 4], build a fully

connected layer network with n + 2 layers, and train 500 Epochs through

the Adam optimizer to obtain the separation curve of the network on the

training set, as shown in Figures 9.12, 9.13, 9.14, and 9.15 .

for n in range(5): # Create 5 different network with

different layers

 model = Sequential()

 # Create 1st layer

 model.add(Dense(8, input_dim=2,activation='relu'))

 for _ in range(n): # Add nth layer

 model.add(Dense(32, activation='relu'))

 model.add(Dense(1, activation='sigmoid')) # Add last layer

Chapter 9 Overfitting

356

 model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy']) # Configure and train

 history = model.fit(X_train, y_train, epochs=N_EPOCHS,

verbose=1)

 # Plot boundaries for different network

 preds = model.predict_classes(np.c_[XX.ravel(),

YY.ravel()])

 title = "Network layer ({})".format(n)

 file = "NetworkCapacity%f.png"%(2+n*1)

 make_plot(X_train, y_train, title, file, XX, YY, preds)

9.8.3 Impact of Dropout
In order to explore the impact of the Dropout layer on network training, we

conducted a total of five experiments. Each experiment used a seven-layer

fully connected layer network for training, but inserted 0~4 Dropout layers

in the fully connected layer at intervals and passed Adam The optimizer

trains 500 Epochs. The network training results are shown in Figures 9.25,

9.26, 9.27, and 9.28.

for n in range(5): # Create 5 different networks with different

number of Dropout layers

model = Sequential()

 # Create 1st layer

 model.add(Dense(8, input_dim=2,activation='relu'))

 counter = 0

 for _ in range(5): # Total number of layers is 5

 model.add(Dense(64, activation='relu'))

 if counter < n: # Add n Dropout layers

 counter += 1

 model.add(layers.Dropout(rate=0.5))

 model.add(Dense(1, activation='sigmoid')) # Output layer

Chapter 9 Overfitting

357

 model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy']) # Configure and train

 # Train

 history = model.fit(X_train, y_train, epochs=N_EPOCHS,

verbose=1)

 # Plot decision boundaries for different number of

Dropout layers

 preds = model.predict_classes(np.c_[XX.ravel(),

YY.ravel()])

 title = "Dropout({})".format(n)

 file = "Dropout%f.png"%(n)

 make_plot(X_train, y_train, title, file, XX, YY, preds)

9.8.4 Impact of Regularization
In order to explore the influence of regularization coefficients on network

model training, we adopted the L2 regularization method to construct

a five-layer neural network, in which the weight tensor W of the second,

third, and fourth neural network layers are added with L2 regularization

constraints terms as follows:

def build_model_with_regularization(_lambda):

 # Create networks with regularization terms

 model = Sequential()

 model.add(Dense(8, input_dim=2,activation='relu')) #

without regularization

 model.add(Dense(256, activation='relu', # With L2

regularization

 kernel_regularizer=regularizers.l2

(_lambda)))

 model.add(Dense(256, activation='relu', # With L2

regularization

Chapter 9 Overfitting

358

 kernel_regularizer=regularizers.l2

(_lambda)))

 model.add(Dense(256, activation='relu', # With L2

regularization

 kernel_regularizer=regularizers.l2

(_lambda)))

 # Output

 model.add(Dense(1, activation='sigmoid'))

 model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy']) # Configure and train

 return model

Under the condition of keeping the network structure unchanged,

we adjust the regularization coefficient λ = 0.00001, 0.001, 0.1, 0.12, 0.13

to test the training effect of the network and draw the decision boundary

curve of the learning model on the training set, as shown in Figure 9-16,

Figure 9-17, Figure 9-18, and Figure 9-19.

for _lambda in [1e-5,1e-3,1e-1,0.12,0.13]:

 # Create model with regularization term

model = build_model_with_regularization(_lambda)

 # Train model

 history = model.fit(X_train, y_train, epochs=N_EPOCHS,

verbose=1)

 # Plot weight range

 layer_index = 2

 plot_title = "Regularization-[lambda = {}]".format(str(_

lambda))

 file_name = " Regularization _" + str(_lambda)

 # Plot weight ranges

 plot_weights_matrix(model, layer_index, plot_title,

file_name)

Chapter 9 Overfitting

359

 # Plot decision boundaries

 preds = model.predict_classes(np.c_[XX.ravel(),

YY.ravel()])

 title = " regularization ".format(_lambda)

 file = " regularization %f.svg"%_lambda

 make_plot(X_train, y_train, title, file, XX, YY, preds)

The plot_weights_matrix code of the matrix 3D plot function is as

follows:

def plot_weights_matrix(model, layer_index, plot_name,

file_name):

 # Plot weight ranges

 # Get weights for certain layers

 weights = model.layers[LAYER_INDEX].get_weights()[0]

 # Get minimum, maximum and mean values

 min_val = round(weights.min(), 4)

 max_val = round(weights.max(), 4)

 mean_val = round(weights.mean(), 4)

 shape = weights.shape

 # Generate grids

 X = np.array(range(shape[1]))

 Y = np.array(range(shape[0]))

 X, Y = np.meshgrid(X, Y)

 print(file_name, min_val, max_val,mean_val)

 # Plot 3D figures

 fig = plt.figure()

 ax = fig.gca(projection='3d')

 ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))

 ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))

 ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))

 # Plot weight ranges

Chapter 9 Overfitting

360

 surf = ax.plot_surface(X, Y, weights, cmap=plt.get_

cmap('rainbow'), linewidth=0)

 ax.set_xlabel('x', fontsize=16, rotation = 0)

 ax.set_ylabel('y', fontsize=16, rotation = 0)

 ax.set_zlabel('weight', fontsize=16, rotation = 90)

 # save figure

 plt.savefig("./" + OUTPUT_DIR + "/" + file_name + ".svg")

9.9 References

 [1]. I. Goodfellow, Y. Bengio and A. Courville, Deep

Learning, MIT Press, 2016.

Chapter 9 Overfitting

361© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_10

CHAPTER 10

Convolutional Neural
Networks

At present, artificial intelligence has not reached the level of
5 years old human, but the progress in perception is rapid. In
the field of machine speech and visual recognition, there is
no suspense to surpass humans in five to ten years.

—Xiangyang Shen

We have introduced the basic theory of neural networks, the use of

TensorFlow, and the basic fully connected network model and have a

more comprehensive and in-depth understanding of neural networks. But

for deep learning, we still have a little doubt. The depth of deep learning

refers to the deeper layers of the network, generally more than five layers,

and most of the neural network layers introduced so far are implemented

within five layers. So what is the difference and connection between deep

learning and neural networks?

Essentially, deep learning and neural networks refer to the same type

of algorithm. In the 1980s, the network model based on the multilayer

perceptron (MLP) mathematical model of biological neurons was called

a neural network. Due to factors such as limited computing power and

small data size at the time, neural networks were generally only able to

train to a small number of layers. We call this type of neural network a

https://doi.org/10.1007/978-1-4842-7915-1_10#DOI

362

shallow neural network (shallow neural network). It is not easy for shallow

neural networks to extract high-level features from data, and the general

expression ability is not good. Although it has achieved good results in

simple tasks such as digital picture recognition, it is quickly surpassed by

the new support vector machine proposed in the 1990s.

Geoffrey Hinton, a professor at the University of Toronto in Canada,

has long insisted on the research of neural networks. However, due to

the popularity of support vector machines at that time, research related

to neural networks encountered many obstacles. In 2006, Geoffrey

Hinton proposed a layer-by-layer pre-training algorithm in [1], which

can effectively initialize the deep belief networks (DBN) network, thereby

making it possible to train large- scale, deep layers (millions of parameters)

of networks. In the paper, Geoffrey Hinton called the neural network deep

neural network, and the related research is also called deep learning (deep

learning). From this point of view, deep learning and neural networks are

essentially consistent in their designation, and deep learning focuses more

on deep neural networks. The “depth” of deep learning will be most vividly

reflected in the relevant network structure in this chapter.

Before learning a deeper network model, let us first consider such a

question: The theoretical research of neural networks was basically in

place in the 1980s, but why did it fail to fully exploit the great potential of

deep networks? Through the discussion of this question, we lead to the

core content of this chapter: convolutional neural networks. This is also a

type of neural network that can easily reach hundreds of layers.

10.1 Problems with Fully Connected N
First, let’s analyze the problems of the fully connected network. Consider a

simple four-layer fully connected layer network. The input is a handwritten

digital picture vector of 784 nodes after leveling. The number of nodes

in the middle three hidden layers is 256, and the number of nodes in the

output layer is ten, as shown in Figure 10-1.

Chapter 10 Convolutional neural networks

363

Figure 10-1. Simplified diagram of four-layer fully connected
network structure

We can quickly build this network model through TensorFlow: add

4 dense layers, and use the Sequential container to encapsulate it as a

network object:

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers,Sequential,losses,

optimizers,datasets

Create 4-layer fully connected network

model = keras.Sequential([

 layers.Dense(256, activation='relu'),

 layers.Dense(256, activation='relu'),

 layers.Dense(256, activation='relu'),

 layers.Dense(10),

])

build model and print the model info

model.build(input_shape=(4, 784))

model.summary()

Chapter 10 Convolutional neural networks

364

Use the summary() function to print out the statistical results of the

parameters of each layer from the model, as shown in Table 10-1. How

are the parameters of the network calculated? The weight scalar of each

connecting line is considered as a parameter, so for a fully connected

layer with n input nodes and m output nodes, there are a total of n ⋅ m

parameters contained in the tensor W, and m parameters are contained

in the vector b. Therefore, the total number of parameters of the fully

connected layer is n ⋅ m + m. Taking the first layer as an example, the input

feature length is 784, the output feature length is 256, and the parameter

amount of the current layer is 784 ⋅ 256 + 256 = 200960. The same method

can be used to calculate the parameter amounts of the second, third, and

fourth layers, which are 65792, 65792, and 2570, respectively. The total

parameter amount is about 340,000. In a computer, if you save a single

weight as a float-type variable, you need to occupy at least 4 bytes of

memory (float takes more memory in Python), then 340,000 parameters

require at least about 1.34MB of memory. In other words, storing the

network parameters alone requires 1.34MB of memory. In fact, the

network training process also needs to cache the computation graph,

gradient information, input and intermediate calculation results, etc.,

where gradient- related operations take up a lot of resources.

Table 10-1. Network parameter statistics

Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output Layer

number of

parameters

200960 65792 65792 2570

So how much memory does it take to train such a network? We can

simply simulate resource consumption on modern GPU devices. In

TensorFlow, if you do not set the GPU memory occupation method, all

GPU memory will be occupied by default. Here, the TensorFlow memory

usage is set to be allocated on demand, and the GPU memory resources

occupied by it are observed as follows:

Chapter 10 Convolutional neural networks

365

List all GPU devices

gpus = tf.config.experimental.list_physical_devices('GPU')

if gpus:

 try:

 # Set GPU occupation as on demand

 for gpu in gpus:

 tf.config.experimental.set_memory_growth(gpu, True)

 except RuntimeError as e:

 # excepting handling

 print(e)

The preceding code is inserted after the TensorFlow library imported

and before the model created. TensorFlow is configured to apply for GPU

memory resources as needed through tf.config.experimental.set_memory_

growth(gpu, True). In this way, the amount of GPU memory occupied by

TensorFlow is the amount required for the operation. When the batch size

is set to 32, we observed that GPU memory occupied about 708MB and

CPU memory occupied about 870MB during training. Because the deep

learning frameworks have different design considerations, this number is

for reference only. Even so, we can feel that the computational cost of the

four-layer fully connected layer is not small.

Back to the 1980s, what is the concept of 1.3MB network parameters?

In 1989, Yann LeCun used a 256KB memory computer to implement

his algorithm in the paper on handwritten zip code recognition [2]. This

computer was also equipped with an AT&T DSP-32C DSP computing

card (floating point computing capability is about 25 MFLOPS). For the

1.3MB network parameters, the computer with 256KB memory cannot

even load the network parameters, let alone network training. It can be

seen that the higher memory usage of the fully connected layer severely

limits the development of the neural network towards a larger scale and

deeper layers.

Chapter 10 Convolutional neural networks

366

10.1.1 Local Correlation
Next, we explore how to avoid the defect of excessively large parameters of

the fully connected network. For the convenience of discussion, we take

the scene of picture type data as an example. For 2D image data, before

entering the fully connected layer, the matrix data needs to be flattened

into a 1D vector, and then each pixel is connected to each output node in

pairs as shown in Figure 10-2.

…

Input nodes Output nodes

(a) Pixels fully connected (b) 2D Fully connected layer

Figure 10-2. 2D feature fully connected diagram

It can be seen that each output node of the network layer is connected

to all input nodes for extracting the feature information of all input nodes.

This dense connection method is the root cause of the large number of

parameters and the high computational cost of the fully connected layer.

The fully connected layer is also called dense connection layer (dense

layer), and the relationship between output and input is:

o w x bj
i nodes I

ij i j� �
�

�
��

�

�
��

� � �
��

where nodes(I) represents the set of nodes in layer I.

Chapter 10 Convolutional neural networks

367

So, is it necessary to connect the output node with all the input nodes?

Is there an approximate simplified model? We can analyze the importance

distribution of input nodes to output nodes, only consider a more

important part of the input node, and discard the less important part of the

node, so that the output node only needs to be connected to some input

nodes, expressed as:

o w x bj
i top I j k

ij i j� �
�

�
��

�

�
��

� � �
��

, ,

where top(I, j, k) represents the top k node set in layer I that has the highest

importance for the number node in layer J. In this way, the weighted

connections of the fully connected layer can be reduced from ‖I‖ ⋅ ‖J‖ to

k ⋅ ‖J‖, where ‖I‖ and ‖J‖ represent the number of nodes in the I and J

layers respectively.

Then the problem changes to exploring the importance distribution of

the input node of layer I to the number output node j. However, it is very

difficult to find out the importance distribution of each intermediate node.

We can use prior knowledge to further simplify this problem.

In real life, there are a lot of data that use location or distance as a

measure of importance distribution. For example, people who live closer

to themselves are more likely to have greater influence on themselves

(location correlation), and stock trend predictions should pay more

attention to the recent trend (time correlation); each pixel of the picture

is more related to the surrounding pixels (location correlation). Taking

2D image data as an example, if we simply think that the pixels with

Euclidean distance from the current pixel is less than or equal to
k
2

 are

more important, and those with the Euclidean distance is greater than
k
2

are less important, then we can easily simplify the problem of finding the

importance distribution of each pixel. As shown in Figure 10-3, the pixels

Chapter 10 Convolutional neural networks

368

where the solid grid is located are used as reference points and the pixels

whose Euclidean distance is less than or equal to
k
2

 are represented by a

rectangular grid. The pixels in the grid are more important, and the pixels

outside the grid are less important. This window is called the receptive

field, which characterizes the importance distribution of each pixel to the

central pixel. The pixels within the grid will be considered, and the pixels

outside the grid will be ignored for the central pixel.

width

he
ig
ht

Figure 10-3. Importance distribution of pixels

This hypothetical characteristic of distance-based importance

distribution is called local correlation. It only focuses on some nodes

that are close to itself and ignores nodes that are far away. Under this

assumption of importance distribution, the connection mode of the fully

connected layer becomes as shown in Figure 10-4. The output node j is

only connected to the local area (receptive field) centered by j and has no

connection to other pixels.

Chapter 10 Convolutional neural networks

369

Figure 10-4. Locally connected network

Using the idea of local correlation, we record the height and width of

the receptive field window as k (the height and width of the receptive field

may not be equal; for convenience, we only consider the case where the

height and width are equal). The current node is connected with all pixels

in the receptive field, regardless of other pixels outside. The input and

output relationship of the network layer is expressed as follows:

o w x bj

dist i j k
ij i j� �

�

�

�
�
�

�

�

�
�
�� ��

��
,

2

where dist(i, j) represents the Euclidean distance between i and j nodes.

10.1.2 Weight Sharing
Each output node is only connected to k × k input nodes in the receptive

field, and the number of output layer nodes is ‖J‖. So the number of

the parameters of the current layer is k × k × ‖J‖. Comparing to the

fully connected layer, because k is usually small, such as 1, 3, and 5, so

k × k ≪ ‖I‖, which means it successfully reduced the amount of parameters.

Chapter 10 Convolutional neural networks

370

Can the amount of parameters be further reduced, for example, can

we only need k × k parameters to complete the calculation of the current

layer? The answer is yes. Through the idea of weight sharing, for each

output node oj, the same weight matrix W is used, then no matter how

many output nodes ‖J‖ will be, the number of network layer parameters is

always k × k. As shown in Figure 10-5, when calculating the output pixel at

the upper left corner, the weight matrix is used:

 W w w w w w w w w w� � �11 12 13 21 22 23 31 32 33

Multiply and accumulate with the pixels inside the corresponding

receptive field as the output value of the upper left pixel. When calculating

the lower right receptive field, share the weight parameters W, that is,

use the same weight parameters W to multiply and accumulate to get the

output of the lower right pixel value. There are only 3 × 3 = 9 parameters in

the network layer at this time, and it has nothing to do with the number of

input and output nodes.

Figure 10-5. Weight sharing matrix diagram

Chapter 10 Convolutional neural networks

371

By applying the idea of local correlation and weight sharing, we have

successfully reduced the number of network parameters from ‖I‖ × ‖J‖ to

k × k (to be precise, under the conditions of a single input channel and a

single convolution kernel). This kind of weighted “local connection layer”

network is actually a convolutional neural network. Next, we will introduce

convolution operations from a mathematical perspective, and then

formally learn the principles and implementation of convolutional neural

networks.

10.1.3 Convolution Operation
Under the a priori of local correlation, we propose a simplified “local

connection layer.” For all pixels in the window k × k, feature information

is extracted by multiplying and accumulating weights, and each

output node extracts features corresponding to the receptive field area.

information. This operation is actually a standard operation in the field of

signal processing: discrete convolution operation. Discrete convolution

operation has a wide range of applications in computer vision. Here is a

mathematical explanation of the convolutional neural network layer.

In the field of signal processing, the convolution operation of 1D

continuous signals is defined as the integration of two functions: function

f (τ), function g(τ), where中g(τ) becomes g(n − τ) after flipping and

translation. The 1D continuous convolution is defined as:

f g n f g n d�� �� � � � � �� �

��

�

� � � �

Discrete convolution replaces the integral operation with the

accumulation operation:

f g n f g n�� �� � � � � �� �

���

�

�
�

� �

Chapter 10 Convolutional neural networks

372

As for why convolution is defined in this way, I will not elaborate on it

due to space limitations. We focus on 2D discrete convolution operations.

In computer vision, the convolution operation is based on 2D picture

function f (m, n) and 2D convolution kernel g(m, n), where f (i, j) and

g(i, j) only exists in the effective area of the respective window, and the

other areas are regarded as 0, as shown in Figure 10-6. The 2D discrete

convolution is defined as:

f g m n f i j g m i n j

i j

�� �� � � � � � �� �
���

�

���

�

� �, , ,

Figure 10-6. 2D image function f(i, j) and convolution kernel
function g(i, j)

Let’s introduce the 2D discrete convolution operation in detail. First,

invert the convolution kernel function g(i, j) (invert each time along the

x and y directions) to become g(−i, −j). When (m, n) = (−1, −1); it means

that the convolution kernel function g(−1 − i, −1 − j) is flipped and then

shifted one unit to the left and the upward. At this time:

f g f i j g i j
i j

i j

�� � � �� � � � � � � � �� �

�
���

�

���

�

� �� � � �

� �

�

1 1 1 1

1 1 1

, , ,

, ,11

1 1
� �
� � � � � � �� �f i j g i j, ,

Chapter 10 Convolutional neural networks

373

The 2D function only has valid values when i ∈ [−1, 1], j ∈ [−1, 1]. In

other positions, it is 0. According to the calculation formula, we can get

[f ⨂ g](0, −1) = 7, as shown in Figure 10-7.

Figure 10-7. Discrete convolution operation-1

Similarly, when (m, n) = (0, −1) : [f ⨂ g]

(0, −1) = ∑i ∈ [−1, 1]∑j ∈ [−1, 1] f (i, j)g(0 − i, −1 − j)

That is, after the convolution kernel is flipped, the unit is shifted

upwards and the corresponding position is multiplied and accumulated,

[f ⨂ g](0, −1) = 7, as shown in Figure 10-8.

Figure 10-8. Discrete convolution operation-2

When (m, n) = (1, −1):

f g f i j g i j

i j

�� � �� � � � � � � �� �
� �� � � �� �
� �1 1 1 1

1 1 1 1

, , ,
, ,

That is, after the convolution kernel is flipped, it is translated to the

right and upward by one unit, and the corresponding position is multiplied

and accumulated, [f ⨂ g](1, −1) = 1, as shown in Figure 10-9.

Chapter 10 Convolutional neural networks

374

Figure 10-9. Discrete convolution operation-3

When (m, n) = (−1, 0):

f g f i j g i j

i j

�� � �� � � � � � � �� �
� �� � � �� �
� �1 0 1

1 1 1 1

, , ,
, ,

That is, after the convolution kernel is flipped, it is translated to

the left by one unit, and the corresponding position is multiplied and

accumulated, [f ⨂ g](−1, 0) = 1, as shown in Figure 10-10.

Figure 10-10. Discrete convolution operation-4

Cyclic calculation in this way, we can get all the values of the function

[f ⨂ g](m, m), m ∈ [−1, 1], n ∈ [−1, 1], as shown in Figure 10-11.

Figure 10-11. 2D discrete convolution operation

Chapter 10 Convolutional neural networks

375

So far, we have successfully completed the convolution operation of

the picture function and the convolution kernel function to obtain a new

feature map.

Recalling the operation of “weight multiplying and accumulating”, we

record it as [f ⋅ g](m, n) : [f ⋅ g](m, n) = ∑i ∈ [−w/2, w/2]∑j ∈ [−h/2, h/2] f (i, j)g(i − m, j − m)

Comparing it carefully with the standard 2D convolution operation,

it is not difficult to find that the convolution kernel function g(m, n) in

“weight multiply-accumulate” has not been flipped. For neural networks,

the goal is to learn a function g(m, n) to make L as small as possible. As

for whether it is exactly the “convolution kernel” function defined in

the convolution operation, it is not very important, because we will not

directly use it. In deep learning, the function g(m, n) is collectively called a

convolution kernel (Kernel), sometimes called filter, weight, etc. Since the

function g(m, n) is always used to complete the convolution operation, the

convolution operation has actually realized the idea of weight sharing.

Let’s summarize the 2D discrete convolution operation process: each

time by moving the convolution kernel and multiplying and accumulating

with the receptive field pixels at the corresponding position of the picture,

the output value at this position is obtained. The convolution kernel

is a weight matrix W with rows and columns as size of k. The window

corresponding to the size k on the feature map is the receptive field. The

receptive field and the weight matrix are multiplied and accumulated

to obtain the output value at this position. Through weight sharing, we

gradually move the convolution kernel from the upper left to the right and

downward to extract the pixel features at each position until the bottom

right, completing the convolution operation. It can be seen that the two

ways of understanding are the same. From a mathematical point of view,

the convolutional neural network is to complete the discrete convolution

operation of the 2D function; from the perspective of local correlation

and weight sharing, the same effect can be obtained. Through these

two perspectives, we can not only intuitively understand the calculation

Chapter 10 Convolutional neural networks

376

process of the convolutional neural network, but also rigorously derive

from the mathematical point of view. It is based on convolution operations

that convolutional neural networks can be so named.

In the field of computer vision, 2D convolution operations can

extract useful features of data and perform convolution operations on

input images with specific convolution kernels to obtain output images

with different characteristics. As shown in Table 10-2, some common

convolution kernels and corresponding effects are listed.

Table 10-2. Common convolution kernels and their effect

[] [0 − 1 0 − 1 5

− 1 0 − 1 0]

[0.0625 0.125 0.0625

0.125 0.25 0.125 0.0625

0.125 0.0625]

[−1 − 1 − 1 − 1 8

− 1 − 1 − 1 − 1]

Original Sharpen Blur Edge-sharpen

10.2 Convolutional Neural Network
The convolutional neural network makes full use of the idea of local

correlation and weight sharing, which greatly reduces the amount of

network parameters, thereby improving training efficiency and making it

easier to realize ultra-large-scale deep networks. In 2012, Alex Krizhevsky

of the University of Toronto in Canada applied the deep convolutional

neural network to the large-scale image recognition challenge

ILSVRC-2012, and achieved a Top-5 error rate of 15.3% on the ImageNet

dataset, ranking first. Comparing to the second place, Alex reduced the

Top-5 error rate by 10.9% [3]. This huge breakthrough has attracted strong

Chapter 10 Convolutional neural networks

377

industry attention. Convolutional neural networks quickly became the

new favorite in the field of computer vision. Subsequently, in a series of

tasks, convolution-based neural network models have been proposed one

after another and have achieved tremendous improvements in the original

performance.

Now let’s introduce the specific calculation process of the

convolutional neural network layer. Taking 2D image data as an

example, the convolutional layer accepts input feature maps X with

height h and width w, and the number of channels cin. Under the action

of cout convolution kernels with height h and width w and the number

of channels cin, feature maps with the height h′ and width w′ and cout

channels are generated. It should be noted that the height and width of the

convolution kernel can be unequal. In order to simplify the discussion, we

only consider the equal height and width cases, and then it can be easily

extended to the case of unequal height and width.

We start with the discussion of the single-channel input and single-

convolution kernel and then generalize to the multi-channel input and

single- convolution kernel and finally discuss the most commonly used

and most complex convolutional layer implementation of multi-channel

input and multiple convolution kernels.

10.2.1 Single-Channel Input and Single
Convolution Kernel

First, we discuss single-channel input cin = 1, such as a gray-scale image with

only one channel of gray value and a single convolution kernel cout = 1. Take

the input matrix X with size 5 × 5 and the convolution kernel matrix with

size 3 × 3 as examples, as shown in Figure 10-12. The receptive field of the

Chapter 10 Convolutional neural networks

378

same size as the convolution kernel (the green box above the input X) is first

moved to the top left of the input X. Select the receptive field element on

the input and multiply it by the corresponding element of the convolution

kernel (the middle box in the picture):

1 10 1 2 212 2 1121 130 1 2 1 10 12 6 0 2 4� � � �� � � � � �� � � � � � �� �

The ⨀ symbol indicates the Hadamard Product, that is, the

corresponding element of the matrix is multiplied. The symbol @ (matrix

multiplication) is another common forms of matrix operations. After the

operation of the matrix, all 9 values are added:

 � � � � � � � � � �1 1 0 1 2 6 0 2 4 7

We get the scalar 7 and write to the position of the first row and first

column of the output matrix, as shown in Figure 10-12.

Figure 10-12. 3 × 3 convolution operation-1

After the feature extraction of the first receptive field area is completed,

the receptive field window moves one step unit (Strides, denoted as s,

default is 1) to the right and select the nine receptive field elements in the

green box in Figure 10-13. Similarly, multiplying and accumulating the

corresponding elements of the convolution kernel, we can get the output

10, which is written to the first row and second column position.

Chapter 10 Convolutional neural networks

379

Figure 10-13. 3 × 3 convolution operation-2

Move the receptive field window to the right by one step unit

again, select the element in the green box in Figure 10-14, multiply and

accumulate with the convolution kernel, get the output 3, and write to the

first row and third column of the output, as shown in Figure 10-14.

Figure 10-14. 3 × 3 convolution operation-3

At this point, the receptive field has moved to the far right of the

effective pixel input, and it cannot continue to move to the right (without

filling the invalid element), so the receptive field window moves down

by one step unit (s = 1) and returns to the beginning of the current line,

continue to select the new receptive field element area, as shown in

Figure 10-15, and the convolution kernel operation results in output -1.

Because the receptive field moves down by one step, so the output value -1

is written in the second row and the first column position.

Chapter 10 Convolutional neural networks

380

Figure 10-15. 3 × 3 convolution operation-4

According to the preceding method, each time the receptive field

moves right by one step (s = 1), if it exceeds the input boundary, it moves

down by one step (s = 1) and returns to the beginning of the line until the

receptive field moves to the rightmost and bottommost position, as shown

in Figure 10-16. Each selected receptive field element is multiplied by

the corresponding element of the convolution kernel and written to the

corresponding position of the output. In the end, we get a 3 × 3 matrix,

which is slightly smaller than the input 5 × 5, this is because the receptive

field cannot exceed the element boundary. It can be observed that the size

of the output matrix of the convolution operation is determined by the size

k of the convolution kernel, the height h and width w of the input X, the

moving step s, and whether boundaries are filled.

Figure 10-16. 3 × 3 convolution operation-5

Chapter 10 Convolutional neural networks

381

Now we have introduced the calculation process of single-channel

input and single convolution kernel. The actual number of input channels

of the neural network is often large. Next, we will learn the convolution

operation method of multi-channel input and a single convolution kernel.

10.2.2 Multi-channel Input and Single
Convolution Kernel

Multi-channel input convolutional layers are more common. For example,

a color image contains three channels (R/G/B). The pixel value on each

channel indicates the intensity of the R/G/B color. In the following, we

take three- channel input and a single convolution kernel as an example

to extend the convolution operation of single-channel input to multi-

channel. As shown in Figure 10-17, the leftmost 5 × 5 matrix of each row

represents the input channels 1~3, the 3 × 3 matrix in the second column

represents the channels 1~3 of the convolution kernel, and the matrix in

the third column represents the middle matrix of the calculation on the

current channel; the rightmost matrix represents the final output of the

convolutional layer operation.

In the case of multi-channel input, the number of channels of the

convolution kernel needs to match the number of input channels. The

ith channel of the convolution kernel and the ith channel of the input X

are calculated to obtain the first intermediate matrix, which can be then

regarded as the case of single input and single convolution kernel. The

corresponding elements of the intermediate matrix of all channels are

added again as the final output.

The specific calculation process is as follows: in the initial state,

as shown in Figure 10-17, the receptive field window on each channel

synchronously falls on the leftmost and topmost positions on the

corresponding channel. The receptive field area elements and the

convolution kernel on each channel multiply and accumulate the matrix

Chapter 10 Convolutional neural networks

382

above the corresponding channel to obtain the intermediate variables

of the output 7, -11, and -1 on the three channels, and then we can

add these intermediate variables to get the output -5 and write it to the

corresponding position.

Then, the receptive field window moves synchronously to the right

by one step (s = 1) on each channel. At this time, the receptive field area

elements are shown in Figure 10-18. The receptive field on each channel is

multiplied by the matrix on the corresponding channel of the convolution

kernel and is then accumulated to get the intermediate variables 10, 20,

and 20. We then add them up to get the output 50 and write the element

position of the first row and second column.

Figure 10-17. Multi-channel input and single convolution kernel-1

Chapter 10 Convolutional neural networks

383

Figure 10-18. Multi-channel input and single convolution kernel-2

In this way, the receptive field window is moved synchronously to the

rightmost and bottommost positions. All the convolution operations of the

input and the convolution kernel are completed, and the resulting 3 × 3

output matrix is shown in Figure 10-19.

Chapter 10 Convolutional neural networks

384

Figure 10-19. Multi-channel input and single convolution kernel-3

The entire calculation diagram is shown in Figure 10-20. The receptive

field at each input channel is multiplied by the corresponding channel

of the convolution kernel to obtain intermediate variables equal to the

number of channels. All of these intermediate variables are added to

obtain the output value in the current position. The number of input

channels determines the number of convolution kernel channels. A

convolution kernel can only get one output matrix, regardless of the

number of input channels.

Chapter 10 Convolutional neural networks

385

Figure 10-20. Multi-channel input and single convolution
kernel diagram

Generally speaking, a convolution kernel can only complete the

extraction of a certain logical feature. When multiple logical features need

to be extracted at the same time, it can be achieved by adding multiple

convolution kernels to improve the expression ability of the neural

network. This is the case of multi- channel input and multi-convolution

kernels.

10.2.3 Multi-channel Input and
Multi- convolution Kernel

Multi-channel input and multi-convolution kernels are the most common

forms of convolutional neural networks. We have already introduced

the operation process of single convolution kernels. Each convolution

kernel and input are convolved to obtain an output matrix. When there

are multiple convolution kernels, the ith (i ∈ [1, n], n is the number of

convolution kernels) convolution kernel and input X get the ith output

matrix (also called the channel i of output tensor O), and finally all the

Chapter 10 Convolutional neural networks

386

output matrix in the channel dimension stitch together (stack operation to

create a new dimension – the number of output channels) to generate an

output tensor O that contains n channels.

Take a convolutional layer with three channels of input and two

convolution kernels as an example. The first convolution kernel and input

X get the first output channel, and the second convolution kernel and

input X get the second output channel, as shown in Figure 10-21. The

two output channels are stitched together to form the final output O. The

size k, stride size s, and padding settings of each convolution kernel are

uniformly set, so as to ensure that each output channel has the same size

to meet the conditions of stitching.

Figure 10-21. Diagram of multi-convolution kernels

Chapter 10 Convolutional neural networks

387

10.2.4 Stride Size
In convolution operation, how to control the density of receptive field

layout? For inputs with high information density, such as pictures with a

large number of objects, in order to maximize the useful information, it

is desirable to arrange the receptive field windows more densely during

network design. For inputs with lower information density, such as a

picture of the ocean, we can reduce the number of receptive fields in an

appropriate amount. The control method of receptive field density is

generally realized by moving strides.

The stride size refers to the unit of length for each movement of the

receptive field window. For 2D input, it is divided into movement lengths

in the x (right) direction and y (downward) direction. In order to simplify

the discussion, we only consider the case of same stride size for both

directions, which is also the most common setting in neural networks.

As shown in Figure 10-22, the position of the receptive field window

represented by the solid green line is the current position, and the dashed

green line represents the position of the last receptive field. The movement

length from the last position to the current position is the definition of the

stride size. In Figure 10-22, the stride length of the receptive field in the x

direction is 2, which is expressed as s = 2.

Figure 10-22. Diagram of step size(namely stride)

Chapter 10 Convolutional neural networks

388

When the receptive field reaches to the right boundary of the input X,

it moves down one stride (s = 2) and returns to the beginning of the line as

shown in Figure 10-23.

1 -1 0 2 0

-1 -2 2 3 1

1 2 -2 1 0

0 -1 -1 -3 2

2 0 0 1 -1

-1 1 2

1 -1 3

0 -1 -2

7 3

-5

stride

st
rid

e

Figure 10-23. Convolution operation stride size demnostration-1

Circulate back and forth until the bottom and right edges are reached

as shown in Figure 10-24. The final output height and width of the

convolutional layer are only 2 × 2. Compared with the previous situation

(s = 1), the output height and width are reduced from 3 × 3 to 2 × 2 and the

number of receptive fields is reduced to only 4.

1 -1 0 2 0

-1 -2 2 3 1

1 2 -2 1 0

0 -1 -1 -3 2

2 0 0 1 -1

-1 1 2

1 -1 3

0 -1 -2

7 3

-5 12

stride

st
rid

e

Figure 10-24. Convolution operation stride size demnostration-2

Chapter 10 Convolutional neural networks

389

It can be seen that by setting the stride size, the extraction of

information density can be effectively controlled. When the stride size

is small, the receptive field moving window is small, which is helpful

to extract more feature information and the size of the output tensor is

larger; when the stride size is larger, the receptive field moving window is

larger which is helpful to reduce the calculation cost and filter redundant

information, and of course, the size of the output tensor is also smaller.

10.2.5 Padding
After the convolution operation, the height and width of the output will

generally be smaller than the height and width of the input. Even when the

stride size is 1, the height and width of the output will be slightly smaller

than the input height and width. When designing a network model, it

is sometimes desired that the height and width of the output can be the

same as the height and width of the input, thereby facilitating the design of

network parameters and residual connection. In order to make the height

and width of the output equal to that of the input, it is common to increase

the input by padding several invalid elements on the height and width of

the original input. By carefully designing the number of filling units, the

height and width of the output after the convolution operation can be

equal to the original input, or even larger.

As shown in Figure 10-25, we can fill an indefinite number at the top,

bottom, left, or right boundaries. The default filled number is 0, and it can

also be filled with customized data. In Figure 10-25, one row is filled in the

upper and lower directions, and two columns are filled in the left and right

directions.

Chapter 10 Convolutional neural networks

390

1 -1 0 2 0

-1 -2 2 3 1

1 2 -2 1 0

0 -1 -1 -3 2

2 0 0 1 -1

0 0 0 0 0 0 0 0 0

0 0 1 -1 0 2 0 0 0

0 0 -1 -2 2 3 1 0 0

0 0 1 2 -2 1 0 0 0

0 0 0 -1 -1 -3 2 0 0

0 0 2 0 0 1 -1 0 0

0 0 0 0 0 0 0 0 0

Left padding Right padding

To
p

pa
dd

in
g

Bo
tto

m
pa

dd
in

g

Figure 10-25. Matrix padding diagram

So how to calculate the convolutional layer after filling? We can simply

replace the input X with the new tensor X ′ obtained after filling. As shown

in Figure 10-26, the initial position of the receptive field is at the upper

left of X ′. Similar as before, the output 1 is obtained and written to the

corresponding position of the output tensor.

0 0 0 0 0 0 0

0 1 -1 0 2 0 0

0 -1 -2 2 3 1 0

0 1 2 -2 1 0 0

0 0 -1 -1 -3 2 0

0 2 0 0 1 -1 0

0 0 0 0 0 0 0

-1 1 2

1 -1 3

0 -1 -2

*

1

Figure 10-26. Convolution operation after padding-1

Move the stride by one unit and repeat the operation to get the

output 0, as shown in Figure 10-27.

Chapter 10 Convolutional neural networks

391

0 0 0 0 0 0 0

0 1 -1 0 2 0 0

0 -1 -2 2 3 1 0

0 1 2 -2 1 0 0

0 0 -1 -1 -3 2 0

0 2 0 0 1 -1 0

0 0 0 0 0 0 0

-1 1 2

1 -1 3

0 -1 -2

*

1 0

Figure 10-27. Convolution operation after padding-2

Looping back and forth, the resulting output tensor is shown in

Figure 10-28.

0 0 0 0 0 0 0

0 1 -1 0 2 0 0

0 -1 -2 2 3 1 0

0 1 2 -2 1 0 0

0 0 -1 -1 -3 2 0

0 2 0 0 1 -1 0

0 0 0 0 0 0 0

-1 1 2

1 -1 3

0 -1 -2

*

1 0 -3 -7 1

-11 7 10 3 0

2 -1 24 -1 -3

0 -5 -13 12 -5

-4 -1 -3 -2 7

Figure 10-28. Convolution operation after padding-3

Through the carefully designed padding scheme, that is, filling one unit

(p = 1) up, down, left, and right, we can get the result O that has the same

height and width of the input. Without padding, as shown in Figure 10-29,

we can only get the output slightly smaller than the input.

Chapter 10 Convolutional neural networks

392

1 -1 0 2 0

-1 -2 2 3 1

1 2 -2 1 0

0 -1 -1 -3 2

2 0 0 1 -1

-1 1 2

1 -1 3

0 -1 -2

*

7 10 3

-1 24 -1

-5 -13 12

Figure 10-29. Convolution output without padding

The output size [b, h′, w′, cout] of the convolutional neural layer is

determined by the number of convolution kernels cout, the size of the

convolution kernel k, the stride size s, the number of padding p (only

considering the same number of top and bottom paddings ph, and

the same number of left and right paddings pw), and the height h and

width w of the input X. The mathematical relationship between can be

expressed as:

� �

� � ��
��

�
��
�h h p k

s
h2

1

� �

� � ��
��

�
��
�w w p k

s
w2

1

where ph and pw indicate the padding quantity in the height and width

directions, respectively, and ⌊⋅⌋ indicates rounding down. Taking the

preceding example as an example, h = w = 5, k = 3, ph = pw = 1, s = 1, the

output are:

� �

� � ��
��

�
��
� � �� �� � �h 5 2 1 3

1
1 4 1 5

� �

� � ��
��

�
��
� � �� �� � �w 5 2 1 3

1
1 4 1 5

Chapter 10 Convolutional neural networks

393

In TensorFlow, when在s = 1, if you want the output O and input X to

be equal in height and width, you only need to simply set the parameter

padding=“SAME” to make TensorFlow automatically calculate the number

of padding, which is very convenient.

10.3 Convolutional Layer Implementation
In TensorFlow, you can either build a neural network through a low-level

implementation of custom weights, or you can directly call a high-level

API of convolutional layers to quickly build a complex network. We mainly

take 2D convolution as an example to introduce how to implement a

convolutional neural network layer.

10.3.1 Custom Weights
In TensorFlow, the 2D convolution operation can be easily realized

through the tf.nn.conv2d function. tf.nn.conv2d performs a convolution

operation based on input X:[b, h, w, cin] and convolution kernel

W:[k, k, cin, cout] to get the output O : [b, h′, w′, cout], where cin represents the

number of input channels, cout indicates the number of convolution kernels

which is also the number of output channels.

In [1]:

x = tf.random.normal([2,5,5,3]) # input with 3 channels with

height and width 5

Create w using [k,k,cin,cout] format, 4 3x3 kernels

w = tf.random.normal([3,3,3,4])

Stride is 1, padding is 0,

out = tf.nn.conv2d(x,w,strides=1,paddi

ng=[[0,0],[0,0],[0,0],[0,0]])

Out[1]: # shape of output tensor

TensorShape([2, 3, 3, 4])

Chapter 10 Convolutional neural networks

394

The format of the padding parameter is:

padding=[[0,0],[top,bottom],[left,right],[0,0]]

For example, if one unit is filled up in all directions (top, bottom, left,

and right), the padding parameter is as follows:

In [2]:

x = tf.random.normal([2,5,5,3]) # input with 3 channels with

height and width 5

Create w using [k,k,cin,cout] format, 4 3x3 kernels

w = tf.random.normal([3,3,3,4])

Stride is 1, padding is 0,

out = tf.nn.conv2d(x,w,strides=1,paddi

ng=[[0,0],[1,1],[1,1],[0,0]])

Out[2]: # shape of output tensor

TensorShape([2, 5, 5, 4])

In particular, by setting the parameters padding=‘SAME’ and strides=1,

we can get the same size for the input and output of the convolutional

layer, wherein the specific number of padding is automatically calculated

by TensorFlow. For example:

In [3]:

x = tf.random.normal([2,5,5,3]) # input

w = tf.random.normal([3,3,3,4]) # 4 3x3 kernels

Stride is 1,padding is "SAME"

padding="SAME" gives use same size only when stride=1

out = tf.nn.conv2d(x,w,strides=1,padding='SAME')

Out[3]: TensorShape([2, 5, 5, 4])

When s > 1, setting padding=’SAME’ would cause the output height

and width to decrease
1
s

 of original size. For example:

Chapter 10 Convolutional neural networks

395

In [4]:

x = tf.random.normal([2,5,5,3])

w = tf.random.normal([3,3,3,4])

out = tf.nn.conv2d(x,w,strides=3,padding='SAME')

Out [4]:TensorShape([2, 2, 2, 4])

The convolutional neural network layer is the same as the fully

connected layer, and the network can be set with a bias vector. The tf.nn.

conv2d function does not implement the calculation of the bias vector. We

can add the bias manually. For example:

Create bias tensor

b = tf.zeros([4])

Add bias to convolution output. It’ll broadcast to size of

[b,h',w',cout]

out = out + b

10.3.2 Convolutional Layer Classes
Through the convolution layer classes layers.Conv2D, you can directly

define the convolution kernel W and bias tensor b and directly call the

class instance to complete the forward calculation of the convolution

layer. In TensorFlow, the naming of APIs has certain rules. Objects with

uppercase letters generally represent classes, and all lowercases generally

represent functions, such as layers.Conv2D represents convolutional

layer classes, and nn.conv2d represents convolution functions. Using the

class method will automatically create the required weight tensor and

bias vector. The user does not need to memorize the definition format of

the convolution kernel tensor, so it is easier and more convenient to use,

but we also lose some flexibility. The function interface needs to define

weights and bias by itself, which is more flexible.

Chapter 10 Convolutional neural networks

396

When creating a new convolutional layer class, you only need to

specify the number of convolution kernel parameters filters, the size of the

convolution kernel kernel_size, the stride, padding, etc. A convolutional

layer with 4 3 × 3 convolution kernels is created as follows (the step stride

is 1, and the padding scheme is’SAME’):

layer = layers.Conv2D(4,kernel_size=3,strides=1,padding='SAME')

If the height and width of the convolution kernel are not equal, and

the stride along different directions is not equal neither, it is necessary to

design the kernel_size parameter in the tuple format (kh, kw) and the strides

parameter (sh, sw). Create 4 3 × 4 convolution kernels as follows (sh= 2 in the

vertical direction, and sw = 1 in the horizontal direction):

layer = layers.Conv2D(4,kernel_size=(3,4),strides=(2,1),paddi

ng='SAME')

After the creation is complete, the forward calculation can be

completed by calling the instance (__call__ method), for example:

In [5]:

layer = layers.Conv2D(4,kernel_size=3,strides=1,padding='SAME')

out = layer(x) # forward calculation

out.shape # shape of output

Out[5]:TensorShape([2, 5, 5, 4])

In class Conv2D, the convolution kernel tensor W and bias b are saved,

and the list of W and b can be returned directly through the class member

trainable_variables. For example:

In [6]:

Return all trainable variables

layer.trainable_variables

Out[6]:

Chapter 10 Convolutional neural networks

397

[<tf.Variable 'conv2d/kernel:0' shape=(3, 3, 3, 4)

dtype=float32, numpy=

 array([[[[0.13485974, -0.22861657, 0.01000655, 0.11988598],

 [0.12811887, 0.20501086, -0.29820845, -0.19579397],

 [0.00858489, -0.24469738, -0.08591779,

-0.27885547]], ...

 <tf.Variable 'conv2d/bias:0' shape=(4,) dtype=float32,

numpy=array([0., 0., 0., 0.], dtype=float32)>]

This layer.trainable_variables class member is very useful in obtaining

the variables to be optimized in the network layer. You can also directly call

class instance layer.kernel, layer.bias to access W and b.

10.4 Hands-On LeNet-5
In the 1990s, Yann LeCun et al. proposed a neural network for recognition

of handwritten digits and machine-printed character pictures, which was

named LeNet-5 [4]. The proposal of LeNet-5 enabled the convolutional

neural network to be successfully commercialized at that time and was

widely used in tasks such as postcode and check number recognition.

Figure 10-30 is the network structure diagram of LeNet-5. It accepts digital

and character pictures of size 32 × 32 as input and then passes through the

first convolution layer to obtain the tensor with shape [b, 28,28,6]. After

a downsampling layer, the tensor size is reduced to [b, 14,14,6]. After the

second convolutional layer, the tensor shape becomes [b, 10,10,16]. After

similar downsampling layer, the tensor size is reduced to [b, 5, 5, 16]. Before

entering the fully connected layer, the tensor is converted to shape [b, 400]

and feed into two fully connected layers with the number of input nodes

120 and 84, respectively. A tensor with shape [b, 84] is obtained and finally

goes through the Gaussian connections layer.

Chapter 10 Convolutional neural networks

398

Figure 10-30. LeNet-5 structure [4]

It now appears that the LeNet-5 network has fewer layers (two

convolutional layers and two fully connected layers), fewer parameters,

and lower computational cost, especially with the support of modern

GPUs, which can be trained in minutes.

We have made a few adjustments based on LeNet-5 to make it easier

to implement using modern deep learning frameworks. First, we adjust

the input shape from 32 × 32 to 28 × 28, and then implement the two

downsampling layers as the maximum pooling layer (reducing the height

and width of the feature map, which will be introduced later), and finally

replacing the Gaussian connections layer with a fully connected layer. The

modified network is also referred to as the LeNet-5 network hereinafter.

The network structure diagram is shown in Figure 10-31.

C
o

n
v

2
d

(6
, 3

x
3

)

P
o

o
lin

g
(2

x
2

,2
)

C
o

n
v

2
d

(1
6

, 3
x
3

)

P
o

o
lin

g
(2

x
2

,2
)

F
C

(1
2

0
)

F
C

(8
4

)

F
C

(1
0

)

Figure 10-31. Modified LeNet-5 structure

We train the LeNet-5 network based on the MNIST handwritten digital

picture dataset and test its final accuracy. We have already introduced how

to load the MNIST dataset in TensorFlow, so I won’t go into details here.

Chapter 10 Convolutional neural networks

399

First create LeNet-5 through the Sequential container as follows:

from tensorflow.keras import Sequential

network = Sequential([

 layers.Conv2D(6,kernel_size=3,strides=1), # Convolutional

layer with 6 3x3 kernels

 layers.MaxPooling2D(pool_size=2,strides=2), # Pooling layer

with size 2

 layers.ReLU(), # Activation function

 layers.Conv2D(16,kernel_size=3,strides=1), # Convolutional

layer with 16 3x3 kernels

 layers.MaxPooling2D(pool_size=2,strides=2), # Pooling layer

with size 2

 layers.ReLU(), # Activation function

 layers.Flatten(), # Flatten layer

 layers.Dense(120, activation='relu'), # Fully-

connected layer

 layers.Dense(84, activation='relu'), # Fully-

connected layer

 layers.Dense(10) # Fully-connected layer

])

build the network

network.build(input_shape=(4, 28, 28, 1))

network summary

network.summary()

The summary () function counts the parameters of each layer and

prints out the network structure information and details of the parameters

of each layer, as shown in Table 10-3, we can compare with the parameter

scale of the fully connected network 10.1.

Chapter 10 Convolutional neural networks

400

Table 10-3. Network parameter statistics

Layer Convolutional
layer 1

Convolutional
layer 2

Fully
connected
layer 1

Fully
connected
layer 2

Fully
connected
layer 3

parameter

amount

60 880 48120 10164 850

It can be seen that the parameter amount of the convolutional layer

is very small, and the main parameter amount is concentrated in the fully

connected layer. Because the convolutional layer reduces the input feature

dimension a lot, the parameter amount of the fully connected layer is not

too large. The parameter amount of the entire model is about 60K, and

the number of fully connected network parameters in Table 10.1 reaches

340,000, so convolutional neural networks can significantly reduce the

amount of network parameters while increasing the depth of the network.

In the training phase, first add a dimension ([b, 28,28,1]) to the original

input of shape [b, 28, 28] in the dataset and send it to the model for forward

calculation to obtain the output tensor with shape [b, 10]. We create a

new cross-entropy loss function class for processing classification tasks.

By setting the from_logits=True flag, the softmax activation function is

implemented in the loss function, and there is no need to manually add the

loss function, which improves numerical stability. The code is as follows:

from tensorflow.keras import losses, optimizers

Create loss function

criteon = losses.CategoricalCrossentropy(from_logits=True)

The training implementation is as follows:

 # Create Gradient tape environment

 with tf.GradientTape() as tape:

 # Expand input dimension =>[b,28,28,1]

 x = tf.expand_dims(x,axis=3)

Chapter 10 Convolutional neural networks

401

 # Forward calculation, [b, 784] => [b, 10]

 out = network(x)

 # One-hot encoding, [b] => [b, 10]

 y_onehot = tf.one_hot(y, depth=10)

 # Calculate cross-entropy

 loss = criteon(y_onehot, out)

After obtaining the loss value, the gradient between the loss and

the network parameter network.trainable_variables is calculated by

TensorFlow’s gradient recorder tf.GradientTape(), and the network weight

parameter is automatically updated by the optimizer object as in the

following:

 # Calcualte gradient

 grads = tape.gradient(loss, network.trainable_variables)

 # Update paramaters

 optimizer.apply_gradients(zip(grads, network.trainable_

variables))

The training can be completed after repeating the preceding steps

several times.

In the testing phase, since there is no need to record gradient

information, the code generally does not need to be written in the

environment “with tf.GradientTape() as tape”. After the output obtained by

the forward calculation passes the Softmax function, we get the probability

P that the network predicts that the current picture x belongs to the

category i (i ∈ [0, 9]). Use the argmax function to select the index of the

element with the highest probability as the current prediction category,

compare it with the real label, and calculate the number of True samples

in the comparison result. The number of samples with correct predictions

divided by the total sample number gives us the test accuracy of the

network.

Chapter 10 Convolutional neural networks

402

 # Use correct to record the number of correct

predictions

 # Use total to record the total number

 correct, total = 0,0

 for x,y in db_test: # Loop through all samples

 # Expand dimension =>[b,28,28,1]

 x = tf.expand_dims(x,axis=3)

 # Forward calculation to get probability, [b, 784]

=> [b, 10]

 out = network(x)

 # Technically, we should pass out to softmax()

function firs.

 # But because softmax() doesn’t change the order the numbers,

we omit the softmax() part.

 pred = tf.argmax(out, axis=-1)

 y = tf.cast(y, tf.int64)

 # Calculate the correct prediction number

 correct += float(tf.reduce_sum(tf.cast

(tf.equal(pred, y),tf.float32)))

 # Total sample number

 total += x.shape[0]

 # Calculate accuracy

 print('test acc:', correct/total)

After cyclically training 30 Epochs on the dataset, the training

accuracy of the network reached 98.1%, and the test accuracy also reached

97.7%. For the simple handwritten digital picture recognition tasks, the

old LeNet-5 network can already achieve good results, but for slightly

more complex tasks, such as color animal picture recognition, LeNet-5

performance will drop sharply.

Chapter 10 Convolutional neural networks

403

10.5 Representation Learning
We have introduced the working principle and implementation method of

the convolutional neural network layer. The complex convolutional neural

network model is also based on the stacking of convolutional layers. In

the past, researchers have discovered that the deeper the network layer,

the stronger the model’s expressive ability, and the more likely it is to

achieve better performance. So what are the characteristics of the stacked

convolutional network, so that the deeper the layer, the stronger the

network’s expressive ability?

In 2014, Matthew D. Zeiler et al. [5] tried to use visual methods to

understand exactly what convolutional neural networks learned. By

mapping the feature map of each layer back to the input picture using the

“Deconvolutional Network,” we can view the learned feature distribution,

as shown in Figure 10-32. It can be observed that the features of the second

layer correspond to the extraction of the underlying images such as edges,

corners, and colors; the third layer starts to capture the middle features

of texture; the fourth and fifth layers present some features of the object,

such as puppy faces, bird’s feet, and other high-level features. Through

these visualizations, we can experience the feature learning process of the

convolutional neural network to a certain extent.

Chapter 10 Convolutional neural networks

404

Figure 10-32. Visualization of convolutional neural network
features [5]

The image recognition process is generally considered to be a

representation learning process. Starting from the original pixel features

received, it gradually extracts low-level features such as edges and corners,

then mid-level features such as textures, and then high-level features such

Chapter 10 Convolutional neural networks

405

as object parts. The last network layer learns classification logic based on

these learned abstract feature representations. The higher the layer and the

more accurate the learned features, the more favorable the classification

of the classifier is, thereby obtaining better performance. From the

perspective of representation learning, convolutional neural networks

extract features layer by layer, and the process of network training can be

considered as a feature learning process. Based on the learned high-level

abstract features, classification tasks can be conveniently performed.

Applying the idea of representation learning, a well-trained

convolutional neural network can often learn better features. This feature

extraction method is generally universal. For example, learning the

representation of head, foot, body, and other characteristics on cat and dog

tasks can also be used to some extent on other animals. Based on this idea,

the first few feature extraction layers of the deep neural network trained

on task A can be migrated to task B, and only the classification logic of task

B (represented as the last layer of the network) needs to be trained. This

method is a type of transfer learning, also known as fine-tuning.

10.6 Gradient Propagation
After completing the handwritten digital image recognition exercise,

we have a preliminary understanding of the use of convolutional neural

networks. Now let’s solve a key problem. The convolutional layer

implements discrete convolution operations by moving the receptive field.

So how does its gradient propagation work?

Consider a simple case where the input is a 3 × 3 single-channel

matrix, and a 2 × 2 convolution kernel is used to perform the convolution

operation. We then calculate the error between the flattened output

and the corresponding label, as shown in Figure 10-33. Let’s discuss the

gradient update method for this case.

Chapter 10 Convolutional neural networks

406

00 01 02

10 11 12

20 21 22

00 01

10 11

00 01

10 11

0
1
0
0

*
Error: ℒ

Input:[1,3,3,1]

Kernel:[2,2,1,1]

Output:[1,2,2,1] Label:[1,4]

Figure 10-33. Gradient propagation example for the
convolutional layer

First derive the expression of the output tensor O:

o00 = x00w00+ x01w01+ x10w10+ x11w11 + b

o01 = x01w00+ x02w01+ x11w10+ x12w11 + b

o10 = x10w00+ x11w01+ x20w10+ x21w11 +b

o11 = x11w00+ x12w01+ x21w10+ x22w11 +b

Taking w00 gradient calculation as an example, decompose by

chain rule:

�
�

�
�
�

�
��� �

�L
w

L
o

o
wi i

i

00 00 01 10 11 00, , ,

where
∂
∂
L
Oi

 can be directly derived from the error function. Let’s

consider
∂
∂
O
w

i

i

:

�
�

�
� � � � �� �

�
o
w

x w x w x w x w b
w

x00

00

00 00 01 01 10 10 11 11

00

00

Similarly, one can derive:

�
�

�
� � � � �� �

�
o
w

x w x w x w x w b
w

x01

00

01 00 02 01 11 10 12 11

00

01

Chapter 10 Convolutional neural networks

407

�
�

�
� � � � �� �

�
o
w

x w x w x w x w b
w

x10

00

10 00 11 01 20 10 21 11

00

10

�
�

�
� � � � �� �

�
o
w

x w x w x w x w b
w

x11

00

11 00 12 01 21 10 22 11

00

11

It can be observed that the method of cyclically moving the receptive

field does not change the derivatization of the network layer, and the

derivation of the gradient is not complicated. But when the number of

network layers increases, the artificial gradient derivation will become

very cumbersome. But don’t worry, the deep learning framework can

help us automatically complete the gradient calculation and update of all

parameters, we only need to design the network structure.

10.7 Pooling Layer
In the convolutional layer, the height and width of the feature map can

be reduced by adjusting the stride size parameter s, thereby reducing the

amount of network parameters. In fact, in addition to setting the stride

size, there is a special network layer that can reduce the parameter amount

as well, which is known as the pooling layer.

The pooling layer is also based on the idea of local correlation. By

sampling or aggregating information from a group of locally related

elements, we can obtain new element values. In particular, the max

pooling layer selects the largest element value from the local related

element set, and the average pooling layer calculates the average value

from the local related element set. Taking a 5 × 5 max pooling layer as an

example, suppose the receptive field window size k = 2 and stride s = 1, as

shown in Figure 10-34. The green dotted box represents the position of the

first receptive field, and the set of receptive field elements is:

Chapter 10 Convolutional neural networks

408

 1 1 1 2, , ,� � �� �

According to max pooling, we have:

� � � � �� �� � �x max 1 1 1 2 1, , ,

If the average pooling operation is used, the output value would be:

� � � � �� �� � � �x avg 1 1 1 2 0 75, , , .

After calculating the receptive field of the current position, similar

to the calculation step of the convolutional layer, the receptive field is

moved to the right by several units according to the stride size. The output

becomes:

� � � �� � �x max 1 0 2 2 2, , ,

In the same way, gradually move the receptive field window to the

far right and calculate the output x′ = max (2, 0, 3, 1) = 1. At this time, the

window has reached the input edge. The receptive field window moves

down by one stride and returns to the beginning of the line, as shown in

Figure 10-35.

1 -1 0 2 0

-1 -2 2 3 1

1 2 -2 1 0

0 -1 -1 -3 2

2 0 0 1 -1

1 2

P
o
o
lin

g
(2
x
2
,1
)

Figure 10-34. Max pooling example-1

Chapter 10 Convolutional neural networks

409

1 -1 0 2 0

-1 -2 2 3 1

1 2 -2 1 0

0 -1 -1 -3 2

2 0 0 1 -1

1 2 3 3

2

P
o
o
lin

g
(2
x
2
,1
)

Figure 10-35. Max pooling example-2

Loop back and forth until we reach the bottom and right, we get the

output of the max pooling layer as shown in Figure 10-36. The length and

width are slightly smaller than the input height and width.

1 -1 0 2 0

-1 -2 2 3 1

1 2 -2 1 0

0 -1 -1 -3 2

2 0 0 1 -1

1 2 3 3

2 2 3 3

2 2 1 2

2 0 1 2

P
o
o
lin

g
(2
x
2
,1
)

Figure 10-36. Max pooling example-3

Because the pooling layer has no parameters to learn, the calculation

is simple, and the size of the feature map can be effectively reduced; it is

widely used in computer vision-related tasks.

By carefully designing the height, width k, and stride parameter s of

the receptive field of the pooling layer, various dimensionality reduction

operations can be realized. For example, a common pooling layer setting

is k = 2, s = 2, which can achieve the purpose of outputting only half of the

input height and width. As shown in Figure 10-37 and Figure 10-38, the

receptive field k = 3, stride size s = 2, input X has height and width 5 × 5, but

the output only has height and width 2 × 2.

Chapter 10 Convolutional neural networks

410

1 -1 0 2 0

-1 -2 2 3 1

1 2 -2 1 0

0 -1 -1 -3 2

2 0 0 1 -1

2 3

P
o
o
lin

g
(3
x
3
,2
)

Figure 10-37. Pooling layer example (half size output)-1

1 -1 0 2 0

-1 -2 2 3 1

1 2 -2 1 0

0 -1 -1 -3 2

2 0 0 1 -1

2 3

2 2

P
o
o
lin

g
(3
x
3
,2
)

Figure 10-38. Pooling layer example (half size output)-2

10.8 BatchNorm Layer
With the advent of convolutional neural networks, the amount of

network parameters has been greatly reduced, making it possible for

deep networks with dozens of layers. However, before the emergence of

the residual network, the increasing number of neural network layers

makes the training very unstable, and sometimes the network does not

update or even does not converge for a long time. At the same time, the

network is more sensitive to hyperparameters, and the slight change of

hyperparameters will change training trajectory of the network completely.

In 2015, Google researcher Sergey Ioffe et al. proposed a method

of parameter normalization and designed the Batch Normalization

(abbreviated as BatchNorm, or BN) layer [6]. The proposal of the BN layer

makes the setting of network hyperparameters more free, such as a larger

Chapter 10 Convolutional neural networks

411

learning rate, and more random network initialization. In the meantime,

the network has a faster convergence speed and better performance. After

the BN layer was proposed, it was widely used in various deep network

models. The convolutional layer, BN layer, ReLU layer, and pooling layer

once became the standard unit blocks of network models. The stacking

Conv-BN-ReLU-Pooling method often generates good model performance.

Why do we need to normalize the data in the network? It is difficult

to explain this problem thoroughly from a theoretical level, even the

explanation given by the author of the BN layer may not convince

everyone. Rather than entangle the reasons, it is better to experience the

benefits of data normalization through specific questions.

Consider the Sigmoid activation function and its gradient distribution.

As shown in Figure 10-39, the derivative value of the Sigmoid function

in the interval x ∈ [−2, 2] is distributed in the interval [0.1, 0.25]. When

x > 2 or x < -2, the derivative of the Sigmoid function becomes very small,

approaching 0, which is prone to gradient dispersion. In order to avoid

the gradient dispersion phenomenon of the Sigmoid function due to too

large or too small input, it is very important to normalize the function

input to a small interval near 0. It can be seen from Figure 10-39 that after

normalization, the value is mapped near 0, and the derivative value here

is not too small, so that gradient dispersion is not easy to appear. This is an

example of the benefit of normalization.

Original x range

x range after normalization

Figure 10-39. Sigmoid function and its derivative

Chapter 10 Convolutional neural networks

412

Let’s look at another example. Consider a linear model with two input

nodes, as shown in Figure 10-40(a):

 L a x w x w b� � � �
1 1 2 2

Discuss the optimization problems under the following two input

distributions:

• x1 ∈ [1, 10], x2 ∈ [1, 10]

• x1 ∈ [1, 10], x2 ∈ [100, 1000]

Because the model is relatively simple, two types of contour maps of

the loss function can be drawn. Figure 10-40(b) is a schematic diagram

of an optimized trajectory when x1 ∈ [1, 10] and x2 ∈ [100, 1000], and

Figure 10-40(c) is a schematic diagram of an optimized trajectory when

x1 ∈ [1, 10] and x2 ∈ [1, 10]. The center of the ring in the figure is the global

extreme point.

1

2

∑

1

2

(b)Contour map 1

2 2

(c)Contour map 2(a)Linear layer

Figure 10-40. An example of data normalization

Consider:

�
�

�
L
w

x
1

1

�
�

�
L
w

x
2

2

Chapter 10 Convolutional neural networks

413

When the input distributions are similar, and the partial derivative

values are the same, the optimized trajectory of the function is shown in

Figure 10-40(c); when the input distributions differ greatly, for example

x1 ≪ x2,

∂
∂

∂
∂

L
w

L
w

1 2

The equipotential line of the loss function is steeper on the axis,

and a possible optimization trajectory is shown in Figure 10-40(b).

Comparing the two optimized trajectories, it can be observed that when

the distributions of x1 and x2 are similar, the convergence in Figure 10-40(c)

is faster and the optimized trajectory is more ideal.

Through the preceding two examples, we can empirically conclude:

when the network layer input distribution is similar, and the distribution is

in a small range (such as near 0), it favors the function optimization more.

So how to ensure that the input distribution is similar? Data normalization

can achieve this purpose, and data can be mapped to:

2

ˆ µ

σ

−
=

+
r

r

xx
ò

where μr is the mean and σr
2 the variance of all data, ϵ is a small number,

such as 1e − 8.

In the batch-based training phase, how to obtain all the input statistics

μr and σr
2 of each network layer? Consider the mean μB and variance

σB
2 within the batch:

�B

i

m

im
x�

�
�1

1

� �B

i

m

i Bm
x2

1

21
� �� �

�
�

Chapter 10 Convolutional neural networks

414

It can be regarded as approximate of μr and σr
2, where m is the number

of batch samples. Therefore, in the training phase, through normalization:

ˆtrainx �
�

�

xtrain B

B

�

� 2

and approximate the overall mean μr and variance σr
2 using each batch’s

mean μB and variance σB
2.

In the test phase, we can normalize the test data using:

ˆtestx �
�

�

xtest r

r

�

� 2

The preceding operation does not introduce additional variables to

be optimized, and the mean and variance are obtained through existing

data, and do not need to participate in gradient update. In fact, in order

to improve the expressive ability of the BN layer, the author of the BN

layer introduced the “scale and shift” technique to map and transform the

variables again:

 ˆ γ β= ⋅ +x x

where the parameter γ scales the normalized variable again, and the

parameter β realizes the translation operation. The difference is that the

parameters γ and β are automatically optimized by the backpropagation

algorithm to achieve the purpose of scaling and panning data distribution

“on demand” at the network layer.

Let’s learn how to implement the BN layer in TensorFlow.

10.8.1 Forward Propagation
We denote the input of the BN layer as x and the output as x . The forward

propagation process is discussed in training phase and testing phase.

Chapter 10 Convolutional neural networks

415

Training phase: first calculate the current batch’s mean μB and variance

σB
2, and then normalize the data according to:

x x
train

train B

B

�
�

�
� �

�

�
� �

2

We then use:

 � � �r r Bmomentum momentum� � � �� � �1

 � � �r r Bmomentum momentum2 2 2
1� � � �� � �

to iteratively update the statistical values μr and σr
2 of the global training

data, where momentum is a hyperparameter that needs to be set to

balance the update amplitude: when momentum = 0, μr and σr
2 are directly

set as μB and σB
2 of the latest batch; when momentum = 1, μr and σr

2 remain

unchanged. In TensorFlow, momentum is set to 0.99 by default.

Test phase: the BN layer uses

x x
test

test r

r

�
�

�
� �

�

�
� �

2

to calculate xtest , where μr, σr
2, γ, β come from the statistics or optimization

results of the training phase, and are used directly in the test phase, and

these parameters are not updated.

10.8.2 Backward Propagation
In the backward update phase, the back propagation algorithm solves the

gradients
�
�
L
�

 and
�
�

L
�

 of the loss function and automatically optimizes the

parameters γ and βaccording to the gradient update rule.

It should be noted that for 2D feature map input X: [b, h, w, c], the BN

layer does not calculate μB and σB
2 of every point; instead, it calculates

μB and σB
2 on each channel on the channel axis c, so μB and σB

2 are the

Chapter 10 Convolutional neural networks

416

mean and variance of all other dimensions on each channel. Taking the

input of shape [100,32,32,3] as an example, the mean value on the channel

axis c is calculated as follows:

In [7]:

x=tf.random.normal([100,32,32,3])

Combine other dimensions except the channel dimension

x=tf.reshape(x,[-1,3])

Calculate mean

ub=tf.reduce_mean(x,axis=0)

ub

Out[7]:

<tf.Tensor: id=62, shape=(3,), dtype=float32,

numpy=array([-0.00222636, -0.00049868, -0.00180082],

dtype=float32)>

The has c channels, so c averaged values are generated.

In addition to the method of statistical data on the axis c, we can also

easily extend the method to other dimensions, as shown in Figure 10-41:

• Layer Norm:Calculate the mean and variance of all

features of each sample.

• Instance Norm:Calculate the mean and variance of

features on each channel of each sample.

• Group Norm:Divide c channel into several groups, and

count the feature mean and variance in the channel

group of each sample.

The normalization method mentioned previously is proposed by

several independent papers, and it has been verified that it is equivalent or

superior to the BatchNorm algorithm in some applications. It can be seen

that the research of deep learning algorithms is not difficult. As long as you

think more and practice your engineering ability, everyone will have the

opportunity to publish innovative results.

Chapter 10 Convolutional neural networks

417

10.8.3 Implementation of
BatchNormalization layer

In TensorFlow, the BN layer can be easily implemented through the layers.

BatchNormalization() class:

Create BN layer

layer=layers.BatchNormalization()

Different from the fully connected layer and the convolutional layer,

the behavior of the BN layer in the training phase and the test phase is

different. It is necessary to distinguish the training mode from the test

mode by setting the training flag.

Take the network model of LeNet-5 as an example, add the BN layer

after the convolutional layer; the code is as follows:

network = Sequential([

 layers.Conv2D(6,kernel_size=3,strides=1),

 # Insert BN layer

 layers.BatchNormalization(),

 layers.MaxPooling2D(pool_size=2,strides=2),

 layers.ReLU(),

 layers.Conv2D(16,kernel_size=3,strides=1),

 # Insert BN layer

 layers.BatchNormalization(),

 layers.MaxPooling2D(pool_size=2,strides=2),

Figure 10-41. Different normalization illustration [7]

Chapter 10 Convolutional neural networks

418

 layers.ReLU(),

 layers.Flatten(),

 layers.Dense(120, activation='relu'),

 layers.Dense(84, activation='relu'),

 layers.Dense(10)

])

In the training phase, you need to set the network parameter

training=True to distinguish whether the BN layer is a training or testing

model. The code is as follows:

 with tf.GradientTape() as tape:

 # Insert channel dimension

 x = tf.expand_dims(x,axis=3)

 # Forward calculation, [b, 784] => [b, 10]

 out = network(x, training=True)

In the testing phase, you need to set training=False to avoid wrong

behavior in the BN layer. The code is as follows:

 for x,y in db_test:

 # Insert channel dimension

 x = tf.expand_dims(x,axis=3)

 # Forward calculation

 out = network(x, training=False)

10.9 Classical Convolutional Network
Since the introduction of AlexNet [3] in 2012, a variety of deep

convolutional neural network models have been proposed, among which

the more representative ones are the VGG series [8], the GoogLeNet series

[9], the ResNet series [10], and the DenseNet series [11]. The overall trend

of their network layers is gradually increasing. Take the classification

Chapter 10 Convolutional neural networks

419

performance of the network model on the ImageNet dataset of the ILSVRC

challenge as an example. As shown in Figure 10-42, the network models

before the emergence of AlexNet were all shallow neural networks, and

the Top-5 error rate was above 25%. The AlexNet 8-layer deep neural

network reduced the Top-5 error rate to 16.4%, and the performance was

greatly improved. The subsequent VGG and GoogleNet models continued

to reduce the error rate to 6.7%; the emergence of ResNet increased the

number of network layers to 152 layers for the first time. The error rate is

also reduced to 3.57%.

4 4 8 8
19 22

152

28.2 25.8
16.4 11.7 7.3 6.7 3.57

ILSVRC10 ILSVRC11 ILSVRC12 ILSVRC13 ILSVRC14 ILSVRC14 ILSVRC15

ILSVRC ImageNet Classification Task

Model depth Top-5 error rate

Figure 10-42. Model performance on classification tasks of
ImageNet dataset

This section will focus on the characteristics of these network models.

10.9.1 AlexNet
In 2012, Alex Krizhevsky, the champion of the ImageNet dataset

classification task of the ILSVRC12 challenge, proposed an eight-layer deep

neural network model AlexNet, which receives the input size of 224 × 224

color image data and gets the probability distribution of 1000 categories

after five convolutional layers and three fully connected layers. In order

Chapter 10 Convolutional neural networks

420

to reduce the dimensionality of the feature map, AlexNet added the Max

Pooling layer after the first, second, and fifth convolutional layers. As

shown in Figure 10-43, the number of parameters of the network reached

60 million. In order to train the model on NVIDIA GTX 580 GPU (3GB GPU

memory) at the time, Alex Krizhevsky disassembled the convolutional

layer and the first two fully connected layers on two GPUs for training

separately, and merged the last layer into one GPU to do backward update.

AlexNet achieved a Top-5 error rate of 15.3% in ImageNet, which is 10.9%

lower than the second place.

The innovations of AlexNet are:

• The number of layers has reached eight.

• Uses the ReLU activation function. Most of previous

neural networks use the Sigmoid activation function,

which is relatively complicated to calculate and is

prone to gradient dispersion.

• Introduces the Dropout layer. Dropout improves

the generalization ability of the model and prevents

overfitting.

Figure 10-43. AlexNet architecture [3]

Chapter 10 Convolutional neural networks

421

10.9.2 VGG Series
The superior performance of the AlexNet model has inspired the industry

to move in the direction of deeper network models. In 2014, the runner-up

of the ImageNet classification task of the ILSVRC14 challenge, the VGG

Lab of the University of Oxford, proposed a series of network models such

as VGG11, VGG13, VGG16, and VGG19 (Figure 10-45), and increased the

network depth to up to 19 layers [8]. Take VGG16 as an example, it accepts

color picture data with size of 224 × 224, and then passes through 2 Conv-

Conv-Pooling units and 3 Conv-Conv-Conv-Pooling units, and finally

outputs the probability of current picture belonging to 1000 categories

through a 3 fully connected layers as shown in Figure 10-44. VGG16

achieved a Top-5 error rate of 7.4% on ImageNet, which is 7.9% lower than

AlexNet’s error rate.

The innovations of the VGG series network are:

• The number of layers is increased to 19.

• Uses a smaller 3x3 convolution kernel, which has fewer

parameters and lower computational cost compared to

the 7x7 convolution kernel in AlexNet.

• Uses a smaller pooling layer window 2 × 2 and stride

size s = 2, while s = 2and pooling window is 3x3 in

AlexNet.

Figure 10-44. VGG16 architecture

Chapter 10 Convolutional neural networks

422

10.9.3 GoogLeNet
The number of 3x3 convolution kernel has less parameters, the

computational cost is lower, and the performance is even better. Therefore,

the industry began to explore the smallest convolution kernel: the 1x1

convolution kernel. As shown in Figure 10-46, the input is a three-

channel 5x5 picture, and the convolution operation is performed with

a single 1x1 convolution kernel. The data of each channel is calculated

with the convolution kernel of the corresponding channel to obtain

the intermediate matrix of the three channels, and the corresponding

positions are added to get the final output tensor. For the input shape of

Figure 10-45. VGG series network architecture [8]

Chapter 10 Convolutional neural networks

423

[b, h, w, cin], the output of the 1x1 convolutional layer is [b, h, w, cout], where

cin is the number of channels of input data, cout is the number of channels

of output data, and is also the number of 1x1 convolution kernels. A

special feature of the 1x1 convolution kernel is that it can only transform

the number of channels without changing the width and height of the

feature map.

1 -1 0 2 0

-1 -2 2 3 1

1 2 -2 1 0

0 -1 -1 -3 2

2 0 0 1 -1 *

2 1 1 -2 3

-1 2 -2 3 1

-1 0 1 -1 0

0 -1 -2 -3 2

1 0 1 3 -1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0*

3 -1 0 -1 0

-1 2 2 3 -1

-2 2 -2 -3 0

0 -1 2 -3 0

2 0 0 1 -1

3 -1 0 -1 0

-1 2 2 3 -1

-2 2 -2 -3 0

0 -1 2 -3 0

2 0 0 1 -1*

+

1

0

1

1 -1 0 2 0

-1 -2 2 3 1

1 2 -2 1 0

0 -1 -1 -3 2

2 0 0 1 -1

4 -2 0 1 0

-2 0 4 6 0

-1 4 -4 -2 0

0 -2 1 -6 2

4 0 0 2 -2

Figure 10-46. 1 × 1 convolutional kernel example

In 2014, Google, the champion of the ILSVRC14 challenge, proposed

a large number of network models using 3x3 and 1x1 convolution kernels:

GoogLeNet, with a network layer number of 22 [9]. Although the number

of layers of GoogLeNet is much larger than that of AlexNet, its parameter

amount is only half of AlexNet, and its performance is much better than

AlexNet. On the ImageNet dataset classification task, GoogLeNet achieved

a Top-5 error rate of 6.7%, which is 0.7% lower than VGG16 in error rate.

The GoogLeNet network adopts the idea of modular design and forms

a complex network structure by stacking a large number of Inception

modules. As shown in Figure 10-47, the input of the Inception module is

Chapter 10 Convolutional neural networks

424

X, and then passes through four sub-networks, and finally are spliced and

merged on the channel axis to form the output of the Inception module.

The four sub- networks are:

• 1 × 1 convolutional layer.

• 1 × 1 convolutional layer, and then through a 3x3

convolutional layer.

• 1 × 1 convolutional layer, and then through a 5x5

convolutional layer.

• 3 × 3 maximum pooling layer, and then through the 1x1

convolutional layer.

Figure 10-47. Inception module

The network structure of GoogLeNet is shown in Figure 10-48. The

network structure in the red box is the network structure in Figure 10-47.

Figure 10-48. GoogLeNet architecture [9]

Chapter 10 Convolutional neural networks

425

10.10 Hands-On CIFAR10 and VGG13
MNIST is one of the most commonly used datasets for machine learning,

but because handwritten digital pictures are very simple, and the MNIST

dataset only saves image gray information, it is not suitable for inputting a

network model designed as RGB three-channel. This section will introduce

another classic image classification dataset: CIFAR10.

The CIFAR10 dataset was released by Canadian Institute for Advanced

Research. It contains color pictures of ten categories of objects such as

airplanes, cars, birds, and cats. Each category has collected 6,000 large and

small pictures, totaling 60,000 pictures. Among them, 50,000 sheets are

used as training datasets, and 10,000 sheets are used as test datasets. Each

type of sample is shown in Figure 10-49.

Figure 10-49. CIFAR10 Data Set1

1 Image source: www.cs.toronto.edu/~kriz/cifar.html

Chapter 10 Convolutional neural networks

426

In TensorFlow, similarly, there is no need to manually download,

parse, and load the CIFAR10 dataset. The training set and test set can be

directly loaded through the datasets.cifar10.load_data() function. For

example,

Load CIFAR10 data set

(x,y), (x_test, y_test) = datasets.cifar10.load_data()

Delete one dimension of y, [b,1] => [b]

y = tf.squeeze(y, axis=1)

y_test = tf.squeeze(y_test, axis=1)

Print the shape of training and testing sets

print(x.shape, y.shape, x_test.shape, y_test.shape)

Create training set and preprocess

train_db = tf.data.Dataset.from_tensor_slices((x,y))

train_db = train_db.shuffle(1000).map(preprocess).batch(128)

Create testing set and preprocess

test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))

test_db = test_db.map(preprocess).batch(128)

Select a Batch

sample = next(iter(train_db))

print('sample:', sample[0].shape, sample[1].shape,

 tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))

TensorFlow will automatically download the dataset to the path C:\

Users\username\.keras\datasets, and users can view it, or manually delete

the unnecessary dataset cache. After the preceding code runs, the shape of

X and y in the training set is (50000, 32, 32, 3) and (50000), and the shape

of X and y in the test set is (10000, 32, 32, 3) and (10000), which indicates

the size of the picture is 32 × 32, those are color pictures, the number of

samples in the training set is 50,000, and the number of samples in the test

set is 10,000.

CIFAR10 image recognition task is not simple. This is mainly due to

the fact that the image content of CIFAR10 requires a lot of details to be

Chapter 10 Convolutional neural networks

427

presented, and the resolution of the saved images is only 32 × 32, which

makes the subject information blurry and even difficult for human eyes to

distinguish. The expression ability of shallow neural networks is limited

and is difficult to reach better performance. In this section, we will modify

the VGG13 network structure according to the characteristics of our data

set to complete CIFAR10 image recognition as follows:

• Adjust the network input to 32 × 32. The original

network input is 224 × 224, resulting in too large input

feature dimensions and too large network parameters.

• The dimensions of the three fully connected layers are

[256,64,10] for the setting of ten classification tasks.

Figure 10-50 is the adjusted VGG13 network structure, which we

collectively call the VGG13 network model.

C
o

n
v

2
d

(6
4

, 3
x
3

)

P
o

o
lin

g
(2

x
2

,2
)

C
o

n
v

2
d

(6
4

, 3
x
3

)

F
C

(2
5

6
)

F
C

(6
4

)

F
C

(1
0

)

C
o

n
v

2
d

(6
4

, 3
x
3

)

P
o

o
lin

g
(2

x
2

,2
)

C
o

n
v

2
d

(6
4

, 3
x
3

)

C
o

n
v

2
d

(6
4

, 3
x
3

)

P
o

o
lin

g
(2

x
2

,2
)

C
o

n
v

2
d

(6
4

, 3
x
3

)

C
o

n
v

2
d

(6
4

, 3
x
3

)

P
o

o
lin

g
(2

x
2

,2
)

C
o

n
v

2
d

(6
4

, 3
x
3

)

C
o

n
v

2
d

(6
4

, 3
x
3

)

P
o

o
lin

g
(2

x
2

,2
)

C
o

n
v

2
d

(6
4

, 3
x
3

)

Figure 10-50. Adjusted VGG13 model structure

We implement the network as two sub-networks: convolutional sub-

network and fully connected sub-network. The convolution sub-network

is composed of five sub-modules, each of which contains the Conv-Conv-

MaxPooling unit structure. The code is as follows:

conv_layers = [

 # Conv-Conv-Pooling unit 1

 # 64 3x3 convolutional kernels with same input and

output size

 layers.Conv2D(64, kernel_size=[3, 3], padding="same",

activation=tf.nn.relu),

Chapter 10 Convolutional neural networks

428

 layers.Conv2D(64, kernel_size=[3, 3], padding="same",

activation=tf.nn.relu),

 # Reduce the width and height size to half of its original

 layers.MaxPool2D(pool_size=[2, 2], strides=2,

padding='same'),

 # Conv-Conv-Pooling unit 2, output channel increases to

128, half width and height

 layers.Conv2D(128, kernel_size=[3, 3], padding="same",

activation=tf.nn.relu),

 layers.Conv2D(128, kernel_size=[3, 3], padding="same",

 activation=tf.nn.relu),

 layers.MaxPool2D(pool_size=[2, 2], strides=2,

padding='same'),

 # Conv-Conv-Pooling unit 3, output channel increases to

256, half width and height

 layers.Conv2D(256, kernel_size=[3, 3], padding="same",

activation=tf.nn.relu),

 layers.Conv2D(256, kernel_size=[3, 3], padding="same",

activation=tf.nn.relu),

 layers.MaxPool2D(pool_size=[2, 2], strides=2,

padding='same'),

 # Conv-Conv-Pooling unit 4, output channel increases to

512, half width and height

 layers.Conv2D(512, kernel_size=[3, 3], padding="same",

activation=tf.nn.relu),

 layers.Conv2D(512, kernel_size=[3, 3], padding="same",

activation=tf.nn.relu),

 layers.MaxPool2D(pool_size=[2, 2], strides=2,

padding='same'),

Chapter 10 Convolutional neural networks

429

 # Conv-Conv-Pooling unit 5, output channel increases to

512, half width and height

 layers.Conv2D(512, kernel_size=[3, 3], padding="same",

activation=tf.nn.relu),

 layers.Conv2D(512, kernel_size=[3, 3], padding="same",

activation=tf.nn.relu),

 layers.MaxPool2D(pool_size=[2, 2], strides=2,

padding='same')

]

conv_net = Sequential(conv_layers)

The fully connected sub-network contains three fully connected layers,

each layer adds a ReLU nonlinear activation function, except for the last

layer. The code is shown as follows:

Create 3 fully connected layer sub-network

fc_net = Sequential([

 layers.Dense(256, activation=tf.nn.relu),

 layers.Dense(128, activation=tf.nn.relu),

 layers.Dense(10, activation=None),

])

After the subnet is created, use the following code to view the

parameters of the network:

build network and print parameter info

conv_net.build(input_shape=[4, 32, 32, 3])

fc_net.build(input_shape=[4, 512])

conv_net.summary()

fc_net.summary()

The total number of parameters of the convolutional network is about

940,000, the total number of parameters of the fully connected network is

about 177,000, and the total number of parameters of the network is about

950, 000, which is much less than the original version of VGG13.

Chapter 10 Convolutional neural networks

430

Since we implemented the network as two sub-networks, when

performing gradient update, it is necessary to merge the parameter of the

two sub-networks as in the following:

merge parameters of two sub-networks

variables = conv_net.trainable_variables + fc_net.trainable_

variables

calculate gradient for all parameters

grads = tape.gradient(loss, variables)

update gradients

optimizer.apply_gradients(zip(grads, variables))

Run the cifar10_train.py file to start training the model. After training

50 Epochs, the test accuracy of the network reached 77.5%.

10.11 Convolutional Layer Variants
The research of convolutional neural networks has produced a variety

of excellent network models, and various variants of convolutional

layers have been proposed. This section will focus on several typical

convolutional layer variants.

10.11.1 Dilated/Atrous Convolution
In order to reduce the number of parameters of the network, the design of

the convolution kernel usually chooses a smaller 1 × 1 and 3 × 3 receptive

field size. The small convolution kernel makes the network’s receptive field

area limited when extracting features, but increasing the receptive field

area will increase the amount of network parameters and computational

costs, so it is necessary to weigh the design.

Chapter 10 Convolutional neural networks

431

Dilated/Atrous Convolution is a better solution to this problem.

Dilated/Atrous Convolution adds a dilation rate parameter to the receptive

field of ordinary convolution to control the sampling step size of the

receptive field area, as shown in Figure 10-51. When the sampling step

dilation rate of the receptive field is 1, the distance between the sampling

points of each receptive field is 1, and the dilated convolution at this time

degenerates to ordinary convolution; when the dilation rate is 2, one point

is sampled every two units in the receptive field. As shown in the green

grid in the green box in the middle of Figure 10-51, the distance between

each sampling grid is 2. Similarly, the dilation rate on the right side of

Figure 10-51 is 3, and the sampling step is 3. Although the increase in

dilation rate will increase the area of the receptive field, the actual number

of points involved in the calculation remains unchanged.

dilation rate=1 dilation rate=2 dilation rate=3

Figure 10-51. Receptive field step length with different dilation rate

Take the single-channel 7 × 7 tensor and a single 3 × 3 convolution

kernel as an example, as shown in Figure 10-52. In the initial position,

the receptive field is sampled from the top and right positions, and every

other point is sampled. A total of 9 data points are collected, as shown in

the green box in Figure 10-52. These 9 data points are multiplied by the

convolution kernel and written into the corresponding position of the

output tensor.

Chapter 10 Convolutional neural networks

432

*

Figure 10-52. Dilated convolution sample-1

The convolution kernel window moves one unit to the right according

to the step size s = 1, as shown in Figure 10-53. The same interval sampling

is carried out. A total of 9 data points are sampled. The multiplication and

accumulation operation is completed with the convolution kernel, and the

output tensor is written to corresponding position until the convolution

kernel moves to the bottom and rightmost position. It should be noted that

the moving step size s of the convolution kernel window and the sampling

step size dilation rate of the receptive field region are different concepts.

*

Figure 10-53. Dilated convolution sample-2

Dilated convolution provides a larger receptive field window without

increasing network parameters. However, when setting up a network

model using hollow convolution, the dilation rate parameter needs to be

Chapter 10 Convolutional neural networks

433

carefully designed to avoid grid effects. At the same time, a larger dilation

rate parameter is not conducive to tasks such as small object detection and

semantic segmentation.

In TensorFlow, you can choose to use normal convolution or dilated

convolution by setting the dilation_rate parameter of the layers.Conv2D()

class. For example

In [8]:

x = tf.random.normal([1,7,7,1]) # Input

Dilated convolution, 1 3x3 kernel

layer = layers.Conv2D(1,kernel_

size=3,strides=1,dilation_rate=2)

out = layer(x) # forward calculation

out.shape

Out[8]: TensorShape([1, 3, 3, 1])

When the dilation_rate parameter is set to the default value 1, the

normal convolution method is used for calculation; when the dilation_rate

parameter is greater than 1, the dilated convolution method is sampled for

calculation.

10.11.2 Transposed Convolution
Transposed convolution (or fractionally strided convolution, sometimes

it is also called deconvolution). In fact, deconvolution is mathematically

defined as the inverse process of convolution, but transposed convolution

cannot recover the input of the original convolution, so it is not

appropriate to call it deconvolution) by filling a large amount of padding

between the inputs to achieve the effect that the output height and width

are greater than the input height and width, so as to achieve the purpose of

upsampling, as shown in Figure 10-54. We first introduce the calculation

process of transposed convolution, and then introduce the relationship

between transposed convolution and ordinary convolution.

Chapter 10 Convolutional neural networks

434

To simplify the discussion, we only discuss the input with h = w, that is,

the case where the input height and width are equal.

 o + 2p − k = n * s
Consider the following example: the single-channel feature map has 2 × 2

input, and the transposed convolution kernel is 3 × 3, s = 2, and padding

p = 0. First, evenly insert s − 1 blank data points between the input data

points, the resulting matrix is 3 × 3, as shown in the second matrix in

Figure 10-55. Filling the corresponding rows/columns around the 3 × 3

matrix according to the filling amount k − p − 1 = 3 − 0 − 1 = 2. At this time,

the height and width of the input tensor are 7 × 7, as shown in the third

matrix in Figure 10-55.

Transposed
Conv layer 1

Transposed
Conv layer 2

Transposed
Conv layer 3

Transposed
Conv layer 4

Figure 10-54. Transposed convolution for upsampling

Chapter 10 Convolutional neural networks

435

-7 -41

-15 -81

-7 0 -41

0 0 0

-15 0 -81

− 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 -7 0 -41 0 0
0 0 0 0 0 0 0
0 0 -15 0 -81 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

− − 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 -7 0 -41 0 0
0 0 0 0 0 0 0
0 0 -15 0 -81 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

= (+ −)

Figure 10-55. Input and padding example

On the 7 × 7 input tensor, apply the 3 × 3 convolution kernel operations

with stride size s′ = 1 and padding p = 0 (note that the step size s′ of the

ordinary convolution at this stage is always 1, which is different from

the step size s of the transposed convolution). According to the ordinary

convolution calculation formula, the output size is:

o i p k

s
�

� � �
� �

� � �
� �

�
2

1
7 2 0 3

1
1 5

It means 5 × 5 output size. We directly follow this calculation process to

give the final transposed convolution output and input relationship. When

o + 2p − k is a multiple of s, the relationship is satisfiedo = (i − 1)s + k − 2p

Transposed convolution is not the inverse process of ordinary

convolution, but there is a certain connection between the two, and

transposed convolution is also implemented based on ordinary

convolution. Under the same setting, the input x is obtained after

the ordinary convolution operation o = Conv(x), and sending o to the

transposed convolution operation gives x′ = ConvTranspose(o), where

x′ ≠ x, but with same shape. We can use ordinary convolution operations

with input as 5 × 5, stride size s = 2, padding p = 0, and 3 × 3 convolution

kernel to verify the demonstration, as shown in Figure 10-56.

Chapter 10 Convolutional neural networks

436

It can be seen that the output with size 5 × 5 of the transposed

convolution is sent to the ordinary convolution under the same set

conditions, and the output of size 2 × 2 can be obtained. This size is

exactly the input size of the transposed convolution. At the same time,

we also observe that the output matrix is not exactly the input matrix fed

into the transposed convolution. Transposed convolution and ordinary

convolution are not mutually inverse processes and cannot recover the

input content of the other party, but can only recover tensors of equal size.

Therefore, it is not appropriate to call it deconvolution.

Based on TensorFlow to implement the transposed convolution

operation of the preceding example, the code is as follows:

In [8]:

Create matrix X with size 5x5

x = tf.range(25)+1

Reshape X to certain shape

x = tf.reshape(x,[1,5,5,1])

x = tf.cast(x, tf.float32)

Create constant matrix

w = tf.constant([[-1,2,-3.],[4,-5,6],[-7,8,-9]])

Reshape dimension

w = tf.expand_dims(w,axis=2)

-1 2 -3

4 -5 6

-7 8 -9

*

-67 -77

-117 -127
X

Figure 10-56. Use ordinary convolution to generate same size
of input

Chapter 10 Convolutional neural networks

437

w = tf.expand_dims(w,axis=3)

Regular convolution calculation

out = tf.nn.conv2d(x,w,strides=2,padding='VALID')

out

Out[9]: # Output size is 2x2

<tf.Tensor: id=14, shape=(1, 2, 2, 1), dtype=float32, numpy=

array([[[[-67.],

 [-77.]],

 [[-117.],

 [-127.]]]], dtype=float32)>

Now we use the output of ordinary convolution as the input of

transposed convolution to verify whether the output of transposed

convolution is 5 × 5; the code is as follows:

In [10]:

Transposed convolution calculation

xx = tf.nn.conv2d_transpose(out, w, strides=2,

 padding='VALID',

 output_shape=[1,5,5,1])

Out[10]: # Output size is 5x5

<tf.Tensor: id=117, shape=(5, 5), dtype=float32, numpy=

array([[67., -134., 278., -154., 231.],

 [-268., 335., -710., 385., -462.],

 [586., -770., 1620., -870., 1074.],

 [-468., 585., -1210., 635., -762.],

 [819., -936., 1942., -1016., 1143.]],

dtype=float32)>

It can be seen that transposed convolution can recover the input

of ordinary convolution of the same size, but the output of transposed

convolution is not equivalent to the input of ordinary convolution.

Chapter 10 Convolutional neural networks

438

 o + 2p − k ≠n * s
Let us analyze a detail of the relationship between input and output in the

convolution operation in more depth. Consider the output expression of

the convolution operation:

o i p k

s
�

� � ��
��

�
��
�

2
1

When the stride size s > 1, the round-down operation of
i p k

s
� � ��

��
�
��

2

makes multiple input sizes i correspond to the same output size o. For

example, consider the convolution operation with input size 6 × 6,

convolution kernel size 3 × 3, and stride size 1. The code is as follows:

In [11]:

x = tf.random.normal([1,6,6,1])

6x6 input

out = tf.nn.conv2d(x,w,strides=2,padding='VALID')

out.shape

x = tf.random.normal([1,6,6,1])...

Out[12]: # Output size 2x2, same as when the input size is 5x5

<tf.Tensor: id=21, shape=(1, 2, 2, 1), dtype=float32, numpy=

array([[[[20.438847],

 [19.160788]],

 [[0.8098897],

 [-28.30303]]]], dtype=float32)>

In this case, the convolutional output of the same size 2 × 2 can be

obtained as shown in Figure 10-56. Therefore, convolution operations

with different input sizes may obtain the same output. Considering that

the input and output relationship between convolution and transposed

convolution is interchangeable, from the perspective of transposed

convolution, after the input size i is subjected to the transposed

Chapter 10 Convolutional neural networks

439

convolution operation, different output size o may be obtained. Therefore,

by filling the a rows and a columns in Figure 10-55 to achieve different

sizes of output o, so as to restore the normal convolution with different

sizes of input, the relationship of a is:

 a o p k s� � �� �2 %

The output of the transposed convolution becomes:

 o i s k p a� �� � � � �1 2

In TensorFlow, there is no need to manually specify a. We just specify

the output size. TensorFlow will automatically derive the number of rows

and columns that need to be filled, provided that the output size is legal.

For example:

In [13]:

Get output of size 6x6

xx = tf.nn.conv2d_transpose(out, w, strides=2,

 padding='VALID',

 output_shape=[1,6,6,1])

xx

Out[13]:

<tf.Tensor: id=23, shape=(1, 6, 6, 1), dtype=float32, numpy=

array([[[[-20.438847],

 [40.877693],

 [-80.477325],

 [38.321575],

 [-57.48236],

 [0.]],...

The tensor with height and width 5 × 5 can also be obtained by

changing the parameter output_shape=[1,5,5,1].

Chapter 10 Convolutional neural networks

440

 Matrix Transposition

The transposition W ′T of transposed convolution means that the sparse

matrix W ′ generated by the convolution kernel matrix W needs to

be transposed first, and then the matrix multiplication operation is

performed, while the ordinary convolution does not have the step of

transposition. This is why it is called transposed convolution.

Consider the ordinary Conv2d operation: X and W, the convolution

kernel needs to be cyclically moved in the row and column directions

according to the strides to obtain the data of the receptive field involved in

the operation, and the “multiply and accumulate” value at each window is

calculated serially, which is extremely inefficient. In order to speed up the

operation, mathematically, the convolution kernel W can be rearranged

into a sparse matrix W ′ according to strides, and then the operation

W ′ @ X ′ is completed once (in fact, the matrix W ′ is too sparse, resulting

in many useless 0-multiplication operations, and many deep learning

frameworks do not use this implementation).

Take the following convolution kernel as an example: the input X of

4 rows and 4 columns, the height and width as 3 × 3, stride of 1, and no

padding. First, X will be flattened to X ′, as shown in Figure 10-57.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

-1 2 -3

4 -5 6

-7 8 -9

*

-56 -61

-76 -81

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 10-57. Transposed convolution X′

Chapter 10 Convolutional neural networks

441

Then convert the convolution kernel W into a sparse matrix W ′, as

shown in Figure 10-58.

-1 2 -3

4 -5 6

-7 8 -9

-1 2 -3 0 4 -5 6 0 -7 8 -9
0 -1 2 -3 0 4 -5 6 0 -7 8 -9
0 0 0 0 -1 2 -3 0 4 -5 6 0 -7 8 -9
0 0 0 0 0 -1 2 -3 0 4 -5 6 0 -7 8 -9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-56 -61

-76 -81

-56

-61

-76

-81

kernel:

′

′

@

′

Figure 10-58. Transposed convolution W′

At this time, ordinary convolution operation can be realized by matrix

multiplication once:

 � � ��O W X@

If given O, how to generate a tensor of the same shape and size as X it?

Multiply the transposed matrix W ′ and the rearranged matrix O′ as shown

in Figure 10-57:

 � �� �X W OT @

Reshape X ′ to the same as the original input size X. For example, the

shape of O′ is [4, 1], the shape of W ′T is [16, 4], the shape of X ′ obtained

by matrix multiplication is [16, 1], and the tensor with shape [4, 4] can

be generated after reshaping. Since transposed convolution needs to be

transposed before it can be multiplied with the input matrix of transposed

convolution during matrix operation, it is called transposed convolution.

Chapter 10 Convolutional neural networks

442

Transposed convolution has the function of “magnifying feature

maps” and has been widely used in generating confrontation networks

and semantic segmentation. For example, the generator in DCGAN

[12] achieves layer-by- layer “magnification” by stacking transposed

convolution layers and finally get a very realistic generated picture.

 Transposed Convolution Implementation

In TensorFlow, the transposed convolution operation can be realized

through nn.conv2d_transpose() function. We first complete the ordinary

convolution operation through nn.conv2d. Note that the definition format

of the convolution kernel of transposed convolution is [k, k, cout, cin].

For example

In [14]:

Input 4x4

x = tf.range(16)+1

x = tf.reshape(x,[1,4,4,1])

x = tf.cast(x, tf.float32)

3x3 kernel

w = tf.constant([[-1,2,-3.],[4,-5,6],[-7,8,-9]])

w = tf.expand_dims(w,axis=2)

Figure 10-59. DCGAN architecture [12]

Chapter 10 Convolutional neural networks

443

w = tf.expand_dims(w,axis=3)

Regular convolutional operation

out = tf.nn.conv2d(x,w,strides=1,padding='VALID')

Out[14]:

<tf.Tensor: id=42, shape=(2, 2), dtype=float32, numpy=

array([[-56., -61.],

 [-76., -81.]], dtype=float32)>

With strides=1, padding=‘VALID’, and the convolution kernel

unchanged, we try to restore the height and width tensor of the same

size as the input x through the transposed convolution operation of the

convolution kernel w and the output. The code is as follows:

In [15]: # Restore 4x4 input

xx = tf.nn.conv2d_transpose(out, w, strides=1, padding='VALID',

output_shape=[1,4,4,1])

tf.squeeze(xx)

Out[15]:

<tf.Tensor: id=44, shape=(4, 4), dtype=float32, numpy=

array([[56., -51., 46., 183.],

 [-148., -35., 35., -123.],

 [88., 35., -35., 63.],

 [532., -41., 36., 729.]], dtype=float32)>

It can be seen that the 4 × 4 feature map is generated by the transposed

convolution, but the data of the feature map is not the same as the input x.

When using tf.nn.conv2d_transpose for transposed convolution

operation, you need to manually set the output height and width. tf.nn.

conv2d_transpose does not support customized padding settings, it can

only be set to VALID or SAME.

When padding=‘VALID’ is set, the output size is:

 o i s k� �� � �1

Chapter 10 Convolutional neural networks

444

When padding=‘SAME’ is set, the output size is:

 o i s� �

If the reader is temporarily unable to understand the principle details

of transposed convolution, he/she can keep the preceding two expressions

in mind. For example, when calculating the 2 × 2 transposed convolution

input and the 3 × 3 convolution kernel, strides=1, padding=’VALID’, the

output size is:

� �� � �� � � � �h w 2 1 1 3 4

When calculating 2 × 2 transposed convolution input and the 3 × 3

convolution kernel, strides=3, padding=’SAME’, the output size is:

 � �� � � �h w 2 3 6

Transposed convolution can also be the same as other layers. Create a

transposed convolution layer through the layers.Conv2DTranspose class,

and then call the instance to complete the forward calculation:

In [16]:

layer = layers.Conv2DTranspose(1,kernel_size=3,strides=1,paddin

g='VALID')

xx2 = layer(out)

xx2

Out[16]:

<tf.Tensor: id=130, shape=(1, 4, 4, 1), dtype=float32, numpy=

array([[[[9.7032385],

 [5.485071],

 [-1.6490463],

 [1.6279562]],...

Chapter 10 Convolutional neural networks

445

10.11.3 Separate Convolution
Here we take depth-wise separable convolution as an example. When the

ordinary convolution is operating on multi-channel input, each channel

of the convolution kernel and each channel of the input are respectively

convolved to obtain a multi-channel feature map, and then the

corresponding elements are added to produce the final result of a single

convolution kernel output as shown in Figure 10-60.

Kernel [3,3,3,1]

Intermediate features

Output:
*

Figure 10-60. Schematic diagram of ordinary convolution
calculation

The calculation process of separate convolution is different. Each

channel of the convolution kernel is convolved with each input channel

to obtain the intermediate features of multiple channels, as shown in

Figure 10-61. This multi-channel intermediate feature tensor is then

subjected to the ordinary convolution operation of multiple 1 × 1

convolution kernels to obtain multiple outputs with constant height and

width. These outputs are spliced on the channel axis to produce the final

separated convolutional layer output. It can be seen that the separated

convolution layer includes a two-step convolution operation. The first

convolution operation is a single convolution kernel, and the second

convolution operation includes multiple convolution kernels.

Chapter 10 Convolutional neural networks

446

Input: [1, ℎ, , 3]

Single ernel: [3,3,3,1]

Intermediate features

Output: [1, ℎ′, , 4]

*

*

*

*

*

Four 1x1
kernels: [1,1,3,4]

Figure 10-61. Schematic diagram of depth separable convolution
calculation

So what are the advantages of using separate convolution? An obvious

advantage is that for the same input and output, the parameters of the

separable convolution are about 1/3 of the ordinary convolution. Consider

the example of ordinary convolution and separate convolution in the

preceding figure. The parameter quantity of ordinary convolution is:

 3 3 3 4 108� � � �

The first part of the parameter of the separated convolution is:

 3 3 3 1 27� � � �

The second part of the parameter is:

 1 1 3 4 14� � � �

The total parameter amount of the separated convolution is only 39,

but it can realize the same input and output size transformation of the

ordinary convolution. Separate convolution has been widely used in areas

sensitive to computational cost, such as Xception and MobileNets.

Chapter 10 Convolutional neural networks

447

10.12 Deep Residual Network
The emergence of network models such as AlexNet, VGG, and GoogLeNet

has brought the development of neural networks to a stage of dozens of

layers. Researchers have found that the deeper the network, the more

likely it is to obtain better generalization capabilities. But as the model

deepens, the network becomes more and more difficult to train, which is

mainly caused by gradient dispersion and gradient explosion. In a neural

network with a deeper number of layers, when the gradient information

is transmitted from the last layer of the network to the first layer of the

network layer by layer, there will be a phenomenon that the gradient is

close to 0 or the gradient value is very large during the transfer process.

The deeper the network layer, the more serious this phenomenon may be.

So how to solve the gradient dispersion and gradient explosion

phenomenon of deep neural networks? A very natural idea is that since

shallow neural networks are not prone to these gradients, you can try to

add a fallback mechanism to the deep neural networks. When the deep

neural network can easily fall back to the shallow neural network, the deep

neural network can obtain model performance equivalent to that of the

shallow neural network, but not worse.

By adding a direct connection between the input and output – Skip

Connection – the neural network has the ability to fall back. Taking the

VGG13 deep neural network as an example, assuming that the gradient

dispersion phenomenon is observed in the VGG13 model, and the

ten-layer network model does not observe the gradient dispersion

phenomenon, then you can consider adding Skip Connection to the

last two convolutional layers, as shown in Figure 10-62. In this way, the

network model can automatically choose whether to complete the feature

transformation through these two convolutional layers, or skip these two

convolutional layers and choose Skip Connection, or combine the output

of the two convolutional layers and Skip Connection .

Chapter 10 Convolutional neural networks

448

C
o

n
v

2
d

(6
4

, 3
x

3
)

P
o

o
lin

g
(2

x
2

,2
)

C
o

n
v

2
d

(6
4

, 3
x

3
)

F
C

(2
5

6
)

F
C

(6
4

)

F
C

(1
0

)

C
o

n
v

2
d

(6
4

, 3
x

3
)

P
o

o
lin

g
(2

x
2

,2
)

C
o

n
v

2
d

(6
4

, 3
x

3
)

C
o

n
v

2
d

(6
4

, 3
x

3
)

P
o

o
lin

g
(2

x
2

,2
)

C
o

n
v

2
d

(6
4

, 3
x

3
)

C
o

n
v

2
d

(6
4

, 3
x

3
)

P
o

o
lin

g
(2

x
2

,2
)

C
o

n
v

2
d

(6
4

, 3
x

3
)

C
o

n
v

2
d

(6
4

, 3
x

3
)

P
o

o
lin

g
(2

x
2

,2
)

C
o

n
v

2
d

(6
4

, 3
x

3
)

Figure 10-62. Architecture of VGG13 with Skip Connection

In 2015, He Kaiming and others from Microsoft Research Asia

published a Skip Connection-based deep residual network (residual

neural network, referred to as ResNet) algorithm [10], and proposed 18

layers, 34 layers, 50 layers, 101 layers, and 152 layers network, that is,

ResNet-18, ResNet-34, ResNet-50, ResNet-101 and ResNet-152 models,

and even successfully trained a very deep neural network with 1202 layers.

ResNet has achieved the best performance on tasks such as classification

and detection on the ImageNet dataset of the ILSVRC 2015 Challenge.

The ResNet papers have so far received more than 25,000 citations, which

shows the influence of ResNet in the artificial intelligence community.

10.12.1 ResNet Principle
ResNet implements the fallback mechanism by adding Skip Connection

between the input and output of the convolutional layers, as shown in

Figure 10-63. The input x passes through two convolutional layers to

obtain the output F(x) after feature transformation, and the corresponding

element of F(x) is added to x to get the final output:

 H x x F x� � � � � �

Chapter 10 Convolutional neural networks

449

H(x) is called residual block (ResBlock for short). Since the

convolutional neural network surrounded by Skip Connection needs to

learn the mapping F(x) = H(x) − x, it is called the residual network.

In order to satisfy the addition of the input x and the output F(x) of

the convolutional layer, the input shape needs to be exactly the same as

the shape of the output F(x). When the shapes are inconsistent, the input

x is generally transformed to the same shape of F(x) by adding additional

convolution operations on Skip Connection, as shown in the function

identity(x) in Figure 10-63, where identity(x) mainly takes the 1 × 1

convolutional operation to adjust the input number of channels.

Figure 10-64 compares the 34-layer deep residual network, the 34-layer

ordinary deep network, and the 19-layer VGG network structure. It can

be seen that the deep residual network reaches a deeper network layer by

stacking residual modules, thereby obtaining a deep network model with

stable training and superior performance.

Conv2d(64, 3x3)

Conv2d(64, 3x3)

ReLU ReLU

ℱ()

ℋ = ℱ +

Figure 10-63. Residual module

Chapter 10 Convolutional neural networks

450

Figure 10-64. Network architecture comparison [10]

10.12.2 ResBlock Implementation
The deep residual network does not add a new network layer type but

only adds a Skip Connection between the input and the output, so there

is no underlying implementation for ResNet. The residual module can be

implemented in TensorFlow by calling the ordinary convolutional layer.

First, create a new class. Initialize the convolutional layer and

activation function layer needed in the residual block, and then create a

new convolutional layer; the code is as follows:

class BasicBlock(layers.Layer):

 # Residual block

 def __init__(self, filter_num, stride=1):

 super(BasicBlock, self).__init__()

 # Create Convolutional Layer 1

 self.conv1 = layers.Conv2D(filter_num, (3, 3),

strides=stride, padding='same')

 self.bn1 = layers.BatchNormalization()

 self.relu = layers.Activation('relu')

 # Create Convolutional Layer 2

Chapter 10 Convolutional neural networks

451

 self.conv2 = layers.Conv2D(filter_num, (3, 3),

strides=1, padding='same')

 self.bn2 = layers.BatchNormalization()

When the shape of F(x) and x is different, it cannot be added directly.

We need to create a new convolutional layer identity(x) to complete the

shape conversion of x. Following the preceding code, the implementation

is as follows:

 if stride != 1: # Insert identity layer

 self.downsample = Sequential()

 self.downsample.add(layers.Conv2D(filter_num,

(1, 1), strides=stride))

 else: # connect directly

 self.downsample = lambda x:x

During forward propagation, you only need to add F(x) and identity(x)

and add the ReLU activation function. The forward calculation function

code is as follows:

 def call(self, inputs, training=None):

 # Forward calculation

 out = self.conv1(inputs) # 1st Conv layer

 out = self.bn1(out)

 out = self.relu(out)

 out = self.conv2(out) # 2nd Conv layer

 out = self.bn2(out)

 # identity() conversion

 identity = self.downsample(inputs)

 # f(x)+x

 output = layers.add([out, identity])

 # activation function

 output = tf.nn.relu(output)

 return output

Chapter 10 Convolutional neural networks

452

10.13 DenseNet
The idea of Skip Connection has achieved great success on ResNet.

Researchers have begun to try different Skip Connection schemes, among

which DenseNet [11] is more popular. DenseNet aggregates the feature

map information of all the previous layers with the output of the current

layer through Skip Connection. Unlike ResNet’s corresponding position

addition method, DenseNet uses splicing operations in the channel axis

dimension to aggregate feature information.

As shown in Figure 10-65, the input X0 is passed through the

convolutional layer H1 and the output X1 is spliced with the channel axis

to obtain the aggregated feature tensor, which is sent to the convolutional

layer H2 to obtain the output X2. Similarly, X2 is spliced with X1 and X0 and

sent to the next layer. Repeat this way until the output of the last layer X4

and the feature information of all previous layers: {Xi}i = 0, 1, 2, 3 are aggregated

to the final output of the module. Such a densely connected module based

on Skip Connection is called dense block.

Figure 10-65. Dense block architecture2

2 Image source: https://github.com/liuzhuang13/DenseNet

Chapter 10 Convolutional neural networks

https://github.com/liuzhuang13/DenseNet

453

DenseNet constructs a complex deep neural network by stacking

multiple dense blocks, as shown in Figure 10-66.

Figure 10-67 compares the performance of different versions of

DenseNet, the performance comparison of DenseNet and ResNet, and the

training curves of DenseNet and ResNet.

10.14 Hands-On CIFAR10 and ResNet18
In this section, we will implement the 18-layer deep residual network

ResNet18, train, and test it on the CIFAR10 image dataset. We will compare

its performance with the 13-layer ordinary neural network VGG13.

The standard ResNet18 accepts image data of size 224 × 224. We adjust

ResNet18 appropriately so that its input size is 32 × 32 and its output

dimension is 10. The adjusted ResNet18 network structure is shown in

Figure 10-68.

Figure 10-66. A typical DenseNet architecture3

Figure 10-67. Comparison of DenseNet and ResNet performance [11]

3 Image source: https://github.com/liuzhuang13/DenseNet

Chapter 10 Convolutional neural networks

https://github.com/liuzhuang13/DenseNet

454

First implement the residual module of the two convolutional layers in

the middle, and residual block of Skip Connection 1x1 convolutional layer

as in the following:

class BasicBlock(layers.Layer):

 # Residual block

 def __init__(self, filter_num, stride=1):

 super(BasicBlock, self).__init__()

 # 1st conv layer

 self.conv1 = layers.Conv2D(filter_num, (3, 3),

strides=stride, padding='same')

 self.bn1 = layers.BatchNormalization()

 self.relu = layers.Activation('relu')

 # 2nd conv layer

 self.conv2 = layers.Conv2D(filter_num, (3, 3),

strides=1, padding='same')

 self.bn2 = layers.BatchNormalization()

 if stride != 1:

 self.downsample = Sequential()

 self.downsample.add(layers.Conv2D(filter_num,

(1, 1), strides=stride))

 else:

 self.downsample = lambda x:x

 def call(self, inputs, training=None):

 # Forward calculation

Conv2d(128,3x3,2)

Conv2d(128,3x3,1)

1x1

Conv2d(64,3x3,1)

Conv2d(64,3x3,1)

FC(10)

Conv2d(64,3x3,1)

Conv2d(64,3x3,1)

Conv2d(64,3x3,1)

Conv2d(128,3x3,1)

Conv2d(128,3x3,1)

Conv2d(256,3x3,2)

Conv2d(256,3x3,1)

1x1

Conv2d(256,3x3,1)

Conv2d(256,3x3,1)

Conv2d(512,3x3,2)

Conv2d(512,3x3,1)

1x1

Conv2d(512,3x3,1)

Conv2d(512,3x3,1)

Figure 10-68. Adjusted ResNet18 architecture

Chapter 10 Convolutional neural networks

455

 # [b, h, w, c], 1st conv layer

 out = self.conv1(inputs)

 out = self.bn1(out)

 out = self.relu(out)

 # 2nd conv layer

 out = self.conv2(out)

 out = self.bn2(out)

 # identity()

 identity = self.downsample(inputs)

 # Add two layers

 output = layers.add([out, identity])

 output = tf.nn.relu(output) # activation function

 return output

When designing a deep convolutional neural network, generally follow

the rule of thumb that the height and width of the feature map gradually

decrease and the number of channels gradually increases. The extraction

of high-level features can be achieved by stacking Res Blocks with

gradually increasing channel numbers, and multiple residual modules can

be built at once through build_resblock as in the following:

 def build_resblock(self, filter_num, blocks, stride=1):

 # stack filter_num BasicBlocks

 res_blocks = Sequential()

 # Only 1st BasicBlock’s stride may not be 1

 res_blocks.add(BasicBlock(filter_num, stride))

 for _ in range(1, blocks):# Stride of Other BasicBlocks

are all 1

 res_blocks.add(BasicBlock(filter_num, stride=1))

 return res_blocks

Chapter 10 Convolutional neural networks

456

Let’s implement a general ResNet network model as in the following:

class ResNet(keras.Model):

 # General ResNet class

 def __init__(self, layer_dims, num_classes=10):

[2, 2, 2, 2]

 super(ResNet, self).__init__()

 self.stem = Sequential([layers.Conv2D(64, (3, 3),

strides=(1, 1)),

 layers.BatchNormalization(),

 layers.Activation('relu'),

 layers.MaxPool2D(pool_

size=(2, 2), strides=(1, 1),

padding='same')

])

 # Stack 4 Blocks

 self.layer1 = self.build_resblock(64, layer_dims[0])

 self.layer2 = self.build_resblock(128, layer_dims[1],

stride=2)

 self.layer3 = self.build_resblock(256, layer_dims[2],

stride=2)

 self.layer4 = self.build_resblock(512, layer_dims[3],

stride=2)

 # Pooling layer => 1x1

 self.avgpool = layers.GlobalAveragePooling2D()

 # Fully connected layer

 self.fc = layers.Dense(num_classes)

 def call(self, inputs, training=None):

 # Forward calculation

 x = self.stem(inputs)

 # 4 blocks

Chapter 10 Convolutional neural networks

457

 x = self.layer1(x)

 x = self.layer2(x)

 x = self.layer3(x)

 x = self.layer4(x)

 # Pooling layer

 x = self.avgpool(x)

 # Fully connected layer

 x = self.fc(x)

 return x

Different ResNets can be generated by adjusting the number of stacks

and channels of each Res Block, such as with 64-64-128-128-256-256-512-512

channel configuration, a total of eight Res Blocks, you can get ResNet18

network model. Each ResBlock contains two main convolutional layers, so

the number of convolutional layers is 8 ⋅ 2 = 16, plus the fully connected

layer at the end of the network, a total of 18 layers. Creating ResNet18 and

ResNet34 can be simply implemented as follows:

def resnet18():

 return ResNet([2, 2, 2, 2])

def resnet34():

 return ResNet([3, 4, 6, 3])

Next, complete the loading of the CIFAR10 data set as follows:

(x,y), (x_test, y_test) = datasets.cifar10.load_data() #

load data

y = tf.squeeze(y, axis=1) # sequeeze data

y_test = tf.squeeze(y_test, axis=1)

print(x.shape, y.shape, x_test.shape, y_test.shape)

Chapter 10 Convolutional neural networks

458

train_db = tf.data.Dataset.from_tensor_slices((x,y)) # create

training set

train_db = train_db.shuffle(1000).map(preprocess).batch(512)

test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))

#creat testing set

test_db = test_db.map(preprocess).batch(512)

sample an example

sample = next(iter(train_db))

print('sample:', sample[0].shape, sample[1].shape,

 tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))

The data preprocessing logic is relatively simple. We just need to

directly map the data range to the interval [−1, 1]. Here you can also

perform standardization based on the mean and standard deviation of the

ImageNet data pictures as in the following:

def preprocess(x, y):

 x = 2*tf.cast(x, dtype=tf.float32) / 255. - 1

 y = tf.cast(y, dtype=tf.int32)

 return x,y

The network training logic is the same as the normal classification

network training part, and 50 Epochs are trained as in the following:

 for epoch in range(50): # Train epoch

 for step, (x,y) in enumerate(train_db):

 with tf.GradientTape() as tape:

 # [b, 32, 32, 3] => [b, 10], forward

calculation

 logits = model(x)

 # [b] => [b, 10],one-hot encoding

 y_onehot = tf.one_hot(y, depth=10)

 # Calculate loss

Chapter 10 Convolutional neural networks

459

 loss = tf.losses.categorical_crossentropy(y_

onehot, logits, from_logits=True)

 loss = tf.reduce_mean(loss)

 # Calculate gradient

 grads = tape.gradient(loss, model.trainable_

variables)

 # Update parameters

 optimizer.apply_gradients(zip(grads, model.

trainable_variables))

ResNet18 has a total of 11 million network parameters. After 50

Epochs, the accuracy of the network reached 79.3%. Our code here is

relatively streamlined. With the support of careful hyperparameters and

data enhancement, the accuracy rate can be higher.

10.15 References

 [1]. G. E. Hinton, S. Osindero and Y.-W. Teh, “A Fast

Learning Algorithm for Deep Belief Nets,” Neural

Comput., 18, pp. 1527-1554, 7 2006.

 [2]. Y. LeCun, B. Boser, J. S. Denker, D. Henderson,

R. E. Howard, W. Hubbard and L. D. Jackel,

“Backpropagation Applied to Handwritten Zip

Code Recognition,” Neural Comput., 1, pp. 541-551,

12 1989.

 [3]. A. Krizhevsky, I. Sutskever and G. E. Hinton,

“ImageNet Classification with Deep Convolutional

Neural Networks,” Advances in Neural Information

Processing Systems 25, F. Pereira, C. J. C. Burges,

L. Bottou and K. Q. Weinberger, Curran Associates,

Inc., 2012, pp. 1097-1105.

Chapter 10 Convolutional neural networks

460

 [4]. Y. Lecun, L. Bottou, Y. Bengio and P. Haffner,

“Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, 1998.

 [5]. M. D. Zeiler and R. Fergus, “Visualizing and

Understanding Convolutional Networks, Computer

Vision -- ECCV 2014, Cham, 2014.

 [6]. S. Ioffe and C. Szegedy, “Batch Normalization:

Accelerating Deep Network Training by

Reducing Internal Covariate Shift,” CoRR,

abs/1502.03167, 2015.

 [7]. Y. Wu and K. He, “Group Normalization,” CoRR,

abs/1803.08494, 2018.

 [8]. K. Simonyan and A. Zisserman, “Very Deep

Convolutional Networks for Large-Scale Image

Recognition,” CoRR, abs/1409.1556, 2014.

 [9]. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke and

A. Rabinovich, “Going Deeper with Convolutions,”

Computer Vision and Pattern Recognition

(CVPR), 2015.

 [10]. K. He, X. Zhang, S. Ren and J. Sun, “Deep

Residual Learning for Image Recognition,” CoRR,

abs/1512.03385, 2015.

 [11]. G. Huang, Z. Liu and K. Q. Weinberger, “Densely

Connected Convolutional Networks,” CoRR,

abs/1608.06993, 2016.

 [12]. A. Radford, L. Metz and S. Chintala, Unsupervised

Representation Learning with Deep Convolutional

Generative Adversarial Networks, 2015.

Chapter 10 Convolutional neural networks

461© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_11

CHAPTER 11

Recurrent Neural
Network

The powerful rise of artificial intelligence may be the best
thing in human history, or it may be the worst thing.

—Steven Hawking

Convolutional neural network uses the local correlation of data and

the idea of weight sharing to greatly reduce the amount of network

parameters. It is very suitable for pictures with spatial and local

correlation. It has been successfully applied to a series of tasks in the field

of computer vision. In addition to the spatial dimension, natural signals

also have a temporal dimension. Signals with a time dimension are very

common, such as the text we are reading, the speech signal emitted when

we speak, and the stock market that changes over time. This type of data

does not necessarily have local relevance, and the length of the data in the

time dimension is also variable. Convolutional neural networks are not

good at processing such data.

So analyzing and recognizing this type of signals is a task that must

be solved in order to push artificial intelligence to general artificial

intelligence. The recurrent neural network that will be introduced in this

https://doi.org/10.1007/978-1-4842-7915-1_11#DOI

462

chapter can better solve such problems. Before introducing the recurrent

neural network, let’s first introduce the method of representing data in

chronological order.

11.1 Sequence Representation Method
Data with order is generally called a sequence, for example, commodity

price data that changes over time is a very typical sequence. Considering

the price change trend of a commodity A between January and June, we

can record it as a one-dimensional vector: [x1, x2, x3, x4, x5, x6], and its shape

is [6]. If you want to represent the price change trend of b goods from

January to June, you can record it as a 2-dimensional tensor:

x x x x x x x xb
1
1

2
1

6
1

1
2

2
2

6
2

1 2
� � � � � � � � � � � � � ��

�
�
�
�
�

�
�, , , , , , , , , ,

bb bx� � � ��
�

�
�

�
�

�
�, , 6

where b represents the number of commodities, and the tensor shape

is [b, 6].

In this way, the sequence signal is not difficult to represent, only a

tensor with shape [b, s] is needed, where b is the number of sequences

and s is the length of the sequence. However, many signals cannot be

directly represented by a scalar value. For example, to represent feature

vectors of length n generated by each timestamp, a tensor of shape [b,

s, n] is required. Consider more complex text data: sentences. The word

generated on each timestamp is a character, not a numerical value, and

therefore cannot be directly represented by a scalar. We already know that

neural networks are essentially a series of math operations such as matrix

multiplication and addition. They cannot directly process string data. If

you want neural networks to be used for natural language processing tasks,

then how to convert words or characters into numerical values becomes

particularly critical. Next, we mainly discuss the representation method

of text sequence. For other non-numerical signals, please refer to the

representation method of text sequence.

Chapter 11 reCurrent neural network

463

For a sentence containing n words, a simple way to represent the

words is the one-hot encoding method we introduced earlier. Take English

sentences as an example; suppose we only consider the most commonly

used 10,000 words, then each word can be expressed as a sparse one-hot

vector with one position as 1, and other positions of 0 and a length of

10,000. As shown in Figure 11-1, if only n location names are considered,

each location name can be coded as a one-hot vector of length n.

Figure 11-1. One-hot encoding of location names

We call the process of encoding text into numbers as Word Embedding.

One-hot encoding is simple and intuitive to implement Word Embedding,

and the encoding process does not require learning and training. However,

the one-hot encoding vector is high-dimensional and extremely sparse,

with a large number of positions as 0s. Therefore, it is computationally

expensive and also not conducive to the neural network training. From

a semantic point of view, one-hot encoding has a serious problem. It

ignores the semantic relevance inherent in words. For example, for the

words “like,” “dislike,” “Rome,” “Paris,” “like,” and “dislike” are strongly

related from a semantic point of view. They both indicate the degree of

like. “Rome” and “ “Paris” is also strongly related. They both indicate

two locations in Europe. For a group of such words, if one-hot encoding

is used, there is no correlation between the obtained vectors, and the

semantic relevance of the original text cannot be well reflected. Therefore,

the one-hot encoding has obvious disadvantages.

Chapter 11 reCurrent neural network

464

In the field of natural language processing, there is a special research

area about word vector so that the semantic level of relevance can be well

reflected through the word vector. One way to measure the correlation

between word vectors is the cosine similarity:

similarity a b cos cos

a b

a b
,� � � � � �

�
 �

| | | |

where a and b represent two word vectors. Figure 11-2 shows the similarity

between the words “France” and “Italy,” and the similarity between the

words “ball” and “crocodile,” and θ is the angle between the two word

vectors. It can be seen that coscos (θ) better reflects semantic relevance.

Figure 11-2. Cosine similarity diagram

11.1.1 Embedding Layer
In a neural network, the representation vector of a word can be obtained

directly through training. We call the representation layer of the word

Embedding layer. The Embedding layer is responsible for encoding the

word into a word vector v. It accepts the word number i using digital

encoding, such as 2 for “I” and 3 for “me”. The total number of words in the

system is recorded as Nvocab, and the output is vector v with length n:

 v f i N nvocab� � �� | ,

Chapter 11 reCurrent neural network

465

The Embedding layer is very simple to implement. Build a lookup table

with shape [Nvocab, n]. For any word number i, you only need to query the

vector at the corresponding position and return:

 v table i� � �

The Embedding layer is trainable. It can be placed in front of the neural

network to complete the conversion of words to vectors. The resulting

representation vector can continue to pass through the neural network to

complete subsequent tasks, and calculate the error L. The gradient descent

algorithm is used to achieve end-to-end training.

In TensorFlow, a Word Embedding layer can be defined by layers.

Embedding(Nvocab, n), where the Nvocab parameter specifies the number of

words, and n specifies the length of the word vector. For example:

x = tf.range(10) # Generate a digital code of 10 words

x = tf.random.shuffle(x) # Shuffle

Create a layer with a total of 10 words, each word is

represented by a vector of length 4

net = layers.Embedding(10, 4)

out = net(x) # Get word vector

The preceding code creates an Embedding layer of ten words. Each

word is represented by a vector of length 4. You can pass in an input

with a number code of 0–9 to get the word vectors of these four words.

These word vectors are initialized randomly and has not been trained, for

example:

<tf.Tensor: id=96, shape=(10, 4), dtype=float32, numpy=

array([[-0.00998075, -0.04006485, 0.03493755, 0.03328368],

 [-0.04139598, -0.02630153, -0.01353856, 0.02804044],…

Chapter 11 reCurrent neural network

466

We can directly view the query table inside the Embedding layer:

In [1]: net.embeddings

Out[1]:

<tf.Variable 'embedding_4/embeddings:0' shape=(10, 4)

dtype=float32, numpy=

array([[0.04112223, 0.01824595, -0.01841902, 0.00482471],

 [-0.00428962, -0.03172196, -0.04929272, 0.04603403],…

The optimizable property of the net.embeddings tensor is True, which

means it can be optimized by the gradient descent algorithm.

In [2]: net.embeddings.trainable

Out[2]:True

11.1.2 Pre-trained Word Vectors
The lookup table of the Embedding layer is initialized randomly and

needs to be trained from scratch. In fact, we can use pre-trained Word

Embedding models to get the word representation. The word vector based

on pre-trained models is equivalent to transferring the knowledge of the

entire semantic space, which can often get better performance.

Currently, the widely used pre-trained models include Word2Vec and

GloVe. They have been trained on a massive corpus to obtain a better word

vector representation and can directly export the learned word vector

table to facilitate migration to other tasks. For example, the GloVe model

GloVe.6B.50d has a vocabulary of 400,000, and each word is represented by

a vector of length 50. Users only need to download the corresponding model

file in order to use it. The “glove6b50dtxt.zip” model file is about 69MB.

So how to use these pre-trained word vector models to help improve the

performance of NLP tasks? Very simple. For the Embedding layer, random

initialization is no longer used. Instead, we use the pre-trained model

parameters to initialize the query table of the Embedding layer. For example:

Chapter 11 reCurrent neural network

467

Load the word vector table from the pre-trained model

embed_glove = load_embed('glove.6B.50d.txt')

Initialize the Embedding layer directly using the pre-trained

word vector table

net.set_weights([embed_glove])

The Embedding layer initialized by the pre-trained word vector model

can be set to not participate in training: net.trainable = False, then the

pre-trained word vector is directly applied to this specific task. If you also

want to learn different representations from the pre-trained word vector

model, then the Embedding layer can be included in the backpropagation

algorithm by setting net.trainable = True, and gradient descent then can be

used to fine-tune the word representation.

11.2 Recurrent Neural Network
Now let’s consider how to deal with sequence signals. Taking a text

sequence as an example, consider a sentence:

“I hate this boring movie”

Through the Embedding layer, it can be converted into a tensor with

shape [b, s, n], where b is the number of sentences, s is the sentence length,

and n is the length of the word vector. The preceding sentence can be

expressed as a tensor with shape [1,5,10], where 5 represents the length of

the sentence word, and 10 represents the length of the word vector.

Next, we will gradually explore a network model that can process

sequence signals. We take the sentiment classification task as an example,

as shown in Figure 11-3. The sentiment classification task extracts the

overall semantic features expressed by the text data and thereby predict

the sentiment type of the input text: positive or negative. From the

perspective of classification, sentiment classification is a simple two-

Chapter 11 reCurrent neural network

468

classification problem. Unlike image classification, because the input is a

text sequence, traditional convolutional neural networks cannot achieve

good results. So what type of network is good at processing sequence data?

Figure 11-3. Sentiment classification task

11.2.1 Is a Fully Connected Layer Feasible?
The first thing we think of is that for each word vector, a fully connected

layer network can be used.

 o W x bt t t� �� ��

Extract semantic features, as shown in Figure 11-4. The word vector

of each word is extracted through s fully connected layer classification

networks 1. The features of all words are finally merged, and the category

probability distribution of the sequence is output through the classification

network 2. For a sentence of length s, at least s fully-connected network

layers are required.

Chapter 11 reCurrent neural network

469

Figure 11-4. Network architecture 1

The disadvantages of this scheme are:

• The amount of network parameters is considerable,

and the memory usage and calculation cost are high.

At the same time, since the length s of each sequence

is not the same, the network structure changes

dynamically.

• Each fully connected layer sub-network Wi and bi can

only sense the input of the current word vector and

cannot perceive the context information before and

after, resulting in the lack of overall sentence semantics.

Each sub-network can only extract high-level features

based on its own input.

We will solve these two disadvantages one by one.

Chapter 11 reCurrent neural network

470

11.2.2 Shared Weight
When introducing convolutional neural networks, we have learned that the

reason why convolutional neural networks is better than fully connected

networks in processing locally related data is because it makes full use

of the idea of weight sharing and greatly reduces the amount of network

parameters, which makes the network training more efficient. So, can we

learn from the idea of weight sharing when dealing with sequence signals?

In the scheme in Figure 11-4, the network of s fully connected layers

does not realize weight sharing. We try to share these s network layer

parameters, which is actually equivalent to using a fully connected

network to extract the feature information of all words, as shown in

Figure 11-5.

Figure 11-5. Network architecture 2

After weight sharing, the amount of parameters is greatly reduced, and

network training becomes more stable and efficient. However, this network

structure does not consider the order of sequences, and the same output

can still be obtained by shuffling the order of the word vectors. Therefore,

it cannot obtain effective global semantic information.

Chapter 11 reCurrent neural network

471

11.2.3 Global Semantics
How to give the network the ability to extract overall semantic features?

In other words, how can the network extract the semantic information

of word vectors in order and accumulate it into the global semantic

information of the entire sentence? We thought of the memory

mechanism. If the network can provide a separate memory variable, each

time the feature of the word vector is extracted and the memory variable

is refreshed, until the last input is completed, the memory variable at this

time stores the semantic features of all sequences, and because of the

order of input sequences, the contents of memory variables are closely

related to the sequence order.

We implement the preceding memory mechanism as a state tensor h,

as shown in Figure 11-6. In addition to the original Wxh parameter sharing,

an additional Whh parameter is added here. The state tensor h refresh

mechanism for each timestamp t is:

 h W x W h bt xh t hh t� � �� ��� 1

Figure 11-6. Recurrent neural network (no bias added)

Chapter 11 reCurrent neural network

472

where the state tensor h0 is the initial memory state, which can be

initialized to all 0s. After the input of s word vectors, the final state tensor

hs of the network is obtained. hs better represents the global semantic

information of the sentence. Passing hs through a fully connected layer

classifier can complete the sentiment classification task.

11.2.4 Recurrent Neural Network
Through step-by-step exploration, we finally proposed a “new” network

structure, as shown in Figure 11-7. At each time stamp t, the network layer

accepts the input xt of the current time stamp and the network state vector

of the previous time stamp ht − 1, after:

 h f h xt t t� � ��� 1 ,

After transformation, the new state vector ht of the current time stamp

is obtained and written into the memory state, where fθ represents the

operation logic of the network, and θ is the network parameter set. At

each time stamp, the network layer has an output to produce ot, ot = gϕ(ht),

which is to output the state vector of the network after transformation.

Figure 11-7. Expanded RNN model

Chapter 11 reCurrent neural network

473

The preceding network structure is folded on the time stamp, as shown

in Figure 11-8. The network cyclically accepts each feature vector xt of the

sequence, refreshes the internal state vector ht, and forms the output ot at

the same time. For this kind of network structure, we call it the recurrent

neural network (RNN).

Figure 11-8. Folded RNN model

More specifically, if we use the tensors Wxh, Whh and bias b to

parameterize the fθ network, and use the following ways to update the

memory state, we call this kind of network a basic recurrent neural

network, unless otherwise specified; generally speaking, the recurrent

neural network refers to this realization.

 h W x W h bt xh t hh t� � �� ��� 1

In the recurrent neural network, the activation function uses the Tanh

function more, and we can choose not to use the bias b to further reduce

the amount of parameters. The state vector ht can be directly used as

output, that is, ot = ht, or a simple linear transformation of ht can be done to

ot = Whoht to get the network output ot on each time stamp.

Chapter 11 reCurrent neural network

474

11.3 Gradient Propagation
Through the update expression of the recurrent neural network, it can be

seen that the output is derivable to the tensors Wxh, Whh and bias b, and the

automatic gradient descent algorithm can be used to solve the gradient of

the network. Here we simply derive the gradient propagation formula of

RNN and explore its characteristics.

Consider the gradient
∂

∂
L

Whh

, where L is the error of the network,

and only consider the difference between the last output ot at t and

the true value. Since Whh is shared by the weight of each timestamp i,

when calculating
∂

∂
L

Whh

, it is necessary to sum the gradients on each

intermediate timestamp i, using the chain rule to expand as:

�
�

�
�
�

�
�

�
�

�
��

�

�L

W

L

o

o

h

h

h

h

Whh i

t

t

t

t

t

i

i

hh1

where
∂
∂
L

ot

 can be obtained directly based on the loss function, in the case

of ot = ht:

�
�

�
o

h
It

t

And the gradient of
�
�

�h

W
i

hh

 can also be obtained after expanding hi:

�
�

�
� � �� �

�

�
�h

W

W x W h b

W
i

hh

xh t hh t

hh

� 1

Among them
�
�

�h

W
i

hh

 only considers the gradient propagation of one

time stamp, that is, the “direct” partial derivative, which is different from
∂

∂
L

Whh

 that considers the gradient propagation of all timestamps i = 1, ⋯, t.

Chapter 11 reCurrent neural network

475

Therefore, we only need to derive the expression of
∂
∂
h

h
t

i

 to complete

the gradient derivation of the recurrent neural network. Using the chain

rule, we divide
∂
∂
h

h
t

i

 into the gradient expression of successive timestamps:

�
�

�
�
�

�
�

�
�

�
�
��

�

�

�

�

�
��h

h

h

h

h

h

h

h

h

h
t

i

t

t

t

t

i

i k i

t
k

k1

1

2

1
1

1

Consider:

 h W x W h bk xh k hh k� �� � �� �1 1�

then:

�
�

� � �� �� ���
�

h

h
W diag W x W h bk

k
hh
T

xh k hh k
1

1�

� � �� �� �W diag hhh

T
k� 1

where diag(x) takes each element of the vector x as the diagonal element

of the matrix and obtains a diagonal matrix with all other elements being 0,

for example:

diag 3 2 1 3 0 0 0 2 0 0 01, ,� �� � � � �

Therefore,

�
�

� � �� �� ��
�

�

��h

h
diag W x W h b Wt

i j i

t

xh j hh j hh

1

1�

So far, the gradient derivation of
∂

∂
L

Whh

 is completed.

Chapter 11 reCurrent neural network

476

Since deep learning frameworks can help us automatically derive

gradients, we only need to understand the gradient propagation

mechanism of the recurrent neural network. In the process of deriving
∂

∂
L

Whh

, we found that the gradient of
∂
∂
h

h
t

i

 includes the continuous

multiplication operation of Whh, which is the root cause of the difficulty in

training the recurrent neural network the reason. We will discuss it later.

11.4 How to Use RNN Layers
After introducing the principle of the recurrent neural network, let’s

learn how to implement the RNN layer in TensorFlow. In TensorFlow,

the σ(Wxhxt + Whhht − 1 + b) calculation can be completed by layers.

SimpleRNNCell() function. It should be noted that in TensorFlow, RNN

stands for recurrent neural network in a general sense. For the basic

recurrent neural network we are currently introducing, it is generally called

SimpleRNN. The difference between SimpleRNN and SimpleRNNCell

is that the layer with cell only completes the forward operation of one

timestamp, while the layer without cell is generally implemented based

on the cell layer, which has already completed multiple timestamp cycles

internally. Therefore, it is more convenient and faster to use.

We first introduce the use of SimpleRNNCell, and then introduce the

use of SimpleRNN layer.

11.4.1 SimpleRNNCell
Take a certain input feature length n=4 and cell state vector feature length

h=3 as an example. First, we create a SimpleRNNCell without specifying

the sequence length s. The code is as follows:

Chapter 11 reCurrent neural network

477

In [3]:

cell = layers.SimpleRNNCell(3) # Create RNN Cell, memory vector

length is 3

cell.build(input_shape=(None,4)) # Output feature length n=4

cell.trainable_variables # Print wxh, whh, b tensor

Out[3]:

[<tf.Variable 'kernel:0' shape=(4, 3) dtype=float32,

numpy=...>,

 <tf.Variable 'recurrent_kernel:0' shape=(3, 3) dtype=float32,

numpy=...>,

 <tf.Variable 'bias:0' shape=(3,) dtype=float32,

numpy=array([0., 0., 0.], dtype=float32)>]

It can be seen that SimpleRNNCell maintains three tensors internally,

the kernel variable is the tensor Wxh, the recurrent_kernel variable is the

tensor Whh, and the bias variable is the bias vector b. However, the memory

vector h of RNN is not maintained by SimpleRNNCell, and the user needs

to initialize the vector h0 and record the ht on each time stamp.

The forward operation can be completed by calling the cell instance:

o h Cell x ht t t t,� � � � �� ��, 1

For SimpleRNNCell, ot = ht, is the same object. There’s no additional

linear layer conversion. [ht] is wrapped in a list. This setting is for

uniformity with RNN variants such as LSTM and GRU. In the initialization

phase of the recurrent neural network, the state vector h0 is generally

initialized to an all-zero vector, for example:

In [4]:

Initialize state vector. Wrap with list, unified format

h0 = [tf.zeros([4, 64])]

x = tf.random.normal([4, 80, 100]) # Generate input tensor, 4

sentences of 80 words

Chapter 11 reCurrent neural network

478

xt = x[:,0,:] # The first word of all sentences

Construct a Cell with input feature n=100, sequence length

s=80, state length=64

cell = layers.SimpleRNNCell(64)

out, h1 = cell(xt, h0) # Forward calculation

print(out.shape, h1[0].shape)

Out[4]: (4, 64) (4, 64)

It can be seen that after one timestamp calculation, the shape of the

output and the state tensor are both [b, h], and the ids of the two are

printed as follows:

In [5]:print(id(out), id(h1[0]))

Out[5]:2154936585256 2154936585256

The two ids are the same, that is, the state vector is directly used as the

output vector. For the training of length s, it is necessary to loop through

the cell class s times to complete one forward operation of the network

layer. For example:

h = h0 # Save a list of state vectors on each time stamp

Unpack the input in the dimension of the sequence length to

get xt:[b,n]

for xt in tf.unstack(x, axis=1):

 out, h = cell(xt, h) # Forward calculation, both out and h

are covered

The final output can aggregate the output on each time stamp,

or just take the output of the last time stamp

out = out

The output variable out of the last time stamp will be the final output of

the network. In fact, you can also save the output on each timestamp, and

then sum or average it as the final output of the network.

Chapter 11 reCurrent neural network

479

11.4.2 Multilayer SimpleRNNCell Network
Like the convolutional neural network, although the recurrent neural

network has been expanded many times on the time axis, it can only be

counted as one network layer. By stacking multiple cell classes in the depth

direction, the network can achieve the same effect as a deep convolutional

neural network, which greatly improves the expressive ability of the

network. However, compared with the number of deep layers of tens or

hundreds of convolutional neural networks, recurrent neural networks are

prone to gradient diffusion and gradient explosion. Deep recurrent neural

networks are very difficult to train. The current common recurrent neural

network models generally have number of layers less than 10.

Here we take a two-layer recurrent neural network as an example to

introduce the use of cell class to build a multilayer RNN network. First

create two SimpleRNNCell cells as follows:

x = tf.random.normal([4,80,100])

xt = x[:,0,:] # Take first timestamp of the input x0

Construct 2 Cells, first cell0, then cell1, the memory state

vector length is 64

cell0 = layers.SimpleRNNCell(64)

cell1 = layers.SimpleRNNCell(64)

h0 = [tf.zeros([4,64])] # initial state vector of cell0

h1 = [tf.zeros([4,64])] # initial state vector of cell1

Calculate multiple times on the time axis to realize the forward

operation of the entire network. The input xt on each time stamp first

passes through the first layer to get the output out0, and then passes

through the second layer to get the output out1. The code is as follows:

for xt in tf.unstack(x, axis=1):

 # xt is input and output is out0

 out0, h0 = cell0(xt, h0)

Chapter 11 reCurrent neural network

480

 # The output out0 of the previous cell is used as the input

of this cell

 out1, h1 = cell1(out0, h1)

The preceding method first completes the propagation of the input

on one time stamp on all layers and then calculates the input on all time

stamps in a loop.

In fact, it is also possible to first complete the calculation of all time

stamps input on the first layer, and save the output list of the first layer on

all time stamps, and then calculate the propagation of the second layer, the

third layer, etc. as in the following:

Save the output above all timestamps of the previous layer

middle_sequences = []

Calculate the output on all timestamps of the first layer

and save

for xt in tf.unstack(x, axis=1):

 out0, h0 = cell0(xt, h0)

 middle_sequences.append(out0)

Calculate the output on all timestamps of the second layer

If it is not the last layer, you need to save the output

above all timestamps

for xt in middle_sequences:

 out1, h1 = cell1(xt, h1)

In this way, we need an additional list to save the information of all

timestamps in the previous layer: middle_sequences.append(out0). These

two methods have the same effect, and you can choose the coding style

you like.

It should be noted that each layer of the recurrent neural network at

each time stamp has a state output. For subsequent tasks, which state

output should we collect and is the most effective? Generally speaking,

Chapter 11 reCurrent neural network

481

the state of the last-level cell may preserve the global semantic features

of the high-level, so the output of the last-level is generally used as the

input of the subsequent task network. More specifically, the state output

on the last timestamp of each layer contains the global information of the

entire sequence. If you only want to use one state variable to complete

subsequent tasks, such as sentiment classification problems, generally the

output of the last layer at the last timestamp is most suitable.

11.4.3 SimpleRNN Layer
Through the use of the SimpleRNNCell layer, we can understand every

detail of the forward operation of the recurrent neural network. In

actual use, for simplicity, we do not want to manually implement the

internal calculation process of the recurrent neural network, such as the

initialization of the state vector at each layer and the operation of each

layer on the time axis. Using the SimpleRNN high-level interface can help

us achieve this goal very conveniently.

For example, if we want to complete the forward operation of a single-

layer recurrent neural network, it can be easily implemented as follows:

In [6]:

layer = layers.SimpleRNN(64) # Create a SimpleRNN layer with a

state vector length of 64

x = tf.random.normal([4, 80, 100])

out = layer(x) # Like regular convolutional networks, one line

of code can get the output

out.shape

Out[6]: TensorShape([4, 64])

Chapter 11 reCurrent neural network

482

As you can see, SimpleRNN can complete the entire forward operation

process with only one line of code, and it returns the output on the

last time stamp by default. If you want to return the output list on all

timestamps, you can set return_sequences=True as follows:

In [7]:

When creating the RNN layer, set the output to return all

timestamps

layer = layers.SimpleRNN(64,return_sequences=True)

out = layer(x) # Forward calculation

out # Output, automatic concat operation

Out[7]:

<tf.Tensor: id=12654, shape=(4, 80, 64), dtype=float32, numpy=

array([[[0.31804922, 0.7904409 , 0.13204293,

..., 0.02601025,

 -0.7833339 , 0.65577114],...>

As you can see, the returned output tensor shape is [4,80,64], and

the middle dimension 80 is the timestamp dimension. Similarly, we

can achieve multilayer recurrent neural networks by stacking multiple

SimpleRNNs, such as a two-layer network, and its usage is similar to that of

a normal network. For example:

net = keras.Sequential([# Build a 2-layer RNN network

Except for the last layer, the output of all timestamps needs

to be returned to be used as the input of the next layer

layers.SimpleRNN(64, return_sequences=True),

layers.SimpleRNN(64),

])

out = net(x) # Forward calculation

Each layer needs the state output of the previous layer at each time

stamp, so except for the last layer, all RNN layers need to return the

state output at each time stamp, which is achieved by setting return_

Chapter 11 reCurrent neural network

483

sequences=True. As you can see, using the SimpleRNN layer is similar

to the usage of convolutional neural networks, which is very concise and

efficient.

11.5 Hands-On RNN Sentiment
Classification

Now let’s use the basic RNN network to solve the sentiment classification

problem. The network structure is shown in Figure 11-9. The RNN network

has two layers. The semantic features of the sequence signal are extracted

cyclically. The state vector hs
2� � of the last time stamp of the second RNN

layer is used as the global semantic feature representation of the sentence.

It is sent to the classification network 3 formed by a fully connected layer,

and the probability that the sample x is a positive emotion P (x is positive

emotion│x) ∈[0, 1] is obtained.

Figure 11-9. Network structure of sentiment classification task

Chapter 11 reCurrent neural network

484

11.5.1 Dataset
The classic IMDB movie review dataset is used here to complete the

sentiment classification task. The IMDB movie review dataset contains

50,000 user reviews. The evaluation tags are divided into negative and

positive. User reviews with IMDB rating <5 are marked as 0, which means

negative; user reviews with IMDB rating ≥7 are marked as 1, which means

positive. Twenty-five thousand film reviews were used for the training set

and 25,000 were used for the test set.

The IMDB dataset can be loaded by datasets tool provided by Keras as

follows:

In [8]:

batchsz = 128 # Batch size

total_words = 10000 # Vocabulary size N_vocab

max_review_len = 80 # The maximum length of the sentence s, the

sentence part greater than will be truncated, and the sentence

less than will be filled

embedding_len = 100 # Word vector feature length n

Load the IMDB data set, the data here is coded with numbers,

and a number represents a word

(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.

load_data(num_words=total_words)

Print the input shape, the shape of the label

print(x_train.shape, len(x_train[0]), y_train.shape)

print(x_test.shape, len(x_test[0]), y_test.shape)

Out[8]:

(25000,) 218 (25000,)

(25000,) 68 (25000,)

As you can see, x_train and x_test are one-dimensional arrays with

a length of 25,000. Each element of the array is a list of indefinite length,

which stores each sentence encoded by numbers. For example, the first

Chapter 11 reCurrent neural network

485

sentence of the training set has a total of 218 words, and the first sentence

of the test set has 68 words, and each sentence contains the sentence start

marker ID.

So how is each word encoded as a number? We can get the coding

scheme by looking at its coding table, for example:

In [9]:

Digital code table

word_index = keras.datasets.imdb.get_word_index()

Print out the words and corresponding numbers in the

coding table

for k,v in word_index.items():

 print(k,v)

Out[10]:

 ...diamiter 88301

 moveis 88302

 mardi 14352

 wells' 11583

 850pm 88303...

Since the key of the coding table is a word and the value is an ID, the

coding table is flipped and the coding ID of the flag bit is added. The code

is as follows:

The first 4 IDs are special bits

word_index = {k:(v+3) for k,v in word_index.items()}

word_index["<PAD>"] = 0 # Fill flag

word_index["<START>"] = 1 # Start flag

word_index["<UNK>"] = 2 # Unknown word sign

word_index["<UNUSED>"] = 3

Flip code table

reverse_word_index = dict([(value, key) for (key, value) in

word_index.items()])

Chapter 11 reCurrent neural network

486

For a digitally encoded sentence, it is converted into string data by the

following function:

def decode_review(text):

 return ' '.join([reverse_word_index.get(i, '?') for i

in text])

For example, to convert a sentence, the code is as follows:

In [11]:decode_review(x_train[0])

Out[11]:

"<START> this film was just brilliant casting location scenery

story direction everyone's...<UNK> father came from...

For sentences with uneven lengths, a threshold is artificially set. For

sentences larger than this length, select some words to be truncated,

you can choose to cut off the beginning of the sentence or the end of the

sentence. For sentences less than this length, you can choose to fill at

the beginning or end of a sentence. The sentence truncation function

can be conveniently realized by the keras.preprocessing.sequence.pad_

sequences() function, for example:

Truncate and fill sentences so that they are of equal length,

here long sentences retain the part behind the sentence, and

short sentences are filled in front

x_train = keras.preprocessing.sequence.pad_sequences(x_train,

maxlen=max_review_len)

x_test = keras.preprocessing.sequence.pad_sequences(x_test,

maxlen=max_review_len)

After truncating or filling to the same length, wrap it into a dataset

object through the Dataset class, and add the commonly used dataset

processing flow, the code is as follows:

Chapter 11 reCurrent neural network

487

In [12]:

Build a data set, break up, batch, and discard the last batch

that is not enough batchsz

db_train = tf.data.Dataset.from_tensor_slices((x_train,

y_train))

db_train = db_train.shuffle(1000).batch(batchsz, drop_

remainder=True)

db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))

db_test = db_test.batch(batchsz, drop_remainder=True)

Statistical data set attributes

print('x_train shape:', x_train.shape, tf.reduce_max(y_train),

tf.reduce_min(y_train))

print('x_test shape:', x_test.shape)

Out[12]:

x_train shape: (25000, 80) tf.Tensor(1, shape=(), dtype=int64)

tf.Tensor(0, shape=(), dtype=int64)

x_test shape: (25000, 80)

It can be seen that the sentence length after truncation and filling

is unified to 80, which is the set sentence length threshold. The drop_

remainder=True parameter discards the last batch, because its real batch

size may be smaller than the preset batch size.

11.5.2 Network Model
We create a custom model class MyRNN, inherited from the model base

class, we need to create a new Embedding layer, two RNN layers, and one

classification layer as follows:

class MyRNN(keras.Model):

 # Use Cell method to build a multi-layer network

 def __init__(self, units):

 super(MyRNN, self).__init__()

Chapter 11 reCurrent neural network

488

 # [b, 64], construct Cell initialization state

vector, reuse

 self.state0 = [tf.zeros([batchsz, units])]

 self.state1 = [tf.zeros([batchsz, units])]

 # Word vector encoding [b, 80] => [b, 80, 100]

 self.embedding = layers.Embedding(total_words,

embedding_len,

 input_length=max_

review_len)

 # Construct 2 Cells and use dropout technology to

prevent overfitting

 self.rnn_cell0 = layers.SimpleRNNCell(units,

dropout=0.5)

 self.rnn_cell1 = layers.SimpleRNNCell(units,

dropout=0.5)

 # Construct a classification network to classify the

output features of CELL, 2 classification

 # [b, 80, 100] => [b, 64] => [b, 1]

 self.outlayer = layers.Dense(1)

The word vector is encoded as length n=100, and the state vector

length of RNN is h=units. The classification network completes a binary

classification task, so the output node is set to 1.

The forward propagation logic is as follows: the input sequence

completes the word vector encoding through the Embedding layer, loops

through the two RNN layers to extract semantic features, takes the state

vector output of the last time stamp of the last layer, and sends it to the

classification network. The output probability is obtained after the Sigmoid

activation function as in the following:

 def call(self, inputs, training=None):

 x = inputs # [b, 80]

 # Word vector embedding: [b, 80] => [b, 80, 100]

Chapter 11 reCurrent neural network

489

 x = self.embedding(x)

 # Pass 2 RNN CELLs,[b, 80, 100] => [b, 64]

 state0 = self.state0

 state1 = self.state1

 for word in tf.unstack(x, axis=1): # word: [b, 100]

 out0, state0 = self.rnn_cell0(word, state0,

training)

 out1, state1 = self.rnn_cell1(out0, state1,

training)

 # Last layer's last time stamp as the network output:

[b, 64] => [b, 1]

 x = self.outlayer(out1, training)

 # Pass through activation function, p(y is pos|x)

 prob = tf.sigmoid(x)

 return prob

11.5.3 Training and Testing
For simplicity, here we use Keras’ Compile&Fit method to train the

network. Set the optimizer to Adam optimizer, the learning rate is

0.001, the error function uses the two-class cross-entropy loss function

BinaryCrossentropy, and the test metric uses the accuracy rate. The code is

as follows:

def main():

 units = 64 # RNN state vector length n

 epochs = 20 # Training epochs

 model = MyRNN(units) # Create the model

 # Compile

 model.compile(optimizer = optimizers.Adam(0.001),

Chapter 11 reCurrent neural network

490

 loss = losses.BinaryCrossentropy(),

 metrics=['accuracy'])

 # Fit and validate

 model.fit(db_train, epochs=epochs, validation_data=db_test)

 # Test

 model.evaluate(db_test)

After 20 Epoch trainings, the network achieves 80.1% accuracy rate at

testing dataset.

11.6 Gradient Vanishing and Gradient
Exploding

The training of recurrent neural networks is not stable, and the depth of

the network cannot be arbitrarily deepened. Why do recurrent neural

networks have difficulty in training? Let’s briefly review the key expressions

in the gradient derivation:

�
�

� � �� �� ��
�

�

��h

h
diag W x W h b Wt

i j i

t

xh j hh j hh

1

1�

In other words, the gradient
∂
∂
h

h
t

i

 from time stamp i to time stamp t

includes the continuous multiplication operation of Whh. When the largest

eigenvalue of Whh is less than 1, multiple consecutive multiplication

operations will make the element value of
∂
∂
h

h
t

i

 close to zero; when

the value of
∂
∂
h

h
t

i

 is greater than 1, multiple consecutive multiplication

operations will make the value of
∂
∂
h

h
t

i

 explosively increase.

We can intuitively feel the generation of gradient vanishing and

gradient exploding from the following two examples:

Chapter 11 reCurrent neural network

491

In [13]:

W = tf.ones([2,2]) # Create a matrix

eigenvalues = tf.linalg.eigh(W)[0] # Calculate eigenvalue

eigenvalues

Out[13]:

<tf.Tensor: id=923, shape=(2,), dtype=float32, numpy=array(

[0., 2.], dtype=float32)>

It can be seen that the maximum eigenvalue of the all-one matrix is 2.

Calculate the W1~W10 of the W matrix and draw it as a graph of the power

and the L2-norm of the matrix, as shown in Figure 11-10. It can be seen

that when the maximum eigenvalue of the W matrix is greater than 1, the

matrix multiplication will make the result larger and larger.

val = [W]

for i in range(10): # Matrix multiplication n times

 val.append([val[-1]@W])

Calculate L2 norm

norm = list(map(lambda x:tf.norm(x).numpy(),val))

Figure 11-10. Matrix multiplication when the largest eigenvalue is
greater than 1

Chapter 11 reCurrent neural network

492

Consider the case when the maximum eigenvalue is less than 1.

In [14]:

W = tf.ones([2,2])*0.4 # Create a matrix

eigenvalues = tf.linalg.eigh(W)[0] # Calculate eigenvalues

print(eigenvalues)

Out[14]:

tf.Tensor([0. 0.8], shape=(2,), dtype=float32)

It can be seen that the maximum eigenvalue of the W matrix

at this time is 0.8. In the same way, consider the results of multiple

multiplications of the W matrix as follows:

val = [W]

for i in range(10):

 val.append([val[-1]@W])

Calculate the L2 norm

norm = list(map(lambda x:tf.norm(x).numpy(),val))

plt.plot(range(1,12),norm)

Its L2-norm curve is shown in Figure 11-11. It can be seen that

when the maximum eigenvalue of the W matrix is less than 1, the matrix

multiplication will make the result smaller and smaller, close to 0.

Chapter 11 reCurrent neural network

493

Figure 11-11. Matrix multiplication when the largest eigenvalue is
less than 1

We call the phenomenon where the gradient value is close to 0

gradient vanishing and the phenomenon where the gradient value is far

greater than 1 gradient exploding. Details about the gradient propagation

mechanism can be found in Chapter 7. Gradient vanishing and gradient

exploding are two situations that appear in the process of neural network

optimization, and they are also not conducive to network training.

Consider the gradient descent algorithm:

 � � � �� � � � L

When gradient vanishing occurs, ∇θL ≈ 0, at this time θ′ ≈ θ, which

means that the parameters remain unchanged after each gradient update,

and the parameters of the neural network cannot be updated for a long

time. The specific performance is that L has almost no change, other

evaluation indicators, such as accuracy, also remain the same. When the

gradient exploding occurs, ∇θL ≫ 1, the update step size of the gradient

η∇θL is very large, so that the updated θ′ and θ are very different, and the

network L has a sudden change, and even oscillates back and forth with

non-convergence.

Chapter 11 reCurrent neural network

494

By deriving the gradient propagation formula of the recurrent neural

network, we found that the recurrent neural network is prone to gradient

vanishing and gradient exploding. So how to solve these two problems?

11.6.1 Gradient Clipping
Gradient exploding can be solved to a certain extent by gradient clipping.

Gradient clipping is very similar to tensor limiting. It also limits the value

or norm of the gradient tensor to a small interval, thereby reducing the

gradient value far greater than 1 and avoiding gradient exploding.

In deep learning, there are three commonly used gradient clipping

methods.

• Limit the value of the tensor directly so that all the

elements of the tensor W are wij ∈ [min, max]. In

TensorFlow, it can be achieved through the tf.clip_by_

value() function. For example:

In [15]:

a=tf.random.uniform([2,2])

tf.clip_by_value(a,0.4,0.6) # Gradient value clipping

Out[15]:

<tf.Tensor: id=1262, shape=(2, 2), dtype=float32, numpy=

array([[0.5410726, 0.6],

 [0.4 , 0.6]], dtype=float32)>

• Limit the norm of the gradient tensor W. For example,

the L2 norm of W – ‖W‖2 is constrained between

[0,max]. If ‖W‖2 is greater than the max value, use:

� � �W

W

W|| ||2
max

Chapter 11 reCurrent neural network

495

to restrict ‖W‖2 to max. This can be done through the tf.clip_by_norm

function. For example:

In [16]:

a=tf.random.uniform([2,2]) * 5

Clip by norm

b = tf.clip_by_norm(a, 5)

Norm before and after clipping

tf.norm(a),tf.norm(b)

Out[16]:

(<tf.Tensor: id=1338, shape=(), dtype=float32, numpy=5.380655>,

 <tf.Tensor: id=1343, shape=(), dtype=float32, numpy=5.0>)

It can be seen that for tensors with L2 norm greater than max, the

norm value is reduced to 5 after clipping.

• The update direction of the neural network is

represented by the gradient tensor W of all parameters.

The first two methods only consider a single gradient

tensor, and so the update direction of the network may

change. If the norm of the gradient W of all parameters

can be considered, and equal scaling can be achieved,

then the gradient value of the network can be well

restricted without changing the update direction of the

network. This is the third method of gradient clipping:

global norm clipping. In TensorFlow, the norm of

the overall network gradient W can be quickly scaled

through the tf.clip_by_global_norm function.

Let W(i) denote the i-th gradient tensor of the network parameters. Use

the following formula to calculate the global norm of the network.

global norm W

i

i_ || ||� � � �
2
2

Chapter 11 reCurrent neural network

496

For the i-th parameter W(i), use the following formula to clip.

W

W norm

global norm norm
i

i
� �

� �
�

� �
�max

max

_

_ max_,

where max_norm is the global maximum norm value specified by the user.

For example:

In [17]:

w1=tf.random.normal([3,3]) # Create gradient tensor 1

w2=tf.random.normal([3,3]) # Create gradient tensor 2

Calculate global norm

global_norm=tf.math.sqrt(tf.norm(w1)**2+tf.norm(w2)**2)

Clip by global norm and max norm=2

(ww1,ww2),global_norm=tf.clip_by_global_norm([w1,w2],2)

Calcualte global norm after clipping

global_norm2 = tf.math.sqrt(tf.norm(ww1)**2+tf.norm(ww2)**2)

Print the global norm before cropping and the global norm

after cropping

print(global_norm, global_norm2)

Out[17]:

tf.Tensor(4.1547523, shape=(), dtype=float32)

tf.Tensor(2.0, shape=(), dtype=float32)

It can be seen that after clipping, the global norm of the gradient group

of the network parameters is reduced to max_norm=2. It should be noted

that tf.clip_by_global_norm returns two objects of the clipped tensor – list

and global_norm, where global_norm represents the global norm sum of

the gradient before clipping.

Through gradient clipping, the gradient exploding phenomenon can

be suppressed. As shown in Figure 11-12, the error value J of the J(w, b)

function represented by the surface in the figure under different network

parameters w and b. There is a region where the gradient of the J(w, b)

Chapter 11 reCurrent neural network

497

function changes greatly. When parameters enter this area, gradient

exploding are prone to occur, which makes the network state deteriorate

rapidly. Figure 11-12 on the right shows the optimized trajectory after

adding gradient clipping. Since the gradient is effectively restricted, the

step size of each update is effectively controlled, thereby preventing the

network from suddenly deteriorating.

Figure 11-12. Diagram of the optimized trajectory of gradient
clipping [1]

During network training, gradient clipping is generally performed after

the gradient is calculated and before the gradient is updated. For example:

with tf.GradientTape() as tape:

 logits = model(x) # Forward calculation

 loss = criteon(y, logits) # Calculate error

Calcualte gradients

grads = tape.gradient(loss, model.trainable_variables)

grads, _ = tf.clip_by_global_norm(grads, 25) # Global norm

clipping

Update parameters using clipped gradient

optimizer.apply_gradients(zip(grads, model.trainable_

variables))

Chapter 11 reCurrent neural network

498

11.6.2 Gradient Vanishing
The gradient vanishing phenomenon can be suppressed by a series of

measures such as increasing the learning rate, reducing the network depth,

and adding Skip Connection.

Increasing the learning rate η can prevent gradient vanishing to

a certain extent. When gradient vanishing occurs, the gradient of the

network ∇θL is close to 0. At this time, if the learning rate η is also small,

such as η=1e − 5, the gradient update step is even smaller. By increasing

the learning rate, such as letting η = 1e − 2, it is possible to quickly update

the state of the network and escape the gradient vanishing area.

For deep neural networks, the gradient gradually propagates from the

last layer to the first layer, and gradient vanishing is generally more likely

to appear in the first few layers of the network. Before the emergence of

deep residual networks, it was very difficult to train deep networks with

dozens or hundreds of layers. The gradients of the previous layers of the

network were very prone to gradient vanishing, which made the network

parameters not updated for a long time. The deep residual network better

overcomes the gradient vanishing phenomenon, so that the number

of neural network layers can reach hundreds or thousands. Generally

speaking, reducing the network depth can reduce the gradient vanishing

phenomenon, but after the number of network layers is reduced, the

network expression ability will be weaker.

11.7 RNN Short-Term Memory
In addition to the training difficulty of recurrent neural networks, there

is a more serious problem, that is, short-term memory. Consider a long

sentence:

Chapter 11 reCurrent neural network

499

Today’s weather is so beautiful, even though an unpleasant thing

happened on the road..., I immediately adjusted my state and happily

prepared for a beautiful day.

According to our understanding, the reason why we “happily prepared

for a beautiful day” is that “Today’s weather is so beautiful” which is

mentioned at the beginning of the sentence. It can be seen that humans

can understand long sentences well, but recurrent neural networks are not

necessary. Researchers have found that when recurrent neural networks

process long sentences, they can only understand information within a

limited length, while useful information in a longer range cannot be used

well. We call this phenomenon short-term memory.

So, can this short-term memory be prolonged so that the recurrent

neural network can effectively use the training data in a longer range,

thereby improving model performance? In 1997, Swiss artificial

intelligence scientist Jürgen Schmidhuber proposed the Long Short-Term

Memory (LSTM) model. Compared with the basic RNN network, LSTM

has longer memory and is better at processing longer sequence data. After

LSTM was proposed, it has been widely used in tasks such as sequence

prediction and natural language processing, almost replacing the basic

RNN model .

Next, we will introduce the more popular and powerful LSTM network.

11.8 LSTM Principle
The basic RNN network structure is shown in Figure 11-13. After the state

vector ht − 1 of the previous time stamp and the input xt of the current time

stamp are linearly transformed, the new state vector ht is obtained through

the activation function tanh. Compared with the basic RNN network

which has only one state vector ht, LSTM adds a new state vector Ct, and

at the same time introduces a gate control mechanism, which controls the

forgetting and updating of information through the gate control unit, as

shown in Figure 11-14.

Chapter 11 reCurrent neural network

500

Figure 11-13. Basic RNN structure

Figure 11-14. LSTM structure

In LSTM, there are two state vectors c and h, where c is the internal

state vector of LSTM, which can be understood as the memory state vector

of LSTM, and h represents the output vector of LSTM. Compared with

the basic RNN, LSTM separates the internal memory and output into two

variables and uses three gates, input gate, forget gate, and output gate, to

control the internal information flow.

The gate mechanism can be understood as a way of controlling

the data flow, analogous to a water valve: when the water valve is fully

opened, water flows unimpeded; when the water valve is fully closed, the

water flow is completely blocked. In LSTM, the valve opening degree are

represented by the gate control value vector g, as shown in Figure 11-15,

the gate control is compressed to the interval between [0,1] through the

σ(g) activation function. When σ(g) = 0, all gates are closed, and output is

o = 0. When σ(g) = 1, all gates are open, and output is o = x. Through the

gate mechanism, the data flow can be better controlled.

Chapter 11 reCurrent neural network

501

Figure 11-15. Gate mechanism

In the following, we respectively introduce the principles and functions

of the three gates.

11.8.1 Forget Gate
The forget gate acts on the LSTM state vector c to control the impact of

the memory ct − 1 of the previous time stamp on the current time stamp.

As shown in Figure 11-16, the control variable gf of the forget gate is

determined by:

g W h x bf f t t f� � ��� ��� 1 ,

where Wf and bf are the parameter tensors of the forget gate, which can

be automatically optimized by the backpropagation algorithm. σ is the

activation function, and the Sigmoid function is generally used. When

gf = 1, the forget gates are all open, and LSTM accepts all the information of

the previous state ct − 1. When the gating gf = 0, the forget gate is closed, and

LSTM directly ignores ct − 1, and the output is a vector of 0. This is why it’s

called the forget gate.

After passing through the forget gate, the state vector of LSTM becomes

g f ct − 1.

Chapter 11 reCurrent neural network

502

11.8.2 Input Gate
The input gate is used to control the degree to which the LSTM

receives input. First, the new input vector ct is obtained by nonlinear

transformation of the input xt of the current time stamp and the output

ht − 1 of the previous time stamp:

c tanh tanh W h x bt c t t c� � ��� ��1 ,

where Wc and bc are the parameters of the input gate, which need to be

automatically optimized by the back propagation algorithm, and Tanh is

the activation function, which is used to normalize the input to [-1,1]. ct

does not completely refresh the memory that enters the LSTM but controls

the amount of input received through the input gate. The control variables

of the input gate also come from the input xt and the output ht − 1:

g W h x bi i t t i� � ��� ��� 1 ,

where Wi and bi are the parameters of the input gate, which need to be

automatically optimized by the back propagation algorithm, and σ is the

activation function, and the Sigmoid function is generally used. The input

Figure 11-16. Forget gate

Chapter 11 reCurrent neural network

503

gate control variable gi determines how LSTM accepts the new input ct of

the current time stamp: when gi = 0, LSTM does not accept any new input
ct ; when gi = 1, LSTM accepts all new input ct , As shown in Figure 11-17.

After passing through the input gate, the vector to be written into

Memory is g ci t
 .

11.8.3 Update Memory
Under the control of the forget gate and the input gate, LSTM selectively

reads the memory ct − 1 of the previous time stamp and the new input ct of

the current time stamp. The refresh mode of the state vector ct is:

c g c g ct i t f t� � �

1

The new state vector ct obtained is the state vector of the current time

stamp, as shown in Figure 11-17.

Figure 11-17. Input gate

Chapter 11 reCurrent neural network

504

11.8.4 Output Gate
The internal state vector ct of LSTM is not directly used for output, which is

different from the basic RNN. The state vector h of the basic RNN network

is used for both memory and output, so the basic RNN can be understood

as the state vector c and the output vector h are the same object. In LSTM,

the state vector is not totally outputted, but selectively under the action of

the output gate. The gate variable go of the output gate is:

g W h x bo o t t o� � ��� ��� 1 ,

where Wo and bo are the parameters of the output gate, which also need

to be automatically optimized by the back propagation algorithm. σ is the

activation function, and the Sigmoid function is generally used. When the

output gate go = 0, the output is closed, and the internal memory of LSTM

is completely blocked and cannot be used as an output. At this time, the

output is a vector of 0; when the output gate go = 1, the output is fully open,

and the LSTM state vector ct is all used for output. The output of LSTM is

composed of:

 h g tanh tanh ct o t� � ��

That is, the memory vector ct interacts with the input gate after passing

the Tanh activation function to obtain the output of the LSTM. Since

go ∈ [0, 1] and tanh tanh (ct) ∈ [−1, 1], the output of LSTM is ht ∈ [−1, 1].

Chapter 11 reCurrent neural network

505

11.8.5 Summary
Although LSTM has a large number of state vectors and gates, the

calculation process is relatively complicated. But since each gate control

function is clear, the role of each state is also easier to understand. Here,

the typical gating behavior is listed and the LSTM behavior of the code is

explained, as shown in Table 11-1.

Table 11-1. Typical behavior of input gate and forget gate

Input gating Forget Gating LSTM behavior

0 1 only use memory

1 1 Integrated input and memory

0 0 Clear memory

1 0 Input overwrites memory

Figure 11-18. Output gate

Chapter 11 reCurrent neural network

506

11.9 How to Use the LSTM Layer
In TensorFlow, there are also two ways to implement LSTM networks.

Either LSTMCell can be used to manually complete the cyclic operation

on the time stamp, or the forward operation can be completed in one step

through the LSTM layer.

11.9.1 LSTMCell
The usage of LSTMCell is basically the same as SimpleRNNCell. The

difference is that there are two state variables – list for LSTM, namely,

[ht, ct], which need to be initialized separately. The first element of list is

ht and the second element is ct. When the cell is called to complete the

forward operation, two elements are returned. The first element is the

output of the cell, which is ht, and the second element is the updated state

list of the cell: [ht, ct]. First create a new LSTMCell with a state vector length

of h = 64, where the length of the state vector ct and the output vector ht are

both h. The code is as follows:

In [18]:

x = tf.random.normal([2,80,100])

xt = x[:,0,:] # Get a timestamp input

cell = layers.LSTMCell(64) # Create LSTM Cell

Initialization state and output List,[h,c]

state = [tf.zeros([2,64]),tf.zeros([2,64])]

out, state = cell(xt, state) # Forward calculation

View the id of the returned element

id(out),id(state[0]),id(state[1])

Out[18]: (1537587122408, 1537587122408, 1537587122728)

It can be seen that the returned output out is the same as the id of the

first element ht of the list, which is consistent with the original intention of

the basic RNN and is for the unification of the format.

Chapter 11 reCurrent neural network

507

By unrolling the loop operation on the timestamp, the forward

propagation of a layer can be completed, and the writing method is the

same as the basic RNN. For example:

Untie it in the sequence length dimension, and send it to the

LSTM Cell unit in a loop

for xt in tf.unstack(x, axis=1):

 # Forward calculation

 out, state = cell(xt, state)

The output can use only the output on the last time stamp, or it can

aggregate the output vectors on all time stamps.

11.9.2 LSTM layer
Through the layers.LSTM layer, the operation of the entire sequence can

be conveniently completed at one time. First create a new LSTM network

layer, for example:

Create an LSTM layer with a memory vector length of 64

layer = layers.LSTM(64)

The sequence passes through the LSTM layer and returns the

output h of the last time stamp by default

out = layer(x)

After forward propagation through the LSTM layer, only the output of

the last timestamp will be returned by default. If you need to return the

output above each timestamp, you need to set the return_sequences=True.

For example:

When creating the LSTM layer, set to return the output on

each timestamp

layer = layers.LSTM(64, return_sequences=True)

Chapter 11 reCurrent neural network

508

Forward calculation, the output on each timestamp is

automatically concated to form a tensor

out = layer(x)

The out returned at this time contains the status output above all

timestamps, and its shape is [2,80,64], where 80 represents 80 timestamps.

For multilayer neural networks, you can wrap multiple LSTM layers

with Sequential containers, and set all non-final layer networks return_

sequences=True, because the non-final LSTM layer needs the output of all

timestamps of the previous layer as input. For example:

Like the CNN network, LSTM can also be simply stacked layer

by layer

net = keras.Sequential([

 layers.LSTM(64, return_sequences=True), # The non-final

layer needs to return all timestamp output

 layers.LSTM(64)

])

Once through the network model, you can get the output of the

last layer and the last time stamp

out = net(x)

11.10 GRU Introduction
LSTM has a longer memory capacity and has achieved better performance

than the basic RNN model on most sequence tasks. More importantly,

LSTM is not prone to gradient vanishing. However, the LSTM structure is

relatively complex, the calculation cost is high, and the model parameters

are large. Therefore, scientists try to simplify the calculation process inside

LSTM, especially to reduce the number of gates. Studies found that the

forget gate is the most important gate control in LSTM [2], and even found

Chapter 11 reCurrent neural network

509

that the simplified version of the network with only the forget gate is better

than the standard LSTM network on multiple benchmark data sets. Among

many simplified versions of LSTM, Gated Recurrent Unit (GRU) is one of

the most widely used RNN variants. GRU merges the internal state vector

and output vector into a state vector h, and the number of gates is also

reduced to two, reset gate and update gate, as shown in Figure 11-19.

Figure 11-19. GRU network structure

Let’s introduce the principle and function of reset gate and update gate

respectively.

11.10.1 Reset Door
The reset gate is used to control the amount of the state ht − 1 of the last

time stamp into the GRU. The gating vector gr is obtained by transforming

the current time stamp input xt and the last time stamp state ht − 1, the

relationship is as follows:

g W h x br r t t r� � ��� ��� 1 ,

Chapter 11 reCurrent neural network

510

where Wr and br are the parameters of the reset gate, which are

automatically optimized by the back propagation algorithm, σ is the

activation function, and the Sigmoid function is generally used. The gating

vector gr only controls the state ht − 1, but not the input xt:

h tanh tanh W g h x bt h r t t h� � ��� ��1 ,

When gr = 0, the new input ht all comes from the input xt, and ht − 1 is

not accepted, which is equivalent to resetting ht − 1. When gr = 1, ht − 1 and

input xt jointly generate a new input ht , as shown in Figure 11-20.

Figure 11-20. Reset gate

11.10.2 Update Gate
The update gate controls the degree of influence of the last time stamp

state ht − 1 and the new input ht on the new state vector ht. Update the

gating vector gz by:

g W h x bz z t t z� � ��� ��� 1 ,

where Wz and bz are the parameters of the update gate, which are

automatically optimized by the back propagation algorithm, σ is the

Chapter 11 reCurrent neural network

511

activation function, and the Sigmoid function is generally used. gz is used

to control the new input ht signal, and 1 − gz is used to control the state

ht − 1 signal:

 h g h g ht z t z t� �� � ��1 1

It can be seen that the updates of ht and ht − 1 to ht are in a state of

competing with each other. When the update gate gz = 0, all ht comes from

the last time stamp state ht − 1; when the update gate gz = 1, all ht comes

from the new input ht .

11.10.3 How to Use GRU
Similarly, in TensorFlow, there are also cell and layer methods to

implement GRU networks. The usage of GRUCell and GRU layer is very

similar to the previous SimpleRNNCell, LSTMCell, SimpleRNN and

LSTM. First, use GRUCell to create a GRU cell object, and cyclically unroll

operations on the time axis. For example:

In [19]:

Initialize the state vector, there is only one GRU

h = [tf.zeros([2,64])]

Figure 11-21. Update gate

Chapter 11 reCurrent neural network

512

cell = layers.GRUCell(64) # New GRU Cell, vector length is 64

Untie in the timestamp dimension, loop through the cell

for xt in tf.unstack(x, axis=1):

 out, h = cell(xt, h)

Out shape

out.shape

Out[19]:TensorShape([2, 64])

You can easily create a GRU network layer through the layers.GRU

class, and stack a network of multiple GRU layers through the Sequential

container. For example:

net = keras.Sequential([

 layers.GRU(64, return_sequences=True),

 layers.GRU(64)

])

out = net(x)

11.11 Hands-On LSTM/GRU Sentiment
Classification

Earlier we introduced the sentiment classification problem and used

the SimpleRNN model to solve the problem. After introducing the more

powerful LSTM and GRU networks, we upgraded the network model.

Thanks to the unified format of TensorFlow’s recurrent neural network

related interfaces, only a few modifications on the original code can be

perfectly upgraded to the LSTM or GRU model.

Chapter 11 reCurrent neural network

513

11.11.1 LSTM Model
First, let’s use the cell method. There are two state lists of the LSTM

network, and the h and c vectors of each layer need to be initialized

respectively. For example:

 self.state0 = [tf.zeros([batchsz, units]),tf.

zeros([batchsz, units])]

 self.state1 = [tf.zeros([batchsz, units]),tf.

zeros([batchsz, units])]

Modify the model to LSTMCell model as in the following:

 self.rnn_cell0 = layers.LSTMCell(units, dropout=0.5)

 self.rnn_cell1 = layers.LSTMCell(units, dropout=0.5)

Other codes can run without modification. For the layer method, only

one part of the network model needs to be modified, as follows:

 # Build RNN, replace with LSTM class

 self.rnn = keras.Sequential([

 layers.LSTM(units, dropout=0.5, return_

sequences=True),

 layers.LSTM(units, dropout=0.5)

])

11.11.2 GRU model
For the cell method, there is only one GRU state list. Like the basic RNN,

you only need to modify the type of cell created. The code is as follows:

 # Create 2 Cells

 self.rnn_cell0 = layers.GRUCell(units, dropout=0.5)

 self.rnn_cell1 = layers.GRUCell(units, dropout=0.5)

Chapter 11 reCurrent neural network

514

For the layer method, just modify the network layer type as follows:

 # Create RNN

 self.rnn = keras.Sequential([

 layers.GRU(units, dropout=0.5, return_

sequences=True),

 layers.GRU(units, dropout=0.5)

])

11.12 Pre-trained Word Vectors
In the sentiment classification task, the Embedding layer is trained from

scratch. In fact, for text processing tasks, most of the domain knowledge is

shared, so we can use the word vectors trained on other tasks to initialize

the Embedding layer to complete the domain knowledge transfer. Start

training based on the pre-trained Embedding layer, and good results can

be achieved with a small number of samples.

We take the pre-trained GloVe word vector as an example to

demonstrate how to use the pre-trained word vector model to improve

task performance. First, download the pre-trained GloVe word vector

table from the official website. We choose the file glove.6B.100d.txt with a

feature length of 100, and each word is represented by a vector of length

100, which can be decompressed after downloading.

Figure 11-22. GloVe word vector model file

Chapter 11 reCurrent neural network

515

Use the Python file IO code to read the word encoding vector table and

store it in the Numpy array. code show as in the following:

print('Indexing word vectors.')

embeddings_index = {} # Extract words and their vectors and

save them in a dictionary

Word vector model file storage path

GLOVE_DIR = r'C:\Users\z390\Downloads\glove6b50dtxt'

with open(os.path.join(GLOVE_DIR, 'glove.6B.100d.

txt'),encoding='utf-8') as f:

 for line in f:

 values = line.split()

 word = values[0]

 coefs = np.asarray(values[1:], dtype='float32')

 embeddings_index[word] = coefs

print('Found %s word vectors.' % len(embeddings_index))

The GloVe.6B version stores a vector table of 400,000 words in total.

We only considered up to 10,000 common words. We obtained the word

vectors from the GloVe model according to the number code table of the

words and wrote them into the corresponding positions as in the following:

num_words = min(total_words, len(word_index))

embedding_matrix = np.zeros((num_words, embedding_len)) # Word

vector table

for word, i in word_index.items():

 if i >= MAX_NUM_WORDS:

 continue # Filter out other words

 embedding_vector = embeddings_index.get(word) # Query word

vector from GloVe

Chapter 11 reCurrent neural network

516

 if embedding_vector is not None:

 # words not found in embedding index will be all-zeros.

 embedding_matrix[i] = embedding_vector # Write the

corresponding location

print(applied_vec_count, embedding_matrix.shape)

After obtaining the vocabulary data, use the vocabulary to initialize

the Embedding layer, and set the Embedding layer not to participate in

gradient optimization as in the following:

 # Create Embedding layer

 self.embedding = layers.Embedding(total_words,

embedding_len, input_length=max_review_len,

 trainable=False)# Does not participate in

gradient updates

 self.embedding.build(input_shape=(None, max_

review_len))

 # Initialize the Embedding layer using the GloVe model

 self.embedding.set_weights([embedding_matrix])#

initialization

The other parts are consistent. We can simply compare the training

results of the Embedding layer initialized by the pre-trained GloVe model

with the training results of the randomly initialized Embedding layer. After

training 50 Epochs, the accuracy of the pre-training model reached 84.7%,

an increase of approximately 2%.

11.13 Pre-trained Word Vectors
In this chapter, we introduced the recurrent neural network (RNN) that

is appropriate to handle sequence related problems such as speech and

stock market signals. Several sequence representation methods were

Chapter 11 reCurrent neural network

517

discussed including one-hot encoding and word embedding. Then

we introduced the motivation of developing the RNN structure along

with examples of the SimpleRNNCell network. Hands-on sentiment

classification was implemented using RNN to help us get familiar with

using RNN to solve real world problems. Gradient vanishing and exploding

are common issues during the RNN training process. Fortunately, the

gradient clipping method can be used to overcome the gradient exploding

issue. And different variants of RNN such as LSTM and GRU can be used to

avoid the gradient vanishing issue. The sentiment classification example

shows the better performance of using LSTM and GRU models because

their ability of avoiding gradient exploding issue.

11.14 References

 [1]. I. Goodfellow, Y. Bengio and A. Courville, Deep

Learning, MIT Press, 2016.

 [2]. J. Westhuizen and J. Lasenby, “The unreasonable

effectiveness of the forget gate,” CoRR,

abs/1804.04849, 2018.

Chapter 11 reCurrent neural network

519© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_12

CHAPTER 12

Autoencoder
Suppose machine learning is a cake, reinforcement learning
is the cherry on the cake, supervised learning is the icing on
the outside, and unsupervised learning is the cake itself.

—Yann LeCun

Earlier we introduced the neural network learning algorithm given the

sample and its corresponding label. This type of algorithm actually learns

the conditional probability P(y| x) given the sample x. With the booming

social network today, it is relatively easy to obtain massive sample data

x, such as photos, voices, and texts, but the difficulty is to obtain the

label information corresponding to these data. For example, in addition

to collecting source language text, the target language text data to be

translated is also required for machine translation. Data labeling is mainly

based on human prior knowledge. For example, Amazon's Mechanical

Turk system is responsible for data labeling, recruiting part-time staff from

all over the world to complete customer data labeling tasks. The scale of

data required for deep learning is generally very large. This method of

relying heavily on manual data annotation is expensive and inevitably

introduces the subjective prior bias of the annotator.

For massive unlabeled data, is there a way to learn the data

distribution P(x) from it? This is the unsupervised learning algorithm that

we will introduce in this chapter. In particular, if the algorithm learns x as a

https://doi.org/10.1007/978-1-4842-7915-1_12#DOI

520

supervised signal, this type of algorithm is called self-supervised learning,

and the autoencoder algorithm introduced in this chapter is one type of

self-supervised learning algorithms.

12.1 Principle of Autoencoder
Let us consider the function of neural networks in supervised learning:

 o f x x R o Rd din out� � � � �� , ,

din is the length of the input feature vector, and dout is the length of the

network output vector. For classification problems, the network model

transforms the input feature vector x of length din to the output vector

o of length dout. This process can be considered as a feature reduction

process, transforming the original high-dimensional input vector x to a

low-dimensional variable o. Dimensionality reduction has a wide range

of applications in machine learning, such as file compression and data

preprocessing. The most common dimension reduction algorithm is

principal component analysis (PCA), which obtains the main components of

the data by eigen-decomposing the covariance matrix, but PCA is essentially

a linear transformation, and the ability to extract features is limited.

So can we use the powerful nonlinear expression capabilities of neural

networks to learn low-dimensional data representation? The key to the

problem is that training neural networks generally requires an explicit

label data (or supervised signal), but unsupervised data has no additional

labeling information, only the data x itself.

Therefore, we try to use the data x itself as a supervision signal to guide

the training of the network, that is, we hope that the neural network can

learn the mapping fθ : x → x. We divide the network fθ into two parts. The

first sub-network tries to learn the mapping relationship: g x z�1
: � , and

the latter sub-network tries to learn the mapping relationship h z x�2
: � ,

as shown in Figure 12-1. We consider gθ1
 as a process of data encoding

Chapter 12 autoenCoder

521

which encodes the high-dimensional input x into a low-dimensional

hidden variable z (latent variable or hidden variable), which is called an

encoder network. hθ2
 is considered as the process of data decoding, which

decodes the encoded input z into high-dimensional x, which is called a

decoder network.

Figure 12-1. Autoencoder model

The encoder and decoder jointly complete the encoding and decoding

process of the input data x. We call the entire network model fθ an

autoencoder for short. If a deep neural network is used to parameterize gθ1

and hθ2
 functions, it is called deep autoencoder, as shown in Figure 12-2.

Figure 12-2. Autoencoder using neural network parameterization

Chapter 12 autoenCoder

522

The self-encoder can transform the input to the hidden vector z,

and reconstruct x through the decoder. We hope that the output of the

decoder can perfectly or approximately recover the original input, that is

x x≈ , then the optimization goal of the autoencoder can be written as:

 min L dist x x� � �,

x h g x� � �� �� �2 1

where dist x x,� � represents the distance measurement between x and x ,

which is called the reconstruction error function. The most common

measurement method is the square of the Euclidean distance. The

calculation method is as follows:

L x x

i
i i� �� �� 2

It is equivalent in principle to the mean square error. There is no

essential difference between the autoencoder network and the ordinary

neural network, except that the trained supervision signal has changed from

the label y to its own x. With the help of the nonlinear feature extraction

capability of deep neural networks, the autoencoder can obtain good data

representation, for example, smaller size and dimension data representation

than the original input data. This is very useful for data and information

compression. Compared with linear methods such as PCA, the autoencoder

has better performance and can even recover the input x more perfectly.

In Figure 12-3(a), the first row is a real MNIST handwritten digit picture

randomly sampled from the test set, and the second, third, and fourth rows

are reconstructed using a hidden vector of length 30, using autoencoder,

logistic PCA, and standard PCA, respectively. In Figure 12-3(b), the first

row is a real portrait image, and the second and third rows are based on a

hidden vector of length 30, which is recovered using the autoencoder and

the standard PCA algorithm. It can be seen that the image reconstructed

Chapter 12 autoenCoder

523

by the autoencoder is relatively clear and has a high degree of restoration,

while the image reconstructed by the PCA algorithm is blurry.

Figure 12-3. Autoencoder vs. PCA [1]

12.2 Hands-On Fashion MNIST Image
Reconstruction

The principle of the autoencoder algorithm is very simple, easy to

implement, and stable in training. Compared with the PCA algorithm, the

powerful expression ability of the neural network can learn the high-level

abstract hidden feature vector z of the input, and it can also reconstruct the

input based on z. Here we perform actual picture reconstruction based on

the Fashion MNIST dataset.

12.2.1 Fashion MNIST Dataset
Fashion MNIST is a dataset that is a slightly more complicated problem

than MNIST image recognition. Its settings are almost the same as

MNIST. It contains ten types of grayscale images of different types of

clothes, shoes, and bags, and the size of the image is 28 × 28, with a total

of 70,000 pictures, of which 60,000 are used for the training set and 10,000

Chapter 12 autoenCoder

524

are used for the test set, as shown in Figure 12-4. Each row is a category

of pictures. As you can see, Fashion MNIST has the same settings except

that the picture content is different from MNIST. In most cases, the

original algorithm code based on MNIST can be directly replaced without

additional modification. Since Fashion MNIST image recognition is more

difficult than MNIST, it can be used to test the performance of a slightly

more complex algorithm.

Figure 12-4. Fashion MNIST Dataset

In TensorFlow, it is also very convenient to load the Fashion MNIST

dataset, which can be downloaded, managed, and loaded online using the

keras.datasets.fashion_mnist.load_data() function as in the following:

Load Fashion MNIST data set

(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_

mnist.load_data()

Normalize

Chapter 12 autoenCoder

525

x_train, x_test = x_train.astype(np.float32) / 255., x_test.

astype(np.float32) / 255.

Only need to use image data to build data set objects, no

tags required

train_db = tf.data.Dataset.from_tensor_slices(x_train)

train_db = train_db.shuffle(batchsz * 5).batch(batchsz)

Build test set objects

test_db = tf.data.Dataset.from_tensor_slices(x_test)

test_db = test_db.batch(batchsz)

12.2.2 Encoder
We use the encoder to reduce the dimensionality of the input picture

x ∈ R784 to a lower-dimensional hidden vector, h ∈ R20, and use the decoder

to reconstruct the picture based on the hidden vector h. The autoencoder

model is shown in Figure 12-5. The decoder is composed of a 3-layer fully

connected network with output nodes of 256, 128, and 20, respectively.

The decoder is also composed of a three-layer fully connected network

with output nodes of 128, 256, and 784, respectively.

Figure 12-5. Fashion MNIST autoencoder network architecture

Chapter 12 autoenCoder

526

The first is the realization of the encoder sub-network. A three-layer

neural network is used to reduce the dimensionality of the image vector

from 784 to 256, 128, and finally to h_dim. Each layer uses the ReLU

activation function, and the last layer does not use any activation function.

 # Create Encoders network, implemented in the

initialization function of the autoencoder class

 self.encoder = Sequential([

 layers.Dense(256, activation=tf.nn.relu),

 layers.Dense(128, activation=tf.nn.relu),

 layers.Dense(h_dim)

])

12.2.3 Decoder
Let’s create the decoder sub-network. Here, the hidden vector h_dim is

upgraded to the length of 128, 256, and 784 in turn. Except for the last

layer, the ReLU activation function are used. The output of the decoder is

a vector of length 784, which represents a 28 × 28 size picture after being

flattened, and can be restored to a picture matrix through the reshape

operation as in the following:

 # Create Decoders network

 self.decoder = Sequential([

 layers.Dense(128, activation=tf.nn.relu),

 layers.Dense(256, activation=tf.nn.relu),

 layers.Dense(784)

])

Chapter 12 autoenCoder

527

12.2.4 Autoencoder
The preceding two sub-networks of encoder and decoder are implemented

in the autoencoder class AE, and we create these two sub-networks in the

initialization function at the same time.

class AE(keras.Model):

 # Self-encoder model class, including Encoder and Decoder

2 subnets

 def __init__(self):

 super(AE, self).__init__()

 # Create Encoders network

 self.encoder = Sequential([

 layers.Dense(256, activation=tf.nn.relu),

 layers.Dense(128, activation=tf.nn.relu),

 layers.Dense(h_dim)

])

 # Create Decoders network

 self.decoder = Sequential([

 layers.Dense(128, activation=tf.nn.relu),

 layers.Dense(256, activation=tf.nn.relu),

 layers.Dense(784)

])

Next, the forward propagation process is implemented in the call

function. The input image first obtains the hidden vector h through the

encoder sub-network and then obtains the reconstructed image through

the decoder. Just call the forward propagation function of the encoder and

decoder in turn as follows:

 def call(self, inputs, training=None):

 # Forward propagation function

 # Encoding to obtain hidden vector h,[b, 784]

=> [b, 20]

Chapter 12 autoenCoder

528

 h = self.encoder(inputs)

 # Decode to get reconstructed picture, [b, 20] =>

[b, 784]

 x_hat = self.decoder(h)

 return x_hat

12.2.5 Network Training
The training process of the autoencoder is basically the same as that of

a classifier. The distance between the reconstructed vector x and the

original input vector x is calculated through the error function, and then

the gradients of the encoder and decoder are simultaneously calculated

using the automatic derivation mechanism of TensorFlow.

First, create an instance of the autoencoder and optimizer, and set an

appropriate learning rate. For example:

Create network objects

model = AE()

Specify input size

model.build(input_shape=(4, 784))

Print network information

model.summary()

Create an optimizer and set the learning rate

optimizer = optimizers.Adam(lr=lr)

Here 100 Epochs are trained, and the reconstructed image vector is

obtained through forward calculation each time, and the tf.nn.sigmoid_

cross_entropy_with_logits loss function is used to calculate the direct error

between the reconstructed image and the original image. In fact, it is also

feasible to use the MSE error function as in the following:

Chapter 12 autoenCoder

529

for epoch in range(100): # Train 100 Epoch

 for step, x in enumerate(train_db): # Traverse the

training set

 # Flatten, [b, 28, 28] => [b, 784]

 x = tf.reshape(x, [-1, 784])

 # Build a gradient recorder

 with tf.GradientTape() as tape:

 # Forward calculation to obtain the

reconstructed picture

 x_rec_logits = model(x)

 # Calculate the loss function between the

reconstructed picture and the input

 rec_loss = tf.nn.sigmoid_cross_entropy_with_

logits(labels=x, logits=x_rec_logits)

 # Calculate the mean

 rec_loss = tf.reduce_mean(rec_loss)

 # Automatic derivation, including the gradient of 2

sub-networks

 grads = tape.gradient(rec_loss, model.trainable_

variables)

 # Automatic update, update 2 subnets at the same time

 optimizer.apply_gradients(zip(grads, model.trainable_

variables))

 if step % 100 ==0:

 # Interval print training error

 print(epoch, step, float(rec_loss))

Chapter 12 autoenCoder

530

12.2.6 Image Reconstruction
Different from the classification problem, the model performance of

the autoencoder is generally not easy to quantify. Although the L value

can represent the learning effect of the network to a certain extent, we

ultimately hope to obtain reconstruction samples with a higher degree of

reduction and richer styles. Therefore, it is generally necessary to discuss

the learning effect of the autoencoder according to specific issues. For

image reconstruction, it generally depends on the quality of artificial

subjective evaluation of the image generation, or the use of certain image

fidelity calculation methods such as Inception Score and Frechet Inception

Distance.

In order to test the effect of image reconstruction, we divide the dataset

into a training set and a test set, where the test set does not participate in

training. We randomly sample the test picture x ∈ Dtest from the test set,

calculate the reconstructed picture through the autoencoder, and then

save the real picture and the reconstructed picture as a picture array and

visualize it for easy comparison as in the following:

 # Reconstruct pictures, sample a batch of pictures from the

test set

 x = next(iter(test_db))

 logits = model(tf.reshape(x, [-1, 784])) # Flatten and send

to autoencoder

 x_hat = tf.sigmoid(logits) # Convert the output to pixel

values, using the sigmoid function

 # Recover to 28x28,[b, 784] => [b, 28, 28]

 x_hat = tf.reshape(x_hat, [-1, 28, 28])

 # The first 50 input + the first 50 reconstructed pictures

merged, [b, 28, 28] => [2b, 28, 28]

 x_concat = tf.concat([x[:50], x_hat[:50]], axis=0)

 x_concat = x_concat.numpy() * 255. # Revert to 0~255 range

Chapter 12 autoenCoder

531

 x_concat = x_concat.astype(np.uint8) # Convert to integer

save_images(x_concat, 'ae_images/rec_epoch_%d.png'%epoch)

Save picture

The effect of image reconstruction is shown in Figure 12-6, Figure 12-7,

and Figure 12-8. The five columns on the left of each picture are real

pictures, and the five columns on the right are the corresponding

reconstructed pictures. It can be seen that in the first Epoch, the picture

reconstruction effect is poor, the picture is very blurry, and the fidelity is

poor. As the training progresses, the edges of the reconstructed picture

become clearer and clearer. At the 100th Epoch, the reconstructed picture

effect is already closer to the real picture.

Figure 12-6. First Epoch

Figure 12-7. Tenth Epoch

Chapter 12 autoenCoder

532

Figure 12-8. Hundredth Epoch

The save_images function here is responsible for merging multiple

pictures and saving them as a big picture. This is done using the PIL

picture library. The code is as follows:

def save_images(imgs, name):

 # Create 280x280 size image array

 new_im = Image.new('L', (280, 280))

 index = 0

 for i in range(0, 280, 28): # 10-row image array

 for j in range(0, 280, 28): # 10-column picture array

 im = imgs[index]

 im = Image.fromarray(im, mode='L')

 new_im.paste(im, (i, j)) # Write the corresponding

location

 index += 1

 # Save picture array

 new_im.save(name)

Chapter 12 autoenCoder

533

12.3 Autoencoder Variants
Generally speaking, the training of the autoencoder network is relatively

stable, but because the loss function directly measures the distance

between the reconstructed sample and the underlying features of the real

sample, rather than evaluating abstract indicators such as the fidelity and

diversity of the reconstructed sample, the effect on some tasks is mediocre,

such as image reconstruction where the edges of the reconstructed image

are prone to be blurred, and the fidelity is not good compared to the

real image. In order to learn the true distribution of the data, a series of

autoencoder variant networks were produced: denoising autoencoder.

In order to prevent the neural network from memorizing the

underlying features of the input data, denoising autoencoders adds

random noise disturbances to the input data, such as adding noise ε

sampled from the Gaussian distribution to the input x:

x x N� � � �� �, ~ 0,var

After adding noise, the network needs to learn the real hidden

variable z of the data from x, and restore the original input x, as shown in

Figure 12-9. The optimization goals of the model are:

Figure 12-9. Denoising autoencoder diagram

Chapter 12 autoenCoder

534

12.3.1 Dropout Autoencoder
The autoencoder network also faces the risk of overfitting. Dropout

autoencoder reduces the expressive power of the network by randomly

disconnecting the network and prevents overfitting. The implementation

of dropout autoencoder is very simple. Random disconnection of the

network connection can be achieved by inserting the Dropout layer in the

network layer.

12.3.2 Adversarial Autoencoder
In order to be able to conveniently sample the hidden variable z from a

known prior distribution p(z), it is convenient to use p(z) to reconstruct the

input, and the adversarial autoencoder uses an additional discriminator

network (discriminator, referred to as D network) to determine whether

the hidden variable z for dimensionality reduction is sampled from

the prior distribution p(z), as shown in Figure 12-10. The output of

the discriminator network is a variable belonging to the interval [0,1],

which represents whether the hidden vector is sampled from the prior

distribution p(z): all samples from the prior distribution p(z) are marked

as true, and those generated from the conditional probability q(z| x)

are marked as false. In this way, in addition to reconstructing samples,

the conditional probability distribution q(x) can also be constrained to

approximate the prior distribution p(z).

Chapter 12 autoenCoder

535

Figure 12-10. Adversarial autoencoder

The adversarial autoencoder is derived from the generative adversarial

network algorithm introduced in the next chapter. After learning the

adversarial generative network, you can deepen your understanding of the

adversarial autoencoder.

12.4 Variational Autoencoder
The basic autoencoder essentially learns the mapping relationship

between the input x and the hidden variable z. It is a discriminative model,

not a generative model. So can the autoencoder be adjusted to a generative

model to easily generate samples?

Given the distribution of hidden variables P(z), if the conditional

probability distribution P(z) can be learned, then we can sample the joint

probability distribution P(x, z) = P(z)P(z) to generate different samples.

Variational autoencoders (VAE) can achieve this goal, as shown in

Figure 12-11. If you understand it from the perspective of neural networks,

VAE is the same as the previous autoencoders, which is very intuitive and

Chapter 12 autoenCoder

536

easy to understand; but the theoretical derivation of VAE is a little more

complicated. Next, we will first explain VAE from the perspective of neural

networks, and then derive VAE from the perspective of probability.

Figure 12-11. VAE model structure

From the point of view of neural network, VAE also has two sub-

networks of encoder and decoder compared to the self-encoder model.

The decoder accepts the input x, and the output is the latent variable

z; the decoder is responsible for decoding the latent variable z into

the reconstructed x .
__

The difference is that the VAE model has explicit

constraints on the distribution of the hidden variable z, and hopes that the

hidden variable z conforms to the preset prior distribution P(z). Therefore,

in the design of the loss function, in addition to the original reconstruction

error term, a constraint term for the z distribution of the hidden variable

is added.

12.4.1 Principle of VAE
From a probability point of view, we assume that any dataset is sampled

from a certain distribution p(x| z); z is a hidden variable and represents

a certain internal feature, such as a picture of handwritten digits x; z can

represent font size, writing style, bold, italic, and other settings, which

conform to a certain prior distribution p(z). Given a specific hidden

variable z, we can sample a series of samples from the learned distribution

p(x| z). These samples all have the commonality represented by z.

It is usually assumed that p(z) follows a known distribution, such as

N(0, 1). Under the condition that p(z) is known, our goal is to learn to a

generative probability model p(x| z). The maximum likelihood estimation

Chapter 12 autoenCoder

537

method can be used here: a good model should have a high probability

of generating a real sample x ∈ D. If our generative model p(x| z) is

parameterized with θ, then the optimization goal of our neural network is:

p x p x z p z dz

z

� � � � � � �� |

Unfortunately, since z is a continuous variable, the preceding integral

cannot be converted into a discrete form, which makes it difficult to

optimize directly.

Another way of thinking is using the idea of variational inference,

we approximate p(z| x) through the distribution qϕ(x), that is, we need to

minimize the distance between qϕ(x) and p(z| x):

min

� �D q x p xKL � � � �� �

The KL divergence DKL is a measure of the gap between the distribution

q and p, defined as:

D q p q x log log

q x

p x
dxKL

x

� � � � � � �
� ��

Strictly speaking, the distance is generally symmetric, while the KL

divergence is asymmetric. Expand the KL divergence to:

D q x p x q x log log

q x

p x
dzKL

z

� �
�� � � �� � � � � � �
� ��

Use

 p z x p x p x z| ,� � � � � � � �

Chapter 12 autoenCoder

538

Get

D q x p x q x log log

q x p x

p x z
dzKL

z

� �
�� � � �� � � � � � � � �
� �� ,

� � � � �

� �
� � � � �� �

z z

q x log log
q x

p x z
dz q x log log p x dz�

�
�,

We define � � � � �
� ��

z

q x log log
q x

p x z
dz�

�

,
 as L(ϕ, θ), so the preceding

equation becomes:

D q x p x L log log p xKL � � �� � � �� � � � � �� � �,

where

L q x log log

q x

p x z
dz

z

� � �
�,

,
� � � � � � � �

� ��

Consider

D q x p xKL � � � � �� � � 0

We have

 L log log p x� �,� � � � �

In other words, L(ϕ, θ) is the lower bound of loglog p (x), and the

optimization objective L(ϕ, θ) is called evidence lower bound objective

(ELBO). Our goal is to maximize the likelihood probability p(x), or to

maximize loglog p (x), which can be achieved by maximizing its lower

bound L(ϕ, θ).

Chapter 12 autoenCoder

539

Now let's analyze how to maximize the L(ϕ, θ) function, and expand

it to get:

L q x log log

p x z

q xz

� � �
�

�

,
,

� � � � � � �
� ��

� � � � � � �

� ��
z

q x log log
p z p z

q x�
�

�

� � � � �

� �
� � � � �� �

z z

q x log log
p z

q x
q x log log p z�

�
� �

� � � � � �

� �
� � ��� ���

z

z qq x log log
q x

p z
E log log p z�

�
�~

� � � � � �� � � � ��� ��D q x p z E log log p zKL z q� �~

So,

L D q x p z E log log p zKL z q� � � �,� � � � � � � �� � � � ��� ��~ (12-1)

You can use the encoder network to parameterize the qϕ(x) function,

and the decoder network to parameterize the pθ(z) function. The target

function L(θ, ϕ) can be optimized by calculating KL divergence between

the output distribution of the decoder qϕ(x) and the prior distribution p(z),

and the likelihood probability loglog pθ(z) of the decoder.

In particular, when both qϕ(x) and p(z) are assumed to be normally

distributed, the calculation of DKL(qϕ(x)‖p(z)) can be simplified to:

D q x p z log logKL �

�
�

� � �
�

� � � �� � � �
� �� �

�2

1

1
2

1 2

2

2
22

1

2

Chapter 12 autoenCoder

540

More specifically, when qϕ(x) is the normal distribution N(μ1, σ1) and

p(z) is the normal distribution N(0, 1), that is, μ2 = 0, σ2 = 1, at this time:

D q x p zKL � � � �� � � �� � � � � � �log . . .1 1

2
1
20 5 0 5 0 5 (12-2)

The preceding process makes the DKL(qϕ(x)‖p(z)) term in L(θ, ϕ) easier

to calculate, while Ez~q[log log pθ(z)] can also be implemented based on the

reconstruction error function in the autoencoder.

Therefore, the optimization objective of the VAE model is transformed

from maximizing the L(ϕ, θ) function to:

min D q x p zKL � � � � �� �

and

max E log log p zz q~ � � ��� ��

The first optimization goal can be understood as constraining the

distribution of latent variable z, and the second optimization goal can be

understood as improving the reconstruction effect of the network. It can be

seen that after our derivation, the VAE model is also very intuitive and easy

to understand.

12.4.2 Reparameterization Trick
Now consider a serious problem encountered in the implementation of the

above-mentioned VAE model. The hidden variable z is sampled from the

output qϕ(x) of the encoder, as shown on the left in Figure 12-12. When both

qϕ(x)and p(z) are assumed to be normally distributed, the encoder outputs

the mean μ and variance σ2 of the normal distribution, and the decoder's

input is sampled from N(μ, σ2). Due to the existence of the sampling

operation, the gradient propagation is discontinuous, and the VAE network

cannot be trained end-to-end through the gradient descent algorithm.

Chapter 12 autoenCoder

541

Figure 12-12. Reparameterization trick diagram

The paper [2] proposed a continuous and derivable solution called

reparameterization trick. It samples the hidden variable z through

z = μ + σ ⊙ ε, where
�
�

z

�
 and

�
�

z

�
 are both continuous and differentiable,

thus connecting the gradient propagation. As shown on the right of

Figure 12-12, the ε variable is sampled from the standard normal

distribution N(0, I), and μ and σ are generated by the encoder network.

The hidden variable after sampling can be obtained through z = μ + σ ⊙ ε,

which ensures that the gradient propagation is continuous.

The VAE network model is shown in Figure 12-13, the input x is

calculated through the encoder network qϕ(x) to obtain the mean and

variance of the hidden variable z, and the hidden variable z is obtained by

sampling through the reparameterization trick method, and sent to the

decoder network to obtain the distribution (z) , and calculate the error and

optimize the parameters by formula (12 1).

Chapter 12 autoenCoder

542

Figure 12-13. VAE model architecture

12.5 Hands-On VAE Image Reconstruction
In this section, we’ll work on the reconstruction and generation of Fashion

MNIST pictures based on the VAE model. As shown in Figure 12-13, the

input is the Fashion MNIST picture vector. After three fully connected

layers, the mean and variance of the hidden vector z are obtained, which

are represented by two fully connected layers with 20 output nodes. The

20 output nodes of FC2 represent the mean vector μ of the 20 feature

distributions, and the 20 output nodes of FC3 represent the log variance

vectors of the 20 feature distributions. The hidden vector z with a length of

20 is obtained through reparameterization trick sampling, and the sample

picture is reconstructed through FC4 and FC5.

As a generative model, VAE can not only reconstruct the input samples

but also use the decoder alone to generate samples. The hidden vector z

is obtained by directly sampling from the prior distribution p(z), and the

generated samples can be generated after decoding.

Chapter 12 autoenCoder

543

12.5.1 VAE model
We implement encoder and decoder sub-networks in the VAE category.

In the initialization function, we create the network layers required by

encoder and decoder, respectively, as in the following:

class VAE(keras.Model):

 # Variational Encoder

 def __init__(self):

 super(VAE, self).__init__()

 # Encoder

 self.fc1 = layers.Dense(128)

 self.fc2 = layers.Dense(z_dim) # output mean

 self.fc3 = layers.Dense(z_dim) # output variance

 # Decoder

 self.fc4 = layers.Dense(128)

 self.fc5 = layers.Dense(784)

The input of the encoder first passes through the shared layer FC1,

and then through the FC2 and FC3 networks, respectively, to obtain the

log vector value of the mean vector and variance of the hidden vector

distribution.

Figure 12-14. VAE model architecture

Chapter 12 autoenCoder

544

 def encoder(self, x):

 # Get mean and variance

 h = tf.nn.relu(self.fc1(x))

 # Mean vector

 mu = self.fc2(h)

 # Log of variance

 log_var = self.fc3(h)

 return mu, log_var

Decoder accepts the hidden vector z after sampling, and decodes it

into picture output.

 def decoder(self, z):

 # Generate image data based on hidden variable z

 out = tf.nn.relu(self.fc4(z))

 out = self.fc5(out)

 # Return image data, 784 vector

 return out

In the forward calculation process of VAE, the distribution of the input

latent vector z is first obtained by the encoder, and then the latent vector

z is obtained by sampling the reparameterize function implemented by

reparameterization trick, and finally the reconstructed picture vector can

be restored by the decoder. The implementation is as follows:

 def call(self, inputs, training=None):

 # Forward calculation

 # Encoder [b, 784] => [b, z_dim], [b, z_dim]

 mu, log_var = self.encoder(inputs)

 # Sampling - reparameterization trick

 z = self.reparameterize(mu, log_var)

 # Decoder

Chapter 12 autoenCoder

545

 x_hat = self.decoder(z)

 # Return sample, mean and log variance

 return x_hat, mu, log_var

12.5.2 Reparameterization Trick
The reparameterize function accepts the mean and variance parameters

and obtains ε by sampling from the normal distribution N(0, I), and returns

the sampled hidden vector by z = μ + σ ⊙ ε.

 def reparameterize(self, mu, log_var):

 # reparameterize trick

 eps = tf.random.normal(log_var.shape)

 # calculate standard variance

 std = tf.exp(log_var)**0.5

 # reparameterize trick

 z = mu + std * eps

 return z

12.5.3 Network Training
The network is trained for 100 Epochs, and the reconstruction samples are

obtained from the forward calculation of the VAE model each time. The

reconstruction error term Ez~q[log log pθ(z)] is calculated based on cross-

entropy loss function. The error term DKL(qϕ(x)‖p(z)) is calculated based

on equation (12-2).

Create network objects

model = VAE()

model.build(input_shape=(4, 784))

Optimizer

optimizer = optimizers.Adam(lr)

Chapter 12 autoenCoder

546

for epoch in range(100): # Train 100 Epochs

 for step, x in enumerate(train_db): # Traverse the

training set

 # Flatten, [b, 28, 28] => [b, 784]

 x = tf.reshape(x, [-1, 784])

 # Build a gradient recorder

 with tf.GradientTape() as tape:

 # Forward calculation

 x_rec_logits, mu, log_var = model(x)

 # Reconstruction loss calculation

 rec_loss = tf.nn.sigmoid_cross_entropy_with_

logits(labels=x, logits=x_rec_logits)

 rec_loss = tf.reduce_sum(rec_loss) / x.shape[0]

 # Calculate KL convergence N(mu, var) VS N(0, 1)

 # Refernece:https://stats.stackexchange.com/

questions/7440/kl-divergence-between-two-

univariate-gaussians

 kl_div = -0.5 * (log_var + 1 - mu**2 -

tf.exp(log_var))

 kl_div = tf.reduce_sum(kl_div) / x.shape[0]

 # Combine error

 loss = rec_loss + 1. * kl_div

 # Calculate gradients

 grads = tape.gradient(loss, model.trainable_variables)

 # Update parameters

 optimizer.apply_gradients(zip(grads, model.trainable_

variables))

 if step % 100 == 0:

 # Print error

 print(epoch, step, 'kl div:', float(kl_div), 'rec

loss:', float(rec_loss))

Chapter 12 autoenCoder

547

12.5.4 Image Generation
Picture generation only uses the decoder network. First, the hidden vector

is sampled from the prior distribution N(0, I), and then the picture vector

is obtained through the decoder, and finally is reshaped to picture matrix.

For example:

 # Test generation effect, randomly sample z from normal

distribution

 z = tf.random.normal((batchsz, z_dim))

 logits = model.decoder(z) # Generate pictures only

by decoder

 x_hat = tf.sigmoid(logits) # Convert to pixel range

 x_hat = tf.reshape(x_hat, [-1, 28, 28]).numpy() *255.

 x_hat = x_hat.astype(np.uint8)

 save_images(x_hat, 'vae_images/epoch_%d_sampled.png'%epoch)

Save pictures

 # Reconstruct the picture, sample pictures from the

test set

 x = next(iter(test_db))

 logits, _, _ = model(tf.reshape(x, [-1, 784])) # Flatten

and send to autoencoder

 x_hat = tf.sigmoid(logits) # Convert output to pixel value

 # Restore to 28x28,[b, 784] => [b, 28, 28]

 x_hat = tf.reshape(x_hat, [-1, 28, 28])

 # The first 50 input + the first 50 reconstructed pictures

merged, [b, 28, 28] => [2b, 28, 28]

 x_concat = tf.concat([x[:50], x_hat[:50]], axis=0)

 x_concat = x_concat.numpy() * 255.

 x_concat = x_concat.astype(np.uint8)

 save_images(x_concat, 'vae_images/epoch_%d_rec.png'%epoch)

Chapter 12 autoenCoder

548

The effect of picture reconstruction is shown in Figure 12-15,

Figure 12-16, and Figure 12-17, which show the reconstruction effect

obtained by inputting the pictures of the test set at the first, tenth, and

100th Epoch respectively. The left five columns of each picture are

real pictures, and the five columns on the right are the corresponding

reconstruction effects. The effect of picture generation is shown in

Figure 12-18, Figure 12-19, and Figure 12-20, respectively showing the

effect of the image generation at the first, tenth, and 100th Epoch.

Figure 12-15. Picture reconstruction:epoch=1

Figure 12-16. Picture reconstruction:epoch=10

Chapter 12 autoenCoder

549

Figure 12-17. Picture reconstruction:epoch=100

Figure 12-18. Picture generation:epoch=1

Figure 12-19. Picture generation:epoch=10

Chapter 12 autoenCoder

550

Figure 12-20. Picture generation:epoch=100

It can be seen that the effect of image reconstruction is slightly better

than that of image generation, which also shows that image generation is

a more complex task. Although the VAE model has the ability to generate

images, the generated effect is still not good enough, and the human

eye can still distinguish the difference between machine-generated and

real picture samples. The generative confrontation network that will be

introduced in the next chapter performs better in image generation.

12.6 Summary
In this chapter, we introduced the powerful self-supervised learning

algorithm – the autoencoder and its variants. We started with the principle

of autoencoder in order to understand its mathematical mechanism

and then we walked through the actual implementation of Autoencoder

through the Fashion MNIST image reconstruction exercise. Following

similar steps, the VAE model was discussed and applied to the Fashion

MNIST image dataset to demonstrate the image generation process. While

developing machine learning or deep learning models, one common

challenge is the high dimensionality of input data. Compared to traditional

Chapter 12 autoenCoder

551

dimension reduction methods (e.g., PCA), the autoencoder and its

variants usually have better performance in terms of generating data

representation in lower dimensions and size.

12.7 References

 [1]. G. E. Hinton, “Reducing the Dimensionality of Data

with Neural,” 2008.

 [2]. D. P. Kingma and M. Welling, “Auto-Encoding

Variational Bayes,”2nd International Conference

on Learning Representations, ICLR 2014, Banff,

AB, Canada, April 14-16, 2014, Conference Track

Proceedings, 2014.

Chapter 12 autoenCoder

553© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_13

CHAPTER 13

Generative
Adversarial Networks

What I cannot create, I have not yet fully understood.

—Richard Feynman

Before the invention of the generative adversarial network (GAN), the

variational autoencoder was considered to be theoretically complete and

simple to implement. It is very stable when trained using neural networks,

and the resulting images are more approximate, but the human eyes can

still easily distinguish real pictures and machine-generated pictures.

In 2014, Ian Goodfellow, a student of Yoshua Bengio (the winner of

the Turing Award in 2018) at the Université de Montréal, proposed the

GAN [1], which opened up one of the hottest research directions in deep

learning. From 2014 to 2019, GAN research has been steadily advancing,

and research successes have been reported frequently. The effect of

the latest GAN algorithm on image generation has reached a level that

is difficult to distinguish with the naked eyes, which is really exciting.

Due to the invention of GAN, Ian Goodfellow was awarded the title of

Father of GAN, and was granted the 35 Innovators Under 35 award by

the Massachusetts Institute of Technology Review in 2017. Figure 13-1

https://doi.org/10.1007/978-1-4842-7915-1_13#DOI

554

shows that from 2014 to 2018, the GAN model achieved the effect of book

generation. It can be seen that both the size of the picture and the fidelity

of the picture have been greatly improved. 1

Figure 13-1. GAN generated image effect from 2014 to 2018

Next, we will start from the example of game learning in life, step

by step, to introduce the design ideas and model structure of the GAN

algorithm.

13.1 Examples of Game Learning
We use the growth trajectory of a cartoonist to vividly introduce the idea

of GAN. Consider a pair of twin brothers, called G and D. G learns how

to draw cartoons, and D learns how to appreciate paintings. The two

brothers at young ages only learned how to use brushes and papers. G

drew an unknown painting, as shown in Figure 13-2(a). At this time, D’s

discriminating ability is not high, so D thinks G’s work is OK, but the main

character is not clear enough. Under D’s guidance and encouragement, G

began to learn how to draw the outline of the subject and use simple color

combinations.

1 Image source: https://twitter.com/goodfellow_ian/status/
1084973596236144640?lang=en

Chapter 13 Generative adversarial networks

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en
https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en

555

A year later, G improved the basic skills of painting, and D also initially

mastered the ability to identify works by analyzing masterpieces and the

works of G. At this time, D feels that G’s work has the main character, as

shown in Figure 13-2(b), but the use of color is not mature enough. A few

years later, G’s basic painting skills have been very solid, and he can easily

draw paintings with bright subjects, appropriate color matching, and high

fidelity, as shown in Figure 13-2(c), but D also observes the differences

between G and other masterpieces, and improved the ability to distinguish

paintings. At this time, D felt that G’s painting skills have matured, but his

observation of life is not enough. G’s work does not convey the expression

and some details are not perfect. After a few more years, G’s painting

skills have reached the point of perfection. The details of the paintings

are perfect, the styles are very different and vivid, just like a master level,

as shown in Figure 13-2(d). Even at this time, D’s discrimination skills

are quite excellent. It is also difficult for D to distinguish G from other

masterpieces.

The growth process of the above-mentioned painters is actually a

common learning process in life, through the game of learning between

the two sides and mutual improvement, and finally reaches a balance

point. The GAN network draws on the idea of game learning and sets up

two sub-networks: a generator G responsible for generating samples and a

discriminator D responsible for authenticating. The discriminator D learns

how to distinguish between true and false by observing the difference

between the real sample and the sample produced by the generator G,

where the real sample is true and the sample produced by the generator

G is false. The generator G is also learning. It hopes that the generated

samples can be recognized by the discriminator D as true. Therefore, the

generator G tries to make the samples it generates be considered as true by

discriminant D. The generator G and the discriminator D play a game with

each other and improve together until they reach an equilibrium point.

At this time, the samples generated by the generator G are very realistic,

making the discriminator D difficult to distinguish between true and false.

Chapter 13 Generative adversarial networks

556

In the original GAN paper, Ian Goodfellow used another vivid

metaphor to introduce the GAN model: The function of the generator

network G is to generate a series of very realistic counterfeit banknotes

to try to deceive the discriminator D, and the discriminator D learns

the difference between the real money and the counterfeit banknotes

generated by generator G to master the banknote identification method.

These two networks are synchronized in the process of mutual games,

until the counterfeit banknotes produced by the generator G are very real,

and even the discriminator D can barely distinguish.

This idea of game learning makes the network structure and training

process of GAN slightly different from the previous network model. Let’s

introduce the network structure and algorithm principle of GAN in detail

in the following.

13.2 GAN Principle
Now we will formally introduce the network structure and training

methods of GAN.

13.2.1 Network Structure
GAN contains two sub-networks: the generator network (referred to

as G) and the discriminator network (referred to as D). The generator

network G is responsible for learning the true distribution of samples, and

Figure 13-2. Sketch of the painter's growth trajectory

Chapter 13 Generative adversarial networks

557

the discriminator network D is responsible for distinguish the samples

generated by the generator network from the real samples.

Generator G(z) The generator network G is similar to the function of

decoder of the autoencoder. The hidden variables z~pz(∙) are sampled from

the prior distribution pz(∙). The generated sample x~pg(x| z) is obtained

by the parameterized distribution pg(x| z) of the generator network G, as

shown in Figure 13-3. The prior distribution pz(∙) of the hidden variable z

can be assumed to be a known distribution, such as a multivariate uniform

distribution z~Uniform(−1, 1).

Figure 13-3. Generator G

pg(x| z) can be parameterized by a deep neural network. As shown in

Figure 13-4, the hidden variable z is sampled from the uniform distribution

pz(∙), and then sample xf is obtained from the pg(x| z) distribution. From

the perspective of input and output, the function of the generator G is

to convert the hidden vector z into a sample vector xf through a neural

network, and the subscript f represents fake samples.

Figure 13-4. Generator network composed of transposed convolution

Chapter 13 Generative adversarial networks

558

Discriminator D(x) The function of the discriminator network is

similar to that of the ordinary binary classification network. It accepts a

dataset of input sample x, including samples xr~pr(∙) sampled from the

real data distribution pr(∙), and also includes fake samples sampled from

the generator network xf~pg(x| z). xr and xf together form the training data

set of the discriminator network. The output of the discriminator network

is the probability of x belonging to the real sample P(x is real | x). We label

all the real samples xr as true (1), and all the samples xf generated by the

generator network are labeled as false (0). The error between the predicted

value of the discriminator network D and the label is used to optimize the

discriminator network parameters as shown in Figure 13-5.

Figure 13-5. Generator network and discriminator network

Chapter 13 Generative adversarial networks

559

13.2.2 Network Training
The idea of GAN game learning is reflected in its training method. Since

the optimization goals of generator G and discriminator D are different,

they cannot be the same as the previous network model training, and only

one loss function is used. Let us introduce how to train the generator G

and the discriminator D respectively.

For the discriminator network D, its goal is to be able to distinguish

the real sample xr from the fake sample xf. Taking picture generation as an

example, its goal is to minimize the cross-entropy loss function between

the predicted value and the true value of the picture:

L CE D x y D x yr r f f� � � � �� �� �, , ,

where Dθ(xr) represents the output of the real sample xr in the discriminant

network Dθ, θ is the parameter set of the discriminator network, Dθ(xf) is

the output of the generated sample xf in the discriminator network, and y is

the label of xr. Because the real sample is labeled as true, So yr = 1. yf is the

label of xf of the generated sample. Since the generated sample is labeled

as false, yf = 0. The CE function represents the cross- entropy loss function

CrossEntropy. The cross-entropy loss function of the two classification

problem is defined as:

L D x D x
x p

r
x p

f

r r f g

� � � �� � � �� �
�� � �� �

� �
~ ~

log log� �1

Therefore, the optimization goal of the discriminator network D is:

� � �
�

�� � �� �
� � � � � � � �� �� �

x p
r

x p
f

r r f g

D x D x
~ ~

log log 1

Chapter 13 Generative adversarial networks

560

Convert L to−L , and write it in the expectation form:

� � �

�
�� � �� �� � � � � � �� �E D x E D xx p r x p fr r f g~ ~log log 1

For the generator network G(z), we hope that xf = G(z) can deceive

the discriminator network D well, and the output of the fake sample xf

is as close to the real label as possible. That is to say, when training the

generator network, it is hoped that the output D(G(z)) of the discriminator

network is as close to 1 as possible, and the cross-entropy loss function

between D(G(z)) and 1 is minimized:

L CE D G z D G z� � �� �� � � � � �� �� �,1 log

Convert L to −L , and write it in the expectation form:

� �

�
�� �� � �� �E logD G zz pz~

It can be equivalently transformed into:

� �

�
�� �� � � � �� ��� ��L E D G zz pz~ log 1

where ϕ is the parameter set of the generator network G, and the gradient

descent algorithm can be used to optimize the parameters ϕ.

13.2.3 Unified Objective Function
We can merge the objective functions of the generator and discriminator

networks and write it in the form of a min-max game:

minmax ~ ~� � � �L D G E D x E D xx p r x p fr r f g

,� � � � � � � � �� ��� � �� �log log 1

� � �� � � �� �� ��� � �� �E D x E D G zx p z pr z~ ~log log� � �1 (13-1)

Chapter 13 Generative adversarial networks

561

The algorithm is as follows:

Algorithm 1:GAN training algorithm

randomly initialize parameters θ and ϕ
repeat
 for k times do
 randomly sample hidden vectors z~pz(∙)
 randomly sample of real samples xr~pr(∙)
 Update the d network according to the gradient descent algorithm:

� ��� �� ��E logD x +E log D xx ~p r x ~p fr r f g��� � �� �� � � �� �1

 randomly sample hidden vectors z~pz(∙)
 Update the G network according to the gradient descent algorithm:

� ��� �� ��E log D G zz~pz �� � � �� �� �1

 end for
until the number of training rounds meets the requirements

output:trained generator Gϕ

13.3 Hands-On DCGAN
In this section, we will complete the actual generation of cartoon

avatar images. Refer to the network structure of DCGAN [2], where the

discriminator D is implemented by a common convolutional layer, and the

generator G is implemented by a transposed convolutional layer, as shown

in Figure 13-6.

Chapter 13 Generative adversarial networks

562

Figure 13-6. DCGAN Network structure

13.3.1 Cartoon Avatar Dataset
Here we use a dataset of cartoon avatars, a total of 51,223 pictures, without

annotation information. The main body of the pictures have been cropped,

aligned, and uniformly scaled to a size of 96 × 96. Some samples are shown

in Figure 13-7.

Figure 13-7. Cartoon avatar dataset

For customized datasets, you need to complete the data loading and

preprocessing work by yourself. We focus here on the GAN algorithm itself.

The subsequent chapter on customized datasets will introduce in detail

how to load your own datasets. Here the processed dataset is obtained

directly through the pre-written make_anime_dataset function.

Chapter 13 Generative adversarial networks

563

 # Dataset path. URL: https://drive.google.com/file/

d/1lRPATrjePnX_n8laDNmPkKCtkf8j_dMD/view?usp=sharing

 img_path = glob.glob(r'C:\Users\z390\Downloads\

faces*.jpg')

 # Create dataset object, return Dataset class and size

 dataset, img_shape, _ = make_anime_dataset(img_path, batch_

size, resize=64)

The dataset object is an instance of the tf.data.Dataset class.

Operations such as random dispersal, preprocessing, and batching have

been completed, and sample batches can be obtained directly, and img_

shape is the preprocessed image size.

13.3.2 Generator
The generator network G is formed by stacking five transposed

convolutional layers in order to realize the layer-by-layer enlargement of

the height and width of the feature map and the layer-by-layer reduction

of the number of feature map channels. First, the hidden vector z with

a length of 100 is adjusted to a four-dimensional tensor of [b, 1, 1, 100]

through the reshape operation, and the convolutional layer is transposed

in order to enlarge the height and width dimensions, reduce the number of

channels, and finally get the color picture with a width of 64 and a channel

number of 3. A BN layer is inserted between each convolutional layer to

improve training stability, and the convolutional layer chooses not to use a

bias vector. The generator class code is implemented as follows:

class Generator(keras.Model):

 # Generator class

 def __init__(self):

 super(Generator, self).__init__()

 filter = 64

Chapter 13 Generative adversarial networks

564

 # Transposed convolutional layer 1, output channel

is filter*8, kernel is 4, stride is 1, no padding,

no bias.

 self.conv1 = layers.Conv2DTranspose(filter*8, 4,1,

'valid', use_bias=False)

 self.bn1 = layers.BatchNormalization()

 # Transposed convolutional layer 2

 self.conv2 = layers.Conv2DTranspose(filter*4, 4,2,

'same', use_bias=False)

 self.bn2 = layers.BatchNormalization()

 # Transposed convolutional layer 3

 self.conv3 = layers.Conv2DTranspose(filter*2, 4,2,

'same', use_bias=False)

 self.bn3 = layers.BatchNormalization()

 # Transposed convolutional layer 4

 self.conv4 = layers.Conv2DTranspose(filter*1, 4,2,

'same', use_bias=False)

 self.bn4 = layers.BatchNormalization()

 # Transposed convolutional layer 5

 self.conv5 = layers.Conv2DTranspose(3, 4,2, 'same',

use_bias=False)

The forward propagation of generator network G is implemented

as follow:

 def call(self, inputs, training=None):

 x = inputs # [z, 100]

 # Reshape to 4D tensor:(b, 1, 1, 100)

 x = tf.reshape(x, (x.shape[0], 1, 1, x.shape[1]))

 x = tf.nn.relu(x) # activation function

 # Transposed convolutional layer-BN-activation

function:(b, 4, 4, 512)

Chapter 13 Generative adversarial networks

565

 x = tf.nn.relu(self.bn1(self.conv1(x),

training=training))

 # Transposed convolutional layer-BN-activation

function:(b, 8, 8, 256)

 x = tf.nn.relu(self.bn2(self.conv2(x),

training=training))

 # Transposed convolutional layer-BN-activation

function:(b, 16, 16, 128)

 x = tf.nn.relu(self.bn3(self.conv3(x),

training=training))

 # Transposed convolutional layer-BN-activation

function:(b, 32, 32, 64)

 x = tf.nn.relu(self.bn4(self.conv4(x),

training=training))

 # Transposed convolutional layer-BN-activation

function:(b, 64, 64, 3)

 x = self.conv5(x)

 x = tf.tanh(x) # output x range -1~1

 return x

The output size of the generated network is [b, 64,64,3], and the value

range is −1~1.

13.3.3 Discriminator
The discriminator network D is the same as the ordinary classification

network. It accepts image tensors of size [b,64,64,3] and continuously

extracts features through five convolutional layers. The final output size

of the convolutional layer is [b ,2,2,1024], and then convert the feature

size to [b,1024] through the pooling layer GlobalAveragePooling2D, and

finally obtain the probability of the binary classification task through a

Chapter 13 Generative adversarial networks

566

fully connected layer. The code for the discriminator network class D is

implemented as follows:

class Discriminator(keras.Model):

 # Discriminator class

 def __init__(self):

 super(Discriminator, self).__init__()

 filter = 64

 # Convolutional layer 1

 self.conv1 = layers.Conv2D(filter, 4, 2, 'valid', use_

bias=False)

 self.bn1 = layers.BatchNormalization()

 # Convolutional layer 2

 self.conv2 = layers.Conv2D(filter*2, 4, 2, 'valid',

use_bias=False)

 self.bn2 = layers.BatchNormalization()

 # Convolutional layer 3

 self.conv3 = layers.Conv2D(filter*4, 4, 2, 'valid',

use_bias=False)

 self.bn3 = layers.BatchNormalization()

 # Convolutional layer 4

 self.conv4 = layers.Conv2D(filter*8, 3, 1, 'valid',

use_bias=False)

 self.bn4 = layers.BatchNormalization()

 # Convolutional layer 5

 self.conv5 = layers.Conv2D(filter*16, 3, 1, 'valid',

use_bias=False)

 self.bn5 = layers.BatchNormalization()

 # Global pooling layer

 self.pool = layers.GlobalAveragePooling2D()

 # Flatten feature layer

 self.flatten = layers.Flatten()

Chapter 13 Generative adversarial networks

567

 # Binary classification layer

 self.fc = layers.Dense(1)

The forward calculation process of the discriminator D is implemented

as follows:

 def call(self, inputs, training=None):

 # Convolutional layer-BN-activation function:

(4, 31, 31, 64)

 x = tf.nn.leaky_relu(self.bn1(self.conv1(inputs),

training=training))

 # Convolutional layer-BN-activation function:

(4, 14, 14, 128)

 x = tf.nn.leaky_relu(self.bn2(self.conv2(x),

training=training))

 # Convolutional layer-BN-activation function:

(4, 6, 6, 256)

 x = tf.nn.leaky_relu(self.bn3(self.conv3(x),

training=training))

 # Convolutional layer-BN-activation function:

(4, 4, 4, 512)

 x = tf.nn.leaky_relu(self.bn4(self.conv4(x),

training=training))

 # Convolutional layer-BN-activation function:

(4, 2, 2, 1024)

 x = tf.nn.leaky_relu(self.bn5(self.conv5(x),

training=training))

 # Convolutional layer-BN-activation function:(4, 1024)

 x = self.pool(x)

 # Flatten

Chapter 13 Generative adversarial networks

568

 x = self.flatten(x)

 # Output, [b, 1024] => [b, 1]

 logits = self.fc(x)

 return logits

The output size of the discriminator is [b,1]. The Sigmoid activation

function is not used inside the class, and the probability that b samples

belong to the real samples can be obtained through the Sigmoid activation

function.

13.3.4 Training and Visualization
Discriminator According to formula (13-1), the goal of the discriminator

network is to maximize the function L(D, G), so that the probability of

true sample prediction is close to 1, and the probability of generated

sample prediction is close to 0. We implement the error function of the

discriminator in the d_loss_fn function, label all real samples as 1, and

label all generated samples as 0, and maximize the function L(D,G) by

minimizing the corresponding cross-entropy loss function. The d_loss_fn

function is implemented as follows:

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_

training):

 # Loss function for discriminator

 # Generate images from generator

 fake_image = generator(batch_z, is_training)

 # Distinguish images

 d_fake_logits = discriminator(fake_image, is_training)

 # Determine whether the image is real or not

 d_real_logits = discriminator(batch_x, is_training)

 # The error between real image and 1

 d_loss_real = celoss_ones(d_real_logits)

Chapter 13 Generative adversarial networks

569

 # The error between generated image and 0

 d_loss_fake = celoss_zeros(d_fake_logits)

 # Combine loss

 loss = d_loss_fake + d_loss_real

 return loss

The celoss_ones function calculates the cross-entropy loss between the

current predicted probability and label 1. The code is as follows:

def celoss_ones(logits):

 # Calculate the cross entropy belonging to and label 1

 y = tf.ones_like(logits)

 loss = keras.losses.binary_crossentropy(y, logits, from_

logits=True)

 return tf.reduce_mean(loss)

The celoss_zeros function calculates the cross entropy loss

between the current predicted probability and label 0. The code

is as follows:

def celoss_zeros(logits):

 # Calculate the cross entropy that belongs to and the

note is 0

 y = tf.zeros_like(logits)

 loss = keras.losses.binary_crossentropy(y, logits, from_

logits=True)

 return tf.reduce_mean(loss)

Generator The training goal of generator network is to minimize

the L(D, G) objective function. Since the real sample has nothing

to do with the generator, the error function only needs to minimize

E D G zz pz~ �� � � � �� �� �log 1 � � . The cross-entropy error at this time can be

minimized by marking the generated sample as 1. It should be noted

that in the process of back propagating errors, the discriminator also

Chapter 13 Generative adversarial networks

570

participates in the construction of the calculation graph, but at this stage

only the generator network parameters need to be updated. The error

function of the generator is as follows:

def g_loss_fn(generator, discriminator, batch_z, is_training):

 # Generate images

 fake_image = generator(batch_z, is_training)

 # When training the generator network, it is necessary to

force the generated image to be judged as true

 d_fake_logits = discriminator(fake_image, is_training)

 # Calculate error between generated images and 1

 loss = celoss_ones(d_fake_logits)

 return loss

Network training In each Epoch, first randomly sample the hidden

vector from the prior distribution pz(∙), randomly sample the real

pictures from the true data set, calculate the loss of the discriminator

network through the generator and the discriminator, and optimize

the discriminator network parameters θ. When training the generator,

the discriminator is needed to calculate the error, but only the gradient

information of the generator is calculated and ϕ is updated. Here set

the discriminator training times k = 5, and set the generator training

time as one.

First, create the generator network and the discriminator network, and

create the corresponding optimizers, respectively, as in the following:

 generator = Generator() # Create generator

 generator.build(input_shape = (4, z_dim))

 discriminator = Discriminator() # Create discriminator

 discriminator.build(input_shape=(4, 64, 64, 3))

 # Create optimizers for generator and discriminator

respectively

Chapter 13 Generative adversarial networks

571

 g_optimizer = keras.optimizers.Adam(learning_rate=learning_

rate, beta_1=0.5)

 d_optimizer = keras.optimizers.Adam(learning_rate=learning_

rate, beta_1=0.5)

The main training part of the code is implemented as follows:

 for epoch in range(epochs): # Train epochs times

 # 1. Train discriminator

 for _ in range(5):

 # Sample hidden vectors

 batch_z = tf.random.normal([batch_size, z_dim])

 batch_x = next(db_iter) # Sample real images

 # Forward calculation - discriminator

 with tf.GradientTape() as tape:

 d_loss = d_loss_fn(generator, discriminator,

batch_z, batch_x, is_training)

 grads = tape.gradient(d_loss, discriminator.

trainable_variables)

 d_optimizer.apply_gradients(zip(grads,

discriminator.trainable_variables))

 # 2. Train generator

 # Sample hidden vectors

 batch_z = tf.random.normal([batch_size, z_dim])

 batch_x = next(db_iter) # Sample real images

 # Forward calculation - generator

 with tf.GradientTape() as tape:

 g_loss = g_loss_fn(generator, discriminator,

batch_z, is_training)

 grads = tape.gradient(g_loss, generator.trainable_

variables)

 g_optimizer.apply_gradients(zip(grads, generator.

trainable_variables))

Chapter 13 Generative adversarial networks

572

Every 100 Epochs, a picture generation test is performed. The hidden

vector is randomly sampled from the prior distribution, sent to the

generator to obtain the generated picture which is saved as a file.

As shown in Figure 13-8, it shows a sample of generated pictures saved

by the DCGAN model during the training process. It can be observed that

most of the pictures have clear subjects, vivid colors, rich picture diversity,

and the generated pictures are close to the real pictures in the data

set. At the same time, it can be found that a small amount of generated

pictures are still damaged, and the main body of the pictures cannot be

recognized by human eyes. To obtain the image generation effect shown in

Figure 13-8, it is necessary to carefully design the network model structure

and fine-tune the network hyperparameters.

Figure 13-8. DCGAN image generation effect

Chapter 13 Generative adversarial networks

573

13.4 GAN Variants
In the original GAN paper, Ian Goodfellow analyzed the convergence of

the GAN network from a theoretical level and tested the effect of image

generation on multiple classic image data sets, as shown in Figure 13-9,

where Figure 13-9 (a) is the MNIST dataset, Figure 13-9 (b) is the Toronto

Face dataset, and Figure 13-9 (c) and Figure 13-9 (d) are the CIFAR10

dataset.

Figure 13-9. Original GAN image generation effect [1]

It can be seen that the original GAN model is not outstanding in terms

of image generation effect, and the difference from VAE is not obvious. At

this time, it does not show its powerful distribution approximation ability.

However, because GAN is relatively new in theory, there are many areas

for improvement, which greatly stimulated the research interest of the

academic community. In the next few years, GAN research is in full swing,

and substantial progress has also been made. Next we will introduce

several significant GAN variants.

Chapter 13 Generative adversarial networks

574

13.4.1 DCGAN
The initial GAN network is mainly based on the fully connected layer

to realize the generator G and the discriminator D. Due to the high

dimensionality of the picture and the huge amount of network parameters,

the training effect is not excellent. DCGAN [2] proposed a generator

network implemented using transposed convolutional layers, and a

discriminator network implemented by ordinary convolutional layers,

which greatly reduces the amount of network parameters and greatly

improves the effect of image generation, showing that the GAN model has

the potential of outperforming the VAE model in image generation. In

addition, the author of DCGAN also proposed a series of empirical GAN

network training techniques, which were proved to be beneficial to the

stable training of the GAN network. We have used the DCGAN model to

complete the actual picture generation of the animation avatars.

13.4.2 InfoGAN
InfoGAN [3] tried to use an unsupervised way to learn the interpretable

representation of the interpretable hidden vector z of the input x, that

is, it is hoped that the hidden vector z can correspond to the semantic

features of the data. For example, for MNIST handwritten digital pictures,

we can consider the category, font size, and writing style of the digits to

be hidden variables of the picture. We hope that the model can learn

these disentangled interpretable feature representation methods, so that

the hidden variables can be controlled artificially to generate a sample

of the specified content. For the CelebA celebrity photo dataset, it is

hoped that the model can separate features such as hairstyles, glasses

wearing conditions, and facial expressions, to generate face images of

specified shapes.

Chapter 13 Generative adversarial networks

575

What are the benefits of disentangled interpretable features? It can

make the neural network more interpretable. For example, z contains

some separate interpretable features, then we can obtain generated data

with different semantics by only changing the features at this position.

As shown in Figure 13-10, subtracting the hidden vectors of “men with

glasses” and “men without glasses” and adding them to the hidden vectors

of “women without glasses” can generate a picture of “women with

glasses”.

Figure 13-10. Schematic diagram of separated features [3]

13.4.3 CycleGAN
CycleGAN [4] is an unsupervised algorithm for image style conversion

proposed by Zhu Junyan. Because the algorithm is clear and simple, and

the results are better, this work has received a lot of praise. The basic

assumption of CycleGAN is that if you switch from picture A to picture

B, and then from picture B to A’, then A’ should be the same picture

as A. Therefore, in addition to setting up the standard GAN loss item,

CycleGAN also adds cycle consistency loss to ensure that A’ is as close

to A as possible. The conversion effect of CycleGAN pictures is shown in

Figure 13-11.

Chapter 13 Generative adversarial networks

576

Figure 13-11. Image conversion effect [4]

13.4.4 WGAN
The training problem of GAN has been criticized all the time, and it

is prone to the phenomenon of training non-convergence and mode

collapse. WGAN [5] analyzed the flaws of the original GAN using JS

divergence from a theoretical level and proposed that the Wasserstein

distance can be used to solve this problem. In WGAN-GP [6], the author

proposed that by adding a gradient penalty term, the WGAN algorithm

was well realized from the engineering level, and the advantages of WGAN

training stability were confirmed.

13.4.5 Equal GAN
From the birth of GAN to the end of 2017, GAN Zoo has collected more

than 214 GAN network variants. These GAN variants have more or less

proposed some innovations, but several researchers from Google Brain

provided another point in a paper [7]: There is no evidence that the GAN

variant algorithms we tested have been consistently better than the

Chapter 13 Generative adversarial networks

577

original GAN paper. In that paper, these GAN variants are compared fairly

and comprehensively. With sufficient computing resources, it is found

that almost all GAN variants can achieve similar performance (FID score).

This work reminds the industry whether these GAN variants are essentially

innovative.

13.4.6 Self-Attention GAN
The attention mechanism has been widely used in natural language

processing (NLP). Self-Attention GAN (SAGAN) [8] borrowed from the

attention mechanism and proposed a variant of GAN based on the self-

attention mechanism. SAGAN improved the fidelity index of the picture:

Inception score from the 36.8 to 52.52, and Frechet inception distance

from 27.62 to 18.65. From the effect of image generation perspective,

SAGAN’s breakthrough is very significant, and it also inspired the

industry’s attention to the self-attention mechanism.

13.4.7 BigGAN
On the basis of SAGAN, BigGAN [9] attempts to extend the training of

GAN to a large scale, using techniques such as orthogonal regularization

to ensure the stability of the training process. The significance of BigGAN

Figure 13-12. Attention mechanism in SAGAN [8]

Chapter 13 Generative adversarial networks

578

is to inspire people that the training of GAN networks can also benefit

from big data and large computing power. The effect of BigGAN image

generation has reached an unprecedented height: the inception score

record has increased to 166.5 (an increase of 52.52); Frechet inception

distance has dropped to 7.4, which has been reduced by 18.65. As shown

in Figure 13-13, the image resolution can reach 512×512, and the image

details are extremely realistic.

Figure 13-13. BigGAN generated images

13.5 Nash Equilibrium
Now we analyze from the theoretical level, through the training method

of game learning, what equilibrium state the generator G and the

discriminator D will reach. Specifically, we will explore the following two

questions:

• Fix G, what optimal state D∗ will D converge to?

• After D reaches the optimal state D∗, what state will G

converge to?

First, we give an intuitive explanation through the example of one-

dimensional normal distribution xr~pr(∙). As shown in Figure 13-14, the

black dashed curve represents the real data distribution pr(∙), which is

a normal distribution N(μ, σ2), and the green solid line represents the

distribution xf~pg(∙) learned by the generator network. The blue dotted line

Chapter 13 Generative adversarial networks

579

represents the decision boundary curve of the discriminator. Figure 13-14

(a), (b), (c), and (d) represents the learning trajectory of the generator

network, respectively. In the initial state, as shown in Figure 13-14(a),

the distribution of pg(∙) is quite different from pr(∙), and the discriminator

can easily learn a clear decision boundary, which is the blue dotted line

in Figure 13-14(a), which sets the sampling point from pg(∙) as 0 and

the sampling point in pr(∙) as 1. As the distribution pg(∙) of the generator

network approaches the true distribution pr(∙), it becomes more and

more difficult for the discriminator to distinguish between true and false

samples, as shown in Figures 13.14(b)(c). Finally, when the distribution

pg(∙) = pr(∙) learned by the generator network, the samples extracted from

the generator network are very realistic, and the discriminator cannot

distinguish the difference, that is, the probability of determining the true

and false samples is equal, as shown in Figure 13-14(d).

Figure 13-14. Nash Equilibrium [1]

This example intuitively explains the training process of the GAN

network.

Chapter 13 Generative adversarial networks

580

13.5.1 Discriminator State
Now let’s derive the first question. Review the loss function of GAN:

L G D p x log log D x dx p z log log D g z dz
x

r

z

z,� � � � � � �� � � � � � � �� �� �� � 1

� � � � �� � � � � � � �� ��

x

r gp x log log D x p x log log D x dx1

For the discriminator D, the optimization goal is to maximize the

L(G, D) function, and the maximum value of the following function needs

to be found:

f p x log log D x p x log log D xr g� � � � � �� � � � � � � �� �1

where θ is the network parameter of the discriminator D.

Let us consider the maximum value of the more general function of fθ:

 f x A log log x B log log x� � � � �� �1

The maximum value of the function f (x) is required. Consider the

derivative of f (x):

df x

dx
A
ln ln x

B
ln ln x

� �
� �

�
1

10

1 1

10

1

1

� �

�
�
�
�

�
�
�

1

10 1ln ln

A

x

B

x

�

� �� �
�� �

1

10 1ln ln

A A B x

x x

Let
df x

dx

� �
� 0 , we can find the extreme points of the f (x) function:

x

A

A B
�

�

Chapter 13 Generative adversarial networks

581

Therefore, it can be known that the extreme points of the fθ function

are also:

D

p x

p x p x
r

r g
� �

� �
� � � � �

That is to say, when the discriminator network Dθ is in the D
�� state,

the fθ function takes the maximum value, and the L(G, D) function also

takes the maximum value.

Now back to the problem of maximizing L(G, D), the maximum point

of L(G, D) is obtained at:

D

A

A B

p x

p x p x
r

r g

� �
�

�
� �

� � � � �

which is also the optimal state D∗ of Dθ.

13.5.2 Generator State
Before deriving the second question, we first introduce another

distribution distance metric similar to KL divergence: JS divergence, which

is defined as a combination of KL divergence:

D p q p x log log

p x

q x
dxKL

x

� � � � � � �
� ��

D p q D p

p q
D q

p q
JS KL KL� � � ��

�
�

�
�
� �

��
�
�

�
�
�

1

2 2

1

2 2

JS divergence overcomes the asymmetry of KL divergence.

When D reaches the optimal state D∗, let us consider the JS divergence

of pr and pg at this time:

Chapter 13 Generative adversarial networks

582

D p p D p

p p
D p

p p
JS r g KL r

r g
KL g

r g� � � ��

�
�

�

�
� �

��

�
�

�

�
�

1

2 2

1

2 2

According to the definition of KL divergence:

D p p log log p x log log
p x

p p x
dxJS r g

x

r
r

r g

� � � � � � � �
� � �

�

�
��

�

�
���

1

2
2

� � � � � �
� � �

�

�
��

�

�
���

1

2
2log log p x log log

p x

p p x
dx

x

g
g

r g

Combining the constant terms, we can get:

D p p log log log logJS r g� � � �� �1

2
2 2

� � � � �
� � �

� � � � �
� � �� �

1

2 x

r
r

r g x

g
g

r g

p x log log
p x

p p x
dx p x log log

p x

p p x
ddx

�

�
��

�

�
��

That is:

D p p log logJS r g� � � � �1

2
4

� � � � �
� � �

� � � � �
� � �� �

1

2 x

r
r

r g x

g
g

r g

p x log log
p x

p p x
dx p x log log

p x

p p x
ddx

�

�
��

�

�
��

Consider when the network reaches D∗, the loss function at this time is:

L G D p x log log D x p x log log D x dx

x

r g, � � �� � � � � � �� � � � � � � �� �� 1

� � � � �

� � �
� � � � �

� � �� �
x

r
r

r g x

g
g

r g

p x log log
p x

p p x
dx p x log log

p x

p p x
dx

Chapter 13 Generative adversarial networks

583

Therefore, when the discriminator network reaches D∗, DJS(pr‖pg) and

L(G, D∗) satisfy the relationship:

D p p log log L G DJS r g� � � � � �� ��1

2
4 ,

That is:

L G D D p p log logJS r g

, �� � � � � �2 2 2

For the generator network G, the training target is L(G, D) , considering

the nature of the JS divergence:

D p pJS r g� � � 0

Therefore, L(G, D∗) obtains the minimum value only when

DJS(pr‖pg) = 0 (at this time pg = pr), L(G, D∗) obtains the minimum value:

L G D log log� �� � � �, 2 2

At this time, the state of the generator network G∗ is:

p pg r=

That is, the learned distribution pg of G∗ is consistent with the real

distribution pr, and the network reaches a balance point. At this time:

D

p x

p x p x
r

r g

� �
� �

� � � � �
� 0 5.

Chapter 13 Generative adversarial networks

584

13.5.3 Nash Equilibrium Point
Through the preceding derivation, we can conclude that the generation

network G will eventually converge to the true distribution, namely:pg = pr

At this time, the generated sample and the real sample come from the

same distribution, and it is difficult to distinguish between true and false.

The discriminator has the same probability to judge as true or false, that is:

 D �� � � 0 5.

At this time, the loss function is

L G D log log� �� � � �, 2 2

13.6 GAN Training Difficulty
Although the GAN network can learn the true distribution of data from the

theoretical level, the problem of difficulty in GAN network training often

arises in engineering implementation, which is mainly reflected in that

the GAN model is more sensitive to hyperparameters, and it is necessary

to carefully select the hyperparameters that can make the model work.

Hyperparameter settings are also prone to mode collapse.

13.6.1 Hyperparameter Sensitivity
Hyperparameter sensitivity means that the network’s structure setting,

learning rate, initialization state and other hyper-parameters have a

greater impact on the training process of the network. A small amount

of hyperparameter adjustment may lead to completely different network

training results. Figure 13-15 (a) shows the generated samples obtained

from good training of the GAN model. The network in Figure 13-15 (b)

Chapter 13 Generative adversarial networks

585

does not use the batch normalization layer and other settings, resulting

in unstable GAN network training and failure to converge. The generated

samples are different from each other. The real sample gap is very large.

Figure 13-15. Hyperparameter sensitive example [5]

In order to train the GAN network well, the author of the DCGAN

paper proposes not to use the pooling layer, not to use the fully connected

layer, to use the batch normalization layer more, and the activation

function in the generated network should use ReLU. The activation

function of the last layer should be Tanh, and the activation function of the

discriminator network should use a series of empirical training techniques

such as LeakyLeLU. However, these techniques can only avoid the

phenomenon of training instability to a certain extent and do not explain

from the theoretical level why there is training difficulty and how to solve

the problem of training instability.

13.6.2 Model Collapse
Mode collapse refers to the phenomenon that the sample generated by

the model is single and the diversity is poor. Since the discriminator can

only identify whether a single sample is sampled from the true distribution

and does not impose explicit constraints on the sample diversity, the

generative model may tend to generate a small number of high-quality

samples in a partial interval of the true distribution, without learning

all the true distributions. The phenomenon of model collapse is more

common in GAN, as shown in Figure 13-16. During the training process, it

can be observed by visualizing the samples of the generator network that

Chapter 13 Generative adversarial networks

586

the types of pictures generated are very single, and the generator network

always tends to generate samples of a certain single style to fool the

discriminator.

Figure 13-16. Image generation – model collapsed [10]

Another example of intuitive understanding of mode collapse

is shown in Figure 13-17. The first row is the training process of the

generator network without mode collapse, and the last column is the real

distribution, that is, the 2D Gaussian mixture model. The second row

shows the training process of generator network with model collapse. The

last column is the true distribution. It can be seen that the real distribution

is a mixture of eight Gaussian models. After model collapse occurs, the

generator network always tends to approach a narrow interval of the

real distribution, as shown in the first six columns of the second row in

Figure 13-17. The samples from this interval of can often be judged as real

samples with a higher probability in the discriminator, thus deceiving the

discriminator. But this phenomenon is not what we want to see. We hope

that the generator network can approximate the real distribution, rather

than a certain part of the real distribution.

Figure 13-17. Schematic diagram of model collapse [10]

Chapter 13 Generative adversarial networks

587

So how to solve the problem of GAN training so that GAN can be

trained more stably like ordinary neural networks? The WGAN model

provides a solution.

13.7 WGAN Principle
The WGAN algorithm analyzes the reasons for the instability of GAN

training from a theoretical level, and proposes an effective solution. So

what makes GAN training so unstable? WGAN proposed that the gradient

surface of the JS divergence on the non-overlapping distributions p and q

is always 0. As shown in Figure 13-18, when the distributions p and q do

not overlap, the gradient value of the JS divergence is always 0, which leads

to the gradient vanishing phenomenon; therefore, the parameters cannot

be updated for a long time, and the network cannot converge.

Figure 13-18. Schematic diagram of distribution p and q

Next we will elaborate on the defects of JS divergence and how to solve

this defect.

Chapter 13 Generative adversarial networks

588

13.7.1 JS Divergence Disadvantage
In order to avoid too much theoretical derivation, we use a simple

distribution example to explain the defects of JS divergence. Consider two

distributions p and q that are completely non-overlapping (θ ≠ 0), where

the distribution p is:

 �� �� � � � �x y p x y U, ,, ,0 0 1

And the distribution of q is:

 �� �� � � � �x y q x y U, ,, ,� 0 1

where θ ∈ R, when θ = 0, the distributions p and q overlap, and the two are

equal; when θ ≠ 0, the distributions p and q do not overlap.

Let us analyze the variation of the JS divergence between the preceding

distributions p and q with θ. According to the definition of KL divergence

and JS divergence, calculate the JS divergence DJS(p‖q) when θ = 0:

D p q log logKL

x y U

� � � � � ��
� � � �
�

0 0 1

1
1

0, ,

D q p log logKL

x y U

� � � � � ��
� � � �
�

� , 0 1

1
1

0,

D p q log log log logJS
x y U x y U

� � � � � �
� � � � � � � �
� �1

2
1

1

1 2
1

1

0 0 1 0 0 1, ,/, , 11 2
2

/

�

�
��

�

�
�� � log log

When θ = 0, the two distributions completely overlap. At this time,

the JS divergence and KL divergence both achieve the minimum value,

which is 0:

D p q D q p D p qKL KL JS� � � � � � � � � 0

Chapter 13 Generative adversarial networks

589

From the preceding derivation, we can get the trend of DJS(p‖q) with θ:

D p q log logJS � � � � �{ 2 0 0 0� �

In other words, when the two distributions do not overlap at all,

regardless of the distance between the distributions, the JS divergence is a

constant value log log 2 , then the JS divergence will not be able to produce

effective gradient information. When the two distributions overlap, the JS

divergence changes smoothly and produces effective gradient information.

When the two distributions completely coincide, the JS divergence takes

the minimum value of 0. As shown in Figure 13-19, the red curve divides

the two normal distributions. Since the two distributions do not overlap,

the gradient value at the generated sample position is always 0, and the

parameters of the generator network cannot be updated, resulting in

difficulty in network training.

Figure 13-19. Gradient vanishing of JS divergence [5]

Therefore, the JS divergence cannot smoothly measure the distance

between the distributions when the distributions p and q do not overlap.

As a result, effective gradient information cannot be generated at this

Chapter 13 Generative adversarial networks

590

position, and the GAN training is unstable. To solve this problem, we need

to use a better distribution distance measurement, so that it can smoothly

reflect the true distance change between the distributions even when the

distributions p and q do not overlap.

13.7.2 EM Distance
The WGAN paper found that JS divergence leads to the instability of

GAN training and introduced a new distribution distance measurement

method: Wasserstein distance, also called earth mover’s distance

(EM distance), which represents the minimum cost of transforming a

distribution to another distribution. It’s defined as:

W p q E x yx y, ,� � � ��� ��� ���

where ∏(p, q) is the set of all possible joint distributions combined by the

distributions p and q. For each possible joint distribution γ ∼ ∏ (p, q),

calculate the expectation distance E(x, y) ∼ γ[‖x − y‖] of ‖x − y‖, where (x, y)

is sampled from the joint distribution γ. Different joint distributions γ

have different expectations E(x, y) ∼ γ[‖x − y‖], and the infimum of these

expectations is defined as the Wasserstein distance of distributions p and

q, where inf{∙} represents the infimum of the set, for example, the infimum

of {x| 1 < x < 3, x ∈ R} is 1.

Continuing to consider the example in Figure 13-18, we directly give

the expression of the EM distance between the distributions p and q:

 W p q,� � � �

Draw the curves of JS divergence and EM distance, as shown in

Figure 13-20. It can be seen that the JS divergence is not continuous at

θ = 0, the other position derivatives are all 0, and the EM distance can

always produce effective derivative information. Therefore, EM distance is

more suitable for guiding the training of GAN network than JS divergence.

Chapter 13 Generative adversarial networks

591

Figure 13-20. JS divergence and EM distance change curve with
θ WGAN-GP

Considering that it is almost impossible to traverse all the joint

distributions γ to calculate the distance expectation E(x, y) ∼ γ[‖x − y‖]

of ‖x − y‖, so it’s not realistic to calculate the distance between the

distribution pg of the generator network and W(pr, pg). Based on the

Kantorovich-Rubinstein duality, the WGAN author converts the direct

calculation of W(pr, pg) into:

W p p

K
E f x E f xr g x p x pr g

,� � � � ��� �� � � ��� ��� �
1

where sup{∙} represents the supremum of the set, ‖f‖L ≤ K represents the

function f : R → R which satisfies the K-order Lipschitz continuity, that is,

f x f x K x x1 2 1 2� � � � � � � �

Therefore, we use the discriminant network Dθ(x) to parameterize

the f (x) function, under the condition that Dθ satisfies the 1-Lipschitz

constraint, that is, K = 1, at this time:

W p p E D x E D xr g x p x pr g

,� � � � ��� �� � � ��� ��� �� �

Chapter 13 Generative adversarial networks

592

Therefore, the problem of solving W(pr, pg) can be transformed into:

E D x E D xx p x pr g� �� ��� �� � � ��� ��� �

This is the optimization goal of the discriminator D. The discriminant

network function Dθ(x) needs to satisfy the 1-Lipschitz constraint:

� � � �ˆ

ˆ
xD x I

In the WGAN-GP paper, the author proposes to increase the gradient

penalty method to force the discriminator network to meet the first-order-

Lipschitz function constraint, and the author found that the engineering

effect is better when the gradient value is constrained around 1, so the

gradient penalty term is defined as:

GP E D xx P xx
 ˆ ˆˆ

ˆ
� � � � �� ��

��
�
��2

2

1

Therefore, the training objective of WGAN discriminator D is:

where x̂ comes from the linear difference between xr and xf:

ˆ ,x tx t x tr f� � �� � �� �1 0 1,

The goal of the discriminator D is to minimize the above- mentioned

error L(G, D), that is, to force the EM distance E D x E D xx p r x p fr r f g� �� ��� �� � � ��� ��

as large as possible, and � � �ˆ
ˆ

xD x
2

 close to 1.

The training objectives of WGAN generator G are:

Chapter 13 Generative adversarial networks

593

That is, the EM distance between the generator’s distribution pg

and the real distribution pr is as small as possible. Considering that

E D xx p rr r� � ��� �� has nothing to do with the generator, the training objective

of the generator is abbreviated as:

min

�
L G D E D xx p ff g

,� � � � � ��� ���

� � � �� ��� ���� �E D G zz pz~

From the implementation point of view, the output of the

discriminator network D does not need to add a Sigmoid activation

function. This is because the original version of the discriminator is a

binary classification network, the Sigmoid function is added to obtain

the probability of belonging to a certain category; while the discriminator

in WGAN is used to measure the EM distance between the distribution

pg of the generator network and the real distribution pr. It belongs to

the real number space, so there is no need to add a Sigmoid activation

function. When calculating the error function, WGAN also does not have

a log function. When training WGAN, WGAN authors recommend using

RMSProp or SGD and other optimizers without momentum.

WGAN discovered the reason why the original GAN is prone to training

instability from the theoretical level and gave a new distance metric and

engineering implementation solution, which achieved good results.

WGAN also alleviates the problem of model collapse to a certain extent,

and the model using WGAN is not prone to model collapse. It should be

noted that WGAN generally does not improve the generation effect of

the model but only ensures the stability of model training. Of course, the

training stability is also a prerequisite for good model performance. As

shown in Figure 13-21, the original version of DCGAN showed unstable

training when the BN layer and other settings were not used. Under the

same settings, using WGAN to train the discriminator can avoid this

phenomenon, as shown in Figure 13-22.

Chapter 13 Generative adversarial networks

594

Figure 13-21. DCGAN generator effect without BN layer [5]

Figure 13-22. WGAN generator effect without BN layer [5]

Chapter 13 Generative adversarial networks

595

13.8 Hands-On WGAN-GP
The WGAN-GP model can be modified slightly on the basis of the original

GAN implementation. The output of the discriminator D of the WGAN-GP

model is no longer the probability of the sample category, and the output

does not need to add the Sigmoid activation function. At the same time, we

need to add a gradient penalty term as follows:

def gradient_penalty(discriminator, batch_x, fake_image):

 # Gradient penalty term calculation function

 batchsz = batch_x.shape[0]

 # Each sample is randomly sampled at t for interpolation

 t = tf.random.uniform([batchsz, 1, 1, 1])

 # Automatically expand to the shape of x, [b, 1, 1, 1] =>

[b, h, w, c]

 t = tf.broadcast_to(t, batch_x.shape)

 # Perform linear interpolation between true and false

pictures

 interplate = t * batch_x + (1 - t) * fake_image

 # Calculate the gradient of D to interpolated samples in a

gradient environment

 with tf.GradientTape() as tape:

 tape.watch([interplate]) # Add to the gradient

watch list

 d_interplote_logits = discriminator(interplate)

 grads = tape.gradient(d_interplote_logits, interplate)

 # Calculate the norm of the gradient of each sample:[b, h,

w, c] => [b, -1]

 grads = tf.reshape(grads, [grads.shape[0], -1])

 gp = tf.norm(grads, axis=1) #[b]

Chapter 13 Generative adversarial networks

596

 # Calculate the gradient penalty

 gp = tf.reduce_mean((gp-1.)**2)

 return gp

The loss function calculation of WGAN discriminator is different

from GAN. WGAN directly maximizes the output value of real samples

and minimizes the output value of generated samples. There is no cross-

entropy calculation process. The code is implemented as follows:

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_

training):

 # Calculate loss function for D

 fake_image = generator(batch_z, is_training) #

Generated sample

 d_fake_logits = discriminator(fake_image, is_training)

Output of generated sample

 d_real_logits = discriminator(batch_x, is_training)

Output of real sample

 # Calculate gradient penalty term

 gp = gradient_penalty(discriminator, batch_x, fake_image)

 # WGAN-GP loss function of D. Here is not to calculate the

cross entropy, but to directly maximize the output of the

positive sample

 # Minimize the output of false samples and the gradient

penalty term

 loss = tf.reduce_mean(d_fake_logits) - tf.reduce_mean

(d_real_logits) + 10. * gp

 return loss, gp

The loss function of the WGAN generator G only needs to maximize

the output value of the generated sample in the discriminator D, and there

is also no cross-entropy calculation step. The code is implemented as

follows:

Chapter 13 Generative adversarial networks

597

def g_loss_fn(generator, discriminator, batch_z, is_training):

 # Generator loss function

 fake_image = generator(batch_z, is_training)

 d_fake_logits = discriminator(fake_image, is_training)

 # WGAN-GP G loss function. Maximize the output value of

false samples

 loss = - tf.reduce_mean(d_fake_logits)

 return loss

Comparing with the original GAN, the main training logic of WGAN is

basically the same. The role of the discriminator D for WGAN is a measure

of EM distance. Therefore, the more accurate the discriminator is, the

more beneficial it is to the generator. The discriminator D can be trained

multiple times for a step, and the generator G can be trained once to obtain

a more accurate EM distance estimation.

13.9 References

 [1]. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio,

“Generative Adversarial Nets,” Advances in Neural

Information Processing Systems 27, Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence and

K. Q. Weinberger, Curran Associates, Inc., 2014,

pp. 2672-2680.

 [2]. A. Radford, L. Metz and S. Chintala, Unsupervised

Representation Learning with Deep Convolutional

Generative Adversarial Networks, 2015.

Chapter 13 Generative adversarial networks

598

 [3]. X. Chen, Y. Duan, R. Houthooft, J. Schulman,

I. Sutskever and P. Abbeel, “InfoGAN: Interpretable

Representation Learning by Information

Maximizing Generative Adversarial Nets,”Advances

in Neural Information Processing Systems 29,

D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon

and R. Garnett, Curran Associates, Inc., 2016,

pp. 2172-2180.

 [4]. J.-Y. Zhu, T. Park, P. Isola and A. A. Efros, “Unpaired

Image-to-Image Translation using Cycle-Consistent

Adversarial Networks,”Computer Vision (ICCV),

2017 IEEE International Conference on, 2017.

 [5]. M. Arjovsky, S. Chintala and L. Bottou, “Wasserstein

Generative Adversarial Networks,” Proceedings

of the 34th International Conference on Machine

Learning, International Convention Centre, Sydney,

Australia, 2017.

 [6]. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin

and A. C. Courville, “Improved Training of

Wasserstein GANs,”Advances in Neural Information

Processing Systems 30, I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan

and R. Garnett, Curran Associates, Inc., 2017,

pp. 5767-5777.

 [7]. M. Lucic, K. Kurach, M. Michalski, O. Bousquet

and S. Gelly, “Are GANs Created Equal? A Large-

scale Study,” Proceedings of the 32Nd International

Conference on Neural Information Processing

Systems, USA, 2018.

Chapter 13 Generative adversarial networks

599

 [8]. H. Zhang, I. Goodfellow, D. Metaxas and A. Odena,

“Self- Attention Generative Adversarial Networks,”

Proceedings of the 36th International Conference

on Machine Learning, Long Beach, California,

USA, 2019.

 [9]. A. Brock, J. Donahue and K. Simonyan, “Large

Scale GAN Training for High Fidelity Natural Image

Synthesis,” International Conference on Learning

Representations, 2019.

 [10]. L. Metz, B. Poole, D. Pfau and J. Sohl-Dickstein,

“Unrolled Generative Adversarial Networks,” CoRR,

abs/1611.02163, 2016.

Chapter 13 Generative adversarial networks

601© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_14

CHAPTER 14

Reinforcement
Learning

Artificial intelligence = deep learning + reinforcement learning

—David Silver

Reinforcement learning is another field of machine learning besides

supervised learning and unsupervised learning. It mainly uses agents

to interact with the environment in order to learn strategies that can

achieve good results. Different from supervised learning, the action of

reinforcement learning does not have clear label information. It only has

the reward information from the feedback of the environment. It usually

has a certain lag and is used to reflect the “good and bad” of the action.

With the rise of deep neural networks, the field of reinforcement

learning has also developed vigorously. In 2015, the British company

DeepMind proposed a deep neural network-based reinforcement learning

algorithm DQN, which achieved a human level performance in 49 Atari

games such as space invaders, bricks, and table tennis [1]. In 2017, the

AlphaGo program proposed by DeepMind defeated Ke Jie, the no. 1 Go

player at the time by a score of 3:0. In the same year, the new version

of AlphaGo, AlphaGo Zero, used self- play training without any human

knowledge defeated AlphaGo at 100:0 [3]. In 2019, the OpenAI Five

https://doi.org/10.1007/978-1-4842-7915-1_14#DOI

602

program defeated the Dota2 world champion OG team 2:0. Although

the game rules of this game are restricted, it requires a super individual

intelligence level for Dota2. With a good teamwork game, this victory

undoubtedly strengthened the belief of mankind in AGI.

In this chapter, we will introduce the mainstream algorithms in

reinforcement learning, including the DQN algorithm for achieving

human-like level in games such as Space Invaders, and the PPO algorithm

for winning Dota2.

14.1 See It Soon
The design of reinforcement learning algorithm is different from

traditional supervised learning and contains a large number of new

mathematical formula derivations. Before entering the learning process

of reinforcement learning algorithms, let us first experience the charm of

reinforcement learning algorithms through a simple example.

In this section, you don’t need to master every detail but should focus

on intuitive experience and get the first impression.

14.1.1 Balance Bar Game
The balance bar game system contains three objects: sliding rail, trolley

and pole. As shown in Figure 14-1, the trolley can move freely on the slide

rail, and one side of the rod is fixed on the trolley through a bearing. In

the initial state, the trolley is located in the center of the slide rail and

the rod stands on the trolley. The agent controls the balance of the rod

by controlling the left and right movement of the trolley. When the angle

between the rod and the vertical is greater than a certain angle or the

trolley deviates from the center of the slide rail after a certain distance, the

game is deemed to be over. The longer the game time, the more rewards

the game will give, and the higher the control level of the agent.

Chapter 14 reinforCement Learning

603

In order to simplify the representation of the environment, we directly

take the high-level environment feature vector s as the input of the agent. It

contains a total of four high-level features, namely, car position, car speed,

rod angle, and rod speed. The output action a of the agent is to move

to the left or to the right. The action applied to the balance bar system

will generate a new state, and the system will also return a reward value.

This reward value can be simply recorded as 1, which is instantaneously

adding 1 unit time. At each time stamp t, the agent generates an action at

by observing the environment state st. After the environment receives the

action, the state changes to st + 1 and returns the reward

rt.Figure 14-1. Balance bar game system

14.1.2 Gym Platform
In reinforcement learning, the robot can directly interact with the real

environment, and the updated environment state and rewards can be

obtained through sensors. However, considering the complexity of the real

environment and the cost of experiments, it is generally preferred to test

algorithms in a virtual software environment, and then consider migrating

to the real environment.

Reinforcement learning algorithms can be tested through a large

number of virtual game environments. In order to facilitate researchers

to debug and evaluate algorithm models, OpenAI has developed a gym

Chapter 14 reinforCement Learning

604

game interactive platform. Users can use Python language to complete

game creation and interaction with only a small amount of code. It’s very

convenient.

The OpenAI Gym environment includes many simple and classic

control games, such as balance bar and roller coaster (Figure 14-2). It can

also call the Atari game environment and the complex MuJoCo physical

environment simulator (Figure 14-4). In the Atari game environment,

there are familiar mini-games, such as Space Invaders, Brick Breaker

(Figure 14-3), and racing. Although these games are small in scale, they

require high decision-making capabilities and are very suitable for

evaluating the intelligence of algorithms.

Figure 14-2. Roller coaster

Figure 14-3. Brick Breaker

Chapter 14 reinforCement Learning

605

Figure 14-4. Walking robot

At present, you may encounter some problems when installing the

Gym environment on the Windows platform, because some of the software

libraries are not friendly to the Windows platform. It is recommended that

you use a Linux system for installation. The balance bar game environment

used in this chapter can be used perfectly on the Windows platform, but

other complex game environments are not necessarily.

Running the pip install gym command will only install the basic library

of the Gym environment, and the balance bar game is already included in

the basic library. If you need to use Atari or MuJoCo emulators, additional

installation steps are required. Let’s take the installation of the Atari

emulator as an example:

git clone https://github.com/openai/gym.git # Pull the code

cd gym # Go to directory

pip install -e '.[all]' # Install Gym

Generally speaking, creating a game and interacting in the Gym

environment mainly consists of five steps:

 [1]. Create a game. Through gym.make(name), you can

create a game with the specified name and return

the game object env.

Chapter 14 reinforCement Learning

606

 [2]. Reset the game state. Generally, the game

environment has an initial state. You can reset the

game state by calling env.reset() and return to the

initial state observation of the game.

 [3]. Display the game screen. The game screen of each

time stamp can be displayed by calling env.render(),

which is generally used for testing. Rendering

images during training will introduce a certain

computational cost, so images may not be displayed

during training.

 [4]. Interact with the game environment. The action

can be executed through env.step(action), and

the system can return the new state observation,

current reward, the game ending flag done and the

additional information carrier. By looping this step,

you can continue to interact with the environment

until the end of the game.

 [5]. Destroy the game. Just call env.close().

The following demonstrates a piece of interactive code for the balance

bar game CartPole-v1. During each interaction, an action is randomly

sampled in the action space: {left, right}, interact with the environment

until the end of the game.

import gym # Import gym library

env = gym.make("CartPole-v1") # Create game environment

observation = env.reset() # Reset game state

for _ in range(1000): # Loop 1000 times

 env.render() # Render game image

 action = env.action_space.sample() # Randomly select

an action

Chapter 14 reinforCement Learning

607

 # Interact with the environment, return new status, reward,

end flag, other information

 observation, reward, done, info = env.step(action)

 if done:# End of game round, reset state

 observation = env.reset()

env.close() # End game environment

14.1.3 Policy Network
Let’s discuss the most critical link in reinforcement learning: how to judge

and make decisions? We call judgment and decision-making policy.

The input of the policy is the state s, and the output is a specific action a

or the distribution of the action πθ(a| s), where θ is the parameter of the

strategy function π, and the πθ function can be parameterized using neural

networks, as shown in Figure 14-5. The input of the neural network πθ is

the state s of the balance bar system, that is, a vector of length 4, and the

output is the probability of all actions πθ(a| s): the probability to the left P(to

left| s) and the probability to the right P(to right| s). The sum of all action

probabilities is 1:

 a A

a s
�
� � � ��� | 1

where A is the set of all actions. The πθ network represents the policy of

the agent and is called the policy network. Naturally, we can embody

the policy function as a neural network with four input nodes, multiple

fully connected hidden layers in the middle, and two output nodes in the

output layer, which represents the probability distribution of these two

actions. When interacting, choose the action with the highest probability:

 a st t� � ���

Chapter 14 reinforCement Learning

608

As a result of the decision, it acts in the environment and gets a new

state st + 1 and reward rt, and so on, until the end of the game.

Figure 14-5. Strategy network

We implement the policy network as a two-layer fully connected

network. The first layer converts a vector of length 4 to a vector of length

128, and the second layer converts a vector of 128 to a vector of 2, which

is the probability distribution of actions. Just like the creation process of a

normal neural network, the code is as follows:

class Policy(keras.Model):

 # Policy network, generating probability distribution

of actions

 def __init__(self):

 super(Policy, self).__init__()

 self.data = [] # Store track

 # The input is a vector of length 4, and the output

is two actions - left and right, specifying the

initialization scheme of the W tensor

 self.fc1 = layers.Dense(128, kernel_initializer='

he_normal')

 self.fc2 = layers.Dense(2, kernel_initializer='he_normal')

 # Network optimizer

 self.optimizer = optimizers.Adam(lr=learning_rate)

Chapter 14 reinforCement Learning

609

 def call(self, inputs, training=None):

 # The shape of the state input s is a vector:[4]

 x = tf.nn.relu(self.fc1(inputs))

 x = tf.nn.softmax(self.fc2(x), axis=1) # Get the

probability distribution of the action

 return x

During the interaction, we record the state input st at each timestamp,

the action distribution output at, the environment reward rt, and the new

state st + 1 as a four-tuple item for training the policy network.

 def put_data(self, item):

 # Record r,log_P(a|s)

 self.data.append(item)

14.1.4 Gradient Update
If you need to use the gradient descent algorithm to optimize the network,

you need to know the label information at of each input st and ensure that

the loss value is continuously differentiable from the input to the loss.

However, reinforcement learning is not the same as traditional supervised

learning, which is mainly reflected in the fact that the action at of

reinforcement learning at each timestamp t does not have a clear standard

for good and bad. The reward rt can reflect the quality of the action to a

certain extent, but it cannot directly determine the quality of the action.

Even some game interaction processes only have a final reward rt signal

representing the game result, such as Go. So is it feasible to define an

optimal action at
∗ for each state as the label of the neural network input st?

The first is that the total number of states in the game is usually huge. For

example, the total number of states in Go is about 10170. Furthermore, it is

difficult to define an optimal action for each state. Although some actions

have low short-term returns, long-term returns are better, and sometimes

even humans do not know which action is the best.

Chapter 14 reinforCement Learning

610

Therefore, the optimization goal of the strategy should not be to make

the output of the input st as close as possible to the labeling action, but to

maximize the expected value of the total return. The total reward can be

defined as the sum of incentives ∑rt from the beginning of the game to

the end of the game. A good strategy should be able to obtain the highest

expected value of total return J(πθ) in the environment. According to the

principle of the gradient ascent algorithm, if we can find
� � �
�
J �
�

, then the

policy network only needs to follow:

� � � �

� � �
�

� � �
�
�

J

to update the network parameters in order to maximize the

expectation reward.

Unfortunately, the total return expectation J(πθ) is given by the game

environment. If the environment model is not known, then
� � �
�
J �
�

 cannot

be calculated by automatic differentiation. So even if the expression of J(πθ)

is unknown, can the partial derivative
� � �
�
J �
�

 be solved directly?

The answer is yes. We directly give the derivation result of
� � �
�
J �
�

 here.

The specific derivation process will be introduced in detail in 14.3:

� � �
�

�
�
�

� ��

�
�

�

�
� � ��

�
�

�

�
�� � �

�
�

J
E log log s Rp

t

T

t

� �� �
1

Using the preceding formula, you only need to calculate
�
�

� �
�

��log log st , and multiply it by R(τ) to update and calculate
� � �
�
J �
�

.

According to � � � �
� � �
�

� � �
�
�

L
, the policy network can be updated to

maximize the J(θ) function, where R(τ) is the total return of a certain

interaction; τ is the interaction trajectory s1, a1, r1, s2, a2, r2, ⋯, sT; T is the

Chapter 14 reinforCement Learning

611

number of timestamps or steps of the interaction; and log log πθ (st) is the

log function of the probability value of the at action in the output of the

policy network.
�
�

� �
�

��log log st can be solved by TensorFlow automatic

differentiation. The code of the loss function is implemented as:

 for r, log_prob in self.data[::-1]:# Get trajectory

data in reverse order

 R = r + gamma * R # Accumulate the return on each

time stamp

 # The gradient is calculated once for each timestamp

 # grad_R=-log_P*R*grad_theta

 loss = -log_prob * R

The whole training and updating code is as follows:

 def train_net(self, tape):

 # Calculate the gradient and update the policy network

parameters. tape is a gradient recorder

 R = 0 # The initial return of the end state is 0

 for r, log_prob in self.data[::-1]:# Reverse order

 R = r + gamma * R # Accumulate the return on each

time stamp

 # The gradient is calculated once for each timestamp

 # grad_R=-log_P*R*grad_theta

 loss = -log_prob * R

 with tape.stop_recording():

 # Optimize strategy network

 grads = tape.gradient(loss, self.trainable_

variables)

 # print(grads)

 self.optimizer.apply_gradients(zip(grads,

self.trainable_variables))

 self.data = [] # Clear track

Chapter 14 reinforCement Learning

612

14.1.5 Hands-On Balance Bar Game
We train for a total of 400 rounds. At the beginning of the round, we reset

the game state, sample actions by sending input states, interact with the

environment, and record the information of each time stamp until the end

of the game.

The interactive and training part of the code is as follows:

 for n_epi in range(10000):

 s = env.reset() # Back to the initial state of the

game, return to s0

 with tf.GradientTape(persistent=True) as tape:

 for t in range(501): # CartPole-v1 forced to

terminates at 500 step.

 # Send the state vector to get the strategy

 s = tf.constant(s,dtype=tf.float32)

 # s: [4] => [1,4]

 s = tf.expand_dims(s, axis=0)

 prob = pi(s) # Action distribution: [1,2]

 # Sample 1 action from the category

distribution, shape: [1]

 a = tf.random.categorical(tf.math.

log(prob), 1)[0]

 a = int(a) # Tensor to integer

 s_prime, r, done, info = env.step(a) # Interact

with the environment

 # Record action a and the reward r generated by

the action

 # prob shape:[1,2]

 pi.put_data((r, tf.math.log(prob[0][a])))

 s = s_prime # Refresh status

 score += r # Cumulative reward

Chapter 14 reinforCement Learning

613

 if done: # The current episode is terminated

 break

 # After the episode is terminated, train the

network once

 pi.train_net(tape)

 del tape

The training process of the model is shown in Figure 14-6. The

horizontal axis is the number of training rounds, and the vertical axis

is the average return value of the rounds. It can be seen that as the

training progresses, the average return obtained by the network is getting

higher and higher, and the strategy is getting better and better. In fact,

reinforcement learning algorithms are extremely sensitive to parameters,

and modifying the random seed will result in completely different

performance. In the process of implementation, it is necessary to carefully

select parameters to realize the potential of the algorithm.

Figure 14-6. Balance bar game training process

Through this example, we have a preliminary impression and

understanding of the interaction process between reinforcement learning

algorithms and reinforcement learning, and then we will formally describe

the reinforcement learning problem.

Chapter 14 reinforCement Learning

614

14.2 Reinforcement Learning Problems
In the reinforcement learning problem, the object with perception and

decision- making capabilities is called an agent, which can be a piece

of algorithm code, or a robotic software and hardware system with a

mechanical structure. The agent completes a certain task by interacting

with the external environment. The environment here refers to the sum of

the external environment that can be affected by the action of the agent

and gives corresponding feedback. For the agent, it generates decision-

making actions (action) by sensing the state of the environment (state). For

the environment, it starts from an initial state s1, and dynamically changes

its state by accepting the actions of the agent, and give the corresponding

reward signal (Reward).

We describe the reinforcement learning process from a probabilistic

perspective. It contains the following five basic objects:

• State s reflects the state characteristics of the

environment. The state on the time stamp t is

marked as st. It can be the original visual image, voice

waveform, and other signals, or it can be the features

after high-level abstraction, such as the speed and

position of the car. All (finite) states constitute the state

space S.

• Action a is the action taken by the agent. The state on

the timestamp t is recorded as at, which can be discrete

actions such as leftward and rightward, or continuous

actions such as strength and position. All (finite)

actions constitute action space A.

Chapter 14 reinforCement Learning

615

• Policy π(a| s) represents the decision model of the

agent. It accepts the input as the state s and gives the

probability distribution p(a| s) of the action executed

after the decision, which satisfies:

 a A

s
�
� � � �� 1

This kind of action probability output with a certain randomness is

called a stochastic policy. In particular, when the policy model always

outputs a certain action with a probability of 1 and others at 0, this kind of

policy model is called a deterministic policy, namely:

 a s� � ��

• Reward r(s, a) expresses the feedback signal given by

the environment after accepting action a in state s. It is

generally a scalar value, which reflects the good or bad

of the action to a certain extent. The reward obtained at

the timestamp t is recorded as rt (in some materials, it is

recorded as rt + 1, because the reward often has a certain

hysteresis)

• The state transition probability p(s′| s, a) expresses the

changing law of the state of the environment model,

that is, after the environment of the current state s

accepts the action a, the probability distribution that

the state changes to s′ satisfies:

 s S

p s s a
��
� �� � �| , 1

The interaction process between the agent and the environment can

be represented by Figure 14-7.

Chapter 14 reinforCement Learning

616

Figure 14-7. The interaction process between the agent and the
environment

14.2.1 Markov Decision Process
The agent starts from the initial state s1 of the environment and executes

a specific action a1 through the policy model π(a| s). The environment is

affected by the action a1, and the state s1 changes to s2 according to

the internal state transition model p(s′| s, a). In the meantime, it gives the

feedback signal of the agent: the reward r1, which is generated by the reward

function r(s1, a1). This cycle of interaction continues until the game reaches

termination state sT. This process produces a series of ordered data:

 � � s a r s a r sT1 1 1 2 2 2, , , , , , ,

This sequence represents an exchange process between the agent

and the environment, called trajectory, denoted as τ. An interaction

process is called an episode, and T represents the timestamp (or number

of steps). Some environments have a clear terminal state. For example,

the game ends when a small plane in the space invaders is hit, while some

environments do not have a clear termination mark. For example, some

games can be played indefinitely as long as they remain healthy. At this

time, T represents ∞.

Chapter 14 reinforCement Learning

617

The conditional probability P(st + 1| s1, s2, …, st) is very important, but it

requires multiple historical state, which is very complicated to calculate.

For simplicity, we assume that the state st + 1 on the next time stamp is only

affected by the current time stamp st, and has nothing to do with other

historical states s1, s2, …, st − 1, that is :

 P s s s P st t1 2, , ,�� � � � �

The property that next state st + 1 is only related to the current state st is

called Markov property, and the sequence s1, s2, …, sT with Markov property

is called Markov process.

If the action a is also taken into consideration of the state transition

probability, the Markov hypothesis is also applied: the state st + 1 of the

next time stamp is only related to the current state st and the action at

performed on the current state, then the condition probability becomes:

 P s a s a P s at t t t1 1, , , , ,�� � � � �

We call the sequence of states and actions s1, a1, …, sT the Markov

decision process (MDP). In some scenarios, the agent can only observe

part of the state of the environment, which is called partially observable

Markov decision process (POMDP). Although the Markovian hypothesis

does not necessarily correspond to the actual situation, it is the

cornerstone of a large number of theoretical derivations in reinforcement

learning. We will see the application of Markovianness in subsequent

derivations.

Now let’s consider a certain trajectory:

 � � s a r s a r sT1 1 1 2 2 2, , , , , , ,

Chapter 14 reinforCement Learning

618

It’s probability of occurrence P(τ):

 P P s a s a sT�� � � � �1 1 2 2, , , , ,

 � � � � � � � � � � �P s s P s a s P s a s a1 1 1 1 2 1 1 2 2� �, , , ,

� � � � � �� �

�

�

�P s s p s a s a
t

T

t t t1

1

1

1 1� , , , ,

After applying Markovianity, we simplify the preceding expression to:

P P s s p s a

t

T

t t t� �� � � � � � � � �
�

�

�1

1

1

,

The diagram of Markov decision process is shown in Figure 14-8.

Figure 14-8. Markov decision process

If the state transition probability p(sʹ| s, a) and the reward function

r(s, a) of the environment can be obtained, the value function can be

directly calculated iteratively. This method of known environmental

models is collectively called model-based reinforcement learning.

However, environmental models in the real world are mostly complex and

unknown. Such methods with unknown models are collectively called

model-free reinforcement learning. Next, we will mainly introduce model-

free reinforcement learning algorithms.

Chapter 14 reinforCement Learning

619

14.2.2 Objective Function
Each time the agent interacts with the environment, it will get a (lagging)

reward signal:

 r r s at t t� � �,

The cumulative reward of one interaction trajectory τ is called

total return:

R r

t

T

t�� � �
�

�

�
1

1

where T is the number of steps in the trajectory. If we only consider the

cumulative return of st, st + 1, …, sT starting from the intermediate state st of

the trajectory, it can be recorded as:

R s rt

k

T t

t k� � �
�

� �

��
1

1

In some environments, the stimulus signal is very sparse, such as Go,

the stimulus of the previous move is 0, and only at the end of the game will

there be a reward signal representing the win or loss.

Therefore, in order to weigh the importance of short-term and long-

term rewards, discounted returns that decay over time (Discounted

Return) can be used:

R r

t

T
t

t� �� � �
�

�
��

1

1
1

where γ ∈ [0, 1] is called the discount rate. It can be seen that the recent

incentive r1 is all used for total return, while the long-term incentive

rT − 1 can be used to contribute to the total return R(τ) after attenuating

Chapter 14 reinforCement Learning

620

γT − 2. When γ ≈ 1, the short-term and long-term reward weights are

approximately the same, and the algorithm is more forward-looking; when

γ ≈ 0, the later long-term reward decays close to 0, short-term reward

becomes more important. For an environment with no termination

state, that is, T = ∞, the discounted return becomes very important,

because
t

t
tr

�

�
��

1

1� may increase to infinity, and the discounted return can

be approximately ignored for long-term rewards to facilitate algorithm

implementation.

We hope to find a policy π(a| s) model so that the higher the total return

R(τ) of the trajectory τ generated by the interaction between the agent and

the environment under the control of the policy π(a| s), the better. Due

to the randomness of environment state transition and policy, the same

policy model acting on the same environment with the same initial state

may also produce completely different trajectory sequence τ. Therefore,

the goal of reinforcement learning is to maximize the expected return:

J E R E rp p

t

T
t

t� � �� � � � �� � � � ��� �� �
�

�
�

�

�
�� � � � � �

�

�
��

1

1
1

The goal of training is to find a policy network πθ represented by a set of

parameters θ, so that J(πθ)is the largest:

� �� �

�
� � �� � ��� ��E Rp

where p(τ) represents the distribution of trajectory τ, which is jointly

determined by the state transition probability p(s′| s, a) and the strategy

π(a| s). The quality of strategy π can be measured by J(πθ). The greater the

expected return, the better the policy; otherwise, the worse the strategy.

Chapter 14 reinforCement Learning

621

14.3 Policy Gradient Method
Since the goal of reinforcement learning is to find an optimal policy πθ(s)

that maximizes the expected return J(θ), this type of optimization problem

is similar to supervised learning. It is necessary to solve the partial

derivative of the expected return with the network parameters
�
�

J
�

, and

use gradient ascent algorithm to update network parameters:

� � � �

�
�

� � �
�
J

That is, where η is the learning rate.

The policy model πθ(s) can use a multilayer neural network to

parameterize πθ(s). The input of the network is the state s, and the output is

the probability distribution of the action a. This kind of network is called a

policy network.

To optimize this network, you only need to obtain the partial derivative

of each parameter
�
�

J
�

. Now we come to derive the expression of
�
�

J
�

. First,

expand it by trajectory distribution:

�
�

�
�
�

� � � ��
J R d
� �

� � � ��

Move the derivative symbol to the integral symbol:

�

�
�

� ��
�
�

�
�
� � �� �

� � � �� R d

Adding � �
� ��

�

� � � � �
1

 does not change the result:

� � � � �
�
�

� �
�

�
��

�

�
�� � ��� �

� � �
� � � ��

�
�

1 R d

Chapter 14 reinforCement Learning

622

Considering:

dlog f x
dx f x

df x
dx

� �� �
�

� �
� �1

So:

1
� � �

� �
�

� �
�

� �� �
�
�

� � � �
�

� �log log

We can get:

� � � � �

�
� ��

�
�

�
�
� � �� �

�
� � � �� �log log R d

That is:

�
�

�
�
�

� � � ��
��

�
��� � �

J E log log Rp� �
� � �� � ��

where loglog πθ (τ) represents the log probability value of trajectory τ = s1,

a1, s2, a2, ⋯, sT. Considering that R(τ) can be obtained by sampling, the key

becomes to solve
�
�

� �
�

� ��log log , we can decompose πθ(τ) to get:

�
�

� � � �
�

� � � � � ��

�
�

�

�
�

�

�

��
� �

�
�� �log log log log p s s p s a

t

T

t t t1

1

1

,

Convert log ∏ · to ∑ log (·):

�

�
�

� � � � � � � ��

�
�

�

�
�

�

�

��
��log log p s log log s log log p s a

t

T

t t t1

1

1

,

Chapter 14 reinforCement Learning

623

Considering that both log log p (st, at) and log log p (s1) are not related

to θ, the preceding formula becomes:

�
�

� � � �
�

� �
�

�

��
� �

�
�� �log log log log s

t

T

t
1

1

It can be seen that the partial derivative
�
�

� �
�

� ��log log can finally

be converted to loglog πθ (st) which is the derivative of the policy network

output to the network parameter θ. It has nothing to do with the state

probability transition p(s′| s, a), that is, it can be solved without knowing the

environment model
�
�

� �
�

��log log p .

Put it into
�
�

J
�

:

� � �
�

�
�
�

� � � ��
��

�
��� � �

J
E log log Rp

�
� �

� � �� � ��

�

�
�

� ��

�
�

�

�
� � ��

�
�

�

�
�� � �

�

�

E log log s Rp
t

T

t� � �� �

 �

1

1

Let us intuitively understand the preceding formula. When the total

return of a certain round R(τ) > 0,
� � �
�
J �
�

 and
�
�

� �
�

� ��log log are in the

same direction. According to the gradient ascent algorithm, the θ

parameter is updated toward the direction of increasing J(θ), and also in

the direction of increasing loglog πθ (st), which encourages the generation

of more such trajectories τ. When the total return R(τ) < 0,
� � �
�
J �
�

 and
�
�

� �
�

� ��log log are reversed, so when the θ parameter is updated

according to the gradient ascent algorithm. It is updated toward the

direction of increasing J(θ) and decreasing loglog πθ (st), that is, to avoid

Chapter 14 reinforCement Learning

624

generating more such trajectories τ. Through this, it is possible to

intuitively understand how the network adjusts itself to achieve greater

expected return.

With the preceding expression of
�
�

J
�

, we can easily solve
�
�

� �
�

��log log st through the automatic differentiation tool of TensorFlow

to calculate
�
�

J
�

. Finally, we can use the gradient ascent algorithm to

update the parameters. The general flow of the policy gradient algorithm is

shown in Figure 14-9.

14.3.1 Reinforce Algorithm
According to the law of large numbers, write the expectation as the mean

value of multiple sampling trajectories τn, n ∈ [1, N]:

� � �
�

�
�
� � ��

�
�

�

�
� � ��

�
�

�

�� �

�
� � � �� �

J
N

log log s R
n

N

t

T

t
n n�

� �
� ��

1
1 1

1

��

where N is the number of trajectories, and at
n� � and st

n� � represent

the actions and input states of the t-th time stamp of the n-th trajectory τn.

Then update the θ parameters through gradient ascent algorithm.

Figure 14-9. Policy gradient method training process

Chapter 14 reinforCement Learning

625

This algorithm is called the REINFORCE algorithm [4], which is also the

earliest algorithm that uses the policy gradient idea.

Algorithm 1: REINFORCE Algorithm

randomly initialize θ
repeat
 interact with environment according to policy (st) and generate multiple

trajectories {τ(n)}

 Calculate R(τ(n))

 Calculate
�
�

�
�
�

�J
N

log log s R
n=

N

t=

T

t
n n��

�� ��
�� ����

� � � ��

�
�

�

�
� � ��

�
�

�

�
� � � � � �1

1 1

1

��

 Update parameter � ��� �� ��
��

�
�
�

+ J

until reach certain training times
Output: policy network (st)

14.3.2 Improvement of the Original Policy
Gradient Method

Because the original REINFORCE algorithm has a large variance between

the optimized trajectories, the convergence speed is slow, and the training

process is not smooth enough. We can use the idea of variance reduction

to make improvements from the perspectives of causality and baseline.

Causality. Considering the partial derivative expression of
� � �
�
J �
�

, for

the action at with a time stamp of t, it has no effect on τ1 : t − 1, but only has

an effect on the subsequent trajectory τt : T. So for πθ(st), we only consider

the cumulative return R(τt : T) starting from the timestamp t. The expression

of
� � �
�
J �
�

 is given by

Chapter 14 reinforCement Learning

626

� � �
�

�
�
�

� ��

�
�

�

�
� � ��

�
�

�

�
�� � �

�

�

J

E log log s Rp
t

T

t T

�
� �

�

 ��
1

1

1:

It can be written as:

� � �
�

�
�
�

� � � ��
�
�

�
�
�

�

�
�

�

�
�� � �

�

�

J

E log log s Rp
t

T

t t T

�
� �

�

 ��
1

1

:

�

�
�

� � � ��
�
�

�
�
�

�

�
�

�

�
�� � �

�

�

E log log s Q s ap
t

T

t t t� � �� �

1

1

 ,

where Q s at t
 ,� � function represents the estimated reward value of πθ after

the at action is executed from the state st. The definition of the Q function

will also be introduced in Section 14.4. Since only the trajectory τt : T

starting from at is considered, the variance of R(τt : T) becomes smaller.

Bias. The reward rt in the real environment is not distributed around

0. The rewards of many games are all positive, so that R(τ) is always greater

than 0. The network tends to increase the probability of all sampled

actions. The probability of unsampled action is relatively reduced. This

is not what we want. We hope that R(τ) can be distributed around 0, so

we introduce a bias variable b, called the baseline, which represents the

average level of return R(τ). The expression of
� � �
�
J �
�

 is converted to:

� � �
�

�
�
�

� � � � �� ��

�
�

�

�
�� � �

�

�

�
J

E log log s R bp
t

T

t

�
� �

� �� � ��
1

1

Considering causality,
� � �
�
J �
�

 can be written as:

� � �
�

�
�
�

� � � � �� ��
�
�

�
�
�

�
� � �

�

�

�
J

E log log s Q s a bp
t

T

t t t

�
� �

�� � ��
1

1

 ,
��

�

�

Chapter 14 reinforCement Learning

627

where δ = R(τ) − b is called the advantage function, which represents the

advantage of the current action sequence relative to the average return.

After adding bias b, will the value of
� � �
�
J �
�

 change? To answer the

question, we only need to consider whether E log log bp� � � ��
� �� � � � � � ��� ��

can be 0. If it’s 0, then the value of
� � �
�
J �
�

 will not change.

Expand E log log bp� � � ��
� �� � � � � � ��� �� to :

E log log b log log b dp� � � � � � ��

� � � � � � �� � � � � � ��� �� � � � �� � � �

Because:

 � � � � � �� � � � �� �� � � � � � �log log

We have:

E log log b bdp� � � � � ��

� � � � �� � � � � � ��� �� � �� � �

 � � � � �b d� �� � �

Consider ∫πθ(τ)dτ = 1,

E log log b bp� � � � ��

� �� � � � � � ��� �� � � �1 0

Therefore, adding bias b doesn’t change the value of
� � �
�
J �
�

, but it

indeed reduces the variance of
t

T

t t tlog log s Q s a b
�

�

� �
�

� � � � �� ��
�
�

�
�
�

1

1

�
��

 , .

14.3.3 REINFORCE Algorithm with Bias
Bias b can be estimated using Monte Carlo method:

b

N
R

n

N
n� � �

�

� ��1
1

�

Chapter 14 reinforCement Learning

628

If causality is considered, then:

b

N
R

n

N

t T
n� � �

�

� ��1

1

� :

Bias b can also be estimated using another neural network, which is

also the Actor-Critic method introduced in Section 14.5. In fact, many

policy gradient algorithms often use neural networks to estimate bias b.

The algorithm can be flexibly adjusted, and it is most important to master

the algorithm idea. The REINFORCE algorithm flow with bias is shown in

Algorithm 2.

Algorithm 2: REINFORCE algorithm flow with bias

Randomly initialize θ
repeat
 Interact with environment according to policy (st), generate multiple
trajectory {τn}

 Calculate Q s at t
 ,� �

 Estimate bias b through Monte Carlo method

 Calculate
�
�

�
�
�

�
�J

N
log log s Q s a b

n=

N

t=

T

t
n

t t

��
�� ��

����

� � � ��

�
�

�

�
� � ��� � � �1

1 1

1
 , ���

�
�

�

�
�

 Update parameter � ��� �� ��
��

�
�
�

+ J

until reach training times

Output: policy network (st)

Chapter 14 reinforCement Learning

629

14.3.4 Importance Sampling
After updating the network parameters using the policy gradient method,

the policy network πθ(s) has also changed, and the new policy network

must be used for sampling. As a result, the previous historical trajectory

data cannot be reused, and the sampling efficiency is very low. How to

improve the sampling efficiency and reuse the trajectory data generated by

the old policy?

In statistics, importance sampling techniques can estimate the

expectation of the original distribution p from another distribution q.

Considering that the trajectory τ is sampled from the original distribution

p, we hope to estimate the expectation Eτ ∼ p[f (τ)] of the trajectory τ~p

function.

E f p f dp� � � � �� � ��� �� � � � � � �

� �

� �
� � � � � �p

q
q f d

�
�

� � �

�
� �
� � � �

�

�
�
�

�

�
�
�

�E
p
q

fq�

�
�

�

Through derivation, we find that the expectation of f (τ) can be sampled

not from the original distribution p, but from another distribution q, which

only needs to be multiplied by the ratio
p
q
�
�
� �
� �

. This is called importance

sampling in statistics.

Chapter 14 reinforCement Learning

630

Let the target policy distribution be pθ(τ), and a certain historical policy

distribution is p� �� � , we hope to use the historical sampling trajectory

� ��� � �p to estimate the expected return of the target policy network:

J E Rp� �� ��
� � � � ��� ��� � �

� � ��� ��

�

�

� �� � ��
t

T

s a p s a t tE r s a
t t t t

1

1

, ,
,

�

� � ��� ��

�

�

� � � � � ��
t

T

s p s a s t tE E r s a
t t t t

1

1

� ��
,

Applying importance sampling technique, we can get:

J E
p s
p s

E
s
s

r
t

T

s p s
t

t
a s

t

t
t t t t�

�

�
�

�

�

�
�
�� �

� � � � �
� �

� �
� ��

�

� � � � � ��
1

1

ss at t,� �
�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

where J� �� � represents the value of J(θ) for the original distribution

pθ(τ) estimated through the distribution p� �� � . Under the assumption

of approximately ignoring the terms
p s
p s

t

t

�

�

� �
� �

, it is considered that the

probability of state st appearing under different policies is approximately

equal, that is,
p s
p s

t

t

�

�

� �
� �

�1 , so:

J E E
s
s

r s a
t

T

s p s a s
t

t
t tt t t t� �

�

�

�
�
�� �

� � � � �
� � � �

�

�
�
�

�

�

�

� � � � � ��
1

1

,

��
�
�

�

�
�
�

�

�
�
�

�
� �
� � � �

�

�
�
�

�

�
�
��

�

� �� � ��
t

T

s a p s a
t

t
t tE

s
s

r s a
t t t t

1

1

, ,
,

�

�
�

�

�

Chapter 14 reinforCement Learning

631

The method in which the sampling policy p� �� �and the target policy

pθ(τ) to be optimized are not the same is called the off-policy method.

Conversely, the method in which the sampling policy and the target

policy to be optimized are the same policy is called on-policy method.

REINFORCE algorithm belongs to the on-policy method category. The

off-policy method can use historical sampling data to optimize the

current policy network, which greatly improves data utilization, but also

introduces computational complexity. In particular, when importance

sampling is implemented by Monte Carlo sampling method, if the

difference between the distributions p and q is too large, the expectation

estimation will have a large deviation. Therefore, the implementation

needs to ensure that the distributions p and q are as similar as possible,

such as adding KL divergence constrain to limit the difference between

p and q.

We also call the training objective function of the original policy

gradient method LPG(θ):

L E log log s APG

t t t� ��� � � � ��
�

�
�

where PG stands for policy gradient, and E t
 and At

 represent empirical

estimates. The objective function based on importance sampling is

called LIS
� �� � :

L E
s
s

AIS
t

t

t

t�
�

�

�
�
�

� � � � �
� �

�

�
�
�

�

�
�
�

where IS stands for importance sampling, θ stands for the target policy

distribution pθ, and θ stands for the sampling policy distribution pθ .

Chapter 14 reinforCement Learning

632

14.3.5 PPO Algorithm
After applying importance sampling, the policy gradient algorithm greatly

improves the data utilization rate, which greatly improves the performance

and training stability. The more popular off-policy gradient algorithms

include TRPO algorithm and PPO algorithm, among which TRPO is the

predecessor of PPO algorithm, and PPO algorithm can be regarded as an

approximate simplified version of TRPO algorithm.

TRPO algorithm In order to constrain the distance between the target

policy πθ(st) and the sampling policy �� st� � , the TRPO algorithm uses

KL divergence to calculate the distance expectation between πθ(st) and

�� st� � . The distance expectation is used as the constraint term of the

optimization problem. The implementation of TRPO algorithm is more

complicated and computationally expensive. The optimization objective of

the TRPO algorithm is:

�
�
�

�

�

� �
� �
� �

�

�
�
�

�

�
�
�

E
s
s

At
t

t

t

s t E D s st KL t t. . � � �� �� � � �� ��

�
�
� �

PPO algorithm. In order to solve the disadvantage of high TRPO

calculation cost, the PPO algorithm adds the KL divergence constraint as a

penalty item to the loss function. The optimization goal is:

�
�
�

� � ��

�
� �

� �
� �
� �

�

�
�
�

�

�
�
�
� � � � �� ��

�
�
�E

s
s

A E D s st
t

t

t t KL t t

where D s sKL t t� �� �� � � �� � refers to the distance between the policy

distribution πθ(st) and �� st� � , and the hyperparameter β is used to balance

the original loss term and the KL divergence penalty term.

Chapter 14 reinforCement Learning

633

Adaptive KL penalty algorithm. The hyperparameter β is dynamically

adjusted by setting the threshold KLmax of KL divergence. The adjustment

rules are as follows: if E D s s KLt KL t t
 � �� �� � � �� ��� �� � max , increase β; if

E D s s KLt KL t t
 � �� �� � � �� ��� �� � max , then decrease β.

PPO2 algorithm. Based on the PPO algorithm, the PPO2 algorithm

adjusts the loss function:

L E
s
s

A clip
s
s

CLIP
t

t

t

t
t

t
�

�

�

�

�

�
�
�

�
�

� � � � �
� �

� �
� �

� �
�

�
��

�
 , , ,1 1

��
��

�

�
��

�

�
��

�

�
�
�

�

�

At

The schematic diagram of the error function is shown in Figure 14-10.

Figure 14-10. Schematic diagram of PPO2 algorithm error function

14.3.6 Hands-On PPO
In this section, we implement the PPO algorithm based on importance

sampling technology, and test the performance of the PPO algorithm in

the balance bar game environment.

Policy network. The policy network is also called the Actor network.

The input of the policy network is the state st, four input nodes, and

the output is the probability distribution πθ(st) of the action at, which is

implemented by a two-layer fully connected network.

Chapter 14 reinforCement Learning

634

class Actor(keras.Model):

 def __init__(self):

 super(Actor, self).__init__()

 # The policy network is also called the Actor network.

Output probability p(a|s)

 self.fc1 = layers.Dense(100, kernel_initializer=

'he_normal')

 self.fc2 = layers.Dense(2, kernel_initializer=

'he_normal')

 def call(self, inputs):

 # Forward propagation

 x = tf.nn.relu(self.fc1(inputs))

 x = self.fc2(x)

 # Output action probability

 x = tf.nn.softmax(x, axis=1) # Convert to probability

 return x

Bias b network Bias b network is also called Critic network, or V-value

function network. The input of the network is the state st, four input nodes,

and the output is the scalar value b. A two-layer fully connected network is

used to estimate b. The code is implemented as follows:

class Critic(keras.Model):

 def __init__(self):

 super(Critic, self).__init__()

 # Bias b network is also called Critic network,

output is v(s)

 self.fc1 = layers.Dense(100, kernel_initializer=

'he_normal')

 self.fc2 = layers.Dense(1, kernel_initializer=

'he_normal')

Chapter 14 reinforCement Learning

635

 def call(self, inputs):

 x = tf.nn.relu(self.fc1(inputs))

 x = self.fc2(x) # Output b's estimate

 return x

Next, complete the creation of the strategy network and the value

function network and create two optimizers respectively to optimize

the parameters of the strategy network and the value function network.

We create it in the initialization method of the main class of the PPO

algorithm.

class PPO():

 # PPO algorithm

 def __init__(self):

 super(PPO, self).__init__()

 self.actor = Actor() # Create Actor network

 self.critic = Critic() # Create Critic network

 self.buffer = [] # Data buffer

 self.actor_optimizer = optimizers.Adam(1e-3) # Actor

optimizer

 self.critic_optimizer = optimizers.Adam(3e-3) # Critic

optimizer

Action sampling. The select_action function can calculate the action

distribution πθ(st) of the current state, and randomly sample actions

according to the probability, and return the action and its probability.

 def select_action(self, s):

 # Send the state vector to get the strategy: [4]

 s = tf.constant(s, dtype=tf.float32)

 # s: [4] => [1,4]

 s = tf.expand_dims(s, axis=0)

 # Get strategy distribution: [1, 2]

 prob = self.actor(s)

Chapter 14 reinforCement Learning

636

 # Sample 1 action from the category distribution,

shape: [1]

 a = tf.random.categorical(tf.math.log(prob), 1)[0]

 a = int(a) # Tensor to integer

 return a, float(prob[0][a]) # Return action and its

probability

Environment interaction. In the main function, interact with the

environment for 500 rounds. In each round, the policy is sampled by the

select_action function and saved in the buffer pool. The agent.optimizer()

function is called to optimize the policy at intervals.

def main():

 agent = PPO()

 returns = [] # total return

 total = 0 # Average return over time

 for i_epoch in range(500): # Number of training rounds

 state = env.reset() # Reset environment

 for t in range(500): # at most 500 rounds

 # Interact with environment with new policy

 action, action_prob = agent.select_action(state)

 next_state, reward, done, _ = env.step(action)

 # Create and store samples

 trans = Transition(state, action, action_prob,

reward, next_state)

 agent.store_transition(trans)

 state = next_state # Update state

 total += reward # Accumulate rewards

 if done: # Train network

 if len(agent.buffer) >= batch_size:

 agent.optimize() # Optimize

 break

Chapter 14 reinforCement Learning

637

Network optimization. When the buffer pool reaches a certain

capacity, the error of the policy network and the error of the value network

are constructed through optimizer() function to optimize the parameters

of the network. First, the data is converted to the tensor type according to

the category, and then the cumulative return R(τt : T) is calculated by the

MC method.

 def optimize(self):

 # Optimize the main network function

 # Take sample data from the cache and convert it

into tensor

 state = tf.constant([t.state for t in self.buffer],

dtype=tf.float32)

 action = tf.constant([t.action for t in self.buffer],

dtype=tf.int32)

 action = tf.reshape(action,[-1,1])

 reward = [t.reward for t in self.buffer]

 old_action_log_prob = tf.constant([t.a_log_prob for t

in self.buffer], dtype=tf.float32)

 old_action_log_prob = tf.reshape(old_action_log_

prob, [-1,1])

 # Calculate R(st) using MC method

 R = 0

 Rs = []

 for r in reward[::-1]:

 R = r + gamma * R

 Rs.insert(0, R)

 Rs = tf.constant(Rs, dtype=tf.float32)

...

Chapter 14 reinforCement Learning

638

Then the data in the buffer pool is taken out according to the batch

size. Train the network iteratively ten times. For the policy network,

LCLIP� �� � is calculated according to the error function of the PPO2

algorithm. For the value network, the distance between the prediction

of the value network and R(τt : T) is calculated through the mean square

error, so that the value of the network estimation is getting more and more

accurate.

 def optimize(self):

...

 # Iterate roughly 10 times on the buffer pool data

 for _ in range(round(10*len(self.buffer)/batch_size)):

 # Randomly sample batch size samples from the

buffer pool

 index = np.random.choice(np.arange(len(self.

buffer)), batch_size, replace=False)

 # Build a gradient tracking environment

 with tf.GradientTape() as tape1, tf.GradientTape()

as tape2:

 # Get R(st), [b,1]

 v_target = tf.expand_dims(tf.gather(Rs, index,

axis=0), axis=1)

 # Calculate the predicted value of v(s), which

is the bias b, we will introduce why it is

written as v later

 v = self.critic(tf.gather(state, index, axis=0))

 delta = v_target - v # Calculating

advantage value

 advantage = tf.stop_gradient(delta)

Disconnect the gradient

Chapter 14 reinforCement Learning

639

 # Because TF's gather_nd and pytorch's

gather function are different, it needs to be

constructed

 # Coordinate parameters required by gather_nd

need to be constructed, indices:[b, 2]

 # pi_a = pi.gather(1, a) # pytorch only need

oneline implementation

 a = tf.gather(action, index, axis=0) # Take out

the action

 # batch's action distribution pi(a|st)

 pi = self.actor(tf.gather(state, index, axis=0))

 indices = tf.expand_dims(tf.range(

a.shape[0]), axis=1)

 indices = tf.concat([indices, a], axis=1)

 pi_a = tf.gather_nd(pi, indices)

 # The probability of action, pi(at|st), [b]

 pi_a = tf.expand_dims(pi_a, axis=1)

 # [b]=> [b,1]

 # Importance sampling

 ratio = (pi_a / tf.gather(old_action_log_prob,

index, axis=0))

 surr1 = ratio * advantage

 surr2 = tf.clip_by_value(ratio, 1 - epsilon,

1 + epsilon) * advantage

 # PPO error function

 policy_loss = -tf.reduce_mean(

tf.minimum(surr1, surr2))

 # For the bias v, it is hoped that the R(st)

estimated by MC is as close as possible

 value_loss = losses.MSE(v_target, v)

Chapter 14 reinforCement Learning

640

 # Optimize policy network

 grads = tape1.gradient(policy_loss, self.actor.

trainable_variables)

 self.actor_optimizer.apply_gradients(zip(grads,

self.actor.trainable_variables))

 # Optimize bias network

 grads = tape2.gradient(value_loss, self.critic.

trainable_variables)

 self.critic_optimizer.apply_gradients(zip(grads,

self.critic.trainable_variables))

 self.buffer = [] # Empty trained data

Training results. After 500 rounds of training, we draw the total return

curve, as shown in Figure 14-11, we can see that for a simple game such as

a balance bar, the PPO algorithm appears to be easy to use.

Figure 14-11. Return curve of PPO algorithm

Chapter 14 reinforCement Learning

641

14.4 Value Function Method
A better policy model can be obtained using the policy gradient method

by directly optimizing the policy network parameters. In the field of

reinforcement learning, in addition to the policy gradient method, there is

another type of method that indirectly obtains the policy by modeling the

value function, which we collectively call the value function method.

Next, we will introduce the definition of common value functions,

how to estimate value functions, and how value functions help generate

policies.

14.4.1 Value Function
In reinforcement learning, there are two types of value functions: state

value function and state-action value function, both of which represent the

definition of the starting point of the expected return trajectory is different

under the strategy π.

State value function (V function for short), which is defined as the

expected return value that can be obtained from the state st under the

control of the strategy π:

V s E R st p t T s tt

�
� � � �� � � � � ��� ��� � � : |

Expand R(τt : T) as:

R r r rt T t t t� � �:� �� � � � � ��� �1

2

2

� � � ��� �� �r r rt t t� �1

1

2

� � � �� ��r Rt t T� � 1:

Chapter 14 reinforCement Learning

642

So:

V s E r Rt p t t T

�
� � � �� � � � � ��� ��� � � �1:

� � � ��� ��� � � �E r V sp t t� �

�� 1

This is also called the Bellman equation of the state value function.

Among all policies, the optimal policy π∗ refers to the policy that can obtain

the maximum value of Vπ(s), namely:

 � �� � � � � �V s s S

At this time, the state value function achieves the maximum value:

 V s V s s S� � � � � �� ��

For the optimal policy, Bellman’s equation is also satisfied:

V s E r V st p t t

�
� � �

�
�� � � � � ��� ��� � � 1

which is called Bellman optimal equation of the state value function.

Consider the maze problem in Figure 14-12. In the 3 × 4 grid, the grid

with coordinates (2,2) is impassable, and the grid with coordinates (4,2)

has a reward of -10, and the grid with coordinates (4,3) has a reward of is

10. The agent can start from any position, and the reward is -1 for every

additional step. The goal of the game is to maximize the return. For this

simple maze, the optimal vector for each position can be drawn directly,

that is, at any starting point, the optimal strategy π∗(a| s) is a deterministic

policy, and the actions are marked in Figure 14-12(b) . Let γ = 0.9, then:

• Starting from s(4, 3), that is, coordinates (4, 3), the optimal

policy is V∗(s(4, 3)) = 10

• Starting from s(3, 3), V∗(s(4, 3)) = − 1 + 0.9 · 10 = 8

Chapter 14 reinforCement Learning

643

Starting from s(2, 1), V∗(s(2, 1)) = − 1 − 0.9 · 1 − 0.92 · 1 − 0.93 · 1 +

0.94 · 10 = 3.122

It should be noted that the premise of the state value function is that

under a certain strategy π, all the preceding calculations are to calculate

the state value function under the optimal strategy.

Figure 14-12. Maze problem-V function

The value of the state value function reflects the quality of the state

under the current policy. The larger Vπ(st), the greater the total return

expectation of the current state. Take the space invader game that is

more in line with the actual situation as an example. The agent needs

to fire at the flying saucers, squids, crabs, octopuses, and other objects,

and score points when it hit them. At the same time, it must avoid being

concentrated by these objects. A red shield can protect the agent, but the

shield can be gradually destroyed by hits. In Figure 14-13, in the initial

state of the game, there are many objects in the figure. Under a good policy

π, a larger Vπ(s) value should be obtained. In Figure 14-14, there are fewer

objects. No matter how good the policy is, it is impossible to obtain a larger

value of Vπ(s). The quality of the policy will also affect the value of Vπ(s). As

shown in Figure 14-15, a bad policy (such as moving to the right) will cause

the agent to be hit. Therefore, Vπ(s)=0. A good policy can shoot down the

objects in the picture and obtain a certain reward.

Chapter 14 reinforCement Learning

644

Figure 14-13. Vπ(s) may be larger under the policy π

Figure 14-14. Vπ(s) is small under any policy π

Chapter 14 reinforCement Learning

645

Figure 14-15. Bad policy (such as to the right) will end the game
Vπ(s) = 0, good policy can still get a small return

State-action value function (Q function for short), which is defined

as the expected return value that can be obtained under the control of

strategy π from the dual setting of state st and execution of action at:

Q s a E R a st t p t T a t s tt t

�
� � � � �, , ,� � � � � � ��� ��� � � :

Although both the Q function and the V function are expected return

values, the action at of the Q function is a prerequisite, which is different

from the definition of the V function. Expand the Q function to:

Q s a E r s a r rt t p t t t t

�
� � � �, ,� � � � � � � ���� ��� � � � �1

2

2

� � � � � � ��� ��� ��� � � � �E r s a r r rp t t t t t� � � �, 1

1

2

So:

Q s a E r s a V st t p t t t

�
� �

��, ,� � � � � � � ��� ��� � � �1

Chapter 14 reinforCement Learning

646

Because st and at are fixed, r(st, at) is also fixed.

The Q function and the V function have the following relationship:

V s E Q s at a s t tt t

�
�

�� � � � ��� ��� � � ,

That is, when at is sampled from policy π(st), the expected value of

Qπ(st, at) is equal to Vπ(st). Under the optimal policy π∗(a| s), there is the

following relationship:

 Q s a Q s at t t t
� � � � � �, ,�

 � � �� � �Q s at t,

It also means:

 V s Q s at t t
� �� � � �,

At this time:

Q s a E r s a V st t p t t t

�
� � �

�
�� � � � � � � ��� ��, ,� � � 1

� � � � � ��� ��� � �

�
� �E r s a Q s ap t t t t� � �, ,1 1

The preceding formula is called the Bellman optimal equation of the Q

function.

We define the difference between Qπ(st, at) and Vπ(s) as the advantage

value function:

 A s a Q s a V s� � �, ,� � � � � � �

Chapter 14 reinforCement Learning

647

It shows the degree of advantage of taking action a in state s over the

average level: Aπ(s, a) > 0 indicates that taking action a is better than the

average level; otherwise, it is worse than the average level. In fact, we have

already applied the idea of advantage value function in the section of

REINFORCE algorithm with bias.

Continuing to consider the example of the maze, let the initial state be

s(2, 1), at can be right or left. For function Q∗(st, at), Q∗(s(2, 1), right) = − 1 − 0.9 ·
1 − 0.92 · 1 − 0.93 · 1 + 0.94 · 10=3.122, Q∗(s(2, 1), left) = − 1 − 0.9 · 1 − 0.92 ·
1 − 0.93 · 1 − 0.94 · 1 − 0.95 · 1 + 0.96 · 10 = 0.629. We have calculated

V∗(s(2, 1)) = 3.122, and we can intuitively see that they satisfy V∗(st)Q∗(st, at).

Figure 14-16. Maze problem-Q function

Take the space invader game as an example to intuitively understand

the concept of the Q function. In Figure 14-17, the agent in the figure

is under the protective cover. If you choose to fire at this time, it is

generally considered a bad action. Therefore, under a good policy π,

Qπ(s, no fire) > Qπ(s, fire). If you choose to move to the left at this time in

Figure 14-18, you may miss the object on the right due to insufficient

time, so Qπ(s, left)may be small. If the agent moves to the right and fires in

Figure 14-19, Qπ(s, right)will be larger.

Chapter 14 reinforCement Learning

648

Figure 14-17. Qπ(s, no fire) may be larger than Qπ(s, fire)

Figure 14-18. Qπ(s, left) may be smaller

Chapter 14 reinforCement Learning

649

Figure 14-19. Under a good policy π, Qπ(s, right) can still get
some rewards

After introducing the definition of the Q function and the V function,

we will mainly answer the following two questions:

• How is the value function estimated?

• How to derive the policy from the value function?

14.4.2 Value Function Estimation
The estimation of value function mainly includes Monte Carlo method and

temporal difference method.

Monte Carlo method

The Monte Carlo method is actually to estimate the V function and the

Q function through multiple trajectories {τ(n)} generated by the sampling

policy π(a| s). Consider the definition of the Q function:

Q s a E Rp s s a a

�
� � �,� � � � ��

�
�
�� � � � �0 0,

Chapter 14 reinforCement Learning

650

According to the law of large numbers, it can be estimated by

sampling:

Q s a Q s a

N
R

n

N

s s a a
n� �

�, ,� � � � � � � �
�

� �
� ��

1

1
0 0,

where � s s a a
n
0 0� �
� �

, represents the n-th sampled trajectory, n ∈ [1, N]. The

actual state of each sampled trajectory is s, the initial action is a, and

N is the total number of trajectories. The V function can be estimated

according to the same method:

V s V s

N
R

n

N

s s
n� �

�� � � � � � � �
�

�
� ��

1

1
0

This method of estimating the expected return by sampling the total

return of the trajectory is called the Monte Carlo method (MC method

for short).

When the Q function or V function is parameterized through a neural

network, the output of the network is recorded as Qπ(s, a) or Vπ(s), and its

true label is recorded as the Monte Carlo estimate Q s a

�
,� � or V s

�
� � , the

direct error between the network output value and the estimated value

can be calculated through an error function such as the mean square

error. The gradient descent algorithm is used to optimize the neural

network. From this perspective, the estimation of the value function can

be understood as a regression problem. The Monte Carlo method is simple

and easy to implement, but it needs to obtain the complete trajectory, so

the calculation efficiency is low, and there is no clear end state in some

environments.

Temporal difference

Temporal difference (TD method for short) utilizes the Bellman

equation properties of the value function. In the calculation formula, only

Chapter 14 reinforCement Learning

651

one or more steps are required to obtain the error of the value function and

optimize the update value function network. The Carlo method is more

computationally efficient.

Recall the Bellman equation of the V function:

V s E r V st p t t

�
� �

��� � � � � ��� ��� � � �1

Therefore, the TD error term δ = rt + γVπ(st + 1) − Vπ(st) is constructed and

updated as follows:

V s V s r V s V st t t t t

� � � �� �� �� � � � � � � � � �� ��1

where α ∈ [0, 1] is the update step.

The Bellman optimal equation of the Q function is:

Q s a E r s a Q s at t p t t t t

�
� � �

�
� �� � � � � � � ��� ��, , ,� � � 1 1

Similarly, construct TD error term δ = r(st, at) + γQ∗(st + 1, at + 1) − Q∗(st, at),

and use the following equation to update:

Q s a Q s a r s a Q s a Q s at t t t t t t t t t

� � �
� �

�� �� � � � � � � � � � � �� �, , , , ,� � 1 1

14.4.3 Policy Improvement
The value function estimation method can obtain a more accurate value

function estimation, but the policy model is not directly given. Therefore,

the policy model needs to be derived indirectly based on the value

function.

First, look at how to derive the policy model from the V function:

 � �� � � � � �V s s S

Chapter 14 reinforCement Learning

652

Considering that the state space S and the action space A are usually

huge, this way of traversing to obtain the optimal policy is not feasible. So

can the policy model be derived from the Q function? Consider:

�� � � � �� �s Q s a

a
arg max ,

In this way, an action can be selected by traversing the discrete action

space A in any state s. This strategy π′(s) is a deterministic policy. Because:

V s E Q s at a s t tt t

�
�

�� � � � ��� ��� � � ,

So:

 V s V st t
� � � � � �� �

That is, the strategy π′ is always better than or equal to the strategy π,

thus achieving policy improvement.

The deterministic policy produces the same action in the same state,

so the trajectory produced by each interaction may be similar. The policy

model always tends to exploitation but lacks exploration, thus making the

policy model limited to a local area, lack of understanding of global status

and actions. In order to be able to add exploration capabilities to the π′(s)

deterministic policy, we can make the π′(s) policy have a small probability

ϵ to adopt a random policy to explore unknown actions and states.

� � s Q s a probability of random action probt a

� � � � � �{ , ,arg max , 1 aability of

This policy is called ϵ-greedy method. It makes a small amount of

modification on the basis of the original policy and can balance utilization

and exploration by controlling the hyperparameter ϵ, achieving simple and

efficient.

Chapter 14 reinforCement Learning

653

The training process of the value function is shown in Figure 14-20.

Figure 14-20. Value function method training process

14.4.4 SARSA Algorithm
SARSA algorithm [5] uses:

Q s a Q s a r s a Q s a Q s at t t t t t t t t t

� � � �� �, , , , ,� �� � � � � � � � � � � �� �� �1 1

method to estimate the Q function, at each step of the trajectory, only st,

at, rt, st + 1, and at + 1 data can be used to update the Q network once, so it is

called SARSA (state action reward state action) algorithm. The st, at, rt, st + 1,

and at + 1 of the SARSA algorithm come from the same policy πϵ(st), so they

belong to the on-policy algorithm.

14.4.5 DQN Algorithm
In 2015, DeepMind proposed the Q Learning [4] algorithm implemented

using deep neural networks, published in Nature [1], and trained and

learned on 49 mini games in the Atari game environment, achieving a

human level equivalent or even superior. The performance of human

level has aroused the strong interest of the industry and the public in the

research of reinforcement learning.

Chapter 14 reinforCement Learning

654

Q Learning algorithm uses:

Q s a Q s a r s a Q s a Q s at t t t t t t t t t

� � �
� �

�� �� � � � � � � � � � � �� �, , , , ,� � 1 1

to estimate the Q∗(st, at) function and use the πϵ(st) policy to obtain policy

improvement. The Deep Q Network (DQN) uses a deep neural network

to parameterize the Q∗(st, at) function and uses the gradient descent

algorithm to update the Q network. The loss function is:

L r Q s a Q s at t t t� � � � � � �� ��� � �1

2

, ,

Since both the training target value rt + γQθ(st + 1, a) and the predicted

value Qθ(st, at) come from the same network, and the training data has

a strong correlation, [1] proposed two measures to solve the problem:

by adding experience relay buffer to reduce the strong correlation of the

data and by freezing target network technology to fix the target estimation

network and stabilize the training process.

The replay buffer pool is equivalent to a large data sample buffer pool.

During each training, the data pair (s, a, r, s′) generated by the latest policy

is stored in the replay buffer pool, and then multiple data pairs (s, a, r, s′)

are randomly sampled from the pool for training. In this way, the strong

correlation of the training data can be reduced. It can also be found

that the DQN algorithm is an Off-Policy algorithm with high sampling

efficiency.

Freezing target network is a training technique. During training, the

target network Q s at� �� �1, and the prediction network Qθ(st, at) come

from the same network, but the update frequency of Q s at� �� �1, network

will be after Qθ(st, at), which is equivalent to being in a frozen state when

Q s at� �� �1, is not updated, and then pull latest network parameters from

Qθ(st, at) after the freezing is over:

L r Q s a Q s at t t t� � � � � � �� ��� � �1

2

, ,

Chapter 14 reinforCement Learning

655

In this way, the training process can become more stable.

DQN algorithm is shown in Algorithm 3.

Algorithm 3: DQN algorithm

randomly initialize θ
repeat
 Reset and get game initial state s
 repeat
 Sample action a = πϵ(s)

 interact with environment and get reward r and state s′

 optimize Q network:

∇θ(r (st, at) + γQ∗(st + 1, at + 1) − Q∗(st, at))

 Update state s ← s′

 Until game ending

until reach required training times
Output: policy network (st)

14.4.6 DQN Variants
Although the DQN algorithm has made a huge breakthrough on the Atari

game platform, follow-up studies have found that the Q value in DQN is

often overestimated. In view of the defects of the DQN algorithm, some

variant algorithms have been proposed.

Double DQN. In [6], the Q network and estimated Q network of target

r Q s Q s at t a t� � �� �� �� 1 1, ,max were separated and updated according to the

loss function:

L r Q s Q s a Q s at t a t t t� � � �� � � � �� �� �� 1 1

2

, , ,max

Chapter 14 reinforCement Learning

656

Dueling DQN. [7] separated the network output into V(s) and A(s, a),

as shown in Figure 14-21. Then use:

 Q s a V s A s a, ,� � � � � � � �

to generate Q function estimate Q(s, a). The rest and DQN remain

the same.

Figure 14-21. DQN network(upper) and dueling DQN
network(lower) [7]

14.4.7 Hands-On DQN
Here we continue to implement the DQN algorithm based on the balance

bar game environment.

Q network. The state of the balance bar game is a vector of length 4.

Therefore, the input of the Q network is designed as four nodes. After

a 256-256-2 fully connected layer, the distribution of the Q function

estimation Q(s, a) with the number of output nodes of 2 is obtained. The

implementation of the network is as follows:

Chapter 14 reinforCement Learning

657

class Qnet(keras.Model):

 def __init__(self):

 # Create a Q network, the input is the state vector,

and the output is the Q value of the action

 super(Qnet, self).__init__()

 self.fc1 = layers.Dense(256, kernel_initializer=

'he_normal')

 self.fc2 = layers.Dense(256, kernel_initializer=

'he_normal')

 self.fc3 = layers.Dense(2, kernel_initializer=

'he_normal')

 def call(self, x, training=None):

 x = tf.nn.relu(self.fc1(x))

 x = tf.nn.relu(self.fc2(x))

 x = self.fc3(x)

 return x

Replay buffer pool. The replay buffer pool is used in the DQN

algorithm to reduce the strong correlation between data. We use the

Deque object in the ReplayBuffer class to implement the buffer pool

function. During training, the latest data (s, a, r, s′) is stored in the Deque

object through the put (transition) method, and n data (s, a, r, s′) are

randomly sampled from the Deque object using sample(n) method. The

implementation of the replay buffer pool is as follows:

class ReplayBuffer():

 # Replay buffer pool

 def __init__(self):

 # Deque

 self.buffer = collections.deque(maxlen=buffer_limit)

 def put(self, transition):

 self.buffer.append(transition)

Chapter 14 reinforCement Learning

658

 def sample(self, n):

 # Sample n samples

 mini_batch = random.sample(self.buffer, n)

 s_lst, a_lst, r_lst, s_prime_lst, done_mask_lst = [],

[], [], [], []

 # Organize by category

 for transition in mini_batch:

 s, a, r, s_prime, done_mask = transition

 s_lst.append(s)

 a_lst.append([a])

 r_lst.append([r])

 s_prime_lst.append(s_prime)

 done_mask_lst.append([done_mask])

 # Convert to tensor

 return tf.constant(s_lst, dtype=tf.float32),\

 tf.constant(a_lst, dtype=tf.int32), \

 tf.constant(r_lst, dtype=tf.float32), \

 tf.constant(s_prime_lst, dtype=tf.

float32), \

 tf.constant(done_mask_lst, dtype=tf.

float32)

Policy improvement. The ϵ-greedy method is implemented

here. When sampling actions, there a probability of 1 − ϵ to choose

argarg Qπ (s, a), and a probability of ϵ to randomly choose an action.

 def sample_action(self, s, epsilon):

 # Send the state vector to get the strategy: [4]

 s = tf.constant(s, dtype=tf.float32)

 # s: [4] => [1,4]

 s = tf.expand_dims(s, axis=0)

 out = self(s)[0]

Chapter 14 reinforCement Learning

659

 coin = random.random()

 # Policy improvement: e-greedy way

 if coin < epsilon:

 # epsilon larger

 return random.randint(0, 1)

 else: # Q value is larger

 return int(tf.argmax(out))

Network main process. The network trains up to 10,000 rounds. At

the beginning of the round, the game is first reset to get the initial state s,

and an action is sampled from the current Q network to interact with the

environment to obtain the data pair (s, a, r, s′), and stored in the replay

buffer pool. If the number of samples in the current replay buffer pool is

sufficient, sample a batch of data, and optimize the estimation of the Q

network according to the TD error until the end of the game.

for n_epi in range(10000): # Training times

 # The epsilon probability will also be attenuated by

8% to 1%. The more you go, the more you use the action

with the highest Q value.

 epsilon = max(0.01, 0.08 - 0.01 * (n_epi / 200))

 s = env.reset() # Reset environment

 for t in range(600): # Maximum timestamp of a round

 # if n_epi>1000:

 # env.render()

 # According to the current Q network, extract and

improve the policy.

 a = q.sample_action(s, epsilon)

 # Use improved strategies to interact with the

environment

 s_prime, r, done, info = env.step(a)

 done_mask = 0.0 if done else 1.0 # End flag mask

Chapter 14 reinforCement Learning

660

 # Save

 memory.put((s, a, r / 100.0, s_prime, done_mask))

 s = s_prime # Update state

 score += r # Record return

 if done: # End round

 break

 if memory.size() > 2000: # train if size is greater

than 2000

 train(q, q_target, memory, optimizer)

 if n_epi % print_interval == 0 and n_epi != 0:

 for src, dest in zip(q.variables, q_target.

variables):

 dest.assign(src) # weights come from Q

During training, only the Qθ network will be updated, while the Qθ

network will be frozen. After the Qθ network has been updated many times,

use the following code to copy the latest parameters from Qθ to Qθ .

for src, dest in zip(q.variables, q_target.variables):

 dest.assign(src) # weights come from Q

Optimize the Q network. When optimizing the Q network, it will

train and update ten times at a time. Randomly sample from the replay

buffer pool each time, and select the action Q s at� �� �1, to construct the TD

difference. Here we use the Smooth L1 error to construct the TD error:

 L x y x y x y x y� � �� � � � � � � �{ . , . ,0 5 1 0 5 1
2

In TensorFlow, Smooth L1 error can be implemented using Huber

error as follows:

def train(q, q_target, memory, optimizer):

 # Construct the error of Bellman equation through Q network

and shadow network.

Chapter 14 reinforCement Learning

661

 # And only update the Q network, the update of the shadow

network will lag behind the Q network

 huber = losses.Huber()

 for i in range(10): # Train 10 times

 # Sample from buffer pool

 s, a, r, s_prime, done_mask = memory.sample(batch_size)

 with tf.GradientTape() as tape:

 # s: [b, 4]

 q_out = q(s) # Get Q(s,a) distribution

 # Because TF’s gather_nd is different from

pytorch’s gather, we need to the coordinates of

gather_nd, indices:[b, 2]

 # pi_a = pi.gather(1, a) # pytorch only needs

one line.

 indices = tf.expand_dims(tf.range(

a.shape[0]), axis=1)

 indices = tf.concat([indices, a], axis=1)

 q_a = tf.gather_nd(q_out, indices) # The

probability of action, [b]

 q_a = tf.expand_dims(q_a, axis=1) # [b]=> [b,1]

 # Get the maximum value of Q(s',a). It comes from

the shadow network! [b,4]=>[b,2]=>[b,1]

 max_q_prime = tf.reduce_max(q_target(

s_prime),axis=1,keepdims=True)

 # Construct the target value of Q(s,a_t)

 target = r + gamma * max_q_prime * done_mask

 # Calcualte error between Q(s,a_t) and target

 loss = huber(q_a, target)

 # Update network

 grads = tape.gradient(loss, q.trainable_variables)

 optimizer.apply_gradients(zip(grads, q.trainable_

variables))

Chapter 14 reinforCement Learning

662

14.5 Actor-Critic Method
When introducing the original policy gradient algorithm, in order to

reduce the variance, we introduced the bias b mechanism:

� � �
�

�
�
�

� � � � �� ��

�
�

�

�
�� � �

�

�

�
J

E log log s R bp
t

T

t

�
� �

� �� � ��
1

1

where b can be estimated by Monte Carlo method b
N

R
n

N
n� � �

�

� ��1
1

� .

If R(τ) is understood as the estimated value of Qπ(st, at), the bias b

is understood as the average level Vπ(st) of state st, then R(τ) − b is

(approximately) the advantage value function Aπ(s, a). Among them, if

the bias value function Vπ(st) is estimated using neural networks, it is the

Actor-Critic method (AC method for short). The policy network πθ(st)

is called Actor, which is used to generate policies and interact with the

environment. The V st�
� � � value network is called Critic, which is used to

evaluate the current state. θ and ϕ are the parameters of the Actor network

and the Critic network, respectively.

For the Actor network πθ, the goal is to maximize the return

expectation, and the parameter θ of the policy network is updated through

the partial derivative of
� � �
�
J �
�

:

�� � �

�
�

� � �
�
J

For the Critic network V�
� , the goal is to obtain an accurate V st�

� � �

value function estimate through the MC method or the TD method:

� �

� �� � � � �� �dist V s V st target t,

Chapter 14 reinforCement Learning

663

where dist(a,b) is the distance measurer of a and b, such as Euclidean

distance. V starget t
� � � is the target value of V st�

� � � . When estimated by the

MC method,

V s Rtarget t t T

� �� � � � �:

When estimated by the TD method,

V s r V starget t t t

� ��� � � � � ��1

14.5.1 Advantage AC Algorithm
The Actor-Critic algorithm using the advantage value function Aπ(s, a)

is called the Advantage Actor-Critic algorithm. It is currently one of the

mainstream algorithms that use the Actor-Critic idea. In fact, the Actor-

Critic series of algorithms do not have to use the advantage value function

Aπ(s, a). There are other variants.

When the Advantage Actor-Critic algorithm is trained, the Actor

obtains the action at according to the current state st and the policy πθ

sampling, and then interacts with the environment to obtain the next state

st + 1 and reward rt. The TD method can estimate the target value V starget t
� � �

of each step, thereby updating the Critic network so that the estimation of

the value network is closer to the expected return of the real environment.

A r V s V st t t t
 � � � � � � ��� � �

1 is used to estimate the advantage value of the

current action, and the following equation is used to calculate the gradient

info of the Actor network. L E log log sPG
t t t� ��� � � � ��
�

�
�

 A
By repeating this process, the Critic network will be more and more

accurate, and the Actor network will also adjust its policy to make it better

next time.

Chapter 14 reinforCement Learning

664

14.5.2 A3C Algorithm
The full name of the A3C algorithm is the Asynchronous Advantage Actor-

Critic algorithm. It is an asynchronous version proposed by DeepMind

based on the Advantage Actor-Critic algorithm [8]. The Actor-Critic

network is deployed in multiple threads for simultaneous training, and

the parameters are synchronized through the global network. . This

asynchronous training mode greatly improves the training efficiency;

therefore, the training speed is faster and the algorithm performance

is better.

As shown in Figure 14-22, the algorithm will create a new global

Network and M Worker threads. Global Network contains Actor and Critic

networks, and each thread creates a new interactive environment, Actor

and Critic networks. In the initialization phase, Global Network initializes

parameters θ and ϕ randomly. The Actor-Critic network in Worker pulls

parameters synchronously from Global Network to initialize the network.

During training, the Actor-Critic network in the Worker first pulls the latest

parameters from the Global Network, and then the latest policy πθ(st) will

sample actions to interact with the private environment, and calculate the

gradients of parameters θ and ϕ according to the Advantage Actor-Critic

algorithm. After completing the gradient calculation, each worker submits

the gradient information to the Global Network and uses the optimizer of

the Global Network to complete the parameter update. In the algorithm

testing phase, only Global Network interacts with the environment.

Chapter 14 reinforCement Learning

665

Figure 14-22. A3C algorithm

14.5.3 Hands-On A3C
Next we implement the asynchronous A3C algorithm. Like the ordinary

Advantage AC algorithm, the Actor-Critic network needs to be created. It

contains an Actor sub-network and a Critic sub-network. Sometimes Actor

and Critic will share the previous network layers to reduce the amount of

network parameters. The balance bar game is relatively simple. We use

a two-layer fully connected network to parameterize the Actor network,

and another two- layer fully connected network to parameterize the Critic

network.

Chapter 14 reinforCement Learning

666

The Actor-Critic network code is as follows:

class ActorCritic(keras.Model):

 # Actor-Critic model

 def __init__(self, state_size, action_size):

 super(ActorCritic, self).__init__()

 self.state_size = state_size # state vector length

 self.action_size = action_size # action size

 # Policy network Actor

 self.dense1 = layers.Dense(128, activation='relu')

 self.policy_logits = layers.Dense(action_size)

 # V network Critic

 self.dense2 = layers.Dense(128, activation='relu')

 self.values = layers.Dense(1)

The forward propagation process of Actor-Critic calculates the policy

distribution πθ(st) and the V function estimation Vπ(st) separately. The code

is as follows:

 def call(self, inputs):

 # Get policy distribution Pi(a|s)

 x = self.dense1(inputs)

 logits = self.policy_logits(x)

 # Get v(s)

 v = self.dense2(inputs)

 values = self.values(v)

 return logits, values

Worker thread class. In the Worker thread, the same calculation

process as the Advantage AC algorithm is implemented, except that the

gradient information of parameters θ and ϕ is not directly used to update

the Actor-Critic network of the Worker, instead it is submitted to the Global

Network for update. Specifically, in the initialization phase of the Worker

Chapter 14 reinforCement Learning

667

class, the server object and the opt object represent the Global Network

model and optimizer respectively, and create a private ActorCritic class

client and interactive environment env.

class Worker(threading.Thread):

 # The variables created here belong to the class, not to

the instance, and are shared by all instances

 global_episode = 0 # Round count

 global_avg_return = 0 # Average return

 def __init__(self, server, opt, result_queue, idx):

 super(Worker, self).__init__()

 self.result_queue = result_queue # Shared queue

 self.server = server # Central model

 self.opt = opt # Central optimizer

 self.client = ActorCritic(4, 2) # Thread private network

 self.worker_idx = idx # Thread id

 self.env = gym.make('CartPole-v0').unwrapped

 self.ep_loss = 0.0

In the thread running phase, each thread interacts with the

environment for up to 400 rounds. At the beginning of the round, the client

network sampling action is used to interact with the environment and saved

to the memory object. At the end of the round, train the Actor network and

the Critic network to obtain the gradient information of the parameters θ

and ϕ, and call the opt optimizer object to update the Global Network.

 def run(self):

 total_step = 1

 mem = Memory() # Each worker maintains a memory

 while Worker.global_episode < 400: # Maximum number of

frames not reached

 current_state = self.env.reset() # Reset client state

 mem.clear()

Chapter 14 reinforCement Learning

668

 ep_reward = 0.

 ep_steps = 0

 self.ep_loss = 0

 time_count = 0

 done = False

 while not done:

 # Get Pi(a|s),no softmax

 logits, _ = self.client(tf.constant(

current_state[None, :],

 dtype=tf.float32))

 probs = tf.nn.softmax(logits)

 # Random sample action

 action = np.random.choice(2, p=probs.numpy()[0])

 new_state, reward, done, _ = self.env.

step(action) # Interact

 if done:

 reward = -1

 ep_reward += reward

 mem.store(current_state, action, reward) # Record

 if time_count == 20 or done:

 # Calculate the error of current client

 with tf.GradientTape() as tape:

 total_loss = self.compute_loss(done,

new_state, mem)

 self.ep_loss += float(total_loss)

 # Calculate error

 grads = tape.gradient(total_loss,

self.client.trainable_weights)

 # Submit gradient info to server, and

update gradient

Chapter 14 reinforCement Learning

669

 self.opt.apply_gradients(zip(grads,

 self.server.

trainable_

weights))

 # Pull latest gradient info from server

 self.client.set_weights(self.server.get_

weights())

 mem.clear() # Clear Memory

 time_count = 0

 if done: # Calcualte return

 Worker.global_avg_return = \

 record(Worker.global_episode,

ep_reward, self.worker_idx,

 Worker.global_avg_return,

self.result_queue,

 self.ep_loss, ep_steps)

 Worker.global_episode += 1

 ep_steps += 1

 time_count += 1

 current_state = new_state

 total_step += 1

 self.result_queue.put(None) # End thread

Actor-Critic error calculation. When each Worker class is trained, the

error calculation of Actor and Critic network is implemented as follows.

Here we use the Monte Carlo method to estimate the target value V starget t
� � � ,

and use the distance between V starget t
� � � and V st�

� � � the two as the error

function value_loss of the Critic network. The policy loss function policy_

loss of the Actor network comes from � � � � � � ��
�

�
�L E log log s APG

t t t� ��

where � � ��
�

�
�E log log s At t t

 �� is implemented by TensorFlow’s cross-

entropy function. After the various loss functions are aggregated, the total

loss function is formed and returned.

Chapter 14 reinforCement Learning

670

def compute_loss(self,

 done,

 new_state,

 memory,

 gamma=0.99):

 if done:

 reward_sum = 0.

 else:

 reward_sum = self.client(tf.constant(new_

state[None, :],

 dtype=tf.float32))[-1].

numpy()[0]

 # Calculate return

 discounted_rewards = []

 for reward in memory.rewards[::-1]: # reverse buffer r

 reward_sum = reward + gamma * reward_sum

 discounted_rewards.append(reward_sum)

 discounted_rewards.reverse()

 # Get Pi(a|s) and v(s)

 logits, values = self.client(tf.constant(

np.vstack(memory.states),

 dtype=tf.float32))

 # Calculate advantage = R() - v(s)

 advantage = tf.constant(np.array(discounted_rewards)

[:, None],

 dtype=tf.

float32) - values

 # Critic network loss

 value_loss = advantage ** 2

 # Policy loss

 policy = tf.nn.softmax(logits)

Chapter 14 reinforCement Learning

671

 policy_loss = tf.nn.sparse_softmax_cross_entropy_

with_logits(

 labels=memory.actions, logits=logits)

 # When calculating the policy network loss, the V

network is not calculated

 policy_loss *= tf.stop_gradient(advantage)

 entropy = tf.nn.softmax_cross_entropy_with_

logits(labels=policy,

 logits=logits)

 policy_loss -= 0.01 * entropy

 # Aggregate each error

 total_loss = tf.reduce_mean((0.5 * value_loss +

policy_loss))

 return total_loss

Agent. The agent is responsible for the training of the entire A3C

algorithm. In the initialization phase, the agent class creates a new Global

Network object server and its optimizer object opt.

class Agent:

 # Agent, include server

 def __init__(self):

 # server optimizer, no client, pull parameters

from server

 self.opt = optimizers.Adam(1e-3)

 # Sever model

 self.server = ActorCritic(4, 2) # State vector,

action size

 self.server(tf.random.normal((2, 4)))

At the beginning of training, each Worker thread object is created, and

each thread object is started to interact with the environment. When each

Chapter 14 reinforCement Learning

672

Worker object interacts, it will pull the latest network parameters from the

Global Network and use the latest policy to interact with the environment

and calculate its own loss. Finally, each Worker submits the gradient

information to the Global Network, and call the opt object to optimize the

Global Network. The training code is as follows:

 def train(self):

 res_queue = Queue() # Shared queue

 # Create interactive environment

 workers = [Worker(self.server, self.opt, res_queue, i)

 for i in range(multiprocessing.cpu_count())]

 for i, worker in enumerate(workers):

 print("Starting worker {}".format(i))

 worker.start()

 # Plot return curver

 moving_average_rewards = []

 while True:

 reward = res_queue.get()

 if reward is not None:

 moving_average_rewards.append(reward)

 else: # End

 break

 [w.join() for w in workers] # Quit threads

14.6 Summary
This chapter introduces the problem setting and basic theory of

reinforcement learning and introduces two series of algorithms to solve

reinforcement learning problems: policy gradient method and value

function method. The policy gradient method directly optimizes the

policy model, which is simple and direct, but the sampling efficiency is

low. The sampling efficiency of the algorithm can be improved by the

Chapter 14 reinforCement Learning

673

importance sampling technique. The value function method has high

sampling efficiency and is easy to train, but the policy model needs to

be derived indirectly from the value function. Finally, the Actor-Critic

method combining the policy gradient method and the value function

method is introduced. We also introduced the principles of several typical

algorithms, and used the balance bar game environment for algorithm

implementation and testing.

14.7 References

 [1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,

J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,

A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran,

D. Wierstra, S. Legg and D. Hassabis, “Human- level

control through deep reinforcement learning,”

Nature, 518, pp. 529-533, 2 2015.

 [2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot, S. Dieleman,

D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,

T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel

and D. Hassabis, “Mastering the game of Go with

deep neural networks and tree search,” Nature, 529,

pp. 484-503, 2016.

 [3] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,

A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,

Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Driessche, T. Graepel

and D. Hassabis, “Mastering the game of Go without

human knowledge,” Nature, 550, pp. 354--, 10 2017.

Chapter 14 reinforCement Learning

674

 [4]. R. J. Williams, “Simple statistical gradient-following

algorithms for connectionist reinforcement

learning,” Machine Learning, 8, pp. 229-256,

01 5 1992.

 [5] G. A. Rummery and M. Niranjan, “On-Line

Q-Learning Using Connectionist Systems,” 1994.

 [6] H. Hasselt, A. Guez and D. Silver, “Deep

Reinforcement Learning with Double Q-learning,”

CoRR, abs/1509.06461, 2015.

 [7] Z. Wang, N. Freitas and M. Lanctot, “Dueling

Network Architectures for Deep Reinforcement

Learning,” CoRR, abs/1511.06581, 2015.

 [8] V. Mnih, A. P. Badia, M. Mirza, A. Graves,

T. P. Lillicrap, T. Harley, D. Silver and

K. Kavukcuoglu, “Asynchronous Methods

for Deep Reinforcement Learning,” CoRR,

abs/1602.01783, 2016.

 [9] C. J. C. H. Watkins and P. Dayan, “Q-learning,”

Machine Learning, 1992.

 [10] J. Schulman, S. Levine, P. Abbeel, M. Jordan and

P. Moritz, “Trust Region Policy Optimization,”

Proceedings of the 32nd International Conference on

Machine Learning, Lille, 2015.

 [11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford

and O. Klimov, “Proximal Policy Optimization

Algorithms,” CoRR, abs/1707.06347, 2017.

Chapter 14 reinforCement Learning

675© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1_15

CHAPTER 15

Customized Dataset
Spending a year on artificial intelligence is enough to make
people believe in the existence of God.

—Alan Paley

Deep learning has been widely used in various industries such as

medicine, biology, and finance and has been deployed on various

platforms such as the Internet and mobile terminals. When we introduced

the algorithm earlier, most of the datasets were commonly used classic

datasets. The downloading, loading, and preprocessing of the dataset can

be completed with a few lines of TensorFlow code, which greatly improves

the research efficiency. In actual applications, the datasets are different for

different application scenarios. For customized datasets, using TensorFlow

to complete data loading, designing excellent network model training

process, and deploying the trained model to platforms such as mobile and

the Internet network is an indispensable link for the implementation of

deep learning algorithms.

In this chapter, we will take a specific application scenario of image

classification as an example to introduce a series of practical technologies

such as downloading of customized datasets, data processing, network

model design, and transfer learning.

https://doi.org/10.1007/978-1-4842-7915-1_15#DOI

676

15.1 Pokémon Go Dataset
Pokémon Go is a mobile game that uses augmented reality (AR)

technology to capture and train Pokémon elves outdoors, and use them

to fight. The game was launched on Android and IOS in July 2016. Once

released, it was sought after by players all over the world. At one time, the

server was paralyzed due to too many players. As shown in Figure 15-1, a

player scanned the real environment with his mobile phone and collected

the virtual Pokémon “Pikachu.”

Figure 15-1. Pokémon game screen

We use the Pokémon dataset crawled from the web to demonstrate

how to use customized dataset. The Pokémon dataset collects a total of five

elven creatures: Pikachu, Mewtwo, Squirtle, Charmander, and Bulbasaur.

The information of each elven is shown in Table 15-1, a total of 1168

pictures. There are incorrectly labeled samples in these pictures, so the

wrongly labeled samples were artificially eliminated, and a total of 1,122

valid pictures were obtained.

Chapter 15 Customized dataset

677

Table 15-1. Pokémon dataset information

Readers can download the provided dataset file by themselves (link:

https://drive.google.com/file/d/1Db2O4YID7VDcQ5lK0ObnkKy-

U1ZZVj7c/view?usp=sharing), and after decompression, we can get the

root directory named pokemon, which contains five subfolders, the file

name of each subfolder represents the category name of the pictures, and

the corresponding category is stored under each subfolder as shown in

Figure 15-2.

Figure 15-2. Pokémon dataset storage directory

15.2 Customized Dataset Loading
In practical applications, the storage methods of samples and sample

labels may vary. For example, in some occasions, all pictures are stored in

the same directory, and the category name can be derived from the picture

name, such as a picture with a file name of “pikachu_asxes0132.png”.

The category information can be extracted from the file name pikachu.

Chapter 15 Customized dataset

https://drive.google.com/file/d/1Db2O4YID7VDcQ5lK0ObnkKy-U1ZZVj7c/view?usp=sharing
https://drive.google.com/file/d/1Db2O4YID7VDcQ5lK0ObnkKy-U1ZZVj7c/view?usp=sharing

678

The label information of some data samples is saved in a text file in JSON

format, and the label of each sample needs to be queried in JSON format.

No matter how the dataset is stored, we can always use logic rules to obtain

the path and label information of all samples.

We abstract the loading process of customized data into the

following steps.

15.2.1 Create Code Table
The category of the sample is generally marked with the category name

of the string type, but for the neural network, the category name needs to

be digitally encoded, and then converted into one-hot encoding or other

encoding formats when appropriate. Considering a dataset of n categories,

we randomly code each category into a number l ∈ [0, n − 1]. The mapping

relationship between category names and numbers is called a coding

table. Once created, it generally cannot be changed.

For the storage format of the Pokémon dataset, we create a coding

table in the following way. First, traverse all sub-directories under the

pokemon root directory in order. For each sub-target, use the category

name as the key of the code table dictionary object name2label, and the

number of existing key-value pairs in the code table as the label mapping

number of the category, and save it into name2label dictionary object. The

implementation is as follows:

def load_pokemon(root, mode='train'):

 # Create digital dictionary table

 name2label = {} # Coding dictionary, "sq...":0

 # Traverse the subfolders under the root directory and sort

them to ensure that the mapping relationship is fixed

 for name in sorted(os.listdir(os.path.join(root))):

 # Skip non-folder objects

 if not os.path.isdir(os.path.join(root, name)):

Chapter 15 Customized dataset

679

 continue

 # Code a number for each category

 name2label[name] = len(name2label.keys())

 ...

15.2.2 Create Sample and Label Form
After the coding table is determined, we need to obtain the storage path

of each sample and its label number according to the actual data storage

method, which are represented as two list objects, images and labels,

respectively. The images list stores the path string of each sample, and

the labels list stores the category number of the sample. The two have the

same length, and the elements at the corresponding positions are related

to each other.

We store the images and labels information in a csv format file, where

the csv file format is a plain text file format with data separated by commas,

which can be opened with Notepad or MS Excel software. There are many

advantages by storing all sample information in a csv file, such as direct

dataset division and batch sampling. The csv file can save the information

of all samples in the dataset, or you can create three csv files based on the

training set, validation set, and test set. The content of the resulting csv file

is shown in Figure 15-3. The first element of each row stores the storage

path of the current sample, and the second element stores the category

number of the sample.

Chapter 15 Customized dataset

680

Figure 15-3. Path and label saved in CSV file

The process of creating a csv file is: traverse all pictures in the root

directory of pokemon, record the path of the picture, and obtain the code

number according to the coding table, and write it into the csv file as a line.

The code is as follows:

def load_csv(root, filename, name2label):

 # Return images,labels Lists from csv file

 # root: root directory, filename:csv file name,

name2label:category coding table

 if not os.path.exists(os.path.join(root, filename)):

 # Create csv file if not exist.

 images = []

 for name in name2label.keys(): # Traverse all

subdirectories to get all pictures

 # Only consider image files with suffix

png,jpg,jpeg:'pokemon\\mewtwo\\00001.png

 images += glob.glob(os.path.join(root, name, '*.png'))

Chapter 15 Customized dataset

681

 images += glob.glob(os.path.join(root, name,

'*.jpg'))

 images += glob.glob(os.path.join(root, name,

'*.jpeg'))

 # Print data info:1167, 'pokemon\\

bulbasaur\\00000000.png'

 print(len(images), images)

 random.shuffle(images) # Randomly shuffle

 # Create csv file, and store image path and

corresponding label info

 with open(os.path.join(root, filename), mode='w',

newline='') as f:

 writer = csv.writer(f)

 for img in images: # 'pokemon\\bulbasaur

\\00000000.png'

 name = img.split(os.sep)[-2]

 label = name2label[name]

 # 'pokemon\\bulbasaur\\00000000.png', 0

 writer.writerow([img, label])

 print('written into csv file:', filename)

 ...

After creating the csv file, you only need to read the sample path and

label information from the csv file next time, instead of generating the csv

file every time, which improves the calculation efficiency. The code is as

follows:

def load_csv(root, filename, name2label):

 ...

 # At this time there is already a csv file on the file

system, read directly

 images, labels = [], []

Chapter 15 Customized dataset

682

 with open(os.path.join(root, filename)) as f:

 reader = csv.reader(f)

 for row in reader:

 # 'pokemon\\bulbasaur\\00000000.png', 0

 img, label = row

 label = int(label)

 images.append(img)

 labels.append(label)

 # Return image path list and tag list

 return images, labels

15.2.3 Dataset Division
The division of the dataset needs to be flexibly adjusted according to the

actual situation. When the number of samples in the dataset is large,

you can choose a ratio of 80%-10%-10% to allocate to the training set,

validation set, and test set; when the number of samples is small, for

example, the total number of pictures in the Pokémon dataset here is only

1000; if the ratio of the validation set and test set is only 10%, the number

of pictures is about 100, so the validation accuracy and test accuracy may

fluctuate greatly. For small datasets, although the sample size is small, it is

necessary to appropriately increase the ratio of the validation set and test

set to ensure accurate test results. Here we set the ratio of validation set

and test set to 20%, that is, there are about 200 pictures for validation and

testing.

First, call the load_csv function to load the images and labels list, and

load the corresponding pictures and labels according to the current model

parameters. Specifically, if the model parameter is train, the first 60% data

of images and labels are taken as the training set; if the model parameter

is val, the 60% to 80% area data of images and labels are taken as the

Chapter 15 Customized dataset

683

validation set; if the model parameter is test, the last 20% of images and

labels are taken as the test set. The code is implemented as follows:

def load_pokemon(root, mode='train'):

 ...

 # Read Label info

 # [file1,file2,], [3,1]

 images, labels = load_csv(root, 'images.csv', name2label)

Dataset division

 if mode == 'train': # 60%

 images = images[:int(0.6 * len(images))]

 labels = labels[:int(0.6 * len(labels))]

 elif mode == 'val': # 20% = 60%->80%

 images = images[int(0.6 * len(images)):int(0.8 *

len(images))]

 labels = labels[int(0.6 * len(labels)):int(0.8 *

len(labels))]

 else: # 20% = 80%->100%

 images = images[int(0.8 * len(images)):]

 labels = labels[int(0.8 * len(labels)):]

 return images, labels, name2label

It should be noted that the dataset division scheme for each run needs

to be fixed to prevent the use of test set for training, resulting in inaccurate

model generalization performance.

15.3 Hands-On Pokémon Dataset
After introducing the loading process of the custom dataset, let's load and

train the Pokémon data set.

Chapter 15 Customized dataset

684

15.3.1 Create Dataset Object
First, return the images, labels, and coding table information through the

load_pokemon function as follows:

 # Load the pokemon dataset, specify to load the

training set

 # Return the sample path list of the training set, the

label number list and the coding table dictionary

 images, labels, table = load_pokemon('pokemon', 'train')

 print('images:', len(images), images)

 print('labels:', len(labels), labels)

 print('table:', table)

Construct a Dataset object, and complete the random breakup,

preprocessing, and batch operation of the dataset. The code is as follows:

 # images: string path

 # labels: number

 db = tf.data.Dataset.from_tensor_slices((images, labels))

 db = db.shuffle(1000).map(preprocess).batch(32)

When we use tf.data.Dataset.from_tensor_slices to construct the

dataset, the passed-in parameter is a tuple composed of images and labels,

so when the db object is iterated, the tuple object of (Xi, Yi) is returned,

where Xi is the image tensor of the ith batch, Yi is the image label data of

the ith batch. We can view the image samples of each traversal through

TensorBoard visualization as follows:

 # Create TensorBoard summary object

 writter = tf.summary.create_file_writer('logs')

 for step, (x,y) in enumerate(db):

 # x: [32, 224, 224, 3]

 # y: [32]

Chapter 15 Customized dataset

685

 with writter.as_default():

 x = denormalize(x) # Denormalize

 # Write in image data

 tf.summary.image('img',x,step=step,max_outputs=9)

 time.sleep(5) # Delay 5s

15.3.2 Data Preprocessing
We complete the preprocessing of the data by calling the .map(preprocess)

function when constructing the data set. Since our images list currently

only saves the path information of all images, not the content tensor of the

image, it is necessary to complete the image reading and tensor conversion

in the preprocessing function.

For the preprocess function (x,y) = preprocess(x,y), its incoming

parameters need to be saved in the same format as the parameters given

when creating the dataset, and the return parameters need to be saved in

the same format as the incoming parameters. In particular, we pass in the

(x, y) tuple object when constructing the dataset, where x is the path list of

all pictures and y is the label number list of all pictures. Considering that

the location of the map function is db = db.shuffle(1000).map(preprocess).

batch(32), then the incoming parameters of preprocess are (xi, yi), where

xi and yi are, respectively, the i-th picture path string and label number.

If the location of the map function is db = db.shuffle(1000).batch(32).

map(preprocess), then the incoming parameters of preprocess are (xi, yi),

where xi and yi are the path and tag list of the i-th batch respectively. The

code is as follows:

def preprocess(x,y): # preprocess function

 # x: image path, y:image coding number

 x = tf.io.read_file(x) # Read image

 x = tf.image.decode_jpeg(x, channels=3) # Decode image

 x = tf.image.resize(x, [244, 244]) # Resize to 244x244

Chapter 15 Customized dataset

686

 # Data augmentation

 # x = tf.image.random_flip_up_down(x)

 x= tf.image.random_flip_left_right(x) # flip left and right

 x = tf.image.random_crop(x, [224, 224, 3]) # Crop

to 224x224

 # Convert to tensor and [0, 1] range

 # x: [0,255]=> 0~1

 x = tf.cast(x, dtype=tf.float32) / 255.

 # 0~1 => D(0,1)

 x = normalize(x) # Normalize

 y = tf.convert_to_tensor(y) # To tensor

 return x, y

Considering that the scale of our dataset is very small, in order to

prevent overfitting, we have done a small amount of data enhancement

transformation to obtain more data. Finally, we scale the pixel values in the

range of 0~255 to the range of 0~1, and normalize the data, and map the

pixels to the distribution around 0, which is beneficial to the optimization

of the network. Finally, the data is converted to tensor data and returned.

At this time, the data returned will be the tensor data in batch form when

iterating over the db object.

The standardized data is suitable for network training and prediction,

but when visualizing, the data needs to be mapped back to the range of

0~1. The reverse process of standardization and standardization is as

follows:

The mean and std here are calculated based on real data, such

as ImageNet

img_mean = tf.constant([0.485, 0.456, 0.406])

img_std = tf.constant([0.229, 0.224, 0.225])

def normalize(x, mean=img_mean, std=img_std):

Chapter 15 Customized dataset

687

 # Normalization function

 # x: [224, 224, 3]

 # mean: [224, 224, 3], std: [3]

 x = (x - mean)/std

 return x

def denormalize(x, mean=img_mean, std=img_std):

 # Denormalization function

 x = x * std + mean

 return x

Using the preceding method, distribute the Dataset objects that

create the training set, validation set, and test set. Generally speaking, the

validation set and test set do not directly participate in the optimization of

network parameters, and there is no need to randomly break the order of

samples.

batchsz = 128

Create training dataset

images, labels, table = load_pokemon('pokemon',mode='train')

db_train = tf.data.Dataset.from_tensor_slices((images, labels))

db_train = db_train.shuffle(1000).map(preprocess).

batch(batchsz)

Create validation dataset

images2, labels2, table = load_pokemon('pokemon',mode='val')

db_val = tf.data.Dataset.from_tensor_slices((images2, labels2))

db_val = db_val.map(preprocess).batch(batchsz)

Create testing dataset

images3, labels3, table = load_pokemon('pokemon',mode='test')

db_test = tf.data.Dataset.from_tensor_slices((images3,

labels3))

db_test = db_test.map(preprocess).batch(batchsz)

Chapter 15 Customized dataset

688

15.3.3 Create Model
The mainstream network models such as VGG13 and ResNet18 have been

introduced and implemented before, and we will not repeat the specific

implementation details of the model here. Commonly used network

models are implemented in the keras.applications module, such as VGG

series, ResNet series, DenseNet series, and MobileNet series, and these

model networks can be created with only one line of code. For example:

Load the DenseNet network model, remove the last fully

connected layer, and set the last pooling layer to max pooling

net = keras.applications.DenseNet121(weights=None, include_

top=False, pooling='max')

Set trainable to True, i.e. DenseNet’s parameters will be

updated.

net.trainable = True

newnet = keras.Sequential([

 net, # Remove last layer of DenseNet121

 layers.Dense(1024, activation='relu'), # Add fully

connected layer

 layers.BatchNormalization(), # Add BN layer

 layers.Dropout(rate=0.5), # Add Dropout layer

 layers.Dense(5) # Set last layer node to 5 according to

output categories

])

newnet.build(input_shape=(4,224,224,3))

newnet.summary()

The DenseNet121 model is used to create the network. Since the

output node of the last layer of DenseNet121 is designed to be 1000, we

remove the last layer of DenseNet121 and add a fully connected layer with

the number of output nodes of 5 according to the number of categories of

the customized dataset. The whole setup is repackaged into a new network

Chapter 15 Customized dataset

689

model through Sequential containers, where include_top=False indicates

that the last fully connected layer is removed, and pooling=‘max’ indicates

that the last Pooling layer of DenseNet121 is designed as Max Polling. The

network model structure is shown in Figure 15-4.

Figure 15-4. Model structure diagram

15.3.4 Network Training and Testing
We directly use the Compile&Fit method provided by Keras to compile

and train the network. The optimizer uses the most commonly used Adam

optimizer, the error function uses the cross-entropy loss function, and sets

from_logits=True. The measurement index that we pay attention to during

the training process is the accuracy rate. The network model compile code

is as follows:

Compile model

newnet.compile(optimizer=optimizers.Adam(lr=5e-4),

 loss=losses.CategoricalCrossentropy(from_

logits=True),

 metrics=['accuracy'])

Chapter 15 Customized dataset

690

Use the fit function to train the model on the training set. Each

iteration of Epoch tests a validation set. The maximum number of training

Epochs is 100. In order to prevent overfitting, we use early stopping

technology, and pass early stopping into the callbacks parameter of the fit

function as in the following:

Model training, support early stopping

history = newnet.fit(db_train, validation_data=db_val,

validation_freq=1, epochs=100,

 callbacks=[early_stopping])

where early_stopping is the standard EarlyStopping class. The indicator it

monitors is the accuracy of the validation set. If the measurement result of

the validation set does not increase by 0.001 for three consecutive times,

the EarlyStopping condition is triggered and the training ends.

Create Early Stopping class

early_stopping = EarlyStopping(

 monitor='val_accuracy',

 min_delta=0.001,

 patience=3

)

We draw the training accuracy rate, validation accuracy rate, and

the accuracy rate obtained on the final test set in the training process

as a curve, as shown in Figure 15-5. It can be seen that the training

accuracy rate has increased rapidly and maintained at a high state, but

the validation accuracy rate is relatively lower, and at the same time, it

has not been greatly improved. The early stopping condition is triggered,

and the training process is quickly terminated. The network has a little bit

overfitting problem.

Chapter 15 Customized dataset

691

Figure 15-5. Training DenseNet from random initialization

So why does overfitting occur? The number of layers of the

DensetNet121 model has reached 121, and the number of parameters has

reached 7 million, which is a large network model, while our dataset has

only about 1,000 samples. According to experience, this is far from enough

to train such a large-scale network model, and it is prone to overfitting.

In order to reduce overfitting, a network model with a shallower number

of layers and fewer parameters can be used, or regularization items can

be added, or even the size of the data set can be increased. In addition to

these methods, another effective method is transfer learning technology.

15.4 Transfer Learning
15.4.1 Principles of Transfer Learning
Transfer learning is a research direction of machine learning. It mainly

studies how to transfer the knowledge learned on task A to task B to

improve the generalization performance on task B. For example, task

Chapter 15 Customized dataset

692

A is a cat and dog classification problem, and a classifier needs to be

trained to better distinguish pictures of cats and dogs, and task B is a

cattle and sheep classification problem. It can be found that there is a lot

of shared knowledge in task A and task B. For example, these animals can

be distinguished from the aspects of hair, body shape, shape, and hair

color. Therefore, the classifier obtained in task A has mastered this part of

knowledge. When training the classifier of task B, you don’t need to start

training from scratch, instead you can train or fine-tune the knowledge

obtained on task A, which is very similar to the idea of “standing on the

shoulders of giants.” By transferring the knowledge learned on task A,

training the classifier on task B can use fewer samples and lower training

costs, and obtain good performance.

We introduce a relatively simple, but very commonly used transfer

learning method: network fine-tuning technology. For convolutional

neural networks, it is generally believed that it can extract features layer

by layer. The abstract feature extraction ability of the network at the end of

the layer is stronger. The output layer generally uses the fully connected

layer with the same number of output nodes as the classification network

as the probability distribution prediction. For similar tasks A and B, if their

feature extraction methods are similar, the previous layers of the network

can be reused, and the following layers can be trained from scratch

according to specific task settings.

As shown in Figure 15-6, the network on the left is trained on task A to

learn the knowledge of task A. When migrating to task B, the parameters

of the early layers of the network model can be reused, and the later layers

can be replaced with new networks and start training from scratch. We call

the model trained on task A a pre-trained model. For image classification,

the model pre-trained on the ImageNet dataset is a better choice.

Chapter 15 Customized dataset

693

Figure 15-6. Diagram of neural network transfer learning

15.4.2 Hands-On Transfer Learning
Based on DenseNet121, we initialize the network with the model

parameters pre-trained on the ImageNet dataset, remove the last fully

connected layer, add a new classification sub-network, and set the number

of output nodes in the last layer to 5.

Load DenseNet model, remove last layer, set last pooling

layer as max pooling

Initilize with pre-trained parameters

net = keras.applications.DenseNet121(weights='imagenet',

include_top=False, pooling='max')

Set trainable to False, i.e. fix the DenseNet parameters

net.trainable = False

newnet = keras.Sequential([

 net, # DenseNet121 with last layer

 layers.Dense(1024, activation='relu'), # Add fully

connected layer

 layers.BatchNormalization(), # Add BN layer

Chapter 15 Customized dataset

694

 layers.Dropout(rate=0.5), # Add Dropout layer

 layers.Dense(5) # Set the nodes of last layer to 5

])

newnet.build(input_shape=(4,224,224,3))

newnet.summary()

When the preceding code creates DenseNet121, the pre-

trained DenseNet121 model object can be returned by setting the

weights=‘imagenet’ parameter, and the reused network layer and the

new sub-classification network are repackaged into a new model newnet

through the Sequential container. In the fine-tuning stage, the parameters

of the DenseNet121 part can be fixed by setting net.trainable = False,

that is, the DenseNet121 part of the network does not need to update the

parameters, so only the newly added sub-classification network needs

to be trained, which greatly reduces the amount of parameters actually

involved in training . Of course, you can also train all parameters like

a normal network by setting net.trainable = True. Even so, because the

reused part of the network has initialized with a good parameter state, the

network can still quickly converge and achieve better performance.

Based on the pre-trained DenseNet121 model, we plot the training

accuracy, validation accuracy, and test accuracy in Figure 15-7. Compared

with training from scratch approach, with the help of transfer learning, the

network learns much faster and only needs a few samples to achieve better

performance, and the improvement is very significant.

Chapter 15 Customized dataset

695

Figure 15-7. Training DenseNet from pre-trained ImageNet weights

At this point, you have reached the end of this book. However, your

machine learning journey just gets started. Hope this book can help you as

one of the reference books during your research or work!

15.5 Summary
Congratulations! You have come a long way to learn both the theories

and implementations of deep learning using the popular deep learning

framework – TensorFlow 2. Now you should be able to not only understand

the fundamental principles of deep learning, but also develop your own

deep learning models using TensorFlow 2 to solve real-world problems.

For real-world applications, good models are not enough. We need

reliable operational systems to consistently produce high-quality model

results. This is very challenging given that real-world data changes all the

time and often contain noises or errors. Therefore, a reliable machine

learning operational system requires a robust data processing pipeline,

real-time model performance monitoring, and appropriate mechanisms

Chapter 15 Customized dataset

696

to retrain or switch models, which leads us to the concept of machine

learning operations (MLOps). For readers who are interested in learning

more about MLOps and keeping up to date with the latest applications

and development of deep learning, deeplearning.ai provides a lot of good

resources and courses along with its weekly newsletter – The Batch. Hope

this book brings you to your own fun journey of deep learning and boosts

your career and life!

Chapter 15 Customized dataset

https://read.deeplearning.ai/the-batch/

697© Liangqu Long and Xiangming Zeng 2022
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,
https://doi.org/10.1007/978-1-4842-7915-1

Index
A
A3C algorithm, 664, 665, 671
Accuracy metric, 306, 307
Activation function

leaky ReLU, 210, 211
ReLU, 208–210
Sigmoid, 206, 207
Tanh, 212

Actor-Critic method, 628, 662
A3C, 664, 665
advantage, 663
agent, 671, 672
code, 666, 667
error calculation, 669

Actor network, 633, 662, 663,
665, 667

agent.optimizer() function, 636
AlexNet, 5, 10, 11, 14, 15
Amazon’s Mechanical Turk

system, 519
Artificial general intelligence

(AGI), 2
Artificial intelligence (AI), 3

definition, 2
implementation, 2
stages, 2, 3

Atari game environment, 604, 653

Atari game
platform, 11, 16, 655

Augmented reality (AR), 676
Autoencoder

adding noise, 533
calculation method, 522
data representation, 522
denoising diagram, 533
mapping relationship, 520, 521
and neural network, 522
neural network

parameterization, 521
optimization goal, 522
vs. PCA, 522, 523
training process, 528
variants

adversarial autoencoder,
534, 535

dropout autoencoder, 534
Autonomous driving, 1, 21

B
Back propagation algorithm

activation function, derivative
LeakyReLU function,

245, 246
ReLU function, 244, 245

https://doi.org/10.1007/978-1-4842-7915-1#DOI

698

Sigmoid, 242, 243
Tanh function, 246, 247

chain rule, 258–260
common derivatives, 240
complex models, 236
dataset, 270, 271
definition, 235
derivative finding, 241, 242
derivatives/gradients, 236,

237, 239
fully connected layer, single

neuron, 253–256
network layer, 273, 274
network model, 276–278
network performance, 280, 281
network training, 278
partial derivative, 261, 263, 264
property, 241

Backpropagation (BP) algorithm, 9
Balance bar game system, 602, 603
Balance bar game training

process, 613
Batch Normalization, 199, 410, 585
BatchNorm layer

backward propagation, 415–417
data distribution, 414
data normalization, 412, 413
forward propagation, 414
gradient dispersion, 411
hyperparameters, 410
implementation, 417, 418
input distributions, 413
linear model, 412

optimization problems, 412
optimized trajectories, 413
scale and shift technique, 414
Sigmoid function, 411
test phase, 414
training phase, 413

Bellman equation, 642, 650, 651
Bellman optimal equation, 642, 651
Bernoulli distribution, 342
BigGAN, 227, 577
Boolean tensor, 90, 160, 161
Broadcasting

addition, 133
automatic, 137
core idea, 133
definition, 132
dimensions, 134
errors, 136
implementation, 135
optimization methods, 133
principle of universality, 135
shapes, 133, 134
tensor operations, 136
tf.tile, 132

Brute-force algorithm, 52

C
Caffe, 23, 24
Cartoon avatars, 561, 562
Chatbot, 21
CIFAR10 dataset

categories of objects, 425
cifar10_train.py file, 430

Back propagation algorithm (cont.)

INDEX

699

image recognition, 426, 427
loading, 457
TensorFlow, 426

Classical convolutional network
AlexNet, 418–420
DenseNet series, 418
GoogLeNet series, 418, 422–424
ImageNet dataset, 419
ResNet series, 418
VGG series, 418, 421, 422

Classic datasets, 182, 284, 675
Coding table, 485, 678
Common neural network layer, 285
Compile&Fit method, 292, 689
compile() function, 291
Computer vision

artistic style transfer image, 20
image classification, 17, 18
image generation, 19
model generated image, 19, 20
object detection, 18
semantic segmentation, 18, 19
video understanding, 19

Conditional generation adversarial
network (CGAN), 350

Convolutional layer
implementation

classes, 395, 396
custom weights, 393–395

Convolutional layer variants
Dilated/Atrous

Convolution, 431–433
separable convolution

advantages, 446

calculation process, 445
diagram, 445, 446
ordinary convolution,

445, 446
parameter amount, 446

transposed convolution
definition, 433, 440, 441
implementation,

436, 442–444
input/output

relationship, 438
input tensor, 434, 435
matrix

transposition, 440–442
vs. ordinary

convolution, 435–437
output, 439
output expression, 438
output size, 435
padding/input, 435
single-channel feature

map, 434
stride size, 438
TensorFlow, 439
upsampling, 433, 434

Convolutional neural network
(CNN), 205, 226

calculation process, 377
computer vision, 377
hyperparameters, 410
large-scale image

recognition, 376
local correlation/weight

sharing, 376

INDEX

700

multi-channel input/multi
convolution kernel,
385, 386

multi-channel input/single
convolution kernel

calculation process,
381–383, 385

channels, 381
intermediate variables, 384
receptive field elements, 381

network parameters, 461
padding

convolutional operations,
390, 391

diagram, 389, 390
height/width, 392
input/output, 389
neural layer, 392
output, 391, 392
TensorFlow, 393

single-channel input/single
convolution kernel

calculation process, 377–380
Hadamard Product, 378
receptive field

elements, 378
stride size

convolutional
operations, 388

definition, 387
diagram, 387
setting, 389

Convolution kernel function,
372, 375

Critic network, 634, 662
Cross-entropy loss function, 222

mean square function, 248
softmax, 249, 250, 252

Customized data
create code table, 678
create model, 688, 689
create sample, 679, 681
data preprocessing, 685
dataset division, 682, 683
dataset object, 684
label form, 679, 681
network training, 689
testing, 689, 690
training accuracy, 690, 691

Customized network layer, 297, 298
Custom network class, 232,

297, 300
CycleGAN, 575, 576

D
Data augmentation, 346

blocking parts, 351, 352
CGAN generated numbers, 350
cropping, 349
flipping, 348
Gaussian noise, 351, 352
image data, 346
image processing functions, 346
rescaling, 346
rotation, 347

Convolutional neural
network (CNN) (cont.)

INDEX

701

viewing angle, 351, 352
Data enhancement

transformation, 686
Data labeling, 519
Data normalization, 411–413
Data preprocessing, 458, 520, 685
Dataset division

early stopping
Algorithm 1, 329, 330
classification task, 326
epoch, 326, 328
hyperparameters, 327
overfitting, 327, 328
training curve, 328, 329
training error, 326
training process diagram,

327, 328
underfitting, 327

hyperparameters, 324–326
validation set, 324–326

datasets.xxx.load_data()
function, 183

Data types
Boolean, 90
numeric tensor

creation, 87
matrix, 86, 88
numpy() method, 87
scalar, 86, 87
tf.constant () function, 88
three-dimensional, 89
types, 86
vector, 86, 88

string, 89, 90

DCGAN
cartoon avatars, 562, 563
discriminator network, 565, 567
generator network, 563, 565
image generation effect, 572
training, 568, 570, 572
visualization, 568, 570, 572

Decision-making policy, 607
Decoder network, 521, 539, 541
Deep belief networks (DBN), 362
Deep learning, 3, 362, 675

accelerated calculation, 28, 30
automatic gradient

calculation, 30, 32
common neural network

interface, 32
computing power, 14, 15
data volume, 12, 13
development timeline, 11, 12
general intelligence, 16, 17
network scale, 15, 16

DeepMind, 11, 16, 21, 601, 653
Deep Q-Networks (DQNs), 5
Deep residual network

ResBlock implementation,
450, 451

ResNet, 448
ResNet principle, 448–450

Dense connection method, 366
DenseNet

dense block architecture, 452
vs. ResNet, 453
splicing operations, 452
typical architecture, 453

INDEX

702

Deterministic policy, 615, 642, 652
Development environment

installation
Anaconda, 33, 34
common editor, 44
CUDA

cuDNN library
installation, 38

download, 35
Environment Variable

Configuration, 39, 40
installation, 36
NVIDIA graphics, 35
test, 37

TensorFlow
commands, 43
CPU version, 42
GPU installation test, 41, 42
GPU resources, 44
GPU version, 41
import tensorflow as tf, 42
ipython, 41
minimal installation

method, 43
numpy library, 41
pip install, 40
Python libraries, 43
version test, 42, 43

Digital coding, 72
Digital encoding, 73, 186
Dimensionality reduction, 205,

409, 520

Dimensional transformation
bias, 118
copy data, 130–132
definition, 119
dimensions

adding, 125, 126
deleting, 127, 128
swap, 128, 129

linear layer, 118
reshape

changing views, 122, 124
formats, 121
hierarchical relationship, 120
image data, 123
small dimension, 121
stored dimensions, 122
tensor arbitrarily, 123
tensor’s ndim/shape

attributes, 123
tensor view, 121
vector, 120
view transformations, 122

tensor format, 119
Discounted return, 619, 620
Discriminator network, 534, 557, 558
DQN algorithm, 11, 16, 602,

653, 654
Dropout method, 342

diagram, 342
dropout layers, 343–345
network layer, 343
TensorFlow, 343

INDEX

703

E
Earth mover’s distance, 590
Encoder network, 521, 522, 525
Epoch, 59, 82, 326
Error calculation, 74, 75, 187, 204
Evidence lower bound objective

(ELBO), 538
Exponential operations, 139, 140

F
Fashion MNIST image

reconstruction
artificial subjective

evaluation, 530
autoencoder, 527
decoder, 526
effect, 530
encoder, 525
epochs, 531, 532
Fashion MNIST dataset,

523, 524
image fidelity calculation

methods, 530
network training, 528, 529
save_images function, 532
TensorFlow, 524

Feature reduction process, 520
Fine-tuning, 280, 405, 692
First-order-Lipschitz function, 592
fit() function, 290–292
Forward propagation

automatic expansion, 143
data set, 142

input format, 143
mean squared error, 144
network training error, 145
neural network, 142
ReLU activation function, 143
tape.gradient() function, 144
tensor parameters, 142
update parameters, 144

Fully connected network
convolution operation

computer vision, 376
kernels/effect, 376
kernel function, 372, 375
local connection layer, 371
picture/kernel function,

373, 374
replacing, 371
signal processing, 371
1D continuous

convolution, 371
2D operations, 372, 375
weight multiplying and

accumulating, 375
weight sharing, 375

CPU/GPU memory, 365
dense layers, 363
four-layer, 362, 363
GPU memory resources,

364, 365
local correlation

connection mode, 368, 369
definition, 368
Euclidean distance, 367
input/output, 366, 367, 369

INDEX

704

network layer, 366
nodes, 367
pixels, 368
receptive field, 368, 369
2D image data, 366, 367

parameter amount, 364
parameters, 364, 365
summary() function, 364
TensorFlow, 365
weight scalar, 364
weight sharing, 369–371

G
Game learning, 554, 556
Gated Recurrent Unit (GRU)

network structure, 509
reset gate, 509, 510
sentiment classification,

512, 513
update gate, 510, 511
uses, 511, 512

Gaussian connections layer,
397, 398

Generative adversarial network
(GAN), 4, 11, 553

BigGAN, 577, 578
CycleGAN, 575, 576
DCGAN, 574
equal, 576
image generation effect, 573
InfoGAN, 574, 575
network training, 559, 560

objective functions, 560
SAGAN, 577
sub-networks, 556, 557
variants, 573
WGAN, 576

Generator network, 556–558
GoogleNet series, 11, 418
Google Neural Machine

Translation
(GNMT), 20, 226

GPU memory occupation
method, 364

Gradient ascent algorithm, 238, 624
Gradient clipping, 495

max_norm, 496
methods, 494, 495
network training, 497
optimized trajectory, 496, 497

Gradient derivation, 225, 239, 251,
259, 490

Gradient descent
algorithm, 52, 55, 61, 238,
493, 609

Gradient exploding, 490, 493
gradient() method, 202
Gradient propagation, 405–407,

474, 475
Gradient vanishing, 490, 493, 498
Graph convolution network

(GCN), 227
Graphics processing unit

(GPU), 5, 52
Grayscale image, 67, 71, 523
Gym environment, 604, 605

Fully connected network (cont.)

INDEX

705

H
Handwritten digital picture

recognition
build network, 80
calculation process, 69
categories, 73
color picture, 69
complexity, 75, 76
deep learning frameworks, 68
dimensions, 70
flatten, matrix, 71, 74
grayscale information, 66
linear model, 75
load_data () function, 69
MNIST, 66, 67, 69
model training, 80, 82
numbers, 66
polynomial, 76
representation, 67, 68
size, 65
tf.one_hot() function, 73

Himmelblau function, 265–268
Hyperparameter sensitivity,

584, 585

I
Image fidelity calculation

methods, 530
Inference period, 2
InfoGAN, 574, 575
Information technology, 1
initialization (__init__)

method, 297

Initialization method, 96, 298, 635
Internal state transition model, 616

J
JS divergence, 576, 581, 588, 589

K
Keras, 24, 25, 283

backend, 283
frontend, 283
vs. TensorFlow, 283
vs. tf.keras, 284

keras.datasets module, 183

L
Lasso regularization, 335
LeakyReLU function, 211, 245, 246
LeNet-5

argmax function, 401
creation, 399
deep learning frameworks, 398
gradient, 401
layers, 398
loss function, 400
MNIST, 398
network parameters, 399
network structure diagram,

397, 398
optimizer object, 401
parameter amount, 400
summary () function, 399

INDEX

706

tensor size, 397
test accuracy, 401, 402
testing phase, 401
training accuracy, 402
training phase, 400

Linear model
data points, 55
gradient, 61

calculation, 57, 58
main training function, 60
results, 60
training process, 61
updation, 59

mean squared error, 56, 57
sampling data, 56

load_data() function, 184
Logarithmic operations, 140
Long Short-Term Memory (LSTM),

9, 499, 508
forget gate, 501, 502, 505
gate mechanism, 500, 501
input gate, 502, 503, 505
layers

forward propagation, 507
LSTMCell, 506, 507
network, 507
sequential containers, 508
timestamps, 508

memory, 503
output gate, 504, 505
sentiment classification, 513
structure, 499, 500
vectors, 500

M
Machine learning, 3, 315

reinforcement learning, 4, 5
supervised learning, 4
unsupervised learning, 4

Machine Translation, 2, 20, 21
Markov decision process (MDP),

617, 618
Markov property, 617
Mathematical operations

addition, 137
division, 137
exponential, 139, 140
logarithmic, 140
matrix multiplication, 141
multiplication, 137
power operation, 138, 139
subtraction, 137

matplotlib library, 182, 266
Matrix multiplication, 141,

440, 491–493
Maximum likelihood estimation

method, 536
Maze problem-V function, 643
Mean square error (MSE) function,

221, 262
Metrics, 305

accuracy, 306, 307
clear container, 306
create container, 305
statistical data, 306
write data, 305

Mode collapse, 576, 585, 586

LeNet-5 (cont.)

INDEX

707

Model-based reinforcement
learning, 618

Model complexity, 76–78
Model-free reinforcement

learning, 618
Model.predict(x) method, 292
Model saving/loading, 293

network method, 295
Savesmodel method, 296
tensor method, 293, 295

Model testing, 293
Model zoo, load model, 302, 303
Monte Carlo method, 627, 649, 650
MP neuron models, 7
MuJoCo physical environment

simulator, 604
Multilayer perceptron (MLP), 361

N
Nash equilibrium, 578, 579

discriminator state, 580, 581
generator state, 581–583
point, 584

Natural language processing
(NLP), 3, 20, 21, 464, 577

Network layers, 287, 330–332
Network model capacity

appropriate capability, 320
vs.data distribution, 318, 319
dataset/real function, 319
vs.error, 317, 318
hypothesis space, 316
polynomial capability, 316, 317

sampling, 316, 319
Network models, 294, 295, 447
Network training process, 364, 458,

459, 570
Neural networks, 3, 5, 6

activation function, 206
and deep learning, 361
error calculation, 220, 222–225
fallback mechanism, 447
four-layer, 201
fully connected layer

activation function, 194, 195
implementation, 197, 198
tensor mode

implementation, 196
function, 520
goal, 375
gradient information, 447
hyperparameters, 200
inputs/outputs, 71
layer mode

implementation, 203
layers/parameters, 330
MPG

create network, 231, 232
dataset, 228, 229, 231
training/testing, 232–234

optimization, 204, 205
optimization goal, 537
output layer, design

[0, 1] interval, 214, 215
(-1, 1) interval, 220
[0, 1] interval, sum 1, 216–218
real number space, 214

INDEX

708

types, 213
perceptron, 191–194
Skip Connection, 447, 448
supervision signal, 520
tensor mode implementation,

201, 202
theoretical research, 362
types

attention mechanism, 227
CNN, 226
GCN, 227
RNN, 226

VGG13 model, 447, 448
Neuron model

binary linear equations, 50
data points, 50
mapping relationship, 49
mathematical structure, 48
MSE, 51
observation errors, 50, 51
parameters, 49
single input linear, 49
total error, 51

Neurons, 47, 48
Nonlinear model, 61, 76, 77, 315
Numeric tensor, 86, 91, 98
Numpy, 184, 243

O
Objective functions, 239, 241, 242,

560, 631
Occam’s razor principle, 321

One-hot encoding, 72, 73
OpenAI Gym environment, 604
Operating systems, 32
Optimization method

analytical solution, 52
functions

derivative, 53
direction, 54
gradient, 54
one-dimensional, 54

gradient descent algorithm, 55
parameters, 52, 55

Optimization methods, 78, 79, 133
optimizer() function, 636, 637
Overfitting, 318, 322, 323

dataset, 353, 354
dropout layer, 356, 357
network layers, 355
regularization, 357, 358, 360

P
Parameter normalization, 410
Param number column, 288
Partially observable Markov

decision process
(POMDP), 617

Perceptron, 7
Pokémon dataset, 676, 677
Pokémon Go, 676
Policy gradient method

bias, 626, 627
causality, 625
importance sampling, 629, 631

Neural networks (cont.)

INDEX

709

improvements, 625
PPO algorithm, 632, 633
REINFORCE algorithm, 625
REINFORCE algorithm, bias, 628
training process, 624

Policy network, 607, 608, 610,
621, 633

Polynomial function model, 333
Pooling layer, 407

local correlation, 407
max pooling, 408, 409
output, 409, 410
receptive field, 407
reduction operations, 409

Power operations, 138, 139
PPO2 algorithm, 633, 638
PPO algorithm, 632, 640
Pre-trained word vector model

accuracy, 516
code table, 515
Embedding layer, 516
GloVe, 514
Python file IO code, 515
RNN, 516, 517

Principal component analysis
(PCA), 520

Proximal Policy Optimization
(PPO), 5

Python interpreter, 32, 33
PyTorch, 23–25, 28

Q
Q network, 656

R
Reconstruction error function, 522
Rectified linear unit (ReLU), 10, 208
Recurrent neural network

(RNN), 226
Embedding layer, 467
expanded, 472
folded, 473
fully connected layer, 468, 469
global semantics, 471, 472
layers

SimpleRNN, 476, 481, 482
SimpleRNNCell, 476–481
TensorFlow, 476

network structure, 499, 500
sentiment classification

dataset, 484–487
network model, 487, 488
network structure, 483
training/testing, 489, 490

sentiment classification task,
467, 468

sequence signals, 467
short-term memory, 498, 499
Tanh function, 473
tensors, 473
time stamp, 472
weight sharing, 470

Recurrent neural networks, 205
Regularization

constraint, 333
epochs, 336
L0 regularization, 334

INDEX

710

L1 regularization, 335
L2 regularization, 335
network capacity, 336
optimization algorithm, 334
overfitting, 336
parameters, 337, 338, 340, 341
underfitting, 336
weight variation, 339

Reinforcement learning, 4, 5, 10,
21, 22, 601, 614

ReLU activation function, 299, 420,
451, 526

ReLU nonlinear activation
function, 429

reset_states() function, 306
ResNet18

build_resblock, 455, 457
convolutional neural network, 455
creation, 457
image size, 453
implementation, 454, 455
network structure, 453, 454
parameters, 459
Res Blocks, 457

ResNet series, 11, 688
result() function, 306
Ridge regularization, 335
Robotics, 21, 22

S
SavedModel method, 296
Scikit-learn, 23

select_action function, 635
Self-Attention GAN (SAGAN), 577
Self-supervised learning, 520
Sequence representation method

Cosine similarity diagram, 464
Embedding layer, 464–466
one-dimensional vector, 462
one-hot encoding method, 463
pre-trained word vectors,

466, 467
sentences, 462
sequence signal, 462
2-dimensional tensor, 462

Sequential container, 286, 289
Sequential container method, 301
Shallow neural network, 362

BP algorithm, 9
development timeline, 10
Hopfield network, 9
LeNet, 9
MP neuron models, 7
perceptron, 7–9
SVMs, 10

Sigmoid activation function, 253,
274, 411

Sigmoid function, 206, 275,
411, 593

Single-input neuron model, 52
Single-output model structure, 70
Slicing

abbreviations, 112
dimensions, 115, 116
image tensor, 112
implementation, 115

Regularization (cont.)

INDEX

711

vs. indexing, 117
methods, 113, 114
read pictures, 116, 117
sequence vector, 114
start, end, 112, 113

Softmax activation function, 400
Softmax function, 216–218, 249
Softmax layer, 218, 285
Spatial dimension, 461
State action reward state action

(SARSA), 653
State-action value function,

645–647, 649
Statistical learning theory, 320
summary() function, 287, 364
Supervised learning, 4, 519
Support vector machines

(SVMs), 4, 10

T
Tanh function, 212, 247
Temporal difference, 650
Temporal dimension, 19, 461
TensorBoard, 307

browser side, 309, 310
histogram, 312
model side, 308, 309
snapshot, 310, 311

TensorFlow, 25, 85
batch training, 185
classic datasets, 183
comparison, 160
copy, 166

data limiting, 166, 167
epoch training, 187
fill, 162, 164, 165
hands-On MNIST

dataset, 188–190
merge, 147–151
operations

tf.boolean_mask, 172, 174
tf.gather, 168–170
tf.gather_nd, 171
tf.meshgrid, 180, 182
tf.scatter_nd, 178–180
tf.where, 175, 176, 178

preprocessing, 186, 187
shuffling, 185
split, 152, 154
statistics

max/min/mean/sum, 156,
158, 159

norms, 155
TensorFlow 2, 26–28
TensorFlow automatic

differentiation, 611
Tensors

creation
All-0/All-1, 96, 97
arrays/lists, 95, 96
distributions, 99, 100
numeric, 98
sequence, 101

four-dimensional, 108, 109
matrix, 105, 106
numerical precision

Boolean/integer types, 93

INDEX

712

create tensor, 91
deep learning algorithms, 92
floating-point numbers, 91
tensor precision, 92
tf.cast function, 92
type conversion, 92, 93
types, 91

optimization, 93, 95
scalar, 102, 103
storage, 120
three-dimensional, 106–108
vectors, 103, 104
view, 120

tf.gather function, 168
tf.gather_nd function, 171, 175
tf.meshgrid function, 180, 181
tf.reduce_sum

functions, 156
Theano, 23, 283
Torch, 24
Trainable params, 288
trainable_variables, 299
Transfer learning, 691–694
TRPO algorithm, 632

U
Underfitting, 318, 321, 322
Universal intelligent

mechanism, 16
Unsupervised learning, 4, 519
update_state function, 305, 306

V
validation_data parameter, 291
Value function method

DQN algorithm, 653
DQN variants, 655, 656
estimation, 649
network main process, 659
policy improvement, 651,

652, 658
Q network, 660
SARSA, 653
state action value, 645–647, 649
state value, 641, 643, 645
training process, 653

Vapnik-Chervonenkis
dimension, 320

Variational autoencoders (VAE)
architecture, 541–543
dataset, 536
decoder, 536
forward calculation process, 544
image reconstruction

decoder, 544
Fashion MNIST pictures, 542
implementation, 544, 545
mean/ hidden vectors, 543
network layers, 543
network training, 545, 546
picture generation, 547–550
reparameterize function, 545

KL divergence, 537, 539
L(ϕ, θ) function, 539
neural network, 537

Tensors (cont.)

INDEX

713

optimization objective, 540
prior distribution, 536
reparameterization trick, 541
structure, 535, 536
sub-networks, 536
variational inference, 537

VGG13 dataset
convolution sub-network,

427, 428
fully connected sub- network, 429

merging parameters, 430
network parameters, 429
network structure, 427

Visdom snapshot, 314
Visualization tool, 307

W, X, Y, Z
WGAN algorithm, 576, 587
WGAN-GP model, 595, 596

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Artificial Intelligence
	1.1	 Artificial Intelligence in Action
	1.1.1 Artificial Intelligence Explained
	1.1.2 Machine Learning
	1.1.3 Neural Networks and Deep Learning

	1.2	 The History of Neural Networks
	1.2.1 Shallow Neural Networks
	1.2.2 Deep Learning

	1.3	 Deep Learning Characteristics
	1.3.1 Data Volume
	1.3.2 Computing Power
	1.3.3 Network Scale
	1.3.4 General Intelligence

	1.4	 Deep Learning Applications
	1.4.1 Computer Vision
	1.4.2 Natural Language Processing
	1.4.3 Reinforcement Learning

	1.5	 Deep Learning Framework
	1.5.1 Major Frameworks
	1.5.2 TensorFlow 2 and 1.x
	1.5.3 Demo

	1.6	 Development Environment Installation
	1.6.1 Anaconda Installation
	1.6.2 CUDA Installation
	1.6.3 TensorFlow Installation
	1.6.4 Common Editor Installation

	1.7	 Summary
	1.8	 Reference

	Chapter 2: Regression
	2.1 Neuron Model
	2.2 Optimization Method
	2.3 Linear Model in Action
	2.4 Summary
	2.5 References

	Chapter 3: Classification
	3.1 Handwritten Digital Picture Dataset
	3.2 Build a Model
	3.3 Error Calculation
	3.4 Do We Really Solve the Problem?
	3.5 Nonlinear Model
	3.6 Model Complexity
	3.7 Optimization Method
	3.8 Hands-On Handwritten Digital Image Recognition
	3.8.1 Build the Network
	3.8.2 Model Training

	3.9 Summary
	3.10 Reference

	Chapter 4: Basic TensorFlow
	4.1 Data Types
	4.1.1 Numeric
	4.1.2 String
	4.1.3 Boolean

	4.2 Numerical Precision
	4.3 Tensors to Be Optimized
	4.4 Create Tensors
	4.4.1 Create Tensors from Arrays and Lists
	4.4.2 Create All-0 or All-1 Tensors
	4.4.3 Create a Customized Numeric Tensor
	4.4.4 Create a Tensor from a Known Distribution
	4.4.5 Create a Sequence

	4.5 Typical Applications of Tensors
	4.5.1 Scalar
	4.5.2 Vector
	4.5.3 Matrix
	4.5.4 Three-Dimensional Tensor
	4.5.5 Four-Dimensional Tensor

	4.6 Indexing and Slicing
	4.6.1 Indexing
	4.6.2 Slicing
	4.6.3 Slicing Summary

	4.7 Dimensional Transformation
	4.7.1 Reshape
	4.7.2 Add and Delete Dimensions
	4.7.3 Swap Dimensions
	4.7.4 Copy Data

	4.8 Broadcasting
	4.9 Mathematical Operations
	4.9.1 Addition, Subtraction, Multiplication and Division
	4.9.2 Power Operations
	4.9.3 Exponential and Logarithmic Operations
	4.9.4 Matrix Multiplication

	4.10 Hands-On Forward Propagation

	Chapter 5: Advanced TensorFlow
	5.1 Merge and Split
	5.1.1 Merge
	5.1.2 Split

	5.2 Common Statistics
	5.2.1 Norm
	5.2.2 Max, Min, Mean, and Sum

	5.3 Tensor Comparison
	5.4 Fill and Copy
	5.4.1 Fill
	5.4.2 Copy

	5.5 Data Limiting
	5.6 Advanced Operations
	5.6.1 tf.gather
	5.6.2 tf.gather_nd
	5.6.3 tf.boolean_mask
	5.6.4 tf.where
	5.6.5 tf.scatter_nd
	5.6.6 tf.meshgrid

	5.7 Load Classic Datasets
	5.7.1 Shuffling
	5.7.2 Batch Training
	5.7.3 Preprocessing
	5.7.4 Epoch Training

	5.8 Hands-On MNIST Dataset

	Chapter 6: Neural Networks
	6.1 Perceptron
	6.2 Fully Connected Layer
	6.2.1 Tensor Mode Implementation
	6.2.2 Layer Implementation

	6.3 Neural Network
	6.3.1 Tensor Mode Implementation
	6.3.2 Layer Mode Implementation
	6.3.3 Optimization

	6.4 Activation function
	6.4.1 Sigmoid
	6.4.2 ReLU
	6.4.3 LeakyReLU
	6.4.4 Tanh

	6.5 Design of Output Layer
	6.5.1 Common Real Number Space
	6.5.2 [0, 1] Interval
	6.5.3 [0,1] Interval with Sum 1
	6.5.4 (-1, 1) Interval

	6.6 Error Calculation
	6.6.1 Mean Square Error Function
	6.6.2 Cross-Entropy Error Function

	6.7 Types of Neural Networks
	6.7.1 Convolutional Neural Network
	6.7.2 Recurrent Neural Network
	6.7.3 Attention Mechanism Network
	6.7.4 Graph Convolutional Neural Network

	6.8 Hands-On of Automobile Fuel Consumption Prediction
	6.8.1 Dataset
	6.8.2 Create a Network
	6.8.3 Training and Testing

	6.9 References

	Chapter 7: Backward Propagation Algorithm
	7.1 Derivatives and Gradients
	7.2 Common Properties of Derivatives
	7.2.1 Common Derivatives
	7.2.2 Common Property of Derivatives
	7.2.3 Hands-On Derivative Finding

	7.3 Derivative of Activation Function
	7.3.1 Derivative of Sigmoid Function
	7.3.2 Derivative of ReLU Function
	7.3.3 Derivative of LeakyReLU Function
	7.3.4 Derivative of Tanh Function

	7.4 Gradient of Loss Function
	7.4.1 Gradient of Mean Square Error Function
	7.4.2 Gradient of Cross-Entropy Function

	7.5 Gradient of Fully Connected Layer
	7.5.1 Gradient of a Single Neuron
	7.5.2 Gradient of Fully Connected Layer

	7.6 Chain Rule
	7.7 Back Propagation Algorithm
	7.8 Hands-On Optimization of Himmelblau
	7.9 Hands-On Back Propagation Algorithm
	7.9.1 Dataset
	7.9.2 Network Layer
	7.9.3 Network model
	7.9.4 Network Training
	7.9.5 Network Performance

	7.10 References

	Chapter 8: Keras Advanced API
	8.1 Common Functional Modules
	8.1.1 Common Network Layer Classes
	8.1.2 Network Container

	8.2 Model Configuration, Training, and Testing
	8.2.1 Model Configuration
	8.2.2 Model Training
	8.2.3 Model Testing

	8.3 Model Saving and Loading
	8.3.1 Tensor Method
	8.3.2 Network Method
	8.3.3 SavedModel method

	8.4 Custom Network
	8.4.1 Custom Network Layer
	8.4.2 Customized Network

	8.5 Model Zoo
	8.5.1 Load Model

	8.6 Metrics
	8.6.1 Create a Metrics Container
	8.6.2 Write Data
	8.6.3 Read Statistical Data
	8.6.4 Clear the Container
	8.6.5 Hands-On Accuracy Metric

	8.7 Visualization
	8.7.1 Model Side
	8.7.2 Browser Side

	8.8 Summary

	Chapter 9: Overfitting
	9.1 Model Capacity
	9.2 Overfitting and Underfitting
	9.2.1 Underfitting
	9.2.2 Overfitting

	9.3 Dataset Division
	9.3.1 Validation Set and Hyperparameters
	9.3.2 Early Stopping

	9.4 Model Design
	9.5 Regularization
	9.5.1 L0 Regularization
	9.5.2 L1 Regularization
	9.5.3 L2 Regularization
	9.5.4 Regularization Effect

	9.6 Dropout
	9.7 Data Augmentation
	9.7.1 Rotation
	9.7.2 Flip
	9.7.3 Cropping
	9.7.4 Generate Data
	9.7.5 Other Methods

	9.8 Hands-On Overfitting
	9.8.1 Build the Dataset
	9.8.2 Influence of the Number of Network Layers
	9.8.3 Impact of Dropout
	9.8.4 Impact of Regularization

	9.9 References

	Chapter 10: Convolutional Neural Networks
	10.1 Problems with Fully Connected N
	10.1.1 Local Correlation
	10.1.2 Weight Sharing
	10.1.3 Convolution Operation

	10.2 Convolutional Neural Network
	10.2.1 Single-Channel Input and Single Convolution Kernel
	10.2.2 Multi-channel Input and Single Convolution Kernel
	10.2.3 Multi-channel Input and Multi-convolution Kernel
	10.2.4 Stride Size
	10.2.5 Padding

	10.3 Convolutional Layer Implementation
	10.3.1 Custom Weights
	10.3.2 Convolutional Layer Classes

	10.4 Hands-On LeNet-5
	10.5 Representation Learning
	10.6 Gradient Propagation
	10.7 Pooling Layer
	10.8 BatchNorm Layer
	10.8.1 Forward Propagation
	10.8.2 Backward Propagation
	10.8.3 Implementation of BatchNormalization layer

	10.9 Classical Convolutional Network
	10.9.1 AlexNet
	10.9.2 VGG Series
	10.9.3 GoogLeNet

	10.10 Hands-On CIFAR10 and VGG13
	10.11 Convolutional Layer Variants
	10.11.1 Dilated/Atrous Convolution
	10.11.2 Transposed Convolution
	o + 2p − k = n * s
	o + 2p − k ≠n * s
	Matrix Transposition
	Transposed Convolution Implementation

	10.11.3 Separate Convolution

	10.12 Deep Residual Network
	10.12.1 ResNet Principle
	10.12.2 ResBlock Implementation

	10.13 DenseNet
	10.14 Hands-On CIFAR10 and ResNet18
	10.15 References

	Chapter 11: Recurrent Neural Network
	11.1 Sequence Representation Method
	11.1.1 Embedding Layer
	11.1.2 Pre-trained Word Vectors

	11.2 Recurrent Neural Network
	11.2.1 Is a Fully Connected Layer Feasible?
	11.2.2 Shared Weight
	11.2.3 Global Semantics
	11.2.4 Recurrent Neural Network

	11.3 Gradient Propagation
	11.4 How to Use RNN Layers
	11.4.1 SimpleRNNCell
	11.4.2 Multilayer SimpleRNNCell Network
	11.4.3 SimpleRNN Layer

	11.5 Hands-On RNN Sentiment Classification
	11.5.1 Dataset
	11.5.2 Network Model
	11.5.3 Training and Testing

	11.6 Gradient Vanishing and Gradient Exploding
	11.6.1 Gradient Clipping
	11.6.2 Gradient Vanishing

	11.7 RNN Short-Term Memory
	11.8 LSTM Principle
	11.8.1 Forget Gate
	11.8.2 Input Gate
	11.8.3 Update Memory
	11.8.4 Output Gate
	11.8.5 Summary

	11.9 How to Use the LSTM Layer
	11.9.1 LSTMCell
	11.9.2 LSTM layer

	11.10 GRU Introduction
	11.10.1 Reset Door
	11.10.2 Update Gate
	11.10.3 How to Use GRU

	11.11 Hands-On LSTM/GRU Sentiment Classification
	11.11.1 LSTM Model
	11.11.2 GRU model

	11.12 Pre-trained Word Vectors
	11.13 Pre-trained Word Vectors
	11.14 References

	Chapter 12: Autoencoder
	12.1 Principle of Autoencoder
	12.2 Hands-On Fashion MNIST Image Reconstruction
	12.2.1 Fashion MNIST Dataset
	12.2.2 Encoder
	12.2.3 Decoder
	12.2.4 Autoencoder
	12.2.5 Network Training
	12.2.6 Image Reconstruction

	12.3 Autoencoder Variants
	12.3.1 Dropout Autoencoder
	12.3.2 Adversarial Autoencoder

	12.4 Variational Autoencoder
	12.4.1 Principle of VAE
	12.4.2 Reparameterization Trick

	12.5 Hands-On VAE Image Reconstruction
	12.5.1 VAE model
	12.5.2 Reparameterization Trick
	12.5.3 Network Training
	12.5.4 Image Generation

	12.6 Summary
	12.7 References

	Chapter 13: Generative Adversarial Networks
	13.1 Examples of Game Learning
	13.2 GAN Principle
	13.2.1 Network Structure
	13.2.2 Network Training
	13.2.3 Unified Objective Function

	13.3 Hands-On DCGAN
	13.3.1 Cartoon Avatar Dataset
	13.3.2 Generator
	13.3.3 Discriminator
	13.3.4 Training and Visualization

	13.4 GAN Variants
	13.4.1 DCGAN
	13.4.2 InfoGAN
	13.4.3 CycleGAN
	13.4.4 WGAN
	13.4.5 Equal GAN
	13.4.6 Self-Attention GAN
	13.4.7 BigGAN

	13.5 Nash Equilibrium
	13.5.1 Discriminator State
	13.5.2 Generator State
	13.5.3 Nash Equilibrium Point

	13.6 GAN Training Difficulty
	13.6.1 Hyperparameter Sensitivity
	13.6.2 Model Collapse

	13.7 WGAN Principle
	13.7.1 JS Divergence Disadvantage
	13.7.2 EM Distance

	13.8 Hands-On WGAN-GP
	13.9 References

	Chapter 14: Reinforcement Learning
	14.1 See It Soon
	14.1.1 Balance Bar Game
	14.1.2 Gym Platform
	14.1.3 Policy Network
	14.1.4 Gradient Update
	14.1.5 Hands-On Balance Bar Game

	14.2 Reinforcement Learning Problems
	14.2.1 Markov Decision Process
	14.2.2 Objective Function

	14.3 Policy Gradient Method
	14.3.1 Reinforce Algorithm
	14.3.2 Improvement of the Original Policy Gradient Method
	14.3.3 REINFORCE Algorithm with Bias
	14.3.4 Importance Sampling
	14.3.5 PPO Algorithm
	14.3.6 Hands-On PPO

	14.4 Value Function Method
	14.4.1 Value Function
	14.4.2 Value Function Estimation
	14.4.3 Policy Improvement
	14.4.4 SARSA Algorithm
	14.4.5 DQN Algorithm
	14.4.6 DQN Variants
	14.4.7 Hands-On DQN

	14.5 Actor-Critic Method
	14.5.1 Advantage AC Algorithm
	14.5.2 A3C Algorithm
	14.5.3 Hands-On A3C

	14.6 Summary
	14.7 References

	Chapter 15: Customized Dataset
	15.1 Pokémon Go Dataset
	15.2 Customized Dataset Loading
	15.2.1 Create Code Table
	15.2.2 Create Sample and Label Form
	15.2.3 Dataset Division

	15.3 Hands-On Pokémon Dataset
	15.3.1 Create Dataset Object
	15.3.2 Data Preprocessing
	15.3.3 Create Model
	15.3.4 Network Training and Testing

	15.4 Transfer Learning
	15.4.1 Principles of Transfer Learning
	15.4.2 Hands-On Transfer Learning

	15.5 Summary

	Index

