
241
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_6

CHAPTER 6

Event-Driven Architecture
Event-driven architecture is not new; it has existed since the Unix operating system came

on the scene.

Event-driven technology enables high-speed, asynchronous, machine-to-machine,

or program-to-program communication with guaranteed, reliable delivery of events.

Machines or programs exchange data each other. The queues or channels are the

pathways that connect both the sender and the receiver. A sender or producer is a

machine or program that sends events by writing data to the queues, and the receiver

or consumer consumes the messages and sends an acknowledgment to confirm the

message is received. The data exchange between the sender and receiver can be an

object, JSON, XML, and byte. There are two ways to exchange information; the first is a

point to point, and the second is publish and subscribe.

This chapter provides insight for anyone considering implementing an

event- driven architecture; you should have a basic idea of software architecture, design,

and development. There are plenty of books and whitepapers available on event-driven

technology; I am not going to duplicate that information here. Instead, I will cover

event- driven technology in the context of cloud native and real implementations as well

as the problems you may face during implementation.

In this chapter, I will cover the following topics:

• What is event-driven architecture?

• What are events?

• Characteristics of event-driven architecture

• When to consider event-driven architecture

• What is complex event processing?

• Role of event-driven in microservices

• Case studies

https://doi.org/10.1007/978-1-4842-7226-8_6#DOI

242

 Evolution of Event-Driven Architecture
Most applications in enterprises are required to interact with each other by transferring

data. In 1971, File Transfer Protocol (FTP) was introduced to transfer data across

applications and machines on Network Control Program (NCP). In the early 1980s,

the TCP/IP protocol was introduced to draw communication across systems. Later,

applications can use a shared database, located in a single physical box; therefore, no

data has to be transferred from one application to another. After the introduction of

TCP/IP, applications were developed to start exposing some of their functionality so

that they could be accessed remotely by other applications via a remote procedure. The

communication occurs in real time and is synchronous with high coupling and low

cohesion.

The FTP, TCP/IP, and Remote Procedure Call (RPC) protocols are slow and

unreliable, and the interaction between applications needs to support the evolution

of applications and keep pace with changes in the applications being connected. To

overcome the slowness and reliability, the messaging infrastructure was introduced.

Messaging is more immediate than FTP, better encapsulated than shared databases, and

more reliable than RPC.

Tightly Coupled World to Loosely Coupled World
The messaging in applications and across applications in an enterprise became popular

with the maturity of message brokers and message-oriented middleware (MOM).

Messaging is a technology that enables high-speed, asynchronous communication with

reliable delivery. Applications communicate by sending data called messages to each

other over a pipe known as a queue.

Messaging capabilities are typically provided by a separate software system

called message brokers. A messaging system manages the way the database handles

the data persistence. Just like a database administrator (DBA) manages the database,

the messaging administrator manages the messaging system. The messaging system

coordinates and manages the sending and receiving of messages across systems. The

main task of the message system is to manage reliability.

The primary features of message queues are storage, asynchronous messaging,

and routing. The message queues store messages or some type of buffer until they have

been either read by a consumer or expire or explicitly removed from the queues. The

main advantage of a messaging system is loose coupling. The receiving application may

Chapter 6 event-Driven arChiteCture

243

not be available for a few seconds to receive messages, or the network is not available,

but the receiving application can receive messages once it is available. The message

broker keeps retrying to send messages to the receiving applications. This allows for

asynchronous nonblocking communication that provides a higher level of tolerance

against failure. Enterprise messaging technologies such as IBM MQ, Active MQ, Rabbit

MQ, Zero MQ, etc., can be used to decouple your applications for the reliable and

guaranteed delivery of messages.

Message queues allow subscribers to subscribe to a message from the message

provider. Queues usually manage some level of the transaction to make sure the desired

action is executed before the message is removed from the queues. The messages are

delivered at least once. Even if the consumer is not available, the queues try to deliver

by using a retry configuration. The queues send messages to dead-letter queues after

a failure to deliver messages to consumers or the messages will expire. You can use a

point-to-point or publish-subscribe model for communication across applications or

machines or programs.

We looked at message queue systems, and we saw that message queue systems are

used extensively for interapplication communication.

Message Broker World to Event World
Over the years, there has been an evolution of microservices and real-time integration

with lightweight data interaction. We are moving from static to dynamic by accumulating

data in data lakes to enable data in transit and keep track of it while it is moving from

place to place. The shift to event-driven architecture means moving from a data-

centric model to an event-centric model. In an event-driven model, the event is a more

important component, whereas with service-oriented architecture (SOA) or message

queue platforms, the highest priorities were to not lose any data while transferring,

to deliver at least once to the consumer, and to have rest of the process leave it to the

consuming application to take care of the data. With event-driven architecture, you can

address the challenges of SOA and MQ, and the priority is to respond to events as they

occur. The older the events, the less valuable they are.

Along with the processing of events, there is a need to persist a record and allow

the application to process historical data and real-time data without the threat of

deletion by a broker. All these characteristics are not possible in message brokers; there

needs to be a streaming platform. The streaming application addresses one-event-at-

a-time processing with nanosecond latency with stateful processing and joins and the

Chapter 6 event-Driven arChiteCture

244

aggregation of messages. Event streaming platforms can be used for both simple and

complex event processing, allowing event consumers to process and perform actions

based on the result.

Today, event brokers offer efficient and scalable publish/subscribe event distribution

based on routing-labeled events and not just messages to a queue. They support the

following:

• Dealing with a consumer that is too slow or offline by managing the

state of events on the fly

• Decoupling which data to send to which consuming applications,

getting it there reliably, and managing changes to this set of

consumers over time

• Providing services such as priority delivery, load balancing to

consumers, and more

Event brokers make cloud native services simpler and allow a more real-time,

responsive, scalable, efficient, and fault-tolerant system.

There are various event streaming platforms in the industry such as Apache Kafka and

Confluent, AWS Kinesis, Spark, Google Data Flow, IBM Cloud Park, Lenses, Hazelcast Jet,

IBM Event Streams, SAS Event Streaming Process, Solace, and Azure Event Hub.

In the subsequent section, we will provide a step-by-step approach for designing and

implementing event-driven architecture.

 Event
Anything that occurs in enterprises or systems is an event, such as a customer request,

batch update, data change, an employee swiping a credit card, a customer buying a

product in a retail ecommerce application, someone checking in for a flight, etc. These

events exist everywhere and are constantly occurring, and it does not matter what kind

of application it is or what industry it is in. Events are pervasive across any business.

There is value in knowing about an event and being able to react to it quickly. The more

quickly you can get information about events, the more effectively your business can

react to them. An event is separate from a message because the event is an occurrence,

and the message is the carrier of the information that relays information about the

occurrence. In an event-driven architecture, an event likely commands one or more

actions or processes in response to its occurrence.

Chapter 6 event-Driven arChiteCture

245

An event is not the same as an event notification, which is a message or notification

sent by the system to notify another part of the system that an event has taken place. The

source of an event can be internal or external inputs.

There are two types of events:

• Business events

• Technical events

 Business Events
The business events are typically what we care about from a functional perspective. We

can derive these from the event storming exercise of domain-driven design. These events

are not always initiated externally but created by other business events. For example, an

order-placed business event creates an order-shipped business event. Ideally, we should

keep these business events around in perpetuity.

The following are examples of business events:

• The customer swipes their credit or debit card at the retail outlet.

• Employees enter the office premises by swiping an ID card.

• A bill is paid.

• An order is placed.

• The order management system sends details to update the inventory

system.

• The source data changes for replication to the target operational data

store (ODS).

 Technical Events
The technical events are derived from business events; typically many technical events

can be generated from a single business event. These events are used to communicate

between services or systems. These events are technical in nature and are the only

trigger to perform a specific action.

Chapter 6 event-Driven arChiteCture

246

The following are examples of technical events:

• Database updated

• File uploaded successfully

• Email notification sent

Each of these events is like a command of one or more actions such as the

authorization of payments, authorization of the employee entry, an update, a reduction

of inventory, etc. The response is to log events for monitoring and analytics purposes.

 Processing an Event
Events are recorded to an event log, as shown in Figure 6-1, and then processed by one

or more services. Events do not “fall off” of the log; instead, they are persisted.

In event processing, the events are persisted on an event log, in a uniform schema,

and events are typically organized by topics. Events of different types should not exist

on the same topic. For example, customer payment and customer cart data are different

topics, even though they relate to customer behavior like adding wish lists, etc. If you are

interested in the order of events by customers across systems, consider creating a third

topic of “customer actions” that relates only to the actions performed on a customer,

discarding the rest.

Consider not defining the listeners in the first place. An event can have multiple

listeners, and they may not all exist at the time of the event creation.

In Figure 6-1, the service publishes an event to the event log; the service, FaaS, ERP

system, and analytics systems subscribe to an event from the log.

EVENT LOG
EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT

EVENT

Publishes

EVENT

Receives
Function as a

Service (FaaS)

EVENT

Receives
ERP SYSTEMSEVENT

Receives

{

ANALYTIC
SYSTEMS

Receives
EVENTService

Service

Figure 6-1. Event processing in an enterprise landscape

Chapter 6 event-Driven arChiteCture

247

 Event Handling in Domain Context
Events can be used for interdomain or intradomain communication. For example, as

shown in Figure 6-2, in an ecommerce application, the ecommerce web and mobile

applications make up one domain, and the back-end applications are another domain. If

you want to send events between these two domains, you use business events.

Within the same domain, the events can be technical or business events. Across

domains, only business events are relevant. If you are using technical events, such as

notifications, database updates, or requests received, across domains, then that could be

a sign of ill-defined domains or a distributed monolithic system; in that case, it is not a

cloud native architecture.

 Event Governance
The following are the best practices for using events in an enterprise:

• Organizations should strive to make events discoverable to

subscribers.

• Events should have a standard envelope that encloses them such as

publisher ID, tracer IDs, etc., so that the events can stand alone as the

systems evolve. I suggest using cloud event specifications.

EVENT LOG
EVENT EVENT EVENT EVENT EVENT

EVENT

Publishes

EVENT

Receives
Function as a

Service (FaaS)

EVENT

Receives
ERP SYSTEMS

Receives

{

ANALYTIC
SYSTEMS

Receives

Price

Payment

Item

Order

eCommerce Web & Mobile Domain eCommerce Backend Enterprise Domain

BIZEVENT

BIZ EVENT BIZ EVENT

BIZ EVENT

BIZ EVENT BIZ EVENT BIZ EVENT

BIZ EVENT

Figure 6-2. Events across domains in an enterprise

Chapter 6 event-Driven arChiteCture

248

• Events should be as small as possible, encompassing the data needed

for that event. Topics should contain only one type of event. Smaller

events and more topics are better suited to a distributed system.

• Within a domain, the team should design how to introduce new

events, but across domains, you need to standardize namespacing

and require a governance team to manage the events or they become

uncontrollable.

 What Is Event-Driven Architecture?
An event-driven architecture (EDA) is a distributed, asynchronous architecture that

integrates applications and components through events. It is a combination of an event

producer and an event consumer; an event producer detects an event and represents

the event as a message object. After an event detection, it is transmitted from the event

producer to the consumer through a channel. The event processing platform processes

the event asynchronously and informs the event consumer about the occurrence. The

event processing platforms will execute the correct response to an event and send

it to the right consumers. For asynchronous communication, the consumer and the

subscriber do not need to know or be aware of each other. EDA can be relatively complex

given its inherent characteristics of asynchronous, distributed processing, issues that

may occur due to a lack of responsiveness, failure of mediators, and brokers.

How Does Event-Driven Architecture Work?
As shown in Figure 6-3, event-driven architecture consists of four parts.

• Event producer/publisher

• Event consumer/subscriber

• Event broker or routers

• Event persistence (part of platform)

Chapter 6 event-Driven arChiteCture

249

An event producer publishes an event to the router, which filters and pushes the

events to the consumers.

Let’s consider the example shown in Figure 6-4, showing payment processing in

banks or a centralized payment platform in a country. You will receive a lot of credit

and debit transactions, and you need to process millions of transactions. In these

transactions, there might be a few transactions that are related to terror funding or

anti-money laundering. How will you find these dubious transactions? If you scan these

transactions offline, it leads to a delay in identifying transactions. The only option is to

identify in real time just before completing the transaction. In this case, the event-driven

architecture helps you to identify the dubious transactions in real time.

Event
Publisher

Event
Subscriber

Event Platforms
Event Data

Event Data

Topic 1

Topic 2

Subscribe Topic 1

Subscribe Topic 2

Event Data

Event Data

Event
Persistence

Figure 6-3. Event-driven architecture components

Chapter 6 event-Driven arChiteCture

250

 Event-Driven Topologies
When you design an event-driven architecture, you may confuse which topology needs

to be considered for your architecture and why.

In an event-driven architecture, there are two topologies. You need to choose the

right topology for your use case.

• Mediator topology

• Broker topology

 Mediator Topology
The mediator topology is like orchestration in an SOA enterprise service bus (ESB) or

orchestrator components like Netflix Conductor or Uber Cadence. You use the mediator

topology when you need to orchestrate multiple steps within an event through a central

mediator. This topology is better suited for more complex situations where multiple

Payment
Platform

Anti-Money
Laundering

(AML)

Event Platforms
Payment Data

Topic

Subscribe Topic

Payment
Data

Event
Persistence

Retail
Banking

P
ay

m
en

t
T

ra
ns

ac
tio

n
Bank A

Central Bank
Payment Processing

Payment
Platform Bank B

P
ay

m
en

t
T

ra
ns

ac
tio

n
af

te
r

A
M

L

Figure 6-4. Event-driven architecture example, payment platform

Chapter 6 event-Driven arChiteCture

251

steps are required to complete the process, thus requiring event processing coordination

or orchestration.

The mediator topology consists of four components.

• Event queues

• Event mediator

• Channels

• Event processors

The event flow starts from the event originator by sending an event to event queues;

these queues send events to the event mediator. The event mediator is the central

component that controls the orchestration of services and is leveraged in a situation

where a particular service needs to perform multiple steps sequentially to execute

a certain business process. The event mediator sends asynchronous events to event

channels to execute each step of the process. The event processor listens to each

channel, receives an event, and executes the required business logic. The event mediator

is not a business logic executer but is configured with orchestration to process an event.

As shown in the payment use case in Figure 6-5, the consumer makes a payment,

and the “make payment” use case requires multiple steps to complete the payment

process. The payment request is sent to the event mediator by the retail banking app

or web application. The mediator orchestrates multiple steps like conducting AML,

checking the payment, sending payment instructions to the central bank, etc. These

steps are event processors to process the business logic.

Event
Originator

Event
Processor

Event Mediator

Event Queues

Event
Processor

Event Channels

Figure 6-5. Mediator topology architecture

The software components are Camel, Fuse, etc., for the mediator topology along with

Rabbit MQ, Active MQ, IBM MQ, or Kafka.

Chapter 6 event-Driven arChiteCture

252

 Broker Topology
In the broker topology, the message flow is distributed across the event processor

components in a rope fashion through lightweight message brokers. It does not have a

central component that controls the orchestration across processes as provided by the

mediator topology. The broker topology mainly consists of a dumb broker and intelligent

processor with dumb and pipe patterns.

There are two main components in the broker topology.

• Broker component

• Event processor component

The broker component can be centralized or federated and collaborates with all the

events that are used within an event flow. The events contained within the broker can be

message queues, topics, or a combination of both.

As you saw in Figure 6-6, there is no central mediator component controlling

orchestration. In this topology, each event processor component is responsible for

processing an event and publishing a new event indicating the action it just performed.

The event processor acts as a broker for the rope of events. Once the event is processed

by the processor, the other event is published so that another processor can proceed.

Event
Originator

Event Broker

Event Processor

Event
Processor

Event Processor

Event Processor Event Processor

Figure 6-6. Broker topology architecture

Chapter 6 event-Driven arChiteCture

253

In the same example of the payment processor that I mentioned, I have used a

broker topology to integrate the payment process and to update the details in a banking

application. Once the payment is processed, then we need to update the books to

complete the transaction, and the payment services write the transaction to the Kafka

broker. An event processor picks it up and inserts the record in MongoDB. The view

transaction will retrieve the records from MongoDB and expose the API to users to view

the transaction.

Choice of Topology

The rule of thumb is to choose the best topology for your use cases. The broker topology

can be considered for a single event or chain of events requiring one task as their result.

The mediator topology can be considered when using multiple tasks in response and

thus requiring orchestration of each task.

 Characteristics of Event-Driven Architecture
Almost all industry domains use event-driven architecture such as social media,

financial markets, hospitality, Internet of Things (IoT), etc. Let’s consider an example

of IoT. Say your apartment building has installed sensors in each apartment to identify

fire or smoke in the apartment building. The sensors send the details of events with a

measurement of the average temperature of a room with a timestamp. The event-driven

system will send events along with room temperature data to identify processes, and

storing these events requires various EDA characteristics to complete the process. The

following are the main characteristics of any event-driven architecture that you must

follow:

• Multicast communication: The events are generated from the

publishing systems, and event-driven systems can send these events

to multiple event processors.

• Real-time transmission: The events are processed in real time to the

event processors. The mode of processing or transmission is real time

rather than batch processing.

• Asynchronous communication: The event does not need to wait for

the event processor to be available before publishing an event.

Chapter 6 event-Driven arChiteCture

254

• Fine-grained communication: Events are small units and are

published as and when they occur.

• Event ontology: EDA systems always classify events in terms of some

form of a group/hierarchy. This allows event processors to subscribe

to a specific event or specific category of events.

 Event-Driven Messaging Models
There are two basic models for transmitting the events in an event-driven architecture;

you can use the right models for your use cases.

 Event Messaging
In event messaging, the event consumers subscribe to the messaging published by

the event originators. When an event originator publishes an event, the message is

sent directly to all subscribers who want to consume it. The event broker handles the

transmission of event messages between the originators and subscribers. The events will

be deleted after all the consumers subscribe to them. An example of event messaging is

the published/subscribe model. The event broker translates and routes messages to the

subscriber.

 Event Streaming
In event streaming, event originators publish streams of events to a broker. Event

processors subscribe to the streams, but instead of receiving and consuming every

event as it is published, event processors can consume events at any point and consume

only the required events. The events are persisted and never deleted after the event

processors consume them. The event streaming platforms are configured to persist

events from a second to infinite time. This enables event streams to process real-time

and historical data. The event streams can be used for both simple and complex event

processing styles.

Chapter 6 event-Driven arChiteCture

255

 Event Processing Styles
Event processing is the process that takes events or streams of events, analyzes them,

and takes automatic action. Each event processor must be independent and loosely

coupled with other event processors. It tracks and processes streams of events so that

opportunities and risks are proactively identified and optimized. There are three types of

styles for event processing.

• Simple event processing (SEP)

• Complex event processing (CEP)

• Event stream processing (ESP)

 Simple Event Processing
This event processing occurs when an event immediately triggers an action in the event

processor. It is used to measure events that are related to specific measurable changes in

conditions. SEP is used for real-time flow without any other constraint or consideration.

Many events in architecture are simple, such as IoT sensors in your house that trigger

when something happens in a house like a temperature change or smoke, etc. This

type of event occurs when some notable, significant, and meaningful change of state

or condition occurs. Typically this is used to take latency and cost out of the business

process; simple event processing initiates action further down the application stream

whenever a significant and meaningful change of state occurs in any hardware or

software component of the system.

 Event Stream Processing
In event stream processing, ordinary events that occur are filtered for notability and sent

to event processors. This ensures that real-time information flows in and around the

enterprise. This helps in real-time decision-making. In event stream processing, all the

events are written to a log. Event processors don’t subscribe to anything; they simply

read from any part of the stream at any time. The following are the components of event

stream processing:

• Event collect

• Event enhance

Chapter 6 event-Driven arChiteCture

256

• Event analyze

• Event dispatch

This flow creates a process in which events are detected using components. These

components detect relationships between multiple events, perform event correlation,

and establish event hierarchies.

The event stream processing uses a data streaming platform like Kafka to ingest

events and processes or transform the event stream. This can be used to detect a pattern

in event streams. The event stream processing can be used in various use cases, for

example, in order processing. If we consider the sequence of events in a jewelry shop,

the RFID sensor generates an event for each item that moves out of the display. In this

scenario, the retailer is to be informed when the item is sold and moved out of a store.

 Complex Event Processing
This is a set of processes for capturing and analyzing streams of data as they arrive in

real time. The objective of this processing is to identify meaningful events in real-time

situations and respond to them as quickly as possible. It is used when multiple events

must take place before final events are generated. Each event need not be like the others,

nor do events occur at the same time. CEP waits until all criteria are fulfilled before

generating an event message to communicate action instructions. To generate a finale

event, the CEP requires the following components:

• Event interpreters

• Event pattern definition

• Event pattern matching

• Event correlation techniques

The CEP has a strong impact on future information systems and the way we

subscribe to and consume information. It plays an important role in many domains like

logistics, energy management, finance, etc. The usage of this style is expected to grow

further with the increasing number of decentralized microservices, digital twins, etc.

CEP does not only mediate information in the form of events between providers and

consumers but supports the detection of dependencies among events by using event

patterns. The events are generated by the composition and aggregation of multiple

events and can generate a final event.

Chapter 6 event-Driven arChiteCture

257

CEP is used for a scenario in which there is a large volume of events occurring and

latency requirements are very low, in milliseconds. Some of the use cases are stock

trading, predictive maintenance (digital twin), real-time marketing, etc.

 Event-Driven Architecture Maturity Model
IT in enterprise organizations needs to support business disruption by improving the

speed and responsiveness of their internal and customer-facing processes and systems.

Irrespective of what industries you are in, there is an increase in eventing capability

across enterprise ecosystems. An EDA not only publishes and subscribes to an event but

involves planning and maturity of EDA across portfolios in an enterprise.

The EDA concept becomes more broadly adopted, and enterprises progress through

increasing levels of maturity. As shown in Figure 6-7, every organization has to undergo

five levels of steps to reach maturity because the eventing is complex, requires special

skills, and most important is part of the organizational culture. You can use assessment

techniques to assess an enterprise’s maturity level.

Level 0

Level 1

Level 2

Level 3

Level 4

There is no Asynchronous communication
in the system

There is some adoption of asynchronous
communication across applications

Install proper streaming and messaging brokers in an
enterprises and initiate self-service model between portfolios

Provide discoverability of services, API endpoints, data streaming and
ability to scale in cloud environments. Provide self-service for all
portfolios and introduce automation roadmap

Provide observability of the system environment, allow tracing events,
and integrated monitoring of application performance and resource
usage, and introduces 100% automation with Infra-as-a-code.

Figure 6-7. Maturity model

Chapter 6 event-Driven arChiteCture

258

Level 0: There is no asynchronous communication in the

enterprise. All integration is synchronous through APIs or TCP/IP

or FTPs. Few applications in an enterprise are using some kind of

ESB integration mechanism across the heterogeneous system.

Level 1: There is some adoption of an asynchronous exchange of

information across applications. An example is a point-to- point

interaction between related systems using messaging platforms

like MQs, ESB, etc.

Level 2: Business and data event streaming and messaging are

used with some level of high availability and initiating of self-

services. Multiple application interactions are carried out by using

messaging infrastructure with messaging characteristics.

Level 3: Discoverability, scalability, and failover are managed. The

application-producing events are less aware that all the clients

can subscribe to the messages and the same events can be used

for various other observability. The message network can handle

the variable load by using cloud native architecture, and the event

publisher and subscriber are unaware of the physical network

topology. Some automation is introduced to handle the software

engineering lifecycle.

Level 4: The observability principle is enabled across applications

and portfolios and the software engineering lifecycle, and the

infrastructure is fully automated. The events are pervasive

in enterprises with multiple publishers and subscribers. The

focus is more on scale and robust messaging infrastructure.

Enterprise-wide observability is configured so that administrators

can use integrated and intelligent monitoring in real time and

trace messages across multiple nodes in an event mesh. Full

automation is enabled with a single click of deployment. With this

eventing maturity, the organization embraces cloud native tech

stacks to support a variety of business disruptions, and that leads

to change in the organization culture to embrace a new set of

technologies.

Chapter 6 event-Driven arChiteCture

259

 Decoupling Use Case by Using Event-Driven
Architecture
The decoupling helps enterprises with legacy systems to engage customers in the

following ways:

• Keeping legacy systems

• Making these systems accessible from the cloud native systems

• Shipping data to modern technology

• Enabling enterprises to access cloud native technologies

The era of the big transformation project is over; enterprises are not willing to invest

in multimillion, multiyear efforts on transformation; they need to realize business

value quickly. Instead of big fat projects, you need to imagine a world in which value is

delivered quickly and accessible to customers after a short duration minimum viable

product (MVP) and then continuously thereafter, with the freedom to pivot. On the

journey to cloud native, you can’t ignore legacy systems. There are tons of business

transactions occurring in those systems; therefore, you need to keep evolving your

architecture by using decoupling principles.

Decoupling is the process of using cloud native technologies, development

methodologies, and migration methods to build systems that execute strategy on top of

legacy systems. When you apply a decoupling strategy to the entire enterprise, it leads

to exponential changes in IT and a scalable, flexible, and resilient architecture that gives

companies the agility to continuously innovate.

Organizations are under constant pressure to deliver customer expectations. The

following are the key drivers for organizations to embrace cloud native architecture:

• Changing customer expectations

• Technology innovation

• Cost pressure

• Extended enterprises

• New unicorn entrants

Chapter 6 event-Driven arChiteCture

260

Figure 6-8 illustrates a step-by-step approach of how to conduct a decoupling of an

existing system into the cloud native technologies. When your systems need to undergo

decoupling transformation, you must adhere to the following principles:

• Layering: Apply layering to isolate from the old system, and layer

within the new system.

• Suitable fragmentation: Fragment capabilities remove conflicts of

interest and increase agility, enabling cloud native replacement.

• 4Events: Make sure all data is accessible in real time.

• Available, Real-time data: Build out data meshes and data lakes with

real-time eventing capabilities to support the objectives.

• Automation: Implement single-click automation from developer box

to the production box with the use of DevSecOps and infrastructure

as code.

• Cloud: Leverage cloud capabilities to isolate infrastructure and platform.

• Intelligence built-in: Add artificial intelligence and machine learning

into your services and operations.

• No SPOF: Avoid a single point of failure (SPOF).

Computing

Platform

Data

Business Logic

User Interface

Computing

Platform

Data

Business Logic

User Interface

IaaS

PaaS

APIs

Computing

Platform

Data

Business Logic

User Interface

IaaS

PaaS

APIs

Events

AI

Decoupled System in
Cloud Native

Legacy Monolith
Systems

Decoupled Infra, Platform
and Business Logic

Figure 6-8. Decoupling architecture

Chapter 6 event-Driven arChiteCture

261

Some of the myths of decoupling that you need to dispel for stakeholders are as

follows:

• A product alone solves a business problem: Don’t rely on someone

else to solve our problems.

• Perfect architecture and governance: Avoid ivory tower thinking and

focusing on overdesigned standards that don’t drive business value.

• End state is reachable: Businesses don’t stand still; what is valid today

may not be tomorrow.

• Old = bad: Oftentimes, new technology is seen as the only way to

solve problems.

• All in one jar: Oftentimes, a business uses one technology to solve all

the problems.

When you want your application to be cloud native, then you need to apply the

following modern-day approaches for decoupling your systems:

• Make data accessible (change data capture [CDC])

• Microservices

• Event-driven architecture

• Serverless

• Cloud

• Reactive interaction gateway

 Make Data Accessible
If you look back at how application databases and data movement are designed

traditionally, all are based on the pull-based model, with no information about changes.

The data in the databases is static and reacts only when there is a request to modify the

data by using SQL queries; it never reacts on its own. In the case of data replication, you

should apply batch jobs to trigger a delta change in the source database and use extract,

transform, and load (ETL) tools to load data in an (ODS) operational data store or data

warehouse. Or use files to upload data to the ODS or data warehouse.

Chapter 6 event-Driven arChiteCture

262

In event-driven architecture, events enable new real-time functionality to move

data from the application and data store. You can apply replication either from business

change events in an application or from technical change events in a database, as shown

in Figure 6-9.

How to Get Events and Make Data Accessible?

Many systems have native support for events. For example, databases like MongoDB,

Couchbase, Cockroach DB, etc., and cloud services like AWS S3, Google Storage, and

Blob storage in Azure, all these services provide an event when a file is uploaded. GitHub

provides a webhook on all kinds of operations, and Salesforce provides change events.

If services do not support a native eventing capability, then you need to build that

functionality yourself by using the following methods:

• CDC tools such as Equalum, Hevo, Infosphere, Qlik, Oracle, etc., allow

you to integrate various legacy systems, such as Oracle and DB2.

• You can build your custom component that has central transaction

logic points, allowing you to add code to publish events.

• If you are developing a new cloud native application, then you need

to consider building an eventing capability right from the start.

Business Change Events

Technical Change Events

New Customer, Change
Address, etc.

INSERT INTO .. UPDATE ..
DELETE…

Event Broker CRM

Event Broker
Data Lake or ODS

Replicas

Machine Learning
Models

Replicas

Stream Processing
When New Customer � update

CRM

Figure 6-9. Data accessible architecture

Chapter 6 event-Driven arChiteCture

263

Where to Store Events?

An event store is a database designed for tracking events as they occur and maintaining

a record of those events. Relational databases such as MySQL, Postgres, SQL Server, and

Oracle can be used to track events but have certain limitations for this use. A relational

database stores data in a tabular structure and isn’t a good match for event data; in

addition, facts stored in a relational database can be changed. You can present up-to-

date data from a relational database, but the limitation is to track every action.

Event stores record each event as it occurs, and no event may be overwritten or deleted.

For example, as shown in the Figure 6-10, ecommerce may allow each customer to browse

catalogs and items as a set of events. Adding each item to a wish list or shopping cart, adding

payment details, entering a shipping address, and checking out are all events that should be

recorded as they happen, and records of these events never change. Events recorded in an

event store are immutable. Facts derived from those events change over time; in the same

example, the customer enters different payment methods for each purchase.

Customer
Service

Order
ServiceCustomer ID First Name Last Name Phone No

Cust_Id Deepa Dasgupta 98xxxxxxxx

Order ID Status Order Total Item ID Customer ID

85939 Checked out 9389 4560 Cust_Id

653098 Shipped 9000 4562 Cust_id

Item Selected

Added to Shopping Cart

Order selected

Payment mode selected

Payment completed

Order shipped

Order 85939

Event Store

Event
Broker

Events

eCommerce Application

Figure 6-10. Event store

Event stores are ideal for applications where an audit trail, a machine learning

model, a record of actions, etc., is desired. This is common for all event-driven

transactional applications.

How to Get Data?

Getting data is often the hardest part; there are several ways to replicate data such as the

following:

• Using CDC

• Replicating data to a log and using the log as a source of truth

• Using connectors, either industry tools or custom made

Chapter 6 event-Driven arChiteCture

264

CDC

CDC is a process for identifying and capturing changes made to a data store; those

changes can then applied to another data repository such as a data mesh or data lake

or a data warehouse or event log by using event-driven architecture or other types of

integration tools like ETL. CDC is the basis for another system with the same incremental

changes or to store an audit trail of changes. The audit trail may subsequently be used

for other uses such as updating to a data lake or data warehouse or running machine

learning models across the changes.

CDC replicates data that has changed with database functions such as INSERT,

UPDATE, and DELETE and makes a record of the change available to the CDC tool and

event hub so it’s available for other sources. CDC tools rely on database logs, which keep

track of record changes internally for system recovery.

There are different approaches that a system can use to capture changes in the

transaction databases, such as the following:

• Database transaction logs

• Use of timestamp column in a table

• Event streaming

The CDC tools scan databases for timestamp updates; if there are any updates, the

transaction implements database triggers, and CDC tools capture the changes. This

method degrades the performance of a transaction database.

Every database logs its transaction. The log scanners can identify any changes in

these transactional logs, and the log scanner interprets and captures the changes in

these transaction logs.

Event streaming is commonly used and relevant in cloud native architecture. It

uses the publish/subscribe model of CDC, where a database triggers a log or publishes

change events to a table and shares those changes with the CDC tool. The series of

updates is sent to CDC in streams to be used to capture the changes in the CDC.

The event streams start the process of taking action on a series of data that originates

from a data-driven application in an enterprise that continuously creates data. The

term event refers to each data point in an application, and stream refers to the delivery

of those events. During the streaming, there are many actions or logic that can be

applied such as aggregation, analytics, enrichment, transformation, and ingestion. Event

streaming is the real-time processing of data as soon as changes occur.

Chapter 6 event-Driven arChiteCture

265

As shown in Figure 6-11, event stream processing works by handling a data set

as one data point at a time rather than as a whole data set. Event streams are about

continuously created data. In an event stream processing setup, there are two parts.

• The event storage

• Technology to take actions on changes in the database

The event storage stores data based on the timestamp. You might capture every

action of users in an ecommerce application, and each action of the user is an event.

This is handled by streaming technologies like Kafka, Kinesis, etc. The stream processors

act on the incoming data. The enriched stream events are published to the steaming

technologies for stream persistence.

 Real-Time Interactivity
Real-time interactivity is the backbone of the modern-day customer experience.

It establishes a scalable and agile event processing capability and generates new

representation.

To provide real-time connectivity, as shown in Figure 6-12, you need to use event

processing and data streaming to integrate services and systems in your enterprises and

merge, transform, and enrich relevant data across an organization.

INSERT, UPDATE, DELETE

CDC Event Hub

Data Lake

ML Models

Figure 6-11. Data streaming by using CDC and events

Chapter 6 event-Driven arChiteCture

266

A batch process is always too late to respond to customers and introduces a bumpy

load pattern. Distributed log systems offer very high throughput, strict ordering per log

file, and independent reads from multiple systems, but they do not support the event

streaming.

In an event hub or event streaming, a log is used instead of a service bus, and the

service listens to the log and publishes messages to the log, typically on topics.

 How to Use Existing Message Queues with Event
Streams?
You can leverage your existing architecture, skills, and investments, and you can

use event-driven techniques to offer more responsive and seamless integration with

existing and new event streams. Event streams like Kafka, IBM Event Streams, etc.,

support connectivity to the existing MQs like Rabbit MQ, Active MQ, or IBM MQ. By

combining the capabilities of event streams and message queues, you can combine your

transactions in a combined application.

Event Hub

Reactive API Gateway

Mobile Web Customer Support 3rd Party ServicesE
xt

er
na

l
In

te
rn

al

G
oo

gl
e

or
 A

pp
le

 P
us

h
A

P
I

New Store

Figure 6-12. Reactive architecture

Chapter 6 event-Driven arChiteCture

267

Let’s consider a use case, as shown in Figure 6-13, in the travel and hospitality

industry. The use cases are airline booking, car rental, hotel booking, flight status, and

a weather report to provide a more personalized experience to customers. In these use

cases, your client already developed part of the airline booking by using MQ, but you

need to provide seamless and more personalized information to your customer.

Let’s consider an example of a flight reservation; the management of flight

reservation applications is already available in an enterprise with the decoupled

architecture principles via MQ technologies. The airline management wants to enhance

its business by providing a personalized experience for its customers. As mentioned

earlier, the MQ is not meant for eventing and streaming. Therefore, I used event

streaming technologies such as Kafka, IBM, or Kinesis to stream across various systems

to provide seamless information to the customers.

To achieve interaction between MQs and event streams, you need to configure

MQ to send and receive messages and events by using connectors. Event streams

connect with various applications to manage a hotel reservation and location map,

local entertainment details, and map and car rentals from the car booking management

application.

For example, as shown in Figure 6-14, for the AMQ connection to Kafka, you need to

configure a connector in the dependency file.

Flight
Reservation

Flight StatusPayments Loyalty
Program

Message Broker
(AMQ/Rabbit MQ/IBMMQ…)

Event Streams
(Kafka, IBM,Kinesis…)

Hotel Management Car Rental
Management

Weather Management

Local Entertainmen

Figure 6-13. Collaboration of eventing system with message queue systems

Chapter 6 event-Driven arChiteCture

268

 Transaction Management in Event-Driven
Microservices
A legacy application usually has a single monolithic database. The ACID transactions

can be easily maintained in a single monolithic database. ACID means the following:

• A – Atomicity: A transaction is an atomic unit. All the instructions

within a transaction will successfully execute, or none of them will

execute.

• C – Consistency: A transaction can bring the database from only

one valid state to another, and data is in a consistent state when a

transaction starts and when it ends.

• I- Isolation: One state of a transaction is invisible to another

transaction. This ensures that concurrency is maintained across

transaction and leaves the database in the same state.

• D – Durability: Changes that have been committed to the database

should remain even in the case of failures.

As a result of ACID, your monolithic application and database can easily manage the

database transactions.

When you decouple an application to a cloud native service or develop a new

cloud native service, data access management becomes complex because of polyglot

<dependency>

<groupId>org.apache.camel.kafkaconnector</groupId>

<artifactId>camel-activemq-kafka-connector</artifactId>

<version>x.x.x</version>

</dependency>

use source connector for Kafka connector

connector.class=org.apache.camel.kafkaconnector.activemq.CamelActivemqSourceConnector

Figure 6-14. AMQ and Kafka configuration file

Chapter 6 event-Driven arChiteCture

269

principles. Adopting a polyglot principle ensures that the microservices are loosely

coupled and deploy and are managed independently of one another. If multiple services

access the same data, then you need to handle coordination across cloud native services.

One more obstacle is transaction management in polyglot microservices. The polyglot

principle illustrates that each microservices can use different databases because a

modern application stores diverse kinds of data, and one type of database is not always

beneficial.

For some cloud native service, a NoSQL database might have a more convenient data

model and offer much performance and scalability. It’s similar for search microservices;

you may be considering Elasticsearch for the graph-related store, and you might use

graph databases like Neo4J, etc. In a nutshell, in one system, you might use multiple

types of databases. Using polyglot persistence provides many benefits such as scalability,

manageability, and high availability but introduces distributed data management

challenges.

The following are the real challenges of using polyglot persistence in a

cloud native service:

• Implementing a business transaction across services

• Retrieving data from multiple services

Let’s analyze how these challenges impact your cloud native services.

The first challenge is implementing a business transaction that maintains

consistency across services. Let’s consider the example of an ecommerce application.

The ecommerce application consists of hundreds of cloud native services to manage

various business cases such as Order, Customer, Inventory, Catalog, etc.

In Figure 6-15, I am considering three cloud native services (Customer Service, Order

Service, and Inventory Service) to illustrate transaction management.

• Customer Service: The responsibility of this microservice is to

maintain customer information.

• Order Service: The responsibility of this microservice is the

management of orders.

• Inventory Service: The responsibility of this microservice is to manage

the inventory, and a new order doesn’t give confirmation if the

inventory is less than the number of product requested.

Chapter 6 event-Driven arChiteCture

270

In the traditional monolithic application of ecommerce, the Order service can simply

use an ACID transaction to check the availability in the inventory and confirm the order.

In the cloud native service architecture, the Customer, Order, and Inventory tables

are aligned to their services, as shown in Figure 6-15.

The Order service cannot access the Inventory service table directly and can be used

only through the Inventory service’s APIs or channels. When cloud native services such

as Customer, Order, and Inventory services decomposes a monolithic system into self-

encapsulated services, it can break transactions.

This means a local transaction of a monolithic application becomes distributed

into multiple services. Figure 6-16 shows how the transaction could be handled in

a monolithic ecommerce application; it shows a customer order example with a

monolithic ecommerce system using a local transaction.

Customer
Service

Order
Service

Customer ID First Name Last Name PhoneNo

Cust_Id Deepa Dasgupta 98xxxxxxxx

Order_ID Status Order Total Item ID Customer ID

85939 Checked out 9389 4560 Cust_Id

653098 Shipped 9000 4562 Cust_id

Inventory
Service

Inventory_ID Description Avail_Status Stock_Level Creation_Date

002 Masks Yes 10000 02042021

003 Watch Yes 2000 31032021

Figure 6-15. Cloud native service polyglot persistence

Chapter 6 event-Driven arChiteCture

271

As shown in Figure 6-16, the user logs in to the ecommerce system after

authentication, and the system creates a session. The user places an order in the system,

and the system creates a local transaction that manages multiple database tables by

using an ACID transaction. If one step fails, the transaction can roll back.

 Two-Phase Commit in Cloud Native Services
In the cloud native services architecture, the Order service could potentially use the

Inventory service through a distributed transaction’s two-phase commit (2PC). The

2PC protocol ensures a database commit is implemented in the places where a commit

operation is divided into two separate phases.

• Prepare phase

• Commit phase

Let me explain how you can use 2PC for a cloud native services architecture for the

Customer, Order, and Inventory services.

Figure 6-16. Monolithic ecommerce system using local transaction

Chapter 6 event-Driven arChiteCture

272

In the preparation phase, the Customer, Order, and Inventory services of the

transaction prepare to commit and notify the coordinator that they ready to complete

the transaction. In the commit phase, the transaction is either a commit or rollback

command issued by the transaction coordinator to all the services. Figure 6-17 shows the

2PC implementation for customer orders.

In Figure 6-18, when a customer creates an order, the coordinator or orchestrator

creates a global transaction with all the context information. It will interact with

the Order service to create an order, and the order replies to the coordinator after

completion of order creation. Then the coordinator sends a request to the Inventory

service the check the inventory availability by product ID. The Inventory service sends

Customer
Service

Order
Service

Customer ID First Name Last Name PhoneNo

Cust_Id Deepa Dasgupta 98xxxxxxxx

Order_ID Status Order Total Item ID Customer ID

85939 Checked out 9389 4560 Cust_Id

653098 Shipped 9000 4562 Cust_id

Inventory
Service

Inventory_ID Description Avail_Status Stock_Level Creation_Date

002 Masks Yes 10000 02042021

003 Watch Yes 2000 31032021

Coordinator
or

Orchestrator

Transactionns

Transactionns

Transactionns

Figure 6-17. 2PC commit

Chapter 6 event-Driven arChiteCture

273

OK, and the stock is available. The coordinator sends a message to the Order service

to confirm the order, and at the same time the coordinator sends a message to the

Inventory service to update it. At any point in time, if the service fails to process, then the

coordinator will abort the transaction and begin the rollback process.

The benefit of 2PC is strong consistency.

• Prepare and commit 2PC phases to guarantee that transactions are

atomic, either complete or none.

• 2PC allows read-write isolation; the changes are not reflected until

the coordinator is not performing the commit.

The disadvantage of 2PC is that you can solve the transaction by using 2PC, but it is

not at all a recommended approach for any cloud native architecture systems because of

the following reasons:

• 2PC is synchronous (blocking); it will lock all the cloud native

services until it completes the entire transaction. This could end up

as a bottleneck in the whole system.

Figure 6-18. Sequence steps of 2PC

Chapter 6 event-Driven arChiteCture

274

• This approach is very slow, due to the blocking of threads of all the

participants’ microservices.

• A coordinator or orchestrator is a single point of failure, and the whole

system’s transactions are based on the availability of a coordinator.

• The consistency, availability, and partition (CAP) theorem requires

you to choose between availability and ACID properties. Based on

my experience, the availability is better for cloud native.

• Modern databases such as NoSQL do not support 2PC.

 Transactions with Events
In an event-driven architecture, a microservice publishes an event based on when a

command is issued, and related cloud native services subscribe to events.

You can use events to implement transactions that span multiple participating

services. You need to implement multiple steps to complete one business transaction,

and each step in business transaction is processed with event publishes from previous

step and triggers transaction to the next steps.

Figure 6-19 shows how to implement transactions by using event-driven architecture

and event sourcing with the same use case as mentioned for 2PC.

Customer
Service

Order
Service

Customer ID First Name Last Name PhoneNo

Cust_Id Deepa Dasgupta 98xxxxxxxx

Order_ID Status Order Total Item ID Customer ID

85939 Checked out 9389 4560 Cust_Id

653098 Shipped 9000 4562 Cust_id

Inventory
Service

Inventory_ID Description Avail_Status Stock_Level Creation_Date

002 Masks Yes 10000 02042021

003 Watch Yes 2000 31032021

E
ventB

rokerorH
ub

Place an Order

Check Inventory

Check Inventory

Inventory ReservedInventory Reserved

Update Stock Update Stock

Order Confirmed

Order Confirmed

1 2

34

5 6

7

8

Event Store

All Events

Figure 6-19. Transactions with event

Chapter 6 event-Driven arChiteCture

275

As shown in Figure 6-20, the microservices publish and subscribe to an event via an

event broker and event store. Each service publishes an event to the event broker, and

other services subscribe to an event as and when it is published.

Here are the steps a place an order transaction:

 1. The customer places an order, and the Order service initiates an

order confirmation transaction, called Begin Transaction.

 2. The Order service publishes an event to check the inventory by

passing the product ID.

 3. The Inventory service subscribes to an event from the event

broker and checks the stock level against the product.

 4. If the stock available, then the Inventory service publishes an

event after reserving a stock.

 5. The Order service subscribes to an event and confirms the order.

 6. The Order service publishes an event to update a stock.

 7. The Order service publishes an event for confirming an order.

 8. The Inventory service subscribes to an event and updates the

stock level.

 9. The Customer service subscribes to the event for a confirmed

order and updates the details.

 10. The transaction ends.

Chapter 6 event-Driven arChiteCture

276

Here each service updates its database and publishes an event, and the event

broker saves each event in the event store. All these transactions do not adhere to

ACID properties, but all follow eventual consistency properties. Throughout this entire

transaction, atomicity is important. To manage the atomicity of your transaction, your

event store plays an important role. For example, for order creation, you need to store an

order in the order service database and publish an event to the event broker; these two

things should happen atomically. If the service fails after one task, then it becomes an

inconsistency in a transaction. To achieve this inconsistency, you need to manage the

event store table to store all kinds of events that occur in the whole transaction.

The event sourcing and event table persist all kinds of events in a transaction; if any

transaction fails in between, the service can construct a state by using the event store, as

shown in Figure 6-21, and each service publishes and subscribes to an event by using the

event broker.

Figure 6-20. Event transaction sequence diagram

Chapter 6 event-Driven arChiteCture

277

One way of achieving an event-driven transaction is to use the saga pattern and

CQRS, which are explained in Chapter 4.

 Event-Driven Microservices Interaction
At a high level, there are two approaches to getting microservices to work together

toward a common goal.

• Orchestration with synchronous

• Choreography with asynchronous

Orchestration entails actively controlling microservices like a conductor directing

the musicians of an orchestra. Choreography entails establishing a pattern that

microservices follow as the music plays, without requiring supervision or instructions.

The synchronous communication and orchestration across microservices

are managed by the orchestrator. The orchestrator is not a new concept; it has

existed since the SOA and ESB implementations were introduced. The ESB acts as

an orchestrator and orchestrates across heterogeneous systems in an enterprise

ecosystem. Let’s look at an example of a utility payment from the banking web

application. You want to pay an electricity bill through your web app, so you initiate

the transaction by clicking the utility payment link. The web application sends

Customer
Service

Order
ServiceCustomer ID First Name Last Name Phone No

Cust_Id Deepa Dasgupta 98xxxxxxxx

Order ID Status Order Total Item ID Customer ID

85939 Checked out 9389 4560 Cust_Id

653098 Shipped 9000 4562 Cust_id

Place Order

Order Created

Update Stocks

Order Confirmed

Order 85939

Event Store

Event
Broker

Events

Inventory
Service

Inventory_ID Description Avail_Status Stock_Level Creation_Date

002 Masks Yes 10000 02042021

003 Watch Yes 2000 31032021

Publish an
Event

Subscribe an
Event

Figure 6-21. Event store in a transaction

Chapter 6 event-Driven arChiteCture

https://doi.org/10.1007/978-1-4842-7226-8_4

278

SOA requests to the ESB, and the ESB must orchestrate between the core banking

application and utility payment gateway. It follows these steps:

 1. The ESB calls the core banking API to credit an amount.

 2. The ESB calls the utility gateway to issue a request for the

payment.

 3. The utility gateway responds with success.

 4. The ESB calls the core banking API for confirmation and credits

an amount in your savings bank account.

 5. If any failure occurs in the utility gateway, then ESB needs to call

the core banking API to reverse a transaction.

You may face several challenges in the microservice implementation related to

how microservices interact with each other to complete a business use case. Choosing

between orchestration and choreography will make a difference in how seamlessly the

services function.

In an orchestra, each musician is awaiting a command from the conductor. They

are each expert in playing their instrument, and yet they’d be collectively lost without

the conductor. In orchestration, one service or any tools like Netflix Conductor or Uber

Credence handle all communication between microservices and direct each service to

perform the intended functions.

The downside of orchestration is the orchestrator is a single point of failure, and the

controller needs to directly communicate with each service and wait for each service’s

response. These interactions are occurring across the network. Invocations and I/O

blocking take longer, block threads, and impact service availability. In orchestration,

each service is tightly dependent on other services, and they are synchronous, and each

service must explicitly receive and respond to requests to make the whole service work;

failure at any point could stop the process. The orchestration could rely on RESTful

APIs. For some use cases, the orchestration is best suited; an example is Netflix using

Conductor.

A choreography-based approach is like the dancers listening to the music and making

the necessary moves because all dancers follow the same choreography. In this approach,

you will avoid dependencies. So, each service works loosely coupled and independently.

Chapter 6 event-Driven arChiteCture

279

In choreography, as shown in Figure 6-22, the event broker exchanges the

information between microservices. It is like a fire-and-forget-it, decentralized way of

broadcasting data known as events, and everything happens asynchronously, without

waiting for a response. Each service observes its environment and subscribes to the

message events to that channel and will know what to do from there.

The choreography isolates the microservices; this means if one service fails or fails

to respond, it does not impact as a whole use case. You can use a various pattern like a

circuit breaker to handle the failure.

The following are the advantages of choreography:

• Processing is faster as there is no requirement of the central

conductor.

• There is no single point of failure.

• Each service is loosely coupled and is not aware of each service;

therefore, it’s easy to add and remove services.

• This resonated well with cloud native architecture.

• You can use several patterns like circuit breaker, CQRS, or

event sourcing for effective management of interactions across

microservices.

The disadvantages are that it is complex and requires special skills to configure and

manage eventing capabilities.

Event Broker

Order
Service

Payment
Service

Wishlist
Service

Figure 6-22. Choreography in services

Chapter 6 event-Driven arChiteCture

280

 Interaction Between Microservices
Managing across a few microservices is easy and does not require any extra management

layer, but when microservices grow in your enterprises, you may face many challenges of

managing services in a cloud native environment.

Many loosely coupled services that are independently and frequently changing do

promote agility but introduce a lot of management challenges. Some of these challenges

are traffic management, communication security, communication failures, etc. Many

of these challenges can be resolved directly by writing code in a service, but embedding

these configurations in code poses a lot of challenges because these configurations are

complex and extremely error prone.

As shown in Figure 6-23, there are two ways you can handle these challenges

without embedding code in a service for API interaction and event interaction across

microservices.

• Service mesh: Provides connection-level routing and traffic management

for synchronous communication (HTTP(s)) interaction through sidecar

injection into Kubernetes pods. The service mesh is focused on routing

connections between endpoints by hijacking the connection requests

and overriding the connection requests from the microservices.

Network

ServiceMesh Event Mesh

Synchronous Microservices Asynchronous Microservices
Hybrid Microservices

PaaS/CaaS/Virtualiza�on

Figure 6-23. Mesh architecture

Chapter 6 event-Driven arChiteCture

281

• Event mesh: Handles asynchronous event-driven routing of

information between microservices. It intelligently routes events

between the event brokers, allowing the cluster or brokers to appear

as a single virtual event broker.

The mesh frameworks allow you to observe, secure, and connect microservices. They

don’t establish connectivity between microservices but instead have policies and control

applications on top of the existing network to govern how microservices interact. These

frameworks shift the implementation logic out of the microservices code and move it to

the network.

The service mesh and event mesh are not mutually exclusive, and you may consider

implementing both depending on the use cases.

 Service Mesh
A gateway centralizes the configuration and routes requests to the relevant

microservices, and it can handle orchestration but with limitations.

The advent of cloud native architecture and the use of container and microservices

platforms create a need for an orchestrator. The containers and orchestrators, coupled

with the microservices for their speed to market and silos of the development pods, lead

to service sprawl. The ability to run several distributed services requires a service mesh.

A service mesh solves the problems where microservices communicate using

APIs. A service mesh uses the sidecar pattern to establish communication between

microservices and ensures that the communication among containerized and often

ephemeral application infrastructure services is fast, reliable, and secure.

Service Mesh Implementation

As shown in Figure 6-24, a service mesh will have a control plane to program the mesh

and sidecar and serve as the control point for securing, observing, and routing decisions

between services. The control plane transfers configurations to the proxies, and each

proxy intercepts all inbound and outbound traffic. By intercepting traffic, the proxies will

inject behavior into the communication flows between microservices.

Chapter 6 event-Driven arChiteCture

282

The following behavior will be handled by the service mesh:

• Traffic shaping with dynamic routing controls

• Resiliency support for service communication such as circuit

breakers, timeouts, and retries

• Observability of traffic between services

• Tracing of communication flows

• Secure communication between services

In Figure 6-24, all services A, B, and C are executed through sidecar proxies. By

having communication routed between the proxies, the proxies serve as a key control

point for performing a task such as initiating Transport Layer Security (TLS) handshakes

for encrypted communication with the previous behaviors.

Service meshes route data based on the connection URL and the ability to redirect a

connection based on the content routing rules against the URL and HTTP header

information.

Services meshes are one layer of your infrastructure and don’t provide all that you

need. They do give you the ability to bridge the divide between your infrastructure and

your application.

Kubernetes Cluster

Service Mesh Control Plane

Service A

Side Car Proxy

Container

Service B

Side Car Proxy

Container

Service C

Side Car Proxy

Container

Figure 6-24. Service mesh architecture

Chapter 6 event-Driven arChiteCture

283

Advantages and Disadvantages of Service Meshes

The advantages of service meshe is that they offer distributed debugging, provide

topology and dependency management, participate in application lifecycle

management, and participate in service and product management, offer deeper

observability, provide multitenancy, have multicluster meshes, allow advanced circuit

breakers with fallback paths, etc.

The service mesh provides a simpler network configuration for the microservices but

with some caveats.

• The service mesh has no support for asynchronous events or stream

processing.

• Most traffic and network services apply only to synchronous

communication and the HTTP and GRPC protocols.

• A service mesh limits the connection-oriented routing and targeting

of the transport connection, not the routing of actual data.

Microservices are using diverse message interaction patterns including publish/

subscribe, point-to-point, push-with-reply, queuing, etc. In today’s world, the

microservices require a higher throughput and lower latency than you can meet by

using Kubernetes clusters. It takes choreography rather than orchestration processing. In

cloud native architecture, microservices require event-driven architecture because they

require eventing capability, performance, and real-time processing that goes beyond a

Kubernetes cluster. Here, you require an event mesh.

 Event Mesh
A cloud native modern enterprise embraces event architecture, and every event-driven

application requires a robust central system to move events quickly, reliably, and

securely from publisher to subscriber.

An event mesh is an architectural layer that dynamically routes events from one

microservice to another irrespective of deployment location. The event mesh is a key

enabler for event-driven architecture. An event mesh is a dynamic infrastructure that

propagates events across disparate cloud platforms and performs protocol translation.

A single event broker can handle only a certain volume of requests and

microservices. There are different ways to scale, and one way is the event mesh.

Chapter 6 event-Driven arChiteCture

284

In an event mesh, there is no underlying technology such as Kubernetes, and event

brokers are designed to operate with or without a cloud. Event meshes route data based

on topics and are transported with the event payload. It is a dynamic infrastructure that

propagates events across multicloud platforms and performs protocol translations.

Figure 6-25 illustrates elements of an event mesh, and events can flow bi-

directionally across the microservices irrespective of where they are deployed, whether it

is in the same cloud, multicloud, or hybrid cloud.

An event mesh is configured along with an event broker. The event mesh translates

any application into different languages and is deployed in different clouds. It publishes

an event and lets the subscriber of another application deployed in a different cloud

subscribe to that event . It also can be a different API altogether. This helps to separate

the configuration from the business logic in microservices.

Characteristics of Event Mesh

The following are the characteristics of an event mesh:

• Made up of interconnected event brokers

• Environment agnostics; can deploy in any public cloud, PaaS, or non-

cloud environment

• Dynamic and intelligent routing

• Security and WAN optimization

Event Mesh

Service A

Container

Service B

Container

Service C

Container

Figure 6-25. Event mesh architecture

Chapter 6 event-Driven arChiteCture

285

Event Mesh Capabilities

The following are the event mesh capabilities, and they are required for modern-day

architecture:

• Supports publish and subscribe for events in various protocols such

as Kafka, Knative, HTTP, AMQP, etc.

• Support for multiprotocol bridges between disparate events,

microservices, and messaging platforms

• Supports on-premises and multicloud deployment to provide a

uniform infrastructure

• Secure transmission of event messages

How Do Event Meshes Work?

Subscribers of events are connected to the event broker and register with the topic and

configure the event type. When event messages arrive in the event broker, Event mesh

routes them to the subscriber based on their subscriptions. In Figure 6-26, /Inventory

would go to the Inventory service, the event with /Payment would be routed to the

Payment service, and the /dispatch event would be routed to the Dispatch service.

Order

Container

Inventory

Container

/Payment

/Inventory

/dispatch

Event Broker

Payment

Dispatch

/Inventory

/Payment

/Dispatch
Event Messages

Publish

Subscribe to Topic

Subscribe to Topic

Subscribe to Topic

Container

Container

Figure 6-26. Event mesh implementation

Chapter 6 event-Driven arChiteCture

286

The consuming microservices such as Inventory, Payment, and Dispatch are

processing asynchronously and potentially in parallel. Each service uses processing

overhead only when the event broker forwards an event based on the subscriptions. The

event broker abstracts the routing of events between the publisher and the subscriber.

All event brokers persist messages and don’t need to be available when the event is

initially published. They have the option of receiving events that were published while

they were offline, but this impacts the customer experience.

Event Mesh in a Cluster of Brokers

I explained how the event broker manages the routing rules in a single broker. The

complexity arises when you have a cluster of brokers, and each message is subscribed

in a separate event broker. How will you manage this? The one option is to embed code

in your microservices or configure them in the event broker to manage in a cluster. This

is where an event mesh is useful to coordinate and collaborate across multiple event

brokers to streamline the routing and publishing and subscription.

In Figure 6-27, the Order microservice sends a message to Event Broker 1 and asks

for an order from the location to check inventory, local distribution, and local dispatch.

All four microservices are deployed in the separate cloud with respective event brokers.

For example, the Inventory microservice asks for any order microservices to check a

local inventory where the order is originated. All brokers are connected with the event

mesh, so that subscription is forwarded to the other event brokers in another cloud.

When the matching event is published to Event Broker 1, the event mesh will forward

it to Event Broker 2, because no microservices are connected to another event broker

for this request, but other microservices are required to subscribe to other order events

once the inventory is confirmed. The Inventory microservices checked the inventory

and published an event to Event Broker 2 for availability and an event mesh is routed to

Event Broker 1.

Chapter 6 event-Driven arChiteCture

287

Event Broker 3

Order

Container

Distribution
DispatchInventory

Event Broker 4Event Broker 1 Event Broker 2

Amazon Web Service (AWS) Google Cloud Microsoft Azure

Event Mesh

Control Plane and Data Plane Routing

Container Container Container

Figure 6-27. Event mesh across cloud providers

The Order microservice confirms the order and publishes an event called confirm. The

event mesh routes to Event Broker 2, and the Inventory microservice subscribes to confirm

events, updates stocks, and publishes an event called “confirm with the item” to Event

Broker 2. The event mesh checks Event Broker 3 and Event Broker 4 for event subscription.

The Distribution microservice subscribes to “confirm with the item,” and the event mesh

routes to Event Broker 3. The distribution microservice consumes and is ready for dispatch

by publishing events to “dispatch” to Event Broker 3. The event mesh routes to Event

Broker 4 for dispatch. All these microservices and event brokers are deployed in multicloud

environments, and the event mesh can route within the cloud or multicloud environment.

While each event broker provides its local routing table based on topics, the control

plane of the event mesh dynamically and transparently extends that routing information

among all interconnected event mesh broker nodes like the Internet does for IP routes.

This is the way the event mesh makes many event brokers look like a single virtual

event broker; it uses broker routing protocols to intelligently, dynamically, and efficiently

route events.

Event Mesh’s Control Plane

Not all event brokers enable an event mesh. The clustering of event brokers to provide

high availability or local horizontal scaling is not an event mesh. If the local cluster does

not provide intelligent routing between other clusters, then the event broker doesn’t

constitute an event mesh. Every event broker that does enable an event mesh provides a

control plane.

Chapter 6 event-Driven arChiteCture

288

The event broker must provide the tooling and capabilities like Kubernetes for

service meshes. The control plane must provide high availability (HA) for event nodes

and disaster recovery (DR) for broker nodes. The characteristics of the control plane are

as follows:

• Configuration and monitoring of event broker nods in an HA cluster

• Dynamic real-time updates for routing tables on all event brokers

nodes and clusters

The service mesh and event mesh work in different environments and for different

use cases, but both can collaborate in an application. For example, a few microservices

are required to work with synchronous HTTPS or GRPC, and a few microservices require

an event-driven capability. In this case, the service mesh can be used for synchronous

microservices, and the event mesh can be used for event-driven microservices

 Box- and Port-Style Event-Driven Architecture
The box- and port-style pattern supports the observability of microservices or

components. It provides a needed level of agility, timelines, information availability,

and simplicity in a cost-effective way and provides the surrounding observability

component to business services. This observability component can be deployed in the

containers, cloud, and on-premises. Figure 6-28 illustrates how business components or

microservices are wrapped with a componentless pattern and with observability.

Chapter 6 event-Driven arChiteCture

289

Business Component 1
Input Port Output Port

Error, Log &
Exception Port

Service Port

Box & Port
Component Less

Pattern

Monitoring

Business Component 2

Input Port Output Port

Error, Log &
Exception Port

Service Port

Box & Port
Component Less

Pattern

Monitoring

Control Port Control Port

Director

Execution
Management

Task Queues

Choreographe
r/OrchestratorError DBMonitoring DB

E
ve

nt
M

es
sa

ge

E
ve

nt
M

e s
sa

ge
Business EventsBusiness Events Business Events

Figure 6-28. Box- and port-style component less with observability

On a distributed event-based platform, events are passed from one component to

another component by using the message channels or events. This pattern externalizes

all observability, interaction with other components, etc., from the core business logic.

The ports are enabled for interaction between services or components.

As shown in Figure 6-28, the box and port are technical infrastructure components

and support any kind of services irrespective of language and platform. The responsibility

of this pattern is to convert message formats and capture errors and exceptions, log

messages and traces, configure to topics, etc. This component supports observability

to track each business component and supports multiple protocols to interact with

business services. The only responsibility of the business service/component is business

functionality, and the remaining technical details are maintained by the box and port.

The wrapper component provides an essential level of instrumentation, which

means that it is possible to observe the processing of any component from outside. For

example, the monitoring port is used to publish performance and other statistics to the

dashboard. The operational monitoring includes but not limited to the following:

• Heartbeat monitoring

• The actual latency of every input-to-output event flow as well as

average latency over a time window

Chapter 6 event-Driven arChiteCture

290

• The actual wait time for the input event

• Error rates, etc.

The director is responsible for configuring an application into the technical

component at startup time and lasts until the component or service shuts down. It

does this by using the event delivery platform through the control port. The wiring

instructions can be controlled by the director through the control port.

Components or services work with input and output ports. This is quite different

from a normal object-oriented design, where one object can invoke a method on

another object. Components do not invoke methods, nor do they call services or

other components in an event-driven architecture. They send events to some other

component, and then they continue processing input events. A response to a request

may arrive asynchronously at an input port, at which point the component correlates

that response to an earlier request and acts accordingly.

Characteristics of Box- and Port-Style Architecture
The following are the characteristics of box and port style:

• Real-time operational behavior: It can change the behavior of the

system to dynamically react to incoming events.

• Observations: It observes all kinds of behavior and generates alerts

when such behavior occurs and predicts failures based on the

historical data.

• Information dissemination: It sends the right information to the right

recipient with personalization.

• Active and predictive diagnostics: It can diagnose a problem that

occurred based on historical data, predict the details, send alerts to

the recipients, and send details to the dashboard.

• Autoscaling: Dynamic load distribution patterns such as queue with

multiple subscribers are used to ensure that the workload is evenly

distributed across all the components. The dashboard spins up the

component by sending an instruction to the component with the

manual intervention of the configuration file for Docker images.

Chapter 6 event-Driven arChiteCture

291

This architecture style provides the most benefit to the existing legacy component-

based systems where the observability details are hard-coded as part of the business

logic in a service.

 DevOps for Events
Event-driven cloud native architecture has gained a lot of attention; therefore, you need

to have a DevOps pipeline for an event-driven architecture. Event-based systems could

be comprised of many different enabling technologies such as Kafka, NATS, Solace,

Confluent, microservices, serverless, CDC, etc.

The generic guidelines for DevOps are as follows:

• Treat events as API contracts; other systems may be reliant on event

producer.

• Use schemas to encode events, with shared schema registries for

access.

• Treat event configuration as code. The topics should be created

by using scripts, and the event schema must be checked into your

Artefactory tool.

• Use infrastructure as code to automate the configuration, installation, etc.

 Event Security
In a distributed event-driven architecture, you must balance data democratization with

the protection of sensitive data. The events must be encrypted between the publisher

and the subscriber.

These are the types of encrypting events:

• Events in transit should always be encrypted using industry-standard

encryption methodologies such as SSL/TLS.

• Disks/storage holding past events should always be encrypted in the

file system or event store database.

• File-level encryption is the most secure way to encrypt the data, but it

is more expensive; therefore, consider this only for sensitive data.

Chapter 6 event-Driven arChiteCture

292

Field-Level Encryption Consideration
All data should be encrypted in transit and at rest. The level of field encryption depends

on risk tolerance. If the topic contains no sensitive data, then do not use field- level

encryption; therefore, you need a balance between security and performance. Figure 6-29

gives a clear strategy to choose what level of encryption is required in your system.

 Cloud Events
In cloud native architecture, you can find events everywhere, and each event is

published by a publisher with different event specifications. There is no common,

standard way of publishing events in enterprises. This leads to constant learning across

teams, leads to more error, and your Confluence documents might be full of event

specifications across agile pods to refer to. This limits the potential libraries, tooling, and

infrastructure to aid the delivery of events across systems in an enterprise.

As explained earlier in this chapter, an event includes context and data about an

occurrence, and each occurrence is uniquely identified by the data of the event. The

event represents facts and no destination, whereas the message conveys intent and

transporting data from source to destination.

Events can be delivered through various industry-standard protocols, for example,

AMQP, HTTP, MQTT, SMTP, and open-source protocols such as NATS, Kafka, or cloud

vendor protocols, AWS Kinesis, Azure Event Grid, Google Pub/sub, etc.

The objective of the Cloud Events specification is to define the interoperability of

event systems that allow services to produce or consume events, whereas both the teams

can be developed and deployed independently.

The Cloud Events specification contains a set of metadata, known as attributes,

about the event being transferred between systems and how those pieces of metadata

should appear in messages. This metadata contains a minimal set of information

None Shared Key Key/Entity Tokenization Key/Message

Short Lived topics
Domain specific topics

All Topics use same
encryp�on keys

Encrypt fields based
on the

person/business
en�ty of the message

Use a third-party service
to tokenize fields Every message has

separate encryp�on key

Flexible, Fast More Secure

Figure 6-29. Encryption level

Chapter 6 event-Driven arChiteCture

293

for routing to the respective services and helps to process the events. Along with this

metadata, there is also a specification to serialize the events in different formats like

JSON, and protocols like HTTP, AMQP, etc.

The Cloud Events specification defines four kinds of protocol elements.

• Base specification: Defines abstract information of attributes and

associated rules.

• The extensions: Includes use-case-specific and overlapping sets of

extension attributes and associated rules.

• Event format encoding: Defines how the information model of the

base specification with an extension is encoded for mapping the

header and payload of a protocol

• Protocol binding: Defines the application protocol transport frame, in

the case of HTTP to the HTTP messages.

As shown in Figure 6-30, the Cloud Events specification ensures a consistent

approach to traceability, schema version, origin, etc. It is just a standard and extended

to meet the needs of your enterprise systems. For more details, refer to https://

cloudevents.io/.

{
"specversion" : "1.0",

"type" : "com.github.pull_request.opened",

"source" : "h�ps://github.com/cloudevents/spec/pull",

"subject" : "123",
"id" : "A234-1234-1234",
"�me" : "2018-04-05T17:31:00Z",

"comexampleextension1" : "value",
"comexampleothervalue" : 5,
"dataconten�ype" : "text/xml",
“traceID” : “some-guid-4444-5555”,
“Schema” : h�ps://schemaregistry.com/event-schema-1,
"data" : "<much wow=\"xml\"/>“

}

A

B

C

D

Figure 6-30. Cloud event metadata

Chapter 6 event-Driven arChiteCture

https://cloudevents.io/
https://cloudevents.io/

294

• A: The spec version is the version of the specification that the

message is encoded to. This should match the Cloud Events

specification. Between this marker and B are some of the Cloud

Events spec fields you might find.

• B: This field is an “extension” of the Cloud Events specification. Here,

the trace ID is used to track the event from place to place, usually

tied to the origin. For example, a web request might be the originator

of this trace ID, and all subsequent messages that are created

throughout the system have this same trace ID. To define this tracer,

consider the OpenTracing initiative.

• C: This schema is another Cloud Events extension, which declares

how the data field is laid out. This allows the message to be decoded

by services against a schema registry.

• D: The data field contains the actual important content, or business

information, about an event. This data can be any format you like

but should conform to a schema. The way data is structured within

the data element is completely independent of the Cloud Events

specification.

 Summary
Constantly changing, real-time business needs demand cloud native transformation.

The world is not slowing down, so your best bet is to identify ways you can cost

effectively and efficiently upgrade your enterprise architecture to keep up with the times.

Events can float around on an event mesh to be consumed and acted upon by your

microservices. Architects and engineers need real-time implementation details that help

you to work together to achieve the real-time, event-driven goals. In this chapter, you

learned all the details of an event-driven architecture and its implementation.

Chapter 6 event-Driven arChiteCture

	Chapter 6: Event-Driven Architecture
	Evolution of Event-Driven Architecture
	Tightly Coupled World to Loosely Coupled World
	Message Broker World to Event World

	Event
	Business Events
	Technical Events
	Processing an Event
	Event Handling in Domain Context
	Event Governance

	What Is Event-Driven Architecture?
	How Does Event-Driven Architecture Work?

	Event-Driven Topologies
	Mediator Topology
	Broker Topology
	Choice of Topology

	Characteristics of Event-Driven Architecture
	Event-Driven Messaging Models
	Event Messaging
	Event Streaming

	Event Processing Styles
	Simple Event Processing
	Event Stream Processing
	Complex Event Processing

	Event-Driven Architecture Maturity Model
	Decoupling Use Case by Using Event-Driven Architecture
	Make Data Accessible
	How to Get Events and Make Data Accessible?
	Where to Store Events?
	How to Get Data?
	CDC

	Real-Time Interactivity
	How to Use Existing Message Queues with Event Streams?
	Transaction Management in Event-Driven Microservices
	Two-Phase Commit in Cloud Native Services
	Transactions with Events

	Event-Driven Microservices Interaction
	Interaction Between Microservices
	Service Mesh
	Service Mesh Implementation
	Advantages and Disadvantages of Service Meshes

	Event Mesh
	Characteristics of Event Mesh
	Event Mesh Capabilities
	How Do Event Meshes Work?
	Event Mesh in a Cluster of Brokers
	Event Mesh’s Control Plane

	Box- and Port-Style Event-Driven Architecture
	Characteristics of Box- and Port-Style Architecture

	DevOps for Events
	Event Security
	Field-Level Encryption Consideration

	Cloud Events
	Summary

