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CHAPTER 8

Cloud Native Data 
Architecture
In previous chapters, we discussed the application side of cloud native architecture and 

showed use cases. In this chapter, I will provide details of the data part of a cloud native 

architecture. As you already know, data is a vast subject; in fact, you can find hundreds 

of blogs, articles, and books about data. Here I am not covering the topic, but only what’s 

relevant to cloud native architecture.

Enterprises are continuing to move to cloud native architectures, and data plays a 

pivotal role in that. Data is everywhere; however, the importance and usage of data has 

changed over time.

Bad data can have significant consequences in an enterprise. Poor-quality data is often 

pegged as the source of operational problems, inaccurate analytics, and ill-conceived 

business strategies. According to Gartner, recent research has shown that organizations 

believe that poor data quality is responsible for an average of $15 million per year in losses. 

This is a huge loss incurred because of data quality.

Almost every enterprise today is seeking to position itself as a data-driven 

organization. Businesses are aware of the myriad benefits that can be leveraged when 

making intelligently empowered decisions and providing customers with top-notch, 

hyper-personalized experiences, often using artificial intelligence and machine 

learning models.

This chapter covers the following details of data related to the cloud native 

phenomenon:

•	 How has data gained importance?

•	 How useful is data in your day-to-day business?

•	 Data storage types and polyglot data architecture

•	 Data replication strategies
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•	 Data lake and data mesh usage

•	 Data streaming and change data capture

•	 Data processing for an analytics platform

�Rethinking Data in a Cloud Native World
When dealing with disruption in both business and technology, one area that cannot be 

forgotten is the data layer. Enterprises must rethink their data layer strategy as they move 

their landscape to cloud native technologies.

In today’s digital world, if an IT application lags for even a few seconds, it can have 

an enormous downstream impact on the end customer experience and on the business’s 

success. Data processing must be quick enough to keep up with the real-time business-

critical applications and today’s consumer demand. If travel aggregator apps, maps, food 

delivery apps, etc., don’t provide data instantly, customers will stop using them.

Cloud computing has made a big impact on how we build and operate software 

today, including how we work with data. More and more companies are embracing the 

cloud on a daily basis, especially after the pandemic, and shifting their data centers to 

the cloud, decentralizing their organizations, and making their application architecture 

more cloud native distributed in nature to enable the pace of innovation necessary to 

service real-time user needs.

To deliver a consistently fast, satisfying customer experience, the data is very 

important and must be modernized, moving from batch to streaming and data lake to 

data mesh, etc. Your enterprise’s application is generating more and more data. The 

traditional way of handling data is simply too slow and does not meet the customer’s 

business goals. In cloud native architecture, the data store must follow the polyglot 

principle explained in Chapter 5. Just storing static data is not enough; the polyglot 

principle and analytics principles are required for future data analysis. Enterprises need 

to make real-time decisions and predictions.

Organizations continue to face a range of complexities in transforming to a data-

driven approach and leveraging its full potential. While migrating legacy systems, 

shunning legacy cultures, and prioritizing data management are all valid goals, the 

architectural structure of data platform initiatives can prove to be a major roadblock.
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The need for traditional data storage functions such as backups, replication, and 

security don’t go away in cloud native data services; they are just initiated and managed 

in new and real-time ways. With data replication, you often pull data from multiple 

sources to carry out a task, and increasingly such aggregation is on demand. Earlier you 

were doing nightly batch jobs, but in the cloud native world, you use data streaming 

techniques in real time.

In the data storage part, there are no changes in the storage and the create, read, 

update, and delete (CRUD) operations, but there are various options available to store 

data by using polyglot principles. You can choose from various storage mechanisms such 

as traditional RDBMS, NoSQL, caching, etc.

There is no change in data visualization. Earlier we generated reports by using classic 

reporting tools; now you have more options to choose from with rich functionality.

In a nutshell, the changes are in the way you are adopting the data and using it for 

various analytical decisions.

�Cloud Native Data Persistence Layer
For a lot of businesses and enterprises, cloud computing has made a big impact on how 

they store data. The cost of storing data has significantly decreased. The management 

of database systems requires less work with the advent of cloud vendor-managed and 

serverless data storage. This makes enterprises choose various data storage types based 

on the data classification.

A polyglot persistence principle encourages cloud native services to decentralize 

the data; it is also common that data is replicated and partitioned in order to scale the 

system. Figure 8-1 shows how a typical cloud native architecture applies the polyglot 

persistence principle with data spread across the architecture.
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Cloud native applications use managed and serverless data storage and processing 

services; all major cloud providers offer several different managed services to store, 

process, and analyze data. In addition to cloud providers, various database companies 

provide managed services on the cloud. For example, MongoDB provides managed 

services with Atlas, Redis provides managed cache storage, etc. By using managed cloud 

storage, you can focus on developing business logic that uses the data and database 

instead of spending time and resources managing the database.

�Cloud Native Data Characteristics
For a cloud native application, you can use a blueprint like the 12-factor criteria to 

design it, as mentioned in Chapter 4, but for the data design, you need to consider the 

following key characteristics:

•	 Prefer a cloud native database that shards, tolerates faults, and is 

optimized for cloud storage.

•	 Prefer cloud native data that is independent of fixed schemas.

•	 Cloud native data can be duplicated for ease of access.

•	 Prefer managed data storage and analytics services.

Key/value 
Database

User

API Gateway

Search Catalog Order

Search 
Index Document

Database
RDBMS

Cache 
Store Object 

Storage

Figure 8-1.  Cloud native polyglot persistence
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•	 Use polyglot persistence, data partitioning, and caching.

•	 Embrace eventual consistency and use strong consistency when 

necessary.

•	 Cloud native data integrates through service and event streaming.

•	 Adopt a data mesh wherever possible instead of a data lake.

•	 Prefer real-time analysis to batching.

•	 Deal with data distribution across multiple data stores.

�How to Select a Data Store
Selecting the right database is important for the successful completion of your project. 

There are about 347 databases available including RDBMS, NoSQL, event stores, etc. It 

can be difficult to determine which products to use, and sometimes you may choose the 

wrong database for your application that limits your whole application. I have witnessed 

projects change their database after pushing it into production. This might cause heavy 

loss to enterprises because you need to migrate, test, etc., so choosing the right database 

from the start is important. I will provide as many details as possible to help you to 

choose the right database.

I will first start with various types of data.

�Objects, Files, and Blocks
Objects, files, and blocks are storage formats that hold, organize, and present data in 

different ways. Object storage manages data as an object and stores data with metadata 

and a key that is used as a reference for the object. File storage organizes and represents 

data as a hierarchy of files in folders. Block storage chunks data into arbitrarily 

organized, evenly sized volumes.

Note O bjects are considered images, documents, and files.
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The major cloud providers such as AWS, Azure, and Google provide inexpensive 

object storage, and the data can be accessed through APIs. Each object is stored in a 

key-value pair with metadata linked into it, and it is stored with versions and globally 

available. The object storage tools are AWS’s S3, Azure’s blob storage, and Google 

Cloud storage.

Every document in a file is arranged in some type of local hierarchy. Network-attached 

storage (NAS) is a file-level storage architecture. Use it when using a library or service that 

requires shared access to files. Various NAS providers are available in cloud environments 

including natively from cloud vendors. A few major NAS vendors are NetApp, Dell EMC, 

HPE, Hitachi Vantara, IBM, Cloudian, Qumulo, and WekaIO.

Block storage breaks data into smaller blocks and stores the blocks separately. Each 

block of data is given a unique identifier, which allows a storage system to place the 

smaller pieces of data wherever is most convenient. Use block storage for applications 

for persistent local storage. For this kind of data, use any database to store it.

�Databases
A database is a collection of data stored in an orderly manner, as shown in Figure 8-2. It 

is a structured set of data hosted on the hardware. There have been some new players in 

the database world over the past few years, and the number of databases available for us 

to choose from continues to grow every year.

Many of these databases have been designed for specific use cases; some store 

graph-related data, some store financial models, etc.

Relational NoSQL

Wide-Column Key-Value Store Document Store

Database

Search Graph Database Time Series

Figure 8-2.  Database types
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Note I  have not covered caching technology because it is part of the key-value 
store family. Relational and object databases are part of the relational family.

�Relational Database

A relational database is a collection of data items with a predetermined relationship 

between them. This data is organized into a set of tables, columns, and rows. A relational 

database provides access to data points that are related to one another. Each column in 

a table holds a certain kind of data and fields to store the actual values of an attribute. 

Each row in a table can be marked with a unique identifier called the primary key, and 

the rows in multiple tables can be made related using foreign keys. This data can be 

managed with CRUD operations.

Relational databases have been around for a long time. The most popular commonly 

used database, as of today, is still a relational database. The relational model is the 

best for maintaining data consistency across application and database instances. The 

relational databases support atomicity, consistency, isolation, and durability (ACID) 

properties with strong consistency.

Several factors can guide your decisions when choosing among relational database 

types. You need to ask the following questions before choosing a vendor:

•	 What is our data accuracy requirement?

•	 Do we need scalability? What is the anticipated growth?

•	 How important is concurrency?

•	 Where are we hosting the database?

•	 What kind of application are we developing?

Use Figure 8-3 to decide whether you need an RDBMS for your application.
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�Key-Value

A key-value data store is a type of nonrelational database that uses a simple key value to 

store data. In key-value pairs, a key serves as a unique identifier. Both keys and values 

can be anything, ranging from simple objects to complex compound objects, and they 

can store dictionary/map/array objects. 

Key-value databases use compact, efficient index structures to be able to locate a 

value quickly and reliably by its key, making them ideal for systems that need to find and 

retrieve data in real time. Key-value databases allow programs to retrieve data via keys, 

which are essential names, or identifiers, that point to some stored values.

Is your 
data 

structured?

No

Is your data 
relational?

Do you 
need

horizontal 
scalability?

Yes

Yes

Do you need 
strong 

consistency?
Yes

RDBMS

Figure 8-3.  RDBMS decision flow
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Key-value databases are scaled out by implementing partitioning, replication, and 

autorecovery. They can scale by maintaining the database in RAM and can minimize the 

effects of ACID guarantees by avoiding locks, latches, and low-overhead server calls.

Several factors can guide your decision when choosing among the key-value database 

types. You need to ask the following questions before choosing any type of database:

•	 What kind of data do we want to store?

•	 Do we need scalability?

•	 Do we want our data to share across microservices?

•	 What kind of application we are developing?

Use Figure 8-4 to decide whether you need the key-value type for your 

application storage.

Is your 
data 

structured?

No

Do you 
require your 
data to share 
with multiple 
processor?

Do you 
need

horizontal 
scalability?

Yes

Yes

Do you 
require to 
store user 

related data 
like session, 
preference 

etc.?

Yes

Key-Value

Figure 8-4.  Key-value store decision flow
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The following are key-value stores: AWS Dynamo DB, Redis, Riak, Couchbase, 

Berkeley DB, Cassandra, etc.

�Document Database

A document-oriented database is a way to store data in JSON format rather than simple 

rows and columns. A document store does assume a certain document structure that 

can be specified with a schema. A document store is the most natural way of storing data 

among NoSQL-type databases, which are designed to store the document as is.

Each document in a store contains pairs of fields and values. The values can typically 

be a variety of types including things like strings, numbers, Booleans, arrays, or objects, 

and their structure is aligned with the application developer working with the code. 

Because of their variety of field value types and powerful query languages, document 

databases are great for a wide variety of use cases. You can use these databases for much 

of what was traditionally stored in a relational database like PostgreSQL or MySQL.

Documents in a database map to the objects in your services. There is no need to 

decompose data across tables, run JOINs, or integrate a separate ORM layer. The schema 

in the document database is dynamic, and you don’t need to define it at design time. 

The document database features are expressivity of the query language and richness of 

indexing. With ACID transactions, you maintain the same guarantees you’re used to in 

SQL databases.

Document databases are distributed systems at their core, and documents are 

independent units, which makes it easier to distribute them across multiple servers 

while preserving data locality. Replication with self-healing recovery keeps the database 

highly available, and native sharding provides elastic and application-transparent 

horizontal scale-out.

Several factors can guide your decision when choosing from the document database 

types. The following are a few questions you need to ask before choosing any type of 

database:

•	 What kind of data do we want to store?

•	 Do we need scalability?

•	 Does our application need to be available globally?

•	 Do we want SQL queries?
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•	 Do we want a flexible schema?

•	 Do we want to store all kinds of data like modeling, semistructured, 

and unstructured data in one database?

•	 What kind of application are we developing?

•	 Do we want to store content or catalogs?

Use Figure 8-5 to decide whether you require a document database for your 

application storage.

The following are a few major players in the area of document databases: MongoDB, 

CouchDB, Couchbase Server, Cosmos DB, Document DB, MarkLogic, Oracle NoSQL, etc.

Is your 
data 

structured?

No

Is your 
application is 
cloud native?

Do your 
application 

global 
presence?

Do you have 
a concern on 
consistency  
and ACID in 

NOSQL?

Yes

Yes

Yes
Document 

Do you 
require a 
JOINs?

No

Figure 8-5.  Document store decision flow
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�Wide-Column Database

A column database organizes data into rows and columns and can initially appear very 

similar to a relational database. It stores data in tables, rows, and dynamic columns.  

A columnar database stores each column in a separate file. One file stores only the key 

column, and the other stores the remaining fields. Wide-column stores provide a lot of 

flexibility over relational databases because each row is not required to have the same 

columns.

Each column holds a set of columns that are logically related and typically retrieved 

or manipulated as a unit. Other data that is accessed separately can be stored in separate 

column families. The wide columns store data like a two-dimensional key-value 

database. They are good to store a large amount of data when you can predict what your 

query pattern will be. They are commonly used for storing Internet of Things (IoT) and 

user-profile data.

Each column in a row is governed by auto-indexing on each function. It gives 

improved automation with regard to vertical and horizontal partitioning with better 

compression and auto-indexing columns.

Several factors can guide your decision when choosing among the wide-column 

database types. The following are a few questions you need to ask before choosing a type 

of database:

•	 What kind of data do we want to store?

•	 Do we want to store data with horizontal scaling?

•	 Is our application required to be available globally?

•	 Do we want SQL kinds of queries?

•	 Do we want data to be compressed?

•	 What kind of application are we developing?

•	 Do we want to store IoT or geographical map data?

•	 Do we want a database for analytics?
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Use Figure 8-6 to decide whether you require a wide-column database for your 

application storage. The major databases are Cassandra and HBase.

�Time-Series Database

Time-series data is a sequence of data points collected over time intervals, giving you the 

ability to track changes over time. Time-series data can track changes over milliseconds, 

days, or even years. This could be server metrics, application performance monitoring, 

network data, sensor data, trades in the market, etc.

The time-series database is optimized for a time. It is built specifically for handling 

metrics and events or measurements that are time-stamped. These databases generally 

need to support a very high number of writes. Time-series databases are commonly used 

to collect large amounts of data in real time from many sources. Updates to the data are 

rare; more common are inserts and bulk deletes.
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structured?
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presence?

Do you want 
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Do you want 
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structured 
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but scale 

horizontally?

Yes

Yes

Figure 8-6.  Wide-column decision flow
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The size of the data structure is small for time and other coordinates. Time-series 

data is good for storing telemetry data; popular uses include Internet of Things (IoT) 

sensor devices such as autonomous cars, digital twin use cases, etc.

Several factors can guide your decision when choosing a time-series databases. The 

following are a few questions you need to ask before choosing any type of database:

•	 What kind of data do we want to store?

•	 Do we want stored data with horizontal scaling?

•	 Is our application required to be available globally?

•	 Do we want to store data for IoT sensors or telemetry?

•	 Do we want to use this data for metrics or analytics?

•	 What kind of application are we are developing?

Use Figure 8-7 to decide whether you require a time-series database for your 

application storage. The major databases are Apache Druid, Riak-TS, and AWS 

Dynamo DB.
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�Graph Database

A graph database is a special kind of database storing complex data structures and 

most notably used for social networks, interconnected data, fraud detection, knowledge 

graphs, etc.

It stores data in nodes and edges. Nodes typically store information about people, 

places, and things, while edges store information about the relationship between the 

nodes. You can think of a node as an entity, and edges define the relationship between 

the nodes. An edge will often define the direction of the nature of a relationship.

The graph database shards data across many servers or clusters and locations. It 

distributes and parallelizes queries and aggregations over multiple databases.

Several factors can guide your decision when choosing among graph database types. 

The following are a few questions you need to ask before choosing any type of database:

•	 What kind of data do we want to store?

•	 Do we want stored data with multiple shardings or clusters?

•	 Is our application required to be available globally?

•	 Are our use cases related to a social network, fraud detection, or 

knowledge graph?

Use Figure 8-8 to decide if you require a graph database for your application storage. 

The major graph databases are Neo4J, Orient DB, Arango DB, AWS Neptune, DataStax, 

IBM Graph, and Apache Graph.
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�Event Store Database

In event-driven architecture, streams and queues are required to store events and 

messages (more details are explained in Chapter 6). In an event stream, the data is stored 

as an immutable stream of events. All the events in the event store are new records and 

do not allow updates; also, you cannot remove or delete an event.

The data in an event store is used to validate an aggregate sequence numbers of 

events, event snapshots, event sourcing details, etc.

There is various event store data store available such as IBM DB2 Event Store, Event 

Store DB, and NEventStore.
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data 

structured?
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Figure 8-8.  Graph data store decision flow
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�Search Engine Database

The search engine database is a type of nonrelational database that is used to search for 

information held in other databases and services. Search engine databases use indexes 

to categorize similar characteristics among data and facilitate search capability. A search 

engine index database can index large volumes of data with near-real-time access to the 

index.

The search engine databases are optimized for dealing with data that may be long, 

semistructured, or unstructured, and they provide specialized methods for search such 

as full-text search, complex search expression, and ranking of search results.

The search engine databases can handle full-text search faster than relational 

databases with indexes.

Several factors can guide your decision when choosing among search engine 

database types. The following are a few questions you need to ask before choosing any 

type of database:

•	 What kind of data do we want to store?

•	 Is our data used for search or log analysis or integrated monitoring 

and dashboard?

•	 Do we require indexing in the data store?

Use Figure 8-9 to decide whether you require a search database for your application 

storage. The major databases are Elasticsearch, Splunk, ArangoDB, Solr, AWS Cloud 

Search, Alibaba Cloud Log Service, and MarkLogic.
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log 
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Search Engine 
Database

Yes

Figure 8-9.  Search engine data store decision flow

Selecting a database is confusing when you have a vast number of options 

available today and new ones are constantly improving and adapting to cloud native. 

A website that tracks database popularity, DB-engines (https://db-engines.com), 

lists 347 different databases as of this writing. As you are moving toward cloud native 

architecture, you have the flexibility to choose a specific database based on your use 

cases. When choosing the specific use cases, you need to consider the following aspects:

•	 Consider the skillset of the team.

•	 Go for the managed serverless database from cloud vendors or 

individual database vendors (for example, MongoDB offering Atlas).
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•	 Go for lightweight databases instead of big monolithic databases.

•	 Analyze your use cases and ask questions as provided for each 

database type; nowadays most NoSQL databases offer similar 

features like relational databases.

�Data Replication
Data replication is the process of updating copies of your data in multiple places at the 

same time to improve reliability, fault tolerance, accessibility, and decision-making. 

The goal of replication is to keep your data available for various purposes like to make 

decisions or to make transactions available to your customers.

Data replication works by keeping the source and target synchronized. That means 

any change in source data is reflected accurately and quickly in the target data based on 

your replication model.

The use case of data replication includes high availability, migration between 

systems, operational data stores or data hubs, data consolidation in the reporting system, 

data warehouses, and data lakes, etc.

Traditionally, in an enterprise, the data replication occurs either from database to 

database or file are uploaded to the database by using ETL tools.

There are two database replication methods.

•	 Physical database replication

•	 Logical database replication

�Physical Database Replication
Physical database replication is a block-based replication that uses a binary format 

to keep an exact database copy in sync with the primary database. Using the binary 

format for database replication provides completeness: the replicated database 

is an exact copy of the primary database including tables, relationships, indexes, 

triggers, stored procedures, etc. This kind of replication is common in disaster 

recovery use cases.
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�Logical Database Replication
This is a method of replicating data objects and their changes based on their replication 

key. Logical database replication is the most common method of replication in a cloud 

native architecture. It uses the publish/subscribe paradigm to replicate data from source 

to target databases. The logical replication of a table starts by taking a snapshot of the 

data on the publisher database and copying that to the subscriber.

In the logical database replication, you can do full database refreshes or logical 

refreshes or change data capture (CDC).

�Full Data Refresh

In the full load refresh replication, all the data in the publisher loads data to the 

subscriber at an interval and overwrites all the data in the subscribed database. This 

method is very resource-intensive; usually enterprises adopt this approach only for the 

initial load.

�Partial Data Refresh

In the partial refresh replication, use a column in the table that is modified for every 

change to the row with the timestamp. Use a filter when retrieving the data from the 

publisher instead of selecting full data. This approach is reliable only when data is not 

truncated.

�Change Data Capture

CDC is a replication solution that captures database changes as they happen and 

delivers them to the target database. CDC typically starts by taking a snapshot of the 

data on the publisher database and copying it to the subscriber database, as shown in 

Figure 8-10. Once that is done, the changes on the publisher are sent to the subscriber as 

they occur in real time.
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The subscriber applies the data in the same order as the publisher so that 

transactional consistency is guaranteed for publication with the same subscription.

There are many techniques available to implement CDC depending on the nature of 

your implementation.

•	 Timestamp: The Timestamp column in a table represents the time of 

the last change; any data changes in a row can be identified with the 

timestamp.

•	 Version number: The Version Number column in a table represents 

the version of the last change; all data with the latest version number 

is considered to have changed.

•	 Triggers: Write a trigger for each table; the triggers in a table log 

events that happen to the table.

•	 Log-based: Databases store all changes in a transactional log to 

recover the committed state of the database. The CDC reads the 

changes in the log and identifies the modification and publishes 

an event.

The most preferred approach is the log-based technique. In today’s world, many 

databases offer a stream of data change logs and expose them through an event.

Source

Source

Event-by-Event 
Processing Target

Continuously

Figure 8-10.  CDC process
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Log-Based CDC

The log-based approach provides real-time asynchronous data integration and provides 

continuous integration through database logs. This approach allows the solution to 

transfer and integrate changes to the data incrementally as they occur, rather than 

making larger updates all at once.

Database transaction logs that store all database events allow for the database to 

be recovered in the case of a crash. The changes in the source database are captured 

without making application-level changes and without the overhead on the database 

and without having scans on operational tables, all of which add workload and reduce 

source system performance.

In the Figure 8-11 example, service A writes data to a database, and the database 

writes a change to the logs. The change is then managed by CDC tools and written to 

a stream of events and subscribed to by multiple consumers; the consumer could be a 

target database, data lake, or real-time analytics.

Service A Source

Logs

CDC Event Broker

Target Analy�cs

Figure 8-11.  Log-based CDC
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There are a few areas where you need to aware of, such as the following:

•	 Concurrency: Most CDC tools manage the order.

•	 Data consistency issues: In a microservices polyglot architecture, 

transactions span multiple databases. You need to write a set of 

changes to the changelog and then apply those changes. All the 

changes can be written to a stream maintaining order.

•	 The compensating transaction: Apply multiple techniques like saga 

and CQRS to manage the transaction (refer to Chapter 6 for more 

details).

The following are the advantages of log-based CDC approaches:

•	 This approach has a minimal impact on the transactional database.

•	 This works in near-real-time asynchronous event streaming; it helps 

you to manage analytics on the fly.

•	 This approach maintains the order in which the transaction was 

committed. This is important when the target application depends 

on the order of transaction, for example, if two services modify the 

same record instantly.

In cloud native architecture with polyglot persistence and decentralized datastores, 

these event streams are incredibly helpful in maintaining consistency across these 

databases. The following are a few common CDC uses cases:

•	 Materialized views: The changes in events can be used to update 

these views in real time.

•	 Auditing and fraud management: Many transactions are required to 

conduct auditing. You can use these log changes to track what was 

changed and when and to help scan all the transactions in real time 

for anti-money laundering and fraud management.

•	 Analytics: You may require data analytics both on the fly and off the 

fly. This approach will apply a machine learning model on the event 

streams and will use the fly analysis from a data lake or data mesh.
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Figure 8-12.  ETL process

•	 Decoupling: When you consider moving from a legacy monolithic 

application to microservices, your approach should be iterative by 

applying strangulation. In this case, you need to use this approach to 

decouple legacy applications and their databases.

�Extract, Transfer, and Load
ETL is a process that extracts data from different source systems, transforms the data, 

and finally loads the data into the target database. This process is not new; you have 

been using this approach for very long time. As the name indicates, ETL has three steps, 

as shown in Figure 8-12.

Extraction

In this step, data is extracted from heterogeneous systems and files into the staging 

area. The source data is transformed in to the staging area without impacting the source 

system. The staging area is where you can check and apply rules before loading the data 

into the target database. During the data extraction, the ETL tool will do a sanity check of 

the data such as type check, duplicates, keys, etc.
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Transform

Data extracted from the source databases is in the source database format and needs 

to be cleansed, mapped to the target, and transformed. This is the key step in the ETL 

process. In this transformation, you will apply a few rules such as aggregation, etc.

Load

Loading data into the target database is the last step of the ETL process. In batch mode, 

you need to load a huge volume of data in a short period; hence, the load process should 

be optimized for performance.

The ETL process is increasingly important to help your organization to analyze data, 

reducing the load on the transaction database by keeping read data from the operational 

data store.

In a modern-day cloud native architecture, moving and processing data from one 

source to another is increasingly important and common. Still, a lot of use cases are 

required to use the ETL process such as nightly batches in the financial domain, inventory 

reconciliation in the retail domain, etc. All the major cloud providers offer managed ETL 

services, such as AWS Glue, Azure Data Factory, and Google Cloud Data Flow.

�Decoupling Big Data Management from Distributed 
Data Meshes
Currently, the big data platforms available in the industry are data lakes and data 

warehouses. These two hold big, replicated data from various siloed domain databases 

either through ETL batch jobs or event streaming jobs. The data lake implementation of 

your organization or client’s organization has unclear responsibilities and ownership of 

the domains in a lake.

In modern-day business, disruption is happening like never before; therefore, we 

need to make sure that our technology supports the business. Data lakes and data 

warehouses are good but have their limitations such as centralization of domains and 

domain ownership. To overcome these challenges, the concept of a data mesh provides a 

new way to address common problems. Zhamak Dehghani from ThoughtWorks coined 

the data mesh and wrote a detailed paper on it.
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The data mesh essentially refers to the concept of breaking down data lakes and 

siloes into smaller, more decentralized parts. It is like shifting from a monolithic legacy 

application toward a microservice architecture. In a nutshell, the data mesh is like a 

microservice architecture in application development.

You are already familiar with the microservices architecture and the decoupling 

approach from legacy monolithic services to microservices based on domains by 

using the domain-driven approach The domain-driven design approach addresses the 

problems in an application domain and in the transactional data related to that domain, 

but usually we are not addressing the domains or ownership of the data. The data mesh 

addresses data domain-driven design.

In a data lake and data warehouse, you might have observed the ownership issues. 

There might be an owner who can manage and operationalize the big data platforms but 

not from the domains. The ownership is important. For example, in your organization, 

you might have seen each vertical tower for finance, healthcare, retail, etc. There is 

someone in charge of that tower who owns the entire team and is responsible for 

delivering it and related clients. Similarly, you need an owner for the domain.

The data mesh implementation is based on the four principles shown in Figure 8-13. 

These are as follows:

•	 Domain-oriented decentralized data ownership and architecture: This 

principle is about implementing the data domain-driven concept to 

decouple and decentralize the data and ownership.

•	 Data as a product: This principle is about addressing a concern 

around accessibility, usability, and harmonization of distributed 

datasets.

•	 Self-service data infrastructure as a platform: This principle is about 

services and skills required to operate the data pipeline technologies 

and infrastructure in each domain.

•	 Federated computational governance: This principle is about data 

governance and standardization for interoperability, enabled by a 

shared and harmonized self-service data infrastructure.
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A data mesh refers to the concept of decoupling data lakes and siloes into the 

smaller, decentralized domain-based model. The analytical scale can scale in the 

way the microservices and polyglot persistence have allowed transactional data to 

scale. Zhamak Dehghani explained all four principles in a detailed way at https://

martinfowler.com/articles/data-monolith-to-mesh.html. I will cover them in a 

more structured way with an example of how you can implement data meshes in your 

project. I am using an example of an ecommerce application to explain data meshes.

Figure 8-14 shows the example data architecture. It’s a centralized data lake architecture 

whose goals are to ingest data from all corners of the enterprises; cleanse, enrich, and 

transform data to the data lake; and serve the dataset in a data lake to diverse requests.

Data Infrastructure-as-a-platform
(Storage, pipeline, catalogue, security, etc.)

New Data 
Domains

Data Pipeline and 
self-service 
Infrastructure

Federated Global Governance & Open 
standards

(enable Interoperability)

Data as a 
Product

Cross Functional 
Team

Data Infra Engineers

Figure 8-13.  Data mesh architecture
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The monolithic data lake platform contains and owns the data that belongs to 

different domains, e.g., customers, sales KPIs, inventory, payments, orders, etc., with 

the business changes. This kind of implementation is no longer helpful to support 

the required business growth, because of the diverse customers, more adoption of 

the cloud native approach in an application landscape, and the minimum viable 

product (MVP) approach.

On the replication side, you are streaming from diverse sources to the data lake, 

usually any in the organization. You are not building all the replication at once. You 

might follow an iteration model to build as the business grows. For this replication, you 

may use an ETL approach or streaming based on the events approach. Both approaches 

include ingestion, cleansing, transformation, and loading or subscribing to events. In 

this approach, if you want to add a new domain replication, then you need to change the 

whole set of replications, which leads to maintainability and testability problems.

The data ownership of today’s monolithic data lake platform is based on who builds 

the data lake. In a nutshell, the ownership is based on technology and skills, not on the 

domain. The data mesh approach provides a solution to most of the problems you are 

facing with today’s monolithic big data approach.

Front End
APIs

Publish an Event Customer
s

Products Orders

eCommerce Application

Data Lake

Payments Wishlist Catalogs

Inventory

…

Customer Catalog

Payment Shipping Price

CartDiscount User

Order

Product

Wishlist

Item

Figure 8-14.  Current data lake architecture
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The following paragraphs explain the next-generation data lake implementation 

steps.

Step 1: Self-Service Data Infrastructure as a Platform
The principle of shifting the dataset ownership from the tool is specific to the domain. 

To support this approach, the data pipeline needs to move from the ingesting, cleansing, 

transforming, and subscribing approach to the domain-based approach.

For the domain-based approach, you need to split the replication pipeline based 

on domain, such as the customer pipeline, order pipeline, etc. In this split, the source 

database is required to own and take the responsibility for domain-based cleansing, 

deduplicating, and enriching of their domain events. Each domain dataset must 

establish service-level objectives for the quality of the data it provides.

For example, as shown in Figure 8-15, your customer domain provides customer 

demographic details. The “add product to wish list” domain can include cleansing and 

standardizing the data pipeline in the customer domain pipeline, which provides a 

stream of de-duped, near-real-time add product events. The aggregation of domains is 

responsible for the new data domains.

•	 Customer demographics + add the product to wish list = customer 

domain pipeline

To summarize, the source side of the domain data pipeline has the responsibility to 

provide domain-related events, such as cleansing. The target side’s responsibility is to 

subscribe to data, shown as New Data Domains.

Inges�on Transforma�on Subscrip�on

New Data Domains

Domain Data Pipeline

Customer Event

Order Event

Payment Event

Distribution Event

Figure 8-15.  Domain-based pipeline
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Step 2: Data as a Product
Based on the previous step, the data ownership and data pipeline implementation 

are the responsibility of the business domain, as shown in Figure 8-16. This raises an 

important concern around the accessibility, usability, and harmonization of these new 

domain datasets.

This is where you can implement data domains as a service by creating domain 

capabilities as APIs and make them available to the rest of the consumers in an 

organization. As part of the as-a-service approach, you need to create a set of well-designed 

APIs and events with discoverable, well-documented, and well-tested sandboxes.

Step 3: Data Infrastructure as a Platform
The main concern of distributing the ownership of data to the domain is the 

duplicated effort and skills required to operate the data pipeline’s technology stack and 

infrastructure in each domain. Harvesting and extracting domain-agnostic infrastructure 

capabilities into a data infrastructure platform duplicates the effort of creating a 

domain-related pipeline, storages, and domain-specific streaming engines. The data 

infrastructure as a platform should be domain agnostic and configure the platform to be 

domain specific.

New Data Domains

API G
atew

ay
Event Broker

Figure 8-16.  Data as a product with a “as-a-service” model
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To build the data infrastructure for data meshes, you can use the existing available 

infrastructure; for example, you can use AWS S3, Google Cloud Storage, or Azure Blob 

Storage to store domain models, and for the “as a service,” you can use standard API 

stacks and event stacks. For the data pipeline, use event brokers and ETL tools to create a 

separate pipeline and codebase for each domain-related replication.

Step 4: Domain-Oriented Decentralized Data Ownership 
and Architecture
To decouple and decentralize the monolithic data platform, we need to start thinking 

from a data domain angle, instead of just replicating data from heterogeneous sources 

to target data. In my ecommerce example, the customer domain owns and serves the 

dataset for access to any team for any purpose. The physical location of the customer 

domain can be anywhere like Google Cloud storage or AWS S3 or Azure Blob storage on 

the respective cloud implementations, but the domain owner should be the same team 

that owns the overall customer domain in your enterprise.

The team that owns the customer domain is responsible not only for providing the 

business domains but also for the truths of customer demographics and their likes and 

dislikes of the products. The customer usage pattern is required for other transaction 

details that are related to other domains; in this case, you need to create a domain-

specific data set that requires consumption.

Step 5: Data Governance
The data mesh platform should be designed with a distributed data architecture, under 

the centralized governance and standardization for interoperability, and enabled by 

a shared and self-service data infrastructure. Once the data infrastructure is matured, 

then you can apply a centralized with decentralized governance concept to improve the 

innovation, independence, etc.
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�Data Processing with Real-Time Streaming 
for Analytics
Big data architecture is designed to handle the processing and analysis of data. Over the 

years, the data processing landscape has changed, and the business dependency on data 

processing has grown dramatically. Every business in any industry is relying on data 

processing for key decisions and also to provide a better experience to their customers. 

Therefore, you can say that managing big data processing is becoming the main interest 

of the CIO office because there are business deadlines to meet.

In data processing, some data arrives in real time, and some arrives in a batch 

with large chunks. Figure 8-17 shows the classic data processing of any data. You can 

choose whichever option you want, either batch or stream processing, based on the 

requirements. Real-time processing requires qualities such as scalability, fault tolerance, 

predictability, and resiliency.

The following are the main components of data processing for analytics platforms:

•	 Batch processing of data source: Processing of data files using  

long-running batch jobs

Database
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Services

Data 
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Data Storage

Real-time Message Ingestion

Batch Processing

Stream Processing

Machine Learning 
Models Analytics Data 

Store

Data 
Visualization

Data Processing Analytics

Figure 8-17.  Classic data processing

Chapter 8  Cloud Native Data Architecture



358

•	 Real-time processing of data: Processing of data in real-time stream 

processing

•	 Machine learning models: Applying various ML models on data 

analytics for predictive analysis

•	 Proceed data storage: Processed data storage for data visualization

•	 Data visualization: Generating various reports and dashboards for 

business and leadership

To support your organization’s need for data analytics, you can choose from the 

following available industry architectures.

�Lambda Architecture
The Lambda architecture is a reference architecture for scalable, fault-tolerant data 

processing and is designed to handle a big chunk of data by using both batch and stream 

processing methods. This reference architecture was first introduced by Nathan Marz. 

This architecture helps you to combine both traditional batch processing and stream 

processing pipelines. The Lambda architecture tries to solve the concerns around 

latency, data consistency, scalability, and fault tolerance.

In the Figure 8-18 reference architecture, the main components are data source, 

batch layer, serving layer, speed layer, and query.
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Figure 8-18.  Lambda architecture
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Data sources can be combined with various sources in an enterprise. This source can 

be designed by adopting ETL methods using streaming technologies. This data will be 

delivered simultaneously to both the batch and speed layers.

Batch layer: The batch layer saves all the data coming into the 

system as batch views in preparation for indexing. The data 

is treated as immutable and append-only to ensure a trusted 

historical record of all incoming data. The objective is to maintain 

accuracy by being able to process all the available data when 

generating views. This layer can fix any errors if they occur by 

recomputing based on the data set; the output of this layer is 

stored in the read-only database. A technology like Apache 

Hadoop is often used as a system for ingesting the data as well as 

cost-effectively storing the data.

Serving layer: The serving layer incrementally indexes the batch 

views to make a query by the data visualization. This layer can 

customize the indexes depending on the use cases. The objective 

of this layer is to make queries fast and serve them parallelly. 

While an indexing job in the service layer is for indexing data and 

service layer creates a new job for every new data processing. 

Speed layer: The speed layer processes data streams in real time and 

handles the data that has not already been delivered to the batch layer 

due to the latency of the batch layer. It also processes the latest data to 

provide a complete view of the data. Technology like Apache Stream, 

Flink, Spark streaming, etc., can be used to design a speed layer.

How Does the Lambda Architecture Work?

The batch and serving layers continue to index incoming batch data in batches. There 

will be latency in the indexing of all batches. The speed layer complements the batch 

and serving layer by indexing in real time all the new and also delayed batch indexes. 

Both the batch layer and speed layer collaborate to provide a large consistent view of 

data in the batch/serving layers that can be re-created at any time.

Once a batch indexing job completes the newly indexed data available for visualization, 

the speed layer’s copy of the same data is no longer needed and is deleted from the speed 

layer. The serving layer processes the data that is already indexed by the speed layer.
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�Kappa Architecture
The Kappa architecture is a reference architecture for data processing for analytics and is 

used for processing streaming data. The reference architecture was introduced by Jay Kreps. 

The objective of this reference architecture is to process both real-time and batch processing 

for analytics, with a single technology stack. It is based on streaming immutable architecture 

in which data is stored in a database. The stream engine reads the data, transforms it in an 

analytical format, and finally stores it in analytical database for query and data visualization.

The Kappa architecture provides real-time analytics based on data availability. This 

helps the business team to reduce the decision time. It also supports historical analytics 

by reading the data stored in the data lake in the batch process. Kafka, AWS Kinesis, 

Azure Stream Analytics, Azure Event Hub, Google Pub/Sub, and Confluent are stream 

processing engines. For more information on the streaming, please refer Chapter 6.

The Kappa reference architecture shown in Figure 8-19 is considered simple 

compared to the Lambda architecture as it uses the same layers and technology stack for 

both streaming and batch processes. In a nutshell, the Kappa architecture is a simpler 

reference architecture for data processing.

�Microservices in Data Processing with Real-Time 
Streaming for Analytics
In the previous sections, I explained the real-time data processing reference 

architecture for the data analytics platform. You are already familiar with the 

microservices decentralized polyglot persistence principle. One challenge of dealing 
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Figure 8-19.  Kappa architecture
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with decentralized data in a microservices architecture is the need to collate data 

for analytics. A common way to approach this is through data movement, meaning 

aggregating the data into a centralized data lake by using the Kappa architecture to 

provide data visualization, as shown in Figure 8-20.

Both the service and data analytics team can collaborate with each other to replicate 

data from each service to the data lake through ETL, CDC, or APIs.

�Mobile Platform Database
Mobile computing applications need to store information locally to make your 

applications more responsive and less dependent on network connectivity. The trend 

of offline usage, or less dependency on the network, is gaining popularity. The use cases 

are a list of contacts, price information, distance traveled, etc.
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Streams
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Data 
VisualizationQuery
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Figure 8-20.  Polyglot persistence with Kappa architecture
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A mobile application keeps the database locally or makes a copy of the database over 

the cloud onto a local device and syncs with it as required, as shown in Figure 8-21. This 

will help create faster and more responsive applications that are functional even when 

there is no or limited back-end connectivity.

There are various mobile database providers such as Realm MongoDB, Couchbase 

Lite, SQLite, and Core Data. They support a lighter version of the database being 

installed as part of the mobile applications and to work on both iOS and Android.
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Figure 8-21.  Mobile database architecture
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The mobile databases must be installed along with your app, and they store all the 

data that is required to provide a customer experience on a slow network or offline. 

These databases will sync often to your back-end databases through sync gateways. The 

data synchronization is done via asynchronous data syncs and synchronous data syncs.

The asynchronous sync manages data events asynchronously without blocking any 

app functionality through reactive REST APIs.

In synchronous, the sync services are responsible for syncing data from a remote 

server to a mobile device and then storing the data locally in the mobile databases.

The data synchronization in the mobile application is achieved by using a sync 

service, sync adapter, and sync gateway. A sync adapter is a plugin that handles 

background syncs along with sync gateways.

A mobile database needs to have the following characteristics:

•	 Fast and secure

•	 Very lightweight

•	 Can work with low memory and power

•	 No server requirement

•	 Must work efficiently with mobile app code

There are various mobile databases available to choose from, such as Realm from 

MongoDB, Couchbase Lite from Couchbase, SQLite, and Core Data.

�Intelligent Data Governance and Compliance 
in the Cloud Native World
Digital transformation in cloud native architectures is disrupting business. Along this 

journey, quality data is becoming an organization’s most strategic asset for business 

decisions and better customer experiences that support business growth.

�Why Data Governance?
With the exponential growth of data, a strict regulatory environment, and cyberthreats 

on the rise, protecting and extracting the value from your most strategic asset are 

imperative. These tasks are also a formidable challenge. The cost of failing to comply 
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with stringent regulatory requirements may be a legal battle. Regulations such as 

General Data Protection Regulation (GDPR), Securities and Exchange Commission 

(SEC) regulations, and the legislation and regulations of each country are outpacing the 

capabilities of existing IT infrastructure investment. Data complication further increases 

as the IDC predicts global data will grow to 163 zettabytes by 2025.

Data governance helps organizations better manage the availability, usability, 

integrity, and security of their enterprise data. The objective of data governance is not 

just to bring data at rest under control but also to know where data is located; how it 

originated; and who, where, and access to data. Effective data governance must be self-

governed irrespective of which country is compliant.

In the modern digital economy, anyone can access data anywhere at any time, 

on any device. The CxO demands easy access to data with tight regulations with the 

best-in-class compliance process. To satisfy these regulations, you need more than just 

strong governance; you need governance based on the data analytics with intelligence 

embedded.

�What Is Data Governance?
Data governance helps you to better manage the availability, usability, integrity, 

and security of your enterprise data. Data governance moves beyond information 

management to support business processes and encompasses a broad set of data 

strategies and functions including the following:

•	 Data delivery and access: Any actions related to storing, retrieving, 

and acting on data.

•	 Data integrity: Ensuring the veracity, accuracy, and quality of data.

•	 Data lineage: Managing the movement of data.

•	 Data loss prevention (DLP): Ensuring sensitive data isn’t sent outside 

your organization’s network and controlling what data can be 

transferred.

•	 Data security: Protecting unauthorized access or data corruption.

•	 Data synchronization: Ensuring data consistency.
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•	 Master data management (MDM): The complete collection of 

process, policies, standards, and tools for defining governance and 

managing data.

•	 Data profile: Reviewing the source data and understanding the 

structure, content, and interrelationships.

•	 Data quality: Measuring the condition of data based on factors such 

as consistency, completeness, accuracy, and reliability.

•	 Data standardization: Bringing data into a common format that 

allows for further analysis.

•	 Data General Data Protection Regulations (GDPR): This is a privacy 

and security law that states that personal data is any information that 

is related to an identified or identifiable natural person.

�Governance Framework
Figure 8-22 illustrates the overall framework for intelligence data governance. This 

framework is based on these five pillars:

•	 Change management

•	 Intelligent tooling

•	 Secure

•	 Decentralize

•	 Operating model
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�Change Management

Change management is the approach to planning, designing, and implementing data 

governance without any unintended disruption of the business. As part of the change 

management plan, the following key practices need to be adopted:

•	 Leadership engagement: Enabling leaders and sponsors to champion 

the transition.

•	 Communication and stakeholder management: Information, 

announcements, and updates through various channels; the updates 

include where and how the changes are impacting the organization.

•	 Training and performance support: Data governance process, policy, 

roles, and competency training.

•	 Organization alignment: Recommendations for new roles, 

performance measures, responsibilities, and workgroup structures.

•	 Measurement and readiness: Preparing the business and measuring 

its readiness to adopt the changes.

Adapt Access

MonitorGovern

Opera�ng Model Intelligent Tooling

SecureDecentralize

Change Management

Figure 8-22.  Governance framework
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�Intelligent Tooling

In intelligent tooling, you need to adopt best-in-class technology and accelerate business 

value from data assets. The following are the different tooling strategies that need to be 

adopted for data intelligence governance:

•	 Rapid discovery and recognition: Rapid discovery and recognition of 

personal and sensitive data across the ecosystem

•	 Smart tagging of metadata and lineage: Smart recommendations 

for business tagging of technical metadata and lineage using multi-

metadata stores

•	 Intelligent data quality rule recommendations: It is based on the 

corpus and usage of ML models

•	 Auto-remediation of data: Learning from data curation actions and 

auto-remediation suggestions

•	 Intelligent workflow triggers: Automated workflow triggers based on 

user behavior

�Operating Model

In the operating model, you need to manage the roles, responsibilities, processes, 

policies, and standards required to manage and govern the data ecosystem. In the 

operating model, you need the following teams:

•	 Executive governance council: This council is the ultimate authority 

in defining program-level scope, arbitrating escalated resolutions, 

and approving data governance strategy with a centralized and 

decentralization approach.

•	 Business data owners: The owners play a leadership role in 

championing data management and data governance efforts.

•	 Data governance council: The cross-functional and cross-entity 

leadership team provides direction and oversight to the overall data 

governance structure.

•	 Data governance organization: This organization provides overall 

non-IT support to the council. 
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�Decentralization

In the decentralization approach, this framework embraces each portfolio in an 

organization to set its subgovernance under the guidance of the central governance 

framework. This helps an organization to decentralize the responsibility and 

accountability and helps to fasten the decisions. Each portfolio follows the same tooling 

and structure as central governance and tweaks it based on the nature of data.

�Secure

The security of data is of utmost importance. As mentioned, you need to have a set 

of country-specific compliances in place and always conduct an audit across the 

organization.

You need to consider the following points when you execute this framework:

•	 Data governance should be viewed as an ongoing program, not as 

just a project.

•	 Data governance must have executive sponsorship, and they must 

take significant ownership of the initiative.

•	 Data governance councils must have real authority to resolve overall 

organization issues so the portfolio governance council can resolve 

the portfolio issues.

•	 There should be a clearly defined set of data governance and quality 

metrics published regularly and reviewed regularly.

•	 There must be a clear and timely communication method for data 

governance initiatives.

You must train your team regularly.

�Summary
The cloud has made a big impact on how we work today, including with data. The cost 

of storing data has been significantly reduced; it is now cheaper and more feasible for 

companies to keep vast amounts of data. The operationalization of data has reduced 

significantly due to managed services and serverless data storage; this has made it easier 

to spread data across different storage types.
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In this chapter, I explained five main requirements of your data layer. The first is how 

to choose the database based on the use cases, the second is how to replicate the data, 

the third is to decouple the data lake to a data mesh, the fourth is data for analytics, and 

finally the fifth is the governance model.

In the cloud native world, one thing you cannot forget is the data layer. To deliver 

a consistently fast, satisfying customer experience, the data layer must also be 

modernized along with your application. You must embrace all five requirements of data 

modernization.

Although there are many reasons to adopt governance approach, it enables data 

accessibility, data confidence and understanding, and data activation. Some of the 

benefits are as follows:

•	 Data consistency ensures completeness and accuracy.

•	 Proactive data quality checks ensure data alignment.

•	 It removes confusion over the data meaning.

•	 You can make fact-based decisions in real time with accurate data.
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