
479
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_12

CHAPTER 12

“-ilities” Fitness Function
After designing a solution, you must evaluate your design by using the fitness function

to ensure it can solve the problems under consideration. To check the functional

requirements fitness, you might be using test-driven development, but what about the

“-ilities”? How will you check the fitness function for the “-ilities”? This chapter gives you

insight into the step-by-step approach for the “-ilities” fitness function.

In a modern cloud native environment, the architecture will evolve constantly to

support business changes. How do you support evolution? You have everything to

support and test the functional use cases, but what about the architecture, design, and

the “-ilities”? Does your designed software support all the architecture elements and

decisions, not with theory but with actual data points? For example, how do you shift left

the PowerPoint version of the architecture block diagram into the real implementation?

In the age of cloud native and modern-day architecture, you need to predict the

performance and behavior of your architecture during the development time, not at the

end of the development lifecycle; it is about being proactive, not reactive.

In the previous chapter, I explained how to design the architecture for the “-ilities”

and assess the health of a system.

In this chapter, you will gain more insight into how to conduct a fitness check of the

designed “-ilities.”

•	 What is fitness in architecture?

•	 How do you create a fitness function?

•	 How do you test the fitness function?

•	 How do you measure the fitness function?

https://doi.org/10.1007/978-1-4842-7226-8_12#DOI

480

�What Is a Fitness Function?
In evolutionary computing, a fitness function is a type of objective function that is used

to determine how close a given solution is to achieving the desired result. The function

returns the fitness of your architecture. These functions take the solution to the problem

as input, and they produce as output details about how to fit and how good the solution

is concerning the problem under consideration.

The fitness function is being used in genetic programming and genetic algorithms to

guide simulations toward an optimal design solution.

A genetic algorithm is a machine learning technique that attempts to solve a

problem from a pool of candidate solutions. These generated candidates are iteratively

evolved and mutated and selected for survival based on a grading criterion, called the

fitness function. For example, when using a genetic algorithm to optimize a driverless

car, the fitness function assesses the identification of safety, signboards, objects, zebra

crossings, and other characteristics that are desirable to create a 100 percent safe

driverless car.

A fitness function can be applied to a cloud native architecture to determine how

close the designed architecture is to achieving the desired characteristics. Fitness

functions are an objective way to assess architectural characteristics.

In cloud native architecture, the fitness functions are used to evaluate the design

for “-ilities,” and the defined architecture must be evaluated using a fitness function

algorithm to ensure its ability to meet the required service level agreements (SLAs),

service level indicators (SLIs), and service level objectives (SLOs) under consideration.

The fitness function is not generic; each system’s “-ilities” varies. Some systems

require more security, some systems require high scalability and availability, and some

might require more resilience to failure. Therefore, your input and output of a fitness

function are system-specific.

As shown in Figure 12-1, a fitness function takes target input and applies the fitness

algorithm for all the required “-ilities” based on input and generates the output with

metrics. The fitness function represents every requirement of your system. You can

consider the fitness function as a metric or test case. Some “-ilities” require a test case;

for example, the performance fitness requires you to run performance test cases to

identify fitness metrics.

Chapter 12 “-ilities” Fitness Function

481

A fitness function should be clearly defined and provide a quantitative measure of

how fit a solution is for a particular problem. A quantitative measure is how fit a solution

is for a particular problem, while a quantitative result matrix is what will allow you to

compare the architecture before and after a change is introduced.

�Categories of Fitness Functions
A fitness function protects the various architectural constraints of the system. The

constraints are not the same across the system. They vary depending on the nature of

the system. You can check the fitness function in various dimensions such as scope,

frequency, domain, global presence, architecture type, and other ways.

Atomic vs. Holistic
The atomic fitness function focuses on a single context and one architectural

characteristic. For example, you can have a single “-ilities” unit test that is designed to

test cohesion, coupling, etc., and is atomic.

A holistic fitness function takes multiple architectural characteristics into

consideration at the same time, for example, by conducting security and performance

fitness functions together and calculating the quantitative matrix.

Triggered vs. Continuous
Triggered fitness functions are executed based on some event. For example, the “-ilities”

unit test is executed as part of the build.

a1

a2

x1

x2

x3

a1

Fitness Function

Target Input
Target Input

Target Input

Scalability
Availability

Fault
tolerance

Security
…..

Target Input
Target Input

Output

Metrics

Figure 12-1.  Fitness function

Chapter 12 “-ilities” Fitness Function

482

A continuous fitness function runs constantly, and its execution is not based

on some occurrence of some event. For example, the monitoring tool monitors

continuously, which will send an alert when certain conditions are met.

Static vs. Dynamic
A static fitness function is one in which the value for the condition that we are testing

for is constant. A test is looking to ensure that the result is less than some static numeric

value or that a test that returns true or false returns the value that you expect.

The dynamic fitness function change is based on a different context. For example,

the performance test might be different depending on the current level of scalability. At a

much higher level of scalability, a lower level of performance might be acceptable.

Automated vs. Manual
Automated fitness functions are triggered automatically. They could be part of the

automated unit test or part of the continuous integration (CI) pipeline. In cloud native,

the preferred approach is automated. However, there are many times you may require

executing fitness tests manually.

Temporal
The temporal fitness function is based on a designated amount of time. Other fitness

functions are focused on architectural change but are triggered based on time. For

example, the fitness function is created for a system patch on certain days. This executes

based on time.

International vs. Emergent
Many fitness functions can be defined during the discovery phase of a project; these

are known as international fitness functions. However, some characteristics of the

architecture are not known right from the beginning but emerge as the system continues

its development. These fitness functions are known as emergent ones.

Chapter 12 “-ilities” Fitness Function

483

Domain-Specific
Domain-specific fitness functions are based on specific concerns related to the business

domain such as compliance, regulatory, security, etc. A domain-specific fitness function

can ensure that the architecture continues to conform to these requirements.

All these categories are executed either during design or at runtime; they are further

classified here.

Design-Time Fitness Function
At design time, you need to run fitness functions related to atomic elements like a unit of

code or static security. For the code fitness function, you have to write a unit test specific

to the architectural concerns such as coupling and cohesion, and write a domain-driven

fitness function to check against the domain modularity of your system.

Runtime Fitness Function
In the runtime fitness function, you need to consider running a fitness function for the

context of one “-ility” or implement a holistic approach by combining more than one

“-ility.” In the single context, you can examine the fitness of runtime security, that is,

dynamic security testing (DAST) on OWASP vulnerabilities or scalability testing against

the SLA.

In a holistic runtime fitness function, you need to combine more than one “-ility”

to conduct a fitness function, for example, combining dynamic security and scalability,

security, and performance. This helps you to identify whether your system can meet the

target SLA holistically. Here you need to execute both security and scalability fitness

together.

�Execution of the Fitness Function
The fitness test can execute either as a single manual or as a continual part of the

DevSecOps pipeline.

Chapter 12 “-ilities” Fitness Function

484

Manual Execution
The design-time and runtime fitness function tests are executed manually by the

engineers either in the development environment or in the test environments. Many

projects globally still follow a manual approach to developing, testing, and deploying;

therefore, these systems are required to conduct fitness tests by using certain tools. For

example, the “-ilities” unit test can be run by the developer on their machine or in a

development environment, and the performance engineer can execute the performance

test by using tools in a QA or performance environment.

Even though you are using automation in your project, some aspects of fitness

functions resist automation; therefore, you require a manual execution.

Automated Execution
In the automated context shown in Figure 12-2, there are both-design time and

runtime fitness test within an automated context, like a continuous integration (CI) and

continuous delivery (CD) pipeline. In the pipeline, you can execute the “-ilities” test

cases and implement a single and holistic approach of a runtime fitness test.

After collecting the fitness functions, configure them in a testing framework. Ideally,

the fitness function should address the requirements of the “-ilities” in terms of an

objective metric that is meaningful to stakeholders. Regular fitness function reviews can

focus architectural efforts on meaningful and quantifiable outcomes.

You can configure unit test jobs and domain-driven bounded context test jobs as

part of the CI/CD pipeline for the continual execution of design-time fitness. As a result

of this automation, every new and major change in service is developed in a way to pass

the fitness functions.

Domain Unit Test Build & Deploy
Functional &

Integration Test

-ilities Unit Test Code Quality Resilience Test Performance Test

Security Test Observability Test Fault Tolerance Test Availability Test

Scalability Test Auditability Test Reliability Test Sustainability Test

UAT

Production
Deployment

SCM

Figure 12-2.  Automated fitness function

Chapter 12 “-ilities” Fitness Function

485

For a runtime fitness function, you configure a single-context approach to execute

every “-ility” to make sure each one meets the SLAs and later executes a holistic

approach by combining various “-ilities.” For example, combine security cases like API

authentication, security at transit, and data encryption along with the performance of

state and intercommunication of services. Once you execute the functions, you can

create a matrix of both and compare the results.

�Fitness Function Identification
You need to define most of the fitness functions in the project discovery phase as they are

characteristics of architecture and design, but this is not final. As your project evolves,

you need to revisit your fitness function to accommodate evolution. As I mentioned,

the fitness function is not generic; it has to be project-specific and industry-specific. For

example, the financial industry has a lot more compliance than other industries, and an

ecommerce application and trading platform has more spikes than other industries.

During the identification of the fitness functions, you need to categorize them based

on relevance to your project because these fitness functions directly impact your design

decisions. The categorization based on relevance is as follows. Each fitness function

must have objectives and quantifiable results.

Key: These categories of fitness functions directly impact your

design decisions and architecture choice.

Relevance: These categories do not directly impact the design and

architecture decisions but relevance during the realization of a

design.

Not Relevant: These categories are not of much importance but

are nice-to-have fitness functions.

�Fitness Function: Coupling and Cohesion
To conduct a fitness test on coupling and cohesion “-ilities,” you need to write a “-ilities”

unit test that verifies against the developed code. Two strategies are available to conduct

fitness test.

•	 By layer

•	 By feature

Chapter 12 “-ilities” Fitness Function

486

The layered classical approach is followed by the Model View Control (MVC) pattern;

this strategy is based on horizontal layering. The by-feature strategy is when the features

are organized by vertical layer. All domains or features related to a single domain reside

in a single layer. This matches the layout of a cloud native service.

To illustrate the by feature fitness function, as shown in Figure 12-3, I have created

a small Java project that contains a package structure with dummy classes and

components.

As shown in Figure 12-4, I defined two services and defined the rules. If you write

code that invokes service A and service B cyclically, the unit test fails. I prefer to write

these test cases along with the domain test cases. You need to make sure that all these

“-ilities” unit test cases are executed separately and owned by the architecture team.

Figure 12-3.  Code package of cloud native services

Figure 12-4.  Jdepends verify of fitness function for coupling and cohesion

Chapter 12 “-ilities” Fitness Function

487

To execute these test cases, you need to make sure to configure the CI pipeline as a

separate job to track the metrics of the fitness function.

�Fitness Function: Security
To conduct your architecture and design fitness function, there are two strategies. Each

strategy evaluates various fitness functions for your architecture.

•	 Static security system testing (SAST)

•	 Dynamic security system testing (DAST)

SAST conducts a fitness test of your encryption, SQL injection, input validation, stack

buffer overflows, and false-positive analysis. DAST conducts a fitness test of the OWASP

Top 10 vulnerabilities like cross-site scripting, broken authentication, broken access

control, and more.

To verify SAST, there are various tools like IBM App Scan, the Fortify static code

analyzer, Code Scan, etc. To conduct DAST, tools like OWASP ZAP, Burp Suite,

Checkmarx, etc., can be used.

The design-time fitness function is executed along with the CI pipeline, as shown

in Figure 12-4. As I mentioned, you need separate unit test cases for functional

requirements and the “-ilities,” the both the test cases need to execute separately to get

the execution metrics, and need to run SAST and DAST along with the pipeline.

The execution of functional testing before or after the fitness function depends on

each pod team.

�Fitness Function: Extensibility, Reusability, Adaptability,
and Maintainability
A code quality test helps you identify fitness functions for extensibility, reusability, and

maintainability. These tests are added to the pipeline to determine the relevant “-ilities.”

This set of fitness functions can serve as quality gates to prevent unmaintainable code in

production.

Quality gate tools like SonarQube can be used to create fitness function for the

“-ilities.” You can configure a maintainability rating and reliability rating fitness function

in the tool.

Chapter 12 “-ilities” Fitness Function

488

�Fitness Function: Performance
The fitness function for performance should be defined during the discovery phase; not

all services are required to perform in a similar way. Various tools and frameworks provide

mechanisms to build tests and test load in a variety of scenarios. The performance fitness

function should be executed as part of the CI/CD pipeline in a separate environment, and

the configuration of the environment should mimic the production environment.

Tools like JMeter, Load Runner, etc., can be used to test the fitness function, and

these tools should be configured as part of the CI/CD pipeline and use tools like Gatling

to execute the fitness function early in the programmer development environment. Use a

configuration environment that mirrors production for the performance fitness test.

�Fitness Function: Resiliency
Use a fitness function for resiliency to identify and ensure the availability of an

application during failure. This fitness function configures the code to handle tolerance

and then retires. You can use load test tools to check the resiliency of your service. The

metrics can be calculated as several successful versus unsuccessful requests. You can use

Chaos Monkey tool to test the resilience fitness function.

�Fitness Function: Scalability
Use a fitness function for scalability to ensure a service can scale based on user spikes.

This fitness function configures containers and Kubernetes to handle the user load. The

code must manage the state, configuration, etc., during the scalability of an application.

You can use load testing to check the scalability fitness function. Create a matrix that

shows the number of successful transactions versus unsuccessful transactions with the

transaction round-trip time.

�Fitness Function: Observability
A fitness function for observability ensures all the services in a system are monitored

and send alerts, catch errors, and meet the architectural standards of observability. It

will collect metrics across the application, infrastructure, and security environment.

The metrics, such as all the observability parameters, are collected for successful versus

missing parameters.

Chapter 12 “-ilities” Fitness Function

489

�Fitness Function: Compliance
The fitness function for compliance ensures that domain-specific and country-specific

compliances or regulations are met. A matrix can display whether compliance has been

met or not (true or false).

A fitness function may come in the form of tests, monitoring, and the collection of

metrics. Not all tests are fitness functions; only those that assess the “-ilities” are fitness

functions.

The fitness function can be used to calculate various software metrics to determine

whether an architecture continues to meet the “-ilities” requirements. For example, for

cohesion, coupling, and maintainability, the fitness functions are cyclomatic complexity

details and unit test as measurement to identify fitness. This fitness function helps you to

identify whether refactoring is required.

Performance tests ensure that the architecture continues to meet your requirements

and that any recent changes to the services have not negatively impacted its

performance. Security tests can focus on the security parameters of your system to

ensure that changes have not introduced any new vulnerabilities.

Using these various types of fitness functions provides an architect with information

on the quality of the overall architecture as changes are introduced and it continues to

evolve. These fitness functions provide a way to give a software architect confidence that

the system continues to be capable and informs you if it is starting to decline in quality.

Fitness functions facilitate the creation of an evolvable architecture.

For holistic fitness, the functions test multiple parts of the system all the time. An

example of a continual holistic fitness function is Netflix’s Chaos Monkey, which tests

latency, availability, elasticity, resilience, scalability, and so on, in the cloud.

�Fitness Function Metrics
Using the fitness measurements and a matrix of fitness functions provides a software

architect with information about how fit the overall architecture is. The measurements

give a software architect a way to calculate how fit their systems are. Table 12-1 provides

insight into the requirements that can be collected for the fitness function test of one of

my projects.

Chapter 12 “-ilities” Fitness Function

490

Table 12-1.  Fitness Function Metrics

Fitness Function Details Requirement Measurement

Cohesion and
Coupling

Check coupling and

cohesion through

code quality.

Quality gates

Unit test success: 100%

Maintainability rating

Reliability rating

Use SonarQube to measure

against the quality gates.

Write unit tests to check coupling

and cohesion.

Availability Check for high

availability of your

service.

Availability is 99.99%

(four nines)

Measure by using

X=(n-y) *100/n
n = total number of minutes

y = total number of minutes

unavailable

For example, 31 days/month

N=31*24*60= 44,640 minutes,

if a server is not available for 15

minutes in a month

X=(44640-15)*100/44640
=99.96%

Scalability Scale in and out

depending upon

the load on your

system.

Annual connection =

5,000,000

Average per day =

13700

Peak per day = 25000

Average day peak hour

= 12500

Peak day peak hour =

13,500

Little’s law: X=N/R

The law says that if the box

contains an average of N users

and the average user spends R

seconds, then the throughput is X.

N = transaction

R = seconds

X = throughput transaction/per

second (tps)

X = 100/1200ms = 83.33tps

Performance Check the overall

performance of

your system.

API server-side response

time: <1 seconds

DB calls: < 2 seconds

Initial page load: < 4

seconds

Use load testing tools to measure

the performance along with

monitoring.

(continued)

Chapter 12 “-ilities” Fitness Function

491

�Review Function Metrics
After identifying and calculating the measurements of the fitness function, you need

to schedule a meeting with the key stakeholders about the goal of conformance. In the

meeting, you can check the relevance of the current fitness function, determine a change

in the scale or magnitude of each fitness function, and decide if there is any better

approach to measuring the fitness function.

�Summary
In this chapter, I covered fitness functions and how they can be used in your product or

project development. I covered how to determine whether the architecture continues to

achieve the required “-ilities” and also provided a few examples on how to identify and

measure the fitness functions.

Table 12-1.  (continued)

Fitness Function Details Requirement Measurement

Security Check the overall

security of an

application; the

security is different

for each system.

OWASP Top 10

vulnerabilities

Static security test

Threat model

Firewall

Encryption

Use SAST and DAST tools to

measure the security and use the

threat model to create a threat

analysis.

Observability Monitor and alert

across applications.

Integrated observability

across application,

infrastructure, and

security.

Check observability dashboards,

alerting, events, etc.

Chapter 12 “-ilities” Fitness Function

492

You must adopt the following best practices when using fitness functions:

•	 You must define the fitness functions clearly with no ambiguity, and

the relevant stakeholder must understand the fitness function for the

project.

•	 The fitness function must be implemented efficiently.

•	 Each fitness function must be measured to demonstrate how fit a

created architecture is when solving the problem.

•	 The fitness function must generate intuitive results.

Chapter 12 “-ilities” Fitness Function

	Chapter 12: “-ilities” Fitness Function
	What Is a Fitness Function?
	Categories of Fitness Functions
	Atomic vs. Holistic
	Triggered vs. Continuous
	Static vs. Dynamic
	Automated vs. Manual
	Temporal
	International vs. Emergent
	Domain-Specific
	Design-Time Fitness Function
	Runtime Fitness Function

	Execution of the Fitness Function
	Manual Execution
	Automated Execution

	Fitness Function Identification
	Fitness Function: Coupling and Cohesion
	Fitness Function: Security
	Fitness Function: Extensibility, Reusability, Adaptability, and Maintainability
	Fitness Function: Performance
	Fitness Function: Resiliency
	Fitness Function: Scalability
	Fitness Function: Observability
	Fitness Function: Compliance

	Fitness Function Metrics
	Review Function Metrics
	Summary

