
127
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_4

CHAPTER 4

Cloud Native Architecture
and Design Patterns
The Pattern Language is an organized and coherent set of patterns, each of which

describes a problem and the core of a solution that can be used in many ways within a

specific field of expertise.

When architects and designers work on a particular problem, it is unusual for them

to think of a new solution that is completely distinct from existing ones. They often

recall or remember a similar problem they already solved and reuse the essence of

that solution. Their problem may in fact recur again and again in various projects and

implementations. Using the earlier solution to solve this recurring problem has a name;

it is called using a pattern.

A software pattern is a solution to a recurring problem within a given context. Each

pattern describes a context, a problem, and a solution. Patterns reflect how the code or

components are developed and interact with each other. Using patterns simplifies design

and architecture problems.

Each pattern describes a problem that occurs over and over again in our

environment and then describes the core of the solution to that problem, in such a way

that you can use this solution a million times over, without ever doing it the same way

twice.

Software architects and designers who know available software architecture and

design patterns can recognize when one can be applied in a design scenario. This

chapter explains the details of patterns with real-time problem scenarios.

This chapter begins by explaining what software architecture patterns are and

how they can be used in your design. It then briefly covers all the commonly available

patterns and provides detailed information on cloud native-related patterns including

Gang of Four patterns, enterprise integration patterns, microservices patterns, etc.

https://doi.org/10.1007/978-1-4842-7226-8_4#DOI

128

In this chapter, I will cover the following topics:

•	 Evolution of software architecture patterns

•	 Software architecture pattern usage

•	 Architecture styles

•	 Gang of Four patterns, including the enterprise integration pattern

•	 Details of cloud native and microservices patterns

•	 Infrastructure patterns, testing patterns, database patterns, and

transactional patterns

•	 Anti-patterns

•	 Do’s and don’ts of pattern usage

�Evolution of Design Patterns
Economic changes in the 19th century provided the catalyst for the rise of modern

architecture and the creation of some iconic buildings. Christopher Alexander was a

vocal critic of utilized space and developed theories for architectural and urban design.

He published a theory of architecture: The Timeless Way of Building in 1979, A Pattern

Language in 1977 and the Oregon Experiment 1975.

This Pattern Language, as it’s called, details 253 patterns that serve as generic

guiding principles for design.

Design patterns in computer science achieved prominence when Design Pattern:

Elements of Reusable Object-Oriented Software by the “Gang of Four” was published in

1994 by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. The Design

Pattern book used objects and interfaces instead of walls and doors, but at the core of

both kinds of patterns are solutions to a problem in a context.

The next progression in the pattern world was Studies in Computational Science:

Parallel Programming Paradigms, a book about programming techniques written by Per

Brinch Hansen. He was a Danish-American computer scientist known for his work in

operating systems, concurrent programming, and parallel and distributed computing.

The author’s main point is that the lack of proper programming techniques is the source

of many difficulties in computing. This book mainly addresses concurrent programs,

divide-and-conquer paradigms, parallel parallelism, etc.

Chapter 4 Cloud Native Architecture and Design Patterns

129

The next progression in the pattern world was Pattern-Oriented Software

Architecture: A System of Patterns, Volume 1, which was written in 1996 by Frank

Buschmann, Regine Meunier, Hans Rohnert, and Peter Sommerlad. This book details

how to design application and middleware software to run in concurrent and networked

environments, event handling, synchronization, services access and configuration, and

concurrency.

The next progression in the pattern world was Smalltalk Best Practices Pattern

written by Kent Beck in 1997. This book is all about choosing names of objects, variables,

and methods; how to break logic into methods; and how to communicate your

implementation. Smalltalk is one of the most influential programming languages and

was one of the first object-oriented programming languages, so all other languages that

come after Smalltalk like Java, Python, Ruby, etc., were influenced by Smalltalk.

The next progression in the pattern world was Pattern-Oriented Software

Architecture, Volume 2: Patterns for Concurrent and Networked Objects written by

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann in 2000. It is the

second volume in the Pattern-Oriented Software Architecture series. This book focuses

on networking and concurrency.

The next progression in the pattern world was Pattern of Enterprise Application

Architecture written by Martin Fowler in 2002. This book is about enterprise architecture

patterns like how to layer an enterprise application, how to organize domain logic, how

to design web-based applications, and how to implement distributed design.

The next progression in the pattern world was Enterprise Integration Pattern:

Designing, Building, and Deploying Messaging Solutions written by Gregor Hohpe and

Bobby Woolf in 2003. This book covers enterprise integration and messaging with both

synchronous and asynchronous loosely coupled patterns.

The next progression in the pattern world was Head First Design Pattern written

by Eric Freeman, Elisabeth Freeman, Bert Bates, and Kathy Sierra in 2004. In this

book, the authors illustrated already available patterns in a graphical way with simple

understandable terms and with examples.

The next book in the pattern world was Software Architecture Patterns written

by Mark Richards in 2015. In this book, the author provides details of modern-day

architecture patterns such as event-driven architecture, microservices, layered

architecture, etc.

The next book in the pattern world was Microservice Patterns written by Chris

Richardson in 2018. In this book, the author provides the details of microservices

patterns such as event-driven architecture, microservices, etc.

Chapter 4 Cloud Native Architecture and Design Patterns

130

There are various other books available on the market about patterns, and each

author gives details based on their experience with the best possible examples. In this

book, I am not covering the entire set of patterns but providing brief details of existing

patterns that are relevant to a cloud native architecture.

This chapter covers the details of relevant cloud native patterns, including object-

oriented, enterprise application, and enterprise integration patterns. It also provides

some examples.

�What Are Software Patterns?
A software pattern is a solution to a recurring problem within a given context. Each

pattern describes a context, a problem, and a solution. Patterns reflect how code or

components are developed and interact with each other. Using patterns simplifies design

and architecture problems. Some people interpret what is and isn’t a pattern differently.

One person’s pattern can be another person’s architecture style or building blocks. In

general, a pattern has a pattern name, problem, solution, and consequences.

When an architect and designer work on a particular problem, it is unusual for them

to think of a new solution that is completely distinct from existing ones. They often recall

a similar problem they have already solved and reuse the essence of that solution in the

new situation. In fact, the same problem may recur again and again in various projects

and implementations. Using the earlier solution to solve this recurring problem is called

using a pattern.

•	 Patterns can be seen as building blocks of more complex solutions.

•	 Their function is a common language used by technology architects

and designers to describe solutions.

�Architecture Style, Architecture Pattern, and Design
Pattern
The architecture style, architecture pattern, and design pattern are not mutually

exclusive but complement each other, and all of them can provide some insight into

the development of a solution. There are small differences between all three and,

Chapter 4 Cloud Native Architecture and Design Patterns

131

again, different interpretations from person to person. Some say architecture styles and

architecture patterns are the same, but others say they are different. I will try to highlight

the differences based on my experience, and the rest I leave to you to judge.

An architecture style describes how to organize components of the architecture and

code. It is the highest granularity of architecture, and it specifies the layers and high-level

modules of the application, as well as how they interact with each other.

Architecture patterns help to specify the fundamental structure of an application.

Design patterns are more localized and solve a particular problem within the

codebase. Examples include the factory pattern, singleton pattern, etc.

�Anti-pattern
An anti-pattern describes a recurring solution to a problem that generates negative

consequences. An anti-pattern is about applying a wrong solution to the right problem

without having knowledge or analysis of either problem or applying patterns. The term

was coined in 1995 by Andrew Koenig.

An anti-pattern from the developer’s perspective is comprised of technical problems

and solutions that are encountered. From an architecture perspective, it resolves

problems in how systems are structured, and from a managerial perspective, an anti-

pattern addresses common problems in software engineering.

In a nutshell, leveraging patterns is a valuable approach, but that doesn’t mean you

have to use a particular pattern. A common mistake by architects and designers is when

they engineer a problem by using patterns. You need to understand the context and

solution to the problem before applying the pattern in your context.

�Cloud Native Data Management Pattern
for Microservices
The following are cloud native data management patterns for microservices.

Chapter 4 Cloud Native Architecture and Design Patterns

132

�Event Sourcing Pattern
The event sourcing pattern is not new; Martin Fowler wrote about it in his book Pattern

of Enterprise Application Architecture in 2002. The event sourcing pattern has not been

used much, but it gains a lot of importance with the emergence of cloud native event-

driven architecture. According to Fowler:

“Event Sourcing ensures that all changes to the application state are stored
as a sequence of events. Not just query these events, we can also use the
event log to reconstruct past states, and as a foundation to automatically
adjust the state to cope with retroactive changes.”

In your application, when any activity occurs, it should be through an event. Without

an event, the system may not function. The event can be anything such as clicking

a button, clicking the back button, sending a request to an API, scheduling a job,

transferring a payment, withdrawing a certain amount, purchasing a product, viewing

reviews, etc. You need to use these events to track, audit, log, and restore marketing,

etc. These events are difficult to store in the database by using create, read, update, and

delete (CRUD) operations. You need a special type of data store to store all kinds of

events.

The event sourcing pattern defines an approach to handling an operation on data

that is driven by a sequence of events, and each of the event records is stored as a new

record. The event-driven services publish the list of events with a description like an

event name, time, date, user, etc., to the event store. It uses the event-centric approach

to persist data. A business object is persisted in an event store with the sequence of

state-changing events. Whenever an object’s state changes, a new event happens to the

sequence of events. The event store publishes events to the consumers, so the current

state is derived from the event store.

Stream

The stream (the event store allows you to define and create as many streams as required

for your domain) comprises a log of all events that have occurred during the state of an

object. The event store can provide output as in a traditional database, and it provides

much more such as time traveling through the system and root-cause analysis. The data

in the event store is immutable and provides methods for audit logs.

Chapter 4 Cloud Native Architecture and Design Patterns

133

Event Store

Figure 4-1 shows an overview of an event sourcing pattern, including storing events,

externally consuming an application of an events, and querying an event for a specific

state or current state. For example, the user performs various activities in an ecommerce

application like logging in, searching for an item, selecting a brand, adding a brand

or removing a brand, etc. These user activities are called events. The e-commerce

application publishes all the user activities to the event stream by using event-driven

systems like Kafka and stores them in the event store database like EventStoreDB.

All the events are immutable and stored using an append-only operation; the event

capture and event store are published seamlessly in the background without affecting

the performance of an application or the user experience. All the events are simple event

objects with characteristics such as timestamps, user IDs, etc.

The event sourcing enables the following:

•	 You can do a complete rebuild of an application or service state by

rerunning the events from the event log on a system or service.

eCommerce Applica�on

User Logged In

Item Searched

Select Filter

Brand1 Selected

Brand 2 Selected

Brand 1 Added

Brand 2 Added

Brand 1 Removed

Cart Created

Consuming
Applica�on

Event Store

Publish Events

Query Current
state of Events

User

Shipping Applica�on

Payment Pla�orm

Order Management
Applica�on

Publish Events

Publish Events

Consume Events

Consume Events

Publish Events

Consume Events

Figure 4-1.  Event source

Chapter 4 Cloud Native Architecture and Design Patterns

134

•	 Temporal queries can be used to determine the application state at

any point in time. This can be achieved by initializing a blank state

and rerunning all the events up to a particular point in time.

•	 Event replay can be used to repair a corrupted state of an application

or service due to an incorrect event being received. This can be done

by initializing a blank application or service state and replaying all

the events while replacing the incorrect with the correct one.

There are multiple databases such as EventStoreDB, IBM DB2 Event Store, and

NEventStore designed for storing events.

Every event has a name; in this example, the event name is the shopping cart

experienceUser1. All the events are stored in a flat representation of an entity.

The following are the benefits of event sourcing:

•	 It enables accurate audit logging in an application.

•	 It makes it possible to implement temporal queries that determine

the state of an entity at any point in time.

•	 It helps to implement the accountability required in the compliance.

•	 It is used to guarantee that all changes to a service resource state are

based on events; it solves data consistency issues in a distributed

architecture by atomically saving and publishing events and enabling

event subscribers.

These are typical use cases of event sourcing:

•	 Enterprises in the finance industry such as banks, trading, and

insurances are mandated to do regulation. Event sourcing helps to

store audits and makes it easy to monitor the action of events.

•	 Up-to-date record-keeping in government agencies.

•	 User activity in the retail application for marketing.

These are some considerations necessary when using event sourcing:

•	 Event sourcing typically improves the performance of updates, but

it takes time to construct an aggregated state. Using a snapshot

may decrease the amount of time needed by taking a snapshot and

replying to the events from that point on.

Chapter 4 Cloud Native Architecture and Design Patterns

135

•	 The event structure may change over time. Therefore, the application

or service should have a versioning strategy and be able to handle

events with different versions.

�Command and Query Responsibility Segregation Pattern
The command and query responsibility segregation (CQRS) pattern isolates the updated

operation data from reading operation data. Implementing CQRS increases the system

performance, provides low overhead on the command database, and provides a higher

degree of security.

In a traditional architecture, as shown in Figure 4-2, usually the system uses a single

model for both command and query operations.

In Figure 4-2, the application layer consists of business logic and DAOs and uses the

same database for all CRUD operations. This type of architecture works well for basic

CRUD operations. In more complex or legacy applications, this approach becomes

unwieldy.

In one of my projects in early 2012, the client had a Temenos T24 core banking

application, and it was very old and unable to support the business expansion;

sometimes it failed to scale to meet the demand, which impacted the bank business. All

the services from various channels like web, mobile, and branch were requesting both

command and read operations from the same application with one monolithic database.

Both read and write workloads are often asymmetrical, with very different performance

and scale requirements.

The following are the drawbacks of this kind of architecture:

•	 Data conflicts can occur when both read and write operations are

performed on the same sets of data.

Business
Layer

Data Access
Object (DAO)

User Interface
(UI)

User

Applicationn Layer

C
om

m
and/Q

uery

Figure 4-2.  Traditional architecture data operations

Chapter 4 Cloud Native Architecture and Design Patterns

136

•	 Performance degradation may occur due to the load on the data store

and data access objects.

•	 Security becomes complex for security at rest and security in transit.

As our needs become more sophisticated, we are steadily moving away from that

model. We need to look at the storage differently.

Approaching CQRS in two different ways, you can do the following:

•	 Segregate the application layer based on the command and query

responsibility. The write request and read request are handled by two

different objects.

•	 Split up the data storage, having separate reads and writes by using

the event source.

As shown in Figure 4-3, the database is split up into application layers between the

command and query model.

Application Layer Command and Query

Having separate models means different object models can be running in different

processes and separate VMs or containers. There could be a separate request from the

UI for commands (create, update and delete) and queries (read). This type of CQRS

has both pros and cons, but it does not solve the industry problems. There is no change

in the database load, and it may not improve the performance and security; however,

complexity in the application layer is reduced.

User Interface
(UI)

User

Application Layer

Query - Read

Data Access
Object
(DAO)

Business
Layer

Command Model

Data Access
Object
(DAO)

Business
Layer

Query Model

Command –
Create, Update
& Delete

Figure 4-3.  Command and query model in the application layer

Chapter 4 Cloud Native Architecture and Design Patterns

137

Command and Query in the Database

As shown in Figure 4-4, we can split storage between the commands and queries by

using event sourcing. These separate reads and writes go into different databases: the

command database for creating, updating, and deleting and the querying database for

read-only operations. The commands are usually task and transaction-based rather than

data-centric. A query never modifies the data and returns a value object or DTO that

does not encapsulate any domain knowledge.

For greater isolation, this model physically separates the read data from the write

data. In this case, the read database can use its own data schema that is optimized for

reading operations, and this type of architecture provides flexibility to choose the type of

databases such as RDBMS or NoSQL, etc.

In the previous example of Temenos T24, we adopted the second model. We

created the operational data store (ODS) from Temenos T24. We designed an event

sourcing mechanism between the T24 database to the ODS database in near-real-time

mode. From the enterprise service bus (ESB), we orchestrated all the read requests like

statements, etc., to ODS with all the debit and credit orchestrated to the Temenos T24

system.

User Interface
(UI)

User

Application Layer

Query - Read

Data Access
Object
(DAO)

Business
Layer

Command Model

Data Access
Object
(DAO)

Business
Layer

Query Model

Command –
Create, Update
& Delete

Event
Handler

Figure 4-4.  Command and query in database

Chapter 4 Cloud Native Architecture and Design Patterns

138

As mentioned, the CQRS provides a separation of concerns. The command side

is all about business or transactions and does not place much importance on queries

or different materialized views over the data or optimized APIs from the nonrelational

database, etc. On the other hand, the query side is all about read access. The main

purpose is making queries fast and efficient. In many business systems, based on my

experience, I can say approximately 70 percent of requests for read purpose from the

users.

Separating the read side and the write side into separate models within a bounded

context provides the ability to scale each one of them independently. The read data

model could be de-normalized or could be a materialized view, which in turn increases

the performance of the query execution.

The way event sourcing helps with CQRS is to have part of the application writing to

an event store or stream topic. This is paired with an event handler that subscribes to the

queue topic, transforms and cleanses the event, and writes the materialized view to read

the store.

The following are the benefits of CQRS:

•	 CQRS allows the read and query workloads to scale independently.

•	 The query side can use a schema or materialized views that are

optimized for queries, and the command side uses a schema that is

optimized for updates.

•	 It is easier to manage security; that is, only command domains can

perform writes on data.

•	 Segregating the query and command sides can result in models that

are more maintainable and flexible. Most of the complex business

logic goes into the command model, and the query model can be

relatively simple.

•	 By storing materialized views in the query database, the application

can avoid complex joins when querying.

•	 There are various options to use a query database, from RDBMS to

NoSQL databases.

•	 The query database can provide data to the various analytical

purposes.

Chapter 4 Cloud Native Architecture and Design Patterns

139

The following are issues of CQRS:

•	 The idea of CQRS is simple, but the implementation is complex; you

need very highly skilled resources.

•	 The best way to implement CQRS is to use event-driven architecture;

you need to take care of data cleansing, message failures, etc.

•	 The query data may be stale due to replication time lag.

The following are the use cases for CQRS:

•	 You read more query-based use cases than command-based

use cases, for example, social networking systems, retail bank

applications, etc.

•	 In complex business logic, you want to simplify the understanding of

the domain dividing problem into command and query.

�Data Partitioning Pattern
A partition allows a table, index, or index-organized table to be subdivided into smaller

chunks, where each chunk of such a database object is called a partition. Each partition

has its name.

Data partitioning divides the data set and distributes the data over multiple servers

or shards. Each shard is an independent database, and collectively, the shard makes up

a single database. The portioning helps manageability, performance, high availability,

security, operational flexibility, and scalability. This makes technologies an ideal fit for

microservices data storage.

The data partitioning pattern addresses these issues of scale:

•	 High query rates exhausting the CPU capacity of the server

•	 Larger data sets exceeding the storage capacity of a single machine

•	 Working set sizes larger than the system’s RAM, thus stressing the I/O

capacity of disk drives

You can use the following strategies for database partitioning:

•	 Horizontal partitioning (sharding): Each partition is a separate data

store, but all partitions have the same schema. Each partition is

known as shards and holds a subset of data.

Chapter 4 Cloud Native Architecture and Design Patterns

140

•	 Vertical partitioning: Each partition holds a subset of the fields for

items in the data store; the fields are divided according to how you

access the data.

•	 Functional partitioning: Data is aggregated according to how it is

used by each bounded context in the system.

You can combine multiple strategies in your application; for example, you apply

horizontal partitioning for high availability and use a vertical partitioning strategy to

store data based on data access.

The database, either RDBMS or NoSQL, provides different criteria to share the

database.

•	 Range or interval partitioning

•	 List partitioning

•	 Round-robin partitioning

•	 Hash partitioning

Round-robin partitioning distributes the rows of a table among the nodes in a round-

robin fashion. The range, list, hash partitioning, and an attribute called the partitioning

key must be chosen among the table attributes. The partition of the table rows is based

on the value of the partitioning key.

In range partitioning, a given range of values is assigned to a partition, and the data

distributed among the nodes in such a way that each partition contains rows for which

the partitioning key value lies within its range. The list strategy similar to the range, but a

list of values is assigned one by one. The hash partitioning is based on the partition key

and the hash values.

�Horizontal Partitioning or Sharding

Applications in an enterprise require a database to store business data. When the

business grows, the data size grows exponentially; at some point in time the database

performs very badly with limited CPU, single storage capacity, performance, or query

throughput. There should be a limit to increase the CPU, memory, etc. Therefore, you

can’t go beyond certain limitations.

Sharding is a common idea in database architectures. By sharing a table, you can

store new chunks of data across multiple physical nodes to achieve horizontal scalability.

Chapter 4 Cloud Native Architecture and Design Patterns

141

By horizontally scaling out, you can enable a flexible database design that increases the

performance and high availability of data.

Figure 4-5 shows horizontal partitioning or sharding; in this example, user employee

details are divided into two shards, HS1 and HS2, based on ID/key. Each shard holds the

data for a contiguous range of shard keys. Sharding spreads the load over more nodes,

which reduces contention and improves performance.

The shards don’t have to be the same size. It’s more important to balance the

number of requests. Some shards might be large, and other shards might be smaller; you

can choose the key based on the access operation. The smaller size is more frequent and

faster; the larger size is less frequent and slow.

Besides achieving the scalability and throughput of service level agreements (SLAs),

sharding can potentially improve unplanned outages, and each node collaborates to

make sure always available. Some database vendors use the master-slave architecture

style for sharding.

�Range Based or Interval Partitioning/Sharding

Range-based sharding separates the date based on ranges of the data value. Shard keys

with range values are separated into a separate chunk. Each shard in an architecture

preserves the same schema of the master database. Interval partitioning is an extension to

range partitioning in which, beyond a point in time, partitions are defined by the interval.

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Government $30000

1002 Alice Best Paris Private $40000

1003 Den Young Tokyo Government $35000

1004 Mohamme
d

Siraj Dubai Private $36000

1005 Anthony Doe New York Governmen
t

$45000

1006 Bob Best Kampala Private $20000

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Government $30000

1002 Alice Best Paris Private $40000

1003 Den Young Tokyo Government $35000

ID/Key First Name Last Name City Employee
Type

Income

1004 Mohammed Siraj Dubai Private $36000

1005 Anthony Doe New York Government $45000

1006 Bob Best Kampala Private $20000

Horizontal Partition/ Shards

HS1 HS2

Figure 4-5.  Horizontal partition/shards

Chapter 4 Cloud Native Architecture and Design Patterns

142

Range-based shards support more efficient range queries. Given a range query on

the shard key, the query router can easily determine which chunks overlap that range

and route the query to only to those shards that contain these values in a chunk.

Each partitioning, as shown in Figure 4-6, creates a dedicated partition for certain

values or value ranges in a table. In the previous example, the partition is based on the

income. The income less than $35,000 is shard into one, and the income greater than

$35,000 is in another shard.

Partitions may be created or dropped as needed, and applications may choose to use

range partitioning to manage data at a fine level of details.

The range partitioning specification usually takes a range of values to determine one

partition, but it is also possible to define a partition for a single value. When one row is

inserted or modified, the target partition is determined by the defined ranges. If a value

does not fit one of these ranges, an error is raised. To prevent this kind of error, create

another partition to accommodate these kinds of data that are not part of the range.

The range-based partitioning can result in the uneven distribution of data, which

may negate some of the benefits of sharding.

Consider the range or interval partition in the following cases:

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Government $30000

1002 Alice Best Paris Private $40000

1003 Den Young Tokyo Government $35000

1004 Mohammed Siraj Dubai Private $36000

1005 Anthony Doe New York Government $45000

1006 Bob Best Kampala Private $20000

Range Based Partitioning

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Government $30000

1003 Den Young Tokyo Government $35000

1006 Bob Best Kampala Private $20000

ID/Key First Name Last Name City Employee
Type

Income

1002 Alice Best Paris Private $40000

1004 Mohammed Siraj Dubai Private $36000

1005 Anthony Doe New York Government $45000

Income > $35000Income < $35000

Figure 4-6.  Range-based sharding

Chapter 4 Cloud Native Architecture and Design Patterns

143

•	 Large tables are frequently scanned by a range predicate on a good

partitioning column.

•	 You want to maintain a rolling window of data.

•	 You cannot complete any housekeeping activity on large tables in a

required time, but you can divide them into smaller logical chunks

based on the partition range column.

�Hash Partitioning/Sharding

Hash partitioning is a partitioning technique where a hash key is used to distribute rows

evenly across the different partitions.

Hashing is the process of converting a given key into another value and refers to the

conversion of a column’s primary key value to a database page number on which the

rows will be stored.

Hash sharding takes a shard key’s value and generates a hash value from it. The hash

value is then used to determine in which shard the data should reside. With a uniform

hashing algorithm such as Ketama (it is an implementation of a consistent hashing

algorithm, meaning you can add or remove servers from the pool without causing a

complete remap of all keys), the data with close shard keys is unlikely to be placed on the

same shard.

In Figure 4-7, the table is partitioned by using the hash function on the ID/key

column.

Chapter 4 Cloud Native Architecture and Design Patterns

144

Partitioning by hash is used primarily to ensure an even distribution of data among a

predetermined number of partitions and is focused on data distribution instead of data

grouping.

As a rule of thumb, hash partitioning can be used in the following cases:

•	 To enable partial or full parallel partition-wise joins with likely

equalized partitions

•	 To distribute data evenly among the nodes

•	 To randomly distribute data to avoid I/O bottlenecks

�List Partition

The list partitioning concept is like range partitioning. As detailed, the range partitioning

is done by assigning a range of values to each partition. In the list partition, we assign a

set of values to each partition.

You should use list partitioning when you want to specifically map rows to partitions

based on discrete values. For example, all users in Asia and Europe are stored in one

partition, and users in America and Africa are stored in different partitions.

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Government $30000

1002 Alice Best Paris Private $40000

1003 Den Young Tokyo Government $35000

1004 Mohamme
d

Siraj Dubai Private $36000

1005 Anthony Doe New York Government $45000

1006 Bob Best Kampala Private $20000

Hash Function

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Governmen
t

$30000

1002 Alice Best Paris Private $40000

ID/Key First Name Last Name City Employee
Type

Income

1003 Den Young Tokyo Governmen
t

$35000

1004 Mohammed Siraj Dubai Private $36000

ID/Key First Name Last Name City Employee
Type

Income

1005 Anthony Doe New York Governmen
t

$45000

1006 Bob Best Kampala Private $20000

Cluster

Figure 4-7.  Hash partitioning/sharding

Chapter 4 Cloud Native Architecture and Design Patterns

145

List partitioning is useful when we have a column that can contain only a limited set

of values; even range partitioning can be used, but list partition allows you to equally

distribute the rows by assigning a proper set of values to each partition.

�Round-Robin Partitioning

The round-robin portioning is used to achieve an equal distribution of rows to partitions.

With this technique, the new rows are assigned to partitions on a rotation basis. There is

no partition key; rows are distributed randomly across all partitions, and therefore load

balancing is achieved.

�Vertical Partitioning

Vertical partitioning splits the data vertically to reduce I/O and the performance

associated with fetching items that are frequently accessed.

In this example, as shown in Figure 4-8, different attributes of employees are stored

in different partitions. VS1 holds data that is accessed more frequently, and, in another

partition, VS2 holds the employee type and income, which are accessed intermittently.

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Governmen
t

$30000

1002 Alice Best Paris Private $40000

1003 Den Young Tokyo Governmen
t

$35000

1004 Mohamme
d

Siraj Dubai Private $36000

1005 Anthony Doe New York Governmen
t

$45000

1006 Bob Best Kampala Private $20000
Vertical

Partition/Shards

VS1 VS2

ID/Key First Name Last Name City

1001 Gaurav Sharma Bengaluru

1002 Alice Best Paris

1003 Den Young Tokyo

1004 Mohamme
d

Siraj Dubai

1005 Anthony Doe New York

1006 Bob Best Kampala

ID/Key Employee
Type

Income

1001 Governmen
t

$30000

1002 Private $40000

1003 Governmen
t

$35000

1004 Private $36000

1005 Governmen
t

$45000

1006 Private $20000

Figure 4-8.  Vertical partitioning

Chapter 4 Cloud Native Architecture and Design Patterns

146

The following are the benefits of vertical partitioning:

•	 Slow-access data can be separated from more dynamic data.

•	 Sensitive data can be stored in a separate partition with additional

security controls.

•	 This strategy can reduce the amount of concurrent access.

�Data Replication
Replication is the continuous copying of data changes from the primary database to

the secondary database. The two databases are generally located in different servers,

resulting in a load balancing framework by distributing various database queries and

providing a failover capability. This kind of distribution satisfies the failover and fault

tolerance characteristics.

Replication can serve many nonfunctional requirements such as the following:

•	 Scalability: Handling higher query throughput than a single machine

can handle

•	 High availability: Keeping the system running even when one or

more nodes go down

•	 Disconnected operations: Allowing an application to continue

working when there is a network problem

•	 Latency: Placing data geographically closer to users so that users can

interact with the data faster

In some cases, replication can provide increased read capacity as the client can

send read operations to different servers. Maintaining copies of data in different nodes

and different data centers can increase data locality and availability of the distributed

application. You can also maintain additional copies of dedicated purposes, such as

disaster recovery, reporting, or backup.

There are two types of replications:

•	 Leader-based or leader-followers replication

•	 Quorum-based replication

Chapter 4 Cloud Native Architecture and Design Patterns

147

�Leader-Based or Leader-Followers Replication

In leader-based replication, one replica is designed as a leader while another replica is

a follower. Clients always send their write queries to the leader. Leaders write the data

to its local storage first and then send the data change to its followers. When the client

wants to read from the database, it can query either the leader or the follower. The leader

is responsible for making decisions on behalf of the entire cluster and propagating the

decisions to all the nodes in a cluster.

In Figure 4-9, there is a single leader with asynchronous and synchronous

replication. The user sends an update request to update the first name to the leader.

The leader updates first and then sends a synchronous request to Follower 1 and

Follower 2. After the leader receives an OK response from Follower 1 and Follower 2,

the leader sends an OK status to the user for a successful update. The leader replicates

asynchronously to Follower 3, but the leader doesn’t wait to receive any OK from

Follower 3.

Update Users set first_name=“Author A”
where user id=1001

User

Leader

Follower 1

Follower 2

Follower 3

Update Statement

Time

Waiting for follower’s OK

Data Change

Data Change

Data Change

OK
OK

OK

OK

Figure 4-9.  Single leader with two synchronous and one asynchronous replication

Chapter 4 Cloud Native Architecture and Design Patterns

148

In a multileader example, there are two data centers (DCs) or clusters across

geographies to provide high availability or latency to various users. In this model,

you need to have two separate sets of leaders and followers in each cluster or DC and

replicate each as mentioned in Figure 4-10; however, both need to synchronize and

resolve any conflicts or inconsistencies. In this case, both leaders talk to each other over

a conflict resolution object to sync each other.

Every server in a node or cluster or DC at startup looks for an existing leader. If no

leader is found, it triggers leader selection. The leader in each cluster is a must; without

the leader, there is no acceptance of any request from the user. Only the leader handles

the client request, not the followers. If a request is sent to a follower, then the follower

sends a request to the leader to act.

How are the leaders selected?

An election will be conducted to select a leader. If the existing leader is not available,

then the database cluster uses the Raft consensus algorithm to choose the leader.

Raft is designed to select a leader by ensuring each node in the cluster agrees upon

the same series of state transitions.

Leader

Follower1 Follower2 Follower3

User

Cluster 1 or DC 1

Update Statement

Change Change

Change

Conflict
Resolution

Leader

Follower1 Follower2 Follower3

User

Cluster 2 or DC 2

Update Statement

Change Change

Change

Conflict
Resolution

Figure 4-10.  Multileader-based replication across clusters or data centers

Chapter 4 Cloud Native Architecture and Design Patterns

149

The Raft protocol was developed by Diego Ongaro and John Oosterhout (Stanford

University) in 2014. Raft was designed for better understandability of how consensus

can be achieved. The consensus is a method to involve multiple servers agreeing on one

value; once they decide on a value, that decision is final.

According to Raft, each node in a replicated server cluster can stay in either leader,

follower, or candidate. At the time of election to choose the leader, the servers can ask

other servers to vote; hence, they are called candidates when they have requested votes.

Figure 4-11 shows the step-by-step process of how servers apply Raft consensus to

choose a leader. A leader election is started by a candidate server; it starts the election

by increasing the term counter, voting itself as a new leader, and sending a message

to all other nodes. Here, Follower 3 is a candidate and sends messages to Follower 2

and Follower 1. A server will vote only once per term, on a first-come, first serve basis.

If a candidate receives a majority vote, then it becomes a new leader. Here Follower 3

receives a maximum vote and then is selected as a new leader. Raft uses a randomized

election timeout to ensure that split-vote problems are resolved quickly.

The high availability of leaders is achieved using a Failover pattern. A timeout with

heartbeats is used to detect whether the replica is dead or alive. When one or more

followers fall behind a leader by a certain configurable unit, it is called a replication lag

and can cause strange side effects. Various consistency models can be used for deciding

how an application should behave under replication lag.

�Quorum-Based Replication

A cluster quorum disk is the storage medium on which the configuration database is

stored for a cluster computing network. The cluster configuration database, also called a

quorum, informs the cluster which physical server(s) should be active at any given time.

The quorum disk comprises a shared block device that allows concurrent read-write

access by all nodes in a cluster.

Leader

Follower1 Follower2 Follower3

Follower1

Follower2 Follower3

Follower1

Follower2 Follower3

Follower1Follower2

Leader

Leader Fails Initiate an Election Follower 3 node got max votes Follower 3 becomes a Leader

Request for Votes
Voting done

Figure 4-11.  Election process to choose a leader

Chapter 4 Cloud Native Architecture and Design Patterns

150

In this replication, the client is responsible for copying the data to multiple replicas.

The nodes do not actively copy data among each other. The size of the replica group

doesn’t change even when some replicas are down. The client sends both read and write

to multiple replicas. A cluster agrees that it received an update when a majority of the

nodes in the cluster have to acknowledge the update. This number is called a quorum.

The number of quorums will be decided by the following formula:

No of quorum = n/2+1

If you have five nodes in a cluster, then n=5 nodes, and then 5/2+1= 3 (round off). If

you have a cluster of five nodes, you need a quorum of three.

In the quorum, how to decide how many failures can be tolerated equals the size

of the cluster minus quorum. If you have five nodes and three quorums, then node-

quorum = failure, 5-3=2. A cluster of five nodes can tolerate two of them failing.

You can use this formula to calculate nodes in a cluster:

2f+1

f=failure (2*2+1=5)

Figure 4-12 depicts a quorum-based replication pattern that shows quorum write,

quorum read, and read repair after a node (replica 3) outage. In that case, it is sufficient

to acknowledge the write. Thus, when the user receives two OK responses from the

cluster, this satisfies the n/2+1 = 3/2+1=2.

Update Users set first_name=“Author A”
where user id=1001

User

User

Replica 1

Replica 2

Replica 3

Update Statement

Time

First_name=“AuthorA”

OKOK

Node
offline

Get Key= Users.first_name

Value=AuthorAx
version=6

Update Users set first_name=“Author A”
where user id=1001 version=7

Figure 4-12.  Quorum-based replication

Chapter 4 Cloud Native Architecture and Design Patterns

151

If there are n replicas, every write must be confirmed by w nodes to be considered

successful, and we must query at least r nodes for each read. The quorum allows the

system to tolerate unavailable nodes as follows:

•	 If w < n, we can still process writes if a node is unavailable.

•	 If r < n, we can still process reads if a node is unavailable.

•	 With n=3, w=2, r=2, you can tolerate one available node.

•	 With n=5, w=3, r=3, you can tolerate two unavailable nodes.

The cluster can function only if the majority of servers are up and running. You need

to consider the following:

•	 The throughput of a write operation: Every time data is written to

the cluster, it needs to be copied to multiple servers. Every node in a

cluster adds overhead to complete all the writes. The latency of data

is a directly proportionate number of servers forming the quorum;

therefore, if you increase the number of nodes, then it impacts the

throughput.

•	 The number of failures that need to be tolerated: The number of

failures tolerated depends on several nodes in a cluster; adding

one more node doesn’t give more fault tolerance. For example, 100

developers cannot complete the entire project in 1 day instead of 5

developers in 20 days.

Even if a client always performs quorum reads and writes, conflicts are likely to

occur.

•	 Two clients may write to the same key at the same time (use

concurrency control to manage this).

•	 If an error occurs during writing or if a node fails and needs to be re-

created, a write may be present on fewer than w replicas.

The result is that replicas disagree about what a particular value in the database

should be. In such a case, the application must be handled by using a concurrency

algorithm.

Chapter 4 Cloud Native Architecture and Design Patterns

152

Martin Fowler wrote in his blog about how to choose the optimal servers in a cluster,

as shown in Figure 4-13. He says the decision is based on the number of tolerated

failures and approximate impact on the throughput. The throughput column shows the

approximate relative throughput to highlight how the throughput degrades with the

number of servers. The number will vary from system to system. For further reading,

refer to Raft Thesis and Zookeeper’s paper (https://raft.github.io/).

In the quorum, write and read are not sufficient, as some failure scenarios can cause

clients to see data inconsistency. Each server does not have any visibility of data on

another server. The inconsistency can be resolved only when data is read from multiple

nodes in a cluster.

�Cloud Native API Management Patterns
for Microservices
These are patterns for microservices.

Number of
Servers

Quorum Number of
Tolerated
Failures

Representative
Throughput

1 1 0 100

2 2 0 85

3 2 1 82

4 3 1 57

5 3 2 48

6 4 2 41

7 5 3 36

Figure 4-13.  Deciding on the number of servers in a cluster

Chapter 4 Cloud Native Architecture and Design Patterns

https://raft.github.io/

153

�Idempotent Service Operation
There are idempotent operations on HTTP methods. If a REST service is idempotent, the

consumer of an API can make that same call repeatedly while producing the same result;

in other words, making multiple identical requests has the same effect as making a single

request.

When you design REST APIs, you must take into consideration that consumers can

make mistakes. The consumer application can write client code in such a way that there

can be duplicate requests coming to the API. In distributed architecture, failure may

occur when invoking service. A lost request should be retired, but a lost response may

cause unintended side effects if retired automatically.

These duplicate requests may be unintentional or intentional, you must design fault-

tolerant APIs in such a way that the duplicate requests do not leave the system unstable.

The idempotent service pattern is used to provide a guarantee that service

invocations are safe to repeat in the case of failures that could lead to a response

message being lost. The idempotent requests can be processed multiple times without

side effects.

When designing APIs, you must follow REST principles such as stateless, uniform

interface, code on demand, etc. You will have automatically idempotent REST APIs for

HTTP methods.

•	 GET, PUT, DELETE, HEAD, OPTIONS, and TRACE are idempotent.

•	 POST is not idempotent.

The GET, HEAD, OPTIONS, and TRACE methods should not have any significance

when taking an action other than retrieval. These methods ought to be called “safe”

methods. The POST, PUT, and DELETE are represented as “unsafe” requests and require

special handling in the case of exceptional situation (e.g., state reconciliation).

POST is an HTTP method used to send data to a server to create/update data from

the consumer. When you invoke POST requests many times, you will use the same

resources on a server, so POST is not idempotent.

GET, HEAD, OPTIONS, and TRACE are used for requesting resources from a backend

application; therefore, these methods never change a resource state on a backend

application. They are purely for retrieving application data, so invoking multiple requests

will not affect data on a server, so these methods are idempotent.

Chapter 4 Cloud Native Architecture and Design Patterns

154

The PUT method is used to update a resource in a back-end application. If you call

PUT multiple times, you are updating the existing record or overwriting the record.

Therefore, it not changing any records; hence, PUT is idempotent.

The DELETE method is used to delete a record in a back-end application. The first

request deletes a record in an application, and then the consumer will receive an HTTP

response 200 (OK) or 204 (No Content) if the consumer sends the same request again

and again, the DELETE method tries to find a record that was deleted earlier, or the

HTTP returns 404 (Not Found) message. Here only the response is different, but there is

no change in record status; hence, the DELETE method is idempotent.

�Optimistic Concurrency Control in API
Concurrency control means an object will ensure the correct results are received for

concurrent operations. Concurrency is required to avoid conflict between concurrent

requests. There are two kinds of concurrency control.

•	 Optimistic concurrency control

•	 Pessimistic concurrency control

The optimistic concurrency control allows concurrency conflicts to happen. If they

happen, the control makes sure the previously requested data is not changed. It doesn’t

lock any records to ensure the record wasn’t changed in the time between the select and

submit operations.

The pessimistic concurrency control blocks an operation of a transaction and does

not allow another request to access a particular API or data.

Concurrency locking is not new; you, me, and everyone experienced concurrency

issues in RDBMS, but how does the concurrency control impact our APIs? What

happens when two users update the same record at the same time? Will you send any

error messages? What response code will you use? In the REST API, several consumers

interact with a single resource, each consumer holding a copy of the state. Let’s imagine

author A (you) and author B (me) are editing content on the same topic at the same time.

You edit the content faster than me, and you submit the changes. When I complete my

editing, I submit the changes, but I overwrite your changes. To avoid this type of conflict,

you need a concurrency mechanism in APIs.

Chapter 4 Cloud Native Architecture and Design Patterns

155

Conflict mostly occurs in response to the HTTP PUT method request as this method

is used for the update operation. You need to use the concurrency control designed into

the HTTP protocol to protect the integrity of your data.

An entity tag, specified by the ETag HTTP header, is an opaque token that the server

associates with the particular state of a resource. It is an optional header in the HTTP

request, and it is kind of like a version stamp for a resource. Whenever the resource

changes, the ETag should change accordingly.

The API consumer and provider use the ETag value to determine whether a request

to a resource is up-to-date by comparing the value of the ETag header on an incoming

request to the value of the ETag header present on the server. If a value matches, then the

consumer will get up-to-date information; if not matched, the consumer should refresh

the request to receive the updated details.

With the previous example of content editing using an HTTP, imagine you want to

modify some content in a server. What will you do? You use GET requests to fetch content

and make a local modification and then issue a PUT request to update on the server.

With a single client, the interaction is happening without any issues. The

concurrency is required when two or more requests try to modify same content, as

shown in Figure 4-14.

Say author A gets the content and modifies it locally, and author B requests the same

content and modifies it locally. If both authors attempt to put their modifications back

on the server, the modification of author A will be lost when author B’s PUT overwrites,

as shown in Figure 4-15. In this situation, both the authors are aware of this situation.

Figure 4-14.  Single request

Chapter 4 Cloud Native Architecture and Design Patterns

156

To avoid these concurrency issues, as shown in Figure 4-16, you need to use the ETag

header with the conditional request If-Match. This allows you to implement optimistic

locking to avoid conflicts. With optimistic locking, each author is able to edit the content,

and the author notifies with conflicts in a content.

Figure 4-16.  Optimistic locking with ETag

Figure 4-15.  Concurrency condition: author A updates lost

Chapter 4 Cloud Native Architecture and Design Patterns

157

Figure 4-16 shows an implementation of optimistic locking by using an ETag and

the If-Match header. If the ETag header does not match the value of the content on the

server, the server rejects the change with 412 Precondition Failed. Author B is notified of

the conflict and can try again after updating the local copy.

You need to make sure that when you are using optimistic locking, this condition is

not suitable for everything, such as if both author A and author B update their photo at

the same time on the same album. This is a feature, not a conflict.

�Circuit Breaker
The circuit breaker pattern is used to check the availability of an external service, detect

failures, and prevent them from happening constantly. In a distributed cloud native

application, calls to remote resources and services can fail due to transient faults such

as slow network connections and slow execution by microservices. These faults correct

themselves after some time, and cloud and cloud native applications should handle this

kind of situation.

For example, your mobile application needs to retrieve data from microservices

hosted in the cloud platform. During business hours, your application might access 100

transactions per second (100 tps); in this case, your microservice is not available due to

various faults such as network, slowness, etc. In this scenario, your microservice should be

able to handle quickly and gracefully without waiting for each service request to time out.

The circuit breaker pattern was popularized by Michael T. Nygard in his book Release

It!, which can prevent an application from repeatedly trying to execute an operation

that’s likely to fail. This allows it to continue without waiting for the fault to be fixed or

wasting CPU cycles while it determines that the fault is long-lasting.

As illustrated in Figure 4-17, the idea of the circuit breaker is to wrap a protected

function call in a circuit breaker object, which monitors failure. Once the failure reaches

a certain threshold, the circuit breaker trips, and all calls to the circuit breaker return

with an error, which means the circuit breaker acts as a proxy for operations that could

potentially fail.

Chapter 4 Cloud Native Architecture and Design Patterns

158

As shown in Figure 4-18, the circuit breaker pattern is implemented as a state

machine that mimics the state of an electric circuit breaker.

Figure 4-17.  Circuit breaker sequence diagram

Failure Count
threshold persists

Closed
Half-Open

Open
Success or failure count
under threshold

Reset Breaker

Figure 4-18.  Circuit breaker pattern states

Chapter 4 Cloud Native Architecture and Design Patterns

159

Closed: The operation executes normally. The circuit breaker

maintains a count of the recent failures. If the number of recent

failures exceeds a threshold within a given period, the proxy is

placed into the open state. At this point, the proxy starts a timeout

timer, and when this timer expires, the proxy is placed into the

half-open state.

Open: The request from the application fails immediately, and an

exception is returned to the application.

A half-open state is used to prevent a recovering service from being hit with a large

number of requests. As a service recovers, it may be able to support a limited volume of

requests until the recovery is complete, but while recovery is in progress a flood of work

may cause the service to time out or fail again.

The circuit breaker pattern should be implemented asynchronously to offload

the logic to detect failures from the logic to execute the actual operation. The

implementation requires some form of persistence (to record the number of successful

and unsuccessful operation execution). There are various tools are available in the

industry like Istio, Hashicorp Consul, etc., to support the circuit breaker implementation.

Use this pattern in the following case:

•	 To prevent an application from attempting to invoke a remote service

or access a shared resource if this operation is highly likely to fail

This pattern might not be suitable for the following:

•	 For handling access to local private resources in an application, such

as in-memory data structure. In this environment, using a circuit

breaker would simply add overhead to your application.

•	 As a substitute for handling exceptions in the business logic of your

applications.

�Service Discovery
The API gateway needs to know the location (IP address and port) for each microservice

with which it communicates. In a traditional architecture and system, you could probably

hardwire the location because this application is not dynamic. In a cloud native modern

application like microservices, finding the needed location is a nontrivial problem.

Chapter 4 Cloud Native Architecture and Design Patterns

160

Infrastructure services such as MQs usually have a static physical location that

can be specified by using server OS environment variables. However, in cloud native

microservices, determining the location of an application is not easy.

Application services are assigned a location and set of instances of service changes

dynamically because of autoscaling, container orchestration, etc. Consequently, the API

gateway needs to use the system’s service discovery mechanism either in server-side

discovery or in client-side discovery.

The service registry is a key part of discovery. It is a database containing the network

locations of service instances. This is a single point of failure and therefore should be

highly available and up-to-date.

Client-Side Discovery Pattern

When using this pattern, the client is responsible for determining the network locations

of available service instances and load balancing requests across them, as shown in

Figure 4-19. The client queries a service registry, which stores available service instances.

The client then uses a load balancing algorithm to select one of the available service

instances and makes a request.

Instance A

Service A

Instance B

Service A

Instance C

Service A

REST
API

REST
API

REST
API

Registry
Client

Registry
Client

Registry
Client

Consumer

10.25.20.222:5757

10.25.20.354:4848

10.25.90.353:69696

Registry

Figure 4-19.  Client-side registry

Chapter 4 Cloud Native Architecture and Design Patterns

161

The network location of a service instance is registered with the registry when it

starts and removes when it terminates. The registration of services is refreshed regularly

by using a heartbeat mechanism.

The client-side registry pattern has a few benefits and drawbacks. The following are

the benefits:

•	 It is relatively simple, without additional components required except

for the registry.

•	 The client can make intelligent, application-specific load balancing

decisions such as using hashing consistently.

The drawbacks are as follows:

•	 The client is coupled with the service registry and potentially

complicated with load balancing.

•	 You must implement client-side service discovery logic for each

programming language and framework used by your service clients.

Server-Side Discovery Pattern

The client request to a service via a load balancer. The load balancer queries the registry

and routes each request to an available service instance, as shown in Figure 4-20.

Instance A

Service A

Instance B

Service A

Instance C

Service A

REST
API

REST
API

REST
API

Registry
Client

Registry
Client

Registry
Client

Consumer

10.25.20.222:5757

10.25.20.354:4848

10.25.90.353:69696

Registry

Router
Request

Q
uery

Register

Figure 4-20.  Server-side registry

Chapter 4 Cloud Native Architecture and Design Patterns

162

As with client-side discovery, service instances are registered with the service

registry.

The server-side pattern has several benefits and drawbacks. The benefits are as

follows:

•	 Compared to client-side discovery, the client does not need to know

how to deal with discovery. The discovery is abstracted away from the

client. Instead, a client simply requests the router.

•	 This eliminates discovery logic for each programming language and

framework used by your service consumers.

•	 Some cloud environments provide this functionality like cloud ELBs.

The drawbacks are as follows:

•	 Unless it is part of the cloud environment, the router is another

system component that must be installed and configured. It will also

need to be replicated for availability and capacity.

•	 More network hops are required than the client-side discovery.

�Service Versioning
There are basic principles for designing an API exposed by microservices, the first of

which is enforcing strong contracts. A microservice provides a versioned, well-defined

contract to its clients and other microservices, and each service must not break it until

it’s determined no other microservices relies on it. Figure 4-21 illustrates the relationship

between service producers like microservices and consumers such as web applications

or mobile applications. The service producer registers all its services in service registries

like Netflix Eureka and consumer contacts in the registry for service discovery, and later

it connects to microservices for consumption of the service data.

Chapter 4 Cloud Native Architecture and Design Patterns

163

There are two options for versioning the exposed API of a microservice. If you need

to provide additional information on an HTTP method like a GET or POST or PUT

operation, then the change is unlikely to be backward compatible. In that case, you need

to look at ways of handling this problem.

The following are the two most common ways of handling versioning:

•	 Versioning in the URI

•	 Versioning in the header

URI Versioning

URI versioning is when you change the URI of the resource to contain version

information, for example, /customer/v1.1/{id}. URI versioning gives you the ability to

version an entire resource hierarchy. If you model a version like this, it enables resources

for the automated navigation or discovery of resources.

The drawback of URI versioning is you need to change the resource name and

location. This introduces a complex creation of URI aliases that make it difficult to track

the production version, and it may break existing software links that do not include

version information.

Here are two ways you can version in URI versioning:

•	 Versioning at multiple hierarchy nodes (complicated): -/customer/

version/2/account/version/2

•	 Versioning as a query parameter: /customer?version=2

Producer Consumer

Service Registry

3. Connect

Figure 4-21.  Service registry

Chapter 4 Cloud Native Architecture and Design Patterns

164

There are multiple options to deal with this problem.

•	 Copy your old data into a new V2 database and keep the two entirely

separate.

•	 Update your schema in place and add code to V1 to handle the new

schema.

Header Versioning

In the header versioning, you need to include version information in a special header

of each request and response. For example, say you need to add a header with

x-version:3.1. In this approach, the resource name and location remain unchanged

throughout your URL hierarchy, so you want to create URI aliases.

The drawback of the header versioning approach is that information can’t be readily

encoded into software links. It works only with custom clients that know how to encode

the special header.

Based on the URI and header versioning mechanism, you can consider either

forward- or backward-compatible methods.

•	 Forward compatibility: When developing a service, you make sure

that this version will be compatible with future versions and won’t

be impacted when other services are updated (e.g., a new feature

added). Achieving forward compatibility is a complex task since you

have to deal with several unknown or unexpected features. The most

common concept is to simply ignore unrecognized elements.

•	 Backward compatibility: The new version of a service is compatible

with today’s version, so existing clients can start using this new

version as if there was no change. It can be verified by thoroughly

testing the new version with old data sets.

There are a few different types of changes that are important for service versioning

such as the major release, minor release, new capability, bug fix, etc.

You need a version number for each release. When a client requests a certain

service, a service proxy forwards the request to a version of the service that is compatible

with the version of the client. Therefore, all the clients have a single endpoint. While

implementing the versioning, the governance of the API is of utmost importance to avoid

any software breaks.

Chapter 4 Cloud Native Architecture and Design Patterns

165

�Cloud Native Event-Driven Patterns
for Microservices
These are the event-driven patterns.

�Asynchronous Nonblocking I/O
Compared to all the other characteristics of infrastructure such as CPU, memory, and

disk, the network is slow.

•	 A high-end modern system is capable of moving data between the

CPU and main memory at the speed of around 6 GB per second.

•	 A common local area network (LAN) of I/O is about 12.5 MB per

second.

•	 Today’s hard disk provides a lot of storage and transfer speeds of

around 50–60MB per second.

•	 A CPU can execute approximately more than a billion instructions

per second.

The I/O performance has not increased as quickly as CPU and memory

performance, partially due to neglect and physical limitation. In a cloud native

architecture, all system tasks are I/O-bound, and the I/O speed often limits the overall

system performance.

According to Amdahl’s law, as shown in Figure 4-22, improved CPU performance

alone has a limited effect on the overall system speed. This law gives a theoretical

speedup in the latency of the execution of a task at fixed workloads that can be expected

of a system whose resources are improved.

Execution time
after

improvement
Amount of Improvement

=
Time affected by improvement

+
Time

unaffected by
improvement

Figure 4-22.  Amdahl’s law

Chapter 4 Cloud Native Architecture and Design Patterns

166

Currently, the network is ubiquitous; it is the distribution of communications

infrastructure and wireless technologies throughout the environment to enable

continuous improvement. In the 5G world, network slicing enables the multiplexing

of virtualized and independent logical networks on the same physical network

infrastructure. Once the 5G network is rolled out, the speed of the network increases

tenfold. Even though the network speed increases tenfold, it cannot match the speed of

the CPU and memory. There are four fundamental performance metrics for I/O systems

of your application.

•	 Bandwidth (B): This is the amount of data that can be transferred

in unit time from one service A to another service B, as shown

in Figure 4-23. It is the capacity of the network like your Internet

bandwidth of 1Mbps, 1Gbps, etc.

•	 Latency (L): This is the time taken for the smaller transfer from

service A to service B, as shown in Figure 4-23. The measuring units

in time are transaction per second (tps), etc. For example, if the

request that starts at service A is 0 seconds and reaches service B in 2

seconds, then your transaction rate is 2tps.

•	 Throughput (T): This is the amount of data moved successfully from

service A to service B in a given time period, as shown in Figure 4-23.

It is measured bits per second as in Mbps and Gbps.

•	 Response time (R): This is the time taken from the time service A

sends a request to service B until the time that the service indicates

the request has completed and reaches service A, as shown in

Figure 4-23. For example, the response time is 4ms between your

services, etc.

Chapter 4 Cloud Native Architecture and Design Patterns

167

What is synchronous and asynchronous messaging?

As shown in Figure 4-24 A, synchronous messaging involves a sender that waits for

the server to respond to the request with a message. The thread is blocked between

the sender and the receiver. The sender cannot send another request until receiving a

response from an earlier request.

As shown in Figure 4-24 B, asynchronous messaging involves a sender that does not

wait for a message from the server. An event is used to trigger a message from a server.

Even if the sender is down, the message processes the request. The server callback is sent

once the server completes its execution. Here there is no blocking of threads.

Blocking I/O means that a given thread, after initiating an I/O operation, cannot

perform further calculations until the result is fully received, which means when an

API call is invoked to connect with the microservices, the thread that handles that

connection is blocked until there is some data to read. Until the relevant operation is

complete, that thread cannot do anything else but wait.

Instance A

Service A

Instance B

Service BBa
nd

w
id

th

Latency

Throughput

Throughput

Response Time

Figure 4-23.  Relationship of BLTR

Chapter 4 Cloud Native Architecture and Design Patterns

168

In the synchronous I/O, a thread starts an I/O operation and immediately enters a

wait state until the I/O request has been completed. This type of processing consumes a

large number of resources.

The asynchronous nonblocking I/O pattern helps in saving the I/O cost where the

total cost of I/O is more than the cost of the processing.

The asynchronous nonblocking I/O pattern immediately returns from I/O calls. On

completion, an event is emitted, or a callback is executed. The interesting characteristic

of this pattern is the fact there is no blocking or waiting at the user level. The entire

operation is shifted to the kernel space. This allows the application to take advantage

of additional CPU time while the I/O operations happen in the background on the

kernel level. In other words, the services implementing nonblocking I/O can overlap the

I/O operations with additional CPU-bound operations or can dispatch additional I/O

operations in the meantime.

Use nonblocking I/O pattern for good performance under highly concurrent

I/O. Most business use cases in modern architecture are based on asynchronous

communication by using events; that is called event-driven architecture (explained in

Chapter 6).

�Stream Processing
Stream processing is a technique that lets consumers query continuous data streams

and detect conditions quickly in a near-real-time fashion. Detecting the condition varies

depending on the type of database and infrastructure you are using. Stream processing

allows applications to exploit a limited form of parallel processing more easily. An

Container A

Service A

Container B

Service B

I/O Request

I/O Request

I/O Request

I/O Request

Initiate I/O (processing) – thread 1

Initiate I/O (blocked) – thread 2

Initiate I/O (blocked) – thread 3

Initiate I/O (blocked) – thread 4

C
onnection P

ool

Blocking I/O

Blocking I/O

Container A

Service A

Container B

Service B

I/O Request

I/O Request

I/O Request

I/O Request

E
vent Lop

Delegate I/O

I/O Response

A
synch T

hreads

Non-Blocking I/O
Delegate I/O

Synchronous Message

Asynchronous Message

A

B

Figure 4-24.  Synchronous and asynchronous blocking processing

Chapter 4 Cloud Native Architecture and Design Patterns

https://doi.org/10.1007/978-1-4842-7226-8_6

169

application that supports stream processing can manage multiple computational units

without explicitly managing allocation, synchronization, or communication among

those units. The stream processing pattern simplifies parallel software and hardware by

restricting the parallel computation that can be performed.

For the incoming data, a series of operations is applied to each element in the

stream, and the operation can entail multiple tasks in the incoming series of data, which

can be performed in parallel or serial or both. This workflow is referred to as a stream

processing pipeline, which includes the generation of the data, the processing of the data,

and the delivery of the analyzed data to the consumer.

Stream processing takes on data via aggregation, analytics, transformations,

enrichment, and ingestion.

In the Figure 4-25 example, for each input data, the stream processing engine

operates in real time on data and provides output. The output is delivered to a streaming

analytics application and added to the output streams.

The stream processing pattern addresses many challenges in the modern

architecture of real-time analytics and event-driven applications.

•	 Stream processing can handle data volumes that are much larger

than the data processing systems.

•	 Stream processing easily models the continuous flow of data.

•	 Stream processing decentralizes and decouples the infrastructure.

Stream Processing Engine OutputInput Data

Figure 4-25.  Stream processing

Chapter 4 Cloud Native Architecture and Design Patterns

170

The following are the typical use cases of stream processing:

•	 Trading

•	 Smart patient care

•	 IoT sensors

•	 Social media events

•	 Geospatial data processing

You can use tools such as Apache Kafka, Apache Flink, Solace, AWS Kinesis, etc.

�Cloud Native Design Pattern for Microservices
The following are design patterns.

�Mediator
Partitioning a system into many objects generally enhances the reusability, but

proliferating interconnections between those objects tends to reduce it again.

Mediator is a behavioral design pattern and was written about in the Gang of Four

pattern book. This pattern is about reducing the dependencies between two objects.

This pattern restricts the direct communications between the objects and forces them to

collaborate via the mediator object.

The mediator object (which encapsulates all interconnections), as shown in

Figure 4-26, acts as the hub of communication; it is responsible for controlling and

coordinating the interconnections of its clients and promotes loose coupling by keeping

objects from referring to each other explicitly.

•	 Define an object (mediator) that encapsulates how a set of objects

interact. Mediator promotes loose coupling by keeping objects from

referring to each other explicitly, and it lets you vary their interaction

independently.

•	 Design an intermediary to decouple many peers.

•	 Promote many-to-many relationships between interacting peers to

full object status.

Chapter 4 Cloud Native Architecture and Design Patterns

171

Services are not coupled with one another directly. Instead, each service talks to the

mediator, which in turn knows and conducts the orchestration of others. The many-to-many

mapping between colleagues that would otherwise exist has been promoted to full object

status. This new abstraction provides a locus on indirection where additional leverage can be

hosted.

�Orchestration
Orchestration is like a conductor in a music concert. In a concert, an orchestrator takes a

composer’s musical sketch and turns it into a score of an orchestra, ensemble, or choral

group, assigning the instruments and voices according to the composer’s intentions.

Some say that orchestration is an anti-pattern. In the microservices world, based

on my experience across industries, there are various use cases where orchestration

is beneficial. Yes, orchestration is a single point of failure (SPOF) in an entire

implementation, but that doesn’t mean this is an anti-pattern.

Companies such as Netflix and Uber each created an orchestration tool. They are

called Conductor and Cadence, respectively. Conductor is used in a workflow that adds

Netflix idents to videos. (Idents are those four-second videos with the Netflix logo that

appear at the beginning and end of the show.) You can use BPMN tools for orchestration,

but with the caveat that you need to make sure of the context, use cases, etc., before

Container A

Service A

Container B

Service B

Container C

Service C

MediatorClient

Figure 4-26.  Mediator pattern

Chapter 4 Cloud Native Architecture and Design Patterns

172

you decide on an orchestration mechanism. Since there are many risks associated with

orchestrating microservices, it is prudent for you to limit your orchestration to places

that need it.

For example, we used orchestration for a microservices implementation in the

telecom industry. This use case is about laying optical fiber in an entire country, which

requires a flow of information across systems for an approval process, billing process,

order progression, calculation of charged coupled device (CCD), V21, and NH21

validation of optical fiber. The client had a legacy workflow system that was very old and

didn’t scale as required. To start with, the customer wants to replace the flow system

and later do digital decoupling of enterprise systems. What we did was we replace

the flow with the orchestrator, and we created microservices for each task to connect

synchronously with all the enterprise legacy applications.

�Strangler Pattern
The digital decoupling of monolithic applications from scratch is a challenge. It

consumes a lot of time and effort and involves a lot of risks. The main thing is to maintain

the business continuity. You cannot apply the big-bang approach when decoupling

legacy monolithic applications to microservices; it must be done incrementally, as

shown in Figure 4-27. Feature of a legacy system can be replaced with microservices

iteratively, but, finally, the new system with microservices eventually replaces all the

features of the old system. You need to “strangle” the old system iteratively and allow the

new system to evolve.

The fundamental strategy to adopt is event interception (i.e., the new microservices

decide which events or requests will be passed on to the applications), which can be

used to gradually move functionality to the strangler.

Chapter 4 Cloud Native Architecture and Design Patterns

173

The proxy routes these requests either to the legacy application or to the new services.

Existing features can be migrated to the new microservices gradually, and consumers can

continue using the same interface, unaware that any migration has taken place.

This pattern helps to minimize the risk from decoupling and iterate the process

smoothly. You can also set the percentage of users to an old or new application; once

new microservices stabilize, then you route all users to new microservices. Over the

time, as features are migrated to microservices, the monolithic legacy application is

eventually strangled and gradually decommissioned.

�Bulkhead Pattern
The bulkhead pattern is a type of application design that is tolerant of failure. It enforces

the principle of damage containment and provides a higher degree of resilience by

partitioning the system. In general, the objective of this pattern is to avoid faults in one

part of a system taking the entire system down.

The bulkhead pattern, as shown in Figure 4-28, gets its name from cargo ship design.

In a ship, a bulkhead is a dividing wall or barrier between other compartments. This

means that if a portion of a ship hits a rock or iceberg, that portion fills with water, and

the rest of the portion is unaffected. This prevents damage caused to the entire cargo

ship and avoids sinking. If there are no partitions in the ship, the entire ship will sink.

The bulkhead enforces a principle of damage containment.

Transform – Create a
parallel microservice

Co-exist – Incrementally
redirect the traffic from the
legacy to microservice

Eliminate –eliminate the legacy
module

A B

D E

C

F

Database

Application Layer

Monolithic Legacy
Application

A B

D E

C

F

Database

Application Layer

Monolithic Legacy
Application

Consumer

Consumer

Proxy

Service C

Database

A B

D E

C

F

Database

Application Layer

Monolithic Legacy
Application

Consumer

Proxy

Service C

DB

Service D

Service A

Service E

Service F

Service B

DB

DB

Figure 4-27.  Strangulation steps

Chapter 4 Cloud Native Architecture and Design Patterns

174

The bulkhead pattern is analogous to the bulkhead on a ship and employs the same

technique in cloud native architecture by separating your application into independent

microservices. A failure in one service does not propagate to other services.

Assume that your consumer sends requests to multiple services simultaneously;

during this time, your service is unable to respond in a timely manner due to various

reasons. At that point, the request from the consumer to other services is also affected.

Eventually, the consumer can no longer send requests to other services in your system.

In a microservices world, you cannot completely avoid dependencies across

microservices to provide final responses to the consumers; therefore, you need to

maintain intercommunication between microservices to complete the transaction.

To implement this pattern, you need to make sure that all your services work

independently of each other and that failure in one will not create a failure in another

service. The pattern also depends on what kind of faults you want to protect the system.

In Figure 4-29, service A and service B use service C, because both services depend

on common functionality that resides in service C. Suddenly, service A becomes

overloaded by multiple requests from the consumer; this will impact service C as service

A needs dependent functionality from service C. In this case, service A is bombarded

with requests to service C. In the meantime, the user sends a request to service B, so

service B needs to call service C to fulfill a request to their consumers. However, service

B is unable to get a response, or the response is very slow from service C, which will

impact their consumer. This is all caused by both service A and B depending on service

C and service C being unable to pool equally for both the services.

Figure 4-28.  Bulkhead in cargo ship

Chapter 4 Cloud Native Architecture and Design Patterns

175

To minimize this impact on service B, you need to adopt a bulkhead approach to

partition service C into an equal pool of requests to serve its consumers. You don’t need

a separate database for service C; both instances of service C in each partition can share

a database.

How does the bulkhead pattern work?

Figure 4-30 illustrates the bulkhead pattern with a connection example. This is a classic

example for all synchronous connections, for example, in a database. The services request

a connection to the database, and each head in this pattern has a single responsibility to

manage the respective tasks. One component failing will not impact the whole.

While implementing the bulkhead pattern, you need to analyze the impact of the

failure and how to minimize the damage caused by a failure. One more important thing

you need to consider is to not generalize this approach for all your services as each service

has its failures. Applying this pattern should be feasible both technically and financially.

Service A

Consumer

Service B

Service C
Consumer

Service B

Service A

Partition X

Partition Y

Service C
Pool Service C

Service C
Pool Service C

Figure 4-29.  Bulkhead in microservices

Initialize Connection
Pool

Receive Connection
Request

Decrease Number of
Available Connection

Wait for Predefined
Time

Return Connection Return Exception

Is Connection Available

Yes

Connection Not Available

Available

Is connection Available Now

Still Not AvailableRequest for Connection

Bulkhead

Figure 4-30.  Bulkhead pattern example

Chapter 4 Cloud Native Architecture and Design Patterns

176

Usually, you can use the bulkhead pattern to fix the following problems:

•	 Whenever you want to scale a service independent of another service

•	 Fault-isolated components of varying risk or availability requirements

•	 Protecting the application from cascading failures

�Anti-corruption Pattern
The anti-corruption pattern, as shown in Figure 4-31, is a layer between the new

modernized microservices and the legacy monolithic application. This pattern is useful

in decoupling legacy applications into microservices.

In the journey of modernizing your monolithic application into a cloud native

application, the journey cannot be done in one release or two releases; it takes many

releases and takes months or years depending on the complexity of the system.

Therefore, your approach should be iterative to decouple monolithic systems into

microservices. In this case, you need to deploy both monolithic legacy applications and

microservices to production, so your new microservices can’t be executed silo without

interacting with the legacy monolithic application.

A monolithic application was built on old technologies and communication

protocols and may not be compatible with new technologies like event-driven

architecture or API consumption, etc. If your microservice application needs to

interact with a monolithic application, it cannot be done directly calling incompatible

communication protocols, so you need a middle layer to marshall and unmarshall

requests between the legacy monolithic and microservice applications and also between

microservices and other enterprise applications in the organization. This middle layer is

called an anti-corruption pattern.

Chapter 4 Cloud Native Architecture and Design Patterns

177

Here is the functionality of an anti-corruption layer:

•	 Façade for other system; hides the implementation of service C and

service D

•	 Establishing API contract signature

•	 Communication across systems with respective protocols like

HTTP(S), MQ, etc.

•	 Data model interface if you are interacting with a database directly

•	 Translating the semantics

You can use any tools like ESBs and custom components as an anti-corruption layer.

The following are some of the drawbacks of the anti-corruption layer pattern:

•	 This layer may add latency between the systems.

•	 Scaling of anti-corruption layer does not meet the requirements.

•	 The anti-corruption layer is a single point of failure and requires

additional care to make sure it has high availability.

�Cloud Native Runtime Pattern for Microservices
Here are the runtime patterns.

Service A

Service B

Service C

System A

System C

System B

Anti-Corruption Layer

Protocols
(https/MQ)

AP
I S

ig
na

tu
re

Data Model (if database
connection)

Figure 4-31.  Anti-corruption pattern

Chapter 4 Cloud Native Architecture and Design Patterns

178

�Fail Fast
This pattern states that if a service has a problem in serving a request, it should fail fast.

An annoying situation is to wait for a response. It is OK for the consumer to get a Not

Available or Not Found error rather than waiting for a minute for a response.

In a distributed cloud native architecture, you should know that every service will fail

and design your application for resiliency. You can’t design a robust microservice and

expect no failures at any point in time. You need to embrace failures.

Failures can happen for a variety of reasons like an error in your service, exception in

your service, another dependent service not being available, a network failure, etc.

The circuit breaker and bulkhead patterns help you to implement failures in your

services, as shown in Figure 4-32.

Write an algorithm to detect the health of the system-based metrics. Certain metrics

like the CPU usage of the containers will be evaluated for each scenario, and prediction

methods are implemented that try to forecast failures based on these metrics. If the

performance of the service is below the threshold, then you need to inject a boot request

to the respective service to restart.

There are various online prediction methods to track failures and errors, such

as symptom monitoring by using Bayesian predictors, co-occurrence predictors,

pattern-based predictors, rule-based predictors, time-series predictors, and system

model predictors. More details of failure management are covered in the “Microservices

Architecture and Design” Chapter 5.

Closed

Open

Half-Open

Success

Multiple Failures (open circuit)

Fast Failing

Failure

Try One Request

Success (close circuit)

Figure 4-32.  Fail fast implementation

Chapter 4 Cloud Native Architecture and Design Patterns

https://doi.org/10.1007/978-1-4842-7226-8_5

179

�Retry
The retry pattern enables a cloud native application to handle transient failures when

it tries to connect to services by transparently retrying a failed operation as mentioned

earlier. The retry pattern improves the stability of an application by enabling the service

consumer to handle anticipated, temporary failures of the service by retrying to invoke

the same service operation that previously failed.

The retry approach is not new; you have been using the retry mechanism in all

MQ-based applications. In MQs, you can configure several retries before sending to the

dead letter queue. As shown in Figure 4-33, you need to adopt a similar approach in a

cloud native application.

There are some considerations you need to consider when using this retry pattern.

•	 If you receive any indication that the fault is not transient or

unlikely for a normal service request to be successful if repeated, for

example, an authentication failure, then you should not use the retry

mechanism.

start

Connect to
Service

Connect
Ok?

Execute Service Catch
Exception

Max
attempts
reached?

Wait

end

abort

TIMEOUT

YES

NO

NO

YES

Figure 4-33.  Flow diagram of retry mechanism

Chapter 4 Cloud Native Architecture and Design Patterns

180

•	 If the specific fault is unusual, it might have been caused by

extraordinary circumstances such as a network packet lost in

transit. In this case, the client code should use the retry mechanism

immediately.

•	 If the fault is caused due to the unavailability of services, the service

consumer should wait for a suitable time before retrying the request.

Be careful here; you cannot retry a service infinitely.

•	 Set a retry count before you terminate or throw an error if the service

is not available.

�Sidecar
The sidecar pattern segregates the technical configuration from the functional

implementation of a microservice and deploys it in a container alongside the functional

microservices container. It is like a sidecar on a scooter, as shown in Figure 4-34.

Microservice
Functionality

Container

Side Car

Figure 4-34.  Sidecar on a scooter

Chapter 4 Cloud Native Architecture and Design Patterns

181

This pattern allows you to add several configuration details from the third party

without modifying the microservice. It is a single-node pattern made up of two

containers. One container for the application container contains the core business logic,

and another container is for the technical configuration details.

The objective of the sidecar container supplements and improves the application

container without the knowledge of the application container. The sidecar container is

co-scheduled onto the same machine through the container group, and it goes wherever

the main container goes.

The sidecar container contains peripheral details of the application container such

as platform abstraction, proxy to remote services, logging and configuration, etc.

There is no burden on the main microservices application logic container if you use

the sidecar pattern as follows:

•	 Sidecar is independent of the main application container in terms of

the environment, programming language, etc.

•	 It uses the same resources as the main microservice application.

•	 There is no latency when you separate the technical details to the

sidecar; it runs on the same node.

•	 It reduces the burden on the application logic.

•	 There’s no dependency on the platform code in the main logic.

The sidecar container uses a service mesh; refer to Chapter 5 for more details about

service meshes.

Avoid the use of a sidecar when your application uses synchronous activity and

your application code is small; it’s not worth separating the technical functionalities

from main components and also not suitable for microservices that undergo frequent

changes.

�Init Containers
Initializing logic for any program is common, if you remember how constructors work

in an object-oriented program. The constructor will be called whenever an object gets

initiated. The objective of the constructor is to prepare the object to execute the normal

business functions.

Chapter 4 Cloud Native Architecture and Design Patterns

https://doi.org/10.1007/978-1-4842-7226-8_5

182

Similarly, in a cloud native architecture, Kubernetes uses the same logic. There you

are using constructors, but in Kubernetes, you need to use init containers.

A Kubernetes pod, as shown in Figure 4-35, can have multiple containers running

microservices within it; similar multiple methods in a Java class also have one or more

init containers, like the constructors in a Java class, and the init containers run before

any application containers are started.

The init containers must complete successfully before the microservice containers

start because the main microservice containers have prerequisites before they start. The

prerequisites are setting up permissions on the file system, installing application seed

data, initializing tools and libraries, etc. These prerequisites cannot be part of the main

microservice containers; these prerequisites are part of the init containers.

The init containers are small and complete the lifecycle very fast. For the pod to

be successful, the init container must complete the initialization, or the entire pod will

restart. The bottom line is that the init containers are mandatory for any pod to run

successfully.

�Saga Pattern
The saga pattern is an important pattern in the microservices world to ensure the

consistency of the data in a distributed architecture without having a single atomicity,

consistency, isolation, and durability (ACID) transaction. This pattern commits multiple

compensatory transactions at different stages.

Init Containers

Container 1 Container 1

Service A

Service B

Service C

POD

1

2

Figure 4-35.  Init container

Chapter 4 Cloud Native Architecture and Design Patterns

183

The two-phase commit transaction handles the ACID properties when the commit of

the first transactions depends on the completion of a second. It is useful especially when

you have to update multiple entities at the same time, like confirming the credit card

transaction and crediting your account.

However, when you are working with a microservices transaction, then things get

more complicated. Each service has its database, and you can no longer leverage the

benefit of local two-phase commit to maintain the consistency of your whole system.

There are many scenarios such as the merchant payment, ecommerce application,

etc., where the saga pattern is useful in a distributed microservices environment.

The saga pattern is a sequence of local transactions where each transaction updates

data within a single service. The first transaction is initiated by a customer, and each

subsequent step is triggered by the completion of the previous one.

In the order process use case, the saga pattern implementation looks like Figure 4-36.

Each microservice depends on the other; there are sequences of steps of microservices.

Step 1: Order microservices (the order is created)

Step 2: Payment microservices (the payment is processed)

Step 3: Stock microservices (prepare order and inventory management)

Step 4: Shipping microservice (ship items by using the shipping address)

Figure 4-36.  Sequence steps in order

Chapter 4 Cloud Native Architecture and Design Patterns

184

To implement these use cases, you can choose from the following options:

•	 Event-driven system with choreography: Each microservice produces

and listens to other microservices and self-decides whether an action

needs to be taken or not.

•	 Orchestration: Central orchestration software or one microservice

acts as an orchestration to coordinate saga’s decision-making and

sequence of business logic.

Event Driven and Choreography

In the choreography approach, as shown in the Figure 4-37, the Order microservice initiates

a transaction and publishes an event, and payment services listen to these events and

complete their local transaction. The Payment microservice publishes events, and the Stock

microservices listens and consumes the payment event and executes its local transaction

and publishes a new event. The final Shipping microservice consumes the event and

executes the local transaction. The entire distributed transaction ends when the Shipping

microservice completes its local transaction and there is no further publishing of events.

Order

Payment

Stock

Shipping

1
2

34

Figure 4-37.  Service interaction in choreography

Chapter 4 Cloud Native Architecture and Design Patterns

185

In the order process transaction, if the customer cancels its order or stocks are not

available after a payment is processed, then you need to roll back the entire transaction

and process a payment return to the customer. In this case, you need to implement

another compensatory transaction.

In Figure 4-38, if an item is out of stock or a customer canceled an order, the Stock

microservice publishes an event, and the Payment microservice consumes an event and

processes a refund by compensating a transaction. The Payment microservice publishes

an event, the Order microservices consume and update, and the order is canceled.

Orchestrator-Based Saga Pattern

In this approach, either we use orchestration tools like Netflix Conductor/Apache

Airflow/Uber Cadence or we create a new microservice with the responsibility of

orchestrating each microservices. The saga pattern orchestrator communicates with

participated microservices in a synchronous style or point-to-point messaging style with

commands about an action.

Order

Payment

Stock

1

3

P
aym

ent-P
rocessed

Figure 4-38.  Compensatory transaction

Chapter 4 Cloud Native Architecture and Design Patterns

186

As shown in Figure 4-39, the orchestrator sends a request to each service.

	 1.	 The orchestrator sends an Execute Payment to the Payment

microservice, and it replies after execution.

	 2.	 The orchestrator sends Stock Manage to the Stock microservices

and it replies with Stock Managed.

	 3.	 The orchestrator sends Process ship to customer to the Shipping

microservices and replies after shipped.

Rollback in the orchestration is easier. If the stock is not available or the customer

cancels the order, then the orchestrator sends a command message to each service to

compensate for the transaction.

Order

Payment

Stock

Shipping

O
rc
he

st
ra
to
r

Figure 4-39.  Orchestration saga

Chapter 4 Cloud Native Architecture and Design Patterns

187

Of the two, the chorography approach is the better and recommended approach to

implement over the orchestrator approach.

�Summary
Software architects must be familiar with software architecture patterns, as they are

powerful tools when designing a cloud native architecture. Architecture patterns provide

a proven solution to recurring problems for a given context.

Leveraging patterns gives architects a high-level structure of the cloud native

system and provides a grouping of design decisions that have been repeated and used

successfully. Using them reduces complexity by placing constraints on the design and

allows us to anticipate the qualities that the cloud native system will exhibit once it is

implemented.

In this chapter, you learned about some of cloud native patterns related to data,

microservices, and event-driven architecture. You can use these patterns at design time

and runtime.

The focus of the next chapter is how to architect and design cloud native elements

such as microservices, event-driven elements, serverless, and data.

Chapter 4 Cloud Native Architecture and Design Patterns

	Chapter 4: Cloud Native Architecture and Design Patterns
	Evolution of Design Patterns
	What Are Software Patterns?
	Architecture Style, Architecture Pattern, and Design Pattern
	Anti-pattern
	Cloud Native Data Management Pattern for Microservices
	Event Sourcing Pattern
	Stream
	Event Store

	Command and Query Responsibility Segregation Pattern
	Application Layer Command and Query
	Command and Query in the Database

	Data Partitioning Pattern
	Horizontal Partitioning or Sharding
	Range Based or Interval Partitioning/Sharding
	Hash Partitioning/Sharding
	List Partition
	Round-Robin Partitioning
	Vertical Partitioning

	Data Replication
	Leader-Based or Leader-Followers Replication
	How are the leaders selected?

	Quorum-Based Replication

	Cloud Native API Management Patterns for Microservices
	Idempotent Service Operation
	Optimistic Concurrency Control in API
	Circuit Breaker
	Service Discovery
	Client-Side Discovery Pattern
	Server-Side Discovery Pattern

	Service Versioning
	URI Versioning
	Header Versioning

	Cloud Native Event-Driven Patterns for Microservices
	Asynchronous Nonblocking I/O
	What is synchronous and asynchronous messaging?

	Stream Processing

	Cloud Native Design Pattern for Microservices
	Mediator
	Orchestration
	Strangler Pattern
	Bulkhead Pattern
	How does the bulkhead pattern work?

	Anti-corruption Pattern

	Cloud Native Runtime Pattern for Microservices
	Fail Fast
	Retry
	Sidecar
	Init Containers
	Saga Pattern
	Event Driven and Choreography
	Orchestrator-Based Saga Pattern

	Summary

