
113
© Karl Ots 2021
K. Ots, Azure Security Handbook, https://doi.org/10.1007/978-1-4842-7292-3_7

CHAPTER 7

Workload
Protection – Containers
In this chapter, we discuss protecting container workloads in Azure. After reading this

chapter, you will be able to select and implement appropriate controls for securing

container workloads as part of your organization’s security policy framework.

Containers can be hosted in multiple services in Azure, collectively referred to as

container-as-a-service services. For the purposes of this book, I consider App Service

for containers a platform-as-a-service service, as it includes further and opinionated

web services such as scaling, load balancing, and authentication. Likewise, I consider

virtual machines purely as infrastructure as a service, despite their support for nested

virtualization and, thus, capability to act as a container host.

 Container Security
Container security is a broad and nuanced topic. To set the context for this book, I will

briefly explain the core security concepts. If you are familiar with container security, feel

free to skip ahead to the sections covering specific Azure container-as-a-service security.

 Build Security
Comprehensive container security starts with securing the container image. When a

container image is built, it often uses a base image instead of defining the container

image from scratch.

A base image is a parent image, typically containing at least the operating system and

often purpose-built for specific workloads. For example, instead of a full-blown Ubuntu

image, the more lightweight Alpine Linux could be used as a base image, reducing the

attack surface. Standardizing and controlling the base image used for your container

https://doi.org/10.1007/978-1-4842-7292-3_7#DOI

114

applications is as important as standardizing and controlling so-called golden images

for virtualized workloads. Furthermore, container images can build upon multiple layers

of base images. This means that you can introduce opinionated base images on top of

the generic Linux distributions, such as the enterprise standard base image for a Python

application, which includes the necessary middleware in addition to the operating

system.

After building your container image, you should scan it for vulnerabilities and

remediate them before making your image available, such as pushing the image to your

container registry.

Once you are satisfied with your newly built container image, your next task is to

distribute it securely to your container workloads. In the cloud context, assurance of

the integrity of the images is crucial. A common solution for this is to sign the images

before distributing them. This allows you to limit your container hosts to run only signed

images.

 Registry Security
In addition to controlling the base images and the resulting application container

images, you will need to control the usage of container registries within your

organization. You can either rely on a single, centrally managed, private container

registry, a distributed approach where teams manage their container registries according

to your cloud security framework, or combine these in a mixed model. By consolidating

your container registries, you can perform and act on vulnerability scans centrally.

Containers can be hosted in multiple services in Azure, each with their own sets

of security controls. Often the application teams host their container applications in

multiple or even all these services. Therefore, in large enterprises, one of the trickiest

operational challenges is to gather an up-to-date inventory of container images that are

running in your environment. You need to solve this to be able to mitigate any security

issues, such as finding of new vulnerabilities in the images.

Once you are assured of the origin and the security state of the images in your

container registries, you are ready to move on to container runtime security.

Chapter 7 Workload proteCtion – Containers

115

 Runtime Security
The runtime security considerations can be split into the host hardening and application

security.

Your host hardening responsibilities vary depending on the Azure service you are

using to run your container images in. If you are hosting the container in infrastructure

as a service, you are responsible for the host and should secure it using checklists such as

the CIS Docker Benchmark.1

For container-as-a-service services, you need to understand the specifics of the

individual services you choose to use. Azure Kubernetes Service provides a significant

number of additional controls to you, but also leaves you responsible for configuring

many of them. Azure Container Instance, on the other hand, takes care for patching and

hardening the underlying container host, but limits the controls you have available for

protecting the workload.

Your choice of container hosting service also dictates which controls are available

to you for securing your container workloads. If you need to run multiple containerized

applications in the same environment, Azure Kubernetes Service is a likely fit for you.

By choosing Azure Kubernetes Service, however, you are responsible for a larger set of

controls, such as network segmentation and enforcing the containers are executed using

least privileges.

Finally, there are some application-level controls you need to apply in any service

you are using to host your container workloads. These include access control to the

registry, secret management, monitoring, and data-plane network control.

 Azure Container Registry
Azure Container Registry is a service for storing, distributing, scanning, and managing

container images. Azure Container Registry is based on the open source Open Container

Initiative (OCI) Distribution Specification and supports Docker images, Helm charts,

OCI images, and OCI artifacts. Azure Container Registry also supports automating build

tasks using the ACR tasks feature.

1 www.cisecurity.org/benchmark/docker/

Chapter 7 Workload proteCtion – Containers

https://www.cisecurity.org/benchmark/docker/

116

Wherever you end up running your container images in Azure, you should use Azure

Container Registry or a similar private container registry to control your container image

life cycle.

 Access Control
Access to container registry is controlled using Azure Active Directory or admin keys

(sometimes called master keys). Whenever possible, you should use Azure Active
Directory-based authentication. If you are dealing with legacy workloads or third-party

solutions, you might need to revert to using admin keys.

 Data-Plane Role-Based Access Control

Access to the Azure Container Registry control plane is controlled using Azure role-

based access control. The default RBAC roles Owner, Contributor, and Reader allow you

to manage access to, configure, and the content of your Azure Container Registry.

Note the reader role grants access to the data plane. specifically, it lets you
pull images from the azure Container registry. keep this in mind when considering
the resource group placement and rBaC access of your azure Container registry
instance.

The following built-in roles complement the default roles and grant access to the

data plane of Azure Container Registry:

• AcrPush: Grants access to push and pull images

• AcrPull: Grants access to pull images

• AcrDelete: Grants access to delete images or other artefacts

• AcrImageSigner: Grants access to sign images if content trust is

enabled. Typically used together with the AcrPush role, as part of

automated CI/CD access

Chapter 7 Workload proteCtion – Containers

117

 Access Control Without Azure Active Directory

In addition to Azure Active Directory authentication, Azure Container Registry supports

authentication with an admin account. The admin account is similar to the shared key

access of Azure Blob storage: it applies to the whole registry and provides both push and pull

access. Admin user is meant for testing purposes. Using admin user is not recommended,

and it is disabled by default. Regretfully, as we went to press, the portal experiences of some

Azure services such as Azure Container Instance and App Service Web App for Containers

are still using the admin account to control access to the Azure Container Registry.

When Azure Active Directory authentication is not viable, instead of admin account,

you can control third-party access to containers in your Azure Container Registry using

repository-scoped tokens, as illustrated in Figure 7-1. This method is similar to the

delegated access of Azure blob storage. A token along with a generated password lets the

user authenticate with the registry using docker login simple authentication. You can

set an expiration date for a token password and revoke them when needed.

Lastly, Azure Container Registry can also be configured to allow anonymous

pull access. When enabled, the feature allows anonymous pull operations to all the

artefacts in your repository, so it should not be enabled in a registry you are using to

manage your private container images. To prevent anonymous pull access, enforce the

anonymousPullEnabled property to False.

Figure 7-1. Azure Container Registry repository-scoped tokens

Chapter 7 Workload proteCtion – Containers

118

 Network
Network access to the data-plane Azure Container Registry is unrestricted by default: the

container images can be pulled from any network location. To protect network access to

your Azure Container Registry, you can set multiple controls in place.

First, you can enable the registry firewall. This changes publicNetworkAccess from

Enabled to Disabled. After enabling the firewall, you need to specify allowed network

locations with ipRules. Additionally, you can control access to your registry using

private endpoints. This minimizes exposure to public networks and helps you prevent

data exfiltration.

Note azure Container registry supports a maximum of 100 network access rules
and 10 private endpoints per instance.

To allow access from other Azure services without using IP rules or private

endpoints, you can enable the Allow trusted services feature (configuring

networkRuleBypassOptions to AzureServices). This enables access from other Azure

Container Registries or Azure Machine Learning workspaces. Other registries can either

import images directly or use images in your registry as a base image to build their

application images. Azure Machine Learning workspaces can use your registry to deploy

or train their models.

Enabling the Allow trusted services feature does not allow access from other

managed Azure services, such as App Service, Azure Container Instances, or Azure

Defender image scanning. To control access to those services, consider applying

compensating controls.

 Logging
Azure Container Registry provides security logs for management and data planes.

Management-plane, or platform, logs are created within Azure activity log. These logs

include

• Administrative operations, such as deleting or restarting the registry

• Role-based access control changes (roleAssignments/write)

Chapter 7 Workload proteCtion – Containers

119

• Data-plane Access control changes, such as changes to the

adminUserEnabled property or someone performing the Microsoft.

ContainerRegistry/registries/listCredentials/action

operation

• Network control operations, such as changes to

publicNetworkAccess

Azure Container Registry does not keep data-plane logs by default. To enable data-

plane logging, you need to configure the Azure Container Registry resource logs (under

diagnostic settings) to be sent to your centralized log store. These logs include

• ContainerRegistryLoginEvents: Logs from registry authentication

events and success status, including the identity and IP address

• ContainerRegistryRepositoryEvents: Logs from operations on

content in registry repositories. The following operations are logged:

push, pull, untag, delete (including repository delete), purge tag, and

purge manifest. Includes identity and IP address information

To log network access to your Azure Container Registry, enable network security

group flow logs for the subnets where the private endpoints that can access your Azure

Container Registry are placed.

Additionally, you can use Azure Defender to automatically scan your images using

Qualys. Once Azure Defender is enabled, Azure Defender pulls the images from your

container registry and scans them in an isolated sandbox with the Qualys scanner.

Images are scanned on push or import. If an image has been pulled in the last 30 days,

it is also scanned weekly. The scan results are published as recommendations in Azure

Security Center. To manage signal noise, you can also suppress findings by adding

Disable rules.

Disable rules can be set using the following filters:

• Finding ID

• Finding category

• CVSS v3 score

• Severity

• Patchable status

Chapter 7 Workload proteCtion – Containers

120

Note azure defender cannot currently perform image vulnerability scanning in a
registry that restricts networks access to private endpoints, virtual networks, or ip
addresses.

 Best Practices
In this section, we discuss additional security controls and best practices.

 Encryption at Rest

While the data stored in Azure Container Registry is always encrypted with Microsoft-

managed keys (MMK) using AES 256-bit encryption, your organization might have

requirements to control the key length, operations, or storage. To do that, you need

to specify the encryption type as customer-managed keys (CMK) and manage the

encryption keys using Azure Key Vault. Using customer-managed keys, Azure Container

Registry supports RSA encryption keys of sizes up to 4096 bits.

 Automate Base Image Updates

You can set up an Azure Container Registry Task to track a dependency on a base image

when it builds an application image. When the updated base image is pushed to your

registry, or a base image is updated in a public repository, Azure Container Registry

Task can automatically build the application images based on it. If your base image is

hosted in another Azure Container Registry, the Task is triggered immediately. If your

base image is stored in a public repository, such as Docker Hub or Microsoft Container

Registry, the Task is triggered at a random interval between 10 and 60 minutes.

 Image Signing

To enable support for signed images, Docker content trust, enable content trust on your

Azure Container Registry. This sets the TrustPolicy status to enabled. Once enabled,

signed images can be pushed to the container registry. When a signed image is pulled,

the Docker client of the pull host verifies the integrity of the image.

Chapter 7 Workload proteCtion – Containers

121

 High Availability

As a managed PaaS service, Microsoft is responsible for most of the high availability

implementation of Azure Container Registry. Microsoft offers 99.9% availability SLA for

Azure Container Registry out of the box. To improve the resiliency of your registry, you

can configure it in the zone redundancy. To improve global performance and resiliency

against regional outages, you can implement geo-replication to other regions.

EXERCISE

You are designing security controls for a high-priority business application. the application

includes a containerized version of your latest machine learning models. the container images

are stored in azure Container registry. You are required to provide an audit trail of each user

that has had access to the model. how will you configure the container registry?

Bonus Exercise

You are required to provide network access logs of each successful and unsuccessful attempt

at downloading the container image. how will you configure the container registry, and which

data sources will you use for this?

 Azure Container Instance
Azure Container Instance is one of the container-as-a-service options for running

containers in Azure. With Azure Container Instance, Microsoft takes care of hardening

and operating the underlying operating system, networking, and log integration. You

are left with managing the container image: application and its supporting middleware.

Compared to platform as a service, Azure Container Instance provides you with fewer

features and looser platform integration. For example, network features are not as

advanced, and there is no built-in authentication.

Azure Container Instance applications are defined in Container Groups, which are

functionally like Kubernetes Pods.

Chapter 7 Workload proteCtion – Containers

122

 Access Control
To create the Azure Container Instance, you need to authenticate the Azure Container

Registry. As the Azure Container Instance resource does not exist at that point, it cannot

be assigned a managed identity to access Azure Container Registry. To access the Azure

Container Registry to pull your container image for the Azure Container Instance, you

can use either service principal or repository-scoped tokens. Both approaches rely on a

username and password to authenticate. The least privileged method of authenticating

would be to use a token, which would be assigned the repositories_pull scope map.

Service principal should be avoided as an authentication method for Azure Container

Registry, as adversaries may add additional service principal credentials to maintain

persistent access.2

 Network
To protect access to and from your Azure Container Instance application, you can

place it in a virtual network and limit it to use only a private IP address. The virtual

network placement lets you protect an Internet accessible application in an Azure

Container Instance by deploying a Web Application Firewall in front of your application.

Additionally, with user-defined routes, you can enforce all outbound application traffic

to go through a firewall.

Note azure Container instance is unable to access a network-protected container
registry to pull images.

If you prefer to host the network controls in a sidecar and deploy it together with

your application, you can expose the Azure Container Instance with a public IP address

and even configure Azure to create a fully qualified domain name for it.

Whether you use private or public IP addresses, you will need to expose your

application port on the IP address from the Container Group.

2 https://attack.mitre.org/techniques/T1098/001/

Chapter 7 Workload proteCtion – Containers

https://attack.mitre.org/techniques/T1098/001/

123

 Logging
Azure Container Instance provides security logs for management and data planes.

Management-plane, or platform, logs are created within Azure activity log. These logs

include

• Administrative operations, such as deleting the Azure Container

Instance resource

• Role-based access control changes (roleAssignments/write)

For data plane, container diagnostic events can be pulled with the az container

show command. These logs include container deployment events, such as image pull, or

container restart. Application-level logs from within your application can be pulled with

the az container logs command.

To send application logs to your centralized log store, you need to implement log

ingestion in the application. If you use Log Analytics Workspace, you can add your

workspace credentials in the properties.diagnostics field of your Container Group

deployment configuration. As of the writing of this book, this integration did not yet

support managed identities.

 Azure Kubernetes Service
Azure Kubernetes Service is a managed Kubernetes service in Azure. It is not, however,

platform as a service. Microsoft is responsible for creating, configuring, and operating

the Kubernetes control plane of your Azure Kubernetes Service. This includes

Kubernetes API servers, Etcd, kube-dns, and other system components in the kube-

system namespace. You are still responsible for parts of your Azure Kubernetes Service,

such as network controls or agent node patching. Figure 7-2 illustrates this.

Chapter 7 Workload proteCtion – Containers

124

 Access Control
Administrative access to Azure Kubernetes Service can be controlled using Azure role-

based access control, Azure Active Directory, and Kubernetes role-based access control.

Figure 7-3 illustrates these access controls.

Figure 7-2. Shared responsibility of Azure Kubernetes Service

Figure 7-3. Azure Kubernetes Service access control

Chapter 7 Workload proteCtion – Containers

125

You can use the kubectl tool to authenticate the Azure Kubernetes Service clusters.

To authenticate through headless scenarios, such as from a continuous deployment

pipeline, you can use the kubelogin Kubernetes credential plugin.

 Azure RBAC

Kubernetes control plane can perform operations such as creating, updating, or deleting

services in your Kubernetes cluster. Access to the Kubernetes control plane is controlled

using Azure role-based access control. The built-in Azure Kubernetes Service Cluster

User role grants access to list the Kubernetes cluster user credentials and download the

kubeconfig file. The built-in Azure Kubernetes Service Cluster Admin role grants access

to list the Kubernetes cluster admin credentials and download the kubeconfig file.

You should use the Azure Kubernetes Service Cluster User role to control access to the

Kubernetes control plane.

Note the admin user bypasses azure ad sign-in to the kubernetes control plane.
the Contributor role can use the listClusterAdminCredential action to get
the admin user credentials!

 Azure Active Directory Authentication and Kubernetes RBAC

After downloading the cluster user credentials using Azure RBAC roles, you can

authenticate your users using Azure Active Directory and authorize them with

Kubernetes RBAC.3

You can enable Azure Active Directory integration on Azure Kubernetes Service

clusters with the --enable-aad option, either at the cluster creation or at cluster

upgrade. You will also need to specify an Azure AD group that will have access to sign in

to the cluster.

To further control access within the cluster, you can define Kubernetes RBAC Roles

and assign them to users or groups using RoleBindings. The scope of a Kubernetes

RBAC assignment is a namespace or the entire AKS cluster.

3 https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Chapter 7 Workload proteCtion – Containers

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

126

To prevent admin users bypassing the Azure Active Directory authentication, you

disable local accounts by enforcing the disableLocalAccounts property. As of the

writing of this book, the disableLocalAccounts property was in early preview.

 Network
You can protect the administrative access to your Kubernetes control plane by adding

network controls that prevent public access. You can also add multiple network controls

to protect your applications running in Azure Kubernetes Service. Let’s look at these in

more detail.

 Kubernetes Control Plane Network Controls

By default, your Kubernetes control plane and your Kubernetes API server and possible

Kubernetes dashboard are publicly accessible. You can control network access to

the Kubernetes control plane with authorized IP ranges. When you configure the

authorizedIPRanges property, only requests made to the API server from IP address that

you have explicitly listed are allowed.

To keep the traffic between the Kubernetes control plane and your cluster

nodes in a private network, you can use the Private Cluster feature by enabling the

enablePrivateCluster property. With Private Cluster, the control plane communicates

with the cluster nodes through Azure Private Link. This prevents Kubernetes control

plane for users outside the cluster virtual network, or without a jumpbox.

 Application Network Controls

To meet your application business goals and enterprise security requirements, you can

set multiple network controls in place. These allow you to

• Control ingress and egress traffic (north-south)

• Control traffic between your cluster namespaces, nodes, or pods

(east-west)

To control ingress traffic, you can implement an ingress controller. An ingress

controller can be a container hosting web application proxy logic, such as nginx, or

it can stay outside your cluster altogether. In the former case, you can configure your

application load balancing, authentication, and encryption in transit within the cluster.

Chapter 7 Workload proteCtion – Containers

127

In the latter case, you can use Azure Kubernetes Service’s integration with Azure

Application Gateway. With Application Gateway, you can configure encryption in transit

and Web Application Firewall using platform-as-a-service components.

To control east-west traffic, that is, traffic within your cluster and between your

microservices, you can implement a service mesh such as Istio, LinkerD, or Open Service

Mesh. A service mesh can control traffic flows within your cluster. As a service mesh is

typically implemented as a proxy, it can also encrypt your traffic in transit.

 Logging
Azure Kubernetes Service provides security logs for management plane and Kubernetes

control plane. Management-plane, or platform, logs are created within Azure activity log.

These logs include

• Administrative operations, such as deleting the Azure Container

Instance resource

• Role-based access control changes (roleAssignments/write)

• Data-plane access control changes, such as someone performing

the Microsoft.ContainerService/managedClusters/

listClusterAdminCredential/action operation

• Network control operations, such as changes to authorizedIPRanges

Azure Kubernetes Service does not keep Kubernetes control-plane logs by default. To

enable Kubernetes control-plane logging, you need to configure the Azure Kubernetes

Service resource logs (under diagnostic settings) to be sent to your centralized log store.

These logs include

• kube-audit category contains all audit log data for every audit event,

including get, list, create, update, delete, patch, and post.

• kube-audit-admin category is a subset of the kube-audit log

category, excluding the get and list audit events from the log.

• guard category contains Azure Active Directory authentication logs.

Chapter 7 Workload proteCtion – Containers

128

Additionally, you can use Azure Defender to analyze data-plane logs and create

Security Center alerts. For Azure Kubernetes Service, these alerts include4

• Exposed Kubernetes dashboard detected

• Privileged container detected

• Suspicious request to Kubernetes API

 Best Practices
Microsoft’s Patterns and Practices team has published a reference implementation of a

baseline Azure Kubernetes Service cluster,5 which is a good collection of best practices.

Microsoft applies daily patches (including security patches) to Azure Kubernetes

Service virtual machine hosts (nodes). Some security updates, such as kernel updates,

require a node reboot to finalize the process. This reboot process does not happen

automatically. A Linux node that requires a reboot creates a file named /var/run/

reboot-required. You are responsible for scheduling the reboots as needed. You can use

Kured6 (KUbernetes REboot Daemon) by weaveworks for this.

You are responsible to keep your Kubernetes version updated and staying within the

one-year support window.7 To upgrade the Kubernetes version of your cluster, you need

to perform Azure Kubernetes Service upgrade operation, which deploys a new node

with the new Kubernetes version, cordons and drains your old node, schedules your

Kubernetes pods in the new node, and finally deletes your old node.

In addition to manually upgrading your Azure Kubernetes Service cluster, you can

configure auto-upgrade on your cluster. To control when the cluster upgrade operations

are performed, you can also configure Planned Maintenance. Planned Maintenance

allows you to limit all Azure Kubernetes Service maintenance operations (including

cluster upgrades) to a specific weekly time.

As of the writing of this book, auto-upgrades and Planned Maintenance features

were in early preview.

4 https://docs.microsoft.com/en-us/azure/security-center/alerts-reference#alerts-
akscluster and https://docs.microsoft.com/en-us/azure/security-center/alerts-
reference#alerts-containerhost

5 https://github.com/mspnp/aks-secure-baseline
6 https://github.com/weaveworks/kured
7 https://kubernetes.io/blog/2020/08/31/kubernetes-1-19-feature-one-year-support/

Chapter 7 Workload proteCtion – Containers

https://docs.microsoft.com/en-us/azure/security-center/alerts-reference#alerts-akscluster
https://docs.microsoft.com/en-us/azure/security-center/alerts-reference#alerts-akscluster
https://docs.microsoft.com/en-us/azure/security-center/alerts-reference#alerts-containerhost
https://docs.microsoft.com/en-us/azure/security-center/alerts-reference#alerts-containerhost
https://github.com/mspnp/aks-secure-baseline
https://github.com/weaveworks/kured
https://kubernetes.io/blog/2020/08/31/kubernetes-1-19-feature-one-year-support/

129

 Summary
In this chapter, we looked at the controls available to you for protecting Azure container-

as- a-service workloads.

As we have learned, their support for Azure Active Directory is consistent, but there

are differences in supporting Azure-native network controls. We have also established

that the use of container-as-a-service workload introduced the need for governance and

architecture. Specifically, container registries and Kubernetes in-cluster networking

controls require careful planning and cross-team collaboration.

Chapter 7 Workload proteCtion – Containers

	Chapter 7: Workload Protection – Containers
	Container Security
	Build Security
	Registry Security
	Runtime Security

	Azure Container Registry
	Access Control
	Data-Plane Role-Based Access Control
	Access Control Without Azure Active Directory

	Network
	Logging
	Best Practices
	Encryption at Rest
	Automate Base Image Updates
	Image Signing
	High Availability

	Azure Container Instance
	Access Control
	Network
	Logging

	Azure Kubernetes Service
	Access Control
	Azure RBAC
	Azure Active Directory Authentication and Kubernetes RBAC

	Network
	Kubernetes Control Plane Network Controls
	Application Network Controls

	Logging
	Best Practices

	Summary

