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CHAPTER 1

Introduction to 
Artificial Intelligence

What we want is a machine that can learn from experience.

—Alan Turing

1.1  Artificial Intelligence in Action
Information technology is the third industrial revolution in human history. 

The popularity of computers, the Internet, and smart home technology 

has greatly facilitated people’s daily lives. Through programming, humans 

can hand over the interaction logic designed in advance to the machine 

to execute repeatedly and quickly, thereby freeing humans from simple 

and tedious repetitive labor. However, for tasks that require a high level 

of intelligence, such as face recognition, chat robots, and autonomous 

driving, it is difficult to design clear logic rules. Therefore, traditional 

programming methods are powerless to those kinds of tasks, whereas 

artificial intelligence (AI), as the key technology to solve this kind of 

problem, is very promising.

With the rise of deep learning algorithms, AI has achieved or even 

surpassed humanlike intelligence on some tasks. For example, the 

AlphaGo program has defeated Ke Jie, one of the strongest human Go 

https://doi.org/10.1007/978-1-4842-7915-1_1#DOI
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players, and OpenAI Five has beaten the champion team OG on the Dota 

2 game. In the meantime, practical technologies such as face recognition, 

intelligent speech, and machine translation have entered people’s daily 

lives. Now our lives are actually surrounded by AI. Although the current 

level of intelligence that can be reached is still a long way from artificial 

general intelligence (AGI), we still firmly believe that the era of AI has 

arrived.

Next, we will introduce the concepts of AI, machine learning, and deep 

learning, as well as the connections and differences between them.

1.1.1  Artificial Intelligence Explained
AI is a technology that allows machines to acquire intelligent and 

inferential mechanisms like humans. This concept first appeared at 

the Dartmouth Conference in 1956. This is a very challenging task. At 

present, human beings cannot yet have a comprehensive and scientific 

understanding of the working mechanism of the human brain. It is 

undoubtedly more difficult to make intelligent machines that can reach 

the level of the human brain. With that being said, machines that archive 

similar to or even surpass human intelligence in some way have been 

proven to be feasible.

How to realize AI is a very broad question. The development of AI 

has mainly gone through three stages, and each stage represents the 

exploration footprint of the human trying to realize AI from different 

angles. In the early stage, people tried to develop intelligent systems by 

summarizing and generalizing some logical rules and implementing 

them in the form of computer programs. But such explicit rules are often 

too simple and are difficult to be used to express complex and abstract 

concepts and rules. This stage is called the inference period.

In the 1970s, scientists tried to implement AI through knowledge 

database and reasoning. They built a large and complex expert system 

to simulate the intelligence level of human experts. One of the biggest 
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difficulties with these explicitly specified rules is that many complex, 

abstract concepts cannot be implemented in concrete code. For example, 

the process of human recognition of pictures and understanding of 

languages cannot be simulated by established rules at all. To solve such 

problems, a research discipline that allowed machines to automatically 

learn rules from data, known as machine learning, was born. Machine 

learning became a popular subject in AI in the 1980s. This is the 

second stage.

In machine learning, there is a direction to learn complex, abstract 

logic through neural networks. Research on the direction of neural 

networks has experienced two ups and downs. Since 2012, the applications 

of deep neural network technology have made major breakthroughs 

in fields like computer vision, natural language processing (NLP), and 

robotics. Some tasks have even surpassed the level of human intelligence. 

This is the third revival of AI. Deep neural networks eventually have a 

new name – deep learning. Generally speaking, the essential difference 

between neural networks and deep learning is not large. Deep learning 

refers to models or algorithms based on deep neural networks. The 

relationship between artificial intelligence, machine learning, neural 

networks, and deep learning is shown in Figure 1-1.

Artificial
Intelligence

Machine
Learning

Neural
Network

Deep Learning

Figure 1-1. Relationship of artificial intelligence, machine learning, 
neural networks, and deep learning
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1.1.2  Machine Learning
Machine learning can be divided into supervised learning, unsupervised 

learning, and reinforcement learning, as shown in Figure 1-2.

Machine
Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Figure 1-2. Categories of machine learning

Supervised Learning. The supervised learning data set contains 

samples x and sample labels y. The algorithm needs to learn the mapping 

relationship fθ:  x → y, where fθ represents the model function and θ are 

the parameters of the model. During training, the model parameters θ are 

optimized by minimizing errors between the model prediction and the real 

value y, so that the model can have more accurate prediction. Common 

supervised learning models include linear regression, logistic regression, 

support vector machines (SVMs), and random forests.

Unsupervised Learning. Collecting labeled data is often more 

expensive. For a sample-only data set, the algorithm needs to discover the 

modalities of the data itself. This kind of algorithm is called unsupervised 

learning. One type of algorithm in unsupervised learning uses itself as 

a supervised signal, that is, fθ: x → x, which is known as self-supervised 

learning. During training, parameters are optimized by minimizing the 

error between the model’s predicted value fθ(x) and itself x. Common 

unsupervised learning algorithms include self-encoders and generative 

adversarial networks (GANs).

Reinforcement Learning. This is a type of algorithm that learns 

strategies for solving problems by interacting with the environment. Unlike 

supervised and unsupervised learning, reinforcement learning problems 
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do not have a clear “correct” action supervision signal. The algorithm 

needs to interact with the environment to obtain a lagging reward signal 

from the environmental feedback. Therefore, it is not possible to calculate 

the errors between model Reinforcement Learning prediction and 

“correct values” to optimize the network directly. Common reinforcement 

learning algorithms are Deep Q-Networks (DQNs) and Proximal Policy 

Optimization (PPO).

1.1.3  Neural Networks and Deep Learning
Neural network algorithms are a class of algorithms that learn from data 

based on neural networks. They still belong to the category of machine 

learning. Due to the limitation of computing power and data volume, 

early neural networks were shallow, usually with around one to four 

layers. Therefore, the network expression ability was limited. With the 

improvement of computing power and the arrival of the big data era, 

highly parallelized graphics processing units (GPUs) and massive data 

make training of large-scale neural networks possible.

In 2006, Geoffrey Hinton first proposed the concept of deep learning. 

In 2012, AlexNet, an eight-layer deep neural network, was released and 

achieved huge performance improvements in the image recognition 

competition. Since then, neural network models with dozens, hundreds, 

and even thousands of layers have been developed successively, showing 

strong learning ability. Algorithms implemented using deep neural 

networks are generally referred to as deep learning models. In essence, 

neural networks and deep learning can be considered the same.

Let’s simply compare deep learning with other algorithms. As shown 

in Figure 1-3, rule-based systems usually write explicit logic, which is 

generally designed for specific tasks and is not suitable for other tasks. 

Traditional machine learning algorithms artificially design feature 

detection methods with certain generality, such as SIFT and HOG 

features. These features are suitable for a certain type of tasks and have 
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certain generality. But the performance highly depends on how to design 

those features. The emergence of neural networks has made it possible 

for computers to design those features automatically through neural 

networks without human intervention. Shallow neural networks typically 

have limited feature extraction capability, while deep neural networks 

are capable of extracting high-level, abstract features and have better 

performance.

Handcrafed
Rules

Output Logic

Handcrafted 
Features

Output Logic

Shallow 
Network

Output Sub-
Network

Low-level 
Network

Mid-level 
Network

High-level 
Network

Output Sub-
Network

Rule-based System Traditional ML Neural Network Deep Learning

Figure 1-3. Comparison of deep learning and other algorithms

1.2  The History of Neural Networks
We divide the development of neural networks into shallow neural 

network stages and deep learning stages, with 2006 as the dividing point. 

Before 2006, deep learning developed under the name of neural networks 

and experienced two ups and two downs. In 2006, Geoffrey Hinton first 

named deep neural networks as deep learning, which started its third 

revival.
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1.2.1  Shallow Neural Networks
In 1943, psychologist Warren McCulloch and logician Walter Pitts 

proposed the earliest mathematical model of neurons based on the 

structure of biological neurons, called MP neuron models after their last 

name initials. The model f  (x) = h(g(x)), where g(x) = ∑i xi, xi ∈ {0, 1}, takes 

values from g(x) to predict output values as shown in Figure 1-4. If g(x) ≥ 0, 

output is 1; if g(x) < 0, output is 0. The MP neuron models have no learning 

ability and can only complete fixed logic judgments.

ℎ
∈ {0,1}

Figure 1-4. MP neuron model

In 1958, American psychologist Frank Rosenblatt proposed the first 

neuron model that can automatically learn weights, called perceptron. As 

shown in Figure 1-5, the error between the output value o and the true value 

y is used to adjust the weights of the neurons {w1, w2, …, wn}. Frank Rosenblatt 

then implemented the perceptron model based on the “Mark 1 perceptron” 

hardware. As shown in Figures 1-6 and 1-7, the input is an image sensor with 

400 pixels, and the output has eight nodes. It can successfully identify some 

English letters. It is generally believed that 1943–1969 is the first prosperous 

period of artificial intelligence development. 

Error

Figure 1-5. Perceptron model
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Figure 1-6. Frank Rosenblatt and Mark 1 perceptron1

Figure 1-7. Mark 1 perceptron network architecture2

1 Picture source: https://slideplayer.com/slide/12771753/
2 Picture source: www.glass-bead.org/article/machines-that-morph-logic/? 
lang=enview
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In 1969, the American scientist Marvin Minsky and others pointed 

out the main flaw of linear models such as perceptrons in the book 

Perceptrons. They found that perceptrons cannot handle simple linear 

inseparable problems such as XOR. This directly led to the trough period of 

perceptron-related research on neural networks. It is generally considered 

that 1969–1982 was the first winter of artificial intelligence.

Although it was in the trough period of AI, there were still many 

significant studies published one after another. The most important one 

is the backpropagation (BP) algorithm, which is still the core foundation 

of modern deep learning algorithms. In fact, the mathematical idea of the 

BP algorithm has been derived as early as the 1960s, but it had not been 

applied to neural networks at that time. In 1974, American scientist Paul 

Werbos first proposed that the BP algorithm can be applied to neural 

networks in his doctoral dissertation. Unfortunately, this result has not 

received enough attention. In 1986, David Rumelhart et al. published a 

paper using the BP algorithm for feature learning in Nature. Since then, the 

BP algorithm started gaining widespread attention.

In 1982, with the introduction of John Hopfield’s cyclically connected 

Hopfield network, the second wave of artificial intelligence renaissance 

was started from 1982 to 1995. During this period, convolutional neural 

networks, recurrent neural networks, and backpropagation algorithms 

were developed one after another. In 1986, David Rumelhart, Geoffrey 

Hinton, and others applied the BP algorithm to multilayer perceptrons. 

In 1989, Yann LeCun and others applied the BP algorithm to handwritten 

digital image recognition and achieved great success, which is known as 

LeNet. The LeNet system was successfully commercialized in zip code 

recognition, bank check recognition, and many other systems. In 1997, one 

of the most widely used recurrent neural network variants, Long Short-

Term Memory (LSTM), was proposed by Jürgen Schmidhuber. In the same 

year, a bidirectional recurrent neural network was also proposed.
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Unfortunately, the study of neural networks has gradually entered 

a trough with the rise of traditional machine learning algorithms 

represented by support vector machines (SVMs), which is known as the 

second winter of artificial intelligence. Support vector machines have 

a rigorous theoretical foundation, require a small number of training 

samples, and also have good generalization capabilities. In contrast, neural 

networks lack theoretical foundation and are hard to interpret. Deep 

networks are difficult to train, and the performance is normal. Figure 1-8 

shows the significant time of AI development between 1943 and 2006.

1943

Neuron

Turing Test
1950

1958

Perceptron

XOR Problem

1969

1974

Backpropagation

Hopfield
Network
1982

1985

Boltzmann
Machine

Restricted
Boltzmann
1986

RNN
1986

1986

MLP
1990

LeNet

Bi-directional
RNN
1997

1997

LSTM
2006

Deep Belief
Network

Figure 1-8. Shallow neural network development timeline

1.2.2  Deep Learning
In 2006, Geoffrey Hinton et al. found that multilayer neural networks can 

be better trained through layer-by-layer pre-training and achieved a better 

error rate than SVM on the MNIST handwritten digital picture data set, 

turning on the third artificial intelligence revival. In that paper, Geoffrey 

Hinton first proposed the concept of deep learning. In 2011, Xavier Glorot 

proposed a Rectified Linear Unit (ReLU) activation function, which is one 

of the most widely used activation functions now. In 2012, Alex Krizhevsky 

proposed an eight-layer deep neural network AlexNet, which used the 

ReLU activation function and Dropout technology to prevent overfitting. 

At the same time, it abandoned the layer-by-layer pre-training method 
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and directly trained the network on two NVIDIA GTX580 GPUs. AlexNet 

won the first place in the ILSVRC-2012 picture recognition competition, 

showing a stunning 10.9% reduction in the top-5 error rate compared with 

the second place.

Since the AlexNet model was developed, various models have been 

published successively, including VGG series, GoogleNet series, ResNet 

series, and DenseNet series. The ResNet series models increase the 

number of layers in the network to hundreds or even thousands while 

maintaining the same or even better performance. Its algorithm is simple 

and universal, and it has significant performance, which is the most 

representative model of deep learning.

In addition to the amazing results in supervised learning, huge 

achievements have also been made in unsupervised learning and 

reinforcement learning. In 2014, Ian Goodfellow proposed generative 

adversarial networks (GANs), which learned the true distribution of 

samples through adversarial training to generate samples with higher 

approximation. Since then, a large number of GAN models have been 

proposed. The latest image generation models can generate images that 

reach a degree of fidelity hard to discern from the naked eye. In 2016, 

DeepMind applied deep neural networks to the field of reinforcement 

learning and proposed the DQN algorithm, which achieved a level 

comparable to or even higher than that of humans in 49 games in the Atari 

game platform. In the field of Go, AlphaGo and AlphaGo Zero intelligent 

programs from DeepMind have successively defeated human top Go 

players Li Shishi, Ke Jie, etc. In the multi-agent collaboration Dota 2 game 

platform, OpenAI Five intelligent programs developed by OpenAI defeated 

the TI8 champion team OG in a restricted game environment, showing a 

large number of professional high-level intelligent operations. Figure 1-9 

lists the major time points between 2006 and 2019 for AI development.

Chapter 1  IntroduCtIon to artIfICIal IntellIgenCe



12

2006

Deep Belief 
Network

ImageNet
2009

2012

AlexNet

GAN
2014

2015

DQN

AlphaGO
2016
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Zero
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ResNet
2015

2014

VGG
GoogLeNet

2015

Batch
Normalization

Pluribus
2019

BERT
2018

TensorFlow
2015

TensorFlow
2.0
2019

Figure 1-9. Timeline for deep learning development

1.3  Deep Learning Characteristics
Compared with traditional machine learning algorithms and shallow 

neural networks, modern deep learning algorithms usually have the 

following characteristics.

1.3.1  Data Volume
Early machine learning algorithms are relatively simple and fast to train, 

and the size of the required dataset is relatively small, such as the Iris 

flower dataset collected by the British statistician Ronald Fisher in 1936, 

which contains only three categories of flowers, with each category having 

50 samples. With the development of computer technology, the designed 

algorithms are more and more complex, and the demand for data volume 

is also increasing. The MNIST handwritten digital picture dataset collected 

by Yann LeCun in 1998 contains a total of ten categories of numbers from 

0 to 9, with up to 7,000 pictures in each category. With the rise of neural 

networks, especially deep learning networks, the number of network layers 

is generally large, and the number of model parameters can reach one 

million, ten million, or even one billion. To prevent overfitting, the size of 

the training dataset is usually huge. The popularity of modern social media 

also makes it possible to collect huge amounts of data. For example,  
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the ImageNet dataset released in 2010 included a total of 14,197,122 

pictures, and the compressed file size of the entire dataset was 

154GB. Figures 1-10 and 1-11 list the number of samples and the size of the 

data set over time.

Although deep learning has a high demand for large datasets, 

collecting data, especially collecting labeled data, is often very expensive. 

The formation of a dataset usually requires manual collection, crawling of 

raw data and cleaning out invalid samples, and then annotating the data 

samples with human intelligence, so subjective bias and random errors 

are inevitably introduced. Therefore, algorithms with small data volume 

requirement are very hot topics.

Figure 1-11. Dataset size change over time

Figure 1-10. Dataset sample size change over time
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1.3.2  Computing Power
The increase in computing power is an important factor in the third 

artificial intelligence renaissance. In fact, the basic theory of modern 

deep learning was proposed in the 1980s, but the real potential of deep 

learning was not realized until the release of AlexNet based on training on 

two GTX580 GPUs in 2012. Traditional machine learning algorithms do 

not have stringent requirements on data volume and computing power 

like deep learning. Usually, serial training on CPU can get satisfactory 

results. But deep learning relies heavily on parallel acceleration computing 

devices. Most of current neural networks use parallel acceleration chips 

such as NVIDIA GPU and Google TPU to train model parameters. For 

example, the AlphaGo Zero program needs to be trained on 64 GPUs from 

scratch for 40 days before surpassing all AlphaGo historical versions. The 

automatic network structure search algorithm used 800 GPUs to optimize 

a better network structure.

At present, the deep learning acceleration hardware devices that 

ordinary consumers can use are mainly from NVIDIA GPU graphics cards. 

Figure 1-12 illustrates the variation of one billion floating-point operations 

per second (GFLOPS) of NVIDIA GPU and x86 CPU from 2008 to 2017. It 

can be seen that the curve of x86 CPU changes relatively slowly, and the 

floating-point computing capacity of NVIDIA GPU grows exponentially, 

which is mainly driven by the increasing business of game and deep 

learning computing.
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Figure 1-12. NVIDIA GPU FLOPS change (data source: NVIDIA)

1.3.3  Network Scale
Early perceptron models and multilayer neural networks only have one 

or two to four layers, and the network parameters are also around tens of 

thousands. With the development of deep learning and the improvement 

of computing capabilities, models such as AlexNet (8 layers), VGG16 (16 

layers), GoogleNet (22 layers), ResNet50 (50 layers), and DenseNet121 

(121 layers) have been proposed successively, while the size of inputting 

pictures has also gradually increased from 28×28 to 224×224 to 299×299 

and even larger. These changes make the total number of parameters of 

the network reach ten million levels, as shown in Figure 1-13.

The increase of network scale enhances the capacity of the neural 

networks correspondingly, so that the networks can learn more complex 

data modalities and the model performance can be improved accordingly. 

On the other hand, the increase of the network scale also means that we 

need more training data and computational power to avoid overfitting.
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1.3.4  General Intelligence
In the past, in order to improve the performance of an algorithm on a 

certain task, it is often necessary to use prior knowledge to manually 

design corresponding features to help the algorithm better converge to the 

optimal solution. This type of feature extraction method is often strongly 

related to the specific task. Once the scenario changes, these artificially 

designed features and prior settings cannot adapt to the new scenario, and 

people often need to redesign the algorithms.

Designing a universal intelligent mechanism that can automatically 

learn and self-adjust like the human brain has always been the common 

vision of human beings. Deep learning is one of the algorithms closest to 

general intelligence. In the computer vision field, previous methods that 

need to design features for specific tasks and add a priori assumptions 

have been abandoned by deep learning algorithms. At present, almost 

all algorithms in image recognition, object detection, and semantic 

segmentation are based on end-to-end deep learning models, which 

present good performance and strong adaptability. On the Atari game 

platform, the DQN algorithm designed by DeepMind can reach human 

4 4
8 8

19
22

152

28.2 25.8

16.4
11.7

7.3 6.7
3.57

ILSVRC10 ILSVRC11 ILSVRC12 ILSVRC13 ILSVRC14 ILSVRC14 ILSVRC15

ILSVRC ImageNet Classification Task

Network Layers Top-5 Error Rate

Figure 1-13. Change of network layers
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equivalent level in 49 games under the same algorithm, model structure, 

and hyperparameter settings, showing a certain degree of general 

intelligence. Figure 1-14 is the network structure of the DQN algorithm. It 

is not designed for a certain game but can control 49 games on the Atari 

game platform.

Figure 1-14. DQN network structure [1]

1.4  Deep Learning Applications
Deep learning algorithms have been widely used in our daily life, such as 

voice assistants in mobile phones, intelligent assisted driving in cars, and 

face payments. We will introduce some mainstream applications of deep 

learning starting with computer vision, natural language processing, and 

reinforcement learning.

1.4.1  Computer Vision
Image classification is a common classification problem. The input of 

the neural network is pictures, and the output value is the probability that 

the current sample belongs to each category. Generally, the category with 

the highest probability is selected as the predicted category of the sample. 
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Image recognition is one of the earliest successful applications of deep 

learning. Classic neural network models include VGG series, Inception 

series, and ResNet series.

Object detection refers to the automatic detection of the approximate 

location of common objects in a picture by an algorithm. It is usually 

represented by a bounding box and classifies the category information 

of objects in the bounding box, as shown in Figure 1-15. Common object 

detection algorithms are RCNN, Fast RCNN, Faster RCNN, Mask RCNN, 

SSD, and YOLO series.

Semantic segmentation is an algorithm to automatically segment 

and identify the content in a picture. We can understand semantic 

segmentation as the classification of each pixel and analyze the category 

information of each pixel, as shown in Figure 1-16. Common semantic 

segmentation models include FCN, U-net, SegNet, and DeepLab series.

Figure 1-15. Object detection example
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Figure 1-16. Semantic segmentation example

Video Understanding. As deep learning achieves better results on 

2D picture–related tasks, 3D video understanding tasks with temporal 

dimension information (the third dimension is sequence of frames) 

are receiving more and more attention. Common video understanding 

tasks include video classification, behavior detection, and video subject 

extraction. Common models are C3D, TSN, DOVF, and TS_LSTM.

Image generation learns the distribution of real pictures and samples 

from the learned distribution to obtain highly realistic generated pictures. 

At present, common image generation models include VAE series and 

GAN series. Among them, the GAN series of algorithms have made 

great progress in recent years. The picture effect produced by the latest 

GAN model has reached a level where it is difficult to distinguish the 

authenticity with the naked eye, as shown in Figure 1-17.

In addition to the preceding applications, deep learning has also 

achieved significant results in other areas, such as artistic style transfer 

(Figure 1-18), super-resolution, picture de-nosing/hazing, grayscale 

picture coloring, and many others.
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Figure 1-18. Artistic style transfer image

1.4.2  Natural Language Processing
Machine Translation. In the past, machine translation algorithms were 

usually based on statistical machine translation models, which were 

also the technology used by Google’s translation system before 2016. In 

November 2016, Google launched the Google Neural Machine Translation 

(GNMT) system based on the Seq2Seq model. For the first time, the 

direct translation technology from source language to target language 

was realized with 50–90% improvement on multiple tasks. Commonly 

used machine translation models are Seq2Seq, BERT, GPT, and GPT-2. 

Among them, the GPT-2 model proposed by OpenAI has about 1.5 billion 

Figure 1-17. Model-generated image
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parameters. At the beginning, OpenAI refused to open-source the GPT-2 

model due to technical security reasons.

Chatbot is also a mainstream task of natural language processing. 

Machines automatically learn to talk to humans, provide satisfactory 

automatic responses to simple human demands, and improve customer 

service efficiency and service quality. Chatbot is often used in consulting 

systems, entertainment systems, and smart homes.

1.4.3  Reinforcement Learning
Virtual Games. Compared with the real environment, virtual game 

platforms can both train and test reinforcement learning algorithms and 

can avoid interference from irrelevant factors while also minimizing the 

cost of experiments. Currently, commonly used virtual game platforms 

include OpenAI Gym, OpenAI Universe, OpenAI Roboschool, DeepMind 

OpenSpiel, and MuJoCo, and commonly used reinforcement learning 

algorithms include DQN, A3C, A2C, and PPO. In the field of Go, the 

DeepMind AlphaGo program has surpassed human Go experts. In Dota 2 

and StarCraft games, the intelligent programs developed by OpenAI and 

DeepMind have also defeated professional teams under restriction rules.

Robotics. In the real environment, the control of robots has also made 

some progress. For example, UC Berkeley Lab has made a lot of progress in 

the areas of imitation learning, meta learning, and few-shot learning in the 

field of robotics. Boston Dynamics has made gratifying achievements in 

robot applications. The robots it manufactures perform well on tasks such 

as complex terrain walking and multi-agent collaboration (Figure 1-19).

Autonomous driving is considered as an application direction of 

reinforcement learning in the short term. Many companies have invested 

a lot of resources in autonomous driving, such as Baidu, Uber, and Google. 

Apollo from Baidu has begun trial operations in Beijing, Xiong’an, Wuhan, 

and other places. Figure 1-20 shows Baidu’s self-driving car Apollo. 
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Figure 1-20. Baidu’s self-driving car Apollo4

1.5  Deep Learning Framework
If a workman wants to be good, he must first sharpen his weapon. After 

learning about the basic knowledge of deep learning, let’s pick the tools 

used to implement deep learning algorithms.

Figure 1-19. Robots from Boston Dynamics3

3 Picture source: www.bostondynamics.com/
4 Picture source: https://venturebeat.com/2019/01/08/baidu-announces- 
apollo-3-5-and-apollo-enterprise-says-it-has-over-130-partners/
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1.5.1  Major Frameworks
• Theano is one of the earliest deep learning frameworks. 

It was developed by Yoshua Bengio and Ian 

Goodfellow. It is a Python-based computing library 

for positioning low-level operations. Theano supports 

both GPU and CPU operations. Due to Theano’s low 

development efficiency, long model compilation time, 

and developers switching to TensorFlow, Theano has 

now stopped maintenance.

• Scikit-learn is a complete computing library for 

machine learning algorithms. It has built-in support 

for common traditional machine learning algorithms, 

and it has rich documentation and examples. However, 

scikit-learn is not specifically designed for neural 

networks. It does not support GPU acceleration, and 

the implementation of neural network–related layers is 

also lacking.

• Caffe was developed by Jia Yangqing in 2013. It is 

mainly used for applications using convolutional 

neural networks and is not suitable for other types of 

neural networks. Caffe’s main development language is 

C ++, and it also provides interfaces for other languages 

such as Python. It also supports GPU and CPU. Due to 

the earlier development time and higher visibility in 

the industry, in 2017 Facebook launched an upgraded 

version of Caffe, Caffe2. Caffe2 has now been integrated 

into the PyTorch library.
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• Torch is a very good scientific computing library, 

developed based on the less popular programming 

language Lua. Torch is highly flexible, and it is easy to 

implement a custom network layer, which is also an 

excellent gene inherited by PyTorch. However, due to 

the small number of Lua language users, Torch has 

been unable to obtain mainstream applications.

• MXNet was developed by Chen Tianqi and Li Mu and 

is the official deep learning framework of Amazon. It 

adopts a mixed method of imperative programming 

and symbolic programming, which has high flexibility, 

fast running speed, and rich documentation and 

examples.

• PyTorch is a deep learning framework launched by 

Facebook based on the original Torch framework 

using Python as the main development language. 

PyTorch borrowed the design style of Chainer and 

adopted imperative programming, which made it 

very convenient to build and debug the network. 

Although PyTorch was only released in 2017, due to its 

sophisticated and compact interface design, PyTorch 

has received wide acclaim in the academic world. 

After the 1.0 version, the original PyTorch and Caffe2 

were merged to make up for PyTorch’s deficiencies in 

industrial deployment. Overall, PyTorch is an excellent 

deep learning framework.

• Keras is a high-level framework implemented based 

on the underlying operations provided by frameworks 

such as Theano and TensorFlow. It provides a large 

number of high-level interfaces for rapid training and 

Chapter 1  IntroduCtIon to artIfICIal IntellIgenCe



25

testing. For common applications, developing with 

Keras is very efficient. But because there is no low-level 

implementation, the underlying framework needs to be 

abstracted, so the operation efficiency is not high, and 

the flexibility is average.

• TensorFlow is a deep learning framework released 

by Google in 2015. The initial version only supported 

symbolic programming. Thanks to its earlier release 

and Google’s influence in the field of deep learning, 

TensorFlow quickly became the most popular deep 

learning framework. However, due to frequent changes 

in the interface design, redundant functional design, 

and difficulty in symbolic programming development 

and debugging, TensorFlow 1.x was once criticized 

by the industry. In 2019, Google launched the official 

version of TensorFlow 2, which runs in dynamic graph 

priority mode and can avoid many defects of the 

TensorFlow 1.x version. TensorFlow 2 has been widely 

recognized by the industry.

At present, TensorFlow and PyTorch are the two most widely used 

deep learning frameworks in industry. TensorFlow has a complete 

solution and user base in the industry. Thanks to its streamlined and 

flexible interface design, PyTorch can quickly build and debug networks, 

which has received rave reviews in academia. After TensorFlow 2 was 

released, it makes it easier for users to learn TensorFlow and seamlessly 

deploy models to production. This book uses TensorFlow 2 as the main 

framework to implement deep learning algorithms.

Here are the connections and differences between TensorFlow 

and Keras. Keras can be understood as a set of high-level API design 

specifications. Keras itself has an official implementation of the 
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specifications. The same specifications are also implemented in 

TensorFlow, which is called the tf.keras module, and tf.keras will be used 

as the unique high-level interface to avoid interface redundancy. Unless 

otherwise specified, Keras in this book refers to tf.keras.

1.5.2  TensorFlow 2 and 1.x
TensorFlow 2 is a completely different framework from TensorFlow 1.x in 

terms of user experience. TensorFlow 2 is not compatible with TensorFlow 

1.x code. At the same time, it is very different in programming style and 

functional interface design. TensorFlow 1.x code needs to rely on artificial 

migration, and automated migration methods are not reliable. Google is 

about to stop updating TensorFlow 1.x. It is not recommended to learn 

TensorFlow 1.x now.

TensorFlow 2 supports the dynamic graph priority mode. You can 

obtain both the computational graph and the numerical results during the 

calculation. You can debug the code and print the data in real time. The 

network is built like a building block, stacked layer by layer, which is in line 

with software development thinking.

Taking simple addition 2.0 + 4.0 as an example, in TensorFlow 1.x, we 

need to create a calculation graph first as follows:

import tensorflow as tf

# 1. Create computation graph with tf 1.x

# Create 2 input variables with fixed name and type

a_ph = tf.placeholder(tf.float32, name='variable_a')

b_ph = tf.placeholder(tf.float32, name='variable_b')

# Create output operation and name

c_op = tf.add(a_ph, b_ph, name='variable_c')
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The process of creating a computational graph is analogous to the 

process of establishing a formula c = a + b through symbols. It only records 

the computational steps of the formula and does not actually calculate the 

numerical results. The numerical results can only be obtained by running 

the output c and assigning values a = 2.0 and b = 4.0 as follows:

# 2.Run computational graph with tf 1.x

# Create running environment

sess = tf.InteractiveSession()

# Initialization

init = tf.global_variables_initializer()

sess.run(init) # Run the initialization

# Run the computation graph and return value to c_numpy

c_numpy = sess.run(c_op, feed_dict={a_ph: 2., b_ph: 4.})

# print out the output

print('a+b=',c_numpy)

It can be seen that it is so tedious to perform simple addition 

operations in TensorFlow 1, let alone to create complex neural network 

algorithms. This programming method of creating a computational graph 

and then running it later is called symbolic programming.

Next, we use TensorFlow 2 to complete the same operation as follows:

import tensorflow as tf

# Use TensorFlow 2 to run

# 1.Create and initialize variable

a = tf.constant(2.)

b = tf.constant(4.)

# 2.Run and get result directly

print('a+b=',a+b)

As you can see, the calculation process is very simple, and there are no 

extra calculation steps.
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The method of getting both computation graphs and numerical 

results at the same time is called imperative programming, also known 

as dynamic graph mode. TensorFlow 2 and PyTorch are both developed 

using dynamic graph priority mode, which is easy to debug. In general, 

the dynamic graph mode is highly efficient for development, but it may 

not be as efficient as the static graph mode for running. TensorFlow 2 also 

supports converting the dynamic graph mode to the static graph mode 

through tf.function, achieving a win-win situation of both development 

and operation efficiency. In the remaining part of this book, we use 

TensorFlow to represent TensorFlow 2 in general.

1.5.3  Demo
The core of deep learning is the design idea of algorithms, and deep 

learning frameworks are just our tools for implementing algorithms. In the 

following, we will demonstrate the three core functions of the TensorFlow 

deep learning framework to help us understand the role of frameworks in 

algorithm design.

 a) Accelerated Calculation
The neural network is essentially composed of a large number 

of basic mathematical operations such as matrix multiplication and 

addition. One important function of TensorFlow is to use the GPU to 

conveniently implement parallel computing acceleration functions. In 

order to demonstrate the acceleration effect of GPU, we can compare 

mean running time for multiple matrix multiplications on CPU and GPU 

as follows.

We create two matrices A and B with shape [1, n] and [n, 1], separately. 

The size of the matrices can be adjusted using parameter n. The code is as 

follows:

Chapter 1  IntroduCtIon to artIfICIal IntellIgenCe



29

    # Create two matrices running on CPU

    with tf.device('/cpu:0'):

        cpu_a = tf.random.normal([1, n])

        cpu_b = tf.random.normal([n, 1])

        print(cpu_a.device, cpu_b.device)

    # Create two matrices running on GPU

    with tf.device('/gpu:0'):

        gpu_a = tf.random.normal([1, n])

        gpu_b = tf.random.normal([n, 1])

        print(gpu_a.device, gpu_b.device)

Let’s implement the functions of the CPU and GPU operations and 

measure the computation time of the two functions through the timeit.

timeit () function. It should be noted that additional environment 

initialization work is generally required for the first calculation, so this time 

cannot be counted. We remove this time through the warm-up session and 

then measure the calculation time as follows:

    def cpu_run(): # CPU function

        with tf.device('/cpu:0'):

            c = tf.matmul(cpu_a, cpu_b)

        return c

    def gpu_run():# GPU function

        with tf.device('/gpu:0'):

            c = tf.matmul(gpu_a, gpu_b)

        return c

    # First calculation needs warm-up

    cpu_time = timeit.timeit(cpu_run, number=10)

    gpu_time = timeit.timeit(gpu_run, number=10)

    print('warmup:', cpu_time, gpu_time)
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    # Calculate and print mean running time

    cpu_time = timeit.timeit(cpu_run, number=10)

    gpu_time = timeit.timeit(gpu_run, number=10)

    print('run time:', cpu_time, gpu_time)

We plot the computation time under CPU and GPU environments at 

different matrix sizes as shown in Figure 1-21. It can be seen that when the 

matrix size is small, the CPU and GPU times are almost the same, which 

does not reflect the advantages of GPU parallel computing. When the 

matrix size is larger, the CPU computing time significantly increases, and 

the GPU takes full advantage of parallel computing without almost any 

change of computation time.

Figure 1-21. CPU/GPU matrix multiplication time

 b) Automatic Gradient Calculation

When using TensorFlow to construct the forward calculation process, 

in addition to being able to obtain numerical results, TensorFlow also 

automatically builds a computational graph. TensorFlow provides 

automatic differentiation that can calculate the derivative of the output on 

network parameters without manual derivation. Consider the expression 

of the following function:
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 y aw bw c� � �2  

The derivative relationship of the output y to the variable w is

 

dy

dw
aw b� �2  

Consider the derivative at (a, b, c, w) = (1, 2, 3, 4). We 

can get 
dy

dw
� � � � �2 1 4 2 10.

With TensorFlow, we can directly calculate the derivative given 

the expression of a function without manually deriving the expression 

of the derivatives. TensorFlow can automatically derive it. The code is 

implemented as follows:

import tensorflow as tf

# Create 4 tensors

a = tf.constant(1.)

b = tf.constant(2.)

c = tf.constant(3.)

w = tf.constant(4.)

with tf.GradientTape() as tape:# Track derivative

    tape.watch([w]) # Add w to derivative watch list

    # Design the function

    y = a * w**2 + b * w + c

# Auto derivative calculation

[dy_dw] = tape.gradient(y, [w])

print(dy_dw) # print the derivative

The result of the program is

tf.Tensor(10.0, shape=(), dtype=float32)
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It can be seen that the result of TensorFlow’s automatic differentiation 

is consistent with the result of manual calculation.

 c) Common Neural Network Interface

In addition to the underlying mathematical functions such as matrix 

multiplication and addition, TensorFlow also has a series of convenient 

functions for deep learning systems such as commonly used neural 

network operation functions, commonly used network layers, network 

training, model saving, loading, and deployment. Using TensorFlow, you 

can easily use these functions to complete common production processes, 

which is efficient and stable.

1.6  Development Environment Installation
After knowing the convenience brought by the deep learning framework, 

we are now ready to install the latest version of TensorFlow in the local 

desktop. TensorFlow supports a variety of common operating systems, 

such as Windows 10, Ubuntu 18.04, and Mac OS. It supports both GPU 

version running on NVIDIA GPU and CPU version that uses only the CPU 

to do calculations. We take the most common operating system, Windows 

10, NVIDIA GPU, and Python as examples to introduce how to install the 

TensorFlow framework and other development software.

Generally speaking, the development environment installation is 

divided into four major steps: the Python interpreter Anaconda, the CUDA 

acceleration library, the TensorFlow framework, and commonly used 

editors.

1.6.1  Anaconda Installation
The Python interpreter is the bridge that allows code written in Python to 

be executed by CPU and is the core software of the Python language. Users 

can download the appropriate version (Python 3.7 is used here) of the 
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interpreter from www.python.org/. After the installation is completed, you 

can call the python.exe program to execute the source code file written in 

Python (.py files).

Here we choose to install Anaconda software that integrates a series of 

auxiliary functions such as the Python interpreter, package management, 

and virtual environment. We can download Anaconda from www.

anaconda.com/distribution/#download-section and select the latest 

version of Python to download and install. As shown in Figure 1-22, check 

the “Add Anaconda to my PATH environment variable” option, so that 

you can call the Anaconda program through the command line. As shown 

in Figure 1-23, the installer asks whether to install the VS Code software 

together. Select Skip. The entire installation process lasts about 5 minutes, 

and the specific time depends on the computer performance.

Figure 1-22. Anaconda installation 1
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Figure 1-23. Anaconda installation 2

After the installation is complete, how can we verify that Anaconda 

was successfully installed? Pressing the Windows+R key combination on 

the keyboard, you can bring up the running program dialog box, enter 

“cmd,” and press Enter to open the command-line program “cmd.exe” that 

comes with Windows. Or click the Start menu and enter “cmd” to find the 

“cmd.exe” program and open it. Enter the “conda list” command to view 

the installed libraries in the Python environment. If it is a newly installed 

Python environment, the listed libraries are all libraries that come with 

Anaconda, as shown in Figure 1-24. If the “conda list” can pop up a series 

of library list information normally, the Anaconda software installation is 

successful. Otherwise, the installation failed, and you need to reinstall.

Figure 1-24. Anaconda installation test
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1.6.2  CUDA Installation
Most of the current deep learning frameworks are based on NVIDIA’s GPU 

graphics card for accelerated calculations, so you need to install the GPU 

acceleration library CUDA provided by NVIDIA. Before installing CUDA, 

make sure your computer has an NVIDIA graphics device that supports 

the CUDA program. If your computer does not have an NVIDIA graphics 

card – for example, some computer graphics card manufacturers are AMD 

or Intel – the CUDA program won’t work, and you can skip this step and 

directly install the TensorFlow CPU version.

The installation of CUDA is divided into three steps: CUDA software 

installation, cuDNN deep neural network acceleration library installation, 

and environment variable configuration. The installation process is a 

bit tedious. We will go through them step by step using the Windows 10 

system as an example.

CUDA Software Installation Open the official downloading website 

of the CUDA program: https://developer.nvidia.com/cuda-10.0-

download-archive. Here we use CUDA 10.0 version: select the Windows 

platform, x86_64 architecture, 10 system, and exe (local) installation 

package and then select “Download” to download the CUDA installation 

software. After the download is complete, open the software. As shown in 

Figure 1-25, select the “Custom” option and click the “NEXT” button to 

enter the installation program selection list as shown in Figure 1-26. Here 

you can select the components that need to be installed and unselect those 

that do not need to be installed. Under the “CUDA” category, unselect the 

“Visual Studio Integration” item. Under the “Driver components” category, 

compare the version number of “Current Version” and “New Version” 

at the “Display Driver” row. If “Current Version” is greater than “New 

Version,” you need to uncheck the “Display Driver.” If “Current Version” 

is less than or equal to “New Version,” leave “Display Driver” checked, as 

shown in Figure 1-27. After the setup is complete, you can click “NEXT” 

and follow the instructions to install.
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Figure 1-25. CUDA installation 1

Figure 1-26. CUDA installation 2

After the installation is complete, let’s test whether the CUDA software 

is successfully installed. Open the “cmd” terminal and enter “nvcc -V” to 

print the current CUDA version information, as shown in Figure 1-28. If 

the command is not recognized, the installation has failed. We can find 

the “nvcc.exe” program from the CUDA installation path “C:\Program 

Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin”, as shown in 

Figure 1-29.
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Figure 1-28. CUDA installation test 1

Figure 1-29. CUDA installation test 2

Figure 1-27. CUDA installation 3
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cuDNN Neural Network Acceleration Library Installation. CUDA is 

not a special GPU acceleration library for neural networks; it is designed 

for a variety of applications that require parallel computing. If you want 

to accelerate for neural network applications, you need to install an 

additional cuDNN library. It should be noted that the cuDNN library is not 

an executable program. You only need to download and decompress the 

cuDNN file and configure the Path environment variable.

Open the website https://developer.nvidia.com/cudnn and select 

“Download cuDNN.” Due to NVIDIA regulations, users need to log in or 

create a new user to continue downloading. After logging in, enter the 

cuDNN download interface and check “I Agree To the Terms of the cuDNN 

Software License Agreement,” and the cuDNN version download option 

will pop up. Select the cuDNN version that matches CUDA 10.0, and click 

the “cuDNN Library for Windows 10” link to download the cuDNN file, as 

shown in Figure 1-30. It should be noted that cuDNN itself has a version 

number, and it also needs to match the CUDA version number.

Figure 1-30. cuDNN version selection interface

After downloading the cuDNN file, unzip it and rename the folder 

“cuda” to “cudnn765”. Then copy the “cudnn765” folder to the CUDA 

installation path “C:\Program Files\NVIDIA GPU Computing Toolkit\

CUDA\v10.0” (Figure 1-31). A dialog box that requires administrator rights 

may pop up here. Select Continue to paste.
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Figure 1-31. cuDNN installation path

Environment Variable Configuration. We have completed the 

installation of cuDNN, but in order for the system to be aware of the 

location of the cuDNN file, we need to configure the Path environment 

variable as follows. Open the file browser, right-click “My Computer,” select 

“Properties,” select “Advanced system settings,” and select “Environment 

Variables,” as shown in Figure 1-32. Select the “Path” environment 

variable in the “System variables” column and select “Edit,” as shown in 

Figure 1-33. Select “New,” enter the cuDNN installation path “C:\Program 

Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\cudnn765\bin”, and 

use the “Move Up” button to move this item to the top.

Figure 1-32. Environment variable configuration 1
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Figure 1-33. Environment variable configuration 2

After the CUDA installation is complete, the environment variables 

should include “C:\Program Files\NVIDIA GPU Computing Toolkit\

CUDA\v10.0\bin”, “C:\Program Files\NVIDIA GPU Computing Toolkit\

CUDA\v10.0\libnvvp”, and “C:\Program Files\NVIDIA GPU Computing 

Toolkit\CUDA\v10.0\cudnn765\bin”. The preceding path may differ 

slightly according to the actual path, as shown in Figure 1-34. After 

confirmation, click “OK” to close all dialog boxes.

Figure 1-34. CUDA-related environment variables

1.6.3  TensorFlow Installation
TensorFlow, like other Python libraries, can be installed using the Python 

package management tool “pip install” command. When installing 

TensorFlow, you need to determine whether to install a more powerful 
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GPU version or a general-performance CPU version based on whether 

your computer has an NVIDIA GPU graphics card.

# Install numpy

pip install numpy

With the preceding command, you should be able to automatically 

download and install the numpy library. Now let’s install the latest GPU 

version of TensorFlow. The command is as follows:

# Install TensorFlow GPU version

pip install -U tensorflow

The preceding command should automatically download and install 

the TensorFlow GPU version, which is currently the official version of 

TensorFlow 2.x. The “-U” parameter specifies that if this package is 

installed, the upgrade command is executed.

Now let’s test whether the GPU version of TensorFlow is successfully 

installed. Enter “ipython” on the “cmd” command line to enter the 

ipython interactive terminal, and then enter the “import tensorflow as tf” 

command. If no errors occur, continue to enter “tf.test.is_gpu_available 

()” to test whether the GPU is available. This command will print a 

series of information. The information beginning with “I” (Information) 

contains information about the available GPU graphics devices and will 

return “True” or “False” at the end, indicating whether the GPU device is 

available, as shown in Figure 1-35. If True, the TensorFlow GPU version is 

successfully installed; if False, the installation fails. You may need to check 

the steps of CUDA, cuDNN, and environment variable configuration again 

or copy the error and seek help from the search engine.
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Figure 1-35. TensorFlow GPU installation test

If you don’t have GPU, you can install the CPU version. The 

CPU version cannot use the GPU to accelerate calculations, and 

the computational speed is relatively slow. However, because the 

models introduced as learning purposes in this book are generally 

not computationally expensive, the CPU version can also be used. It 

is also possible to add the NVIDIA GPU device after having a better 

understanding of deep learning in the future. If the installation of the 

TensorFlow GPU version fails, we can also use the CPU version directly. 

The command to install the CPU version is

# Install TensorFlow CPU version

pip install -U tensorflow-cpu

After installation, enter the “import tensorflow as tf” command in the 

ipython terminal to verify that the CPU version is successfully installed. 

After TensorFlow is installed, you can view the version number through 

“tf .__ version__”. Figure 1-36 shows an example. Note that even the code 

works for all TensorFlow 2.x versions.
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Figure 1-36. TensorFlow version test

The preceding manual process of installing CUDA and cuDNN, 

configuring the Path environment variable, and installing TensorFlow is 

the standard installation method. Although the steps are tedious, it is of 

great help to understand the functional role of each library. In fact, for 

the novice, you can complete the preceding steps by two commands as 

follows:

# Create virtual environment tf2 with tensorflow-gpu setup 

required

# to automatically install CUDA,cuDNN,and TensorFlow GPU

conda create -n tf2 tensorflow-gpu

# Activate tf2 environment

conda activate tf2

This quick installation method is called the minimal installation 

method. This is also the convenience of using the Anaconda distribution. 

TensorFlow installed through the minimal version requires activation 

of the corresponding virtual environment before use, which needs to be 

distinguished from the standard version. The standard version is installed 

in Anaconda’s default environment base and generally does not require 

manual activation of the base environment.

Common Python libraries can also be installed by default. The 

command is as follows:

# Install common python libraries

pip install -U ipython numpy matplotlib pillow pandas
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When TensorFlow is running, it will consume all GPU resources by 

default, which is very computationally unfriendly, especially when the 

computer has multiple users or programs using GPU resources at the 

same time. Occupying all GPU resources will make other programs unable 

to run. Therefore, it is generally recommended to set the GPU memory 

usage of TensorFlow to the growth mode, that is, to apply for GPU memory 

resources based on the actual model size. The code implementation is as 

follows:

# Set GPU resource usage method

# Get GPU device list

gpus = tf.config.experimental.list_physical_devices('GPU')

if gpus:

  try:

    # Set GPU usage to growth mode

    for gpu in gpus:

      tf.config.experimental.set_memory_growth(gpu, True)

  except RuntimeError as e:

    # print error

    print(e)

1.6.4  Common Editor Installation
There are many ways to write programs in Python. You can use IPython 

or Jupyter Notebook to write code interactively. You can also use Sublime 

Text, PyCharm, and VS Code to develop medium and large projects. This 

book recommends using PyCharm to write and debug code and using VS 

Code for interactive project development. Both of them are free. Users can 

download and install them by themselves.

Next, let’s start the deep learning journey!
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1.7  Summary
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CHAPTER 2

Regression
Some people worry that artificial intelligence will make us 
feel inferior, but then, anybody in his right mind should have 
an inferiority complex every time he looks at a flower.

—Alan Kay

2.1  Neuron Model
An adult brain contains about 100 billion neurons. Each neuron obtains 

input signals through dendrites and transmits output signals through 

axons. The neurons are interconnected to form a huge neural network, 

thus forming the human brain, the basis of perception and consciousness. 

Figure 2-1 is a typical biological neuron structure. In 1943, the psychologist 

Warren McCulloch and mathematical logician Walter Pitts proposed 

a mathematical model of artificial neural networks to simulate the 

mechanism of biological neurons [1]. This research was further developed 

by the American neurologist Frank Rosenblatt into the perceptron model 

[2], which is also the cornerstone of modern deep learning. 

https://doi.org/10.1007/978-1-4842-7915-1_2#DOI
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Figure 2-1. Typical biological neuron structure1

Starting from the structure of biological neurons, we will revisit the 

exploration of scientific pioneers and gradually unveil the mystery of 

automatic learning machines.

First, we can abstract the neuron model into the mathematical 

structure as shown in Figure 2-2 (a). The neuron input vector 

x = [x1, x2, x3, …, xn]T maps to y through function fθ : x → y, where θ represents 

the parameters in the function f. Consider a simplified case, such as linear 

transformation: f  (x) = wTx + b. The expanded form is

 f w x w x w x w x bn nx� � � � � ��� �1 1 2 2 3 3  

The preceding calculation logic can be intuitively shown in 

Figure 2-2 (b).

1 Source: https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg

1

2

3

1

2

3

1

2

3

(a) Mathematical neuron model (b) Linear neuron model

Figure 2-2. Mathematical neuron model
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The parameters θ = {w1, w2, w3, …, wn, b} determine the state of the 

neuron, and the processing logic of this neuron can be determined by 

fixing those parameters. When the number of input nodes n = 1 (single 

input), the neuron model can be further simplified as

 y wx b� �  

Then we can plot the change of y as a function of x as shown in 

Figure 2-3. As the input signal x increases, the output y also increases 

linearly. Here parameter w can be understood as the slope of the straight 

line, and b is the bias of the straight line.

= 1. + 0.089

(
(1)

,
(1)

)

(
(2)

,
(2)

)

Figure 2-3. Single-input linear neuron model

For a certain neuron, the mapping relationship fw, b between x and y 

is unknown but fixed. Two points can determine a straight line. In order 

to estimate the value of w and b, we only need to sample any two data 

points (x(1), y(1)) and (x(2), y(2)) from the straight line in Figure 2-3, where the 

superscript indicates the data point number:

 y wx b1 1� � � �� �  

 y wx b2 2� � � �� �  
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If (x(1), y(1)) ≠ (x(2), y(2)), we can solve the preceding equations to 

get the value of w and b. Let’s consider a specific example: x(1) = 1, 

y(1) = 1.567, x(2) = 2, y(2) = 3.043. Substituting the numbers in the preceding 

formulas gives

 1 567 1. � � �w b  

 3 043 2. � � �w b  

This is the system of binary linear equations that we learned in junior 

or high school. The analytical solution can be easily calculated using the 

elimination method, that is, w = 1.477, b = 0.089.

You can see that we only need two different data points to perfectly 

solve the parameters of a single-input linear neuron model. For linear 

neuron models with N input, we only need to sample N + 1 different data 

points. It seems that the linear neuron models can be perfectly resolved. So 

what’s wrong with the preceding method? Considering that there may be 

observation errors for any sampling point, we assume that the observation 

error variable ϵ follows a normal distribution  � �, 2� �with μ as mean and 

σ2 as variance. Then the samples follow:

 
y wx b� � � � �ε ε, ~N � �, 2

 

Once the observation error is introduced, even if it is as simple 

as a linear model, if only two data points are sampled, it may bring a 

large estimation bias. As shown in Figure 2-4, the data points all have 

observation errors. If the estimation is based on the two blue rectangular 

data points, the estimated blue dotted line would have a large deviation 

from the true orange straight line. In order to reduce the estimation bias 

introduced by observation errors, we can sample multiple data points 

 � � � � � � � �� �� � � � � � � � � � � �x y x y x yn n1 1 2 2, , , , , ,  and then find a “best” straight line, 

so that it minimizes the sum of errors between all sampling points and the 

straight line.
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= 1. + 0.089

(
(1)

,
(1)

)

(
(2)

,
(2)

)

Figure 2-4. Model with observation errors

Due to the existence of observation errors, there may not be a straight 

line that perfectly passes through all the sampling points . Therefore, 

we hope to find a “good” straight line close to all sampling points. How 

to measure “good” and “bad”? A natural idea is to use the mean squared 

error (MSE) between the predicted value wx(i) + b and the true value y(i) at 

all sampling points as the total error, that is

 
 � � �� �

�

� � � ��1
1

2

n
wx b y

i

n
i i

 

Then search a set of parameters w∗ and b∗ to minimize the total error 

.  The straight line corresponding to the minimal total error is the 

optimal straight line we are looking for, that is

 
w b

n
wx b y

w b i

n
i i� �

�

� � � �� � �� ��, arg min
,

1

1

2

 

Here n represents the number of sampling points.
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2.2  Optimization Method
Now let’s summarize the preceding solution: we need to find the 

optimal parameters w∗ and b∗, so that the input and output meet 

a linear relationship y(i) = wx(i) + b, i ∈ [1, n]. However, due to the 

existence of observation errors ϵ, it is necessary to sample a data set 

 � � � � � � � �� �� � � � � � � � � � � �x y x y x yn n1 1 2 2, , , , , , , composed of a sufficient number of 

data samples, to find an optimal set of parameters w∗ and b∗ to minimize 

the mean squared error  � � �� �
�

� � � ��1
1

2

n
wx b y

i

n
i i .

For a single-input neuron model, only two samples are needed to 

obtain the exact solution of the equations by the elimination method. This 

exact solution derived by a strict formula is called an analytical solution. 

However, in the case of multiple data points (n ≫ 2), there is probably no 

analytical solution. We can only use numerical optimization methods to 

obtain an approximate numerical solution. Why is it called optimization? 

This is because the computer’s calculation speed is very fast. We can 

use the powerful computing power to “search” and “try” multiple times, 

thereby reducing the error  step by step. The simplest optimization 

method is brute-force search or random experiment. For example, to find 

the most suitable w∗ and b∗, we can randomly sample any w and b from the 

real number space and calculate the error value   of the corresponding 

model. Pick out the smallest error ∗  from all the experiments � � , and its 

corresponding w∗ and b∗ are the optimal parameters we are looking for.

This brute-force algorithm is simple and straightforward, but it is 

extremely inefficient for large-scale, high-dimensional optimization 

problems. Gradient descent is the most commonly used optimization 

algorithm in neural network training. With the parallel acceleration 

capability of powerful graphics processing unit (GPU) chips, it is very 

suitable for optimizing neural network models with massive data. 

Naturally it is also suitable for optimizing our simple linear neuron 

model. Since the gradient descent algorithm is the core algorithm of 
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deep learning, we will first apply the gradient descent algorithm to solve 

simple neuron models and then detail its application in neural networks in 

Chapter 7.

With the concept of derivative, if we want to solve the maximum and 

minimum values of a function, we can simply set the derivative function to 

be 0 and find the corresponding independent variable values, that is, the 

stagnation point, and then check the stagnation type. Taking the function 

f  (x) = x2 ·  sin (x) as an example, we can plot the function and its derivative 

in the interval x ∈ [−10, 10], where the blue solid line is f  (x) and the yellow 

dotted line is 
d

d

f x

x

� �
 as shown in Figure 2-5. It can be seen that the points 

where the derivative (dashed line) is 0 are the stagnation points, and both 

the maximum and minimum values of f  (x) appear in the stagnation points.

Figure 2-5. Function f(x) = x2 ∙  sin (x) and its derivative

The gradient of a function is defined as a vector of partial derivatives 

of the function on each independent variable. Considering a three- 

dimensional function z = f  (x, y), the partial derivative of the function with 

respect to the independent variable x is 
∂
∂
z

x
, the partial derivative of the 

function with respect to the independent variable y is recorded as 
∂
∂
z

y
, 

and the gradient ∇f is a vector 
�
�

�
�

�

�
�

�

�
�

z

x

z

y
, . Let’s look at a specific function 

f  (x, y) =  − (cos2x + cos2y)2. As shown in Figure 2-6, the length of the red 

arrow in the plane represents the modulus of the gradient vector, and the 

direction of the arrow represents the direction of the gradient vector. It 
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can be seen that the direction of the arrow always points to the function 

value increasing direction. The steeper the function surface, the longer the 

length of the arrow, and the larger the modulus of the gradient.

Figure 2-6. A function and its gradient2

Through the preceding example, we can intuitively feel that the 

gradient direction of the function always points to the direction in which 

the function value increases. Then the opposite direction of the gradient 

should point to the direction in which the function value decreases.

 � � � ��x x � f  (2.1)

To take advantage of this property, we just need to follow the preceding 

equation to iteratively update x′. Then we can get smaller and smaller 

function values. η is used to scale the gradient vector, which is known as 

learning rate and generally set to a smaller value, such as 0.01 or 0.001. In 

particular, for one-dimensional functions, the preceding vector form can 

be written into a scalar form:

 
� � � �x x

y

x
�

d

d  

2 Picture source: https://en.wikipedia.org/wiki/Gradient?oldid=747127712
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By iterating and updating x′several times through the preceding 

formula, the function value y′ at x′ is always more likely to be smaller than 

the function value at x.

The method of optimizing parameters by the formula (2.1) is called the 

gradient descent algorithm. It calculates the gradient ∇f of the function f 

and iteratively updates the parameters θ to obtain the optimal numerical 

solution of the parameters θ when the function f reaches its minimum 

value. It should be noted that model input in deep learning is generally 

represented as x and the parameters to be optimized are generally 

represented by θ, w, and b.

Now we will apply the gradient descent algorithm to calculate the 

optimal parameters w∗ and b∗ in the beginning of this session. Here the 

mean squared error function is minimized:

 
 � � �� �

�

� � � ��1
1

2

n
wx b y

i

n
i i

 

The model parameters that need to be optimized are w and b, so we 

update them iteratively using the following equations:

 
� � �

�
�

w w
w

�


 

 
� � �

�
�

b b
b

�


 

2.3  Linear Model in Action
Let’s actually train a single-input linear neuron model using the gradient 

descent algorithm. First, we need to sample multiple data points. For a 

toy example with a known model, we directly sample from the specified 

real model:

 y x� �1 477 0 089. .  
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 01. Sampling data

In order to simulate the observation errors, we add an independent 

error variable ϵ to the model, where ϵ follows a Gaussian distribution with 

a mean value of 0 and a standard deviation of 0.01 (i.e., variance of 0.012):

 
y x� � � � � �1 477 0 089 0 0 012. . , .ε ε N ,  

By randomly sampling n = 100 times, we obtain a training data set 

train  using the following code:

data = [] # A list to save data samples

for i in range(100): # repeat 100 times

    # Randomly sample x from a uniform distribution

    x = np.random.uniform(-10., 10.)

    # Randomly sample from Gaussian distribution

    eps = np.random.normal(0., 0.01)

    # Calculate model output with random errors

    y = 1.477 * x + 0.089 + eps

    data.append([x, y]) # save to data list

data = np.array(data) # convert to 2D Numpy array

In the preceding code, we performed 100 samples in a loop, and each 

time we randomly sampled one data point x from the uniform distribution 

U(−10, 10) and then randomly sampled noise ϵ from the Gaussian 

distribution  0 0 12, .� � . Finally, we generated the data using the true 

model and random noise ϵ and save it as a Numpy array.

 02. Calculating the mean squared error

Now let’s calculate the mean squared error on the training set by 

averaging the squared difference between the predicted value and the true 

value at each data point. We can achieve this using the following function:
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def mse(b, w, points):

    # Calculate MSE based on current w and b

    totalError = 0

    # Loop through all points

    for i in range(0, len(points)):

        x = points[i, 0] # Get ith input

        y = points[i, 1] # Get ith output

        # Calculate the total squared error

        totalError += (y - (w * x + b)) ** 2

    # Calculate the mean of the total squared error

    return totalError / float(len(points))

 03. Calculating gradient

According to the gradient descent algorithm, we need to calculate the 

gradient at each data point 
�
�

�
�

�
�
�

�
�
�

 
w b

, . First, consider expanding the mean 

squared error function 
∂
∂

w

:

 

�
�

�
� � �� �

�
�

� � �� �
�

�
� � � �

�

� � � ��
�

w
n

wx b y

w n

wx b y

w

i

n i i

i

n
i i

1
11

2

1

2

 

Because

 

�
�

� � �
�
�

g

w
g

g

w

2

2  

we have

 

�
�

� � �� ��
� � �� �

��

� � � �
� � � �

�
w n

wx b y
wx b y

wi

n
i i

i i
1

2
1  

 
� � �� ��

�

� � � � � ��1 2
1n
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i i i
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� � �� ��

�

� � � � � ��2
1n
wx b y x

i

n
i i i

 
(2.2)

If it is difficult to understand the preceding derivation, you can 

review the gradient-related courses in mathematics. The details will 

also be introduced in Chapter 7 of this book. We can remember the final 

expression of 
∂
∂

w

 for now. In the same way, we can derive the expression 

of the partial derivative 
∂
∂

b

:

 

�
�

�
� � �� �

�
�

� � �� �
�

�
� � � �

�

� � � ��
�
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b

i
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(2.3)

According to the expressions (2.2) and (2.3), we only need to calculate 

the mean value of (wx(i) + b − y(i)) · x(i) and (wx(i) + b − y(i)) at each data 

point. The implementation is as follows:

def step_gradient(b_current, w_current, points, lr):

    # Calculate gradient and update w and b.

    b_gradient = 0

    w_gradient = 0

    M = float(len(points)) # total number of samples

    for i in range(0, len(points)):

        x = points[i, 0]

        y = points[i, 1]
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        # dL/db:grad_b = 2(wx+b-y) from equation (2.3)

        b_gradient += (2/M) * ((w_current * x + b_current) - y)

        # dL/dw:grad_w = 2(wx+b-y)*x from equation (2.2)

         w_gradient += (2/M) * x * ((w_current * x + b_

current) - y)

    # Update w',b' according to gradient descent algorithm

    # lr is learning rate

    new_b = b_current - (lr * b_gradient)

    new_w = w_current - (lr * w_gradient)

    return [new_b, new_w]

 04. Gradient update

After calculating the gradient of the error function at w and b, we 

can update the value of w and b according to equation (2.1). Training all 

samples of the data set once is known as one epoch. We can iterate multiple 

epochs using previous defined functions. The implementation is as follows:

def gradient_descent(points, starting_b, starting_w, lr, num_

iterations):

    # Update w, b multiple times

    b = starting_b # initial value for b

    w = starting_w # initial value for w

    # Iterate num_iterations time

for step in range(num_iterations):

        # Update w, b once

        b, w = step_gradient(b, w, np.array(points), lr)

        # Calculate current loss

   loss = mse(b, w, points)

        if step%50 == 0: # print loss and w, b

             print(f"iteration:{step}, loss:{loss}, 

w:{w}, b:{b}")

     return [b, w] # return the final value of w and b
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The main training function is defined as follows:

def main():

    # Load training dataset

    data = []

    for i in range(100):

         x = np.random.uniform(3., 12.)

         # mean=0, std=0.1

         eps = np.random.normal(0., 0.1)

         y = 1.477 * x + 0.089 + eps

         data.append([x, y])

    data = np.array(data)

    lr = 0.01      # learning rate

    initial_b = 0 # initialize b

    initial_w = 0 # initialize w

    num_iterations = 1000

     # Train 1000 times and return optimal w*,b* and 

corresponding loss

     [b, w]= gradient_descent(data, initial_b, initial_w, lr, 

num_iterations)

    loss = mse(b, w, data) # Calculate MSE

    print(f'Final loss:{loss}, w:{w}, b:{b}')

After 1000 iterative updates, the final w and b are the “optimal” 

solution we are looking for. The results are as follows:

iteration:0, loss:11.437586448749, w:0.88955725981925, 

b:0.02661765516748428

iteration:50, loss:0.111323083882350, w:1.48132089048970, 

b:0.58389075913875

iteration:100, loss:0.02436449474995, w:1.479296279074, 

b:0.78524532356388

...
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iteration:950, loss:0.01097700897880, w:1.478131231919, 

b:0.901113267769968

Final loss:0.010977008978805611, w:1.4781312318924746, 

b:0.901113270434582

It can be seen that at the 100th iteration, the values of w and b are 

already close to the real model values. The w and b obtained after 1000 

updates are very close to the real model. The mean squared error of the 

training process is shown in Figure 2-7.

Figure 2-7. MSE change during the training process

The preceding example shows the power of the gradient descent 

algorithm in solving model parameters. It should be noted that for 

complex nonlinear models, the parameters solved by the gradient descent 

algorithm may be a local minimum solution instead of a global minimum 

solution, which is determined by the function non-convexity. However, we 

found in practice that the performance of the numerical solution obtained 

by the gradient descent algorithm can often be optimized very well and the 

corresponding solution can be directly used to approximate the optimal 

solution.
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2.4  Summary
A brief review of our exploration: We first assume that the neuron model 

with n input is a linear model, and then we can calculate the exact solution 

of w and b through n + 1 samples. After introducing the observation error, 

we can sample multiple sets of data points and optimize through the 

gradient descent algorithm to obtain the numerical solution of w and b.

If we look at this problem from another angle, it can actually be 

understood as a set of continuous value (vector) prediction problems. 

Given a data set , we need to learn a model from the data set in order 

to predict the output value of an unseen sample. After assuming the 

type of model, the learning process becomes a problem of searching for 

model parameters. For example, if we assume that the neuron is a linear 

model, then the training process is the process of searching the linear 

model parameters w and b. After training, we can use the model output 

value as an approximation of the real value for any new input. From this 

perspective, it is a continuous value prediction problem.

In real life, continuous value prediction problems are very common, 

such as the prediction of stock price trends, the prediction of temperature 

and humidity in weather forecasts, the prediction of age, the prediction 

of traffic flow, and so on. We call it a regression problem if its predictions 

are in a continuous range of real numbers or belong to a certain 

continuous range of real numbers. In particular, if a linear model is used 

to approximate the real model, then we call it linear regression, which is a 

specific implementation of regression problems.

In addition to the continuous value prediction problem, is there a 

discrete value prediction problem? For example, the prediction of the 

front and back of a coin can only have two types of prediction: front and 

back. Given a picture, the type of objects in this picture can only be some 

discrete categories such as cats or dogs. Problems like those are known as 

classification problems, which will be introduced in the next chapter.
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CHAPTER 3

Classification
A year spent in artificial intelligence is enough to make one 
believe in God.

—Alan Perlis

The linear regression model for continuous variable prediction has been 

introduced previously. Now let’s dive into the classification problem. A 

typical application of the classification problem is to teach computers 

how to automatically recognize objects in images. Let’s consider one of 

the simplest tasks in image classification: 0–9 digital picture recognition, 

which is relatively simple and also has a very wide range of applications, 

such as postal code, courier number, and mobile phone number 

recognition. We will take 0–9 digital picture recognition as an example to 

explore how to use machine learning to solve the classification problem.

3.1  Handwritten Digital Picture Dataset
Machine learning needs to learn from the data, so it first needs to collect 

a large amount of real data. Taking handwritten digital picture recognition 

as an example, as shown in Figure 3-1, we need to collect a large number of 

0–9 digital pictures written by real people. In order to facilitate storage and 

calculation, the collected pictures are generally scaled to a fixed size, such 

as 224 × 224 or 96 × 96 pixels. These pictures will be used as the input data x.  

https://doi.org/10.1007/978-1-4842-7915-1_3#DOI
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At the same time, we need to label each image, which will be used as the 

real value of the image. This label indicates which specific category the 

image belongs to. For handwritten digital picture recognition, the labels 

are numbers 0–9 to represent pictures of 0–9.

Figure 3-1. Handwritten digital pictures

If we want the model to perform well on new samples, that is, achieve 

good model generalization ability, then we need to increase the size and 

diversity of the data set as much as possible, so that the training data set is 

as close as possible to the real population distribution and the model can 

also perform well on unseen samples.

In order to facilitate algorithm evaluation, Lecun et al. [1] released a 

handwritten digital picture data set named MNIST, which contains real 

handwritten pictures of numbers 0–9. Each number has a total of 7,000 

pictures, collected from different writing styles. The total number of 

pictures is 70,000. Among them, 60,000 pictures are used for training, and 

the remaining 10,000 pictures are used as a test set.

Because the information in handwritten digital pictures is relatively 

simple, each picture is scaled to the same size 28 × 28 pixels while retaining 

only grayscale information, as shown in Figure 3-2. These pictures are 

written by real people, including rich information such as font size, writing 

style, and line thickness, to ensure that the distribution of these pictures 

is as close as possible to the population distribution of real handwritten 

digital pictures, thereby ensuring model generalization ability.
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Figure 3-2. MNIST dataset examples

Now let’s look at the representation of a picture. A picture contains 

h rows and w columns with h×w pixel values. Generally, pixel values   are 

integers   ranging from 0 to 255 to express color intensity information. 

For example, 0 represents the lowest intensity, and 255 indicates the 

highest intensity. If it is a color picture, each pixel contains the intensity 

information of the three channels R, G, and B, which, respectively, 

represent the color intensity of colors red, green, and blue. Therefore, 

unlike a grayscale image, each pixel of a color picture is represented 

by a one-dimensional vector with three elements, which represent the 

intensity of R, G, and B colors. As a result, a color image is saved as a tensor 

with dimension [h, w, 3], while a grayscale picture only needs a two- 

dimensional matrix with shape [h, w] or a three-dimensional tensor with 

shape [h, w, 1] to represent its information. Figure 3-3 shows the matrix 

content of a picture for number 8. It can be seen that the black pixels in the 

picture are represented by 0 and the grayscale information is represented 

by 0–255. The whiter pixels in the picture correspond to the larger values   in 

the matrix. 
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Figure 3-3. How a picture is represented1

Deep learning frameworks like TensorFlow and PyTorch can easily 

download, manage, and load the MNIST dataset through a few lines of 

code. Here we use TensorFlow to automatically download the MNIST 

dataset and convert it to a Numpy array format:

import  os

import  tensorflow as tf

from    tensorflow import keras

from    tensorflow.keras import layers, optimizers, datasets

# load MNIST dataset

(x, y), (x_val, y_val) = datasets.mnist.load_data()

# convert to float type and rescale to [-1, 1]

x = 2*tf.convert_to_tensor(x, dtype=tf.float32)/255.-1

# convert to integer tensor

y = tf.convert_to_tensor(y, dtype=tf.int32)

# one-hot encoding

y = tf.one_hot(y, depth=10)

print(x.shape, y.shape)

1 Data source: https://towardsdatascience.com/how-to-teach-a-computer-
to-see- with- convolutional-neural-networks-96c120827cd1
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# create training dataset

train_dataset = tf.data.Dataset.from_tensor_slices((x, y))

# train in batch

train_dataset = train_dataset.batch(512)

The load_data () function returns two tuple objects: the first is 

the training set, and the second is the test set. The first element of the 

first tuple is the training picture data X, and the second element is the 

corresponding category number Y. Similar to Figure 3-3, each image in 

the training set Xconsists of 28×28 pixels, and there are 60,000 images in 

the training set X, so the final dimension of Xis (60000,28,28). The size of 

Y is (60,000), representing the 60,000 digital numbers ranging from 0–9. 

Similarly, the test set contains 10,000 test pictures and corresponding 

digital numbers with dimensions (10000,28,28) and (10,000) separately.

The MNIST dataset loaded from TensorFlow contains images with 

values from 0 to 255. In machine learning, it is generally desired that 

the range of data is distributed in a small range around 0. Therefore, we 

rescale the pixel range to interval [−1, 1], which will benefit the model 

optimization process.

The calculation process of each picture is universal. Therefore, we 

can calculate multiple pictures at once, making full use of the parallel 

computing power of CPU or GPU. We use a matrix of shape [h, w] to 

represent a picture. For multiple pictures, we can add one more dimension 

in front and use a tensor of shape [b, h, w] to represent them. Here b 

represents the batch size. Color pictures can be represented by a tensor 

with the shape of [b, h, w, c], where c represents the number of channels, 

which is 3 for color pictures. TensorFlow’s Dataset object can be used to 

conveniently convert a dataset into batches using the batch() function.
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3.2  Build a Model
Recall the biological neuron structure we discussed in the last chapter. 

We reduce the input vector x x x xd

T

in
� ��� ��1 2, , ,  to a single input scalar x, 

and the model can be expressed as y = xw + b. If it is a multi-input, single- 

output model structure, we need to use the vector form:

 
y w x b w w w w x x x x bT

d din in
� � � ��� �� � �� �� �1 2 3 1 2 3, , , , 

 

More generally, by combining multiple multi-input, single-output 

neuron models, we can build a multi-input, multi-output model:

 y Wx b� �  

where x Rdin∈ , b Rdout∈ , y Rdout∈ , andW Rd dout in� � .

For multiple-output and batch training, we write the model in 

batch form:

 Y X W b� �@  (3.1)

where X Rb din� � , b Rdout∈ , Y Rb dout� � , W Rd din out� � , din represents input 

dimension, and dout indicates output dimension. X has shape [b, din],  b 

is the number of samples and din is the length of each sample. W has 

shape [din, dout], containing din ∗ dout parameters. Bias vector b has shape 

dout. The @ symbol means matrix multiplication. Since the result of the 

operation X @ W is a matrix of shape [b, dout], it cannot be directly added 

to the vector b. Therefore, the + sign in batch form needs to support 

broadcasting, that is, expand the vector b into a matrix of shape [b, dout] by 

replicating b.

Consider two samples with din = 3 and dout = 2. Equation 3.1 is 

expanded as follows:

o o o o x x x x x x1
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where superscripts like (1) and (2) represent the sample index and 

subscripts such as 1 and 2 indicate the elements of a certain sample vector. 

The corresponding model structure is shown in Figure 3-4.

1

2

3

112

21

32

11

1

231

22

Figure 3-4. A neural network with three inputs and two outputs

It can be seen that the matrix form is more concise and clearer, and at 

the same time, the parallel acceleration capability of matrix calculation can 

be fully utilized. So how to transform the input and output of the image 

recognition task into a tensor form?

A grayscale image is stored using a matrix with shape [h, w], and b 

pictures are stored using a tensor with shape [b, h, w]. However, our model 

can only accept vectors, so we need to flatten the [h, w] matrix into a vector 

of length [h ⋅ w], as shown in Figure 3-5, where the length of the input 

features din = h ⋅ w.
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flatten

Figure 3-5. Flatten a matrix
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For the output label y, the digital coding has been introduced 

previously. It can use a number to represent the label information. The 

output only needs one number to represent the predicted category value of 

the network, such as number 1 for cat and number 3 for fish. However, one 

of the biggest problems with digital coding is that there is a natural order 

relationship between numbers. For example, if the tags corresponding to 1, 

2, and 3 are cat, dog, and fish, there is no order relationship between them, 

but 1 < 2 < 3. Therefore, if digital coding is used, it will force the model to 

learn this unnecessary constraint. In other words, digital coding would 

change nominal scale (i.e., no specific order) to ordinal scale (i.e., has a 

specific order), which is not suitable for this case.

So how to solve this problem? The output actually can be set to a 

set of vectors with length dout, where dout is the same as the number of 

categories. For example, if the output belongs to the first category, then the 

corresponding index is set to 1, and the other positions are set to 0. This 

encoding method is called one-hot encoding. Taking the “cat, dog, fish, 

and bird” recognition system in Figure 3-6 as an example, all the samples 

belong to only one of the four categories of “cat, dog, fish, and bird.” We 

use the index positions to indicate the categories of cat, dog, fish, and bird, 

respectively. For all pictures of cats, their one-hot encoding is [1, 0, 0, 0]; for 

all dog pictures, their one-hot encoding is [0, 1, 0, 0]; and so on. One-hot 

encoding is widely used in classification problems.
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cat dog fish bird

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Figure 3-6. One-hot encoding example

The total number of categories of handwritten digital pictures is ten, 

that is, dout = 10. For a sample, suppose it belongs to a category i, that is, 

number i. Using one-hot encoding, we can represent it using a vector y 

with length 10, where the ith element in this vector is 1 and the rest is 0. 

For example, the one-hot encoding of picture 0 is [1, 0, 0, …, 0], and the 

one-hot encoding of picture 2 is [0, 0, 1, …, 0], and the one-hot encoding of 

picture 9 is [0, 0, 0, …, 1]. One-hot encoding is very sparse. Compared with 

digital encoding, it needs more storage, so digital encoding is generally 

used for storage. During calculation, digital encoding is converted to one- 

hot encoding, which can be achieved through the tf.one_hot() function as 

follows:

y = tf.constant([0,1,2,3]) # digits 0-3

y = tf.one_hot(y, depth=10) # one-hot encoding with length 10

print(y)

Out[1]:

tf.Tensor(
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[[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]  # one-hot encoding of 

number 0

  [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]  # one-hot encoding of 

number 1

  [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]  # one-hot encoding of 

number 2

  [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]], shape=(4, 10), 

dtype=float32)

Now let’s return to the task of handwritten digital picture recognition. 

The input is a flattened picture vector x ∈ R784, and the output is a vector 

of length 10 o ∈ R10 corresponding one-hot encoding of a certain number, 

which forms a multi-input, multi-output linear model o = WTx + b. We 

hope that the model output is closer to the real label.

3.3  Error Calculation
For classification problems, our goal is to maximize a certain performance 

metric, such as accuracy. But when accuracy is used as a loss function, 

it is in fact indifferentiable. As a result, the gradient descent algorithm 

cannot be used to optimize the model parameters. The general approach 

is to establish a smooth and derivable proxy objective function, such as 

optimizing the distance between the output of the model and the one-hot 

encoded real label. The model obtained by optimizing the proxy objective 

function generally also performs well on a testing dataset. Compared 

with the regression problem, the optimization and evaluation objective 

functions of the classification problem are inconsistent. The goal of 

training a model is to find the optimal numerical solution W∗ and b∗ by 

optimizing the loss function L:
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For the error calculation of a classification problem, it is more common 

to use the cross-entropy loss function instead of the mean squared error 

loss function introduced in the regression problem. We will introduce 

the cross-entropy loss function in future chapters. Here we still use the 

mean squared error loss function to solve the handwritten digital picture 

recognition problem for simplicity. The mean squared error loss function 

for n samples can be expressed as

 
L o y

n
o y

i

n

j
j
i

j
i,� � � �� �

� �

� � � �� �1

1 1

10 2

 

Now we only need to use the gradient descent algorithm to optimize 

the loss function to get the optimal solution W and b and then use the 

obtained model to predict the unknown handwritten digital pictures 

x ∈ Dtest.

3.4  Do We Really Solve the Problem?
According to the preceding solution, is the problem of handwritten 

digital picture recognition really solved perfectly? There are at least two 

major issues:

• A linear model is one of the simplest models in 

machine learning. It has only a few parameters and 

can only express linear relationships. The perception 

and decision-making of complex brains are far more 

complex than a linear model. Therefore, the linear 

model is clearly not enough.

• Complexity is the model ability to approximate 

complex distributions. The preceding solution only 

uses a one-layer neural network model composed of 
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a small number of neurons. Compared with the 100 

billion neuron interconnection structure in the human 

brain, its generalization ability is obviously weaker.

Figure 3-7 shows an example of model complexity and data 

distribution. The distribution of sampling points with observation errors 

is plotted. The actual distribution may be a quadratic parabolic model. 

As shown in Figure 3-7 (a), if you use a linear model to fit the data, it is 

difficult to learn a good model; if you use a suitable polynomial function 

model to learn, such as a quadratic polynomial, you can learn a suitable 

model as shown in Figure 3-7 (b). But when the model is too complex, 

such as a ten-degree polynomial, it is likely to overfit and hurt the 

generalization ability of the model, as shown in Figure 3-7 (c).

(a) Linear model (b) Matching model (c) Complex model

Figure 3-7. Model complexity

The multi-neuronal model we currently use is still a linear model with 

weak generalization ability. Next, we’ll try to solve these two problems.

3.5  Nonlinear Model
Since a linear model is not feasible, we can embed a nonlinear function 

in the linear model and convert it to a nonlinear model. We call this 

nonlinear function the activation function, which is represented by σ:

 o Wx b� �� ��  
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Here σ represents a specific nonlinear activation function, such as the 

Sigmoid function (Figure 3-8 (a)) and the ReLU function (Figure 3-8 (b)).

0

5.0

1

−6 −4 −2 0 2 4 6

(a)Sigmoid (b)ReLU

Figure 3-8. Common activation functions

The ReLU function only retains the positive part of function y = x 

and sets the negative part to be zeros. It has a unilateral suppression 

characteristic. Although simple, the ReLU function has excellent nonlinear 

characteristics, easy gradient calculation, and stable training process. It is 

one of the most widely used activation functions for deep learning models. 

Here we convert the model to a nonlinear model by embedding the ReLU 

function:

 o ReLU Wx b� �� �  

3.6  Model Complexity
To increase the model complexity, we can repeatedly stack multiple 

transformations such as

 h ReLU W x b1 1 1� �� �  

 h ReLU W h b2 2 1 2� �� �  

 o W h b� �3 2 3  
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In the preceding equations, we take the output value h1 of the first- 

layer neuron as the input of the second-layer neuron and then take the 

output h2 of the second-layer neuron as the input of the third-layer neuron, 

and the output of the last-layer neuron is the model output.

As shown in Figure 3-9, the function embedding appears as the 

connected network one after the other. We call the layer where the input 

node x is located the input layer. The output of each nonlinear module hi 

along with its parameters Wi and bi is called a network layer. In particular, 

the layer in the middle of the network is called the hidden layer, and the 

last layer is called the output layer. This network structure formed by  

the connection of a large number of neurons is called a neural network. 

The number of nodes in each layer and the number of layers determine the 

complexity of the neural network.

Input layer: Hidden layer: Hidden layer: Output layer:

Figure 3-9. Three-layer neural network architecture

Now our network model has been upgraded to a three-layer neural 

network, which has a descent complexity and good nonlinear generalization 

ability. Next, let’s discuss how to optimize the network parameters.

3.7  Optimization Method
We’ve introduced the detailed optimization process in Chapter 2 for 

regression problems. Actually, similar optimization methods can also 

be used to solve classification problems. For a network model with only 
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one layer, we can directly derive the partial derivative expression of ∂
∂
L

w
 

and 
∂
∂
L

b
 and then calculate the gradient for each step and update the 

parameters w and b using the gradient descent algorithm. However, as 

complex nonlinear functions are embedded, the number of network layers 

and the length of data features also increase, the model becomes very 

complicated, and it is difficult to manually derive the gradient expressions. 

Besides, once the network structure changes, the model function and 

corresponding gradient expressions also change. Therefore, it is obviously 

not feasible to rely on the manual calculation of the gradient.

That is why we have the invention of deep learning frameworks. With 

the help of autodifferentiation technology, deep learning frameworks can 

build the neural network’s computational graph during the calculation 

of each layer’s output and corresponding loss function and then 

automatically calculate the gradient 
�
�

L

�
of any parameter θ. Users only 

need to set up the network structure, and the gradient will automatically 

be calculated and updated, which is very convenient and efficient to use.

3.8  Hands-On Handwritten Digital 
Image Recognition

In this section, we will experience the fun of neural networks without 

introducing too much detail of TensorFlow. The main purpose of this 

section is not to teach every detail, but to give readers a comprehensive 

and intuitive experience of neural network algorithms. Let’s start 

experiencing the magical image recognition algorithm!
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3.8.1  Build the Network
For the first layer, the input is x ∈ R784,and the output h1 ∈ R256 is a vector 

of length 256. We don’t need to explicitly write the calculation logic of 

h1 = ReLU(W1x + b1). It can be achieved in TensorFlow with a single line 

of code:

# Create one layer with 256 output dimension and ReLU 

activation function

layers.Dense(256, activation='relu')

Using TensorFlow’s Sequential function, we can easily build a 

multilayer network. For a three-layer network, it can be implemented as 

follows:

# Build a 3-layer network. The output of 1st layer is the input 

of 2nd layer.

model = keras.Sequential([

    layers.Dense(256, activation='relu'),

    layers.Dense(128, activation='relu'),

    layers.Dense(10)])

The number of output nodes in the three layers is 256, 128, and 

10, respectively. Calling model (x) can directly return the output of the 

last layer.

3.8.2  Model Training
After building the three-layer neural network, given the input x, we can call 

model(x) to get the model output o and calculate the current loss L:

     with tf.GradientTape() as tape: # Record the gradient 

calculation

        # Flatten x, [b, 28, 28] => [b, 784]
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        x = tf.reshape(x, (-1, 28*28))

        # Step1. get output [b, 784] => [b, 10]

        out = model(x)

        # [b] => [b, 10]

        y_onehot = tf.one_hot(y, depth=10)

        # Calculate squared error, [b, 10]

        loss = tf.square(out-y_onehot)

        # Calculate the mean squared error, [b]

        loss = tf.reduce_sum(loss) / x.shape[0]

Then we use the autodifferentiation function from TensorFlow 

tape.gradient(loss, model.trainable_variables) to calculate all the 

gradients 
�
�

�� �L
W b W b W b

�
�, 1 1 2 2 3 3, , , , , 。:

        # Step3. Calculate gradients w1, w2, w3, b1, b2, b3

        grads = tape.gradient(loss, model.trainable_variables)

The gradient results are saved using the grads list variable. Then we 

use the optimizer object to automatically update the model parameters θ 

according to the gradient update rule.

 
� � � �

�
�

� � �
�
L

 

Code is as follows:

        # Auto gradient calculation

        grads = tape.gradient(loss, model.trainable_variables)

        # w' = w - lr * grad, update parameters

         optimizer.apply_gradients(zip(grads, model.trainable_

variables))

After multiple iterations, the learned model f θ can be used to predict 

the categorical probability of unknown pictures. The model testing part is 

not discussed here for now.

Chapter 3  ClassifiCation



82

The training error curve of the MNIST data set is shown in Figure 3-10. 

Because the three-layer neural network has relatively strong generalization 

ability and the task of handwritten digital picture recognition is relatively 

simple, the training error decreases quickly. In Figure 3-10, the x-axis 

represents the number of times of iterating over all training samples, which 

is called epoch. Iterating all training samples once is called one epoch. We 

can test the model’s accuracy and other indicators after several epochs to 

monitor the model training effect.

Figure 3-10. Training error of MNIST dataset

3.9  Summary
In this chapter, by analogizing a one-layer linear regression model 

to the classification problem, we proposed a three-layer nonlinear 

neural network model to solve the problem of handwritten digital 

picture recognition. After this chapter, everyone should have a good 

understanding of the (shallow) neural network algorithms. Besides 

digital picture recognition, classification models also have a variety of 

applications. For example, classification models are used to separate spam 

and non-spam emails, conduct sentiment analysis with unstructured text, 

and process images for segmentation purposes. We will run into more 

classification problems and applications in future chapters.
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Next, we will learn some basic knowledge of TensorFlow and lay a solid 

foundation for subsequent learning and implementation of deep learning 

algorithms.

3.10  Reference
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CHAPTER 4

Basic TensorFlow
I envision that in the future, we may be equivalent to robot 
pet dogs, and by then I will also support robots.

—Claude Shannon

TensorFlow is a scientific computing library of deep learning algorithms. 

All operations are performed based on tensor objects. Complex neural 

network algorithms are essentially a combination of basic operations 

such as multiplication and addition of tensors. Therefore, it is important 

to get familiar with the basic tensor operation in TensorFlow. Only by 

mastering these operations can we realize various complex and novel 

network models at will and understand the essence of various models and 

algorithms.

4.1  Data Types
The basic data types in TensorFlow include numeric, string, and Boolean.

https://doi.org/10.1007/978-1-4842-7915-1_4#DOI


86

4.1.1  Numeric
A numeric tensor is the main data format of TensorFlow. According to the 

dimension, it can be divided into

• Scalar: A single real number, such as 1.2 and 3.4, has a 

dimension of 0 and a shape of [].

• Vector: An ordered set of real numbers, wrapped 

by square brackets, such as [1.2] and [1.2, 3.4], has 

a dimension of 1 and a shape of [n] depending on 

the length.

• Matrix: An ordered set of real numbers in n rows and 

m columns, such as [[1, 2], [3, 4]], has a dimension of 2 

and a shape of [n, m].

• Tensor: An array with dimension greater than 2. Each 

dimension of the tensor is also known as the axis. 

Generally, each dimension represents specific physical 

meaning. For example, a tensor with a shape of 

[2,32,32,3] has four dimensions. If it represents image 

data, each dimension or axis represents the number 

of images, image height, image width, and number 

of color channels, that is, 2 represents two pictures, 

image height and width are both 32, and 3 represents a 

total of three color channels, that is, RGB. The number 

of dimensions of the tensor and the specific physical 

meaning represented by each dimension need to be 

defined by users.

In TensorFlow, scalars, vectors, and matrices are also collectively 

referred to as tensors without distinction. You need to make your 

own judgment based on the dimension or shape of tensors. The same 

convention applies in this book.
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First, let’s create a scalar in TensorFlow. The implementation is as 

follows:

In [1]:

a = 1.2 # Create a scalar in Python

aa = tf.constant(1.2)  # Create a scalar in TensorFlow

type(a), type(aa), tf.is_tensor(aa)

Out[1]:

     (float, tensorflow.python.framework.ops.EagerTensor, True)

If we want to use the functions provided by TensorFlow, we must 

create tensors in the way specified by TensorFlow, not the standard Python 

language. We can print out the relevant information of tensor x through 

print (x) or x. The code is as follows:

In [2]: x = tf.constant([1,2.,3.3])

x # print out x

Out[2]:

<tf.Tensor: id=165, shape=(3,), dtype=float32,  

numpy=array([1. , 2. , 3.3], dtype=float32)>

In the output, id is the index of the internal object in TensorFlow, 

shape represents the shape of the tensor, and dtype represents the 

numerical precision of the tensor. The numpy() method can return data in 

the type of Numpy.array, which is convenient for exporting data to other 

modules in the system.

In [3]:  x.numpy()      # Convert TensorFlow (TF) tensor to 

numpy array

Out[3]:

array([1. , 2. , 3.3], dtype=float32)
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Unlike scalars, the definition of a vector must be passed to the  

tf.constant () function through a list container. For example, here’s how to 

create a vector:

In [4]:

a = tf.constant([1.2])  # Create a vector with one element

a, a.shape

Out[4]:

(<tf.Tensor: id=8, shape=(1,), dtype=float32, numpy=array([1.2],  

dtype=float32)>,

 TensorShape([1]))

Create a vector with three elements:

In [5]:

a = tf.constant([1,2, 3.])

a, a.shape

Out[5]:

  (<tf.Tensor: id=11, shape=(3,), dtype=float32, 

numpy=array([1., 2., 3.], dtype=float32)>,

 TensorShape([3]))

Similarly, the implementation of a matrix is as follows:

In [6]:

a = tf.constant([[1,2],[3,4]])  # Create a 2x2 matrix

a, a.shape

Out[6]:

(<tf.Tensor: id=13, shape=(2, 2), dtype=int32, numpy=

 array([[1, 2],

        [3, 4]])>, TensorShape([2, 2]))
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A three-dimensional tensor can be defined as

In [7]:

a = tf.constant([[[1,2],[3,4]],[[5,6],[7,8]]])

Out[7]:

<tf.Tensor: id=15, shape=(2, 2, 2), dtype=int32, numpy=

array([[[1, 2],

        [3, 4]],

       [[5, 6],

        [7, 8]]])>

4.1.2  String
In addition to numeric types, TensorFlow also supports a string type. For 

example, when processing image data, we can first record the path string of 

the images and then read the image tensors according to the path through 

the preprocessing function. A string tensor can be created by passing in a 

string object, for example:

In [8]:

a = tf.constant('Hello, Deep Learning.')

a

Out[8]:

<tf.Tensor: id=17, shape=(), dtype=string, numpy=b'Hello,  

Deep Learning.'>

The tf.strings module provides common utility functions for strings, 

such as lower(), join(), length(), and split(). For example, we can convert 

all strings to lowercase:

In [9]:

tf.strings.lower(a)  # Convert string a to lowercase

Out[9]:

<tf.Tensor: id=19, shape=(), dtype=string, numpy=b'hello,  

deep learning.'>
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Deep learning algorithms are mainly based on numerical tensor 

operations, and string data is used less frequently, so we won't go into too 

much detail here.

4.1.3  Boolean
In order to facilitate the comparison operation, TensorFlow also supports 

Boolean tensors. We can easily convert Python standard Boolean data into 

a TensorFlow internal Boolean as follows:

In [10]: a = tf.constant(True)

a

Out[10]:

<tf.Tensor: id=22, shape=(), dtype=bool, numpy=True>

Similarly, we can create a Boolean vector as follows:

In [1]:

a = tf.constant([True, False])

Out[1]:

<tf.Tensor: id=25, shape=(2,), dtype=bool, numpy=array([ True, 

False])>

It should be noted that the Tensorflow and standard Python Boolean 

types are not always equivalent and cannot be used universally, for 

example:

In [1]:

a = tf.constant(True) # Create TF Boolean data

a is True # Whether a is a Python Boolean

Out[1]:

False # TF Boolean is not a Python Boolean

In [2]:

a == True  # Are they numerically the same?
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Out[2]:

<tf.Tensor: id=8, shape=(), dtype=bool, numpy=True> # Yes, 

numerically, they are equal.

4.2  Numerical Precision
For a numeric tensor, it can be saved with a different byte length 

corresponding to a different precision. For example, a floating-point 

number 3.14 can be saved with 16-bit, 32-bit, or 64-bit precision. 

The longer the bit, the higher the accuracy and, of course, the larger 

memory space the number occupies. Commonly used precision types in 

TensorFlow are tf.int16, tf.int32, tf.int64, tf.float16, tf.float32, and tf.float64 

where tf.float64 is known as tf.double.

When creating a tensor, we can specify its precision, for example:

In [12]:

tf.constant(123456789, dtype=tf.int16)

tf.constant(123456789, dtype=tf.int32)

Out[12]:

<tf.Tensor: id=33, shape=(), dtype=int16, numpy=-13035>

<tf.Tensor: id=35, shape=(), dtype=int32, numpy=123456789>

Note that when precision is too low, the data 123456789 overflows, and 

the wrong result is returned. Generally, tf.int32 and tf.int64 precisions are 

used more often for integers. For floating-point numbers, high-precision 

tensors can represent data more accurately. For example, when tf.float32 is 

used for π, the actual data saved is 3.1415927:

In [1]:

import numpy as np

tf.constant(np.pi, dtype=tf.float32)  # Save pi with 32 byte

Out[1]:

<tf.Tensor: id=29, shape=(), dtype=float32, numpy=3.1415927>
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If we use tf.float64, we can get higher precision:

In [2]:

tf.constant(np.pi, dtype=tf.float64)  # Save pi with 64 byte

Out[2]:

<tf.Tensor: id=31, shape=(), dtype=float64, 

numpy=3.141592653589793>

For most deep learning algorithms, tf.int32 and tf.float32 are able to 

generally meet the accuracy requirements. Some algorithms that require 

higher accuracy, such as reinforcement learning, can use tf.int64 and 

tf.float64.

The tensor precision can be accessed through the dtype property. 

For some operations that can only handle a specified precision type, the 

precision type of the input tensor needs to be checked in advance, and the 

tensor that does not meet the requirements should be converted to the 

appropriate type using the tf.cast function, for example:

In [3]:

a = tf.constant(3.14, dtype=tf.float16)

print('before:',a.dtype)  # Get a's precision

if a.dtype != tf.float32:  # If a is not tf.float32, convert it 

to tf.float32.

    a = tf.cast(a,tf.float32)  # Convert a to tf.float32

print('after :',a.dtype)  # Get a's current precision

Out[3]:

before: <dtype: 'float16'>

after : <dtype: 'float32'>

When performing type conversion, you need to ensure the legality of 

the conversion operation. For example, when converting a high-precision 

tensor into a low-precision tensor, hidden data overflow risks may occur:
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In [4]:

a = tf.constant(123456789, dtype=tf.int32)

tf.cast(a, tf.int16)  # Convert a to lower precision and we 

have overflow

Out[4]:

<tf.Tensor: id=38, shape=(), dtype=int16, numpy=-13035>

Conversions between Boolean and integer types are also legal and 

are common:

In [5]:

a = tf.constant([True, False])

tf.cast(a, tf.int32)  # Convert boolean to integers

Out[5]:

<tf.Tensor: id=48, shape=(2,), dtype=int32, 

numpy=array([1, 0])>

In general, 0 means False and 1 means True during type conversion. In 

TensorFlow, non-zero numbers are treated as True, for example:

In [6]:

a = tf.constant([-1, 0, 1, 2])

tf.cast(a, tf.bool)  # Convert integers to booleans

Out[6]:

<tf.Tensor: id=51, shape=(4,), dtype=bool, numpy=array([ True, 

False,  True,  True])>

4.3  Tensors to Be Optimized
In order to distinguish tensors that need to calculate gradient information 

from tensors that do not need to calculate gradient information, 

TensorFlow adds a special data type to support the recording of gradient 

information: tf.Variable. tf.Variable adds attributes such as name and 
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trainable on the basis of ordinary tensors to support the construction of 

computational graphs. Since the gradient operation consumes a large 

amount of computing resources and automatically updates related 

parameters, tf.Variable does not need to be encapsulated for tensors that 

don’t need gradient information, such as the input X of a neural network. 

Instead, tensors that need to calculate the gradient, such as the W and b 

of neural network layers, need to be wrapped by tf.Variable in order for 

TensorFlow to track relevant gradient information.

The tf.Variable() function can be used to convert an ordinary tensor 

into a tensor with gradient information, for example:

In [20]:

a = tf.constant([-1, 0, 1, 2])  # Create TF tensor

aa = tf.Variable(a)  # Convert to tf.Variable type

aa.name, aa.trainable # Get tf.Variable properties

Out[20]:

 ('Variable:0', True)

The name and trainable attributes are specific for the tf.Variable type. 

The name attribute is used to name the variables in the computational 

graph. This naming system is maintained internally by TensorFlow and 

generally does not require users to do anything about it. The trainable 

attribute indicates whether the gradient information needs to be recorded 

for the tensor. When the Variable object is created, the trainable flag is 

enabled by default. You can set the trainable attribute to be False to avoid 

recording the gradient information.

In addition to creating tf.Variable tensors through ordinary tensors, you 

can also create them directly, for example:

In [21]:

a = tf.Variable([[1,2],[3,4]])  # Directly create Variable 

type tensor

a
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Out[21]:

<tf.Variable 'Variable:0' shape=(2, 2) dtype=int32, numpy=

array([[1, 2],

       [3, 4]])>

The tf.Variable tensors can be considered as a special type of ordinary 

tensors. In fact, ordinary tensors can also be temporarily added to a list of 

tracking gradient information through the GradientTape.watch() method 

in order to support the automatic differentiation function.

4.4  Create Tensors
In TensorFlow, you can create tensors in a variety of ways, such as from a 

Python list, from a Numpy array, or from a known distribution.

4.4.1  Create Tensors from Arrays and Lists
Numpy array and Python list are very important data containers in Python. 

Many data are loaded into arrays or lists before being converted to tensors. 

The output data of TensorFlow are also usually exported to arrays or lists, 

which makes them easy to use for other modules.

The tf.convert_to_tensor function can be used to create a new tensor 

from a Python list or Numpy array, for example:

In [22]:

# Create a tensor from a Python list

tf.convert_to_tensor([1,2.])

Out[22]:

<tf.Tensor: id=86, shape=(2,), dtype=float32, numpy=array([1., 

2.], dtype=float32)>

In [23]:

# Create a tensor from a Numpy array

tf.convert_to_tensor(np.array([[1,2.],[3,4]]))
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Out[23]:

<tf.Tensor: id=88, shape=(2, 2), dtype=float64, numpy=

array([[1., 2.],

       [3., 4.]])>

Note that Numpy floating-point arrays store data with 64-bit precision 

by default. When converting to a tensor type, the precision is tf.float64. 

You can convert it to tf.float32 when needed. In fact, both tf.constant() and 

tf.convert_to_tensor() can automatically convert Numpy arrays or Python 

lists to tensor types.

4.4.2  Create All-0 or All-1 Tensors
Creating tensors with all 0s or 1s is a very common tensor initialization 

method. Consider linear transformation y = Wx + b. The weight matrix 

W can be initialized with a matrix of all 1s, and b can be initialized 

with a vector of all 0s. So the linear transformation changes to y = x. We 

can use tf.zeros() or tf.ones() to create all-zero or all-one tensors with 

arbitrary shapes:

In [24]: tf.zeros([]),tf.ones([])

Out[24]:

 (<tf.Tensor: id=90, shape=(), dtype=float32, numpy=0.0>,

 <tf.Tensor: id=91, shape=(), dtype=float32, numpy=1.0>)

Create a vector of all 0s and all 1s:

In [25]: tf.zeros([1]),tf.ones([1])

Out[25]:

(<tf.Tensor: id=96, shape=(1,), dtype=float32, 

numpy=array([0.], dtype=float32)>,

  <tf.Tensor: id=99, shape=(1,), dtype=float32, 

numpy=array([1.], dtype=float32)>)
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Create a matrix of all zeros:

In [26]: tf.zeros([2,2])

Out[26]:

<tf.Tensor: id=104, shape=(2, 2), dtype=float32, numpy=

array([[0., 0.],

       [0., 0.]], dtype=float32)>

Create a matrix of all 1s:

In [27]: tf.ones([3,2])

Out[27]:

<tf.Tensor: id=108, shape=(3, 2), dtype=float32, numpy=

array([[1., 1.],

       [1., 1.],

       [1., 1.]], dtype=float32)>

With tf.zeros_like and tf.ones_like, you can easily create a tensor with 

all 0s or 1s that is consistent with the shape of another tensor. For example, 

here’s how to create an all-zero tensor with the same shape as the tensor a:

In [28]: a = tf.ones([2,3])  # Create a 2x3 tensor with all 1s

tf.zeros_like(a)  # Create a all zero tensor with the same 

shape of a

Out[28]:

<tf.Tensor: id=113, shape=(2, 3), dtype=float32, numpy=

array([[0., 0., 0.],

       [0., 0., 0.]], dtype=float32)>

Create an all-one tensor with the same shape as the tensor a:

In [29]: a = tf.zeros([3,2])  # Create a 3x2 tensor with all 

0s tf.ones_like(a)  # Create a all 1 tensor with the same 

shape of a
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Out[29]:

<tf.Tensor: id=120, shape=(3, 2), dtype=float32, numpy=

array([[1., 1.],

       [1., 1.],

       [1., 1.]], dtype=float32)>

4.4.3  Create a Customized Numeric Tensor
In addition to initializing a tensor with all 0s or 1s, sometimes it is also 

necessary to initialize the tensor with a specific value, such as –1. With 

tf.fill(shape, value), we can create a tensor with a specific numeric value, 

where the dimension is specified by the shape parameter. For example, 

here’s how to create a scalar with element –1:

In [30]:tf.fill([], -1)  #

Out[30]:

<tf.Tensor: id=124, shape=(), dtype=int32, numpy=-1>

Create a vector with all elements –1:

In [31]:tf.fill([1], -1)

Out[31]:

<tf.Tensor: id=128, shape=(1,), dtype=int32, numpy=array([-1])>

Create a matrix with all elements 99:

In [32]:tf.fill([2,2], 99)  # Create a 2x2 matrix with all 99s

Out[32]:

<tf.Tensor: id=136, shape=(2, 2), dtype=int32, numpy=

array([[99, 99],

       [99, 99]])>
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4.4.4  Create a Tensor from a Known Distribution
Sometimes, it is very useful to create tensors sampled from common 

distributions such as normal (or Gaussian) and uniform distributions. 

For example, in convolutional neural networks, the convolution kernel 

W is usually initialized from a normal distribution to facilitate the training 

process. In adversarial networks, hidden variables z are generally sampled 

from a uniform distribution.

With tf.random.normal(shape, mean=0.0, stddev=1.0), we can create 

a tensor with dimension defined by the shape parameter and values 

sampled from a normal distribution N(mean, stddev2). For example, 

here’s how to create a tensor from a normal distribution with mean 0 and 

standard deviation of 1:

In [33]: tf.random.normal([2,2])  # Create a 2x2 tensor from a 

normal distribution

Out[33]:

<tf.Tensor: id=143, shape=(2, 2), dtype=float32, numpy=

array([[-0.4307344 ,  0.44147003],

       [-0.6563149 , -0.30100572]], dtype=float32)>

Create a tensor from a normal distribution with mean of 1 and 

standard deviation of 2:

In [34]: tf.random.normal([2,2], mean=1,stddev=2)

Out[34]:

<tf.Tensor: id=150, shape=(2, 2), dtype=float32, numpy=

array([[-2.2687864, -0.7248812],

       [ 1.2752185,  2.8625617]], dtype=float32)>
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With tf.random.uniform(shape, minval=0, maxval=None, dtype=tf.

float32), we can create a uniformly distributed tensor sampled from the 

interval [minval, maxval). For example, here’s how to create a matrix 

uniformly sampled from the interval [0, 1) with shape of [2, 2]:

In [35]: tf.random.uniform([2,2])

Out[35]:

<tf.Tensor: id=158, shape=(2, 2), dtype=float32, numpy=

array([[0.65483284, 0.63064325],

       [0.008816  , 0.81437767]], dtype=float32)>

Create a matrix uniformly sampled from an interval [0, 10) with shape 

of [2, 2]:

In [36]: tf.random.uniform([2,2],maxval=10)

Out[36]:

<tf.Tensor: id=166, shape=(2, 2), dtype=float32, numpy=

array([[4.541913  , 0.26521802],

       [2.578913  , 5.126876  ]], dtype=float32)>

If we need to uniformly sample integers, we must specify the maxval 

parameter and set the data type as tf.int*:

In [37]:

# Create a integer tensor from a uniform distribution with 

interval [0,100)

tf.random.uniform([2,2],maxval=100,dtype=tf.int32)

Out[37]:

<tf.Tensor: id=171, shape=(2, 2), dtype=int32, numpy=

array([[61, 21],

       [95, 75]])>

Please notice that these outputs from all random functions may be 

distinct. However, it does not affect the usage of these functions.
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4.4.5  Create a Sequence
When looping or indexing a tensor, it is often necessary to create a 

continuous sequence of integers, which can be implemented by the 

tf.range() function. The function tf.range(limit, delta=1) can create integer 

sequences with delta steps and within interval [0, limit). For example, 

here’s how to create an integer sequence of 0–10 with step of 1:

In [38]: tf.range(10)  # 0~10, 10 is not included

Out[38]:

<tf.Tensor: id=180, shape=(10,), dtype=int32, numpy=array([0, 

1, 2, 3, 4, 5, 6, 7, 8, 9])>

Create an integer sequence between 0 and 10 with step of 2:

In [39]: tf.range(10,delta=2) # 10 is not included

Out[39]:

<tf.Tensor: id=185, shape=(5,), dtype=int32, numpy=array([0, 2, 

4, 6, 8])>

With tf.range(start, limit, delta=1), we can create an integer sequence 

within interval [start, limit) and step of delta:

In [40]: tf.range(1,10,delta=2)  # 1~10, 10 is not included

Out[40]:

<tf.Tensor: id=190, shape=(5,), dtype=int32, numpy=array([1, 3, 

5, 7, 9])>

4.5  Typical Applications of Tensors
After introducing the properties and creation methods of tensors, 

the following will introduce the typical application of tensors in each 

dimension, so that readers can intuitively think of their main physical 
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meaning and purpose and lay the foundation for the study of a series of 

abstract operations such as the dimensional transformation of subsequent 

tensors.

This section will inevitably mention the network models or algorithms 

that will be learned in future chapters. You don't need to fully understand 

them now, but can have a preliminary impression.

4.5.1  Scalar
In TensorFlow, a scalar is the easiest to understand. It is a simple 

number with 0 dimension and a shape of []. Typical uses of scalars are 

the representation of error values and various metrics, such as accuracy, 

precision, and recall.

Consider the training curve of a model. As shown in Figure 4-1, the 

x-axis is the number of training steps, and the y-axis is Loss per Query 

Image error change (Figure 4-1 (a)) and accuracy change (Figure 4-1 (b)),  

where the loss value and accuracy are scalars generated by tensor 

calculation.

(a)Training/validation error curves (b)Training/validation accuracy curves

Figure 4-1. Loss and accuracy curves
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Take the mean squared error function as an example. After tf.keras.

losses.mse (or tf.keras.losses.MSE, the same function) returns the error 

value on each sample and finally takes the average value of the error as the 

error of the current batch, it automatically becomes a scalar:

In [41]:

out = tf.random.uniform([4,10]) # Create a model output example

y = tf.constant([2,3,2,0]) # Create a real observation

y = tf.one_hot(y, depth=10) # one-hot encoding

loss = tf.keras.losses.mse(y, out) # Calculate MSE for 

each sample

loss = tf.reduce_mean(loss) # Calculate the mean of MSE

print(loss)

Out[41]:

tf.Tensor(0.19950335, shape=(), dtype=float32)

4.5.2  Vector
Vectors are very common in neural networks. For example, in fully 

connected networks and convolutional neural networks, bias tensors b are 

represented by vectors. As shown in Figure 4-2, a bias value is added to the 

output nodes of each fully connected layer, and the bias of all output nodes 

is represented as a vector form b = [b1, b2]T:

1

2

3

112

21

32

11

1

231

22

Figure 4-2. Application of bias vectors
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Considering a network layer of two output nodes, we create a bias 

vector of length 2 and add back on each output node:

In [42]:

# Suppose z is the output of an activation function

z = tf.random.normal([4,2])

b = tf.zeros([2]) # Create a bias vector

z = z + b

Out[42]:

<tf.Tensor: id=245, shape=(4, 2), dtype=float32, numpy=

array([[ 0.6941646 ,  0.4764454 ],

       [-0.34862405, -0.26460952],

       [ 1.5081744 , -0.6493869 ],

       [-0.26224667, -0.78742725]], dtype=float32)>

Note that the tensor z with shape [4, 2] and the vector b with shape [2] 

can be added directly. Why is this? We will reveal it in the “Broadcasting” 

section later.

For a network layer created through the high-level interface class 

Dense(), the tensors W and b are automatically created and managed by 

the class internally. The bias variable b can be accessed through the bias 

member of the fully connected layer. For example, if a linear network layer 

with four input nodes and three output nodes is created, then its bias 

vector b should have length of 3 as follows:

In [43]:

fc = layers.Dense(3) # Create a dense layer with output 

length of 3

# Create W and b through build function with input nodes of 4

fc.build(input_shape=(2,4))

fc.bias # Print bias vector
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Out[43]:

<tf.Variable 'bias:0' shape=(3,) dtype=float32, 

numpy=array([0., 0., 0.], dtype=float32)>

It can be seen that the bias member of the class is a vector of length 3 

and is initialized to all 0s. This is also the default initialization scheme of 

the bias b. Besides, the type of the bias vector is Variable, because gradient 

information is needed for both W and b.

4.5.3  Matrix
A matrix is also a very common type of tensor. For example, the shape of a 

batch input tensor X of a fully connected layer is [b, din], where b represents 

the number of input samples, that is, batch size, and din represents the 

length of the input feature. For example, the feature length 4 and the input 

containing a total of two samples can be expressed as a matrix:

x = tf.random.normal([2,4])  # A tensor with 2 samples and 4 

features

Let the number of output nodes of the fully connected layer be three 

and then the shape of its weight tensor W [4,3]. We can directly implement 

a network layer using the tensors X, W and vector b. The code is as follows:

In [44]:

w = tf.ones([4,3])

b = tf.zeros([3])

o = x@w+b # @ means matrix multiplication

Out[44]:

<tf.Tensor: id=291, shape=(2, 3), dtype=float32, numpy=

array([[ 2.3506963,  2.3506963,  2.3506963],

       [-1.1724043, -1.1724043, -1.1724043]], dtype=float32)>
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In the preceding code, both X and W are matrices. The preceding code 

implements a linear transformation network layer, and the activation 

function is empty. In general, the network layer σ(X @ W + b) is called a 

fully connected layer, which can be directly implemented by the Dense() 

class in TensorFlow. In particular, when the activation function σ is empty, 

the fully connected layer is also called a linear layer. We can create a 

network layer with four input nodes and three output nodes through the 

Dense() class and view its weight matrix W through the kernel member of 

the fully connected layer:

In [45]:

fc = layers.Dense(3) # Create fully-connected layer with 3 

output nodes

fc.build(input_shape=(2,4)) # Define the input nodes to be 4

fc.kernel # Check kernel matrix W

Out[45]:

<tf.Variable 'kernel:0' shape=(4, 3) dtype=float32, numpy=

array([[ 0.06468129, -0.5146048 , -0.12036425],

       [ 0.71618867, -0.01442951, -0.5891943 ],

       [-0.03011459,  0.578704  ,  0.7245046 ],

        [ 0.73894167, -0.21171576,  0.4820758 ]], 

dtype=float32)>

4.5.4  Three-Dimensional Tensor
A typical application of a three-dimensional tensor is to represent a 

sequence signal. Its format is

 X b sequence length feature length�� �,  ,   

where the number of sequence signals is b, sequence length represents 

the number of sampling points or steps in the time dimension, and feature 

length represents the feature length of each point.
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Consider the representation of sentences in natural language 

processing (NLP), such as the sentiment classification network that 

evaluates whether a sentence is a positive sentiment or not, as shown 

in Figure 4-3. In order to facilitate the processing of strings by neural 

networks, words are generally encoded into vectors of fixed length through 

the embedding layer. For example, "a" is encoded as a vector of length 3. 

Then two sentences with equal length (each sentence has five words) can 

be expressed as a three-dimensional tensor with shape of [2,5,3], where 

2 represents the number of sentences, 5 represents the number of words, 

and 3 represents the length of the encoded word vector. We demonstrate 

how to represent sentences through the IMDB dataset as follows:

In [46]:  # Load IMDB dataset

from tensorflow import keras

(x_train,y_train),(x_test,y_test)=keras.datasets.imdb.load_

data(num_words=10000)

# Convert each sentence to length of 80 words

x_train = keras.preprocessing.sequence.pad_sequences(x_

train,maxlen=80)

x_train.shape

Out [46]: (25000, 80)

We can see that the shape of the x_train is [25000, 80], where 25000 

represents the number of sentences, 80 represents a total of 80 words 

in each sentence, and each word is represented by a numeric encoding 

method. Next, we use the layers.Embedding function to convert each 

numeric encoded word into a vector of length 100:

In [47]: # Create Embedding layer with 100 output length

embedding=layers.Embedding(10000, 100)

# Convert numeric encoded words to word vectors

out = embedding(x_train)

out.shape

Out[47]: TensorShape([25000, 80, 100])
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Through the embedding layer, the shape of the sentence tensor 

becomes [25000,80,100], where 100 represents that each word is encoded 

as a vector of length 100.

For a sequence signal with one feature, such as the price of a product 

within 60 days, only one scalar is required to represent the product price, 

so the price change of two products can be expressed using a tensor of 

shape [2, 60]. In order to facilitate the uniform format, the price change 

can also be expressed as a tensor of shape [2,60,1], where 1 represents the 

feature length of 1.

4.5.5  Four-Dimensional Tensor
Most times we only use tensors with dimension less than five. For larger- 

dimension tensors, such as five-dimensional tensor representation in meta 

learning, a similar principle can be applied. Four-dimensional tensors 

are widely used in convolutional neural networks. They are used to save 

feature maps. The format is generally defined as

 b h w c, , ,� �  

What

[0.5,0.2,0.3]

Embedding

Cell

a

[0.2,-0.2,-0.3]

Embedding

Cell

great

[0.9,-0.2,1.3]

Embedding

Cell

product

[-2.5,0.2,4.3]

Embedding

Cell

!

[1.5,-2.2,1.3]

Embedding

Cell

Classifier

Figure 4-3. Sentiment classification network
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where b indicates the number of input samples; h and w represent the 

height and width of the feature map, respectively; and c is the number 

of channels. Some deep learning frameworks also use the format of 

[b, c, h, w], such as PyTorch. Image data is a type of feature map. A color 

image with three channels of RGB contains h rows and w columns of 

pixels. Each point requires three values to represent the color intensity of 

the RGB channel, so a picture can be expressed using a tensor of shape 

[h, w, 3]. As shown in Figure 4-4, the top picture represents the original 

image, which contains the intensity information of the three lower 

channels.

Figure 4-4. Feature maps of RGB images

In neural networks, multiple inputs are generally calculated in parallel 

to improve the computation efficiency, so the tensor of b pictures can be 

expressed as [b, h, w, 3]:

In [48]:

# Create 4 32x32 color images

x = tf.random.normal([4,32,32,3])

# Create convolutional layer

layer = layers.Conv2D(16,kernel_size=3)

out = layer(x)

out.shape

Out[48]: TensorShape([4, 30, 30, 16])
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The convolution kernel tensor is also a four-dimensional tensor, which 

can be accessed through the kernel member variable:

In [49]: layer.kernel.shape

Out[49]: TensorShape([3, 3, 3, 16])

4.6  Indexing and Slicing
Part of the tensor data can be extracted through indexing and slicing 

operations, which are used very frequently.

4.6.1  Indexing
In TensorFlow, the standard Python indexing method is supported, such 

as [i][j] and comma and “:”. Consider four color pictures with 32 × 32 size 

(for convenience, most of the tensors are generated by random normal 

distribution, the same hereinafter). The corresponding tensor has shape 

[4,32,32,3] as follows:

x = tf.random.normal([4,32,32,3])

Next, we use the indexing method to read part of the data from 

the tensor.

• Read the first image data:

x = tf.random.normal ([4,32,32,3]) # Create a 4D tensor

In [51]: x[0]  # Index 0 indicates the 1st element in Python

Out[51]:<tf.Tensor: id=379, shape=(32, 32, 3), 

dtype=float32, numpy=

array([[[ 1.3005302 ,  1.5301839 , -0.32005513],

        [-1.3020388 ,  1.7837263 , -1.0747638 ], ...

        [-1.1092019 , -1.045254  , -0.4980363 ],

        [-0.9099222 ,  0.3947732 , -0.10433522]]], dtype=float32)>
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• Read the second row of the first picture:

In [52]: x[0][1]

Out[52]:

<tf.Tensor: id=388, shape=(32, 3), dtype=float32, numpy=

array([[ 4.2904025e-01,  1.0574218e+00,  3.1540772e-01],

       [ 1.5800388e+00, -8.1637271e-02,  6.3147342e-01], ...,

       [ 2.8893018e-01,  5.8003378e-01, -1.1444757e+00],

        [ 9.6100050e-01, -1.0985689e+00,  1.0827581e+00]], 

dtype=float32)>

• Read the second row and third column of the first 

picture:

In [53]: x[0][1][2]

Out[53]:

<tf.Tensor: id=401, shape=(3,), dtype=float32, 

numpy=array([-0.55954427,  0.14497331,  0.46424514], 

dtype=float32)>

• Select the second row, first column, and second (B) 

channel of the third picture:

In [54]: x[2][1][0][1]

Out[54]:

<tf.Tensor: id=418, shape=(), dtype=float32, numpy=-0.84922135>

When the number of dimensions is large, the way of using [i][j]...[k] 

is inconvenient. Instead, we can use the [i, j, ..., k] for indexing. They are 

equivalent.
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• Read the tenth row and third column of the second 

picture:

In [55]: x[1,9,2]

Out[55]:

<tf.Tensor: id=436, shape=(3,), dtype=float32, numpy=array([ 

1.7487534 , -0.41491988, -0.2944692 ], dtype=float32)>

4.6.2  Slicing
A slice of data can be easily extracted using the format start : end : step, 

where start is the index of the starting position, end is the index of the 

ending position (excluding), and step is the sampling step size.

Taking the image tensor with shape [4,32,32,3] as an example, we’ll 

explain how to use slicing to obtain data at different positions. For 

example, read the second and third pictures as follows:

In [56]: x[1:3]

Out[56]:

<tf.Tensor: id=441, shape=(2, 32, 32, 3), dtype=float32, numpy=

array([[[[ 0.6920027 ,  0.18658352,  0.0568333 ],

         [ 0.31422952,  0.75933754,  0.26853144],

         [ 2.7898    , -0.4284912 , -0.26247284],...

There are many abbreviations for the start : end : step slicing method. 

The start, end, and step parameters can be selectively omitted as needed. 

When all of them are omitted like ::, it indicates that the reading is from 

the beginning to the end and the step size is 1. For example, x [0, ::] means 

read all the rows of the first picture, where :: means all the rows in the row 

dimension, which is equivalent to x [0]:

Chapter 4  BasiC tensorFlow



113

In [57]: x[0,::]      # Read 1st picture

Out[57]:

<tf.Tensor: id=446, shape=(32, 32, 3), dtype=float32, numpy=

array([[[ 1.3005302 ,  1.5301839 , -0.32005513],

        [-1.3020388 ,  1.7837263 , -1.0747638 ],

        [-1.1230233 , -0.35004002,  0.01514002],

        ...

For brevity, :: can be shortened to a single colon :, for example:

In [58]: x[:,0:28:2,0:28:2,:]

Out[58]:

<tf.Tensor: id=451, shape=(4, 14, 14, 3), dtype=float32, numpy=

array([[[[ 1.3005302 ,  1.5301839 , -0.32005513],

         [-1.1230233 , -0.35004002,  0.01514002],

         [ 1.3474811 ,  0.639334  , -1.0826371 ],

         ...

The preceding code represents reading all pictures, interlaced 

sampling, and reading all channel data, which is equivalent to scaling 50% 

of the original height and width of the picture.

Let’s summarize different ways of slicing, where “start” can be omitted 

when reading from the first element, that is, “start = 0” can be omitted, 

“end” can be omitted when the last element is taken, and “step” can be 

omitted when the step length is 1. The details are summarized in Table 4-1.
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Table 4-1. Summary of slicing methods

Method Meaning

start:end:step read from “start” to “end” (excluding) with step length of “step.”

start:end read from “start” to “end” (excluding) with step length of 1.

start: read from “start” to the end of object with step length of 1.

start::step read from “start” to the end of object with step length of “step.”

:end:step read from the 0th item to “end” (excluding) with step length of “step.”

:end read from 0th item to “end” (excluding) with step length of 1.

::step read from 0th item to the last item with step length of “step.”

:: read all items.

: read all items.

In particular, step can be negative. For example, start : end :  − 1 means 

starting from “start,” reading in reverse order, and ending with “end” 

(excluding), and the index “end” is smaller than “start.” Consider a simple 

sequence vector from 0 to 9, and take the first element in reverse order, 

excluding the first element:

In [59]: x = tf.range(9)  # Create the vector

x[8:0:-1]  # Reverse slicing

Out[59]:

<tf.Tensor: id=466, shape=(8,), dtype=int32, numpy=array([8, 7, 

6, 5, 4, 3, 2, 1])>

Fetch all elements in reverse order as follows:

In [60]: x[::-1]

Out[60]:

<tf.Tensor: id=471, shape=(9,), dtype=int32, numpy=array([8, 7, 

6, 5, 4, 3, 2, 1, 0])>
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Reverse sampling every two items is implemented as follows:

In [61]: x[::-2]

Out[61]:

<tf.Tensor: id=476, shape=(5,), dtype=int32, numpy=array([8, 6, 

4, 2, 0])>

Read all the channels of each picture, where both rows and columns 

are sampled every two elements in reverse order. The implementation is as 

follows:

In [62]: x = tf.random.normal([4,32,32,3])

x[0,::-2,::-2]

Out[62]:

<tf.Tensor: id=487, shape=(16, 16, 3), dtype=float32, numpy=

array([[[ 0.63320625,  0.0655185 ,  0.19056146],

        [-1.0078577 , -0.61400175,  0.61183935],

        [ 0.9230892 , -0.6860094 , -0.01580668],

        ...

When the tensor has large dimensions, the dimensions that do not 

need to be sampled generally use a single colon “:” to indicate that all 

elements are selected. As a result, a lot of “:” may appear. Consider the 

image tensor with shape [4,32,32,3]. When the data on the green channel 

needs to be read, all the previous dimensions are extracted as

In [63]: x[:,:,:,1]  # Read data on Green channel

Out[63]:

<tf.Tensor: id=492, shape=(4, 32, 32), dtype=float32, numpy=

array([[[ 0.575703  ,  0.11028383, -0.9950867 , 

...,  0.38083118, -0.11705163, -0.13746642],

        ...
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In order to avoid the situation of too many colons like x[:,  : ,  : , 1], we 

can use the symbol “⋯" to take all the data in multiple dimensions, where 

the number of dimensions needs to be automatically inferred according 

to the rules: When the symbol ⋯ appears in slice mode, the dimension 

to the left of “⋯” will be automatically aligned to the left maximum. The 

dimension to the right of the symbol “⋯” will be automatically aligned to 

the far right. The system will automatically infer the number of dimensions 

represented by the symbol “⋯”. The details are summarized in Table 4-2.

Table 4-2. “...” slicing method summary

Method Meaning

a,⋯,b select 0 to a for dimension a, b to end for dimension b, and all elements 

for other dimensions.

a,⋯ select 0 to a for dimension a and all elements for other dimensions.

⋯,b select b to end for dimension b and all elements for other dimensions.

⋯ read all elements.

We list more examples as follows:

• Read the green and blue channel data of the first and 

second pictures:

In [64]: x[0:2,...,1:]

Out[64]:

<tf.Tensor: id=497, shape=(2, 32, 32, 2), dtype=float32, numpy=

array([[[[ 0.575703  ,  0.8872789 ],

         [ 0.11028383, -0.27128693],

         [-0.9950867 , -1.7737272 ],

         ...
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• Read the last two pictures:

In [65]: x[2:,...]  # equivalent to x[2:]

Out[65]:

<tf.Tensor: id=502, shape=(2, 32, 32, 3), dtype=float32, numpy=

array([[[[-8.10753584e-01,  1.10984087e+00,  2.71821529e-01],

         [-6.10031188e-01, -6.47952318e-01, -4.07003373e-01],

         [ 4.62206364e-01, -1.03655539e-01, -1.18086267e+00],

         ...

• Read red and green channel data:

In [66]: x[...,:2]

Out[66]:

<tf.Tensor: id=507, shape=(4, 32, 32, 2), dtype=float32, numpy=

array([[[[-1.26881   ,  0.575703  ],

         [ 0.98697686,  0.11028383],

         [-0.66420585, -0.9950867 ],

         ...

4.6.3  Slicing Summary
Tensor indexing and slicing methods are various, especially the slicing 

operation, which is easy for beginners to get confused. In essence, the 

slicing operation has only this basic form of start : end : step. Through 

this basic form, some default parameters are purposefully omitted, and 

multiple abbreviated methods are derived. So it is easier and faster to 

write. Since the number of dimensions that deep learning generally deals 

with is within four dimensions, you will find that the tensor slice operation 

is not that complicated in deep learning.
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4.7  Dimensional Transformation
In neural networks, dimensional transformation is the core tensor 

operation. Through dimensional transformation, the data can be 

arbitrarily switched to meet the computing needs of different situations. 

Consider the batch form of the linear layer:

 Y X W b� �@  

Assume that two samples, each of which has a feature length of 4, are 

included in X, with a shape of [2, 4]. The number of output nodes of the 

linear layer is three, that is, the shape of W is [4, 3] and the shape of b is 

defined [3]. Then the result of X @ W has shape of [2, 3]. Note that we also 

need to add b with shape [3]. How to add two tensors of different shapes 

directly?

Recall that what we want to do is adding a bias to each output node 

of each layer. This bias is shared by all samples at each node. In other 

words, each sample should add the same bias at each node as shown in 

Figure 4-5.

= , 10 , 2

Input Output

Figure 4-5. Bias of a linear layer
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Therefore, for the input X of two samples, we need to copy the bias

 b b b b�� �1 2 3  

to the number of samples into the following matrix form

 
� � � �B b b b b b b1 2 3 1 2 3  

and then add X′ = X @ W

 
� � �� ��

� � � � � �X x x x x x x11 12 13 21 22 23  

Because they have the same shape at this time, this satisfies the 

requirement of matrix addition:

 
Y X B x x x x x x b b b b b b� � � �� �� �� �� � � � � � � �

11 12 13 21 22 23 1 2 3 1 2 3  

In this way, it not only satisfies the requirement that the matrix 

addition needs to be consistent in shape but also achieves the logic of 

sharing the bias vector to the output nodes of each input sample. In order 

to achieve this, we insert a new dimension, batch, to the bias vector b and 

then copy the data in the batch dimension to get a transformed version 

B′ with shape of [2, 3]. This series of operations is called dimensional 

transformation.

Each algorithm has different logical requirements for tensor 

format. When the existing tensor format does not meet the algorithm 

requirements, the tensor needs to be adjusted to the correct format 

through dimensional transformation. Basic dimensional transformation 

includes functions such as changing the view (reshape()), inserting new 

dimensions (expand_dims()), deleting dimensions (squeeze()), and 

exchanging dimensions (transpose()).
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4.7.1  Reshape
Before introducing the reshape operation, let's first understand the 

concept of tensor storage and view. The view of the tensor is the way 

we understand the tensor. For example, the tensor of shape [2, 4, 4, 3] is 

logically understood as two pictures, each picture having four rows and 

four columns and each pixel having three channels of RGB data. The 

storage of a tensor is reflected in that the tensor is stored in the memory 

as a continuous area. For the same storage, we can have different ways 

of view. For the [2, 4, 4, 3] tensor, we can consider it as two samples, each 

of which is characterized by a vector of length 48. The same tensor can 

produce different views. This is the relationship between storage and view. 

View generation is very flexible, but needs to be reasonable.

We can generate a vector through tf.range() and generate different 

views through the tf.reshape() function, for example:

In [67]: x=tf.range(96)

x=tf.reshape(x,[2,4,4,3])  # Change view to [2,4,4,3] without 

change storage

Out[67]:  # Data is not changed, only view is changed.

<tf.Tensor: id=11, shape=(2, 4, 4, 3), dtype=int32, numpy=

array([[[[ 0,  1,  2],

         [ 3,  4,  5],

         [ 6,  7,  8],

         [ 9, 10, 11]],...

When storing data, memory does not support this dimensional 

hierarchy concept, and data can only be written to memory in a tiled and 

sequential manner. Therefore, this hierarchical relationship needs to be 

managed manually, that is, the storage order of each tensor needs to be 

manually tracked. For ease of expression, we refer to the dimension on the 

left side of the tensor shape list as the large dimension and the dimension 

on the right side of the shape list as the small dimension. For example, 
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in a tensor of shape [2, 4, 4, 3], the number of images 2 is called the large 

dimension, and the number of channels 3 is called the small dimension. 

Under the setting of priority to write in small dimension first, the memory 

layout of the preceding tensor x is

1 2 3 4 5 6 7 8 9 ... ... ... 93 94 95

Changing the view of the tensor only changes the way the tensor is 

understood. It does not change the storage order. Because the writing of 

a large amount of data consumes more computing resources, this is done 

to increase the computation efficiency. Because the data has only a flat 

structure when stored and it is separate from the logical structure, the new 

logical structure (view) does not need to change the data storage mode, 

which can save a lot of computing resources. While changing the view 

operation provides convenience, it also brings a lot of logical dangers. The 

default premise of changing the view operation is that the storage does 

not change; otherwise, changing the view operation is illegal. We first 

introduce legal view transformation operations and then introduce some 

illegal view transformations.

For example, tensor A is written into the memory according to the 

initial view of [b, h, w, c]. If we change the way of understanding, it can have 

the following format:

• Tensor [b, h ⋅ w, c] represents b pictures with h ⋅ w pixels 

and c channels.

• Tensor [b, h, w ⋅ c] represents b pictures with h lines, 

and the feature length of each line is w ⋅ c.

• Tensor [b, h ⋅ w ⋅ c] represents b pictures, and the 

feature length of each picture is h ⋅ w ⋅ c.

The storage of the preceding views does not need to be changed, so it 

is all correct.
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Syntactically, the view transformation only needs to make sure the 

total number of elements of the new view and the size of the storage area 

are equal, that is, the element number of the new view is equal to

 b h w c⋅ ⋅ ⋅  

It is precisely because the view design has very few grammatical 

constraints and is completely defined by the user, which makes it prone to 

logical risks when changing the view.

Now let’s consider illegal view transformations. For example, if the 

new view is defined as [b, w, h, c], [b, c, h ∗ w], or [b, c, h, w], the storage 

order of the tensor needs to be changed. If the storage order is not updated 

synchronously, the recovered data will be inconsistent with the new view, 

resulting in data disorder. This requires the user to understand the data 

in order to determine whether the operation is legal. We will show how to 

change the storage of tensors in the “Swap Dimensions” section.

One technique for using view transformation operations correctly is 

to track the order of the stored dimensions. For example, for tensors saved 

in the initial view of “number of pictures-rows-columns-channels,” the 

storage is also written in the order of “number of pictures-rows-columns- 

channels.” If the view is restored in the “number of pictures-pixels- 

channels” method, it does not conflict with the “number of pictures-rows- 

columns-channels,” so correct data can be obtained. However, if the data 

is restored in the “number of pictures-channels-pixels” method, because 

the memory layout is in the order of “number of pictures-rows-columns- 

channels,” the order of the view dimensions is inconsistent with the order 

of the storage dimensions, which leads to disordered data.

Changing views is a very common operation in neural networks. 

You can implement complex logic by concatenating multiple reshape 

operations. However, when changing views through reshape, you must 

always remember the storage order of the tensor. The dimensional order of 

the new view must be the same as the storage order. Otherwise, you need 
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to synchronize the storage order through the swap dimension operation. 

For example, for image data with shape [4,32,32,3], shape can be adjusted 

to [4,1024,3] by reshape operations. The view's dimensional order is 

b − pixel − c, and the tensor's storage order is [b, h, w, c]. The tensor with 

shape [4,1024,3] can be restored to the following:

• When [b, h, w, c] = [4,32,32,3], the dimensional order of 

the new view and the storage order are consistent, and 

data can be recovered without disorders.

• When [b, w, h, c] = [4,32,32,3], the dimensional order of 

the new view conflicts with the storage order.

• When [h ∙ w ∙ c, b] = [3072, 4], the dimensional order of 

the new view conflicts with the storage order.

In TensorFlow, we can obtain the number of dimensions and shape of 

a tensor through the tensor's ndim and shape attributes:

In [68]: x.ndim,x.shape # Get the tensor's dimension and shape

Out[68]:(4, TensorShape([2, 4, 4, 3]))

With tf.reshape (x, new_shape), we can legally change the view of the 

tensor arbitrarily, for example:

In [69]: tf.reshape(x,[2,-1])

Out[69]:<tf.Tensor: id=520, shape=(2, 48), dtype=int32, numpy=

array([[  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 

13, 14, 15,

          16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 

29, 30, 31,...

          80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 

93, 94, 95]])>
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The parameter –1 indicates that the length on the current axis needs 

to be automatically derived according to the rule that the total elements 

of the tensor are not changed. For example, the preceding –1 can be 

derived as

 

2 4 4 3

2
48

� � �
�  

Change the view of the data again to [2, 4, 12] as follows:

In [70]: tf.reshape(x,[2,4,12])

Out[70]:<tf.Tensor: id=523, shape=(2, 4, 12), 

dtype=int32, numpy=

array([[[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11],...

        [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]],

       [[48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59], ...

        [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95]]])>

Change the view of the data to [2,16,3] again as follows:

In [71]: tf.reshape(x,[2,-1,3])

Out[71]:<tf.Tensor: id=526, shape=(2, 16, 3), 

dtype=int32, numpy=

array([[[ 0,  1,  2], ...

        [45, 46, 47]],

       [[48, 49, 50],...

        [93, 94, 95]]])>

Through the preceding series of continuous view transformation 

operations, we need to be aware that the storage order of the tensor has 

not changed and the data is still stored in the order of the initial order of  

0, 1, 2, ⋯, 95 in memory.
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4.7.2  Add and Delete Dimensions
Add a Dimension. Adding a dimension with a length of 1 is equivalent 

to adding the concept of a new dimension to the original data. The 

dimension length is 1, so the data does not need to be changed; it is only a 

change of view.

Consider a specific example. The data of a large grayscale image is 

saved as a tensor of shape 28 × 28. At the end, a new dimension is added to 

the tensor, which is defined as the number of channels. Then the shape of 

the tensor becomes [28,28,1] as follows:

In [72]:  # Generate a 28x28 matrix

x = tf.random.uniform([28,28],maxval=10,dtype=tf.int32)

Out[72]:

<tf.Tensor: id=11, shape=(28, 28), dtype=int32, numpy=

array([[6, 2, 0, 0, 6, 7, 3, 3, 6, 2, 6, 2, 9, 3, 0, 3, 2, 8, 

1, 3, 6, 2, 3, 9, 3, 6, 1, 7],...

With tf.expand_dims (x, axis), we can insert a new dimension before 

the specified axis:

In [73]:  x = tf.expand_dims(x,axis=2)

Out[73]:

<tf.Tensor: id=13, shape=(28, 28, 1), dtype=int32, numpy=

array([[[6],

        [2],

        [0],

        [0],

        [6],

        [7],

        [3],...

Chapter 4  BasiC tensorFlow



126

It can be seen that after inserting a new dimension, the storage order 

of the data has not changed. Only the view of the data is changed after 

inserting a new dimension.

In the same way, we can insert a new dimension at the front indicating 

the number of images dimension with a length of 1. At this time, the shape 

of the tensor becomes [1,28,28,1]:

In [74]: x = tf.expand_dims(x,axis=0)  # Insert a dimension at 

the beginning

Out[74]:

<tf.Tensor: id=15, shape=(1, 28, 28, 1), dtype=int32, numpy=

array([[[[6],

         [2],

         [0],

         [0],

         [6],

         [7],

         [3],...

Note that when the axis of tf.expand_dims is positive, it means that 

a new dimension is inserted before the current dimension; when it is 

negative, it means that a new dimension is inserted after the current 

dimension. Taking tensor [b, h, w, c] as an example, the actual insertion 

position of different axis parameters is shown in Figure 4-6.

[b, c, h, w]
0 1 2 3 4

-5 -4 -3 -2 -1

Figure 4-6. Insertion position of different axis parameters
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Delete a Dimension. Deleting a dimension is the inverse operation of 

adding a dimension. As with adding a dimension, deleting a dimension 

can only delete a dimension of length 1, and it does not change the 

storage order of the tensor. Continue to consider the example of the shape 

[1,28,28,1]. If we want to delete the number of pictures dimension, we 

can use the tf.squeeze (x, axis) function. The axis parameter is the index 

number of the dimension to be deleted:

In [75]: x = tf.squeeze(x, axis=0)  # Delete the image number 

dimension

Out[75]:

<tf.Tensor: id=586, shape=(28, 28, 1), dtype=int32, numpy=

array([[[8],

        [2],

        [2],

        [0],...

Continue to delete the channel number dimension. Since the 

image number dimension has been deleted, the shape of x at this time 

is [28,28,1]. When deleting the channel number dimension, we should 

specify axis = 2 as follows:

In [76]: x = tf.squeeze(x, axis=2)  # Delete channel dimension

Out[76]:

<tf.Tensor: id=588, shape=(28, 28), dtype=int32, numpy=

array([[ 8, 2, 2, 0, 7, 0, 1, 4, 9, 1, 7, 4, 8, 2, 7, 4, 8, 2, 

9, 8, 8, 0, 9, 9, 7, 5, 9, 7],

       [ 3, 4, 9, 9, 0, 6, 5, 7, 1, 9, 9, 1, 2, 7, 2, 7, 5, 3, 

3, 7, 2, 4, 5, 2, 7, 3, 8, 0],...
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If we do not specify the dimension parameter axis, that is, 

tf.squeeze(x), it will delete all dimensions with a length of 1 by default, for 

example:

In [77]:

x = tf.random.uniform([1,28,28,1],maxval=10,dtype=tf.int32)

tf.squeeze(x)     # Delete all dimensions with length 1

Out[77]:

<tf.Tensor: id=594, shape=(28, 28), dtype=int32, numpy=

array([[9, 1, 4, 6, 4, 9, 0, 0, 1, 4, 0, 8, 5, 2, 5, 0, 0, 8, 

9, 4, 5, 0, 1, 1, 4, 3, 9, 9],...

It is recommended to specify the dimension parameters to be deleted 

one by one, in order to prevent TensorFlow from accidentally deleting 

certain dimensions with length of 1, resulting in invalid calculation results.

4.7.3  Swap Dimensions
Changing the view or adding or deleting dimensions will not affect 

the storage of the tensor. Sometimes it is not enough to change the 

understanding of the tensor without changing the order of the dimensions. 

That is, the storage order needs to be adjusted directly. By swapping the 

dimensions, both the storage order and the view of the tensor are changed.

Swapping dimension operations are very common. For example, 

the default storage format of an image tensor is the [b, h, w, c] format 

in TensorFlow, but the image format of some libraries is the [b, c, h, w] 

format. We take transformation from [b, h, w, c] to [b, c, h, w] as an example 

to introduce how to use the tf.transpose(x, perm) function to complete 

the dimension swap operation, where the parameter perm represents 

the order of the new dimensions. Considering the image tensor with 

shape [2,32,32,3], the dimensional indexes of “number of pictures, rows, 

columns, and channels” are 0, 1, 2, and 3, respectively. If the order of the 
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new dimensions is “number of pictures, number of channels, rows, and 

columns,” the corresponding index number becomes [0, 3, 1, 2], so the 

parameter perm needs to be set to [0, 3, 1, 2]. The implementation is as 

follows:

In [78]: x = tf.random.normal([2,32,32,3])

tf.transpose(x,perm=[0,3,1,2])  # Swap dimension

Out[78]:

<tf.Tensor: id=603, shape=(2, 3, 32, 32), dtype=float32, numpy=

array([[[[ -1.93072677e+00, -4.80163872e-01, -8.85614634e-01, ...,

           1.49124235e-01,  1.16427064e+00, -1.47740364e+00],

         [-1.94761145e+00,  7.26879001e-01, -4.41877693e-01, ...

If we want to change [b, h, w, c] to [b, w, h, c], that is, exchange the 

height and width dimensions, the new dimension index becomes [0, 2, 1, 3] 

as follows:

In [79]:

x = tf.random.normal([2,32,32,3])

tf.transpose(x,perm=[0,2,1,3]) # Swap dimension

Out[79]:

<tf.Tensor: id=612, shape=(2, 32, 32, 3), dtype=float32, numpy=

array([[[[ 2.1266546 , -0.64206547,  0.01311932],

         [ 0.918484  ,  0.9528751 ,  1.1346699 ],

         ...,

It should be noted that after the dimension swap is completed through 

tf.transpose, the storage order of the tensor has changed, and the view 

has changed accordingly. All subsequent operations must be based on 

the new order and view. Compared with the changing view operation, the 

dimension swap operation is more computationally expensive.
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4.7.4  Copy Data
After inserting a new dimension, we may want to copy data on the new 

dimension to meet the requirements of subsequent calculations. Consider 

the example Y = X @ W + b. After inserting a new dimension with the 

number of samples for b, we need to copy the batch size data in the new 

dimension and change the shape of b to be consistent with X @ W to 

complete the tensor addition operation.

We can use the tf.tile(x, multiples) function to complete the data 

replication operation in the specified dimensions. The parameter 

multiples specifies the replication number for each dimension, 

respectively. For example, 1 indicates that the data will not be copied, and 

2 indicates that the new length is twice of the original length.

Taking the input [2, 4] and a three–output node linear transformation 

layer as an example, the bias b is defined as

 b b b b�� �1 2 3  

Insert a new dimension through tf.expand_dims(b, axis = 0) and turn it 

into a matrix:

 B b b b�� �1 2 3  

Now the shape of B becomes [1, 3]. We need to copy data in the 

dimension of axis = 0 according to the number of input samples. The batch 

size here is 2, that is, a copy is made and it becomes

 B b b b b b b�� �1 2 3 1 2 3  

Through tf.tile(b, multiples = [2,1]), it can be copied once in the axis = 

0 dimension and not copied in the axis = 1 dimension. First, insert a new 

dimension as follows:
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In [80]:

b = tf.constant([1,2])  # Create tensor b

b = tf.expand_dims(b, axis=0)  # Insert new dimension

b

Out[80]:

<tf.Tensor: id=645, shape=(1, 2), dtype=int32, 

numpy=array([[1, 2]])>

Copy one replicate of the data in the batch dimension to achieve the 

following:

In [81]: b = tf.tile(b, multiples=[2,1])

Out[81]:

<tf.Tensor: id=648, shape=(2, 2), dtype=int32, numpy=

array([[1, 2],

       [1, 2]])>

Now the shape of B becomes [2, 3], and B can be directly added to 

X @ W. Consider another example with a 2×2 matrix. The implementation 

is as follows:

In [82]: x = tf.range(4)

x=tf.reshape(x,[2,2])  # Create 2x2 matrix

Out[82]:

<tf.Tensor: id=655, shape=(2, 2), dtype=int32, numpy=

array([[0, 1],

       [2, 3]])>

First, copy one replicate of the data in the column dimension as follows:

In [83]: x = tf.tile(x,multiples=[1,2])

Out[83]:

<tf.Tensor: id=658, shape=(2, 4), dtype=int32, numpy=

array([[0, 1, 0, 1],

       [2, 3, 2, 3]])>
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Then copy one replicate of the data in the row dimension:

In [84]: x = tf.tile(x,multiples=[2,1])

Out[84]:

<tf.Tensor: id=672, shape=(4, 4), dtype=int32, numpy=

array([[0, 1, 0, 1],

       [2, 3, 2, 3],

       [0, 1, 0, 1],

       [2, 3, 2, 3]])>

After the replication operation in two dimensions, we can see the 

shape of the data has doubled. This example helps us understand the 

process of data replication more intuitively.

It should be noted that tf.tile will create a new tensor to save the copied 

tensor. Since the copy operation involves a large amount of data reading 

and writing operations, the computational cost is relatively high. The 

tensor operations between different shapes in the neural network are very 

common, so is there a lightweight copy operation? This is the broadcasting 

operation to be introduced next.

4.8  Broadcasting
Broadcasting is a lightweight tensor copying method, which logically 

expands the shape of the tensor data, but only performs the actual storage 

copy operation when needed. For most scenarios, the broadcasting 

mechanism can complete logical operations by avoiding the actual data 

copying, thereby reducing a large amount of computational cost compared 

with the tf.tile function.

For all dimensions of length 1, broadcasting has the same effect as 

tf.tile. The difference is that tf.tile creates a new tensor by performing 

the copy IO operation. Broadcasting does not immediately copy the 

data; instead, it will logically change the shape of the tensor, so that the 
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view becomes the copied shape. Broadcasting will use the optimization 

methods of the deep learning framework to avoid the actual copying of 

data and complete the logical operations. For the user, the final effect of 

broadcasting and tf.tile copy is the same, but the broadcasting mechanism 

saves a lot of computational resources. It is recommended to use 

broadcasting as much as possible in the calculation process to improve 

efficiency.

Continuing to consider the preceding example Y = X @ W + b, the 

shape of X @ W is [2, 3], and the shape of b is [3]. We can manually 

complete the copy data operation by combining tf.expand_dims and tf.tile, 

that is, transform b to shape [2, 3] and then add it to X @ W. But in fact, it is 

also correct to add X @ W directly to b with shape [3], for example:

x = tf.random.normal([2,4])

w = tf.random.normal([4,3])

b = tf.random.normal([3])

y = x@w+b # Add tensors with different shapes directly

The preceding addition does not throw a logical error. This is because 

it automatically calls the broadcasting function tf.broadcast_to(x, new_

shape), expanding the shape of b to [2,3]. The preceding operation is 

equivalent to

y = x@w + tf.broadcast_to(b,[2,3])

In other words, when the operator + encounters two tensors with 

inconsistent shapes, it will automatically consider expanding the two 

tensors to a consistent shape and then call tf.add to complete the tensor 

addition operation. By automatically calling tf.broadcast_to(b, [2,3]), it 

not only achieves the purpose of increasing dimension but also avoids the 

expensive computational cost of actually copying the data.

The core idea of the broadcasting mechanism is universality. That is, 

the same data can be generally suitable for other locations. Before verifying 

universality, we need to align the tensor shape to the right first and then 
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perform universality check: for a dimension of length 1, by default this 

data is generally suitable for other positions in the current dimension; for 

dimensions that do not exist, after adding a new dimension, the default 

current data is also universally applicable to the new dimension, so that it 

can be expanded into a tensor shape of any number of dimensions.

Considering the tensor A with shape [w, 1], it needs to be extended 

to shape [b, h, w, c]. As shown in Figure 4-7, the first line is the expanded 

shape, and the second line is the existing shape.

ℎ w
w 1

length is 1,assuming it’s 
the same

Empty dimension,
assuming it exists

Figure 4-7. Broadcasting example 1

First, align the two shapes to the right. For the channel dimension c, 

the current length of the tensor is 1. By default, this data is also suitable 

for other positions in the current dimension. The data is logically copied, 

and the length becomes c; for the nonexisting dimensions b and h, a new 

dimension is automatically inserted, the length of the new dimension is 1,  

and at the same time, the current data is generally suitable for other 

positions in the new dimension, that is, for other pictures and other 

rows, it is completely consistent with the data of the current row. This 

automatically expands the corresponding dimensions to b and h, as shown 

in Figure 4-8.
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Check broadcasting condition Insert new dimension Expand to same 
dimensions

Repeat to same
length

ℎ w
w

w
w

w
w1

ℎ

1 1 1

ℎ

ℎ

Figure 4-8. Broadcasting example 2

The tf.broadcast_to(x, new_shape) function can be used to explicitly 

perform the automatic expansion function to expand the existing shape to 

new_shape. The implementation is as follows:

In [87]:

A = tf.random.normal([32,1])  # Create a matrix

tf.broadcast_to(A, [2,32,32,3])  # Expand to 4 dimensions

Out[87]:

<tf.Tensor: id=13, shape=(2, 32, 32, 3), dtype=float32, numpy=

array([[[[-1.7571245 , -1.7571245 , -1.7571245 ],

         [ 1.580159  ,  1.580159  ,  1.580159  ],

         [-1.5324328 , -1.5324328 , -1.5324328 ],...

It can be seen that, under the guidance of the universality principle, the 

broadcasting mechanism has become intuitive and easy to understand.

Let us consider an example that does not satisfy the principle of 

universality, as shown in Figure 4-9.

ℎ w
w

Length is 2! Unsatisfied!

Figure 4-9. Broadcasting bad example
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In the c dimension, the tensor already has two features, and the length 

of the corresponding dimension of the new shape is c(c ≠ 2, such as c= 3). 

Then these two features in the current dimension cannot be universally 

applied to other positions, so it does not meet the universality principle. If 

we apply broadcasting, it will trigger errors, such as

In [88]:

A = tf.random.normal([32,2])

tf.broadcast_to(A, [2,32,32,4])

Out[88]:

InvalidArgumentError: Incompatible shapes: [32,2] vs. 

[2,32,32,4] [Op:BroadcastTo]

When performing tensor operations, some operations will 

automatically call the broadcasting mechanism when processing tensors 

of different shapes, such as +,-, *, and /, to broadcast the corresponding 

tensors into a common shape and then do the calculation accordingly. 

Figure 4-10 demonstrates some examples of tensor addition in three 

different shapes.

Figure 4-10. Automatic broadcasting example
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Let’s test the automatic broadcasting mechanism of basic operators, 

for example:

a = tf.random.normal([2,32,32,1])

b = tf.random.normal([32,32])

a+b,a-b,a*b,a/b # Test automatic broadcasting for operations +, 

-, *, and /

These operations can be broadcasted into a common shape before 

the actual calculation. Using the broadcasting mechanism can make code 

more concise and efficient.

4.9  Mathematical Operations
We’ve used some basic mathematical operations such as addition, 

subtraction, multiplication, and division in previous chapters. In this 

section, we will systematically introduce the common mathematical 

operations in TensorFlow.

4.9.1  Addition, Subtraction, Multiplication 
and Division

Addition, subtraction, multiplication, and division are the most basic 

mathematical operations. They are implemented by the tf.add, tf.subtract, 

tf.multiply, and tf.divide functions, respectively, in TensorFlow. 

TensorFlow has overloaded operators +, − ,  ∗ , and/. It is generally 

recommended to use those operators directly. Floor dividing and 

remainder dividing are two other common operations, implemented 

by the //and % operators, respectively. Let's demonstrate the division 

operations, for example:
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In [89]:

a = tf.range(5)

b = tf.constant(2)

a//b # Floor dividing

Out[89]:

<tf.Tensor: id=115, shape=(5,), dtype=int32, numpy=array([0, 0, 

1, 1, 2])>

In [90]: a%b # Remainder dividing

Out[90]:

<tf.Tensor: id=117, shape=(5,), dtype=int32, numpy=array([0, 1, 

0, 1, 0])>

4.9.2  Power Operations
The power operation can be conveniently completed through the tf.pow(x, 

a) function, or the operator ** as x**a:

In [91]:

x = tf.range(4)

tf.pow(x,3)

Out[91]:

<tf.Tensor: id=124, shape=(4,), dtype=int32, numpy=array([ 

0,  1,  8, 27])>

In [92]: x**2

Out[92]:

<tf.Tensor: id=127, shape=(4,), dtype=int32, numpy=array([0, 

1, 4, 9])>

Set the exponent to the form of 
1

a
 to implement the root operation xa ,  

for example:

In [93]: x=tf.constant([1.,4.,9.])

x**(0.5)  # square root
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Out[93]:

<tf.Tensor: id=139, shape=(3,), dtype=float32, numpy=array([1., 

2., 3.], dtype=float32)>

In particular, for common square and square root operations, 

tf.square(x) and tf.sqrt(x) can be used. The square operation is 

implemented as follows:

In [94]:x = tf.range(5)

x = tf.cast(x, dtype=tf.float32)  # convert to float type

x = tf.square(x)

Out[94]:

<tf.Tensor: id=159, shape=(5,), dtype=float32, numpy=array([ 

0.,  1.,  4.,  9., 16.], dtype=float32)>

The square root operation is implemented as follows:

In [95]:tf.sqrt(x)

Out[95]:

<tf.Tensor: id=161, shape=(5,), dtype=float32, numpy=array([0., 

1., 2., 3., 4.], dtype=float32)>

4.9.3  Exponential and Logarithmic Operations
Exponential operations can also be easily implemented using tf.pow(a, x) 

or the ** operator, for example:

In [96]: x = tf.constant([1.,2.,3.])

2**x

Out[96]:

<tf.Tensor: id=179, shape=(3,), dtype=float32, numpy=array([2., 

4., 8.], dtype=float32)>
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In particular, for natural exponents ex, this can be achieved with 

tf.exp(x), for example:

In [97]: tf.exp(1.)

Out[97]:

<tf.Tensor: id=182, shape=(), dtype=float32, numpy=2.7182817>

In TensorFlow, natural logarithms x can be implemented with tf.math.

log(x), for example:

In [98]: x=tf.exp(3.)

tf.math.log(x)

Out[98]:

<tf.Tensor: id=186, shape=(), dtype=float32, numpy=3.0>

If you want to calculate the logarithm of other bases, you can use the 

logarithmic base-changing formula:

 
x

x

a
=  

For example, the calculation of 
x

10
 can be achieved by

In [99]: x = tf.constant([1.,2.])

x = 10**x

tf.math.log(x)/tf.math.log(10.)

Out[99]:

<tf.Tensor: id=6, shape=(2,), dtype=float32, numpy=array([1., 

2.], dtype=float32)>
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4.9.4  Matrix Multiplication
The neural network contains a large number of matrix multiplication 

operations. We have previously introduced that the matrix multiplication 

can be easily implemented by the @ operator and the tf.matmul(a, b) 

function. It should be noted that the matrix multiplication in TensorFlow 

can use the batch method, that is, tensors A and B can have dimensions 

greater than 2. When the dimensions are greater than 2, TensorFlow selects 

the last two dimensions of A and B to perform matrix multiplication, and 

all the previous dimensions are considered as batch dimensions.

According to the definition of matrix multiplication, the condition of 

A being able to multiply a matrix B is that the length of the penultimate 

dimension (column) of A and the length of the penultimate dimension 

(row) of B must be equal. For example, tensor a with shape [4, 3, 28, 32] can 

be multiplied by tensor b with shape [4, 3, 32, 2]. The code is as follows:

In [100]:

a = tf.random.normal([4,3,28,32])

b = tf.random.normal([4,3,32,2])

a@b

Out[100]:

<tf.Tensor: id=236, shape=(4, 3, 28, 2), dtype=float32, numpy=

array([[[[-1.66706240e+00, -8.32602978e+00],

         [ 9.83304405e+00,  8.15909767e+00],

         [ 6.31014729e+00,  9.26124632e-01],...

Matrix multiplication also supports the automatic broadcasting 

mechanism, for example:

In [101]:

a = tf.random.normal([4,28,32])

b = tf.random.normal([32,16])
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tf.matmul(a,b)  # First broadcast b to shape [4, 32, 16] and 

then multiply a

Out[101]:

<tf.Tensor: id=264, shape=(4, 28, 16), dtype=float32, numpy=

array([[[-1.11323869e+00, -9.48194981e+00,  6.48123884e+00, ...,

          6.53280640e+00, -3.10894990e+00,  1.53050375e+00],

        [ 4.35898495e+00, -1.03704405e+01,  8.90656471e+00, ...,

The preceding operation automatically expands the variable b to a 

common shape [4,32,16] and then multiplies the variable a in batch form 

to obtain the results with shape [4,28,16].

4.10  Hands-On Forward Propagation
So far, we have introduced tensor creation, index slicing, dimensional 

transformations, and common mathematical operations. Finally, we will 

use the knowledge we have learned to complete the implementation of the 

three-layer neural network:

out = ReLU{ReLU{ReLU[X @ W1 + b1] @ W2 + b2} @ W3 + b3}

The data set we use is the MNIST handwritten digital picture data set. 

The number of input nodes is 784. The output node numbers of the first, 

second, and third layers are 256, 128, and 10, respectively. First, let’s create 

the tensor parameters W and b for each nonlinear layer as follows:

# Every layer's tensor needs to be optimized. Set initial bias 

to be 0s.

# w and b for first layer

w1 = tf.Variable(tf.random.truncated_normal([784, 256], 

stddev=0.1))

b1 = tf.Variable(tf.zeros([256]))
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# w and b for second layer

w2 = tf.Variable(tf.random.truncated_normal([256, 128], 

stddev=0.1))

b2 = tf.Variable(tf.zeros([128]))

# w and b for third layer

w3 = tf.Variable(tf.random.truncated_normal([128, 10], 

stddev=0.1))

b3 = tf.Variable(tf.zeros([10]))

In forward calculation, the view of the input tensor with shape 

[b, 28, 28] is first adjusted to a matrix with shape [b, 784], so that it is 

suitable for the input format of the network:

        # Change view[b, 28, 28] => [b, 28*28]

        x = tf.reshape(x, [-1, 28*28])

Next, finish the calculation of the first layer. We perform the automatic 

expansion operation here:

             # First layer calculation, [b, 784]@[784, 256] + 

[256] => [b, 256] + [256] => [b, 256] + [b, 256]

            h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])

            h1 = tf.nn.relu(h1) # apply activation function

Use the same method for the second and third nonlinear function 

layers. The output layer can use the ReLU activation function:

            # Second layer calculation, [b, 256] => [b, 128]

            h2 = h1@w2 + b2

            h2 = tf.nn.relu(h2)

            # Output layer calculation, [b, 128] => [b, 10]

            out = h2@w3 + b3
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Transform the real labeled tensor into one-hot encoding and calculate 

the mean squared error from out as follows:

             # Calculate mean square error, mse = 

mean(sum(y-out)^2)

            # [b, 10]

            loss = tf.square(y_onehot - out)

            # Error metrics, mean: scalar

            loss = tf.reduce_mean(loss)

The preceding forward calculation process needs to be wrapped in 

the context of “with tf.GradientTape() as tape,” so that the computational 

graph information can be saved during forward calculation for the 

automatic differentiation operation.

Use the tape.gradient() function to get the gradient information of 

the network parameters. The result is stored in the grads list variable as 

follows:

        # Calculate gradients for [w1, b1, w2, b2, w3, b3]

        grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])

Then we need to update the parameters by
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�
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     # Update parameters using assign_sub (subtract the update 

and assign back to the original parameter)

        w1.assign_sub(lr * grads[0])

        b1.assign_sub(lr * grads[1])

        w2.assign_sub(lr * grads[2])

        b2.assign_sub(lr * grads[3])

        w3.assign_sub(lr * grads[4])

        b3.assign_sub(lr * grads[5])
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Among them, assign_sub() subtracts itself from a given parameter 

value to implement an in-place update operation. The variation of the 

network training error is shown in Figure 4-11.

Figure 4-11. Training error of the forward calculation
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CHAPTER 5

Advanced TensorFlow
Artificial intelligence would be the ultimate version of 
Google. The ultimate search engine that would understand 
everything on the Web. It would understand exactly what 
you wanted, and it would give you the right thing.

—Larry Page

After introducing the basic tensor operations, let’s further explore the 

advanced operations, such as tensor merging and segmentation, norm 

statistics, tensor filling, and clipping. We will also use the MNIST dataset 

again to enhance our understanding of tensor operations in TensorFlow.

5.1  Merge and Split
5.1.1  Merge
Merging means combining multiple tensors into one tensor in a certain 

dimension. Taking the data of a school’s gradebooks as an example, tensor 

A is used to save the gradebooks of classes 1–4. There are 35 students in 

each class with a total of eight subjects. The shape of tensor A is [4,35,8]. 

Similarly, tensor B keeps the gradebooks of the other six classes, with 

a shape of [6,35,8]. By merging these two gradebooks, you can get the 

gradebooks of all the classes in the school, recorded as tensor C, and the 

corresponding shape should be [10,35,8], where 10 represents ten classes, 

35 represents 35 students, and 8 represents eight subjects.

https://doi.org/10.1007/978-1-4842-7915-1_5#DOI


148

Tensors can be merged using concatenate and stack operations. 

The concatenate operation does not generate new dimensions. It only 

merges along existing dimensions. But the stack operation creates new 

dimensions. Whether to use the concatenate or stack operation to merge 

tensors depends on whether a new dimension needs to be created for a 

specific scene. We will discuss both of them in the following session.

Concatenate. In TensorFlow, tensors can be concatenated using the 

tf.concat(tensors, axis) function, where the first parameter holds a list of 

tensors that need to be merged and the second parameter specifies the 

dimensional index on which to merge. Back to the preceding example, we 

merge the gradebooks in the class dimension. Here, the index number of 

the class dimension is 0, that is, axis = 0. The code for merging A and B is as 

follows:

In [1]:

a = tf.random.normal([4,35,8]) # Create gradebook A

b = tf.random.normal([6,35,8]) # Create gradebook B

tf.concat([a,b],axis=0) # Merge gradebooks

Out[1]:

<tf.Tensor: id=13, shape=(10, 35, 8), dtype=float32, numpy=

array([[[ 1.95299834e-01,  6.87859178e-01, -5.80048323e-01, ...,

          1.29430830e+00,  2.56610274e-01, -1.27798581e+00],

        [ 4.29753691e-01,  9.11329567e-01, -4.47975427e-01, ...,

In addition to the class dimension, we can also merge tensors in other 

dimensions. Consider that tensor A saves the first four subjects’ scores 

of all students in all classes, with shape [10,35,4] and tensor B saves the 

remaining 4 subjects’ scores, with shape [10,35,4]. We can get the total 

gradebook tensor by merging A and B as in the following:

In [2]:

a = tf.random.normal([10,35,4])

b = tf.random.normal([10,35,4])
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tf.concat([a,b],axis=2) # Merge along the last dimension

Out[2]:

<tf.Tensor: id=28, shape=(10, 35, 8), dtype=float32, numpy=

array([[[-5.13509691e-01, -1.79707789e+00,  6.50747120e- 01, ...,

          2.58447856e-01,  8.47878829e-02,  4.13468748e-01],

        [-1.17108583e+00,  1.93961406e+00,  1.27830813e- 02, ...,

Syntactically, the concatenate operation can be performed on any 

dimension. The only constraint is that the length of the non-merging 

dimension must be the same. For example, the tensors with shape [4,32,8] 

and shape [6,35,8] cannot be directly merged in the class dimension, 

because the length of the number of students’ dimension is not the same – 

one is 32 and the other is 35, for example:

In [3]:

a = tf.random.normal([4,32,8])

b = tf.random.normal([6,35,8])

tf.concat([a,b],axis=0) # Illegal merge. Second dimension is 

different.

Out[3]:

InvalidArgumentError: ConcatOp : Dimensions of inputs 

should match: shape[0] = [4,32,8] vs. shape[1] = [6,35,8] 

[Op:ConcatV2] name: concat

Stack. The concatenate operation merges data directly on existing 

dimensions and does not create new dimensions. If we want to create a 

new dimension when merging data, we need to use the tf.stack operation. 

Consider that tensor A saves the gradebook of one class with the shape of 

[35, 8] and tensor B saves the gradebook of another class with the shape of 

[35, 8]. When merging the data of these two classes, we need to create a new 

dimension, defined as the class dimension. The new dimension can be placed 

in any position. Generally, the class dimension is placed before the student 

dimension, that is, the new shape of the merged tensor should be [2,35,8].
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The tf.stack(tensors, axis) function can be used to combine multiple 

tensors. The first parameter represents the tensor list to be merged, and 

the second parameter specifies the position where the new dimension 

is inserted. The usage of axis is the same as that of the tf.expand_dims 

function. When axis ≥ 0, a new dimension is inserted before axis. When 

axis < 0, we insert a new dimension after axis. Figure 5-1 shows the new 

dimension position corresponding to different axis parameter settings for a 

tensor with shape [b, c, h, w].

[b, c, h, w]
0 1 2 3 4

-5 -4 -3 -2 -1

Figure 5-1. New dimension insertion position for stack operation 
with different axis values

Merge the two classes’ gradebooks using the stack operation and insert 

the class dimension at the axis = 0 position. The code is as follows:

In [4]:

a = tf.random.normal([35,8])

b = tf.random.normal([35,8])

tf.stack([a,b],axis=0) # Stack a and b and insert new dimension 

at axis=0

Out[4]:

<tf.Tensor: id=55, shape=(2, 35, 8), dtype=float32, numpy=

array([[[ 3.68728966e-01, -8.54765773e-01, -4.77824420e-01,

         -3.83714020e-01, -1.73216307e+00,  2.03872994e-02,

          2.63810277e+00, -1.12998331e+00],...

Chapter 5  advanCed tensorFlow



151

We can also choose to insert new dimensions elsewhere. For example, 

insert the class dimension at the end:

In [5]:

a = tf.random.normal([35,8])

b = tf.random.normal([35,8])

tf.stack([a,b],axis=-1) # Insert new dimension at the end

Out[5]:

<tf.Tensor: id=69, shape=(35, 8, 2), dtype=float32, numpy=

array([[[ 0.3456724 , -1.7037214 ],

        [ 0.41140947, -1.1554345 ],

        [ 1.8998919 ,  0.56994915],...

Now the class dimension is on axis = 2, and we need to understand 

the data according to the view represented by the latest dimension order. 

If we choose to use tf.concat to merge the preceding transcripts, then it 

would be

In [6]:

a = tf.random.normal([35,8])

b = tf.random.normal([35,8])

tf.concat([a,b],axis=0) # No class dimension

Out[6]:

<tf.Tensor: id=108, shape=(70, 8), dtype=float32, numpy=

array([[-0.5516891 , -1.5031327 , -0.35369992, 

  0.31304857,  0.13965549,

         0.6696881 , -0.50115544,  0.15550546],

        [ 0.8622069 ,  1.0188094 ,  0.18977325,  0.6353301 , 

  0.05809061,...

It can be seen that tf.concat can also merge data smoothly, but we 

need to understand the tensor data in the way that the first 35 students 

come from the first class and the last 35 students come from the second 
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class, which is not very intuitive. For this example, it is obviously more 

reasonable to create a new dimension through the tf.stack method.

The tf.stack function also needs to meet a certain condition to use. It 

needs all the tensors to be merged to have the same shape. Let’s see what 

happens when stacking two tensors with different shapes:

In [7]:

a = tf.random.normal([35,4])

b = tf.random.normal([35,8])

tf.stack([a,b],axis=-1) # Illegal use of stack function. 

Different shapes.

Out[7]:

InvalidArgumentError: Shapes of all inputs must match: 

values[0].shape = [35,4] != values[1].shape = [35,8] [Op:Pack] 

name: stack

The preceding operation attempts to merge two tensors whose shapes 

are [35, 4] and [35, 8], respectively. Because the shapes of the two tensors 

are not the same, the merge operation cannot be completed.

5.1.2  Split
The inverse process of the merge operation is split, which splits a tensor 

into multiple tensors. Let’s continue the gradebook example. We get the 

gradebook tensor of the entire school with shape of [10,35,8]. Now we need 

to cut the data into ten tensors in the class dimension, and each tensor 

holds the gradebook data of the corresponding class. tf.split(x, num_or_

size_splits, axis) can be used to complete the tensor split operation. The 

meaning of the parameters in the function is as follows:

• x: The tensor to be split.

• num_or_size_splits: Cutting scheme. When num_or_

size_splits is a single value, such as 10, it means that 
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the tensor x is cut into ten parts with equal length. 

When num_or_size_splits is a list, each element of the 

list represents the length of each part. For example, 

num_or_size_splits=[2, 4, 2, 2] means that the tensor is 

cut into four parts, with the length of each part as 2, 4, 

2, and 2.

• axis: Specifies the dimension index of the split.

Now we cut the total gradebook tensor into ten pieces as follows:

In [8]:

x = tf.random.normal([10,35,8])

# Cut into 10 pieces with equal length

result = tf.split(x, num_or_size_splits=10, axis=0)

len(result)  # Return a list with 10 tensors of equal length

Out[8]: 10

We can view the shape of a tensor after cutting, and it should be all 

gradebook data of one class with shape of [1, 35, 8]:

In [9]: result[0] # Check the first class gradebook

Out[9]: <tf.Tensor: id=136, shape=(1, 35, 8), 

dtype=float32, numpy=

array([[[-1.7786729 ,  0.2970506 ,  0.02983334,  1.3970423 ,

          1.315918  , -0.79110134, -0.8501629 , -1.5549672 ],

        [ 0.5398711 ,  0.21478991, -0.08685189,  0.7730989 ,...

It can be seen that the shape of the first class tensor is [1,35,8], 

which still has the class dimension. Let’s perform unequal length cutting. 

For example, split the data into four parts with each length as [4, 2, 2, 2] for 

each part:

In [10]: x = tf.random.normal([10,35,8])

# Split tensor into 4 parts
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result = tf.split(x, num_or_size_splits=[4,2,2,2] ,axis=0)

len(result)

Out[10]: 4

Check the shape of the first split tensor. According to our splitting 

scheme, it should contain the gradebooks of four classes. The shape 

should be [4,35,8]:

In [10]: result[0]

Out[10]: <tf.Tensor: id=155, shape=(4, 35, 8), 

dtype=float32, numpy=

array([[[-6.95693314e-01,  3.01393479e-01,  1.33964568e-01, ...,

In particular, if we want to divide one certain dimension by a length 

of 1, we can use the tf.unstack(x, axis) function. This method is a special 

case of tf.split. The splitting length is fixed as 1. We only need to specify the 

index number of the splitting dimension. For example, unstack the total 

gradebook tensor in the class dimension:

In [11]: x = tf.random.normal([10,35,8])

result = tf.unstack(x,axis=0)

len(result) # Return a list with 10 tensors

Out[11]: 10

View the shape of the split tensor:

In [12]: result[0] # The first class tensor

Out[12]: <tf.Tensor: id=166, shape=(35, 8), 

dtype=float32, numpy=

array([[-0.2034383 ,  1.1851563 ,  0.25327438, 

-0.10160723,  2.094969  ,

        -0.8571669 , -0.48985648,  0.55798006],...
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It can be seen that after splitting through tf.unstack, the split tensor 

shape becomes [35, 8], that is, the class dimension disappears, which is 

different from tf.split.

5.2  Common Statistics
During the neural network calculations, various statistical attributes need 

to be computed, such as maximum, minimum, mean, and norm. Because 

tensors usually contain a lot of data, it is easier to infer the distribution of 

tensor values by obtaining the statistical information of these tensors.

5.2.1  Norm
Norm is a measure of the “length” of a vector. It can be generalized to 

tensors. In neural networks, it is often used to represent the tensor weight 

and the gradient magnitude. Commonly used norms are:

• L1 norm, defined as the sum of the absolute values of 

all the elements of the vector:

 
|| ||x x

i
i1��  

• L2 norm, defined as the root sum of the squares of all 

the elements of the vector:

 
|| ||x x

i
i2
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• ∞ norm, defined as the maximum of the absolute 

values of all elements of a vector:

 
|| ||x xi i� � � �max  
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For matrices and tensors, the preceding formulas can also be used 

after flattening the matrices and tensors into a vector. In TensorFlow, the 

tf.norm(x, ord) function can be used to solve the L1, L2, and ∞norms, 

where the parameter ord is specified as 1, 1, and np.inf for L1, L2, and ∞ 

norms, respectively:

In [13]: x = tf.ones([2,2])

tf.norm(x,ord=1) # L1 norm

Out[13]: <tf.Tensor: id=183, shape=(), dtype=float32, 

numpy=4.0>

In [14]: tf.norm(x,ord=2) # L2 norm

Out[14]: <tf.Tensor: id=189, shape=(), dtype=float32, 

numpy=2.0>

In [15]: import numpy as np

tf.norm(x,ord=np.inf) # ∞ norm

Out[15]: <tf.Tensor: id=194, shape=(), dtype=float32, 

numpy=1.0>

5.2.2  Max, Min, Mean, and Sum
The tf.reduce_max, tf.reduce_min, tf.reduce_mean, and tf.reduce_sum 

functions can be used to get the maximum, minimum, mean, and sum of 

tensors in a certain dimension or in all dimensions.

Consider a tensor of shape [4, 10], where the first dimension represents 

the number of samples and the second dimension represents the 

probability that the current sample belongs to each of the ten categories. 

The maximum value of each sample’s probability can be obtained through 

the tf.reduce_max function:

In [16]: x = tf.random.normal([4,10])

tf.reduce_max(x,axis=1) # get maximum value at 2nd dimension
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Out[16]:<tf.Tensor: id=203, shape=(4,), dtype=float32, 

numpy=array([1.2410722 , 0.88495886, 1.4170984 , 0.9550192 ], 

dtype=float32)>

The preceding code returns a vector of length 4, which represents the 

maximum probability value of each sample. Similarly, we can find the 

minimum value of the probability for each sample as follows:

In [17]: tf.reduce_min(x,axis=1) # get the minimum value at 2nd 

dimension

Out[17]:<tf.Tensor: id=206, shape=(4,), dtype=float32, 

numpy=array([-0.27862206, -2.4480672 , -1.9983795 , -1.5287997 ],  

dtype=float32)>

Find the mean probabilities of each sample:

In [18]: tf.reduce_mean(x,axis=1)

Out[18]:<tf.Tensor: id=209, shape=(4,), dtype=float32, 

numpy=array([ 0.39526337, -0.17684573, -0.148988  , 

-0.43544054], dtype=float32)>

When the axis parameter is not specified, the tf.reduce_* functions will 

find the maximum, minimum, mean, and sum of all the data:

In [19]:x = tf.random.normal([4,10])

tf.reduce_max(x),tf.reduce_min(x),tf.reduce_mean(x)

Out [19]: (<tf.Tensor: id=218, shape=(), dtype=float32, 

numpy=1.8653786>,

 <tf.Tensor: id=220, shape=(), dtype=float32, 

numpy=-1.9751656>,

 <tf.Tensor: id=222, shape=(), dtype=float32, 

numpy=0.014772797>)
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When solving the error function, the error of each sample can be 

obtained through the MSE function, and the average error of the sample 

needs to be calculated. Here we can use tf.reduce_mean function as 

follows:

In [20]:

out = tf.random.normal([4,10]) # Simulate output

y = tf.constant([1,2,2,0]) # Real labels

y = tf.one_hot(y,depth=10) # One-hot encoding

loss = keras.losses.mse(y,out) # Calculate loss of each sample

loss = tf.reduce_mean(loss) # Calculate mean loss

loss

Out[20]:

<tf.Tensor: id=241, shape=(), dtype=float32, numpy=1.1921183>

Similar to the tf.reduce_mean function, the sum function tf.reduce_

sum(x, axis) can calculate the sum of all features of the tensor on the 

corresponding axis:

In [21]:out = tf.random.normal([4,10])

tf.reduce_sum(out,axis=-1) # Calculate sum along the last 

dimension

Out[21]:<tf.Tensor: id=303, shape=(4,), dtype=float32, 

numpy=array([-0.588144 ,  2.2382064,  2.1582587,  4.962141 ], 

dtype=float32)>

In addition, to obtain the maximum or minimum value of the tensor, 

we sometimes also want to obtain the corresponding position index. For 

example, for the classification tasks, we need to know the position index 

of the maximum probability, which is usually used as the prediction 

category. Considering the classification problem with ten categories, we 

get the output tensor with shape [2, 10], where 2 represents two samples 

and 10 indicates the probability of belonging to ten categories. Since the 

position index of the element represents the probability that the current 
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sample belongs to this category, we often use the index corresponding to 

the largest probability as the predicted category.

In [22]:out = tf.random.normal([2,10])

out = tf.nn.softmax(out, axis=1) # Use softmax to convert to 

probability

out

Out[22]:<tf.Tensor: id=257, shape=(2, 10), 

dtype=float32, numpy=

array([[0.18773547, 0.1510464 , 0.09431915, 0.13652141, 0.06579739,

        0.02033597, 0.06067333, 0.0666793 , 0.14594753, 0.07094406],

       [0.5092072 , 0.03887136, 0.0390687 , 0.01911005, 0.03850609,

        0.03442522, 0.08060656, 0.10171875, 0.08244187, 0.05604421]],

       dtype=float32)>

Taking the first sample as an example, it can be seen that the index 

with the highest probability (0.1877) is 0. Because the probability on each 

index represents the probability that the sample belongs to this category, 

the probability that the first sample belongs to class 0 is the largest. 

Therefore, the first sample should most likely belong to class 0. This is a 

typical application where the index number of the maximum needs to 

be solved.

We can use tf.argmax(x, axis) and tf.argmin(x, axis) to find the index 

of the maximum and minimum values of x on the axis parameter. For 

example:

In [23]:pred = tf.argmax(out, axis=1)

pred

Out[23]:<tf.Tensor: id=262, shape=(2,), dtype=int64, 

numpy=array([0, 0], dtype=int64)>

It can be seen that the maximum probability of the two samples 

appears on index 0, so it is most likely that they both belong to category 0. 

We can use category 0 as the predicted category for the two samples.
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5.3  Tensor Comparison
In order to get the classification metrics such as accuracy, it is generally 

necessary to compare the prediction result with the real label. Considering 

the prediction results of 100 samples, the predicted category can be 

obtained through tf.argmax.

In [24]:out = tf.random.normal([100,10])

out = tf.nn.softmax(out, axis=1) # Convert to probability

pred = tf.argmax(out, axis=1) # Find corresponding category

Out[24]:<tf.Tensor: id=272, shape=(100,), dtype=int64, numpy=

array([ 0, 6, 4, 3, 6, 8, 6, 3, 7, 9, 5, 7, 3, 7, 1, 5, 6, 1, 2, 

9, 0, 6,

        5, 4, 9, 5, 6, 4, 6, 0, 8, 4, 7, 3, 4, 7, 4, 1, 2, 4, 

9, 4,...

The pred variable holds the predicted category of the 100 samples. We 

compare them with the true labels to get a boolean tensor representing 

whether each sample predicts the correct one. The tf.equal(a, b) (or 

tf.math.equal(a, b), which is equivalent) function can compare whether 

the two tensors are equal, for example:

In [25]: # Simiulate the true labels

y = tf.random.uniform([100],dtype=tf.int64,maxval=10)

Out[25]:<tf.Tensor: id=281, shape=(100,), dtype=int64, numpy=

array([ 0, 9, 8, 4, 9, 7, 2, 7, 6, 7, 3, 4, 2, 6, 5, 0, 9, 4, 5, 

8, 4, 2,

        5, 5, 5, 3, 8, 5, 2, 0, 3, 6, 0, 7, 1, 1, 7, 0, 6, 1, 2, 

1, 3, ...

In [26]:out = tf.equal(pred,y) # Compare true and prediction

Out[26]:<tf.Tensor: id=288, shape=(100,), dtype=bool, numpy=

array([ False, False, False, False, True, False, False, False, False,

        False, False, False, False, False, True, False, 

False, True,...
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The tf.equal function returns the comparison result as a boolean 

tensor. We only need to count the number of True elements to get the 

correct number of predictions. In order to achieve this, we first convert the 

boolean type to an integer tensor, that is, True corresponds to 1, and False 

corresponds to 0, and then sum the number of 1 to get the number of True 

elements in the comparison result:

In [27]:out = tf.cast(out, dtype=tf.float32) # convert to int type

correct = tf.reduce_sum(out) # get the number of True elements

Out[27]:<tf.Tensor: id=293, shape=(), dtype=float32, numpy=12.0>

It can be seen that the number of correct predictions in our randomly 

generated prediction data is 12, so its accuracy is:

 
accuracy = =

12

100
12%  

This is the normal level of random prediction models.

Except for the tf.equal function, other commonly used comparison 

functions are shown in Table 5-1.

Table 5-1. Common comparison functions

Function Comparison logic

tf.math.greater a > b

tf.math.less a < b

tf.math.greater_equal a ≥ b

tf.math.less_equal a ≤ b

tf.math.not_equal a ≠ b

tf.math.is_nan a = nan
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5.4  Fill and Copy
5.4.1  Fill
The height and width of images and the length of the sequence signals 

may not be the same. In order to facilitate parallel computing of the 

network, it is necessary to expand data of different lengths to the same. We 

previously introduced that the length of data can be increased by copying. 

However, repeatedly copying data will destroy the original data structure 

and is not suitable for some situations. A common practice is to fill in a 

sufficient number of specific values at the beginning or end of the data. 

These specific values (e.g., 0) generally represent invalid meanings. This 

operation is called padding.

Consider a two-sentence tensor that each word is represented by a 

digital code, such as 1 for I, 2 for like, and so on. The first sentence is “I like 

the weather today.” We assume that the sentence number is encoded as 

[1, 2, 3, 4, 5, 6]. The second sentence is “So do I.” with encoding as [7, 8, 1, 6]. 

In order to store the two sentences in one tensor, we need to keep the 

length of these two sentences consistent, that is, we need to expand the 

length of the second sentence to 6. A common padding scheme is to pad 

a number of zeros at the end of the second sentence, that is, [7, 8, 1, 6, 0, 0].

Now the two sentences can be stacked and combined into a tensor of 

shape [2, 6].

The padding operation can be implemented by the tf.pad(x, 

paddings) function. The parameter paddings is a list of multiple nested 

schemes with the format of [Left Padding, Right Padding]. For example, 

paddings = [[0, 0], [2, 1], [1, 2]] indicates that the first dimension is not filled, 

and the left (the beginning) of the second dimension is filled with two 

units, and fill one unit on the right (end) of the second dimension, fill one 

unit on the left of the third dimension, and fill two units on the right of the 

third dimension. Considering the example of the preceding two sentences, 
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two units need to be filled to the right of the first dimension of the second 

sentence, and the paddings scheme is [[0, 2]]:

In [28]:a = tf.constant([1,2,3,4,5,6]) # 1st sentence

b = tf.constant([7,8,1,6]) # 2nd sentence

b = tf.pad(b, [[0,2]]) # Pad two 0's in the end of 2nd sentence

b

Out[28]:<tf.Tensor: id=3, shape=(6,), dtype=int32, 

numpy=array([7, 8, 1, 6, 0, 0])>

After filling, the shape of the two tensors is consistent, and we can 

stack them together. The code is as follows:

In [29]:tf.stack([a,b],axis=0) # Stack a and b

Out[29]:<tf.Tensor: id=5, shape=(2, 6), dtype=int32, numpy=

array([[1, 2, 3, 4, 5, 6],

       [7, 8, 1, 6, 0, 0]])>

In natural language processing, sentences with different lengths need 

to be loaded. Some sentences are shorter, such as only ten words, and 

some sentences are longer, such as more than 100 words. In order to be 

able to save in the same tensor, a threshold that can cover most of the 

sentence length is generally selected, such as 80 words. For sentences 

with less than 80 words, we fill with 0s at the end of those sentences. For 

sentences with more than 80 words, we truncate the sentence to 80 words 

by removing some words at the end. We will use the IMDB dataset as an 

example to demonstrate how to transform sentences of unequal length 

into a structure of equal length. The code is as follows:

In [30]:total_words = 10000 # Set word number

max_review_len = 80 # Maximum length for each sentence

embedding_len = 100 # Word vector length

# Load IMDB dataset
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(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.

load_data(num_words=total_words)

# Pad or truncate sentences to the same length with end padding 

and truncation

x_train = keras.preprocessing.sequence.pad_sequences(x_train, 

maxlen=max_review_len,truncating='post',padding='post')

x_test = keras.preprocessing.sequence.pad_sequences(x_test, 

maxlen=max_review_len,truncating='post',padding='post')

print(x_train.shape, x_test.shape)

Out[30]: (25000, 80) (25000, 80)

In the preceding code, we set the maximum length of the sentence  

max_review_len to 80 words. Through the keras.preprocessing.sequence.

pad_sequences function, we can quickly complete the padding and 

truncation implementation. Take one of the sentences as an example, and 

the transformed vector is like this:

[   1  778  128   74   12  630  163   15    4 1766 7982 1051    2   32

   85  156   45   40  148  139  121  664  665   10   10 1361  173    4

  749    2   16 3804    8    4  226   65   12   43  127   24    2   10

   10    0    0    0    0    0    0    0    0    0    0    0    0    0

    0    0    0    0    0    0    0    0    0    0    0    0    0    0

    0    0    0    0    0    0    0    0    0    0]

We can see that the final part of the sentence is filled with 0s so that 

the length of the sentence is exactly 80. In fact, we can also choose to fill 

the beginning part of the sentence when the length of the sentence is not 

enough. After processing, all sentence length becomes 80, so that the 

training set can be uniformly stored in the tensor of shape [25000, 80] and 

the test set can be stored in the tensor of shape [25000, 80].

Let’s introduce an example of filling in multiple dimensions at the 

same time. Consider padding the height and width dimensions of images. 

If we have pictures with dimension 28 × 28 and the input layer shape of 
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neural network is 32 × 32, we need to fill the images to get the shape of 

32 × 32. We can choose to fill 2 units each in the upper, lower, left, and right 

of the image matrix as shown in Figure 5-2.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-2. Image padding example

The preceding padding scheme can be implemented as follows:

In [31]:

x = tf.random.normal([4,28,28,1])

# Pad two units at each edge of the image

tf.pad(x,[[0,0],[2,2],[2,2],[0,0]])

Out[31]:

<tf.Tensor: id=16, shape=(4, 32, 32, 1), dtype=float32, numpy=

array([[[[ 0.        ],

         [ 0.        ],

         [ 0.        ],...

After the padding operation, the size of the picture becomes 32 × 32, 

which meets the input requirements of the neural network.
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5.4.2  Copy
In the dimensional transformation section, we introduced the tf.tile 

function of copying the dimension of length 1. Actually, the tf.tile function 

can be used to repeatedly copy multiple copies of data in any dimension. 

For example, for image data with shape [4,32,32,3], if the copy scheme 

is multiples=[2, 3, 3, 1], that means the channel dimension is not copied, 

three copies in the height and width dimensions, and two copies in the 

image number dimension. The implementation is as follows:

In [32]:x = tf.random.normal([4,32,32,3])

tf.tile(x,[2,3,3,1])

Out[32]:<tf.Tensor: id=25, shape=(8, 96, 96, 3), 

dtype=float32, numpy=

array([[[[ 1.20957184e+00,  2.82766962e+00,  1.65782201e+00],

         [ 3.85402292e-01,  2.00732923e+00, -2.79068202e-01],

         [-2.52583921e-01,  7.82584965e-01,   7.56870627e-01],...

5.5  Data Limiting
Consider how to implement the nonlinear activation function ReLU. In 

fact, it can be implemented by simple data limiting operations with the 

range of elements being limited to x ∈ [0, +∞).

In TensorFlow, the lower limit of the data can be set through 

tf.maximum (x, a), that is, the upper limit of the data can be set through 

tf.minimum (x, a).

In [33]:x = tf.range(9)

tf.maximum(x,2) # Set lower limit of x to 2

Out[33]:<tf.Tensor: id=48, shape=(9,), dtype=int32, 

numpy=array([2, 2, 2, 3, 4, 5, 6, 7, 8])>

In [34]:tf.minimum(x,7) # Set x upper limit to 7
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Out[34]:<tf.Tensor: id=41, shape=(9,), dtype=int32, 

numpy=array([0, 1, 2, 3, 4, 5, 6, 7, 7])>

Based on tf.maximum function, we can implement ReLU as follows:

def relu(x): # ReLU function

    return tf.maximum(x,0.) # Set lower limit of x to be 0

By combining tf.maximum(x, a) and tf.minimum(x, b), you can limit 

the upper and lower boundaries of the data at the same time, that is, 

x ∈ [a, b].

In [35]:x = tf.range(9)

tf.minimum(tf.maximum(x,2),7) # Set x range to be [2, 7]

Out[35]:<tf.Tensor: id=57, shape=(9,), dtype=int32, 

numpy=array([2, 2, 2, 3, 4, 5, 6, 7, 7])>

More conveniently, we can use the tf.clip_by_value function to achieve 

upper and lower clipping:

In [36]:x = tf.range(9)

tf.clip_by_value(x,2,7) # Set x range to be [2, 7]

Out[36]:<tf.Tensor: id=66, shape=(9,), dtype=int32, 

numpy=array([2, 2, 2, 3, 4, 5, 6, 7, 7])>

5.6  Advanced Operations
Most of the preceding functions are common and easy to understand. 

Next, we will introduce some commonly used but slightly more 

complicated functions.
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5.6.1  tf.gather
The tf.gather function can collect data according to the index number. 

Consider the example of grade books. Assume that there are four classes, 

35 students in each class, eight subjects in total, and the tensor shape of 

the grade books is [4,35,8].

x = tf.random.uniform([4,35,8],maxval=100,dtype=tf.int32)

Now we need to collect the grade books of the first and second classes. 

We can give the index number of the class we want to collect (e.g., [0, 1]) 

and specify the dimension of the class (e.g., axis = 0). And then collect the 

data through the tf.gather function.

In [38]:tf.gather(x,[0,1],axis=0) # Collect data for 1st and 

2nd classes

Out[38]:<tf.Tensor: id=83, shape=(2, 35, 8), 

dtype=int32, numpy=

array([[[43, 10, 93, 85, 75, 87, 28, 19],

        [52, 17, 44, 88, 82, 54, 16, 65],

        [98, 26,  1, 47, 59,  3, 59, 70],...

In fact, the preceding requirements can be more conveniently 

achieved through slicing. However, for irregular indexing methods, such as 

the need to spot check the grade data of students 1, 4, 9, 12, 13, and 27, the 

slicing method is not suitable. The tf.gather function is designed for this 

situation and is more convenient to use. The implementation is as follows:

In [39]: # Collect the grade of students 1,4,9,12,13 and 27

tf.gather(x,[0,3,8,11,12,26],axis=1)

Out[39]:<tf.Tensor: id=87, shape=(4, 6, 8), dtype=int32, numpy=

array([[[43, 10, 93, 85, 75, 87, 28, 19],

        [74, 11, 25, 64, 84, 89, 79, 85],...
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If we need to collect the grades of the third and fifth subjects of all 

students, we can specify the subject dimension axis = 2 to achieve the 

following:

# Collect the grades of the 3rd and 5th subjects of all 

students

In [40]:tf.gather(x,[2,4],axis=2)

Out[40]:<tf.Tensor: id=91, shape=(4, 35, 2), 

dtype=int32, numpy=

array([[[93, 75],

        [44, 82],

        [ 1, 59],...

It can be seen that tf.gather is very suitable for situations where the 

index numbers are not regular. The index numbers can be arranged out of 

order, and the data collected will also be in the corresponding order. For 

example:

In [41]:a=tf.range(8)

a=tf.reshape(a,[4,2])

Out[41]:<tf.Tensor: id=115, shape=(4, 2), dtype=int32, numpy=

array([[0, 1],

       [2, 3],

       [4, 5],

       [6, 7]])>

In [42]:tf.gather(a,[3,1,0,2],axis=0) # Collect element 4,2,1,3

Out[42]:<tf.Tensor: id=119, shape=(4, 2), dtype=int32, numpy=

array([[6, 7],

       [2, 3],

       [0, 1],

       [4, 5]])>
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We will make the problem a little more complicated. If we want to 

check the subject scores of students [3, 4, 6, 27] in class [2, 3], we can do 

this by combining multiple tf.gather operations. First extract data for 

class [2, 3]:

In [43]:

students=tf.gather(x,[1,2],axis=0) # Collect data for 

class 2 and 3

Out[43]:<tf.Tensor: id=227, shape=(2, 35, 8), 

dtype=int32, numpy=

array([[[ 0, 62, 99,  7, 66, 56, 95, 98],...

Then we extract the corresponding data for selected students:

In [44]:

tf.gather(students,[2,3,5,26],axis=1) # Collect data for 

students 3,4,6,27

Out[44]:<tf.Tensor: id=231, shape=(2, 4, 8), 

dtype=int32, numpy=

array([[[69, 67, 93,  2, 31,  5, 66, 65], ...

Now we get the selected tensor with shape [2, 4, 8].

This time we want to spot check all subjects of the second classmate of 

the second class, all subjects of the third classmate of the third class, and 

all subjects of the fourth classmate of the fourth class. So how does it work? 

Data can be manually extracted one by one in a clumsy way. First extract 

the data of the first sampling point: x[1, 1].

In [45]: x[1,1]

Out[45]:<tf.Tensor: id=236, shape=(8,), dtype=int32, 

numpy=array([45, 34, 99, 17,  3,  1, 43, 86])>

Then extract the data of the second sampling point x[2, 2] and the data 

of the third sampling point x[3, 3], and finally combine the sampling results 

together.
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In [46]: tf.stack([x[1,1],x[2,2],x[3,3]],axis=0)

Out[46]:<tf.Tensor: id=250, shape=(3, 8), dtype=int32, numpy=

array([[45, 34, 99, 17,  3,  1, 43, 86],

       [11, 25, 84, 95, 97, 95, 69, 69],

       [ 0, 89, 52, 29, 76,  7,  2, 98]])>

Using the preceding method, we can correctly obtain the result of 

shape [3, 8], where 3 represents the number of sampling points and 4 

represents the data of each sampling point. The biggest problem is that 

the sampling is performed manually and serially, and the calculation 

efficiency is extremely low. Is there a better way to achieve this?

5.6.2  tf.gather_nd
With the tf.gather_nd function, we can sample multiple points by 

specifying the multidimensional coordinates of each sampling point. 

Going back to the preceding challenge, we want to spot check all the 

subjects of the second classmate of the second class, all the subjects of 

the third classmate of the third class, and all the subjects of the fourth 

classmate of the fourth class. Then the index coordinates of the three 

sampling points can be recorded as [1, 1], [2, 2], and [3, 3], and we can 

combine this sampling scheme into a list [[1, 1], [2, 2], [3, 3]].

In [47]:

tf.gather_nd(x,[[1,1],[2,2],[3,3]])

Out[47]:<tf.Tensor: id=256, shape=(3, 8), dtype=int32, numpy=

array([[45, 34, 99, 17,  3,  1, 43, 86],

       [11, 25, 84, 95, 97, 95, 69, 69],

       [ 0, 89, 52, 29, 76,  7,  2, 98]])>

The result is consistent with the serial sampling method, and the 

implementation is more concise and efficient.
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Generally, when using tf.gather_nd to sample multiple samples, for 

example, if we want to sample class i, student j, and subject k, we can use 

the expression [..., [i, j, k], ...]. The inner list contains the corresponding 

index coordinates of each sampling point, for example:

In [48]:

tf.gather_nd(x,[[1,1,2],[2,2,3],[3,3,4]])

Out[48]:<tf.Tensor: id=259, shape=(3,), dtype=int32, 

numpy=array([99, 95, 76])>

In the preceding code, we extracted the grades of subject 1 of class 1 

student 2, subject 2 of class 2 student 3, and class 3 of student 3 subject 4. 

There are a total of three grade data, and the results are summarized into a 

tensor with shape of [3].

5.6.3  tf.boolean_mask
In addition to sampling by a given index number, sampling can also be 

performed by a given mask. Continue to take the gradebook tensor with 

shape [4,35,8] as an example; this time we use the mask method for data 

extraction.

Consider sampling in the class dimension and set the corresponding 

mask as:

 mask True False False True�� �, , ,  

That is, the first and fourth classes are sampled. Using the function 

tf.boolean_mask(x, mask, axis), the sampling can be performed on the 

corresponding axis according to the mask scheme, which is realized as:

In [49]:

tf.boolean_mask(x,mask=[True, False,False,True],axis=0)
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Out[49]:<tf.Tensor: id=288, shape=(2, 35, 8), 

dtype=int32, numpy=

array([[[43, 10, 93, 85, 75, 87, 28, 19],...

Note that the length of the mask must be the same as the length of the 

corresponding dimension. If we are sampling in the class dimension, we 

must specify the mask with length 4 to specify whether the four classes are 

sampling.

If mask sampling is performed on eight subjects, we need to set the 

mask sampling scheme to

 mask True False False True True False False True�� �, , , , , , ,  

That is, sample the first, fourth, fifth, and eighth subjects:

In [50]:

tf.boolean_mask(x,mask=[True,False,False,True,True,False,False,

True],axis=2)

Out[50]:<tf.Tensor: id=318, shape=(4, 35, 4), 

dtype=int32, numpy=

array([[[43, 85, 75, 19],...

It is not difficult to find that the usage of tf.boolean_mask here is 

actually very similar to tf.gather, except that one is sampled by the mask 

method, and the other is directly given the index number.

Now let’s consider a multidimensional mask sampling method similar 

to tf.gather_nd. In order to facilitate the demonstration, we reduced the 

number of classes to two and the number of students to three. That is, a 

class has only three students and the tensor shape is [2, 3, 8]. If we want to 
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sample students 1 to 2 of the first class and students 2 to 3 of the second 

class, we can achieve it using tf.gather_nd:

In [51]:x = tf.random.uniform([2,3,8],maxval=100,dtype

=tf.int32)

tf.gather_nd(x,[[0,0],[0,1],[1,1],[1,2]])

Out[51]:<tf.Tensor: id=325, shape=(4, 8), dtype=int32, numpy=

array([[52, 81, 78, 21, 50,  6, 68, 19],

       [53, 70, 62, 12,  7, 68, 36, 84],

       [62, 30, 52, 60, 10, 93, 33,  6],

       [97, 92, 59, 87, 86, 49, 47, 11]])>

A total of four students' results were sampled with a shape of [4, 8].

If we use a mask, how do we express it? Table 5-2 expresses the 

sampling of the corresponding position:

Table 5-2. Sampling using mask method

Student 0 Student 1 Student 2

Class 0 true true False

Class 1 False true true

Therefore, through this table, the sampling scheme using the mask 

method can be well expressed. The code is implemented as follows:

In [52]:

tf.boolean_mask(x,[[True,True,False],[False,True,True]])

Out[52]:<tf.Tensor: id=354, shape=(4, 8), dtype=int32, numpy=

array([[52, 81, 78, 21, 50,  6, 68, 19],

       [53, 70, 62, 12,  7, 68, 36, 84],

       [62, 30, 52, 60, 10, 93, 33,  6],

       [97, 92, 59, 87, 86, 49, 47, 11]])>

Chapter 5  advanCed tensorFlow



175

The result is exactly the same as tf.gather_nd method. It can be 

seen that tf.boolean_mask method can be used for both one- and 

multidimensional samplings.

The preceding three operations are more commonly used, especially 

tf.gather and tf.gather_nd. Three additional advanced operations are 

added in the following.

5.6.4  tf.where
Through the tf.where(cond, a, b) function, we can read data from the 

parameter a or b according to the true and false conditions of the cond 

condition. The condition determination rule is as follows:

 {i i i i io a cond True b cond False= 为 为  

Among them i is the element index of the tensor. The size of the 

returned tensor is consistent with a and b. When the corresponding 

position of condi is True, the data is copied from ai to oi. Otherwise, the 

data is copied from bi to oi. Consider extracting data from two tensors 

A and B of all 1’s and 0’s, where the position of True in中condi extracts 

element 1 from the corresponding position of A, otherwise extracts 0 from 

the corresponding position of B. The code is as follows:

In [53]:

a = tf.ones([3,3])  # Tensor A

b = tf.zeros([3,3]) # Tensor B

# Create condition matrix

cond = tf.constant([[True,False,False],[False,True,False],[True, 

True,False]])

tf.where(cond,a,b)

Out[53]:<tf.Tensor: id=384, shape=(3, 3), dtype=float32, numpy=

array([[1., 0., 0.],
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       [0., 1., 0.],

       [1., 1., 0.]], dtype=float32)>

It can be seen that the positions of 1 in the returned tensor are all from 

tensor A, and the positions of 0 in the returned tensor are from tensor B.

When the parameter a=b=None, that is, a and b parameters are not 

specified; tf.where returns the index coordinates of all True elements in the 

cond tensor. Consider the following cond tensor:

In [54]: cond

Out[54]:<tf.Tensor: id=383, shape=(3, 3), dtype=bool, numpy=

array([[ True, False, False],

       [False,  True, False],

       [ True,  True, False]])>

True appears four times in total, and the index at the position of 

each True element is [0, 0], [1, 1], [2, 0], and [2, 1] respectively. The index 

coordinates of these elements can be obtained directly through the form of 

tf.where(cond) as follows:

In [55]:tf.where(cond)

Out[55]:<tf.Tensor: id=387, shape=(4, 2), dtype=int64, numpy=

array([[0, 0],

       [1, 1],

       [2, 0],

       [2, 1]], dtype=int64)>

So what’s the use of this? Consider a scenario where we need to extract 

all the positive data and indexes in a tensor. First construct tensor a and 

obtain the position masks of all positive numbers through comparison 

operations:

In [56]:x = tf.random.normal([3,3]) # Create tensor a

Out[56]:<tf.Tensor: id=403, shape=(3, 3), dtype=float32, numpy=
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array([[-2.2946844 ,  0.6708417 , -0.5222212 ],

       [-0.6919401 , -1.9418817 ,  0.3559235 ],

        [-0.8005251 ,  1.0603906 , -0.68819374]], 

dtype=float32)>

By comparison operation, we get the mask of all positive numbers:

In [57]:mask=x>0 # equivalent to tf.math.greater()

mask

Out[57]:<tf.Tensor: id=405, shape=(3, 3), dtype=bool, numpy=

array([[False,  True, False],

       [False, False,  True],

       [False,  True, False]])>

Extract the index coordinates of the True element in the mask tensor 

via tf.where:

In [58]:indices=tf.where(mask) # Extract all element 

greater than 0

Out[58]:<tf.Tensor: id=407, shape=(3, 2), dtype=int64, numpy=

array([[0, 1],

       [1, 2],

       [2, 1]], dtype=int64)>

After getting the index, we can restore all positive elements through 

tf.gather_nd:

In [59]:tf.gather_nd(x,indices) # Extract all positive elements

Out[59]:<tf.Tensor: id=410, shape=(3,), dtype=float32, 

numpy=array([0.6708417, 0.3559235, 1.0603906], dtype=float32)>
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In fact, after we get the mask, we can also get all the positive elements 

directly through tf.boolean_mask:

In [60]:tf.boolean_mask(x,mask) # Extract all positive elements

Out[60]:<tf.Tensor: id=439, shape=(3,), dtype=float32, 

numpy=array([0.6708417, 0.3559235, 1.0603906], dtype=float32)>

Through the preceding series of comparisons, we can intuitively feel 

that this function has great practical applications and also get a deep 

understanding of their nature to be able to achieve our purpose in a more 

flexible, simple, and efficient way.

5.6.5  tf.scatter_nd
The tf.scatter_nd(indices, updates, shape) function can efficiently 

refresh part of the tensor data, but this function can only perform refresh 

operations on all 0 tensors, so it may be necessary to combine other 

operations to implement the data refresh function for non-zero tensors.

Figure 5-3 shows the refresh calculation principle of the one- 

dimensional all-zero tensor. The shape of the whiteboard is represented 

by the shape parameter, the index number of the data to be refreshed is 

represented by indices, and updates parameter contains the new data. The 

tf.scatter_nd(indices, updates, shape) function writes the new data to the 

all-zero tensor according to the index position given by indices and returns 

the updated result tensor.

new data:updates whiteboard:shapes output

indices

Figure 5-3. scatter_nd function for refreshing data
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We implement a refresh example of the tensor in Figure 5-3 as follows:

In [61]: # Create indices for refreshing data

indices = tf.constant([[4], [3], [1], [7]])

# Create data for filling the indices

updates = tf.constant([4.4, 3.3, 1.1, 7.7])

# Refresh data for all 0 vector of length 8

tf.scatter_nd(indices, updates, [8])

Out[61]:<tf.Tensor: id=467, shape=(8,), dtype=float32, 

numpy=array([0. , 1.1, 0. , 3.3, 4.4, 0. , 0. , 7.7], 

dtype=float32)>

It can be seen that on the all-zero tensor of length 8, the data of the 

corresponding positions are filled in with values from updates.

Consider an example of a three-dimensional tensor. As shown in 

Figure 5-4, the shape of the all-zero tensor is a feature map with four 

channels in total, and each channel has a size 4 × 4. New data updates have 

a shape [2, 4, 4], which needs to be written in indices [1, 3].

new data:updates whiteboard:shapes output

indices

Figure 5-4. 3D tensor data refreshing

We write the new feature map into the existing tensor as follows:

In [62]:

indices = tf.constant([[1],[3]])

updates = tf.constant([

    [[5,5,5,5],[6,6,6,6],[7,7,7,7],[8,8,8,8]],

    [[1,1,1,1],[2,2,2,2],[3,3,3,3],[4,4,4,4]]
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])

tf.scatter_nd(indices,updates,[4,4,4])

Out[62]:<tf.Tensor: id=477, shape=(4, 4, 4), 

dtype=int32, numpy=

array([[[0, 0, 0, 0],

        [0, 0, 0, 0],

        [0, 0, 0, 0],

        [0, 0, 0, 0]],

       [[5, 5, 5, 5], # New data 1

        [6, 6, 6, 6],

        [7, 7, 7, 7],

        [8, 8, 8, 8]],

       [[0, 0, 0, 0],

        [0, 0, 0, 0],

        [0, 0, 0, 0],

        [0, 0, 0, 0]],

       [[1, 1, 1, 1], # New data 2

        [2, 2, 2, 2],

        [3, 3, 3, 3],

        [4, 4, 4, 4]]])>

It can be seen that the data is refreshed onto the second and fourth 

channel feature maps.

5.6.6  tf.meshgrid
The tf.meshgrid function can easily generate the coordinates of the 

sampling points of the two-dimensional grid, which is convenient for 

applications such as visualization. Consider the Sinc function with two 

independent variables x and y as:

 
z

sin sin x y

x y
�

�� �
�

2 2

2 2  
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If we need to draw a 3D surface of the Sinc function in the interval 

x ∈ [−8, 8], y ∈ [−8, 8], as shown in Figure 5-5, we first need to generate the 

grid point coordinate set of the x and y axes, so that the output value of the 

function at each position can be calculated by the expression of the Sinc 

function z. We can generate 10,000 coordinate sampling points by:

points = []

for x in range(-8,8,100): # Loop to generate 100 sampling point 

for x-axis

for y in range(-8,8,100): # Loop to generate 100 sampling point 

for y-axis

        z = sinc(x,y)

        points.append([x,y,z])

Obviously, this serial sampling method is extremely inefficient. Is there 

a simple and efficient way to generate grid coordinates? The answer is the 

tf.meshgrid function.

By sampling 100 data points on the x-axis and y-axis, respectively, the 

tf.meshgrid(x, y) can be used to generate tensor data of these 10,000 data 

points and save them in a tensor of shape [100,100,2]. For the convenience 

of calculation, tf.meshgrid will return two tensors after cutting in the  

Figure 5-5. Sinc function
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axis = two-dimensional, where tensor A contains the x-coordinates of all 

points and tensor B contains the y-coordinates of all points.

In [63]:

x = tf.linspace(-8.,8,100) # x-axis

y = tf.linspace(-8.,8,100) # y-axis

x,y = tf.meshgrid(x,y)

x.shape,y.shape

Out[63]: (TensorShape([100, 100]), TensorShape([100, 100]))

Using the generated grid point coordinate tensors, the Sinc function is 

implemented in TensorFlow as follows:

z = tf.sqrt(x**2+y**2)

z = tf.sin(z)/z  # sinc function

The matplotlib library can be used to draw the 3D surface of the 

function as shown in Figure 5-5.

import matplotlib

from matplotlib import pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()

ax = Axes3D(fig)

# Plot Sinc function

ax.contour3D(x.numpy(), y.numpy(), z.numpy(), 50)

plt.show()

5.7  Load Classic Datasets
So far, we have learned the common tensor operations and are ready 

to implement most of the deep networks. Finally, we will complete this 

chapter with a classification network model implemented in a tensor 
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format. Before that, we first formally introduce how to use the tools 

provided by TensorFlow to load datasets conveniently for commonly used 

classic datasets. For loading custom datasets, we will introduce in the 

subsequent chapters.

In TensorFlow, the keras.datasets module provides automatic 

download, management, loading, and conversion functions of commonly 

used classic datasets, as well as the corresponding Dataset objects, which 

facilitates multi-threading, preprocessing, shuffling, and batch-training.

Some commonly used classic datasets:

• Boston Housing: the Boston housing price 

trend dataset, used for training and testing of 

regression models.

• CIFAR10/100: a real picture dataset for picture 

classification tasks.

• MNIST/Fashion_MNIST: a handwritten digital picture 

dataset, used for picture classification tasks.

• IMDB: sentiment classification task dataset, for text 

classification tasks.

These datasets are used very frequently in machine learning or deep 

learning. For the newly proposed algorithms, it is generally preferred to 

test on classic datasets, and then try to migrate to larger and more complex 

data sets.

We can use the datasets.xxx.load_data() function to automatically 

load classic datasets, where xxx represents the specific dataset name, such 

as “CIFAR10” and “MNIST”. TensorFlow will cache the data in the .keras/

datasets folder in the user directory by default, as shown in Figure 5-6. 

Users do not need to care about how the dataset is saved. If the current 

dataset is not in the cache, it will be downloaded, decompressed, and 

loaded automatically from the network. If it is already in the cache, the 
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load is automatically completed. For example, to automatically load the 

MNIST dataset:

In [66]:

import  tensorflow as tf

from    tensorflow import keras

from    tensorflow.keras import datasets # Load dataset 

loading module

# Load MNIST dataset

(x, y), (x_test, y_test) = datasets.mnist.load_data()

print('x:', x.shape, 'y:', y.shape, 'x test:', x_test.shape, 'y 

test:', y_test)

Out [66]:

x: (60000, 28, 28) y: (60000,) x test: (10000, 28, 28) y test: 

[7 2 1 ... 4 5 6]

The load_data() function will return data in the corresponding format. 

For the image datasets MNIST and CIFAR10, two tuples will be returned. 

The first tuple holds the training data x and y objects; the second tuple is 

the test data x_test and y_test objects. All data is stored in a Numpy array 

container.

Figure 5-6. TensorFlow classic dataset saving directory
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After data is loaded into the memory, it needs to be converted into 

a Dataset object in order to take advantage of the various convenient 

functions provided by TensorFlow. Dataset.from_tensor_slices can be used 

to convert the training data image x and label y into Dataset objects:

# Convert to Dataset objects

train_db = tf.data.Dataset.from_tensor_slices((x, y))

After converting data into a Dataset object, we generally need to add 

a series of standard processing steps for the dataset, such as random 

shuffling, preprocessing, and batch loading.

5.7.1  Shuffling
Using the Dataset.shuffle(buffer_size) function, we can randomly shuffle 

the Dataset objects to prevent the data from being generated in a fixed 

order during each training, so that the model will not “remember” the 

label information. The code is implemented as follows:

train_db = train_db.shuffle(10000)

Here the buffer_size parameter specifies the size of the buffer pool, 

which is generally set to a larger constant. Calling these utility functions 

provided by the Dataset will return a new Dataset object.

 db db step step step= . (). (). .()1 2 3  

This method completes all data processing steps in order, which is very 

convenient to implement.

5.7.2  Batch Training
In order to take advantage of the parallel computing capabilities of GPUs, 

multiple samples are generally calculated simultaneously during the 
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network calculation process. We call this training method batch training, 

and the number of samples in one batch is called batch size. In order to 

generate batch size samples from the Dataset at one time, the dataset 

needs to be set to batch training mode. The implementation is as follows:

train_db = train_db.batch(128) # batch size is 128

Here 128 is the batch size parameter, that is, 128 samples are calculated 

at one time in parallel. Batch sis generally set according to the user’s GPU 

memory resources. When the GPU memory is insufficient, the batch size 

can be appropriately reduced.

5.7.3  Preprocessing
The format of the dataset loaded from keras.datasets cannot meet the 

model input requirements in most cases, so it is necessary to implement 

the preprocessing step according to the user’s logic. The Dataset object 

can call the user-defined preprocessing logic very conveniently by 

providing the map(func) utility function, while the preprocessing logic is 

implemented in the func function. For example, the following code calls a 

function named preprocess to complete the preprocessing of each sample:

# Preprocessing is implemented in the preprocess function

train_db = train_db.map(preprocess)

Considering the MNIST handwritten digital picture dataset, image x 

loaded from keras.datasets after .batch () operation has shape [b, 28, 28], 

where the pixels are represented by integers from 0 to 255 and the label 

shape is [b] with digital encoding. The actual neural network input 

generally needs to normalize the image data to the interval [0, 1] or [−1, 1] 

around 0. At the same time, according to the network settings, the input 

view of shape [28, 28] needs to be adjusted to an appropriate format. For 
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label information, we can choose one-hot encoding during preprocessing 

or the error calculation.

Here we map the MNIST image data to interval [0, 1] and adjust the 

view to [b, 28 ∗ 28]. For label data, we choose to perform one-hot encoding 

in the preprocessing function. The preprocess function is implemented as 

follows:

def preprocess(x, y): # Customized preprocessing function

    x = tf.cast(x, dtype=tf.float32) / 255.

    x = tf.reshape(x, [-1, 28*28])     # flatten

    y = tf.cast(y, dtype=tf.int32)    # convert to int

    y = tf.one_hot(y, depth=10)    # one-hot encoding

    return x,y

5.7.4  Epoch Training
For the Dataset object, we can iterate through the following ways:

   for step, (x,y) in enumerate(train_db): # Iterate with step

or

    for x,y in train_db: # Iterate without step

The x and y objects returned each time are batch samples and labels. 

When one iteration is completed for all samples of train_db, the for loop 

terminates. Completing a batch of data training is called a Step, and 

completing an iteration of the entire training set through multiple steps 

is called an Epoch. In training, it is usually necessary to iterate multiple 

Epochs on the data set to obtain better training results. For example, fixed 

training of 20 Epoch is implemented as follows:

    for epoch in range(20): # Epoch number

         for step, (x,y) in enumerate(train_db): # Iteration 

step number

            # training...
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In addition, we can also set a Dataset object so that the dataset will 

traverse multiple times before exiting such as:

train_db = train_db.repeat(20) # Dataset iteration 20 times

The preceding code makes the for x, y in train_db iterates 20 Epochs 

before exiting. No matter which of these methods is used, the same effect 

can be achieved. Since the previous chapter has completed the actual 

calculation of forward calculation, we skip it here.

5.8  Hands-On MNIST Dataset
We have already introduced and implemented the forward propagation 

and dataset. Now let’s finish the remaining classification task logic. In the 

training process, the error data can be effectively monitored by printing 

out after several steps. The code is as follows:

        # Print training error every 100 steps

        if step % 100 == 0:

            print(step, 'loss:', float(loss))

Since loss is a tensor type of TensorFlow, it can be converted to a 

standard Python floating-point number through the float() function. 

After several Steps or several Epoch trainings, a test (verification) can be 

performed to obtain the current performance of the model, for example:

        if step % 500 == 0: # Do a test every 500 steps

            # evaluate/test

Now let’s use the tensor operation functions to complete the actual 

calculation of accuracy. First consider a batch sample x. The network’s 

predicted value can be obtained through forward calculation as follows:

            for x, y in test_db: # Iterate through test dataset

                h1 = x @ w1 + b1 # 1st layer

                h1 = tf.nn.relu(h1) # Activation function
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                h2 = h1 @ w2 + b2 # 2nd layer

                h2 = tf.nn.relu(h2) # Activation function

                out = h2 @ w3 + b3 # Output layer

The shape of the predicted value is [b, 10]. It represents the probability 

that the sample belongs to each category. We select the index number 

where the maximum probability occurs according to the tf.argmax 

function, which is the most likely category number of the sample:

                # Select the max probability category

                pred = tf.argmax(out, axis=1)

Since y has already been one-hot encoded in preprocessing, we can get 

the category number for y similarly:

                y = tf.argmax(y, axis=1)

With tf.equal, we can compare whether the two results are equal:

                correct = tf.equal(pred, y)

Sum the number of all True (converted to 1) element in the result, 

which is the correct number of predictions:

                 total_correct += tf.reduce_sum(tf.cast(correct, 

dtype=tf.int32)).numpy()

Divide the correct number of predictions by the total number of tests 

to get the accuracy, and print it out as follows:

             # Calcualte accuracy

            print(step, 'Evaluate Acc:', total_correct/total)

After training a simple three-layer neural network with 20 Epochs, we 

achieved an accuracy of 87.25% on the test set. If we use complex neural 

network models and fine-tune network hyperparameters, we can get better 
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accuracy. The training error curve is shown in Figure 5-7, and the test 

accuracy curve is shown in Figure 5-8.

Figure 5-7. MNIST training loss

Figure 5-8. MNIST testing accuracy
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CHAPTER 6

Neural Networks
It is difficult to imagine which big industry will not be changed 
by artificial intelligence. Artificial intelligence will play a 
major role in these industries, and this trend is very obvious.

—Andrew Ng

The ultimate goal of machine learning is to find a good set of parameters, 

so that the model can learn the mapping relationship fθ : x → y, x, y ∈ Dtrain 

from the training set and use the trained relationship to predict new 

samples. Neural networks belong to a branch of research in machine 

learning. It specifically refers to a model that uses multiple neurons to 

parameterize the mapping function fθ.

6.1  Perceptron
In 1943, American neuroscientist Warren Sturgis McCulloch and 

mathematical logician Walter Pitts were inspired by the structure of 

biological neurons and proposed a mathematical model of artificial 

neurons, which was further developed and proposed by American 

neurophysicist Frank Rosenblatt, which is known as perceptron model. In 

1957, Frank Rosenblatt implemented the perceptron model on an IBM-704 

computer. This model can complete some simple visual classification 

tasks, such as distinguishing triangles, circles, and rectangles [1].

https://doi.org/10.1007/978-1-4842-7915-1_6#DOI


192

The structure of the perceptron model is shown in Figure 6-1. It accepts 

a one-dimensional vector of length n, x = [x1, x2, …, xn], and each input node is 

aggregated as a variable through a connection of weights wi, iϵ[1, n], namely:

 z w x w x w x bn n� � � � �1 1 2 2   

Among them, b is called the bias of the perceptron, and the one- 

dimensional vector w = [w1, w2, …, wn] is called the weight of the 

perceptron, while z is called the net activation value of the perceptron.

1

2

3

∑

1

2

3

Input Output 

⋮

Figure 6-1. Perception model

The preceding formula can be written in vector form:

 z w x bT� �  

Perceptron is a linear model and cannot deal with linear inseparability. 

The activation value is obtained by adding the activation function after the 

linear model:

 
a z w x bT� � � � �� �� �  

The activation function can be a step function. As shown in Figure 6-2, 

the output of the step function is only 0/1. When z < 0, 0 was then output, 

representing category 0; when z ≥ 0, 1 was the output, representing 

category 1, namely:

 a w x b w x bT T� � � � �{1 0 0 0  
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It can also be a sign function as shown in Figure 6-3, and the 

expression is:

 a w x b w x bT T� � � � � �{1 0 1 0  

Figure 6-3. Sign function

After adding the activation function, the perceptron model can be used 

to complete the binary classification task. The step and the sign functions 

are discontinuous at z = 0, so the gradient descent algorithm cannot be 

used to optimize the parameters.

In order to enable the perceptron model to automatically learn from 

the data, Frank Rosenblatt proposed a perceptron learning algorithm, as 

shown in Algorithm 1.

Figure 6-2. Step function
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algorithm 1: perceptron training algorithm

Initialize w = 0,b = 0
repeat

  randomly select a sample (xi, yi) from training set

  Calculate the output a =  sign (wTxi + b)

  If a ≠ yi:
    w′ ← w + η ∙ yi ∙ xi
    b′ ← b + η ∙ yi
until you reach the required number of steps

Output:parameters w and b

Here η is learning rate.

Although the perceptron model has been put forward with good 

development potential, Marvin Lee Minsky and Seymour Papert proved 

that the linear model represented by the perceptron cannot solve the linear 

inseparability problem (XOR) in the “Perceptrons” book in 1969, which 

directly led to the emergence of neural network research to a bottom at the 

time. Although the perceptron model cannot solve the linear inseparable 

problem, the book also mentions that it can be solved by nesting multiple 

layers of neural networks.

6.2  Fully Connected Layer
The underivable nature of the perceptron model severely constrains its 

potential, making it only capable of solving extremely simple tasks. In fact, 

modern deep learning models have a parameter scale of millions or even 

hundreds of millions, but the core structure is not much different from 

the perceptron model. On the basis of the perceptron model, they replace 

the discontinuous step activation function with other smooth continuous 

derivable activation functions and stack multiple network layers to 

enhance the expressive power of the network.
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In this section, we replace the activation function of the perceptron 

model and stack multiple neurons in parallel to achieve a multi-input and 

multi-output network layer structure. As shown in Figure 6-4, two neurons 

are stacked in parallel, that is, two perceptrons with replaced activation 

functions, forming a network layer of three input nodes and two output 

nodes. The first output node is:

 o w x w x w x b1 11 1 21 2 31 3 1� � � �� �� � ��  

The output of the second node is:

 o w x w x w x b2 12 1 22 2 32 3 2� � � �� �� � ��  

Putting them together, the output vector is o = [o1, o2]. The entire 

network layer can be expressed by the matrix relationship:

 o o x x x w w w w w w b b1 2 1 2 3 11 12 21 22 31 32 1 2� � � � � � � � � �@  (6-1)

That is:

 O X W b� �@  

The shape of the input matrix X is defined as [b, din], while the number 

of samples is b and the number of input nodes is din. The shape of the 

weight matrix W is defined as [din, dout], while the number of output nodes 

is dout, and the shape of the offset vector b is [dout].

Considering two samples, x x x x1
1
1

2
1

3
1� � � � � � � �� �

�
�
�, , , x x x x2

1
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3
2� � � � � � � �� �

�
�
�, , , the 

preceding equation can also be written as:
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Among it, the output matrix O contains the output of b samples, and 

the shape is [b, dout]. Since each output node is connected to all input 

nodes, this network layer is called a fully connected layer, or a dense layer, 

with W as weight matrix and b is the bias vector.

6.2.1  Tensor Mode Implementation
In TensorFlow, to achieve a fully connected layer, you only need to 

define the weight tensor W and bias tensor b and use the batch matrix 

multiplication function tf.matmul() provided by TensorFlow to complete 

the calculation of the network layer. For example, for an input matrix X 

with two samples and input feature length of each sample din = 784 and 

the number of output nodes dout = 256, the shape of the weight matrix W 

is [784,256]. The shape of the bias vector b is [256]. After the addition, the 

shape of the output layer is [2,256], that is, the features of the two samples 

with each feature length as 256. The code is implemented as follows:

In [1]:

x = tf.random.normal([2,784])

w1 = tf.Variable(tf.random.truncated_normal([784, 256], 

stddev=0.1))

b1 = tf.Variable(tf.zeros([256]))

o1 = tf.matmul(x,w1) + b1  # linear transformation

o1 = tf.nn.relu(o1)  # activation function

1

2

∑

∑

11

21

31

12

22

32

1

2

1

Figure 6-4. Fully connected layer
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Out[1]:

   <tf.Tensor: id=31, shape=(2, 256), dtype=float32, numpy=

   array([[ 1.51279330e+00,  2.36286330e+00,  8.16453278e-01,

           1.80338228e+00,  4.58602428e+00,  2.54454136e+00,...

In fact, we have used the preceding code many times to implement 

network layers.

6.2.2  Layer Implementation
The fully connected layer is essentially matrix multiplication and addition 

operations. But as one of the most commonly used network layers, 

TensorFlow has a more convenient implementation method: layers.

Dense(units, activation). Through the layer.Dense class, you only need 

to specify the number of output nodes (units) and activation function 

type (activation). It should be noted that the number of input nodes will 

be determined according to the input shape during the first operation, 

and the weight tensor and bias tensor will be automatically created 

and initialized based on the number of input and output nodes. The 

weight tensor and bias tensor will not be created immediately due to 

lazy evaluation. The build function or direct calculation will be required 

to complete the creation of the network parameters. The activation 

parameter specifies the activation function of the current layer, which can 

be a common activation function or a custom activation function, or be 

specified as none, that is, no activation function.

In [2]:

x = tf.random.normal([4,28*28])

from tensorflow.keras import  layers

# Create fully-connected layer with output nodes and activation 

function

fc = layers.Dense(512, activation=tf.nn.relu)
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h1 = fc(x)  # calculate and return a new tensor

Out[2]:

<tf.Tensor: id=72, shape=(4, 512), dtype=float32, numpy=

array([[0.63339347, 0.21663809, 0.        , ..., 1.7361937 , 

0.39962345, 2.4346168 ],...

We can create a fully connected layer fc with a single line of code in the 

preceding code with the number of output nodes as 512 and the number of 

input nodes automatically obtained during calculation. The code creates 

internal weight tensor and bias tensor automatically as well. We can obtain 

the weight and bias tensor object through the class member kernel and 

bias within the class:

In [3]: fc.kernel # Get the weight tensor

Out[3]:

<tf.Variable 'dense_1/kernel:0' shape=(784, 512) 

dtype=float32, numpy=

array([[-0.04067389,  0.05240148,  0.03931375, ..., 

-0.01595572, -0.01075954, -0.06222073],

In [4]: fc.bias # Get the bias tensor

Out[4]:

<tf.Variable 'dense_1/bias:0' shape=(512,) 

dtype=float32, numpy=

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 

0., 0., 0.,...])

It can be seen that the shape of the weight and the bias tensor are in 

line with our understanding. When optimizing parameters, we need to 

obtain a list of all tensor parameters to be optimized in the network, which 

can be done through the class trainable_variables.
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In [5]: fc.trainable_variables

Out[5]:  # Return all parameters to be optimized

  [<tf.Variable 'dense_1/kernel:0' shape=(784, 512) 

dtype=float32,...,

  <tf.Variable 'dense_1/bias:0' shape=(512,) dtype=float32, 

numpy=...]

In fact, the network layer saves not only the list of trainable_variables 

to be optimized but also tensors that do not participate in gradient 

optimization. For example, the batch normalization layer can return all 

parameter lists that do not need optimization through the non_trainable_

variables member. If you want to get a list of all parameters, you can get all 

internal tensors through the variables member of the class, for example:

In [6]: fc.variables # Get all parameters

Out[6]:

[<tf.Variable 'dense_1/kernel:0' shape=(784, 512) 

dtype=float32,...,

  <tf.Variable 'dense_1/bias:0' shape=(512,) dtype=float32, 

numpy=...]

For fully connected layers, all internal tensors participate in gradient 

optimization, so the list returned by variables is the same as trainable_

variables.

When using the network layer class object for forward calculation, 

you only need to call the __call__ method of the class, that is, write it in 

the fc(x) mode, it will automatically call the __call__ method. This setting 

is automatically completed by the TensorFlow framework. For a fully 

connected layer class, the operation logic implemented in the call method 

is very simple.
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6.3  Neural Network
By stacking the fully connected layers in Figure 6-4 and ensuring that the 

number of output nodes of the previous layer matches the number of 

input nodes of the current layer, a network of any number of layers can be 

created, which is known as neural networks. As shown in Figure 6-5, by 

stacking four fully connected layers, a neural network with four layers can 

be obtained. Since each layer is a fully connected layer, it is called a fully 

connected network. Among them, the first to third fully connected layers 

are called hidden layers, and the output of the last fully connected layer 

is called the output layer of the network. The number of output nodes of 

the hidden layers is [256,128,64], respectively, and the nodes of the output 

layer is 10.

When designing a fully connected network, the hyperparameters such 

as the configuration of the network can be set freely according to the rule 

of thumb, and only a few constraints need to be followed. For example, 

the number of input nodes in the first hidden layer needs to match the 

actual feature length of the data. The number of input layers in each layer 

matches the number of output nodes in the previous layer. The activation 

function and number of nodes in the output layer need to be set according 

to the specific settings of the required output. In general, the design of 

the neural network models has a greater degree of freedom. As shown 

in Figure 6-5, the number of output nodes in each layer does not have to 

be [256,128,64,10] and can be freely matched, such as [256,256,64,10] or 

[512,64,32,10]. As for which set of hyperparameters is optimal, it requires a 

lot of field experience and experimentation.
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6.3.1  Tensor Mode Implementation
For a multi-layer neural network such as Figure 6-5, the weight matrix and 

bias vector of each layer need to be defined separately. The parameters of 

each layer can only be used for the corresponding layer and should not be 

mixed. The network model in Figure 6-5 is implemented as follows:

# Hidden layer 1

w1 = tf.Variable(tf.random.truncated_normal([784, 256], 

stddev=0.1))

b1 = tf.Variable(tf.zeros([256]))

# Hidden layer 2

w2 = tf.Variable(tf.random.truncated_normal([256, 128], 

stddev=0.1))

b2 = tf.Variable(tf.zeros([128]))

# Hidden layer 3

w3 = tf.Variable(tf.random.truncated_normal([128, 64], 

stddev=0.1))

b3 = tf.Variable(tf.zeros([64]))

Input: Hidden layer 1: Hidden layer 2: Hidden layer 3: Output layer:

Figure 6-5. Four-layer neural network
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# Hidden layer 4

w4 = tf.Variable(tf.random.truncated_normal([64, 10], 

stddev=0.1))

b4 = tf.Variable(tf.zeros([10]))

When calculating, you only need to use the output of the previous 

layer as the input of the current layer, repeat until the last layer, and use the 

output of the output layer as the output of the network.

        with tf.GradientTape() as tape:

            # x: [b, 28*28]

             #  Hidden layer 1 forward calculation, [b, 28*28] 

=> [b, 256]

            h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])

            h1 = tf.nn.relu(h1)

             # Hidden layer 2 forward calculation, [b, 256]  

=> [b, 128]

            h2 = h1@w2 + b2

            h2 = tf.nn.relu(h2)

             # Hidden layer 3 forward calculation, [b, 128] 

=> [b, 64]

            h3 = h2@w3 + b3

            h3 = tf.nn.relu(h3)

             # Output layer forward calculation, [b, 64] 

=> [b, 10]

            h4 = h3@w4 + b4

Whether the activation function needs to be added in the last layer 

usually depends on the specific task.

When using the TensorFlow automatic derivation function to calculate 

the gradient, the forward calculation process needs to be placed in the 

tf.GradientTape() environment, so that the gradient() method of the 

GradientTape object can be used to automatically solve the gradient of the 

parameter, and the parameter is updated by the optimizers object.
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6.3.2  Layer Mode Implementation
For the conventional network layer, it is more concise and efficient to 

implement through the layer method. First, create new network layer 

classes and specify the activation function types of each layer:

#  Import layers modules

from tensorflow.keras import layers,Sequential

fc1 = layers.Dense(256, activation=tf.nn.relu) 

#  Hidden layer 1

fc2 = layers.Dense(128, activation=tf.nn.relu) 

#  Hidden layer 2

fc3 = layers.Dense(64, activation=tf.nn.relu) #  Hidden layer 3

fc4 = layers.Dense(10, activation=None) #  Output layer

x = tf.random.normal([4,28*28])

h1 = fc1(x)  #  Get output of hidden layer 1

h2 = fc2(h1) #  Get output of hidden layer 2

h3 = fc3(h2) #  Get output of hidden layer 3

h4 = fc4(h3) #  Get the network output

For such a network where data forwards in turn, it can also be 

encapsulated into a network class object through the sequential container, 

and the forward calculation function of the class can be called once to 

complete the forward calculation of all layers. It is more convenient to use 

and is implemented as follows :

from tensorflow.keras import layers,Sequential

#  Encapsulate a neural network through Sequential container

model = Sequential([

    layers.Dense(256, activation=tf.nn.relu) , # Hidden layer 1

    layers.Dense(128, activation=tf.nn.relu) , # Hidden layer 2

Chapter 6  Neural Networks



204

    layers.Dense(64, activation=tf.nn.relu) , # Hidden layer 3

    layers.Dense(10, activation=None) , # Output layer

])

In forward calculation, you only need to call the large network objects 

once to complete the sequential calculation of all layers:

out = model(x)

6.3.3  Optimization
We call the calculation process of the neural network from input to output 

as forward propagation. The forward propagation process of the neural 

network is also the process of the flow of the data tensor from the first layer 

to the output layer. That is, from the input data, tensors are passed through 

each hidden layer, until the output is obtained and the error is calculated, 

which is also the origin of the TensorFlow framework name.

The final step of forward propagation is to complete the error 

calculation:

 
L g f x y� � �� �� ,  

In the preceding formula, fθ(.) represents a neural network model 

with parameters θ. g(.) called an error function, used to describe the gap 

between the predicted value of the current network fθ(x) and the real label 

y, such as the commonly used mean square error function. L is called 

the error or loss of the network, which is generally a scalar. We hope 

to minimize the training error L by learning a set of parameters on the 

training set Dtrain:
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The preceding minimization problem generally uses the backward 

propagation algorithm to solve and uses the gradient descent algorithm to 

iteratively update the parameters:

 � � � ��� � � � L  

where η is the learning rate.

From another perspective to understand the neural network, it 

completes the function of feature dimension transformation, such as the 

four-layer MNIST handwritten digital image recognition fully connected 

network, which in turn completes the feature dimensionality reduction 

process of 784 → 256 → 128 → 64 → 10. The original features usually 

have higher dimensions and contain many low-level features and useless 

information. Through the layer-by-layer feature transformation, higher 

dimensions are reduced to lower dimensions where high-level abstract 

feature information highly correlated to the task is generally generated and 

specific task can be completed through simple logical determination of 

these features, such as the classification of pictures.

The amount of network parameters is an important indicator to 

measure the scale of the network. So how to calculate the amount of 

parameters of the fully connected layer? Consider a network layer with 

weight matrix W, bias vector b, input feature length din, and output feature 

length dout. The number of parameters for W is din ∙ dout. Adding the bias 

parameter, the total number of parameter is din ∙ dout + dout. For a multilayer 

fully connected neural network, for example, 784 → 256 → 128 → 64 → 10, 

the expression of the total parameter amount is:

256 784 256 128 256 128 64 128 64 10 64 10 242762� � � � � � � � � � � �

The fully connected layer is the most basic type of neural network. It 

is very important for the research of subsequent neural network models, 

such as convolutional neural networks and recurrent neural networks. 

Through learning other network types, we will find that they, more or 
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less, originate from the idea of a fully connected layer network. Because 

Geoffrey Hinton, Yoshua Bengio, and Yann LeCun have insisted on 

research in the frontline of neural networks, they have made outstanding 

contributions to the development of artificial intelligence and won the 

Turing Award in 2018 (Figure 6-6, from the right are Yann LeCun, Geoffrey 

Hinton, and Yoshua Bengio). 

Figure 6-6. 2018 Turing Award Winners1

6.4  Activation function
In the following, we introduce common activation functions in neural 

networks. Unlike step and symbolic functions, these functions are smooth 

and derivable and are suitable for gradient descent algorithms.

6.4.1  Sigmoid
The Sigmoid function is also called the logistic function, which is 

defined as:

 
Sigmoid x

e x� �
� �

1

1  

1 Image source: www.theverge.com/2019/3/27/18280665/ai-godfathers-
turing-award-2018-yoshua-bengio-geoffrey-hinton-yann-lecun
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One of its excellent features is the ability to “compress” the input x ∈ R 

to an interval x ∈ (0, 1). The value of this interval is commonly used in 

machine learning to express the following meanings:

• Probability distribution The output of the interval 

(0, 1) matches the distribution range of probability. 

The output can be translated into a probability by the 

Sigmoid function

• Signal strength Usually, 0~1 can be understood as 

the strength of a certain signal, such as the color 

intensity of the pixel: 1 represents the strongest color 

of the current channel, and 0 represents the current 

channel without color. It can also be used to represent 

the current Gate status, that is, 1 means open and 0 

indicates closed.

The Sigmoid function is continuously derivable, as shown in 

Figure 6-7. The gradient descent algorithm can be directly used to 

optimize the network parameters.

Figure 6-7. Sigmoid function
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In TensorFlow, the Sigmoid function can be implemented through 

tf.nn.sigmoid function as follows:

In [7]:x = tf.linspace(-6.,6.,10)

x # Create input vector -6~6

Out[7]:

<tf.Tensor: id=5, shape=(10,), dtype=float32, numpy=

array([-6.       , -4.6666665, -3.3333333, -2.       , 

-0.6666665,

        0.666667 ,  2.       ,  3.333334 ,  4.666667 , 

  6.       ]...

In [8]:tf.nn.sigmoid(x) # Pass x to Sigmoid function

Out[8]:

<tf.Tensor: id=7, shape=(10,), dtype=float32, numpy=

array([0.00247264, 0.00931597, 0.03444517, 0.11920291, 

0.33924365, 0.6607564 , 0.8807971 , 0.96555483, 0.99068403, 

0.9975274 ],

      dtype=float32)>

As you can see, the range [−6, 6] of element values in the vector is 

mapped to the interval (0, 1).

6.4.2  ReLU
Before the ReLU (rectified linear unit), activation function was proposed; 

the Sigmoid function was usually the first choice for activation functions 

of neural networks. However, when the input value of Sigmoid function 

is too large or too small, the gradient value is close to 0, which is known 

as the gradient dispersion phenomenon. When this phenomenon 

occurs, the network parameters will not be updated for a long time, 

which leads to the phenomenon that the training does not converge. 

The gradient dispersion phenomenon is more likely to occur in deeper 
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network models. The eight-layer AlexNet model proposed in 2012 uses 

an activation function called ReLU, which makes the number of network 

layers reach 8. Since then, the ReLU function has become more and more 

widely used. The ReLU function is defined as:

 ReLU x x� � � �max 0,  

The function curve is shown in Figure 6-8. It can be seen that ReLU 

suppresses all values less than 0 to 0; for positive numbers, it outputs those 

directly. This unilateral suppression characteristic comes from biology. In 

2001, neuroscientists Dayan and Abott simulated a more accurate model 

of brain neuron activation, as shown in Figure 6-9. It has characteristics 

such as unilateral suppression and relatively loose excitation boundaries. 

The design of the ReLU function is very similar to it [2].

Figure 6-8. ReLU function

Figure 6-9. Human brain activation function [2]
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In TensorFlow, the ReLU function can be implemented through tf.nn.

relu function as follows:

In [9]:tf.nn.relu(x)

Out[9]:

<tf.Tensor: id=11, shape=(10,), dtype=float32, numpy=

array([0.      , 0.      , 0.      , 0.      , 0.      , 

0.666667,       2.      , 3.333334, 4.666667, 6.      ], 

dtype=float32)>

It can be seen that after the ReLU activation function, the negative 

numbers are all suppressed to 0, and the positive numbers are retained.

In addition to using the functional interface tf.nn.relu to implement 

the ReLU function, the ReLU function can also be added to the network 

as a network layer like the dense layer. The corresponding class is layers.

ReLU(). Generally speaking, the activation function class is not the 

main network computing layer and does not count into the number of 

network layers.

The design of the ReLU function is derived from neuroscience. The 

calculation of function values and derivative values is very simple. At the 

same time, it has excellent gradient characteristics. It has been verified to 

be very effective in a large number of deep learning applications.

6.4.3  LeakyReLU
The derivative of the ReLU function is always 0 when x < 0, which may 

also cause gradient dispersion. To overcome this problem, the LeakyReLU 

function (Figure 6-10) is proposed.

 LeakyReLU x x px x { � �0 0  
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where p is a small value set by users, such as 0.02. When p = 0, the 

LeakyReLU function degenerates to the ReLU function. When p ≠ 0, 

a small derivative value can be obtained at x < 0, thereby avoiding the 

phenomenon of gradient dispersion.

Figure 6-10. LeakyReLU function

In TensorFlow, LeakyReLU function can be implemented through 

tf.nn.leaky_relu as follows:

In [10]:tf.nn.leaky_relu(x, alpha=0.1)

Out[10]:

<tf.Tensor: id=13, shape=(10,), dtype=float32, numpy=

array([-0.6       , -0.46666667, -0.33333334, -0.2       , 

-0.06666666,

         0.666667  ,  2.        ,  3.333334  ,  4.666667  ,   

6.        ],

      dtype=float32)>

The alpha parameter represents p. The corresponding class of tf.nn.

leaky_relu is layers.LeakyReLU. You can create a LeakyReLU network layer 

through LeakyReLU(alpha) and set the parameter p. Like the Dense layer, 

the LeakyReLU layer can be placed in a suitable position on the network.
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6.4.4  Tanh
The Tanh function can “compress” the input x ∈ R to an interval (−1, 1), 

defined as:

 

tanh tanh x
e e

e e

x x

x x
� � �

�� �
�� �

�

�
 

 � � � � �2 2 1sigmoid x  

It can be seen that the Tanh activation function can be realized after 

zooming and translated by the Sigmoid function, as shown in Figure 6-11.

Figure 6-11. Tanh function

In Tensorflow, the Tanh function can be implemented using tf.nn.tanh 

as follows:

In [11]:tf.nn.tanh(x)

Out[11]:

<tf.Tensor: id=15, shape=(10,), dtype=float32, numpy=

array([-0.9999877 , -0.99982315, -0.997458  , -0.9640276 ,  

-0.58278286, 0.5827831 ,  0.9640276 ,  0.997458  ,  0.99982315,   

0.9999877 ],

      dtype=float32)>
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You can see that the range of vector element values is mapped to 

(−1, 1).

6.5  Design of Output Layer
Let's discuss the design of the last layer of network in particular. In 

addition to all hidden layers, it completes the functions of dimensional 

transformation and feature extraction, and it is also used as an output 

layer. It is necessary to decide whether to use the activation function and 

what type of activation function to use according to the specific tasks.

We will classify the discussions based on the range of output values. 

Common types of output include:

• oi ∈ Rd The output belongs to the entire real number 

space, or a certain part of real number space, such as 

function value trend prediction and age prediction 

problems.

• oi ∈ [0, 1] The output value falls in the interval [0, 1], 

such as image generation, and the pixel value of the 

image is generally expressed by values in interval [0, 1] 

or the probability of the binary classification problem, 

such as the probability of the tail or face of a coin.

• oi ∈ [0, 1], ∑ioi = 1 The output value falls within the 

interval [0, 1], and the sum of all output values is 

1. Common problems include multi-classification 

problems, such as MNIST handwritten digital picture 

recognition, which the sum of the probability that the 

picture belongs to ten categories should be 1.

• oi ∈ [−1, 1] output value is between -1 and 1.
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6.5.1  Common Real Number Space
This type of problem is more common. For example, sine function curve, 

age prediction, and stock trend prediction all belong to the whole or part 

of continuous real number space, and the output layer may not have an 

activation function. The calculation of the error is directly based on the 

output o of the last layer and the true value y. For example, the mean 

square error function is used to measure the distance between the output 

value o and the true value y:

 L g o y� � �,  

where g represents a specific error calculation function, such as MSE.

6.5.2  [0, 1] Interval
It is also common for output values to belong to interval [0, 1], such 

as image generation, and binary classification problems. In machine 

learning, image pixel values are generally normalized to intervals [0, 1]. 

If the values of the output layer are used directly, the pixel value range 

will be distributed in the entire real number space. In order to map the 

pixel values to the effective real number space [0, 1], a suitable activation 

function needs to be added after the output layer. The Sigmoid function is 

a good choice here.

Similarly, for binary classification problems, such as the prediction of 

the face and tail of coins, the output layer can only be one node which is 

the probability of an event A occurring P(x) giving the network input x. If 

we use the output scalar o of the network to represent the probability of 

the occurrence of positive events, then the probability of the occurrence of 

negative events is 1 − o. The network structure is shown in Figure 6-12.
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 P x o� � �  

 P x o� � � �1  

Probability: ( | )

Figure 6-12. Binary classification network with single output node

In this case, you only need to add the Sigmoid function after the value 

of the output layer to translate the output into a probability value. For the 

binary classification problem, in addition to using a single output node to 

represent the probability of the occurrence of event A P(x), you can also 

separately predict P(x) and P(x), and satisfy the constraints:

 P x P x� � � � � �1 

where A  indicates the opposite event of event A. As shown in Figure 6-13, 

the output layer of the binary classification network is two nodes. The 

output value of the first node represents the probability of the occurrence 

of event A P(x), and the output value of the second node represents the 

probability of the occurrence of the opposite event P(x). The function 

can only compress a single value to the interval (0, 1) and does not 
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consider the relationship between the two node values. We hope that in 

addition to satisfy oi ∈ [0, 1], they can satisfy the constraint that the sum of 

probabilities is 1:

 i
io� �1

 

This situation is the problem setting to be introduced in the next 

section.

( | )

(A| )

Figure 6-13. Binary classification network with two outputs

6.5.3  [0,1] Interval with Sum 1
For cases that the output value oi ∈ [0, 1], and the sum of all output values 

is 1, it is the most common problem with multi-classification. As shown 

in Figure 6-15, each output node of the output layer represents a category. 

The network structure in the figure is used to handle three classification 

tasks. The output value distribution of the three nodes represents the 

probability that the current sample belongs to category A, B, and C: 

P(x), P(B| x), and P(C| x). Because the sample in the multi-classification 

problem can only belong to one of the categories, so the sum of the 

probabilities of all categories should be 1.

How to implement this constraint logic? This can be achieved by 

adding a Softmax function to the output layer. The Softmax function is 

defined as:
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Softmax z
e

e
i

z
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d z
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out j
� �

��


1  

The Softmax function can not only map the output value to the interval 

[0, 1] but also satisfy the characteristic that the sum of all output values is 

1. As shown in the example in Figure 6-14, the output of the output layer is 

[2.0,1.0,0.1]. After going through the Softmax function, the output becomes 

[0.7,0.2,0.1]. Each value represents the probability that the current sample 

belongs to each category, and the sum of the probability values is 1. The 

output of the output layer can be translated into category probabilities 

through the Softmax function, which is used very often in classification 

problems.

=
e

∑ e

2.0

1.0

0.1

= 0.7

= 0.2

= 0.1

Logits Softmax Probability

Figure 6-14. Softmax function example

( | )

( | )

( | )

+ =1

Figure 6-15. Multi-classification network structure
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In TensorFlow, the Softmax function can be implemented through 

tf.nn.softmax as follows:

In [12]: z = tf.constant([2.,1.,0.1])

tf.nn.softmax(z)

Out[12]:

<tf.Tensor: id=19, shape=(3,), dtype=float32, 

numpy=array([0.6590012, 0.242433 , 0.0985659], dtype=float32)>

Similar to the dense layer, the Softmax function can also be used as a 

network layer class. It is convenient to add the Softmax layer through the 

layers.Softmax (axis = -1) class, where the axis parameter specifies the 

dimension to be calculated.

In the numerical calculation process of the Softmax function, the 

numerical overflow phenomenon is likely to occur due to the large input 

value. Similar problem may happen when calculating the cross-entropy. 

For the stability of numerical calculation, TensorFlow provides a unified 

interface that implements Softmax and cross-entropy loss function at the 

same time and also handles the anomalies of numerical instability. It is 

generally recommended to use these interface functions. The functional 

interface is tf.keras.losses.categorical_crossentropy(y_true, y_pred, 

from_logits = False), where y_true represents the one-hot encoded true 

label and y_pred represents the predicted value of the network. When 

from_logits is set to True, y_pred represents the variable z that has not 

went through the Softmax function. When from_logits is set to False, 

y_pred is expressed as the output of the Softmax function. For numerical 

calculation stability, generally set from_logits to True, so that tf.keras.

losses.categorical_crossentropy will perform Softmax function calculation 

internally, and there is no need to explicitly call the Softmax function in the 

model explicitly. For example:
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In [13]:

z = tf.random.normal([2,10]) # Create output of the 

output layer

y_onehot = tf.constant([1,3]) # Create real label

y_onehot = tf.one_hot(y_onehot, depth=10) # one-hot encoding

# The Softmax function is not explicitly used in output 

layer, so

# from_logits=True. categorical_cross-entropy function will 

use Softmax

# function first in this case.

loss = keras.losses.categorical_crossentropy(y_onehot,z,from_

logits=True)

loss = tf.reduce_mean(loss) # calculate the loss

loss

Out[13]:

<tf.Tensor: id=210, shape=(), dtype=float32, numpy= 2.4201946>

In addition to the functional interface, you can also use the losses.

CategoricalCrossentropy(from_logits) class method to simultaneously 

calculate the Softmax and cross-entropy loss functions. For example:

In [14]:

criteon = keras.losses.CategoricalCrossentropy(from_

logits=True)

loss = criteon(y_onehot,z)

loss

Out[14]:

<tf.Tensor: id=258, shape=(), dtype=float32, numpy= 2.4201946>
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6.5.4  (-1, 1) Interval
If you want the range of output values to be distributed in intervals (−1, 1), 

you can simply use the tanh activation function:

In [15]:

x = tf.linspace(-6.,6.,10)

tf.tanh(x)

Out[15]:

<tf.Tensor: id=264, shape=(10,), dtype=float32, numpy=

array([-0.9999877 , -0.99982315, -0.997458  , -0.9640276 ,  

-0.58278286, 0.5827831 ,  0.9640276 ,  0.997458  ,  0.99982315,   

0.9999877 ],

      dtype=float32)>

The design of the output layer has a certain flexibility, which can be 

designed according to the actual application scenario, and make full use of 

the characteristics of the existing activation function.

6.6  Error Calculation
After building the model structure, the next step is to select the appropriate 

error function to calculate the error. Common error functions are mean 

square error, cross-entropy, KL divergence, and hinge loss. Among them, 

the mean square error function and cross-entropy function are more 

common in deep learning. The mean square error function is mainly used 

for regression problems, and the cross-entropy function is mainly used for 

classification problem.
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6.6.1  Mean Square Error Function
Mean square error (MSE) function maps the output vector and the true 

vector to two points in the Cartesian coordinate system, by calculating the 

Euclidean distance between these two points (to be precise, the square of 

Euclidean distance) to measure the difference between the two vectors:

 
MSE y o

d
y o

out i

d

i i

out
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�
�
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1
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The value of MSE is always greater than or equal to 0. When the MSE 

function reaches the minimum value of 0, the output is equal to the true 

label, and the parameters of the neural network reach the optimal state.

The MSE function is widely used in regression problems. In fact, the 

MSE function can also be used in classification problems. In TensorFlow, 

MSE calculation can be implemented in a functional or layer manner. For 

example, implement MSE calculation using a function as follows:

In [16]:

o = tf.random.normal([2,10]) # Network output

y_onehot = tf.constant([1,3]) # Real label

y_onehot = tf.one_hot(y_onehot, depth=10)

loss = keras.losses.MSE(y_onehot, o) # Calculate MSE

loss

Out[16]:

<tf.Tensor: id=27, shape=(2,), dtype=float32, 

numpy=array([0.779179 , 1.6585705], dtype=float32)>
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In particular, the MSE function returns the mean square error of each 

sample. You need to average again in the sample dimension to obtain 

the mean square error of the average sample. The implementation is as 

follows:

In [17]:

loss = tf.reduce_mean(loss)

loss

Out[17]:

<tf.Tensor: id=30, shape=(), dtype=float32, numpy=1.2188747>

It can also be implemented in layer mode. The corresponding class is 

keras.losses.MeanSquaredError(). Like other classes, the __call__ function 

can be called to complete the forward calculation. The code is as follows:

In [18]:

criteon = keras.losses.MeanSquaredError()

loss = criteon(y_onehot,o)

loss

Out[18]:

<tf.Tensor: id=54, shape=(), dtype=float32, numpy=1.2188747>

6.6.2  Cross-Entropy Error Function
Before introducing the cross-entropy loss function, we first introduce the 

concept of entropy in informatics. In 1948, Claude Shannon introduced the 

concept of entropy in thermodynamics into information theory to measure 

the uncertainty of information. Entropy is also called information entropy 

or Shannon entropy in information science. The greater the entropy, the 

greater the uncertainty and the greater the amount of information. The 

entropy of a distribution P(i) is defined as:

 
H P P i P i

i
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In fact, other base functions can also be used. For example, for the 

four- category classification problem, if the true label of a sample is 

category 4, then the one-hot encoding of the label is [0, 0, 0, 1]. That is, 

the classification of this picture is uniquely determined, and it belongs to 

category 4 with uncertainty 0, and its entropy can be simply calculated as:

 � � � � � � � � �0 0 0 0 0 0 1 1 0  

That is to say, for a certain distribution, the entropy is 0 and the 

uncertainty is the lowest.

If the predicted probability distribution is [0.1,0.1,0.1,0.7], its entropy 

can be calculated as:

 � � � � � � � � �0 1 0 1 0 1 0 1 0 1 0 1 0 7 0 7 1 356. . . . . . . . .  

Considering a random classifier, its prediction probability for each 

category is equal: [0.25,0.25,0.25,0.25]. In the same way, its entropy can be 

calculated to be about 2, and the uncertainty in this case is slightly larger 

than the preceding case.

Because, the entropy is always greater than or equal to 0. When 

the entropy reaches a minimum value of 0, the uncertainty is 0. The 

distribution of one-hot coding for classification problems is a typical 

example of entropy of 0. In TensorFlow, we can use tf.math.log to calculate 

entropy.

After introducing the concept of entropy, we’ll derive the definition of 

cross-entropy based on entropy:

 
H p q p i q i

i

||� � � � � � ��

 

Through transformation, cross-entropy can be decomposed into the 

sum of entropy and KL divergence (Kullback-Leibler divergence):

 H p q H p D p qKL|| ||� � � � � � � �  
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where KL divergence is:
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KL divergence is an indicator used by Solomon Kullback and Richard 

A. Leibler in 1951 to measure the distance between two distributions. 

When p = q, the minimum value of DKL(p‖q) is 0. The greater the difference 

between p and q, the greater DKL(p‖q) is. It should be noted that neither 

the cross- entropy nor the KL divergence is symmetrical, namely:

 H p q H q p|| ||� � � � �  

 D p q D q pKL KL|| ||� � � � �  

Cross-entropy is a good measure of the “distance” between two 

distributions. In particular, when the distribution of y in the classification 

problem uses one-hot coding, H(p) = 0. Then,

 H p q H p D p q D p qKL KL|| || ||� � � � � � � � � � �  

That is, cross-entropy degenerates to the KL divergence between the 

true label distribution and the output probability distribution.

According to the definition of KL divergence, we derive the calculation 

expression of cross-entropy in the classification problem:
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where i is the index number of 1 in the one-hot encoding, which is also 

the real category. It can be seen that the cross-entropy is only related to 

the probability on the real category oi, and the larger the corresponding 

probability oi, the smaller H(p‖q) is. When the probability on the 

corresponding category is 1, the cross-entropy achieves the minimum 

value of 0. At this time, the network output is completely consistent with 

the real label, and the neural network obtains the optimal state.

Therefore, the process of minimizing the cross-entropy loss function 

is also the process of maximizing the prediction probability of the correct 

category. From this perspective, understanding the cross-entropy loss 

function is very intuitive and easy.

6.7  Types of Neural Networks
The fully connected layer is the most basic type of neural network, and it 

has made a tremendous contribution to the subsequent research of neural 

networks. The forward calculation process of the fully connected layer is 

relatively simple, and the gradient derivation is also relatively simple, but 

it has one of the biggest defects. When processing data with a large feature 

length, the parameter amount of the fully connected layer is often large, 

making the number of parameters of the fully connected network huge 

and difficult to train. In recent years, the development of social media has 

produced a large number of digital resources such as pictures, videos, 

and texts, which has greatly promoted the research of neural networks in 

the fields of computer vision and natural language processing, and has 

successively proposed a series of neural network types.
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6.7.1  Convolutional Neural Network
How to identify, analyze, and understand data such as pictures and videos 

is a core problem of computer vision. When the fully connected layer 

processes high-dimensional pictures and video data, it often has problems 

such as huge network parameters and very difficult to train. By using 

the idea of local correlation and weight sharing, Yann Lecun proposed 

convolutional neural network (CNN) in 1986. With the prosperity of deep 

learning, the performance of convolutional neural networks in computer 

vision has greatly surpassed other algorithms, showing a tendency 

to dominate the field of computer vision. Popular models for image 

classification include AlexNet, VGG, GoogLeNet, ResNet, and DenseNet. 

For objective recognition, there are RCNN, Fast RCNN, Faster RCNN, Mask 

RCNN, YOLO, and SSD. We will introduce the principles of convolutional 

neural networks in detail in Chapter 10.

6.7.2  Recurrent Neural Network
In addition to data such as pictures and videos with spatial structure, 

sequence signals are also a very common type of data. One of the most 

representative sequence signals is text. How to process and understand 

text data is a core issue of natural language processing. Convolutional 

neural networks are not good at processing sequence signals due to the 

lack of memory mechanism and the ability to process signals of indefinite 

length. Recurrent neural network (RNN), under continuous research by 

Yoshua Bengio, Jürgen Schmidhuber, and others, is proved to be very good 

at processing sequence signals. In 1997, Jürgen Schmidhuber proposed 

the LSTM network. As a variant of RNN, it better overcomes the problems 

of RNN that lacks long-term memory and is not good at processing long 

sequences. LSTM has been widely used in natural language processing. 

Based on the LSTM model, Google has proposed the Seq2Seq model 

for machine translation, and it has been successfully used in the Google 
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Neural Machine Translation System (GNMT). Other RNN variants include 

GRU and bidirectional RNN. We will introduce the principles of recurrent 

neural networks in detail in Chapter 11.

6.7.3  Attention Mechanism Network
RNN is not the ultimate solution for natural language processing. In 

recent years, with the attention mechanism proposed, it overcomes 

the deficiencies of RNN such as training instability and difficulty in 

parallelization. It has gradually emerged in the fields of natural language 

processing and image generation. The attention mechanism was originally 

proposed on the image classification task, but gradually began to become 

more effective in natural language processing. In 2017, Google proposed 

the first network model Transformer using a pure attention mechanism, 

and then based on the Transformer model, a series of attention network 

models for machine translation, such as GPT, BERT, and GPT-2, were 

successively proposed. In other fields, the network based on the attention 

mechanism, especially the self-attention mechanism, has also achieved 

good results, such as the BigGAN model.

6.7.4  Graph Convolutional Neural Network
Data such as pictures and texts have a regular spatial or temporal structure 

called Euclidean data. Convolutional neural networks and recurrent 

neural networks are very good at handling this type of data. For data like 

a series of irregular spatial topologies, social networks, communication 

networks, and protein molecular structures, those networks seem to be 

powerless. In 2016, Thomas Kipf et al. proposed a graph convolution 

network (GCN) model based on the first-order approximate spectral 

convolution algorithm. The GCN algorithm is simple to implement and 

can be intuitively understood from the perspective of spatial first-order 
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neighbor information aggregation and therefore has achieved good results 

on semi-supervised tasks. Subsequently, a series of network models have 

been proposed, such as GAT, EdgeConv, and DeepGCN.

6.8  Hands-On of Automobile Fuel 
Consumption Prediction

In this section, we will use the fully connected network model to complete 

the prediction of MPG (mile per gallon) of the car.

6.8.1  Dataset
We use the auto MPG dataset, which include the real data of various 

vehicle performance indicators and other factors such as the number 

of cylinders, weight, and horsepower. The first five items of the dataset 

is shown in Table 6-1. In addition, the numeric field of origin indicates 

the category, the other fields are numeric types. For the place of origin, 1 

indicates the USA, 2 indicates Europe, and 3 indicates Japan.

Table 6-1. First five items of the auto MPG dataset

MPG Cylinders Displacement Horsepower Weight Acceleration Model 
Year

Origin

18.0 8 307.0 130.0 3504.0 12.0 70 1

15.0 8 350.0 165.0 3693.0 11.5 70 1

18.0 8 318.0 150.0 3436.0 11.0 70 1

16.0 8 304.0 150.0 3433.0 12.0 70 1

17.0 8 302.0 140.0 3449.0 10.5 70 1
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The auto MPG dataset includes a total of 398 records. We download 

and read the dataset from the UCI server to a DataFrame object. The code 

is as follows:

# Download the dataset online

dataset_path = keras.utils.get_file("auto-mpg.data", "http://

archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/

auto-mpg.data")

# Use Pandas library to read the dataset

column_names = ['MPG','Cylinders','Displacement','Horsepower','

Weight', 'Acceleration', 'Model Year', 'Origin']

raw_dataset = pd.read_csv(dataset_path, names=column_names,

                      na_values = "?", comment='\t',

                      sep=" ", skipinitialspace=True)

dataset = raw_dataset.copy()

# Show some data

dataset.head()

The data in the original table may contain missing values. These record 

items need to be cleared:

dataset.isna().sum() # Calculate the number of missing values

dataset = dataset.dropna() # Drop missing value records

dataset.isna().sum() # Calculate the number of missing 

values again

After clearing, the dataset record items were reduced to 392 items.

Since the origin field is categorical data, we first remove it and then 

convert it into three new fields, USA, Europe, and Japan, which represent 

whether they are from this origin:

origin = dataset.pop('Origin')

dataset['USA'] = (origin == 1)*1.0

dataset['Europe'] = (origin == 2)*1.0
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dataset['Japan'] = (origin == 3)*1.0

dataset.tail()

Split the data into training (80%) and testing (20%) datasets:

train_dataset = dataset.sample(frac=0.8,random_state=0)

test_dataset = dataset.drop(train_dataset.index)

Move MPG out and use its real label:

train_labels = train_dataset.pop('MPG')

test_labels = test_dataset.pop('MPG')

Calculate the mean and standard deviation of each field value of the 

training set and complete the standardization of the data, through the 

norm() function; the code is as follows:

train_stats = train_dataset.describe()

train_stats.pop("MPG")

train_stats = train_stats.transpose()

# Normalize the data

def norm(x): # minus mean and divide by std

  return (x - train_stats['mean']) / train_stats['std']

normed_train_data = norm(train_dataset)

normed_test_data = norm(test_dataset)

Print the shape of training and testing datasets:

print(normed_train_data.shape,train_labels.shape)

print(normed_test_data.shape, test_labels.shape)

(314, 9) (314,) # 314 records in training dataset with 9 

features.

(78, 9) (78,) # 78 records in training dataset with 9 features.
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Create TensorFlow dataset:

train_db = tf.data.Dataset.from_tensor_slices((normed_train_

data.values, train_labels.values))

train_db = train_db.shuffle(100).batch(32) # Shuffle and batch

We can observe the influence of each field on MPG by simply 

observing the distribution between each field in the dataset, as shown in 

Figure 6-16. It can be roughly observed that the relationship between car 

displacement, weight, and MPG is relatively simple. As the displacement 

or weight increases, the MPG of the car decreases and the energy 

consumption increases; the smaller the number of cylinders, the better 

MPG can be, which is in line with our life experience.

Figure 6-16. Relations between features

6.8.2  Create a Network
Considering the small size of the auto MPG dataset, we only create a three- 

layer fully connected network to complete the MPG prediction task. There 

are nine input features, so the number of input nodes in the first layer is 

9. The number of output nodes of the first layer and the second layer is 

designed as 64 and 64. Since there is only one kind of prediction value, the 

output node of the output layer is designed as 1. Because MPG belong to 

the real number space, the activation function of the output layer may not 

be added.
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We implement the network as a custom network class. We only need to 

create each sub-network layer in the initialization function and implement 

the calculation logic of the custom network class in the forward calculation 

function. The custom network class inherits from the keras.Model class, 

which is also the standard writing method of the custom network class, 

in order to conveniently use the various convenient functions such as 

trainable_variables and save_weights provided by the keras.Model class. 

The network model class is implemented as follows:

class Network(keras.Model):

    # regression network

    def __init__(self):

        super(Network, self).__init__()

        # create 3 fully-connected layers

        self.fc1 = layers.Dense(64, activation='relu')

        self.fc2 = layers.Dense(64, activation='relu')

        self.fc3 = layers.Dense(1)

    def call(self, inputs, training=None, mask=None):

        # pass through the 3 layers sequentially

        x = self.fc1(inputs)

        x = self.fc2(x)

        x = self.fc3(x)

        return x

6.8.3  Training and Testing
After the creation of the main network model class, let's instantiate the 

network object and create the optimizer as follows:

model = Network() # Instantiate the network

# Build the model with 4 batch and 9 features

model.build(input_shape=(4, 9))
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model.summary() # Print the network

# Create the optimizer with learning rate 0.001

optimizer = tf.keras.optimizers.RMSprop(0.001)

Next, implement the network training part. Through the double-layer 

loop training network composed of Epoch and Step, a total of 200 Epochs 

are trained.

for epoch in range(200): # 200 Epoch

    for step, (x,y) in enumerate(train_db): #  Loop through 

training set once

        # Set gradient tape

        with tf.GradientTape() as tape:

            out = model(x) # Get network output

             loss = tf.reduce_mean(losses.MSE(y, out))  

# Calculate MSE

             mae_loss = tf.reduce_mean(losses.MAE(y, out))  

# Calculate MAE

        if step % 10 == 0: # Print training loss every 10 steps

            print(epoch, step, float(loss))

        # Calculate and update gradients

        grads = tape.gradient(loss, model.trainable_variables)

         optimizer.apply_gradients(zip(grads, model.trainable_

variables))

For regression problems, in addition to the mean square error 

(MSE), the mean absolute error (MAE) can also be used to measure the 

performance of the model.
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We can record the MAE at the end of each Epoch for the training and 

testing dataset and draw the change curve as shown in Figure 6-17.

Figure 6-17. MAE curve

It can be seen that when training reaches about the 25th Epoch, the 

decline of MAE becomes slower, in which the MAE of the training set 

continues to decline slowly, but the MAE of the test set remains almost 

unchanged, so we can end the training around the 25th Epoch and use the 

network parameters at this time to predict new input.
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CHAPTER 7

Backward 
Propagation 
Algorithm

The longer you look back, the farther you can look forward.

—Winston S. Churchill

In Chapter 6, we have systematically introduced the basic neural network 

algorithm: starting from the representation of inputs and outputs; 

introducing the perceptron model, multi-input and multi-output fully 

connected layers; and then expanding to multilayer neural networks. We 

also introduced the design of the output layer under different scenarios 

and the commonly used loss functions and their implementation.

In this chapter, we will learn one of the core algorithms in the neural 

network from the theoretical level: error back propagation (BP). In fact, the 

back propagation algorithm has been proposed in the early 1960s, but it 

has not attracted the attention of the industry. In 1970, Seppo Linnainmaa 

proposed an automatic chain derivation method in his master’s thesis and 

implemented the back propagation algorithm. In 1974, Paul Werbos first 

proposed the possibility of applying the back propagation algorithm to 

neural networks in his doctoral thesis, but unfortunately, Paul Werbos did 

https://doi.org/10.1007/978-1-4842-7915-1_7#DOI
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not publish subsequent related research. In fact, Paul Werbos believes that 

this research idea is meaningful for solving perceptron problems, but due 

to the cold winter of artificial intelligence, the community has generally 

lost its belief in solving those problems. Until about 10 years later in 1986, 

Geoffrey Hinton et al. applied the back propagation algorithm to neural 

networks[1], making the back propagation algorithm vigorous in the 

neural network community.

With the functions of automatic derivation and automatic parameter 

updating of deep learning frameworks, algorithm designers can build 

complex models and networks with little need for in-depth knowledge 

of back propagation algorithms and can easily train network models by 

calling optimization tools. However, the back propagation algorithm and 

gradient descent algorithm are the core of the neural network, and it is 

very important to deeply understand its principle. We first review the 

mathematical concepts such as derivatives and gradients, and then derive 

the gradient forms of commonly used activation and loss functions, and 

begin to gradually derive the gradient propagation methods of perceptron 

and multilayer neural networks. If you want to refresh your memory or 

learn more about linear algebra and calculus, [2] and [3] have more details.

7.1  Derivatives and Gradients
In high school, we came into contact with the concept of derivative, which 

is defined as the limit of the ratio of the increment ∆y of the function 

output value to the increment ∆x of the independent variable x when the 

independent variable x produces a slight disturbance ∆x as ∆x approaches 

to zero:
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The derivative of the function f (x) can be written as f′(x) or 
dy
dx

. From 

a geometric point of view, the derivative of a univariate function is the 

slope of the tangent of the function here, that is, the rate of change of the 

function value along the direction of x. Consider an example in physics, for 

example, the expression of the displacement function of free-fall motion 

y gt=
1

2

2 . The derivative with respect to time is 
dy
dt

d gt

dt
gt= =

1

2

2

.  

Considering that velocity v is defined as the rate of change of 

displacement, so the derivative of displacement with respect to time is 

velocity, that is, v = gt.

In fact, the derivative is a very broad concept. Because most of the 

functions we have encountered before are univariate functions, the 

independent variable has only two directions: x+ and x−. When the number 

of independent variables of a function is greater than one, the concept 

of the derivative of the function is extended to the rate of change of the 

function value in any direction. The derivative itself is a scalar and has 

no direction, but the derivative characterizes the rate of change of the 

function value in a certain direction. Among these arbitrary directions, 

several directions along the coordinate axis are relatively special, which 

is also called partial derivative. For univariate functions, the derivative is 

written as 
dy
dx

. For the partial derivative of the multivariate function, it is 

recorded as 
∂
∂

∂
∂

y
x

y
x

1 2

, , . Partial derivatives are special cases of derivatives 

and have no direction.

Consider a neural network model that is essentially a multivariate 

function, such as a weight matrix W of shape [784, 256], which contains a 

connection weight of 784 × 256, and we need to ask for a partial derivative 

of 784 × 256. It should be noted that in mathematical expression habits, 

the independent variables to be discussed are generally recorded as x, but 
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in neural networks, they are generally used to represent inputs, such as 

pictures, text, and voice data. The independent variables of the network 

are network parameter sets θ = {w1, b1, w2, b2, ⋯}. When the gradient 

descent algorithm is used to optimize the network, all partial derivatives of 

the network need to be requested. Therefore, we are also concerned about 

the derivative of the error function L output along the direction of the 

independent variable θi, that is, 
∂
∂

∂
∂

L
w

L
b

1 1

, , . Write all partial derivatives of 

the function in vector form:
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The gradient descent algorithm can be updated in the form of a vector:

 � � � �� � � �� L  

η is learning rate. The gradient descent algorithm is generally to find 

the minimum value of the function L, and sometimes it is also desirable 

to solve the maximum value of the function, which need to update the 

gradient in the following way:

 � � � �� � � �� L  

This update method is called the gradient ascent algorithm. The 

gradient descent algorithm and the gradient ascent algorithm are the same 

in principle. One is to update in the opposite direction of the gradient, 

and the other is to update in the direction of the gradient. Both need to 

solve partial derivatives. Here, the vector 
�
�

�
�

�
�

�
�

�

�
�

�
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�

L L L L
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, , , ,  is called 

the gradient of the function, which is composed of all partial derivatives 
and represents the direction. The direction of the gradient indicates the 

direction in which the function value rises fastest, and the reverse of the 

gradient indicates the direction in which the function value decreases 

fastest.
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The gradient descent algorithm does not guarantee the global optimal 

solution, which is mainly caused by the non-convexity of the objective 

function. Consider the non-convex function in Figure 7-1. The dark blue 

area is the minimum area. Different optimization trajectories may obtain 

different optimal numerical solutions. These numerical solutions are not 

necessarily global optimal solutions.

Figure 7-1. Non-convex function example

Neural network model expressions are usually very complex, 

and the model parameters can reach tens or hundreds of millions of 

levels. Almost all neural network optimization problems rely on deep 

learning frameworks to automatically calculate the gradient of network 

parameters and then use gradient descent to iteratively optimize the 

network parameters until the performance meets the requirement. The 

main algorithms implemented in deep learning frameworks are back 

propagation and gradient descent algorithms. So understanding the 

principles of these two algorithms is helpful to understand the role of deep 

learning frameworks.

Before introducing the back propagation algorithm of the multilayer 

neural network, we first introduce the common attributes of the derivative, 

the gradient derivation of the common activation function, and the loss 

function and then derive the gradient propagation law of the multilayer 

neural network.
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7.2  Common Properties of Derivatives
This section introduces the derivation rules and sample explanations 

of common functions, which paves the way for the derivation of neural 

network related functions.

7.2.1  Common Derivatives
• The derivative of constant function c is 0. For example, 

the derivative of y = 2 is 
dy
dx

= 0 .

• The derivative of linear function y = ax + c is a. For 

example, the derivative of y = 2x + 1 is 
dy
dx

= 2 .

• The derivative of function xa is axa − 1. For example, the 

derivative of y = x2 is 
dy
dx

x= 2 .

• The derivative of exponential function ax is ax ln ln a. 

For example, the derivative of y = ex is 
dy
dx

e ln ln e ex x= =

• The derivative of log function x is 
1

xln a
. For example, 

the derivative of y = lnln x is 
dy
dx xln e x

= =
1 1

7.2.2  Common Property of Derivatives
• (f + g)′ = f ′ + g′

• (fg)′ = f ′ ∙ g + f ∙ g′

• 
f
g

f g fg
g
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2 , g ≠ 0
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• Consider function of function f (g(x)), let u = g(x), the 

derivative is:

 

df g x
dx

df u
du

dg x
dx

f u g x
� �� �

�
� � � �
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7.2.3  Hands-On Derivative Finding
Considering objective function L = x ⋅ w2 + b2, its derivative is:
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Considering objective function L = x ⋅ ew + eb, its derivative is:
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Considering objective function L = [y − (xw + b)]2 = [(xw + b) − y]2, let 

g = xw + b − y, and the derivative is:
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Considering objective function L = aln (xw + b) , let g = xw + b, and the 

derivative is:
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7.3  Derivative of Activation Function
Here we introduce the derivation of the activation function commonly 

used in neural networks.

7.3.1  Derivative of Sigmoid Function
The expression of Sigmoid function is:
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Let’s derive the derivative expression of the Sigmoid function:
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It can be seen that the derivative expression of the Sigmoid function 

can finally be expressed as a simple operation of the output value of the 

activation function. Using this property, we can calculate its derivate 

by caching the output value of the Sigmoid function of each layer in the 

gradient calculation of the neural network. The derivative function of the 

Sigmoid function is shown in Figure 7-2.

Figure 7-2. Sigmoid function and its derivative

In order to help understand the implementation details of the 

backpropagation algorithm, this chapter chooses not to use TensorFlow’s 

automatic derivation function. This chapter uses Numpy to implement a 

multilayer neural network optimized by back propagation algorithm. Here 

the derivative of the Sigmoid function is implemented by Numpy:

import numpy as np # import numpy library

def sigmoid(x): # implement sigmoid function

    return 1 / (1 + np.exp(-x))
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def derivative(x):  # calculate derivative of sigmoid

    # Using the derived expression of the derivatives

    return sigmoid(x)*(1-sigmoid(x))

7.3.2  Derivative of ReLU Function
Recall the expression of the ReLU function:

 ReLU x x� � � � �max 0,  

The derivation of its derivative is very simple:

 

d
dx

ReLU x x� � �{1 0 0 0  

It can be seen that the derivative calculation of the ReLU function 

is simple. When x is greater than or equal to zero, the derivative value is 

always 1. In the process of back propagation, it will neither amplify the 

gradient, causing gradient exploding, nor shrink the gradient, causing 

gradient vanishing phenomenon. The derivative curve of the ReLU 

function is shown in Figure 7-3.

Figure 7-3. ReLU function and its derivative

Before the ReLU function was widely used, the activation function in 

neural networks was mostly Sigmoid. However, the Sigmoid function was 

prone to gradient dispersion. When the number of layers of the network 
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increased, because the gradient values become very small, the parameters 

of the network cannot be effectively updated. As a result, deeper neural 

networks cannot be trained, resulting in the research of neural networks 

staying at the shallow level. With the introduction of the ReLU function, 

the phenomenon of gradient dispersion is well alleviated, and the number 

of layers of the neural network can reach deeper layers. For example, the 

ReLU activation function is used in AlexNet, and the number of layers 

reaches eight. Some convolutional neural networks with over 100 layers 

also mostly uses the ReLU activation function.

Through Numpy, we can easily achieve the derivative of the ReLU 

function, the code is as follows:

def derivative(x):  # Derivative of ReLU

    d = np.array(x, copy=True)

    d[x < 0] = 0

    d[x >= 0] = 1

    return d

7.3.3  Derivative of LeakyReLU Function
Recall the expression of LeakyReLU function:

 LeakyReLU x x px x� � �{ 0 0  

Its derivative can be derived as:

 

d
dx

LeakyReLU x p x� � �{1 0 0  

It’s different from the ReLU function because when x is less than zero, 

the derivative value of the LeakyReLU function is not 0, but a constant 

p, which is generally set to a smaller value, such as 0.01 or 0.02. The 

derivative curve of the LeakyReLU function is shown in Figure 7-4.
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Figure 7-4. LeakyReLU function and its derivative

The LeakyReLU function effectively overcomes the defects of the ReLU 

function and is also widely used. We can implement the derivative of 

LeakyReLU function through Numpy as follows:

def derivative(x, p): # p is the slope of negative part of 

LeakyReLU

    dx = np.ones_like(x)  # initialize a vector with 1

    dx[x < 0] = p  # set negative part to p

    return dx

7.3.4  Derivative of Tanh Function
Recall the expression of the Tanh function:

 

tanh x
e e

e e

x x

x x� � �
�� �
�� �

�

�
 

 � � � � �2 2 1sigmoid x  

Its derivative expression is:

 

d
dx

tanh tanh x
e e e e e e e e

e e

x x x x x x x x

x x
� � �

�� � �� � � �� � �� �
�� �

� � � �

� 2
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1 1

2

2

e e

e e
x

x x
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The Tanh function and its derivative curve are shown in Figure 7-5.

Figure 7-5. Tanh function and its derivative

In Numpy, the derivative of the Tanh function is implemented through 

the Sigmoid function as follows:

def sigmoid(x):  # sigmoid function

    return 1 / (1 + np.exp(-x))

def tanh(x):  # tanh function

    return 2*sigmoid(2*x) - 1

def derivative(x):  # derivative of tanh

    return 1-tanh(x)**2

7.4  Gradient of Loss Function
The common loss functions have been introduced previously. Here we 

mainly derive the gradient expressions of the mean square error loss 

function and the cross-entropy loss function.
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7.4.1  Gradient of Mean Square Error Function
The mean square error loss function expression is:

 
L y o

k

K

k k� �� �
�
�1

2 1

2

 

The terms 
1

2
 in the preceding formula are used to simplify the 

calculation, and 
1
K

 can also be used for averaging instead. None of these 

scaling operations will change the gradient direction. Then its partial 

derivative 
∂
∂
L
oi

 can be expanded to:

 

�
�

�
�
�
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�
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i
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Decomposition by the law of derivative of composite function:

 

�
�

� � �� � � � �� �
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�L
o
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k k
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i
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2
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That is:

 

�
�

� �� � � � �
�
��

�L
o

y o o
oi k

K

k k
k

i1

1
 

 
� �� � � �

��
�
k

K

k k
k

i

o y o
o1  

Considering that 
∂
∂
o
o
k

i

 is 1 when k = i and 
∂
∂
o
o
k

i

 is 0 for other cases, 

that is, the partial derivative 
∂
∂
L
oi

 is only related to the ith node, so the 

summation symbol in the preceding formula can be removed. The 

derivative of the mean square error function can be expressed as:
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7.4.2  Gradient of Cross-Entropy Function
When calculating the cross-entropy loss function, the Softmax function 

and the cross-entropy function are generally implemented in a unified 

manner. We first derive the gradient of the Softmax function, and then 

derive the gradient of the cross-entropy function.

Gradient of Softmax Recall of the expression of Softmax:

 

p e
e

i

z

k

K z

i

k
�

�� 1  

Its function is to convert the values of the output nodes into 

probabilities and ensure that the sum of probabilities is 1, as shown in 

Figure 7-6.

=
∑

2.0

1.0

0.1

= 0.7

= 0.2

= 0.1

Logits Softmax Probability

Figure 7-6. Softmax illustration

Recall:

 
f x

g x
h x

� � � � �
� �  
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The derivative of the function is:

 

�
� �

� � � � � � � � � � � �
� �

f x
g x h x h x g x

h x 2
 

For Softmax function, g x ezi� � � , h x e
k

K
zk� � �

�
�

1

. We’ll derive its gradient 

at two conditions: i = j and i ≠ j.

• i = j. The derivative of Softmax 
∂
∂
p
z
i

j

 is:
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The preceding expression is the multiplication of pi and 1 − pj, and 

pi = pj. So when i = j, the derivative of Softmax 
∂
∂
p
z
i

j

 is:

 

�
�
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p
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p p i ji

j
i j1 ,

 

• i ≠ j. Extend the Softmax function:
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That is:
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p pi

j
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It can be seen that although the gradient derivation process of the 

Softmax function is slightly complicated, the final expression is still very 

concise. The partial derivative expression is as follows:

 

�
�

� �� � � � �
p
z

p p when i j p p when i ji

j
i j i j{ ·1

 

Gradient of cross-entropy function Consider the expression of the 

cross- entropy loss function:

 
L y log log p

k
k k� � � ��  

Here we directly derive the partial derivative of the final loss value L to 

the logits variable zi of the network output, which expands to:

 

�
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y
log log p
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Decompose the composite function log log h into:
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k
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log log p
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That is:
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where 
∂
∂
p
z
k

i

 is the partial derivative of the Softmax function that we have 

derived.

Split the summation symbol into the two cases: k = i and k ≠ i, and 

substitute the expression of 
∂
∂
p
z
k

i

, we can get:
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That is:
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In particular, the one-hot encoding method for the label in the 

classification problem has the following relationship:

 k
ky� �1

 

 
y yi

k i
k� �

�
� 1

 

Therefore, the partial derivative of cross-entropy can be further 

simplified to:
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7.5  Gradient of Fully Connected Layer
After introducing the basic knowledge of gradients, we formally entered 

the derivation of the neural network’s back propagation algorithm. The 

structure of the neural network is diverse, and it is impossible to analyze 

the gradient expressions one by one. We will use a neural network with 

a fully connected layer network, a Sigmoid function as the activation 

function, and a softmax + MSE loss function as the error function to derive 

the gradient propagation law.

7.5.1  Gradient of a Single Neuron
For a neuron model using Sigmoid activation function, its mathematical 

model can be written as:

 
o w x bT1 1 1� � � � � �� �� ��  

The superscript of the variable represents the number of layers. For 

example, o(1) represents the output of the first layer and x is the input of the 

network. We take the partial derivative derivation 
∂
∂
L
wj1

 of the weight 

parameter wj1 as an example. For the convenience of demonstration, we 
draw the neuron model as shown in Figure 7-7. Bias b is not shown in the 

figure, and the number of input nodes is J. The weight connection from the 

input of the jth node to the output o(1) is denoted as wj1
1� � , where the 

superscript indicates the number of layers to which the weight parameter 

belongs, and the subscript indicates the starting node number and the 

ending node number of the current connection. For example, the subscript 

j1 indicates the jth node of the previous layer to the first node of the 

current layer. The variable before the activation function σ is called z1
1� � , 
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and the variable after the activation function σ is called o1
1� � . Because there 

is only one output node, so o o o1
1 1� � � �� � . The error value L is calculated by 

the error function between the output and the real label.

1

2

j

11

(1)

21

(1)

(1)

(1)

1

(1)

1

(1)

Input nodes

=
T

+ Sigmoid Error Ground truth
(real value)

∑ ℒ

Figure 7-7. Neuron model

If we use the mean square error function, considering that a single 

neuron has only one output o1
1� � , then the loss can be expressed as:

 
L o t o t� �� � � �� �� �1

2

1

2
1

1
2

1

2

 

Among them, t is the real label value. Adding 
1

2
 does not affect the 

direction of the gradient, and the calculation is simpler. We take the weight 

variable wj1 of the jth (j ∈ [1, J]) node as an example and consider the 

partial derivative 
∂
∂
L
wj1

 of the loss function L:

 

�
�
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�

L
w

o t o
wj j1

1
1

1  
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Considering o1 = σ(z1) and the derivative of the Sigmoid function is 

σ′ = σ(1 − σ), we have:

 

�
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� �� � � � �
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�
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Write σ(z1) as o1:

 

�
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Consider 
�
�

�
� �z
w

x
j

j
1
1

1

, we have:

 

�
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o t o o x
j

j
1

1 1 11
 

It can be seen from the preceding formula that the partial derivative 

of the error to the weight wj1 is only related to the output value o1, the true 

value t, and the input xj connected to the current weight.

7.5.2  Gradient of Fully Connected Layer
We generalize the single neuron model to a single-layer network of fully 

connected layers, as shown in Figure 7-8. The input layer obtains the 

output vector o(1) through a fully connected layer and calculates the mean 

square error with the real label vector t. The number of input nodes is J, 

and the number of output nodes is K.
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∑
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(1)(1)
⋮ ⋮ ⋮
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Input nodes Output nodes Ground truth

Figure 7-8. Fully connected layer

The multi-output fully connected network layer model differs 

from the single neuron model in that it has many more output nodes 

o o o oK1

1

2

1

3

1 1� � � � � � � �
, , , , , and each output node corresponds to a real label t1, 

t2, …, tK. wjk is the connection weight of the jth input node and the kth 

output node. The mean square error can be expressed as:

 
L o t

i

K

i i� �� �
�

� ��1
2 1

1
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Since 
∂
∂
L
wjk

 is only associated with node ok
1� � , the summation symbol in 

the preceding formula can be removed, that is, i = k:
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Substitute ok = σ(zk):
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Consider the derivative of the Sigmoid function σ′ = σ(1 − σ):
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Write σ(zk) as ok:
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w
xk
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1
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It can be seen that the partial derivative of wjk is only related to 

the output node ok
1� �  of the current connection, the label tk

1� � of the 

corresponding true, and the corresponding input node xj.

Let δk = (ok − tk)ok(1 − ok), 
∂
∂
L
wjk

 becomes:

 

�
�

�
L
w

x
jk

k j�
 

The variable δk characterizes a certain characteristic of the error 

gradient propagation of the end node of the connection line. After using 

the representation δk, the partial derivative 
∂
∂
L
wjk

 is only related to the start 

node xj and the end node δk of the current connection. Later we will see the 

role of δk in cyclically deriving gradients.

Now that the gradient propagation method of the single-layer neural 

network (i.e., the output layer) has been derived, next we try to derive the 

gradient propagation method of the penultimate layer. After completing 

the propagation derivation of the penultimate layer, similarly, the gradient 
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propagation mode of all hidden layers can be derived cyclically to obtain 

gradient calculation expressions of all layer parameters.

Before introducing the back propagation algorithm, we first learn a 

core rule of derivative propagation – the chain rule.

7.6  Chain Rule
Earlier, we introduced the gradient calculation method of the output layer. 

We now introduce the chain rule, which is a core formula that can derive 

the gradient layer by layer without explicitly deducing the mathematical 

expression of the neural network.

In fact, the chain rule has been used more or less in the process 

of deriving the gradient. Considering the compound function y = f(u), 

u = g(x), we can derive 
dy
dx

 from 
dy
du

 and 
du
dx

:

 

dy
dx

dy
du

du
dx

f g x g x� � � � �� � � � �� �
 

Consider the compound function with two variables z = f  (x, y), where 

x = g(t), y = h(t), then the derivative 
dz
dt

 can be derived from 
∂
∂
z
x

 and 
∂
∂
z
y

:
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For example, z t et� �� � �2 1
2 2

, let x = 2t + 1, y = t2, then z = x2 + ey. Using 

preceding formula, we have:
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Let x = 2t + 1, y = t2:

 

dz
dt

t e tt� �� � � � �2 2 1 2 2
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That is:

 

dz
dt

t tet� �� � �4 2 1 2
2

 

The loss function L of the neural network comes from each output 

node ok
K� � , as shown in Figure 7-9, where the output node ok

K� �  is 

associated with the output node oj
J� �  of the hidden layer, so the chain rule 

is very suitable for the gradient derivation of the neural network. Let us 

consider how to apply the chain rule to the loss function.

∑ ∑

( ) ( )

( )
( )

Figure 7-9. Gradient propagation illustration

In forward propagation, the data goes through wij
J� �  to the node oj

J� �  in 

the penultimate layer and then propagates to the node ok
K� �  in the output 

layer. When there is only one node per layer, the chain rule can be used to 

decompose 
�

� � �
L

wij
J  layer by layer into:
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where中
�
� � �
L
ok

K  can be directly derived from the error function and 
�
�

� �

� �
o
o
k
K

j
J  

can be derived from the fully connected layer formula. The derivative 
�

�

� �

� �

o
w

j
J

ij
J  is the input xi

I� � . It can be seen that through the chain rule, we 

do not need specific mathematical expressions for the derivative of 

L f wij
J� � �� � ; instead, we can directly decompose the partial derivatives 

and iteratively derive the derivatives layer by layer.
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Here we simply use TensorFlow automatic derivation function to 

experience the charm of the chain rule.

import tensorflow as tf

# Create vectors

x = tf.constant(1.)

w1 = tf.constant(2.)

b1 = tf.constant(1.)

w2 = tf.constant(2.)

b2 = tf.constant(1.)

# Create gradient recorder

with tf.GradientTape(persistent=True) as tape:

    #  Manually record gradient info for non-tf.Variable 

variables

    tape.watch([w1, b1, w2, b2])

    # Create two layer neural network

    y1 = x * w1 + b1

    y2 = y1 * w2 + b2

# Solve partial derivatives

dy2_dy1 = tape.gradient(y2, [y1])[0]

dy1_dw1 = tape.gradient(y1, [w1])[0]

dy2_dw1 = tape.gradient(y2, [w1])[0]

# Valdiate chain rule

print(dy2_dy1 * dy1_dw1)

print(dy2_dw1)

In the preceding code, we calculated 
∂
∂
y
y
2

1

, 
∂
∂
y
w

1

1

, and 
∂
∂
y
w
2

1

 through 

auto- gradient calculation in Tensorflow and through chain rule we know 
�
�

�
�
�

y
y

y
w

2

1

1

1

 and 
∂
∂
y
w
2

1

 should be equal. Their results are as follows:

tf.Tensor(2.0, shape=(), dtype=float32)

tf.Tensor(2.0, shape=(), dtype=float32)
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7.7  Back Propagation Algorithm
Now let’s derive the gradient propagation law of the hidden layer. Briefly 

review the partial derivative formula of the output layer:
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Consider the partial derivative of the penultimate layer 
∂
∂
L
wij

, as shown 

in Figure 7-10. The number of output layer nodes is K, and the output is 
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Figure 7-10. Back propagation algorithm

In order to express conciseness, the superscripts of some variables are 

sometimes omitted. First, expand the mean square error function:
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Because L is associated with wij through each output node ok, the 

summation sign cannot be removed here, and the mean square error 

function can be disassembled using the chain rule:
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Substitute ok = σ(zk):
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The derivative of the Sigmoid function is σ′ = σ(1 − σ), so:
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Write σ(zk) as ok, and consider chain rule, we have:
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Because oj = σ(zj) and σ′ = σ(1 − σ), we have:
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where 
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 is oi, so:
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Similarly as the format of 
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J  as:
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At this time, 
∂
∂
L
wij

 can be written as a simple multiplication of the 

output value oi of the currently connected start node and the gradient 

variable information � j
J� �  of the end node:
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It can be seen that by defining variable δ, the gradient expression 

of each layer becomes more clear and concise, where δ can be simply 

understood as the contribution value of the current weight wij to the error 

function.
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Let’s summarize the propagation law of the partial derivative of 

each layer.

Output layer:
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Penultimate layer:

 

�
�

� � �L
w

o
ij

j
J

i�
 

 
� �j

J
j j

k
k
K

jko o w� � � �� �� ��1
 

Antepenultimate layer:
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where on is the input of the antepenultimate layer.

According to this law, the partial derivative of the current layer can be 

obtained only by calculating the values �k
K� � , � j

J� � , and � i
I� �  of each node of 

each layer iteratively, so as to obtain the gradient of the weight matrix W of 

each layer, and then iteratively optimize the network parameters through 

the gradient descent algorithm.

So far, the back propagation algorithm is fully introduced.

Next, we will conduct two hands-on cases: the first case is to use the 

automatic derivation provided by TensorFlow to optimize the extreme 
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value of the Himmelblau function. The second case is to implement the 

back propagation algorithm based on Numpy and complete the multi-

layer neural network training for binary classification problem.

7.8  Hands-On Optimization of Himmelblau
The Himmelblau function is one of the commonly used sample functions 

for testing optimization algorithms. It contains two independent variables 

x and y, and the mathematical expression is:

 
f x y x y x y,� � � � �� � � � �� �2

2
2

2

11 7  

First, we implement the expression of the Himmelblau function 

through the following code:

def himmelblau(x):

     # Himmelblau function implementation. Input x is a list 

with 2 elements.

     return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 

2 - 7) ** 2

Then we complete the visualization of the Himmelblau function. Use 

np.meshgrid function (meshgrid function is also available in TensorFlow) 

to generate two-dimensional plane grid point coordinates as follows:

x = np.arange(-6, 6, 0.1) # x-axis

y = np.arange(-6, 6, 0.1) # y-axis

print('x,y range:', x.shape, y.shape)

X, Y = np.meshgrid(x, y)

print('X,Y maps:', X.shape, Y.shape)

Z = himmelblau([X, Y])
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Use the Matplotlib library to visualize the Himmelblau function, as 

shown in Figure 7-11:

# Plot the Himmelblau function

fig = plt.figure('himmelblau')

ax = fig.gca(projection='3d')

ax.plot_surface(X, Y, Z)

ax.view_init(60, -30)

ax.set_xlabel('x')

ax.set_ylabel('y')

plt.show()

Figure 7-11. Himmelblau function

Figure 7-12 is a contour map of the Himmelblau function. It can 

be roughly seen that it has four local minimum points, and the local 

minimum values are all 0, so these four local minimum values are also 

global minimum values. We can calculate the precise coordinates of the 

local minimum by analytical methods; they are:

 3 2 2 805 3 131 3 779 3 283 3 584 1 848, , , ,� � �� � � �� � �� �, . . , . . , . .  

Knowing the analytical solution of the extreme value, we now use the 

gradient descent algorithm to optimize the minimum numerical solution 

of the Himmelblau function.

Chapter 7  BaCkward propagation algorithm



267

We can use TensorFlow automatic derivation to find the partial 

derivative of the sum of the function and iteratively update the sum value 

as follows:

# The influence of the initialization value of the parameter 

on the optimization cannot be ignored, you can try different 

initialization values # Test the minimum value of function 

optimization

# [1., 0.], [-4, 0.], [4, 0.]

x = tf.constant([4., 0.]) # Initialization

for step in range(200):# Loop 200 times

    with tf.GradientTape() as tape: #record gradient

        tape.watch([x]) # Add to the gradient recording list

        y = himmelblau(x) # forward propagation

    # backward propagration

    grads = tape.gradient(y, [x])[0]

    # update paramaters with learning rate of 0.01

    x -= 0.01*grads

    # print info

Figure 7-12. Himmelblau function contour plot
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    if step % 20 == 19:

        print ('step {}: x = {}, f(x) = {}'

               .format(step, x.numpy(), y.numpy()))

After 200 iterations of updating, the program can find a minimum 

solution, at which point the function value is close to zero. The numerical 

solution is

step 199: x = [ 3.584428  -1.8481264], f(x) = 

1.1368684856363775e-12

This is almost the same as one of the analytical solutions 

(3.584, −1.848).

In fact, by changing the initialization state of the network parameters, 

the program can obtain a variety of minimum numerical solutions. The 

initialization state of the parameters may affect the search trajectory of 

the gradient descent algorithm, and it may even search out completely 

different numerical solutions, as shown in Table 7-1. This example explains 

the effect of different initial states on the gradient descent algorithm.

Table 7-1. The effect of initial values on optimization results

Initial value of x Numerical solution Analytical solution

(4, 0) (3.58,-1.84) (3.58,-1.84)

(1,0) (3,1.99) (3,2)

(-4,0) (-3.77,-3.28) (-3.77,-3.28)

(-2,2) (-2.80,3.13) (-2.80,3.13)
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7.9  Hands-On Back Propagation Algorithm
In this section, we will use the gradient derivation results of the multi-layer 

fully connected network introduced earlier, and directly use Python to 

calculate the gradient of each layer, and manually update according to the 

gradient descent algorithm. Since TensorFlow has an automatic derivation 

function, we choose Numpy without the automatic derivation functionality 

to implement the network, and use Numpy to manually calculate the 

gradient, and manually update the network parameters.

It should be noted that the gradient propagation formula derived 

in this chapter is for multiple fully connected layers with only Sigmoid 

function, and the loss function is a network type of mean square error 

function. For other types of networks, such as networks with ReLU 

activation function and cross- entropy loss function, the gradient 

propagation expression needs to be derived again, but the method is 

similar. It is precisely because the method of manually deriving the 

gradient is more limited, it is rarely used in practice.

We will implement a four-layer fully connected network to complete 

the binary classification task. The number of network input nodes is 2, and 

the number of nodes in the hidden layer is designed as 20, 50, and 25. The 

two nodes in the output layer represent the probability of belonging to 

categories 1 and 2, respectively, as shown in Figure 7-13. Here, the Softmax 

function is not used to constrain the sum of the network output probability 

values. Instead, the mean square error function is directly used to calculate 

the error between prediction and the one-hot encoded real label. All 

activation functions are Sigmoid. This design is to directly use our gradient 

propagation formula.
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Input:2 Hidden layer 1:25 Hidden layer 2:50 Hidden layer:25 Output layer:2

Figure 7-13. Network structure

7.9.1  Dataset
Through the convenient tool provided by the scikit-learn library, 2000 

linear inseparable 2-class datasets are generated. The feature length of 

the data is 2. The sampled data distribution is shown in Figure 7-14. The 

red points are in one category, and the blue points belong to the other 

category. The distribution of each category is crescent-shaped and is 

linearly inseparable, which means a linear network cannot be used to 

obtain good results. In order to test the performance of the network, 

we divide the training set and the test set according to the ratio 7:3. 

Two thousand . 0·s3 = 600 sample points are used for testing and do not 

participate in the training. The remaining 1400 points are used for network 

training.
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Figure 7-14. Dataset distribution

The collection of the data set is directly generated using the make_

moons function provided by scikit-learn, and the number of sampling 

points and testing ratio are set as follows:

N_SAMPLES = 2000 # number of sampling points

TEST_SIZE = 0.3 # testing ratio

# Use make_moons function to generate data set

X, y = make_moons(n_samples = N_SAMPLES, noise=0.2, random_

state=100)

# Split traning and testing data set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size=TEST_SIZE, random_state=42)

print(X.shape, y.shape)
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The distribution of the dataset can be drawn by the following 

visualization code, as shown in Figure 7-14.

# Make a plot

def make_plot(X, y, plot_name, file_name=None, XX=None, 

YY=None, preds=None, dark=False):

    if (dark):

        plt.style.use('dark_background')

    else:

        sns.set_style("whitegrid")

    plt.figure(figsize=(16,12))

    axes = plt.gca()

    axes.set(xlabel="$x_1$", ylabel="$x_2$")

    plt.title(plot_name, fontsize=30)

    plt.subplots_adjust(left=0.20)

    plt.subplots_adjust(right=0.80)

     if(XX is not None and YY is not None and preds is 

not None):

         plt.contourf(XX, YY, preds.reshape(XX.shape), 25,  

alpha = 1, cmap=cm.Spectral)

         plt.contour(XX, YY, preds.reshape(XX.shape), 

levels=[.5], cmap="Greys", vmin=0, vmax=.6)

    # Use color to distinguish labels

     plt.scatter(X[:, 0], X[:, 1], c=y.ravel(), s=40, cmap=plt.

cm.Spectral, edgecolors='none')

    plt.savefig('dataset.svg')

    plt.close()

# Make distribution plot

make_plot(X, y, "Classification Dataset Visualization ")

plt.show()
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7.9.2  Network Layer
A new layer class is used to implement a network layer. Parameters such as 

the number of input nodes, the number of output nodes, and the type of 

activation function are passed into the network layer. The weights and bias 

tensor bias are automatically generated based on the number of input and 

output nodes during initialization as in the following:

class Layer:

    # Fully connected layer

     def __init__(self, n_input, n_neurons, activation=None, 

weights=None, bias=None):

        """

        :param int n_input: input nodes

        :param int n_neurons: output nodes

        :param str activation: activation function

        :param weights: weight vectors

        :param bias: bias vectors

        """

        # Initialize weights through Normal distribution

         self.weights = weights if weights is not None else 

np.random.randn(n_input, n_neurons) * np.sqrt(1 / n_

neurons)

         self.bias = bias if bias is not None else np.random.

rand(n_neurons) * 0.1

         self.activation = activation # activation function, 

e.g. ’sigmoid’

         self.last_activation = None # output of activation 

function o

        self.error = None

        self.delta = None
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The forward propagation function of the network layer is implemented 

as follows, where the last_activation variable is used to save the output 

value of the current layer:

    def activate(self, x):

        # Forward propagation function

        r = np.dot(x, self.weights) + self.bias  # X@W+b

        # Get output through activation function

        self.last_activation = self._apply_activation(r)

        return self.last_activation

The self._apply_activation function in the preceding code implements 

the forward calculation process of different types of activation functions, 

although here we only use the Sigmoid activation function.

    def _apply_activation(self, r):

        # Calculate output of activation function

        if self.activation is None:

            return r # No activation function

        # ReLU

        elif self.activation == 'relu':

            return np.maximum(r, 0)

        # tanh

        elif self.activation == 'tanh':

            return np.tanh(r)

        # sigmoid

        elif self.activation == 'sigmoid':

            return 1 / (1 + np.exp(-r))

        return r
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For different types of activation functions, their derivatives are 

calculated as follows:

    def apply_activation_derivative(self, r):

        # Calculate the derivative of activation functions

        # If no activation function, derivative is 1

        if self.activation is None:

            return np.ones_like(r)

        # ReLU

        elif self.activation == 'relu':

            grad = np.array(r, copy=True)

            grad[r > 0] = 1.

            grad[r <= 0] = 0.

            return grad

        # tanh

        elif self.activation == 'tanh':

            return 1 - r ** 2

        # Sigmoid

        elif self.activation == 'sigmoid':

            return r * (1 - r)

        return r

It can be seen that the derivative of the Sigmoid function is 

implemented as r (1 − r), where r is σ(z).
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7.9.3  Network model
After creating a single-layer network class, we implement the 

NeuralNetwork class of the network model, which internally maintains the 

network layer object of each layer. You can add the network layer through 

the add_layer function to achieve the purpose of creating a network model 

with different structures as in the following:

class NeuralNetwork:

    # Neural Network Class

    def __init__(self):

        self._layers = []  # list of network class

    def add_layer(self, layer):

        # Add layers

        self._layers.append(layer)

The forward propagation of the network only needs to cyclically adjust 

the forward calculation function of each network layer object. The code is 

as follows:

    def feed_forward(self, X):

        # Forward calculation

        for layer in self._layers:

            # Loop through every layer

            X = layer.activate(X)

        return X

According to the network structure configuration in Figure 7-13, we 

use the NeuralNetwork class to create a network object and add a four-

layer fully connected network. The code is as follows:

nn = NeuralNetwork()

nn.add_layer(Layer(2, 25, 'sigmoid'))  # Hidden layer 1, 2=>25

nn.add_layer(Layer(25, 50, 'sigmoid')) # Hidden layer 2, 25=>50
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nn.add_layer(Layer(50, 25, 'sigmoid')) # Hidden layer 3, 50=>25

nn.add_layer(Layer(25, 2, 'sigmoid'))  # Hidden layer, 25=>2

The back propagation of the network model is slightly more 

complicated. We need to start from the last layer and calculate the variable 

δ of each layer, and then store the calculated variable δ in the delta variable 

of the Layer class according to the derived gradient formula as in the 

following:

    def backpropagation(self, X, y, learning_rate):

        # Back propagation

        # Get result of forward calculation

        output = self.feed_forward(X)

         for i in reversed(range(len(self._layers))):   

# reverse loop

            layer = self._layers[i]  # get current layer

            # If it’s output layer

            if layer == self._layers[-1]:  # output layer

                layer.error = y - output

                # calculate delta

                 layer.delta = layer.error * layer.apply_

activation_derivative(output)

            else:  # For hidden layer

                next_layer = self._layers[i + 1]

                 layer.error = np.dot(next_layer.weights,  

next_layer.delta)

                # Calculate delta

                 layer.delta = layer.error * layer.apply_

activation_derivative(layer.last_activation)

                ... # See following code
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After the reverse calculation of the variable δ of each layer, it is only 

necessary to calculate the gradient of the parameters of each layer 

according to the formula 
�
�

� � �L
w

o
ij

i j
J�  and update the network parameters. 

Because the delta in the code is actually calculated as −δ, the plus sign is 

used when updating. The code is as follows:

    def backpropagation(self, X, y, learning_rate):

        ... # Continue above code

        # Update weights

        for i in range(len(self._layers)):

            layer = self._layers[i]

            # o_i is output of previous layer

             o_i = np.atleast_2d(X if i == 0 else self._

layers[i - 1].last_activation)

            # Gradient descent

             layer.weights += layer.delta * o_i.T * 

learning_rate

Therefore, in the back propagation function, the variable δ of each 

layer is reversely calculated, and the gradient values of the parameters 

of each layer are calculated according to the gradient formula, and 

the parameter update is completed according to the gradient descent 

algorithm.

7.9.4  Network Training
The binary classification network here is designed with two output nodes, 

so the real label needs to be one-hot encoded. The code is as follows:

     def train(self, X_train, X_test, y_train, y_test, learning_

rate, max_epochs):

        # Train network

        # one-hot encoding
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        y_onehot = np.zeros((y_train.shape[0], 2))

        y_onehot[np.arange(y_train.shape[0]), y_train] = 1

Calculate the mean square error of the one-hot encoded real label 

and the output of the network, and call the back propagation function to 

update the network parameters, and iterate the training set 1000 times as 

in the following:

        mses = []

        for i in range(max_epochs):  # Train 1000 epoches

            for j in range(len(X_train)):  #  Train one sample 

per time

                 self.backpropagation(X_train[j], y_onehot[j], 

learning_rate)

            if i % 10 == 0:

                # Print MSE Loss

                 mse = np.mean(np.square(y_onehot - self.feed_

forward(X_train)))

                mses.append(mse)

                print('Epoch: #%s, MSE: %f' % (i, float(mse)))

                # Print accuracy

                 print('Accuracy: %.2f%%' % (self.accuracy(self.

predict(X_test), y_test.flatten()) * 100))

        return mses
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7.9.5  Network Performance
We record the training loss value L of each Epoch and draw it as a curve, as 

shown in Figure 7-15.

Figure 7-15. Training error plot

After training 1000 Epochs, the accuracy rate obtained on 600 samples 

in the test set is:

Epoch: #990, MSE: 0.024335

Accuracy: 97.67%

It can be seen that by manually calculating the gradient formula and 

manually updating the network parameters, we can also obtain a lower 

error rate for simple binary classification tasks. Through fine-tuning 

network hyperparameters and other techniques, you can also get better 

network performance.

In each Epoch, we complete an accuracy test on the test set and draw it 

into a curve, as shown in Figure 7-16. It can be seen that with the progress 

of Epoch, the accuracy of the model has been steadily improved, the initial 

stage is faster, and the subsequent improvement is relatively smooth.
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Figure 7-16. Testing accuracy

Through this binary classification of fully connected network based 

on Numpy’s manual calculation of gradients, I believe readers can more 

deeply appreciate the role of deep learning frameworks in algorithm 

implementation. Without frameworks such as TensorFlow, we can also 

implement complex neural networks, but flexibility, stability, development 

efficiency, and computational efficiency are poor. Algorithm design and 

training based on these deep learning frameworks will greatly improve the 

work of algorithm developers’ effectiveness. At the same time, we can also 

realize that the framework is just a tool. More importantly, our understanding 

of the algorithm itself is the most important ability of algorithm developers.
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CHAPTER 8

Keras Advanced API
The problem of artificial intelligence is not only a problem of 
computer science, but also a problem of mathematics, cog-
nitive science and philosophy.

—François Chollet

Keras is an open-source neural network computing library mainly 

developed in the Python language. It was originally written by François 

Chollet. It is designed as a highly modular and extensible high-level neural 

network interface, so that users can quickly complete model building and 

training without excessive professional knowledge. The Keras library is 

divided into a frontend and a backend. The backend generally calls the 

existing deep learning framework to implement the underlying operations, 

such as Theano, CNTK, and TensorFlow. The frontend interface is a set 

of unified interface functions abstracted by Keras. Users can easily switch 

between different backend operations through Keras. Because of Keras’s 

high abstraction and ease of use, according to KDnuggets, Keras market 

share reached 26.6% as of 2019, an increase of 19.7%, second only to 

TensorFlow in deep learning frameworks.

There is a staggered relationship between TensorFlow and Keras that 

is both competitive and cooperative. Even the founder of Keras works 

at Google. As early as November 2015, TensorFlow was added to Keras 

backend support. Since 2017, most components of Keras have been 

https://doi.org/10.1007/978-1-4842-7915-1_8#DOI
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integrated into the TensorFlow framework. In 2019, Keras was officially 

identified as the only high-level interface API for TensorFlow 2, replacing 

the high-level interfaces such as tf.layers included in the TensorFlow 1. 

In other words, now you can only use the Keras interface to complete 

TensorFlow layer model building and training. In TensorFlow 2, Keras is 

implemented in the tf.keras submodule.

What is the difference and connection between Keras and tf.keras? 

In fact, Keras can be understood as a set of high-level API protocols 

for building and training neural networks. Keras itself has already 

implemented this protocol. Installing the standard Keras library can easily 

call TensorFlow, CNTK, and other backends to complete accelerated 

calculations. In TensorFlow, a set of Keras protocol is also implemented 

through tf.keras, which is deeply integrated with TensorFlow, and is only 

based on TensorFlow backend operations, and supports TensorFlow more 

perfectly. For developers using TensorFlow, tf.keras can be understood as 

an ordinary submodule, which is no different from other submodules such 

as tf.math and tf.data. Unless otherwise specified, Keras refers to tf.keras 

instead of the standard Keras library in the following chapters.

8.1  Common Functional Modules
Keras provides a series of high-level neural network-related classes 

and functions, such as classic dataset loading function, network layer 

class, model container, loss function class, optimizer class, and classic 

model class.

For classic datasets, one line of code can download, manage, and load 

datasets. These datasets include Boston house price prediction dataset, 

CIFAR picture dataset, MNIST/FashionMNIST handwritten digital picture 

dataset, and IMDB text dataset. We have already introduced some of them 

in previous chapters.
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8.1.1  Common Network Layer Classes
For the common neural network layer, we can use the tensor mode of the 

underlying interface functions to achieve, which are generally included 

in the tf.nn module. For common network layers, we generally use the 

layer method to complete the model construction. A large number of 

common network layers are provided in the tf.keras.layers namespace 

(hereinafter using layers to refer to tf.keras.layers), such as fully connected 

layers, activation function layers, pooling layers, convolutional layers, and 

recurrent neural network layers. For these network layer classes, you only 

need to specify the relevant parameters of the network layer at the time of 

creation and use the __call__ method to complete the forward calculation. 

When using the __call__ method, Keras will automatically call the forward 

propagation logic of each layer, which is generally implemented in the call 

function of the class.

Taking the Softmax layer as an example, it can use the tf.nn.softmax 

function to complete the Softmax operation in the forward propagation, 

or it can build the Softmax network layer through the layers. Softmax(axis) 

class, where the axis parameter specifies the dimension for Softmax 

operation. First, import the relevant sub-modules as follows:

import tensorflow as tf

# Do not use "import keras" which will import the standard 

Keras, not the one in Tensorflow

from tensorflow import keras

from tensorflow.keras import layers # import common layer class

Then create a Softmax layer and use the __call__ method to complete 

the forward calculation:

In [1]:

x = tf.constant([2.,1.,0.1])  # create input tensor

layer = layers.Softmax(axis=-1)  # create Softmax layer

out = layer(x)  # forward propagation
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After passing through the Softmax network layer, the probability 

distribution output is:

Out[1]:

<tf.Tensor: id=2, shape=(3,), dtype=float32, 

numpy=array([0.6590012, 0.242433 , 0.0985659], dtype=float32)>

Of course, we can also directly complete the calculation through the 

tf.nn.softmax() function as follows:

out = tf.nn.softmax(x)

8.1.2  Network Container
For common networks, we need to manually call the class instance of each 

layer to complete the forward propagation operation. When the network 

layer becomes deeper, this part of the code appears very bloated. Multiple 

network layers can be encapsulated into a large network model through 

the network container Sequential provided by Keras. Only the instance 

of the network model needs to be called once to complete the sequential 

propagation operation of the data from the first layer to the last layer.

For example, the two-layer fully connected network with a separate 

activation function layer can be encapsulated as a network through the 

Sequential container.

from tensorflow.keras import layers, Sequential

network = Sequential([

     layers.Dense(3, activation=None), # Fully-connected layer 

without activation function

    layers.ReLU(),# activation function layer

     layers.Dense(2, activation=None), # Fully-connected layer 

without activation function

    layers.ReLU() # activation function layer

])
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x = tf.random.normal([4,3])

out = network(x)

The Sequential container can also continue to add a new network layer 

through the add() method to dynamically create a network:

In [2]:

layers_num = 2

network = Sequential([]) # Create an empty container

for _ in range(layers_num):

    network.add(layers.Dense(3)) # add fully-connected layer

    network.add(layers.ReLU())# add activation layer

network.build(input_shape=(4, 4))

network.summary()

The preceding code can create a network structure with the number of 

layers specified by the layers_num parameter. When the network creation 

is completed, the network layer class does not create member variables 

such as internal weight tensors. Using the build method, you can specify 

the input size which will automatically create internal tensors for all layers. 

Through the summary() function, you can easily print out the network 

structure and parameters. The results are as follows:

Out[2]:

Model: "sequential_2"

_______________________________________________________________

Layer (type)                 Output 

Shape              Param Number

===============================================================

dense_2 (Dense)              multiple                  15

_______________________________________________________________

re_lu_2 (ReLU)               multiple                  0

_______________________________________________________________

dense_3 (Dense)              multiple                  12
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_______________________________________________________________

re_lu_3 (ReLU)               multiple                  0

===============================================================

Total params: 27

Trainable params: 27

Non-trainable params: 0

_______________________________________________________________

The layer column includes the name of each layer which is maintained 

internally by TensorFlow and is not the same as the object name of Python. 

The output shape column indicates the output shape of each layer. Note 

that the values for the output shape column are all “multiple” because we 

only built or compiled the network at this point and haven’t really trained 

or executed the network. After we call the network with real inputs, the 

real out shape of each layer will be reflected in the output shape column. 

Param number column is the number of parameters of each layer. Total 

params counts the total number of parameters. Trainable params is the 

total number of parameters to be optimized. Non-trainable params is the 

total number of parameters that do not need to be optimized.

When we encapsulate multiple network layers through Sequential 

container, the parameter list of each layer will be automatically 

incorporated into the Sequential container. The trainable_variables 

and variables of the Sequential object contain the list of tensors to be 

optimized and tensors of all layers, for example:

In [3]: # print name and shape of trainable variables

for p in network.trainable_variables:

   print(p.name, p.shape)

Out[3]:

dense_2/kernel:0 (4, 3)

dense_2/bias:0 (3,)

dense_3/kernel:0 (3, 3)

dense_3/bias:0 (3,)
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The Sequential container is one of the most commonly used classes. 

It is very useful for quickly building multi-layer neural networks. It 

should be used as much as possible to simplify the implementation of 

network models.

8.2  Model Configuration, Training, 
and Testing

When training the network, the general process is to obtain the output 

value of the network through forward calculation, then calculate the 

network error through the loss function, and then calculate and update 

the gradients through automatic differentiation tool, and test the network 

performance occasionally. For this commonly used training logic, it can be 

directly implemented through high-level interfaces provided by Keras.

8.2.1  Model Configuration
In Keras, there are two special classes: keras.Model and keras.layers.Layer. 

The Layer class is the parent class of the network layer, and it defines 

some common functions of the network layer, such as adding weights and 

managing weight lists. The model class is the parent class of the network. 

In addition to the functions of the layer class, convenient functions such as 

saving model, loading model, and training and testing model are added. 

Sequential is also a subclass of model, so it has all the functions of the 

model class.

Let’s introduce the model configuration and training functions of 

the model class and its subclasses. Taking the network encapsulated by 

the Sequential container as an example, we first create a five-layer fully 
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connected network for MNIST handwritten digital picture recognition. The 

code is as follows:

# Create a 5-layer fully connected network

network = Sequential([layers.Dense(256, activation='relu'),

                     layers.Dense(128, activation='relu'),

                     layers.Dense(64, activation='relu'),

                     layers.Dense(32, activation='relu'),

                     layers.Dense(10)])

network.build(input_shape=(4, 28*28))

network.summary()

After the network is created, the normal process is to iterate over 

multiple Epochs in the dataset, generate training data in batches, do 

forward propagation calculation, then calculate the error value through 

the loss function, and automatically calculate the gradient and update the 

network parameters by back propagation. Since this part of the logic is very 

general, the compile() and fit() functions are provided in Keras to facilitate 

the logic. We can specify the optimizer, loss function, evaluation metrics, 

and other settings used by the network through the compile function 

directly. This step is called configuration.

# Import optimizer, loss function module

from tensorflow.keras import optimizers,losses

# Use Adam optimizer with learning rate of 0.01

# Use cross-entropy loss function with Softmax

network.compile(optimizer=optimizers.Adam(lr=0.01),

        loss=losses.CategoricalCrossentropy(from_logits=True),

         metrics=['accuracy'] # Set accuracy as 

evaluation metric

)
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The optimizer, loss function, and other parameters specified in the 

compile() function are also the parameters that we need to set during our 

own training. Keras implements this part of the common logic internally to 

improve development efficiency.

8.2.2  Model Training
After the model is configured, the datasets for training and validation can 

be sent through the fit() function. This step is called model training.

# Training dataset is train_db, and validation dataset is val_db

# Train 5 epochs and validate every 2 epoch

# Training record and history is saved in history variable

history = network.fit(train_db, epochs=5, validation_data=val_db,  

validation_freq=2)

train_db can be a tf.data.Dataset object or a Numpy array. The Epochs 

parameter specifies the number of Epochs for training iterations. The 

validation_data parameter specifies the dataset used for validation, and 

the validation frequency is controlled by validation_freq.

The preceding code can achieve the network training and validation 

functions. The fit function will return the history of the training process 

data records, where history.history is a dictionary object, including the loss 

of the training process, evaluation metrics, and other records, such as:

In [4]: history.history # print training record

Out[4]:

{'loss': [0.31980024444262184,  # training loss

  0.1123824894875288,

  0.07620834542314212,

  0.05487803366283576,

  0.041726120284820596],  # training accuracy
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'accuracy': [0.904, 0.96638334, 0.97678334, 0.9830833, 

0.9870667],

 'val_loss': [0.09901347314302303, 0.09504951824009701],   

# validation loss

 'val_accuracy': [0.9688, 0.9703]}  # validation accuracy

The operation of the fit() function represents the training process of 

the network, so it will consume considerable training time and return after 

the training is completed. The historical data generated during the training 

can be obtained through the return value object. It can be seen that the 

code implemented through the Compile&Fit method is very concise and 

efficient, which greatly reduces the development time. However, because 

the interface is very high level, the flexibility is also reduced, and it is up to 

the user to decide whether to use it.

8.2.3  Model Testing
The model class can not only easily complete the network configuration, 

training, and validation, but also is very convenient for prediction and 

testing. We will elaborate on the difference between validation and 

testing in the chapter of overfitting. Here, validation and testing can be 

understood as a way of model evaluation.

The Model.predict(x) method can complete the model prediction, for 

example:

# Load one batch of test dataset

x,y = next(iter(db_test))

print('predict x:', x.shape) # print the batch shape

out = network.predict(x) # prediction

print(out)
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where the out is the output of the network. Through the preceding 

code, the trained model can be used to predict the label information of 

new samples.

If you simply need to test the performance of the model, you can use 

Model.evaluate(db) to test all the samples on the db dataset and print out 

the performance indicators, for example:

network.evaluate(db_test)

8.3  Model Saving and Loading
After the model training is completed, the model needs to be saved to a file 

system to facilitate subsequent model testing and deployment. In fact, it is 

also a good habit to save the model state during training, which is especially 

important for training large-scale networks. Generally, a large- scale 

network requires several days or even weeks of training. Once the training 

process is interrupted or an accident occurs, the previous training progress 

will be lost. If the model state can be saved to the file system intermittently, 

even if an accident such as a downtime occurs, it can be recovered from the 

latest network state file, thereby avoiding wasting a lot of training time and 

computing resources. Therefore, the preservation and loading of the model 

is very important.

In Keras, there are three commonly used methods for saving and 

loading models.

8.3.1  Tensor Method
The state of the network is mainly reflected in the structure of the network 

and tensor data within the network layer. Therefore, under the condition 

of having the source file of the network structure, it is the most lightweight 

way to directly save the network tensor parameters to the file system. 
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Taking the MNIST handwritten digital picture recognition model as an 

example, the current network parameters can be saved by calling the 

Model.save_weights(path) method. The code is as follows:

network.save_weights('weights.ckpt') # Save tensor data of 

the model

The preceding code saves the network model to the weights.ckpt file. 

When needed, first we create a network object, and then call the load_

weights(path) method of the network object to load the tensor value saved 

in the specified model file to the current network parameters, for example:

# Save tensor data of the model

network.save_weights('weights.ckpt')

print('saved weights.')

del network # delete network object

# Create similar network

network = Sequential([layers.Dense(256, activation='relu'),

                     layers.Dense(128, activation='relu'),

                     layers.Dense(64, activation='relu'),

                     layers.Dense(32, activation='relu'),

                     layers.Dense(10)])

network.compile(optimizer=optimizers.Adam(lr=0.01),

         loss=tf.losses.CategoricalCrossentropy(from_

logits=True),

        metrics=['accuracy']

    )

# Load weights from file

network.load_weights('weights.ckpt')

print('loaded weights!')

This method of saving and loading the network is the most lightweight. 

The file only saves the values of the tensor parameters, and there are 

no other additional structural parameters. But it needs to use the same 
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network structure to be able to restore the network state correctly, so it is 

generally used in the case of having network source files.

8.3.2  Network Method
Let’s introduce a method that does not require network source files 

and only needs model parameter files to recover the network model. 

The model structure and model parameters can be saved to the path 

file through the Model.save(path) function, and the network structure 

and network parameters can be restored through keras.models.load_

model(path) without the need for network source files .

First, save the MNIST handwritten digital picture recognition model to 

a file, and delete the network object:

# Save model and parameters to a file

network.save('model.h5')

print('saved total model.')

del network # Delete the network

The structure and state of the network can be recovered through the 

model.h5 file, and there is no need to create network objects in advance. 

The code is as follows:

# Recover the model and parameters from a file

network = keras.models.load_model('model.h5')

As you can see, in addition to storing model parameters, the model.

h5 file should also save network structure information. You can directly 

recover the network object from the file without creating a model in 

advance.
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8.3.3  SavedModel method
TensorFlow is favored by the industry, not only because of the excellent 

neural network layer API support, but also because it has powerful 

ecosystem, including mobile and web support. When the model needs 

to be deployed to other platforms, the SavedModel method proposed by 

TensorFlow is platform-independent.

By tf.saved_model.save(network, path), the model can be saved to the 

path directory as follows:

#  Save model and parameters to a file

tf.saved_model.save(network, 'model-savedmodel')

print('saving savedmodel.')

del network # Delete network object

The following network files appear in the file system model- 

savedmodel directory, as shown in Figure 8-1:

Figure 8-1. SavedModel method directory

Users don’t need to care about the file saving format, they only need to 

restore the model object through the tf.saved_model.load function. After 

recovering the model instance, we complete the calculation of the test 

accuracy rate and achieve the following:

print('load savedmodel from file.')

# Recover network and parameter from files

network =  tf.saved_model.load('model-savedmodel')

# Accuracy metrics

acc_meter = metrics.CategoricalAccuracy()
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for x,y in ds_val:   # Loop through test dataset

    pred = network(x) # Forward calculation

     acc_meter.update_state(y_true=y, y_pred=pred)  

# Update stats

# Print accuracy

print("Test Accuracy:%f" % acc_meter.result())

8.4  Custom Network
Although Keras provides many common network layer classes, the 

network used for deep learning are far more than that. Researchers 

generally implement relatively new network layers on their own. 

Therefore, it is very important to master the custom network layer and the 

implementation of the network.

For the network layer that needs to create customized logic, it can 

be implemented through a custom class. When creating a customized 

network layer class, you need to inherit from the layers.Layer base class. 

When creating a custom network class, you need to inherit from the keras.

Model base class, so the custom class created in this way can easily use the 

Layer/Model base class. The parameter management and other functions 

provided by the class can also be used interactively with other standard 

network layer classes.

8.4.1  Custom Network Layer
For a custom network layer, we at least need to implement the 

initialization (__init__) method and the forward propagation logic. Let’s 

take a specific custom network layer as an example, assuming that a fully 

connected layer without bias vectors is needed, that is, bias is 0, and the 

fixed activation function is ReLU. Although this can be created through the 

standard dense layer, we still explain how to implement a custom network 

layer by implementing this “special” network layer class.
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First, create a class and inherit from the base layer class. Create an 

initialization method, and call the initialization function of the parent 

class. Because it is a fully connected layer, two parameters need to be set: 

the length of the input feature inp_dim and the length of the output feature 

outp_dim, and the shape size is created by self.add_variable(name, shape). 

The name tensor W is set to be optimized.

class MyDense(layers.Layer):

    # Custom layer

    def __init__(self, inp_dim, outp_dim):

        super(MyDense, self).__init__()

        # Create weight tensor and set to be trainable

         self.kernel = self.add_variable('w', [inp_dim,  

outp_dim], trainable=True)

It should be noted that self.add_variable will return a Python reference 

to the tensor W, and the variable name is maintained internally by 

TensorFlow and is used less often. We instantiate the MyDense class and 

view its parameter list, for example:

In [5]: net = MyDense(4,3) # Input dimension is 4 and output 

dimension is 3.

net.variables,net.trainable_variables  # Check the trainable 

parameters

Out[5]:

# All parameters

([<tf.Variable 'w:0' shape=(4, 3) dtype=float32, numpy=...

# Trainable parameters

 [<tf.Variable 'w:0' shape=(4, 3) dtype=float32, numpy=...

You can see that the tensor W is automatically included in the 

parameter list.
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By modifying to self.kernel = self.add_variable(‘w’, [inp_dim, outp_

dim], trainable = False), we can set the tensor W not to be trainable and 

then observe the management state of the tensor:

([<tf.Variable 'w:0' shape=(4, 3) dtype=float32, numpy=...],  

# All parameters

[])# Trainable parameters

As you can see, the tensor is not managed by trainable_variables at 

this time. In addition, class member variables created as tf.Variable in class 

initialization are also automatically included in tensor management, for 

example:

         self.kernel = tf.Variable(tf.random.normal([inp_dim, 

outp_dim]), trainable=False)

The list of managed tensors is printed out as follows:

# All parameters

([<tf.Variable 'Variable:0' shape=(4, 3) dtype=float32, numpy=...],

[])# Trainable parameters

After the initialization of the custom class, we will design the forward 

calculation logic. For this example, only the matrix operation O = X @ W 

needs to be completed and the fixed ReLU activation function can be used. 

The code is as follows:

    def call(self, inputs, training=None):

        # Forward calculation

        # X@W

        out = inputs @ self.kernel

        # Run activation function

        out = tf.nn.relu(out)

        return out
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As aforementioned, the forward calculation logic is implemented 

in the call(inputs, training = None) function, where inputs parameter 

represents input and is passed in by the user. The training parameter is 

used to specify the state of the model: True means training mode and False 

indicates testing mode, and default value is None, which is the test mode. 

Since the training and test modes of the fully connected layer are logically 

consistent, no additional processing is required here. For the network layer 

whose test and training modes are inconsistent, the logic to be executed 

needs to be designed according to the training parameters.

8.4.2  Customized Network
After completing the custom fully connected layer class implementation, 

we created the MNIST handwritten digital picture model based on the 

“unbiased fully connected layer” described previously.

The custom network class can be easily encapsulated into a network 

model through the Sequential container like other standard classes:

network = Sequential([MyDense(784, 256), # Use custom layer

                     MyDense(256, 128),

                     MyDense(128, 64),

                     MyDense(64, 32),

                     MyDense(32, 10)])

network.build(input_shape=(None, 28*28))

network.summary()

It can be seen that by stacking our custom network layer classes, a 

five- layer fully connected layer network can also be realized. Each layer of 

the fully connected layer has no bias tensor, and the activation function 

uses the ReLU function.

The Sequential container is suitable for a network model in which 

data propagates in order from the first layer to the second layer, and then 

from the second layer to the third layer, and propagates in this manner. For 
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complex network structures, for example, the input of the third layer is not 

only the output of the second layer, but also the output of the first layer. 

At this time, it is more flexible to use a customized network. First, create a 

class that inherits from the model base class, and then respectively create 

the corresponding network layer object as follows:

class MyModel(keras.Model):

    # Custom network class

    def __init__(self):

        super(MyModel, self).__init__()

        # Create the network

        self.fc1 = MyDense(28*28, 256)

        self.fc2 = MyDense(256, 128)

        self.fc3 = MyDense(128, 64)

        self.fc4 = MyDense(64, 32)

        self.fc5 = MyDense(32, 10)

Then implement the forward operation logic of the custom network as 

follows:

    def call(self, inputs, training=None):

        # Forward calculation

        x = self.fc1(inputs)

        x = self.fc2(x)

        x = self.fc3(x)

        x = self.fc4(x)

        x = self.fc5(x)

        return x

This example can be implemented directly using the Sequential 

container method. But the forward calculation logic of the customized 

network can be freely defined and more general. We will see the 

superiority of the customized network in the chapter of convolutional 

neural networks.
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8.5  Model Zoo
For commonly used network models, such as ResNet and VGG, you do not 

need to manually create them. They can be implemented directly with the 

keras.applications submodule with a line of code. At the same time, you 

can also load pre-trained models by setting the weights parameters.

8.5.1  Load Model
Taking the ResNet50 network model as an example, the network after 

removing the last layer of ResNet50 is generally used as the feature 

extraction subnetwork for the new task, that is, using the pre-trained 

network parameters on the ImageNet dataset to initialize and appending 

one fully connected layer corresponding to the number of data categories 

according to the category of the task, so that new tasks can be learned 

quickly and efficiently on the basis of the pre-trained network.

First, use the Keras model zoo to load the pre-trained ResNet50 

network by ImageNet. The code is as follows:

# Load ImageNet pre-trained network. Exclude the last layer.

resnet = keras.applications.ResNet50(weights='imagenet',inclu

de_top=False)

resnet.summary()

# test the output

x = tf.random.normal([4,224,224,3])

out = resnet(x) # get output

out.shape

The preceding code automatically downloads the model structure and 

pre-trained network parameters on the ImageNet dataset from the server. 

By setting the include_top parameter to False, we choose to remove the 

last layer of ResNet50. The size of the output feature map of the network 
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is [b, 7, 7, 2048]. For a specific task, we need to set a custom number of 

output nodes. Taking 100 classification tasks as an example, we rebuild a 

new network based on ResNet50. Create a new pooling layer (the pooling 

layer here can be understood as a function of downsampling in high and 

wide dimensions) and reduce the features dimension from [b, 7, 7, 2048] to 

[b, 2048] as in the following.

In [6]:

# New pooling layer

global_average_layer = layers.GlobalAveragePooling2D()

# Use last layer's output as this layer's input

x = tf.random.normal([4,7,7,2048])

# Use pooling layer to reduce dimension from [4,7,7,2048] to 

[4,1,1,2048],and squeeze to [4,2048]

out = global_average_layer(x)

print(out.shape)

Out[6]: (4, 2048)

Finally, create a new fully connected layer and set the number of 

output nodes to 100. The code is as follows:

In [7]:

# New fully connected layer

fc = layers.Dense(100)

# Use last layer's output as this layer's input

x = tf.random.normal([4,2048])

out = fc(x)

print(out.shape)

Out[7]: (4, 100)
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After creating a pre-trained ResNet50 feature sub-network, a new 

pooling layer, and a fully connected layer, we re-use the Sequential 

container to encapsulate a new network:

# Build a new network using previous layers

mynet = Sequential([resnet, global_average_layer, fc])

mynet.summary()

You can see the structure information of the new network model is:

Layer (type)                 Output 

Shape              Param Number

===============================================================

resnet50 (Model)             (None, None, None, 2048)  23587712

_______________________________________________________________

global_average_pooling2d (Gl (None, 2048)              0

_______________________________________________________________

dense_4 (Dense)              (None, 100)               204900

===============================================================

Total params: 23,792,612

Trainable params: 23,739,492

Non-trainable params: 53,120

By setting resnet.trainable = False, you can choose to freeze the 

network parameters of the ResNet part and only train the newly created 

network layer, so that the network model training can be completed 

quickly and efficiently. Of course, you can also update all the parameters of 

the network.
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8.6  Metrics
In the training process of the network, metrics such as accuracy and recall 

rate are often required. Keras provides some commonly used metrics in 

the keras.metrics module.

There are four main steps in the use of Keras metrics: creating a new 

metrics container, writing data, reading statistical data, and clearing the 

measuring container.

8.6.1  Create a Metrics Container
In the keras.metrics module, it provides many commonly used metrics 

classes, such as mean, accuracy, and cosine similarity. In the following, we 

take the mean error as an example.

loss_meter = metrics.Mean()

8.6.2  Write Data
New data can be written through the update_state function, and the metric 

will record and process the sampled data according to its own logic. For 

example, the loss value is collected once at the end of each step:

      # Record the sampled data, and convert the tensor to an 

ordinary value through the float() function

        loss_meter.update_state(float(loss))

After the preceding sampling code is placed at the end of each batch 

operation, the meter will automatically calculate the average value based 

on the sampled data.
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8.6.3  Read Statistical Data
After sampling multiple times of data, you can choose to call the 

measurer’s result() function to obtain statistical values. For example, the 

interval statistical loss average is as follows:

      # Print the average loss during the statistical period

        print(step, 'loss:', loss_meter.result())

8.6.4  Clear the Container
Since the metric container will record all historical data, it is necessary to 

clear the historical status when starting a new round of statistics. It can be 

realized by reset_states() function. For example, after reading the average 

error every time, clear the statistical information to start the next round of 

statistics as follows:

    if step % 100 == 0:

        # Print the average loss

        print(step, 'loss:', loss_meter.result())

        loss_meter.reset_states() # reset the state

8.6.5  Hands-On Accuracy Metric
According to the method of using the metric tool, we use the accuracy 

metric to count the accuracy rate during the training process. First, create a 

new accuracy measuring container as follows:

acc_meter = metrics.Accuracy()

After each forward calculation is completed, record the training 

accuracy rate. It should be noted that the parameters of the update_state 

function of the accuracy class are the predicted value and the true 
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value, not the accuracy rate of the current batch. We write the label and 

prediction result of the current batch sample into the metric as follows:

            # [b, 784] => [b, 10, network output

            out = network(x)

            # [b, 10] => [b], feed into argmax()

            pred = tf.argmax(out, axis=1)

            pred = tf.cast(pred, dtype=tf.int32)

            # record the accuracy

            acc_meter.update_state(y, pred)

After counting the predicted values of all batches in the test set, print 

the average accuracy of the statistics and clear the metric container. The 

code is as follows:

         print(step, 'Evaluate Acc:', acc_meter.result().

numpy())

        acc_meter.reset_states() # reset metric

8.7  Visualization
In the process of network training, it is very important to improve the 

development efficiency and monitor the training progress of the network 

through the web terminal and visualize the training results. TensorFlow 

provides a special visualization tool called TensorBoard, which writes 

monitoring data to the file system through TensorFlow and uses the web 

backend to monitor the corresponding file directory, thus allowing users to 

view network monitoring data.
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The use of TensorBoard requires cooperation between the model 

code and the browser. Before using TensorBoard, you need to install the 

TensorBoard library. The installation command is as follows:

# Install TensorBoard

pip install tensorboard

Next, we introduce how to use the TensorBoard tool to monitor the 

progress of network training in the model side and the browser side.

8.7.1  Model Side
On the model side, you need to create a summary class that writes 

monitoring data when needed. First, create an instance of the monitoring 

object class through tf.summary.create_file_writer, and specify the 

directory where the monitoring data is written. The code is as follows:

# Create a monitoring class, the monitoring data will be 

written to the log_dir directory

summary_writer = tf.summary.create_file_writer(log_dir)

We take monitoring error and visual image data as examples to 

introduce how to write monitoring data. After the forward calculation is 

completed, for the scalar data such as error, we record the monitoring 

data through the tf.summary.scalar function and specify the time stamp 

step parameter. The step parameter here is similar to the time scale 

information corresponding to each data and can also be understood as the 

coordinates of the data curve, so it should not be repeated. Each type of 

data is distinguished by the name of the string, and similar data needs to 

be written to the database with the same name. For example:

        with summary_writer.as_default():

            # write the current loss to train-loss database

             tf.summary.scalar('train-loss', float(loss), 

step=step)
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TensorBoard distinguishes different types of monitoring data by string 

ID, so for error data, we named it “train-loss”; other types of data cannot be 

written to prevent data pollution.

For picture-type data, you can write monitoring picture data through 

the tf.summary.image function. For example, during training, the sample 

image can be visualized by the tf.summary.image function. Since the 

tensor in TensorFlow generally contains multiple samples, the tf.summary.

image function accepts tensor data of multiple pictures and sets the max_

outputs parameter to select the maximum number of displayed pictures. 

The code is as follows:

        with summary_writer.as_default():

            # log accuracy

             tf.summary.scalar('test-acc', float(total_correct/

total), step=step)

            # log images

             tf.summary.image("val-onebyone-images:",  

val_images, max_outputs=9, step=step)

Run the model program, and the corresponding data will be written to 

the specified file directory in real time.

8.7.2  Browser Side
When running the program, the monitoring data is written to the specified 

file directory. If you want to remotely view and visualize these data in real 

time, you also need to use a browser and a web backend. The first step is 

to open the web backend. Run command “tensorboard --logdir path” in 

terminal and specify the file directory path monitored by the web backend, 

then you can open the web backend monitoring process, as shown in 

Figure 8-2:
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Figure 8-2. Open web server

Open a browser and enter the URL http://localhost: 6006 (you can 

also remotely access through the IP address, the specific port number 

may change depending on the command prompt) to monitor the progress 

of the network training. TensorBoard can display multiple monitoring 

records at the same time. On the left side of the monitoring page, you can 

select monitoring records, as shown in Figure 8-3:

Figure 8-3. Snapshot of TensorBoard

On the upper end of the monitoring page, you can choose different 

types of data monitoring pages, such as scalar monitoring page SCALARS 

and picture visualization page IMAGES. For this example, we need to 

monitor the training error and test accuracy rate for scalar data, and its 

curve can be viewed on the SCALARS page, as shown in Figure 8-4 and 

Figure 8-5.
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Figure 8-4. Training loss curve

Figure 8-5. Training accuracy curve

On the IMAGES page, you can view images at each step as shown in 

Figure 8-6.
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Figure 8-6. Pictures from each step

In addition to monitoring scalar data and image data, TensorBoard 

also supports functions such as viewing histogram distribution of tensor 

data through tf.summary.histogram, and printing text information through 

tf.summary.text. For example:

        with summary_writer.as_default():

             tf.summary.scalar('train-loss', float(loss), 

step=step)

   tf.summary.histogram('y-hist',y, step=step)

            tf.summary.text('loss-text',str(float(loss)))

You can view the histogram of the tensor on the HISTOGRAMS page, 

as shown in Figure 8-7, and you can view the text information on the TEXT 

page, as shown in Figure 8-8.

Figure 8-7. TensorBoard histogram
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Figure 8-8. TensorBoard text visualization

In fact, in addition to TensorBoard, the Visdom tool developed by 

Facebook can also facilitate the visualization of data, and supports a 

variety of visualization methods in real time, and is more convenient to 

use. Figure 8-9 shows the visualization of Visdom data. Visdom can directly 

accept PyTorch’s tensor-type data but cannot directly accept TensorFlow’s 

tensor-type data. It needs to be converted to a Numpy array. For readers 

pursuing rich visualization methods and real-time monitoring, Visdom 

may be a better choice. 
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Figure 8-9. Visdom snapshot1

8.8  Summary
In this chapter, we introduced the usage of Keras advanced API which 

can save us a lot of time during network development. We can use the 

container method to construct networks easily. Training and testing a 

neural network can be quickly implemented using the Keras built-in 

functions. After the network is trained and tested, we can also save the 

trained model and reload the model in the future using Keras. Besides 

common network layers, Keras also provides functionalities to build 

customized network layers for different use cases. We also discussed 

how to load popular network models using Keras as well as setting up 

evaluation metrics and visualizing model performance using TensorBoard. 

The tools we learned through this chapter can help us increase network 

development efficiency significantly.

1 Image source: https://github.com/facebookresearch/visdom
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CHAPTER 9

Overfitting
Everything should be made as simple as possible, but not 
simpler.

—Albert Einstein

The main purpose of machine learning is to learn the real model of the 

data from the training set, so that it can perform well on the unseen 

test set. We call this the generalization ability. Generally speaking, the 

training set and the test set are sampled from the same data distribution. 

The sampled samples are independent of each other, but come from the 

same distribution. We call this assumption the independent identical 

distribution (i.i.d.) assumption.

The expressive power of the model has been mentioned earlier, also 

known as the capacity of the model. When the model’s expressive power 

is weak, such as a single linear layer, it can only learn a linear model 

and cannot approximate the nonlinear model well. When the model’s 

expressive power is too strong, it may be possible to reduce the noise 

modalities of the training set, but leads to poor performance on the test 

set (generalization ability is weak). Therefore, for different tasks, designing 

a model with appropriate capacity can achieve better generalization 

performance.

https://doi.org/10.1007/978-1-4842-7915-1_9#DOI
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9.1  Model Capacity
In layman’s terms, the capacity or expressive capacity of a model refers 

to the model’s ability to fit complex functions. An indicator reflecting the 

capacity of the model is the size of the hypothesis space of the model, that 

is, the size of the set of functions that the model can represent. The larger 

and more complete the hypothesis space, the more likely it is to search 

from the hypothesis space for a function that approximates the real model. 

Conversely, if the hypothesis space is very limited, it is difficult to find a 

function that approximates the real model.

Consider sampling from real distribution:

 
p x y y x xdata � � � � � � � �� �, | , ,sin [ ]5 5  

A small number of points are sampled from the real distribution to 

form the training set, which contains the observation error ϵ, as shown 

by the small dots in Figure 9-1. If we only search the model space of all 

first-degree polynomials and set the bias to 0, that is, y = ax, as shown by 

the straight line of the first-degree polynomial in Figure 9-1. Then it is 

difficult to find a straight line that closely approximates the distribution 

of real data. Slightly increase the hypothesis space so that the hypothesis 

space is all third-degree polynomial functions, that is, y = ax3 + bx2 + cx, it is 

obvious that this hypothesis space is obviously larger than the hypothesis 

space of the first-degree polynomial, we can find a curve (as shown in 

Figure 9-1) that reflects the relationship of the data better than the first- 

order polynomial model, but it is still not good enough. Increase the 

hypothesis space again so that the searchable function is a polynomial 

of degree 5, that is, y = ax5 + bx4 + cx3 + dx2 + ex. In this hypothesis space, 

a better function can be searched, as shown by the polynomial of degree 

5 in Figure 9-1. After increasing the hypothesis space again, as shown in 

the polynomial curves of 7, 9, 11, 13, 15, and 17 in Figure 9-1, the larger 

the hypothesis space of the function, the more likely it is to find a function 

model that better approximates the real distribution.
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Figure 9-1. Polynomial capability

However, an excessively large hypothesis space will undoubtedly 

increase the search difficulty and computational cost. In fact, under the 

constraints of limited computing resources, a larger hypothesis space may 

not necessarily be able to search for a better model. Due to the existence of 

observation errors, a larger hypothesis space may contain a larger number 

of functions with too strong expression ability, which can also learn the 

observation errors of the training samples, thus hurting the generalization 

ability of the model. Choosing the right model capacity is a difficult problem.

9.2  Overfitting and Underfitting
Because the distribution of real data is often unknown and complicated, 

it is impossible to deduce the type of distribution function and related 

parameters. Therefore, when choosing the capacity of the learning model, 

people often choose a slightly larger model capacity based on empirical 

values. However, when the capacity of the model is too large, it may appear 

to perform better on the training set, but perform worse on the test set, 

as shown in Figure 9-2. When the capacity of the model is too small, it 

may have poor performance in both the training set and the testing set as 

shown in the area to the left of the red vertical line in Figure 9-2.
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Figure 9-2. The relation between model capacity and error [1]

When the capacity of the model is too large, in addition to learning 

the modalities of the training set data, the network model also learns 

additional observation errors, resulting in the learned model performing 

better on the training set, but poor in unseen samples, that is, the 

generalization ability of the model is weak. We call this phenomenon 

overfitting. When the capacity of the model is too small, the model 

cannot learn the modalities of the training set data well, resulting in poor 

performance on both the training set and the unseen samples. We call this 

phenomenon underfitting.

Here is a simple example to explain the relationship between the 

model’s capacity and the data distribution. Figure 9-3 plots the distribution 

of certain data. It can be roughly speculated that the data may belong 

to a certain degree 2 polynomial distribution. If we use a simple linear 

function to learn, we will find it difficult to learn a better function, resulting 

in the underfitting phenomenon that the training set and the test set do 

not perform well, as shown in Figure 9-3 (a). However, if you use a more 

complex function model to learn, it is possible that the learned function 

will excessively “fit” the training set samples, but resulting in poor 

performance on the test set, that is, overfitting, as shown in Figure 9-3 (c). 

Only when the capacity of the learned model and the real model roughly 

match, the model can have a good generalization ability, as shown in 

Figure 9-3 (b).
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(a) Underfitting (b) Matching capacity (c) Overfitting

Figure 9-3. Overfitting and underfitting

Consider the distribution pdata of data points (x, y), where

 y x� � �� �sin 1 2. �  

During sampling, random Gaussian noise is added to obtain a dataset 

of 120 points, as shown in Figure 9-4. The curve in the figure is the real 

model function, the black round points are the training samples, and the 

green matrix points are the test samples.

Figure 9-4. Dataset and the real function
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In the case of a known real model, it is natural to design a function 

space with appropriate capacity to obtain a good learning model. As 

shown in Figure 9-5, we assume that the model is a second-degree 

polynomial model, and the learned function curve is approximating the 

real model. However, in actual scenarios, the real model is often unknown, 

so if the design hypothesis space is too small, it will be impossible to search 

for a suitable learning model. If the design hypothesis space is too large, it 

will result in poor model generalization ability.

Figure 9-5. Appropriate model capability

So how to choose the capacity of the model? Statistical learning theory 

provides us with some ideas. The VC dimension (Vapnik-Chervonenkis 

dimension) is a widely used method to measure the capacity of functions. 

Although these methods provide a certain degree of theoretical guarantee 

for machine learning, these methods are rarely applied to deep learning. 

Part of the reason is that the neural network is too complicated to 

determine the VC dimension of the mathematical model behind the 

network structure.
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Although statistical learning theory is difficult to give the minimum 

capacity required by a neural network, it can be used to guide the design 

and training of a neural network based on Occam’s razor. Occam’s 

razor principle was a rule of solution proposed by William of Occam, a 

fourteenth-century logician and Franciscan monk of the Franciscans. 

He stated in his book that “Don’t waste more things and do things that 

you can do well with less.” In other words, if the two-layer neural network 

structure can express the real model well, then the three-layer neural 

network can also express well, but we should prefer to use the simpler two- 

layer neural network because its parameters’ amount is smaller, it is easier 

to train, and it is easier to get a good generalization error through fewer 

training samples.

9.2.1  Underfitting
Let us consider the phenomenon of underfitting. As shown in Figure 9-6, 

black dots and green rectangles are independently sampled from the 

distribution of a parabolic function. Because we already know the real 

model, if we use a linear function with lower capacity than the real model 

to fit the data, it is difficult for the model to perform well. The specific 

performance is that the learned linear model has a larger error (such as 

the mean square error) on the training set, and the error on the test set is 

also larger.
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Figure 9-6. A typical underfitting model

When we find that the current model has maintained a high error 

on the training set, it is difficult to optimize and reduce the error, and it 

also performs poorly on the test set, we can consider whether there is a 

phenomenon of underfitting. The problem of underfitting can be solved 

by increasing the number of layers of the neural network or increasing 

the size of the intermediate dimension. However, because modern deep 

neural network models can easily reach deeper layers, the capacity of the 

model used for learning is generally sufficient. In real applications, more 

overfitting phenomena occur.

9.2.2  Overfitting
Consider the same problem, the black dots of the training set and the 

green rectangles of the test machine are independently sampled from a 

parabolic model with the same distribution. When we set the hypothesis 

space of the model to 25th polynomial, it is much larger than the 

functional capacity of the real model. It is found that the learned model is 

likely to overfit the training sample, resulting in the error of the learning 

model on the training sample is very small, even smaller than the error 
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of the real model on the training set. But for the test sample, the model 

performance drops sharply, and the generalization ability is very poor, as 

shown in Figure 9-7.

Figure 9-7. A typical overfitting model

The phenomenon of overfitting in modern deep neural networks is 

very easy to occur, mainly because the neural network has a very strong 

expressive ability and the number of samples in the training set is not 

enough, it is easy to appear that the capacity of the neural network is too 

large. So how to effectively detect and reduce overfitting?

Next, we will introduce a series of methods to help detect and suppress 

overfitting.

9.3  Dataset Division
Earlier we introduced that the dataset needs to be divided into a training 

set and a test set. In order to select model hyperparameters and detect 

overfitting, it is generally necessary to split the original training set into 

a new training set and a validation set, that is, the dataset needs to be 

divided into three subsets: training set, validation set, and test set.
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9.3.1  Validation Set and Hyperparameters
The difference between the training set and the test set has been 

introduced earlier. The training set Dtrain is used to train model parameters, 

and the test set Dtest is used to test the generalization ability of the model. 

The samples in the test set cannot participate in the model training, 

preventing the model from “memorizing” the characteristics of the data 

and damaging the generalization ability of the model. Both the training 

set and the test set are sampled from the same data distribution. For 

example, the MNIST handwritten digital picture set has a total of 70,000 

sample pictures, of which 60,000 pictures are used as the training set, and 

the remaining 10,000 pictures are used for the test set. The separation 

ratio of the training set and the test set can be defined by the user. For 

example, 80% of the data is used for training, and the remaining 20% is 

used for testing. When the size of the data set is small, in order to test the 

generalization ability of the model more accurately, the proportion of 

the test set can be increased appropriately. Figure 9-8 demonstrates the 

division of the MNIST handwritten digital picture collection: 80% is used 

for training, and the remaining 20% is used for testing.

Figure 9-8. Training and testing dataset division
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However, it is not enough to divide the dataset into only the training set 

and the test set. Because the performance of the test set cannot be used as 

feedback for model training, we need to be able to pick out more suitable 

model hyperparameters during model training to determine whether 

the model is overfitting. Therefore, we need to divide the training set into 

training set and validation set, as shown in Figure 9-9. The divided training 

set has the same function as the original training set and is used to train 

the parameters of the model, while the validation set is used to select the 

hyperparameters of the model. Its functions include:

• Adjust the learning rate, weight decay coefficient, 

training times, etc. according to the performance of the 

validation set.

• Readjust the network topology according to the 

performance of the validation set.

• According to the performance of the validation set, 

determine whether it is overfitting or underfitting.

Figure 9-9. Training, validation, and test dataset

Similar to the division of the training set-test set, the training set, 

validation set, and test set can be divided according to a custom ratio, 

such as the common 60%-20%-20% division. Figure 9-9 shows the MNIST 

handwriting dataset schematic diagram of the division.
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The difference between the validation set and the test set is that the 

algorithm designer can adjust the settings of various hyperparameters of 

the model according to the performance of the validation set to improve 

the generalization ability of the model, but the performance of the test set 

cannot be used to adjust the model. Otherwise, the functions of the test set 

and the validation set will overlap, so the performance on the test set will 

not represent the generalization ability of the model.

In fact, some developers will incorrectly use the test set to select 

the best model, and then use it as a model generalization performance 

report. For those cases, the test set is actually the validation set, so the 

“generalization performance” reported is essentially the performance on 

the validation set, not the real generalization performance. In order to 

prevent this kind of “cheating,” you can choose to generate multiple test 

sets, so that even if the developer uses one of the test sets to select the 

model, we can also use other test sets to evaluate the model, which is also 

commonly used in Kaggle competitions.

9.3.2  Early Stopping
Generally, we call one batch updating in the training set one Step, and 

iterating through all the samples in the training set once is called an Epoch. 

The validation set can be used after several Steps or Epochs to calculate 

the validation performance of the model. If the validation steps are too 

frequent, it can accurately observe the training status of the model, but it 

also introduces additional computation costs. It is generally recommended 

to perform a validation operation after several Epochs.

Taking the classification task as an example, the training performance 

indicators include training error, training accuracy, etc. Correspondingly, 

there are also validation error and validation accuracy during validation 

process, and test error and test accuracy during testing process. The 

training accuracy and validation accuracy can roughly infer whether the 

model is overfitting and underfitting. If the training error of the model is 
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low and the training accuracy is high, but the validation error is high and 

the validation accuracy rate is low, overfitting may occur. If the errors on 

both the training set and the validation set are high and the accuracy is 

low, then underfitting may occur.

When overfitting is observed, the capacity of the network model can 

be redesigned, such as reducing the number of layers of the network, 

reducing the number of parameters of the network, adding regularization 

methods, and adding constraints on the hypothesis space, so that the 

actual capacity of the model reduces to solve the overfitting phenomenon. 

When the underfitting phenomenon is observed, you can try to increase 

the capacity of the network, such as deepening the number of layers of the 

network, increasing the number of network parameters, and trying more 

complicated network structures.

In fact, since the actual capacity of the network can change as the 

training progresses, even with the same network settings, different 

overfitting and underfitting conditions may be observed. Figure 9-10 

shows a typical training curve for classification problems. The red curve 

is the training accuracy, and the blue curve is the test accuracy. As we can 

see from the figure, as the training progresses in the early stage of training, 

the training accuracy and test accuracy of the model show an increasing 

trend, and there is no overfitting phenomenon at this time. In the later 

stage of training, even with the same network structure, due to the change 

in the actual capacity of the model, we observed the phenomenon of 

overfitting. That is, the training accuracy continues to improve, but the 

generalization ability becomes weaker (the test accuracy decreases).

This means that for neural networks, even if the network 

hyperparameters amount remains unchanged (i.e., the maximum capacity 

of the network is fixed), the model may still appear to be overfitting, 

because the effective capacity of the neural network is closely related to 

the state of the network parameters. The effective capacity of the neural 

network can be very large, and the effective capacity can also be reduced 

by means of sparse parameters and regularization. In the early and middle 
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stages of training, the phenomenon of overfitting did not appear. As the 

number of training Epochs increased, the overfitting became more and 

more serious. In Figure 9-10, the vertical dotted line is in the best state 

of the network, there is no obvious overfitting phenomenon, and the 

generalization ability of the network is the best.

So how to choose the right Epoch to stop training early (early 

stopping) to avoid overfitting? We can predict the possible position of the 

most suitable Epoch by observing the change of the validation metric. 

Specifically, for the classification problem, we can record the validation 

accuracy of the model and monitor its change. When it is found that 

the validation accuracy has not decreased for successive Epochs, we 

can predict that the most suitable Epoch may have been reached, so we 

can stop training. Figure 9-11 plots the curve of training and validation 

accuracy with training Epoch during a specific training process. It can be 

observed that when Epoch is around 30, the model reaches its optimal 

state and we can stop training in advance.

Figure 9-10. Training process diagram
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Figure 9-11. Training curve example

Algorithm 1 is a pseudo-code that uses an early stop model training 

algorithm.

Algorithm 1:Network training with early stopping

Initialize parameter θ
repeat
  for step = 1, …,N do
      random select Batch {(x, y)}~D train

      θ ← θ − η∇θL(f(x), y)

  end
  if every n  th Epoch do
  Calculate validation set {(x, y)}~D val performance
    if validation performance doesn’t increase for certain successive steps do
         save the network and stop training
        end
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  do
until training reaches maximum Epoch
Use the saved network to calculate test set {(x, y)}~Dtest performance
Output:Network parameter θ and testing accuracy

9.4  Model Design
The validation set can determine whether the network model is overfitting 

or underfitting, which provides a basis for adjusting the capacity of 

the network model. For neural networks, the numbers of layers and 

parameters of the network are very important reference indicators for 

network capacity. By reducing the number of layers and reducing the 

size of the network parameters in each layer, the network capacity can be 

effectively reduced. Conversely, if the model is found to be underfitting, 

we can increase the capacity of the network by increasing the number of 

layers and the amount of parameters in each layer.

To demonstrate the effect of the number of network layers on network 

capacity, we visualized the decision boundary of a classification task. 

Figure 9-12, Figure 9-13, Figure 9-14, and Figure 9-15, respectively, 

demonstrate the decision boundary map for training two-category 

classification task under different network layers, where the red 

rectangular block and the blue circular block, respectively, represent 

the two types of samples on the training set. Only adjust the number of 

layers of the network while keeping other hyperparameters consistent. 

As shown in the figure, you can see that as the number of network layers 

increases, the learned model decision boundary is more and more close to 

training samples, indicating overfitting. For this task, the two-layer neural 

network can obtain good generalization ability. The deeper layer of the 
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network does not improve the overall model performance. Instead, it can 

lead to overfitting, and the generalization ability becomes worse, and the 

computation cost is also higher.

Figure 9-12. Two layers

Figure 9-13. Three layers
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Figure 9-14. Four layers

Figure 9-15. Six layers
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9.5  Regularization
By designing network models with different layers and sizes, the initial 

function hypothesis space can be provided for the optimization algorithm, but 

the actual capacity of the model can change as the network parameters are 

optimized and updated. Take the polynomial function model as an example:

 y x x x xn
n� � � � � � �� � � � � �0 1 2

2
3

3
  

The capacity of the preceding model can be simply measured 

through n. During the training process, if the network parameters βk + 1, 

⋯, βn are all 0, then the actual capacity of the network degenerates to 

the function capacity of the kth polynomial. Therefore, by limiting the 

sparsity of network parameters, the actual capacity of the network can be 

constrained.

This constraint is generally achieved by adding additional parameter 

sparsity penalties to the loss function. The optimization goal before the 

constraint added is:

 
min L f x y x y Dtrain

� � �� � � ��, ,,  

After adding additional constraints to the parameters of the model, the 

goal of optimization becomes:

 
min L f x y x y Dtrain

� � �� �� � � � � � � ��, ,� ,  

where Ω(θ) represents the sparsity constraint function on the network 

parameters θ. Generally, the sparsity constraint of the parameter θ is 

achieved by constraining the L norm of the parameter, that is:

 
� � �

�
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i

i l|| ||
 

where ‖θi‖l represents the l norm of the parameter θi.
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In addition to minimizing the original loss function L(x, y), the 

new optimization goal also needs to constrain the sparsity Ω(θ) of the 

network parameters. The optimization algorithm will reduce the network 

parameter sparsity Ω(θ) as much as possible while reducing L(x, y). Here 

λ is the weight parameter to balance the importance of L(x, y) and Ω(θ). 

Larger λ means that the sparsity of the network is more important; smaller 

λ means that the training error of the network is more important. By 

selecting the appropriate λ, you can get better training performance, while 

ensuring the sparsity of the network, which lead to a good generalization 

ability.

Commonly used regularization methods are L0, L1, and L2 

regularization.

9.5.1  L0 Regularization
L0 regularization refers to the regularization calculation method using the 

L0 norm as the sparsity penalty term Ω(θ), namely:
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The L0 norm ‖θi‖0 is defined as the number of non-zero elements in 

θi. The constraint of 
�

�
i

i� || ||0  can force the connection weights in the 

network to be mostly 0, thereby reducing the actual amount of network 

parameters and network capacity. However, because the L0 norm is not 

derivable, gradient descent algorithm cannot be used for optimization. L0 

norm is not often used in neural networks.

Chapter 9  Overfitting



335

9.5.2  L1 Regularization
The regularization calculation method using the L1 norm as the sparsity 

penalty term Ω(θ) is called L1 regularization, that is:
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The L1 norm ‖θi‖1 is defined as the sum of the absolute values 

of all elements in the tensor θi. L1 regularization is also called Lasso 

regularization, which is continuously derivable and widely used in neural 

networks.

L1 regularization can be implemented as follows:

# Create weights w1,w2

w1 = tf.random.normal([4,3])

w2 = tf.random.normal([4,2])

# Calculate L1 regularization term

loss_reg = tf.reduce_sum(tf.math.abs(w1))\

    + tf.reduce_sum(tf.math.abs(w2))

9.5.3  L2 Regularization
The regularization calculation method using the L2 norm as the sparsity 

penalty term Ω(θ) is called L2 regularization, that is:
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The L2 norm ‖θi‖2 is defined as the sum of squares of all elements in 

the tensor θi. L2 regularization is also called ridge regularization, which 

is continuous and derivable like L1 regularization, and is widely used in 

neural networks.
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The L2 regularization term is implemented as follows:

# Create weights w1,w2

w1 = tf.random.normal([4,3])

w2 = tf.random.normal([4,2])

# Calculate L2 regularization term

loss_reg = tf.reduce_sum(tf.square(w1))\

     + tf.reduce_sum(tf.square(w2))

9.5.4  Regularization Effect
Continue to take the crescent-shaped two-class data as an example. 

Under the condition that the other hyperparameters such as the network 

structure remain unchanged, the L2 regularization term is added to the 

loss function, and different regularization hyperparameter λ are used to 

obtain regularization effects of different degrees.

After training 500 Epochs, we obtain the classification decision 

boundaries of the learning model, as shown in Figure 9-16, Figure 9-17, 

Figure 9-18, and Figure 9-19. The distribution represents the classification 

effect when the regularization coefficient λ = 0.00001, 0.001, 0.1, and 0.13 

is used. It can be seen that as the regularization coefficient increases, 

the network penalties for parameter sparsity become larger, thus forcing 

the optimization algorithm to search for models that make the network 

capacity smaller. When λ = 0.00001, the regularization effect is relatively 

weak, and the network is overfitting. However, when在λ = 0.1, the network 

has been optimized to the appropriate capacity, and there is no obvious 

overfitting or underfitting.

In actual training, it is generally preferred to try smaller regularization 

coefficients to observe whether the network is overfitting. Then try to 

increase the parameter λ gradually to increase the sparsity of the network 

parameters and improve the generalization ability. However, excessively 
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large λ may cause the network to not converge and need to be adjusted 

according to the actual task.

Figure 9-16. Regularization parameter:0.00001

Figure 9-17. Regularization parameter:0.001
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Figure 9-18. Regularization parameter:0.1

Figure 9-19. Regularization parameter:0.13
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Under different regularization coefficients, we counted the value range 

of each connection weight in the network. Consider the weight matrix W 

of second layer of the network, whose shape is [256,256], that is, to convert 

a vector with an input length of 256 to an output vector of 256. From the 

perspective of the weight connection of the fully connected layer, the 

weight W include 256 ∙ 256 connection lines. We correspond them to the 

XY grids in Figure 9-20, Figure 9-21, Figure 9-22, and Figure 9-23, where 

the X axis range is [0,255] and the range of the Y axis is [0,255]. All integer 

points of the XY grid respectively represent each position of the weight 

tensor W of shape [256,256], and each grid point indicates the weight of the 

current connection. From the figure, we can see the influence of different 

degrees of regularization constraints on the network weights. When 

λ = 0.00001, the effect of regularization is relatively weak, and the weight 

values in the network are relatively large, and are mainly distributed in 

interval [−1.6088,1.1599]. After increasing the value to λ = 0.13, the network 

weight values are constrained in a smaller range [−0.1104,0.0785]. As 

shown in Table 9-1, the sparseness of the weights after regularization can 

also be observed.

Table 9-1. Weight variation after regularization

λ min(W     ) max(W     ) mean(W     )

0.00001 -1.6088 1.1599 0.0026

0.001 -0.1393 0.3168 0.0003

0.1 -0.0969 0.0832 0

0.13 -0.1104 0.0785 0
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Figure 9-20. Regularization parameter:0.00001

Figure 9-21. Regularization parameter:0.001
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Figure 9-22. Regularization parameter:0.1

Figure 9-23. Regularization parameter:0.13
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9.6  Dropout
In 2012, Hinton et al. used the dropout method in their paper “Improving 

neural networks by preventing co-adaptation of feature detectors” to 

improve model performance. Dropout method reduces the number of 

parameters of the model that actually participates in the calculation during 

each training by randomly disconnecting the neural network. However, 

during testing, dropout method will restore all connections to ensure the 

best performance during model testing.

Figure 9-24 is a schematic diagram of the connection status of a 

fully connected layer network during a certain forward calculation. 

Figure 9-24(a) is a standard fully connected neural network. The current 

node is connected to all input nodes in the previous layer. In the network 

layer to which the dropout function is added, as shown in Figure 9-24(b), 

whether each connection is disconnected conforms to a certain preset 

probability distribution, such as a Bernoulli distribution with a disconnect 

probability Figure 9-24(b) shows a specific sampling result. The dotted line 

indicates that the sampling result is a disconnected line, and the solid line 

indicates the sampling result is not disconnected.

(a) Fully connected network (b) With dropout

Figure 9-24. Dropout diagram
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In TensorFlow, you can implement the dropout function through 

the tf.nn.dropout(x, rate) function, where the rate parameter sets the 

probability p of disconnection. For example:

# Add dropout operation with disconnection rate of 0.5

x = tf.nn.dropout(x, rate=0.5)

You can also use dropout as a network layer and insert a Dropout layer 

in the middle of the network. For example:

# Add Dropout layer with disconnection rate of 0.5

model.add(layers.Dropout(rate=0.5))

In order to explore the influence of the Dropout layer on network 

training, we maintained the hyperparameters such as the number of 

network layers unchanged, and observed the impact of dropout on 

network training by inserting different numbers of Dropout layers in 

the five fully connected layers. As shown in Figure 9-25, Figure 9-26, 

Figure 9-27, and Figure 9-28, the distribution draws the decision boundary 

effect of the network model without adding Dropout layers, adding one, 

two, and four Dropout layers. It can be seen that when the Dropout layer 

is not added, the network model has the same result as the previous 

observation. With the increase of the Dropout layer, the actual capacity of 

the network model during training decreases and the generalization ability 

becomes stronger.
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Figure 9-25. Without Dropout layer

Figure 9-26. With one Dropout layer
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Figure 9-27. With two Dropout layer

Figure 9-28. With four Dropout layer

9.7  Data Augmentation
In addition to the methods described previously, which can effectively 

detect and suppress overfitting, increasing the size of the dataset is the 

most important way to solve overfitting problem. However, collecting 

sample data and labels is often costly. For a limited dataset, the number 
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of training samples can be increased through data augmentation 

technology to obtain a certain degree of performance improvement. Data 

augmentation refers to changing the characteristics of the sample based 

on a priori knowledge while keeping the sample label unchanged, so that 

the newly generated sample also conforms or approximately conforms to 

the true distribution of the data.

Taking image data as an example, let’s introduce how to do data 

augmentation. The size of the pictures in the dataset is often inconsistent. 

In order to facilitate the processing of the neural network, the pictures 

need to be rescaled to a fixed size, as shown in Figure 9-29, which 

is a fixed size 224 × 224 picture after rescaling. For the person in the 

picture, according to a priori knowledge, we know that rotation, scaling, 

translation, cropping, changing the angle of view, and blocking a certain 

local area will not change the main category label of the picture, so for the 

picture data, there are a variety of data augmentation methods.

Figure 9-29. A picture after rescaling to 224 × 224 pixels

TensorFlow provides common image processing functions, located 

in the tf.image submodule. Through the tf.image.resize function, we can 

zoom the pictures. We generally implement data augmentation in the 

preprocessing step. After reading the picture from the file system, the 

image data augmentation operation can be performed. For example:
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def preprocess(x,y):

    # Preprocess function

    # x: picture path, y:picture label

    x = tf.io.read_file(x)

    x = tf.image.decode_jpeg(x, channels=3) # RGBA

    # rescale pictures to 244x244

    x = tf.image.resize(x, [244, 244])

9.7.1  Rotation
Rotating pictures is a very common way of augmenting picture data. By 

rotating the original picture at a certain angle, new pictures at different 

angles can be obtained, and the label information of these pictures 

remains unchanged, as shown in Figure 9-30.

Figure 9-30. Image rotation

Through tf.image.rot90(x, k = 1), the picture can be rotated by 90 

degrees counterclockwise k times, for example:

     # Picture rotates 180 degrees counterclockwise

    x = tf.image.rot90(x,2)
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9.7.2  Flip
The flip of the picture is divided into flip along the horizontal axis 

and along the vertical axis, as shown in Figure 9-31 and Figure 9-32, 

respectively. In TensorFlow, you can use tf.image.random_flip_left_right 

and tf.image.random_flip_up_down to randomly flip the image in the 

horizontal and vertical directions, for example:

    # Random horizontal flip

    x = tf.image.random_flip_left_right(x)

    # Random vertical flip

    x = tf.image.random_flip_up_down(x)

Figure 9-31. Horizontal flip

Figure 9-32. Vertical flip
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9.7.3  Cropping
By removing part of the edge pixels in the left, right, or up and down 

directions of the original image, the main body of the image can be kept 

unchanged, and new image samples can be obtained at the same time. 

When actually cropping, the picture is generally scaled to a size slightly 

larger than the network input size, and then cropped to a suitable size. For 

example, if the input size of the network is 224 × 224, then you can use the 

resize function to rescale the picture to 244 × 244, and then randomly crop 

to the size 224 × 224. The code is implemented as follows:

    # Rescale picture to larger size

    x = tf.image.resize(x, [244, 244])

    # Then randomly crop the picture to the desired size

x = tf.image.random_crop(x, [224,224,3])

Figure 9-33 is a picture zoomed to 244 × 244, Figure 9-34 is an example 

of random cropping to 244 × 244, and Figure 9-35 is also an example of 

random cropping.

Figure 9-33. Before cropping
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Figure 9-34. After cropping and rescaling-1

Figure 9-35. After cropping and rescaling-2

9.7.4  Generate Data
By training the generative model on the original data and learning the 

distribution of the real data, the generative model can be used to obtain 

new samples. This method can also improve network performance to a 

certain extent. For example, conditional generation adversarial network 

(conditional GAN, CGAN for short) can generate labeled sample data, as 

shown in Figure 9-36.
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Figure 9-36. CGAN generated numbers

9.7.5  Other Methods
In addition to the typical picture data augmentation methods described 

previously, the picture data can be arbitrarily transformed to obtain 

new pictures based on a priori knowledge without changing the 

picture tag information. Figure 9-37 demonstrates the picture data 

after superimposing Gaussian noise on the original picture, Figure 9-38 

demonstrates the new picture obtained by changing the viewing angle of 

the picture, and Figure 9-39 demonstrates the new picture obtained by 

randomly blocking parts of the original picture.
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Figure 9-37. Adding Gaussian noise

Figure 9-38. Changing viewing angle

Figure 9-39. Randomly blocking parts
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9.8  Hands-On Overfitting
Earlier, we used a large amount of crescent-shaped two-class datasets 

to demonstrate the performance of the network model under various 

measures to prevent overfitting. In this section, we will complete the 

exercise based on the overfitting and underfitting models of the two 

classification datasets of crescent shape.

9.8.1  Build the Dataset
The feature vector length of the sample dataset we used is 2, and the label 

is 0 or 1, which represents two categories. With the help of the make_

moons tool provided in the scikit-learn library, we can generate a training 

set of any number of data. First open the cmd command terminal and 

install the scikit-learn library. The command is as follows:

# Install scikit-learn library

pip install -U scikit-learn

To demonstrate the phenomenon of overfitting, we only sampled 1000 

samples, and added Gaussian noise with a standard deviation of 0.25 as in 

the following:

# Import libraries

from sklearn.datasets import make_moons

# Randomly choose 1000 samples, and split them into training 

and testing sets

X, y = make_moons(n_samples = N_SAMPLES, noise=0.25, random_

state=100)

X_train, X_test, y_train, y_test = train_test_split(X, y,

                                     test_size = TEST_SIZE, 

random_state=42)
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The make_plot function can easily draw the distribution map of 

the data according to the coordinate X of the sample and the label y of 

the sample:

def make_plot(X, y, plot_name, file_name, XX=None, YY=None, 

preds=None):

    plt.figure()

    # sns.set_style("whitegrid")

    axes = plt.gca()

    axes.set_xlim([x_min,x_max])

    axes.set_ylim([y_min,y_max])

    axes.set(xlabel="$x_1$", ylabel="$x_2$")

    # Plot prediction surface

     if(XX is not None and YY is not None and preds is 

not None):

         plt.contourf(XX, YY, preds.reshape(XX.shape), 25,  

alpha = 0.08, cmap=cm.Spectral)

         plt.contour(XX, YY, preds.reshape(XX.shape), 

levels=[.5], cmap="Greys", vmin=0, vmax=.6)

    # Plot samples

    markers = ['o' if i == 1 else 's' for i in y.ravel()]

    mscatter(X[:, 0], X[:, 1], c=y.ravel(), s=20,

              cmap=plt.cm.Spectral, edgecolors='none', 

m=markers)

    # Save the figure

    plt.savefig(OUTPUT_DIR+'/'+file_name)

Draw the distribution of 1000 samples for sampling, as shown in 

Figure 9-40, the red square points are one category, and the blue circles are 

another category.
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# Plot data points

make_plot(X, y, None, "dataset.svg")

Figure 9-40. Moon-shape two-class data points

9.8.2  Influence of the Number of Network Layers
In order to explore the degree of overfitting at different network depths, we 

conducted a total of five training experiments. When n ∈ [0, 4], build a fully 

connected layer network with n + 2 layers, and train 500 Epochs through 

the Adam optimizer to obtain the separation curve of the network on the 

training set, as shown in Figures 9.12, 9.13, 9.14, and 9.15 .

for n in range(5): # Create 5 different network with 

different layers

    model = Sequential()

    # Create 1st layer

    model.add(Dense(8, input_dim=2,activation='relu'))

    for _ in range(n): # Add nth layer

        model.add(Dense(32, activation='relu'))

    model.add(Dense(1, activation='sigmoid')) # Add last layer

Chapter 9  Overfitting



356

     model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy']) # Configure and train

     history = model.fit(X_train, y_train, epochs=N_EPOCHS, 

verbose=1)

    # Plot boundaries for different network

     preds = model.predict_classes(np.c_[XX.ravel(), 

YY.ravel()])

    title = "Network layer ({})".format(n)

    file = "NetworkCapacity%f.png"%(2+n*1)

    make_plot(X_train, y_train, title, file, XX, YY, preds)

9.8.3  Impact of Dropout
In order to explore the impact of the Dropout layer on network training, we 

conducted a total of five experiments. Each experiment used a seven-layer 

fully connected layer network for training, but inserted 0~4 Dropout layers 

in the fully connected layer at intervals and passed Adam The optimizer 

trains 500 Epochs. The network training results are shown in Figures 9.25, 

9.26, 9.27, and 9.28.

for n in range(5): # Create 5 different networks with different 

number of Dropout layers

model = Sequential()

    # Create 1st layer

    model.add(Dense(8, input_dim=2,activation='relu'))

    counter = 0

    for _ in range(5): # Total number of layers is 5

        model.add(Dense(64, activation='relu'))

        if counter < n: # Add n Dropout layers

            counter += 1

            model.add(layers.Dropout(rate=0.5))

    model.add(Dense(1, activation='sigmoid')) # Output layer

Chapter 9  Overfitting



357

     model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy']) # Configure and train

    # Train

     history = model.fit(X_train, y_train, epochs=N_EPOCHS, 

verbose=1)

     # Plot decision boundaries for different number of 

Dropout layers

     preds = model.predict_classes(np.c_[XX.ravel(), 

YY.ravel()])

    title = "Dropout({})".format(n)

    file = "Dropout%f.png"%(n)

    make_plot(X_train, y_train, title, file, XX, YY, preds)

9.8.4  Impact of Regularization
In order to explore the influence of regularization coefficients on network 

model training, we adopted the L2 regularization method to construct 

a five-layer neural network, in which the weight tensor W of the second, 

third, and fourth neural network layers are added with L2 regularization 

constraints terms as follows:

def build_model_with_regularization(_lambda):

    # Create networks with regularization terms

    model = Sequential()

     model.add(Dense(8, input_dim=2,activation='relu')) # 

without regularization

     model.add(Dense(256, activation='relu', # With L2 

regularization

                     kernel_regularizer=regularizers.l2 

(_lambda)))

     model.add(Dense(256, activation='relu', # With L2 

regularization
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                     kernel_regularizer=regularizers.l2 

(_lambda)))

     model.add(Dense(256, activation='relu', # With L2 

regularization

                     kernel_regularizer=regularizers.l2 

(_lambda)))

    # Output

    model.add(Dense(1, activation='sigmoid'))

     model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy']) # Configure and train

    return model

Under the condition of keeping the network structure unchanged, 

we adjust the regularization coefficient λ = 0.00001, 0.001, 0.1, 0.12, 0.13 

to test the training effect of the network and draw the decision boundary 

curve of the learning model on the training set, as shown in Figure 9-16, 

Figure 9-17, Figure 9-18, and Figure 9-19.

for _lambda in [1e-5,1e-3,1e-1,0.12,0.13]:

    # Create model with regularization term

model = build_model_with_regularization(_lambda)

    # Train model

     history = model.fit(X_train, y_train, epochs=N_EPOCHS, 

verbose=1)

    # Plot weight range

    layer_index = 2

     plot_title = "Regularization-[lambda = {}]".format(str(_

lambda))

    file_name = " Regularization _" + str(_lambda)

    # Plot weight ranges

     plot_weights_matrix(model, layer_index, plot_title, 

file_name)
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    # Plot decision boundaries

     preds = model.predict_classes(np.c_[XX.ravel(), 

YY.ravel()])

    title = " regularization ".format(_lambda)

    file = " regularization %f.svg"%_lambda

    make_plot(X_train, y_train, title, file, XX, YY, preds)

The plot_weights_matrix code of the matrix 3D plot function is as 

follows:

def plot_weights_matrix(model, layer_index, plot_name, 

file_name):

    # Plot weight ranges

    # Get weights for certain layers

    weights = model.layers[LAYER_INDEX].get_weights()[0]

    # Get minimum, maximum and mean values

    min_val = round(weights.min(), 4)

    max_val = round(weights.max(), 4)

    mean_val = round(weights.mean(), 4)

    shape = weights.shape

    # Generate grids

    X = np.array(range(shape[1]))

    Y = np.array(range(shape[0]))

    X, Y = np.meshgrid(X, Y)

    print(file_name, min_val, max_val,mean_val)

    # Plot 3D figures

    fig = plt.figure()

    ax = fig.gca(projection='3d')

    ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))

    ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))

    ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))

    # Plot weight ranges
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     surf = ax.plot_surface(X, Y, weights, cmap=plt.get_

cmap('rainbow'), linewidth=0)

    ax.set_xlabel('x', fontsize=16, rotation = 0)

    ax.set_ylabel('y', fontsize=16, rotation = 0)

    ax.set_zlabel('weight', fontsize=16, rotation = 90)

    # save figure

    plt.savefig("./" + OUTPUT_DIR + "/" + file_name + ".svg")
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CHAPTER 10

Convolutional Neural 
Networks

At present, artificial intelligence has not reached the level of 
5 years old human, but the progress in perception is rapid. In 
the field of machine speech and visual recognition, there is 
no suspense to surpass humans in five to ten years.

—Xiangyang Shen

We have introduced the basic theory of neural networks, the use of 

TensorFlow, and the basic fully connected network model and have a 

more comprehensive and in-depth understanding of neural networks. But 

for deep learning, we still have a little doubt. The depth of deep learning 

refers to the deeper layers of the network, generally more than five layers, 

and most of the neural network layers introduced so far are implemented 

within five layers. So what is the difference and connection between deep 

learning and neural networks?

Essentially, deep learning and neural networks refer to the same type 

of algorithm. In the 1980s, the network model based on the multilayer 

perceptron (MLP) mathematical model of biological neurons was called 

a neural network. Due to factors such as limited computing power and 

small data size at the time, neural networks were generally only able to 

train to a small number of layers. We call this type of neural network a 
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shallow neural network (shallow neural network). It is not easy for shallow 

neural networks to extract high-level features from data, and the general 

expression ability is not good. Although it has achieved good results in 

simple tasks such as digital picture recognition, it is quickly surpassed by 

the new support vector machine proposed in the 1990s.

Geoffrey Hinton, a professor at the University of Toronto in Canada, 

has long insisted on the research of neural networks. However, due to 

the popularity of support vector machines at that time, research related 

to neural networks encountered many obstacles. In 2006, Geoffrey 

Hinton proposed a layer-by-layer pre-training algorithm in [1], which 

can effectively initialize the deep belief networks (DBN) network, thereby 

making it possible to train large- scale, deep layers (millions of parameters) 

of networks. In the paper, Geoffrey Hinton called the neural network deep 

neural network, and the related research is also called deep learning (deep 

learning). From this point of view, deep learning and neural networks are 

essentially consistent in their designation, and deep learning focuses more 

on deep neural networks. The “depth” of deep learning will be most vividly 

reflected in the relevant network structure in this chapter.

Before learning a deeper network model, let us first consider such a 

question: The theoretical research of neural networks was basically in 

place in the 1980s, but why did it fail to fully exploit the great potential of 

deep networks? Through the discussion of this question, we lead to the 

core content of this chapter: convolutional neural networks. This is also a 

type of neural network that can easily reach hundreds of layers.

10.1  Problems with Fully Connected N
First, let’s analyze the problems of the fully connected network. Consider a 

simple four-layer fully connected layer network. The input is a handwritten 

digital picture vector of 784 nodes after leveling. The number of nodes 

in the middle three hidden layers is 256, and the number of nodes in the 

output layer is ten, as shown in Figure 10-1.
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Figure 10-1. Simplified diagram of four-layer fully connected 
network structure

We can quickly build this network model through TensorFlow: add 

4 dense layers, and use the Sequential container to encapsulate it as a 

network object:

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers,Sequential,losses, 

optimizers,datasets

# Create 4-layer fully connected network

model = keras.Sequential([

    layers.Dense(256, activation='relu'),

    layers.Dense(256, activation='relu'),

    layers.Dense(256, activation='relu'),

    layers.Dense(10),

])

# build model and print the model info

model.build(input_shape=(4, 784))

model.summary()
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Use the summary() function to print out the statistical results of the 

parameters of each layer from the model, as shown in Table 10-1. How 

are the parameters of the network calculated? The weight scalar of each 

connecting line is considered as a parameter, so for a fully connected 

layer with n input nodes and m output nodes, there are a total of n ⋅ m 

parameters contained in the tensor W, and m parameters are contained 

in the vector b. Therefore, the total number of parameters of the fully 

connected layer is n ⋅ m + m. Taking the first layer as an example, the input 

feature length is 784, the output feature length is 256, and the parameter 

amount of the current layer is 784 ⋅ 256 + 256 = 200960. The same method 

can be used to calculate the parameter amounts of the second, third, and 

fourth layers, which are 65792, 65792, and 2570, respectively. The total 

parameter amount is about 340,000. In a computer, if you save a single 

weight as a float-type variable, you need to occupy at least 4 bytes of 

memory (float takes more memory in Python), then 340,000 parameters 

require at least about 1.34MB of memory. In other words, storing the 

network parameters alone requires 1.34MB of memory. In fact, the 

network training process also needs to cache the computation graph, 

gradient information, input and intermediate calculation results, etc., 

where gradient- related operations take up a lot of resources.

Table 10-1. Network parameter statistics

Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output Layer

number of 

parameters

200960 65792 65792 2570

So how much memory does it take to train such a network? We can 

simply simulate resource consumption on modern GPU devices. In 

TensorFlow, if you do not set the GPU memory occupation method, all 

GPU memory will be occupied by default. Here, the TensorFlow memory 

usage is set to be allocated on demand, and the GPU memory resources 

occupied by it are observed as follows:
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# List all GPU devices

gpus = tf.config.experimental.list_physical_devices('GPU')

if gpus:

  try:

    # Set GPU occupation as on demand

    for gpu in gpus:

      tf.config.experimental.set_memory_growth(gpu, True)

  except RuntimeError as e:

    # excepting handling

    print(e)

The preceding code is inserted after the TensorFlow library imported 

and before the model created. TensorFlow is configured to apply for GPU 

memory resources as needed through tf.config.experimental.set_memory_

growth(gpu, True). In this way, the amount of GPU memory occupied by 

TensorFlow is the amount required for the operation. When the batch size 

is set to 32, we observed that GPU memory occupied about 708MB and 

CPU memory occupied about 870MB during training. Because the deep 

learning frameworks have different design considerations, this number is 

for reference only. Even so, we can feel that the computational cost of the 

four-layer fully connected layer is not small.

Back to the 1980s, what is the concept of 1.3MB network parameters? 

In 1989, Yann LeCun used a 256KB memory computer to implement 

his algorithm in the paper on handwritten zip code recognition [2]. This 

computer was also equipped with an AT&T DSP-32C DSP computing 

card (floating point computing capability is about 25 MFLOPS). For the 

1.3MB network parameters, the computer with 256KB memory cannot 

even load the network parameters, let alone network training. It can be 

seen that the higher memory usage of the fully connected layer severely 

limits the development of the neural network towards a larger scale and 

deeper layers.
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10.1.1  Local Correlation
Next, we explore how to avoid the defect of excessively large parameters of 

the fully connected network. For the convenience of discussion, we take 

the scene of picture type data as an example. For 2D image data, before 

entering the fully connected layer, the matrix data needs to be flattened 

into a 1D vector, and then each pixel is connected to each output node in 

pairs as shown in Figure 10-2.

…

Input nodes Output nodes

(a) Pixels fully connected (b) 2D Fully connected layer

Figure 10-2. 2D feature fully connected diagram

It can be seen that each output node of the network layer is connected 

to all input nodes for extracting the feature information of all input nodes. 

This dense connection method is the root cause of the large number of 

parameters and the high computational cost of the fully connected layer. 

The fully connected layer is also called dense connection layer (dense 

layer), and the relationship between output and input is:

 

o w x bj
i nodes I

ij i j� �
�

�
��

�

�
��

� � �
��

 

where nodes(I) represents the set of nodes in layer I.
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So, is it necessary to connect the output node with all the input nodes? 

Is there an approximate simplified model? We can analyze the importance 

distribution of input nodes to output nodes, only consider a more 

important part of the input node, and discard the less important part of the 

node, so that the output node only needs to be connected to some input 

nodes, expressed as:

 

o w x bj
i top I j k

ij i j� �
�

�
��

�

�
��

� � �
��

, ,  

where top(I, j, k) represents the top k node set in layer I that has the highest 

importance for the number node in layer J. In this way, the weighted 

connections of the fully connected layer can be reduced from ‖I‖ ⋅ ‖J‖ to 

k ⋅ ‖J‖, where ‖I‖ and ‖J‖ represent the number of nodes in the I and J 

layers respectively.

Then the problem changes to exploring the importance distribution of 

the input node of layer I to the number output node j. However, it is very 

difficult to find out the importance distribution of each intermediate node. 

We can use prior knowledge to further simplify this problem.

In real life, there are a lot of data that use location or distance as a 

measure of importance distribution. For example, people who live closer 

to themselves are more likely to have greater influence on themselves 

(location correlation), and stock trend predictions should pay more 

attention to the recent trend (time correlation); each pixel of the picture 

is more related to the surrounding pixels (location correlation). Taking 

2D image data as an example, if we simply think that the pixels with 

Euclidean distance from the current pixel is less than or equal to 
k
2

 are 

more important, and those with the Euclidean distance is greater than 
k
2

 

are less important, then we can easily simplify the problem of finding the 

importance distribution of each pixel. As shown in Figure 10-3, the pixels 
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where the solid grid is located are used as reference points and the pixels 

whose Euclidean distance is less than or equal to 
k
2

 are represented by a 

rectangular grid. The pixels in the grid are more important, and the pixels 

outside the grid are less important. This window is called the receptive 

field, which characterizes the importance distribution of each pixel to the 

central pixel. The pixels within the grid will be considered, and the pixels 

outside the grid will be ignored for the central pixel.

width

he
ig
ht

Figure 10-3. Importance distribution of pixels

This hypothetical characteristic of distance-based importance 

distribution is called local correlation. It only focuses on some nodes 

that are close to itself and ignores nodes that are far away. Under this 

assumption of importance distribution, the connection mode of the fully 

connected layer becomes as shown in Figure 10-4. The output node j is 

only connected to the local area (receptive field) centered by j and has no 

connection to other pixels.
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Figure 10-4. Locally connected network

Using the idea of local correlation, we record the height and width of 

the receptive field window as k (the height and width of the receptive field 

may not be equal; for convenience, we only consider the case where the 

height and width are equal). The current node is connected with all pixels 

in the receptive field, regardless of other pixels outside. The input and 

output relationship of the network layer is expressed as follows:

 

o w x bj

dist i j k
ij i j� �

�

�

�
�
�

�

�

�
�
�� ��

��
,

2  

where dist(i, j) represents the Euclidean distance between i and j nodes.

10.1.2  Weight Sharing
Each output node is only connected to k × k input nodes in the receptive 

field, and the number of output layer nodes is ‖J‖. So the number of 

the parameters of the current layer is k × k × ‖J‖. Comparing to the 

fully connected layer, because k is usually small, such as 1, 3, and 5, so 

k × k ≪ ‖I‖, which means it successfully reduced the amount of parameters.
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Can the amount of parameters be further reduced, for example, can 

we only need k × k parameters to complete the calculation of the current 

layer? The answer is yes. Through the idea of weight sharing, for each 

output node oj, the same weight matrix W is used, then no matter how 

many output nodes ‖J‖ will be, the number of network layer parameters is 

always k × k. As shown in Figure 10-5, when calculating the output pixel at 

the upper left corner, the weight matrix is used:

 W w w w w w w w w w� � �11 12 13 21 22 23 31 32 33  

Multiply and accumulate with the pixels inside the corresponding 

receptive field as the output value of the upper left pixel. When calculating 

the lower right receptive field, share the weight parameters W, that is, 

use the same weight parameters W to multiply and accumulate to get the 

output of the lower right pixel value. There are only 3 × 3 = 9 parameters in 

the network layer at this time, and it has nothing to do with the number of 

input and output nodes.

Figure 10-5. Weight sharing matrix diagram
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By applying the idea of local correlation and weight sharing, we have 

successfully reduced the number of network parameters from ‖I‖ × ‖J‖ to 

k × k (to be precise, under the conditions of a single input channel and a 

single convolution kernel). This kind of weighted “local connection layer” 

network is actually a convolutional neural network. Next, we will introduce 

convolution operations from a mathematical perspective, and then 

formally learn the principles and implementation of convolutional neural 

networks.

10.1.3  Convolution Operation
Under the a priori of local correlation, we propose a simplified “local 

connection layer.” For all pixels in the window k × k, feature information 

is extracted by multiplying and accumulating weights, and each 

output node extracts features corresponding to the receptive field area. 

information. This operation is actually a standard operation in the field of 

signal processing: discrete convolution operation. Discrete convolution 

operation has a wide range of applications in computer vision. Here is a 

mathematical explanation of the convolutional neural network layer.

In the field of signal processing, the convolution operation of 1D 

continuous signals is defined as the integration of two functions: function 

f  (τ), function g(τ), where中g(τ) becomes g(n − τ) after flipping and 

translation. The 1D continuous convolution is defined as:

 
f g n f g n d�� �� � � � � �� �

��

�

� � � �
 

Discrete convolution replaces the integral operation with the 

accumulation operation:

 
f g n f g n�� �� � � � � �� �

���

�

�
�

� �
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As for why convolution is defined in this way, I will not elaborate on it 

due to space limitations. We focus on 2D discrete convolution operations. 

In computer vision, the convolution operation is based on 2D picture 

function f  (m, n) and 2D convolution kernel g(m, n), where f  (i, j) and 

g(i, j) only exists in the effective area of the respective window, and the 

other areas are regarded as 0, as shown in Figure 10-6. The 2D discrete 

convolution is defined as:

 
f g m n f i j g m i n j

i j

�� �� � � � � � �� �
���

�

���

�

� �, , ,
 

Figure 10-6. 2D image function f(i, j) and convolution kernel 
function g(i, j)

Let’s introduce the 2D discrete convolution operation in detail. First, 

invert the convolution kernel function g(i, j) (invert each time along the 

x and y directions) to become g(−i, −j). When (m, n) = (−1, −1); it means 

that the convolution kernel function g(−1 − i, −1 − j) is flipped and then 

shifted one unit to the left and the upward. At this time:

 

f g f i j g i j
i j

i j

�� � � �� � � � � � � � �� �

�
���

�

���

�

� �� � � �

� �

�

1 1 1 1

1 1 1

, , ,
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1 1
� �
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The 2D function only has valid values when i ∈ [−1, 1], j ∈ [−1, 1]. In 

other positions, it is 0. According to the calculation formula, we can get 

[f ⨂ g](0, −1) = 7, as shown in Figure 10-7.

Figure 10-7. Discrete convolution operation-1

Similarly, when (m, n) = (0, −1) : [ f ⨂ g]

(0, −1) = ∑i ∈ [−1, 1]∑j ∈ [−1, 1] f (i, j)g(0 − i, −1 − j)

That is, after the convolution kernel is flipped, the unit is shifted 

upwards and the corresponding position is multiplied and accumulated, 

[f ⨂ g](0, −1) = 7, as shown in Figure 10-8.

Figure 10-8. Discrete convolution operation-2

When (m, n) = (1, −1):

 
f g f i j g i j

i j

�� � �� � � � � � � �� �
� �� � � �� �
� �1 1 1 1

1 1 1 1

, , ,
, ,  

That is, after the convolution kernel is flipped, it is translated to the 

right and upward by one unit, and the corresponding position is multiplied 

and accumulated, [f ⨂ g](1, −1) = 1, as shown in Figure 10-9.
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Figure 10-9. Discrete convolution operation-3

When (m, n) = (−1, 0):

 
f g f i j g i j

i j

�� � �� � � � � � � �� �
� �� � � �� �
� �1 0 1

1 1 1 1

, , ,
, ,  

That is, after the convolution kernel is flipped, it is translated to 

the left by one unit, and the corresponding position is multiplied and 

accumulated, [f ⨂ g](−1, 0) = 1, as shown in Figure 10-10.

Figure 10-10. Discrete convolution operation-4

Cyclic calculation in this way, we can get all the values of the function 

[f ⨂ g](m, m), m ∈ [−1, 1], n ∈ [−1, 1], as shown in Figure 10-11.

Figure 10-11. 2D discrete convolution operation
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So far, we have successfully completed the convolution operation of 

the picture function and the convolution kernel function to obtain a new 

feature map.

Recalling the operation of “weight multiplying and accumulating”, we 

record it as [f ⋅ g](m, n) : [ f ⋅ g](m, n) = ∑i ∈ [−w/2, w/2]∑j ∈ [−h/2, h/2] f  (i, j)g(i − m, j − m)

Comparing it carefully with the standard 2D convolution operation, 

it is not difficult to find that the convolution kernel function g(m, n) in 

“weight multiply-accumulate” has not been flipped. For neural networks, 

the goal is to learn a function g(m, n) to make L as small as possible. As 

for whether it is exactly the “convolution kernel” function defined in 

the convolution operation, it is not very important, because we will not 

directly use it. In deep learning, the function g(m, n) is collectively called a 

convolution kernel (Kernel), sometimes called filter, weight, etc. Since the 

function g(m, n) is always used to complete the convolution operation, the 

convolution operation has actually realized the idea of weight sharing.

Let’s summarize the 2D discrete convolution operation process: each 

time by moving the convolution kernel and multiplying and accumulating 

with the receptive field pixels at the corresponding position of the picture, 

the output value at this position is obtained. The convolution kernel 

is a weight matrix W with rows and columns as size of k. The window 

corresponding to the size k on the feature map is the receptive field. The 

receptive field and the weight matrix are multiplied and accumulated 

to obtain the output value at this position. Through weight sharing, we 

gradually move the convolution kernel from the upper left to the right and 

downward to extract the pixel features at each position until the bottom 

right, completing the convolution operation. It can be seen that the two 

ways of understanding are the same. From a mathematical point of view, 

the convolutional neural network is to complete the discrete convolution 

operation of the 2D function; from the perspective of local correlation 

and weight sharing, the same effect can be obtained. Through these 

two perspectives, we can not only intuitively understand the calculation 
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process of the convolutional neural network, but also rigorously derive 

from the mathematical point of view. It is based on convolution operations 

that convolutional neural networks can be so named.

In the field of computer vision, 2D convolution operations can 

extract useful features of data and perform convolution operations on 

input images with specific convolution kernels to obtain output images 

with different characteristics. As shown in Table 10-2, some common 

convolution kernels and corresponding effects are listed.

Table 10-2. Common convolution kernels and their effect

[ ] [0 − 1 0 − 1 5

− 1 0 − 1 0 ]

[0.0625 0.125 0.0625

0.125 0.25 0.125 0.0625

0.125 0.0625 ]

[−1 − 1 − 1 − 1 8

− 1 − 1 − 1 − 1 ]

Original Sharpen Blur Edge-sharpen

10.2  Convolutional Neural Network
The convolutional neural network makes full use of the idea of local 

correlation and weight sharing, which greatly reduces the amount of 

network parameters, thereby improving training efficiency and making it 

easier to realize ultra-large-scale deep networks. In 2012, Alex Krizhevsky 

of the University of Toronto in Canada applied the deep convolutional 

neural network to the large-scale image recognition challenge 

ILSVRC-2012, and achieved a Top-5 error rate of 15.3% on the ImageNet 

dataset, ranking first. Comparing to the second place, Alex reduced the 

Top-5 error rate by 10.9% [3]. This huge breakthrough has attracted strong 
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industry attention. Convolutional neural networks quickly became the 

new favorite in the field of computer vision. Subsequently, in a series of 

tasks, convolution-based neural network models have been proposed one 

after another and have achieved tremendous improvements in the original 

performance.

Now let’s introduce the specific calculation process of the 

convolutional neural network layer. Taking 2D image data as an 

example, the convolutional layer accepts input feature maps X with 

height h and width w, and the number of channels cin. Under the action 

of cout convolution kernels with height h and width w and the number 

of channels cin, feature maps with the height h′ and width w′ and cout 

channels are generated. It should be noted that the height and width of the 

convolution kernel can be unequal. In order to simplify the discussion, we 

only consider the equal height and width cases, and then it can be easily 

extended to the case of unequal height and width.

We start with the discussion of the single-channel input and single- 

convolution kernel and then generalize to the multi-channel input and 

single- convolution kernel and finally discuss the most commonly used 

and most complex convolutional layer implementation of multi-channel 

input and multiple convolution kernels.

10.2.1  Single-Channel Input and Single 
Convolution Kernel

First, we discuss single-channel input cin = 1, such as a gray-scale image with 

only one channel of gray value and a single convolution kernel cout = 1. Take 

the input matrix X with size 5 × 5 and the convolution kernel matrix with 

size 3 × 3 as examples, as shown in Figure 10-12. The receptive field of the 
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same size as the convolution kernel (the green box above the input X) is first 

moved to the top left of the input X. Select the receptive field element on 

the input and multiply it by the corresponding element of the convolution 

kernel (the middle box in the picture):

1 10 1 2 212 2 1121 130 1 2 1 10 12 6 0 2 4� � � �� � � � � �� � � � � � �� �

The ⨀ symbol indicates the Hadamard Product, that is, the 

corresponding element of the matrix is multiplied. The symbol @ (matrix 

multiplication) is another common forms of matrix operations. After the 

operation of the matrix, all 9 values are added:

 � � � � � � � � � �1 1 0 1 2 6 0 2 4 7  

We get the scalar 7 and write to the position of the first row and first 

column of the output matrix, as shown in Figure 10-12.

Figure 10-12. 3 × 3 convolution operation-1

After the feature extraction of the first receptive field area is completed, 

the receptive field window moves one step unit (Strides, denoted as s, 

default is 1) to the right and select the nine receptive field elements in the 

green box in Figure 10-13. Similarly, multiplying and accumulating the 

corresponding elements of the convolution kernel, we can get the output 

10, which is written to the first row and second column position.
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Figure 10-13. 3 × 3 convolution operation-2

Move the receptive field window to the right by one step unit 

again, select the element in the green box in Figure 10-14, multiply and 

accumulate with the convolution kernel, get the output 3, and write to the 

first row and third column of the output, as shown in Figure 10-14.

Figure 10-14. 3 × 3 convolution operation-3

At this point, the receptive field has moved to the far right of the 

effective pixel input, and it cannot continue to move to the right (without 

filling the invalid element), so the receptive field window moves down 

by one step unit (s = 1) and returns to the beginning of the current line, 

continue to select the new receptive field element area, as shown in 

Figure 10-15, and the convolution kernel operation results in output -1. 

Because the receptive field moves down by one step, so the output value -1 

is written in the second row and the first column position.
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Figure 10-15. 3 × 3 convolution operation-4

According to the preceding method, each time the receptive field 

moves right by one step (s = 1), if it exceeds the input boundary, it moves 

down by one step (s = 1) and returns to the beginning of the line until the 

receptive field moves to the rightmost and bottommost position, as shown 

in Figure 10-16. Each selected receptive field element is multiplied by 

the corresponding element of the convolution kernel and written to the 

corresponding position of the output. In the end, we get a 3 × 3 matrix, 

which is slightly smaller than the input 5 × 5, this is because the receptive 

field cannot exceed the element boundary. It can be observed that the size 

of the output matrix of the convolution operation is determined by the size 

k of the convolution kernel, the height h and width w of the input X, the 

moving step s, and whether boundaries are filled.

Figure 10-16. 3 × 3 convolution operation-5
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Now we have introduced the calculation process of single-channel 

input and single convolution kernel. The actual number of input channels 

of the neural network is often large. Next, we will learn the convolution 

operation method of multi-channel input and a single convolution kernel.

10.2.2  Multi-channel Input and Single 
Convolution Kernel

Multi-channel input convolutional layers are more common. For example, 

a color image contains three channels (R/G/B). The pixel value on each 

channel indicates the intensity of the R/G/B color. In the following, we 

take three- channel input and a single convolution kernel as an example 

to extend the convolution operation of single-channel input to multi-

channel. As shown in Figure 10-17, the leftmost 5 × 5 matrix of each row 

represents the input channels 1~3, the 3 × 3 matrix in the second column 

represents the channels 1~3 of the convolution kernel, and the matrix in 

the third column represents the middle matrix of the calculation on the 

current channel; the rightmost matrix represents the final output of the 

convolutional layer operation.

In the case of multi-channel input, the number of channels of the 

convolution kernel needs to match the number of input channels. The 

ith channel of the convolution kernel and the ith channel of the input X 

are calculated to obtain the first intermediate matrix, which can be then 

regarded as the case of single input and single convolution kernel. The 

corresponding elements of the intermediate matrix of all channels are 

added again as the final output.

The specific calculation process is as follows: in the initial state, 

as shown in Figure 10-17, the receptive field window on each channel 

synchronously falls on the leftmost and topmost positions on the 

corresponding channel. The receptive field area elements and the 

convolution kernel on each channel multiply and accumulate the matrix 
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above the corresponding channel to obtain the intermediate variables 

of the output 7, -11, and -1 on the three channels, and then we can 

add these intermediate variables to get the output -5 and write it to the 

corresponding position.

Then, the receptive field window moves synchronously to the right 

by one step (s = 1) on each channel. At this time, the receptive field area 

elements are shown in Figure 10-18. The receptive field on each channel is 

multiplied by the matrix on the corresponding channel of the convolution 

kernel and is then accumulated to get the intermediate variables 10, 20, 

and 20. We then add them up to get the output 50 and write the element 

position of the first row and second column.

Figure 10-17. Multi-channel input and single convolution kernel-1
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Figure 10-18. Multi-channel input and single convolution kernel-2

In this way, the receptive field window is moved synchronously to the 

rightmost and bottommost positions. All the convolution operations of the 

input and the convolution kernel are completed, and the resulting 3 × 3 

output matrix is shown in Figure 10-19.
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Figure 10-19. Multi-channel input and single convolution kernel-3

The entire calculation diagram is shown in Figure 10-20. The receptive 

field at each input channel is multiplied by the corresponding channel 

of the convolution kernel to obtain intermediate variables equal to the 

number of channels. All of these intermediate variables are added to 

obtain the output value in the current position. The number of input 

channels determines the number of convolution kernel channels. A 

convolution kernel can only get one output matrix, regardless of the 

number of input channels.
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Figure 10-20. Multi-channel input and single convolution 
kernel diagram

Generally speaking, a convolution kernel can only complete the 

extraction of a certain logical feature. When multiple logical features need 

to be extracted at the same time, it can be achieved by adding multiple 

convolution kernels to improve the expression ability of the neural 

network. This is the case of multi- channel input and multi-convolution 

kernels.

10.2.3  Multi-channel Input and 
Multi- convolution Kernel

Multi-channel input and multi-convolution kernels are the most common 

forms of convolutional neural networks. We have already introduced 

the operation process of single convolution kernels. Each convolution 

kernel and input are convolved to obtain an output matrix. When there 

are multiple convolution kernels, the ith (i ∈ [1, n], n is the number of 

convolution kernels) convolution kernel and input X get the ith output 

matrix (also called the channel i of output tensor O), and finally all the 

Chapter 10  Convolutional neural networks



386

output matrix in the channel dimension stitch together (stack operation to 

create a new dimension – the number of output channels) to generate an 

output tensor O that contains n channels.

Take a convolutional layer with three channels of input and two 

convolution kernels as an example. The first convolution kernel and input 

X get the first output channel, and the second convolution kernel and 

input X get the second output channel, as shown in Figure 10-21. The 

two output channels are stitched together to form the final output O. The 

size k, stride size s, and padding settings of each convolution kernel are 

uniformly set, so as to ensure that each output channel has the same size 

to meet the conditions of stitching.

Figure 10-21. Diagram of multi-convolution kernels
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10.2.4  Stride Size
In convolution operation, how to control the density of receptive field 

layout? For inputs with high information density, such as pictures with a 

large number of objects, in order to maximize the useful information, it 

is desirable to arrange the receptive field windows more densely during 

network design. For inputs with lower information density, such as a 

picture of the ocean, we can reduce the number of receptive fields in an 

appropriate amount. The control method of receptive field density is 

generally realized by moving strides.

The stride size refers to the unit of length for each movement of the 

receptive field window. For 2D input, it is divided into movement lengths 

in the x (right) direction and y (downward) direction. In order to simplify 

the discussion, we only consider the case of same stride size for both 

directions, which is also the most common setting in neural networks. 

As shown in Figure 10-22, the position of the receptive field window 

represented by the solid green line is the current position, and the dashed 

green line represents the position of the last receptive field. The movement 

length from the last position to the current position is the definition of the 

stride size. In Figure 10-22, the stride length of the receptive field in the x 

direction is 2, which is expressed as s = 2.

Figure 10-22. Diagram of step size(namely stride)
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When the receptive field reaches to the right boundary of the input X, 

it moves down one stride (s = 2) and returns to the beginning of the line as 

shown in Figure 10-23.
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Figure 10-23. Convolution operation stride size demnostration-1

Circulate back and forth until the bottom and right edges are reached 

as shown in Figure 10-24. The final output height and width of the 

convolutional layer are only 2 × 2. Compared with the previous situation 

(s = 1), the output height and width are reduced from 3 × 3 to 2 × 2 and the 

number of receptive fields is reduced to only 4.
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Figure 10-24. Convolution operation stride size demnostration-2
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It can be seen that by setting the stride size, the extraction of 

information density can be effectively controlled. When the stride size 

is small, the receptive field moving window is small, which is helpful 

to extract more feature information and the size of the output tensor is 

larger; when the stride size is larger, the receptive field moving window is 

larger which is helpful to reduce the calculation cost and filter redundant 

information, and of course, the size of the output tensor is also smaller.

10.2.5  Padding
After the convolution operation, the height and width of the output will 

generally be smaller than the height and width of the input. Even when the 

stride size is 1, the height and width of the output will be slightly smaller 

than the input height and width. When designing a network model, it 

is sometimes desired that the height and width of the output can be the 

same as the height and width of the input, thereby facilitating the design of 

network parameters and residual connection. In order to make the height 

and width of the output equal to that of the input, it is common to increase 

the input by padding several invalid elements on the height and width of 

the original input. By carefully designing the number of filling units, the 

height and width of the output after the convolution operation can be 

equal to the original input, or even larger.

As shown in Figure 10-25, we can fill an indefinite number at the top, 

bottom, left, or right boundaries. The default filled number is 0, and it can 

also be filled with customized data. In Figure 10-25, one row is filled in the 

upper and lower directions, and two columns are filled in the left and right 

directions.
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Figure 10-25. Matrix padding diagram

So how to calculate the convolutional layer after filling? We can simply 

replace the input X with the new tensor X ′ obtained after filling. As shown 

in Figure 10-26, the initial position of the receptive field is at the upper 

left of X ′. Similar as before, the output 1 is obtained and written to the 

corresponding position of the output tensor.
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Figure 10-26. Convolution operation after padding-1

Move the stride by one unit and repeat the operation to get the 

output 0, as shown in Figure 10-27.
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Figure 10-27. Convolution operation after padding-2

Looping back and forth, the resulting output tensor is shown in 

Figure 10-28.
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Figure 10-28. Convolution operation after padding-3

Through the carefully designed padding scheme, that is, filling one unit 

(p = 1) up, down, left, and right, we can get the result O that has the same 

height and width of the input. Without padding, as shown in Figure 10-29, 

we can only get the output slightly smaller than the input.
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Figure 10-29. Convolution output without padding

The output size [b, h′, w′, cout] of the convolutional neural layer is 

determined by the number of convolution kernels cout, the size of the 

convolution kernel k, the stride size s, the number of padding p (only 

considering the same number of top and bottom paddings ph, and 

the same number of left and right paddings pw), and the height h and 

width w of the input X. The mathematical relationship between can be 

expressed as:
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where ph and pw indicate the padding quantity in the height and width 

directions, respectively, and ⌊⋅⌋ indicates rounding down. Taking the 

preceding example as an example, h = w = 5, k = 3, ph = pw = 1, s = 1, the 

output are:
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In TensorFlow, when在s = 1, if you want the output O and input X to 

be equal in height and width, you only need to simply set the parameter 

padding=“SAME” to make TensorFlow automatically calculate the number 

of padding, which is very convenient.

10.3  Convolutional Layer Implementation
In TensorFlow, you can either build a neural network through a low-level 

implementation of custom weights, or you can directly call a high-level 

API of convolutional layers to quickly build a complex network. We mainly 

take 2D convolution as an example to introduce how to implement a 

convolutional neural network layer.

10.3.1  Custom Weights
In TensorFlow, the 2D convolution operation can be easily realized 

through the tf.nn.conv2d function. tf.nn.conv2d performs a convolution 

operation based on input X:[b, h, w, cin] and convolution kernel 

W:[k, k, cin, cout] to get the output O : [b, h′, w′, cout], where cin represents the 

number of input channels, cout indicates the number of convolution kernels 

which is also the number of output channels.

In [1]:

x = tf.random.normal([2,5,5,3]) # input with 3 channels with 

height and width 5

# Create w using [k,k,cin,cout] format, 4 3x3 kernels

w = tf.random.normal([3,3,3,4])

# Stride is 1, padding is 0,

out = tf.nn.conv2d(x,w,strides=1,paddi

ng=[[0,0],[0,0],[0,0],[0,0]])

Out[1]: #  shape of output tensor

TensorShape([2, 3, 3, 4])
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The format of the padding parameter is:

padding=[[0,0],[top,bottom],[left,right],[0,0]]

For example, if one unit is filled up in all directions (top, bottom, left, 

and right), the padding parameter is as follows:

In [2]:

x = tf.random.normal([2,5,5,3]) # input with 3 channels with 

height and width 5

# Create w using [k,k,cin,cout] format, 4 3x3 kernels

w = tf.random.normal([3,3,3,4])

# Stride is 1, padding is 0,

out = tf.nn.conv2d(x,w,strides=1,paddi

ng=[[0,0],[1,1],[1,1],[0,0]])

Out[2]: # shape of output tensor

TensorShape([2, 5, 5, 4])

In particular, by setting the parameters padding=‘SAME’ and strides=1, 

we can get the same size for the input and output of the convolutional 

layer, wherein the specific number of padding is automatically calculated 

by TensorFlow. For example:

In [3]:

x = tf.random.normal([2,5,5,3]) # input

w = tf.random.normal([3,3,3,4]) # 4 3x3 kernels

# Stride is 1,padding is "SAME"

# padding="SAME" gives use same size only when stride=1

out = tf.nn.conv2d(x,w,strides=1,padding='SAME')

Out[3]: TensorShape([2, 5, 5, 4])

When s > 1, setting padding=’SAME’ would cause the output height 

and width to decrease 
1
s

 of original size. For example:
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In [4]:

x = tf.random.normal([2,5,5,3])

w = tf.random.normal([3,3,3,4])

out = tf.nn.conv2d(x,w,strides=3,padding='SAME')

Out [4]:TensorShape([2, 2, 2, 4])

The convolutional neural network layer is the same as the fully 

connected layer, and the network can be set with a bias vector. The tf.nn.

conv2d function does not implement the calculation of the bias vector. We 

can add the bias manually. For example:

# Create bias tensor

b = tf.zeros([4])

# Add bias to convolution output. It’ll broadcast to size of 

[b,h',w',cout]

out = out + b

10.3.2  Convolutional Layer Classes
Through the convolution layer classes layers.Conv2D, you can directly 

define the convolution kernel W and bias tensor b and directly call the 

class instance to complete the forward calculation of the convolution 

layer. In TensorFlow, the naming of APIs has certain rules. Objects with 

uppercase letters generally represent classes, and all lowercases generally 

represent functions, such as layers.Conv2D represents convolutional 

layer classes, and nn.conv2d represents convolution functions. Using the 

class method will automatically create the required weight tensor and 

bias vector. The user does not need to memorize the definition format of 

the convolution kernel tensor, so it is easier and more convenient to use, 

but we also lose some flexibility. The function interface needs to define 

weights and bias by itself, which is more flexible.
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When creating a new convolutional layer class, you only need to 

specify the number of convolution kernel parameters filters, the size of the 

convolution kernel kernel_size, the stride, padding, etc. A convolutional 

layer with 4 3 × 3 convolution kernels is created as follows (the step stride 

is 1, and the padding scheme is’SAME’):

layer = layers.Conv2D(4,kernel_size=3,strides=1,padding='SAME')

If the height and width of the convolution kernel are not equal, and 

the stride along different directions is not equal neither, it is necessary to 

design the kernel_size parameter in the tuple format (kh, kw) and the strides 

parameter (sh, sw). Create 4 3 × 4 convolution kernels as follows (sh= 2 in the 

vertical direction, and sw = 1 in the horizontal direction):

layer = layers.Conv2D(4,kernel_size=(3,4),strides=(2,1),paddi

ng='SAME')

After the creation is complete, the forward calculation can be 

completed by calling the instance (__call__ method), for example:

In [5]:

layer = layers.Conv2D(4,kernel_size=3,strides=1,padding='SAME')

out = layer(x) # forward calculation

out.shape # shape of output

Out[5]:TensorShape([2, 5, 5, 4])

In class Conv2D, the convolution kernel tensor W and bias b are saved, 

and the list of W and b can be returned directly through the class member 

trainable_variables. For example:

In [6]:

# Return all trainable variables

layer.trainable_variables

Out[6]:
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[<tf.Variable 'conv2d/kernel:0' shape=(3, 3, 3, 4) 

dtype=float32, numpy=

 array([[[[ 0.13485974, -0.22861657,  0.01000655,  0.11988598],

          [ 0.12811887,  0.20501086, -0.29820845, -0.19579397],

           [ 0.00858489, -0.24469738, -0.08591779, 

-0.27885547]], ...

  <tf.Variable 'conv2d/bias:0' shape=(4,) dtype=float32, 

numpy=array([0., 0., 0., 0.], dtype=float32)>]

This layer.trainable_variables class member is very useful in obtaining 

the variables to be optimized in the network layer. You can also directly call 

class instance layer.kernel, layer.bias to access W and b.

10.4  Hands-On LeNet-5
In the 1990s, Yann LeCun et al. proposed a neural network for recognition 

of handwritten digits and machine-printed character pictures, which was 

named LeNet-5 [4]. The proposal of LeNet-5 enabled the convolutional 

neural network to be successfully commercialized at that time and was 

widely used in tasks such as postcode and check number recognition. 

Figure 10-30 is the network structure diagram of LeNet-5. It accepts digital 

and character pictures of size 32 × 32 as input and then passes through the 

first convolution layer to obtain the tensor with shape [b, 28,28,6]. After 

a downsampling layer, the tensor size is reduced to [b, 14,14,6]. After the 

second convolutional layer, the tensor shape becomes [b, 10,10,16]. After 

similar downsampling layer, the tensor size is reduced to [b, 5, 5, 16]. Before 

entering the fully connected layer, the tensor is converted to shape [b, 400] 

and feed into two fully connected layers with the number of input nodes 

120 and 84, respectively. A tensor with shape [b, 84] is obtained and finally 

goes through the Gaussian connections layer.
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Figure 10-30. LeNet-5 structure [4]

It now appears that the LeNet-5 network has fewer layers (two 

convolutional layers and two fully connected layers), fewer parameters, 

and lower computational cost, especially with the support of modern 

GPUs, which can be trained in minutes.

We have made a few adjustments based on LeNet-5 to make it easier 

to implement using modern deep learning frameworks. First, we adjust 

the input shape from 32 × 32 to 28 × 28, and then implement the two 

downsampling layers as the maximum pooling layer (reducing the height 

and width of the feature map, which will be introduced later), and finally 

replacing the Gaussian connections layer with a fully connected layer. The 

modified network is also referred to as the LeNet-5 network hereinafter. 

The network structure diagram is shown in Figure 10-31.
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Figure 10-31. Modified LeNet-5 structure

We train the LeNet-5 network based on the MNIST handwritten digital 

picture dataset and test its final accuracy. We have already introduced how 

to load the MNIST dataset in TensorFlow, so I won’t go into details here.
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First create LeNet-5 through the Sequential container as follows:

from tensorflow.keras import Sequential

network = Sequential([

     layers.Conv2D(6,kernel_size=3,strides=1), # Convolutional 

layer with 6 3x3 kernels

     layers.MaxPooling2D(pool_size=2,strides=2), # Pooling layer 

with size 2

    layers.ReLU(), # Activation function

     layers.Conv2D(16,kernel_size=3,strides=1), # Convolutional 

layer with 16 3x3 kernels

     layers.MaxPooling2D(pool_size=2,strides=2), # Pooling layer 

with size 2

    layers.ReLU(), # Activation function

    layers.Flatten(), # Flatten layer

     layers.Dense(120, activation='relu'), # Fully-

connected layer

     layers.Dense(84, activation='relu'), # Fully-

connected layer

    layers.Dense(10) # Fully-connected layer

                    ])

# build the network

network.build(input_shape=(4, 28, 28, 1))

# network summary

network.summary()

The summary () function counts the parameters of each layer and 

prints out the network structure information and details of the parameters 

of each layer, as shown in Table 10-3, we can compare with the parameter 

scale of the fully connected network 10.1.
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Table 10-3. Network parameter statistics

Layer Convolutional 
layer 1

Convolutional 
layer 2

Fully 
connected 
layer 1

Fully 
connected 
layer 2

Fully 
connected 
layer 3

parameter 

amount

60 880 48120 10164 850

It can be seen that the parameter amount of the convolutional layer 

is very small, and the main parameter amount is concentrated in the fully 

connected layer. Because the convolutional layer reduces the input feature 

dimension a lot, the parameter amount of the fully connected layer is not 

too large. The parameter amount of the entire model is about 60K, and 

the number of fully connected network parameters in Table 10.1 reaches 

340,000, so convolutional neural networks can significantly reduce the 

amount of network parameters while increasing the depth of the network.

In the training phase, first add a dimension ([b, 28,28,1]) to the original 

input of shape [b, 28, 28] in the dataset and send it to the model for forward 

calculation to obtain the output tensor with shape [b, 10]. We create a 

new cross-entropy loss function class for processing classification tasks. 

By setting the from_logits=True flag, the softmax activation function is 

implemented in the loss function, and there is no need to manually add the 

loss function, which improves numerical stability. The code is as follows:

from tensorflow.keras import losses, optimizers

# Create loss function

criteon = losses.CategoricalCrossentropy(from_logits=True)

The training implementation is as follows:

    # Create Gradient tape environment

    with tf.GradientTape() as tape:

        # Expand input dimension =>[b,28,28,1]

        x = tf.expand_dims(x,axis=3)
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        # Forward calculation, [b, 784] => [b, 10]

        out = network(x)

        # One-hot encoding, [b] => [b, 10]

        y_onehot = tf.one_hot(y, depth=10)

        # Calculate cross-entropy

        loss = criteon(y_onehot, out)

After obtaining the loss value, the gradient between the loss and 

the network parameter network.trainable_variables is calculated by 

TensorFlow’s gradient recorder tf.GradientTape(), and the network weight 

parameter is automatically updated by the optimizer object as in the 

following:

    # Calcualte gradient

    grads = tape.gradient(loss, network.trainable_variables)

    # Update paramaters

     optimizer.apply_gradients(zip(grads, network.trainable_

variables))

The training can be completed after repeating the preceding steps 

several times.

In the testing phase, since there is no need to record gradient 

information, the code generally does not need to be written in the 

environment “with tf.GradientTape() as tape”. After the output obtained by 

the forward calculation passes the Softmax function, we get the probability 

P that the network predicts that the current picture x belongs to the 

category i (i ∈ [0, 9]). Use the argmax function to select the index of the 

element with the highest probability as the current prediction category, 

compare it with the real label, and calculate the number of True samples 

in the comparison result. The number of samples with correct predictions 

divided by the total sample number gives us the test accuracy of the 

network.
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         # Use correct to record the number of correct 

predictions

        # Use total to record the total number

        correct, total = 0,0

        for x,y in db_test: # Loop through all samples

            # Expand dimension =>[b,28,28,1]

            x = tf.expand_dims(x,axis=3)

             # Forward calculation to get probability, [b, 784] 

=> [b, 10]

            out = network(x)

             # Technically, we should pass out to softmax() 

function firs.

  # But because softmax() doesn’t change the order the numbers, 

we omit the softmax() part.

            pred = tf.argmax(out, axis=-1)

            y = tf.cast(y, tf.int64)

            # Calculate the correct prediction number

             correct += float(tf.reduce_sum(tf.cast 

(tf.equal(pred, y),tf.float32)))

            # Total sample number

            total += x.shape[0]

        # Calculate accuracy

        print('test acc:', correct/total)

After cyclically training 30 Epochs on the dataset, the training 

accuracy of the network reached 98.1%, and the test accuracy also reached 

97.7%. For the simple handwritten digital picture recognition tasks, the 

old LeNet-5 network can already achieve good results, but for slightly 

more complex tasks, such as color animal picture recognition, LeNet-5 

performance will drop sharply.
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10.5  Representation Learning
We have introduced the working principle and implementation method of 

the convolutional neural network layer. The complex convolutional neural 

network model is also based on the stacking of convolutional layers. In 

the past, researchers have discovered that the deeper the network layer, 

the stronger the model’s expressive ability, and the more likely it is to 

achieve better performance. So what are the characteristics of the stacked 

convolutional network, so that the deeper the layer, the stronger the 

network’s expressive ability?

In 2014, Matthew D. Zeiler et al. [5] tried to use visual methods to 

understand exactly what convolutional neural networks learned. By 

mapping the feature map of each layer back to the input picture using the 

“Deconvolutional Network,” we can view the learned feature distribution, 

as shown in Figure 10-32. It can be observed that the features of the second 

layer correspond to the extraction of the underlying images such as edges, 

corners, and colors; the third layer starts to capture the middle features 

of texture; the fourth and fifth layers present some features of the object, 

such as puppy faces, bird’s feet, and other high-level features. Through 

these visualizations, we can experience the feature learning process of the 

convolutional neural network to a certain extent.
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Figure 10-32. Visualization of convolutional neural network 
features [5]

The image recognition process is generally considered to be a 

representation learning process. Starting from the original pixel features 

received, it gradually extracts low-level features such as edges and corners, 

then mid-level features such as textures, and then high-level features such 
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as object parts. The last network layer learns classification logic based on 

these learned abstract feature representations. The higher the layer and the 

more accurate the learned features, the more favorable the classification 

of the classifier is, thereby obtaining better performance. From the 

perspective of representation learning, convolutional neural networks 

extract features layer by layer, and the process of network training can be 

considered as a feature learning process. Based on the learned high-level 

abstract features, classification tasks can be conveniently performed.

Applying the idea of representation learning, a well-trained 

convolutional neural network can often learn better features. This feature 

extraction method is generally universal. For example, learning the 

representation of head, foot, body, and other characteristics on cat and dog 

tasks can also be used to some extent on other animals. Based on this idea, 

the first few feature extraction layers of the deep neural network trained 

on task A can be migrated to task B, and only the classification logic of task 

B (represented as the last layer of the network) needs to be trained. This 

method is a type of transfer learning, also known as fine-tuning.

10.6  Gradient Propagation
After completing the handwritten digital image recognition exercise, 

we have a preliminary understanding of the use of convolutional neural 

networks. Now let’s solve a key problem. The convolutional layer 

implements discrete convolution operations by moving the receptive field. 

So how does its gradient propagation work?

Consider a simple case where the input is a 3 × 3 single-channel 

matrix, and a 2 × 2 convolution kernel is used to perform the convolution 

operation. We then calculate the error between the flattened output 

and the corresponding label, as shown in Figure 10-33. Let’s discuss the 

gradient update method for this case.
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Figure 10-33. Gradient propagation example for the 
convolutional layer

First derive the expression of the output tensor O:

o00 = x00w00+ x01w01+ x10w10+ x11w11 + b

o01 = x01w00+ x02w01+ x11w10+ x12w11 + b

o10 = x10w00+ x11w01+ x20w10+ x21w11 +b

o11 = x11w00+ x12w01+ x21w10+ x22w11 +b

Taking w00 gradient calculation as an example, decompose by 

chain rule:
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Similarly, one can derive:
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It can be observed that the method of cyclically moving the receptive 

field does not change the derivatization of the network layer, and the 

derivation of the gradient is not complicated. But when the number of 

network layers increases, the artificial gradient derivation will become 

very cumbersome. But don’t worry, the deep learning framework can 

help us automatically complete the gradient calculation and update of all 

parameters, we only need to design the network structure.

10.7  Pooling Layer
In the convolutional layer, the height and width of the feature map can 

be reduced by adjusting the stride size parameter s, thereby reducing the 

amount of network parameters. In fact, in addition to setting the stride 

size, there is a special network layer that can reduce the parameter amount 

as well, which is known as the pooling layer.

The pooling layer is also based on the idea of local correlation. By 

sampling or aggregating information from a group of locally related 

elements, we can obtain new element values. In particular, the max 

pooling layer selects the largest element value from the local related 

element set, and the average pooling layer calculates the average value 

from the local related element set. Taking a 5 × 5 max pooling layer as an 

example, suppose the receptive field window size k = 2 and stride s = 1, as 

shown in Figure 10-34. The green dotted box represents the position of the 

first receptive field, and the set of receptive field elements is:
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 1 1 1 2, , ,� � �� �  

According to max pooling, we have:

 
� � � � �� �� � �x max 1 1 1 2 1, , ,  

If the average pooling operation is used, the output value would be:

 
� � � � �� �� � � �x avg 1 1 1 2 0 75, , , .  

After calculating the receptive field of the current position, similar 

to the calculation step of the convolutional layer, the receptive field is 

moved to the right by several units according to the stride size. The output 

becomes:

 
� � � �� � �x max 1 0 2 2 2, , ,  

In the same way, gradually move the receptive field window to the 

far right and calculate the output x′ =  max (2, 0, 3, 1) = 1. At this time, the 

window has reached the input edge. The receptive field window moves 

down by one stride and returns to the beginning of the line, as shown in 

Figure 10-35.
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Figure 10-34. Max pooling example-1
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Figure 10-35. Max pooling example-2

Loop back and forth until we reach the bottom and right, we get the 

output of the max pooling layer as shown in Figure 10-36. The length and 

width are slightly smaller than the input height and width.
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Figure 10-36. Max pooling example-3

Because the pooling layer has no parameters to learn, the calculation 

is simple, and the size of the feature map can be effectively reduced; it is 

widely used in computer vision-related tasks.

By carefully designing the height, width k, and stride parameter s of 

the receptive field of the pooling layer, various dimensionality reduction 

operations can be realized. For example, a common pooling layer setting 

is k = 2, s = 2, which can achieve the purpose of outputting only half of the 

input height and width. As shown in Figure 10-37 and Figure 10-38, the 

receptive field k = 3, stride size s = 2, input X has height and width 5 × 5, but 

the output only has height and width 2 × 2.
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Figure 10-37. Pooling layer example (half size output)-1
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Figure 10-38. Pooling layer example (half size output)-2

10.8  BatchNorm Layer
With the advent of convolutional neural networks, the amount of 

network parameters has been greatly reduced, making it possible for 

deep networks with dozens of layers. However, before the emergence of 

the residual network, the increasing number of neural network layers 

makes the training very unstable, and sometimes the network does not 

update or even does not converge for a long time. At the same time, the 

network is more sensitive to hyperparameters, and the slight change of 

hyperparameters will change training trajectory of the network completely.

In 2015, Google researcher Sergey Ioffe et al. proposed a method 

of parameter normalization and designed the Batch Normalization 

(abbreviated as BatchNorm, or BN) layer [6]. The proposal of the BN layer 

makes the setting of network hyperparameters more free, such as a larger 
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learning rate, and more random network initialization. In the meantime, 

the network has a faster convergence speed and better performance. After 

the BN layer was proposed, it was widely used in various deep network 

models. The convolutional layer, BN layer, ReLU layer, and pooling layer 

once became the standard unit blocks of network models. The stacking 

Conv-BN-ReLU-Pooling method often generates good model performance.

Why do we need to normalize the data in the network? It is difficult 

to explain this problem thoroughly from a theoretical level, even the 

explanation given by the author of the BN layer may not convince 

everyone. Rather than entangle the reasons, it is better to experience the 

benefits of data normalization through specific questions.

Consider the Sigmoid activation function and its gradient distribution. 

As shown in Figure 10-39, the derivative value of the Sigmoid function  

in the interval x ∈ [−2, 2] is distributed in the interval [0.1, 0.25]. When  

x > 2 or x < -2, the derivative of the Sigmoid function becomes very small, 

approaching 0, which is prone to gradient dispersion. In order to avoid 

the gradient dispersion phenomenon of the Sigmoid function due to too 

large or too small input, it is very important to normalize the function 

input to a small interval near 0. It can be seen from Figure 10-39 that after 

normalization, the value is mapped near 0, and the derivative value here 

is not too small, so that gradient dispersion is not easy to appear. This is an 

example of the benefit of normalization.

Original x range

x range after normalization

Figure 10-39. Sigmoid function and its derivative
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Let’s look at another example. Consider a linear model with two input 

nodes, as shown in Figure 10-40(a):

 L a x w x w b� � � �
1 1 2 2

 

Discuss the optimization problems under the following two input 

distributions:

• x1 ∈ [1, 10],  x2 ∈ [1, 10]

• x1 ∈ [1, 10],  x2 ∈ [100, 1000]

Because the model is relatively simple, two types of contour maps of 

the loss function can be drawn. Figure 10-40(b) is a schematic diagram 

of an optimized trajectory when x1 ∈ [1, 10] and x2 ∈ [100, 1000], and 

Figure 10-40(c) is a schematic diagram of an optimized trajectory when 

x1 ∈ [1, 10] and x2 ∈ [1, 10]. The center of the ring in the figure is the global 

extreme point.
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Figure 10-40. An example of data normalization
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When the input distributions are similar, and the partial derivative 

values are the same, the optimized trajectory of the function is shown in 

Figure 10-40(c); when the input distributions differ greatly, for example 

x1 ≪ x2,

 

∂
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∂
∂

L
w

L
w

1 2



 

The equipotential line of the loss function is steeper on the axis, 

and a possible optimization trajectory is shown in Figure 10-40(b). 

Comparing the two optimized trajectories, it can be observed that when 

the distributions of x1 and x2 are similar, the convergence in Figure 10-40(c) 

is faster and the optimized trajectory is more ideal.

Through the preceding two examples, we can empirically conclude: 

when the network layer input distribution is similar, and the distribution is 

in a small range (such as near 0), it favors the function optimization more. 

So how to ensure that the input distribution is similar? Data normalization 

can achieve this purpose, and data can be mapped to:

 
2

ˆ µ

σ

−
=

+
r

r

xx
ò  

where μr is the mean and σr
2 the variance of all data, ϵ is a small number, 

such as 1e − 8.

In the batch-based training phase, how to obtain all the input statistics 

μr and σr
2 of each network layer? Consider the mean μB and variance 

σB
2 within the batch:
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It can be regarded as approximate of μr and σr
2, where m is the number 

of batch samples. Therefore, in the training phase, through normalization:

 

ˆtrainx �
�

�

xtrain B

B

�

� 2   

and approximate the overall mean μr and variance σr
2 using each batch’s 

mean μB and variance σB
2.

In the test phase, we can normalize the test data using:

 

ˆtestx �
�

�

xtest r

r

�

� 2   

The preceding operation does not introduce additional variables to 

be optimized, and the mean and variance are obtained through existing 

data, and do not need to participate in gradient update. In fact, in order 

to improve the expressive ability of the BN layer, the author of the BN 

layer introduced the “scale and shift” technique to map and transform the 

variables again:

 ˆ γ β= ⋅ +x x  

where the parameter γ scales the normalized variable again, and the 

parameter β realizes the translation operation. The difference is that the 

parameters γ and β are automatically optimized by the backpropagation 

algorithm to achieve the purpose of scaling and panning data distribution 

“on demand” at the network layer.

Let’s learn how to implement the BN layer in TensorFlow.

10.8.1  Forward Propagation
We denote the input of the BN layer as x and the output as x . The forward 

propagation process is discussed in training phase and testing phase.
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Training phase: first calculate the current batch’s mean μB and variance 

σB
2, and then normalize the data according to:

 

x x
train

train B

B

�
�

�
� �

�

�
� �

2   

We then use:

 � � �r r Bmomentum momentum� � � �� � �1  

 � � �r r Bmomentum momentum2 2 2
1� � � �� � �  

to iteratively update the statistical values μr and σr
2 of the global training 

data, where momentum is a hyperparameter that needs to be set to 

balance the update amplitude: when momentum = 0, μr and σr
2 are directly 

set as μB and σB
2 of the latest batch; when momentum = 1, μr and σr

2 remain 

unchanged. In TensorFlow, momentum is set to 0.99 by default.

Test phase: the BN layer uses

 

x x
test

test r

r

�
�

�
� �

�

�
� �

2   

to calculate xtest , where μr, σr
2, γ, β come from the statistics or optimization 

results of the training phase, and are used directly in the test phase, and 

these parameters are not updated.

10.8.2  Backward Propagation
In the backward update phase, the back propagation algorithm solves the 

gradients 
�
�
L
�

 and 
�
�

L
�

 of the loss function and automatically optimizes the 

parameters γ and βaccording to the gradient update rule.

It should be noted that for 2D feature map input X: [b, h, w, c], the BN 

layer does not calculate μB and σB
2 of every point; instead, it calculates 

μB and σB
2 on each channel on the channel axis c, so μB and σB

2 are the 
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mean and variance of all other dimensions on each channel. Taking the 

input of shape [100,32,32,3] as an example, the mean value on the channel 

axis c is calculated as follows:

In [7]:

x=tf.random.normal([100,32,32,3])

# Combine other dimensions except the channel dimension

x=tf.reshape(x,[-1,3])

# Calculate mean

ub=tf.reduce_mean(x,axis=0)

ub

Out[7]:

<tf.Tensor: id=62, shape=(3,), dtype=float32, 

numpy=array([-0.00222636, -0.00049868, -0.00180082], 

dtype=float32)>

The has c channels, so c averaged values are generated.

In addition to the method of statistical data on the axis c, we can also 

easily extend the method to other dimensions, as shown in Figure 10-41:

• Layer Norm:Calculate the mean and variance of all 

features of each sample.

• Instance Norm:Calculate the mean and variance of 

features on each channel of each sample.

• Group Norm:Divide c channel into several groups, and 

count the feature mean and variance in the channel 

group of each sample.

The normalization method mentioned previously is proposed by 

several independent papers, and it has been verified that it is equivalent or 

superior to the BatchNorm algorithm in some applications. It can be seen 

that the research of deep learning algorithms is not difficult. As long as you 

think more and practice your engineering ability, everyone will have the 

opportunity to publish innovative results.
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10.8.3  Implementation of 
BatchNormalization layer

In TensorFlow, the BN layer can be easily implemented through the layers.

BatchNormalization() class:

# Create BN layer

layer=layers.BatchNormalization()

Different from the fully connected layer and the convolutional layer, 

the behavior of the BN layer in the training phase and the test phase is 

different. It is necessary to distinguish the training mode from the test 

mode by setting the training flag.

Take the network model of LeNet-5 as an example, add the BN layer 

after the convolutional layer; the code is as follows:

network = Sequential([

    layers.Conv2D(6,kernel_size=3,strides=1),

    # Insert BN layer

    layers.BatchNormalization(),

    layers.MaxPooling2D(pool_size=2,strides=2),

    layers.ReLU(),

    layers.Conv2D(16,kernel_size=3,strides=1),

    # Insert BN layer

    layers.BatchNormalization(),

    layers.MaxPooling2D(pool_size=2,strides=2),

Figure 10-41. Different normalization illustration [7]

Chapter 10  Convolutional neural networks



418

    layers.ReLU(),

    layers.Flatten(),

    layers.Dense(120, activation='relu'),

    layers.Dense(84, activation='relu'),

    layers.Dense(10)

                    ])

In the training phase, you need to set the network parameter 

training=True to distinguish whether the BN layer is a training or testing 

model. The code is as follows:

    with tf.GradientTape() as tape:

        # Insert channel dimension

        x = tf.expand_dims(x,axis=3)

        # Forward calculation, [b, 784] => [b, 10]

        out = network(x, training=True)

In the testing phase, you need to set training=False to avoid wrong 

behavior in the BN layer. The code is as follows:

        for x,y in db_test:

            # Insert channel dimension

            x = tf.expand_dims(x,axis=3)

            # Forward calculation

            out = network(x, training=False)

10.9  Classical Convolutional Network
Since the introduction of AlexNet [3] in 2012, a variety of deep 

convolutional neural network models have been proposed, among which 

the more representative ones are the VGG series [8], the GoogLeNet series 

[9], the ResNet series [10], and the DenseNet series [11]. The overall trend 

of their network layers is gradually increasing. Take the classification 
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performance of the network model on the ImageNet dataset of the ILSVRC 

challenge as an example. As shown in Figure 10-42, the network models 

before the emergence of AlexNet were all shallow neural networks, and 

the Top-5 error rate was above 25%. The AlexNet 8-layer deep neural 

network reduced the Top-5 error rate to 16.4%, and the performance was 

greatly improved. The subsequent VGG and GoogleNet models continued 

to reduce the error rate to 6.7%; the emergence of ResNet increased the 

number of network layers to 152 layers for the first time. The error rate is 

also reduced to 3.57%.

4 4 8 8
19 22

152

28.2 25.8
16.4 11.7 7.3 6.7 3.57

ILSVRC10 ILSVRC11 ILSVRC12 ILSVRC13 ILSVRC14 ILSVRC14 ILSVRC15

ILSVRC ImageNet Classification Task

Model depth Top-5 error rate

Figure 10-42. Model performance on classification tasks of 
ImageNet dataset

This section will focus on the characteristics of these network models.

10.9.1  AlexNet
In 2012, Alex Krizhevsky, the champion of the ImageNet dataset 

classification task of the ILSVRC12 challenge, proposed an eight-layer deep 

neural network model AlexNet, which receives the input size of 224 × 224 

color image data and gets the probability distribution of 1000 categories 

after five convolutional layers and three fully connected layers. In order 
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to reduce the dimensionality of the feature map, AlexNet added the Max 

Pooling layer after the first, second, and fifth convolutional layers. As 

shown in Figure 10-43, the number of parameters of the network reached 

60 million. In order to train the model on NVIDIA GTX 580 GPU (3GB GPU 

memory) at the time, Alex Krizhevsky disassembled the convolutional 

layer and the first two fully connected layers on two GPUs for training 

separately, and merged the last layer into one GPU to do backward update. 

AlexNet achieved a Top-5 error rate of 15.3% in ImageNet, which is 10.9% 

lower than the second place.

The innovations of AlexNet are:

• The number of layers has reached eight.

• Uses the ReLU activation function. Most of previous 

neural networks use the Sigmoid activation function, 

which is relatively complicated to calculate and is 

prone to gradient dispersion.

• Introduces the Dropout layer. Dropout improves 

the generalization ability of the model and prevents 

overfitting.

Figure 10-43. AlexNet architecture [3]
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10.9.2  VGG Series
The superior performance of the AlexNet model has inspired the industry 

to move in the direction of deeper network models. In 2014, the runner-up 

of the ImageNet classification task of the ILSVRC14 challenge, the VGG 

Lab of the University of Oxford, proposed a series of network models such 

as VGG11, VGG13, VGG16, and VGG19 (Figure 10-45), and increased the 

network depth to up to 19 layers [8]. Take VGG16 as an example, it accepts 

color picture data with size of 224 × 224, and then passes through 2 Conv-

Conv-Pooling units and 3 Conv-Conv-Conv-Pooling units, and finally 

outputs the probability of current picture belonging to 1000 categories 

through a 3 fully connected layers as shown in Figure 10-44. VGG16 

achieved a Top-5 error rate of 7.4% on ImageNet, which is 7.9% lower than 

AlexNet’s error rate.

The innovations of the VGG series network are:

• The number of layers is increased to 19.

• Uses a smaller 3x3 convolution kernel, which has fewer 

parameters and lower computational cost compared to 

the 7x7 convolution kernel in AlexNet.

• Uses a smaller pooling layer window 2 × 2 and stride 

size s = 2, while s = 2and pooling window is 3x3 in 

AlexNet.

Figure 10-44. VGG16 architecture
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10.9.3  GoogLeNet
The number of 3x3 convolution kernel has less parameters, the 

computational cost is lower, and the performance is even better. Therefore, 

the industry began to explore the smallest convolution kernel: the 1x1 

convolution kernel. As shown in Figure 10-46, the input is a three-

channel 5x5 picture, and the convolution operation is performed with 

a single 1x1 convolution kernel. The data of each channel is calculated 

with the convolution kernel of the corresponding channel to obtain 

the intermediate matrix of the three channels, and the corresponding 

positions are added to get the final output tensor. For the input shape of 

Figure 10-45. VGG series network architecture [8]
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[b, h, w, cin], the output of the 1x1 convolutional layer is [b, h, w, cout], where 

cin is the number of channels of input data, cout is the number of channels 

of output data, and is also the number of 1x1 convolution kernels. A 

special feature of the 1x1 convolution kernel is that it can only transform 

the number of channels without changing the width and height of the 

feature map.
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Figure 10-46. 1 × 1 convolutional kernel example

In 2014, Google, the champion of the ILSVRC14 challenge, proposed 

a large number of network models using 3x3 and 1x1 convolution kernels: 

GoogLeNet, with a network layer number of 22 [9]. Although the number 

of layers of GoogLeNet is much larger than that of AlexNet, its parameter 

amount is only half of AlexNet, and its performance is much better than 

AlexNet. On the ImageNet dataset classification task, GoogLeNet achieved 

a Top-5 error rate of 6.7%, which is 0.7% lower than VGG16 in error rate.

The GoogLeNet network adopts the idea of modular design and forms 

a complex network structure by stacking a large number of Inception 

modules. As shown in Figure 10-47, the input of the Inception module is 
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X, and then passes through four sub-networks, and finally are spliced and 

merged on the channel axis to form the output of the Inception module. 

The four sub- networks are:

• 1 × 1 convolutional layer.

• 1 × 1 convolutional layer, and then through a 3x3 

convolutional layer.

• 1 × 1 convolutional layer, and then through a 5x5 

convolutional layer.

• 3 × 3 maximum pooling layer, and then through the 1x1 

convolutional layer.

Figure 10-47. Inception module

The network structure of GoogLeNet is shown in Figure 10-48. The 

network structure in the red box is the network structure in Figure 10-47.

Figure 10-48. GoogLeNet architecture [9]
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10.10  Hands-On CIFAR10 and VGG13
MNIST is one of the most commonly used datasets for machine learning, 

but because handwritten digital pictures are very simple, and the MNIST 

dataset only saves image gray information, it is not suitable for inputting a 

network model designed as RGB three-channel. This section will introduce 

another classic image classification dataset: CIFAR10.

The CIFAR10 dataset was released by Canadian Institute for Advanced 

Research. It contains color pictures of ten categories of objects such as 

airplanes, cars, birds, and cats. Each category has collected 6,000 large and 

small pictures, totaling 60,000 pictures. Among them, 50,000 sheets are 

used as training datasets, and 10,000 sheets are used as test datasets. Each 

type of sample is shown in Figure 10-49. 

Figure 10-49. CIFAR10 Data Set1

1 Image source: www.cs.toronto.edu/~kriz/cifar.html
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In TensorFlow, similarly, there is no need to manually download, 

parse, and load the CIFAR10 dataset. The training set and test set can be 

directly loaded through the datasets.cifar10.load_data() function. For 

example,

# Load CIFAR10 data set

(x,y), (x_test, y_test) = datasets.cifar10.load_data()

# Delete one dimension of y, [b,1] => [b]

y = tf.squeeze(y, axis=1)

y_test = tf.squeeze(y_test, axis=1)

# Print the shape of training and testing sets

print(x.shape, y.shape, x_test.shape, y_test.shape)

# Create training set and preprocess

train_db = tf.data.Dataset.from_tensor_slices((x,y))

train_db = train_db.shuffle(1000).map(preprocess).batch(128)

# Create testing set and preprocess

test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))

test_db = test_db.map(preprocess).batch(128)

# Select a Batch

sample = next(iter(train_db))

print('sample:', sample[0].shape, sample[1].shape,

      tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))

TensorFlow will automatically download the dataset to the path C:\

Users\username\.keras\datasets, and users can view it, or manually delete 

the unnecessary dataset cache. After the preceding code runs, the shape of 

X and y in the training set is (50000, 32, 32, 3) and (50000), and the shape 

of X and y in the test set is (10000, 32, 32, 3) and (10000), which indicates 

the size of the picture is 32 × 32, those are color pictures, the number of 

samples in the training set is 50,000, and the number of samples in the test 

set is 10,000.

CIFAR10 image recognition task is not simple. This is mainly due to 

the fact that the image content of CIFAR10 requires a lot of details to be 
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presented, and the resolution of the saved images is only 32 × 32, which 

makes the subject information blurry and even difficult for human eyes to 

distinguish. The expression ability of shallow neural networks is limited 

and is difficult to reach better performance. In this section, we will modify 

the VGG13 network structure according to the characteristics of our data 

set to complete CIFAR10 image recognition as follows:

• Adjust the network input to 32 × 32. The original 

network input is 224 × 224, resulting in too large input 

feature dimensions and too large network parameters.

• The dimensions of the three fully connected layers are 

[256,64,10] for the setting of ten classification tasks.

Figure 10-50 is the adjusted VGG13 network structure, which we 

collectively call the VGG13 network model.
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Figure 10-50. Adjusted VGG13 model structure

We implement the network as two sub-networks: convolutional sub- 

network and fully connected sub-network. The convolution sub-network 

is composed of five sub-modules, each of which contains the Conv-Conv- 

MaxPooling unit structure. The code is as follows:

conv_layers = [

    # Conv-Conv-Pooling unit 1

     # 64 3x3 convolutional kernels with same input and 

output size

     layers.Conv2D(64, kernel_size=[3, 3], padding="same", 

activation=tf.nn.relu),
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     layers.Conv2D(64, kernel_size=[3, 3], padding="same", 

activation=tf.nn.relu),

    # Reduce the width and height size to half of its original

     layers.MaxPool2D(pool_size=[2, 2], strides=2, 

padding='same'),

     # Conv-Conv-Pooling unit 2, output channel increases to 

128, half width and height

     layers.Conv2D(128, kernel_size=[3, 3], padding="same", 

activation=tf.nn.relu),

     layers.Conv2D(128, kernel_size=[3, 3], padding="same", 

 activation=tf.nn.relu),

     layers.MaxPool2D(pool_size=[2, 2], strides=2, 

padding='same'),

     # Conv-Conv-Pooling unit 3, output channel increases to 

256, half width and height

     layers.Conv2D(256, kernel_size=[3, 3], padding="same", 

activation=tf.nn.relu),

     layers.Conv2D(256, kernel_size=[3, 3], padding="same", 

activation=tf.nn.relu),

     layers.MaxPool2D(pool_size=[2, 2], strides=2, 

padding='same'),

     # Conv-Conv-Pooling unit 4, output channel increases to 

512, half width and height

     layers.Conv2D(512, kernel_size=[3, 3], padding="same", 

activation=tf.nn.relu),

     layers.Conv2D(512, kernel_size=[3, 3], padding="same", 

activation=tf.nn.relu),

     layers.MaxPool2D(pool_size=[2, 2], strides=2, 

padding='same'),
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     # Conv-Conv-Pooling unit 5, output channel increases to 

512, half width and height

     layers.Conv2D(512, kernel_size=[3, 3], padding="same", 

activation=tf.nn.relu),

     layers.Conv2D(512, kernel_size=[3, 3], padding="same", 

activation=tf.nn.relu),

     layers.MaxPool2D(pool_size=[2, 2], strides=2, 

padding='same')

]

conv_net = Sequential(conv_layers)

The fully connected sub-network contains three fully connected layers, 

each layer adds a ReLU nonlinear activation function, except for the last 

layer. The code is shown as follows:

# Create 3 fully connected layer sub-network

fc_net = Sequential([

    layers.Dense(256, activation=tf.nn.relu),

    layers.Dense(128, activation=tf.nn.relu),

    layers.Dense(10, activation=None),

])

After the subnet is created, use the following code to view the 

parameters of the network:

# build network and print parameter info

conv_net.build(input_shape=[4, 32, 32, 3])

fc_net.build(input_shape=[4, 512])

conv_net.summary()

fc_net.summary()

The total number of parameters of the convolutional network is about 

940,000, the total number of parameters of the fully connected network is 

about 177,000, and the total number of parameters of the network is about 

950, 000, which is much less than the original version of VGG13.
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Since we implemented the network as two sub-networks, when 

performing gradient update, it is necessary to merge the parameter of the 

two sub-networks as in the following:

# merge parameters of two sub-networks

variables = conv_net.trainable_variables + fc_net.trainable_

variables

# calculate gradient for all parameters

grads = tape.gradient(loss, variables)

# update gradients

optimizer.apply_gradients(zip(grads, variables))

Run the cifar10_train.py file to start training the model. After training 

50 Epochs, the test accuracy of the network reached 77.5%.

10.11  Convolutional Layer Variants
The research of convolutional neural networks has produced a variety 

of excellent network models, and various variants of convolutional 

layers have been proposed. This section will focus on several typical 

convolutional layer variants.

10.11.1  Dilated/Atrous Convolution
In order to reduce the number of parameters of the network, the design of 

the convolution kernel usually chooses a smaller 1 × 1 and 3 × 3 receptive 

field size. The small convolution kernel makes the network’s receptive field 

area limited when extracting features, but increasing the receptive field 

area will increase the amount of network parameters and computational 

costs, so it is necessary to weigh the design.

Chapter 10  Convolutional neural networks



431

Dilated/Atrous Convolution is a better solution to this problem. 

Dilated/Atrous Convolution adds a dilation rate parameter to the receptive 

field of ordinary convolution to control the sampling step size of the 

receptive field area, as shown in Figure 10-51. When the sampling step 

dilation rate of the receptive field is 1, the distance between the sampling 

points of each receptive field is 1, and the dilated convolution at this time 

degenerates to ordinary convolution; when the dilation rate is 2, one point 

is sampled every two units in the receptive field. As shown in the green 

grid in the green box in the middle of Figure 10-51, the distance between 

each sampling grid is 2. Similarly, the dilation rate on the right side of 

Figure 10-51 is 3, and the sampling step is 3. Although the increase in 

dilation rate will increase the area of the receptive field, the actual number 

of points involved in the calculation remains unchanged.

dilation rate=1 dilation rate=2 dilation rate=3

Figure 10-51. Receptive field step length with different dilation rate

Take the single-channel 7 × 7 tensor and a single 3 × 3 convolution 

kernel as an example, as shown in Figure 10-52. In the initial position, 

the receptive field is sampled from the top and right positions, and every 

other point is sampled. A total of 9 data points are collected, as shown in 

the green box in Figure 10-52. These 9 data points are multiplied by the 

convolution kernel and written into the corresponding position of the 

output tensor.
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*

Figure 10-52. Dilated convolution sample-1

The convolution kernel window moves one unit to the right according 

to the step size s = 1, as shown in Figure 10-53. The same interval sampling 

is carried out. A total of 9 data points are sampled. The multiplication and 

accumulation operation is completed with the convolution kernel, and the 

output tensor is written to corresponding position until the convolution 

kernel moves to the bottom and rightmost position. It should be noted that 

the moving step size s of the convolution kernel window and the sampling 

step size dilation rate of the receptive field region are different concepts.

*

Figure 10-53. Dilated convolution sample-2

Dilated convolution provides a larger receptive field window without 

increasing network parameters. However, when setting up a network 

model using hollow convolution, the dilation rate parameter needs to be 
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carefully designed to avoid grid effects. At the same time, a larger dilation 

rate parameter is not conducive to tasks such as small object detection and 

semantic segmentation.

In TensorFlow, you can choose to use normal convolution or dilated 

convolution by setting the dilation_rate parameter of the layers.Conv2D() 

class. For example

In [8]:

x = tf.random.normal([1,7,7,1]) # Input

# Dilated convolution, 1 3x3 kernel

layer = layers.Conv2D(1,kernel_

size=3,strides=1,dilation_rate=2)

out = layer(x) # forward calculation

out.shape

Out[8]: TensorShape([1, 3, 3, 1])

When the dilation_rate parameter is set to the default value 1, the 

normal convolution method is used for calculation; when the dilation_rate 

parameter is greater than 1, the dilated convolution method is sampled for 

calculation.

10.11.2  Transposed Convolution
Transposed convolution (or fractionally strided convolution, sometimes 

it is also called deconvolution). In fact, deconvolution is mathematically 

defined as the inverse process of convolution, but transposed convolution 

cannot recover the input of the original convolution, so it is not 

appropriate to call it deconvolution) by filling a large amount of padding 

between the inputs to achieve the effect that the output height and width 

are greater than the input height and width, so as to achieve the purpose of 

upsampling, as shown in Figure 10-54. We first introduce the calculation 

process of transposed convolution, and then introduce the relationship 

between transposed convolution and ordinary convolution.
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To simplify the discussion, we only discuss the input with h = w, that is, 

the case where the input height and width are equal.

 o + 2p − k = n * s
Consider the following example: the single-channel feature map has 2 × 2 

input, and the transposed convolution kernel is 3 × 3, s = 2, and padding 

p = 0. First, evenly insert s − 1 blank data points between the input data 

points, the resulting matrix is 3 × 3, as shown in the second matrix in 

Figure 10-55. Filling the corresponding rows/columns around the 3 × 3 

matrix according to the filling amount k − p − 1 = 3 − 0 − 1 = 2. At this time, 

the height and width of the input tensor are 7 × 7, as shown in the third 

matrix in Figure 10-55.

Transposed 
Conv layer 1

Transposed 
Conv layer 2

Transposed 
Conv layer 3

Transposed 
Conv layer 4

Figure 10-54. Transposed convolution for upsampling
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0 0 0

-15 0 -81
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0 0 -15 0 -81 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

− − 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 -7 0 -41 0 0
0 0 0 0 0 0 0
0 0 -15 0 -81 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

= ( + − )

Figure 10-55. Input and padding example

On the 7 × 7 input tensor, apply the 3 × 3 convolution kernel operations 

with stride size s′ = 1 and padding p = 0 (note that the step size s′ of the 

ordinary convolution at this stage is always 1, which is different from 

the step size s of the transposed convolution). According to the ordinary 

convolution calculation formula, the output size is:

 
o i p k

s
�

� � �
� �

� � �
� �

�
2

1
7 2 0 3

1
1 5  

It means 5 × 5 output size. We directly follow this calculation process to 

give the final transposed convolution output and input relationship. When 

o + 2p − k is a multiple of s, the relationship is satisfiedo = (i − 1)s + k − 2p

Transposed convolution is not the inverse process of ordinary 

convolution, but there is a certain connection between the two, and 

transposed convolution is also implemented based on ordinary 

convolution. Under the same setting, the input x is obtained after 

the ordinary convolution operation o = Conv(x), and sending o to the 

transposed convolution operation gives x′ = ConvTranspose(o), where 

x′ ≠ x, but with same shape. We can use ordinary convolution operations 

with input as 5 × 5, stride size s = 2, padding p = 0, and 3 × 3 convolution 

kernel to verify the demonstration, as shown in Figure 10-56.
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It can be seen that the output with size 5 × 5 of the transposed 

convolution is sent to the ordinary convolution under the same set 

conditions, and the output of size 2 × 2 can be obtained. This size is 

exactly the input size of the transposed convolution. At the same time, 

we also observe that the output matrix is not exactly the input matrix fed 

into the transposed convolution. Transposed convolution and ordinary 

convolution are not mutually inverse processes and cannot recover the 

input content of the other party, but can only recover tensors of equal size. 

Therefore, it is not appropriate to call it deconvolution.

Based on TensorFlow to implement the transposed convolution 

operation of the preceding example, the code is as follows:

In [8]:

# Create matrix X with size 5x5

x = tf.range(25)+1

# Reshape X to certain shape

x = tf.reshape(x,[1,5,5,1])

x = tf.cast(x, tf.float32)

# Create constant matrix

w = tf.constant([[-1,2,-3.],[4,-5,6],[-7,8,-9]])

# Reshape dimension

w = tf.expand_dims(w,axis=2)

-1 2 -3

4 -5 6

-7 8 -9

*

-67 -77

-117 -127
X

Figure 10-56. Use ordinary convolution to generate same size 
of input
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w = tf.expand_dims(w,axis=3)

# Regular convolution calculation

out = tf.nn.conv2d(x,w,strides=2,padding='VALID')

out

Out[9]: # Output size is 2x2

<tf.Tensor: id=14, shape=(1, 2, 2, 1), dtype=float32, numpy=

array([[[[ -67.],

         [ -77.]],

        [[-117.],

         [-127.]]]], dtype=float32)>

Now we use the output of ordinary convolution as the input of 

transposed convolution to verify whether the output of transposed 

convolution is 5 × 5; the code is as follows:

In [10]:

# Transposed convolution calculation

xx = tf.nn.conv2d_transpose(out, w, strides=2,

    padding='VALID',

    output_shape=[1,5,5,1])

Out[10]: # Output size is 5x5

<tf.Tensor: id=117, shape=(5, 5), dtype=float32, numpy=

array([[   67.,  -134.,   278.,  -154.,   231.],

       [ -268.,   335.,  -710.,   385.,  -462.],

       [  586.,  -770.,  1620.,  -870.,  1074.],

       [ -468.,   585., -1210.,   635.,  -762.],

        [  819.,  -936.,  1942., -1016.,  1143.]], 

dtype=float32)>

It can be seen that transposed convolution can recover the input 

of ordinary convolution of the same size, but the output of transposed 

convolution is not equivalent to the input of ordinary convolution.
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 o + 2p − k ≠n * s
Let us analyze a detail of the relationship between input and output in the 

convolution operation in more depth. Consider the output expression of 

the convolution operation:

 
o i p k

s
�

� � ��
��

�
��
�

2
1

 

When the stride size s > 1, the round-down operation of 
i p k

s
� � ��

��
�
��

2
 

makes multiple input sizes i correspond to the same output size o. For 

example, consider the convolution operation with input size 6 × 6, 

convolution kernel size 3 × 3, and stride size 1. The code is as follows:

In [11]:

x = tf.random.normal([1,6,6,1])

# 6x6 input

out = tf.nn.conv2d(x,w,strides=2,padding='VALID')

out.shape

x = tf.random.normal([1,6,6,1])...

Out[12]: # Output size 2x2, same as when the input size is 5x5

<tf.Tensor: id=21, shape=(1, 2, 2, 1), dtype=float32, numpy=

array([[[[ 20.438847 ],

         [ 19.160788 ]],

        [[  0.8098897],

         [-28.30303  ]]]], dtype=float32)>

In this case, the convolutional output of the same size 2 × 2 can be 

obtained as shown in Figure 10-56. Therefore, convolution operations 

with different input sizes may obtain the same output. Considering that 

the input and output relationship between convolution and transposed 

convolution is interchangeable, from the perspective of transposed 

convolution, after the input size i is subjected to the transposed 
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convolution operation, different output size o may be obtained. Therefore, 

by filling the a rows and a columns in Figure 10-55 to achieve different 

sizes of output o, so as to restore the normal convolution with different 

sizes of input, the relationship of a is:

 a o p k s� � �� �2 %  

The output of the transposed convolution becomes:

 o i s k p a� �� � � � �1 2  

In TensorFlow, there is no need to manually specify a. We just specify 

the output size. TensorFlow will automatically derive the number of rows 

and columns that need to be filled, provided that the output size is legal. 

For example:

In [13]:

# Get output of size 6x6

xx = tf.nn.conv2d_transpose(out, w, strides=2,

    padding='VALID',

    output_shape=[1,6,6,1])

xx

Out[13]:

<tf.Tensor: id=23, shape=(1, 6, 6, 1), dtype=float32, numpy=

array([[[[ -20.438847 ],

         [  40.877693 ],

         [ -80.477325 ],

         [  38.321575 ],

         [ -57.48236  ],

         [   0.       ]],...

The tensor with height and width 5 × 5 can also be obtained by 

changing the parameter output_shape=[1,5,5,1].
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 Matrix Transposition

The transposition W ′T of transposed convolution means that the sparse 

matrix W ′ generated by the convolution kernel matrix W needs to 

be transposed first, and then the matrix multiplication operation is 

performed, while the ordinary convolution does not have the step of 

transposition. This is why it is called transposed convolution.

Consider the ordinary Conv2d operation: X and W, the convolution 

kernel needs to be cyclically moved in the row and column directions 

according to the strides to obtain the data of the receptive field involved in 

the operation, and the “multiply and accumulate” value at each window is 

calculated serially, which is extremely inefficient. In order to speed up the 

operation, mathematically, the convolution kernel W can be rearranged 

into a sparse matrix W ′ according to strides, and then the operation 

W ′ @ X ′ is completed once (in fact, the matrix W ′ is too sparse, resulting 

in many useless 0-multiplication operations, and many deep learning 

frameworks do not use this implementation).

Take the following convolution kernel as an example: the input X of 

4 rows and 4 columns, the height and width as 3 × 3, stride of 1, and no 

padding. First, X will be flattened to X ′, as shown in Figure 10-57.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

-1 2 -3

4 -5 6

-7 8 -9

*

-56 -61

-76 -81

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 10-57. Transposed convolution X′
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Then convert the convolution kernel W into a sparse matrix W ′, as 

shown in Figure 10-58.

-1 2 -3

4 -5 6

-7 8 -9

-1 2 -3 0 4 -5 6 0 -7 8 -9
0 -1 2 -3 0 4 -5 6 0 -7 8 -9
0 0 0 0 -1 2 -3 0 4 -5 6 0 -7 8 -9
0 0 0 0 0 -1 2 -3 0 4 -5 6 0 -7 8 -9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-56 -61

-76 -81

-56

-61

-76

-81

kernel:

′

′

@

′

Figure 10-58. Transposed convolution W′

At this time, ordinary convolution operation can be realized by matrix 

multiplication once:

 � � ��O W X@  

If given O, how to generate a tensor of the same shape and size as X it? 

Multiply the transposed matrix W ′ and the rearranged matrix O′ as shown 

in Figure 10-57:

 � �� �X W OT @  

Reshape X ′ to the same as the original input size X. For example, the 

shape of O′ is [4, 1], the shape of W ′T is [16, 4], the shape of X ′ obtained 

by matrix multiplication is [16, 1], and the tensor with shape [4, 4] can 

be generated after reshaping. Since transposed convolution needs to be 

transposed before it can be multiplied with the input matrix of transposed 

convolution during matrix operation, it is called transposed convolution.
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Transposed convolution has the function of “magnifying feature 

maps” and has been widely used in generating confrontation networks 

and semantic segmentation. For example, the generator in DCGAN 

[12] achieves layer-by- layer “magnification” by stacking transposed 

convolution layers and finally get a very realistic generated picture.

 Transposed Convolution Implementation

In TensorFlow, the transposed convolution operation can be realized 

through nn.conv2d_transpose() function. We first complete the ordinary 

convolution operation through nn.conv2d. Note that the definition format 

of the convolution kernel of transposed convolution is [k, k, cout, cin]. 

For example

In [14]:

# Input 4x4

x = tf.range(16)+1

x = tf.reshape(x,[1,4,4,1])

x = tf.cast(x, tf.float32)

# 3x3 kernel

w = tf.constant([[-1,2,-3.],[4,-5,6],[-7,8,-9]])

w = tf.expand_dims(w,axis=2)

Figure 10-59. DCGAN architecture [12]
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w = tf.expand_dims(w,axis=3)

# Regular convolutional operation

out = tf.nn.conv2d(x,w,strides=1,padding='VALID')

Out[14]:

<tf.Tensor: id=42, shape=(2, 2), dtype=float32, numpy=

array([[-56., -61.],

       [-76., -81.]], dtype=float32)>

With strides=1, padding=‘VALID’, and the convolution kernel 

unchanged, we try to restore the height and width tensor of the same 

size as the input x through the transposed convolution operation of the 

convolution kernel w and the output. The code is as follows:

In [15]: # Restore 4x4 input

xx = tf.nn.conv2d_transpose(out, w, strides=1, padding='VALID', 

output_shape=[1,4,4,1])

tf.squeeze(xx)

Out[15]:

<tf.Tensor: id=44, shape=(4, 4), dtype=float32, numpy=

array([[  56.,  -51.,   46.,  183.],

       [-148.,  -35.,   35., -123.],

       [  88.,   35.,  -35.,   63.],

       [ 532.,  -41.,   36.,  729.]], dtype=float32)>

It can be seen that the 4 × 4 feature map is generated by the transposed 

convolution, but the data of the feature map is not the same as the input x.

When using tf.nn.conv2d_transpose for transposed convolution 

operation, you need to manually set the output height and width. tf.nn.

conv2d_transpose does not support customized padding settings, it can 

only be set to VALID or SAME.

When padding=‘VALID’ is set, the output size is:

 o i s k� �� � �1  
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When padding=‘SAME’ is set, the output size is:

 o i s� �  

If the reader is temporarily unable to understand the principle details 

of transposed convolution, he/she can keep the preceding two expressions 

in mind. For example, when calculating the 2 × 2 transposed convolution 

input and the 3 × 3 convolution kernel, strides=1, padding=’VALID’, the 

output size is:

 
� �� � �� � � � �h w 2 1 1 3 4  

When calculating 2 × 2 transposed convolution input and the 3 × 3 

convolution kernel, strides=3, padding=’SAME’, the output size is:

 � �� � � �h w 2 3 6  

Transposed convolution can also be the same as other layers. Create a 

transposed convolution layer through the layers.Conv2DTranspose class, 

and then call the instance to complete the forward calculation:

In [16]:

layer = layers.Conv2DTranspose(1,kernel_size=3,strides=1,paddin

g='VALID')

xx2 = layer(out)

xx2

Out[16]:

<tf.Tensor: id=130, shape=(1, 4, 4, 1), dtype=float32, numpy=

array([[[[  9.7032385 ],

         [  5.485071  ],

         [ -1.6490463 ],

         [  1.6279562 ]],...
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10.11.3  Separate Convolution
Here we take depth-wise separable convolution as an example. When the 

ordinary convolution is operating on multi-channel input, each channel 

of the convolution kernel and each channel of the input are respectively 

convolved to obtain a multi-channel feature map, and then the 

corresponding elements are added to produce the final result of a single 

convolution kernel output as shown in Figure 10-60.

Kernel [3,3,3,1]

Intermediate features

Output:
*

Figure 10-60. Schematic diagram of ordinary convolution 
calculation

The calculation process of separate convolution is different. Each 

channel of the convolution kernel is convolved with each input channel 

to obtain the intermediate features of multiple channels, as shown in 

Figure 10-61. This multi-channel intermediate feature tensor is then 

subjected to the ordinary convolution operation of multiple 1 × 1 

convolution kernels to obtain multiple outputs with constant height and 

width. These outputs are spliced on the channel axis to produce the final 

separated convolutional layer output. It can be seen that the separated 

convolution layer includes a two-step convolution operation. The first 

convolution operation is a single convolution kernel, and the second 

convolution operation includes multiple convolution kernels.
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Input: [1, ℎ, , 3]

Single ernel: [3,3,3,1]

Intermediate features

Output: [1, ℎ′, , 4]

*

*

*

*

*

Four 1x1 
kernels: [1,1,3,4]

Figure 10-61. Schematic diagram of depth separable convolution 
calculation

So what are the advantages of using separate convolution? An obvious 

advantage is that for the same input and output, the parameters of the 

separable convolution are about 1/3 of the ordinary convolution. Consider 

the example of ordinary convolution and separate convolution in the 

preceding figure. The parameter quantity of ordinary convolution is:

 3 3 3 4 108� � � �  

The first part of the parameter of the separated convolution is:

 3 3 3 1 27� � � �  

The second part of the parameter is:

 1 1 3 4 14� � � �  

The total parameter amount of the separated convolution is only 39, 

but it can realize the same input and output size transformation of the 

ordinary convolution. Separate convolution has been widely used in areas 

sensitive to computational cost, such as Xception and MobileNets.
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10.12  Deep Residual Network
The emergence of network models such as AlexNet, VGG, and GoogLeNet 

has brought the development of neural networks to a stage of dozens of 

layers. Researchers have found that the deeper the network, the more 

likely it is to obtain better generalization capabilities. But as the model 

deepens, the network becomes more and more difficult to train, which is 

mainly caused by gradient dispersion and gradient explosion. In a neural 

network with a deeper number of layers, when the gradient information 

is transmitted from the last layer of the network to the first layer of the 

network layer by layer, there will be a phenomenon that the gradient is 

close to 0 or the gradient value is very large during the transfer process. 

The deeper the network layer, the more serious this phenomenon may be.

So how to solve the gradient dispersion and gradient explosion 

phenomenon of deep neural networks? A very natural idea is that since 

shallow neural networks are not prone to these gradients, you can try to 

add a fallback mechanism to the deep neural networks. When the deep 

neural network can easily fall back to the shallow neural network, the deep 

neural network can obtain model performance equivalent to that of the 

shallow neural network, but not worse.

By adding a direct connection between the input and output – Skip 

Connection – the neural network has the ability to fall back. Taking the 

VGG13 deep neural network as an example, assuming that the gradient 

dispersion phenomenon is observed in the VGG13 model, and the 

ten-layer network model does not observe the gradient dispersion 

phenomenon, then you can consider adding Skip Connection to the 

last two convolutional layers, as shown in Figure 10-62. In this way, the 

network model can automatically choose whether to complete the feature 

transformation through these two convolutional layers, or skip these two 

convolutional layers and choose Skip Connection, or combine the output 

of the two convolutional layers and Skip Connection .
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Figure 10-62. Architecture of VGG13 with Skip Connection

In 2015, He Kaiming and others from Microsoft Research Asia 

published a Skip Connection-based deep residual network (residual 

neural network, referred to as ResNet) algorithm [10], and proposed 18 

layers, 34 layers, 50 layers, 101 layers, and 152 layers network, that is, 

ResNet-18, ResNet-34, ResNet-50, ResNet-101 and ResNet-152 models, 

and even successfully trained a very deep neural network with 1202 layers. 

ResNet has achieved the best performance on tasks such as classification 

and detection on the ImageNet dataset of the ILSVRC 2015 Challenge. 

The ResNet papers have so far received more than 25,000 citations, which 

shows the influence of ResNet in the artificial intelligence community.

10.12.1  ResNet Principle
ResNet implements the fallback mechanism by adding Skip Connection 

between the input and output of the convolutional layers, as shown in 

Figure 10-63. The input x passes through two convolutional layers to 

obtain the output F(x) after feature transformation, and the corresponding 

element of F(x) is added to x to get the final output:

 H x x F x� � � � � �  
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H(x) is called residual block (ResBlock for short). Since the 

convolutional neural network surrounded by Skip Connection needs to 

learn the mapping F(x) = H(x) − x, it is called the residual network.

In order to satisfy the addition of the input x and the output F(x) of 

the convolutional layer, the input shape needs to be exactly the same as 

the shape of the output F(x). When the shapes are inconsistent, the input 

x is generally transformed to the same shape of F(x) by adding additional 

convolution operations on Skip Connection, as shown in the function 

identity(x) in Figure 10-63, where identity(x) mainly takes the 1 × 1 

convolutional operation to adjust the input number of channels.

Figure 10-64 compares the 34-layer deep residual network, the 34-layer 

ordinary deep network, and the 19-layer VGG network structure. It can 

be seen that the deep residual network reaches a deeper network layer by 

stacking residual modules, thereby obtaining a deep network model with 

stable training and superior performance.

Conv2d(64, 3x3)

Conv2d(64, 3x3)

ReLU ReLU

ℱ( )

ℋ = ℱ +

Figure 10-63. Residual module
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Figure 10-64. Network architecture comparison [10]

10.12.2  ResBlock Implementation
The deep residual network does not add a new network layer type but 

only adds a Skip Connection between the input and the output, so there 

is no underlying implementation for ResNet. The residual module can be 

implemented in TensorFlow by calling the ordinary convolutional layer.

First, create a new class. Initialize the convolutional layer and 

activation function layer needed in the residual block, and then create a 

new convolutional layer; the code is as follows:

class BasicBlock(layers.Layer):

    # Residual block

    def __init__(self, filter_num, stride=1):

        super(BasicBlock, self).__init__()

        # Create Convolutional Layer 1

         self.conv1 = layers.Conv2D(filter_num, (3, 3), 

strides=stride, padding='same')

        self.bn1 = layers.BatchNormalization()

        self.relu = layers.Activation('relu')

        # Create Convolutional Layer 2
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         self.conv2 = layers.Conv2D(filter_num, (3, 3), 

strides=1, padding='same')

        self.bn2 = layers.BatchNormalization()

When the shape of F(x) and x is different, it cannot be added directly. 

We need to create a new convolutional layer identity(x) to complete the 

shape conversion of x. Following the preceding code, the implementation 

is as follows:

        if stride != 1: # Insert identity layer

            self.downsample = Sequential()

             self.downsample.add(layers.Conv2D(filter_num,  

(1, 1), strides=stride))

        else: # connect directly

            self.downsample = lambda x:x

During forward propagation, you only need to add F(x) and identity(x) 

and add the ReLU activation function. The forward calculation function 

code is as follows:

    def call(self, inputs, training=None):

        # Forward calculation

        out = self.conv1(inputs) # 1st Conv layer

        out = self.bn1(out)

        out = self.relu(out)

        out = self.conv2(out) # 2nd Conv layer

        out = self.bn2(out)

        #  identity() conversion

        identity = self.downsample(inputs)

        # f(x)+x

        output = layers.add([out, identity])

        # activation function

        output = tf.nn.relu(output)

        return output
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10.13  DenseNet
The idea of Skip Connection has achieved great success on ResNet. 

Researchers have begun to try different Skip Connection schemes, among 

which DenseNet [11] is more popular. DenseNet aggregates the feature 

map information of all the previous layers with the output of the current 

layer through Skip Connection. Unlike ResNet’s corresponding position 

addition method, DenseNet uses splicing operations in the channel axis 

dimension to aggregate feature information.

As shown in Figure 10-65, the input X0 is passed through the 

convolutional layer H1 and the output X1 is spliced with the channel axis 

to obtain the aggregated feature tensor, which is sent to the convolutional 

layer H2 to obtain the output X2. Similarly, X2 is spliced with X1 and X0 and 

sent to the next layer. Repeat this way until the output of the last layer X4 

and the feature information of all previous layers: {Xi}i = 0, 1, 2, 3 are aggregated 

to the final output of the module. Such a densely connected module based 

on Skip Connection is called dense block. 

Figure 10-65. Dense block architecture2

2 Image source: https://github.com/liuzhuang13/DenseNet
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DenseNet constructs a complex deep neural network by stacking 

multiple dense blocks, as shown in Figure 10-66. 

Figure 10-67 compares the performance of different versions of 

DenseNet, the performance comparison of DenseNet and ResNet, and the 

training curves of DenseNet and ResNet.

10.14  Hands-On CIFAR10 and ResNet18
In this section, we will implement the 18-layer deep residual network 

ResNet18, train, and test it on the CIFAR10 image dataset. We will compare 

its performance with the 13-layer ordinary neural network VGG13.

The standard ResNet18 accepts image data of size 224 × 224. We adjust 

ResNet18 appropriately so that its input size is 32 × 32 and its output 

dimension is 10. The adjusted ResNet18 network structure is shown in 

Figure 10-68.

Figure 10-66. A typical DenseNet architecture3

Figure 10-67. Comparison of DenseNet and ResNet performance [11]

3 Image source: https://github.com/liuzhuang13/DenseNet
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First implement the residual module of the two convolutional layers in 

the middle, and residual block of Skip Connection 1x1 convolutional layer 

as in the following:

class BasicBlock(layers.Layer):

    # Residual block

    def __init__(self, filter_num, stride=1):

        super(BasicBlock, self).__init__()

        # 1st conv layer

         self.conv1 = layers.Conv2D(filter_num, (3, 3), 

strides=stride, padding='same')

        self.bn1 = layers.BatchNormalization()

        self.relu = layers.Activation('relu')

        # 2nd conv layer

         self.conv2 = layers.Conv2D(filter_num, (3, 3), 

strides=1, padding='same')

        self.bn2 = layers.BatchNormalization()

        if stride != 1:

            self.downsample = Sequential()

             self.downsample.add(layers.Conv2D(filter_num,  

(1, 1), strides=stride))

        else:

            self.downsample = lambda x:x

    def call(self, inputs, training=None):

        # Forward calculation

Conv2d(128,3x3,2)

Conv2d(128,3x3,1)

1x1

Conv2d(64,3x3,1)

Conv2d(64,3x3,1)

FC(10)

Conv2d(64,3x3,1)

Conv2d(64,3x3,1)

Conv2d(64,3x3,1)

Conv2d(128,3x3,1)

Conv2d(128,3x3,1)

Conv2d(256,3x3,2)

Conv2d(256,3x3,1)

1x1

Conv2d(256,3x3,1)

Conv2d(256,3x3,1)

Conv2d(512,3x3,2)

Conv2d(512,3x3,1)

1x1

Conv2d(512,3x3,1)

Conv2d(512,3x3,1)

Figure 10-68. Adjusted ResNet18 architecture
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        # [b, h, w, c], 1st conv layer

        out = self.conv1(inputs)

        out = self.bn1(out)

        out = self.relu(out)

        # 2nd conv layer

        out = self.conv2(out)

        out = self.bn2(out)

        # identity()

        identity = self.downsample(inputs)

        # Add two layers

        output = layers.add([out, identity])

        output = tf.nn.relu(output) # activation function

        return output

When designing a deep convolutional neural network, generally follow 

the rule of thumb that the height and width of the feature map gradually 

decrease and the number of channels gradually increases. The extraction 

of high-level features can be achieved by stacking Res Blocks with 

gradually increasing channel numbers, and multiple residual modules can 

be built at once through build_resblock as in the following:

    def build_resblock(self, filter_num, blocks, stride=1):

        # stack filter_num BasicBlocks

        res_blocks = Sequential()

        # Only 1st BasicBlock’s stride may not be 1

        res_blocks.add(BasicBlock(filter_num, stride))

         for _ in range(1, blocks):# Stride of Other BasicBlocks 

are all 1

            res_blocks.add(BasicBlock(filter_num, stride=1))

        return res_blocks
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Let’s implement a general ResNet network model as in the following:

class ResNet(keras.Model):

    # General ResNet class

     def __init__(self, layer_dims, num_classes=10):  

# [2, 2, 2, 2]

        super(ResNet, self).__init__()

         self.stem = Sequential([layers.Conv2D(64, (3, 3), 

strides=(1, 1)),

                                layers.BatchNormalization(),

                                layers.Activation('relu'),

                                 layers.MaxPool2D(pool_

size=(2, 2), strides=(1, 1), 

padding='same')

                                ])

        # Stack 4 Blocks

        self.layer1 = self.build_resblock(64,  layer_dims[0])

         self.layer2 = self.build_resblock(128, layer_dims[1], 

stride=2)

         self.layer3 = self.build_resblock(256, layer_dims[2], 

stride=2)

         self.layer4 = self.build_resblock(512, layer_dims[3], 

stride=2)

        # Pooling layer => 1x1

        self.avgpool = layers.GlobalAveragePooling2D()

        # Fully connected layer

        self.fc = layers.Dense(num_classes)

    def call(self, inputs, training=None):

        # Forward calculation

        x = self.stem(inputs)

        # 4 blocks
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        x = self.layer1(x)

        x = self.layer2(x)

        x = self.layer3(x)

        x = self.layer4(x)

        # Pooling layer

        x = self.avgpool(x)

        # Fully connected layer

        x = self.fc(x)

        return x

Different ResNets can be generated by adjusting the number of stacks  

and channels of each Res Block, such as with 64-64-128-128-256-256-512-512  

channel configuration, a total of eight Res Blocks, you can get ResNet18 

network model. Each ResBlock contains two main convolutional layers, so 

the number of convolutional layers is 8 ⋅ 2 = 16, plus the fully connected 

layer at the end of the network, a total of 18 layers. Creating ResNet18 and 

ResNet34 can be simply implemented as follows:

def resnet18():

    return ResNet([2, 2, 2, 2])

def resnet34():

    return ResNet([3, 4, 6, 3])

Next, complete the loading of the CIFAR10 data set as follows:

(x,y), (x_test, y_test) = datasets.cifar10.load_data() # 

load data

y = tf.squeeze(y, axis=1) # sequeeze data

y_test = tf.squeeze(y_test, axis=1)

print(x.shape, y.shape, x_test.shape, y_test.shape)
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train_db = tf.data.Dataset.from_tensor_slices((x,y)) # create 

training set

train_db = train_db.shuffle(1000).map(preprocess).batch(512)

test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test)) 

#creat testing set

test_db = test_db.map(preprocess).batch(512)

# sample an example

sample = next(iter(train_db))

print('sample:', sample[0].shape, sample[1].shape,

      tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))

The data preprocessing logic is relatively simple. We just need to 

directly map the data range to the interval [−1, 1]. Here you can also 

perform standardization based on the mean and standard deviation of the 

ImageNet data pictures as in the following:

def preprocess(x, y):

    x = 2*tf.cast(x, dtype=tf.float32) / 255. - 1

    y = tf.cast(y, dtype=tf.int32)

    return x,y

The network training logic is the same as the normal classification 

network training part, and 50 Epochs are trained as in the following:

    for epoch in range(50): # Train epoch

        for step, (x,y) in enumerate(train_db):

            with tf.GradientTape() as tape:

                 # [b, 32, 32, 3] => [b, 10], forward 

calculation

                logits = model(x)

                # [b] => [b, 10],one-hot encoding

                y_onehot = tf.one_hot(y, depth=10)

                # Calculate loss
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                 loss = tf.losses.categorical_crossentropy(y_

onehot, logits, from_logits=True)

                 loss = tf.reduce_mean(loss)

            # Calculate gradient

             grads = tape.gradient(loss, model.trainable_

variables)

            # Update parameters

             optimizer.apply_gradients(zip(grads, model.

trainable_variables))

ResNet18 has a total of 11 million network parameters. After 50 

Epochs, the accuracy of the network reached 79.3%. Our code here is 

relatively streamlined. With the support of careful hyperparameters and 

data enhancement, the accuracy rate can be higher.
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CHAPTER 11

Recurrent Neural 
Network

The powerful rise of artificial intelligence may be the best 
thing in human history, or it may be the worst thing.

—Steven Hawking

Convolutional neural network uses the local correlation of data and 

the idea of weight sharing to greatly reduce the amount of network 

parameters. It is very suitable for pictures with spatial and local 

correlation. It has been successfully applied to a series of tasks in the field 

of computer vision. In addition to the spatial dimension, natural signals 

also have a temporal dimension. Signals with a time dimension are very 

common, such as the text we are reading, the speech signal emitted when 

we speak, and the stock market that changes over time. This type of data 

does not necessarily have local relevance, and the length of the data in the 

time dimension is also variable. Convolutional neural networks are not 

good at processing such data.

So analyzing and recognizing this type of signals is a task that must 

be solved in order to push artificial intelligence to general artificial 

intelligence. The recurrent neural network that will be introduced in this 

https://doi.org/10.1007/978-1-4842-7915-1_11#DOI
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chapter can better solve such problems. Before introducing the recurrent 

neural network, let’s first introduce the method of representing data in 

chronological order.

11.1  Sequence Representation Method
Data with order is generally called a sequence, for example, commodity 

price data that changes over time is a very typical sequence. Considering 

the price change trend of a commodity A between January and June, we 

can record it as a one-dimensional vector: [x1, x2, x3, x4, x5, x6], and its shape 

is [6]. If you want to represent the price change trend of b goods from 

January to June, you can record it as a 2-dimensional tensor:

 
x x x x x x x xb
1
1

2
1

6
1

1
2

2
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6
2

1 2
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�
�

�
�

�
�, , 6  

where b represents the number of commodities, and the tensor shape 

is [b, 6].

In this way, the sequence signal is not difficult to represent, only a 

tensor with shape [b, s] is needed, where b is the number of sequences 

and s is the length of the sequence. However, many signals cannot be 

directly represented by a scalar value. For example, to represent feature 

vectors of length n generated by each timestamp, a tensor of shape [b, 

s, n] is required. Consider more complex text data: sentences. The word 

generated on each timestamp is a character, not a numerical value, and 

therefore cannot be directly represented by a scalar. We already know that 

neural networks are essentially a series of math operations such as matrix 

multiplication and addition. They cannot directly process string data. If 

you want neural networks to be used for natural language processing tasks, 

then how to convert words or characters into numerical values becomes 

particularly critical. Next, we mainly discuss the representation method 

of text sequence. For other non-numerical signals, please refer to the 

representation method of text sequence.
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For a sentence containing n words, a simple way to represent the 

words is the one-hot encoding method we introduced earlier. Take English 

sentences as an example; suppose we only consider the most commonly 

used 10,000 words, then each word can be expressed as a sparse one-hot 

vector with one position as 1, and other positions of 0 and a length of 

10,000. As shown in Figure 11-1, if only n location names are considered, 

each location name can be coded as a one-hot vector of length n.

Figure 11-1. One-hot encoding of location names

We call the process of encoding text into numbers as Word Embedding. 

One-hot encoding is simple and intuitive to implement Word Embedding, 

and the encoding process does not require learning and training. However, 

the one-hot encoding vector is high-dimensional and extremely sparse, 

with a large number of positions as 0s. Therefore, it is computationally 

expensive and also not conducive to the neural network training. From 

a semantic point of view, one-hot encoding has a serious problem. It 

ignores the semantic relevance inherent in words. For example, for the 

words “like,” “dislike,” “Rome,” “Paris,” “like,” and “dislike” are strongly 

related from a semantic point of view. They both indicate the degree of 

like. “Rome” and “ “Paris” is also strongly related. They both indicate 

two locations in Europe. For a group of such words, if one-hot encoding 

is used, there is no correlation between the obtained vectors, and the 

semantic relevance of the original text cannot be well reflected. Therefore, 

the one-hot encoding has obvious disadvantages.
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In the field of natural language processing, there is a special research 

area about word vector so that the semantic level of relevance can be well 

reflected through the word vector. One way to measure the correlation 

between word vectors is the cosine similarity:

 
similarity a b cos cos

a b

a b
,� � � � � �

�
 �

| | | |  

where a and b represent two word vectors. Figure 11-2 shows the similarity 

between the words “France” and “Italy,” and the similarity between the 

words “ball” and “crocodile,” and θ is the angle between the two word 

vectors. It can be seen that coscos (θ) better reflects semantic relevance.

Figure 11-2. Cosine similarity diagram

11.1.1  Embedding Layer
In a neural network, the representation vector of a word can be obtained 

directly through training. We call the representation layer of the word 

Embedding layer. The Embedding layer is responsible for encoding the 

word into a word vector v. It accepts the word number i using digital 

encoding, such as 2 for “I” and 3 for “me”. The total number of words in the 

system is recorded as Nvocab, and the output is vector v with length n:

 v f i N nvocab� � �� | ,  
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The Embedding layer is very simple to implement. Build a lookup table 

with shape [Nvocab, n]. For any word number i, you only need to query the 

vector at the corresponding position and return:

 v table i� � �  

The Embedding layer is trainable. It can be placed in front of the neural 

network to complete the conversion of words to vectors. The resulting 

representation vector can continue to pass through the neural network to 

complete subsequent tasks, and calculate the error L. The gradient descent 

algorithm is used to achieve end-to-end training.

In TensorFlow, a Word Embedding layer can be defined by layers.

Embedding(Nvocab, n), where the Nvocab parameter specifies the number of 

words, and n specifies the length of the word vector. For example:

x = tf.range(10) # Generate a digital code of 10 words

x = tf.random.shuffle(x) # Shuffle

# Create a layer with a total of 10 words, each word is 

represented by a vector of length 4

net = layers.Embedding(10, 4)

out = net(x) # Get word vector

The preceding code creates an Embedding layer of ten words. Each 

word is represented by a vector of length 4. You can pass in an input 

with a number code of 0–9 to get the word vectors of these four words. 

These word vectors are initialized randomly and has not been trained, for 

example:

<tf.Tensor: id=96, shape=(10, 4), dtype=float32, numpy=

array([[-0.00998075, -0.04006485,  0.03493755,  0.03328368],

       [-0.04139598, -0.02630153, -0.01353856,  0.02804044],…
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We can directly view the query table inside the Embedding layer:

In [1]: net.embeddings

Out[1]:

<tf.Variable 'embedding_4/embeddings:0' shape=(10, 4) 

dtype=float32, numpy=

array([[ 0.04112223,  0.01824595, -0.01841902,  0.00482471],

       [-0.00428962, -0.03172196, -0.04929272,  0.04603403],…

The optimizable property of the net.embeddings tensor is True, which 

means it can be optimized by the gradient descent algorithm.

In [2]: net.embeddings.trainable

Out[2]:True

11.1.2  Pre-trained Word Vectors
The lookup table of the Embedding layer is initialized randomly and 

needs to be trained from scratch. In fact, we can use pre-trained Word 

Embedding models to get the word representation. The word vector based 

on pre-trained models is equivalent to transferring the knowledge of the 

entire semantic space, which can often get better performance.

Currently, the widely used pre-trained models include Word2Vec and 

GloVe. They have been trained on a massive corpus to obtain a better word 

vector representation and can directly export the learned word vector 

table to facilitate migration to other tasks. For example, the GloVe model 

GloVe.6B.50d has a vocabulary of 400,000, and each word is represented by 

a vector of length 50. Users only need to download the corresponding model 

file in order to use it. The “glove6b50dtxt.zip” model file is about 69MB.

So how to use these pre-trained word vector models to help improve the 

performance of NLP tasks? Very simple. For the Embedding layer, random 

initialization is no longer used. Instead, we use the pre-trained model 

parameters to initialize the query table of the Embedding layer. For example:
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# Load the word vector table from the pre-trained model

embed_glove = load_embed('glove.6B.50d.txt')

# Initialize the Embedding layer directly using the pre-trained 

word vector table

net.set_weights([embed_glove])

The Embedding layer initialized by the pre-trained word vector model 

can be set to not participate in training: net.trainable = False, then the 

pre-trained word vector is directly applied to this specific task. If you also 

want to learn different representations from the pre-trained word vector 

model, then the Embedding layer can be included in the backpropagation 

algorithm by setting net.trainable = True, and gradient descent then can be 

used to fine-tune the word representation.

11.2  Recurrent Neural Network
Now let’s consider how to deal with sequence signals. Taking a text 

sequence as an example, consider a sentence:

“I hate this boring movie”

Through the Embedding layer, it can be converted into a tensor with 

shape [b, s, n], where b is the number of sentences, s is the sentence length, 

and n is the length of the word vector. The preceding sentence can be 

expressed as a tensor with shape [1,5,10], where 5 represents the length of 

the sentence word, and 10 represents the length of the word vector.

Next, we will gradually explore a network model that can process 

sequence signals. We take the sentiment classification task as an example, 

as shown in Figure 11-3. The sentiment classification task extracts the 

overall semantic features expressed by the text data and thereby predict 

the sentiment type of the input text: positive or negative. From the 

perspective of classification, sentiment classification is a simple two- 
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classification problem. Unlike image classification, because the input is a 

text sequence, traditional convolutional neural networks cannot achieve 

good results. So what type of network is good at processing sequence data?

Figure 11-3. Sentiment classification task

11.2.1  Is a Fully Connected Layer Feasible?
The first thing we think of is that for each word vector, a fully connected 

layer network can be used.

 o W x bt t t� �� ��  

Extract semantic features, as shown in Figure 11-4. The word vector 

of each word is extracted through s fully connected layer classification 

networks 1. The features of all words are finally merged, and the category 

probability distribution of the sequence is output through the classification 

network 2. For a sentence of length s, at least s fully-connected network 

layers are required.
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Figure 11-4. Network architecture 1

The disadvantages of this scheme are:

• The amount of network parameters is considerable, 

and the memory usage and calculation cost are high. 

At the same time, since the length s of each sequence 

is not the same, the network structure changes 

dynamically.

• Each fully connected layer sub-network Wi and bi can 

only sense the input of the current word vector and 

cannot perceive the context information before and 

after, resulting in the lack of overall sentence semantics. 

Each sub-network can only extract high-level features 

based on its own input.

We will solve these two disadvantages one by one.
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11.2.2  Shared Weight
When introducing convolutional neural networks, we have learned that the 

reason why convolutional neural networks is better than fully connected 

networks in processing locally related data is because it makes full use 

of the idea of weight sharing and greatly reduces the amount of network 

parameters, which makes the network training more efficient. So, can we 

learn from the idea of weight sharing when dealing with sequence signals?

In the scheme in Figure 11-4, the network of s fully connected layers 

does not realize weight sharing. We try to share these s network layer 

parameters, which is actually equivalent to using a fully connected 

network to extract the feature information of all words, as shown in 

Figure 11-5.

Figure 11-5. Network architecture 2

After weight sharing, the amount of parameters is greatly reduced, and 

network training becomes more stable and efficient. However, this network 

structure does not consider the order of sequences, and the same output 

can still be obtained by shuffling the order of the word vectors. Therefore, 

it cannot obtain effective global semantic information.
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11.2.3  Global Semantics
How to give the network the ability to extract overall semantic features? 

In other words, how can the network extract the semantic information 

of word vectors in order and accumulate it into the global semantic 

information of the entire sentence? We thought of the memory 

mechanism. If the network can provide a separate memory variable, each 

time the feature of the word vector is extracted and the memory variable 

is refreshed, until the last input is completed, the memory variable at this 

time stores the semantic features of all sequences, and because of the 

order of input sequences, the contents of memory variables are closely 

related to the sequence order.

We implement the preceding memory mechanism as a state tensor h, 

as shown in Figure 11-6. In addition to the original Wxh parameter sharing, 

an additional Whh parameter is added here. The state tensor h refresh 

mechanism for each timestamp t is:

 h W x W h bt xh t hh t� � �� ��� 1  

Figure 11-6. Recurrent neural network (no bias added)
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where the state tensor h0 is the initial memory state, which can be 

initialized to all 0s. After the input of s word vectors, the final state tensor 

hs of the network is obtained. hs better represents the global semantic 

information of the sentence. Passing hs through a fully connected layer 

classifier can complete the sentiment classification task.

11.2.4  Recurrent Neural Network
Through step-by-step exploration, we finally proposed a “new” network 

structure, as shown in Figure 11-7. At each time stamp t, the network layer 

accepts the input xt of the current time stamp and the network state vector 

of the previous time stamp ht − 1, after:

 h f h xt t t� � ��� 1 ,  

After transformation, the new state vector ht of the current time stamp 

is obtained and written into the memory state, where fθ represents the 

operation logic of the network, and θ is the network parameter set. At 

each time stamp, the network layer has an output to produce ot, ot = gϕ(ht), 

which is to output the state vector of the network after transformation.

Figure 11-7. Expanded RNN model
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The preceding network structure is folded on the time stamp, as shown 

in Figure 11-8. The network cyclically accepts each feature vector xt of the 

sequence, refreshes the internal state vector ht, and forms the output ot at 

the same time. For this kind of network structure, we call it the recurrent 

neural network (RNN).

Figure 11-8. Folded RNN model

More specifically, if we use the tensors Wxh, Whh and bias b to 

parameterize the fθ network, and use the following ways to update the 

memory state, we call this kind of network a basic recurrent neural 

network, unless otherwise specified; generally speaking, the recurrent 

neural network refers to this realization.

 h W x W h bt xh t hh t� � �� ��� 1  

In the recurrent neural network, the activation function uses the Tanh 

function more, and we can choose not to use the bias b to further reduce 

the amount of parameters. The state vector ht can be directly used as 

output, that is, ot = ht, or a simple linear transformation of ht can be done to 

ot = Whoht to get the network output ot on each time stamp.
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11.3  Gradient Propagation
Through the update expression of the recurrent neural network, it can be 

seen that the output is derivable to the tensors Wxh, Whh and bias b, and the 

automatic gradient descent algorithm can be used to solve the gradient of 

the network. Here we simply derive the gradient propagation formula of 

RNN and explore its characteristics.

Consider the gradient 
∂

∂
L

Whh

, where L is the error of the network, 

and only consider the difference between the last output ot at t and 

the true value. Since Whh is shared by the weight of each timestamp i, 

when calculating 
∂

∂
L

Whh

, it is necessary to sum the gradients on each 

intermediate timestamp i, using the chain rule to expand as:
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 can be obtained directly based on the loss function, in the case 

of ot = ht:
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Among them 
�
�

�h

W
i

hh

 only considers the gradient propagation of one 

time stamp, that is, the “direct” partial derivative, which is different from 
∂

∂
L

Whh

 that considers the gradient propagation of all timestamps i = 1, ⋯, t.
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Therefore, we only need to derive the expression of 
∂
∂
h

h
t

i

 to complete 

the gradient derivation of the recurrent neural network. Using the chain 

rule, we divide 
∂
∂
h

h
t

i

 into the gradient expression of successive timestamps:
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Consider:

 h W x W h bk xh k hh k� �� � �� �1 1�  

then:
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where diag(x) takes each element of the vector x as the diagonal element 

of the matrix and obtains a diagonal matrix with all other elements being 0, 

for example:

 
diag 3 2 1 3 0 0 0 2 0 0 01, ,� �� � � � �  

Therefore,
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So far, the gradient derivation of 
∂

∂
L

Whh

 is completed.

Chapter 11  reCurrent neural network



476

Since deep learning frameworks can help us automatically derive 

gradients, we only need to understand the gradient propagation 

mechanism of the recurrent neural network. In the process of deriving 
∂

∂
L

Whh

, we found that the gradient of 
∂
∂
h

h
t

i

 includes the continuous 

multiplication operation of Whh, which is the root cause of the difficulty in 

training the recurrent neural network the reason. We will discuss it later.

11.4  How to Use RNN Layers
After introducing the principle of the recurrent neural network, let’s 

learn how to implement the RNN layer in TensorFlow. In TensorFlow, 

the σ(Wxhxt + Whhht − 1 + b) calculation can be completed by layers.

SimpleRNNCell() function. It should be noted that in TensorFlow, RNN 

stands for recurrent neural network in a general sense. For the basic 

recurrent neural network we are currently introducing, it is generally called 

SimpleRNN. The difference between SimpleRNN and SimpleRNNCell 

is that the layer with cell only completes the forward operation of one 

timestamp, while the layer without cell is generally implemented based 

on the cell layer, which has already completed multiple timestamp cycles 

internally. Therefore, it is more convenient and faster to use.

We first introduce the use of SimpleRNNCell, and then introduce the 

use of SimpleRNN layer.

11.4.1  SimpleRNNCell
Take a certain input feature length n=4 and cell state vector feature length 

h=3 as an example. First, we create a SimpleRNNCell without specifying 

the sequence length s. The code is as follows:
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In [3]:

cell = layers.SimpleRNNCell(3) # Create RNN Cell, memory vector 

length is 3

cell.build(input_shape=(None,4)) # Output feature length n=4

cell.trainable_variables # Print wxh, whh, b tensor

Out[3]:

[<tf.Variable 'kernel:0' shape=(4, 3) dtype=float32, 

numpy=...>,

  <tf.Variable 'recurrent_kernel:0' shape=(3, 3) dtype=float32, 

numpy=...>,

  <tf.Variable 'bias:0' shape=(3,) dtype=float32, 

numpy=array([0., 0., 0.], dtype=float32)>]

It can be seen that SimpleRNNCell maintains three tensors internally, 

the kernel variable is the tensor Wxh, the recurrent_kernel variable is the 

tensor Whh, and the bias variable is the bias vector b. However, the memory 

vector h of RNN is not maintained by SimpleRNNCell, and the user needs 

to initialize the vector h0 and record the ht on each time stamp.

The forward operation can be completed by calling the cell instance:

 
o h Cell x ht t t t,� � � � �� ��, 1  

For SimpleRNNCell, ot = ht, is the same object. There’s no additional 

linear layer conversion. [ht] is wrapped in a list. This setting is for 

uniformity with RNN variants such as LSTM and GRU. In the initialization 

phase of the recurrent neural network, the state vector h0 is generally 

initialized to an all-zero vector, for example:

In [4]:

# Initialize state vector. Wrap with list, unified format

h0 = [tf.zeros([4, 64])]

x = tf.random.normal([4, 80, 100]) # Generate input tensor, 4 

sentences of 80 words
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xt = x[:,0,:] # The first word of all sentences

# Construct a Cell with input feature n=100, sequence length 

s=80, state length=64

cell = layers.SimpleRNNCell(64)

out, h1 = cell(xt, h0) # Forward calculation

print(out.shape, h1[0].shape)

Out[4]: (4, 64) (4, 64)

It can be seen that after one timestamp calculation, the shape of the 

output and the state tensor are both [b, h], and the ids of the two are 

printed as follows:

In [5]:print(id(out), id(h1[0]))

Out[5]:2154936585256 2154936585256

The two ids are the same, that is, the state vector is directly used as the 

output vector. For the training of length s, it is necessary to loop through 

the cell class s times to complete one forward operation of the network 

layer. For example:

h = h0 # Save a list of state vectors on each time stamp

# Unpack the input in the dimension of the sequence length to 

get xt:[b,n]

for xt in tf.unstack(x, axis=1):

     out, h = cell(xt, h) # Forward calculation, both out and h 

are covered

# The final output can aggregate the output on each time stamp, 

or just take the output of the last time stamp

out = out

The output variable out of the last time stamp will be the final output of 

the network. In fact, you can also save the output on each timestamp, and 

then sum or average it as the final output of the network.
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11.4.2  Multilayer SimpleRNNCell Network
Like the convolutional neural network, although the recurrent neural 

network has been expanded many times on the time axis, it can only be 

counted as one network layer. By stacking multiple cell classes in the depth 

direction, the network can achieve the same effect as a deep convolutional 

neural network, which greatly improves the expressive ability of the 

network. However, compared with the number of deep layers of tens or 

hundreds of convolutional neural networks, recurrent neural networks are 

prone to gradient diffusion and gradient explosion. Deep recurrent neural 

networks are very difficult to train. The current common recurrent neural 

network models generally have number of layers less than 10.

Here we take a two-layer recurrent neural network as an example to 

introduce the use of cell class to build a multilayer RNN network. First 

create two SimpleRNNCell cells as follows:

x = tf.random.normal([4,80,100])

xt = x[:,0,:] # Take first timestamp of the input x0

# Construct 2 Cells, first cell0, then cell1, the memory state 

vector length is 64

cell0 = layers.SimpleRNNCell(64)

cell1 = layers.SimpleRNNCell(64)

h0 = [tf.zeros([4,64])] # initial state vector of cell0

h1 = [tf.zeros([4,64])] # initial state vector of cell1

Calculate multiple times on the time axis to realize the forward 

operation of the entire network. The input xt on each time stamp first 

passes through the first layer to get the output out0, and then passes 

through the second layer to get the output out1. The code is as follows:

for xt in tf.unstack(x, axis=1):

    # xt is input and output is out0

    out0, h0 = cell0(xt, h0)
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     # The output out0 of the previous cell is used as the input 

of this cell

    out1, h1 = cell1(out0, h1)

The preceding method first completes the propagation of the input 

on one time stamp on all layers and then calculates the input on all time 

stamps in a loop.

In fact, it is also possible to first complete the calculation of all time 

stamps input on the first layer, and save the output list of the first layer on 

all time stamps, and then calculate the propagation of the second layer, the 

third layer, etc. as in the following:

# Save the output above all timestamps of the previous layer

middle_sequences = []

# Calculate the output on all timestamps of the first layer 

and save

for xt in tf.unstack(x, axis=1):

    out0, h0 = cell0(xt, h0)

    middle_sequences.append(out0)

# Calculate the output on all timestamps of the second layer

# If it is not the last layer, you need to save the output 

above all timestamps

for xt in middle_sequences:

    out1, h1 = cell1(xt, h1)

In this way, we need an additional list to save the information of all 

timestamps in the previous layer: middle_sequences.append(out0). These 

two methods have the same effect, and you can choose the coding style 

you like.

It should be noted that each layer of the recurrent neural network at 

each time stamp has a state output. For subsequent tasks, which state 

output should we collect and is the most effective? Generally speaking, 
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the state of the last-level cell may preserve the global semantic features 

of the high-level, so the output of the last-level is generally used as the 

input of the subsequent task network. More specifically, the state output 

on the last timestamp of each layer contains the global information of the 

entire sequence. If you only want to use one state variable to complete 

subsequent tasks, such as sentiment classification problems, generally the 

output of the last layer at the last timestamp is most suitable.

11.4.3  SimpleRNN Layer
Through the use of the SimpleRNNCell layer, we can understand every 

detail of the forward operation of the recurrent neural network. In 

actual use, for simplicity, we do not want to manually implement the 

internal calculation process of the recurrent neural network, such as the 

initialization of the state vector at each layer and the operation of each 

layer on the time axis. Using the SimpleRNN high-level interface can help 

us achieve this goal very conveniently.

For example, if we want to complete the forward operation of a single- 

layer recurrent neural network, it can be easily implemented as follows:

In [6]:

layer = layers.SimpleRNN(64) # Create a SimpleRNN layer with a 

state vector length of 64

x = tf.random.normal([4, 80, 100])

out = layer(x) # Like regular convolutional networks, one line 

of code can get the output

out.shape

Out[6]: TensorShape([4, 64])
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As you can see, SimpleRNN can complete the entire forward operation 

process with only one line of code, and it returns the output on the 

last time stamp by default. If you want to return the output list on all 

timestamps, you can set return_sequences=True as follows:

In [7]:

# When creating the RNN layer, set the output to return all 

timestamps

layer = layers.SimpleRNN(64,return_sequences=True)

out = layer(x) # Forward calculation

out # Output, automatic concat operation

Out[7]:

<tf.Tensor: id=12654, shape=(4, 80, 64), dtype=float32, numpy=

array([[[ 0.31804922,  0.7904409 ,  0.13204293, 

...,  0.02601025,

         -0.7833339 ,  0.65577114],...>

As you can see, the returned output tensor shape is [4,80,64], and 

the middle dimension 80 is the timestamp dimension. Similarly, we 

can achieve multilayer recurrent neural networks by stacking multiple 

SimpleRNNs, such as a two-layer network, and its usage is similar to that of 

a normal network. For example:

net = keras.Sequential([ # Build a 2-layer RNN network

# Except for the last layer, the output of all timestamps needs 

to be returned to be used as the input of the next layer

layers.SimpleRNN(64, return_sequences=True),

layers.SimpleRNN(64),

])

out = net(x) # Forward calculation

Each layer needs the state output of the previous layer at each time 

stamp, so except for the last layer, all RNN layers need to return the 

state output at each time stamp, which is achieved by setting return_
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sequences=True. As you can see, using the SimpleRNN layer is similar 

to the usage of convolutional neural networks, which is very concise and 

efficient.

11.5  Hands-On RNN Sentiment  
Classification

Now let’s use the basic RNN network to solve the sentiment classification 

problem. The network structure is shown in Figure 11-9. The RNN network 

has two layers. The semantic features of the sequence signal are extracted 

cyclically. The state vector hs
2� �  of the last time stamp of the second RNN 

layer is used as the global semantic feature representation of the sentence. 

It is sent to the classification network 3 formed by a fully connected layer, 

and the probability that the sample x is a positive emotion P (x is positive 

emotion│x) ∈[0, 1] is obtained.

Figure 11-9. Network structure of sentiment classification task
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11.5.1  Dataset
The classic IMDB movie review dataset is used here to complete the 

sentiment classification task. The IMDB movie review dataset contains 

50,000 user reviews. The evaluation tags are divided into negative and 

positive. User reviews with IMDB rating <5 are marked as 0, which means 

negative; user reviews with IMDB rating ≥7 are marked as 1, which means 

positive. Twenty-five thousand film reviews were used for the training set 

and 25,000 were used for the test set.

The IMDB dataset can be loaded by datasets tool provided by Keras as 

follows:

In [8]:

batchsz = 128 # Batch size

total_words = 10000 # Vocabulary size N_vocab

max_review_len = 80 # The maximum length of the sentence s, the 

sentence part greater than will be truncated, and the sentence 

less than will be filled

embedding_len = 100 # Word vector feature length n

# Load the IMDB data set, the data here is coded with numbers, 

and a number represents a word

(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.

load_data(num_words=total_words)

# Print the input shape, the shape of the label

print(x_train.shape, len(x_train[0]), y_train.shape)

print(x_test.shape, len(x_test[0]), y_test.shape)

Out[8]:

(25000,) 218 (25000,)

(25000,) 68 (25000,)

As you can see, x_train and x_test are one-dimensional arrays with 

a length of 25,000. Each element of the array is a list of indefinite length, 

which stores each sentence encoded by numbers. For example, the first 
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sentence of the training set has a total of 218 words, and the first sentence 

of the test set has 68 words, and each sentence contains the sentence start 

marker ID.

So how is each word encoded as a number? We can get the coding 

scheme by looking at its coding table, for example:

In [9]:

# Digital code table

word_index = keras.datasets.imdb.get_word_index()

# Print out the words and corresponding numbers in the 

coding table

for k,v in word_index.items():

   print(k,v)

Out[10]:

   ...diamiter 88301

   moveis 88302

   mardi 14352

   wells' 11583

   850pm 88303...

Since the key of the coding table is a word and the value is an ID, the 

coding table is flipped and the coding ID of the flag bit is added. The code 

is as follows:

# The first 4 IDs are special bits

word_index = {k:(v+3) for k,v in word_index.items()}

word_index["<PAD>"] = 0  # Fill flag

word_index["<START>"] = 1 # Start flag

word_index["<UNK>"] = 2  # Unknown word sign

word_index["<UNUSED>"] = 3

# Flip code table

reverse_word_index = dict([(value, key) for (key, value) in 

word_index.items()])
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For a digitally encoded sentence, it is converted into string data by the 

following function:

def decode_review(text):

     return ' '.join([reverse_word_index.get(i, '?') for i 

in text])

For example, to convert a sentence, the code is as follows:

In [11]:decode_review(x_train[0])

Out[11]:

"<START> this film was just brilliant casting location scenery 

story direction everyone's...<UNK> father came from...

For sentences with uneven lengths, a threshold is artificially set. For 

sentences larger than this length, select some words to be truncated, 

you can choose to cut off the beginning of the sentence or the end of the 

sentence. For sentences less than this length, you can choose to fill at 

the beginning or end of a sentence. The sentence truncation function 

can be conveniently realized by the keras.preprocessing.sequence.pad_

sequences() function, for example:

# Truncate and fill sentences so that they are of equal length, 

here long sentences retain the part behind the sentence, and 

short sentences are filled in front

x_train = keras.preprocessing.sequence.pad_sequences(x_train, 

maxlen=max_review_len)

x_test = keras.preprocessing.sequence.pad_sequences(x_test, 

maxlen=max_review_len)

After truncating or filling to the same length, wrap it into a dataset 

object through the Dataset class, and add the commonly used dataset 

processing flow, the code is as follows:
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In [12]:

# Build a data set, break up, batch, and discard the last batch 

that is not enough batchsz

db_train = tf.data.Dataset.from_tensor_slices((x_train, 

y_train))

db_train = db_train.shuffle(1000).batch(batchsz, drop_

remainder=True)

db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))

db_test = db_test.batch(batchsz, drop_remainder=True)

# Statistical data set attributes

print('x_train shape:', x_train.shape, tf.reduce_max(y_train), 

tf.reduce_min(y_train))

print('x_test shape:', x_test.shape)

Out[12]:

x_train shape: (25000, 80) tf.Tensor(1, shape=(), dtype=int64) 

tf.Tensor(0, shape=(), dtype=int64)

x_test shape: (25000, 80)

It can be seen that the sentence length after truncation and filling 

is unified to 80, which is the set sentence length threshold. The drop_

remainder=True parameter discards the last batch, because its real batch 

size may be smaller than the preset batch size.

11.5.2  Network Model
We create a custom model class MyRNN, inherited from the model base 

class, we need to create a new Embedding layer, two RNN layers, and one 

classification layer as follows:

class MyRNN(keras.Model):

    # Use Cell method to build a multi-layer network

    def __init__(self, units):

        super(MyRNN, self).__init__()
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         # [b, 64], construct Cell initialization state 

vector, reuse

        self.state0 = [tf.zeros([batchsz, units])]

        self.state1 = [tf.zeros([batchsz, units])]

        # Word vector encoding [b, 80] => [b, 80, 100]

         self.embedding = layers.Embedding(total_words, 

embedding_len,

                                           input_length=max_

review_len)

         # Construct 2 Cells and use dropout technology to 

prevent overfitting

         self.rnn_cell0 = layers.SimpleRNNCell(units, 

dropout=0.5)

         self.rnn_cell1 = layers.SimpleRNNCell(units, 

dropout=0.5)

         # Construct a classification network to classify the 

output features of CELL, 2 classification

        # [b, 80, 100] => [b, 64] => [b, 1]

        self.outlayer = layers.Dense(1)

The word vector is encoded as length n=100, and the state vector 

length of RNN is h=units. The classification network completes a binary 

classification task, so the output node is set to 1.

The forward propagation logic is as follows: the input sequence 

completes the word vector encoding through the Embedding layer, loops 

through the two RNN layers to extract semantic features, takes the state 

vector output of the last time stamp of the last layer, and sends it to the 

classification network. The output probability is obtained after the Sigmoid 

activation function as in the following:

    def call(self, inputs, training=None):

        x = inputs # [b, 80]

        # Word vector embedding: [b, 80] => [b, 80, 100]

Chapter 11  reCurrent neural network



489

        x = self.embedding(x)

        # Pass 2 RNN CELLs,[b, 80, 100] => [b, 64]

        state0 = self.state0

        state1 = self.state1

        for word in tf.unstack(x, axis=1): # word: [b, 100]

             out0, state0 = self.rnn_cell0(word, state0, 

training)

             out1, state1 = self.rnn_cell1(out0, state1, 

training)

         # Last layer's last time stamp as the network output: 

[b, 64] => [b, 1]

        x = self.outlayer(out1, training)

        # Pass through activation function, p(y is pos|x)

        prob = tf.sigmoid(x)

        return prob

11.5.3  Training and Testing
For simplicity, here we use Keras’ Compile&Fit method to train the 

network. Set the optimizer to Adam optimizer, the learning rate is 

0.001, the error function uses the two-class cross-entropy loss function 

BinaryCrossentropy, and the test metric uses the accuracy rate. The code is 

as follows:

def main():

    units = 64 # RNN state vector length n

    epochs = 20 # Training epochs

    model = MyRNN(units) # Create the model

    # Compile

    model.compile(optimizer = optimizers.Adam(0.001),
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                  loss = losses.BinaryCrossentropy(),

                  metrics=['accuracy'])

    # Fit and validate

    model.fit(db_train, epochs=epochs, validation_data=db_test)

    # Test

    model.evaluate(db_test)

After 20 Epoch trainings, the network achieves 80.1% accuracy rate at 

testing dataset.

11.6  Gradient Vanishing and Gradient  
Exploding

The training of recurrent neural networks is not stable, and the depth of 

the network cannot be arbitrarily deepened. Why do recurrent neural 

networks have difficulty in training? Let’s briefly review the key expressions 

in the gradient derivation:
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 explosively increase.

We can intuitively feel the generation of gradient vanishing and 

gradient exploding from the following two examples:
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In [13]:

W = tf.ones([2,2]) # Create a matrix

eigenvalues = tf.linalg.eigh(W)[0] # Calculate eigenvalue

eigenvalues

Out[13]:

<tf.Tensor: id=923, shape=(2,), dtype=float32, numpy=array( 

[0., 2.], dtype=float32)>

It can be seen that the maximum eigenvalue of the all-one matrix is 2. 

Calculate the W1~W10 of the W matrix and draw it as a graph of the power 

and the L2-norm of the matrix, as shown in Figure 11-10. It can be seen 

that when the maximum eigenvalue of the W matrix is greater than 1, the 

matrix multiplication will make the result larger and larger.

val = [W]

for i in range(10): # Matrix multiplication n times

    val.append([val[-1]@W])

# Calculate L2 norm

norm = list(map(lambda x:tf.norm(x).numpy(),val))

Figure 11-10. Matrix multiplication when the largest eigenvalue is 
greater than 1
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Consider the case when the maximum eigenvalue is less than 1.

In [14]:

W = tf.ones([2,2])*0.4 # Create a matrix

eigenvalues = tf.linalg.eigh(W)[0] # Calculate eigenvalues

print(eigenvalues)

Out[14]:

tf.Tensor([0.  0.8], shape=(2,), dtype=float32)

It can be seen that the maximum eigenvalue of the W matrix 

at this time is 0.8. In the same way, consider the results of multiple 

multiplications of the W matrix as follows:

val = [W]

for i in range(10):

    val.append([val[-1]@W])

# Calculate the L2 norm

norm = list(map(lambda x:tf.norm(x).numpy(),val))

plt.plot(range(1,12),norm)

Its L2-norm curve is shown in Figure 11-11. It can be seen that 

when the maximum eigenvalue of the W matrix is less than 1, the matrix 

multiplication will make the result smaller and smaller, close to 0.
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Figure 11-11. Matrix multiplication when the largest eigenvalue is 
less than 1

We call the phenomenon where the gradient value is close to 0 

gradient vanishing and the phenomenon where the gradient value is far 

greater than 1 gradient exploding. Details about the gradient propagation 

mechanism can be found in Chapter 7. Gradient vanishing and gradient 

exploding are two situations that appear in the process of neural network 

optimization, and they are also not conducive to network training.

Consider the gradient descent algorithm:

 � � � �� � � � L  

When gradient vanishing occurs, ∇θL ≈ 0, at this time θ′ ≈ θ, which 

means that the parameters remain unchanged after each gradient update, 

and the parameters of the neural network cannot be updated for a long 

time. The specific performance is that L has almost no change, other 

evaluation indicators, such as accuracy, also remain the same. When the 

gradient exploding occurs, ∇θL ≫ 1, the update step size of the gradient 

η∇θL is very large, so that the updated θ′ and θ are very different, and the 

network L has a sudden change, and even oscillates back and forth with 

non-convergence.
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By deriving the gradient propagation formula of the recurrent neural 

network, we found that the recurrent neural network is prone to gradient 

vanishing and gradient exploding. So how to solve these two problems?

11.6.1  Gradient Clipping
Gradient exploding can be solved to a certain extent by gradient clipping. 

Gradient clipping is very similar to tensor limiting. It also limits the value 

or norm of the gradient tensor to a small interval, thereby reducing the 

gradient value far greater than 1 and avoiding gradient exploding.

In deep learning, there are three commonly used gradient clipping 

methods.

• Limit the value of the tensor directly so that all the 

elements of the tensor W are wij ∈ [min, max]. In 

TensorFlow, it can be achieved through the tf.clip_by_

value() function. For example:

In [15]:

a=tf.random.uniform([2,2])

tf.clip_by_value(a,0.4,0.6) # Gradient value clipping

Out[15]:

<tf.Tensor: id=1262, shape=(2, 2), dtype=float32, numpy=

array([[0.5410726, 0.6      ],

       [0.4      , 0.6      ]], dtype=float32)>

• Limit the norm of the gradient tensor W. For example, 

the L2 norm of W – ‖W‖2 is constrained between 

[0,max]. If ‖W‖2 is greater than the max value, use:
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W
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to restrict ‖W‖2 to max. This can be done through the tf.clip_by_norm 

function. For example:

In [16]:

a=tf.random.uniform([2,2]) * 5

# Clip by norm

b = tf.clip_by_norm(a, 5)

# Norm before and after clipping

tf.norm(a),tf.norm(b)

Out[16]:

(<tf.Tensor: id=1338, shape=(), dtype=float32, numpy=5.380655>,

 <tf.Tensor: id=1343, shape=(), dtype=float32, numpy=5.0>)

It can be seen that for tensors with L2 norm greater than max, the 

norm value is reduced to 5 after clipping.

• The update direction of the neural network is 

represented by the gradient tensor W of all parameters. 

The first two methods only consider a single gradient 

tensor, and so the update direction of the network may 

change. If the norm of the gradient W of all parameters 

can be considered, and equal scaling can be achieved, 

then the gradient value of the network can be well 

restricted without changing the update direction of the 

network. This is the third method of gradient clipping: 

global norm clipping. In TensorFlow, the norm of 

the overall network gradient W can be quickly scaled 

through the tf.clip_by_global_norm function.

Let W(i) denote the i-th gradient tensor of the network parameters. Use 

the following formula to calculate the global norm of the network.

 
global norm W

i

i_ || ||� � � �
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For the i-th parameter W(i), use the following formula to clip.

 
W

W norm

global norm norm
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i
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_

_ max_,  

where max_norm is the global maximum norm value specified by the user. 

For example:

In [17]:

w1=tf.random.normal([3,3]) # Create gradient tensor 1

w2=tf.random.normal([3,3]) # Create gradient tensor 2

# Calculate global norm

global_norm=tf.math.sqrt(tf.norm(w1)**2+tf.norm(w2)**2)

# Clip by global norm and max norm=2

(ww1,ww2),global_norm=tf.clip_by_global_norm([w1,w2],2)

# Calcualte global norm after clipping

global_norm2 = tf.math.sqrt(tf.norm(ww1)**2+tf.norm(ww2)**2)

# Print the global norm before cropping and the global norm 

after cropping

print(global_norm, global_norm2)

Out[17]:

tf.Tensor(4.1547523, shape=(), dtype=float32)

tf.Tensor(2.0, shape=(), dtype=float32)

It can be seen that after clipping, the global norm of the gradient group 

of the network parameters is reduced to max_norm=2. It should be noted 

that tf.clip_by_global_norm returns two objects of the clipped tensor – list 

and global_norm, where global_norm represents the global norm sum of 

the gradient before clipping.

Through gradient clipping, the gradient exploding phenomenon can 

be suppressed. As shown in Figure 11-12, the error value J of the J(w, b) 

function represented by the surface in the figure under different network 

parameters w and b. There is a region where the gradient of the J(w, b) 
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function changes greatly. When parameters enter this area, gradient 

exploding are prone to occur, which makes the network state deteriorate 

rapidly. Figure 11-12 on the right shows the optimized trajectory after 

adding gradient clipping. Since the gradient is effectively restricted, the 

step size of each update is effectively controlled, thereby preventing the 

network from suddenly deteriorating.

Figure 11-12. Diagram of the optimized trajectory of gradient 
clipping [1]

During network training, gradient clipping is generally performed after 

the gradient is calculated and before the gradient is updated. For example:

with tf.GradientTape() as tape:

  logits = model(x) # Forward calculation

  loss = criteon(y, logits) # Calculate error

# Calcualte gradients

grads = tape.gradient(loss, model.trainable_variables)

grads, _ = tf.clip_by_global_norm(grads, 25) # Global norm 

clipping

# Update parameters using clipped gradient

optimizer.apply_gradients(zip(grads, model.trainable_

variables))
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11.6.2  Gradient Vanishing
The gradient vanishing phenomenon can be suppressed by a series of 

measures such as increasing the learning rate, reducing the network depth, 

and adding Skip Connection.

Increasing the learning rate η can prevent gradient vanishing to 

a certain extent. When gradient vanishing occurs, the gradient of the 

network ∇θL is close to 0. At this time, if the learning rate η is also small, 

such as η=1e − 5, the gradient update step is even smaller. By increasing 

the learning rate, such as letting η = 1e − 2, it is possible to quickly update 

the state of the network and escape the gradient vanishing area.

For deep neural networks, the gradient gradually propagates from the 

last layer to the first layer, and gradient vanishing is generally more likely 

to appear in the first few layers of the network. Before the emergence of 

deep residual networks, it was very difficult to train deep networks with 

dozens or hundreds of layers. The gradients of the previous layers of the 

network were very prone to gradient vanishing, which made the network 

parameters not updated for a long time. The deep residual network better 

overcomes the gradient vanishing phenomenon, so that the number 

of neural network layers can reach hundreds or thousands. Generally 

speaking, reducing the network depth can reduce the gradient vanishing 

phenomenon, but after the number of network layers is reduced, the 

network expression ability will be weaker.

11.7  RNN Short-Term Memory
In addition to the training difficulty of recurrent neural networks, there 

is a more serious problem, that is, short-term memory. Consider a long 

sentence:
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Today’s weather is so beautiful, even though an unpleasant thing 

happened on the road..., I immediately adjusted my state and happily 

prepared for a beautiful day.

According to our understanding, the reason why we “happily prepared 

for a beautiful day” is that “Today’s weather is so beautiful” which is 

mentioned at the beginning of the sentence. It can be seen that humans 

can understand long sentences well, but recurrent neural networks are not 

necessary. Researchers have found that when recurrent neural networks 

process long sentences, they can only understand information within a 

limited length, while useful information in a longer range cannot be used 

well. We call this phenomenon short-term memory.

So, can this short-term memory be prolonged so that the recurrent 

neural network can effectively use the training data in a longer range, 

thereby improving model performance? In 1997, Swiss artificial 

intelligence scientist Jürgen Schmidhuber proposed the Long Short-Term 

Memory (LSTM) model. Compared with the basic RNN network, LSTM 

has longer memory and is better at processing longer sequence data. After 

LSTM was proposed, it has been widely used in tasks such as sequence 

prediction and natural language processing, almost replacing the basic 

RNN model .

Next, we will introduce the more popular and powerful LSTM network.

11.8  LSTM Principle
The basic RNN network structure is shown in Figure 11-13. After the state 

vector ht − 1 of the previous time stamp and the input xt of the current time 

stamp are linearly transformed, the new state vector ht is obtained through 

the activation function tanh. Compared with the basic RNN network 

which has only one state vector ht, LSTM adds a new state vector Ct, and 

at the same time introduces a gate control mechanism, which controls the 

forgetting and updating of information through the gate control unit, as 

shown in Figure 11-14.
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Figure 11-13. Basic RNN structure

Figure 11-14. LSTM structure

In LSTM, there are two state vectors c and h, where c is the internal 

state vector of LSTM, which can be understood as the memory state vector 

of LSTM, and h represents the output vector of LSTM. Compared with 

the basic RNN, LSTM separates the internal memory and output into two 

variables and uses three gates, input gate, forget gate, and output gate, to 

control the internal information flow.

The gate mechanism can be understood as a way of controlling 

the data flow, analogous to a water valve: when the water valve is fully 

opened, water flows unimpeded; when the water valve is fully closed, the 

water flow is completely blocked. In LSTM, the valve opening degree are 

represented by the gate control value vector g, as shown in Figure 11-15, 

the gate control is compressed to the interval between [0,1] through the 

σ(g) activation function. When σ(g) = 0, all gates are closed, and output is 

o = 0. When σ(g) = 1, all gates are open, and output is o = x. Through the 

gate mechanism, the data flow can be better controlled.

Chapter 11  reCurrent neural network



501

Figure 11-15. Gate mechanism

In the following, we respectively introduce the principles and functions 

of the three gates.

11.8.1  Forget Gate
The forget gate acts on the LSTM state vector c to control the impact of 

the memory ct − 1 of the previous time stamp on the current time stamp. 

As shown in Figure 11-16, the control variable gf of the forget gate is 

determined by:

 
g W h x bf f t t f� � ��� ��� 1 ,  

where Wf and bf are the parameter tensors of the forget gate, which can 

be automatically optimized by the backpropagation algorithm. σ is the 

activation function, and the Sigmoid function is generally used. When 

gf = 1, the forget gates are all open, and LSTM accepts all the information of 

the previous state ct − 1. When the gating gf = 0, the forget gate is closed, and 

LSTM directly ignores ct − 1, and the output is a vector of 0. This is why it’s 

called the forget gate.

After passing through the forget gate, the state vector of LSTM becomes 

g f ct − 1.
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11.8.2  Input Gate
The input gate is used to control the degree to which the LSTM 

receives input. First, the new input vector ct  is obtained by nonlinear 

transformation of the input xt of the current time stamp and the output 

ht − 1 of the previous time stamp:

 
c tanh tanh W h x bt c t t c� � ��� ��1 ,  

where Wc and bc are the parameters of the input gate, which need to be 

automatically optimized by the back propagation algorithm, and Tanh is 

the activation function, which is used to normalize the input to [-1,1]. ct  

does not completely refresh the memory that enters the LSTM but controls 

the amount of input received through the input gate. The control variables 

of the input gate also come from the input xt and the output ht − 1:

 
g W h x bi i t t i� � ��� ��� 1 ,  

where Wi and bi are the parameters of the input gate, which need to be 

automatically optimized by the back propagation algorithm, and σ is the 

activation function, and the Sigmoid function is generally used. The input 

Figure 11-16. Forget gate
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gate control variable gi determines how LSTM accepts the new input ct  of 

the current time stamp: when gi = 0, LSTM does not accept any new input 
ct ; when gi = 1, LSTM accepts all new input ct , As shown in Figure 11-17.

After passing through the input gate, the vector to be written into 

Memory is g ci t
 .

11.8.3  Update Memory
Under the control of the forget gate and the input gate, LSTM selectively 

reads the memory ct − 1 of the previous time stamp and the new input ct  of 

the current time stamp. The refresh mode of the state vector ct is:

 
c g c g ct i t f t� � �

1  

The new state vector ct obtained is the state vector of the current time 

stamp, as shown in Figure 11-17.

Figure 11-17. Input gate
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11.8.4  Output Gate
The internal state vector ct of LSTM is not directly used for output, which is 

different from the basic RNN. The state vector h of the basic RNN network 

is used for both memory and output, so the basic RNN can be understood 

as the state vector c and the output vector h are the same object. In LSTM, 

the state vector is not totally outputted, but selectively under the action of 

the output gate. The gate variable go of the output gate is:

 
g W h x bo o t t o� � ��� ��� 1 ,  

where Wo and bo are the parameters of the output gate, which also need 

to be automatically optimized by the back propagation algorithm. σ is the 

activation function, and the Sigmoid function is generally used. When the 

output gate go = 0, the output is closed, and the internal memory of LSTM 

is completely blocked and cannot be used as an output. At this time, the 

output is a vector of 0; when the output gate go = 1, the output is fully open, 

and the LSTM state vector ct is all used for output. The output of LSTM is 

composed of:

 h g tanh tanh ct o t� � ��  

That is, the memory vector ct interacts with the input gate after passing 

the Tanh activation function to obtain the output of the LSTM. Since 

go ∈ [0, 1] and tanh tanh (ct) ∈ [−1, 1], the output of LSTM is ht ∈ [−1, 1].
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11.8.5  Summary
Although LSTM has a large number of state vectors and gates, the 

calculation process is relatively complicated. But since each gate control 

function is clear, the role of each state is also easier to understand. Here, 

the typical gating behavior is listed and the LSTM behavior of the code is 

explained, as shown in Table 11-1.

Table 11-1. Typical behavior of input gate and forget gate

Input gating Forget Gating LSTM behavior

0 1 only use memory

1 1 Integrated input and memory

0 0 Clear memory

1 0 Input overwrites memory

Figure 11-18. Output gate
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11.9  How to Use the LSTM Layer
In TensorFlow, there are also two ways to implement LSTM networks. 

Either LSTMCell can be used to manually complete the cyclic operation 

on the time stamp, or the forward operation can be completed in one step 

through the LSTM layer.

11.9.1  LSTMCell
The usage of LSTMCell is basically the same as SimpleRNNCell. The 

difference is that there are two state variables – list for LSTM, namely, 

[ht, ct], which need to be initialized separately. The first element of list is 

ht and the second element is ct. When the cell is called to complete the 

forward operation, two elements are returned. The first element is the 

output of the cell, which is ht, and the second element is the updated state 

list of the cell: [ht, ct]. First create a new LSTMCell with a state vector length 

of h = 64, where the length of the state vector ct and the output vector ht are 

both h. The code is as follows:

In [18]:

x = tf.random.normal([2,80,100])

xt = x[:,0,:] # Get a timestamp input

cell = layers.LSTMCell(64) # Create LSTM Cell

# Initialization state and output List,[h,c]

state = [tf.zeros([2,64]),tf.zeros([2,64])]

out, state = cell(xt, state) # Forward calculation

# View the id of the returned element

id(out),id(state[0]),id(state[1])

Out[18]: (1537587122408, 1537587122408, 1537587122728)

It can be seen that the returned output out is the same as the id of the 

first element ht of the list, which is consistent with the original intention of 

the basic RNN and is for the unification of the format.
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By unrolling the loop operation on the timestamp, the forward 

propagation of a layer can be completed, and the writing method is the 

same as the basic RNN. For example:

# Untie it in the sequence length dimension, and send it to the 

LSTM Cell unit in a loop

for xt in tf.unstack(x, axis=1):

    # Forward calculation

    out, state = cell(xt, state)

The output can use only the output on the last time stamp, or it can 

aggregate the output vectors on all time stamps.

11.9.2  LSTM layer
Through the layers.LSTM layer, the operation of the entire sequence can 

be conveniently completed at one time. First create a new LSTM network 

layer, for example:

# Create an LSTM layer with a memory vector length of 64

layer = layers.LSTM(64)

# The sequence passes through the LSTM layer and returns the 

output h of the last time stamp by default

out = layer(x)

After forward propagation through the LSTM layer, only the output of 

the last timestamp will be returned by default. If you need to return the 

output above each timestamp, you need to set the return_sequences=True. 

For example:

# When creating the LSTM layer, set to return the output on 

each timestamp

layer = layers.LSTM(64, return_sequences=True)
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# Forward calculation, the output on each timestamp is 

automatically concated to form a tensor

out = layer(x)

The out returned at this time contains the status output above all 

timestamps, and its shape is [2,80,64], where 80 represents 80 timestamps.

For multilayer neural networks, you can wrap multiple LSTM layers 

with Sequential containers, and set all non-final layer networks  return_

sequences=True, because the non-final LSTM layer needs the output of all 

timestamps of the previous layer as input. For example:

# Like the CNN network, LSTM can also be simply stacked layer 

by layer

net = keras.Sequential([

     layers.LSTM(64, return_sequences=True), # The non-final 

layer needs to return all timestamp output

    layers.LSTM(64)

])

# Once through the network model, you can get the output of the 

last layer and the last time stamp

out = net(x)

11.10  GRU Introduction
LSTM has a longer memory capacity and has achieved better performance 

than the basic RNN model on most sequence tasks. More importantly, 

LSTM is not prone to gradient vanishing. However, the LSTM structure is 

relatively complex, the calculation cost is high, and the model parameters 

are large. Therefore, scientists try to simplify the calculation process inside 

LSTM, especially to reduce the number of gates. Studies found that the 

forget gate is the most important gate control in LSTM [2], and even found 
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that the simplified version of the network with only the forget gate is better 

than the standard LSTM network on multiple benchmark data sets. Among 

many simplified versions of LSTM, Gated Recurrent Unit (GRU) is one of 

the most widely used RNN variants. GRU merges the internal state vector 

and output vector into a state vector h, and the number of gates is also 

reduced to two, reset gate and update gate, as shown in Figure 11-19.

Figure 11-19. GRU network structure

Let’s introduce the principle and function of reset gate and update gate 

respectively.

11.10.1  Reset Door
The reset gate is used to control the amount of the state ht − 1 of the last 

time stamp into the GRU. The gating vector gr is obtained by transforming 

the current time stamp input xt and the last time stamp state ht − 1, the 

relationship is as follows:

 
g W h x br r t t r� � ��� ��� 1 ,  
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where Wr and br are the parameters of the reset gate, which are 

automatically optimized by the back propagation algorithm, σ is the 

activation function, and the Sigmoid function is generally used. The gating 

vector gr only controls the state ht − 1, but not the input xt:

 
h tanh tanh W g h x bt h r t t h� � ��� ��1 ,  

When gr = 0, the new input ht  all comes from the input xt, and ht − 1 is 

not accepted, which is equivalent to resetting ht − 1. When gr = 1, ht − 1 and 

input xt jointly generate a new input ht , as shown in Figure 11-20.

Figure 11-20. Reset gate

11.10.2  Update Gate
The update gate controls the degree of influence of the last time stamp 

state ht − 1 and the new input ht  on the new state vector ht. Update the 

gating vector gz by:

 
g W h x bz z t t z� � ��� ��� 1 ,  

where Wz and bz are the parameters of the update gate, which are 

automatically optimized by the back propagation algorithm, σ is the 
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activation function, and the Sigmoid function is generally used. gz is used 

to control the new input ht  signal, and 1 − gz is used to control the state 

ht − 1 signal:

 h g h g ht z t z t� �� � ��1 1
  

It can be seen that the updates of ht  and ht − 1 to ht are in a state of 

competing with each other. When the update gate gz = 0, all ht comes from 

the last time stamp state ht − 1; when the update gate gz = 1, all ht comes 

from the new input ht .

11.10.3  How to Use GRU
Similarly, in TensorFlow, there are also cell and layer methods to 

implement GRU networks. The usage of GRUCell and GRU layer is very 

similar to the previous SimpleRNNCell, LSTMCell, SimpleRNN and 

LSTM. First, use GRUCell to create a GRU cell object, and cyclically unroll 

operations on the time axis. For example:

In [19]:

# Initialize the state vector, there is only one GRU

h = [tf.zeros([2,64])]

Figure 11-21. Update gate
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cell = layers.GRUCell(64) # New GRU Cell, vector length is 64

# Untie in the timestamp dimension, loop through the cell

for xt in tf.unstack(x, axis=1):

    out, h = cell(xt, h)

# Out shape

out.shape

Out[19]:TensorShape([2, 64])

You can easily create a GRU network layer through the layers.GRU 

class, and stack a network of multiple GRU layers through the Sequential 

container. For example:

net = keras.Sequential([

    layers.GRU(64, return_sequences=True),

    layers.GRU(64)

])

out = net(x)

11.11  Hands-On LSTM/GRU Sentiment  
Classification

Earlier we introduced the sentiment classification problem and used 

the SimpleRNN model to solve the problem. After introducing the more 

powerful LSTM and GRU networks, we upgraded the network model. 

Thanks to the unified format of TensorFlow’s recurrent neural network 

related interfaces, only a few modifications on the original code can be 

perfectly upgraded to the LSTM or GRU model.
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11.11.1  LSTM Model
First, let’s use the cell method. There are two state lists of the LSTM 

network, and the h and c vectors of each layer need to be initialized 

respectively. For example:

         self.state0 = [tf.zeros([batchsz, units]),tf.

zeros([batchsz, units])]

         self.state1 = [tf.zeros([batchsz, units]),tf.

zeros([batchsz, units])]

Modify the model to LSTMCell model as in the following:

        self.rnn_cell0 = layers.LSTMCell(units, dropout=0.5)

        self.rnn_cell1 = layers.LSTMCell(units, dropout=0.5)

Other codes can run without modification. For the layer method, only 

one part of the network model needs to be modified, as follows:

        # Build RNN, replace with LSTM class

        self.rnn = keras.Sequential([

             layers.LSTM(units, dropout=0.5, return_

sequences=True),

            layers.LSTM(units, dropout=0.5)

        ])

11.11.2  GRU model
For the cell method, there is only one GRU state list. Like the basic RNN, 

you only need to modify the type of cell created. The code is as follows:

        # Create 2 Cells

        self.rnn_cell0 = layers.GRUCell(units, dropout=0.5)

        self.rnn_cell1 = layers.GRUCell(units, dropout=0.5)
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For the layer method, just modify the network layer type as follows:

        # Create RNN

        self.rnn = keras.Sequential([

             layers.GRU(units, dropout=0.5, return_

sequences=True),

            layers.GRU(units, dropout=0.5)

        ])

11.12  Pre-trained Word Vectors
In the sentiment classification task, the Embedding layer is trained from 

scratch. In fact, for text processing tasks, most of the domain knowledge is 

shared, so we can use the word vectors trained on other tasks to initialize 

the Embedding layer to complete the domain knowledge transfer. Start 

training based on the pre-trained Embedding layer, and good results can 

be achieved with a small number of samples.

We take the pre-trained GloVe word vector as an example to 

demonstrate how to use the pre-trained word vector model to improve 

task performance. First, download the pre-trained GloVe word vector 

table from the official website. We choose the file glove.6B.100d.txt with a 

feature length of 100, and each word is represented by a vector of length 

100, which can be decompressed after downloading.

Figure 11-22. GloVe word vector model file
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Use the Python file IO code to read the word encoding vector table and 

store it in the Numpy array. code show as in the following:

print('Indexing word vectors.')

embeddings_index = {} # Extract words and their vectors and 

save them in a dictionary

# Word vector model file storage path

GLOVE_DIR = r'C:\Users\z390\Downloads\glove6b50dtxt'

with open(os.path.join(GLOVE_DIR, 'glove.6B.100d.

txt'),encoding='utf-8') as f:

    for line in f:

        values = line.split()

        word = values[0]

        coefs = np.asarray(values[1:], dtype='float32')

         embeddings_index[word] = coefs

print('Found %s word vectors.' % len(embeddings_index))

The GloVe.6B version stores a vector table of 400,000 words in total. 

We only considered up to 10,000 common words. We obtained the word 

vectors from the GloVe model according to the number code table of the 

words and wrote them into the corresponding positions as in the following:

num_words = min(total_words, len(word_index))

embedding_matrix = np.zeros((num_words, embedding_len)) # Word 

vector table

for word, i in word_index.items():

    if i >= MAX_NUM_WORDS:

        continue # Filter out other words

     embedding_vector = embeddings_index.get(word) # Query word 

vector from GloVe
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    if embedding_vector is not None:

        # words not found in embedding index will be all-zeros.

         embedding_matrix[i] = embedding_vector # Write the 

corresponding location

print(applied_vec_count, embedding_matrix.shape)

After obtaining the vocabulary data, use the vocabulary to initialize 

the Embedding layer, and set the Embedding layer not to participate in 

gradient optimization as in the following:

        # Create Embedding layer

         self.embedding = layers.Embedding(total_words, 

embedding_len, input_length=max_review_len,

         trainable=False)# Does not participate in 

gradient updates

         self.embedding.build(input_shape=(None, max_

review_len))

        # Initialize the Embedding layer using the GloVe model

         self.embedding.set_weights([embedding_matrix])# 

initialization

The other parts are consistent. We can simply compare the training 

results of the Embedding layer initialized by the pre-trained GloVe model 

with the training results of the randomly initialized Embedding layer. After 

training 50 Epochs, the accuracy of the pre-training model reached 84.7%, 

an increase of approximately 2%.

11.13  Pre-trained Word Vectors
In this chapter, we introduced the recurrent neural network (RNN) that 

is appropriate to handle sequence related problems such as speech and 

stock market signals. Several sequence representation methods were 
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discussed including one-hot encoding and word embedding. Then 

we introduced the motivation of developing the RNN structure along 

with examples of the SimpleRNNCell network. Hands-on sentiment 

classification was implemented using RNN to help us get familiar with 

using RNN to solve real world problems. Gradient vanishing and exploding 

are common issues during the RNN training process. Fortunately, the 

gradient clipping method can be used to overcome the gradient exploding 

issue. And different variants of RNN such as LSTM and GRU can be used to 

avoid the gradient vanishing issue. The sentiment classification example 

shows the better performance of using LSTM and GRU models because 

their ability of avoiding gradient exploding issue.
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CHAPTER 12

Autoencoder
Suppose machine learning is a cake, reinforcement learning 
is the cherry on the cake, supervised learning is the icing on 
the outside, and unsupervised learning is the cake itself.

—Yann LeCun

Earlier we introduced the neural network learning algorithm given the 

sample and its corresponding label. This type of algorithm actually learns 

the conditional probability P(y| x) given the sample x. With the booming 

social network today, it is relatively easy to obtain massive sample data 

x, such as photos, voices, and texts, but the difficulty is to obtain the 

label information corresponding to these data. For example, in addition 

to collecting source language text, the target language text data to be 

translated is also required for machine translation. Data labeling is mainly 

based on human prior knowledge. For example, Amazon's Mechanical 

Turk system is responsible for data labeling, recruiting part-time staff from 

all over the world to complete customer data labeling tasks. The scale of 

data required for deep learning is generally very large. This method of 

relying heavily on manual data annotation is expensive and inevitably 

introduces the subjective prior bias of the annotator.

For massive unlabeled data, is there a way to learn the data 

distribution P(x) from it? This is the unsupervised learning algorithm that 

we will introduce in this chapter. In particular, if the algorithm learns x as a 
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supervised signal, this type of algorithm is called self-supervised learning, 

and the autoencoder algorithm introduced in this chapter is one type of 

self-supervised learning algorithms.

12.1  Principle of Autoencoder
Let us consider the function of neural networks in supervised learning:

 o f x x R o Rd din out� � � � �� , ,  

din is the length of the input feature vector, and dout is the length of the 

network output vector. For classification problems, the network model 

transforms the input feature vector x of length din to the output vector 

o of length dout. This process can be considered as a feature reduction 

process, transforming the original high-dimensional input vector x to a 

low-dimensional variable o. Dimensionality reduction has a wide range 

of applications in machine learning, such as file compression and data 

preprocessing. The most common dimension reduction algorithm is 

principal component analysis (PCA), which obtains the main components of 

the data by eigen-decomposing the covariance matrix, but PCA is essentially 

a linear transformation, and the ability to extract features is limited.

So can we use the powerful nonlinear expression capabilities of neural 

networks to learn low-dimensional data representation? The key to the 

problem is that training neural networks generally requires an explicit 

label data (or supervised signal), but unsupervised data has no additional 

labeling information, only the data x itself.

Therefore, we try to use the data x itself as a supervision signal to guide 

the training of the network, that is, we hope that the neural network can 

learn the mapping fθ : x → x. We divide the network fθ into two parts. The 

first sub-network tries to learn the mapping relationship: g x z�1
: � , and 

the latter sub-network tries to learn the mapping relationship h z x�2
: � ,  

as shown in Figure 12-1. We consider gθ1
 as a process of data encoding 
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which encodes the high-dimensional input x into a low-dimensional 

hidden variable z (latent variable or hidden variable), which is called an 

encoder network. hθ2
 is considered as the process of data decoding, which 

decodes the encoded input z into high-dimensional x, which is called a 

decoder network.

Figure 12-1. Autoencoder model

The encoder and decoder jointly complete the encoding and decoding 

process of the input data x. We call the entire network model fθ an 

autoencoder for short. If a deep neural network is used to parameterize gθ1
 

and hθ2
 functions, it is called deep autoencoder, as shown in Figure 12-2.

Figure 12-2. Autoencoder using neural network parameterization
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The self-encoder can transform the input to the hidden vector z, 

and reconstruct x  through the decoder. We hope that the output of the 

decoder can perfectly or approximately recover the original input, that is 

x x≈ , then the optimization goal of the autoencoder can be written as:

 min L dist x x� � �,  

 
x h g x� � �� �� �2 1  

where dist x x,� �  represents the distance measurement between x and x ,  

which is called the reconstruction error function. The most common 

measurement method is the square of the Euclidean distance. The 

calculation method is as follows:

 
L x x

i
i i� �� �� 2

 

It is equivalent in principle to the mean square error. There is no 

essential difference between the autoencoder network and the ordinary 

neural network, except that the trained supervision signal has changed from 

the label y to its own x. With the help of the nonlinear feature extraction 

capability of deep neural networks, the autoencoder can obtain good data 

representation, for example, smaller size and dimension data representation 

than the original input data. This is very useful for data and information 

compression. Compared with linear methods such as PCA, the autoencoder 

has better performance and can even recover the input x more perfectly.

In Figure 12-3(a), the first row is a real MNIST handwritten digit picture 

randomly sampled from the test set, and the second, third, and fourth rows 

are reconstructed using a hidden vector of length 30, using autoencoder, 

logistic PCA, and standard PCA, respectively. In Figure 12-3(b), the first 

row is a real portrait image, and the second and third rows are based on a 

hidden vector of length 30, which is recovered using the autoencoder and 

the standard PCA algorithm. It can be seen that the image reconstructed 
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by the autoencoder is relatively clear and has a high degree of restoration, 

while the image reconstructed by the PCA algorithm is blurry.

Figure 12-3. Autoencoder vs. PCA [1]

12.2  Hands-On Fashion MNIST Image  
Reconstruction

The principle of the autoencoder algorithm is very simple, easy to 

implement, and stable in training. Compared with the PCA algorithm, the 

powerful expression ability of the neural network can learn the high-level 

abstract hidden feature vector z of the input, and it can also reconstruct the 

input based on z. Here we perform actual picture reconstruction based on 

the Fashion MNIST dataset.

12.2.1  Fashion MNIST Dataset
Fashion MNIST is a dataset that is a slightly more complicated problem 

than MNIST image recognition. Its settings are almost the same as 

MNIST. It contains ten types of grayscale images of different types of 

clothes, shoes, and bags, and the size of the image is 28 × 28, with a total 

of 70,000 pictures, of which 60,000 are used for the training set and 10,000 
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are used for the test set, as shown in Figure 12-4. Each row is a category 

of pictures. As you can see, Fashion MNIST has the same settings except 

that the picture content is different from MNIST. In most cases, the 

original algorithm code based on MNIST can be directly replaced without 

additional modification. Since Fashion MNIST image recognition is more 

difficult than MNIST, it can be used to test the performance of a slightly 

more complex algorithm.

Figure 12-4. Fashion MNIST Dataset

In TensorFlow, it is also very convenient to load the Fashion MNIST 

dataset, which can be downloaded, managed, and loaded online using the 

keras.datasets.fashion_mnist.load_data() function as in the following:

# Load Fashion MNIST data set

(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_

mnist.load_data()

# Normalize
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x_train, x_test = x_train.astype(np.float32) / 255., x_test.

astype(np.float32) / 255.

# Only need to use image data to build data set objects, no 

tags required

train_db = tf.data.Dataset.from_tensor_slices(x_train)

train_db = train_db.shuffle(batchsz * 5).batch(batchsz)

#  Build test set objects

test_db = tf.data.Dataset.from_tensor_slices(x_test)

test_db = test_db.batch(batchsz)

12.2.2  Encoder
We use the encoder to reduce the dimensionality of the input picture 

x ∈ R784 to a lower-dimensional hidden vector, h ∈ R20, and use the decoder 

to reconstruct the picture based on the hidden vector h. The autoencoder 

model is shown in Figure 12-5. The decoder is composed of a 3-layer fully 

connected network with output nodes of 256, 128, and 20, respectively. 

The decoder is also composed of a three-layer fully connected network 

with output nodes of 128, 256, and 784, respectively.

Figure 12-5. Fashion MNIST autoencoder network architecture
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The first is the realization of the encoder sub-network. A three-layer 

neural network is used to reduce the dimensionality of the image vector 

from 784 to 256, 128, and finally to h_dim. Each layer uses the ReLU 

activation function, and the last layer does not use any activation function.

         # Create Encoders network, implemented in the 

initialization function of the autoencoder class

        self.encoder = Sequential([

            layers.Dense(256, activation=tf.nn.relu),

            layers.Dense(128, activation=tf.nn.relu),

            layers.Dense(h_dim)

        ])

12.2.3  Decoder
Let’s create the decoder sub-network. Here, the hidden vector h_dim is 

upgraded to the length of 128, 256, and 784 in turn. Except for the last 

layer, the ReLU activation function are used. The output of the decoder is 

a vector of length 784, which represents a 28 × 28 size picture after being 

flattened, and can be restored to a picture matrix through the reshape 

operation as in the following:

        # Create Decoders network

        self.decoder = Sequential([

            layers.Dense(128, activation=tf.nn.relu),

            layers.Dense(256, activation=tf.nn.relu),

            layers.Dense(784)

        ])
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12.2.4  Autoencoder
The preceding two sub-networks of encoder and decoder are implemented 

in the autoencoder class AE, and we create these two sub-networks in the 

initialization function at the same time.

class AE(keras.Model):

     # Self-encoder model class, including Encoder and Decoder 

2 subnets

    def __init__(self):

        super(AE, self).__init__()

        #  Create Encoders network

        self.encoder = Sequential([

            layers.Dense(256, activation=tf.nn.relu),

            layers.Dense(128, activation=tf.nn.relu),

            layers.Dense(h_dim)

        ])

        #  Create Decoders network

        self.decoder = Sequential([

            layers.Dense(128, activation=tf.nn.relu),

            layers.Dense(256, activation=tf.nn.relu),

            layers.Dense(784)

        ])

Next, the forward propagation process is implemented in the call 

function. The input image first obtains the hidden vector h through the 

encoder sub-network and then obtains the reconstructed image through 

the decoder. Just call the forward propagation function of the encoder and 

decoder in turn as follows:

    def call(self, inputs, training=None):

        # Forward propagation function

         # Encoding to obtain hidden vector h,[b, 784] 

=> [b, 20]
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        h = self.encoder(inputs)

         # Decode to get reconstructed picture, [b, 20] => 

[b, 784]

        x_hat = self.decoder(h)

        return x_hat

12.2.5  Network Training
The training process of the autoencoder is basically the same as that of 

a classifier. The distance between the reconstructed vector x  and the 

original input vector x is calculated through the error function, and then 

the gradients of the encoder and decoder are simultaneously calculated 

using the automatic derivation mechanism of TensorFlow.

First, create an instance of the autoencoder and optimizer, and set an 

appropriate learning rate. For example:

#  Create network objects

model = AE()

#  Specify input size

model.build(input_shape=(4, 784))

#  Print network information

model.summary()

#  Create an optimizer and set the learning rate

optimizer = optimizers.Adam(lr=lr)

Here 100 Epochs are trained, and the reconstructed image vector is 

obtained through forward calculation each time, and the tf.nn.sigmoid_

cross_entropy_with_logits loss function is used to calculate the direct error 

between the reconstructed image and the original image. In fact, it is also 

feasible to use the MSE error function as in the following:
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for epoch in range(100): # Train 100 Epoch

     for step, x in enumerate(train_db): #  Traverse the 

training set

        # Flatten, [b, 28, 28] => [b, 784]

        x = tf.reshape(x,    [-1, 784])

        # Build a gradient recorder

        with tf.GradientTape() as tape:

             # Forward calculation to obtain the 

reconstructed picture

            x_rec_logits = model(x)

             # Calculate the loss function between the 

reconstructed picture and the input

             rec_loss = tf.nn.sigmoid_cross_entropy_with_

logits(labels=x, logits=x_rec_logits)

            # Calculate the mean

            rec_loss = tf.reduce_mean(rec_loss)

         # Automatic derivation, including the gradient of 2 

sub-networks

         grads = tape.gradient(rec_loss, model.trainable_

variables)

        # Automatic update, update 2 subnets at the same time

         optimizer.apply_gradients(zip(grads,  model.trainable_

variables))

        if step % 100 ==0:

            # Interval print training error

            print(epoch, step, float(rec_loss))
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12.2.6  Image Reconstruction
Different from the classification problem, the model performance of 

the autoencoder is generally not easy to quantify. Although the L value 

can represent the learning effect of the network to a certain extent, we 

ultimately hope to obtain reconstruction samples with a higher degree of 

reduction and richer styles. Therefore, it is generally necessary to discuss 

the learning effect of the autoencoder according to specific issues. For 

image reconstruction, it generally depends on the quality of artificial 

subjective evaluation of the image generation, or the use of certain image 

fidelity calculation methods such as Inception Score and Frechet Inception 

Distance.

In order to test the effect of image reconstruction, we divide the dataset 

into a training set and a test set, where the test set does not participate in 

training. We randomly sample the test picture x ∈ Dtest from the test set, 

calculate the reconstructed picture through the autoencoder, and then 

save the real picture and the reconstructed picture as a picture array and 

visualize it for easy comparison as in the following:

     # Reconstruct pictures, sample a batch of pictures from the 

test set

    x = next(iter(test_db))

     logits = model(tf.reshape(x, [-1, 784])) # Flatten and send 

to autoencoder

     x_hat = tf.sigmoid(logits) # Convert the output to pixel 

values, using the sigmoid function

    # Recover to 28x28,[b, 784] => [b, 28, 28]

    x_hat = tf.reshape(x_hat, [-1, 28, 28])

     # The first 50 input + the first 50 reconstructed pictures 

merged, [b, 28, 28] => [2b, 28, 28]

    x_concat = tf.concat([x[:50], x_hat[:50]], axis=0)

    x_concat = x_concat.numpy() * 255. #  Revert to 0~255 range
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    x_concat = x_concat.astype(np.uint8)  #  Convert to integer

save_images(x_concat, 'ae_images/rec_epoch_%d.png'%epoch)   

# Save picture

The effect of image reconstruction is shown in Figure 12-6, Figure 12-7, 

and Figure 12-8. The five columns on the left of each picture are real 

pictures, and the five columns on the right are the corresponding 

reconstructed pictures. It can be seen that in the first Epoch, the picture 

reconstruction effect is poor, the picture is very blurry, and the fidelity is 

poor. As the training progresses, the edges of the reconstructed picture 

become clearer and clearer. At the 100th Epoch, the reconstructed picture 

effect is already closer to the real picture.

Figure 12-6. First Epoch

Figure 12-7. Tenth Epoch
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Figure 12-8. Hundredth Epoch

The save_images function here is responsible for merging multiple 

pictures and saving them as a big picture. This is done using the PIL 

picture library. The code is as follows:

def save_images(imgs, name):

    #  Create 280x280 size image array

    new_im = Image.new('L', (280, 280))

    index = 0

    for i in range(0, 280, 28): # 10-row image array

        for j in range(0, 280, 28): # 10-column picture array

            im = imgs[index]

            im = Image.fromarray(im, mode='L')

             new_im.paste(im, (i, j)) # Write the corresponding 

location

            index += 1

    # Save picture array

    new_im.save(name)
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12.3  Autoencoder Variants
Generally speaking, the training of the autoencoder network is relatively 

stable, but because the loss function directly measures the distance 

between the reconstructed sample and the underlying features of the real 

sample, rather than evaluating abstract indicators such as the fidelity and 

diversity of the reconstructed sample, the effect on some tasks is mediocre, 

such as image reconstruction where the edges of the reconstructed image 

are prone to be blurred, and the fidelity is not good compared to the 

real image. In order to learn the true distribution of the data, a series of 

autoencoder variant networks were produced: denoising autoencoder.

In order to prevent the neural network from memorizing the 

underlying features of the input data, denoising autoencoders adds 

random noise disturbances to the input data, such as adding noise ε 

sampled from the Gaussian distribution to the input x:

 
x x N� � � �� �, ~ 0,var  

After adding noise, the network needs to learn the real hidden 

variable z of the data from x, and restore the original input x, as shown in 

Figure 12-9. The optimization goals of the model are:

  

Figure 12-9. Denoising autoencoder diagram
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12.3.1  Dropout Autoencoder
The autoencoder network also faces the risk of overfitting. Dropout 

autoencoder reduces the expressive power of the network by randomly 

disconnecting the network and prevents overfitting. The implementation 

of dropout autoencoder is very simple. Random disconnection of the 

network connection can be achieved by inserting the Dropout layer in the 

network layer.

12.3.2  Adversarial Autoencoder
In order to be able to conveniently sample the hidden variable z from a 

known prior distribution p(z), it is convenient to use p(z) to reconstruct the 

input, and the adversarial autoencoder uses an additional discriminator 

network (discriminator, referred to as D network) to determine whether 

the hidden variable z for dimensionality reduction is sampled from 

the prior distribution p(z), as shown in Figure 12-10. The output of 

the discriminator network is a variable belonging to the interval [0,1], 

which represents whether the hidden vector is sampled from the prior 

distribution p(z): all samples from the prior distribution p(z) are marked 

as true, and those generated from the conditional probability q(z| x) 

are marked as false. In this way, in addition to reconstructing samples, 

the conditional probability distribution q(x) can also be constrained to 

approximate the prior distribution p(z).
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Figure 12-10. Adversarial autoencoder

The adversarial autoencoder is derived from the generative adversarial 

network algorithm introduced in the next chapter. After learning the 

adversarial generative network, you can deepen your understanding of the 

adversarial autoencoder.

12.4  Variational Autoencoder
The basic autoencoder essentially learns the mapping relationship 

between the input x and the hidden variable z. It is a discriminative model, 

not a generative model. So can the autoencoder be adjusted to a generative 

model to easily generate samples?

Given the distribution of hidden variables P(z), if the conditional 

probability distribution P(z) can be learned, then we can sample the joint 

probability distribution P(x, z) = P(z)P(z) to generate different samples. 

Variational autoencoders (VAE) can achieve this goal, as shown in 

Figure 12-11. If you understand it from the perspective of neural networks, 

VAE is the same as the previous autoencoders, which is very intuitive and 
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easy to understand; but the theoretical derivation of VAE is a little more 

complicated. Next, we will first explain VAE from the perspective of neural 

networks, and then derive VAE from the perspective of probability.

Figure 12-11. VAE model structure

From the point of view of neural network, VAE also has two sub- 

networks of encoder and decoder compared to the self-encoder model. 

The decoder accepts the input x, and the output is the latent variable 

z; the decoder is responsible for decoding the latent variable z into 

the reconstructed x .
__

The difference is that the VAE model has explicit 

constraints on the distribution of the hidden variable z, and hopes that the 

hidden variable z conforms to the preset prior distribution P(z). Therefore, 

in the design of the loss function, in addition to the original reconstruction 

error term, a constraint term for the z distribution of the hidden variable 

is added.

12.4.1  Principle of VAE
From a probability point of view, we assume that any dataset is sampled 

from a certain distribution p(x| z); z is a hidden variable and represents 

a certain internal feature, such as a picture of handwritten digits x; z can 

represent font size, writing style, bold, italic, and other settings, which 

conform to a certain prior distribution p(z). Given a specific hidden 

variable z, we can sample a series of samples from the learned distribution 

p(x| z). These samples all have the commonality represented by z.

It is usually assumed that p(z) follows a known distribution, such as 

N(0, 1). Under the condition that p(z) is known, our goal is to learn to a 

generative probability model p(x| z). The maximum likelihood estimation 
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method can be used here: a good model should have a high probability 

of generating a real sample x ∈ D. If our generative model p(x| z) is 

parameterized with θ, then the optimization goal of our neural network is:

 
p x p x z p z dz

z

� � � � � � �� |
 

Unfortunately, since z is a continuous variable, the preceding integral 

cannot be converted into a discrete form, which makes it difficult to 

optimize directly.

Another way of thinking is using the idea of variational inference, 

we approximate p(z| x) through the distribution qϕ(x), that is, we need to 

minimize the distance between qϕ(x) and p(z| x):

 
min

� �D q x p xKL � � � �� �  

The KL divergence DKL is a measure of the gap between the distribution 

q and p, defined as:

 
D q p q x log log

q x

p x
dxKL

x

� � � � � � �
� ��  

Strictly speaking, the distance is generally symmetric, while the KL 

divergence is asymmetric. Expand the KL divergence to:

 
D q x p x q x log log

q x

p x
dzKL

z

� �
�� � � �� � � � � � �
� ��  

Use

 p z x p x p x z| ,� � � � � � � �  
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Get

 
D q x p x q x log log

q x p x

p x z
dzKL

z

� �
�� � � �� � � � � � � � �
� �� ,  

 
� � � � �

� �
� � � � �� �

z z

q x log log
q x

p x z
dz q x log log p x dz�

�
�,  

  

We define � � � � �
� ��

z

q x log log
q x

p x z
dz�

�

,
 as L(ϕ, θ), so the preceding 

equation becomes:

 
D q x p x L log log p xKL � � �� � � �� � � � � �� � �,  

where

 
L q x log log

q x

p x z
dz

z

� � �
�,

,
� � � � � � � �

� ��  

Consider

 
D q x p xKL � � � � �� � � 0  

We have

 L log log p x� �,� � � � �  

In other words, L(ϕ, θ) is the lower bound of loglog p (x), and the 

optimization objective L(ϕ, θ) is called evidence lower bound objective 

(ELBO). Our goal is to maximize the likelihood probability p(x), or to 

maximize loglog p (x), which can be achieved by maximizing its lower 

bound L(ϕ, θ).
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Now let's analyze how to maximize the L(ϕ, θ) function, and expand 

it to get:

 
L q x log log

p x z

q xz

� � �
�

�

,
,

� � � � � � �
� ��  

 
� � � � � � �

� ��
z

q x log log
p z p z

q x�
�

�  

 
� � � � �

� �
� � � � �� �

z z

q x log log
p z

q x
q x log log p z�

�
� �

 

 
� � � � � �

� �
� � ��� ���

z

z qq x log log
q x

p z
E log log p z�

�
�~

 

 
� � � � � �� � � � ��� ��D q x p z E log log p zKL z q� �~  

So,

 
L D q x p z E log log p zKL z q� � � �,� � � � � � � �� � � � ��� ��~  (12-1)

You can use the encoder network to parameterize the qϕ(x) function, 

and the decoder network to parameterize the pθ(z) function. The target 

function L(θ, ϕ) can be optimized by calculating KL divergence between 

the output distribution of the decoder qϕ(x) and the prior distribution p(z), 

and the likelihood probability loglog pθ(z) of the decoder.

In particular, when both qϕ(x) and p(z) are assumed to be normally 

distributed, the calculation of DKL(qϕ(x)‖p(z)) can be simplified to:

 
D q x p z log logKL �

�
�

� � �
�

� � � �� � � �
� �� �

�2

1

1
2

1 2

2

2
22

1

2  
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More specifically, when qϕ(x) is the normal distribution N(μ1, σ1) and 

p(z) is the normal distribution N(0, 1), that is, μ2 = 0, σ2 = 1, at this time:

 
D q x p zKL � � � �� � � �� � � � � � �log . . .1 1

2
1
20 5 0 5 0 5  (12-2)

The preceding process makes the DKL(qϕ(x)‖p(z)) term in L(θ, ϕ) easier 

to calculate, while Ez~q[log log pθ(z) ] can also be implemented based on the 

reconstruction error function in the autoencoder.

Therefore, the optimization objective of the VAE model is transformed 

from maximizing the L(ϕ, θ) function to:

 
min D q x p zKL � � � � �� �  

and

 
max E log log p zz q~ � � ��� ��  

The first optimization goal can be understood as constraining the 

distribution of latent variable z, and the second optimization goal can be 

understood as improving the reconstruction effect of the network. It can be 

seen that after our derivation, the VAE model is also very intuitive and easy 

to understand.

12.4.2  Reparameterization Trick
Now consider a serious problem encountered in the implementation of the 

above-mentioned VAE model. The hidden variable z is sampled from the 

output qϕ(x) of the encoder, as shown on the left in Figure 12-12. When both 

qϕ(x)and p(z) are assumed to be normally distributed, the encoder outputs 

the mean μ and variance σ2 of the normal distribution, and the decoder's 

input is sampled from N(μ, σ2). Due to the existence of the sampling 

operation, the gradient propagation is discontinuous, and the VAE network 

cannot be trained end-to-end through the gradient descent algorithm.
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Figure 12-12. Reparameterization trick diagram

The paper [2] proposed a continuous and derivable solution called 

reparameterization trick. It samples the hidden variable z through 

z = μ + σ ⊙ ε, where 
�
�

z

�
 and 

�
�

z

�
 are both continuous and differentiable, 

thus connecting the gradient propagation. As shown on the right of 

Figure 12-12, the ε variable is sampled from the standard normal 

distribution N(0, I), and μ and σ are generated by the encoder network. 

The hidden variable after sampling can be obtained through z = μ + σ ⊙ ε, 

which ensures that the gradient propagation is continuous.

The VAE network model is shown in Figure 12-13, the input x is 

calculated through the encoder network qϕ(x) to obtain the mean and 

variance of the hidden variable z, and the hidden variable z is obtained by 

sampling through the reparameterization trick method, and sent to the 

decoder network to obtain the distribution (z) , and calculate the error and 

optimize the parameters by formula (12 1).
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Figure 12-13. VAE model architecture

12.5  Hands-On VAE Image Reconstruction
In this section, we’ll work on the reconstruction and generation of Fashion 

MNIST pictures based on the VAE model. As shown in Figure 12-13, the 

input is the Fashion MNIST picture vector. After three fully connected 

layers, the mean and variance of the hidden vector z are obtained, which 

are represented by two fully connected layers with 20 output nodes. The 

20 output nodes of FC2 represent the mean vector μ of the 20 feature 

distributions, and the 20 output nodes of FC3 represent the log variance 

vectors of the 20 feature distributions. The hidden vector z with a length of 

20 is obtained through reparameterization trick sampling, and the sample 

picture is reconstructed through FC4 and FC5.

As a generative model, VAE can not only reconstruct the input samples 

but also use the decoder alone to generate samples. The hidden vector z 

is obtained by directly sampling from the prior distribution p(z), and the 

generated samples can be generated after decoding.
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12.5.1  VAE model
We implement encoder and decoder sub-networks in the VAE category. 

In the initialization function, we create the network layers required by 

encoder and decoder, respectively, as in the following:

class VAE(keras.Model):

    #  Variational Encoder

    def __init__(self):

        super(VAE, self).__init__()

        # Encoder

        self.fc1 = layers.Dense(128)

        self.fc2 = layers.Dense(z_dim) # output mean

        self.fc3 = layers.Dense(z_dim) # output variance

        # Decoder

        self.fc4 = layers.Dense(128)

        self.fc5 = layers.Dense(784)

The input of the encoder first passes through the shared layer FC1, 

and then through the FC2 and FC3 networks, respectively, to obtain the 

log vector value of the mean vector and variance of the hidden vector 

distribution.

Figure 12-14.  VAE model architecture
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    def encoder(self, x):

        # Get mean and variance

        h = tf.nn.relu(self.fc1(x))

        # Mean vector

        mu = self.fc2(h)

        # Log of variance

        log_var = self.fc3(h)

        return mu, log_var

Decoder accepts the hidden vector z after sampling, and decodes it 

into picture output.

    def decoder(self, z):

        #  Generate image data based on hidden variable z

        out = tf.nn.relu(self.fc4(z))

        out = self.fc5(out)

        #  Return image data, 784 vector

        return out

In the forward calculation process of VAE, the distribution of the input 

latent vector z is first obtained by the encoder, and then the latent vector 

z is obtained by sampling the reparameterize function implemented by 

reparameterization trick, and finally the reconstructed picture vector can 

be restored by the decoder. The implementation is as follows:

    def call(self, inputs, training=None):

        # Forward calculation

        # Encoder [b, 784] => [b, z_dim], [b, z_dim]

        mu, log_var = self.encoder(inputs)

        # Sampling - reparameterization trick

        z = self.reparameterize(mu, log_var)

        # Decoder
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        x_hat = self.decoder(z)

        # Return sample, mean and log variance

        return x_hat, mu, log_var

12.5.2  Reparameterization Trick
The reparameterize function accepts the mean and variance parameters 

and obtains ε by sampling from the normal distribution N(0, I), and returns 

the sampled hidden vector by z = μ + σ ⊙ ε.

    def reparameterize(self, mu, log_var):

        # reparameterize trick

        eps = tf.random.normal(log_var.shape)

        # calculate standard variance

        std = tf.exp(log_var)**0.5

        # reparameterize trick

        z = mu + std * eps

        return z

12.5.3  Network Training
The network is trained for 100 Epochs, and the reconstruction samples are 

obtained from the forward calculation of the VAE model each time. The 

reconstruction error term Ez~q[log log pθ(z) ] is calculated based on cross- 

entropy loss function. The error term DKL(qϕ(x)‖p(z)) is calculated based 

on equation (12-2).

# Create network objects

model = VAE()

model.build(input_shape=(4, 784))

# Optimizer

optimizer = optimizers.Adam(lr)
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for epoch in range(100): # Train 100 Epochs

     for step, x in enumerate(train_db): #  Traverse the 

training set

        # Flatten, [b, 28, 28] => [b, 784]

        x = tf.reshape(x, [-1, 784])

        #  Build a gradient recorder

        with tf.GradientTape() as tape:

            # Forward calculation

            x_rec_logits, mu, log_var = model(x)

            #  Reconstruction loss calculation

             rec_loss = tf.nn.sigmoid_cross_entropy_with_

logits(labels=x, logits=x_rec_logits)

            rec_loss = tf.reduce_sum(rec_loss) / x.shape[0]

            # Calculate KL convergence N(mu, var) VS N(0, 1)

             # Refernece:https://stats.stackexchange.com/

questions/7440/kl-divergence-between-two-

univariate-gaussians

             kl_div = -0.5 * (log_var + 1 - mu**2 - 

tf.exp(log_var))

            kl_div = tf.reduce_sum(kl_div) / x.shape[0]

            # Combine error

            loss = rec_loss + 1. * kl_div

        # Calculate gradients

        grads = tape.gradient(loss, model.trainable_variables)

        # Update parameters

         optimizer.apply_gradients(zip(grads, model.trainable_

variables))

        if step % 100 == 0:

            # Print error

             print(epoch, step, 'kl div:', float(kl_div), 'rec 

loss:', float(rec_loss))
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12.5.4  Image Generation
Picture generation only uses the decoder network. First, the hidden vector 

is sampled from the prior distribution N(0, I), and then the picture vector 

is obtained through the decoder, and finally is reshaped to picture matrix. 

For example:

     #  Test generation effect, randomly sample z from normal 

distribution

    z = tf.random.normal((batchsz, z_dim))

     logits = model.decoder(z) #  Generate pictures only 

by decoder

    x_hat = tf.sigmoid(logits) #  Convert to pixel range

    x_hat = tf.reshape(x_hat, [-1, 28, 28]).numpy() *255.

    x_hat = x_hat.astype(np.uint8)

     save_images(x_hat, 'vae_images/epoch_%d_sampled.png'%epoch) 

# Save pictures

     # Reconstruct the picture, sample pictures from the 

test set

    x = next(iter(test_db))

     logits, _, _ = model(tf.reshape(x, [-1, 784])) # Flatten 

and send to autoencoder

    x_hat = tf.sigmoid(logits) #  Convert output to pixel value

    # Restore to 28x28,[b, 784] => [b, 28, 28]

    x_hat = tf.reshape(x_hat, [-1, 28, 28])

     # The first 50 input + the first 50 reconstructed pictures 

merged, [b, 28, 28] => [2b, 28, 28]

    x_concat = tf.concat([x[:50], x_hat[:50]], axis=0)

    x_concat = x_concat.numpy() * 255.

    x_concat = x_concat.astype(np.uint8)

    save_images(x_concat, 'vae_images/epoch_%d_rec.png'%epoch)
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The effect of picture reconstruction is shown in Figure 12-15, 

Figure 12-16, and Figure 12-17, which show the reconstruction effect 

obtained by inputting the pictures of the test set at the first, tenth, and 

100th Epoch respectively. The left five columns of each picture are 

real pictures, and the five columns on the right are the corresponding 

reconstruction effects. The effect of picture generation is shown in 

Figure 12-18, Figure 12-19, and Figure 12-20, respectively showing the 

effect of the image generation at the first, tenth, and 100th Epoch.

Figure 12-15. Picture reconstruction:epoch=1

Figure 12-16. Picture reconstruction:epoch=10

Chapter 12  autoenCoder



549

Figure 12-17. Picture reconstruction:epoch=100

Figure 12-18. Picture generation:epoch=1

Figure 12-19. Picture generation:epoch=10
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Figure 12-20. Picture generation:epoch=100

It can be seen that the effect of image reconstruction is slightly better 

than that of image generation, which also shows that image generation is 

a more complex task. Although the VAE model has the ability to generate 

images, the generated effect is still not good enough, and the human 

eye can still distinguish the difference between machine-generated and 

real picture samples. The generative confrontation network that will be 

introduced in the next chapter performs better in image generation.

12.6  Summary
In this chapter, we introduced the powerful self-supervised learning 

algorithm – the autoencoder and its variants. We started with the principle 

of autoencoder in order to understand its mathematical mechanism 

and then we walked through the actual implementation of Autoencoder 

through the Fashion MNIST image reconstruction exercise. Following 

similar steps, the VAE model was discussed and applied to the Fashion 

MNIST image dataset to demonstrate the image generation process. While 

developing machine learning or deep learning models, one common 

challenge is the high dimensionality of input data. Compared to traditional 
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dimension reduction methods (e.g., PCA), the autoencoder and its 

variants usually have better performance in terms of generating data 

representation in lower dimensions and size.

12.7  References

 [1]. G. E. Hinton, “Reducing the Dimensionality of Data 

with Neural,” 2008.

 [2]. D. P. Kingma and M. Welling, “Auto-Encoding 

Variational Bayes,”2nd International Conference 

on Learning Representations, ICLR 2014, Banff, 

AB, Canada, April 14-16, 2014, Conference Track 

Proceedings, 2014.

Chapter 12  autoenCoder



553© Liangqu Long and Xiangming Zeng 2022 
L. Long and X. Zeng, Beginning Deep Learning with TensorFlow,  
https://doi.org/10.1007/978-1-4842-7915-1_13

CHAPTER 13

Generative 
Adversarial Networks

What I cannot create, I have not yet fully understood.

—Richard Feynman

Before the invention of the generative adversarial network (GAN), the 

variational autoencoder was considered to be theoretically complete and 

simple to implement. It is very stable when trained using neural networks, 

and the resulting images are more approximate, but the human eyes can 

still easily distinguish real pictures and machine-generated pictures.

In 2014, Ian Goodfellow, a student of Yoshua Bengio (the winner of 

the Turing Award in 2018) at the Université de Montréal, proposed the 

GAN [1], which opened up one of the hottest research directions in deep 

learning. From 2014 to 2019, GAN research has been steadily advancing, 

and research successes have been reported frequently. The effect of 

the latest GAN algorithm on image generation has reached a level that 

is difficult to distinguish with the naked eyes, which is really exciting. 

Due to the invention of GAN, Ian Goodfellow was awarded the title of 

Father of GAN, and was granted the 35 Innovators Under 35 award by 

the Massachusetts Institute of Technology Review in 2017. Figure 13-1 

https://doi.org/10.1007/978-1-4842-7915-1_13#DOI
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shows that from 2014 to 2018, the GAN model achieved the effect of book 

generation. It can be seen that both the size of the picture and the fidelity 

of the picture have been greatly improved. 1

Figure 13-1. GAN generated image effect from 2014 to 2018

Next, we will start from the example of game learning in life, step 

by step, to introduce the design ideas and model structure of the GAN 

algorithm.

13.1  Examples of Game Learning
We use the growth trajectory of a cartoonist to vividly introduce the idea 

of GAN. Consider a pair of twin brothers, called G and D. G learns how 

to draw cartoons, and D learns how to appreciate paintings. The two 

brothers at young ages only learned how to use brushes and papers. G 

drew an unknown painting, as shown in Figure 13-2(a). At this time, D’s 

discriminating ability is not high, so D thinks G’s work is OK, but the main 

character is not clear enough. Under D’s guidance and encouragement, G 

began to learn how to draw the outline of the subject and use simple color 

combinations.

1 Image source: https://twitter.com/goodfellow_ian/status/ 
1084973596236144640?lang=en
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A year later, G improved the basic skills of painting, and D also initially 

mastered the ability to identify works by analyzing masterpieces and the 

works of G. At this time, D feels that G’s work has the main character, as 

shown in Figure 13-2(b), but the use of color is not mature enough. A few 

years later, G’s basic painting skills have been very solid, and he can easily 

draw paintings with bright subjects, appropriate color matching, and high 

fidelity, as shown in Figure 13-2(c), but D also observes the differences 

between G and other masterpieces, and improved the ability to distinguish 

paintings. At this time, D felt that G’s painting skills have matured, but his 

observation of life is not enough. G’s work does not convey the expression 

and some details are not perfect. After a few more years, G’s painting 

skills have reached the point of perfection. The details of the paintings 

are perfect, the styles are very different and vivid, just like a master level, 

as shown in Figure 13-2(d). Even at this time, D’s discrimination skills 

are quite excellent. It is also difficult for D to distinguish G from other 

masterpieces.

The growth process of the above-mentioned painters is actually a 

common learning process in life, through the game of learning between 

the two sides and mutual improvement, and finally reaches a balance 

point. The GAN network draws on the idea of game learning and sets up 

two sub-networks: a generator G responsible for generating samples and a 

discriminator D responsible for authenticating. The discriminator D learns 

how to distinguish between true and false by observing the difference 

between the real sample and the sample produced by the generator G, 

where the real sample is true and the sample produced by the generator 

G is false. The generator G is also learning. It hopes that the generated 

samples can be recognized by the discriminator D as true. Therefore, the 

generator G tries to make the samples it generates be considered as true by 

discriminant D. The generator G and the discriminator D play a game with 

each other and improve together until they reach an equilibrium point. 

At this time, the samples generated by the generator G are very realistic, 

making the discriminator D difficult to distinguish between true and false.
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In the original GAN paper, Ian Goodfellow used another vivid 

metaphor to introduce the GAN model: The function of the generator 

network G is to generate a series of very realistic counterfeit banknotes 

to try to deceive the discriminator D, and the discriminator D learns 

the difference between the real money and the counterfeit banknotes 

generated by generator G to master the banknote identification method. 

These two networks are synchronized in the process of mutual games, 

until the counterfeit banknotes produced by the generator G are very real, 

and even the discriminator D can barely distinguish.

This idea of game learning makes the network structure and training 

process of GAN slightly different from the previous network model. Let’s 

introduce the network structure and algorithm principle of GAN in detail 

in the following.

13.2  GAN Principle
Now we will formally introduce the network structure and training 

methods of GAN.

13.2.1  Network Structure
GAN contains two sub-networks: the generator network (referred to 

as G) and the discriminator network (referred to as D). The generator 

network G is responsible for learning the true distribution of samples, and 

Figure 13-2. Sketch of the painter's growth trajectory
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the discriminator network D is responsible for distinguish the samples 

generated by the generator network from the real samples.

Generator G(z) The generator network G is similar to the function of 

decoder of the autoencoder. The hidden variables z~pz(∙) are sampled from 

the prior distribution pz(∙). The generated sample x~pg(x| z) is obtained 

by the parameterized distribution pg(x| z) of the generator network G, as 

shown in Figure 13-3. The prior distribution pz(∙) of the hidden variable z 

can be assumed to be a known distribution, such as a multivariate uniform 

distribution z~Uniform(−1, 1).

Figure 13-3. Generator G

pg(x| z) can be parameterized by a deep neural network. As shown in 

Figure 13-4, the hidden variable z is sampled from the uniform distribution 

pz(∙), and then sample xf is obtained from the pg(x| z) distribution. From 

the perspective of input and output, the function of the generator G is 

to convert the hidden vector z into a sample vector xf through a neural 

network, and the subscript f represents fake samples.

Figure 13-4. Generator network composed of transposed convolution
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Discriminator D(x) The function of the discriminator network is 

similar to that of the ordinary binary classification network. It accepts a 

dataset of input sample x, including samples xr~pr(∙) sampled from the 

real data distribution pr(∙), and also includes fake samples sampled from 

the generator network xf~pg(x| z). xr and xf together form the training data 

set of the discriminator network. The output of the discriminator network 

is the probability of x belonging to the real sample P(x is real | x). We label 

all the real samples xr as true (1), and all the samples xf generated by the 

generator network are labeled as false (0). The error between the predicted 

value of the discriminator network D and the label is used to optimize the 

discriminator network parameters as shown in Figure 13-5.

Figure 13-5. Generator network and discriminator network

Chapter 13  Generative adversarial networks



559

13.2.2  Network Training
The idea of GAN game learning is reflected in its training method. Since 

the optimization goals of generator G and discriminator D are different, 

they cannot be the same as the previous network model training, and only 

one loss function is used. Let us introduce how to train the generator G 

and the discriminator D respectively.

For the discriminator network D, its goal is to be able to distinguish 

the real sample xr from the fake sample xf. Taking picture generation as an 

example, its goal is to minimize the cross-entropy loss function between 

the predicted value and the true value of the picture:

 
L CE D x y D x yr r f f� � � � �� �� �, , ,  

where Dθ(xr) represents the output of the real sample xr in the discriminant 

network Dθ, θ is the parameter set of the discriminator network, Dθ(xf) is 

the output of the generated sample xf in the discriminator network, and y is 

the label of xr. Because the real sample is labeled as true, So yr = 1. yf is the 

label of xf of the generated sample. Since the generated sample is labeled 

as false, yf = 0. The CE function represents the  cross- entropy loss function 

CrossEntropy. The cross-entropy loss function of the two classification 

problem is defined as:

 

L D x D x
x p

r
x p

f

r r f g

� � � �� � � �� �
�� � �� �

� �
~ ~

log log� �1
 

Therefore, the optimization goal of the discriminator network D is:

 

� � �
�

�� � �� �
� � � � � � � �� �� �

x p
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x p
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Convert L to−L , and write it in the expectation form:

 
� � �

�
�� � �� �� � � � � � �� �E D x E D xx p r x p fr r f g~ ~log log 1  

For the generator network G(z), we hope that xf = G(z) can deceive 

the discriminator network D well, and the output of the fake sample xf 

is as close to the real label as possible. That is to say, when training the 

generator network, it is hoped that the output D(G(z)) of the discriminator 

network is as close to 1 as possible, and the cross-entropy loss function 

between D(G(z)) and 1 is minimized:

 
L CE D G z D G z� � �� �� � � � � �� �� �,1 log  

Convert L to −L , and write it in the expectation form:

 
� �

�
�� �� � �� �E logD G zz pz~  

It can be equivalently transformed into:

 
� �

�
�� �� � � � �� ��� ��L E D G zz pz~ log 1  

where ϕ is the parameter set of the generator network G, and the gradient 

descent algorithm can be used to optimize the parameters ϕ.

13.2.3  Unified Objective Function
We can merge the objective functions of the generator and discriminator 

networks and write it in the form of a min-max game:

 
minmax ~ ~� � � �L D G E D x E D xx p r x p fr r f g

,� � � � � � � � �� ��� � �� �log log 1  

 
� � �� � � �� �� ��� � �� �E D x E D G zx p z pr z~ ~log log� � �1  (13-1)
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The algorithm is as follows:

Algorithm 1:GAN training algorithm

randomly initialize parameters θ and ϕ
repeat
  for k times do
    randomly sample hidden vectors z~pz(∙)
    randomly sample of real samples xr~pr(∙)
    Update the d network according to the gradient descent algorithm:

� ��� �� ��E logD x +E log D xx ~p r x ~p fr r f g��� � �� �� � � �� �1

  randomly sample hidden vectors z~pz(∙)
  Update the G network according to the gradient descent algorithm:

� ��� �� ��E log D G zz~pz �� � � �� �� �1

  end for
until the number of training rounds meets the requirements

output:trained generator Gϕ

13.3  Hands-On DCGAN
In this section, we will complete the actual generation of cartoon 

avatar images. Refer to the network structure of DCGAN [2], where the 

discriminator D is implemented by a common convolutional layer, and the 

generator G is implemented by a transposed convolutional layer, as shown 

in Figure 13-6.
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Figure 13-6. DCGAN Network structure

13.3.1  Cartoon Avatar Dataset
Here we use a dataset of cartoon avatars, a total of 51,223 pictures, without 

annotation information. The main body of the pictures have been cropped, 

aligned, and uniformly scaled to a size of 96 × 96. Some samples are shown 

in Figure 13-7.

Figure 13-7. Cartoon avatar dataset

For customized datasets, you need to complete the data loading and 

preprocessing work by yourself. We focus here on the GAN algorithm itself. 

The subsequent chapter on customized datasets will introduce in detail 

how to load your own datasets. Here the processed dataset is obtained 

directly through the pre-written make_anime_dataset function.
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     # Dataset path. URL: https://drive.google.com/file/

d/1lRPATrjePnX_n8laDNmPkKCtkf8j_dMD/view?usp=sharing

     img_path = glob.glob(r'C:\Users\z390\Downloads\

faces\*.jpg')

    # Create dataset object, return Dataset class and size

     dataset, img_shape, _ = make_anime_dataset(img_path, batch_

size, resize=64)

The dataset object is an instance of the tf.data.Dataset class. 

Operations such as random dispersal, preprocessing, and batching have 

been completed, and sample batches can be obtained directly, and img_

shape is the preprocessed image size.

13.3.2  Generator
The generator network G is formed by stacking five transposed 

convolutional layers in order to realize the layer-by-layer enlargement of 

the height and width of the feature map and the layer-by-layer reduction 

of the number of feature map channels. First, the hidden vector z with 

a length of 100 is adjusted to a four-dimensional tensor of [b, 1, 1, 100] 

through the reshape operation, and the convolutional layer is transposed 

in order to enlarge the height and width dimensions, reduce the number of 

channels, and finally get the color picture with a width of 64 and a channel 

number of 3. A BN layer is inserted between each convolutional layer to 

improve training stability, and the convolutional layer chooses not to use a 

bias vector. The generator class code is implemented as follows:

class Generator(keras.Model):

    # Generator class

    def __init__(self):

        super(Generator, self).__init__()

        filter = 64
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         # Transposed convolutional layer 1, output channel 

is filter*8, kernel is 4, stride is 1, no padding, 

no bias.

         self.conv1 = layers.Conv2DTranspose(filter*8, 4,1, 

'valid', use_bias=False)

        self.bn1 = layers.BatchNormalization()

        # Transposed convolutional layer 2

         self.conv2 = layers.Conv2DTranspose(filter*4, 4,2, 

'same', use_bias=False)

        self.bn2 = layers.BatchNormalization()

        # Transposed convolutional layer 3

         self.conv3 = layers.Conv2DTranspose(filter*2, 4,2, 

'same', use_bias=False)

        self.bn3 = layers.BatchNormalization()

        # Transposed convolutional layer 4

         self.conv4 = layers.Conv2DTranspose(filter*1, 4,2, 

'same', use_bias=False)

        self.bn4 = layers.BatchNormalization()

        # Transposed convolutional layer 5

         self.conv5 = layers.Conv2DTranspose(3, 4,2, 'same', 

use_bias=False)

The forward propagation of generator network G is implemented 

as follow:

    def call(self, inputs, training=None):

        x = inputs # [z, 100]

        # Reshape to 4D tensor:(b, 1, 1, 100)

        x = tf.reshape(x, (x.shape[0], 1, 1, x.shape[1]))

        x = tf.nn.relu(x) # activation function

         # Transposed convolutional layer-BN-activation 

function:(b, 4, 4, 512)
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         x = tf.nn.relu(self.bn1(self.conv1(x), 

training=training))

         # Transposed convolutional layer-BN-activation 

function:(b, 8, 8, 256)

         x = tf.nn.relu(self.bn2(self.conv2(x), 

training=training))

         # Transposed convolutional layer-BN-activation 

function:(b, 16, 16, 128)

         x = tf.nn.relu(self.bn3(self.conv3(x), 

training=training))

         # Transposed convolutional layer-BN-activation 

function:(b, 32, 32, 64)

         x = tf.nn.relu(self.bn4(self.conv4(x), 

training=training))

         # Transposed convolutional layer-BN-activation 

function:(b, 64, 64, 3)

        x = self.conv5(x)

        x = tf.tanh(x) # output x range -1~1

        return x

The output size of the generated network is [b, 64,64,3], and the value 

range is −1~1.

13.3.3  Discriminator
The discriminator network D is the same as the ordinary classification 

network. It accepts image tensors of size [b,64,64,3] and continuously 

extracts features through five convolutional layers. The final output size 

of the convolutional layer is [b ,2,2,1024], and then convert the feature 

size to [b,1024] through the pooling layer GlobalAveragePooling2D, and 

finally obtain the probability of the binary classification task through a 
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fully connected layer. The code for the discriminator network class D is 

implemented as follows:

class Discriminator(keras.Model):

    # Discriminator class

    def __init__(self):

        super(Discriminator, self).__init__()

        filter = 64

        # Convolutional layer 1

         self.conv1 = layers.Conv2D(filter, 4, 2, 'valid', use_

bias=False)

        self.bn1 = layers.BatchNormalization()

        # Convolutional layer 2

         self.conv2 = layers.Conv2D(filter*2, 4, 2, 'valid', 

use_bias=False)

        self.bn2 = layers.BatchNormalization()

        # Convolutional layer 3

         self.conv3 = layers.Conv2D(filter*4, 4, 2, 'valid', 

use_bias=False)

        self.bn3 = layers.BatchNormalization()

        # Convolutional layer 4

         self.conv4 = layers.Conv2D(filter*8, 3, 1, 'valid', 

use_bias=False)

        self.bn4 = layers.BatchNormalization()

        # Convolutional layer 5

         self.conv5 = layers.Conv2D(filter*16, 3, 1, 'valid', 

use_bias=False)

        self.bn5 = layers.BatchNormalization()

        # Global pooling layer

        self.pool = layers.GlobalAveragePooling2D()

        # Flatten feature layer

        self.flatten = layers.Flatten()
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        # Binary classification layer

        self.fc = layers.Dense(1)

The forward calculation process of the discriminator D is implemented 

as follows:

    def call(self, inputs, training=None):

         # Convolutional layer-BN-activation function: 

(4, 31, 31, 64)

         x = tf.nn.leaky_relu(self.bn1(self.conv1(inputs), 

training=training))

         # Convolutional layer-BN-activation function: 

(4, 14, 14, 128)

         x = tf.nn.leaky_relu(self.bn2(self.conv2(x), 

training=training))

         # Convolutional layer-BN-activation function: 

(4, 6, 6, 256)

         x = tf.nn.leaky_relu(self.bn3(self.conv3(x), 

training=training))

         # Convolutional layer-BN-activation function: 

(4, 4, 4, 512)

         x = tf.nn.leaky_relu(self.bn4(self.conv4(x), 

training=training))

         # Convolutional layer-BN-activation function: 

(4, 2, 2, 1024)

         x = tf.nn.leaky_relu(self.bn5(self.conv5(x), 

training=training))

        # Convolutional layer-BN-activation function:(4, 1024)

        x = self.pool(x)

        # Flatten
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        x = self.flatten(x)

        # Output, [b, 1024] => [b, 1]

        logits = self.fc(x)

        return logits

The output size of the discriminator is [b,1]. The Sigmoid activation 

function is not used inside the class, and the probability that b samples 

belong to the real samples can be obtained through the Sigmoid activation 

function.

13.3.4  Training and Visualization
Discriminator According to formula (13-1), the goal of the discriminator 

network is to maximize the function L(D, G), so that the probability of 

true sample prediction is close to 1, and the probability of generated 

sample prediction is close to 0. We implement the error function of the 

discriminator in the d_loss_fn function, label all real samples as 1, and 

label all generated samples as 0, and maximize the function L(D,G) by 

minimizing the corresponding cross-entropy loss function. The d_loss_fn 

function is implemented as follows:

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_

training):

    # Loss function for discriminator

    # Generate images from generator

    fake_image = generator(batch_z, is_training)

    # Distinguish images

    d_fake_logits = discriminator(fake_image, is_training)

    # Determine whether the image is real or not

    d_real_logits = discriminator(batch_x, is_training)

    # The error between real image and 1

    d_loss_real = celoss_ones(d_real_logits)

Chapter 13  Generative adversarial networks



569

    # The error between generated image and 0

    d_loss_fake = celoss_zeros(d_fake_logits)

    # Combine loss

    loss = d_loss_fake + d_loss_real

    return loss

The celoss_ones function calculates the cross-entropy loss between the 

current predicted probability and label 1. The code is as follows:

def celoss_ones(logits):

    # Calculate the cross entropy belonging to and label 1

    y = tf.ones_like(logits)

     loss = keras.losses.binary_crossentropy(y, logits, from_

logits=True)

    return tf.reduce_mean(loss)

The celoss_zeros function calculates the cross entropy loss 

between the current predicted probability and label 0. The code 

is as follows:

def celoss_zeros(logits):

     # Calculate the cross entropy that belongs to and the 

note is 0

    y = tf.zeros_like(logits)

     loss = keras.losses.binary_crossentropy(y, logits, from_

logits=True)

     return tf.reduce_mean(loss)

Generator The training goal of generator network is to minimize 

the L(D, G) objective function. Since the real sample has nothing 

to do with the generator, the error function only needs to minimize 

E D G zz pz~ �� � � � �� �� �log 1 � � . The cross-entropy error at this time can be 

minimized by marking the generated sample as 1. It should be noted 

that in the process of back propagating errors, the discriminator also 
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participates in the construction of the calculation graph, but at this stage 

only the generator network parameters need to be updated. The error 

function of the generator is as follows:

def g_loss_fn(generator, discriminator, batch_z, is_training):

    # Generate images

    fake_image = generator(batch_z, is_training)

     #  When training the generator network, it is necessary to 

force the generated image to be judged as true

    d_fake_logits = discriminator(fake_image, is_training)

    # Calculate error between generated images and 1

    loss = celoss_ones(d_fake_logits)

    return loss

Network training In each Epoch, first randomly sample the hidden 

vector from the prior distribution pz(∙), randomly sample the real 

pictures from the true data set, calculate the loss of the discriminator 

network through the generator and the discriminator, and optimize 

the discriminator network parameters θ. When training the generator, 

the discriminator is needed to calculate the error, but only the gradient 

information of the generator is calculated and ϕ is updated. Here set 

the discriminator training times k = 5, and set the generator training 

time as one.

First, create the generator network and the discriminator network, and 

create the corresponding optimizers, respectively, as in the following:

    generator = Generator() #  Create generator

    generator.build(input_shape = (4, z_dim))

    discriminator = Discriminator() #  Create discriminator

    discriminator.build(input_shape=(4, 64, 64, 3))

     # Create optimizers for generator and discriminator 

respectively
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     g_optimizer = keras.optimizers.Adam(learning_rate=learning_

rate, beta_1=0.5)

     d_optimizer = keras.optimizers.Adam(learning_rate=learning_

rate, beta_1=0.5)

The main training part of the code is implemented as follows:

    for epoch in range(epochs): #  Train epochs times

        # 1. Train discriminator

        for _ in range(5):

            # Sample hidden vectors

            batch_z = tf.random.normal([batch_size, z_dim])

            batch_x = next(db_iter) # Sample real images

            # Forward calculation - discriminator

            with tf.GradientTape() as tape:

                 d_loss = d_loss_fn(generator, discriminator, 

batch_z, batch_x, is_training)

             grads = tape.gradient(d_loss, discriminator.

trainable_variables)

             d_optimizer.apply_gradients(zip(grads, 

discriminator.trainable_variables))

        # 2. Train generator

        # Sample hidden vectors

        batch_z = tf.random.normal([batch_size, z_dim])

        batch_x = next(db_iter) # Sample real images

        # Forward calculation - generator

        with tf.GradientTape() as tape:

             g_loss = g_loss_fn(generator, discriminator, 

batch_z, is_training)

         grads = tape.gradient(g_loss, generator.trainable_

variables)

         g_optimizer.apply_gradients(zip(grads, generator.

trainable_variables))
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Every 100 Epochs, a picture generation test is performed. The hidden 

vector is randomly sampled from the prior distribution, sent to the 

generator to obtain the generated picture which is saved as a file.

As shown in Figure 13-8, it shows a sample of generated pictures saved 

by the DCGAN model during the training process. It can be observed that 

most of the pictures have clear subjects, vivid colors, rich picture diversity, 

and the generated pictures are close to the real pictures in the data 

set. At the same time, it can be found that a small amount of generated 

pictures are still damaged, and the main body of the pictures cannot be 

recognized by human eyes. To obtain the image generation effect shown in 

Figure 13-8, it is necessary to carefully design the network model structure 

and fine-tune the network hyperparameters.

Figure 13-8. DCGAN image generation effect
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13.4  GAN Variants
In the original GAN paper, Ian Goodfellow analyzed the convergence of 

the GAN network from a theoretical level and tested the effect of image 

generation on multiple classic image data sets, as shown in Figure 13-9, 

where Figure 13-9 (a) is the MNIST dataset, Figure 13-9 (b) is the Toronto 

Face dataset, and Figure 13-9 (c) and Figure 13-9 (d) are the CIFAR10 

dataset.

Figure 13-9. Original GAN image generation effect [1]

It can be seen that the original GAN model is not outstanding in terms 

of image generation effect, and the difference from VAE is not obvious. At 

this time, it does not show its powerful distribution approximation ability. 

However, because GAN is relatively new in theory, there are many areas 

for improvement, which greatly stimulated the research interest of the 

academic community. In the next few years, GAN research is in full swing, 

and substantial progress has also been made. Next we will introduce 

several significant GAN variants.
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13.4.1  DCGAN
The initial GAN network is mainly based on the fully connected layer 

to realize the generator G and the discriminator D. Due to the high 

dimensionality of the picture and the huge amount of network parameters, 

the training effect is not excellent. DCGAN [2] proposed a generator 

network implemented using transposed convolutional layers, and a 

discriminator network implemented by ordinary convolutional layers, 

which greatly reduces the amount of network parameters and greatly 

improves the effect of image generation, showing that the GAN model has 

the potential of outperforming the VAE model in image generation. In 

addition, the author of DCGAN also proposed a series of empirical GAN 

network training techniques, which were proved to be beneficial to the 

stable training of the GAN network. We have used the DCGAN model to 

complete the actual picture generation of the animation avatars.

13.4.2  InfoGAN
InfoGAN [3] tried to use an unsupervised way to learn the interpretable 

representation of the interpretable hidden vector z of the input x, that 

is, it is hoped that the hidden vector z can correspond to the semantic 

features of the data. For example, for MNIST handwritten digital pictures, 

we can consider the category, font size, and writing style of the digits to 

be hidden variables of the picture. We hope that the model can learn 

these disentangled interpretable feature representation methods, so that 

the hidden variables can be controlled artificially to generate a sample 

of the specified content. For the CelebA celebrity photo dataset, it is 

hoped that the model can separate features such as hairstyles, glasses 

wearing conditions, and facial expressions, to generate face images of 

specified shapes.
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What are the benefits of disentangled interpretable features? It can 

make the neural network more interpretable. For example, z contains 

some separate interpretable features, then we can obtain generated data 

with different semantics by only changing the features at this position. 

As shown in Figure 13-10, subtracting the hidden vectors of “men with 

glasses” and “men without glasses” and adding them to the hidden vectors 

of “women without glasses” can generate a picture of “women with 

glasses”.

Figure 13-10. Schematic diagram of separated features [3]

13.4.3  CycleGAN
CycleGAN [4] is an unsupervised algorithm for image style conversion 

proposed by Zhu Junyan. Because the algorithm is clear and simple, and 

the results are better, this work has received a lot of praise. The basic 

assumption of CycleGAN is that if you switch from picture A to picture 

B, and then from picture B to A’, then A’ should be the same picture 

as A. Therefore, in addition to setting up the standard GAN loss item, 

CycleGAN also adds cycle consistency loss to ensure that A’ is as close 

to A as possible. The conversion effect of CycleGAN pictures is shown in 

Figure 13-11.
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Figure 13-11. Image conversion effect [4]

13.4.4  WGAN
The training problem of GAN has been criticized all the time, and it 

is prone to the phenomenon of training non-convergence and mode 

collapse. WGAN [5] analyzed the flaws of the original GAN using JS 

divergence from a theoretical level and proposed that the Wasserstein 

distance can be used to solve this problem. In WGAN-GP [6], the author 

proposed that by adding a gradient penalty term, the WGAN algorithm 

was well realized from the engineering level, and the advantages of WGAN 

training stability were confirmed.

13.4.5  Equal GAN
From the birth of GAN to the end of 2017, GAN Zoo has collected more 

than 214 GAN network variants. These GAN variants have more or less 

proposed some innovations, but several researchers from Google Brain 

provided another point in a paper [7]: There is no evidence that the GAN 

variant algorithms we tested have been consistently better than the 
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original GAN paper. In that paper, these GAN variants are compared fairly 

and comprehensively. With sufficient computing resources, it is found 

that almost all GAN variants can achieve similar performance (FID score). 

This work reminds the industry whether these GAN variants are essentially 

innovative.

13.4.6  Self-Attention GAN
The attention mechanism has been widely used in natural language 

processing (NLP). Self-Attention GAN (SAGAN) [8] borrowed from the 

attention mechanism and proposed a variant of GAN based on the self- 

attention mechanism. SAGAN improved the fidelity index of the picture: 

Inception score from the 36.8 to 52.52, and Frechet inception distance 

from 27.62 to 18.65. From the effect of image generation perspective, 

SAGAN’s breakthrough is very significant, and it also inspired the 

industry’s attention to the self-attention mechanism.

13.4.7  BigGAN
On the basis of SAGAN, BigGAN [9] attempts to extend the training of 

GAN to a large scale, using techniques such as orthogonal regularization 

to ensure the stability of the training process. The significance of BigGAN 

Figure 13-12. Attention mechanism in SAGAN [8]
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is to inspire people that the training of GAN networks can also benefit 

from big data and large computing power. The effect of BigGAN image 

generation has reached an unprecedented height: the inception score 

record has increased to 166.5 (an increase of 52.52); Frechet inception 

distance has dropped to 7.4, which has been reduced by 18.65. As shown 

in Figure 13-13, the image resolution can reach 512×512, and the image 

details are extremely realistic.

Figure 13-13. BigGAN generated images

13.5  Nash Equilibrium
Now we analyze from the theoretical level, through the training method 

of game learning, what equilibrium state the generator G and the 

discriminator D will reach. Specifically, we will explore the following two 

questions:

• Fix G, what optimal state D∗ will D converge to?

• After D reaches the optimal state D∗, what state will G 

converge to?

First, we give an intuitive explanation through the example of one- 

dimensional normal distribution xr~pr(∙). As shown in Figure 13-14, the 

black dashed curve represents the real data distribution pr(∙), which is 

a normal distribution N(μ, σ2), and the green solid line represents the 

distribution xf~pg(∙) learned by the generator network. The blue dotted line 
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represents the decision boundary curve of the discriminator. Figure 13-14 

(a), (b), (c), and (d) represents the learning trajectory of the generator 

network, respectively. In the initial state, as shown in Figure 13-14(a), 

the distribution of pg(∙) is quite different from pr(∙), and the discriminator 

can easily learn a clear decision boundary, which is the blue dotted line 

in Figure 13-14(a), which sets the sampling point from pg(∙) as 0 and 

the sampling point in pr(∙) as 1. As the distribution pg(∙) of the generator 

network approaches the true distribution pr(∙), it becomes more and 

more difficult for the discriminator to distinguish between true and false 

samples, as shown in Figures 13.14(b)(c). Finally, when the distribution 

pg(∙) = pr(∙) learned by the generator network, the samples extracted from 

the generator network are very realistic, and the discriminator cannot 

distinguish the difference, that is, the probability of determining the true 

and false samples is equal, as shown in Figure 13-14( d).

Figure 13-14. Nash Equilibrium [1]

This example intuitively explains the training process of the GAN 

network.
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13.5.1  Discriminator State
Now let’s derive the first question. Review the loss function of GAN:

L G D p x log log D x dx p z log log D g z dz
x

r

z

z,� � � � � � �� � � � � � � �� �� �� � 1

 
� � � � �� � � � � � � �� ��

x

r gp x log log D x p x log log D x dx1
 

For the discriminator D, the optimization goal is to maximize the 

L(G, D) function, and the maximum value of the following function needs 

to be found:

 
f p x log log D x p x log log D xr g� � � � � �� � � � � � � �� �1  

where θ is the network parameter of the discriminator D.

Let us consider the maximum value of the more general function of fθ:

 f x A log log x B log log x� � � � �� �1  

The maximum value of the function f  (x) is required. Consider the 

derivative of f  (x):

 

df x

dx
A
ln ln x

B
ln ln x

� �
� �

�
1

10

1 1

10

1

1  

 
� �

�
�
�
�

�
�
�

1

10 1ln ln

A

x

B

x  

 
�

� �� �
�� �

1

10 1ln ln

A A B x

x x  

Let 
df x

dx

� �
� 0 , we can find the extreme points of the f  (x) function:

 
x

A

A B
�

�  
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Therefore, it can be known that the extreme points of the fθ function 

are also:

 
D

p x

p x p x
r

r g
� �

� �
� � � � �  

That is to say, when the discriminator network Dθ is in the D
��  state, 

the fθ function takes the maximum value, and the L(G, D) function also 

takes the maximum value.

Now back to the problem of maximizing L(G, D), the maximum point 

of L(G, D) is obtained at:

 
D

A

A B

p x

p x p x
r

r g

� �
�

�
� �

� � � � �  

which is also the optimal state D∗ of Dθ.

13.5.2  Generator State
Before deriving the second question, we first introduce another 

distribution distance metric similar to KL divergence: JS divergence, which 

is defined as a combination of KL divergence:

 
D p q p x log log

p x

q x
dxKL

x

� � � � � � �
� ��  

 
D p q D p

p q
D q

p q
JS KL KL� � � ��

�
�

�
�
� �

��
�
�

�
�
�

1

2 2

1

2 2  

JS divergence overcomes the asymmetry of KL divergence.

When D reaches the optimal state D∗, let us consider the JS divergence 

of pr and pg at this time:
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p p
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According to the definition of KL divergence:

 

D p p log log p x log log
p x

p p x
dxJS r g

x

r
r
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�
���
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� � �

�
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��

�

�
���

1

2
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p p x
dx

x

g
g

r g  

Combining the constant terms, we can get:

 
D p p log log log logJS r g� � � �� �1

2
2 2  

 

� � � � �
� � �

� � � � �
� � �� �
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g
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That is:

 
D p p log logJS r g� � � � �1

2
4  
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Consider when the network reaches D∗, the loss function at this time is:

 
L G D p x log log D x p x log log D x dx

x

r g, � � �� � � � � � �� � � � � � � �� �� 1
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Therefore, when the discriminator network reaches D∗, DJS(pr‖pg) and 

L(G, D∗) satisfy the relationship:

 
D p p log log L G DJS r g� � � � � �� ��1

2
4 ,  

That is:

 
L G D D p p log logJS r g

, �� � � � � �2 2 2  

For the generator network G, the training target is L(G, D) , considering 

the nature of the JS divergence:

 
D p pJS r g� � � 0  

Therefore, L(G, D∗) obtains the minimum value only when 

DJS(pr‖pg) = 0 (at this time pg = pr), L(G, D∗) obtains the minimum value:

 
L G D log log� �� � � �, 2 2  

At this time, the state of the generator network G∗ is:

 
p pg r=  

That is, the learned distribution pg of G∗ is consistent with the real 

distribution pr, and the network reaches a balance point. At this time:

 
D

p x

p x p x
r

r g

� �
� �

� � � � �
� 0 5.
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13.5.3  Nash Equilibrium Point
Through the preceding derivation, we can conclude that the generation 

network G will eventually converge to the true distribution, namely:pg = pr

At this time, the generated sample and the real sample come from the 

same distribution, and it is difficult to distinguish between true and false. 

The discriminator has the same probability to judge as true or false, that is:

 D �� � � 0 5.  

At this time, the loss function is

 
L G D log log� �� � � �, 2 2  

13.6  GAN Training Difficulty
Although the GAN network can learn the true distribution of data from the 

theoretical level, the problem of difficulty in GAN network training often 

arises in engineering implementation, which is mainly reflected in that 

the GAN model is more sensitive to hyperparameters, and it is necessary 

to carefully select the hyperparameters that can make the model work. 

Hyperparameter settings are also prone to mode collapse.

13.6.1  Hyperparameter Sensitivity
Hyperparameter sensitivity means that the network’s structure setting, 

learning rate, initialization state and other hyper-parameters have a 

greater impact on the training process of the network. A small amount 

of hyperparameter adjustment may lead to completely different network 

training results. Figure 13-15 (a) shows the generated samples obtained 

from good training of the GAN model. The network in Figure 13-15 (b) 
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does not use the batch normalization layer and other settings, resulting 

in unstable GAN network training and failure to converge. The generated 

samples are different from each other. The real sample gap is very large.

Figure 13-15. Hyperparameter sensitive example [5]

In order to train the GAN network well, the author of the DCGAN 

paper proposes not to use the pooling layer, not to use the fully connected 

layer, to use the batch normalization layer more, and the activation 

function in the generated network should use ReLU. The activation 

function of the last layer should be Tanh, and the activation function of the 

discriminator network should use a series of empirical training techniques 

such as LeakyLeLU. However, these techniques can only avoid the 

phenomenon of training instability to a certain extent and do not explain 

from the theoretical level why there is training difficulty and how to solve 

the problem of training instability.

13.6.2  Model Collapse
Mode collapse refers to the phenomenon that the sample generated by 

the model is single and the diversity is poor. Since the discriminator can 

only identify whether a single sample is sampled from the true distribution 

and does not impose explicit constraints on the sample diversity, the 

generative model may tend to generate a small number of high-quality 

samples in a partial interval of the true distribution, without learning 

all the true distributions. The phenomenon of model collapse is more 

common in GAN, as shown in Figure 13-16. During the training process, it 

can be observed by visualizing the samples of the generator network that 
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the types of pictures generated are very single, and the generator network 

always tends to generate samples of a certain single style to fool the 

discriminator.

Figure 13-16. Image generation – model collapsed [10]

Another example of intuitive understanding of mode collapse 

is shown in Figure 13-17. The first row is the training process of the 

generator network without mode collapse, and the last column is the real 

distribution, that is, the 2D Gaussian mixture model. The second row 

shows the training process of generator network with model collapse. The 

last column is the true distribution. It can be seen that the real distribution 

is a mixture of eight Gaussian models. After model collapse occurs, the 

generator network always tends to approach a narrow interval of the 

real distribution, as shown in the first six columns of the second row in 

Figure 13-17. The samples from this interval of can often be judged as real 

samples with a higher probability in the discriminator, thus deceiving the 

discriminator. But this phenomenon is not what we want to see. We hope 

that the generator network can approximate the real distribution, rather 

than a certain part of the real distribution.

Figure 13-17. Schematic diagram of model collapse [10]
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So how to solve the problem of GAN training so that GAN can be 

trained more stably like ordinary neural networks? The WGAN model 

provides a solution.

13.7  WGAN Principle
The WGAN algorithm analyzes the reasons for the instability of GAN 

training from a theoretical level, and proposes an effective solution. So 

what makes GAN training so unstable? WGAN proposed that the gradient 

surface of the JS divergence on the non-overlapping distributions p and q 

is always 0. As shown in Figure 13-18, when the distributions p and q do 

not overlap, the gradient value of the JS divergence is always 0, which leads 

to the gradient vanishing phenomenon; therefore, the parameters cannot 

be updated for a long time, and the network cannot converge.

Figure 13-18. Schematic diagram of distribution p and q

Next we will elaborate on the defects of JS divergence and how to solve 

this defect.
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13.7.1  JS Divergence Disadvantage
In order to avoid too much theoretical derivation, we use a simple 

distribution example to explain the defects of JS divergence. Consider two 

distributions p and q that are completely non-overlapping (θ ≠ 0), where 

the distribution p is:

 �� �� � � � �x y p x y U, ,, ,0 0 1  

And the distribution of q is:

 �� �� � � � �x y q x y U, ,, ,� 0 1  

where θ ∈ R, when θ = 0, the distributions p and q overlap, and the two are 

equal; when θ ≠ 0, the distributions p and q do not overlap.

Let us analyze the variation of the JS divergence between the preceding 

distributions p and q with θ. According to the definition of KL divergence 

and JS divergence, calculate the JS divergence DJS(p‖q) when θ = 0:

 
D p q log logKL

x y U

� � � � � ��
� � � �
�

0 0 1

1
1

0, ,  

 
D q p log logKL

x y U

� � � � � ��
� � � �
�

� , 0 1

1
1

0,  

D p q log log log logJS
x y U x y U

� � � � � �
� � � � � � � �
� �1

2
1

1

1 2
1

1

0 0 1 0 0 1, ,/, , 11 2
2

/

�

�
��

�

�
�� � log log

When θ = 0, the two distributions completely overlap. At this time, 

the JS divergence and KL divergence both achieve the minimum value, 

which is 0:

 
D p q D q p D p qKL KL JS� � � � � � � � � 0  
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From the preceding derivation, we can get the trend of DJS(p‖q) with θ:

 
D p q log logJS � � � � �{ 2 0 0 0� �  

In other words, when the two distributions do not overlap at all, 

regardless of the distance between the distributions, the JS divergence is a 

constant value log log 2 , then the JS divergence will not be able to produce 

effective gradient information. When the two distributions overlap, the JS 

divergence changes smoothly and produces effective gradient information. 

When the two distributions completely coincide, the JS divergence takes 

the minimum value of 0. As shown in Figure 13-19, the red curve divides 

the two normal distributions. Since the two distributions do not overlap, 

the gradient value at the generated sample position is always 0, and the 

parameters of the generator network cannot be updated, resulting in 

difficulty in network training.

Figure 13-19. Gradient vanishing of JS divergence [5]

Therefore, the JS divergence cannot smoothly measure the distance 

between the distributions when the distributions p and q do not overlap. 

As a result, effective gradient information cannot be generated at this 
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position, and the GAN training is unstable. To solve this problem, we need 

to use a better distribution distance measurement, so that it can smoothly 

reflect the true distance change between the distributions even when the 

distributions p and q do not overlap.

13.7.2  EM Distance
The WGAN paper found that JS divergence leads to the instability of 

GAN training and introduced a new distribution distance measurement 

method: Wasserstein distance, also called earth mover’s distance 

(EM distance), which represents the minimum cost of transforming a 

distribution to another distribution. It’s defined as:

 
W p q E x yx y, ,� � � ��� ��� ���  

where ∏(p, q) is the set of all possible joint distributions combined by the 

distributions p and q. For each possible joint distribution γ ∼  ∏ (p, q), 

calculate the expectation distance E(x, y) ∼ γ[‖x − y‖] of ‖x − y‖, where (x, y) 

is sampled from the joint distribution γ. Different joint distributions γ 

have different expectations E(x, y) ∼ γ[‖x − y‖], and the infimum of these 

expectations is defined as the Wasserstein distance of distributions p and 

q, where inf{∙} represents the infimum of the set, for example, the infimum 

of {x| 1 < x < 3, x ∈ R} is 1.

Continuing to consider the example in Figure 13-18, we directly give 

the expression of the EM distance between the distributions p and q:

 W p q,� � � �  

Draw the curves of JS divergence and EM distance, as shown in 

Figure 13-20. It can be seen that the JS divergence is not continuous at 

θ = 0, the other position derivatives are all 0, and the EM distance can 

always produce effective derivative information. Therefore, EM distance is 

more suitable for guiding the training of GAN network than JS divergence.
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Figure 13-20. JS divergence and EM distance change curve with 
θ WGAN-GP

Considering that it is almost impossible to traverse all the joint 

distributions γ to calculate the distance expectation E(x, y) ∼ γ[‖x − y‖] 

of ‖x − y‖, so it’s not realistic to calculate the distance between the 

distribution pg of the generator network and W(pr, pg). Based on the 

Kantorovich-Rubinstein duality, the WGAN author converts the direct 

calculation of W(pr, pg) into:

 
W p p

K
E f x E f xr g x p x pr g

,� � � � ��� �� � � ��� ��� �
1

 

where sup{∙} represents the supremum of the set, ‖f‖L ≤ K represents the 

function f : R → R which satisfies the K-order Lipschitz continuity, that is,

 
f x f x K x x1 2 1 2� � � � � � � �  

Therefore, we use the discriminant network Dθ(x) to parameterize 

the f  (x) function, under the condition that Dθ satisfies the 1-Lipschitz 

constraint, that is, K = 1, at this time:

 
W p p E D x E D xr g x p x pr g

,� � � � ��� �� � � ��� ��� �� �  
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Therefore, the problem of solving W(pr, pg) can be transformed into:

 
E D x E D xx p x pr g� �� ��� �� � � ��� ��� �  

This is the optimization goal of the discriminator D. The discriminant 

network function Dθ(x) needs to satisfy the 1-Lipschitz constraint:

 
� � � �ˆ

ˆ
xD x I  

In the WGAN-GP paper, the author proposes to increase the gradient 

penalty method to force the discriminator network to meet the first-order- 

Lipschitz function constraint, and the author found that the engineering 

effect is better when the gradient value is constrained around 1, so the 

gradient penalty term is defined as:

 
GP E D xx P xx
 ˆ ˆˆ

ˆ
� � � � �� ��

��
�
��2

2

1
 

Therefore, the training objective of WGAN discriminator D is:

 

where x̂  comes from the linear difference between xr and xf:

 
ˆ ,x tx t x tr f� � �� � �� �1 0 1,  

The goal of the discriminator D is to minimize the above- mentioned 

error L(G, D), that is, to force the EM distance E D x E D xx p r x p fr r f g� �� ��� �� � � ��� ��  

as large as possible, and � � �ˆ
ˆ

xD x
2

 close to 1.

The training objectives of WGAN generator G are:
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That is, the EM distance between the generator’s distribution pg 

and the real distribution pr is as small as possible. Considering that 

E D xx p rr r� � ��� ��  has nothing to do with the generator, the training objective 

of the generator is abbreviated as:

 
min

�
L G D E D xx p ff g

,� � � � � ��� ���  

 
� � � �� ��� ���� �E D G zz pz~  

From the implementation point of view, the output of the 

discriminator network D does not need to add a Sigmoid activation 

function. This is because the original version of the discriminator is a 

binary classification network, the Sigmoid function is added to obtain 

the probability of belonging to a certain category; while the discriminator 

in WGAN is used to measure the EM distance between the distribution 

pg of the generator network and the real distribution pr. It belongs to 

the real number space, so there is no need to add a Sigmoid activation 

function. When calculating the error function, WGAN also does not have 

a log function. When training WGAN, WGAN authors recommend using 

RMSProp or SGD and other optimizers without momentum.

WGAN discovered the reason why the original GAN is prone to training 

instability from the theoretical level and gave a new distance metric and 

engineering implementation solution, which achieved good results. 

WGAN also alleviates the problem of model collapse to a certain extent, 

and the model using WGAN is not prone to model collapse. It should be 

noted that WGAN generally does not improve the generation effect of 

the model but only ensures the stability of model training. Of course, the 

training stability is also a prerequisite for good model performance. As 

shown in Figure 13-21, the original version of DCGAN showed unstable 

training when the BN layer and other settings were not used. Under the 

same settings, using WGAN to train the discriminator can avoid this 

phenomenon, as shown in Figure 13-22.
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Figure 13-21. DCGAN generator effect without BN layer [5]

Figure 13-22. WGAN generator effect without BN layer [5]
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13.8  Hands-On WGAN-GP
The WGAN-GP model can be modified slightly on the basis of the original 

GAN implementation. The output of the discriminator D of the WGAN-GP 

model is no longer the probability of the sample category, and the output 

does not need to add the Sigmoid activation function. At the same time, we 

need to add a gradient penalty term as follows:

def gradient_penalty(discriminator, batch_x, fake_image):

    # Gradient penalty term calculation function

    batchsz = batch_x.shape[0]

    # Each sample is randomly sampled at t for interpolation

    t = tf.random.uniform([batchsz, 1, 1, 1])

     # Automatically expand to the shape of x, [b, 1, 1, 1] => 

[b, h, w, c]

    t = tf.broadcast_to(t, batch_x.shape)

     # Perform linear interpolation between true and false 

pictures

    interplate = t * batch_x + (1 - t) * fake_image

     # Calculate the gradient of D to interpolated samples in a 

gradient environment

    with tf.GradientTape() as tape:

         tape.watch([interplate]) # Add to the gradient 

watch list

        d_interplote_logits = discriminator(interplate)

    grads = tape.gradient(d_interplote_logits, interplate)

     # Calculate the norm of the gradient of each sample:[b, h, 

w, c] => [b, -1]

    grads = tf.reshape(grads, [grads.shape[0], -1])

    gp = tf.norm(grads, axis=1) #[b]
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    # Calculate the gradient penalty

    gp = tf.reduce_mean( (gp-1.)**2 )

    return gp

The loss function calculation of WGAN discriminator is different 

from GAN. WGAN directly maximizes the output value of real samples 

and minimizes the output value of generated samples. There is no cross- 

entropy calculation process. The code is implemented as follows:

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_

training):

    # Calculate loss function for D

     fake_image = generator(batch_z, is_training) # 

Generated sample

     d_fake_logits = discriminator(fake_image, is_training)  

# Output of generated sample

     d_real_logits = discriminator(batch_x, is_training)  

# Output of real sample

    # Calculate gradient penalty term

    gp = gradient_penalty(discriminator, batch_x, fake_image)

     #  WGAN-GP loss function of D. Here is not to calculate the 

cross entropy, but to directly maximize the output of the 

positive sample

     #  Minimize the output of false samples and the gradient 

penalty term

     loss = tf.reduce_mean(d_fake_logits) - tf.reduce_mean 

(d_real_logits) + 10. * gp

    return loss, gp

The loss function of the WGAN generator G only needs to maximize 

the output value of the generated sample in the discriminator D, and there 

is also no cross-entropy calculation step. The code is implemented as 

follows:
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def g_loss_fn(generator, discriminator, batch_z, is_training):

    # Generator loss function

    fake_image = generator(batch_z, is_training)

    d_fake_logits = discriminator(fake_image, is_training)

     # WGAN-GP G loss function. Maximize the output value of 

false samples

    loss = - tf.reduce_mean(d_fake_logits)

    return loss

Comparing with the original GAN, the main training logic of WGAN is 

basically the same. The role of the discriminator D for WGAN is a measure 

of EM distance. Therefore, the more accurate the discriminator is, the 

more beneficial it is to the generator. The discriminator D can be trained 

multiple times for a step, and the generator G can be trained once to obtain 

a more accurate EM distance estimation.
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CHAPTER 14

Reinforcement 
Learning

Artificial intelligence = deep learning + reinforcement learning

—David Silver

Reinforcement learning is another field of machine learning besides 

supervised learning and unsupervised learning. It mainly uses agents 

to interact with the environment in order to learn strategies that can 

achieve good results. Different from supervised learning, the action of 

reinforcement learning does not have clear label information. It only has 

the reward information from the feedback of the environment. It usually 

has a certain lag and is used to reflect the “good and bad” of the action.

With the rise of deep neural networks, the field of reinforcement 

learning has also developed vigorously. In 2015, the British company 

DeepMind proposed a deep neural network-based reinforcement learning 

algorithm DQN, which achieved a human level performance in 49 Atari 

games such as space invaders, bricks, and table tennis [1]. In 2017, the 

AlphaGo program proposed by DeepMind defeated Ke Jie, the no. 1 Go 

player at the time by a score of 3:0. In the same year, the new version 

of AlphaGo, AlphaGo Zero, used self- play training without any human 

knowledge defeated AlphaGo at 100:0 [3]. In 2019, the OpenAI Five 
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program defeated the Dota2 world champion OG team 2:0. Although 

the game rules of this game are restricted, it requires a super individual 

intelligence level for Dota2. With a good teamwork game, this victory 

undoubtedly strengthened the belief of mankind in AGI.

In this chapter, we will introduce the mainstream algorithms in 

reinforcement learning, including the DQN algorithm for achieving 

human-like level in games such as Space Invaders, and the PPO algorithm 

for winning Dota2.

14.1  See It Soon
The design of reinforcement learning algorithm is different from 

traditional supervised learning and contains a large number of new 

mathematical formula derivations. Before entering the learning process 

of reinforcement learning algorithms, let us first experience the charm of 

reinforcement learning algorithms through a simple example.

In this section, you don’t need to master every detail but should focus 

on intuitive experience and get the first impression.

14.1.1  Balance Bar Game
The balance bar game system contains three objects: sliding rail, trolley 

and pole. As shown in Figure 14-1, the trolley can move freely on the slide 

rail, and one side of the rod is fixed on the trolley through a bearing. In 

the initial state, the trolley is located in the center of the slide rail and 

the rod stands on the trolley. The agent controls the balance of the rod 

by controlling the left and right movement of the trolley. When the angle 

between the rod and the vertical is greater than a certain angle or the 

trolley deviates from the center of the slide rail after a certain distance, the 

game is deemed to be over. The longer the game time, the more rewards 

the game will give, and the higher the control level of the agent.
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In order to simplify the representation of the environment, we directly 

take the high-level environment feature vector s as the input of the agent. It 

contains a total of four high-level features, namely, car position, car speed, 

rod angle, and rod speed. The output action a of the agent is to move 

to the left or to the right. The action applied to the balance bar system 

will generate a new state, and the system will also return a reward value. 

This reward value can be simply recorded as 1, which is instantaneously 

adding 1 unit time. At each time stamp t, the agent generates an action at 

by observing the environment state st. After the environment receives the 

action, the state changes to st + 1 and returns the reward 

rt.Figure 14-1. Balance bar game system

14.1.2  Gym Platform
In reinforcement learning, the robot can directly interact with the real 

environment, and the updated environment state and rewards can be 

obtained through sensors. However, considering the complexity of the real 

environment and the cost of experiments, it is generally preferred to test 

algorithms in a virtual software environment, and then consider migrating 

to the real environment.

Reinforcement learning algorithms can be tested through a large 

number of virtual game environments. In order to facilitate researchers 

to debug and evaluate algorithm models, OpenAI has developed a gym 
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game interactive platform. Users can use Python language to complete 

game creation and interaction with only a small amount of code. It’s very 

convenient.

The OpenAI Gym environment includes many simple and classic 

control games, such as balance bar and roller coaster (Figure 14-2). It can 

also call the Atari game environment and the complex MuJoCo physical 

environment simulator (Figure 14-4). In the Atari game environment, 

there are familiar mini-games, such as Space Invaders, Brick Breaker 

(Figure 14-3), and racing. Although these games are small in scale, they 

require high decision-making capabilities and are very suitable for 

evaluating the intelligence of algorithms.

Figure 14-2. Roller coaster

Figure 14-3. Brick Breaker
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Figure 14-4. Walking robot

At present, you may encounter some problems when installing the 

Gym environment on the Windows platform, because some of the software 

libraries are not friendly to the Windows platform. It is recommended that 

you use a Linux system for installation. The balance bar game environment 

used in this chapter can be used perfectly on the Windows platform, but 

other complex game environments are not necessarily.

Running the pip install gym command will only install the basic library 

of the Gym environment, and the balance bar game is already included in 

the basic library. If you need to use Atari or MuJoCo emulators, additional 

installation steps are required. Let’s take the installation of the Atari 

emulator as an example:

git clone https://github.com/openai/gym.git # Pull the code

cd gym # Go to directory

pip install -e '.[all]' # Install Gym

Generally speaking, creating a game and interacting in the Gym 

environment mainly consists of five steps:

 [1]. Create a game. Through gym.make(name), you can 

create a game with the specified name and return 

the game object env.
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 [2]. Reset the game state. Generally, the game 

environment has an initial state. You can reset the 

game state by calling env.reset() and return to the 

initial state observation of the game.

 [3]. Display the game screen. The game screen of each 

time stamp can be displayed by calling env.render(), 

which is generally used for testing. Rendering 

images during training will introduce a certain 

computational cost, so images may not be displayed 

during training.

 [4]. Interact with the game environment. The action 

can be executed through env.step(action), and 

the system can return the new state observation, 

current reward, the game ending flag done and the 

additional information carrier. By looping this step, 

you can continue to interact with the environment 

until the end of the game.

 [5]. Destroy the game. Just call env.close().

The following demonstrates a piece of interactive code for the balance 

bar game CartPole-v1. During each interaction, an action is randomly 

sampled in the action space: {left, right}, interact with the environment 

until the end of the game.

import gym # Import gym library

env = gym.make("CartPole-v1") # Create game environment

observation = env.reset() # Reset game state

for _ in range(1000): # Loop 1000 times

  env.render() # Render game image

   action = env.action_space.sample() # Randomly select 

an action
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   # Interact with the environment, return new status, reward, 

end flag, other information

  observation, reward, done, info = env.step(action)

  if done:# End of game round, reset state

    observation = env.reset()

env.close() # End game environment

14.1.3  Policy Network
Let’s discuss the most critical link in reinforcement learning: how to judge 

and make decisions? We call judgment and decision-making policy. 

The input of the policy is the state s, and the output is a specific action a 

or the distribution of the action πθ(a| s), where θ is the parameter of the 

strategy function π, and the πθ function can be parameterized using neural 

networks, as shown in Figure 14-5. The input of the neural network πθ is 

the state s of the balance bar system, that is, a vector of length 4, and the 

output is the probability of all actions πθ(a| s): the probability to the left P(to 

left| s) and the probability to the right P(to right| s). The sum of all action 

probabilities is 1:

 a A

a s
�
� � � ��� | 1

 

where A is the set of all actions. The πθ network represents the policy of 

the agent and is called the policy network. Naturally, we can embody 

the policy function as a neural network with four input nodes, multiple 

fully connected hidden layers in the middle, and two output nodes in the 

output layer, which represents the probability distribution of these two 

actions. When interacting, choose the action with the highest probability:

 a st t� � ���  
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As a result of the decision, it acts in the environment and gets a new 

state st + 1 and reward rt, and so on, until the end of the game.

Figure 14-5. Strategy network

We implement the policy network as a two-layer fully connected 

network. The first layer converts a vector of length 4 to a vector of length 

128, and the second layer converts a vector of 128 to a vector of 2, which 

is the probability distribution of actions. Just like the creation process of a 

normal neural network, the code is as follows:

class Policy(keras.Model):

     # Policy network, generating probability distribution 

of actions

    def __init__(self):

        super(Policy, self).__init__()

        self.data = [] # Store track

         # The input is a vector of length 4, and the output 

is two actions - left and right, specifying the 

initialization scheme of the W tensor

         self.fc1 = layers.Dense(128, kernel_initializer=' 

he_normal')

         self.fc2 = layers.Dense(2, kernel_initializer='he_normal')

        # Network optimizer

        self.optimizer = optimizers.Adam(lr=learning_rate)
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    def call(self, inputs, training=None):

        # The shape of the state input s is a vector:[4]

        x = tf.nn.relu(self.fc1(inputs))

         x = tf.nn.softmax(self.fc2(x), axis=1) # Get the 

probability distribution of the action

        return x

During the interaction, we record the state input st at each timestamp, 

the action distribution output at, the environment reward rt, and the new 

state st + 1 as a four-tuple item for training the policy network.

    def put_data(self, item):

        # Record r,log_P(a|s)

        self.data.append(item)

14.1.4  Gradient Update
If you need to use the gradient descent algorithm to optimize the network, 

you need to know the label information at of each input st and ensure that 

the loss value is continuously differentiable from the input to the loss. 

However, reinforcement learning is not the same as traditional supervised 

learning, which is mainly reflected in the fact that the action at of 

reinforcement learning at each timestamp t does not have a clear standard 

for good and bad. The reward rt can reflect the quality of the action to a 

certain extent, but it cannot directly determine the quality of the action. 

Even some game interaction processes only have a final reward rt signal 

representing the game result, such as Go. So is it feasible to define an 

optimal action at
∗  for each state as the label of the neural network input st? 

The first is that the total number of states in the game is usually huge. For 

example, the total number of states in Go is about 10170. Furthermore, it is 

difficult to define an optimal action for each state. Although some actions 

have low short-term returns, long-term returns are better, and sometimes 

even humans do not know which action is the best.
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Therefore, the optimization goal of the strategy should not be to make 

the output of the input st as close as possible to the labeling action, but to 

maximize the expected value of the total return. The total reward can be 

defined as the sum of incentives ∑rt from the beginning of the game to 

the end of the game. A good strategy should be able to obtain the highest 

expected value of total return J(πθ) in the environment. According to the 

principle of the gradient ascent algorithm, if we can find 
� � �
�
J �
�

, then the 

policy network only needs to follow:

 
� � � �

� � �
�

� � �
�
�

J
 

to update the network parameters in order to maximize the 

expectation reward.

Unfortunately, the total return expectation J(πθ) is given by the game 

environment. If the environment model is not known, then 
� � �
�
J �
�

 cannot 

be calculated by automatic differentiation. So even if the expression of J(πθ) 

is unknown, can the partial derivative 
� � �
�
J �
�

 be solved directly?

The answer is yes. We directly give the derivation result of 
� � �
�
J �
�

 here. 

The specific derivation process will be introduced in detail in 14.3:

 

� � �
�

�
�
�

� ��

�
�

�

�
� � ��

�
�

�

�
�� � �

�
�

J
E log log s Rp

t

T

t


 

� �� � 
1  

Using the preceding formula, you only need to calculate 
�
�

� �
�

��log log st , and multiply it by R(τ) to update and calculate 
� � �
�
J �
�

.  

According to � � � �
� � �
�

� � �
�
�

L
, the policy network can be updated to 

maximize the J(θ) function, where R(τ) is the total return of a certain 

interaction; τ is the interaction trajectory s1, a1, r1, s2, a2, r2, ⋯, sT; T is the 
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number of timestamps or steps of the interaction; and log log πθ (st) is the 

log function of the probability value of the at action in the output of the 

policy network. 
�
�

� �
�

��log log st  can be solved by TensorFlow automatic 

differentiation. The code of the loss function is implemented as:

         for r, log_prob in self.data[::-1]:# Get trajectory 

data in reverse order

             R = r + gamma * R # Accumulate the return on each 

time stamp

             # The gradient is calculated once for each timestamp

            # grad_R=-log_P*R*grad_theta

            loss = -log_prob * R

The whole training and updating code is as follows:

    def train_net(self, tape):

         # Calculate the gradient and update the policy network 

parameters. tape is a gradient recorder

        R = 0 # The initial return of the end state is 0

        for r, log_prob in self.data[::-1]:# Reverse order

             R = r + gamma * R # Accumulate the return on each 

time stamp

            # The gradient is calculated once for each timestamp

            # grad_R=-log_P*R*grad_theta

            loss = -log_prob * R

            with tape.stop_recording():

                # Optimize strategy network

                 grads = tape.gradient(loss, self.trainable_

variables)

                # print(grads)

                 self.optimizer.apply_gradients(zip(grads,  

self.trainable_variables))

        self.data = [] # Clear track
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14.1.5  Hands-On Balance Bar Game
We train for a total of 400 rounds. At the beginning of the round, we reset 

the game state, sample actions by sending input states, interact with the 

environment, and record the information of each time stamp until the end 

of the game.

The interactive and training part of the code is as follows:

    for n_epi in range(10000):

         s = env.reset() # Back to the initial state of the 

game, return to s0

        with tf.GradientTape(persistent=True) as tape:

             for t in range(501): # CartPole-v1 forced to 

terminates at 500 step.

                # Send the state vector to get the strategy

                s = tf.constant(s,dtype=tf.float32)

                # s: [4] => [1,4]

                s = tf.expand_dims(s, axis=0)

                prob = pi(s) # Action distribution: [1,2]

                 # Sample 1 action from the category 

distribution, shape: [1]

                 a = tf.random.categorical(tf.math.

log(prob), 1)[0]

                a = int(a) # Tensor to integer

                 s_prime, r, done, info = env.step(a) # Interact 

with the environment

                 # Record action a and the reward r generated by 

the action

                # prob shape:[1,2]

                pi.put_data((r, tf.math.log(prob[0][a])))

                s = s_prime # Refresh status

                score += r # Cumulative reward
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                if done:  # The current episode is terminated

                    break

             # After the episode is terminated, train the 

network once

            pi.train_net(tape)

        del tape

The training process of the model is shown in Figure 14-6. The 

horizontal axis is the number of training rounds, and the vertical axis 

is the average return value of the rounds. It can be seen that as the 

training progresses, the average return obtained by the network is getting 

higher and higher, and the strategy is getting better and better. In fact, 

reinforcement learning algorithms are extremely sensitive to parameters, 

and modifying the random seed will result in completely different 

performance. In the process of implementation, it is necessary to carefully 

select parameters to realize the potential of the algorithm.

Figure 14-6. Balance bar game training process

Through this example, we have a preliminary impression and 

understanding of the interaction process between reinforcement learning 

algorithms and reinforcement learning, and then we will formally describe 

the reinforcement learning problem.
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14.2  Reinforcement Learning Problems
In the reinforcement learning problem, the object with perception and 

decision- making capabilities is called an agent, which can be a piece 

of algorithm code, or a robotic software and hardware system with a 

mechanical structure. The agent completes a certain task by interacting 

with the external environment. The environment here refers to the sum of 

the external environment that can be affected by the action of the agent 

and gives corresponding feedback. For the agent, it generates decision-

making actions (action) by sensing the state of the environment (state). For 

the environment, it starts from an initial state s1, and dynamically changes 

its state by accepting the actions of the agent, and give the corresponding 

reward signal (Reward).

We describe the reinforcement learning process from a probabilistic 

perspective. It contains the following five basic objects:

• State s reflects the state characteristics of the 

environment. The state on the time stamp t is 

marked as st. It can be the original visual image, voice 

waveform, and other signals, or it can be the features 

after high-level abstraction, such as the speed and 

position of the car. All (finite) states constitute the state 

space S.

• Action a is the action taken by the agent. The state on 

the timestamp t is recorded as at, which can be discrete 

actions such as leftward and rightward, or continuous 

actions such as strength and position. All (finite) 

actions constitute action space A.
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• Policy π(a| s) represents the decision model of the 

agent. It accepts the input as the state s and gives the 

probability distribution p(a| s) of the action executed 

after the decision, which satisfies:

 a A

s
�
� � � �� 1

 

This kind of action probability output with a certain randomness is 

called a stochastic policy. In particular, when the policy model always 

outputs a certain action with a probability of 1 and others at 0, this kind of 

policy model is called a deterministic policy, namely:

 a s� � ��  

• Reward r(s, a) expresses the feedback signal given by 

the environment after accepting action a in state s. It is 

generally a scalar value, which reflects the good or bad 

of the action to a certain extent. The reward obtained at 

the timestamp t is recorded as rt (in some materials, it is 

recorded as rt + 1, because the reward often has a certain 

hysteresis)

• The state transition probability p(s′| s, a) expresses the 

changing law of the state of the environment model, 

that is, after the environment of the current state s 

accepts the action a, the probability distribution that 

the state changes to s′ satisfies:

 s S

p s s a
��
� �� � �| , 1

 

The interaction process between the agent and the environment can 

be represented by Figure 14-7.
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Figure 14-7. The interaction process between the agent and the 
environment

14.2.1  Markov Decision Process
The agent starts from the initial state s1 of the environment and executes 

a specific action a1 through the policy model π(a| s). The environment is 

affected by the action a1, and the state s1 changes to s2 according to  

the internal state transition model p(s′| s, a). In the meantime, it gives the  

feedback signal of the agent: the reward r1, which is generated by the reward 

function r(s1, a1). This cycle of interaction continues until the game reaches 

termination state sT. This process produces a series of ordered data:

 � � s a r s a r sT1 1 1 2 2 2, , , , , , ,  

This sequence represents an exchange process between the agent 

and the environment, called trajectory, denoted as τ. An interaction 

process is called an episode, and T represents the timestamp (or number 

of steps). Some environments have a clear terminal state. For example, 

the game ends when a small plane in the space invaders is hit, while some 

environments do not have a clear termination mark. For example, some 

games can be played indefinitely as long as they remain healthy. At this 

time, T represents ∞.

Chapter 14  reinforCement Learning



617

The conditional probability P(st + 1| s1, s2, …, st) is very important, but it 

requires multiple historical state, which is very complicated to calculate. 

For simplicity, we assume that the state st + 1 on the next time stamp is only 

affected by the current time stamp st, and has nothing to do with other 

historical states s1, s2, …, st − 1, that is :

 P s s s P st t1 2, , ,�� � � � �  

The property that next state st + 1 is only related to the current state st is 

called Markov property, and the sequence s1, s2, …, sT with Markov property 

is called Markov process.

If the action a is also taken into consideration of the state transition 

probability, the Markov hypothesis is also applied: the state st + 1 of the 

next time stamp is only related to the current state st and the action at 

performed on the current state, then the condition probability becomes:

 P s a s a P s at t t t1 1, , , , ,�� � � � �  

We call the sequence of states and actions s1, a1, …, sT the Markov 

decision process (MDP). In some scenarios, the agent can only observe 

part of the state of the environment, which is called partially observable 

Markov decision process (POMDP). Although the Markovian hypothesis 

does not necessarily correspond to the actual situation, it is the 

cornerstone of a large number of theoretical derivations in reinforcement 

learning. We will see the application of Markovianness in subsequent 

derivations.

Now let’s consider a certain trajectory:

 � � s a r s a r sT1 1 1 2 2 2, , , , , , ,  
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It’s probability of occurrence P(τ):

 P P s a s a sT�� � � � �1 1 2 2, , , , ,  

 � � � � � � � � � � �P s s P s a s P s a s a1 1 1 1 2 1 1 2 2� �, , , ,   

 
� � � � � �� �

�

�

�P s s p s a s a
t

T

t t t1

1

1

1 1� , , , ,
 

After applying Markovianity, we simplify the preceding expression to:

 
P P s s p s a

t

T

t t t� �� � � � � � � � �
�

�

�1

1

1

,
 

The diagram of Markov decision process is shown in Figure 14-8.

Figure 14-8. Markov decision process

If the state transition probability p(sʹ| s, a) and the reward function 

r(s, a) of the environment can be obtained, the value function can be 

directly calculated iteratively. This method of known environmental 

models is collectively called model-based reinforcement learning. 

However, environmental models in the real world are mostly complex and 

unknown. Such methods with unknown models are collectively called 

model-free reinforcement learning. Next, we will mainly introduce model-

free reinforcement learning algorithms.
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14.2.2  Objective Function
Each time the agent interacts with the environment, it will get a (lagging) 

reward signal:

 r r s at t t� � �,  

The cumulative reward of one interaction trajectory τ is called 

total return:

 
R r

t

T

t�� � �
�

�

�
1

1

 

where T is the number of steps in the trajectory. If we only consider the 

cumulative return of st, st + 1, …, sT starting from the intermediate state st of 

the trajectory, it can be recorded as:

 
R s rt

k

T t

t k� � �
�

� �

��
1

1

 

In some environments, the stimulus signal is very sparse, such as Go, 

the stimulus of the previous move is 0, and only at the end of the game will 

there be a reward signal representing the win or loss.

Therefore, in order to weigh the importance of short-term and long-

term rewards, discounted returns that decay over time (Discounted 

Return) can be used:

 
R r

t

T
t

t� �� � �
�

�
��

1

1
1

 

where γ ∈ [0, 1] is called the discount rate. It can be seen that the recent 

incentive r1 is all used for total return, while the long-term incentive 

rT − 1 can be used to contribute to the total return R(τ) after attenuating 
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γT − 2. When γ ≈ 1, the short-term and long-term reward weights are 

approximately the same, and the algorithm is more forward-looking; when 

γ ≈ 0, the later long-term reward decays close to 0, short-term reward 

becomes more important. For an environment with no termination 

state, that is, T = ∞, the discounted return becomes very important, 

because 
t

t
tr

�

�
��

1

1�  may increase to infinity, and the discounted return can 

be approximately ignored for long-term rewards to facilitate algorithm 

implementation.

We hope to find a policy π(a| s) model so that the higher the total return 

R(τ) of the trajectory τ generated by the interaction between the agent and 

the environment under the control of the policy π(a| s), the better. Due 

to the randomness of environment state transition and policy, the same 

policy model acting on the same environment with the same initial state 

may also produce completely different trajectory sequence τ. Therefore, 

the goal of reinforcement learning is to maximize the expected return:

 
J E R E rp p

t

T
t

t� � �� � � � �� � � � ��� �� �
�

�
�

�

�
�� � � � � �

�

�
��

1

1
1

 

The goal of training is to find a policy network πθ represented by a set of 

parameters θ, so that J(πθ)is the largest:

 
� �� �

�
� � �� � ��� ��E Rp  

where p(τ) represents the distribution of trajectory τ, which is jointly 

determined by the state transition probability p(s′| s, a) and the strategy 

π(a| s). The quality of strategy π can be measured by J(πθ). The greater the 

expected return, the better the policy; otherwise, the worse the strategy.
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14.3  Policy Gradient Method
Since the goal of reinforcement learning is to find an optimal policy πθ(s) 

that maximizes the expected return J(θ), this type of optimization problem 

is similar to supervised learning. It is necessary to solve the partial 

derivative of the expected return with the network parameters 
�
�

J
�

, and 

use gradient ascent algorithm to update network parameters:

 
� � � �

�
�

� � �
�
J

 

That is, where η is the learning rate.

The policy model πθ(s) can use a multilayer neural network to 

parameterize πθ(s). The input of the network is the state s, and the output is 

the probability distribution of the action a. This kind of network is called a 

policy network.

To optimize this network, you only need to obtain the partial derivative 

of each parameter 
�
�

J
�

. Now we come to derive the expression of 
�
�

J
�

. First, 

expand it by trajectory distribution:

 

�
�

�
�
�

� � � ��
J R d
� �

� � � ��  

Move the derivative symbol to the integral symbol:

 
�

�
�

� ��
�
�

�
�
� � �� �
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Adding � �
� ��

�
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1

 does not change the result:
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� �
�

�
��

�

�
�� � ��� �

� � �
� � � ��

�
�

1 R d
 

Chapter 14  reinforCement Learning



622

Considering:

 

dlog f x
dx f x

df x
dx

� �� �
�

� �
� �1

 

So:

 

1
� � �

� �
�

� �
�

� �� �
�
�

� � � �
�

� �log log
 

We can get:

 
� � � � �

�
� ��

�
�

�
�
� � �� �

�
� � � �� �log log R d

 

That is:

 

�
�

�
�
�

� � � ��
��

�
��� � �

J E log log Rp� �
� � �� � ��  

where loglog πθ (τ) represents the log probability value of trajectory τ = s1, 

a1, s2, a2, ⋯, sT. Considering that R(τ) can be obtained by sampling, the key 

becomes to solve 
�
�

� �
�

� ��log log , we can decompose πθ(τ) to get:

 

�
�

� � � �
�

� � � � � ��

�
�

�

�
�

�

�

��
� �

�
�� �log log log log p s s p s a

t

T

t t t1

1

1

,
 

Convert log ∏ · to ∑ log (·):

 
�

�
�

� � � � � � � ��

�
�

�

�
�

�

�

��
��log log p s log log s log log p s a

t

T

t t t1

1

1

,
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Considering that both log log p (st, at) and log log p (s1) are not related 

to θ, the preceding formula becomes:

 

�
�

� � � �
�

� �
�

�

��
� �

�
�� �log log log log s

t

T

t
1

1

 

It can be seen that the partial derivative 
�
�

� �
�

� ��log log  can finally 

be converted to loglog πθ (st) which is the derivative of the policy network 

output to the network parameter θ. It has nothing to do with the state 

probability transition p(s′| s, a), that is, it can be solved without knowing the 

environment model 
�
�

� �
�

��log log p .

Put it into 
�
�

J
�

:

 

� � �
�

�
�
�

� � � ��
��

�
��� � �

J
E log log Rp

�
� �

� � �� � ��  

 
�

�
�

� ��

�
�

�

�
� � ��

�
�

�

�
�� � �

�

�

E log log s Rp
t

T

t� � �� �

 �

1

1

 

Let us intuitively understand the preceding formula. When the total 

return of a certain round R(τ) > 0, 
� � �
�
J �
�

 and 
�
�

� �
�

� ��log log  are in the 

same direction. According to the gradient ascent algorithm, the θ 

parameter is updated toward the direction of increasing J(θ), and also in 

the direction of increasing loglog πθ (st), which encourages the generation 

of more such trajectories τ. When the total return R(τ) < 0, 
� � �
�
J �
�

 and 
�
�

� �
�

� ��log log  are reversed, so when the θ parameter is updated 

according to the gradient ascent algorithm. It is updated toward the 

direction of increasing J(θ) and decreasing loglog πθ (st), that is, to avoid 
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generating more such trajectories τ. Through this, it is possible to 

intuitively understand how the network adjusts itself to achieve greater 

expected return.

With the preceding expression of 
�
�

J
�

, we can easily solve 
�
�

� �
�

��log log st  through the automatic differentiation tool of TensorFlow 

to calculate 
�
�

J
�

. Finally, we can use the gradient ascent algorithm to 

update the parameters. The general flow of the policy gradient algorithm is 

shown in Figure 14-9.

14.3.1  Reinforce Algorithm
According to the law of large numbers, write the expectation as the mean 

value of multiple sampling trajectories τn, n ∈ [1, N]:

 

� � �
�

�
�
� � ��

�
�

�

�
� � ��

�
�

�

�� �

�
� � � �� �

J
N

log log s R
n

N

t

T

t
n n�

� �
� ��

1
1 1

1

��
 

where N is the number of trajectories, and at
n� �  and st

n� �  represent  

the actions and input states of the t-th time stamp of the n-th trajectory τn. 

Then update the θ parameters through gradient ascent algorithm.  

Figure 14-9. Policy gradient method training process
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This algorithm is called the REINFORCE algorithm [4], which is also the 

earliest algorithm that uses the policy gradient idea.

Algorithm 1: REINFORCE Algorithm

randomly initialize θ
repeat
   interact with environment according to policy (st)  and generate multiple 

trajectories {τ(n)}

  Calculate R(τ(n))

  Calculate 
�
�

�
�
�

�J
N

log log s R
n=

N

t=

T

t
n n��

�� ��
�� ����

� � � ��

�
�

�

�
� � ��

�
�

�

�
� � � � � �1

1 1

1

��

  Update parameter � ��� �� ��
��

�
�
�

+ J

until reach certain training times
Output: policy network (st)

14.3.2  Improvement of the Original Policy 
Gradient Method

Because the original REINFORCE algorithm has a large variance between 

the optimized trajectories, the convergence speed is slow, and the training 

process is not smooth enough. We can use the idea of variance reduction 

to make improvements from the perspectives of causality and baseline.

Causality. Considering the partial derivative expression of 
� � �
�
J �
�

, for 

the action at with a time stamp of t, it has no effect on τ1 : t − 1, but only has 

an effect on the subsequent trajectory τt : T. So for πθ(st), we only consider 

the cumulative return R(τt : T) starting from the timestamp t. The expression 

of 
� � �
�
J �
�

 is given by

Chapter 14  reinforCement Learning



626

 

� � �
�

�
�
�

� ��

�
�

�

�
� � ��

�
�

�

�
�� � �

�

�


J

E log log s Rp
t

T

t T

�
� �

� 

 
 ��
1

1

1:
 

It can be written as:

 

� � �
�

�
�
�

� � � ��
�
�

�
�
�

�

�
�

�

�
�� � �

�

�


J

E log log s Rp
t

T

t t T

�
� �

� 

 
 ��
1

1

:
 

 
�

�
�

� � � ��
�
�

�
�
�

�

�
�

�

�
�� � �

�

�

E log log s Q s ap
t

T

t t t� � �� �



1

1

 ,
 

where Q s at t
 ,� �  function represents the estimated reward value of πθ after 

the at action is executed from the state st. The definition of the Q function 

will also be introduced in Section 14.4. Since only the trajectory τt : T 

starting from at is considered, the variance of R(τt : T) becomes smaller.

Bias. The reward rt in the real environment is not distributed around 

0. The rewards of many games are all positive, so that R(τ) is always greater 

than 0. The network tends to increase the probability of all sampled 

actions. The probability of unsampled action is relatively reduced. This 

is not what we want. We hope that R(τ) can be distributed around 0, so 

we introduce a bias variable b, called the baseline, which represents the 

average level of return R(τ). The expression of 
� � �
�
J �
�

 is converted to:

 

� � �
�

�
�
�

� � � � �� ��

�
�

�

�
�� � �

�

�

�
J

E log log s R bp
t

T

t

�
� �

� �� � ��
1

1

 

Considering causality, 
� � �
�
J �
�

 can be written as:

 

� � �
�

�
�
�

� � � � �� ��
�
�

�
�
�

�
� � �

�

�

�
J

E log log s Q s a bp
t

T

t t t

�
� �

�� � ��
1

1

 ,
��


�

�
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where δ = R(τ) − b is called the advantage function, which represents the 

advantage of the current action sequence relative to the average return.

After adding bias b, will the value of 
� � �
�
J �
�

 change? To answer the 

question, we only need to consider whether E log log bp� � � ��
� �� � � � � � ��� ��  

can be 0. If it’s 0, then the value of 
� � �
�
J �
�

 will not change. 

Expand E log log bp� � � ��
� �� � � � � � ��� ��  to :

 
E log log b log log b dp� � � � � � ��

� � � � � � �� � � � � � ��� �� � � � �� � � �  

Because:

 � � � � � �� � � � �� �� � � � � � �log log  

We have:

 
E log log b bdp� � � � � ��

� � � � �� � � � � � ��� �� � �� � �  

 � � � � �b d� �� � �  

Consider ∫πθ(τ)dτ = 1,

 
E log log b bp� � � � ��

� �� � � � � � ��� �� � � �1 0  

Therefore, adding bias b doesn’t change the value of 
� � �
�
J �
�

, but it 

indeed reduces the variance of 
t

T

t t tlog log s Q s a b
�

�

� �
�

� � � � �� ��
�
�

�
�
�

1

1

�
��

 , .

14.3.3  REINFORCE Algorithm with Bias
Bias b can be estimated using Monte Carlo method:

 
b

N
R

n

N
n� � �

�

� ��1
1

�
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If causality is considered, then:

 
b

N
R

n

N

t T
n� � �

�

� ��1

1

� :  

Bias b can also be estimated using another neural network, which is 

also the Actor-Critic method introduced in Section 14.5. In fact, many 

policy gradient algorithms often use neural networks to estimate bias b. 

The algorithm can be flexibly adjusted, and it is most important to master 

the algorithm idea. The REINFORCE algorithm flow with bias is shown in 

Algorithm 2.

Algorithm 2: REINFORCE algorithm flow with bias

Randomly initialize θ
repeat
  Interact with environment according to policy (st), generate multiple 
trajectory {τn}

  Calculate Q s at t
 ,� �

  Estimate bias b through Monte Carlo method

  Calculate 
�
�

�
�
�

�
�J

N
log log s Q s a b

n=

N

t=

T

t
n

t t

��
�� ��

����

� � � ��

�
�

�

�
� � ��� � � �1

1 1

1
 , ���

�
�

�

�
�

  Update parameter � ��� �� ��
��

�
�
�

+ J

until reach training times

Output: policy network (st)
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14.3.4  Importance Sampling
After updating the network parameters using the policy gradient method, 

the policy network πθ(s) has also changed, and the new policy network 

must be used for sampling. As a result, the previous historical trajectory 

data cannot be reused, and the sampling efficiency is very low. How to 

improve the sampling efficiency and reuse the trajectory data generated by 

the old policy?

In statistics, importance sampling techniques can estimate the 

expectation of the original distribution p from another distribution q. 

Considering that the trajectory τ is sampled from the original distribution 

p, we hope to estimate the expectation Eτ ∼ p[f  (τ)] of the trajectory τ~p 

function.

 
E f p f dp� � � � �� � ��� �� � � � � � �  

 
� �

� �
� � � � � �p

q
q f d

�
�

� � �
 

 

�
� �
� � � �

�

�
�
�

�

�
�
�

�E
p
q

fq�

�
�

�
 

Through derivation, we find that the expectation of f  (τ) can be sampled 

not from the original distribution p, but from another distribution q, which 

only needs to be multiplied by the ratio 
p
q
�
�
� �
� �

. This is called importance 

sampling in statistics.
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Let the target policy distribution be pθ(τ), and a certain historical policy 

distribution is p� �� � , we hope to use the historical sampling trajectory 

� ��� � �p  to estimate the expected return of the target policy network:

 
J E Rp� �� ��
� � � � ��� ��� � �  

 
� � ��� ��

�

�

� �� � ��
t

T
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t t t t

1

1

, ,
,

�  

 
� � ��� ��

�

�
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t

T

s p s a s t tE E r s a
t t t t

1

1

� ��
,

 

Applying importance sampling technique, we can get:

 

J E
p s
p s

E
s
s

r
t

T

s p s
t

t
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t

t
t t t t�

�

�
�

�
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�
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� � � � �
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�

� � � � � ��
1

1
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�
�
�

�

�
�
�

�

�
�
�

�

�
�
�  

where J� �� �  represents the value of J(θ) for the original distribution 

pθ(τ) estimated through the distribution p� �� � . Under the assumption 

of approximately ignoring the terms 
p s
p s

t

t

�

�

� �
� �

, it is considered that the 

probability of state st appearing under different policies is approximately 

equal, that is, 
p s
p s

t

t

�

�

� �
� �

�1 , so:
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The method in which the sampling policy p� �� �and the target policy 

pθ(τ) to be optimized are not the same is called the off-policy method. 

Conversely, the method in which the sampling policy and the target 

policy to be optimized are the same policy is called on-policy method. 

REINFORCE algorithm belongs to the on-policy method category. The 

off-policy method can use historical sampling data to optimize the 

current policy network, which greatly improves data utilization, but also 

introduces computational complexity. In particular, when importance 

sampling is implemented by Monte Carlo sampling method, if the 

difference between the distributions p and q is too large, the expectation 

estimation will have a large deviation. Therefore, the implementation 

needs to ensure that the distributions p and q are as similar as possible, 

such as adding KL divergence constrain to limit the difference between 

p and q.

We also call the training objective function of the original policy 

gradient method LPG(θ):

 
L E log log s APG

t t t� ��� � � � ��
�

�
�

 

 

where PG stands for policy gradient, and E t
  and At

  represent empirical 

estimates. The objective function based on importance sampling is 

called LIS
� �� � :

 

L E
s
s

AIS
t

t

t

t�
�

�

�
�
�

� � � � �
� �

�

�
�
�

�

�
�
�

 

 

where IS stands for importance sampling, θ stands for the target policy 

distribution pθ, and θ stands for the sampling policy distribution pθ .
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14.3.5  PPO Algorithm
After applying importance sampling, the policy gradient algorithm greatly 

improves the data utilization rate, which greatly improves the performance 

and training stability. The more popular off-policy gradient algorithms 

include TRPO algorithm and PPO algorithm, among which TRPO is the 

predecessor of PPO algorithm, and PPO algorithm can be regarded as an 

approximate simplified version of TRPO algorithm.

TRPO algorithm In order to constrain the distance between the target 

policy πθ(st) and the sampling policy �� st� �  , the TRPO algorithm uses 

KL divergence to calculate the distance expectation between πθ(st) and 

�� st� �  . The distance expectation is used as the constraint term of the 

optimization problem. The implementation of TRPO algorithm is more 

complicated and computationally expensive. The optimization objective of 

the TRPO algorithm is:

 

�
�
�

�

�

� �
� �
� �

�

�
�
�

�

�
�
�

E
s
s

At
t

t

t
 

 

 
s t E D s st KL t t. . � � �� �� � � �� ��

�
�
� �  

PPO algorithm. In order to solve the disadvantage of high TRPO 

calculation cost, the PPO algorithm adds the KL divergence constraint as a 

penalty item to the loss function. The optimization goal is:

 

�
�
�

� � ��

�
� �

� �
� �
� �

�

�
�
�

�

�
�
�
� � � � �� ��

�
�
�E

s
s

A E D s st
t

t

t t KL t t
  

 

where D s sKL t t� �� �� � � �� �  refers to the distance between the policy 

distribution πθ(st) and �� st� �  , and the hyperparameter β is used to balance 

the original loss term and the KL divergence penalty term.
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Adaptive KL penalty algorithm. The hyperparameter β is dynamically 

adjusted by setting the threshold KLmax of KL divergence. The adjustment 

rules are as follows: if E D s s KLt KL t t
 � �� �� � � �� ��� �� � max , increase β; if 

E D s s KLt KL t t
 � �� �� � � �� ��� �� � max , then decrease β.

PPO2 algorithm. Based on the PPO algorithm, the PPO2 algorithm 

adjusts the loss function:
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The schematic diagram of the error function is shown in Figure 14-10.

Figure 14-10. Schematic diagram of PPO2 algorithm error function

14.3.6  Hands-On PPO
In this section, we implement the PPO algorithm based on importance 

sampling technology, and test the performance of the PPO algorithm in 

the balance bar game environment.

Policy network. The policy network is also called the Actor network. 

The input of the policy network is the state st, four input nodes, and 

the output is the probability distribution πθ(st) of the action at, which is 

implemented by a two-layer fully connected network.
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class Actor(keras.Model):

    def __init__(self):

        super(Actor, self).__init__()

         # The policy network is also called the Actor network. 

Output probability p(a|s)

         self.fc1 = layers.Dense(100, kernel_initializer= 

'he_normal')

         self.fc2 = layers.Dense(2, kernel_initializer= 

'he_normal')

    def call(self, inputs):

        # Forward propagation

        x = tf.nn.relu(self.fc1(inputs))

        x = self.fc2(x)

        # Output action probability

        x = tf.nn.softmax(x, axis=1) # Convert to probability

        return x

Bias b network Bias b network is also called Critic network, or V-value 

function network. The input of the network is the state st, four input nodes, 

and the output is the scalar value b. A two-layer fully connected network is 

used to estimate b. The code is implemented as follows:

class Critic(keras.Model):

    def __init__(self):

        super(Critic, self).__init__()

         # Bias b network is also called Critic network, 

output is v(s)

         self.fc1 = layers.Dense(100, kernel_initializer= 

'he_normal')

         self.fc2 = layers.Dense(1, kernel_initializer= 

'he_normal')
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    def call(self, inputs):

        x = tf.nn.relu(self.fc1(inputs))

        x = self.fc2(x)  # Output b's estimate

        return x

Next, complete the creation of the strategy network and the value 

function network and create two optimizers respectively to optimize 

the parameters of the strategy network and the value function network. 

We create it in the initialization method of the main class of the PPO 

algorithm.

class PPO():

    # PPO algorithm

    def __init__(self):

        super(PPO, self).__init__()

        self.actor = Actor() # Create Actor network

        self.critic = Critic() # Create Critic network

        self.buffer = [] # Data buffer

         self.actor_optimizer = optimizers.Adam(1e-3) # Actor 

optimizer

         self.critic_optimizer = optimizers.Adam(3e-3) # Critic 

optimizer

Action sampling. The select_action function can calculate the action 

distribution πθ(st) of the current state, and randomly sample actions 

according to the probability, and return the action and its probability.

    def select_action(self, s):

        # Send the state vector to get the strategy: [4]

        s = tf.constant(s, dtype=tf.float32)

        # s: [4] => [1,4]

        s = tf.expand_dims(s, axis=0)

        # Get strategy distribution: [1, 2]

        prob = self.actor(s)
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         # Sample 1 action from the category distribution, 

shape: [1]

        a = tf.random.categorical(tf.math.log(prob), 1)[0]

        a = int(a)  # Tensor to integer

         return a, float(prob[0][a]) # Return action and its 

probability

Environment interaction. In the main function, interact with the 

environment for 500 rounds. In each round, the policy is sampled by the 

select_action function and saved in the buffer pool. The agent.optimizer() 

function is called to optimize the policy at intervals.

def main():

    agent = PPO()

    returns = [] # total return

    total = 0 #  Average return over time

    for i_epoch in range(500): # Number of training rounds

        state = env.reset() # Reset environment

         for t in range(500): # at most 500 rounds

            # Interact with environment with new policy

            action, action_prob = agent.select_action(state)

            next_state, reward, done, _ = env.step(action)

            # Create and store samples

             trans = Transition(state, action, action_prob, 

reward, next_state)

            agent.store_transition(trans)

            state = next_state # Update state

            total += reward # Accumulate rewards

            if done: # Train network

                if len(agent.buffer) >= batch_size:

                    agent.optimize() # Optimize

                break
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Network optimization. When the buffer pool reaches a certain 

capacity, the error of the policy network and the error of the value network 

are constructed through optimizer() function to optimize the parameters 

of the network. First, the data is converted to the tensor type according to 

the category, and then the cumulative return R(τt : T) is calculated by the 

MC method.

    def optimize(self):

        # Optimize the main network function

         # Take sample data from the cache and convert it 

into tensor

         state = tf.constant([t.state for t in self.buffer], 

dtype=tf.float32)

         action = tf.constant([t.action for t in self.buffer], 

dtype=tf.int32)

        action = tf.reshape(action,[-1,1])

        reward = [t.reward for t in self.buffer]

         old_action_log_prob = tf.constant([t.a_log_prob for t 

in self.buffer], dtype=tf.float32)

         old_action_log_prob = tf.reshape(old_action_log_

prob, [-1,1])

        # Calculate R(st) using MC method

        R = 0

        Rs = []

        for r in reward[::-1]:

            R = r + gamma * R

            Rs.insert(0, R)

        Rs = tf.constant(Rs, dtype=tf.float32)

...
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Then the data in the buffer pool is taken out according to the batch 

size. Train the network iteratively ten times. For the policy network, 

LCLIP� �� �  is calculated according to the error function of the PPO2 

algorithm. For the value network, the distance between the prediction 

of the value network and R(τt : T) is calculated through the mean square 

error, so that the value of the network estimation is getting more and more 

accurate.

    def optimize(self):

...

        # Iterate roughly 10 times on the buffer pool data

        for _ in range(round(10*len(self.buffer)/batch_size)):

             # Randomly sample batch size samples from the 

buffer pool

             index = np.random.choice(np.arange(len(self.

buffer)), batch_size, replace=False)

            # Build a gradient tracking environment

             with tf.GradientTape() as tape1, tf.GradientTape() 

as tape2:

                # Get R(st), [b,1]

                 v_target = tf.expand_dims(tf.gather(Rs, index, 

axis=0), axis=1)

                 # Calculate the predicted value of v(s), which 

is the bias b, we will introduce why it is 

written as v later

                 v = self.critic(tf.gather(state, index, axis=0))

                 delta = v_target - v # Calculating 

advantage value

                 advantage = tf.stop_gradient(delta)  

# Disconnect the gradient
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                 #  Because TF's gather_nd and pytorch's 

gather function are different, it needs to be 

constructed

                  # Coordinate parameters required by gather_nd 

need to be constructed, indices:[b, 2]

                 # pi_a = pi.gather(1, a) # pytorch only need 

oneline implementation

                 a = tf.gather(action, index, axis=0) # Take out 

the action

                # batch's action distribution pi(a|st)

                 pi = self.actor(tf.gather(state, index, axis=0))

                 indices = tf.expand_dims(tf.range( 

a.shape[0]), axis=1)

                indices = tf.concat([indices, a], axis=1)

                 pi_a = tf.gather_nd(pi, indices) 

  # The probability of action, pi(at|st), [b]

                 pi_a = tf.expand_dims(pi_a, axis=1) 

  # [b]=> [b,1]

                # Importance sampling

                 ratio = (pi_a / tf.gather(old_action_log_prob, 

index, axis=0))

                surr1 = ratio * advantage

                 surr2 = tf.clip_by_value(ratio, 1 - epsilon,  

1 + epsilon) * advantage

                # PPO error function

                 policy_loss = -tf.reduce_mean( 

tf.minimum(surr1, surr2))

                 # For the bias v, it is hoped that the R(st) 

estimated by MC is as close as possible

                value_loss = losses.MSE(v_target, v)
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            # Optimize policy network

             grads = tape1.gradient(policy_loss, self.actor.

trainable_variables)

             self.actor_optimizer.apply_gradients(zip(grads, 

self.actor.trainable_variables))

            # Optimize bias network

             grads = tape2.gradient(value_loss, self.critic.

trainable_variables)

             self.critic_optimizer.apply_gradients(zip(grads, 

self.critic.trainable_variables))

        self.buffer = []  # Empty trained data

Training results. After 500 rounds of training, we draw the total return 

curve, as shown in Figure 14-11, we can see that for a simple game such as 

a balance bar, the PPO algorithm appears to be easy to use.

Figure 14-11. Return curve of PPO algorithm
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14.4  Value Function Method
A better policy model can be obtained using the policy gradient method 

by directly optimizing the policy network parameters. In the field of 

reinforcement learning, in addition to the policy gradient method, there is 

another type of method that indirectly obtains the policy by modeling the 

value function, which we collectively call the value function method.

Next, we will introduce the definition of common value functions, 

how to estimate value functions, and how value functions help generate 

policies.

14.4.1  Value Function
In reinforcement learning, there are two types of value functions: state 

value function and state-action value function, both of which represent the 

definition of the starting point of the expected return trajectory is different 

under the strategy π.

State value function (V function for short), which is defined as the 

expected return value that can be obtained from the state st under the 

control of the strategy π:

 
V s E R st p t T s tt

�
� � � �� � � � � ��� ��� � � : |  

Expand R(τt : T) as:

 
R r r rt T t t t� � �:� �� � � � � ��� �1

2

2  

 
� � � ��� �� �r r rt t t� �1

1

2  

 
� � � �� ��r Rt t T� � 1:  
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So:

 
V s E r Rt p t t T

�
� � � �� � � � � ��� ��� � � �1:  

 
� � � ��� ��� � � �E r V sp t t� �

�� 1  

This is also called the Bellman equation of the state value function. 

Among all policies, the optimal policy π∗ refers to the policy that can obtain 

the maximum value of Vπ(s), namely:

 � �� � � � � �V s s S  

At this time, the state value function achieves the maximum value:

 V s V s s S� � � � � �� ��  

For the optimal policy, Bellman’s equation is also satisfied:

 
V s E r V st p t t

�
� � �

�
�� � � � � ��� ��� � � 1  

which is called Bellman optimal equation of the state value function.

Consider the maze problem in Figure 14-12. In the 3 × 4 grid, the grid 

with coordinates (2,2) is impassable, and the grid with coordinates (4,2) 

has a reward of -10, and the grid with coordinates (4,3) has a reward of is 

10. The agent can start from any position, and the reward is -1 for every 

additional step. The goal of the game is to maximize the return. For this 

simple maze, the optimal vector for each position can be drawn directly, 

that is, at any starting point, the optimal strategy π∗(a| s) is a deterministic 

policy, and the actions are marked in Figure 14-12(b) . Let γ = 0.9, then:

• Starting from s(4, 3), that is, coordinates (4, 3), the optimal 

policy is V∗(s(4, 3)) = 10

• Starting from s(3, 3), V∗(s(4, 3)) =  − 1 + 0.9 · 10 = 8
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Starting from s(2, 1), V∗(s(2, 1)) =  − 1 − 0.9 · 1 − 0.92 · 1 − 0.93 · 1 +  

0.94 · 10 = 3.122

It should be noted that the premise of the state value function is that 

under a certain strategy π, all the preceding calculations are to calculate 

the state value function under the optimal strategy.

Figure 14-12. Maze problem-V function

The value of the state value function reflects the quality of the state 

under the current policy. The larger Vπ(st), the greater the total return 

expectation of the current state. Take the space invader game that is 

more in line with the actual situation as an example. The agent needs 

to fire at the flying saucers, squids, crabs, octopuses, and other objects, 

and score points when it hit them. At the same time, it must avoid being 

concentrated by these objects. A red shield can protect the agent, but the 

shield can be gradually destroyed by hits. In Figure 14-13, in the initial 

state of the game, there are many objects in the figure. Under a good policy 

π, a larger Vπ(s) value should be obtained. In Figure 14-14, there are fewer 

objects. No matter how good the policy is, it is impossible to obtain a larger 

value of Vπ(s). The quality of the policy will also affect the value of Vπ(s). As 

shown in Figure 14-15, a bad policy (such as moving to the right) will cause 

the agent to be hit. Therefore, Vπ(s)=0. A good policy can shoot down the 

objects in the picture and obtain a certain reward.
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Figure 14-13. Vπ(s) may be larger under the policy π

Figure 14-14. Vπ(s) is small under any policy π
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Figure 14-15. Bad policy (such as to the right) will end the game 
Vπ(s) = 0, good policy can still get a small return

State-action value function (Q function for short), which is defined 

as the expected return value that can be obtained under the control of 

strategy π from the dual setting of state st and execution of action at:

 
Q s a E R a st t p t T a t s tt t

�
� � � � �, , ,� � � � � � ��� ��� � � :  

Although both the Q function and the V function are expected return 

values, the action at of the Q function is a prerequisite, which is different 

from the definition of the V function. Expand the Q function to:

 
Q s a E r s a r rt t p t t t t

�
� � � �, ,� � � � � � � ���� ��� � � � �1

2

2  

 
� � � � � � ��� ��� ��� � � � �E r s a r r rp t t t t t� � � �, 1

1

2  

So:

 
Q s a E r s a V st t p t t t

�
� �

��, ,� � � � � � � ��� ��� � � �1  
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Because st and at are fixed, r(st, at) is also fixed.

The Q function and the V function have the following relationship:

 
V s E Q s at a s t tt t

�
�

�� � � � ��� ��� � � ,  

That is, when at is sampled from policy π(st), the expected value of 

Qπ(st, at) is equal to Vπ(st). Under the optimal policy π∗(a| s), there is the 

following relationship:

 Q s a Q s at t t t
� � � � � �, ,�  

 � � �� � �Q s at t,  

It also means:

 V s Q s at t t
� �� � � �,  

At this time:

 
Q s a E r s a V st t p t t t

�
� � �

�
�� � � � � � � ��� ��, ,� � � 1  

 
� � � � � ��� ��� � �

�
� �E r s a Q s ap t t t t� � �, ,1 1  

The preceding formula is called the Bellman optimal equation of the Q 

function.

We define the difference between Qπ(st, at) and Vπ(s) as the advantage 

value function:

 A s a Q s a V s� � �, ,� � � � � � �  
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It shows the degree of advantage of taking action a in state s over the 

average level: Aπ(s, a) > 0 indicates that taking action a is better than the 

average level; otherwise, it is worse than the average level. In fact, we have 

already applied the idea of advantage value function in the section of 

REINFORCE algorithm with bias.

Continuing to consider the example of the maze, let the initial state be 

s(2, 1), at can be right or left. For function Q∗(st, at), Q∗(s(2, 1), right) =  − 1 − 0.9 ·  
1 − 0.92 · 1 − 0.93 · 1 + 0.94 · 10=3.122, Q∗(s(2, 1), left) =  − 1 − 0.9 · 1 − 0.92 ·  
1 − 0.93 · 1 − 0.94 · 1 − 0.95 · 1 + 0.96 · 10 = 0.629. We have calculated 

V∗(s(2, 1)) = 3.122, and we can intuitively see that they satisfy V∗(st)Q∗(st, at).

Figure 14-16. Maze problem-Q function

Take the space invader game as an example to intuitively understand 

the concept of the Q function. In Figure 14-17, the agent in the figure 

is under the protective cover. If you choose to fire at this time, it is 

generally considered a bad action. Therefore, under a good policy π, 

Qπ(s, no fire) > Qπ(s, fire). If you choose to move to the left at this time in 

Figure 14-18, you may miss the object on the right due to insufficient 

time, so Qπ(s, left)may be small. If the agent moves to the right and fires in 

Figure 14-19, Qπ(s, right)will be larger.
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Figure 14-17. Qπ(s, no fire) may be larger than Qπ(s, fire)

Figure 14-18. Qπ(s, left) may be smaller
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Figure 14-19. Under a good policy π, Qπ(s, right) can still get 
some rewards

After introducing the definition of the Q function and the V function, 

we will mainly answer the following two questions:

• How is the value function estimated?

• How to derive the policy from the value function?

14.4.2  Value Function Estimation
The estimation of value function mainly includes Monte Carlo method and 

temporal difference method.

Monte Carlo method

The Monte Carlo method is actually to estimate the V function and the 

Q function through multiple trajectories {τ(n)} generated by the sampling 

policy π(a| s). Consider the definition of the Q function:

 
Q s a E Rp s s a a

�
� � �,� � � � ��

�
�
�� � � � �0 0,  
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According to the law of large numbers, it can be estimated by 

sampling:

 
Q s a Q s a

N
R

n

N

s s a a
n� �

�, ,� � � � � � � �
�

� �
� ��

1

1
0 0,  

where � s s a a
n
0 0� �
� �

,  represents the n-th sampled trajectory, n ∈ [1, N]. The 

actual state of each sampled trajectory is s, the initial action is a, and 

N is the total number of trajectories. The V function can be estimated 

according to the same method:

 
V s V s

N
R

n

N

s s
n� �

�� � � � � � � �
�

�
� ��

1

1
0  

This method of estimating the expected return by sampling the total 

return of the trajectory is called the Monte Carlo method (MC method 

for short).

When the Q function or V function is parameterized through a neural 

network, the output of the network is recorded as Qπ(s, a) or Vπ(s), and its 

true label is recorded as the Monte Carlo estimate Q s a

�
,� �  or V s

�
� � , the 

direct error between the network output value and the estimated value 

can be calculated through an error function such as the mean square 

error. The gradient descent algorithm is used to optimize the neural 

network. From this perspective, the estimation of the value function can 

be understood as a regression problem. The Monte Carlo method is simple 

and easy to implement, but it needs to obtain the complete trajectory, so 

the calculation efficiency is low, and there is no clear end state in some 

environments.

Temporal difference

Temporal difference (TD method for short) utilizes the Bellman 

equation properties of the value function. In the calculation formula, only 
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one or more steps are required to obtain the error of the value function and 

optimize the update value function network. The Carlo method is more 

computationally efficient.

Recall the Bellman equation of the V function:

 
V s E r V st p t t

�
� �

��� � � � � ��� ��� � � �1  

Therefore, the TD error term δ = rt + γVπ(st + 1) − Vπ(st) is constructed and 

updated as follows:

 
V s V s r V s V st t t t t

� � � �� �� �� � � � � � � � � �� ��1  

where α ∈ [0, 1] is the update step.

The Bellman optimal equation of the Q function is:

 
Q s a E r s a Q s at t p t t t t

�
� � �

�
� �� � � � � � � ��� ��, , ,� � � 1 1  

Similarly, construct TD error term δ = r(st, at) + γQ∗(st + 1, at + 1) − Q∗(st, at), 

and use the following equation to update:

 
Q s a Q s a r s a Q s a Q s at t t t t t t t t t

� � �
� �

�� �� � � � � � � � � � � �� �, , , , ,� � 1 1  

14.4.3  Policy Improvement
The value function estimation method can obtain a more accurate value 

function estimation, but the policy model is not directly given. Therefore, 

the policy model needs to be derived indirectly based on the value 

function.

First, look at how to derive the policy model from the V function:

 � �� � � � � �V s s S  
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Considering that the state space S and the action space A are usually 

huge, this way of traversing to obtain the optimal policy is not feasible. So 

can the policy model be derived from the Q function? Consider:

 
�� � � � �� �s Q s a

a
arg max ,  

In this way, an action can be selected by traversing the discrete action 

space A in any state s. This strategy π′(s) is a deterministic policy. Because:

 
V s E Q s at a s t tt t

�
�

�� � � � ��� ��� � � ,  

So:

 V s V st t
� � � � � �� �  

That is, the strategy π′ is always better than or equal to the strategy π, 

thus achieving policy improvement.

The deterministic policy produces the same action in the same state, 

so the trajectory produced by each interaction may be similar. The policy 

model always tends to exploitation but lacks exploration, thus making the 

policy model limited to a local area, lack of understanding of global status 

and actions. In order to be able to add exploration capabilities to the π′(s) 

deterministic policy, we can make the π′(s) policy have a small probability 

ϵ to adopt a random policy to explore unknown actions and states.

 
� � s Q s a probability of random action probt a

� � � � � �{ , ,arg max ,   1 aability of 

This policy is called ϵ-greedy method. It makes a small amount of 

modification on the basis of the original policy and can balance utilization 

and exploration by controlling the hyperparameter ϵ, achieving simple and 

efficient.
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The training process of the value function is shown in Figure 14-20.

Figure 14-20. Value function method training process

14.4.4  SARSA Algorithm
SARSA algorithm [5] uses:

 
Q s a Q s a r s a Q s a Q s at t t t t t t t t t

� � � �� �, , , , ,� �� � � � � � � � � � � �� �� �1 1  

method to estimate the Q function, at each step of the trajectory, only st, 

at, rt, st + 1, and at + 1 data can be used to update the Q network once, so it is 

called SARSA (state action reward state action) algorithm. The st, at, rt, st + 1, 

and at + 1 of the SARSA algorithm come from the same policy πϵ(st), so they 

belong to the on-policy algorithm.

14.4.5  DQN Algorithm
In 2015, DeepMind proposed the Q Learning [4] algorithm implemented 

using deep neural networks, published in Nature [1], and trained and 

learned on 49 mini games in the Atari game environment, achieving a 

human level equivalent or even superior. The performance of human 

level has aroused the strong interest of the industry and the public in the 

research of reinforcement learning.
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Q Learning algorithm uses:

 
Q s a Q s a r s a Q s a Q s at t t t t t t t t t

� � �
� �

�� �� � � � � � � � � � � �� �, , , , ,� � 1 1  

to estimate the Q∗(st, at) function and use the πϵ(st) policy to obtain policy 

improvement. The Deep Q Network (DQN) uses a deep neural network 

to parameterize the Q∗(st, at) function and uses the gradient descent 

algorithm to update the Q network. The loss function is:

 
L r Q s a Q s at t t t� � � � � � �� ��� � �1

2

, ,  

Since both the training target value rt + γQθ(st + 1, a) and the predicted 

value Qθ(st, at) come from the same network, and the training data has 

a strong correlation, [1] proposed two measures to solve the problem: 

by adding experience relay buffer to reduce the strong correlation of the 

data and by freezing target network technology to fix the target estimation 

network and stabilize the training process.

The replay buffer pool is equivalent to a large data sample buffer pool. 

During each training, the data pair (s, a, r, s′) generated by the latest policy 

is stored in the replay buffer pool, and then multiple data pairs (s, a, r, s′) 

are randomly sampled from the pool for training. In this way, the strong 

correlation of the training data can be reduced. It can also be found 

that the DQN algorithm is an Off-Policy algorithm with high sampling 

efficiency.

Freezing target network is a training technique. During training, the 

target network Q s at� �� �1,  and the prediction network Qθ(st, at) come 

from the same network, but the update frequency of Q s at� �� �1,  network 

will be after Qθ(st, at), which is equivalent to being in a frozen state when 

Q s at� �� �1,  is not updated, and then pull latest network parameters from 

Qθ(st, at) after the freezing is over:

 
L r Q s a Q s at t t t� � � � � � �� ��� � �1

2

, ,  
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In this way, the training process can become more stable.

DQN algorithm is shown in Algorithm 3.

Algorithm 3: DQN algorithm

randomly initialize θ
repeat
  Reset and get game initial state s
  repeat
        Sample action a = πϵ(s)

       interact with environment and get reward r and state s′

     optimize Q network:

∇θ(r (st, at ) + γQ∗(st + 1, at + 1) − Q∗(st, at ))

        Update state s ← s′

  Until game ending

until reach required training times
Output: policy network (st)

14.4.6  DQN Variants
Although the DQN algorithm has made a huge breakthrough on the Atari 

game platform, follow-up studies have found that the Q value in DQN is 

often overestimated. In view of the defects of the DQN algorithm, some 

variant algorithms have been proposed.

Double DQN. In [6], the Q network and estimated Q  network of target 

r Q s Q s at t a t� � �� �� �� 1 1, ,max  were separated and updated according to the 

loss function:

 
L r Q s Q s a Q s at t a t t t� � � �� � � � �� �� �� 1 1

2

, , ,max  
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Dueling DQN. [7] separated the network output into V(s) and A(s, a), 

as shown in Figure 14-21. Then use:

 Q s a V s A s a, ,� � � � � � � �  

to generate Q function estimate Q(s, a). The rest and DQN remain 

the same.

Figure 14-21. DQN network(upper) and dueling DQN 
network(lower) [7]

14.4.7  Hands-On DQN
Here we continue to implement the DQN algorithm based on the balance 

bar game environment.

Q network. The state of the balance bar game is a vector of length 4.  

Therefore, the input of the Q network is designed as four nodes. After 

a 256-256-2 fully connected layer, the distribution of the Q function 

estimation Q(s, a) with the number of output nodes of 2 is obtained. The 

implementation of the network is as follows:
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class Qnet(keras.Model):

    def __init__(self):

         # Create a Q network, the input is the state vector, 

and the output is the Q value of the action

        super(Qnet, self).__init__()

         self.fc1 = layers.Dense(256, kernel_initializer= 

'he_normal')

         self.fc2 = layers.Dense(256, kernel_initializer= 

'he_normal')

         self.fc3 = layers.Dense(2, kernel_initializer= 

'he_normal')

    def call(self, x, training=None):

        x = tf.nn.relu(self.fc1(x))

        x = tf.nn.relu(self.fc2(x))

        x = self.fc3(x)

        return x

Replay buffer pool. The replay buffer pool is used in the DQN 

algorithm to reduce the strong correlation between data. We use the 

Deque object in the ReplayBuffer class to implement the buffer pool 

function. During training, the latest data (s, a, r, s′) is stored in the Deque 

object through the put (transition) method, and n data (s, a, r, s′) are 

randomly sampled from the Deque object using sample(n) method. The 

implementation of the replay buffer pool is as follows:

class ReplayBuffer():

    # Replay buffer pool

    def __init__(self):

        # Deque

        self.buffer = collections.deque(maxlen=buffer_limit)

    def put(self, transition):

        self.buffer.append(transition)
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    def sample(self, n):

        # Sample n samples

        mini_batch = random.sample(self.buffer, n)

         s_lst, a_lst, r_lst, s_prime_lst, done_mask_lst = [], 

[], [], [], []

        # Organize by category

        for transition in mini_batch:

            s, a, r, s_prime, done_mask = transition

            s_lst.append(s)

            a_lst.append([a])

            r_lst.append([r])

            s_prime_lst.append(s_prime)

            done_mask_lst.append([done_mask])

        # Convert to tensor

        return tf.constant(s_lst, dtype=tf.float32),\

                      tf.constant(a_lst, dtype=tf.int32), \

                      tf.constant(r_lst, dtype=tf.float32), \

                       tf.constant(s_prime_lst, dtype=tf.

float32), \

                       tf.constant(done_mask_lst, dtype=tf.

float32)

Policy improvement. The ϵ-greedy method is implemented 

here. When sampling actions, there a probability of 1 − ϵ to choose 

argarg Qπ (s, a), and a probability of ϵ to randomly choose an action.

    def sample_action(self, s, epsilon):

        # Send the state vector to get the strategy: [4]

        s = tf.constant(s, dtype=tf.float32)

        # s: [4] => [1,4]

        s = tf.expand_dims(s, axis=0)

        out = self(s)[0]

Chapter 14  reinforCement Learning



659

        coin = random.random()

        # Policy improvement: e-greedy way

        if coin < epsilon:

            # epsilon larger

            return random.randint(0, 1)

        else:  # Q value is larger

            return int(tf.argmax(out))

Network main process. The network trains up to 10,000 rounds. At 

the beginning of the round, the game is first reset to get the initial state s, 

and an action is sampled from the current Q network to interact with the 

environment to obtain the data pair (s, a, r, s′), and stored in the replay 

buffer pool. If the number of samples in the current replay buffer pool is 

sufficient, sample a batch of data, and optimize the estimation of the Q 

network according to the TD error until the end of the game.

for n_epi in range(10000):  # Training times

         # The epsilon probability will also be attenuated by 

8% to 1%. The more you go, the more you use the action 

with the highest Q value.

        epsilon = max(0.01, 0.08 - 0.01 * (n_epi / 200))

        s = env.reset()  # Reset environment

        for t in range(600):  # Maximum timestamp of a round

            # if n_epi>1000:

            #     env.render()

             # According to the current Q network, extract and 

improve the policy.

            a = q.sample_action(s, epsilon)

             # Use improved strategies to interact with the 

environment

            s_prime, r, done, info = env.step(a)

            done_mask = 0.0 if done else 1.0  # End flag mask
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            # Save

            memory.put((s, a, r / 100.0, s_prime, done_mask))

            s = s_prime  # Update state

            score += r  # Record return

            if done:  # End round

                break

         if memory.size() > 2000:  # train if size is greater 

than 2000

            train(q, q_target, memory, optimizer)

        if n_epi % print_interval == 0 and n_epi != 0:

             for src, dest in zip(q.variables, q_target.

variables):

                dest.assign(src)  # weights come from Q

During training, only the Qθ network will be updated, while the Qθ
 

network will be frozen. After the Qθ network has been updated many times, 

use the following code to copy the latest parameters from Qθ to Qθ .

for src, dest in zip(q.variables, q_target.variables):

                dest.assign(src)  # weights come from Q

Optimize the Q network. When optimizing the Q network, it will 

train and update ten times at a time. Randomly sample from the replay 

buffer pool each time, and select the action Q s at� �� �1,  to construct the TD 

difference. Here we use the Smooth L1 error to construct the TD error:

 L x y x y x y x y� � �� � � � � � � �{ . , . ,0 5 1 0 5 1
2

 

In TensorFlow, Smooth L1 error can be implemented using Huber 

error as follows:

def train(q, q_target, memory, optimizer):

     # Construct the error of Bellman equation through Q network 

and shadow network.
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     # And only update the Q network, the update of the shadow 

network will lag behind the Q network

    huber = losses.Huber()

    for i in range(10):  # Train 10 times

        # Sample from buffer pool

        s, a, r, s_prime, done_mask = memory.sample(batch_size)

        with tf.GradientTape() as tape:

            # s: [b, 4]

            q_out = q(s)  # Get Q(s,a) distribution

             # Because TF’s gather_nd is different from 

pytorch’s gather, we need to the coordinates of 

gather_nd, indices:[b, 2]

             # pi_a = pi.gather(1, a) # pytorch only needs 

one line.

             indices = tf.expand_dims(tf.range( 

a.shape[0]), axis=1)

            indices = tf.concat([indices, a], axis=1)

             q_a = tf.gather_nd(q_out, indices) # The 

probability of action, [b]

            q_a = tf.expand_dims(q_a, axis=1) # [b]=> [b,1]

             # Get the maximum value of Q(s',a). It comes from 

the shadow network! [b,4]=>[b,2]=>[b,1]

             max_q_prime = tf.reduce_max(q_target( 

s_prime),axis=1,keepdims=True)

            # Construct the target value of Q(s,a_t)

            target = r + gamma * max_q_prime * done_mask

            # Calcualte error between Q(s,a_t) and target

            loss = huber(q_a, target)

        # Update network

        grads = tape.gradient(loss, q.trainable_variables)

         optimizer.apply_gradients(zip(grads, q.trainable_

variables))
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14.5  Actor-Critic Method
When introducing the original policy gradient algorithm, in order to 

reduce the variance, we introduced the bias b mechanism:
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where b can be estimated by Monte Carlo method b
N

R
n

N
n� � �

�

� ��1
1

� .  

If R(τ) is understood as the estimated value of Qπ(st, at), the bias b 

is understood as the average level Vπ(st) of state st, then R(τ) − b is 

(approximately) the advantage value function Aπ(s, a). Among them, if 

the bias value function Vπ(st) is estimated using neural networks, it is the 

Actor-Critic method (AC method for short). The policy network πθ(st) 

is called Actor, which is used to generate policies and interact with the 

environment. The V st�
� � �  value network is called Critic, which is used to 

evaluate the current state. θ and ϕ are the parameters of the Actor network 

and the Critic network, respectively.

For the Actor network πθ, the goal is to maximize the return 

expectation, and the parameter θ of the policy network is updated through 

the partial derivative of 
� � �
�
J �
�

:

 
�� � �

�
�

� � �
�
J

 

For the Critic network V�
� , the goal is to obtain an accurate V st�

� � �  

value function estimate through the MC method or the TD method:

 
� �

� �� � � � �� �dist V s V st target t,  
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where dist(a,b) is the distance measurer of a and b, such as Euclidean 

distance. V starget t
� � �  is the target value of V st�

� � � . When estimated by the 

MC method,

 
V s Rtarget t t T

� �� � � � �:  

When estimated by the TD method,

 
V s r V starget t t t

� ��� � � � � ��1  

14.5.1  Advantage AC Algorithm
The Actor-Critic algorithm using the advantage value function Aπ(s, a) 

is called the Advantage Actor-Critic algorithm. It is currently one of the 

mainstream algorithms that use the Actor-Critic idea. In fact, the Actor-

Critic series of algorithms do not have to use the advantage value function 

Aπ(s, a). There are other variants.

When the Advantage Actor-Critic algorithm is trained, the Actor 

obtains the action at according to the current state st and the policy πθ 

sampling, and then interacts with the environment to obtain the next state 

st + 1 and reward rt. The TD method can estimate the target value V starget t
� � �  

of each step, thereby updating the Critic network so that the estimation of 

the value network is closer to the expected return of the real environment. 

A r V s V st t t t
 � � � � � � ��� � �

1  is used to estimate the advantage value of the 

current action, and the following equation is used to calculate the gradient 

info of the Actor network. L E log log sPG
t t t� ��� � � � ��
�

�
�

 A
By repeating this process, the Critic network will be more and more 

accurate, and the Actor network will also adjust its policy to make it better 

next time.
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14.5.2  A3C Algorithm
The full name of the A3C algorithm is the Asynchronous Advantage Actor- 

Critic algorithm. It is an asynchronous version proposed by DeepMind 

based on the Advantage Actor-Critic algorithm [8]. The Actor-Critic 

network is deployed in multiple threads for simultaneous training, and 

the parameters are synchronized through the global network. . This 

asynchronous training mode greatly improves the training efficiency; 

therefore, the training speed is faster and the algorithm performance 

is better.

As shown in Figure 14-22, the algorithm will create a new global 

Network and M Worker threads. Global Network contains Actor and Critic 

networks, and each thread creates a new interactive environment, Actor 

and Critic networks. In the initialization phase, Global Network initializes 

parameters θ and ϕ randomly. The Actor-Critic network in Worker pulls 

parameters synchronously from Global Network to initialize the network. 

During training, the Actor-Critic network in the Worker first pulls the latest 

parameters from the Global Network, and then the latest policy πθ(st) will 

sample actions to interact with the private environment, and calculate the 

gradients of parameters θ and ϕ according to the Advantage Actor-Critic 

algorithm. After completing the gradient calculation, each worker submits 

the gradient information to the Global Network and uses the optimizer of 

the Global Network to complete the parameter update. In the algorithm 

testing phase, only Global Network interacts with the environment.
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Figure 14-22. A3C algorithm

14.5.3  Hands-On A3C
Next we implement the asynchronous A3C algorithm. Like the ordinary 

Advantage AC algorithm, the Actor-Critic network needs to be created. It 

contains an Actor sub-network and a Critic sub-network. Sometimes Actor 

and Critic will share the previous network layers to reduce the amount of 

network parameters. The balance bar game is relatively simple. We use 

a two-layer fully connected network to parameterize the Actor network, 

and another two- layer fully connected network to parameterize the Critic 

network.
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The Actor-Critic network code is as follows:

class ActorCritic(keras.Model):

    # Actor-Critic model

    def __init__(self, state_size, action_size):

        super(ActorCritic, self).__init__()

        self.state_size = state_size # state vector length

        self.action_size = action_size # action size

        # Policy network Actor

        self.dense1 = layers.Dense(128, activation='relu')

        self.policy_logits = layers.Dense(action_size)

        # V network Critic

        self.dense2 = layers.Dense(128, activation='relu')

        self.values = layers.Dense(1)

The forward propagation process of Actor-Critic calculates the policy 

distribution πθ(st) and the V function estimation Vπ(st) separately. The code 

is as follows:

    def call(self, inputs):

        # Get policy distribution Pi(a|s)

        x = self.dense1(inputs)

        logits = self.policy_logits(x)

        # Get v(s)

        v = self.dense2(inputs)

        values = self.values(v)

        return logits, values

Worker thread class. In the Worker thread, the same calculation 

process as the Advantage AC algorithm is implemented, except that the 

gradient information of parameters θ and ϕ is not directly used to update 

the Actor-Critic network of the Worker, instead it is submitted to the Global 

Network for update. Specifically, in the initialization phase of the Worker 
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class, the server object and the opt object represent the Global Network 

model and optimizer respectively, and create a private ActorCritic class 

client and interactive environment env.

class Worker(threading.Thread):

     # The variables created here belong to the class, not to 

the instance, and are shared by all instances

    global_episode = 0 # Round count

    global_avg_return = 0 # Average return

    def __init__(self,  server, opt, result_queue, idx):

        super(Worker, self).__init__()

        self.result_queue = result_queue # Shared queue

        self.server = server # Central model

        self.opt = opt # Central optimizer

        self.client = ActorCritic(4, 2) # Thread private network

        self.worker_idx = idx # Thread id

        self.env = gym.make('CartPole-v0').unwrapped

        self.ep_loss = 0.0

In the thread running phase, each thread interacts with the 

environment for up to 400 rounds. At the beginning of the round, the client 

network sampling action is used to interact with the environment and saved 

to the memory object. At the end of the round, train the Actor network and 

the Critic network to obtain the gradient information of the parameters θ 

and ϕ, and call the opt optimizer object to update the Global Network.

    def run(self):

        total_step = 1

        mem = Memory() # Each worker maintains a memory

         while Worker.global_episode < 400: # Maximum number of 

frames not reached

            current_state = self.env.reset() # Reset client state

            mem.clear()
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            ep_reward = 0.

            ep_steps = 0

            self.ep_loss = 0

            time_count = 0

            done = False

            while not done:

                # Get Pi(a|s),no softmax

                 logits, _ = self.client(tf.constant( 

current_state[None, :],

                                         dtype=tf.float32))

                probs = tf.nn.softmax(logits)

                # Random sample action

                action = np.random.choice(2, p=probs.numpy()[0])

                 new_state, reward, done, _ = self.env.

step(action) # Interact

                if done:

                    reward = -1

                ep_reward += reward

                 mem.store(current_state, action, reward) # Record

                if time_count == 20 or done:

                    # Calculate the error of current client

                    with tf.GradientTape() as tape:

                         total_loss = self.compute_loss(done, 

new_state, mem)

                    self.ep_loss += float(total_loss)

                    # Calculate error

                     grads = tape.gradient(total_loss,  

self.client.trainable_weights)

                     # Submit gradient info to server, and 

update gradient
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                    self.opt.apply_gradients(zip(grads,

                                                  self.server.

trainable_

weights))

                    # Pull latest gradient info from server

                     self.client.set_weights(self.server.get_

weights())

                    mem.clear() # Clear Memory

                    time_count = 0

                    if done:  # Calcualte return

                        Worker.global_avg_return = \

                             record(Worker.global_episode,  

ep_reward, self.worker_idx,

                                    Worker.global_avg_return, 

self.result_queue,

                                   self.ep_loss, ep_steps)

                        Worker.global_episode += 1

                ep_steps += 1

                time_count += 1

                current_state = new_state

                total_step += 1

        self.result_queue.put(None) # End thread

Actor-Critic error calculation. When each Worker class is trained, the 

error calculation of Actor and Critic network is implemented as follows. 

Here we use the Monte Carlo method to estimate the target value V starget t
� � � ,  

and use the distance between V starget t
� � �  and V st�

� � �  the two as the error 

function value_loss of the Critic network. The policy loss function policy_

loss of the Actor network comes from � � � � � � ��
�

�
�L E log log s APG

t t t� ��
 

where � � ��
�

�
�E log log s At t t

 ��  is implemented by TensorFlow’s cross- 

entropy function. After the various loss functions are aggregated, the total 

loss function is formed and returned.
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def compute_loss(self,

                     done,

                     new_state,

                     memory,

                     gamma=0.99):

        if done:

            reward_sum = 0.

        else:

             reward_sum = self.client(tf.constant(new_

state[None, :],

                                      dtype=tf.float32))[-1].

numpy()[0]

        # Calculate return

        discounted_rewards = []

        for reward in memory.rewards[::-1]:  # reverse buffer r

            reward_sum = reward + gamma * reward_sum

            discounted_rewards.append(reward_sum)

        discounted_rewards.reverse()

        # Get Pi(a|s) and v(s)

         logits, values = self.client(tf.constant( 

np.vstack(memory.states),

                                 dtype=tf.float32))

        # Calculate advantage = R() - v(s)

         advantage = tf.constant(np.array(discounted_rewards)

[:, None],

                                          dtype=tf.

float32) - values

        # Critic network loss

        value_loss = advantage ** 2

        # Policy loss

        policy = tf.nn.softmax(logits)
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         policy_loss = tf.nn.sparse_softmax_cross_entropy_

with_logits(

                        labels=memory.actions, logits=logits)

         # When calculating the policy network loss, the V 

network is not calculated

        policy_loss *= tf.stop_gradient(advantage)

         entropy = tf.nn.softmax_cross_entropy_with_

logits(labels=policy,

                                                 logits=logits)

        policy_loss -= 0.01 * entropy

        # Aggregate each error

         total_loss = tf.reduce_mean((0.5 * value_loss + 

policy_loss))

        return total_loss

Agent. The agent is responsible for the training of the entire A3C 

algorithm. In the initialization phase, the agent class creates a new Global 

Network object server and its optimizer object opt.

class Agent:

    # Agent, include server

    def __init__(self):

         # server optimizer, no client, pull parameters 

from server

        self.opt = optimizers.Adam(1e-3)

        # Sever model

         self.server = ActorCritic(4, 2) # State vector, 

action size

        self.server(tf.random.normal((2, 4)))

At the beginning of training, each Worker thread object is created, and 

each thread object is started to interact with the environment. When each 
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Worker object interacts, it will pull the latest network parameters from the 

Global Network and use the latest policy to interact with the environment 

and calculate its own loss. Finally, each Worker submits the gradient 

information to the Global Network, and call the opt object to optimize the 

Global Network. The training code is as follows:

    def train(self):

        res_queue = Queue() # Shared queue

        # Create interactive environment

        workers = [Worker(self.server, self.opt, res_queue, i)

                   for i in range(multiprocessing.cpu_count())]

        for i, worker in enumerate(workers):

            print("Starting worker {}".format(i))

            worker.start()

        # Plot return curver

        moving_average_rewards = []

        while True:

            reward = res_queue.get()

            if reward is not None:

                moving_average_rewards.append(reward)

            else: # End

                break

        [w.join() for w in workers] # Quit threads

14.6  Summary
This chapter introduces the problem setting and basic theory of 

reinforcement learning and introduces two series of algorithms to solve 

reinforcement learning problems: policy gradient method and value 

function method. The policy gradient method directly optimizes the 

policy model, which is simple and direct, but the sampling efficiency is 

low. The sampling efficiency of the algorithm can be improved by the 
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importance sampling technique. The value function method has high 

sampling efficiency and is easy to train, but the policy model needs to 

be derived indirectly from the value function. Finally, the Actor-Critic 

method combining the policy gradient method and the value function 

method is introduced. We also introduced the principles of several typical 

algorithms, and used the balance bar game environment for algorithm 

implementation and testing.
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CHAPTER 15

Customized Dataset
Spending a year on artificial intelligence is enough to make 
people believe in the existence of God.

—Alan Paley

Deep learning has been widely used in various industries such as 

medicine, biology, and finance and has been deployed on various 

platforms such as the Internet and mobile terminals. When we introduced 

the algorithm earlier, most of the datasets were commonly used classic 

datasets. The downloading, loading, and preprocessing of the dataset can 

be completed with a few lines of TensorFlow code, which greatly improves 

the research efficiency. In actual applications, the datasets are different for 

different application scenarios. For customized datasets, using TensorFlow 

to complete data loading, designing excellent network model training 

process, and deploying the trained model to platforms such as mobile and 

the Internet network is an indispensable link for the implementation of 

deep learning algorithms.

In this chapter, we will take a specific application scenario of image 

classification as an example to introduce a series of practical technologies 

such as downloading of customized datasets, data processing, network 

model design, and transfer learning.

https://doi.org/10.1007/978-1-4842-7915-1_15#DOI
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15.1  Pokémon Go Dataset
Pokémon Go is a mobile game that uses augmented reality (AR) 

technology to capture and train Pokémon elves outdoors, and use them 

to fight. The game was launched on Android and IOS in July 2016. Once 

released, it was sought after by players all over the world. At one time, the 

server was paralyzed due to too many players. As shown in Figure 15-1, a 

player scanned the real environment with his mobile phone and collected 

the virtual Pokémon “Pikachu.”

Figure 15-1. Pokémon game screen

We use the Pokémon dataset crawled from the web to demonstrate 

how to use customized dataset. The Pokémon dataset collects a total of five 

elven creatures: Pikachu, Mewtwo, Squirtle, Charmander, and Bulbasaur. 

The information of each elven is shown in Table 15-1, a total of 1168 

pictures. There are incorrectly labeled samples in these pictures, so the 

wrongly labeled samples were artificially eliminated, and a total of 1,122 

valid pictures were obtained.
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Table 15-1. Pokémon dataset information

Readers can download the provided dataset file by themselves (link: 

https://drive.google.com/file/d/1Db2O4YID7VDcQ5lK0ObnkKy-

U1ZZVj7c/view?usp=sharing), and after decompression, we can get the 

root directory named pokemon, which contains five subfolders, the file 

name of each subfolder represents the category name of the pictures, and 

the corresponding category is stored under each subfolder as shown in 

Figure 15-2.

Figure 15-2. Pokémon dataset storage directory

15.2  Customized Dataset Loading
In practical applications, the storage methods of samples and sample 

labels may vary. For example, in some occasions, all pictures are stored in 

the same directory, and the category name can be derived from the picture 

name, such as a picture with a file name of “pikachu_asxes0132.png”. 

The category information can be extracted from the file name pikachu. 

Chapter 15  Customized dataset

https://drive.google.com/file/d/1Db2O4YID7VDcQ5lK0ObnkKy-U1ZZVj7c/view?usp=sharing
https://drive.google.com/file/d/1Db2O4YID7VDcQ5lK0ObnkKy-U1ZZVj7c/view?usp=sharing


678

The label information of some data samples is saved in a text file in JSON 

format, and the label of each sample needs to be queried in JSON format. 

No matter how the dataset is stored, we can always use logic rules to obtain 

the path and label information of all samples.

We abstract the loading process of customized data into the 

following steps.

15.2.1  Create Code Table
The category of the sample is generally marked with the category name 

of the string type, but for the neural network, the category name needs to 

be digitally encoded, and then converted into one-hot encoding or other 

encoding formats when appropriate. Considering a dataset of n categories, 

we randomly code each category into a number l ∈ [0, n − 1]. The mapping 

relationship between category names and numbers is called a coding 

table. Once created, it generally cannot be changed.

For the storage format of the Pokémon dataset, we create a coding 

table in the following way. First, traverse all sub-directories under the 

pokemon root directory in order. For each sub-target, use the category 

name as the key of the code table dictionary object name2label, and the 

number of existing key-value pairs in the code table as the label mapping 

number of the category, and save it into name2label dictionary object. The 

implementation is as follows:

def load_pokemon(root, mode='train'):

    # Create digital dictionary table

    name2label = {}  # Coding dictionary, "sq...":0

     # Traverse the subfolders under the root directory and sort 

them to ensure that the mapping relationship is fixed

    for name in sorted(os.listdir(os.path.join(root))):

        # Skip non-folder objects

        if not os.path.isdir(os.path.join(root, name)):
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            continue

        #  Code a number for each category

        name2label[name] = len(name2label.keys())

          ...

15.2.2  Create Sample and Label Form
After the coding table is determined, we need to obtain the storage path 

of each sample and its label number according to the actual data storage 

method, which are represented as two list objects, images and labels, 

respectively. The images list stores the path string of each sample, and 

the labels list stores the category number of the sample. The two have the 

same length, and the elements at the corresponding positions are related 

to each other.

We store the images and labels information in a csv format file, where 

the csv file format is a plain text file format with data separated by commas, 

which can be opened with Notepad or MS Excel software. There are many 

advantages by storing all sample information in a csv file, such as direct 

dataset division and batch sampling. The csv file can save the information 

of all samples in the dataset, or you can create three csv files based on the 

training set, validation set, and test set. The content of the resulting csv file 

is shown in Figure 15-3. The first element of each row stores the storage 

path of the current sample, and the second element stores the category 

number of the sample.
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Figure 15-3. Path and label saved in CSV file

The process of creating a csv file is: traverse all pictures in the root 

directory of pokemon, record the path of the picture, and obtain the code 

number according to the coding table, and write it into the csv file as a line. 

The code is as follows:

def load_csv(root, filename, name2label):

    # Return images,labels Lists from csv file

     # root: root directory, filename:csv file name,  

name2label:category coding table

    if not os.path.exists(os.path.join(root, filename)):

        # Create csv file if not exist.

        images = []

         for name in name2label.keys(): # Traverse all 

subdirectories to get all pictures

             # Only consider image files with suffix 

png,jpg,jpeg:'pokemon\\mewtwo\\00001.png

             images += glob.glob(os.path.join(root, name, '*.png'))
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             images += glob.glob(os.path.join(root, name, 

'*.jpg'))

             images += glob.glob(os.path.join(root, name, 

'*.jpeg'))

         # Print data info:1167, 'pokemon\\

bulbasaur\\00000000.png'

        print(len(images), images)

        random.shuffle(images) # Randomly shuffle

         # Create csv file, and store image path and 

corresponding label info

         with open(os.path.join(root, filename), mode='w', 

newline='') as f:

            writer = csv.writer(f)

             for img in images:  # 'pokemon\\bulbasaur 

\\00000000.png'

                name = img.split(os.sep)[-2]

                label = name2label[name]

                # 'pokemon\\bulbasaur\\00000000.png', 0

                writer.writerow([img, label])

            print('written into csv file:', filename)

              ...

After creating the csv file, you only need to read the sample path and 

label information from the csv file next time, instead of generating the csv 

file every time, which improves the calculation efficiency. The code is as 

follows:

def load_csv(root, filename, name2label):

    ...

     # At this time there is already a csv file on the file 

system, read directly

    images, labels = [], []
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    with open(os.path.join(root, filename)) as f:

        reader = csv.reader(f)

        for row in reader:

            # 'pokemon\\bulbasaur\\00000000.png', 0

            img, label = row

            label = int(label)

            images.append(img)

            labels.append(label)

    # Return image path list and tag list

    return images, labels

15.2.3  Dataset Division
The division of the dataset needs to be flexibly adjusted according to the 

actual situation. When the number of samples in the dataset is large, 

you can choose a ratio of 80%-10%-10% to allocate to the training set, 

validation set, and test set; when the number of samples is small, for 

example, the total number of pictures in the Pokémon dataset here is only 

1000; if the ratio of the validation set and test set is only 10%, the number 

of pictures is about 100, so the validation accuracy and test accuracy may 

fluctuate greatly. For small datasets, although the sample size is small, it is 

necessary to appropriately increase the ratio of the validation set and test 

set to ensure accurate test results. Here we set the ratio of validation set 

and test set to 20%, that is, there are about 200 pictures for validation and 

testing.

First, call the load_csv function to load the images and labels list, and 

load the corresponding pictures and labels according to the current model 

parameters. Specifically, if the model parameter is train, the first 60% data 

of images and labels are taken as the training set; if the model parameter 

is val, the 60% to 80% area data of images and labels are taken as the 
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validation set; if the model parameter is test, the last 20% of images and 

labels are taken as the test set. The code is implemented as follows:

def load_pokemon(root, mode='train'):

    ...

    # Read Label info

    # [file1,file2,], [3,1]

     images, labels = load_csv(root, 'images.csv', name2label)

# Dataset division

    if mode == 'train':  # 60%

        images = images[:int(0.6 * len(images))]

        labels = labels[:int(0.6 * len(labels))]

    elif mode == 'val':  # 20% = 60%->80%

         images = images[int(0.6 * len(images)):int(0.8 * 

len(images))]

         labels = labels[int(0.6 * len(labels)):int(0.8 * 

len(labels))]

    else:  # 20% = 80%->100%

        images = images[int(0.8 * len(images)):]

        labels = labels[int(0.8 * len(labels)):]

    return images, labels, name2label

It should be noted that the dataset division scheme for each run needs 

to be fixed to prevent the use of test set for training, resulting in inaccurate 

model generalization performance.

15.3  Hands-On Pokémon Dataset
After introducing the loading process of the custom dataset, let's load and 

train the Pokémon data set.
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15.3.1  Create Dataset Object
First, return the images, labels, and coding table information through the 

load_pokemon function as follows:

     # Load the pokemon dataset, specify to load the 

training set

     # Return the sample path list of the training set, the 

label number list and the coding table dictionary

    images, labels, table = load_pokemon('pokemon', 'train')

    print('images:', len(images), images)

    print('labels:', len(labels), labels)

    print('table:', table)

Construct a Dataset object, and complete the random breakup, 

preprocessing, and batch operation of the dataset. The code is as follows:

    # images: string path

    # labels: number

    db = tf.data.Dataset.from_tensor_slices((images, labels))

    db = db.shuffle(1000).map(preprocess).batch(32)

When we use tf.data.Dataset.from_tensor_slices to construct the 

dataset, the passed-in parameter is a tuple composed of images and labels, 

so when the db object is iterated, the tuple object of (Xi, Yi) is returned, 

where Xi is the image tensor of the ith batch, Yi is the image label data of 

the ith batch. We can view the image samples of each traversal through 

TensorBoard visualization as follows:

    # Create TensorBoard summary object

    writter = tf.summary.create_file_writer('logs')

    for step, (x,y) in enumerate(db):

        # x: [32, 224, 224, 3]

        # y: [32]
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        with writter.as_default():

            x = denormalize(x) # Denormalize

            # Write in image data

            tf.summary.image('img',x,step=step,max_outputs=9)

            time.sleep(5) # Delay 5s

15.3.2  Data Preprocessing
We complete the preprocessing of the data by calling the .map(preprocess) 

function when constructing the data set. Since our images list currently 

only saves the path information of all images, not the content tensor of the 

image, it is necessary to complete the image reading and tensor conversion 

in the preprocessing function.

For the preprocess function (x,y) = preprocess(x,y), its incoming 

parameters need to be saved in the same format as the parameters given 

when creating the dataset, and the return parameters need to be saved in 

the same format as the incoming parameters. In particular, we pass in the 

(x, y) tuple object when constructing the dataset, where x is the path list of 

all pictures and y is the label number list of all pictures. Considering that 

the location of the map function is db = db.shuffle(1000).map(preprocess).

batch(32), then the incoming parameters of preprocess are (xi, yi), where 

xi and yi are, respectively, the i-th picture path string and label number. 

If the location of the map function is db = db.shuffle(1000).batch(32).

map(preprocess), then the incoming parameters of preprocess are (xi, yi), 

where xi and yi are the path and tag list of the i-th batch respectively. The 

code is as follows:

def preprocess(x,y): # preprocess function

    # x: image path, y:image coding number

    x = tf.io.read_file(x) # Read image

    x = tf.image.decode_jpeg(x, channels=3) # Decode image

    x = tf.image.resize(x, [244, 244]) # Resize to 244x244
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    # Data augmentation

    # x = tf.image.random_flip_up_down(x)

    x= tf.image.random_flip_left_right(x) # flip left and right

     x = tf.image.random_crop(x, [224, 224, 3]) # Crop 

to 224x224

    # Convert to tensor and [0, 1] range

    # x: [0,255]=> 0~1

    x = tf.cast(x, dtype=tf.float32) / 255.

    # 0~1 => D(0,1)

    x = normalize(x) # Normalize

    y = tf.convert_to_tensor(y) # To tensor

    return x, y

Considering that the scale of our dataset is very small, in order to 

prevent overfitting, we have done a small amount of data enhancement 

transformation to obtain more data. Finally, we scale the pixel values in the 

range of 0~255 to the range of 0~1, and normalize the data, and map the 

pixels to the distribution around 0, which is beneficial to the optimization 

of the network. Finally, the data is converted to tensor data and returned. 

At this time, the data returned will be the tensor data in batch form when 

iterating over the db object.

The standardized data is suitable for network training and prediction, 

but when visualizing, the data needs to be mapped back to the range of 

0~1. The reverse process of standardization and standardization is as 

follows:

# The mean and std here are calculated based on real data, such 

as ImageNet

img_mean = tf.constant([0.485, 0.456, 0.406])

img_std = tf.constant([0.229, 0.224, 0.225])

def normalize(x, mean=img_mean, std=img_std):
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    # Normalization function

    # x: [224, 224, 3]

    # mean: [224, 224, 3], std: [3]

    x = (x - mean)/std

    return x

def denormalize(x, mean=img_mean, std=img_std):

    # Denormalization function

    x = x * std + mean

    return x

Using the preceding method, distribute the Dataset objects that 

create the training set, validation set, and test set. Generally speaking, the 

validation set and test set do not directly participate in the optimization of 

network parameters, and there is no need to randomly break the order of 

samples.

batchsz = 128

# Create training dataset

images, labels, table = load_pokemon('pokemon',mode='train')

db_train = tf.data.Dataset.from_tensor_slices((images, labels))

db_train = db_train.shuffle(1000).map(preprocess).

batch(batchsz)

# Create validation dataset

images2, labels2, table = load_pokemon('pokemon',mode='val')

db_val = tf.data.Dataset.from_tensor_slices((images2, labels2))

db_val = db_val.map(preprocess).batch(batchsz)

# Create testing dataset

images3, labels3, table = load_pokemon('pokemon',mode='test')

db_test = tf.data.Dataset.from_tensor_slices((images3, 

labels3))

db_test = db_test.map(preprocess).batch(batchsz)
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15.3.3  Create Model
The mainstream network models such as VGG13 and ResNet18 have been 

introduced and implemented before, and we will not repeat the specific 

implementation details of the model here. Commonly used network 

models are implemented in the keras.applications module, such as VGG 

series, ResNet series, DenseNet series, and MobileNet series, and these 

model networks can be created with only one line of code. For example:

# Load the DenseNet network model, remove the last fully 

connected layer, and set the last pooling layer to max pooling

net = keras.applications.DenseNet121(weights=None, include_

top=False, pooling='max')

# Set trainable to True, i.e. DenseNet’s parameters will be 

updated.

net.trainable = True

newnet = keras.Sequential([

    net, # Remove last layer of DenseNet121

     layers.Dense(1024, activation='relu'), # Add fully 

connected layer

    layers.BatchNormalization(), # Add BN layer

    layers.Dropout(rate=0.5), # Add Dropout layer

     layers.Dense(5) # Set last layer node to 5 according to 

output categories

])

newnet.build(input_shape=(4,224,224,3))

newnet.summary()

The DenseNet121 model is used to create the network. Since the 

output node of the last layer of DenseNet121 is designed to be 1000, we 

remove the last layer of DenseNet121 and add a fully connected layer with 

the number of output nodes of 5 according to the number of categories of 

the customized dataset. The whole setup is repackaged into a new network 
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model through Sequential containers, where include_top=False indicates 

that the last fully connected layer is removed, and pooling=‘max’ indicates 

that the last Pooling layer of DenseNet121 is designed as Max Polling. The 

network model structure is shown in Figure 15-4.

Figure 15-4. Model structure diagram

15.3.4  Network Training and Testing
We directly use the Compile&Fit method provided by Keras to compile 

and train the network. The optimizer uses the most commonly used Adam 

optimizer, the error function uses the cross-entropy loss function, and sets 

from_logits=True. The measurement index that we pay attention to during 

the training process is the accuracy rate. The network model compile code 

is as follows:

# Compile model

newnet.compile(optimizer=optimizers.Adam(lr=5e-4),

                loss=losses.CategoricalCrossentropy(from_

logits=True),

               metrics=['accuracy'])
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Use the fit function to train the model on the training set. Each 

iteration of Epoch tests a validation set. The maximum number of training 

Epochs is 100. In order to prevent overfitting, we use early stopping 

technology, and pass early stopping into the callbacks parameter of the fit 

function as in the following:

# Model training, support early stopping

history  = newnet.fit(db_train, validation_data=db_val, 

validation_freq=1, epochs=100,

           callbacks=[early_stopping])

where early_stopping is the standard EarlyStopping class. The indicator it 

monitors is the accuracy of the validation set. If the measurement result of 

the validation set does not increase by 0.001 for three consecutive times, 

the EarlyStopping condition is triggered and the training ends.

# Create Early Stopping class

early_stopping = EarlyStopping(

    monitor='val_accuracy',

    min_delta=0.001,

    patience=3

)

We draw the training accuracy rate, validation accuracy rate, and 

the accuracy rate obtained on the final test set in the training process 

as a curve, as shown in Figure 15-5. It can be seen that the training 

accuracy rate has increased rapidly and maintained at a high state, but 

the validation accuracy rate is relatively lower, and at the same time, it 

has not been greatly improved. The early stopping condition is triggered, 

and the training process is quickly terminated. The network has a little bit 

overfitting problem.
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Figure 15-5. Training DenseNet from random initialization

So why does overfitting occur? The number of layers of the 

DensetNet121 model has reached 121, and the number of parameters has 

reached 7 million, which is a large network model, while our dataset has 

only about 1,000 samples. According to experience, this is far from enough 

to train such a large-scale network model, and it is prone to overfitting. 

In order to reduce overfitting, a network model with a shallower number 

of layers and fewer parameters can be used, or regularization items can 

be added, or even the size of the data set can be increased. In addition to 

these methods, another effective method is transfer learning technology.

15.4  Transfer Learning
15.4.1  Principles of Transfer Learning
Transfer learning is a research direction of machine learning. It mainly 

studies how to transfer the knowledge learned on task A to task B to 

improve the generalization performance on task B. For example, task 
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A is a cat and dog classification problem, and a classifier needs to be 

trained to better distinguish pictures of cats and dogs, and task B is a 

cattle and sheep classification problem. It can be found that there is a lot 

of shared knowledge in task A and task B. For example, these animals can 

be distinguished from the aspects of hair, body shape, shape, and hair 

color. Therefore, the classifier obtained in task A has mastered this part of 

knowledge. When training the classifier of task B, you don’t need to start 

training from scratch, instead you can train or fine-tune the knowledge 

obtained on task A, which is very similar to the idea of “standing on the 

shoulders of giants.” By transferring the knowledge learned on task A, 

training the classifier on task B can use fewer samples and lower training 

costs, and obtain good performance.

We introduce a relatively simple, but very commonly used transfer 

learning method: network fine-tuning technology. For convolutional 

neural networks, it is generally believed that it can extract features layer 

by layer. The abstract feature extraction ability of the network at the end of 

the layer is stronger. The output layer generally uses the fully connected 

layer with the same number of output nodes as the classification network 

as the probability distribution prediction. For similar tasks A and B, if their 

feature extraction methods are similar, the previous layers of the network 

can be reused, and the following layers can be trained from scratch 

according to specific task settings.

As shown in Figure 15-6, the network on the left is trained on task A to 

learn the knowledge of task A. When migrating to task B, the parameters 

of the early layers of the network model can be reused, and the later layers 

can be replaced with new networks and start training from scratch. We call 

the model trained on task A a pre-trained model. For image classification, 

the model pre-trained on the ImageNet dataset is a better choice.
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Figure 15-6. Diagram of neural network transfer learning

15.4.2  Hands-On Transfer Learning
Based on DenseNet121, we initialize the network with the model 

parameters pre-trained on the ImageNet dataset, remove the last fully 

connected layer, add a new classification sub-network, and set the number 

of output nodes in the last layer to 5.

# Load DenseNet model, remove last layer, set last pooling 

layer as max pooling

# Initilize with pre-trained parameters

net = keras.applications.DenseNet121(weights='imagenet', 

include_top=False, pooling='max')

# Set trainable to False, i.e. fix the DenseNet parameters

net.trainable = False

newnet = keras.Sequential([

    net, #  DenseNet121 with last layer

     layers.Dense(1024, activation='relu'), # Add fully 

connected layer

    layers.BatchNormalization(), # Add BN layer
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    layers.Dropout(rate=0.5), # Add Dropout layer

    layers.Dense(5) # Set the nodes of last layer to 5

])

newnet.build(input_shape=(4,224,224,3))

newnet.summary()

When the preceding code creates DenseNet121, the pre-

trained DenseNet121 model object can be returned by setting the 

weights=‘imagenet’ parameter, and the reused network layer and the 

new sub-classification network are repackaged into a new model newnet 

through the Sequential container. In the fine-tuning stage, the parameters 

of the DenseNet121 part can be fixed by setting net.trainable = False, 

that is, the DenseNet121 part of the network does not need to update the 

parameters, so only the newly added sub-classification network needs 

to be trained, which greatly reduces the amount of parameters actually 

involved in training . Of course, you can also train all parameters like 

a normal network by setting net.trainable = True. Even so, because the 

reused part of the network has initialized with a good parameter state, the 

network can still quickly converge and achieve better performance.

Based on the pre-trained DenseNet121 model, we plot the training 

accuracy, validation accuracy, and test accuracy in Figure 15-7. Compared 

with training from scratch approach, with the help of transfer learning, the 

network learns much faster and only needs a few samples to achieve better 

performance, and the improvement is very significant.
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Figure 15-7. Training DenseNet from pre-trained ImageNet weights

At this point, you have reached the end of this book. However, your 

machine learning journey just gets started. Hope this book can help you as 

one of the reference books during your research or work!

15.5  Summary
Congratulations! You have come a long way to learn both the theories 

and implementations of deep learning using the popular deep learning 

framework – TensorFlow 2. Now you should be able to not only understand 

the fundamental principles of deep learning, but also develop your own 

deep learning models using TensorFlow 2 to solve real-world problems. 

For real-world applications, good models are not enough. We need 

reliable operational systems to consistently produce high-quality model 

results. This is very challenging given that real-world data changes all the 

time and often contain noises or errors. Therefore, a reliable machine 

learning operational system requires a robust data processing pipeline, 

real-time model performance monitoring, and appropriate mechanisms 
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to retrain or switch models, which leads us to the concept of machine 

learning operations (MLOps). For readers who are interested in learning 

more about MLOps and keeping up to date with the latest applications 

and development of deep learning, deeplearning.ai provides a lot of good 

resources and courses along with its weekly newsletter – The Batch. Hope 

this book brings you to your own fun journey of deep learning and boosts 

your career and life!
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create model, 688, 689
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data preprocessing, 685
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dataset object, 684
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testing, 689, 690
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D
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CGAN generated numbers, 350
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image processing functions, 346
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network (CNN) (cont.)
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Data normalization, 411–413
Data preprocessing, 458, 520, 685
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training curve, 328, 329
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image generation effect, 572
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computing power, 14, 15
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download, 35
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TensorFlow
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TensorFlow, 343
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E
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Evidence lower bound objective 

(ELBO), 538
Exponential operations, 139, 140

F
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effect, 530
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MP neuron models, 7
MuJoCo physical environment 

simulator, 604
Multilayer perceptron (MLP), 361

N
Nash equilibrium, 578, 579

discriminator state, 580, 581
generator state, 581–583
point, 584

Natural language processing 
(NLP), 3, 20, 21, 464, 577

Network layers, 287, 330–332
Network model capacity

appropriate capability, 320
vs.data distribution, 318, 319
dataset/real function, 319
vs.error, 317, 318
hypothesis space, 316
polynomial capability, 316, 317

sampling, 316, 319
Network models, 294, 295, 447
Network training process, 364, 458, 

459, 570
Neural networks, 3, 5, 6

activation function, 206
and deep learning, 361
error calculation, 220, 222–225
fallback mechanism, 447
four-layer, 201
fully connected layer

activation function, 194, 195
implementation, 197, 198
tensor mode 

implementation, 196
function, 520
goal, 375
gradient information, 447
hyperparameters, 200
inputs/outputs, 71
layer mode 

implementation, 203
layers/parameters, 330
MPG

create network, 231, 232
dataset, 228, 229, 231
training/testing, 232–234

optimization, 204, 205
optimization goal, 537
output layer, design

[0, 1] interval, 214, 215
(-1, 1) interval, 220
[0, 1] interval, sum 1, 216–218
real number space, 214

INDEX



708

types, 213
perceptron, 191–194
Skip Connection, 447, 448
supervision signal, 520
tensor mode implementation, 

201, 202
theoretical research, 362
types

attention mechanism, 227
CNN, 226
GCN, 227
RNN, 226

VGG13 model, 447, 448
Neuron model

binary linear equations, 50
data points, 50
mapping relationship, 49
mathematical structure, 48
MSE, 51
observation errors, 50, 51
parameters, 49
single input linear, 49
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vs. indexing, 117
methods, 113, 114
read pictures, 116, 117
sequence vector, 114
start, end, 112, 113

Softmax activation function, 400
Softmax function, 216–218, 249
Softmax layer, 218, 285
Spatial dimension, 461
State action reward state action 

(SARSA), 653
State-action value function, 

645–647, 649
Statistical learning theory, 320
summary() function, 287, 364
Supervised learning, 4, 519
Support vector machines 

(SVMs), 4, 10

T
Tanh function, 212, 247
Temporal difference, 650
Temporal dimension, 19, 461
TensorBoard, 307
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