
131
© Kasam Ahmed Shaikh and Shailesh S. Agaskar 2022
K. Ahmed Shaikh and S. S. Agaskar, Azure Kubernetes Services with Microservices,
https://doi.org/10.1007/978-1-4842-7809-3_5

CHAPTER 5

Securing and Monitoring
Applications Running
on AKS
 Introduction
First, congratulations on completing 60 percent of this book. After reading about

architecture designs and patterns, in this chapter, you’ll go through another interesting

and important aspect—monitoring and securing Azure Kubernetes service-based

applications. You must be wondering why I didn’t mention microservices. The answer is

simple—when I say applications, that covers it all.

Digital platform initiatives are making organizations embrace the cloud culture.

Cloud enablement includes building strategies to deliver more value to their clients.

One of these strategies focuses on application security. With the growing pace of

developments, it’s important to plan the security of the applications to avoid any

impediments in business operations.

Here, I present you with the security concepts for applications and clusters,

concluding with one of the best reckoners for applications with respect to security.

https://doi.org/10.1007/978-1-4842-7809-3_5#DOI

132

 Security Concepts
Kubernetes and Microsoft Azure both include their respective security components. The

Azure Kubernetes Service combines these security components to:

• Make sure your AKS Cluster is running the latest Kubernetes releases

• Ensure its up-to-date with OS security updates

• Secure Pod traffic

• Provide trusted access to sensitive credentials

Let’s dive into a few core concepts for securing application and clusters in the Azure

Kubernetes Service.

 Master Security
In AKS, each cluster has a dedicated Kubernetes master-enabling API server, scheduler,

and so on. This Kubernetes API sever uses an FQDN—a fully qualified domain name—

along with a public IP address. As a PaaS service, Kubernetes Master components are

included in managed services and are maintained by Microsoft.

You can adopt them in the following ways:

• You can create a private cluster, limiting server access to dedicated

virtual networks.

• Using authorized IP ranges, you can restrict access to API server

endpoints. Refer to Figure 5-1.

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

133

Also, you can control access by using Kubernetes RBAC and Azure RBAC. See

the implementation details at https://docs.microsoft.com/en- us/azure/aks/

managed- aad.

 Node Security
Azure Kubernetes service nodes are nothing but the virtual machines that you manage.

Linux and Windows server nodes both run an optimized Ubuntu distribution and

Windows Server 2019 release respectively, using the Docker container runtime.

The latest OS security updates and configuration are deployed automatically on to

nodes, whenever an AKS Cluster is created and also when it’s scaled up.

Figure 5-1. Authorized IP range feature in Azure PortalImage source: Microsoft
Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

https://docs.microsoft.com/en-us/azure/aks/managed-aad
https://docs.microsoft.com/en-us/azure/aks/managed-aad

134

Security patches for Linux nodes and Windows server nodes can be achieved by

running simple azure CLI commands. For better understanding, the following Azure CLI

command will upgrade the node pool called myaksbooknodepool:

az aks nodepool upgrade

 --resource-group myAKSBookResourceGroup \

 --cluster-name myAKSBookCluster \

 --name myaksbooknodepool \

 --kubernetes-version KUBERNETES_VERSION \

 --no-wait

This is just an example of one of the various simple Azure CLI commands available

for managing nodes.

Nodes are always deployed to private virtual networks. Even the storage used by

nodes are premium, Azure managed disks, backed by SSDs. Within the Azure platform,

the data on this disk is always encrypted at rest. Azure also provides the option for

isolated VMs, required as a part of compliance and regulatory requirements. This applies

to Linux and Windows virtual machines. At the time of writing this book, there are a few

options available for isolated VMs:

• Standard_E80ids_v4

• Standard_E80is_v4

• Standard_F72s_v2

• Standard_M128ms

• Standard_DC8_v2

 Cluster Upgrades
An Upgrade Orchestration tool is provided by Azure, which includes the Kubernetes

Master components and the Agent component. This tool enables the following actions:

• Upgrades of AKS Clusters and their components

• Security maintenance

• Compliance maintenance

• Access to the latest features

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

135

All it needs is the available Kubernetes version and the rest is taken care of, of course,

with fewer commands.

 Network Security
To communicate with your on-premises networks, you can have your AKS deployed

to Azure virtual network subnets. Using Site-to-Site VPN or Express Route, this virtual

network connects to your on-premises network. You can also define Kubernetes ingress

controllers with private, internal IP addresses to limit services access to network

connections. You can leverage Azure network security groups and even Kubernetes

network policy to control the traffic flow.

Azure Kubernetes Service offers support to Kubernetes network polices, to limit

network traffic between Pods in the given cluster based on namespaces, label selectors,

and so on.

 Kubernetes Secrets
With a Kubernetes Secret, you can add your sensitive data, such as access credentials

and keys—to Pods. Use of Secrets minimizes the use of this sensitive information in (Pod

or service YAML) manifests. You can request the secret as part of your manifest, limiting

access to the information to specific Pods only.

Kubernetes secrets are stored in Etcd, a distributed key-value store. The Etcd store

is fully managed by AKS and data is encrypted at rest within the Azure platform. See

Figure 5-2.

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

136

There are a few points you need to know about the Kubernetes Secrets:

• You can create a secret using the Kubernetes API.

• You define and request the secret for your Pod.

• Secrets are not written on disk, but are stored in tmpfs.

• When the Pod requiring the Secret is deleted, the secret is also

deleted from the tmpfs nodes.

• Secrets are stored in a namespace, making them accessible only to

the Pods within the same namespace.

Apart from these security concepts with respect to application and clusters, it’s better

to also go through the following:

• Azure security baseline for Azure Kubernetes Service

(See https://docs.microsoft.com/en- us/security/benchmark/

azure/baselines/aks- security- baseline?context=/azure/aks/

context/aks- context.)

• Azure Policy Regulatory Compliance controls for Azure Kubernetes

Service (AKS)

(See https://docs.microsoft.com/en- us/azure/aks/security-

controls-policy.)

Figure 5-2. Azure encryption at rest componentsImage source: Microsoft
Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/aks-security-baseline?context=/azure/aks/context/aks-context
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/aks-security-baseline?context=/azure/aks/context/aks-context
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/aks-security-baseline?context=/azure/aks/context/aks-context
https://docs.microsoft.com/en-us/azure/aks/security-controls-policy
https://docs.microsoft.com/en-us/azure/aks/security-controls-policy

137

 Azure Kubernetes Service Checklist
This checklist contains some of the best practices to follow while working with AKS. It’s

not a kind of bible to follow, but simply best practices to adhere to when it comes to

security

• Refrain from injecting sensitive information into images and use
Secrets instead. As mentioned, avoid entering sensitive information

like passwords directly into images or the manifest. Rather, always

use Secrets—either Kubernetes Secrets or Azure Key Vaults—for such

information. See Figure 5-3.

• Implement Pod identity. Don’t have fixed credentials stored in

Pod images. Rather you can use Pod identities, which use the Azure

Identity solution for all the access to the desired (Azure) resources.

These credentials could be any credentials used to talk with other

Azure services, like Azure SQL or Azure Storage. You can define them

in Kubernetes Secrets, but it needs a manual management. Here you

can miss the best practice of rotating the Secrets being used.

Figure 5-3. Kubernetes Secrets and Azure KeyVault icons

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

138

Pod-managed identities for Azure resources can be used to

have the access request via Azure AD. Figure 5-4 depicts the

request flow.

Note at the time of writing this book, pod-managed identities for aKS is in
preview.

• Use a Kubernetes Namespace. Namespaces are the logical partitions

of your resources. They not only enforce the separation of resources

but also limit the permissible user scope. For simpler understanding,

you can have different namespaces for different business units or

groups. You should use the Kubernetes Namespace to isolate your

Kubernetes resources. See Figure 5-5.

Figure 5-4. A developer created a Pod that uses a managed identity to request
access to an Azure SQL databaseImage source: Microsoft Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

139

The following namespaces are available when you create an AKS Cluster:

• Default: When no namespace is given, this is where Pods are

created.

• kube-system: Where core resources exist.

• kube-public: These resources can be viewed by any user.

Important avoid using the default namespace.

• Specifying the correct security context for a Pod. This is an

important factor in deciding your Pod access control settings. If the

context is not set, the Pod gets the default one, which exposes it with

more rights.

• Manifest with best practices. Ensure that the configuration of the

manifest follows the best practices. A good manifest presents a good

cluster. 😉

Figure 5-5. Example of Namespaces in an AKS ClusterImage source: Microsoft
Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

140

• Static analysis of images on the build. Introduce DevSecOps into

the environment to promote a proactive security model that starts to

shift the responsibility left. Azure Defender for container registries

can be used here.

• Enforcement of compliance on the build image. You must go

through Azure Policy built-in definitions for Azure Kubernetes

Service; see https://docs.microsoft.com/en- us/azure/aks/

policy- reference?ref=akschecklist.

Note Bookmark the following url: https://www.the- aks- checklist.
com/. the seven commandments explained previously are the part of this forum,
and they keep changing based on new context.

 Security Concepts: Conclusion
AKS security aspects could be covered in an entire book of their own. However,

considering the scope of this chapter, I tried to sum up things you should know when

working with AKS-based applications. Consider these as answers you would expect from

an interviewer panel, when discussing AKS-based application security.

The next section covers another important area, monitoring.

 Monitoring Concepts
Your applications are secured but need to be up and available all the time. Securing

applications that have no availability is useless. Hence, monitoring is an important area

for you to be cognizant of. This section presents you with the details of monitoring AKS-

based applications along with monitoring the AKS using Azure Monitor.

 Container Insights
Resources that generate performance metrics and resource logs can be monitored for

health and performance. Like other Azure resources, the Azure Kubernetes Service also

has logs.

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

https://docs.microsoft.com/en-us/azure/aks/policy-reference?ref=akschecklist
https://docs.microsoft.com/en-us/azure/aks/policy-reference?ref=akschecklist
https://www.the-aks-checklist.com/
https://www.the-aks-checklist.com/

141

Azure Monitor has a feature called Container Insights that runs these checks for

managed Kubernetes hosted with AKS. What makes it a favorite is its ability to present

interactive views on data coming from different monitoring scenarios. It’s natively

integrated with Azure Kubernetes Service, helping to collect critical logs, send alerts, and

visualize. Figure 5-6 shows Container Insights in Azure Portal.

Here are the steps required to configure monitoring with Azure Monitor for an AKS

Cluster:

 1. Create a log analytics workspace. You must have one log analytics

workplace to have telemetry data collected from the AKS Cluster.

Container Insights requires at least one log analytics workplace.

 2. Enable Container Insights. Enabling Container Insights depends

on the AKS Cluster you are working on. Does the AKS Cluster

already exist or is it a newly created one? Once enabled, a

containerized version of the Log Analytics agent is deployed,

which sends data to Azure Monitor.

Figure 5-6. Features of Container insightsImage source: Microsoft
Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

142

 3. Configure a collection from Prometheus. Using Container Insights

allows you to collect Prometheus metrics without requiring a

Prometheus server. This makes the combination successful for

E2E monitoring. Refer to Figure 5-7, which depicts the working of

Container Insights and Prometheus.

 4. Collect the resource log. These are the logs for the AKS control

plane components implemented in Azure. You need to have a

diagnostic setting to collect these logs. You can have it in the log

analytics workspace or in Azure storage. Figure 5-8 shows the

screen for configuring diagnostics settings.

Figure 5-7. Configure scraping of Prometheus metrics with Container
InsightsImage source: Microsoft Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

143

 Azure Monitor Features
There are two ways you can view the Azure Monitor features for AKS Clusters:

• Go to Azure Portal ➤ Kubernetes Service and choose the Monitor

section from the left pane. This is mostly for single AKS Clusters.

Refer to Figure 5-9.

Figure 5-8. Screen for configuring diagnostics settings in Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

144

• Go to the Azure Portal. Type Monitor into the search box and then

choose Insights Section ➤ Containers.

Figure 5-10 shows all the AKS Clusters in a subscription.

Figure 5-9. Insights option for the Kubernetes service screen in Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

145

Figure 5-11 is a fresh screen view for Monitor in Azure Portal. It is an entry point for

monitoring clusters, creating alerts, and many more cool implementations.

Figure 5-10. Pane for Container Insights from the Monitor screen in
Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

146

Azure Kubernetes Service monitoring comes with variance implementation

and unique requirements. This approach relies on these requirements. It deals with

different layers, from infrastructure to application, and comes with distinct monitoring

requirements based on the layer.

Considering a bottom-up approach, these layers can be listed as shown in

Figure 5-12.

Figure 5-11. Containers fresh screen under Monitor in Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

147

To maintain the scope and brevity of this chapter, I will discuss Level 4, the

monitoring application layer that includes application workloads running in an AKS

Cluster.

This layer mainly focuses on monitoring the microservices application and

identifying application failures, along with information like request rates, response

time, any exceptions encountered, and so on. For complete monitoring of applications

running on AKS, you can use Application Insights, as shown in Figure 5-13.

Depending on your application stack, you need to configure code-based monitoring

to collect the required data. It could be anything—Java, Python, .Net, or any other

platform. In this example, I am more interested in ASP.NET Core applications.

Figure 5-12. Layers of AKSImage source: Microsoft Documentation

Figure 5-13. Icon for Application Insights

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

148

You need to have a valid Application Insights instrumentation key and create the

Application Insight resource.

To create one, go to Azure Subscription. Type Application Insights in the search

and click Create New. You will be presented with the screen to add the basic mandatory

details required to create the service. Enter with all the details and click Review + Create.

Refer to Figure 5-14.

Figure 5-14. Screen to create Application Insights in Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

149

Once it’s validated, click Create to complete the service creation.

Go to the newly created service screen to find the instrumentation key, connection

string, and other details, all under the Overview section. Refer to the highlighted sections

in Figure 5-15.

Tip using a connection string is highly recommended over an instrumentation
key, as new azure regions require connection strings. in either case, you need to
create the service.

Next, you need enable Application Insights in your IDE. My favorite IDE is Visual

Studio, but you can use other IDEs, such as like Visual Code, as well. Once you are done

enabling Application Insights server-side telemetry with your IDE, download the latest

stable release of the SDK by choosing NuGet Packages ➤ Microsoft.ApplicationInsights.

AspNetCore. Refer to Figure 15-16.

Figure 5-15. Instrumentation keys for Application Insights in Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

150

By adding a few lines of code to the application, it will start with the telemetry data,

and it can be presented in the Applications Insights screen in Azure Portal. This data can

be analyzed and can be used to create alerts based on the state of your applications.

For the code and other options, refer to https://docs.microsoft.com/en- us/

azure/azure- monitor/app/asp- net- core.

 Summary
This chapter presented things you should know about securing and monitoring

AKS- based applications. With the provided links, make sure you have proper hands-on

experience with these issues. This chapter ends the theoretical part of the book. The

next chapter uses a practical step-by-step approach to implementing CICD for Azure

Kubernetes Service-based applications. Until then, happy Azure learning.

Figure 15-16. SDK from the NuGet packageImage source: Microsoft
Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core

	Chapter 5: Securing and Monitoring Applications Running on AKS
	Introduction
	Security Concepts
	Master Security
	Node Security
	Cluster Upgrades
	Network Security
	Kubernetes Secrets

	Azure Kubernetes Service Checklist
	Security Concepts: Conclusion

	Monitoring Concepts
	Container Insights
	Azure Monitor Features

	Summary

