
55
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_3

CHAPTER 3

Cloud Native Architecture
Principles
Cloud native principles define the underlying general rules and guidelines for the

use and architecture of your system. They reflect a level of consensus for the various

elements of your system and enterprise and offer a basis for making future decisions.

The principles are typically created at the same time as the architecture is defined.

Without architecture principles, your enterprises has no compass to guide its journey

from its current state to its future cloud native state and no standard way to measure its

progress.

In this chapter, we will cover the following principles; some have existed for three to

four decades, but they are still very much relevant in modern cloud native architecture

and design.

• Orthogonal architecture principles such as coupling and cohesion

• Principles such as KISS, DRY, isolate, encapsulate, group-related

function, use layering

• The SOLID design principles such as single responsibility, open-

close principle, Liskov substitution, interface segregation, etc.

• Modern architecture principles such as automated deployment, no

single point of failure, polylithic and polyglot, API first, event-driven,

choreography, etc.

• Cloud native architecture principles such as infrastructure

independent, location independent, resilient to latency, etc.

• Development principles such as shift-left testing, shift-left security,

containerization, infrastructure as code, agile, etc.

https://doi.org/10.1007/978-1-4842-7226-8_3#DOI

56

 What Are Architecture Principles?
A principle is a law or rule that is usually followed when making key architecture

decisions. It’s important to note that principles are not commandments; exceptions are

acceptable when necessary.

Architecture and design principles play a critical role in guiding the software

architecture work that includes defining an enterprise’s future direction and the

transitions it needs to reach the future state of architecture. The principles are usually

created at the beginning of the architecture definition and are reviewed and ratified by

the architecture board. While defining principles, you need to align with the existing

enterprise’s principles.

Architecture and design principles define the fundamental assumptions of the IT

organization when creating and maintaining the IT capabilities. Without principles, IT

projects have no compass to guide their journey. Without a common set of principles,

the executives in an IT organization will be left on their own to determine which projects

will be funded, which assets will be leveraged, which cloud model will be used, etc.

It is useful to understand the definition of various architecture and design principles.

In addition, you need to understand the associated rationale and implications of

these principles. The most important step is to promote these principles across all the

stakeholders and development teams so that the adoption of the principles will achieve

the desired result.

Architecture and design principles are usually developed by architects and

designers, in conjunction with various key stakeholders, and all the defined principles

must be clearly traceable and clearly articulated to guide the decision-making.

According to TOGAF,

“A good set of principles will be founded in the beliefs and values of the
organization and expressed in language that the business understands and
uses. Principles should be few in number, future-oriented, and endorsed
and championed by senior management. They provide a firm foundation
for making architecture and planning decisions, framing policies, proce-
dures, and standards, and supporting the resolution of contradictory situa-
tions. A poor set of principles will quickly become discussed, and the
resultant architectures, policies, and standards will appear arbitrary or
self-serving, and thus lack credibility. Essentially, principles of driver
behavior.”

Chapter 3 Cloud Native arChiteCture priNCiples

57

These are six criteria to distinguish a good set of principles:

• Understandable: The principles should be written in plain language

that is easy to understand.

• Robust: The principles should enable good-quality decisions about

the architecture and plans.

• Complete: The statements must be accurate and complete.

• Consistent: All the principles must be consistent and work together.

• Stable: The principles should be enduring and accommodate change

when required.

• Resilience: Failure is unavoidable in systems; these principles enable

companies to self-heal quickly from difficulties.

 Cloud Native Design Principles
The following sections cover cloud native design principles.

 API First Principle
Using an application programming interface (API) is not a new approach in IT, as APIs

have been used in IT for more than 20 years. But APIs were limited to specific internal

applications.

The API first principle is the de facto principle of modern architecture. Every

application is designed and developed with the API first principle. This principle allows

all implementation details to be exposed through APIs to the consumers and encourages

the application design and development teams to have resources accessible through

REST HTTP interfaces.

The API first approach means designing an API so that it has consistency, as well as

adaptability, regardless of the type of projects. The API first principle is as follows:

• The API is the first user interface of an application.

• The API comes first and then the implementation.

• The API is described.

Chapter 3 Cloud Native arChiteCture priNCiples

58

• The API is contracted between the provider and the consumer.

For example, let’s say client 1 and client 2 are two client-facing applications, as

shown in Figure 3-1, and interact with various users by consuming its implementation in

services A, B, and C through APIs via API management. The APIs are contracts between

clients 1 and 2 with services A, B, and C.

These are the benefits of the API first principle:

• Development teams can work in parallel: API first involves

establishing the contract. Creating a contract between services that

are followed by the team across enterprises allows those teams to

work on multiple APIs at the same time.

• Reduces the cost of developing an application: The reusability of the

API first approach allows code to be recycled from project to project

so that development teams always have a baseline architecture with

which they can work.

• Increases speed to market: Automated discoverable APIs have the

ability to be discovered quickly and automate development with

readily available tools like Swagger.

Client 1

User User

Client 2

API Management

Item
Service

Product
Service

Customer
Service

APIs

Figure 3-1. API management

Chapter 3 Cloud Native arChiteCture priNCiples

59

• Improved developer experience: The consumers of APIs are most

often the development team. API first ensures the developers have a

positive experience using APIs.

• Reduce the risk of failure: The possibility of error is greatly reduced

due to the inherent reliability and consistency of the design and

implementation.

 Monolithic Architecture Principle
The monolithic architecture principle (MAP) is building the architecture as a single unit

with a single codebase. Most applications in an enterprise are based on this principle

because enterprises have been using this approach for ages. Sometimes these applications

are called multitiered applications and use the Model-View-Controller (MVC) pattern.

The monolithic architecture can expose APIs to the client applications and also focus on

desktop/laptop devices with a web browser as a client, as shown in Figure 3-2.

The following are the drawbacks of monolithic applications:

• Scaling a monolithic application is a challenge.

• It is difficult to embrace agility.

• Monolithic applications require more infrastructure due to scaling

the entire application irrespective of load.

• Monolithic applications are not business friendly, do not support

business disruption, and are slow to market.

Web Applica�ons

Mobile
Applica�ons

AP
I

eCommerce Applica�on

Catalog Product Payment

Order Shipping Item

Database

Figure 3-2. Monolithic application

Chapter 3 Cloud Native arChiteCture priNCiples

60

 Polylithic Architecture Principle
The polylithic architecture principle (PAP) provides a different variant of microservices.

Each microservice provides domain functionality. These separated modules are

consolidated through several programming techniques. This principle refers to a

technology-agnostic approach of building systems as a composition of multiple mini/

microarchitectures for the granular subsystem.

The PAP simplifies your back-end services and tools by enabling you to construct

them as modular monoliths using composable components.

In the polylithic principle, you create a domain-based service by using a domain-

driven design methodology. Most communication within the polylithic system is done

using industry-standard communication protocols.

 Applying the Polylithic Principle in Architecture

An e-commerce platform, as shown in Figure 3-3, will deal with many types of business

functionality instead of trying to implement all these business use cases in one

programming language. For example, for the parallel processing use case, implementing

parallel techniques in functional programming is better than object-oriented

programming.

Catalog Service
Spring Boot

Product Service
Node JS

Payment Service
Scala

Shipping Service
Python

User Service
GoLang

Figure 3-3. Microservices with polylihic programming languages

Chapter 3 Cloud Native arChiteCture priNCiples

61

 Properties of Polylithic Principles

The simplicity of a domain-based service makes for good building blocks of code. But

the architecture approach will be incomplete without a discussion about the essential

properties that enable, deliver, and sustain operations.

• Encapsulation: Services hide their implementation and expose only

their signature.

• Simplicity: Services have a single responsibility.

• Stateless: Services are just code; they don’t contain state or instances.

• Purity: Services can be pure, which makes them easy to understand,

reuse, test, and parallelize.

The polylithic principle refers to an approach of a building system as a composition

of multiple granular subsystems, each of which has its specialized architectures selected

to suit specific needs on a best-fit basis.

• Each granular subsystem will be housed in its container environment

and isolated from other subsystems.

• Each subsystem will take exclusive ownership of data and provide

access through a well-defined published interface.

To support change management, polylithic principle will also make backward

compatibility and interface versions aware of first-class architectural concerns, which

means that each subsystem will support the coexistence of multiple versions of the

same service.

 Polyglot Persistence Principle
Neal Ford coined the term polyglot in 2006 to express the idea that applications should

be written in a mix of languages to take advantage of the fact that different languages are

suitable for different problems. The polyglot persistence principle is about is choosing

the way data is stored based on the way data is being used by individual applications. In

short, you need to pick the right storage for the right kind of data.

Chapter 3 Cloud Native arChiteCture priNCiples

62

 Applying the Polyglot Persistence Principle in Architecture

Let’s take the example of Martin Fowler’s ecommerce application, as shown in Figure 3- 4

(Amazon, Flipkart, JioMart, etc.), that can be broken down into many microservices

such as catalog, user, audit, inventory, etc. Storing all this data in one single monolithic

database would be a nightmare. Instead, use the appropriate database technologies for

the respective use cases.

 Modeled with Business Domain Principle
The modeled with business domain principle (MBDP) is about using domain-driven

design (DDD), which will be explained in Chapter 10.

DDD is an approach for developing software for complex needs by deeply

connecting the implementation to an evolving model of the core business concept.

DDD is needed to decouple the existing system that you do not have any knowledge

of or a large enterprise with a complex map of departments and systems, for which you

are asked to implement a solution that is coherent and works seamlessly.

When you are applying this principle, follow the nine steps shown in Figure 3-5 of

event storming to identify the microservices.

Redis

User Session

RDBMS

Financial
Data

Riak

Shopping Cart

Neo4J

Recommendations

MongoDB

Product Catalog

RDBMS

Reporting

Cassandra

Analytics

Cassandra

User Activity Logs

Figure 3-4. Polyglot persistence

Chapter 3 Cloud Native arChiteCture priNCiples

https://doi.org/10.1007/978-1-4842-7226-8_10

63

When you are identifying microservices by using this principle, some designers try

to separate the parts by business domain and domain entities, users, and individual

requests from the UI, but this leads to your design becoming data-oriented and

technical-centric and doesn’t help you to design your microservices across business

capabilities. Always think of each request or service as a collection of capabilities.

 Consumer First Principle
The consumer first principle (CFP) is about designing your API services to the consumers,

before starting any design activity. The first thing is that you need to analyze what a

consumer wants. It is not about consumer rights advocacy, but it’s about recognizing

that when we create all these services for the consumer, the services need to be called by

all types of consumers.

Before the start any services design, you need to ask questions like, do you know who

your consumers are? Do you know where they are in an organization? Do you have any

collaboration with which you can interact? In nutshell, you need to have the full request

details before initiating a design.

Every design starts with the basics, meaning consumer-driven contracts, as those

contracts define for your consumers the process in your microservices.

Next, you need to decide on standards and consistency across all APIs. In the

consumer-first approach, each person or design team defines their APIs differently.

Some teams define them with nouns, some teams define them with verbs, and some

teams handle user search, error handling, and pagination in different ways. To address

this, you need to define an organizational standard for API design that will be useful for

API governance and operations.

You need to make sure you define the documentation for APIs. For anyone in a client

organization who wants to consume an API, knowing what the API does is important.

There are many ways to create a document, but nowadays developers use Swagger

API ModelService modelMicro-Service
Iden�fica�on

Iden�fy
Bounded
Contexts

Iden�fy
Aggregates

Capture Read
Models

Iden�fy
Commands /

Triggers

Capture
Domain
Events

Iden�fy
Objec�ve

Event Storming

Strategic Domain Driven Design

Figure 3-5. DDD with event storming

Chapter 3 Cloud Native arChiteCture priNCiples

64

effectively to design and document an API. It allows you to define metadata about

API endpoints and expose them in multiple ways. There are various tools available

to annotate metadata on your endpoints and have exposed Swagger documentation.

For better traceability between consumer requirements, design, and documentation,

integrate Confluence, JIRA, and Swagger or create a developer portal if you are using API

management software.

 Decentralize Everything Principle
The decentralize everything principle (DEP) is about providing self-direction, self-

sufficiency, and self-reliance to cloud native development, deployment, and governance;

this provides much freedom to the development community to think, develop, and

deploy each service.

When you’re thinking about decentralization, you need to provide autonomy to

solve the problem without necessarily having to coordinate with lots of other people,

but coordination is required but not at the extent of snatching freedom from the core

problem-solving team. Teams building microservices prefer a different approach to

standards too, rather than using a set of the standard defined by a centralized team.

Netflix is a good example of an organization that follows this philosophy.

In software development, the decentralization to be adopted is as follows; note that

not every problem is a nail, and not every solution a hammer:

• Decentralize microservices that are isolated from other microservices

to help the team to achieve concerns such as testability, extensibility,

scalability, etc. Apply domain-driven design and bounded context to

decentralize domain-based microservices.

• Deploy microservices independently on any environment without

affecting other services, use containers, and use Kubernetes

technology by using infrastructure as code.

• Decentralize governance, popularized by Amazon. This promotes

innovation and speed to market.

• Decentralize DevOps, and let each team have its pipeline with the

various self-service tools. Centralizing the tools doesn’t help.

Chapter 3 Cloud Native arChiteCture priNCiples

65

• Decentralize data management, and use the polyglot principle

to decentralize data for each microservice. But be cautious about

licenses, data dependency, transactions, etc.

In the end, you need to know that decentralizing everything doesn’t ease your

problem. Sometimes it can get out of control. To mitigate this, you need to audit each

team regularly.

 Culture of Automation Principle
The culture of automation principle (CAP) states that it’s imperative for organizations to

first create a foundation that is conducive for automation. Automation must be threaded

into the company culture and fully embraced across the business at all levels.

Apparently, 75 percent of an IT professional’s time is spent “keeping the lights on,”

with the remaining 25 percent focused on innovation that moves their business forward.

Everyone wants to flip those percentages.

Look at how Netflix, Amazon, Google, etc., are embracing cloud native, and the time

it took them to get up to speed moving from a few hundred services to thousands of

services into production: all of that work was centered around the culture of automation,

tooling, and discipline. A few teams in your organization are probably pretty good at

automating their everyday work, but the challenge is to apply a culture of automation

across the entire enterprise so that the organization can drive toward the common goal

of developing applications faster and more efficiently.

The most important thing in automation is developer mindset and quality; when

developers check in the code in SCM tools, they should be confident that the code can

go into production. Modeling the process from check-in through production, I get my

release candidate, move my code through my pipeline, and think it’s good enough for

the build; if it fails a test, I move the next version through, and hopefully, I can move it

into the production environment. This sort of automation and visibility of the quality

of the software is key in enterprises because we want to move software as quickly as

possible without human intervention. Once base automation available, you can leverage

the AI-driven development principle to take it further and develop a foundation for

streamlining processes, accelerating application production and deployment, and

allowing everyone to learn from each other.

Chapter 3 Cloud Native arChiteCture priNCiples

66

The following best practices should be helpful to adopt a culture of automation:

• Change the mindset.

• Create an automation community of practice.

• Have a common repository for automation code.

• Create a product mindset, not a project mindset.

• Treat automation as a product, not a project.

• Embrace AI in your automation process.

 Always Be Architecting Principle
One of the core objectives of cloud native applications is the always be architecting

principle (AbAP), which means always keep evolving. You should always use this

principle when you are architecting the system as your application seeks to refine,

simplify, and improve the architecture to support business disruption, organization

change, system change, and technology disruption. Dead, rigid IT systems bring the

organization to a standstill and are unable to support business disruption.

Cloud native architecture does not replace traditional architecture, but it is better

adapted to the very different environment of the cloud.

 Interoperability Principle
The interoperability principle is an enterprise architecture principle that states

that software and hardware should conform to defined standards that promote

interoperability for data, applications, and technology platforms.

Enterprise architecture frameworks state the principle as follows:

• The ability of a system to use the parts of another system

• The ability of a business entity to use functionality or information

provided by another business entity

Interoperability improvement across applications and business can be realized

through the following objectives:

Chapter 3 Cloud Native arChiteCture priNCiples

67

• Design your application based on open industry best practices; this

helps your application interoperate across any public, private, or

hybrid cloud infrastructure.

• Design your application with industry best practices and standards;

therefore, the information and services are shared across various

other applications in an enterprise.

Here’s how to manage the interoperability across various architecture segments:

• At the architecture level, you need to specify and/or define how you

exchange or share information across various modules or systems.

• At the data level, you need to specify and/or define information

exchange model details and the content of the information exchange.

Here’s how to apply interoperability in architecture:

• User experience integration: A common look-and-feel approach is

used to access the underlying functionality of the applications.

• Information integration: A commonly accepted corporate ontology is

followed for seamlessly sharing information across applications.

• Application integration: Use choreography or the orchestration

principle to seamlessly link functionality to avoid duplication.

• Technical integration: Use common methods to share data across

application platforms and communication infrastructure domains.

 Digital Decoupling Principle
The digital decoupling principle (DDP) was coined by Accenture and is as follows

“A process of using new technologies, development methodologies and
migration methods to build systems that execute strategy on top of legacy
systems. The organization can decouple the rapid execution of their busi-
ness strategy from the lengthy and gradual transformation of the
enterprises.”

—Accenture

When applied to the enterprise landscape, digital decoupling leads to exponential IT,

a scalable, flexible, and resilient architecture that gives companies the agility to innovate.

Chapter 3 Cloud Native arChiteCture priNCiples

68

A few examples of DDP include data meshes, APIs, agile, DevSecOps, journey

to cloud, microservices, RPA, and automation, as shown in Figure 3-6. Using these

approaches, enterprises can gradually decouple their core systems, migrating critical

customer-facing functionality and data to new service-based platforms.

Here are some tips to achieve digital decoupling in your enterprise:

• Automate using RPA.

• Utilize cloud native to quickly build microservices.

• Use a data lake or data mesh with real-time eventing capabilities.

• Adopt API first and consumer first principles.

• Use interactions that react in real time to use behavior.

• Use systems of intelligence to enable smart interactions.

• Remove conflicts of interest and increase agility and enable future

replacement.

• Do not use batches; the systems go straight through with minimal

human interaction.

• Leverage cloud capabilities to isolate the infrastructure and platform.

User Interface

Business Logic

Storage

Platform

Computing

User Interface

Business Logic

Storage

Platform

Computing

AI

API

Events

PaaS

IaaS

Pre-Digital Decoupling

Digital Decoupling

Figure 3-6. Digital decoupling

Chapter 3 Cloud Native arChiteCture priNCiples

69

By adopting DDP, enterprises can focus on continuous modernization without

the pain of wholesale migration of legacy systems. The more systems are decoupled,

the more enterprises can evolve toward an even greater service-based exponential IT

architecture that maximizes agility. This approach helps manage costs, diminishes the

accumulation of technical debt, and significantly reduces legacy transformation risk.

 Single Source of Truth Principle
The single source of truth principle (SSOTP) is not a tool but a practice of aggregating

the data from many sources in an enterprise to a single location. In an enterprise, data

exists everywhere, and this data exists in silos and does not help a business to make

data-driven decisions. Without a single source, how can an organization improve the

efficiency and effectiveness of its operational environment, its transparency, and its

future growth?

If the company does not have any single authentic source of information, it often

spends far too much time debating the accuracy of numbers, and this hinders the

decision-making ability and loses competition to their peers.

Use various tools and techniques to aggregate data from across systems in an

enterprise to a single location in near real time so the team can run business intelligence

tools to generate the required information.

 Evolutionary Design Principle
The main idea of the evolutionary design principle (EDP) is that design elements are

changeable later. When you build in an evolutionary change in your architecture,

changes will become cheaper and easy.

Traditionally, software architecture and design phases have been considered as an

initial discovery phase. In this approach, the architecture and design decisions were

considered valid for the entire life of the system.

In a modern system architecture and design, you need to assume that you don’t

have all the required details up front. As a result, having a detailed design phase at

the beginning of the project is impractical. The domain services must evolve through

iteration, and services mature as they progress. This evolution is necessary for modern-

day architecture, which necessitates a different set of approaches in the direction of

continuous planning, continuous integration, integrated monitoring, and tools thus

providing guiderails for the system to evolve.

Chapter 3 Cloud Native arChiteCture priNCiples

70

As a result of this principle, the team can build a minimum viable product (MVP)

with a set of features and rollout to the users. The development team doesn’t need to

cover all the design features to roll out features; instead, the development team can focus

on the needed pieces and evolve the design as customer feedback comes in. You can

freeze initial feedback, refactor, and complete the service.

The following software design patterns (more details in Chapter 4) can be used to

achieve evolutionary design:

• Sidecar extends and enhances the main service.

• Ambassador creates helper services that send network requests on

behalf of the consumer service or application.

• The chain provides a defined order of starting and stopping

containers.

• The proxy provides surrogates or placeholder.

• An iterator is a way to access the elements of aggregate objects.

Infrastructure as code provides additional automation for container images and

deploys automatically in any place at any given point of time.

 Cloud Native Runtime Principles
These are the cloud native runtime principles.

 Isolate Failure Principle (IFP)
Embracing a cloud native architecture doesn’t automatically make your system

more stable. Designing to isolate failure in your microservices can ensure that your

microservices don’t become fragile. Microservices are not reliable by default; therefore,

you can’t assume that your microservices become more resilient or scalable by default.

For example, say you have five microservices in one system, as shown in Figure 3- 7.

For this system to work, all five services have to be up and running. If any service is down,

it may impact the whole process; therefore, all five must be available at any given point of

time or the system stops processing all requests. In other words, if one service goes down,

it takes them all down.

Chapter 3 Cloud Native arChiteCture priNCiples

https://doi.org/10.1007/978-1-4842-7226-8_4

71

If any one of the services fails, the system stops working; if any one of the networks

between services stops, it fails, and your services stop working. Therefore, your services

are less reliable.

You must consider the failure of microservices so you can avoid the single point of

failure. Ask yourself, what happens if one of your services fails? Can your system keep

running? Do you even know what happens when your users talk to your services? For

example, the user clicks Catalogs, and your application invokes the catalog microservice,

and the catalog microservice depends on the inventory microservice for an inventory,

but your catalog microservice cannot invoke the inventory services to show the catalog

because the inventory microservice is in a failed status. In this case, do you want to stop

the whole system, or do you want to allow users to buy a product without availability in

the inventory?

A particularly subtle sort of failure that can happen in a distributed system is the

cascading failure, where all the way down the chain fails (service A calls service B and

service B calls service E); this ripples all the way down the whole system.

A cascading failure can hurt a whole system, and you need to design your system to

protect against this. You need to isolate the failure in every part of your system.

Container C

Price

Container A

Catalog

Container B

Shopping
Cart

Container D

Payment

Container E

Inventory

Figure 3-7. Microservice failure

Chapter 3 Cloud Native arChiteCture priNCiples

72

 Deploy Independently Principle
The deploy independently principle (DIP) says that every service should be deployed

independently in an infrastructure as a service (IaaS) by using containers and

Kubernetes.

When you bundle more services into a single machine, you limit your ability to

change things independently; this is the reason why you should deploy one service

per container. The reason is the side effects; when you deploy a service in the same

container with other services on it, what happens if one service fails? You need to

forcefully stop other services also. Therefore, always consider one service per container.

The container provides a great way (as defined in the container principle) to deploy

microservices. The following are the key tips you need to consider when deploying

microservices in a container:

• Bundle the microservices into a container image.

• Deploy each service instance as a container.

• Deploy state and storage outside of the container.

 Be Smart with State Principle
The be smart with state principle (BSSP) states when and how you store state in your

design. Storing the state is the hardest aspect of architecting a distributed, cloud native

architecture. Therefore, architect your system as stateless wherever it is possible.

Stateless means that any state must be stored outside of a container, and this external

state can be stored in various storage. By storing data externally, you remove data from

the container itself, meaning that the container can be cleanly shut down and destroyed

at any time without fear of data loss. If a new container is created to replace the old one,

you just connect the new container to the same datastore or bind it to the same disk.

Stateless components are as follows:

• Easy to destroy and easy to create: The stateless components have

no dependency on the state to carry; therefore, the application in a

container can be destroyed and created easily with no hassle.

• Easy to repair: If you want to repair failed instances in your

deployment, simply terminate gracefully and spin up a replacement.

Chapter 3 Cloud Native arChiteCture priNCiples

73

• Auto scale/horizontal scale: To scale more instances, just add more

copies; the orchestrator can manage the scale-up and down. This

scale can be managed automatically based on load or CPU usage.

• Rollback: If you have a wrong deployment, the stateless containers

are much easier to replace with new ones without any human

intervention.

Load balancing across services is much easier since any instances can serve any

request from the requestor. If you have a state for an instance, you need to send a request

to the same instance, and this can be managed with sticky sessions.

 Location-Independent Principle
The location-independent principle (LIP) is about abstracting the physical location of the

data from the logical representation that an application on a server uses to access data.

In the cloud native application, the location of your deployment does not matter to the

end customer or user, but they both should be able to access services ubiquitously and

responsively regardless of location.

In a cloud native application, your services do not require you to define where you

want to deploy a service, and one service doesn’t need to know another service as both

services are loosely coupled in nature if the services are required to communicate,

though only in terms of API and events, as shown in Figure 3-8.

Chapter 3 Cloud Native arChiteCture priNCiples

74

Follow these best practices when implementing location independence:

• Design your services based on a domain model and bounded

context, which helps to avoid intercommunication.

• A distributed cloud provides public cloud options to a different

physical locations, which helps latency and data privacy and

regulations that require certain data to remain in a specific

geographic location.

• Use the automation principle to deploy your services on any location.

 Design for Failure Principle
The design for failure principle (DFFP) states that applications need to be designed

so that they can tolerate the failure of services. Since services can fail at any time, it is

important to be able to detect the failures quickly and, if possible, automate to restore

quickly. Designing a failure means testing the design and watching services cope

with deteriorating conditions. Design of failure yields a self-healing application and

infrastructure.

Container C

Price Service

Container A

Catalog
Service

Container B

Payment
Service

VM1- Location 1

REST - Synchronous

Event Driven -
Asynchronous

VM3- Location 3

VM2- Location 2

Figure 3-8. Microservice deployments

Chapter 3 Cloud Native arChiteCture priNCiples

75

Any call to microservices could fail due to the unavailability of the service; the client

code must respond to the user as gracefully as possible. This emphasizes the real-time

integrated monitoring of the application. Semantic monitoring can provide an early

warning system of something going wrong that triggers stakeholders to follow up and

investigate.

Designing for failure will help your services have greater availability and customer

confidence on your application. Here are the key factors from the 12-factor app pattern

methodology (more details in the “Architecture and Design of microservice Chapter 5”)

that provide best practices when designing for failure:

• Disposability: Maximize robustness with fast startup and graceful

shutdown. Use lean container images and strive for processes that

can start and stop in a matter of seconds.

• Logs: Treat logs as event streams. If a system fails, ensure you have

collected all the integrated logs to troubleshoot.

• Dev/prod parity: Keep development, staging, and production as

similar as possible.

Implement the failure as a service model to test all your services; for example, Netflix

uses Simian Army or Chaos Monkey to test the failure of services. Amazon’s use of a

microservices architecture for its application means that the application never goes

down, but there could be a problem in individual services. Amazon has built a user

interface to gracefully degrade in the face of service failures.

 Security Principles
These are security principles.

 Defense in Depth Principle
The defense in depth principle (DiDP) provides a series of security mechanisms, and

controls are layered throughout a computer network to protect the confidentiality,

integrity, and availability of services.

Chapter 3 Cloud Native arChiteCture priNCiples

https://doi.org/10.1007/978-1-4842-7226-8_5

76

Services in a cloud native architecture deploy and process requests for Internet

applications, and there will always be a threat from external and internal attacks. Always

use an authentication mechanism between services, that increases the trust between

those services, whether it is an internal or external service.

You will apply this principle not just for authenticating the services to avoid rate

limiting or script injection, but also you should protect your services from any threat.

This makes your architecture more resilient and easier to deploy and creates more trust

for your services. The DiDP principle ensures network security is redundant, preventing

any single point of failure.

An effective DiDP strategy may include the following security best practices, tools,

and policies:

• Strong credentials management

• Firewalls

• Intrusion prevention or detection system

• Endpoint detection and response

• Network segmentation

• Patch management

• APIs authentication

• Auditing and accounting

 Security by Design Principle
The security by design principle (SBDP) means that the product has been designed from

the ground up to be secure. The alternate security patterns are researched, and the best

are selected and enforced by the architecture design.

Most attacks of any Internet-facing services either in a private or public cloud are

performed because of software vulnerabilities. Software vulnerabilities are often found

in the design and development lifecycle, so if you ignore any findings, you leave your

service exposed to the hands of cybercriminals.

As I mentioned in Chapter 2, cloud applications are made up of IaaS, PaaS, and

SaaS. In IaaS, a cloud vendor provides the physical or virtual infrastructure; you are

responsible for the administering of network and system infrastructure, applications,

Chapter 3 Cloud Native arChiteCture priNCiples

https://doi.org/10.1007/978-1-4842-7226-8_2

77

and data. With the PaaS model, the cloud provider manages the infrastructure and

managed components such as databases, middleware, etc., and you are responsible

for the application and data security. In a SaaS model, the cloud provider provides

everything from the infrastructure to the application, and you are responsible for access

and data.

In a cloud native application, you are responsible for most of your application and

data security; therefore, you need to provide utmost importance for security. There are

various techniques and best practices available to secure your application.

The following practices help when designing and developing an application:

• Minimize attack surface area: This restricts the services that a user

can access.

• Establish secure defaults: Implement strong security rules for how

users are registered to access your services.

• The principle of least privilege: The user should have the minimum

set of privileges required to perform a special task.

• The principle of defense in depth: Add multiple layers of security

validations.

• Fail securely: Failure is unavoidable; therefore, fail in a secure way.

• Don’t trust services: Don’t trust third-party services without

implementing a security mechanism.

• Separation of duties: Prevent individuals from acting fraudulently.

• Avoid security by obscurity: There should be sufficient security

controls in place to keep your application safe without hiding core

functionality or source code.

• Keep security simple: Avoid the use of very sophisticated architecture

when developing security controls.

• Fix security issues correctly: Developers should carefully identify all

affected systems.

• Implement shift-left security: Implement security from the developer

box.

Chapter 3 Cloud Native arChiteCture priNCiples

78

The Open Web Application Security Project (OWASP) provides security design

techniques and best practices that designers should adopt while designing services. The

OWASP updates the list of vulnerabilities often and rates them based on the security

reports. You need to well aware of the implementation and adherence of the security

risks. The following are the few implementation of OWASP security risks.

 SQL Injection

SQL injection is a security risk where a SQL query is input to your query. If an attacker

can exploit your SQL query and can read sensitive data from your databases and even

modify the data, the consequences are confidentiality, authentication, authorization,

and integrity.

• Standard SQL syntax: select id, firstname, lastname from

customer;

• With query string: select id, firstname, lastname from

customer where firstname='Peter's' and lastname ='john'

The database tries to run this example but provides incorrect syntax.

Figure 3-9 shows the correct implementation.

 Cross-Site Scripting (XSS)

XSS attacks are type of injection like SQL injection; here the attacker injects malicious

scripts into a web application. Flaws in your user experience code like Angular,

JavaScript, etc., allow these attacks to succeed. XSS attacks occur when:

• Data enters a web application through an untrusted source.

Figure 3-9. SQL injection implementation

Chapter 3 Cloud Native arChiteCture priNCiples

79

• The data included in the dynamic content is sent to a web user

without any proper validation for request.

Implement the following best practices to avoid XSS in your web application:

• Use the OWASP XSS prevention sheet from the OWASP community

(https://cheatsheetseries.owasp.org/cheatsheets).

• Turn off HTTP trace, or an attacker can steal cookie data.

• Use the proper syntax in your code, don’t hard-code, and use

variables and parameters.

Here I have provided a few examples. You can find more details and implementation

best practices on the OWASP.org community website.

 Software Engineering Principle
These are software engineering principles.

 Products Not Projects Principle
Amazon states that the core benefit of treating software as a product is an improved end-

user experience. When an enterprise treats its software as an always improving product

rather than a one-off project, like with the products not projects principle (PNPP), it will

produce code that is better architected for future work.

Traditionally, enterprises and service organizations delivered software as a project

with a set of resources and start and end dates with a list of predefined features. A

product-centric development lives for an indefinite period and evolves and has no fixed

predefined features.

In the project-centric approach, there will be a little room for iteration and

improvement as the software spends a small amount of time in the hands of end users

before the budget is exhausted. But in the product-centric approach, you will adopt

the MVP approach, where the smallest increment is delivered to real users as soon as

possible, so the team can get early feedback that sets the future direction.

Chapter 3 Cloud Native arChiteCture priNCiples

https://cheatsheetseries.owasp.org/cheatsheets

80

The core benefits of treating software as a product are the following:

• Improved end-user experience

• Matured architecture

• Automation and innovation culture

• MVP approach

• Easier to extend, maintain, and test

• More visibility into how their software is performing in real-world

scenarios

• Accelerates feedback loop

The following concepts are crucial for adopting a product approach:

• Automated provisioning with cloud-enabled: Use the infrastructure

automation principle.

• Self-service, self-healing: Configure own dependencies and better

configuration management by adopting the separation of concerns

principle.

• DevSecOps pipeline with infrastructure as code: Adopt automation

culture.

 Shift-Left Principle
The shift-left principle (SLP) refers to a practice in software engineering development

in which scrum teams can focus on quality, work on problem anticipation instead of

detection, and begin testing from the developer system.

This principle in DevOps is a set of a process aimed at the following:

• Finding and preventing defects early in the software delivery lifecycle

• Beginning testing, security, and performance earlier than ever before

• Focusing on quality

The idea of this principle is to improve quality by moving tasks to the left as early in

the lifecycle as possible, thus reducing the technical debt and cycle time.

Chapter 3 Cloud Native arChiteCture priNCiples

81

 Shift-Left Security

SLP will be applicable to functional, security, and performance testing and related

processes, techniques, and tools to be integrated as part of the DevSecOps and

developer integrated development environment (IDE).

The shifting left of the security review process requires a new way of developing the

application compared to the traditional approach; these changes are not a significant

deviation. You need to follow these tips for shift-left security:

• Involve an information security expert early in the lifecycle of the

project.

• Use security tools.

• Integrate security tools as part of the continuous integration and as

part of the developer IDE.

 Shift-Left Performance

Shifting performance testing means enabling developers and testers to conduct

performance testing in the early stages of the development lifecycle. Performance

means not just a request or stress; actual performance starts with the code and therefore

involves practices at the developer level to prevent performance-related issues. To

implement the shift-left approach, implement best practices, tools, and techniques as

part of the continuous integration pipeline and as part of the developer environment.

The following are the best practices to be adopted for shift left:

• Implement performance testing with or in parallel to development

activities.

• Include performance testing along with the unit, system, and

integration test lifecycles.

• Create performance attributes.

• Integrate tools as part of DevSecOps.

 Container Principles
The following are the container principles.

Chapter 3 Cloud Native arChiteCture priNCiples

82

 Single Concern Principle
In many ways, the single concern principle (SCP) is like the single responsibility principle

from SOLID, which says that a module or class must have only one responsibility.

In a cloud native architecture, SCP highlights higher level of single of responsibility.

The single responsibility enables you to define a clear boundary for every microservices.

The main motivation for the single responsibility principle is to have a single

reason for a change; the main objective of the SCP is for container image reuse and

replaceability. You can create a container that addresses a single responsibility with

the common feature, and then you can reuse the same container image in different

applications without modification and testing.

The SCP principle objective is that every container must address a single

resposibility with a microservices architecture style. Always use a single responsibility

in the container even though your microservice provides multiple resposnibility. If you

have microservices with multiple resposibility, use sidecar and init-containers patterns

as explained in Chapter 4 to combine multiple containers into a single deployment unit

(pod), where each container still holds single responsibility, as shown in Figure 3-10.

You can swap a container that addresses the same responsibility. For example, replace

service A container with service C by using infrastructure as code.

Container C

User Service
GoLang

Container A

Catalog Service
Spring Boot

Container B

Product Service
Node JS

Container D

Payment Service
Scala

Container E

Shipping Service
Python

Deployment Unit (pod)

Figure 3-10. Microservices deployed in separate containers

Chapter 3 Cloud Native arChiteCture priNCiples

https://doi.org/10.1007/978-1-4842-7226-8_4

83

 High Observability Principle
Observability is a measure of how well internal states of microservices can be derived

from external outputs. The concept of observability was introduced by Rudolf E. Kalman

for linear dynamic systems.

The observability principle states that an application is said to be observable if one

can determine the behavior of the entire application from the application output.

Logs, metrics, traces, liveness, readiness, and process health are known as the pillars

of observability, as shown in Figure 3-11, in a cloud native architecture. While having

access to these pillars doesn’t make your application more observable, you need to

create interfaces to access these pillars for further analysis.

Containers provide a unified way of packaging and running microservices by treating

the application as a black box. You need to configure containers with APIs to access

runtime environments to observe the container health and act accordingly. These are

the prerequisite for automating container updates and lifecycles in a unified way, which

in turn improves the system’s resilience and user experience.

You need to design your container and application with APIs for the different kinds

of health checks. The microservices should log events into the standard error (STDERR)

and standard output (STDOUT) for log aggregation by using tools such as FluentD,

Logstash, Nagios, etc., and should integrate with tracing and metrics-gathering libraries

such as Zipkin, open tracing, etc.

Container

Service A

Spring Boot

Process
Health

Readiness

Liveness

Metrics

Tracing

Logs

Figure 3-11. Observability in cloud native application

Chapter 3 Cloud Native arChiteCture priNCiples

84

At runtime, your application is a black box to you; implement the necessary APIs to

help the platform observe and manage your application in the best way possible.

 Lifecycle Conformance Principle
The lifecycle conformance principle (LCP) states that a container should have a way to

read the events coming from the platform and conform by reacting to those events.

All kinds of events are available for managing platforms that are intended to help

you to manage the lifecycle of the container and microservices, based on all types of

available events; it is up to you to decide which events to handle and whether to react to

those events or not.

By looking into all sorts of events, you need to pick important events, as shown in

Figure 3-12, for example.

• Graceful shutdown process

• Terminate message (SIGTERM)

• Forceful shutdown (SIGKILL)

When you issue a docker stop command, Docker will wait for 10 seconds to stop the

process; if there no action in 10 seconds, then it will forcibly kill the process.

Command to stop process:

Container

Service A

Spring Boot

SIGTERM

SIGKILL

PreStop

PostStart

Figure 3-12. Container lifecycle

Chapter 3 Cloud Native arChiteCture priNCiples

85

The docker stop command attempts to stop running the container by sending a

SIGTERM signal to the root process in the container; if the process hasn’t exited within

the timeout period, a SIGKILL signal will be sent.

Command to kill process:

There are other events such as PreStop and PostStart, which might be significant in

your application lifecycle management. For example, some applications need to warm

up before a service request, and some need to release resources before shutting down

clearly, as shown in Figure 3-13.

In this configuration file, you can see how to use the PostStart and PreStop

command to write a message file to the container’s /usr/share directory. The presto

command shuts down Nginx gracefully

apiVersion: v1.0
kind: Pod
metadata:

name: lifecycle-cloudnative
spec:

containers:
- name: containerA

image: nginx
lifecycle:

postStart:
exec:

command: ["/bin/sh", "-c", "Event from ServiceA >
/usr/share/message"]

preStop:
exec:

command: ["/bin/sh","-c","nginx -s quit; while killall -0 nginx; do sleep
1; done"]

Figure 3-13. Configuration file

Chapter 3 Cloud Native arChiteCture priNCiples

86

 Image Immutability Principle
The image immutability principle (IIP) states an image is unchangeable once it is built

and requires creating a new image if changes need to be made. Container applications

like microservices are meant to be immutable. Once you have developed applications,

they aren’t expected to change between different environments except for runtime data

like environment configuration and variables such as listening port, runtime options,

etc. You need to store configurations and variables external to the container. For each

image change, you need to build a new image and reuse it across various environments

in your development lifecycle.

Immutability makes deployments safer and more repeatable. If you need to roll

back, you simply redeploy the old image. This approach allows you to deploy the same

container image in all your environments. Containers are usually configured with

environment variables or configuration files mounted on a specific path. You can use

secrets and config maps to inject configurations in containers as environment variables

or files of Kubernetes. If you need to update a configuration, deploy a new container

(based on the same image) with the updated configuration, as shown in Figure 3-14.

Chapter 3 Cloud Native arChiteCture priNCiples

87

Immutability is one of the best qualities of container-based infrastructure.

Immutability along with statelessness allows you to automate deployments and increase

their frequency and reliability.

 Process Disposability Principle (PDP)
The process disposability principle (PDP) is a container runtime principle and states

applications must be ephemeral as possible and ready to be replaced with container

instances at any point of time by using infrastructure as code, as shown in Figure 3-15.

Container A

Product Service

Spring Boot

Container B

Item Service
Node JS

Pod A

Pod B

Container A Container B

Environment A

Environment B

ConfigMap
A

ConfigMap
B

Used as Config File

Used as Config FileProduct Service
Spring Boot

Item Service
Node JS

Update the
reference to the

config map

Figure 3-14. Immutable container images across all environments

Chapter 3 Cloud Native arChiteCture priNCiples

88

Usually, you may not replace containers regularly except for a few circumstances

such as the following:

• Container not responding to health checks

• Autoscaling down the application with CPU utilization or load

• Migrating the container to a different host

• Platform resource starvation

If you store the state within the container, then it is difficult to replace in a distributed

environment; therefore, you should keep their state externalized or distributed and

redundant.

Figure 3-16 illustrates how the PDP principle is applied.

Container A

Product Service
Spring Boot

Container B

Item Service
Node JS

Pod A

Environment A
Stat

Stop

Figure 3-15. Container replacement based on load

Chapter 3 Cloud Native arChiteCture priNCiples

89

At the beginning of your day, service A has only one container instance, but as the

day progresses and the load increases, the containers autoscale to three instances to

meet the demand. The container instances dispose gradually as and when the load

decreases, and finally it reaches the original state. This can be achieved by using the PDP.

You need to follow best practices for the size of containers and functionality of

microservices. For example, it is better to create small containers, which leads to quicker

start and stops because, before the spin of the new container, the containers need to be

physically copied to the host system.

Container A

Scaled down Containers

Container Instances

Request

Spike in CPU Load

HPA – Scaling up

Container returning to initial
state as the load decreases

Dashboard View

HPA – Scaling
down

1 2

3

4

5

67

8

Product Service
Spring Boot

Container A

Product Service
Spring Boot

Container B

Product Service
Spring Boot

Container C

Product Service
Spring Boot

Container A

Product Service
Spring Boot

Container B

Product Service
Spring Boot

Container A

Product Service
Spring Boot

Figure 3-16. Container scale-up and down based on Spile in CPU

Chapter 3 Cloud Native arChiteCture priNCiples

90

 Self-Containment Principle
The self-containment principle (SCP) addresses the build time concern, and the

objective of this principle is that the container must contain everything that it needs at

build time. The container relies on the presence of the Linux kernel or Windows silos

and any additional libraries. The Windows silos are the Microsoft variant for the Linux

namespace. With silos, Windows kernel objects such as files, registry, and pipes can be

isolated into separate logical units.

Along with the container’s Linux kernel or silos, the following should be added at the

time of build:

• Dependent libraries

• Language runtime

• Application platform

The configuration and state are not part of the build time; they should be

externalized at runtime through ConfigMap, as shown in Figure 3-17.

Some of your applications require multiple container components. For example,

your containerized microservices may also require a database container. This principle

does not suggest merging both containers; instead, this principle suggests each

container requires a dependent configuration to run respective containers.

Container

Product Service

Spring Boot

Configuration

Storage

B
ui

ld
 T

im
e

R
un

 T
im

e

Figure 3-17. Containers with build and runtime environments

Chapter 3 Cloud Native arChiteCture priNCiples

91

 Runtime Confinement Principle
The runtime confinement principle (RCP) states that every container should declare its

resource requirements and pass that information to the hosted platform.

The SCP addresses the build-time perspective, and RCP addresses the runtime

perspective. The container is not just a single black box, but it has multiple dimensions

as follows:

• CPU usage dimension

• Memory usage dimension

• Resource consumption dimension

• Control groups dimension

The container, as shown in Figure 3-18, shares the resource profile of a container to a

hosted platform in terms of CPU, memory, networking, and disk influence to specify how

the platform performs scheduling, autoscaling, capacity management, and SLAs of the

container.

In addition to passing the resource requirements to the host platform, it is important

that the application stay confined to the indicated resource requirements. If the

application stays confined, the platform is less likely to consider it for termination and

migration when resource starvation occurs.

Product Service

Spring Boot

Container

Memory

S
iz

e

Figure 3-18. Container runtime characteristics

Chapter 3 Cloud Native arChiteCture priNCiples

92

 Principles of Orthogonal
In mathematics, orthogonality describes the property of two vectors. As shown in

Figure 3-19, they are perpendicular, or 90°, to each other. Each vector will advance

indefinitely into space, never to intersect.

Well-architected software is orthogonal, and each of its components or modules

can be modified without affecting another. By considering agility in both business

and technology, the software applications undergo many changes to support business

disruption. The cost of applying orthogonal principles is a little high, but by considering

the cost at the end, the overall cost will be managed by considering changeability,

testability, extensibility, etc.

The orthogonal design is based on two principles, as shown in Figure 3-20.

• Cohesion

• Coupling

90°

A B

C

Figure 3-19. Orthogonal

Chapter 3 Cloud Native arChiteCture priNCiples

93

 Cohesion
Cohesion is the degree to which the elements inside a module belong together. It is the

strength of the relationship of elements within the module. It is the internal glue that

keeps the module together.

It is a measurer that defines the degree of intradependability within elements of a

module. The greater the cohesion, the better the program design. It is a natural extension

of the information hiding concept.

A cohesive module performs a single task within a software procedure, requiring

little interaction with procedures being performed in other parts of a program. We

always strive for high cohesion, but sometimes the middle path of the spectrum is always

acceptable, as shown in Figure 3-21.

Module A

Module B

Element 2Element 1

Element 3

Element 6Element 4

Element 5

Cohesion

Coupling

Figure 3-20. Orthogonal principle

Chapter 3 Cloud Native arChiteCture priNCiples

94

Cohesion is an ordinal type of measurement and is generally described as high

cohesion and low cohesion.

High cohesion is where you have a module that does a well-defined job with similar

elements; it gives us a better-maintaining facility and reflects a better quality of a design.

Reusability is high as all elements in the module work together as a logical unit of work

with clear functionality. This makes it easier to do the following:

• Understand what class or method does

• Use descriptive names

• Reuse classes or methods

Low cohesion is where you have a module that does a lot of unrelated jobs and

results in a monolithic module that is difficult to maintain, extend, and test. The extra

complexity in modules with low cohesion makes it more likely that defects may be

introduced and leads to high technical debt. Reusability is reduced for modules as it

performs diverse functionality.

 Types of Cohesion

Cohesion is a qualitative measure; the cohesion is measured based on the level of

cohesion in a module, as shown in Figure 3-22. Let’s examine the type of cohesion.

DataProcessing

connectSource()
checkProtocol()
readDataFromFile()
readDataFromDatabase()
readDataFromDataStorage()
validateData()

DataProcessingFile

connectSoruceFile()
checkProtocol()
validateData()
readDataFromFile()

DataProcessingDatabase

connectSoruceDatabase()
extractData()
validateData()
readDataFromTables()

Low Cohesion
High Cohesion

Figure 3-21. High and low cohesion

Chapter 3 Cloud Native arChiteCture priNCiples

95

Function Cohesion

This is the highest degree of cohesion. Every essential element for a single computation is

contained in the component because they all contributed to a single well-defined function.

It can also be reused. Modules with functional cohesion perform exactly one action.

Here are some examples:

• Lexical analysis of XML. Converting a sequence of characters or

elements in XML into a sequence of tokens. The group of elements is

grouped together to analyze XML.

• Assign a seat to train passengers.

• Calculate the interest rate; calculate the sales commission.

Sequence Cohesion

Sequential cohesion is like a sequential operation. The elements of a module are

grouped because of the output from one element and input to another element. This

type of cohesion you can see in streaming data or file or ETL jobs.

Here are some examples:

• In an ETL application, the extract, transfer, and load functions are

grouped into one module for each data element.

• In streaming, it is the continuous transmission, validation, storage,

and display of audio or video of data files.

Function Cohesion

Sequence Cohesion

Communicational Cohesion

Procedural Cohesion

Temporal Cohesion

Logical Cohesion

Coincidental Cohesion Low

High

Good

Bad

Figure 3-22. Types of cohesion

Chapter 3 Cloud Native arChiteCture priNCiples

96

Communication Cohesion

A module is said to have communicational cohesion if all functions of the module refer to

or update the same data structure, or a cohesive module is one whose elements perform

different functions, but each function references the same input information or output,

as shown in Figure 3-23. This cohesion is not flexible as it lacks the reusability principle.

Procedural Cohesion

Procedural cohesion is when elements of a module are grouped as they always follow a

certain sequence of execution and are commonly found at the top of the hierarchy such

as the main program. It is like sequential cohesion, as shown in Figure 3-24, except for

the elements in the sequence are unrelated in procedural cohesion.

The weakness of procedural cohesion is that actions in a sequence are weakly

connected and modules are unlikely reusable.

Calculate employee
information

Employee Record

Total experience

Joining Date

Project experience

Figure 3-23. Communication cohesion example

Employee records

Project experience

Checks File Permission

Open the File

Figure 3-24. Procedural cohesion example

Chapter 3 Cloud Native arChiteCture priNCiples

97

These two separate elements in a module are cut along the dotted line. We could do

separate activities in each element. Checking the file permission operation can be used

for another file also, and we can open the file if no checks are available.

Temporal Cohesion

The elements in this cohesion are related to the time; all the tasks must be executed in

the same period.

The actions of this module are weakly related to one another but strongly related to

actions in other modules. The elements are not reusable in this cohesion.

For example, consider a module in a digital twin that invokes the factory tasks that

are not functionally similar or logically related, but all tasks are needed to happen at the

moment when the failure occurs. The module might do the following:

• Cancel all outstanding requests for services.

• Cut power to all assembly line machines.

• Notify the operator console.

• Make an entry in the database.

• Invoke an alarm if a catastrophic failure occurs.

Logical Cohesion

Logical cohesion is when elements of a module are grouped because they are logically

categorized to do the same thing, even if they are different by nature.

The following are the drawbacks of logical cohesion:

• The interface is difficult to understand.

• Code for more than one action may be intertwined.

• Reusability is lessened.

The actions of this module are all logically read as input content.

The type of input, as shown in Figure 3-25, tells the module what part of its internal

logic to apply to the particular transaction data coming in for each specific invocation.

Chapter 3 Cloud Native arChiteCture priNCiples

98

Coincidental Cohesion

Coincidental cohesion is when elements of a module are grouped; the only relationship

between the parts is that they have been grouped.

• Elements contribute to activities with no meaningful relationship to

one another.

The drawbacks of this cohesion are degraded overall application maintainability and

that modules are not reusable in nature.

Helper or utility classes in your application, usually utility classes, contain many

functions that are unrelated and accessible from various other classes or modules.

Changes in one function in the utility class affect the utility class and also the calling class.

Applying High Cohesion to Software Design

Design your application by keeping high cohesion in mind. Each module should have a

single well-defined functionality. The elements within the module must be related and

perform on the same set of data.

There are ancillary elements in the module that are not directly related, and they

work on a different set of variables; consider moving nonrelated functionality into other

related modules that have the same purpose.

 Coupling
Coupling is the degree of interdependence between software modules or microservices;

a coupling measures how closely connected two modules or microservices are and

the strength of the relationship between modules or microservices. Coupling tells at

tape
Result

Read all inputs

disk
network

Figure 3-25. Logical cohesion example

Chapter 3 Cloud Native arChiteCture priNCiples

99

what level the modules interface and interact with each other, as shown in Figure 3-26,

Figure 3-27, and Figure 3-28. The coupling can be low or weak and high or strong or

tight. The degree of the coupling between modules reflects the quality of the design.

Coupling is the measure of the interdependence of one module to another. Modules

should have low coupling; low coupling minimizes the ripple effect where changes in

one module cause an error in the other module.

Software modules that are tightly coupled are more complex; it is the degree to

which one module is connected to another module. If a module is tightly coupled, then

you are bound to use/edit the rest of the connected modules where editing only one

module could have served the purpose. This impacts the principle of maintainability,

extensibility, and testability. You need to carry out the full suite on the entire connected

modules irrespective of modification, which increases the cost and effort.

A C

B D

Figure 3-27. Loosely coupled with some dependencies

A B

C D

Figure 3-26. No dependencies

A B

C D

Figure 3-28. Highly coupled with many dependencies

Chapter 3 Cloud Native arChiteCture priNCiples

100

The loose coupling design is to reduce the dependency that a change made within

one module or microservice will create unanticipated changes within other elements.

Individual modules can be altered or extended without the need to consider a lot of

information from other modules. Errors of data flow can be pointed out easily. The loose

coupling supports the principle of maintainability, extensibility, and testability.

 Types of Coupling

There are different types of coupling, as shown in Figure 3-29. This section covers the

details of these types in order from lowest to highest coupling. The coupling between the

modules can be more than one way.

No Coupling

In this coupling, the modules are isolated and do not communicate with each other.

Message Coupling

This is the loosest type of coupling. Modules are not dependent on each other; instead,

one module calls a method or interface on another and does not pass any parameters.

They are coupling only on the name of method or interface.

Example: Dependency injection and observable. Figure 3-30 depicts how message

coupling helps to interact between two modules.

Data Coupling

Stamp Coupling (data-structured
coupling)

Control Coupling

External Coupling

Common Coupling (Global
Coupling)

Content Coupling

Low

High

Loosest

Tightest

Message Coupling

No Coupling

Figure 3-29. Types of coupling

Chapter 3 Cloud Native arChiteCture priNCiples

101

In this example, the server and clients are loosely coupled and exchange details over

the socket.

Data Coupling

When data of one module is shared with another module, this condition is said to be

data coupling.

Data coupling occurs when methods share data regularly through parameters. The

two modules, Module1 and Module2, exhibit data coupling if Module1 calls Module2

directly, and they communicate using parameters. Each parameter is an elementary

piece, and the parameter is the only data shared between Module1 and Module2.

Example: As shown in Figure 3-31, the two modules Calculate EMI and Calculate

Total Loan are data coupled as they communicate by passing the parameters.

Stamp Coupling (Data-Structured Coupling)

Stamp coupling occurs when modules share a composite data structure. If the module

interacts by sharing or passing a data structure that contains more information than the

information required to perform their actions, then these modules are said to be stamp

coupled.

Two modules, module A and module B, exhibit stamp coupling if module A passes

directly to module B a composite piece of data such as record, array, tree, or list.

ClientServer

Observable
Sockets Sockets

Message
Exchange

Figure 3-30. Message coupling

Calculate
total loan

Interest

Calculate EMI

EMI Amount

Data Coupling

Figure 3-31. Data coupling

Chapter 3 Cloud Native arChiteCture priNCiples

102

Modules A and B will share a data structure and use only part of the whole data

structure.

For example, ss shown in Figure 3-32, three modules are stamp coupled if they

communicate via passed data structure, which contains more information than

necessary for the modules to perform their functions.

Here we assume Loan Number contains the loan number, date, address, etc. We are

sending more information than what it requires. In this scenario, Calculate Loan Details

requires only Loan Number to perform required functionality.

Control Coupling

Control coupling means to control data sharing between modules; in other words,

control coupling occurs when one module controls the flow of another module by

passing control information.

Two modules exhibit control coupling if module A passes to module B, a part of the

information that is intended to control the internal logic of module B.

For example, as shown in Figure 3-33, the two modules Error Module and

Notification Module are control coupled if they communicate using at least one control

flag, denoted as Notification Flag.

Print Loan
Payment

Transaction

Calculate Loan
Details

Produce Loan
Data

Figure 3-32. Stamp coupling

Chapter 3 Cloud Native arChiteCture priNCiples

103

When an error occurs in an application, the error module captures the error

and sends the notification flag to the notification module to send a notification to

the stakeholders. Here the error module controls the notification module with the

notification flag as a control flag.

External Coupling

External coupling occurs when two modules share an externally imposed data

format, communication protocol, or device interface. This coupling is related to the

communication to external tools and devices such as printers, IoT devices, etc.

For example, module A and module B exhibit external coupling if both modules

share direct access to the same I/O devices or are tied to the same external IoT devices in

some other way.

Common Coupling (Global Coupling)

Common coupling occurs when two or more modules share global data. Any changes

to them have a ripple effect on all the modules; in other words, changing the shared

resources implies changing all the modules using them.

For example, as shown in Figure 3-34, three modules are commonly coupled if they

both share the same global data area.

Module A Module B

Module C

Parameters
Passing

Figure 3-34. Common coupling

Notification
Module

Notification Flag

Error Module

Acknowledgement

Error Details

Figure 3-33. Control coupling

Chapter 3 Cloud Native arChiteCture priNCiples

104

One of the design principles we have been using for many years is this: don’t use

global data; it impacts security.

Content Coupling (Pathological Coupling)

When a module can directly access or modify or refer to the content of another module,

it is called content-level coupling. Changing the inner workings will lead to the need of

changing the dependent module. Module A refers to or changes the module B internal

data or statement directly. This type of coupling is very high or tight in nature.

Module A and module B are content coupled if:

• Module A changes a statement in module B

• Module A references or alters data contained inside module B

• Module A branches into module B

For example, the search method that adds an object that is not found in the internal

structure of the data structure is used to hold information.

Law of Demeter (LoD) or Principle of Least Knowledge

Introducing coupling increases the instability of a system. The law of Demeter is the

important principle to reduce the coupling between modules. This law is a specific case

of loose coupling. This law says:

• Each module or microservice has knowledge about only other

modules or microservices closely related to the current module or

microservices.

• Each module or microservices should talk only to its immediate

friends; don’t talk to strangers.

The advantage of LoD is that resulting software tends to be more testable,

maintainable, extensible, etc.

For example, module A could call module B’s interface for any intercommunication,

but module A should not call module B to communicate module C. If module A needs to

intercommunicate with C, then A calls directly to C.

Chapter 3 Cloud Native arChiteCture priNCiples

105

Applying Loose Coupling to Software Design

Coupling is unavoidable; we need to have coupled. Otherwise, each class in a module or

microservices would be its module. However, achieving a low coupling should be one of

the primary objectives in system design, such that individual module or microservices

can be studied and altered without the need of taking into account a lot of information

from other module or microservices and applying domain design concepts while

designing a module or microservices.

Loose coupling leads to high cohesion and together leads to a highly maintainable,

extensible, and testable system.

 Software Quality Principles
“A good architecture is important; otherwise it becomes slower and more
expensive to add new capabilities in the future. Good architecture is some-
thing that supports its evolution.”

—Martin Fowler

As architects, designers, or programmers, we spend a lot of time analyzing, designing,

and developing code, but we spend even more time maintaining that developed code.

How often do we go back and find that the application has become a tangled mess?

Sometimes we park that system as a legacy application.

The purpose of quality principles is to reduce complexity in a manageable way.

Complexity can never be eliminated; however, architects and designers can reduce it by

using quality principles.

Several problems lead to a highly complex and unmanageable system.

• The architect team does not analyze the business problems properly.

• The architect team does not have a clear view of what the end user

wants from our application.

• The architect team does not have full visibility of the enterprise or

business unit applications.

• The architect team may not get sufficient time to analyze the

architecture.

Chapter 3 Cloud Native arChiteCture priNCiples

106

• The architecture team is to embrace business and technology

disruption.

• There are too many software programming languages and platforms

with diverse features.

These complexities lead to several problems in software while creating an architecture.

• May cause the software to behave in an unanticipated state

• May create security vulnerabilities that could raise the management

of application to an enterprises

• May lead to big operation team and end up with more cost

• May lead to a schedule overrun

Minimizing the complexity and improving the quality of software helps to eliminate

or manage the difficulties. Some of the principles related to improving the quality and

reducing the complexity are covered next.

 KISS Principle
The keep it short and simple (KISS) principle was created by the late Kelly Johnson, who

was the lead engineer at Lockheed Skunk Works. Kelly’s version of the phrase was “Keep

it simple, stupid.” This phrase was embraced by Lockheed designers. There are many

variants of KISS: “Keep it simple and straightforward,” “Keep it super simple,” etc.

We are using the phrase “short and simple” in this book of cloud native architecture.

The objective of this principle is to deliver the simplest possible outcome.

Some of the famous quotes related to KISS are:

“Among competing hypotheses, the one with the fewest assumption should
be selected” —Occam’s Razor

“Make everything as simple as possible but not simpler” —Albert Einstein

This principle has been key for many years, typically when an architect or developer

is breaking down an application into smaller pieces to address the business problems

and then they think they understood the business problem and try to design and

develop a particular problem but end up with complexity. Based on my experience. it is

a complex process on how and where to break complex into simple.

Chapter 3 Cloud Native arChiteCture priNCiples

107

Applying KISS to Software Design

Simplicity is a highly desirable quality in software applications. Making software

more complicated than it needs to be lowers the overall quality of software. The

maintainability, testability, and supporting the business disruption are reduced when

complexity increases.

Here are some ways to follow the KISS principle in your day-to-day work:

• Focus on a simple solution that meets the requirements.

• Avoid the “Rolls Royce” solution when you need a low-end car.

• Break down your problems into many small problems. Each problem

should be able to be solved.

• Apply design methodologies to solve the problem and then code it.

• Design the problem as easy to develop and easy to throw away;

sometimes throwing away and re-creating is simpler and cheaper

than maintaining it.

• Make it easier for the developer to visualize the various aspects of the

application, mentally mapping the possible effects of any change.

This involves knowing the dependencies and state of the application.

• Avoid abstraction and dependencies.

• Avoid flaunting. Most architects and designers flaunt their skills and

knowledge, which makes design unnecessarily complicated.

Try to keep it as simple as possible. This is the hardest behavior pattern to apply, but

once you have it, you’ll look back and will say “ I can’t imagine how I was doing work

before.”

Don’t oversimplify a design. Stop breaking things down when you reach a point that

negatively affects the design of the application.

 Don’t Repeat Yourself
The don’t repeat yourself (DRY) principle aims to reduce repetition in the software

application. It says that every piece of knowledge must have a single, unambiguous,

authoritative representation within a system.”

Chapter 3 Cloud Native arChiteCture priNCiples

108

This principle applies at the code level and architecture level. When code is

duplicated across many packages in the application, it makes maintainability harder,

and this leads to a bigger codebase that is difficult to modify. Finally, it becomes a

technical debt. In an architecture decision, you don’t need to build everything; use the

packages or software already available on the market instead of building on your own.

Duplication Is Waste

Every line of code that goes into the system must be organized and maintained or it

will be a potential source of future bugs. Duplication needlessly bloats the codebase,

resulting in more opportunities for bugs and adding accidental complexity into the

system. The maintainability of the code becomes a nightmare. It can lead to technical

debt, and enterprises need to spend effort and time on refactoring the codebase.

The DRY Principle in Polylithic and Polyglot Architecture

When designing microservices, the DRY rule applies here also, as Sam Newman said

in his book Building Microservices: “Don’t repeat yourself inside microservices. The

dilemma is about reusing across microservices. The basic principle of microservices is

to “avoid dependencies between microservices.” Even though there is a dependency, but

it should be very minimal. As part of the microservices design, we need to reuse some

utility or generalized functionality across microservices, but the challenge is how to find

the right balance to apply the DRY principle.

As shown in Figure 3-35, one of the well-known approaches is to create a package

as a library for reusing code and maintain the package separately outside of the

microservices code, and then use well-structured build pipeline to include relevant

libraries into the microservice package.

Chapter 3 Cloud Native arChiteCture priNCiples

109

Let’s examine several considerations when you are applying the DRY principle in the

context of microservices.

• Use semantic versioning from the beginning of the project.

• Limit the code and functionality in libraries by design.

• Design a package such a way that the functionality of the code

doesn’t change often.

• Standardize on a naming convention so that other microservices

teams can discover these packages.

• You need to set up proper governance to manage these packages

How does the DRY principle reduce maintenance costs?

If the code is duplicated and needs to be changed, you need to find all the places where

it is duplicated and apply changes to all of them. This is more difficult than modifying in

one place, and this leads to more errors and technical debt. You can think of it like you

accidentally apply it differently in one location than another location, or you can modify

code that happens to be the same. Duplicate code tends to obscure the structure and

intent of your code, making it harder to understand and modify.

In some places, the DRY principle is good to follow, but some places need to

maintain duplication due to unavoidable situations, but in that duplication, make sure

you follow proper packaging such as using a library and governance to manage such

code.

Microservice C
Package Library X

Microservice B
Package Library X

Microservice A
Package Library X

Library X
Package

Artifactory

Microservice
A

Microservice
B

Microservice
C

Source Code
Repository

Microservices B

Build
Pipeline

Microservice C

Microservice B

Microservice A

Figure 3-35. DRY principle in microservices

Chapter 3 Cloud Native arChiteCture priNCiples

110

 Isolate
When building a cloud native architecture, one of the primary goals is to achieve a

degree of isolation between services within one business application.

When we design an application that is cloud native, the application should be

fragmented into multiple, independently executing services. By physically separating

services, we will introduce isolation between application modules, which allows us to

reduce the coupling between modules or microservices and potentially increase each

module’s scalability.

What do we mean by isolation?

The concept of isolation means that changes to one module of the architecture generally

don’t impact or affect elements of another module. The change is isolated to the

elements within the module, which does not have any knowledge of the inner workings

of another module.

Isolation in Cloud Native Applications

When working with cloud native architecture, we focus on three dimensions of isolation:

state, space, and failure.

One of the primary characters of a cloud native application is the state. The

individual module or microservices are wholly responsible for maintaining the state; any

access to this state from other modules is through REST APIs.

Space refers to the location in which modules are deployed. The deployment

strategy changes radically for cloud native applications. In a cloud native architecture,

the modules are deployed independently and execute with the separate process in

containers. This allows each service to be managed independently. The ability to

manage application elements independently allows remediating defects and new

features to be deployed automatically with infrastructure as code.

Failure refers to how the application modules isolate the failure between modules.

Each module in a cloud native architecture executes independently; the failure will

no longer crash the entire application. During application design, avoid propagation

of failure and try to use the Bulkhead pattern to both isolate and mitigate failure; the

patterns are explained in Chapter 4.

Chapter 3 Cloud Native arChiteCture priNCiples

https://doi.org/10.1007/978-1-4842-7226-8_4

111

Applying Isolation to Software Design

Software architects should design modules by following isolation principles. These best

practices will help you while designing an application:

• Limit or restrict unneeded interactions or dependencies.

• Protect system integrity by preventing one process from interfering

with another.

• Provide boundaries so individual failures do not compromise the

whole system.

• Limit exposure to a particular area of the system.

 Separation of Concern
Separation of concern (SoC) is a design principle that manages the quality and

complexities of an application by decoupling the software system so that each isolated

module is responsible for a separate concern, minimizing the dependency as much

as possible. At a low level, this principle is closely related to the single responsibility

principle.

The SoC involves decoupling larger problems into smaller manageable problems. It

improves the quality of software by reducing complexity.

The term separation of concern was probably coined by Edsger W. Dijkstra in his

1974 paper “On the role of scientific thought.”

In 1989, Chris Reade in his book Elements of Functional Programming describes SoC.

The programmer has to do several things at the same time, namely, the following:

• Describe what is to be computed.

• Organize the computation sequencing into small steps.

• Organize memory management during the computation.

Applying SoC to Software Design

SoC is achieved by establishing boundaries. A boundary is any logical or physical

constraint that delineates a given set of responsibilities. Some examples of boundaries

include the use of modules, methods, layers, and services.

Chapter 3 Cloud Native arChiteCture priNCiples

112

At the design level, the application can follow an SoC by separating different

elements such as user interfaces, APIs, database, business logic, etc. An example of a

pattern is the Model-View-Controller pattern.

 Use Layering
The most common principle is the use layering principle. This pattern was the de facto

standard principle for all the web applications since the MVC pattern and has been in

use for quite some time. In today’s world, this principle is still relevant in cloud native

architecture.

Elements within a layered architecture are organized into horizontal and vertical

layers, and each layer within an application performs specific functionality. Although

this principle does not specify the number and types of layers that exist, it all depends on

what type of application you are developing.

Layering in Traditional Application

As shown in Figure 3-36, traditional software architecture consists of four standard

layers: presentation, business, persistence, and database. A smaller application may

have only three layers, and a large and complex application may have four to five layers.

Presentationn Layer Web
Component

Web
Component

Business Layer Business
Component

Business
Component

Persistence Layer
Data Access

Object
(DAO)

Data Access
Object
(DAO)

Database Layer

Figure 3-36. Traditional architecture layering approach

Chapter 3 Cloud Native arChiteCture priNCiples

113

The presentation layer is responsible for handling all user interfaces, whereas

the business layer is responsible for executing specific business functionality, the

persistence layer is responsible for connecting and managing database access, and the

database layer is responsible for storing information.

Layering in Cloud Native Application

A cloud native application is composed of various logical layers, as shown in Figure 3-37,

and grouped according to responsibility and deployment. Each layer in a cloud native

application runs specific tasks, and each task can be a separate microservice.

The presentation layer provides a user experience through the web application and

mobile native application.

The business layer runs stateless services that expose the API; this layer can

dynamically expand and shrink depending on the usage at runtime by using the

autoscaling option of the cloud.

The security layer provides security as a service to the entire application including

access, security at rest, and security at transit.

The database layer has stateful services that are backed by polyglot persistence.

Stateful services rely on traditional RDBMS, NoSQL, object storage, graph storage, etc.

Web

Native App

API Security

Microservices RDBMS

NoSQL

Object
Storage

Event
Driven

Batch
Legacy

Enterprise
Applications

SaaS
Applications

Compliance &
Regulatory
Applications

Compliance

Presentation
Layer

Business
Layer

Security
Layer

Database
Layer

Integration
Layer Legacy Layer

External
Layer

SaaS Layer

Figure 3-37. Cloud native architecture layering approach

Chapter 3 Cloud Native arChiteCture priNCiples

114

The integration layer has an event-driven architecture and batch jobs; the event-

driven architecture can use a variety of services in the cloud that connects various

internal legacy and external third-party applications. The interconnection may be

synchronous or asynchronous or batch.

Cloud native applications interoperate with the existing enterprise applications at

the legacy layer; these legacy applications may host in the cloud or on-premises.

Cloud native applications interoperate with various third-party applications such as

payment, regulatory systems, etc.

Some cloud native applications can interoperate with third-party SaaS providers;

these SaaS applications may host in the same cloud or multicloud environment.

Applying Layering to Software Design

The layered architecture principle is general-purpose, making it a good starting point for

most applications. You need to consider the following few points when you are applying

the layering principle in your architecture:

• Divide and conquer by decomposing the system in different logical

layers.

• Apply SoC when designing the layering approach.

 Information Hiding
Information hiding focuses on hiding the nonessential details of functions and code in

a program so that they are inaccessible to other components of the software. Software

designers and developers apply information hiding in software design and coding to

hide unnecessary details from the rest of the modules. The objective of the information

hiding is to minimize complexities among different modules of the application.

The information hiding principle suggests the architecture be designed as modules

or microservices in such a way that they hide implementation details from the

consumers.

D.L. Parnas introduced the term information hiding in 1972 in “On the Criteria to be

Used in Decomposing Systems into Modules.” The idea was that each module should

hide some design decisions from the rest of the system, especially decisions that would

have cross-cutting effects if changed.

Chapter 3 Cloud Native arChiteCture priNCiples

115

A well-designed system means that it needs to be well-organized. We presented

various principles to achieve. You do not need everything in your system to know about

everything else. So, how do you limit the information the various modules can have

access to? Information hiding allows elements of the module to give accessors the

minimum amount of information needed to use them correctly and hide everything else.

Information hiding is often associated with encapsulation.

Why Information Hiding?

Information hiding is relevant in all levels of application; exposing only the details that

are required improves the quality of the software and reduces the complexity. Most

importantly, it improves maintainability and security. Hiding implementation reduces

potential coupling and dependent modules, which will reduce the effect of the change

on your implementation.

Applying Information Hiding to Software Design

Information hiding can be useful in designing your module and APIs. The gap between

theory and practice in module design is wide, and among many designers, the decision

about what to put into an API amounts to deciding what interface would be easiest to

write internal code to, which results in exposing as much of the elements in the APIs as

possible. I have seen that most programmers would rather expose all the elements and

write extra lines of excess code to keep module secrets intact.

Asking about what needs to be hidden supports good design decisions at all levels. It

promotes the use of named constants instead of literals at the implementation level. Get

into the habit of asking “What does a consumer want?” or “What should I hide?” You’ll

be surprised at how many decisions vanish before you.

 You Aren’t Gonna Need It
You Aren’t Gonna Need It YAGNI is an acronym that stands for “You Aren’t Gonna

Need It” or “You Ain’t Gonna Need It.” It is a principle from the Extreme Programming

methodology. YAGNI states that you should prioritize the functionality in a backlog until

it is completed.

Chapter 3 Cloud Native arChiteCture priNCiples

116

Idea of YAGNI

The idea of YAGNI is that you should only implement features that are required and not

just because you think you may require them sometime later. Ron Jeffries, the author and

cofounder of XP, said this:

“Always implement things when you need them, never when you just foresee
that you need them.”

Even if you are sure that you will need a feature or piece of code later, do not

implement it now. Implement it when the feature required. Most likely, you will not need

it after all, or what you need is quite different from what you foresaw needing earlier.

The reason you may consider building presumptive features is that you think it will

be cheaper to build it now rather than build it later. Before making a decision, the cost

and time comparison must be made against the cost of delay. Spending time and money

on a feature you don’t need now takes away time and money that are required for other

immediate features. This doesn’t mean you should avoid building flexibility into your

application. It means you shouldn’t overengineer something based on what you think

you might need later.

The idea of YAGNI is that you save time because you avoid writing code that you do

not need; our code is better because you avoid polluting it with guesses or assumptions

that turn out be wrong and end up with technical debt and require refactoring.

How to Decide What You Need

Martin Fowler wrote in his blog, “YAGNI only applies to capabilities built into the

software to support a presumptive feature; it does not apply to effort to make the

software easier to modify.” YAGNI is a viable strategy only if the code is easy to change, so

expending effort on refactoring isn’t a violation of YAGNI because refactoring makes the

code more malleable.

In cloud native architecture, we are building loosely coupled independently

deployable software with the principle of ease of maintenance, ease of test, and ease of

extension. By considering this, the YAGNI principle is very relevant now. It means you

can add any feature at any time without affecting the existing implementation. What you

need is to manage backlog smartly so that the features can be mapped to the particular

microservices features, this helps the team to pick easily for development.

Chapter 3 Cloud Native arChiteCture priNCiples

117

 SOLID Design Principles
SOLID principles are an object-oriented approach that is applied to software design

and coding. It was conceptualized by Robert C. Martin in 2000, and the acronym was

coined by Michael Feathers. These five principles are the de facto standard for OO

programming.

The idea of the SOLID principle is to reduce dependencies so that developers can

change one area of software without impacting others. These principles are intended

to make designs easier to understand, maintain, and extend. Ultimately, using these

principles makes it easier for software development to avoid issues and to build

adaptive, effective, and cloud native software.

These principles have become important in cloud native applications. When

followed correctly, you can achieve maintainability, extensibility, and testability of

software design.

The SOLID principle is a framework consisting of complementary principles that are

generic and open for interpretation but still give enough direction for creating a good

object-oriented design. The SOLID is a mnemonic acronym for five design principles

intended to make software designs more understandable, flexible, and maintainable.

SOLID stands for the following:

• Single responsibility principle

• Open-closed principle

• Liskov substitution principle

• Interface segregation principle

• Dependency inversion principle

 Single Responsibility Principle
The single responsibility principle is one of the most tried and tested in software design.

Every module or microservices should do one thing.

This principle states that each module should have a single responsibility or a single

job or a single purpose. The responsibility of a module should have one and only one

reason to change, meaning that a module should have only one job. This means each of

your modules or microservices should serve only one greater purpose and change only

Chapter 3 Cloud Native arChiteCture priNCiples

118

if the greater purpose changes. It doesn’t mean each module or microservices doesn’t

require you to stick just one task or contain only one unit of work, but these tasks or units

or elements all need to cohesively relate to the greater purpose of the microservice.

If a microservice has multiple responsibilities, there is a possibility that it is used all

over the place. When one responsibility changes in the microservices, then we need to

test the entire set of responsibilities whether it is changed or not.

This principle is related to the separation of concern principle; as concerns are

separated from each other, it facilitates the creation of microservices that have a single

responsibility.

Applying Single Responsibility to Microservice Design

Microservices serve a single responsibility in a domain. As shown in Figure 3- 38,

each domain like Customer Account, Payment, or Quote is considered to be a

microservice, so these domains serve a single responsibility. This domain model is from

the Auto Insurance domain.

The Customer Account provides the functionality of customer account management

like customer profile, vehicle details, payment details, customer details, etc. The

Customer Account microservice invokes payment microservices to process a payment

for insurance purchase based on the quote created.

Customer Account

QuotePayment

Customer Account

Quote

Payment

Figure 3-38. Single responsibility principle in microservices design

Chapter 3 Cloud Native arChiteCture priNCiples

119

 Open-Closed Principle
The open-closed principle states that software entities should be open for extensions

and closed for modification. When functionality changes, the entity can allow its code to

be extended without modifying the existing code that has already been developed.

At a code level or class level, you should be able to extend the class’s behavior

without modifying it. This extension can be done by extending the class, either using

inheritance or using composition.

At the architecture level, we are not modifying the functionality of an existing

module but always add new elements by using the existing design.

Applying Open-Closed to Microservices

Even though this principle was created for object-oriented programming, this principle

is still relevant in cloud native architecture.

In cloud native, you expose your functionality through either APIs or event-driven

messaging. These APIs are contracted with the consumer, and you cannot modify the

existing contract; instead, you extend it.

Let’s move on to the specific example of insurance. As shown in Figure 3-39,

imagine we work in an Auto Insurance domain, and you are building a new cloud native

application. During the insurance process, the customer requests insurance by providing

vehicle details and other customer details; your user experience invokes the customer

microservices through APIs. You define an API contract between your customer account

microservices and user experience (web and mobile native application) and to the third-

party agent application.

Chapter 3 Cloud Native arChiteCture priNCiples

120

Your business team would like to add new functionality for the existing one; in this

case, are you going to modify a customer account microservices or add new functionality

into the customer account? You will extend the functionality and provide a new API with

the new version. Here you are doing open for extension and close for modification.

Customer Account Quote

Payment

Invoicing

E
ve

nt
-D

riv
en

: P
ay

m
en

t P
ro

ce
ss

in
g

Event-Driven: Insurance
Quote E

vent-D
riven: Finalise

Q
uote

A
P

I:
C

us
to

m
er

 v
1.

0

A
P

I:
Q

uo
te

User Experience

Customer Agent

A
P

I:
C

us
to

m
er

 v
1.

1

Figure 3-39. Open-close principle in microservices

Chapter 3 Cloud Native arChiteCture priNCiples

121

 Liskov Substitution Principle
The Liskov substitution principle (LSP) defines that objects of a superclass will be

replaceable with objects of its subclasses without breaking the application. This

principle allows subclasses to inherit from a superclass, which includes the properties

and methods of the superclass. This principle is like the design by contract concept

defined by Bertrand Meyer.

In cloud native architecture, the design by contract is part of the API contract and

relies on preconditions, postconditions, and invariants. The API contract is the contract

of messages between your API provider and the consumer that will be used across

channels.

Applying Liskov Substitution to Microservices Design

The LSP in OOP is to enable your code using type T1 to use type T2 instead, as T2 is a

subtype of T1. In other words, you don’t want to break existing code but alter behavior. If

you apply LSP to microservices, you don’t want to break existing clients of the service but

replace them with better or enhanced ones.

We will use the same example as shown in the open-close principle with the

modification of the API contract.

In the example shown in Figure 3-40, you need to find a way to replace the

microservices Customer Account version 1.0 with version 1.1, not only breaking existing

consumers but having them utterly unaware of these changes.

Chapter 3 Cloud Native arChiteCture priNCiples

122

Customer Account Quote

Payment

Invoicing

E
ve

nt
-D

riv
en

: P
ay

m
en

t P
ro

ce
ss

in
g

Event-Driven: Insurance
Quote E

vent-D
riven: Finalise

Q
uote

A
P

I:
C

us
to

m
er

 v
1.

0

A
P

I:
Q

uo
te

User Experience

Customer Agent

A
P

I:
C

us
to

m
er

 v
1.

1

Figure 3-40. Liskov substitution to microservices design

The API contract for the Customer Account version 1.0 and the API version 1.0 of

Customer Account is as follows:

GET https://mydomain/customer/resource-a
Accept: application/json; version 1.0

Chapter 3 Cloud Native arChiteCture priNCiples

123

Some consumers want to add new features to the Customer Account microservice;

here you need to extend it without affecting the existing customer. Here you need to

introduce version 1.1, the API contract for the customer Account version 1.1, the API

version 1.1 of customer Account as follows:

GET https://mydomain/customer/resource-a
Accept: application/json; version 1.1

 Interface Segregation Principle
Interfaces in OOP define methods and properties but do not provide any

implementations. Classes that implement interfaces provide an implementation.

Interfaces define a contract, and consumers can use them without concerning

themselves with their implementation details. The implementation can change, and if

interfaces are not modified, the consumer does not need to change their logic.

In a cloud native architecture, an API is the interface between the consumer and

implementation; the API provides the interface with properties and HTTP methods.

Microservices that implement APIs provide an implementation.

The interface segregation principle (ISP) states that consumers should not be forced

to depend on properties and methods that they do not use. This is exactly what an API

implementation provides, you design APIs to provide an optional property with HTTP

methods so that consumers can use only relevant properties and HTTP methods.

 Dependency Inversion Principle
The dependency inversion principle (DSP) is a specific form of decoupling software

modules for handling dependencies between modules and writing loosely coupled

software systems.

The principle states the following:

• High-level modules should not depend on low-level modules. Both

should depend on abstractions.

• Abstractions should not depend on details. Details should depend on

abstractions.

Chapter 3 Cloud Native arChiteCture priNCiples

124

In cloud native architecture, you can use DSP to design your microservice’s internal

layers and decouple dependencies between the API, database, and infrastructure. It has

nothing to do with your domain but is related to the application microservice design.

This principle allows you to decouple the infrastructure layer from the application’s

deployment layers.

 Summary
In this chapter, you learned various cloud native architecture principles and how to

adopt these principles in a cloud native architecture.

To design the best cloud native architecture, several principles can be applied,

such as API first, polylithic and polyglot, consumer first, a culture of automation, digital

decoupling, evolutionary design principles, etc. After you design services, you must run

these services in production. For effective runtime efficiency, several principles can be

applied, such as isolate failure principle, deploy independently, be smart with the state,

design for failure, etc.

Security is the most important part of any application, and cloud native architecture

is no different. To implement effective security in an application, several principles can

be considered, such as defense-in-depth, shift left in security, security by design, etc.

Once you design an application, the next most important part is how you develop

and deliver the software, and a number of principles such as agility, shift-left, products

not projects principles must be adopted.

The container is the de facto standard for cloud native applications; the effective

configuration of containers in a cloud native architecture is important. Therefore, you

need to apply container principles for your deployment using principles such as SCP,

HOP, LCP, IIP, PDP, SCP, and RCP.

You learned that to design orthogonal software systems that can be extended

while minimizing the impact on existing and new functionality, you need to focus on

loose coupling and high cohesion. Complexity is an important concept in software

application; architects and designer think they need to build the Taj Mahal or Eiffel

Tower. But the customer wants something else; therefore, you need to apply these

principles to make sure you deliver what the customer wants: KISS, DRY, information

hiding, YAGNI, and SoC.

Chapter 3 Cloud Native arChiteCture priNCiples

125

The SOLID design principles, which include SRP, OCP, LSP, ISP, and DSP, can

be used to design and develop code that addresses maintainability, reusability,

testability, and flexibility concerns. Several practices, such as agility, product centric,

decentralization, and shift-left, improve the quality of software systems.

Cloud native architecture patterns are reusable solutions that can be used to solve

recurring problems. In the next chapter, we will go over some of the common cloud

native architecture patterns so that you will be aware of them and can apply them

appropriately to your services.

Chapter 3 Cloud Native arChiteCture priNCiples

	Chapter 3: Cloud Native Architecture Principles
	What Are Architecture Principles?
	Cloud Native Design Principles
	API First Principle
	Monolithic Architecture Principle
	Polylithic Architecture Principle
	Applying the Polylithic Principle in Architecture
	Properties of Polylithic Principles

	Polyglot Persistence Principle
	Applying the Polyglot Persistence Principle in Architecture

	Modeled with Business Domain Principle
	Consumer First Principle
	Decentralize Everything Principle
	Culture of Automation Principle
	Always Be Architecting Principle
	Interoperability Principle
	Digital Decoupling Principle
	Single Source of Truth Principle
	Evolutionary Design Principle

	Cloud Native Runtime Principles
	Isolate Failure Principle (IFP)
	Deploy Independently Principle
	Be Smart with State Principle
	Location-Independent Principle
	Design for Failure Principle

	Security Principles
	Defense in Depth Principle
	Security by Design Principle
	SQL Injection
	Cross-Site Scripting (XSS)

	Software Engineering Principle
	Products Not Projects Principle
	Shift-Left Principle
	Shift-Left Security
	Shift-Left Performance

	Container Principles
	Single Concern Principle
	High Observability Principle
	Lifecycle Conformance Principle
	Image Immutability Principle
	Process Disposability Principle (PDP)
	Self-Containment Principle
	Runtime Confinement Principle

	Principles of Orthogonal
	Cohesion
	Types of Cohesion
	Function Cohesion
	Sequence Cohesion
	Communication Cohesion
	Procedural Cohesion
	Temporal Cohesion
	Logical Cohesion
	Coincidental Cohesion
	Applying High Cohesion to Software Design

	Coupling
	Types of Coupling
	No Coupling
	Message Coupling
	Data Coupling
	Stamp Coupling (Data-Structured Coupling)
	Control Coupling
	External Coupling
	Common Coupling (Global Coupling)
	Content Coupling (Pathological Coupling)
	Law of Demeter (LoD) or Principle of Least Knowledge
	Applying Loose Coupling to Software Design

	Software Quality Principles
	KISS Principle
	Applying KISS to Software Design

	Don’t Repeat Yourself
	Duplication Is Waste
	The DRY Principle in Polylithic and Polyglot Architecture
	How does the DRY principle reduce maintenance costs?

	Isolate
	What do we mean by isolation?
	Isolation in Cloud Native Applications
	Applying Isolation to Software Design

	Separation of Concern
	Applying SoC to Software Design

	Use Layering
	Layering in Traditional Application
	Layering in Cloud Native Application
	Applying Layering to Software Design

	Information Hiding
	Why Information Hiding?
	Applying Information Hiding to Software Design

	You Aren’t Gonna Need It
	Idea of YAGNI
	How to Decide What You Need

	SOLID Design Principles
	Single Responsibility Principle
	Applying Single Responsibility to Microservice Design

	Open-Closed Principle
	Applying Open-Closed to Microservices

	Liskov Substitution Principle
	Applying Liskov Substitution to Microservices Design

	Interface Segregation Principle
	Dependency Inversion Principle
	Summary

