
Azure Kubernetes
Services with
Microservices

Understanding Its Patterns
and Architecture
—
Kasam Ahmed Shaikh
Shailesh S. Agaskar

Azure Kubernetes
Services with
Microservices

Understanding Its Patterns
and Architecture

Kasam Ahmed Shaikh
Shailesh S. Agaskar

Azure Kubernetes Services with Microservices: Understanding Its Patterns and
Architecture

ISBN-13 (pbk): 978-1-4842-7808-6 ISBN-13 (electronic): 978-1-4842-7809-3
https://doi.org/10.1007/978-1-4842-7809-3

Copyright © 2022 by Kasam Ahmed Shaikh and Shailesh S. Agaskar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Coordinating Editor: Shrikant Vishwakarma
Copyeditor: Kezia Endsley

Cover designed by eStudioCalamar

Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/978- 1- 4842- 7808- 6. For more detailed
information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Kasam Ahmed Shaikh
Kalyan, Maharashtra, India

Shailesh S. Agaskar
Mumbai, India

https://doi.org/10.1007/978-1-4842-7809-3

This book is dedicated to my father, the late Mr. Ahmed Kasam Shaikh,
who is always a source of inspiration for me.

And to my mentor, Mr. Sabarinath Iyer.

This book is dedicated to my wife, Mrs. Manisha Agaskar,
who has always supported me in all my endeavors.

v

About the Authors �� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

Table of Contents

Chapter 1: Introduction to Microservices and AKS �� 1

Introduction ��� 1

The History of Distributed Computing ��� 2

Client Server Model ��� 2

Component Technology ��� 4

Web Services ��� 4

Service Oriented Architecture �� 5

What Are Microservices? �� 6

Monoliths vs� Microservices ��� 7

Introduction to the Cloud-Native Architecture ��� 11

How Business Benefits from Cloud-Native Applications ��� 16

An Introduction to AKS and its Components ��� 17

Container Images �� 20

Summary��� 23

Appendix ��� 24

Chapter 2: Microservices: Architecting and Design Considerations ���������������������� 25

Introduction ��� 25

Microservice Architecture Benefits ��� 25

Deriving Business Value �� 27

Defining a Goal-Oriented, Layered Approach �� 28

Modularity ��� 29

vi

Cohesiveness��� 29

Interrelationships ��� 30

Maturity Model for Microservice Architecture Goals and Benefits �� 30

Applying the Goal-Oriented, Layered Approach �� 31

Microservices Design �� 32

The Systems Approach to Microservices �� 33

Service �� 34

Solution ��� 35

Process and Tools �� 35

Organization �� 35

Culture ��� 36

Embracing Change �� 36

Standardization and Coordination ��� 37

A Microservices Design Process ��� 40

Set Optimization Goals �� 40

Development Principles ��� 41

Sketch the System Design��� 41

Implement, Observe, and Adjust �� 42

The Microservices System Designer ��� 44

Goals and Principles ��� 44

Goals for the Microservices Way ��� 45

Operating Principles �� 48

Platforms ��� 52

Shared Capabilities�� 53

Localized Capabilities �� 56

Culture �� 57

Aligning Your Teams �� 58

Fostering Innovation �� 58

Summary��� 60

Appendix ��� 60

Table of ConTenTs

vii

Chapter 3: Microservices Design Patterns ��� 61

Introduction ��� 61

Service Design �� 61

Microservice Boundaries �� 62

Microservice Boundaries and Domain-Driven Design �� 63

It’s Only a Model �� 63

Bounded Context ��� 64

Smaller Is Better �� 65

Ubiquitous Language ��� 66

API Design for Microservices �� 66

Message-Oriented ��� 67

Hypermedia-Driven ��� 67

Data and Microservices �� 69

Shipping Company Example �� 70

Event Sourcing �� 71

System Model for Shipping Company ��� 75

CQRS �� 77

Distributed Transactions and Sagas �� 79

Asynchronous Message-Passing and Microservices �� 80

Dealing with Dependencies �� 82

Pragmatic Mobility ��� 85

System Design and Operations ��� 88

Independent Deployability ��� 88

Do You Need More Servers?�� 90

Microservice Architecture Is a Product of Its Time �� 91

Docker and Microservices �� 92

The Role of Service Discovery �� 94

The Need for an API Gateway �� 96

Security ��� 96

Transformation and Orchestration ��� 97

Routing �� 99

Table of ConTenTs

viii

Monitoring and Alerting��� 100

Summary��� 101

Appendix ��� 101

Chapter 4: Containers and Azure Kubernetes Services �� 103

Introduction ��� 103

Containers ��� 103

How Containers Solve This Problem �� 104

How Containerization Is Different from Virtualization �� 104

Using Docker ��� 108

Installing Docker Desktop in Your Development Environment ��� 110

Exploring the docker run Command �� 112

Running a Webserver �� 112

Viewing the Contents of the Web Page from the Terminal �� 113

Cleanup Processes �� 114

The Dockerfile ��� 115

Monitoring Docker Containers and Docker Logs ��� 118

Docker Exec: Run Commands Inside a Running Container! �� 118

Docker Inspect ��� 119

Creating a Docker Hub Account and Connecting to It �� 119

Using Kubernetes �� 121

Kubernetes Tooling and Setup ��� 124

Summary��� 128

Appendix ��� 128

Chapter 5: Securing and Monitoring Applications Running on AKS ��������������������� 131

Introduction ��� 131

Security Concepts ��� 132

Master Security ��� 132

Node Security �� 133

Cluster Upgrades ��� 134

Table of ConTenTs

ix

Network Security ��� 135

Kubernetes Secrets ��� 135

Azure Kubernetes Service Checklist ��� 137

Security Concepts: Conclusion �� 140

Monitoring Concepts ��� 140

Container Insights�� 140

Azure Monitor Features ��� 143

Summary��� 150

Chapter 6: CI/CD for AKS �� 151

Introduction ��� 151

A Quick Look at DevOps �� 151

Goals of This Exercise ��� 152

Creating Azure Kubernetes Service Using Azure Portal �� 153

Creating Azure Container Instance Using Azure Portal ��� 162

Working with Visual Studio to Build the Sample Application �� 170

CI/CD with Azure DevOps �� 182

Summary��� 240

Index ��� 241

Table of ConTenTs

xi

About the Authors

Kasam Ahmed Shaikh is an Azure AI enthusiast, published

author, global speaker, community MVP, and Microsoft

Docs Contributor. He has more than 14 years of experience

in the IT industry and is a regular speaker on Azure and AI

at various meetups, online communities, and international

conferences. He is currently working as Senior Cloud

Architect for a multi-national firm, where he leads multiple

programs in the Practice for Microsoft Cloud Platform

and Low Code. He is also a founder of the community

called DearAzure-Azure INDIA (az-India) and leads

the community for learning Microsoft Azure. He owns a

YouTube channel and website and shares his experience at

 https://www.kasamshaikh.com.

Shailesh S. Agaskar has more than 20 years of experience

in information technology. For the last 20 years, he has

been working on Microsoft technologies, such as Win32

SDK using C, C++, Office 365, and Azure Data Engineering

and Analytics powered by the Azure cloud platform. He

has been advising customers across the globe and helping

them leverage best-fit technologies to drive their enterprise

digital transformation journey. Microsoft platforms and

technologies is one of the options heavily leveraged by

his customers. He is currently working as Chief Architect

for a multi-national firm, where he heads the Practice for

Microsoft Cloud Platform, M365, and other technologies.

https://www.kasamshaikh.com

xiii

About the Technical Reviewer

Adwait Churi is a certified Microsoft Azure Solution

Architect and MuleSoft Certified Architect and a

seasoned professional with more than 12 years of

experience. During his information technology career,

he has gained experience working in the banking,

financial services, and insurance fields, as well as in the

LMS (Learning Management System), healthcare, and

hospitality domains.

He is passionate about learning new technologies,

including cloud, integration, microservices, ETL, and

Dev-Ops.

In his day-to-day working life, he helps organizations in software application

architecture and designing, pre-sales, performance engineering, project management,

and software development. He also provides courses on Microsoft BizTalk Server,

MuleSoft, and Microsoft Azure.

xv

Acknowledgments

I would first like to thank Almighty ALLAH, my mother, my better half, and especially

my daughter Maryam, for motivating me throughout the process. I am highly thankful to

Apress for considering me for this opportunity and for believing in me. Special thanks to

Mr. Kishore Chowdary from Team Cloudbeaver for presenting me with Technical help.

1
© Kasam Ahmed Shaikh and Shailesh S. Agaskar 2022
K. Ahmed Shaikh and S. S. Agaskar, Azure Kubernetes Services with Microservices,
https://doi.org/10.1007/978-1-4842-7809-3_1

CHAPTER 1

Introduction to
Microservices and AKS
 Introduction
Congratulations, you have taken a step toward understanding microservices better.

This book will help you decide when to use microservices and how to solve business

problems using microservices. If you are reading this book, you must be interested in

designing and developing microservices. Perhaps you are interested in exposing your

business to new markets by building external-facing APIs for third parties or perhaps

you want to develop and deploy software incrementally and more frequently with agility.

Maybe you have no idea what microservices are, but you want to understand this new

architectural style that everyone is talking about.

Whatever the reason you’re here, this chapter examines what microservices are

and why have they become so important and frequently used when modernization is

discussed. Microservices are a major step in distributed and service-oriented computing

and they have the potential to drastically change the way enterprise-class, large-scale

software solutions are developed, today and in the future.

This chapter covers:

• The evolution of software development to distributed computing and

how it has evolved into the “software as a service” model.

• What microservices are, when to use them, and why they are useful.

• The benefits realized by microservices style of architecture.

• The principles on which microservices are built.

https://doi.org/10.1007/978-1-4842-7809-3_1#DOI

2

• How microservices are integrated with existing enterprise

architectures.

• What the future holds for microservices.

You cannot appreciate microservices without understanding the evolution of the

software development world into distributed computing. Therefore, the next section

takes a step back in time to see how and where distributed computing began.

 The History of Distributed Computing
Stepping back and looking at the history of distributed computing, we can see how

microservices are a consequence of a natural evolution. Over time, applications

have become more loosely coupled and split into multiple components. This has

allowed the distribution of an application across many different machines. This way,

multiple computer resources can be used to provide the most resources possible to an

application.

The first business use of basic distributed computing involved massive mainframe

systems. These expensive computers could handle many users logged into them through

dumb terminals, which had no processing power of their own. They simply allowed the

users to access resources available on mainframes systems. The only benefit was that

these dumb terminals could be located anywhere across the building and could access

the central mainframe systems where the processing power and resources were located.

As computers became cheaper and more powerful, it became a viable option to place

them on employees’ desktops. This changed the way computers were used, because

people had access to relatively powerful machines. It made sense to use some of that local

processing power, rather than relying on mainframe servers to process every request.

Further evolution of architecture led to the improvements described in the following

sections.

 Client Server Model
This model involves a central server that contains a database or another central

datastore that all clients access (see Figure 1-1). The client handles the user interface

screens and some or all of the business logic before sending the data to the server. This

frees the server resources so they can focus on processing the data storage. The client

Chapter 1 IntroduCtIon to MICroservICes and aKs

3

machines leverage full resources for everything else and distributes the workload of

application across multiple machines, thus reducing dependence on single machine.

• There were major problems with this approach, as maintenance time and

new upgrades required shipping new application releases to hundreds

or thousands of desktops. They were termed fat-client applications and

had issues with DLL versioning as managing these became another

nightmare. Scaling up these applications as the number of users

increased became costly. The resource consumption due to multiple

connections increased and made it difficult to increase the number of

client machines without increasing the server processing power.

• The solution to this was a new architectural style, after broad

acceptance of the World Wide Web. The Web application led to

building applications that were accessible through Internet browsers.

These applications were called thin clients because they used

far fewer resources on the client machine. Web applications are

deployed on a web server and the business logic is embedded on a

separate server. This was the beginning of the Internet and web era,

which solved most of the problems described previously.

Figure 1-1. Client server model

Chapter 1 IntroduCtIon to MICroservICes and aKs

4

 Component Technology
As the client-server revolution was picking up speed, object-oriented programming

was picking up steam as well, moving toward a componentized design. A class was the

minimal unit and the principles of object-oriented programming around it gave rise to

designing components and reusing them. This led to the inception of the Component

Object Model (COM) and the Distributed Component Object Model (DCOM) in the

Microsoft world. In the Java world, Enterprise Java Beans was the answer. The interface

contracts were binary contracts. The server side of web applications started to use the

component design patterns.

 Web Services
Most web applications were now built using a tiered model of the user interface,

components, and the database. The components encapsulate the business rules and

other specific functionalities as well as access the database. This gave birth to the

technology shift/advancement called the web service. Web services are fundamentally

a distributed solution and their design embraces this by dependence on Internet

standards like HTTP and XML.

This architectural style provided the flexibility to use the component object model

behind the scenes to develop the core business logic. The consumers were agnostic

to what was happening behind the scenes, bringing in abstraction. This style also

empowered developers and architects to deliver the business functionality by leveraging

the choice of technology and programming language. The concept was simple—a piece

of functionality was exposed through a web interface and accessible through a standard

Internet protocol such as HTTP. This meant that any client could use the Internet to

make RPC-like (Remote Procedure Call) calls to any server on the Internet and receive

a response back as XML. The messages sent back and forth were encoded in a special

XML dialect, called Simple Object Access Protocol (SOAP). The external clients could

discover the web services using a discovery protocol called DISCO and then create

a central repository of these services called Universal Description Discovery and

Integration (UDDI).

Chapter 1 IntroduCtIon to MICroservICes and aKs

5

 Service Oriented Architecture
Next was the evolution to a service oriented architecture, which defined a way to make

software components reusable and interoperable via a service interface. Services use a

single common interface standard so they can quickly be incorporated and reused in

new applications. This led to reuse and more composable patterns. This architecture

pattern leveraged the web services design pattern while these web services could be

exposed to the external world to consume a business functionality. Internally, that

business functionality could be composed of multiple internal web services that worked

together to deliver the business service. Each SOA service contained the code and

data required to execute a complete, discrete business function (e.g., it could process a

shopping cart, execute payment for the shopping trip, etc.).

This way, web services were then used to create a service oriented architecture. In

order to connect an application to the data or functionality housed in another system,

developers needed complex point-to-point integration—integration that developers

had to recreate, in part or whole, for each new development project. Exposing those

functions through SOA services allowed the developer to simply reuse the existing

capability and connect through the SOA ESB architecture. Hence the enterprise service

bus became the single point of orchestrating these services.

The architectural style of using the SOA provided many benefits. As the services

evolved using SOAP, there came a new thought process, whereby the architecture

needed services that were exchanging a lightweight payload as XML-based SOAP

started getting heavy in scenarios in which a complex entity or messaged started getting

exchanged. That is when Representational State Transfer Architectural (REST) was

introduced so services could exchange messages and payload that was primarily based

on JSON. These were very light as compared to SOAP. REST was designed specifically

for working with components such as media components, files, or even objects on a

hardware device. Any web service that is defined on the principles of REST can be called

a RESTful web service. A RESTful service uses the normal HTTP verbs of GET, POST,

PUT, and DELETE to work with the required components. In today’s world, the RESTFul

web services are very popular.

Then came a new architectural style called microservices, which eventually became

very popular. Everyone is talking about microservices because they seem like a solution

to all of software’s problems, such as new development, legacy modernization etc.

Chapter 1 IntroduCtIon to MICroservICes and aKs

6

That takes you to the next topic—what are microservices and why do you need

them? Are they the only solution, and all the rest should be thrown out? The next section

address these questions.

 What Are Microservices?
Microservices are nothing but a way of designing software applications as a set of services

that are independent of each other; they can be deployed interpedently and follow

their own independent lifecycle and versioning. No perfect definition can be found,

but this architectural style is based on certain characteristics, based on how they are

organized around business capability, called domain-driven design. Their deployment

is automated end-to-end and follows the principles of intelligent endpoints and dumb

pipes. This architectural style also provides decentralized control and governance and

the freedom to use any programming language and any kind of database storage.

The pioneers in this field, James Lewis and Martin Fowler, have this to say about

microservices:

The microservice architectural style is an approach to developing a single
application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource
API. These services are built around business capabilities and indepen-
dently deployable by fully automated deployment machinery. There is a
bare minimum of centralized management of these services, which may be
written in different programming languages and use different data storage
technologies.

—James Lewis and Martin Fowler (2014)

The diagram in Figure 1-2 shows the microservices architecture.

Chapter 1 IntroduCtIon to MICroservICes and aKs

7

Figure 1-2. Microservice architecture

The question remains—why do you need the microservices architecture? Why can’t

you just leverage what you have in terms of services being called by various clients and

external consumers? They can still consume the business functionality internally as well

as externally when exposed over the Internet and you learned that web services using

SOAP or RESTFul services already provide that leverage. So why microservices?

To better answer this question, you need to understand why, in some scenarios, the

existing service-driven or service-oriented architecture is not good enough. It does not

help enterprise grade customers, which are large enterprises that drive their business by

leveraging software solutions.

 Monoliths vs. Microservices
In order to appreciate and understand the microservice style, it’s good to understand

what problems exist with the architectural style of applications. A monolith application

is built as a single unit, with all the components packaged in one single deployable unit.

Enterprise applications are often built in three main parts: a client-side user interface

(consisting of HTML pages and JavaScript running in a browser on the user’s machine),

and a server-side application. The server-side application handles the HTTP requests,

Chapter 1 IntroduCtIon to MICroservICes and aKs

8

executes the domain logic, retrieves and updates data from the database, and selects

and populates HTML views to be sent to the browser and a database (consisting of many

tables inserted into a common, and usually relational, database management system).

This server-side application is typically a monolith—a single logical executable or

binary DLL or a combination of dependent executables or services. As the functionality

gets enhanced, any changes to the system means building and deploying a new version

of the server-side application in totality. So essentially the entire server-side application

or its independent components have to completely rebuilt and deployed.

A monolithic server is a natural way to approach building such a system. All

your logic for handling a request runs in a single process, allowing you to use the

basic features of your language to divide the application into classes, functions, and

namespaces. With some care, you can run and test the application on a developer’s

machine and use some type of deployment automation to ensure that changes are

properly tested and deployed into production. You can horizontally scale the monolith

by running many instances on multiple servers behind load-balancers.

Monolithic applications can be successful, but people are increasingly becoming

frustrated with them—especially as more applications are being deployed at high

frequencies. Enterprises bring in new ideas more frequently and they want to build and

deploy those ideas into production quickly to get feedback from their customers. They

cannot wait for months for a single service change to be deployed as a whole unit.

Change cycles are tied together—a change made to a small part of the application

requires the entire monolith to be rebuilt and deployed. Over time, it’s often hard to keep

a good modular structure, making it harder to keep changes that ought to only affect one

module within that module. Scaling requires scaling the entire application rather than

parts of it.

The challenge was to determine how software changes could be deployed more

frequently without having to deploy the entire software system and have the flexibility

to deploy only the service that was enhanced without disturbing the remaining

functionality. This led to the microservice architectural style, which is building

applications as group of services. Services are independently deployable and scalable,

and each service provides a firm module boundary, even allowing for different services

to be written in different programming languages. They can also be managed by

different teams.

A monolith application puts all its functionality into a single process, as depicted in

Figure 1-3.

Chapter 1 IntroduCtIon to MICroservICes and aKs

9

Figure 1-3. A monolith server-side application

The monolith scales by replicating itself on multiple servers, as depicted in

Figure 1-4.

Figure 1-4. Scaling a monolith

The microservices architecture, on the other hand, puts each element of

functionality into a separate service and has its own lifecycle and versioning that’s

independent of the other services. See Figure 1-5.

Chapter 1 IntroduCtIon to MICroservICes and aKs

10

Figure 1-5. Self-sufficient, isolated microservices

The microservices style enables scaling, deployment, and versioning of services

independently and scales them across multiple servers individually. If one service is

being consumed quickly, only that service is scaled and not the others.

The microservices architecture can be provisioned and available for deployment on

demand in no time . It can also scale horizontally and vertically when demand is high,

and then shrink to standard operations when demand returns to normal.

These characteristics would be cost-prohibitive when using standard on-premise

hardware deployment in data centers. These challenges are overcome by moving to

cloud platforms like Microsoft Azure, AWS , Google Cloud, and similar cloud platform

and service providers that provide Infrastructure as Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS) capabilities. This creates an ease at which

microservices can be developed and deployed at scale and on demand, by leveraging

modern methodologies. This is called DevOps (Development and Operations working

as one team), and leads to a product development methodology rather than a project

development methodology. This introduces the new area of cloud-native development

The next section covers what cloud-native means.

Chapter 1 IntroduCtIon to MICroservICes and aKs

11

 Introduction to the Cloud-Native Architecture
Recall that monolith applications look somewhat like Figure 1-6. This is a typical

business application that you can see in any enterprise.

Figure 1-6. Monolith business application

You construct a large core application containing all of your domain logic. It includes

modules such as identity, catalog, ordering, and more. The core app communicates with

a large relational database. The core exposes functionality via an HTML interface.

Monoliths offer some distinct advantages. They are easy to

• Build

• Test

• Deploy

• Troubleshoot

• Scale

Many successful applications that exist today were created as monoliths. The app is a

hit and continues to evolve, iteration after iteration, adding more functionality.

Chapter 1 IntroduCtIon to MICroservICes and aKs

12

As the applications grows with more functionality, it becomes unmanageable.

Developers find themselves losing control of the application. As time goes on, the feeling

becomes more intense and they eventually enter a state where they are not sure of how

the application will behave when a new functionality is introduced, as it has become

unmanageable to govern and control. The application has become so overwhelmingly

complicated that no single person understands it. Developers fear making changes

because each change could have unintended and costly side effects. New features/

fixes become tricky, time-consuming, and expensive to implement. Each release is

as small as possible and requires a full deployment of the entire application. One

unstable component can crash the entire system. New technologies and frameworks

aren’t an option. It’s difficult to implement agile delivery methodologies. Architectural

erosion sets in as the codebase deteriorates with never-ending “special cases.” Many

organizations have addressed such monolithic beasts by adopting a cloud-native

architecture. The application, when architected and deployed on a cloud, now looks like

Figure 1-7.

Figure 1-7. Cloud-native application version of a monolith

Chapter 1 IntroduCtIon to MICroservICes and aKs

13

The application has been broken up across a set of small, isolated microservices.

Each service is self-contained and encapsulates its own code, data, and dependencies.

Each is deployed in a software container and managed by a container orchestrator.

Instead of a large relational database, each service owns its datastore, the type of which

vary based on the data needs. Note how some services depend on a relational database,

but others on NoSQL databases. One service stores its state in a distributed cache. Note

how all traffic is routed through an API gateway service that is responsible for directing

traffic to the core backend services and enforcing many cross-cutting concerns. Most

importantly, the application takes full advantage of the scalability, availability, and

resiliency features found in modern cloud platforms.

So cloud-native is nothing but architecting applications using a modern architectural

style like microservices and leveraging the cloud services that are natively available for

building, testing, and deployment. It also leverages DevOps tooling like Azure DevOps.

Cloud-native is all about changing the way developers think about constructing

critical business systems. It’s designed to embrace rapid development and deployment.

Frequent and faster changes, at a larger scale, build in resilience and high availability.

The Cloud-Native Computing Foundation (CNCF) defines cloud-native as follows:

Cloud-native technologies empower organizations to build and

run scalable applications in modern, dynamic environments such

as public, private, and hybrid clouds. Containers, service meshes,

microservices, immutable infrastructure, and declarative APIs

exemplify this approach.

These techniques enable loosely coupled systems that are resilient,

manageable, and observable. Combined with robust automation,

they allow engineers to make high-impact changes frequently and

predictably with minimal toil.

Applications have become more and more complex, with users demanding more

and more functionality. Business users expect rapid response and innovative features to

be deployed with almost zero downtime. They expect minimum outages or no outages

during maintenance and on-demand performance and scalability of applications.

Cloud-native provides the speed and agility required to develop a line of business

applications that are evolving from just being business capabilities to being more

strategic transformations. They allow businesses to stay ahead of the game and continue

to accelerate business growth.

Chapter 1 IntroduCtIon to MICroservICes and aKs

14

Modern application development on cloud-native platforms is based on a widely

accepted methodology called the Twelve-Factor Application. It describes a set of

principles and practices that developers follow to construct applications optimized

for modern cloud environments. Special attention is given to portability across

environments.

While applicable to any web-based application, many practitioners consider

Twelve-Factor a solid foundation for building cloud-native apps. Systems built on these

principles can deploy and scale rapidly and add features to react quickly to market

changes. The following points highlight the Twelve-Factor methodology:

• Codebase: A single codebase for each microservice, stored in its own

repository. Tracked with version control, it can deploy to multiple

environments (QA, staging, and production).

• Dependencies: Each microservice isolates and packages its

own dependencies, embracing changes without impacting the

entire system.

• Configurations: Configuration information is moved out of the

microservice and externalized through a configuration management

tool outside of the code. The same deployment can propagate across

environments with the correct configuration applied.

• Backing services: Ancillary resources (datastores, caches, and

message brokers) should be exposed via an addressable URL. Doing

so decouples the resource from the application, enabling it to be

interchangeable.

• Build release run: Each release must enforce a strict separation

across the build, release, and run stages. Each should be tagged

with a unique ID and support the ability to roll back. Modern CI/CD

systems help fulfill this principle.

• Processes: Each microservice should execute in its own process,

isolated from other running services. Externalize required state to a

backing service such as a distributed cache or datastore.

• Port binding: Each microservice should be self-contained with

its interfaces and functionality exposed on its own port. Doing so

provides isolation from other microservices.

Chapter 1 IntroduCtIon to MICroservICes and aKs

15

• Concurrency: Services scale out across a large number of small

identical processes (copies) as opposed to scaling up a single large

instance on the most powerful machine available.

• Disposability: Service instances should be disposable, favoring fast

startups to increase scalability opportunities and graceful shutdowns

to leave the system in a correct state. Docker containers, along with

an orchestrator, inherently satisfy this requirement.

• Dev/prod parity: Keep environments across the application lifecycle

as similar as possible, avoiding costly shortcuts. Here, the adoption of

containers can greatly contribute by promoting the same execution

environment.

• Logging: Treat logs generated by microservices as event streams.

Process them with an event aggregator and propagate the data to

data-mining/log management tools like Azure Monitor or Splunk

and eventually long-term archival.

• Admin processes: Run administrative/management tasks as one-

off processes. Tasks can include data cleanup and pulling analytics

for a report. Tools executing these tasks should be invoked from the

production environment, but separately from the application.

There are three other factors introduced for modern applications—API first design,

telemetry, and Authentication and Authorization.

These applications need to also consider the following critical design considerations:

• Communication: How the frontend and backend communicate with

each other and how microservices communicate with each other

without introducing dependencies, possibly through loosely coupled

messaging patterns like queues or a service bus.

• Resiliency: A microservices architecture moves your system from

in- process to out-of-process network communication. In a

distributed architecture, what happens when Service B isn’t

responding to a network call from Service A? Or, what happens when

Service C becomes temporarily unavailable and other services calling

it are blocked?

Chapter 1 IntroduCtIon to MICroservICes and aKs

16

• Distributed data: By design, each microservice encapsulates its own

data, exposing operations via its public interface. If so, how do you

query data or implement a transaction across multiple services?

• Identity: How will your service identify who is accessing it and what

permissions they have?

 How Business Benefits from Cloud-Native
Applications
In today’s modern software development era, enterprises are driving business using

technology and working toward digital transformation. Businesses need to be quick to

introduce new ideas of innovation and deploy them before the competition.

Consider the following reasons that you would use a cloud-native application and

microservices based architecture.

• Strategic enterprise system needs to constantly evolve business

capabilities/features.

• An application requires a high release velocity, with high confidence.

• A system in which individual features must be released without a full

redeployment of the entire system.

• An application developed by teams with expertise in different

technology stacks.

• An application with components must scale independently and

on demand.

• Nonfunctional requirements around performance of the existing

application, scalability, and user experience should be baselined and

accordingly.

• Dependencies on external and internal integrations need

consideration to redesign the application and create a cloud-native

architecture on a cloud platform.

• Monolithic apps are critical to the business and often benefit from a

cloud-optimized lift-and-shift migration.

Chapter 1 IntroduCtIon to MICroservICes and aKs

17

• Optimizations to deployments that enable key cloud services,

without changing the core architecture of the application. As an

example, you might containerize an application and deploy it to a

container orchestrator, such as Azure Kubernetes Services, etc. Once

in the cloud, the application can consume other cloud services such

as databases, message queues, monitoring, and distributed caching.

• Finally, monolithic apps that perform strategic enterprise functions

might best benefit from a cloud-native approach. This approach

provides agility and velocity. But it comes at a cost of replatforming,

rearchitecting, and rewriting code.

This cloud-native approach is appropriate if you focus on answering these

questions—What exactly is the business problem that a cloud-native approach will

solve? How would it align with business needs?

In scenarios in which the business drivers are not very demanding, a monolith can

still serve business needs. The microservices architecture needs ease of deployment

and on-demand scaling and availability, as well as application monitoring, logging,

and telemetry. These nonfunctional requirements are provided by the cloud platforms

but a more important quality is to scale on demand. That leads us to the world of

containers and containerization. Microservices can be easily deployed on containers.

But these containers need a mechanism to orchestrate, manage, and govern. That’s

where services like Kubernetes come into picture. Otherwise, the container management

and orchestration will have to be developed and that is a complex area to develop at an

enterprise scale. The next section introduces the Azure Kubernetes Service (AKS) and

describes its components.

 An Introduction to AKS and its Components
Now that you understand what microservices are and you know that cloud platforms

provide native support to develop and deploy microservices, you can look at how

containers can be utilized for deploying microservices. This section introduces Azure

Kubernetes Service for this purpose.

Kubernetes is an open source orchestrator for deploying containerized applications.

It was originally developed by Google, inspired by a decade of experience deploying

scalable, reliable systems in containers via application-oriented APIs.

Chapter 1 IntroduCtIon to MICroservICes and aKs

18

Since its introduction in 2014, Kubernetes has grown to be one of the largest and

most popular open source projects in the world. It has become the standard API for

building cloud-native applications, present in nearly every public cloud.

Kubernetes is a proven infrastructure for distributed systems and is suitable for

cloud-native developers of all scales, from a cluster of Raspberry Pi computers to a

warehouse full of the latest machines. It provides the software necessary to successfully

build and deploy reliable, scalable distributed systems.

You may be wondering what is meant by “reliable, scalable distributed systems.”

More and more services can be delivered over the network via APIs. These APIs are often

delivered by a distributed system, the various pieces that implement the API running

on different machines, connected via the network and coordinating their actions via

network communication. Because people rely on these APIs increasingly for all aspects

of their daily lives (e.g., finding directions to the nearest hospital), these systems must

be highly reliable. They cannot fail, even if a part of the system crashes or otherwise

stops working. Likewise, they must maintain availability even during software rollouts

or other maintenance events. Finally, because more of the world is online and using

such services, they must be highly scalable so that they can grow their capacity and keep

up with ever-increasing usage without radical redesign of the distributed system that

implements the services.

There are many reasons that companies use containers and container APIs like

Kubernetes, but they can all be traced back to one of the following benefits:

• Velocity

• Scaling (of both software and teams)

• Abstracting the infrastructure

• Efficiency

Containers are the base unit to be deployed in Azure Kubernetes Services.

Kubernetes is a platform for creating, deploying, and managing distributed

applications.

These applications come in many different shapes and sizes, but ultimately, they are

all comprised of one or more programs that run on individual machines.

These programs accept input, manipulate data, and then return the results. Before

you can even consider building a distributed system, you must first consider how to

build the application container images that contain these programs and make up the

pieces of the distributed system.

Chapter 1 IntroduCtIon to MICroservICes and aKs

19

Application programs are typically comprised of a language runtime, libraries, and

the source code. In many cases, your application relies on external shared libraries.

These external libraries are generally shipped as shared components in the OS that you

have installed on a particular machine.

This dependency on shared libraries causes problems when an application

developed on a programmer’s machine has a dependency on a shared library that

isn’t available when the program is rolled out to the production OS. Even when the

development and production environments share the same version of the OS, problems

can occur when developers forget to include dependent asset files inside a package that

they deploy to production.

The traditional methods of running multiple programs on a single machine require

that all of these programs share the same versions of shared libraries on the system. If

the different programs are developed by different teams or organizations, these shared

dependencies add needless complexity and coupling between these teams.

A program can execute successfully only if it can be reliably deployed onto the

machine where it should run. Too often the state of the art for deployment involves

running imperative scripts, which inevitably have twisty and byzantine failure cases.

This makes the task of rolling out a new version of all or parts of a distributed system

a difficult task.

When working with applications, it’s often helpful to package them in a way that

makes it easy to share them with others. Docker, the default container runtime engine,

makes it easy to package an executable and push it to a remote registry where it can later

be pulled by others. At the time of this writing, container registries are available in all

of the major public clouds, and services to build images in the cloud are also available

in many of them. You can also run your own registry using open source or commercial

systems. These registries make it easy for users to manage and deploy private images,

while image-builder services provide easy integration with continuous delivery systems.

Container images bundle a program and its dependencies into a single artifact under

a root filesystem. The most popular container image format is the Docker image format,

which has been standardized by the Open Container Initiative to the OCI image format.

Kubernetes supports both Docker- and OCI-compatible images via Docker and other

runtimes. Docker images also include additional metadata used by a container runtime

to start a running application instance based on the contents of the container image.

Chapter 1 IntroduCtIon to MICroservICes and aKs

20

 Container Images
A container image is a binary package that encapsulates all of the files necessary to

run a program inside of an OS container. Depending on how you first experiment

with containers, you will either build a container image from your local filesystem

or download a preexisting image from a container registry. In either case, once the

container image is present on your computer, you can run that image to produce a

running application inside an OS container.

The most popular and widespread container image format is the Docker image

format, which was developed by the Docker open source project for packaging,

distributing, and running containers using the docker command. Subsequently, work

has begun by Docker, Inc. and others to standardize the container image format via

the Open Container Initiative (OCI) project. While the OCI standard achieved a 1.0

release milestone in mid-2017, adoption of these standards is proceeding slowly. The

Docker image format continues to be the de facto standard and is made up of a series

of filesystem layers. Each layer adds, removes, or modifies files from the preceding layer

in the filesystem. This is an example of an overlay filesystem. The overlay system is used

both when packaging the image and when the image is being used.

During runtime, there are a variety of concrete implementations of such filesystems,

including aufs, overlay, and overlay2.

The following sections look at the various components that drive the Kubernetes

cluster.

 The Cluster

At the highest level, Kubernetes is organized as a cluster of virtual or on-premises

machines. These machines—called nodes—share compute, network, and storage

resources. Each cluster has one master node connected to one or more worker nodes.

The worker nodes are responsible for running groups of containerized applications and

workloads, known as pods, and the master node manages which pods run on which

worker nodes.

Chapter 1 IntroduCtIon to MICroservICes and aKs

21

 The Control Plane

In order for the master node to communicate with the worker nodes—and for a person

to communicate with the master node—Kubernetes includes a number of objects that

collectively form the control plane. Developers and operators interact with the cluster

primarily through the master node by using kubectl, a command-line interface that

installs on their local OS. Commands issued to the cluster through kubectl are received

by the kube-apiserver, the Kubernetes API that resides on the master node. The kube-

apiserver then communicates requests to the kube-controller-manager in the master

node, which is in turn responsible for handling worker node operations. Commands

from the master node are received by the kubelet on the worker nodes.

 Deploying Apps and Workloads

The next step to getting started with Kubernetes is deploying apps and workloads. The

master node maintains the current state of the Kubernetes cluster and configuration in

the etcd, a key-value store database, at all times. To run pods with your containerized

apps and workloads, you will describe a new desired state to the cluster in the form of

a YAML file. The kube-controller-manager takes the YAML file and tasks the kube-

scheduler with deciding which worker nodes the app or workload should run based

on predetermined constraints. Working in concert with each worker node’s kubelet,

the kube-scheduler starts the pods, watches the state of the machines, and is overall

responsible for the resource management.

Figure 1-8 shows how a typical Azure Kubernetes reference implementation

would look.

Chapter 1 IntroduCtIon to MICroservICes and aKs

22

Figure 1-8. Azure Kubernetes Service Reference Architecture (courtesy Microsoft
Documentation for AKS)

The components in Figure 1-8 are defined as follows:

• Azure Kubernetes Service is a managed Kubernetes cluster, hosted

in the Azure Cloud Platform. When using AKS, Azure Manages

the Kubernetes API service and you only need to manage the

agent nodes.

• Virtual Network is needed to deploy the AKS cluster. By default,

AKS creates a virtual network into which agent nodes are connected.

More advanced scenarios can be handled by creating a custom

virtual network before deploying the AKS cluster.

• Ingress server exposes HTTP(S) routes to services inside the cluster.

You will learn about at this with more examples in subsequent

chapters.

Chapter 1 IntroduCtIon to MICroservICes and aKs

23

• Azure load balancer is created after creating the AKS cluster. The

load balancer will be configured with a new public IP address that

will frontend your ingress controller. This way the load balancer

routes traffic to the ingress.

• External datastores are used to drive microservices data that comes

from services like Azure SQL Database , Cosmos DB, and so on.

• Azure Active Directory is the key element to provide security to the

cluster by creating an identity and managing other Azure resources. It

is also used for Authentication and Authorization of users from client

applications.

• Azure Container Registry stores private Docker images, which are

deployed to the cluster. AKS can authenticate with Container Registry

using its Azure AD identity. Note that AKS does not need Azure

Container Registry. You can use other container registries, such as

Docker Hub.

• Helm is a package manager for Kubernetes, which is a way to bundle

and generalize Kubernetes objects into a single unit that can be

published, deployed, versioned, and updated.

You saw how microservices benefit the business drivers and how cloud platforms

like Microsoft Azure support the deployment of microservices. Azure Kubernetes Service

is one of the ways to deploy microservices on the Azure platform.

 Summary
This chapter described the evolution of the software development world and explained

how the era of mainframes systems evolved to the client-server and service-oriented

architectures.

You also learned about the various challenges of the architectural styles and how the

microservices architecture was introduced, as well as the benefits it brings to the modern

day business environment.

Chapter 1 IntroduCtIon to MICroservICes and aKs

24

The chapter also covered cloud-native applications and how they benefit enterprise

businesses. You looked at how businesses in today’s era want to be ahead of competition

and how cloud-native and microservices architecture helps them achieve this by making

software development more rapid, scalable, and agile.

You were also introduced to containers and Azure Kubernetes Services and learned

how microservices can leverage them to enable ease of deployment and scaling.

You have not seen any code in this chapter and that is on purpose, so that you can

first understand why microservices are important and in what scenarios.

The next chapter includes an example to illustrate microservices and to explain

important design considerations.

 Appendix
https://martinfowler.com/microservices/

https://docs.microsoft.com/en- us/azure/architecture/reference-

architectures/containers/aks- microservices/aks- microservices

https://www.cncf.io/

Chapter 1 IntroduCtIon to MICroservICes and aKs

https://martinfowler.com/microservices/
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-microservices/aks-microservices
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-microservices/aks-microservices
https://www.cncf.io/

25
© Kasam Ahmed Shaikh and Shailesh S. Agaskar 2022
K. Ahmed Shaikh and S. S. Agaskar, Azure Kubernetes Services with Microservices,
https://doi.org/10.1007/978-1-4842-7809-3_2

CHAPTER 2

Microservices:
Architecting and Design
Considerations
 Introduction
Now that you have learned about the evolution of distributed computing and have come

to the modern-day patterns, which provide more robust, scalable, and quicker services,

this chapter covers the microservice considerations of architecture and design.

You will then dive deep into what containers are and why you need frameworks and

tools like Kubernetes.

 Microservice Architecture Benefits
Why are organizations adopting microservices? What are the motivations and challenges?

How can leaders of these organizations tell that taking on the challenges of managing a

collection of small, loosely coupled, independently deployable services is paying off for

the company? How do they measure success? The answers to these questions by the early

adopters of microservices vary quite a bit. However, some common themes emerge and

tie back to the mantra of “balancing speed and safety at scale.”

Amazon describes the advantages of their architecture as follows:

We can scale our operation independently, maintain unparalleled system availability,

and introduce new services quickly without the need for massive reconfiguration.

https://doi.org/10.1007/978-1-4842-7809-3_2#DOI

26

By focusing on scalability and component independence, Amazon has been able

to increase their speed of delivery while also improving the safety—in the form of

scalability and availability—of their environment.

• Lessens dependencies between teams, resulting in faster code to

production

• Allows lots of initiatives to run in parallel

• Supports multiple technologies/languages/frameworks

• Enables graceful degradation of service

• Promotes ease of innovation through disposable code—it is easy to

fail and move on

The first three points help speed up software development, through organizational

alignment and the ability to deploy independently, as well as polyglotism. The last two

points speak to a safe environment that facilitates replaceability of services.

Social media pioneer Hootsuite has observed efficiency benefits in their

microservice adoption based on the tunability of the system:

Some services require high availability, but are low volume, and it’s the opposite for

other services. A microservice approach allows us to tune for both situations, whereas in a

monolith it’s all or nothing.

The primary driver here is speed, as requested directly from the business. However,

there is also an emphasis on safety—through ability to deploy independently and

testability—as well as futureproofing through composability.

Embracing microservices, they were able to overcome this issue and improve the

comprehensibility of their software system.

There are common goals and benefits that emerge from these implementation stories.

The goal of improving software delivery speed as functional scope grows is

realized through greater agility, higher composability, improved comprehensibility,

ability to deploy service independently, organizational alignment, and polyglotism.

The goal of maintaining software system safety as scale increases is achieved through

higher availability and resiliency, better efficiency, independent manageability and

replaceability of components, increased runtime scalability, and more simplified

testability.

Now that you understand these goals and benefits, let’s explore how these goals and

benefits derive business value for organizations that leverage microservice architecture.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

27

 Deriving Business Value
Successful companies focus on increasing software delivery speed, because they are

compelled by the speed of their business. Similarly, the level of safety implemented in an

organization’s software system should be tied to specific business objectives. Conversely,

the safety measures must not get in the way of the speed unnecessarily. Balance is

required.

For each organization, that balance will be a function of its delivery speed, the safety

of its systems, and the growth of the organization’s functional scope and scale. Each

organization will have its own balance. A media company that aims to reach the widest

possible audience for its content may place a much higher value on delivery speed than

a retail bank whose compliance requirements mandate specific measures around safety.

Nonetheless, in an increasingly digital economy, more companies are recognizing that

software development needs to become one of their core competencies.

In this new business environment, where disruptive competitors can cross industry

boundaries or start up from scratch seemingly overnight, fast software delivery is

essential to staying ahead of the competition and achieving sustainable growth. In fact,

each of the microservice architecture benefits drive delivery speed and contribute real

business value:

• Agility allows organizations to deliver new products, functions, and

features more quickly and pivot more easily if needed.

• Composability reduces development time and provides a compound

benefit through reusability over time.

• Comprehensibility of the software system simplifies development

planning, increases accuracy, and allows new resources to come up

to speed more quickly.

• Independent deployability of components gets new features into

production more quickly and provides more flexible options for

piloting and prototyping.

• Organizational alignment of services to teams reduces ramp-up time

and encourages teams to build more complex products and features

iteratively.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

28

• Polyglotism permits the use of the right tools for the right task,

thus accelerating technology introduction and increasing solution

options. Likewise, digital native consumers expect always-on services

and are not shy about changing corporate allegiances. Outages or

lost information can cause them to take their business elsewhere.

A safe software system is indispensable. The safety-aligned benefits

discussed earlier also provide business value.

• Greater efficiency in the software system reduces infrastructure costs

and reduces the risk of capacity-related service outages.

• Independent manageability contributes to improved efficiency and

reduces the need for scheduled downtime.

• Replaceability of components reduces the technical debt that can

lead to aging, unreliable environments.

• Stronger resilience and higher availability ensure a good customer

experience.

• Better runtime scalability allows the software system to grow or

shrink with the business.

• Improved testability allows the business to mitigate implementation

risks. Clearly, microservice architecture has the potential to provide

numerous business benefits. However, not every organization needs

every benefit, and not every microservice architecture can deliver all

of them.

 Defining a Goal-Oriented, Layered Approach
Although microservice architecture was originally a reaction to the limitations of

monolithic applications, there are many in the industry who think that new applications

should still be built as monoliths first. The thinking is that only through the creation

and ownership of a monolith can the right service boundaries be identified. This path is

certainly well trodden, given that early microservice adopters generally went through the

process of unbundling their own monolithic applications.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

29

However, is a monolithic application architecture the only simple system starting

point? Is it possible to start simple with a microservice? In fact, the complexity of a

software system is driven by its scale. Scale comes in the form of functional scope,

operational magnitude, and change frequency. The first companies to use microservice

architecture made the switch from monolithic applications once they passed a certain

scale threshold. With the benefit of hindsight, and with an analysis of the common

goals and benefits of microservice architecture, you can map out a set of layered

characteristics to consider when adopting microservice architecture.

 Modularity
At its most basic level, microservice architecture is about breaking an application

or system into smaller parts. A software system that is modularized arbitrarily will

obviously have some limitations, but there is still a potential upside. Network accessible

modularization facilitates automation and provides a concrete means of abstraction.

Beyond that, some of the microservice architecture benefits discussed earlier already

apply at this base layer.

To help software delivery speed, modularized services are independently deployable.

It is also possible to take a polyglot approach to tool and platform selection for

individual services, regardless of what the service boundaries are. Also, the abstracted

service interfaces allow for more granular testing.

This is the most technologically focused microservice architecture layer. In order to

address this layer and achieve its associated benefits, you must establish a foundation for

your microservice architecture.

 Cohesiveness
Next to consider in your microservice architecture is the cohesion of services.

In order to have a cohesive microservice architecture, it must already be

modularized. Achieving service cohesion comes from defining the right service

boundaries and analyzing the semantics of the system. The concept of domains is useful

at this layer, whether they are business-oriented or defined by some other axis.

A cohesive microservice architecture can enable software speed by aligning

the system’s services with the supporting organization’s structure. It can also yield

composable services that are permitted to change at the pace the business dictates,

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

30

rather than through unnecessary dependencies. Reducing the dependencies of a

system featuring cohesive services also facilitate replaceability of services. Moreover,

service cohesion lessens the need for highly orchestrated message exchanges between

components, thereby creating a more efficient system.

It takes a synthesized view of business, technology, and organizational

considerations to build a cohesive system.

 Interrelationships
The final and most advanced layer to consider in a microservice architecture is its system

elements. After breaking the system into pieces through modularization, and addressing

the services’ contents through cohesion, it is time to examine the interrelationships

between the services. This is where the greatest level of complexity in the system needs

to be addressed, but also where the biggest and longest-lasting benefits can be realized.

Although a single service may be understandable even in a modularized

microservice architecture, the overall software system is only comprehensible when

the connectivity between services is known. Also, agility is only possible when the

impacts of changes on the whole system can be identified and assessed rapidly. This

applies on the safety side as well, where runtime scalability is concerned. Lastly,

although individual components may be isolated and made resilient in a modularized

or cohesive microservice architecture, the system availability is not assured unless the

interdependencies of the components are understood.

 Maturity Model for Microservice Architecture Goals
and Benefits
These layered characteristics—modularized, cohesive, and inter-relationships

identified—help to define a maturity model that serves several purposes. First, it

classifies the benefits according to phase and goal (speed or safety), as discussed

previously. Secondly, it illustrates the relative impact and priority of benefits as scale and

complexity increase.

Lastly, it shows the activities needed to address each architectural phase. This

maturity model is depicted Figure 2-1. Note that an organization’s microservice

architecture can be at different phases for different goals. Many companies have become

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

31

systematized in their approach to safety—through automation and other operational

considerations—without seeking the speed-aligned system-level benefits. The point of

this model is not for every organization to achieve systematized actualization with their

microservice architecture.

Figure 2-1. A maturity model for microservice architecture goals and benefits

Rather, the model is meant to clarify goals and benefits in order to help organizations

focus their microservice strategies and prepare for what could come next.

 Applying the Goal-Oriented, Layered Approach
Now you have a good understanding of how a microservice architecture can bring value

to an organization, and a model for understanding what characteristics can bring what

goals and benefits at what stage of adoption. But what about your organization? What

are your business goals? What problems do you need to solve? It is a common misstep

to start down the microservices path for its own sake without thinking about the specific

benefits you are targeting. In other cases, some organizations aim for a high-level goal

and then only implement one aspect of microservices while ignoring its founding

conditions. For example, an organization with a high-level divide between development

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

32

and operations—an organizational red flag—might execute a containerization strategy

on their existing applications and then wonder why they didn’t speed up their software

development sufficiently. A broad perspective is needed.

To begin with, define the high-level business objectives you want to accomplish, and

then weigh these against the dual goals of speed and safety. Within that context, consider

the distinct benefits you are targeting. You can then use the maturity model to determine

the complexity of the goal and identify the best approach to achieve it.

One of the digital media giants had initial attempts at microservice architecture

was on their monolithic service platform, which included functions such as user

management and license management. The first attempt was explicitly focused on

changing the architecture from monolith to service-enabled software system. The results

were not positive. However, when they evaluated the main issues with the application—

particularly the operational inefficiencies around it—they changed their approach from

refactoring the existing architecture to automating the problematic deployment process.

Through a small investment, they were able to take their service platform deployment

downtime from a week to 20 minutes. Their next iteration will focus on reducing QA

time through automation and a switch in methodology from white-box to black-box

testing. Following these methodological changes, they will identify the domains in their

monolithic application that require the greatest speed of innovation and unbundle those

first. By taking an iterative approach tied to clear goals, they can measure success quickly

and change course if needed.

 Microservices Design
So far you’ve learned that companies building applications in the microservices way

do more than just implement small components. You now know that there isn’t a

strict definition for what constitutes a microservice architecture. Instead, the focus

is on building applications that balance speed and safety at scale, primarily through

replaceability.

But considering what you’ve learned about microservices systems so far, one

thing should be clear—there are a lot of moving parts to consider. The hallmark of a

microservice architecture might be smaller services, but following the microservices way

will require you to think big. You’ll need to tune your culture, organization, architecture,

interfaces, and services in just the right way to gain the balance of speed and safety

at scale.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

33

The concepts introduced are rooted in some big domains: design, complexity, and

systems thinking. But you don’t need to be an expert in any of those fields to be a good

microservice designer. Instead, the chapter highlights a model-driven way of thinking

about your application that encapsulates the essential parts of complexity and systems

thinking.

 The Systems Approach to Microservices
Many first-time adopters of microservices tend to focus on the services that need to

be built. But in order to develop applications in the microservices way, you’ll need to

conceptualize the design as much more than isolated, individual service designs. That

doesn’t mean that the design of services can be ignored—just like cars and pedestrians

are essential to a traffic system, services are the key ingredient of a microservice

system. But thinking in services terms alone isn’t enough; instead you’ll need to

consider how all aspects of the system can work together to form an emergent behavior.

Emergent behaviors are the ones that are greater than the sum of their parts and for a

microservices application this includes the runtime behavior that emerges when you

connect individual services together and the organizational behavior that gets you there.

A microservices system encompasses all the things about your organization that are

related to the application it produces. This means that the structure of your organization,

the people who work there, the way they work, and the outputs they produce are all

important system factors. Equally important are runtime architectural elements such as

service coordination, error handling, and operational practices. In addition to the wide

breadth of subject matter that you need to consider, there is the additional challenge that

all these elements are interconnected—a change to one part of the system can have an

unforeseen impact on another part.

For example, changes to the size of an implementation team can have a profound

impact on the work that the implementation team produces.

If you implement the right decisions at the right times, you can influence the

behavior of the system and produce the behaviors you want. But that is often easier said

than done. Grappling with all these system elements at the same time is difficult. In

fact, you might find it especially challenging to conceptualize all the moving parts of the

microservice system in your head.

Complexity scientists face a similar challenge when they work with complex systems.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

34

With all the interconnected parts and the complex emergence that results, it is very

difficult to understand how the parts work together. It is difficult to predict the results

that can arise from a change to the system. So, they do what scientists have always

done—they develop a model.

A model-based approach can help all of us conceptualize our system of study and

will make it easier for us talk about the parts of the system.

With that in mind, Figure 2-2 depicts a microservice design model comprised of five

parts: Service, Solution, Process and Tools, Organization, and Culture.

Figure 2-2. The microservice system design model

The goal of this model is to highlight the major areas of concern and the parts of the

system you need to influence in order to succeed with this architectural style.

 Service
Implementing well-designed microservices and APIs are essential to a microservice

system. In a microservice system, the services form the atomic building blocks from

which the entire organism is built. If you can get the design, scope, and granularity

of your service just right, you’ll be able to induce complex behavior from a set of

components that are deceptively simple.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

35

 Solution
A solution architecture is distinct from the individual service design elements because

it represents a macro view of the solution. When designing a particular microservice,

your decisions are bounded by the need to produce a single output—the service itself.

Conversely, when designing a solution architecture, your decisions are bounded by the

need to coordinate all the inputs and outputs of multiple services.

This macro-level view of the system allows the designer to induce more desirable

system behavior. For example, a solution architecture that provides discovery, safety,

and routing features can reduce the complexity of individual services.

 Process and Tools
Your microservice system is not just a byproduct of the service components that handle

messages at runtime. The system behavior is also a result of the processes and tools

that workers in the system use to do their job. In the microservice’s system, this usually

includes tooling and processes related to software development, code deployment,

maintenance, and product management.

Choosing the right processes and tools is an important factor in producing good

microservice system behavior. For example, adopting standardized processes like

DevOps and Agile or tools like Docker containers can increase the changeability of

your system.

 Organization
How we work is often a product of who we work with and how we communicate.

From a microservice system perspective, organizational design includes the

structure, direction of authority, granularity, and composition of teams. Many of

the companies that have had success with microservice architecture point to their

organizational design as a key ingredient. But organizational design is incredibly

context-sensitive and you may find yourself in a terrible situation if you try to model your

1000+ employee enterprise structure after a 15-person startup (and vice versa).

A good microservice system designer understands the implications of changing

these organizational properties and knows that good service design is a byproduct of

good organizational design.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

36

 Culture
Of all the microservice system domains, culture is perhaps the most intangible yet may

also be the most important. You can broadly define culture as a set of values, beliefs,

or ideals that are shared by all the workers within an organization. Your organization’s

culture is important because it shapes all the atomic decisions that people within the

system will make. This large scope of influence is what makes it such a powerful tool in

your system design endeavor.

Much like organizational design, culture is a context-sensitive feature of your system.

What works in Japan may not work in the United States and what works in a large

insurance firm may not work at an ecommerce company. So, you’ll need to be cautious

when attempting to emulate the practices that work in a company whose culture you

admire. There is no recipe or playbook that will guarantee you the same results.

As important as it is, the culture of an organization is incredibly difficult to measure.

Formal methods of surveying and modeling exist, but many business and technology

leaders evaluate the culture of their teams in a more instinctual way. You can get a sense

of the culture of your organization through your daily interactions with team members,

team products, and the customers they cater to.

Culture is often an indication of the impact of other parts of your system. Shared

ideals shape how people do their work and how they work will in turn shape their

organizational view. This is the interconnected nature of the system.

 Embracing Change
Time is an essential element of a microservice system and failing to account for it is a

grave mistake. All the decisions you make about the organization, culture, processes,

services, and solutions should be rooted in the notion that change is inevitable.

You cannot afford to be purely deterministic in your system design; instead, you

should design adaptability into the system as a feature.

There is good reason for taking this perspective: first, trying to determine what the

end state of your organization and solution design should look like is a near impossible

task. Second, it is unlikely that the context in which you made your design decisions

will stay the same. Changes in requirements, markets, and technology all have a way of

making today’s good decisions obsolete very quickly.

A good microservice designer understands the need for adaptability and endeavors

to continually improve the system instead of working to simply produce a solution.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

37

 Standardization and Coordination
Almost all of us work in organizations that operate within constraints. These constraints

arise because the wrong type of system behavior can be harmful to the organization,

even resulting in the organization failing as a result of particularly bad behavior. For

example, a banking technology system that makes it easy to steal someone else’s money

or a tax system that fails to protect its users’ private information are unacceptable.

With the cost of unwanted system behavior so high, it’s no wonder that so many

architects and designers do their best to control system behavior. In practice, the system

designer decides that there is some behavior or expectation that must be universally

applied to the actors within the system. Policies, governance, and audits are all

introduced as a way of policing the behavior of the system and ensuring that the actors

conform. In other words, some parts of the system are standardized.

But true control of this type of complex system is an illusion. You have as much

chance of guaranteeing that your banking system will be perfectly secure as a farmer

does of guaranteeing that his crops will always grow. No matter how many rules, checks,

and governance methods you apply, you are always at the mercy of actors in a system

that can make poor decisions.

Instead, all these mechanisms of control act as system influencers that greatly

increase the likelihood of the results you want. Mastering the system you are designing

and making it do the things you want requires you to develop the right standards,

make sure the standards are being applied, and measure the results of the changes you

are making.

However, control of the system comes at a steep price. Standardization is the enemy

of adaptability and if you standardize too many parts of your system, you risk creating

something that is costly and difficult to change.

 Standardizing Process

You’ve read talked about how processes and tools are important for the behavior that

emerges from your system. By standardizing the way that people work and the tools

they use, you can influence the behavior in a more predictable way. For example,

standardizing a deployment process that reduces the time for component deployment

may improve the overall changeability of the system as the cost of new deployments

decrease.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

38

Standardizing how you work has broad-reaching implications on the type of work

you can produce, the kind of people you hire, and the culture of your organization. The

Agile methodology is a great example of process standardization. Agile institutionalizes

the concept that change should be introduced in small measurable increments that

allow the organization to handle change easier. One observable system impact for Agile

teams are that the output they produce begins to change. Software releases become

smaller and measurability becomes a feature of the product they output. There are

usually follow-on effects to culture and organizational design.

In addition to process standardization, most companies employ some form of tool

standardization as well. In fact, many large organizations have departments whose

sole purpose is to define the types of tools their workers can utilize. For example, some

firms forbid the use of open source software and limit their teams to the use of centrally

approved software procured by a specialist team.

 Standardizing Outputs

You can define a team as a group of workers who take a set of inputs and transform them

into one or more outputs. Output standardization is way of setting a universal standard

for what that output should look like. For example, in an assembly line the output of the

line workers is standardized—everyone on the line must produce the same result. Any

deviation from the standard output is considered a failure.

In a microservices system, a team takes a set of requirements and turns those into a

microservice. So, the service is the output and the face of that output is the interface (or

API) that provides access to the features and data the microservice provides. In fact, from

the microservice consumer perspective, the API is the output, as they have no visibility of

the implementation behind it.

In the microservices context, output standardization often means developing some

standards for the APIs that expose the services. For example, you might decide that all

the organization’s services should have an HTTP interface or that all services should be

capable of subscribing to and emitting events. Some organizations even standardize how

the interfaces should be designed to improve the usability, changeability, and overall

experience of using the service.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

39

 Standardizing People

You can also decide to standardize the types of people who do the work in your

organization. For example, you could introduce a minimum skill requirement for

anyone who wants to work on a microservice team. In fact, many of the companies that

have shared microservice stories point to the skill level of their people as a primary

characteristic of their success.

Standardizing skills or talent can be an effective way of introducing more autonomy

into your microservices system. When the people who are implementing the services are

more skilled they have a better chance of making decisions that will create the system

behavior you want.

All organizations have some level of minimum skill and experience level for their

workers, but organizations that prioritize skill standardization often set very high specialist

requirements in order to reap system benefits. If only the best and brightest are good enough

to work within your system, be prepared to pay a high cost to maintain that standard.

 Standardization Trade-Offs

Standardizing helps you exert influence over your system, but you don’t have to choose

just one of these standards to utilize. But keep in mind that while they aren’t mutually

exclusive, the introduction of different modes of standardization can create unintended

consequences in other parts of the system.

For example, you might decide to standardize on the APIs that all microservices

expose because you want to reduce the cost of connecting things together in your

solution architecture. To do this, you might prescribe a set of rules for the types of APIs

that developers can create and institute a review process to police this standardization.

As an example, many organizations standardize a way of documenting the interfaces

that are created. Now Swagger (also called OpenAPI) is a popular example of an interface

description language, but there are many others (WADL, Blueprint, RAML, etc.).

But you may find that constraining the types of APIs your people can produce limits

the types of tools they can use to create them. It might be the case that the development

tool you want everyone to use doesn’t support the interface description language you

have already chosen. In other words, the decision to standardize the team’s output

has had unintended consequences on the team’s work process. This happens because

standardization is an attempt to remove uncertainty from the system, but it comes at the

cost of reducing innovation and changeability.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

40

The benefit of standardization is a reduction in the set of all possible outcomes. It

gives you a way to shape the system by setting constraints and boundaries for the actions

that people within the system can take. But this benefit comes at a cost. Standardization

also constrains the autonomy of individual decision-makers. The challenge for designers

is to introduce just enough standardization to achieve the best emergent system

outcome, while also employing standards and constraints that complement each other.

 A Microservices Design Process
Professional designers know that the secret to great design is using the right design

process. Where others apply expert advice or make false assumptions about the impact

of their design decisions, a good designer employs a process that helps them continually

get closer to the best product. This doesn’t mean that you never have to make

assumptions or that expert guidance is necessarily wrong. Instead, it means that your

best chance at designing the microservice system you want is to work with a process that

helps you understand the impact of your assumptions and the applicability of advice as

you change the system. Figure 2-3 illustrates a framework for a design process that you

can use in your own microservice system designs. In practice, it is likely that you’ll need

to customize the process to fit within your own unique constraints and context. You

might end up using these design activities in a different order than given here. You may

also decide that some activities aren’t applicable to your goals or that other steps need to

be added.

Figure 2-3. Microservice system design process

 Set Optimization Goals
The behavior of your microservice system is “correct” when it helps you achieve your

goals. There isn’t a set of optimization goals that perfectly apply to all organizations, so

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

41

one of your first tasks will be to identify the goals that make sense for your particular

situation. The choice you make here is important—every decision in the design process

after this is a trade-off made in favor of the optimization goal.

Note that optimization doesn’t mean that other system qualities are undesirable.

In fact, it is extremely likely that you will initially list many desirable outcomes for the

system you create. But as you go through the system design process you will find that it is

difficult to pull your system into many directions at the same time.

For example, a financial services information system might be optimized for

reliability and security above all other factors. That doesn’t mean that changeability,

usability, and other system qualities are unimportant—it simply means that the

designers will always make decisions that favor security and reliability above all

other things.

It is possible that you may need to change your optimization goals at some point in

the lifetime of your application. It just shows that you need to follow the design process

and implement small changes to guide your system toward the new goal. If the goal

change is quite different from your original design goal, this may take some time. If the

optimization goal is radically different from your original goal, you may even create a

new system design entirely.

 Development Principles
Underpinning a system optimization goal is a set of principles. Principles outline the

general policies, constraints, and ideals that should be applied universally to the actors

within the system to guide decision-making and behavior. The best designed principles

are simply stated, easy to understand, and have a profound impact on the system they

act upon.

 Sketch the System Design
If you find yourself building the application in a greenfield environment with no existing

organization or solution architecture in place, it is important that you establish a good

starting point for your system design. You won’t be able to create the perfect system on

your first try and you aren’t likely to have the time or information to do that anyway.

Instead, a good approach is to sketch the important parts of your system design for the

purposes of evaluation and iteration.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

42

How you do this is entirely up to you. There is a wealth of modeling and

communication tools available to conceptualize organizational and solution

architectures; choose the ones that work well for you. But the value of this step in

the design process is to serialize some of the abstract concepts from your head into a

tangible form that can be evaluated. The goal of a sketching exercise is to continually

improve the design until you are comfortable moving forward.

The goal is to sketch out the core parts of your system, including organizational

structure (how big are the teams? what is the direction of authority? who is on the

team?), the solution architecture (how are services organized? what infrastructure must

be in place?), the service design (what outputs? how big?), and the processes and tools

(how do services get deployed? what tools are necessary?). You should evaluate these

decisions against the goals and principles you’ve outlined earlier. Will your system foster

those goals? Do the principles make sense? Do the principles need to change? Does

the system design need to change? Sketching is powerful when the risk of starting over

is small. Good sketches are easy to make and easy to destroy, so avoid modeling your

system in a way that requires a heavy investment of time or effort. The more effort it takes

to sketch your system the less likely you are to throw it away. At this early stage of system

design, change should be cheap.

Most importantly, remember that the purpose of the iterative sketching stage is

to participate in the process of designing. The goal is to form new ideas, consider the

impact of proposed designs, and experiment in a safe way.

 Implement, Observe, and Adjust
Bad designers make assumptions about how a system works, apply changes in the hope

that it will produce desired behavior, and call it a day. Good designers make small system

changes, assess the impact of those changes, and continually prod the system behavior

toward a desired outcome. But a good design process is predicated on your ability to get

feedback from the system you are designing. This is actually much more difficult than it

sounds—the impact of a change to one small part of the system may result in a ripple of

changes that impact other parts of your system with low visibility.

The perfect microservice system provides perfect information about all aspects

of the system across all the domains of culture, organization, solution architecture,

services, and process. Of course, this is unrealistic. It is more realistic to gain essential

visibility into our system by identifying a few key measurements that give us the most

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

43

valuable information about system behavior. In organizational design, this type of

metric is known as a key performance indicator (KPI). The challenge for the microservice

designer is to identify the right ones.

Gathering information about your system by identifying KPIs is useful, but being

able to utilize those metrics to predict future behavior is incredibly valuable. One of the

challenges that all system designers face is the uncertainty about the future. With perfect

information about how the system might need to change, you could build boundaries

in exactly the right places and make perfect decisions about the size of your services

and teams.

Without perfect information, you are forced to make assumptions. Designers

working on existing applications can observe the existing and past behavior of the

system to identify patterns—components that change often, requirements that are

always in flux, and services that can expect high usage. But designers who are working

on new applications often have very little information to start with—the only way to

identify the brittle points of the application is to ship the product and see what happens.

The risk of making poor decisions is that you steer the system in a direction that

increases your “technical debt” (i.e., the future cost of addressing a technical deficiency).

If you go too far along the wrong path, you risk producing a system that becomes too

expensive to change, so you give up.

The classic microservices example of this is the cautionary tale of the “monolith.”

A team creates an initial release of an application when the feature set is small and the

componentry has low complexity. Over time, the feature set grows and the complexity

of the deployed application grows, making change ever more difficult. At this point, the

team agrees that the application needs to be redesigned and modularized to improve

its changeability. But the redesign work is continually deferred because the cost of that

work is too high and difficult to justify.

At the other end of the scale is a system that is so overdesigned and overengineered

for future flexibility that it becomes impractical. An incredibly complex, adaptable

system that is built for massive amounts of change that never seems to happen.

Rather than trying to predict the future, a good microservices designer examines the

current state and makes small, measurable changes to the system. This is a bit like taking

a wrong turn on a long road trip—if you don’t know that you’ve made a mistake you

might not find out you’re going the wrong way until it is too late to turn back.

A system that is designed with a high degree of visibility might give you a lot of

information about what is happening, but if the cost of changing the system is too

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

44

high you won’t be able to make any course corrections. This problem of costly change

presents itself when you need special permission, additional funds, more people, or

more time to make the changes you want to the system.

So, in order to design a microservice system that is dynamic, you’ll need to identify

the right KPIs, be able to interpret the data, and make small, cheap changes to the system

that can guide you back on the right course. This is possible only if the right organization,

culture, processes, and system architecture are in place to make it cheap and easy

to do so.

 The Microservices System Designer
But you haven’t identified who this system designer is or where they might fit into your

existing organization.

To be most effective, the microservices system designer should be able to enact

change to a wide array of system concerns. We’ve already identified that organization,

culture, processes, solution architecture, and services are significant concerns for the

system designer. But the boundaries of this system haven’t been properly identified.

You could decide that the system boundaries should mirror the boundaries of the

company. This means that the changes you enact could have a broad-reaching impact.

Alternatively, you could focus on a department or service line within the company and

build a system that aligns with the parent company’s strategic goals. In fact, this type of

nested set of systems is common and we see it all around us in the physical world (e.g.,

human beings and the entire human community).

Microservices system designer or as a matter of fact the software system designer is

responsible for all the elements of the bounded system. The system designer’s task is to

introduce small changes within the system in order to produce behavior that will align

with the desired goal. The solution architect focuses on the coordination of services, the

team manager focuses on the people, and the service developer focuses on the service

design. There should be a single person or a team who must be responsible for the

holistic view of the entire system for a microservices system to succeed.

 Goals and Principles
Regardless of the software architecture style you employ, it is important to have

some overall goals and principles to help inform your design choices and guide the

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

45

implementation efforts. This is especially true in companies where a higher degree of

autonomy is provided to developer teams. The more autonomy you allow, the more

guidance and context you need to provide to those teams.

This section looks at some general goals for a microservice architecture and some

example principles. Along the way, we’ll list our own suggested principles for you to

consider.

 Goals for the Microservices Way
It is a good idea to have a set of high-level goals to use as a guide when making decisions

about what to do and how to go about doing it. We’ve already introduced the goal in

building applications in the microservices way: finding the right harmony of speed and

safety at scale. This overarching goal gives you a destination to aim for and given enough

time, iterations, and persistence, will allow you to build a system that hits the right notes

for your own organization.

There is of course a glaring problem with this strategy—it might take a very long

time for you to find that perfect harmony of speed and safety at scale if you are starting

from scratch. But thanks to the efforts of generations of technologists we have access

to proven methods for boosting both speed and safety. So, you don’t need to reinvent

established software development practices. Instead, you can experiment with the

parameters of those practices.

From our research, we’ve been able to distill four specific goals that lead to practices

that aid both safety and speed of change. These goals aren’t unique to microservice

architecture, but they are useful in shaping your journey. Here are the four goals to

consider:

• Reduce costs: Will this reduce overall cost of designing,

implementing, and maintaining IT services?

• Increase release speed: Will this increase the speed at which your

team can get from idea to deployment of services?

• Improve resilience: Will this improve the resilience of your service

network?

• Enable visibility: Does this help you better see what is going on in

your service network?

Let’s look at these in a bit more depth.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

46

 Reduce Costs

The ability to reduce the cost of designing, implementing, and deploying services allows

you more flexibility when deciding whether to create a service at all. For example, if the

work of creating a new service component includes three months of design and review,

six months of coding and testing, and two more weeks to get into production, that’s

a very high cost—one that you would likely think very carefully about before starting.

However, if creating a new service component takes only a matter of a few weeks, you

might be more likely to build the component and see if it can help solve an important

problem. Reducing costs can increase your agility because it makes it more likely that

you’ll experiment with new ideas.

In the operations world, reducing costs was achieved by virtualizing hardware. By

making the cost of a “server” almost trivial, it makes it more likely that you can spin

up a bunch of servers in order to experiment with load testing, how a component will

behave when interacting with others, and so on. For microservices, this means coming

up with ways to reduce the cost of coding and connecting services together. Templated

component stubs, standardized data-passing formats, and universal interfaces are all

examples of reducing the costs of coding and connecting service components.

 Increase Release Speed

Increasing the speed of the “from design to deploy” cycle is another common goal. A

more useful way to view this goal is that you want to shorten the time between idea and

deployment. Sometimes, you don’t need to “go faster,” you just need to take a shortcut.

When you can get from idea to running example quickly, you have the chance to get

feedback early, to learn from mistakes, and to iterate on the design more often before a

final production release. Like the goal of reducing costs, the ability to increase speed can

also lower the risk for attempting new product ideas or even things as simple as new,

more efficient data-handling routines.

One place where you can increase speed is in the deployment process. By automating

important elements of the deployment cycle, you can speed up the whole process of getting

services into production. Some of the companies we talked with for this book spend a great

deal of time building a highly effective deployment pipeline for their organization. Many

of them have such a well-designed deployment model that they release to production

multiple times a day. Automating release can go a long way toward increasing the speed of

your microservice implementation and bringing in standardization and predictability.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

47

 Improve Resilience

No matter the speed or cost of solutions, it is also important to build systems that can

“stand up” to unexpected failures. In other words, systems that don’t crash, even when

errors occur. When you have an overall system approach (not just focused on a single

component or solution) you can aim for creating resilient systems. This goal is often

much more reasonable than trying to create a single component that is totally free of

bugs or errors. In fact, creating a component that will have zero bugs is often impossible

and sometimes simply not worth the time and money it takes to try.

One of the ways DevOps practices has focused on improving resilience is through

the use of automated testing. By making testing part of the build process, the tests are

constantly run against checked-in code, which increases the chances of finding errors in

the code. This covers the code, but not the errors that could occur at runtime.

There are companies that run what they call end-to-end tests before releasing to

production but many companies rely on a practice that Jez Humble calls blue-green

deployment. In this case, a new release is placed in production with a small subset of

users and, if all goes well during a monitoring phase, more users are routed to the new

release until the full userbase is on the new release. If any problems are encountered

during this phased rollout, the users can all be returned to the previous release until

problems are resolved and the process starts again.

 Enable Visibility

Another key goal should be to enable runtime visibility. In other words, improve the

ability of stakeholders to see and understand what is going on in the system. There is a

good set of tools for enabling visibility during the coding process. You often get reports

on the coding backlog, how many builds were created, the number of bugs in the system

versus bug completed, and so on. But you also need visibility into the runtime system.

The DevOps practices of logging and monitoring are great examples of this level

of runtime visibility. Most effort to date has been to log and monitor operation-level

metrics (memory, storage, throughput, etc.). However, there are some monitoring tools

that can act when things go badly (e.g., reroute traffic).

 Trade-Offs

Each of these are important goals and sometimes they are competing goals. There

are trade-offs to consider. You might be able to reduce your overall costs, but it might

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

48

adversely affect runtime resilience. Or, you might be able to speed up deployment but

that might mean you lose track of what services are running in production and reduce

visibility into the larger service network. In the end, you’ll need to balance various goals

and find the right mix for your organization.

Your organization may have some other high-level goals you want to consider

and document. Whatever these turn out to be, one of the next things you need to do is

convert those goals into a set of actionable principles.

 Operating Principles
Along with a set of goals for a microservice approach, it is important to have a set of

principles. Unlike goals, which are general, principles offer more concrete guidance on

how to act in order to achieve those goals. Principles are not rules—they don’t set out

required elements. Instead, they offer examples on how to act in identifiable situations.

Principles can also be used to inform best practices. Many of the organizations we

looked at when doing research have their own set of principles within them company.

 Netflix

One company that has been open about their own journey toward creating a

successful microservice architecture is Netflix. We’ve called out just a few of Netflix’s

principles here.

Antifragility

Netflix works to strengthen their internal systems so that they can withstand unexpected

problems. “The point of antifragility is that you always want a bit of stress in your system

to make it stronger.” There are several things Netflix does to promote this, including

their “Simian Army” set of tools, which “enforce architectural principles, induce various

kinds of failures, and test our ability to survive them”. Software has bugs, operators

make mistakes, and hardware fails. By creating failures in production under controlled

conditions, developers are incentivized to learn to build more robust systems. Error

reporting and recovery systems are regularly tested, and real failures are handled with

minimal drama and customer impact.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

49

Immutability

Immutability is used at Netflix to assert that auto-scaled groups of service instances

are stateless and identical, which enables Netflix’s system to “scale horizontally.” The

Chaos Monkey, a member of the Simian Army, removes instances regularly to enforce

the immutable stateless service principle. Another related technique is the use of

“Red/Black pushes”. Although each released component is immutable, a new version

of the service is introduced alongside the old version, on new instances, then traffic

is redirected from old to new. After waiting to be sure all is well, the old instances are

terminated.

Separation of Concerns

The Netflix microservice architecture arises because of separation of concerns (SoC) in

the engineering team organization. Each team owns a group of services.

They own building, operating, and evolving those services, and present a stable

agreed interface and service level agreement to the consumers of those services.

Invoking Conway’s law, an organization structured with independent self-contained

cells of engineers will naturally build what is now called a microservice architecture.

Three key principles: antifragility, immutability, and separation of concerns. Some of

these same ideas were expressed slightly differently by Douglas McIlroy when describing

the UNIX operating system.

 UNIX

The following four points were offered as a set of “maxims that have gained currency

among the builders and users of the UNIX system.”

Here is the list that Douglas McIrloy and his colleagues called out:

 1. Make each program do one thing well. To do a new job, build

afresh rather than complicate old programs by adding new

features.

 2. Expect the output of every program to become the input to

another, as yet unknown, program. Don’t clutter output with

extraneous information. Avoid stringently columnar or binary

input formats. Don’t insist on interactive input.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

50

 3. Design and build software, even operating systems, to be tried

early, ideally within weeks. Don’t hesitate to throw away the

clumsy parts and rebuild them.

 4. Use tools in preference to unskilled help to lighten a programming

task, even if you must detour to build the tools and expect to throw

some of them out after you’ve finished using them.

One of the interesting things about these four principles is that they offer general

guidance on how to think about writing software. Phrases like “do one thing well” and

“build software … to be tried early” can lead developers to adopt what is known in the

UNIX world as “The Rule of Parsimony” when writing code (“only write a big program

when nothing else will do”). This, along with other UNIX rules, provides developers with

a set of guidelines for which programming languages or libraries to use.

These principles are also meant to shape developers’ thinking.

 Suggested Principles

Having a set of principles to guide software developers and architects makes a lot of

sense. There is no one set of principles that matches every company. Each organization

needs to create a set that works for their company.

With this in mind, we offer a set of principles that reflect aspects of the other

examples you’ve looked at so far. You can use these as starter material in putting together

your own unique set for your company, or tune these until they fit.

Do One Thing Well

Many microservice implementations adopt the essential message—“do one thing

well,” which leads to the challenge of deciding what constitutes “one thing” in your

implementation.

Build Afresh

The second part of McIlroy’s first principle (“build afresh”) is also important. Part of

the UNIX philosophy is to create a collection of powerful tools that are predictable

and consistent over a long period of time. It is worth considering this as an additional

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

51

principle when implementing microservices. It may be better to build a new

microservice component rather than attempt to take an existing component already in

production and change it to do additional work. This also maps to Netflix’s immutability

principle.

Expect Output to Become Input

Another important principle for UNIX developers is the notion that one program’s

output is another program’s input. For UNIX systems, this leads to reliance on text strings

as the primary data-passing medium. On the Web, the data-passing medium is the

media type (HTML, HAL, Siren, Collection+JSON, etc.). In some cases, you can even use

HTTP’s content-negotiation feature to allow API providers and consumers to decide for

themselves at runtime which format will be used to pass data.

Don’t Insist on Interactive Input

In the UNIX world, there is a desire to create scripts that tie a number of command-

line tools together to create a “solution.” This means humans don’t need to be engaged

every step of the way—the scripts handle both the input and the output on their own.

Reducing the need for human interaction increases the likelihood that the component

can be used in unexpected ways.

Human interaction isn’t something that microservice components need to deal

with at runtime. But when you expand your scope of focus to the microservice system,

it’s easy to find countless human interactions that could benefit from this principle.

Reducing the dependency on human interaction in the software development process

can go a long way toward increasing the speed at which change occurs.

Try Early

Adopting the point of view that your microservice components should be “tried early”

fits well with the notion of continuous delivery and the desire to have speed as a goal for

your implementations. Another advantage of this “try early” principle is you will learn

your mistakes early. It turns out “try early” is also a way to encourage teams to get in the

habit of releasing early and often. The earlier you release (even when that release is to a

test environment), the earlier you get feedback and the quicker you can improve.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

52

Don’t Hesitate to Throw It Away

This is a difficult one for some developers. Being willing to throw something away can be

hard when you’ve spent a great deal of time and effort building a component. However,

when you adopt the “try early” principle, throwing away the early attempts is easier.

It is also important to consider this “throw it away” principle for components that

have been running in production for a long time. Over time, components that did

an important job may no longer be needed. You may have applied the “build afresh”

principle and replaced this component with one that does the job better. It may be

the case that the “one thing” that component does is simply no longer needed. The

important thing is to be willing to throw away a component when it no longer serves its

intended purpose.

Toolmaking

The “use tools” principle covers the notion that, when working to build a solution, you

sometimes need to build the “right tool” for the job. One of the important elements in

the developmental history of humans was the ability to create tools. These tools were

created in order to reach a goal. In other words, tools are a means, not an end. This is

also an important principle for microservice architecture.

While doing research for this book, we found several examples of companies that

created their own developer and deployment tool chains in order to improve their

overall developer experience. Sometimes these tools are built from existing open source

software projects. Sometimes the tools are, themselves, passed into open source so that

others can use them and contribute to improving and maintaining them. The important

element here is to recognize that, in some cases, you may need to divert from building

your solution and spend some time building tools to help you build that solution.

 Platforms
Along with a set of general goals and concrete principles, you’ll need tangible tools to

make them real platform with which to make your microservice environment a reality.

From a microservice architecture perspective, good platforms increase the harmonic

balance between speed and safety of change at scale. We typically think about speed and

safety as opposing properties that require a trade-off to be made but the right tooling and

automation give you an opportunity to cheat the trade-off.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

53

For example, the principle of immutability primarily improves the safety of changes

that are made to the system. There is also an inherent release cost for immutability as

each deployable unit needs its own associated release mechanisms, infrastructure,

and management. On its own, the added cost can reduce the speed at which changes

can be made. However, the introduction of containerization tools like Docker

make independent deployment easy and greatly reduce the associated costs. When

immutability is combined with containerization, both speed and safety of changes are

optimized, which may explain the rapid adoption of Docker in large organizations.

The good news is that there are many examples of companies establishing—and

even sharing—their microservice platforms. The challenge is that it seems every

company is doing this their own way, which presents some choices to anyone who wants

to build their own microservice environment. Do you just select one of the existing OSS

platforms? Do you try to purchase one? Build one from scratch? It would be a mistake

to just select one of the popular company’s platforms and adopt it without careful

consideration. Does this company provide the same types of services that mine does?

Does this company optimize for the same things that mine will? Do we have similar

staffing and training environments? Are our target customers similar (priorities, skills,

desired outcomes, etc.)? Instead of focusing on a single existing company’s platform, you

should look at a general model for microservice platforms.

 Shared Capabilities
It’s common in large enterprises to create a shared set of services for everyone to use.

These are typically centered around the common infrastructure for the organization.

For example, anything that deals with hardware (actual or virtual) falls into this

category. Common database technologies (MySQL, Cassandra, etc.) and other software

implemented infrastructure is another example of shared services.

These are standardized things like container technology, policy enforcement, service

orchestration/interop, and data storage services. Even in large organizations it makes

sense to narrow the choices for these elements in order to limit complexity and gain

cost efficiencies. Essentially, these are all services that are provided to every team in the

organization.

It is important to note that shared services does not mean shared instance or shared

data. Just because all the teams use a single type of data storage technology (e.g., Mongo,

Cassandra etc.) does not mean they all use the same running instance of the data storage

and all read and write from the same tables.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

54

While shared capabilities offer potential cost savings, they are ultimately rooted

in the microservices goal of change safety. Organizations that highly value safety

of changes are more likely to deploy centralized shared capabilities that can offer

consistent, predictable results. On the other hand, organizations that desire speed at all

costs are likely to avoid shared components as much as possible, as it has the potential

to inhibit the speed at which decentralized change can be introduced. In these speed-

centric companies, capability reuse is less important than speed of delivery. As with all

things in the microservices way, you need to experiment with different forms of shared

capabilities to see what works best for your unique context.

The following sections outline a high-level list of what shared services platforms

usually provide.

 Hardware Services

All organizations deal with the work of deploying OS- and protocol-level software

infrastructure. In some companies there is a team of people who are charged with

accepting shipments of hardware (e.g., 1-U servers), populating those machines with

a baseline OS and common software for monitoring, health checks, and so on, and

then placing that completed unit into a rack in the “server room” ready for use by

application teams.

An alternate approach is to virtualize the OS and baseline software package as a

virtual machine (VM). VMs make it possible to automate most of the work of populating

a “new machine” and placing it into production.

A more recent trend is the use of containers to solve this problem. Docker is the most

popular player in this field.

 Source Code Management, Test, and Deployment

Once you have running servers as targets, you can deploy application code to them.

That’s where code management (e.g., source control and review), testing, and

(eventually) deployment come in. There are quite a few options for all these services and

some of them are tied to the developer environment, especially testing.

Most microservice shops go to considerable lengths to automate this part of the

process. For example, the cloud platforms offers automation of testing and deployment

that starts as soon a developer checks in their code. The process of automation can be

involved and posting to production can be risky, so it is a good idea to treat this as a

shared service that all teams learn to use.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

55

 Data Storage

There are many data storage platforms available today, from classic SQL-based systems

to JSON document stores on through graph-style databases such as Neo4J.

It is usually not effective for large organizations to support all possible storage

technologies. It makes sense for your organization to focus on a select few storage

platforms and make those available to all your developer teams.

 Service Orchestration

The technology behind service orchestration or service interoperability is another one

that is commonly shared across all teams. There is a wide range of options here. Many of

the flagship microservice companies wrote their own orchestration platforms.

 Security and Identity

Platform-level security is another shared service. This often happens at the perimeter

via gateways and proxies. Shared identity services are sometimes actually external to the

company.

 Architectural Policy

Finally, along with shared security, sometimes additional policy services are shared.

These are services that are used to enforce company-specific patterns or models—often

at runtime through a kind of inspection or even invasive testing.

One example of policy enforcement at runtime is Netflix’s “Simian Army”—a set

of services designed to purposely cause problems on the network (simulate missing

packets, unresponsive services, etc.) to test the resiliency of the system.

Another kind of policy tooling is one that standardizes the way outages or other

mishaps are handled after the fact. These kinds of after-action reviews are sometimes

called postmortems. Whether in the form of runtime monitors or postmortem analysis,

policy services ensure that varying teams adhere to the same guidance on how to handle

both resiliency and security in their implementations.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

56

 Localized Capabilities
Localized capabilities are selected and maintained at the team or group level. One of the

primary goals of the local capabilities set is to help teams become more self-sufficient.

This allows them to work at their own pace and reduce the number of blocking factors

a team will encounter while they work to accomplish their goals. Also, it is common to

allow teams to make their own determination as to which developer tools, frameworks,

support libraries, config utilities, and so on, are best for their assigned job. Sometimes

these tools are selected from a curated set of “approved” products.

Most local capabilities services access and/or manipulate the shared service. Here’s

a list of the common local capabilities for microservice environments:

• General tooling—A key local capability is the power to automate

the process of rolling out, monitoring, and managing VMs and

deployment packages. Netflix created Asgard and Aminator for this.

A popular open source tool for this is Jenkins and Azure DevOps.

• Runtime configuration—A pattern found in many organizations

using microservices is the ability to roll out new features in a series

of controlled stages. This allows teams to assess a new release’s

impact on the rest of the system (are we running slower, is there an

unexpected bug in the release, etc.). Twitter’s Decider configuration

tool is used by a number of companies for this, including Pinterest,

Gilt, and Twitter. Facebook created their own tool called Gatekeeper

that does the same thing. Again, placing this power in the hands

of the team that wrote and released the code is an important local

capability.

• Service discovery—There are a handful of popular service discovery

tools, including Apache Zookeeper, CoreOS’ etcd, and HashiCorp’s

Consul. These tools make it possible to build and release services

that, upon install, register themselves with a central source, and then

allow other services to “discover” the exact address/location of each

other at runtime. This ability to abstract the exact location of services

allows various teams to make changes to the location of their own

service deployments without fear of breaking some other team’s

existing running code.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

57

• Request routing—Once you have machines and deployments up

and running and discovering services, the actual process of handling

requests begins. All systems use some kind of request-routing

technology to convert external calls (usually over HTTP, WebSockets,

etc.) into internal code execution (e.g., a function somewhere in

the codebase). The simplest form of request routing is just exposing

HTTP endpoints from a web server like Apache, Microsoft IIS,

NodeJS, and others. However, as service requests scale up, it is

common to “front” the web servers with specialized routing proxies

or gateways. Netflix created Zuul to handle their routing.

There are popular open source services like Netty (created by JBoss) and Twitter’s

Finagle.

• System observability—A big challenge in rapidly changing,

distributed environments is getting a view of the running instances—

seeing their failure/success rates, spotting bottlenecks in the

system, and so on. There are quite a few tools for this. Twitter

created (and open sourced) Zipkin for this task, and there are

other similar frameworks that provide visibility into the state of the

running system.

There is another class of observability tooling—those that do more

than report on system state. These tools actually take action when

things seem to be going badly by rerouting traffic, alerting key

team members, and so on. Netflix’s Hystrix is one of those tools. It

implements a pattern known as the Circuit Breaker to improve the

resiliency of running systems.

 Culture
Along with establishing goals and principles and arming your organization with the right

tools for managing platform, code, and runtime environments, there is another critical

foundation element to consider—your company culture. Culture is important because it

not only sets the tone for the way people behave inside an organization, but it also affects

the output of the group. The code your team produces is the result of the culture.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

58

But what is culture? Quite a bit has been written about culture in general—from

many perspectives including anthropological as well as organizational.

So, how does culture affect team output? And, if it does, what kinds of team culture

improve team performance and work quality? We’ll look at three aspects of culture that

you should consider as a foundation for your microservice efforts:

• Communication between teams: Research shows that the way your

teams communicate (both to each other and to other teams) has a

direct measurable effect on the quality of your software.

• Team alignment: The size of your teams also influences output.

More people on the team essentially means more overhead.

• Fostering innovation: Innovation can be disruptive to an

organization, but it is essential to growth and long-term success.

 Aligning Your Teams
Team alignment is important—it affects the quality of code. What can you do to take

advantage of this information? Using the information from the start of this chapter,

what “tunable” elements can you use to improve the alignment of your team structures

to meet your goals for increasing speed, resilience, and visibility for your microservice

efforts?

As the size of the group grows, the number of unique communication channels

grows in a nonlinear way. This instance of combinatorial explosion is a common

problem and needs to be kept in mind as you design your teams.

For example, Spotify, the Swedish music streaming company, relies on a team size

of around seven (what they call a squad). They also rely on an aggregate of several teams

that they call a tribe and reference There are several other factors in establishing your

teams—including responsibilities, deliverables, and skillsets—that need to be present

within a team.

 Fostering Innovation
A third important element in managing company culture is fostering innovation within

your organization. Many companies say they want to make innovative thinking common

within the organization. And the ability to take advantage of creative and innovative

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

59

ideas is sometimes cited as a reason to adopt a microservice approach to developing

software. So it makes sense to spend a bit of time exploring what innovation looks like

and how it can affect your organization.

A simple definition of innovate from Merriam-Webster’s dictionary is “to do

something in a new way; to have new ideas about how something can be done.” It’s

worth noting that being innovative is most often focused on changing something that is

already established. This is different than creating something new. Innovation is usually

thought of as an opportunity to improve what a team or company already has or is

currently doing.

A common challenge is that the innovation process can be very disruptive to

an organization. Sometimes “changing the way we do things” is a needless or even

threatening exercise—especially if the change will disrupt some part of the organization

(e.g., result in eliminating tasks, reducing workload, or even replacing whole teams). For

this reason, the act of innovating can be difficult. Another problem with innovation is

that the process often looks chaotic from the outside. Innovating can mean coming up

with ideas that might not work, that take time to get operating properly, or even start out

as more costly and time consuming than the current practice.

Yet, many organizations really want to encourage innovative work within their teams.

Companies we talked to enable innovation by adopting a few key principles. First,

they provide a level of autonomy to their teams. They allow teams to determine the best

way to handle details within the team. Netflix calls this the principle of “context, not

control.” Team leaders are taught to provide context for the team’s work and guidance on

meeting goals, but to not control what the team does.

Second, companies that foster innovation build in a tolerance for some level of

chaos. They operate with the understanding that it’s okay if some things look a bit

disorganized or messy. Of course, there are limits to this. Harvard Business Review’s

“Managing Innovation: Controlled Chaos” points out that “Effective managers

of innovation … administer primarily by setting goals, selecting key people, and

establishing a few critical limits and decision points for intervention.” Fostering

innovation means setting boundaries that prevent teams from taking actions that

threaten the health and welfare of the company and allowing teams to act on their own

within these safe boundaries.

Managing communication channels, aligning teams, and establishing a safe place

to innovate are all essential to enabling a successful culture that can take advantage of a

microservice-style approach to designing, implementing, and maintaining software.

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

60

 Summary
In this chapter, you learned the various design principles to derive at microservices. You

also saw these various patterns being used.

You also learned how other companies likes AWS and Netflix have created strong

patterns that you can leverage for your design and architecture for microservices.

The next chapter looks at microservices design patterns and shows how they are

applied to an example application.

 Appendix
https://netflixtechblog.com/the- netflix- simian- army- 16e57fbab116

https://www.thoughtworks.com/insights/blog/demystifying- conways- law

https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html

https://www.atlassian.com/agile/agile- at- scale/spotify

Chapter 2 MiCroserviCes: arChiteCting and design Considerations

https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://www.thoughtworks.com/insights/blog/demystifying-conways-law
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html
https://www.atlassian.com/agile/agile-at-scale/spotify

61
© Kasam Ahmed Shaikh and Shailesh S. Agaskar 2022
K. Ahmed Shaikh and S. S. Agaskar, Azure Kubernetes Services with Microservices,
https://doi.org/10.1007/978-1-4842-7809-3_3

CHAPTER 3

Microservices Design
Patterns
 Introduction
Now that you have gone through the architectural and organizational considerations

for assessing maturity and readiness for microservices, this chapter covers the design

patterns that are used with microservices.

A sample example explains these design patterns and shows how they apply to

microservices design.

 Service Design
One of the key elements—the one most everyone thinks of when talking about

microservice architecture—is the design of the actual microservice components

themselves. It is these autonomous services that make up the fabric of the microservice

system and do the actual work of implementing your solution strategy. Implementing

systems that contain many small service components is a challenge so I devote an entire

chapter to a set of tools and processes that can help you and your team take on the task.

In our experience working with various organizations and interviewing others, some

of the more challenging questions that teams adopting microservice architecture face

are how to properly size microservices (“how micro is micro?”) and how to properly

deal with data persistence in order to avoid sharing of data across services. These

two concerns are actually closely related. A mistake in optimal sizing often begets the

extraneous data-sharing problem, but the latter is especially problematic, operationally,

since it can create tight cross-service coupling and impede independent deployability, a

core value of the architectural style. Other topics that come up frequently when we talk

https://doi.org/10.1007/978-1-4842-7809-3_3#DOI

62

with people who are designing and implementing microservices are things like support

for asynchronous messaging, transaction modeling, and dealing with dependencies in

a microservice environment. Getting a handle on these elements will help you curb the

amount of additional (nonessential) complexity that creeps into your overall system.

And doing that can help you in your constant struggle to balance the two key factors in

any IT system: speed and safety.

This chapter covers microservice boundaries, looking at just how “micro” a service

should be and why. It will explore microservice interfaces (APIs), discussing the

importance of evolvable, message-oriented APIs for microservices and how they can

reduce intercomponent coupling. It will investigate effective data storage approaches

for microservices, exploring the power of shifting from data-centric and state-capturing

models toward capability-driven and event-sourcing-oriented ones.

The chapter also shows how the command query responsibility segregation (CQRS)

pattern can improve the granularity of data services, while maintaining sufficient speed

and safety.

By the time you get through this material, you should have a good understanding of

the challenges as well as the available patterns and practices you can use when it comes

to designing and building microservice components.

Let’s get started with the big one: “What is the optimal size of a microservice?”

 Microservice Boundaries
So just how micro should a microservice be? There is no simple answer to this question.

The things that first come to mind, such as lines of code in a microservice or the size

of a team working on one, are compelling, since they offer the chance to focus on a

quantifiable value (e.g., “The answer is 40”). However, the problem with these measures

is that they ignore the business context of what you are implementing. They don’t

address the organizational context of who is implementing the service and, more

importantly, how the service is being used within your system.

Instead of trying to find some quantity to measure, most companies focus on a

quality of each microservice—the use case or context in which the component will be

used. Many microservice adopters have turned to Eric Evans’ “domain-driven design”

(DDD) approach for a well-established set of processes and practices that facilitate

effective, business-context–friendly modularization of large complex systems.

Chapter 3 MiCroserviCes Design patterns

63

 Microservice Boundaries and Domain-Driven Design
Essentially, what we see people doing when they introduce the microservices way into

their companies is that they begin to decompose existing components into smaller

parts in order to increase their ability to improve the quality of the service faster without

sacrificing reliability.

There are many ways to decompose a large system into smaller subsystems. In one

case you may be tempted to decompose a system based on implementation technology.

For instance, you can say that all computationally heavy services need to be written

in C or Rust or Go (choose your own poison) and therefore they are a separate subsystem,

while I/O-heavy features could certainly benefit from the nonblocking I/O of a

technology such as Node.js and therefore they are a subsystem of their own. Alternatively,

you can divide a large system based on team geography: one subsystem may be written

in the United States, while others may be developed and maintained by software teams

in Africa, Asia, Australia, Europe, or South America. Intuitively, giving a self-contained

subsystem for development to a team that is in one place is well optimized.

Another reason you may decide to divide a system based on geography is that

specific legal, commercial, and cultural requirements of operating in a particular market

may be better understood by a local team. Can a software development team from

New York accurately capture all the necessary details of an accounting software that will

be used in Cairo?

A fresh approach to determining boundaries of subsystems in the context of a larger

system. The process, offers a model-centric view of software system design. As pointed

out, models are a great way to view a system. They provide an abstract way to look at

something—a way that highlights the things you are interested in. Models are a point

of view.

 It’s Only a Model
To understand the DDD approach, it is important to remember that any software

system is a model of a reality—it is not the reality itself. For instance, when you log in

to online banking and are looking at your checking account, you are not looking at the

actual checking account. You’re just looking at a representation—a model—that gives

you information about the checking account such as balance and past transactions. It’s

likely that the screen your bank teller sees when looking at your account has different

information because it’s another model of your account.

Chapter 3 MiCroserviCes Design patterns

64

Most large systems don’t actually have a single model. The overall model of a large

system is comprised of many smaller models that are intermingled. These smaller

models are organic representations of relevant business contexts—they make sense in

their context and when used within the context they are intuitive for a person who is the

subject matter expert of the context.

 Bounded Context
When working with models, teams need to be very careful when combining contextual

models to form a larger software system. Multiple models are in play on any large

project. Yet when code based on distinct models is combined, software becomes buggy,

unreliable, and difficult to understand. Communication among team members becomes

confused. It is often unclear in what context a model should not be applied. This concept

was thought of well before microservices term was coined.

Yet, the preceding quotation is an important observation about the nature of

modeling—if you try to rely on a single model (e.g., a canonical model) things become

difficult to understand. The microservices way attempts to break large components

(models) into smaller ones in order to reduce the confusion and bring more clarity

to each element of the system. As such, microservice architecture is an architectural

style that is highly compatible with the DDD way of modeling. To aid in this process

of creating smaller, more coherent components, the bounded contexts concept was

introduced. Each component in the system lives within its own bounded context, which

means the model for each component and these context models are only used within

their bounded scope and are not shared across the bounded contexts.

It is generally acknowledged that properly identifying bounded contexts in a system,

using DDD techniques, and breaking up a large system along the seams of those

bounded contexts is an effective way of designing microservice boundaries. If you use

the DDD and bounded contexts approaches, the chances of two microservices needing

to share a model and the corresponding data space, or ending up having tight coupling,

are much lower. Avoiding data sharing improves the ability to treat each microservice as

an independently deployable unit.

Using DDD and bounded contexts is an excellent process for designing components.

However, there is more to the story. You could actually use DDD and still end up

creating fairly large components. But large is not what you’re going for in a microservice

architecture. Instead, you’re aiming at small—micro, even. And that leads to an

important aspect of designing microservice components—smaller is better.

Chapter 3 MiCroserviCes Design patterns

65

 Smaller Is Better
The notion of work-unit granularity is a crucial one in many contexts of modern software

development. Whether defined explicitly or implicitly, you can clearly see the trend

showing up in such foundational methodologies as Agile Development, Lean Startup,

and Continuous Delivery, among others. These methodologies have revolutionized

project management, product development, and DevOps, respectively.

It is interesting to note that each one of them has the principle of size reduction at its

core: reducing the size or scope of the problem, reducing the time it takes to complete a

task, reducing the time it takes to get feedback, and reducing the size of the deployment

unit. These all fall into a notion we call “batch-size reduction.”

For example, here’s an excerpt from the Agile Manifesto:

Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.

—The Agile Manifesto, Kent Beck et al.

Basically, moving to Agile from Waterfall can be viewed as a reduction of the “batch

size” of a development cycle—if the cycle was taking many months in Waterfall, now you

strive to complete a similar batch of tasks: define, architect, design, develop, and deploy,

in much shorter cycles (weeks versus months). Granted, the Agile Manifesto lists other

important principles as well, but they only reinforce and complement the core principle

of “shorter cycles” (i.e., reduced batch size).

The principal benefits of Continuous Delivery, Martin Fowler is unambiguous

about the role of small batch sizes, calling it the precondition for a core benefit of the

methodology.

Once you adopt the notion of limited batch size from Agile, Lean, and Continuous

Delivery at the code, project, and deployment level, it makes sense to think about

applying it at the architecture level as well. And many of the companies we interviewed

have done this. After all, architecture is the direct counterpart to the other three

disciplines. So, in the simplest terms, this “limited batch size” is the “micro” in

microservice.

Just as in Agile, etc., there’s no simple, universal measure for determining just “how

small” a microservice should be (e.g., a quantity).

What people tell us is that they use the word “small” as a quality like “reliable” and

“coherent,” etc.

Chapter 3 MiCroserviCes Design patterns

66

 Ubiquitous Language
Just by stating a simple preference of “smaller is better,” you’ll immediately run into

a problem if bounded contexts are your only tool for sizing microservices, because

bounded contexts cannot actually be arbitrarily small. Here’s what one of the prominent

authorities in the space of DDD, Vaughn Vernon, had to say about the optimal size of a

bounded context:

In DDD, we need a shared understanding and way of expressing the domain specifics.

This shared understanding should provide business and tech teams with a common

language that they can use to collaborate on the definition and implementation of a

model. Just as DDD tells us to use one model within a component (the bounded context),

the language used within that bounded context should be coherent and pervasive—what

we in DDD call ubiquitous language.

From a purely technical perspective, the smaller the microservice the easier it

can be developed quicker (Agile), iterated on quicker (Lean), and deployed more

frequently (Continuous Delivery). But on the modeling side, it is important to avoid

creating services that are “too small.” According to Vernon, we cannot arbitrarily reduce

the size of a bounded context because its optimal size is determined by the business

context (model). The technical need for the size of a service can sometimes be different

(smaller) from what DDD modeling can facilitate. This is probably why Sam Newman,

very carefully, called bounded context analysis an “excellent start,” but not the sole

prescription for how to size microservices. And we completely agree. Bounded contexts

are a great start, but you need more tools in your toolbelt if you are to size microservices

efficiently.

 API Design for Microservices
When considering microservice component boundaries, the source code itself is only

part of the concern. Microservice components only become valuable when they can

communicate with other components in the system. They each have an interface

or API. Just as you need to achieve a high level of separation, independence, and

modularity of the code, you need to make sure that your APIs, the component interfaces,

are also loosely coupled. Otherwise, you can’t deploy two microservices independently,

which is one of the primary goals in order to balance speed and safety.

Chapter 3 MiCroserviCes Design patterns

67

There are two practices in crafting APIs for microservices worth mentioning here:

• Message-oriented

• Hypermedia-driven

 Message-Oriented
Just as you work to write component code that can be safely refactored over time, you

need to apply the same efforts to the shared interfaces between components. The most

effective way to do this is to adopt a message-oriented implementation for microservice

APIs. The notion of messaging as a way to share information between components dates

back to the initial ideas about how object-oriented programming would work.

All of the companies we talked with about microservice component design

mentioned the notion of messaging as a key design practice. For example, Netflix relies

on message formats like Avro, Protobuf, and Thrift over TCP/IP for communicating

internally and JSON over HTTP for communicating to external consumers (e.g., mobile

phones, browsers, etc.). By adopting a message-oriented approach, developers can

expose general entry points into a component (e.g., an IP address and port number) and

receive task-specific messages at the same time. This allows changes in message content

as a way of refactoring components safely over time. The key lesson learned here is

that for far too long, developers have viewed APIs and web services as tools to transmit

serialized “objects” over the wire. However, a more efficient approach is to look at a

complex system as a collection of services exchanging messages over a wire.

 Hypermedia-Driven
Some companies we spoke to are taking the notion of message-oriented to the next

level. They are relying on hypermedia-driven implementations. In these instances, the

messages passed between components contain more than just data. The messages

also contain descriptions of possible actions (e.g., links and forms). Now, not just the

data is loosely coupled—so are the actions. For example, Amazon’s API Gateway and

App- Stream APIs both support responses in the Hypertext Application Language

(HAL) format.

Chapter 3 MiCroserviCes Design patterns

68

Hypermedia-style APIs embrace evolvability and loose coupling as the core values

of the design style. You may also know this style as APIs with Hypermedia As The

Engine Of Application State (HATEOAS APIs). Regardless of the name used, if you are

to design proper APIs in microservice architecture, it helps to get familiar with the

hypermedia style.

Hypermedia style is essentially how HTML works for the browser. HTTP messages

are sent to an IP address (your server or client location on the Internet) and a port

number (usually “80” or “443”). The messages contain the data and actions encoded

in HTML format. For example, a message that contains information on an outstanding

shipment due to arrive at your office might look like this:

<html>

<head>

<title>Shipment #123</title>

</head>

<body>

<h1>Shipment #123</h1>

<div id="data">

ID: 123

Description: Widget Covers

Quantity: 1 Gross

Estimated Arrival: 2017-01-09

</div>

<div id="actions">

Refresh

Exit

<form method="get" action="...">

<input name="id" value="" />

<input type="submit" value="Search" />

</form>

</div>

</html>

The hypermedia API style is as transformative to the API space as object-oriented

design was for code design. A long time ago, we used to just write endless lines of

code (maybe lightly organizing them in functions), but then object-oriented design

Chapter 3 MiCroserviCes Design patterns

69

came by with a revolutionary idea: “what if we grouped the state and the methods that

operate on that state in an autonomous unit called an object, thus encapsulating data

and behavior?” In essence, hypermedia style has very similar approach but for API

design. This is an API style in which API messages contain both data and controls (e.g.,

metadata, links, forms), thus dynamically guiding API clients by responding with not just

static data but also control metadata describing API affordances (i.e., “what can I do with

this API?”).

Exposing affordances makes sense for services that communicate over the Web. If

you look at the Web as both the human-centric Web (websites consumed by humans)

and machine Web (APIs), you can see stark differences in how far behind the machine

Web is. When you load a web page on the human-centric Web, it doesn’t just give you

content (text, photos, videos, etc.)—most web pages also contain links to related content

or search menus: something you can interact with. Basically, web pages tell you, in the

response itself, what else you can do. Conventional Web APIs don’t do this.

Most contemporary RESTful (CRUD) APIs respond with just data and then you have

to go and read some documentation to find out what else can be done. Most people

would agree that it would be quite a ridiculous experience. The human Web wouldn’t be

very functional if the responses didn’t contain behavioral affordances. But that’s exactly

the case for most modern RESTful APIs. And, as a matter of fact, the data only approach

is quite as brittle and dysfunctional for the machine Web as the picture painted for the

human-centric Web, except we have gotten used to the unfortunate state of affairs.

Hypermedia APIs are more like the human Web: evolvable, adaptable, versioning

free—when was the last time you cared about what “version” of a website you are looking

at? As such, hypermedia-style APIs are less brittle, more discoverable, and fit right at

home in a highly distributed, collaborative architectural style such as microservices.

 Data and Microservices
As software engineers, we have been trained to think in terms of data, first and foremost.

To give the simplest example, it has pretty much been ingrained in our “muscle

memory,” or whatever the mental equivalent of one is, to start system design by first

designing the pertinent data models. When asked to build an application, the very first

task most software engineers will complete is identifying entities and designing database

tables for data storage. This is an efficient way of designing centralized systems and

whole generations of programmers have been trained to think this way. But data-centric

Chapter 3 MiCroserviCes Design patterns

70

design is not a good way to implement distributed systems—especially systems that rely

on independently deployable microservices. The biggest reason for this is the absence

of strong, centralized, uniform control over the entire system in the case of distributed

systems, which makes a formerly efficient process inefficient.

The first step in breaking the data-centric habit is to rethink our system designs. It

turns out that capabilities-centric design is more suitable for microservices than a more

traditional, data-centric design.

 Shipping Company Example
Assume that you are designing a microservice architecture for a fledgling shipment

company, aptly named Shipping Company. As a parcel-delivery company, they need to

accept packages, route them through various sorting warehouses (hops on the route),

and eventually deliver to the destination. Because it is 2021 and the company is very

tech-savvy, Shipping Company is building native mobile applications for a variety of

platforms to let customers track their packages all the way from pickup to final delivery.

These mobile applications will get the data and functionality they need from a set of

microservices.

Let’s imagine that Shipping Company’s accounting and sales subsystems

(microservices) need access to daily currency exchange rates to perform their

operations. A datacentric design would create a table or set of tables in a database that

contain exchange rates. Then we would let various subsystems query our database to

retrieve the data.

This solution has significant issues—two microservices depend on the design of

the shared table and data in it, leading to tight coupling and impeding independent

deployment.

If instead, we had viewed “currency exchange rates” as a capability and had

built an independent microservice (currency rates) serving the sales and accounting

microservices, we would have had three independent services, all loosely coupled and

independently deployable. Furthermore, since, by their nature, APIs in services hide

implementation details, we can completely change the data persistence supporting the

currency rates service (e.g., from MySQL to Cassandra, if scalability became an issue)

without any of the service’s consumers noticing the change or needing to adjust. Last

but not least, since services (APIs) are able to put forward alternative interfaces to its

Chapter 3 MiCroserviCes Design patterns

71

various consumers, we can easily alter the interface that the currency rates microservice

provides to the sales microservice, without affecting the accounting microservice, thus

fulfilling the promise of independent evolution, a necessity for independent deployment.

Thinking in terms of capabilities rather than data is a very powerful technique for

API design, in general. It usually results in a more use-case-oriented interface (instead

of an SQL-like data-object interface). A capabilities-centric API design is usually a good

approach, but in the case of microservices it is not just a smart design technique, it’s a

powerful way of avoiding tight coupling. You just saw evidence of this.

Much like bounded context analysis, capabilities-oriented design is a crucial

technique but not enough to ensure independent deployment for all use cases. Not every

example is as simple as the currency rates one. You cannot always encapsulate shared

data inside a microservice and call it a day. For example, a common use case that cannot

be solved with encapsulated capabilities is that of reporting. Any business application

requires a certain level of reporting. And reporting often spans across multiple models,

bounded contexts, and capabilities. Should reporting-oriented microservices be allowed

to share tables with other microservices? The obvious answer is no, because that would

immediately create severe tight coupling of services all around the system, and at the

very least undermine (if not completely kill) independent deployment.

Let’s see what techniques you can use to avoid data-sharing in complex use cases.

The first one is event sourcing, a powerful data-modeling methodology that can help you

avoid data-sharing in microservices, even in very complicated cases. The second, related

methodology is CQRS—command query responsibility segregation.

 Event Sourcing
Recall that there are some deeply ingrained software engineering habits that greatly

affect the way people typically approach systems engineering. One of the most

widespread of those habits is structural data modeling. It has become very natural for

developers to describe models as collections of interacting logical entities and then to

map those logical entities to physical tables where the data is stored. More recently,

people have started using NoSQL and object stores that take them slightly away from

the relational world, but in essence the approach is still the same: you design structural

entities that model objects around you and then “save” the object’s state in a database

store of some kind. Whether storage happens in table rows and columns, serialized

as JSON strings, or as object graphs, you are still performing CRUD-based modeling.

Chapter 3 MiCroserviCes Design patterns

72

But this is not the only way to model the world. Instead of storing structures that model

the state of the world, you can store events that lead to the current state of the world.

This modeling approach is called event sourcing.

It is fair to note that for most software developers used to structural data modeling,

event sourcing will initially sound alien and, maybe, even somewhat weird.

But it really isn’t. For one thing, event sourcing is not some bleeding-edge, untested

theory dreamed up to solve problems in microservices. Event sourcing has been used in

the financial industry with great success, independent of any microservice architecture

association.

In addition, the roots and inspiration for event sourcing go way beyond

microservices, the Internet itself, or even computers—all the way back to financial

accounting and the paper-and-pen ledgers that contain a list of transactions, and never

just the end value (“state”) of a balance. Think of your bank account: there’s a balance

amount for your checking and savings accounts, but those are not first-class values that

banks store in their databases. The account balance is always a derivative value; it’s a

function.

More specifically, the balance is the sum of all transactions from the day you opened

your account.

To dispute your current balance, your bank won’t go to the error, which is very

system specific and raw. Instead, they will print out all relevant transactions for you (or

point you to online banking where you can do it yourself) and let you verify that the

result of the transactions should indeed equal the balance value displayed. If you do find

an error with any of the transactions, the bank will issue a “compensating transaction”

to fix the error. This is another crucial property of event sourcing: much like in life, we

can never go back in time and change the past. We can only do something in the present

to compensate for the mistakes of the past. In event sourcing, data is immutable—we

always issue a new command/event to compensate rather than update a state of an

entity, as we would do in a CRUD style.

When event sourcing is introduced to developers, the immediate concern is usually

performance. If any state value is a function of events, we may assume that every access

to the value would require recalculation of the current state from the source events.

Obviously that would be extremely slow and generally unacceptable. Fortunately, in

event sourcing, we can avoid such expensive operations by using a so-called rolling

snapshot—a projection of the entity state at a given point in time. Depending on the

Chapter 3 MiCroserviCes Design patterns

73

event source implementation, it is common to snapshot intermediary values at various

time points. For instance, you may precalculated your bank account balance on the last

day of every month, so that if you need the balance on January 15, 2021 you will already

have it on December 31, 2020 and will just need to calculate the projection for two

weeks, instead of the entire life of the bank account. The specifics of how you implement

rolling snapshots and projections may depend on the context of your application.

Despite its accounting roots, event sourcing is not only relevant to just financial

use cases. The rest of this chapter uses a business scenario as far from banking and

accounting as you could imagine—shipment and delivery of goods.

As a parcel-delivery company, Shipping Company needs to accept packages, route

them through various sorting warehouses (hops on the route), and eventually deliver

them to their destinations.

A representative data model for this system executed in structural style is shown in

Figure 3-1.

Figure 3-1. Data model for Shipping Company using the “current state” approach

The corresponding events-based model is shown in Figure 3-2.

Chapter 3 MiCroserviCes Design patterns

74

Figure 3-2. Flow of Data model for Shipping Company with event sourcing

As you can see, the structural model strives to only save the current state of the

system, while the event sourcing approach saves individual “facts.” State, in event

sourcing, is a function of all the pertinent facts that occurred. Not only does this give you

full auditability (as demonstrated in the case when you called your bank to dispute the

balance), you can also build state projections toward any time in the past, not just the

“now.” Would you like to know where all the packages were on Wednesday? No problem

with event sourcing! Answering this question would be more difficult with the structural

model, since it would require special coding.

If you enjoy noticing patterns in seemingly unrelated things the way we do, we urge

you to take another look at the two diagrams. You may notice how every entity in the

structural model is a “snowflake” (i.e., it has a unique “shape,” in terms of properties and

relationships and was attentively crafted to represent differing real-life concepts).

Chapter 3 MiCroserviCes Design patterns

75

In contrast, events in an event store all look the same from the outside. This is a very

similar view to another technology closely related to microservices: containers. Indeed,

for the container host (e.g., a Docker host), all containers look alike—the host doesn’t

“care” what is inside a container, it knows how to manage the lifecycle of a container

independent of the contents of the container. In contrast, custom-installed enterprise

applications have all kinds of peculiar “shapes” and environmental dependencies that

the host must ensure exist (e.g., shared libraries the application expects).

The “indifference to shape and contents” approach seems to be a trend in modern

technologies, as we can see the same pattern in SQL versus NoSQL storage. It is very

reminiscent, in its tendency to show up under multiple contexts, of the “batch-size

reduction” trend we noticed earlier while looking at different modern methodologies

across multiple disciplines (e.g., project management, product development, operations,

and architecture). We love this—when the same pattern emerges in multiple places, we

can use our understanding of the pattern to identify or predict “next big thing.”

But let’s get back to microservices. You dipped your toes in a data-modeling

technology called event sourcing and noted some of its benefits compared to

conventional, structural modeling, but how exactly does it help you solve the data

isolation and encapsulation challenges of microservice architecture? As it turns

out, you need one more design pattern, CQRS, to complement event sourcing and

you will be well on your way toward being able to design effective data storage for

microservices with data persistence models that can avoid data sharing at even very

small microservice sizes.

 System Model for Shipping Company
As noted earlier, a good start for a microservice system design is to identify bounded

contexts in the system. Figure 3-3 shows a context map for key bounded contexts in this

problem space.

Chapter 3 MiCroserviCes Design patterns

76

Figure 3-3. High-level context map for the Shipping Company microservice
architecture

What are the capabilities of the three contexts and some of the data flows between

the contexts, depicted by the arrows and numbers on the graph? They are as follows:

 1. Customer Management creates, edits, and enables/disables

customer accounts, and can provide a representation of a

customer to any interested context.

 2. Shipment Management is responsible for the entire lifecycle of

a package, from drop-off to final delivery. It emits events as the

package moves through sorting and forwarding facilities, along

the delivery route.

 3. Shipment Tracking is a reporting application that allows end users

to track their shipments on their mobile device.

If you were to implement a data model of this application using a traditional,

structural, CRUD-oriented model, you would immediately run into data sharing

and tight coupling problems. Indeed, notice that the Shipment Management and

Shipment Tracking contexts will have to query the same tables, at the very least the ones

containing the transitions along the route. However, with event sourcing, the Shipment

Management bounded context (and its corresponding microservice) can instead record

Chapter 3 MiCroserviCes Design patterns

77

events/commands and issue event notifications for other contexts and those other

contexts will build their own data indexes (projections), never needing direct access to

any data owned and managed by the Shipment Management microservice.

The formal approach to this process is described in a pattern called CQRS.

 CQRS
Command query responsibility segregation is a design pattern that states that you

can (and sometimes should) separate data-update versus data-querying capabilities

into separate models. It tracks its ancestry back to a principle called command–query

separation CQRS takes this concept a large step further, instructing you to use entirely

different models for updates versus queries. This seemingly simple statement often turns

out to be powerful enough to save the day, especially in the complicated case of the

reports-centric microservices we mentioned earlier in this chapter.

Since reports usually need to aggregate and contrast data generated in different parts

of a large system, they often need to span multiple subsystems and bounded contexts

and almost always require access to data from multiple contexts. But it is only so if

you assume you have a single model for any entity, where you both query and update

the entity. If you instead use CQRS, the need to access data across multiple contexts

(and related problems) can be eliminated. With CQRS, the Shipment Management

microservice can “own” and encapsulate any updates related to package delivery,

just notifying other contexts about events occurring. By subscribing to notifications

of these events, a reporting service such as Shipment Tracking can build completely

independent, query-optimized models that don’t need to be shared with any other

service.

As you can see in Figure 3-4, thanks to CQRS, you are able to separate the data

models of the Shipment Management and Tracking microservices. In fact, Shipping

Management doesn’t even need to know about the existence of the Tracking

microservice, and the only thing the Tracking microservice relies on is a stream of events

to build its query index. During runtime the Tracking microservice only queries its own

index. Furthermore, the Tracking microservice can include event and command data

from other microservices using the same flow, keeping its independence and loose

coupling.

Chapter 3 MiCroserviCes Design patterns

78

Figure 3-4. Data flow in command-query responsibility segregation (CQRS)-
based model for Shipping Company

The big win with using event sourcing and CQRS is that they allow you to design very

granular, loosely coupled components. With bounded contexts, the boundaries have to

align with business capabilities and subdomain boundaries. With event sourcing, you

can literally create microservices so tiny that they just manage one type of event or run a

single report. Targeted use of event sourcing and CQRS can take you to the next level of

autonomous granularity in microservice architecture. As such, they play a crucial role in

the architectural style.

Do not overuse event sourcing and CQRS. You should only use event sourcing and

CQRS when necessary, since they will complicate your implementation. Event sourcing

and CQRS are not an “architecture” for your entire system, rather they are a powerful

toolset to be used sparingly. There is still many use cases in which the conventional,

CRUD-based model is much simpler and should be preferred.

Chapter 3 MiCroserviCes Design patterns

79

 Distributed Transactions and Sagas
The shared data model is not the only use case that can introduce tight coupling

between microservices. Another important threat is workflows. A lot of real-life

processes cannot be represented with a single, atomic operation, since they are a

sequence of steps. When you are dealing with such workflows, the result only makes

sense if all the steps can be executed. In other words, if any step in the sequence fails,

the resulting state of the relevant system becomes invalid. You probably recognize this

problem from RDBMS systems, where such processes are called “transactions.” However,

database transactions are local, contained within the confines of a single database where

their implementations predominantly rely on the use of a shared state (i.e., you put locks

on the rows and tables that participate in a transaction, guaranteeing data consistency).

Once the transaction is fully executed you can remove the locks, or if any step of the

transaction steps fails, you can roll back the steps already attempted.

For distributed workflows and share-nothing environments (and microservice

architecture is both of those), you cannot use traditional transaction implementations

with data locks and ACID compliance, since such transactions require shared data and

local execution. Instead, an effective approach many teams use is known as “sagas”.

Sagas were designed for long-lived, distributed transactions by Hector Garcia-Molina

and Kenneth Salem, and introduced in 1987 (yes, way before microservices or even the

Web) during their work at Princeton University.

Sagas are very powerful because they allow running transaction-like, reversible

workflows in distributed, loosely coupled environments without making any

assumptions on the reliability of each component of the complex system or the overall

system itself. The compromise here is that sagas cannot always be rolled back to the

exact initial state of the system before the transaction attempt. But you can make a

best effort to bring the system to a state that is consistent with the initial state through

compensation.

In sagas, every step in the workflow executes its portion of the work, registers a

callback to a “compensating transaction” in a message called a “routing slip,” and passes

the updated message down the activity chain. If any step downstream fails, that step

looks at the routing slip and invokes the most recent step’s compensating transaction,

passing back the routing slip. The previous step does the same thing, calling its

predecessor compensating transaction and so on until all already executed transactions

Chapter 3 MiCroserviCes Design patterns

80

are compensated. for example: let’s say a customer mailed a prepaid cashier’s check

for $100 via Shipping Company’s insured delivery. When the courier showed up at the

destination, they found out that the address was wrong and the resident wouldn’t accept

the package.

Thus, Shipping Company wasn’t able to complete the transaction. Since the package

was insured, it is Shipping Company’s responsibility to “roll back” the transaction and

return the money to the sender. With ACID-compliant transactions, Shipping Company

is supposed to bring the exact $100 check back to the original sender, restoring the

system state to its exact initial value. Unfortunately, on the way back the package was

lost. Since Shipping Company. could no longer “roll back” the transaction, they decided

to reimburse the insured value of $100 by depositing that amount into the customer’s

account. Since this was an active, long-time Shipping Company. customer and a

rational human being, they didn’t care which $100 was returned to them. The system

didn’t return to its exact initial state, but the compensating transaction brought the

environment back to a consistent state. This is basically how sagas work.

Due to its highly fault-tolerant, distributed nature, sagas are very well-suited to

replace traditional transactions when transactions across microservice boundaries are

required in a microservice architecture. If you want to learn more about sagas and see

working code implementing a very expressive example, refer to the link https://docs.

microsoft.com/en- us/azure/architecture/reference- architectures/saga/saga

 Asynchronous Message-Passing and Microservices
Asynchronous message-passing plays a significant role in keeping things loosely

coupled in a microservice architecture. You probably noticed that in one of the examples

earlier in this chapter, we used a message broker to deliver event notifications from

our Shipment Management microservice to the Shipment Tracking microservice

in an asynchronous manner. That said, letting microservices directly interact with

message brokers (such as RabbitMQ, etc.) is rarely a good idea. If two microservices are

directly communicating via a message-queue channel, they are sharing a data space

(the channel), which you have learned is not a good idea. Instead, what you can do is

encapsulate message-passing behind an independent microservice that can provide

message-passing capability, in a loosely coupled way, to all interested microservices.

Chapter 3 MiCroserviCes Design patterns

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

81

The message-passing workflow you are most interested in, in the context of

microservice architecture is a simple publish/subscribe workflow. How do you

express it as an HTTP API/microservice in a standard way? We recommend basing

such a workflow on an existing standard, such as PubSubHubbub. Now to be fair,

PubSubHubbub wasn’t created for APIs or hypermedia APIs, it was created for RSS and

Atom feeds in the blogging context. That said, you can adapt it relatively well to serve a

hypermedia API-enabled workflow. To do so, you need to implement a flow like the one

shown in Figure 3-5.

Figure 3-5. Asynchronous message-passing implemented with a Pub-Sub-
Hub- Bub inspired flow

You also need to standardize some hypermedia affordances:

This refers to a hub that enables registration for notification of updates to the

context:

rel="hub"

This gives the address of the pingback resource for the link context:

rel="pingback"

When included in a resource representation of an event, the "sub" (subscription)

link relation may identify a target resource that represents the ability to subscribe to the

pub/sub event-type resource in the link context:

rel="sub"

Chapter 3 MiCroserviCes Design patterns

82

When included in a resource representation of an event, the "unsub" (subscription

cancellation) link relation may identify a target resource that represents the ability to

unsubscribe from the pub/sub event-type resource in the link context.

rel="unsub"

This is a resource representation of a subscribable events:

rel="event"

This is a link to a collection resource representing a list of subscribe events:

rel="events"

 Dealing with Dependencies
Another important topic related to independent deploy ability is embedding

dependencies. Imagine that Shipping Company’s currency rates microservice is being

hammered by user queries and requests from other microservices. It would cost you

much less if you hosted that microservice in a public cloud rather than on expensive

servers of your corporate data center. But it doesn’t seem possible to move the

microservice to another host, if it stores data in the same SQL or NoSQL database system

as all other microservices.

Note that data tables are not shared, just the installation of the database

management system. It seems like the logical conclusion is that you cannot have any

microservice share even the installation of a data storage system. Some may argue that

a microservice needs to “embed” every single dependency it may require, so that the

microservice can be deployed wherever and whenever, without any coordination with

the rest of the system.

A strict requirement of full dependency embedding can be a significant problem,

since for decades we have designed our architectures with centralized data storage, as

shown in Figure 3-6.

Chapter 3 MiCroserviCes Design patterns

83

Figure 3-6. Components using a centralized pool of dependencies

Centralized data storage is operationally convenient: it allows dedicated, specialized

teams (DBAs, sysadmins) to maintain and fine-tune these complex systems, obscuring

the complexity from the developers.

In contrast, microservices favor embedding of all their dependencies, in order to

achieve independent deployment. In such a scenario, every microservice manages and

embeds its database, key-value store, search index, queue, and so on. Then moving this

microservice anywhere becomes trivial. This deployment would look like Figure 3-7.

Chapter 3 MiCroserviCes Design patterns

84

Figure 3-7. Components using fully embedded, isolated dependencies

Chapter 3 MiCroserviCes Design patterns

85

The postulate of wholesale embedding of (data storage) dependencies looks

beautiful on the surface, but in practice it is extremely wasteful for all but the simplest

use cases. It is obvious that you will have a very hard time embedding entire Cassandra,

Oracle, or Elasticsearch clusters in each and every microservice you develop.

Especially if you are far down the microservices journey and possibly have hundreds of

microservices. This is just not doable. Neither is it necessary.

A microservice doesn’t have to carry along every single dependency (such as a data

storage system) in order to be mobile and freely move across the data centers.

In his previous job, one of us (Irakli) traveled a lot for work. He’d acquired important

tips for doing it efficiently—tips that he was completely indifferent to during his previous

life as a casual traveler. As any frequent traveler will tell you, the most important rule

for mobility is to keep your luggage light. You don’t have to pack literally everything you

may possibly need. For example, nobody packs shower-heads and towels on a business

trip: you know you will find those at the hotel. If you know that the destination hotel

has a convenience shop and your employer pays for incidentals, you don’t even have

to pack most toiletries. Irakli learned what he could count on being available “onsite”

and what he needed to always bring with him. And, to pack light, he learned to limit his

“dependencies” on a lot of things that were not needed as part of his packing routine.

Likewise, the trick to microservice mobility is not packing everything but instead

ensuring that the deployment destination provides heavy assets, such as database

clusters, in a usable and auto-discoverable form at every destination where a

microservice may be deployed. Microservices should be written so that they can quickly

discover those assets upon deployment and start using them.

To be clear: data sharing between microservices is still the ultimate no-no. Sharing

data creates tight coupling between microservices, which kills their mobility. However,

sharing a database cluster installation is okay, given that each microservice only accesses

isolated, namespaced portions of it.

 Pragmatic Mobility
Figure 3-8 shows what a proper, sophisticated microservices deployment should look

like in practice.

Chapter 3 MiCroserviCes Design patterns

86

Figure 3-8. Pragmatic approach: Components using a centralized pool of
dependencies, without sharing data spaces

If you decide to move Microservice 1 to another data center, it will expect that the

new data center also has a functioning Cassandra cluster with a compatible version

(in the earlier metaphor, the hotel provides towels you can use), but it will find a

way to move its slice of data and won’t depend on the existence or state of any other

microservice at the destination, as mentioned in Figure 3-9.

Chapter 3 MiCroserviCes Design patterns

87

Figure 3-9. Pragmatic approach: Microservice 1’s move to different data center
made possible without data sharing

Microservices do not have to “travel” heavy and pack everything they may possibly

require. In complex cases it is fine to have some reasonable expectations about the

destination environment, especially when it comes to complex data-storage capabilities.

The most important question you need to ask, when deciding on embedding

dependencies versus “expecting” traits in an environment, is will the decision increase

or decrease mobility? The goal is to maximize deployment mobility of a microservice,

which may mean different things in different contexts.

This chapter explained the overarching role of the “batch-size reduction” technique

for systems engineering, when achieving both speed and safety at scale is the desired

outcome.

Chapter 3 MiCroserviCes Design patterns

88

It also demonstrated that at certain levels of granularity architects may require

additional patterns, on top of the ones in domain-driven design, such as event sourcing,

CQRS, and Sagas. It showed how these patterns can substantially alter your perspective

on model design and how that can lead to more loosely coupled services, with the

services being split delivering unique functionality.

Last, but not least, microservices are APIs, so going beyond code, implementation,

and deployment considerations, a significant portion of the chapter is dedicated to

explaining unique interface design needs for APIs that constitute a microservice.

 System Design and Operations
The benefits of adopting a microservice architecture don’t necessarily come free—they

can shift complexity into operations. Teams adopting a microservice architecture are

expected to have a certain level of infrastructure automation and operational maturity to

be successful. Let’s see what this means in practical terms.

This chapter reviews the key concepts of microservice operations such as

independent deployment, the role of containers in cost-efficient deployments, and

specifically, what role Docker can play in microservices, service discovery, security,

routing, transformation, and orchestration. Taken together, these topics will give you a

solid foundation for understanding, designing, and executing microservice architecture’s

operational needs.

 Independent Deployability
One of the core principles of the microservice architectural style is the principle of

independent deployability—that is, each microservice must be deployable completely

independent of any other microservice. Some of the most important benefits of the

architectural style rely on faithful adherence to this principle.

Independent deployment allows you to perform selective or on-demand scaling; if a

part of the system (e.g., a single microservice) experiences high load, you can redeploy

or move that microservice to an environment with more resources, without having to

scale up hardware capacity for the entire, typically large, enterprise system. For many

organizations, the operational ability of selective scaling can save large amounts of

money and provide essential flexibility.

Chapter 3 MiCroserviCes Design patterns

89

As a parcel-delivery company, Shipping Company needs to accept packages, route

them through various sorting warehouses (hops on the route), and eventually deliver

them to their destinations.

Let’s consider an example of selective scaling for Shipping Company. This company

stores and operates sensitive customer information including demographic and

financial data for its customers. Shipping Company collects credit card information and,

as such, falls under the auditing requirements of strict government regulation.

For security reasons, Shipping Company deploys sensitive parts of the

implementation at an on-premise data center, but its CTO would still like to utilize

“cloud computing,” for cost and scalability reasons, when possible.

Scaling hardware resources on-premise can be extremely costly—you must buy

expensive hardware in anticipation of the usage rather than in response to actual usage.

At the same time, the part of the application that gets hammered under load and needs

scaling may not contain any sensitive client or financial data. It can be something as

trivial as an API returning a list of U.S. states or an API capable of converting various

currency rates. The chief architect of Shipping Company is confident that their security

team will easily allow deployment of such safe microservices to a public/ private cloud,

where scaling of resources is significantly cheaper. The question is—could they deploy

part of an application to a separate data center, a cloud-based one, in this case? The

way most, typically monolithic, enterprise systems are architected, deploying selective

parts of the application independently is either very hard or practically impossible.

Microservices, in contrast, emphasize the requirement of independent deployment to

the level of core principle, thus giving you much needed operational flexibility.

On top of operational cost saving and flexibility, another significant benefit of

the independent deployment is an organizational one. Two different teams would

be responsible for the development of separate microservices (e.g., Customer

Management and Shipment Management). If the first team, which is responsible for

the Customer Management microservice, needs to make a change and rerelease, but

Customer Management cannot be released independent of the Shipment Management

microservice, you now need to coordinate Customer Management’s release with

the team that owns Shipment Management. Such coordination can be costly and

complicated, since the latter team may have completely different priorities from the

team responsible for Customer Management. Often the necessity of such coordination

will delay a release. Now imagine that, instead of just a handful, you potentially have

Chapter 3 MiCroserviCes Design patterns

90

hundreds of microservices maintained by dozens of teams. Release coordination

overhead can be devastating for such organizations, leading to products that ship with

significant delays or sometimes become obsolete by the time they can be shipped.

 Do You Need More Servers?
To ensure independent deployment, you need to develop, package, and release every

microservice using an autonomous, isolated unit of environment. But what does

“autonomous, isolated unit of environment” mean in this context? What are some

examples of such units of environment? Let’s assume you are developing a service

application. At first glance, something like Service application file may seem like an

appropriate unit of encapsulation and isolation.

After all, that’s what these packaging formats were designed for—to distribute a

collection of executable code and related resources that together form an independent

application, within the context of an application server.

Lightweight packaging solutions—such as NPM modules (for Node) or PIP packages

(for Python)—don’t provide enough modularity and the level of isolation required for

microservices. Service deployment files still share system resources like disk, memory,

shared libraries, the operating system, and so on. They may also expect specific versions

of OS libraries in the environment. As any experienced sysadmin or DevOps engineer

knows, one application’s environmental expectations can be drastically different from

another’s, leading to version and dependency conflicts if you need to install both

applications on the same server. One of the core motivations of adopting a microservice

architecture is to avoid the need for complex coordination and conflict resolution, thus

packaging solutions that are incapable of avoiding such interdependencies are not

suitable for microservices. You need a higher level of component isolation to guarantee

independent deployment.

What if you deployed a microservice per physical server or per virtual machine?

Well, that would certainly meet the high bar of isolation demanded by microservices, but

what would be the financial cost of such a solution? For companies that have been using

microservice architecture for several years, it is not uncommon to develop and maintain

hundreds of microservices. Let’s assume you work at a mature microservices company

with about 500 microservices. To deploy these microservices in a reliable, redundant

manner you will need at least three servers/VMs per each microservice, resulting in

Chapter 3 MiCroserviCes Design patterns

91

1,500 servers just for the production system. Typically, most companies run more than

one environment (QA, stage, integration, etc.), which quickly multiplies the number of

required servers.

Here comes the bad news: thousands of servers cost a lot. Even if you use VMs and

not physical servers, even in the “cheapest” cloud-hosting environment the budget for

a setup utilizing thousands of servers would be significantly high, probably higher than

what most companies can afford or would like to spend. And then there’s that important

question of development environments. Most developers like to have a working,

complete, if scaled down, model of the production environment on their workstations.

How many VMs can you realistically launch on a single laptop or desktop computer?

Maybe five or ten, at most? Not hundreds or thousands. So, what does this quick, on-

a- napkin-style calculation of microservices hosting costs mean? Is a microservice

architecture simply unrealistic and unattainable, from an operational perspective? It

probably was, for most companies, some number of years ago. And that’s why you see

larger companies, such as Amazon and Netflix, being the pioneers of the architectural

style—they were the few who could justify the costs.

Things, however, have changed significantly in recent years.

 Microservice Architecture Is a Product of Its Time
We often get asked—what is the fundamental difference between microservice

architecture and service-oriented architecture, especially given that so many underlying

principles seem similar? We believe that the two architectural styles are creations of

their respective eras, roughly a decade apart. In those 10 years the industry has gotten

significantly more skilled in effective ways of automating infrastructure operations.

Microservice architecture is leveraging the most advanced achievements in DevOps

and continuous delivery, making the benefits of the architectural style available and

cost-effective to much wider audiences than just a handful of large early adopters like

Amazon or Netflix.

The reason microservice architecture is financially and operationally feasible has a

lot to do with containers.

The deployment unit universally used for releasing and shipping microservices is

a container. If you have never used containers before, you can think of a container as

of an extremely lightweight “virtual machine.” The technology is very different from

that of conventional VMs. It is based on a Linux kernel extension (LXC) that allows

Chapter 3 MiCroserviCes Design patterns

92

running many isolated Linux environments (containers) on a single Linux host sharing

the operating system kernel, which means you can run hundreds of containers on a

single server or VM and still achieve the environment isolation and autonomy that is

on par with running independent servers, and is therefore entirely acceptable for our

microservices needs.

Containers will not be limited to just Linux; there are containers now coming from

Microsoft Windows to be deployed .Containers provide a modern isolation solution with

practically zero overhead. While you cannot run more than a handful of conventional

VMs on a single host, it is completely possible to run hundreds of containers on a single

host. Currently the most widely deployed container toolset is Docker, so in practice

Docker and containers have become somewhat synonymous. In reality, there are other

up-and-coming container solutions, which may gain more prominence in the future.

 Docker and Microservices
This section discusses Docker, as it is the container toolset most widely deployed in

production today. However, as mentioned, alternative container solutions exist in

varying stages of production readiness. Therefore, most things in this section should be

understood as relevant to containers in general, not just Docker specifically.

At the beginning of 2016, most microservices deployments were practically

unthinkable without utilizing Docker containers. We have discussed some of the

practical reasons for this. That said, you shouldn’t think of Docker or containers as tools

designed just for the microservice architecture.

Containers in general, and Docker specifically, certainly exist outside microservice

architecture. As a matter of fact, if you look at the current systems operations landscape

you can see that the number of individuals and companies using containers many

times exceeds those implementing microservice architecture. Docker in and of itself is

significantly more common than the microservice architecture.

Containers were not created for microservices. They emerged as a powerful response

to a practical need: technology teams needed a capable toolset for universal and

predictable deployment of complex applications. Indeed, by packaging the application

as a Docker container, which assumes pre-bundling all the required dependencies at the

correct version numbers, you can enable others to reliably deploy it to any cloud or on-

premise hosting facility, without worrying about target environment and compatibility.

Chapter 3 MiCroserviCes Design patterns

93

The only remaining deployment requirement is that the servers should be Docker-

enabled, in most cases. In comparison, if you just gave somebody your application as

an executable, without pre-bundled environmental dependencies, you would be setting

them up for a load of dependency pain. Alternatively if you wanted to package the same

software as a VM image, you would have to create multiple VM images for several major

platforms, since there is no single, dominant VM standard currently adopted by major

players.

But compatibility is not the only win; there’s another benefit that is equally, if not

more, important when you consider containers versus VM images. Linux containers

use a layered filesystem architecture known as union mounting. This allows a great

extensibility and reusability not found in conventional VM architectures. With

containers, it is trivial to extend your image from the “base image.” If the base image

updates, your container will inherit the changes at the next rebuild. Such a layered,

inheritable build process promotes a collaborative development, multiplying the efforts

of many teams. Centralized registries, discovery services, and community oriented

platforms such as Docker Hub and GitHub further facilitate quick adoption and

education in the space.

As a matter of fact, we could easily turn the tables and claim that it is Docker that will

be driving the adoption of microservices instead of vice versa. One of the reasons for this

claim is that Docker puts significant emphasis on the “UNIX philosophy” of shipping

containers, i.e., “do one thing, and do it well.” Indeed, this core principle is prominently

outlined in the Docker documentation itself:

Run only one process per container. In almost all cases, you should only run a single

process in a single container. Decoupling applications into multiple containers makes it

much easier to scale horizontally and reuse containers.

—Docker documentation

With such principles at its core, Docker philosophy is much closer to the

microservice architecture than a conventional, large monolithic architecture. When you

are shooting for “doing one thing” it makes little sense to containerize your entire, huge,

enterprise application as a single Docker container. Most certainly you would want to

first modularize the application into loosely coupled components that communicate

via standard network protocols, which is what the microservice architecture delivers. As

such, if you start with a goal of containerizing your large and complex application you

will likely need a certain level of microservice design in your complex application.

Chapter 3 MiCroserviCes Design patterns

94

The way we like to look at it, Docker containers and microservice architecture are

two ends of the road that lead to the same goal of continuous delivery and operational

efficiency. You may start at either end, if the desired goals are achieved.

 The Role of Service Discovery
If you are using Docker containers to package and deploy your microservices, you can

use a simple Docker Compose configuration to orchestrate multiple microservices (and

their containers) into a coherent application. As long as you are on a single host (server)

this configuration will allow multiple microservices to “discover” and communicate

with each other. This approach is commonly used in local development and for quick

prototyping.

But in production environments, things can get significantly more complicated.

Due to reliability and redundancy needs, it is very unlikely that you will be using just

one Docker host in production. Instead, you will probably deploy at least three or more

Docker hosts, with several containers on each one of them.

Furthermore, if your services get significantly different levels of load, you may decide

to not deploy all services on all hosts but end up deploying high-load services on a select

number of hosts (let’s say ten of them), while low-load services may only be deployed

on three servers, and not necessarily the same ones. Additionally, there may be security-

and business-related reasons that may cause you to deploy some services on certain

hosts and other services on different ones.

In general, how you distribute your services across your available hosts will depend

on your business and technical needs and very likely may change over time. Hosts are

just servers, they are not guaranteed to last forever.

Each instance of the microservice container is with a different number. In this

example, you have Microservice 1 deployed on all four hosts, but Microservice 2 is only

on hosts 1–3. Keep in mind that the deployment topology may change at any time,

based on load, business rules, which host is available, and whether an instance of your

microservice suddenly crashes or not.

Note that since typically many services are deployed on the same host, you cannot

address a microservice by just an IP address. There are usually too many microservices,

and the instances of those can go up and down at any time. If you allocated an IP per

Chapter 3 MiCroserviCes Design patterns

95

microservice, the IP address allocation and assignment would become too complicated.

Instead, you allocate an IP per host (server) and the microservice is fully addressed with

a combination of:

• IP address (of the host)

• Port number(s) the service is available on the host

We already noted that the IPs a microservice is available at are ever-changing,

but what about the port? You might assume that you can assign fixed ports to

individual microservices, saying, “our account management microservice always

launches on port 5555.” But this would not be a good idea. Many different teams will

need to independently launch microservices on, likely, a shared pool of hosts. If you

assumed that a specific microservice always launches on a specific port of a host, you

would require a high level of cross-team coordination to ensure that multiple teams

don’t accidentally claim the same port. But one of the main motivations of using a

microservice architecture is eliminating the need for costly cross team coordination.

Such coordination is untenable, in general. It is also unnecessary since there are better

ways to achieve the same goal.

This is where service discovery enters the microservices scene. You need some

system that will always keep an eye on all services and keep track of which service

is deployed on which IP/port combination at any given time, so that the clients of

microservices can be seamlessly routed accordingly.

As mentioned in previous chapters, there are several established solutions in the

open source space for service discovery. On one side of the spectrum are tools such as

etcd from CoreOs and Consul by HashiCorp. They are “low-level” tools providing a high

degree of control and visibility to an architect. On the other side of the spectrum are

tools that provide “container-scheduling” capabilities, alongside the service discovery.

Kubernetes from Google is probably the most well-known in this category, Docker

Swarm being another, more recent player. With container-scheduling solutions, you

get a high degree of automation and abstraction. In this scenario, instead of deciding

which container is launched on which servers, you just tell the system how much of the

host pool’s resources should be devoted to a service and Kubernetes or Swarm takes

care of balancing/rebalancing containers on the hosts, based on these criteria. Another

important technology utilizing containers is Mesosphere.

Chapter 3 MiCroserviCes Design patterns

96

Mesosphere is even more abstracted than Kubernetes or Swarm, currently marketed

as “a data center operating system” that allows a higher degree of automation, without

having to worry about the many nodes deployed, and operating the entire server cluster.

There are no “better” tools when considering service discovery. As an architect,

you need to decide how much automation “magic” you want from these tools versus

how much control you need to retain for yourself. Even within the same enterprise

application, it is very likely that you may find Kubernetes a great fit for a certain batch of

microservices, whereas architects may decide that another class of microservices can be

better deployed if directly managed using something like Consul.

 The Need for an API Gateway
A common pattern observed in virtually all microservice implementations is teams

securing API endpoints, provided by microservices, with an API gateway. Modern

API gateways provide an additional, critical feature required by microservices:

transformation and orchestration. In most mature implementations, API gateways

cooperate with service discovery tools to route requests from the clients of

microservices.

 Security
Microservice architecture is an architecture with a significantly high degree of freedom.

Or in other words, there are a lot more moving parts than in a monolithic application.

As mentioned earlier, in mature microservices organizations where the architecture

is implemented for complex enterprise applications, it is common to have hundreds

of microservices deployed. Things can go horribly wrong security wise when there are

many moving parts. You certainly need some law and order to keep everything in control

and safe. Which is why, in virtually all microservice implementations, you see API

endpoints provided by various microservices secured using a capable API gateway.

APIs provided by microservices may call each other, may be called by “frontend,”

i.e., public-facing APIs, or they may be directly called by API clients such as mobile

applications, web applications, and partner systems. Depending on the microservice

itself, the business needs of the organization, and the industry, market, or application

context—all scenarios are fair game. To make sure you never compromise the security

Chapter 3 MiCroserviCes Design patterns

97

of the overall system, the widely recommended approach is to secure invocation of

“public- facing” API endpoints of the microservices-enabled system using a capable API

gateway.

Based on our experience building microservices systems and helping a wide

variety of organizations do the same, we recommend a more radical approach than just

securing “public API endpoints.”

The distinction between “public” and “private” APIs often ends up being arbitrary.

How certain are you that the API you think is “only internal” will never be required by

any outside system? As soon as you try to use an API over the public Web, from your

own web application or from a mobile application, as far as security is concerned, that

endpoint is “public” and needs to be secured. The big picture for Amazon was with

Amazon Web Services: they exposed the lowest level of the technical stack possible—

hardware resources such as disk, CPU, networking etc., used by their ecommerce

website—for anybody in the world to use and they made billions out of it.

So, why would you ever assume that you have some APIs that will forever be “internal

only”? Sometimes, certain microservices are deemed “internal” and excluded from the

security provided by an API Gateway, as you assume that they can never be reached by

external clients. This is dangerous since the assumption may, over time, become invalid.

It’s better to always secure any API/microservice access with an API gateway. In most

cases the negligible overhead of introducing an API gateway in between service calls is

well worth the benefits.

 Transformation and Orchestration
As mentioned, microservices are typically designed to provide a single capability. They

are the Web’s version of embracing the UNIX philosophy of “do one thing, and do it

well.” However, as any UNIX developer will tell you, the single responsibility approach

only works because UNIX facilitates advanced orchestration of its highly specialized

utilities, through universal piping of inputs and outputs. Using pipes, you can easily

combine and chain UNIX utilities to solve nontrivial problems involving sophisticated

process workflows. A critical need for a similar solution exists in the space of APIs and

microservices as well. Basically, to make microservices useful, you need an orchestration

framework like UNIX piping, but one geared to web APIs.

Chapter 3 MiCroserviCes Design patterns

98

Microservices, due to their narrow specialization and typically small size, are very

useful deployment units for the teams producing them. That said, they might not be

as convenient for consumption, depending on the client. The Web is a distributed

system. Due to its distributed nature, on the Web, so-called “chatty” interfaces are

shunned. Those are interfaces where you need to make many calls to get the data

required for a single task. This distaste for chatty interfaces is especially pronounced

among mobile developers, since they often must deal with unreliable, intermittent, and

slow connections. There are a few things a mobile developer loathes more than an API

interface that forces them to make multiple calls to retrieve something they consider a

single piece of information.

Let’s imagine that after successful completion of the APIs required for the mobile

application, the technical team behind Shipping Company’s microservice architecture

decided to embark on a new journey of developing an “intelligent” inventory

management system. The purpose of the new system is to analyze properly anonymized

data about millions of shipments passing through Shipping Company, combine this

insight with all the metadata that is available on the goods being shipped, determine

behavioral patterns of the consumers, and—utilizing human and machine algorithms—

design a “recommendation engine” capable of suggesting optimal inventory levels to

Shipping Company’s “platinum” customers. If everything works, those suggestions will

be able to help customers achieve unparalleled efficiency in managing product stock,

addressing one of the main concerns of any online retailer.

If the team is building this system using a microservice architecture, they could end

up creating two microservices for the main functionality:

 1. Recommendations microservice, which takes user information in

and responds with the list containing the recommendations—i.e.,

suggested stock levels for various products that this customer

typically ships.

 2. Product metadata microservice, which takes in an ID of a product

type and retrieves all kinds of useful metadata about it.

Such separation of concerns, into specialized microservices, makes complete sense

from the perspective of the API publisher, or as you may call them, the server-side team.

However, for the team that is implementing the end-user interface, calling the preceding

microservices is nothing but a headache. More likely than not, the mobile team is

working on a user screen where they are trying to display several upcoming suggestions.

Chapter 3 MiCroserviCes Design patterns

99

Let’s say the page size is 20, so 20 suggestions at a time. With the current, verbatim

design of the microservices, the user-interface team will have to make 21 HTTP calls: one

to retrieve the recommendations list and then one for each recommendation to retrieve

the details, such as product name, dimensions, size, price, and so on.

At this point, the user-interface team is not happy. They wanted a single list;

but instead are forced to make multiple calls (the infamous “N+1 queries” problem,

resurfaced in APIs). Additionally, the calls to the Product Metadata microservice return

too much information (large payload problem), which is an issue for, say, mobile devices

on slow connections. The result is that the rendering of the all-important mobile screen

is slow and sluggish, leading to a poor user experience.

Scenarios like the one just described are all too common. As a matter of fact, they

existed even before the dawn of the microservice architecture. For instance, the REST

API style has been criticized a lot for “chatty interface.” You do not have to build your

microservice APIs in the RESTful style, but a similar problem still exists, since we

decided that microservices need to do “one thing,” which can lead to chattiness.

Fortunately, since the “chattiness” problem in the APIs is not new, mature API

gateways are perfectly equipped to deal with the problem. A capable API gateway

will allow you to declaratively, through configuration, create API interfaces that can

orchestrate backend microservices and “hide” their granularity behind a much more

developer-friendly interface and eliminate chattiness. In the example scenario, you

can quickly aggregate the N+1 calls into a single API call and optimize the response

payload. This gives mobile developers exactly what they need: a list of recommendations

via a single query, with exactly the metadata they required. The calls to backend

microservices will be made by the API gateway. Good API gateways can also parallelize

the 20 calls to the Product Metadata microservice, making the aggregate call very fast

and efficient.

 Routing
The chapter already mentioned that in order to properly discover microservices, you

need to use a service discovery system. Service discovery systems such as Consul and

etcd will monitor your microservice instances and track metadata about what IPs and

ports each one of your microservices is available at, at any given time. However, directly

providing tuples of the IP/port combinations to route an API client is not an adequate

solution. A proper solution needs to abstract implementation details from the client.

Chapter 3 MiCroserviCes Design patterns

100

An API client still expects to retrieve an API at a specific URI, regardless of whether

there’s a microservice architecture behind it and independent of how many servers,

Docker containers, or anything else is serving the request.

Some of the service discovery solutions (e.g., Consul, and etcd using SkyDNS)

provide a DNS-based interface to discovery. This can be very useful for debugging, but

still falls short of production needs because normal DNS queries only look up domain/

IP mapping, whereas for microservices you need domain mapping with an IP +port

combination. In both Consul and SkyDNS, you can use DNS to look up both IP and

port number, via an RFC 2782 SRV query, but realistically no API client expects or will

appreciate having to make SRV requests before calling your API.

This is not the norm. Instead, what you should do is let an API gateway hide the

complexities of routing to a microservice from the client apps. An API gateway can

interface with either HTTP or DNS interfaces of a service discovery system and route an

API client to the correct service when an external URI associated with the microservice is

requested. You can also use a load balancer or smart-reverse proxy to achieve the same

goal, but since you already use API gateways to secure routes to microservices, it makes a

lot of sense for the routing requirement to also be implemented on the gateway.

 Monitoring and Alerting
As mentioned, while microservice architecture delivers significant benefits, it is also

a system with a lot more moving parts than the alternative—monolith. As such, when

implementing a microservice architecture, it becomes very important to have extensive

system-wide monitoring and to avoid cascading failures.

The same tools mentioned for service discovery can also provide powerful

monitoring and failover capabilities. Let’s take Consul as an example. Not only does

Consul know how many active containers exist for a specific service, marking a service

broken if that number is zero, but it also allows you to deploy customized health-check

monitors for any service. This can be very useful. Indeed, just because a container

instance for a microservice is up and running doesn’t always mean the microservice

itself is healthy. You may want to check that the microservice is responding on a

specific port or a specific URL, possibly even checking that the health ping returns

predetermined response data.

Chapter 3 MiCroserviCes Design patterns

101

In addition to the “pull” workflow in which Consul agents query a service, you

can also configure “push”-oriented health checks, where the microservice itself is

responsible for periodically checking in, i.e., push predetermined payload to Consul.

If Consul doesn’t receive such a “check-in,” the instance of the service will be marked

“broken.” This alternative workflow is very valuable for scheduled services that must

run on predetermined schedules. It is often hard to verify that scheduled jobs do run

as expected, but the “push”-based health-check workflow can give you exactly what

you need.

These are powerful services that allow you to set up sophisticated incident-

notification phone trees and/or notify your tech team via email, SMS, and push

notifications through their mobile apps.

 Summary
This chapter covered the various design principles used to derive microservices. You

also saw the various patterns being used and learned how other companies like AWS and

Netflix have created strong patterns that you can leverage for your microservices design

and architecture.

You also looked at a practical example of patterns being implemented with the

Shipping Company example.

The next chapter looks at the technology components like Docker and Kubernetes

and explains how you can build such services and handle health monitoring.

 Appendix
https://docs.microsoft.com/en- us/azure/architecture/reference-architectures/

saga/saga

https://pubsubhubbub.appspot.com/

https://agilemanifesto.org/

Chapter 3 MiCroserviCes Design patterns

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://pubsubhubbub.appspot.com/
https://agilemanifesto.org/

103
© Kasam Ahmed Shaikh and Shailesh S. Agaskar 2022
K. Ahmed Shaikh and S. S. Agaskar, Azure Kubernetes Services with Microservices,
https://doi.org/10.1007/978-1-4842-7809-3_4

CHAPTER 4

Containers and Azure
Kubernetes Services
 Introduction
So far, you have learned about the architectural and organizational considerations

when assessing the maturity and readiness for microservices. You also looked at the

design patterns used with microservices. This chapter explains containers and Azure

Kubernetes Services, which form the foundational building blocks for microservices.

 Containers
Containers form the foundational building blocks for building a scalable, platform-

agnostic, and isolated hosting and processing ecosystem.

Containers are solution to the problem of how to get software to run reliably when

it’s moved from one computing environment to another—from a developer’s machine

to a test environment, from a staging environment into production, and perhaps from a

physical machine to a data center to a virtual machine in a private or public cloud.

Problems arise when the supporting software environment is not identical. Maybe

the software was tested using Python 2.7, and now it’s going to run on Python 3 in

production. Some weird behavior happens. The challenge is that you rely on the

behavior of a certain version of an SSL library but another version is installed. You run

your tests on one version of Linux and production is on Red Hat and all sorts of behavior

changes are observed. Moving from one environment to another is unpredictable

and involves a lot of effort trying to rectify the environment rather focusing on the

actual work.

https://doi.org/10.1007/978-1-4842-7809-3_4#DOI

104

 How Containers Solve This Problem
Containers are of an entire runtime environment (i.e., the application, plus all its

dependencies, libraries, other binaries, and configuration files needed to run it,

all bundled into one package). By containerizing the application platform and its

dependencies, differences in OS distributions and underlying infrastructure are

abstracted away.

 How Containerization Is Different from Virtualization
Virtualization technology is nothing but a package that is installed as a virtual machine,

which includes an entire operating system and the application (see Figure 4-1). An

actual physical server runs three virtual machines and would have a hypervisor and

three separate operating systems running on top of it.

Figure 4-1. Virtual machine architecture

On the other hand, a server running three containerized applications with Docker

runs a single operating system, and each container shares the operating system kernel

with the other containers (see Figure 4-2). Shared parts of the operating system are

read only, while each container has its own mount (i.e., a way to access the container)

for writing. That means the containers are much more lightweight and use far fewer

resources than virtual machines.

Chapter 4 Containers and azure Kubernetes serviCes

105

Figure 4-2. Container architecture Courtesy: https://docs.microsoft.com/
en- us/virtualization/windowscontainers/about/containers- vs- vm

The following benefits are derived from containerization:

• Isolation

• Compact

• Consistent

• Fast

• Simple

• Scalable

• Portable

Containers can run on various devices and operating systems, as illustrated in

Figure 4-3.

Chapter 4 Containers and azure Kubernetes serviCes

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm

106

Figure 4-3. Containers run everywhere

The diagram in Figure 4-4 shows how traditional deployment has evolved to

containers.

Figure 4-4. Evolution of deployments over time Courtesy: https://kubernetes.io/
docs/concepts/overview/what- is- kubernetes/#going- back- in- time

There are two types of containers available—Linux and Windows—and the image

layers are shown in Figure 4-5.

Chapter 4 Containers and azure Kubernetes serviCes

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#going-back-in-time
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#going-back-in-time

107

Figure 4-5. Layers within the image

The container layer is shown in Figure 4-6.

Chapter 4 Containers and azure Kubernetes serviCes

108

Figure 4-6. Layers of containers

 Using Docker
Docker is an open platform for developing, shipping, and running applications. Docker

enables you to separate your applications from your infrastructure so you can deliver

software quickly. With Docker, you can manage your infrastructure in the same ways you

manage your applications. See Figure 4-7.

Chapter 4 Containers and azure Kubernetes serviCes

109

Figure 4-7. Docker containers interaction Courtesy: https://docs.docker.com/
get-started/overview/

The development tools for building docker containers are listed here:

• VS Code

• Recommended for Windows:

• Windows Terminal

• https://github.com/microsoft/terminal#installing-

and-running- windows- terminal

• Windows Subsystem for Linux (WSL2) if permitted

• https://docs.microsoft.com/en- us/windows/wsl/about

• Package Managers such as winget or scoop if permitted (make it

easier to install CLI tools on Windows)

• Preferred shell of your choice: PowerShell Core (pwsh), GitBash,

WSL2 Bash/ZSH, and so on

• CLI Tools: Used to execute commands to run build and run Docker

containers on Kubernetes services.

• Git

• Azure CLI

Chapter 4 Containers and azure Kubernetes serviCes

https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://github.com/microsoft/terminal#installing-and-running-windows-terminal
https://github.com/microsoft/terminal#installing-and-running-windows-terminal
https://docs.microsoft.com/en-us/windows/wsl/about

110

• Kubectl

• Kustomize

• Helm

• Curl or Httpie

Additionally, you need Docker Desktop, described next.

 Installing Docker Desktop in Your
Development Environment
See https://www.docker.com/products/docker- desktop.

First, make Sure Kubernetes is enabled, as shown in Figure 4-8.

Figure 4-8. Kubernetes enabled settings

If you’re using WSL2, don’t forget to enable it to set limits, as explained at https://

docs.microsoft.com/en- us/windows/wsl/wsl- config#configure- global- options-

with- wslconfig. You also need to integrate Docker into your wsl2 distro (see the

Resources option).

Chapter 4 Containers and azure Kubernetes serviCes

https://www.docker.com/products/docker-desktop
https://docs.microsoft.com/en-us/windows/wsl/wsl-config#configure-global-options-with-wslconfig
https://docs.microsoft.com/en-us/windows/wsl/wsl-config#configure-global-options-with-wslconfig
https://docs.microsoft.com/en-us/windows/wsl/wsl-config#configure-global-options-with-wslconfig

111

Let’s now look at a basic level “Hello World” program to be deployed on Docker

containers. If the Docker image is not already downloaded locally, Docker pulls it from

the Docker Hub.

From the terminal, run the following:

 docker run hello-world

Note docker run = docker create + docker start (+ also
docker attach)

Where did the hello-world image come from? Is it an official image?

Hint see https://hub.docker.com/_/hello- world.

Observe the output log, starting by pulling the image from public registry.

Now you need to run Ubuntu and Interact with its shell environment:

docker run -it ubuntu bash

or

docker run -i -t ubuntu bash

Execute these commands inside the Docker container:

ls

Exit the container shell by typing exit.

Take your time to understand what the -it flag does when it’s used with docker run:

`i` - keep STDIN open even if not attached

`t` - Allocate a pseudo-tty

One easy mnemonic to remember is that -it means interactive terminal.

To view the locally cached images, use this command:

docker images

The result shows images that are locally cached in your environment. The next time

you run that exact image, it won’t be pulled from the registry.

Chapter 4 Containers and azure Kubernetes serviCes

https://hub.docker.com/
https://hub.docker.com/_/hello-world

112

 Exploring the docker run Command
Run the same Ubuntu image again, but with a little twist this time:

 1. Run it without bash at the end. Notice how it still works the same

way as before? This is because the Ubuntu image’s cmd is set to run

bash by default. Exit the container shell.

docker run -it ubuntu

Note if you just run docker run ubuntu, bash will exit automatically as it
does not have a stdin to listen to. You’ll learn later about executing a process
using EntryPoint in docker and how web apps use it.

 2. Now override the default cmd with some other command, such as

ls. Run the following command and notice the different result:

docker run -it ubuntu ls

Observe the result. What’s going on here? You are overriding the default cmd for

that image. See https://docs.docker.com/engine/reference/run/#cmd- default-

command- or- options.

 Running a Webserver
Run an nginx webserver as follows:

 docker run -d -p 9000:80 nginx

 # -p stands for publish (publish a container's port to the host)

You will be able to see the webpage on localhost:9000 if you are running

docker locally or in a linux vm.

The -d flag indicates that the container will run in detached mode, so it’s not waiting

for input via stdin.

See running containers

 docker ps

Chapter 4 Containers and azure Kubernetes serviCes

https://docs.docker.com/engine/reference/run/#cmd-default-command-or-options
https://docs.docker.com/engine/reference/run/#cmd-default-command-or-options

113

Now, run another instance of the nginx container. Just use a different port.

docker run -d -p 9001:80 nginx

 docker ps # notice the new container from same image. Much like new objects

from a class.

 Viewing the Contents of the Web Page from the Terminal
You can view the web page from a browser or a terminal using HTTP client tools such as

curl or httpie:

curl localhost:9000

or via httpie (for coloured output and more helpful info)

http localhost:9001

Now stop the nginx containers:

run `docker ps` to list the running containers.

docker stop <container-id>

 or

 docker stop <container_name_1> <container_name_2> # Note: it's container

name not image name.

Bonus: Look for the differences between the stop, kill, and rm commands.

Now you can see all containers, including the created and exited ones:

`docker ps` only shows containers that are of status `Running`. To see

all containers, use `-a` flag

 docker ps -a

You can always start a stopped container by issuing the start command.

Find the container you want to start by looking it up on docker ps -a. Just because

the container has stopped or exited, doesn’t mean it’s dead.

docker start <container_id or name>

Chapter 4 Containers and azure Kubernetes serviCes

114

 Cleanup Processes
To remove a stopped container, use this command:

docker rm <container_id/name>

To remove images, use this command:

docker rmi image <image_id_1> <image_id_2>

Clean up dangling resources using the docker system prune command:

docker system prune

To clean up all resources, including images, containers, volumes, and so on, use this

command:

docker system prune --all

`y' when prompted

Important as with any other system, use these clean up commands with
caution. do not force delete images that are still referenced by containers.

Give these links a quick read:

• https://docs.docker.com/engine/reference/commandline/

system_prune/

• https://docs.docker.com/config/pruning/

• https://docs.docker.com/engine/reference/commandline/rmi/

To check if your environment is cleaned up, use these commands:

docker ps -a

docker images -a

The next section looks at Docker basics.

Chapter 4 Containers and azure Kubernetes serviCes

https://docs.docker.com/engine/reference/commandline/system_prune/
https://docs.docker.com/engine/reference/commandline/system_prune/
https://docs.docker.com/config/pruning/
https://docs.docker.com/engine/reference/commandline/rmi/

115

 The Dockerfile
To begin this example, create a directory called Docker Directory. Create your first

Dockerfile and execute a CMD (greeter:1.0):

 1. From the docker directory, create a subdirectory called my_first_

dockerfile and create a Dockerfile inside it. The setup should be

as shown here, so that you have a base directory called docker.

You can use touch Dockerfile from the terminal or just

right-click the appropriate folder and select New File:

```bash

    # from my_first_dockerfile directory

    touch Dockerfile

```

Your setup should look like this:

```bash

├── my_exercise
    ├── docker
    │   └── my_first_dockerfile
    │       └── Dockerfile
    └── kubernetes
```

 2. Type the following inside the Dockerfile. (Avoid copying and

pasting unless specified.)

FROM ubuntu

Base Layer

CMD ["echo", "Hello everyone"]

 3. Build your Docker image. Make sure the terminal is pointing to

the directory where the Dockerfile is located.

 4. Build an image called greeter and tag it as version 1.0:

docker build . -t greeter:1.0

Chapter 4 Containers and azure Kubernetes serviCes

116

 5. Important: Take your time to understand what -t does. Also note

the . (dot) after docker build.

 6. View your new docker image using the docker images command.

 7. Launch a container from the new Docker image:

docker run greeter:1.0

 8. Observe the output and then make it print something by

overriding the default CMD:

docker run greeter:1.0 echo "hello universe"

#or any command of your choice that is available in ubuntu image

docker run greeter:1.0 sleep "3"

Notice that you have to specify the full command to override the existing one.

 Use Entrypoint to Make the Greeter a Bit More Configurable

 1. Update the Dockerfile as shown next. Comment out the previously

written code if needed.

FROM ubuntu

ENTRYPOINT ["echo"]

CMD ["Hello everyone"]

 2. Build and tag the greeter image with version 2.0 and run the

container.

docker build . -t greeter:2.0

docker run greeter:2.0

 3. Now just run the following to make the container print the

message of your choice.

docker run greeter:2.0 "Hello Greeter 2.0"

Chapter 4 Containers and azure Kubernetes serviCes

117

 Use COPY to Launch a Simple Static Website

 1. Create a new Dockerfile in another folder or feel free to continue

working on your existing Dockerfile.

 2. Create a folder called website and create a file inside called

index.html. Type some simple markup, such as the following.

Note that filenames in Linux are case sensitive.

<h1>Hello World</h1>

 3. Now, type the following into your Dockerfile:

FROM nginx:alpine

Notice the change in base image.

COPY ./website/ /usr/share/nginx/html

 4. Copy the contents of website folder into the nginx default website

location. Nginx is a powerful and highly popular webserver. See

the Nginx base image at https://hub.docker.com/_/nginx.

 5. Now build your Docker image as follows. Feel free to pick your

own name for the image. Make sure your folder structure looks

something like this before building:

.

├── Dockerfile
└── website
 └── index.html
 docker build . -t hello-web:1.0

 docker images "hello-web" # to see your new built image.

 6. Run the image detached and do port-forwarding. You will get an

exception if the port is already in use.

docker run --name my-first-website -d -p 9000:80 hello-web:1.0

 # Notice the `--name` argument. We give our own container name

this time.

Chapter 4 Containers and azure Kubernetes serviCes

https://hub.docker.com/_/nginx

118

 7. Make sure that the container is running as expected with docker ps.

Observe all the columns of your my-first-website container.

 8. Stop the container using docker stop <container-name>.

 Monitoring Docker Containers and Docker Logs
First start a container in detached mode that prints the date every second. We are using a

busybox image here and calling the container date-printer:

docker run --name date-printer -d busybox sh -c "while true; do $(echo

date); sleep 1; done"

Now follow its logs. Press Ctrl+C to exit.

docker logs -f date-printer

Retrieve logs only since last 3 seconds

docker logs date-printer --since=3s

See https://docs.docker.com/engine/reference/commandline/logs/.

 Docker Exec: Run Commands Inside a Running Container!
Launch a redis container and be sure that it’s running.

docker run -d redis

docker ps

note down the container name

Now set some data with redis, using its CLI. First connect to its container shell.

docker exec -it <redis_container_name> sh

Once you’re inside the container (when the prompt goes #), type the following:

redis-cli

Chapter 4 Containers and azure Kubernetes serviCes

https://docs.docker.com/engine/reference/commandline/logs/

119

The prompt should now look like 127.0.0.1:6379 (redis runs on 6379 by default):

set name "Jane"

exit

exit

Exit from `redis-cli` and then from the `container shell`

From the terminal, you can directly retrieve that data. The following output should

print Jane, for example:

docker exec -it <redis_container_name> redis-cli get name

 Docker Inspect
You can inspect all the properties and states of a Docker object such as a container,

network, volume, etc.

For example, to inspect a container, issue the following command:

docker inspect <container_id or name>

To inspect a Docker network, issue the following command:

docker network ls

docker inspect <network_name>

 # for e.g: docker inspect bridge (default network that containers attach to

when network not specified)

With the Linux command-line tools such as jq, you can manipulate the JSON output.

The following command will print the containers attached to the bridge network.

docker inspect bridge | jq '[.[].Containers]'

For more on jq, visit https://stedolan.github.io/jq/tutorial/.

 Creating a Docker Hub Account and Connecting to It
Go to https://hub.docker.com/ and sign up using your temp/personal account. If you

are using your personal email to sign up for Docker hub, make sure you’re using your

own personal dev machine. (you can also run docker logout when you’re done).

Chapter 4 Containers and azure Kubernetes serviCes

https://stedolan.github.io/jq/tutorial/
https://hub.docker.com/

120

 1. Once you have created a Docker hub account, log in via the

terminal, as follows:

docker login

 2. Enter your username and password when prompted. You should

receive something like login succeeded.

 Tagging and Pushing Your Image to the Registry

 1. Before you can push your image to your registry, you need to tag it.

Tag your hello-web image as shown here.

docker images hello-web

Copy the image-id

docker tag <image-id> <dockerhub-username>/hello-web:1.0

docker push <docker-hub-username>/hello-web:1.0

 2. Go to hub.docker.com to ensure your image is pushed correctly.

You will come back to this image later during the Kubernetes labs.

 3. You can always test your image by running it as follows.

docker run -d -p 9010:80 <dockerhub-username>/hello-web:1.0

docker ps

docker stop <hello-web_container_id>

 4. Log out of Docker hub from the terminal:

docker logout

Clean up the resources as you did before to ensure your environment is correctly

tidied up.

```bash

    docker system prune -a

    # type `y` when prompted

    docker ps -a

    docker images

```

Chapter 4 Containers and azure Kubernetes serviCes

121

 Using Kubernetes
Now that you know how to run Docker Containers standalone, it’s time to consider what

happens when you have multiple containers to build and run. To enable that, you need

an container orchestration engine like Kubernetes.

There are many container orchestrators, as listed here:

• Kubernetes

• Docker Swarm

• Mesos DC/OS

• Google Borg

• And many more

These orchestration engines provide the following features, which you don’t have

to build:

• Self-healing

• Load balancing

• Service discovery

• Scheduling

• Security

• Configuration

• Monitoring

• Scaling

The Kubernetes Architecture in a cloud is shown in Figure 4-9.

Chapter 4 Containers and azure Kubernetes serviCes

122

Figure 4-9. Kubernetes architecture Courtesy: https://kubernetes.io/docs/
concepts/overview/components/

Figure 4-10 shows a deep dive into this architecture and illustrates how the

components interact with each other.

Figure 4-10. Kubernetes components

Chapter 4 Containers and azure Kubernetes serviCes

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/

123

Running Kubernetes, you would need any of the following

• Minikube

• AKS (Azure Kubernetes Service)

• GKE (Google Kubernetes Engine)

• On-premise

• Raspberry Pi

• And many more

The key objects part of the overall Kubernetes framework are listed here:

• Nodes (no)

• Namespaces (ns)

• Pods (po)

• Deployments (deploy)

• Services (svc)

• Jobs

• Cronjobs

• Configmaps (cm)

• Secrets

• Persistentvolumeclaims (pvc)

• Persistentvolumes (pv)

Stateless microservices/apps on Kubernetes are shown in Figure 4-11.

Chapter 4 Containers and azure Kubernetes serviCes

124

Figure 4-11. Kubernetes deployments and replica sets

 Kubernetes Tooling and Setup
kubectl, pronounced Kube-Control, is the command-line interface for running

commands against a Kubernetes clusters.

In this exercise, you will explore some features of kubectl that you may find useful.

 1. Get cluster information:

kubectl cluster-info

 2. Write the cluster information to a file called cluster.txt. You

may need bash/git-bash if the output stream > doesn’t work:

kubectl cluster-info > cluster.txt

 3. You can also view it using cat if you like:

cat cluster.txt

Chapter 4 Containers and azure Kubernetes serviCes

125

 4. Get a list of all namespaces in the cluster. Here you will see other

participant’s namespaces too. In the real world, you might not

have access to view other namespaces.

kubectl get namespaces

 5. You can use the shorthand command as follows:

kubectl get ns

 6. Filter your namespace using grep:

kubectl get ns | grep '<your-namespace-name>'

 7. Check your default namespace for your current context:

kubectl config get-contexts

You should see your namespace under the NAMESPACE column.

Important if the NAMESPACE column is blank or doesn’t contain your
namespace name, it means you haven’t configured your default namespace
correctly. see the repo’s readme document or reach out to the instructor for help.

 8. Get a list of nodes in the cluster:

kubectl get nodes

You can see more info with -o wide:

kubectl get nodes -o wide

kubectl explain will explain the given resource, such as a top-level API object like

Pod or a specific field like a Pod’s container.

 1. Get the documentation of the Pod resource and its fields.

kubectl explain node

Chapter 4 Containers and azure Kubernetes serviCes

126

 2. Get the documentation for the Pod’s container specification.

to just explain pod

kubectl explain pod

to further explain the properties and nested objects

kubectl explain pods.spec.containers

Note pods.spec.containers matches the YaML object structure:

apiVersion: v1

kind: Pod

metadata:

creationTimestamp: null

name: nginx

spec:

 containers:

 - image: nginx

 imagePullPolicy: IfNotPresent

 name: nginx

 resources: {}

 dnsPolicy: ClusterFirst

 restartPolicy: Never

In the Azure portal, you can create the AKS clusters, as shown in Figure 4-12.

Chapter 4 Containers and azure Kubernetes serviCes

127

Figure 4-12. Azure Kubernetes Service

You click Create and then proceed with filling in the information based on your

requirements. See Figure 4-13.

Figure 4-13. Azure Kubernetes Service: Create Cluster

Chapter 4 Containers and azure Kubernetes serviCes

128

Here are some of the high-level Azure CLI commands you can use:

Run az --version to find the version.

To create an Azure Kubernetes Cluster, issue the following command:

az aks create \

 --resource-group newResourceGroup \

 --name newAKSCluster \

 --node-count 3 \

 --generate-ssh-keys \

 --attach-acr <acrName>

To install the CLI, issue the following command:

az aks install-cli

To connect to the cluster, issue the following command:

az aks get-credentials --resource-group aksResourceGroup --name newAKSCluster

To get the nodes, issue the following command:

kubectl get nodes

 Summary
In this chapter, you learned what containers and Kubernetes are and how to set up and

use them in development. The next chapter looks at how to monitor and secure Azure

Kubernetes Cluster (AKC).

 Appendix
https://docs.microsoft.com/en- us/virtualization/windowscontainers/about/

containers- vs- vm

https://kubernetes.io/docs/concepts/overview/what- is- kubernetes/#going-

back-in- time

https://docs.docker.com/get- started/overview/

Chapter 4 Containers and azure Kubernetes serviCes

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#going-back-in-time
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#going-back-in-time
https://docs.docker.com/get-started/overview/

129

https://github.com/microsoft/terminal#installing- and- running-

windows- terminal

https://docs.microsoft.com/en- us/windows/wsl/about

https://www.docker.com/products/docker- desktop

https://docs.microsoft.com/en- us/windows/wsl/wsl- config#configure-

global-options- with- wslconfig

https://hub.docker.com/_/hello- world

https://docs.docker.com/engine/reference/run/#cmd- default- command-

or- options

https://docs.docker.com/engine/reference/commandline/system_prune/

https://docs.docker.com/config/pruning/

https://docs.docker.com/engine/reference/commandline/rmi/

https://hub.docker.com/_/nginx

https://docs.docker.com/engine/reference/commandline/logs/

https://stedolan.github.io/jq/tutorial/

https://kubernetes.io/docs/concepts/overview/components/

Chapter 4 Containers and azure Kubernetes serviCes

https://github.com/microsoft/terminal#installing-and-running-windows-terminal
https://github.com/microsoft/terminal#installing-and-running-windows-terminal
https://docs.microsoft.com/en-us/windows/wsl/about
https://www.docker.com/products/docker-desktop
https://docs.microsoft.com/en-us/windows/wsl/wsl-config#configure-global-options-with-wslconfig
https://docs.microsoft.com/en-us/windows/wsl/wsl-config#configure-global-options-with-wslconfig
https://hub.docker.com/_/hello-world
https://docs.docker.com/engine/reference/run/#cmd-default-command-or-options
https://docs.docker.com/engine/reference/run/#cmd-default-command-or-options
https://docs.docker.com/engine/reference/commandline/system_prune/
https://docs.docker.com/config/pruning/
https://docs.docker.com/engine/reference/commandline/rmi/
https://hub.docker.com/_/nginx
https://docs.docker.com/engine/reference/commandline/logs/
https://stedolan.github.io/jq/tutorial/
https://kubernetes.io/docs/concepts/overview/components/

131
© Kasam Ahmed Shaikh and Shailesh S. Agaskar 2022
K. Ahmed Shaikh and S. S. Agaskar, Azure Kubernetes Services with Microservices,
https://doi.org/10.1007/978-1-4842-7809-3_5

CHAPTER 5

Securing and Monitoring
Applications Running
on AKS
 Introduction
First, congratulations on completing 60 percent of this book. After reading about

architecture designs and patterns, in this chapter, you’ll go through another interesting

and important aspect—monitoring and securing Azure Kubernetes service-based

applications. You must be wondering why I didn’t mention microservices. The answer is

simple—when I say applications, that covers it all.

Digital platform initiatives are making organizations embrace the cloud culture.

Cloud enablement includes building strategies to deliver more value to their clients.

One of these strategies focuses on application security. With the growing pace of

developments, it’s important to plan the security of the applications to avoid any

impediments in business operations.

Here, I present you with the security concepts for applications and clusters,

concluding with one of the best reckoners for applications with respect to security.

https://doi.org/10.1007/978-1-4842-7809-3_5#DOI

132

 Security Concepts
Kubernetes and Microsoft Azure both include their respective security components. The

Azure Kubernetes Service combines these security components to:

• Make sure your AKS Cluster is running the latest Kubernetes releases

• Ensure its up-to-date with OS security updates

• Secure Pod traffic

• Provide trusted access to sensitive credentials

Let’s dive into a few core concepts for securing application and clusters in the Azure

Kubernetes Service.

 Master Security
In AKS, each cluster has a dedicated Kubernetes master-enabling API server, scheduler,

and so on. This Kubernetes API sever uses an FQDN—a fully qualified domain name—

along with a public IP address. As a PaaS service, Kubernetes Master components are

included in managed services and are maintained by Microsoft.

You can adopt them in the following ways:

• You can create a private cluster, limiting server access to dedicated

virtual networks.

• Using authorized IP ranges, you can restrict access to API server

endpoints. Refer to Figure 5-1.

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

133

Also, you can control access by using Kubernetes RBAC and Azure RBAC. See

the implementation details at https://docs.microsoft.com/en- us/azure/aks/

managed- aad.

 Node Security
Azure Kubernetes service nodes are nothing but the virtual machines that you manage.

Linux and Windows server nodes both run an optimized Ubuntu distribution and

Windows Server 2019 release respectively, using the Docker container runtime.

The latest OS security updates and configuration are deployed automatically on to

nodes, whenever an AKS Cluster is created and also when it’s scaled up.

Figure 5-1. Authorized IP range feature in Azure PortalImage source: Microsoft
Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

https://docs.microsoft.com/en-us/azure/aks/managed-aad
https://docs.microsoft.com/en-us/azure/aks/managed-aad

134

Security patches for Linux nodes and Windows server nodes can be achieved by

running simple azure CLI commands. For better understanding, the following Azure CLI

command will upgrade the node pool called myaksbooknodepool:

az aks nodepool upgrade

 --resource-group myAKSBookResourceGroup \

 --cluster-name myAKSBookCluster \

 --name myaksbooknodepool \

 --kubernetes-version KUBERNETES_VERSION \

 --no-wait

This is just an example of one of the various simple Azure CLI commands available

for managing nodes.

Nodes are always deployed to private virtual networks. Even the storage used by

nodes are premium, Azure managed disks, backed by SSDs. Within the Azure platform,

the data on this disk is always encrypted at rest. Azure also provides the option for

isolated VMs, required as a part of compliance and regulatory requirements. This applies

to Linux and Windows virtual machines. At the time of writing this book, there are a few

options available for isolated VMs:

• Standard_E80ids_v4

• Standard_E80is_v4

• Standard_F72s_v2

• Standard_M128ms

• Standard_DC8_v2

 Cluster Upgrades
An Upgrade Orchestration tool is provided by Azure, which includes the Kubernetes

Master components and the Agent component. This tool enables the following actions:

• Upgrades of AKS Clusters and their components

• Security maintenance

• Compliance maintenance

• Access to the latest features

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

135

All it needs is the available Kubernetes version and the rest is taken care of, of course,

with fewer commands.

 Network Security
To communicate with your on-premises networks, you can have your AKS deployed

to Azure virtual network subnets. Using Site-to-Site VPN or Express Route, this virtual

network connects to your on-premises network. You can also define Kubernetes ingress

controllers with private, internal IP addresses to limit services access to network

connections. You can leverage Azure network security groups and even Kubernetes

network policy to control the traffic flow.

Azure Kubernetes Service offers support to Kubernetes network polices, to limit

network traffic between Pods in the given cluster based on namespaces, label selectors,

and so on.

 Kubernetes Secrets
With a Kubernetes Secret, you can add your sensitive data, such as access credentials

and keys—to Pods. Use of Secrets minimizes the use of this sensitive information in (Pod

or service YAML) manifests. You can request the secret as part of your manifest, limiting

access to the information to specific Pods only.

Kubernetes secrets are stored in Etcd, a distributed key-value store. The Etcd store

is fully managed by AKS and data is encrypted at rest within the Azure platform. See

Figure 5-2.

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

136

There are a few points you need to know about the Kubernetes Secrets:

• You can create a secret using the Kubernetes API.

• You define and request the secret for your Pod.

• Secrets are not written on disk, but are stored in tmpfs.

• When the Pod requiring the Secret is deleted, the secret is also

deleted from the tmpfs nodes.

• Secrets are stored in a namespace, making them accessible only to

the Pods within the same namespace.

Apart from these security concepts with respect to application and clusters, it’s better

to also go through the following:

• Azure security baseline for Azure Kubernetes Service

(See https://docs.microsoft.com/en- us/security/benchmark/

azure/baselines/aks- security- baseline?context=/azure/aks/

context/aks- context.)

• Azure Policy Regulatory Compliance controls for Azure Kubernetes

Service (AKS)

(See https://docs.microsoft.com/en- us/azure/aks/security-

controls-policy.)

Figure 5-2. Azure encryption at rest componentsImage source: Microsoft
Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/aks-security-baseline?context=/azure/aks/context/aks-context
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/aks-security-baseline?context=/azure/aks/context/aks-context
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/aks-security-baseline?context=/azure/aks/context/aks-context
https://docs.microsoft.com/en-us/azure/aks/security-controls-policy
https://docs.microsoft.com/en-us/azure/aks/security-controls-policy

137

 Azure Kubernetes Service Checklist
This checklist contains some of the best practices to follow while working with AKS. It’s

not a kind of bible to follow, but simply best practices to adhere to when it comes to

security

• Refrain from injecting sensitive information into images and use
Secrets instead. As mentioned, avoid entering sensitive information

like passwords directly into images or the manifest. Rather, always

use Secrets—either Kubernetes Secrets or Azure Key Vaults—for such

information. See Figure 5-3.

• Implement Pod identity. Don’t have fixed credentials stored in

Pod images. Rather you can use Pod identities, which use the Azure

Identity solution for all the access to the desired (Azure) resources.

These credentials could be any credentials used to talk with other

Azure services, like Azure SQL or Azure Storage. You can define them

in Kubernetes Secrets, but it needs a manual management. Here you

can miss the best practice of rotating the Secrets being used.

Figure 5-3. Kubernetes Secrets and Azure KeyVault icons

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

138

Pod-managed identities for Azure resources can be used to

have the access request via Azure AD. Figure 5-4 depicts the

request flow.

Note at the time of writing this book, pod-managed identities for aKS is in
preview.

• Use a Kubernetes Namespace. Namespaces are the logical partitions

of your resources. They not only enforce the separation of resources

but also limit the permissible user scope. For simpler understanding,

you can have different namespaces for different business units or

groups. You should use the Kubernetes Namespace to isolate your

Kubernetes resources. See Figure 5-5.

Figure 5-4. A developer created a Pod that uses a managed identity to request
access to an Azure SQL databaseImage source: Microsoft Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

139

The following namespaces are available when you create an AKS Cluster:

• Default: When no namespace is given, this is where Pods are

created.

• kube-system: Where core resources exist.

• kube-public: These resources can be viewed by any user.

Important avoid using the default namespace.

• Specifying the correct security context for a Pod. This is an

important factor in deciding your Pod access control settings. If the

context is not set, the Pod gets the default one, which exposes it with

more rights.

• Manifest with best practices. Ensure that the configuration of the

manifest follows the best practices. A good manifest presents a good

cluster. 😉

Figure 5-5. Example of Namespaces in an AKS ClusterImage source: Microsoft
Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

140

• Static analysis of images on the build. Introduce DevSecOps into

the environment to promote a proactive security model that starts to

shift the responsibility left. Azure Defender for container registries

can be used here.

• Enforcement of compliance on the build image. You must go

through Azure Policy built-in definitions for Azure Kubernetes

Service; see https://docs.microsoft.com/en- us/azure/aks/

policy- reference?ref=akschecklist.

Note Bookmark the following url: https://www.the- aks- checklist.
com/. the seven commandments explained previously are the part of this forum,
and they keep changing based on new context.

 Security Concepts: Conclusion
AKS security aspects could be covered in an entire book of their own. However,

considering the scope of this chapter, I tried to sum up things you should know when

working with AKS-based applications. Consider these as answers you would expect from

an interviewer panel, when discussing AKS-based application security.

The next section covers another important area, monitoring.

 Monitoring Concepts
Your applications are secured but need to be up and available all the time. Securing

applications that have no availability is useless. Hence, monitoring is an important area

for you to be cognizant of. This section presents you with the details of monitoring AKS-

based applications along with monitoring the AKS using Azure Monitor.

 Container Insights
Resources that generate performance metrics and resource logs can be monitored for

health and performance. Like other Azure resources, the Azure Kubernetes Service also

has logs.

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

https://docs.microsoft.com/en-us/azure/aks/policy-reference?ref=akschecklist
https://docs.microsoft.com/en-us/azure/aks/policy-reference?ref=akschecklist
https://www.the-aks-checklist.com/
https://www.the-aks-checklist.com/

141

Azure Monitor has a feature called Container Insights that runs these checks for

managed Kubernetes hosted with AKS. What makes it a favorite is its ability to present

interactive views on data coming from different monitoring scenarios. It’s natively

integrated with Azure Kubernetes Service, helping to collect critical logs, send alerts, and

visualize. Figure 5-6 shows Container Insights in Azure Portal.

Here are the steps required to configure monitoring with Azure Monitor for an AKS

Cluster:

 1. Create a log analytics workspace. You must have one log analytics

workplace to have telemetry data collected from the AKS Cluster.

Container Insights requires at least one log analytics workplace.

 2. Enable Container Insights. Enabling Container Insights depends

on the AKS Cluster you are working on. Does the AKS Cluster

already exist or is it a newly created one? Once enabled, a

containerized version of the Log Analytics agent is deployed,

which sends data to Azure Monitor.

Figure 5-6. Features of Container insightsImage source: Microsoft
Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

142

 3. Configure a collection from Prometheus. Using Container Insights

allows you to collect Prometheus metrics without requiring a

Prometheus server. This makes the combination successful for

E2E monitoring. Refer to Figure 5-7, which depicts the working of

Container Insights and Prometheus.

 4. Collect the resource log. These are the logs for the AKS control

plane components implemented in Azure. You need to have a

diagnostic setting to collect these logs. You can have it in the log

analytics workspace or in Azure storage. Figure 5-8 shows the

screen for configuring diagnostics settings.

Figure 5-7. Configure scraping of Prometheus metrics with Container
InsightsImage source: Microsoft Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

143

 Azure Monitor Features
There are two ways you can view the Azure Monitor features for AKS Clusters:

• Go to Azure Portal ➤ Kubernetes Service and choose the Monitor

section from the left pane. This is mostly for single AKS Clusters.

Refer to Figure 5-9.

Figure 5-8. Screen for configuring diagnostics settings in Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

144

• Go to the Azure Portal. Type Monitor into the search box and then

choose Insights Section ➤ Containers.

Figure 5-10 shows all the AKS Clusters in a subscription.

Figure 5-9. Insights option for the Kubernetes service screen in Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

145

Figure 5-11 is a fresh screen view for Monitor in Azure Portal. It is an entry point for

monitoring clusters, creating alerts, and many more cool implementations.

Figure 5-10. Pane for Container Insights from the Monitor screen in
Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

146

Azure Kubernetes Service monitoring comes with variance implementation

and unique requirements. This approach relies on these requirements. It deals with

different layers, from infrastructure to application, and comes with distinct monitoring

requirements based on the layer.

Considering a bottom-up approach, these layers can be listed as shown in

Figure 5-12.

Figure 5-11. Containers fresh screen under Monitor in Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

147

To maintain the scope and brevity of this chapter, I will discuss Level 4, the

monitoring application layer that includes application workloads running in an AKS

Cluster.

This layer mainly focuses on monitoring the microservices application and

identifying application failures, along with information like request rates, response

time, any exceptions encountered, and so on. For complete monitoring of applications

running on AKS, you can use Application Insights, as shown in Figure 5-13.

Depending on your application stack, you need to configure code-based monitoring

to collect the required data. It could be anything—Java, Python, .Net, or any other

platform. In this example, I am more interested in ASP.NET Core applications.

Figure 5-12. Layers of AKSImage source: Microsoft Documentation

Figure 5-13. Icon for Application Insights

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

148

You need to have a valid Application Insights instrumentation key and create the

Application Insight resource.

To create one, go to Azure Subscription. Type Application Insights in the search

and click Create New. You will be presented with the screen to add the basic mandatory

details required to create the service. Enter with all the details and click Review + Create.

Refer to Figure 5-14.

Figure 5-14. Screen to create Application Insights in Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

149

Once it’s validated, click Create to complete the service creation.

Go to the newly created service screen to find the instrumentation key, connection

string, and other details, all under the Overview section. Refer to the highlighted sections

in Figure 5-15.

Tip using a connection string is highly recommended over an instrumentation
key, as new azure regions require connection strings. in either case, you need to
create the service.

Next, you need enable Application Insights in your IDE. My favorite IDE is Visual

Studio, but you can use other IDEs, such as like Visual Code, as well. Once you are done

enabling Application Insights server-side telemetry with your IDE, download the latest

stable release of the SDK by choosing NuGet Packages ➤ Microsoft.ApplicationInsights.

AspNetCore. Refer to Figure 15-16.

Figure 5-15. Instrumentation keys for Application Insights in Azure Portal

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

150

By adding a few lines of code to the application, it will start with the telemetry data,

and it can be presented in the Applications Insights screen in Azure Portal. This data can

be analyzed and can be used to create alerts based on the state of your applications.

For the code and other options, refer to https://docs.microsoft.com/en- us/

azure/azure- monitor/app/asp- net- core.

 Summary
This chapter presented things you should know about securing and monitoring

AKS- based applications. With the provided links, make sure you have proper hands-on

experience with these issues. This chapter ends the theoretical part of the book. The

next chapter uses a practical step-by-step approach to implementing CICD for Azure

Kubernetes Service-based applications. Until then, happy Azure learning.

Figure 15-16. SDK from the NuGet packageImage source: Microsoft
Documentation

Chapter 5 SeCuring and Monitoring appliCationS running on aKS

https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core

151
© Kasam Ahmed Shaikh and Shailesh S. Agaskar 2022
K. Ahmed Shaikh and S. S. Agaskar, Azure Kubernetes Services with Microservices,
https://doi.org/10.1007/978-1-4842-7809-3_6

CHAPTER 6

CI/CD for AKS
 Introduction
You are now in the last chapter of the book. By now, you have learned about the design

considerations of microservices and Azure Kubernetes Services. You’re nearly ready to

monitor and secure an Azure Kubernetes service-based application. In this last and final

chapter, you learn about an important aspect of application deliverables, Continuous

Integration and Continuous Deployment, focusing on Azure Kubernetes Services-based

applications.

 A Quick Look at DevOps
I assume you are not new to this topic, but to start the chapter, I present a short

introduction to DevOps.

DevOps brings together people, processes, and technology, automating software

delivery to provide continuous value to your users. DevOps automates and speeds

software delivery. It makes your process and your products more reliable.

DevOps is process, a practice, and a set of tools or a summation of all. It works

together toward a quicker software/product deliverable adopted by an organization. It

amplifies the team unification to a great extent, helping to make the development phase

seamless. The main reason for its popularity is the faster deliverables. You code and add

in a repository, and CI builds the application with the latest changes and presents it with

a deployable artifact. This artifact is now taken and pushed live, and all this is part of the

CD process flows. This can be done for all the environments you are working for. The

same artifacts can be promoted to higher environments, such as from Development to

QA to UAT to Production.

https://doi.org/10.1007/978-1-4842-7809-3_6#DOI

152

Note If you are a beginner to the DevOps concept, it’s best to go through the
documentation found at https://docs.microsoft.com/en- us/learn/
modules/get- started- with- devops/2- what- is- devops.

To make this final chapter more interesting, I present the exercise in a step-by-

step method. It has less theory and more practical applications. I am sure this will not

only make your learning interesting, but will also help you understand the topic more

easily. 😊
As a part of the prerequisites for the following exercise, you need to have a valid

Microsoft Azure subscription, Visual Studio as the IDE, an Azure DevOps project, and

Docker Desktop for Windows installed on your machine. The exercise uses GitHub as

the source code repository.

 Goals of This Exercise
Here is the agenda of this exercise:

• Create an Azure Kubernetes Service using Azure Portal.

• Create an Azure Container Instance using Azure Portal.

• Work with Visual Studio to build the sample application.

You can achieve CI/CD with various tools, but if you’re a Microsoft Cloud enthusiast,

the following tools are among the best:

• Azure DevOps

• GitHub Actions

The chapter presents you with the steps for using Azure DevOps. For GitHub Actions,

you’ll get a reference link, and you can try it as your first exercise in this chapter. Most

of the detailed steps in this chapter are self-explanatory, but I include more details

wherever it’s required.

So get ready and follow these steps! 😊

Chapter 6 CI/CD fOr aKS

https://docs.microsoft.com/en-us/learn/modules/get-started-with-devops/2-what-is-devops
https://docs.microsoft.com/en-us/learn/modules/get-started-with-devops/2-what-is-devops

153

 Creating Azure Kubernetes Service Using
Azure Portal

 1. Open the Microsoft Azure Portal from http://portal.azure.com/

and click the Create a Resource link, as shown in Figure 6-1.

Figure 6-1. Image detailing Step 1

 2. Search for Kubernetes Service in the search box or navigate to

Compute ➤ Kubernetes Service and click the service listed, as

shown in Figure 6-2.

Chapter 6 CI/CD fOr aKS

http://portal.azure.com/

154

Figure 6-2. Image detailing Step 2

 3. You will be presented with the screen to enter the basic details.

Details such as selecting your subscription, resource group,

cluster name, region, and so on. This example uses Kubernetes

version 1.19.11. Enter all the mandatory details and click Next for

Node Pools. See Figure 6-3.

Chapter 6 CI/CD fOr aKS

155

Figure 6-3. Image detailing Step 3

 4. Now you’ll add a node pool. Click the + Add Node Pool button.

You are presented with multiple options, as shown in Figure 6-4.

Chapter 6 CI/CD fOr aKS

156

Figure 6-4. Image detailing Step 04

 5. Give the node pool name and then select a VM size, as shown in Figure 6-5.

You don’t have to select the same VM size as shown in the image.

Figure 6-5. Image detailing Step 5

Chapter 6 CI/CD fOr aKS

157

 6. The newly created node will be listed. Click Next to move to

Authentication. See Figure 6-6.

Figure 6-6. Image detailing Step 6

 7. Select the authentication method and RBAC roles, as shown in

Figure 6-7. Click Next.

Chapter 6 CI/CD fOr aKS

158

Figure 6-7. Image detailing Step 7

 8. Select Network Configuration as Azure CNI and the other

mandatory fields, as shown in Figure 6-8.

Figure 6-8. Image detailing Step 8

Chapter 6 CI/CD fOr aKS

159

 9. Make sure you select Azure for the network policy, as shown in

Figure 6-9.

Figure 6-9. Image detailing Step 9

 10. Click Next and present with the integration details. I will go as is.

Click ‘Review + Create, as shown in Figure 6-10.

Chapter 6 CI/CD fOr aKS

160

Figure 6-10. Image detailing Step 10

 11. Once it passes the validation, click Create, as shown in Figure 6-11.

Figure 6-11. Image detailing Step 11

Chapter 6 CI/CD fOr aKS

161

 12. This will lead to the screen presenting the progress of deployment.

Click Go to Resource upon successful completion of deployment,

as shown in Figure 6-12.

Figure 6-12. Image detailing Step 12

 13. You will be presented with the newly created Kubernetes Cluster, as

shown in Figure 6-13.

Chapter 6 CI/CD fOr aKS

162

Figure 6-13. Image detailing Step 13

 Creating Azure Container Instance Using
Azure Portal

 14. Follow the step shown in Figure 6-14.

Chapter 6 CI/CD fOr aKS

163

Figure 6-14. Image detailing Step 14

 15. Follow the step shown in Figure 6-15.

Figure 6-15. Image detailing Step 15

Chapter 6 CI/CD fOr aKS

164

 16. Enter the mandatory details on the Basic screen and leave the rest

set to the defaults. Click Review + Create, as shown in Figure 6-16.

Figure 6-16. Image detailing Step 16

 17. Once you see that validation has passed, click Create. See

Figure 6-17.

Chapter 6 CI/CD fOr aKS

165

Figure 6-17. Image detailing Step 17

 18. Wait for the deployment to complete. Click Go to Resource, as

shown in Figure 6-18.

Chapter 6 CI/CD fOr aKS

166

Figure 6-18. Image detailing Step 18

 19. From the left blade, choose Access Control, as shown in Figure 6-19.

Figure 6-19. Image detailing Step 19

Chapter 6 CI/CD fOr aKS

167

 20. Click to add a new role assignment, as shown in Figure 6-20.

Figure 6-20. Image detailing Step 20

 21. Select the ÁrcPull role that presents user managed identity and

then select the newly created pool, as shown in Figure 6-21.

Chapter 6 CI/CD fOr aKS

168

Figure 6-21. Image detailing Step 21

 22. Follow the step shown in Figure 6-22.

Figure 6-22. Image detailing Step 22

Chapter 6 CI/CD fOr aKS

169

 23. From the left blade, go to Access Keys under the Settings section,

as shown in Figure 6-23.

Figure 6-23. Image detailing Step 23

 24. Click Toggle to enable the keys as the Admin User, as shown in

Figure 6-24.

Chapter 6 CI/CD fOr aKS

170

Figure 6-24. Image detailing Step 24

 Working with Visual Studio to Build
the Sample Application

 25. Before opening up the IDE, go to the following link to download

the Docker Desktop and install it with the default settings:

https://www.docker.com/products/docker-desktop (see

Figure 6-25).

Chapter 6 CI/CD fOr aKS

https://www.docker.com/products/docker-desktop

171

Figure 6-25. Image detailing Step 25

 26. Figure 6-26 shows that Docker is up and running.

Figure 6-26. Image detailing Step 26

Chapter 6 CI/CD fOr aKS

172

 27. Now open Visual Studio and choose Create a New Project, as

shown in Figure 6-27.

Figure 6-27. Image detailing Step 27

 28. Follow the step shown in Figure 6-28.

Chapter 6 CI/CD fOr aKS

173

Figure 6-28. Image detailing Step 28

 29. Choose a name for the application, as shown in Figure 6-29.

Figure 6-29. Image detailing Step 29

Chapter 6 CI/CD fOr aKS

174

 30. Make sure you enable Docker and select Windows as the Docker

OS, as shown in Figure 6-30.

Figure 6-30. Image detailing Step 30

 31. You can see the application that’s created, as shown in Figure 6-31.

Chapter 6 CI/CD fOr aKS

175

Figure 6-31. Image detailing Step 31

 32. Select Run ➤ Kubernetes Application , as shown in Figure 6-32.

Figure 6-32. Image detailing Step 32

Chapter 6 CI/CD fOr aKS

176

 33. Click to run the application, as shown in Figure 6-33.

Figure 6-33. Image detailing Step 33

 34. Make sure the application is running fine, with no errors.

See Figure 6-34.

Chapter 6 CI/CD fOr aKS

177

Figure 6-34. Image detailing Step 34

 35. Now add a new file by right-clicking and choosing Add ➤ New

File. See Figure 6-35.

Figure 6-35. Image detailing Step 35

Chapter 6 CI/CD fOr aKS

178

 36. You have to add this YAML file, as it defines the deployment

details of your containers in Kubernetes. See Figure 6-36.

Figure 6-36. Image detailing Step 36

 37. You can delete this default code and add the script in the next

step. See Figure 6-37.

Chapter 6 CI/CD fOr aKS

179

Figure 6-37. Image detailing Step 37

 38. The following script defines the details of container image, the

number of copies it must create, the ports to be exposed, the

scaling metrics, and the update policies. See Figure 6-38.

Chapter 6 CI/CD fOr aKS

180

Figure 6-38. Image detailing Step 38

 39. Follow the step shown in Figure 6-39.

Figure 6-39. Image detailing Step 39

Chapter 6 CI/CD fOr aKS

181

 40. This complete script is helping to build a container application.

This is default script, and you can change it according to your

needs. See Figure 6-40.

Figure 6-40. Image detailing Step 40

 41. Replace the default script with the script in Figure 6-41. This script

is taking the dotnet core container image as its base and building

the container application.

Chapter 6 CI/CD fOr aKS

182

Figure 6-41. Image detailing Step 41

You are done making the necessary changes in the application. Now you’ll build the

pipelines for setting up CI/CD.

 CI/CD with Azure DevOps

 42. Open the Team Explorer and follow the step shown in Figure 6-42.

Chapter 6 CI/CD fOr aKS

183

Figure 6-42. Image detailing Step 42

 43. Connect to the GitHub repository by following the step shown in

Figure 6-43.

Figure 6-43. Image detailing Step 43

Chapter 6 CI/CD fOr aKS

184

 44. Authenticate your GitHub credentials, as shown in Figure 6-44.

Figure 6-44. Image detailing Step 44

 45. Once the authorization is successful, you will be presented with

the message shown in Figure 6-45.

Chapter 6 CI/CD fOr aKS

185

Figure 6-45. Image detailing Step 45

 46. Follow the step shown in Figure 6-46.

Figure 6-46. Image detailing Step 46

Chapter 6 CI/CD fOr aKS

186

 47. Follow the step shown in Figure 6-47.

 48. Follow the step shown in Figure 6-48.

Figure 6-47. Image detailing Step 47

Chapter 6 CI/CD fOr aKS

187

Figure 6-48. Image detailing Step 48

 49. The application you created is now part of your repo, and files can

be seen, as shown in Figure 6-49.

Figure 6-49. Image detailing Step 49

Chapter 6 CI/CD fOr aKS

188

 50. Go to https://devops.azure.com/, as shown in Figure 6-50.

Figure 6-50. Image detailing Step 50

 51. Follow the step shown in Figure 6-51 to create a new project.

Chapter 6 CI/CD fOr aKS

https://devops.azure.com/

189

Figure 6-51. Image detailing Step 51

 52. Follow the step shown in Figure 6-52.

Figure 6-52. Image detailing Step 52

Chapter 6 CI/CD fOr aKS

190

 53. To start the Pipelines, follow the step shown in Figure 6-53.

Figure 6-53. Image detailing Step 53

 54. Click Create Pipeline, as shown in Figure 6-54.

Chapter 6 CI/CD fOr aKS

191

Figure 6-54. Image detailing Step 54

 55. Pick your code; this example uses the Classic Editor, as shown in

Figure 6-55.

Figure 6-55. Image detailing Step 55

Chapter 6 CI/CD fOr aKS

192

 56. Select GitHub and authorize with your GitHub credentials, as

shown in Figure 6-56.

Figure 6-56. Image detailing Step 56

 57. Select the Repository where you have your application files, as

shown in Figure 6-57.

Chapter 6 CI/CD fOr aKS

193

Figure 6-57. Image detailing Step 57

 58. Follow the step shown in Figure 6-58.

Figure 6-58. Image detailing Step 58

Chapter 6 CI/CD fOr aKS

194

 59. Click Continue to proceed, as shown in Figure 6-59.

Figure 6-59. Image detailing Step 59

 60. Add a new task. This is a DevOps pipeline task that can help you

build and push a container image. You need to use this task or

any other tasks of this kind to build a container application. See

Figure 6-60.

Chapter 6 CI/CD fOr aKS

195

Figure 6-60. Image detailing Step 60

 61. Follow the step shown in Figure 6-61.

Figure 6-61. Image detailing Step 61

Chapter 6 CI/CD fOr aKS

196

 62. Follow the step shown in Figure 6-62.

Figure 6-62. Image detailing Step 62

 63. Follow the step in Figure 6-63.

Chapter 6 CI/CD fOr aKS

197

Figure 6-63. Image detailing Step 63

 64. Authorize your subscription, as shown in Figure 6-64.

Figure 6-64. Image detailing Step 64

Chapter 6 CI/CD fOr aKS

198

 65. Follow the step shown in Figure 6-65.

Figure 6-65. Image detailing Step 65

 66. Select the path, as shown in Figure 6-66.

Chapter 6 CI/CD fOr aKS

199

Figure 6-66. Image detailing Step 66

 67. It is best to create a new version of the container for each build,

as every new change in the code builds a container. Therefore,

to keep the version of the image unique, use the build ID of the

pipeline, which gets uniquely generated each time the pipeline

runs build operations. The value shown in Figure 6-67 with the $

in front of it is a variable that comes in the DevOps pipeline.

Chapter 6 CI/CD fOr aKS

200

Figure 6-67. Image detailing Step 67

 68. Follow the step shown in Figure 6-68.

Figure 6-68. Image detailing Step 68

Chapter 6 CI/CD fOr aKS

201

 69. This is same as was mentioned for the previous build task of

the Docker image. You need to provide a unique version for the

Docker image that you are going to push into the ACR. Therefore,

use the variable shown in Figure 6-69.

Figure 6-69. Image detailing Step 69

 70. We can use the Replace Tokens task to replace the URL of the

Azure Container Registry, which will be used to store a container

image. Rather than hard-coding the URL of the registry in

the source code, you create a variable in the YAML file that

was initially added to define the container configuration for

deployment into Kubernetes. Each time it runs, you can provide a

variable in the pipeline so that during the pipeline’s runtime, you

can define the container registry details. See Figure 6-70.

Chapter 6 CI/CD fOr aKS

202

Figure 6-70. Image detailing Step 70

 71. Follow the step shown in Figure 6-71.

Figure 6-71. Image detailing Step 71

Chapter 6 CI/CD fOr aKS

203

 72. Select the path, as shown in Figure 6-72.

Figure 6-72. Image detailing Step 72

 73. Here you list the details of the file in which you want to replace the

variable, which is the container registry name. See Figure 6-73.

Chapter 6 CI/CD fOr aKS

204

Figure 6-73. Image detailing Step 73

 74. Go to Variables and click the Add button, as shown in Figure 6-74.

Figure 6-74. Image detailing Step 74

Chapter 6 CI/CD fOr aKS

205

 75. Add ÁCR as a new variable name and the ACR login server URL

from the Azure Portal as the Value, as shown in Figure 6-75.

Figure 6-75. Image detailing Step 75

 76. In Azure Portal, get the required URL, as shown in Figure 6-76.

Chapter 6 CI/CD fOr aKS

206

Figure 6-76. Image detailing Step 76

 77. Paste the value for the variable name ACR, as shown in Figure 6-77.

Figure 6-77. Image detailing Step 77

Chapter 6 CI/CD fOr aKS

207

 78. Add new task name called Copy Files. Follow the step shown in Figure 6-78.

Figure 6-78. Image detailing Step 78

Figure 6-79. Image detailing Step 79

Chapter 6 CI/CD fOr aKS

208

 79. This is a build pipeline that builds your code and the built artifacts

will be given to the release pipeline to release the code. Use the

Copy File task to copy the built artifacts. But here, you don’t have

any artifacts that are built, as you are sending the image to the

container registry in the build pipeline. You need the YAML, so

you copy it using this task and publish it as an artifact to use it in

the release pipeline. See Figure 7-79.

 80. Add another task name called Publish Build Artifacts. Follow the

step shown in Figure 6-80.

Figure 6-80. Image detailing Step 80

 81. Follow the step shown in Figure 6-81 for Publish Task.

Chapter 6 CI/CD fOr aKS

209

Figure 6-81. Image detailing Step 81

 82. Go to the Triggers section and enable continuous integration by

checking the option, as shown in Figure 6-82.

Figure 6-82. Image detailing Step 82

Chapter 6 CI/CD fOr aKS

210

 83. Follow the step shown in Figure 6-83.

Figure 6-83. Image detailing Step 83

 84. Now you’ll create release pipelines, as shown in Figure 6-84.

Chapter 6 CI/CD fOr aKS

211

Figure 6-84. Image detailing Step 84

 85. Deploy to a Kubernetes Cluster task, as shown in Figure 6-85.

Figure 6-85. Image detailing Step 85

Chapter 6 CI/CD fOr aKS

212

 86. Give it a name, as shown in Figure 6-86.

Figure 6-86. Image detailing Step 86

 87. Follow the step shown in Figure 6-87.

Chapter 6 CI/CD fOr aKS

213

Figure 6-87. Image detailing Step 87

 88. Select the build and present it with the build pipeline you created

in the preceding steps as the source. See Figure 6-88.

Figure 6-88. Image detailing Step 88

Chapter 6 CI/CD fOr aKS

214

 89. Click the highlighted icon to enable the continuous deployment

trigger, as shown in Figure 6-89.

Figure 6-89. Image detailing Step 89

 90. Enable it using the toggle, as shown in Figure 6-90.

Chapter 6 CI/CD fOr aKS

215

Figure 6-90. Image detailing Step 90

 91. Under Stage, click the Task link to proceed. See Figure 6-91.

Figure 6-91. Image detailing Step 91

Chapter 6 CI/CD fOr aKS

216

 92. Against the task, click New to create a new service connection. See

Figure 6-92.

Figure 6-92. Image detailing Step 92

 93. Select Azure Subscription as the Authentication method and

select the subscription, resource group, and namespace as the

defaults. Enter a name for the service connection and click Save.

See Figure 6-93.

Chapter 6 CI/CD fOr aKS

217

Figure 6-93. Image detailing Step 93

 94. Proceed with the details, as shown in Figure 6-94.

Figure 6-94. Image detailing Step 94

Chapter 6 CI/CD fOr aKS

218

 95. This task will deploy the container into Kubernetes and that can

be done using the instructions written in the YAML file that you

published in the build pipeline. In place of file path, provide

the path of the YAML file that you copied in the build task. See

Figure 6-95.

Figure 6-95. Image detailing Step 95

 96. Enter the Secrets details, as shown in Figure 6-96.

Chapter 6 CI/CD fOr aKS

219

Figure 6-96. Image detailing Step 96

 97. Select the latest version to make sure that the deployment works

fine. See Figure 6-97.

Figure 6-97. Image detailing Step 97

Chapter 6 CI/CD fOr aKS

220

 98. When deploying the next version of the container application into

the Kubernetes by changing the source code of the application,

you should get the latest container application. To make that

happen, use the Kubectl set command to set the version of the

container; see Figure 6-98.

Figure 6-98. Image detailing Step 98

 99. Add the mandatory details shown in Figure 6-99.

Chapter 6 CI/CD fOr aKS

221

Figure 6-99. Image detailing Step 99

 100. Since each build creates a new version of the container, use the

build ID variable with the Kubectl set command to set the same

version of the image that was built as the latest version of image to

be deployed in the Kubernetes. See Figure 6-100.

Chapter 6 CI/CD fOr aKS

222

Figure 6-100. Image detailing Step 100

 101. Go to the Variables section and add variable name called

ACR. Use the same ACR server DNS. See Figure 6-101.

Chapter 6 CI/CD fOr aKS

223

Figure 6-101. Image detailing Step 101

 102. Follow the step shown in Figure 6-102.

Figure 6-102. Image detailing Step 102

Chapter 6 CI/CD fOr aKS

224

 103. Now you’ll make a small change to the application, as shown in

Figure 6-103.

Figure 6-103. Image detailing Step 103

 104. Make changes to the Index.chtml file; see Figure 6-104.

Chapter 6 CI/CD fOr aKS

225

Figure 6-104. Image detailing Step 104

 105. Add the relevant comments and then commit and push the

changes, as shown in Figure 6-105.

Figure 6-105. Image detailing Step 105

Chapter 6 CI/CD fOr aKS

226

 106. You can view the added comment and changes under the

Pipelines section, as shown in Figure 6-106.

Figure 6-106. Image detailing Step 106

 107. Verify the changes. See Figure 6-107.

Chapter 6 CI/CD fOr aKS

227

Figure 6-107. Image detailing Step 107

 108. Click and check the status. See Figure 6-108.

Figure 6-108. Image detailing Step 108

Chapter 6 CI/CD fOr aKS

228

 109. You can view execution of all the tasks; see Figure 6-109.

Figure 6-109. Image detailing Step 109

 110. Go to Azure Portal and verify the changes pushed with tags.

They can be seen by choose Container Registry ➤ Services ➤

Repositories. See Figure 6-110.

Chapter 6 CI/CD fOr aKS

229

Figure 6-110. Image detailing Step 110

 111. Now in the Azure DevOps Portal, under Release, you can see the details

of relevant changes that need to be deployed. See Figure 6-111.

Figure 6-111. Image detailing Step 111

Chapter 6 CI/CD fOr aKS

230

 112. Deployment progress can be viewed. See Figure 6-112.

Figure 6-112. Image detailing Step 112

 113. By clicking on Logs, you can see the steps being executed. See

Figure 6-113.

Chapter 6 CI/CD fOr aKS

231

Figure 6-113. Image detailing Step 113

 114. From the Azure Portal, choose the Kubernetes Service.

Under the Kubernetes resources section, select Workloads.

Under deployments, the latest deployment will be listed. See

Figure 6-114.

Chapter 6 CI/CD fOr aKS

232

Figure 6-114. Image detailing Step 114

 115. Click the listed deployment to view more details. See Figure 6-115.

Figure 6-115. Image detailing Step 115

Chapter 6 CI/CD fOr aKS

233

 116. Click Overview and then Connect to view the ways to connect the

cluster using Azure CLI along with sample commands. Follow

the steps shown in Figure 6-116 to connect with AKS using the

cloud shell.

Figure 6-116. Image detailing Step 116

 117. Copy and enter the commands shown in Figure 6-117. You can

host the external IP.

Chapter 6 CI/CD fOr aKS

234

 118. Enter the IP in the browser and view the application hosted. See

Figure 6-118.

Figure 6-118. Image detailing Step 118

Figure 6-117. Image detailing Step 117

Chapter 6 CI/CD fOr aKS

235

 119. Now once validate the CI/CD implementation. See Figure 6-119.

Figure 6-119. Image detailing Step 119

 120. Make small changes to the index file, as shown in Figure 6-120.

Chapter 6 CI/CD fOr aKS

236

Figure 6-120. Image detailing Step 120

 121. Commit and push the new change. See Figure 6-121.

Figure 6-121. Image detailing Step 121

Chapter 6 CI/CD fOr aKS

237

 122. Changes can also be seen on GitHub, as shown in Figure 6-122.

Figure 6-122. Image detailing Step 122

 123. And, of course, you can view the changes in Azure DevOps Portal,

under Pipelines, as shown in Figure 6-123.

Chapter 6 CI/CD fOr aKS

238

Figure 6-123. Image detailing Step 123

 124. Under Releases, you can see that the deployment has succeeded.

This is because I enabled the continuous deployment trigger. See

Figure 6-124.

Chapter 6 CI/CD fOr aKS

239

Figure 6-124. Image detailing Step 124

 125. In the browser, refresh the page to verify the changes. See Figure 6-125.

Chapter 6 CI/CD fOr aKS

240

Figure 6-125. Image detailing Step 125

And you can see, the application is up and running fine, with the changes made. 😊

 Summary
If you followed the steps in this chapter, CI/CD will be successfully implemented in your

web application. It’s a good idea to follow these steps closely two or three times. Now,

as part of the exercise, instead of web application, try to deploy a Web API. You have to

change very few steps during the build process. Let me know how it was for you to learn

through the adapted step-by-step approach in this chapter and in the other chapters.

I hope this book has expedited your learning journey with Azure Kubernetes Services.

Thank you for reading this book as part of your learning process. Best of luck and happy

Azure learning.

Chapter 6 CI/CD fOr aKS

241
© Kasam Ahmed Shaikh and Shailesh S. Agaskar 2022
K. Ahmed Shaikh and S. S. Agaskar, Azure Kubernetes Services with Microservices,
https://doi.org/10.1007/978-1-4842-7809-3

Index

A
Agile delivery methodologies, 12
Agile Development, 65
Agile methodology, 38
Antifragility, 48, 49
API design

components, 66
hypermedia-driven, 67–69
message-oriented, 67

API gateways
alerting, 100, 101
monitoring, 100, 101
orchestration, 97–99
routing, 99, 100
security, 96, 97
transformation, 97–99

Architectural policy, 55
Asynchronous message-passing, 80–82
Azure Container Instance

access control, 166
access keys, 169
assignment role, 167
deployment, 165
enable keys, 169
mandatory details, 164
user managed identity, 167
validation, 164

Azure encryption, 136
Azure KeyVault icons, 137
Azure Kubernetes Service (AKS)

application programs, 19

benefits, 18
cloud-native developers, 18
cluster, 20
components, 22, 23
container images, 20
container registries, 19
control plane, 21
deploying apps and workloads, 21–23
network communication, 18
shared libraries, 19

Azure Kubernetes Service
checklist, 137–140

Azure Kubernetes Service Reference
Architecture, 22

B
Banking technology system, 37
Batch-size reduction technique, 87
Business value, 27, 28

C
Circuit Breaker, 57
Client server model, 2, 3
Client-side user interface, 7
Cloud computing, 89
Cloud-native architecture

business benefits, 16, 17
critical design considerations, 15, 16
definition, 13
distributed cache, 13

https://doi.org/10.1007/978-1-4842-7809-3#DOI

242

erosion sets, 12
monolith advantages, 11
monolith version, 12
twelve-factor application, 14, 15

Cloud-Native Computing Foundation
(CNCF), 13

Cluster, 18, 20, 21
Cluster upgrades, 134, 135
Command query responsibility

segregation (CQRS), 62, 77, 78
Component object model (COM), 4
Component technology, 4
Container images, 20
Container insights, 141, 142
Containers, see also Docker

architecture, 105
deployments over time, 106
description, 103
fresh screen, 146
layers, 108
layers within image, 107
run everywhere, 106
runtime environment solution, 104
vs. virtualization technology, 104, 106

Contemporary RESTful (CRUD), 69
Continuous integration/

deployment (CI/CD)
AKS

authentication method and RBAC
roles, 157

deployment, 161
integration details, 159
network configuration, 158
network policy, 159
node pool, 155
resource creation, 153
screen details, 154

search, 153
validation, 160
VM size, 156

Azure Container Instance, 162–169
DevOps (see DevOps)
goals, 152
Visual Studio

add new file, 177
add script, 178
add YAML file, 178
application, 174, 176
choose application name, 173
container application, 181
creating project, 172
Docker up and running, 171
enable Docker, 174
install default settings, 170
replacing default script, 181
script details, 179

Control plane, 21
Conway’s law, 49
Culture

aspects, 58
description, 57
fostering innovation, 58, 59
team alignment, 58

Customer Management, 76, 89

D, E
Data-sharing problem, 61
Data storage technology, 6, 53
DevOps, 10

ACR login server, 205
ACR server DNS, 222
application, 187, 224
application hosted, 234
artifacts, 151

Cloud-native architecture (cont.)

INDEX

243

authorization, 184
authorize your subscription, 197
Azure Container Registry, 201
Azure Portal, 229
Azure subscription, 216
build ID variable, 221
build pipeline, 213
built artifacts, 208
changes verification, 226, 239
checking status, 227
CI/CD implementation, 235
Classic Editor, 191
commands, 234
comments, 225, 226
commit and push changes, 236
connecting cluster, 233
container application, 220
container registry name, 203
continuous deployment trigger,

214, 238
continuous integration, 209
copy files, 207
creating new project, 188
creating new service connection, 216
deployment, 219, 230–232
description, 151
exercise, 152
GitHub changes, 237
GitHub credentials, 184, 192
GitHub repository, 183
image unique, 199, 201
Kubernetes cluster task, 211
logs, 230
mandatory details, 220
pipelines, 190, 238
pipeline task, 194
publish build artifacts, 208
publish task, 208

release pipelines, 210
secrets details, 218
select path, 198
select repository, 192
tags, 228
task link, 215
tasks execution, 228
Team Explorer, 182
toggle, 214
variable name ACR, 206
variables, 204
YAML file, 218

Digital economy, 27
Digital media, 32
Distributed component object model

(DCOM), 4
Distributed computing

client server model, 2, 3
component technology, 4
mainframe systems, 2
natural evolution, 2
service oriented architecture, 5, 6
web services, 4

Docker, 92–94
applications, 108
Azure Kubernetes Service, 127
cleanup processes, 114
containers interaction, 109
creating hub account, 119
development tools, 109, 110
entrypoint configuration, 116
execution, 118, 119
exploring run command, 112
file, 115, 116
inspection, 119
installing desktop environment,

110, 111
Kubernetes

INDEX

244

architecture, 122
components, 122
deployments and replica

sets, 124
enabled settings, 110
framework, 123
orchestrators, 121
tooling and setup, 124–128

logs, 118
monitoring, 118
registry tagging and pushing, 120
running Webserver, 112
simple static website, 117, 118
viewing web page contents, 113

Docker Hub, 23, 93, 111, 119
Domain-driven design (DD), 6, 62, 63

F
Fat-client applications, 3

G
GitHub, 93, 109, 152
Granular testing, 29

H
Hardware services, 54
HashiCorp, 56, 95
Hypermedia As The Engine Of Application

State (HATEOAS APIs), 68
Hypermedia-driven

implementations, 67–69
Hypertext Application Language

(HAL), 67

I, J
Immutability, 49, 51, 53
Infrastructure as Service (IaaS), 10
Intelligent inventory management

system, 98
Interrelationships, 30

K
Key performance indicator (KPI), 43
Kubernetes, 17, 18, 95
Kubernetes secret, 135–137

L
Lean Startup, 65
Linux kernel extension (LXC), 91
Localized capabilities, 56, 57

M
Mainframe systems, 2
Master security, 132, 133
Maturity model, 30–32
Mesosphere, 95, 96
Microservice architecture

benefits, 25, 26
cohesiveness, 29
culture, 36, 57–59
definition, 6
design (see also Microservices design

process)
diagram, 6, 7
embracing change, 36
emergent behaviors, 33
goal-oriented, layered approach, 31, 32

Docker (cont.)

INDEX

245

goals, 45
cost reduction, 46
enable visibility, 47
improve resilience, 47
increase release speed, 46
trade-offs, 47

grappling, 33
interrelationships, 30
maturity model, 30, 31
model-based approach, 34
modularity, 29
monolithic applications, 28, 29
operating principles

Netflix, 48, 49
Unix, 49

organization, 35
platforms

containerization tools, 53
localized capabilities, 56, 57
shared capabilities, 53–55
speed and safety, 52

principles
build afresh, 50
don’t hesitate to throw it away, 52
don’t insist on interactive input, 51
do one thing well, 50
expect output to become input, 51
toolmaking, 52
tried early, 51

process and tools, 35
runtime elements, 33
service, 34
solution, 35
standardization and

coordination, 37–40
Microservices design patterns

API design (see API design)
architecture, 91, 92

asynchronous message-passing, 80–82
batch-size reduction, 65
boundaries, 62, 63
bounded context, 64
“cheapest” cloud-hosting

environment, 91
data

event sourcing, 71–75
muscle memory, 69
Shipping Company, 70, 71, 75–77
software engineers, 69
storage, 69

dependencies
centralized data storage, 83
components, 83, 84
database management system, 82
data storage system, 82
pragmatic mobility, 85–88
Shipping Company’s, 82
SQL/NoSQL database system, 82

distributed transactions, 79, 80
Docker, 92–94
foundational methodologies, 65
independent deployability, 88–90
lightweight packaging solutions, 90
modern software development, 65
operations, 88
packaging formats, 90
principal benefits, 65
production system, 91
role of service discovery, 94–96
sagas, 79, 80
service application file, 90
service design, 61, 62
system design, 88
ubiquitous language, 66

Microservices design process, 40
development principles, 41

INDEX

246

implement, observe and adjust, 42–44
professional designers, 40
set optimization goals, 40
sketch system design, 41
system designer, 44

Modularity, 29, 66, 90
Monitoring

AKS layers, 147
application insights, 147, 148
configuring diagnostics settings, 143
container insights, 141, 142, 145
features, 143–150
insights option, 144
instrumentation keys, 149
NuGet package, 150

Monolith business application, 11
Monoliths vs. microservices, 7–10

N
Namespaces, 123, 125, 135, 139
Netflix

antifragility, 48
immutability, 49
separation of concerns, 49

Network security, 135
Node security, 133, 134

O
OpenAPI, 39
Open Container Initiative (OCI), 19, 20
Output standardization, 38

P, Q
Platform as a Service (PaaS), 10
Platform-level security, 55

Pods, 20
Policy tooling, 55
Polyglot approach, 29
Polyglotism, 26, 28
Process standardization, 37, 38
Prometheus metrics, 142
PubSubHubbub, 81

R
Recommendation engine, 98
Representational State Transfer

Architectural (REST), 5
Resilient systems, 47
Routing slip, 79

S
Security

AKS checklist, 137–140
authorized IP range feature, 133
cluster upgrades, 134, 135
components, 132
Kubernetes secret, 135, 136
master, 132, 133
network, 135
node, 133, 134

Separation of concerns (SoC), 49
Server-side application, 7, 9
Service orchestration, 55
Service oriented

architecture, 5, 6
Shared capabilities

architectural policy, 55
change safety, 54
database technologies, 53
data storage, 55
hardware services, 54

Microservices design process (cont.)

INDEX

247

security and identity, 55
service orchestration, 55
source code management, test and

deployment, 54
Shipment Management, 76, 77, 80, 89
Shipment Tracking, 76, 77, 80
Shipping Company, 70, 71, 75–77, 80
Simple Object Access Protocol

(SOAP), 4, 5
SkyDNS, 100
Small service components, 61
Software as a Service (SaaS), 10
Software delivery speed, 26
Software system safety, 26
Standardization

outputs, 38
people, 39
process, 37, 38
trade-offs, 39, 40

System influencers, 37
System observability, 57

T
Team alignment, 58

U
Union mounting, 93
Universal Description Discovery and

Integration (UDDI), 4

V
Virtualization technology, 104, 106
Virtual machine (VM), 54, 91, 104

W, X, Y, Z
Web services, 4, 5, 7, 67, 97

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Microservices and AKS
	Introduction
	The History of Distributed Computing
	Client Server Model
	Component Technology
	Web Services
	Service Oriented Architecture

	What Are Microservices?
	Monoliths vs. Microservices
	Introduction to the Cloud-Native Architecture
	How Business Benefits from Cloud-Native Applications
	An Introduction to AKS and its Components
	Container Images
	The Cluster
	The Control Plane
	Deploying Apps and Workloads

	Summary
	Appendix

	Chapter 2: Microservices: Architecting and Design Considerations
	Introduction
	Microservice Architecture Benefits
	Deriving Business Value
	Defining a Goal-Oriented, Layered Approach
	Modularity
	Cohesiveness
	Interrelationships
	Maturity Model for Microservice Architecture Goals and Benefits

	Applying the Goal-Oriented, Layered Approach
	Microservices Design
	The Systems Approach to Microservices
	Service
	Solution
	Process and Tools
	Organization
	Culture
	Embracing Change
	Standardization and Coordination
	Standardizing Process
	Standardizing Outputs
	Standardizing People
	Standardization Trade-Offs

	A Microservices Design Process
	Set Optimization Goals
	Development Principles
	Sketch the System Design
	Implement, Observe, and Adjust
	The Microservices System Designer

	Goals and Principles
	Goals for the Microservices Way
	Reduce Costs
	Increase Release Speed
	Improve Resilience
	Enable Visibility
	Trade-Offs

	Operating Principles
	Netflix
	Antifragility
	Immutability
	Separation of Concerns

	UNIX
	Suggested Principles
	Do One Thing Well
	Build Afresh
	Expect Output to Become Input
	Don’t Insist on Interactive Input
	Try Early
	Don’t Hesitate to Throw It Away
	Toolmaking

	Platforms
	Shared Capabilities
	Hardware Services
	Source Code Management, Test, and Deployment
	Data Storage
	Service Orchestration
	Security and Identity
	Architectural Policy

	Localized Capabilities

	Culture
	Aligning Your Teams
	Fostering Innovation

	Summary
	Appendix

	Chapter 3: Microservices Design Patterns
	Introduction
	Service Design
	Microservice Boundaries
	Microservice Boundaries and Domain-Driven Design
	It’s Only a Model
	Bounded Context
	Smaller Is Better
	Ubiquitous Language

	API Design for Microservices
	Message-Oriented
	Hypermedia-Driven

	Data and Microservices
	Shipping Company Example
	Event Sourcing
	System Model for Shipping Company
	CQRS

	Distributed Transactions and Sagas
	Asynchronous Message-Passing and Microservices
	Dealing with Dependencies
	Pragmatic Mobility

	System Design and Operations
	Independent Deployability
	Do You Need More Servers?
	Microservice Architecture Is a Product of Its Time

	Docker and Microservices
	The Role of Service Discovery
	The Need for an API Gateway
	Security
	Transformation and Orchestration
	Routing

	Monitoring and Alerting
	Summary
	Appendix

	Chapter 4: Containers and Azure Kubernetes Services
	Introduction
	Containers
	How Containers Solve This Problem
	How Containerization Is Different from Virtualization

	Using Docker
	Installing Docker Desktop in Your Development Environment
	Exploring the docker run Command
	Running a Webserver
	Viewing the Contents of the Web Page from the Terminal
	Cleanup Processes
	The Dockerfile
	Use Entrypoint to Make the Greeter a Bit More Configurable
	Use COPY to Launch a Simple Static Website

	Monitoring Docker Containers and Docker Logs
	Docker Exec: Run Commands Inside a Running Container!
	Docker Inspect
	Creating a Docker Hub Account and Connecting to It
	Tagging and Pushing Your Image to the Registry

	Using Kubernetes
	Kubernetes Tooling and Setup

	Summary
	Appendix

	Chapter 5: Securing and Monitoring Applications Running on AKS
	Introduction
	Security Concepts
	Master Security
	Node Security
	Cluster Upgrades
	Network Security
	Kubernetes Secrets

	Azure Kubernetes Service Checklist
	Security Concepts: Conclusion

	Monitoring Concepts
	Container Insights
	Azure Monitor Features

	Summary

	Chapter 6: CI/CD for AKS
	Introduction
	A Quick Look at DevOps
	Goals of This Exercise
	Creating Azure Kubernetes Service Using Azure Portal
	Creating Azure Container Instance Using Azure Portal
	Working with Visual Studio to Build the Sample Application
	CI/CD with Azure DevOps
	Summary

	Index

