
413
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_10

CHAPTER 10

Modernize Monolithic
Applications
to Cloud Native
So far, I have explained various cloud native architectures such as microservices,

event-driven, and serverless. These architecture concepts can be used for both

greenfield and brownfield projects.

Business requirements can change, which is why old legacy systems in an enterprise

may not support or meet the needs of business disruptions. There are various reasons

that your enterprise must embrace modernization and go on a decoupling journey.

•	 Changing customer expectations and behavior

•	 Technology innovation

•	 New market entrants like unicorns (privately held startup company

valued at over $1billion)

•	 Blurring industry boundaries

•	 Cost pressures

In this chapter, I will explain how you can modernize and decouple your enterprise’s

monolithic applications by using decoupling techniques.

In this chapter, I will answer the following questions:

•	 What does decoupling mean to you? Why do you need decoupling

more than ever?

•	 What are the different approaches to follow your journey?

•	 What are the challenges you may face during the journey?

https://doi.org/10.1007/978-1-4842-7226-8_10#DOI

414

•	 How can you explore innovation while ensuring business continuity?

•	 How do you decide which systems require modernization?

•	 How will you plan the decoupling journey?

•	 What is the domain-driven design and approach?

�What Is Decoupling?
In today’s business environment and digital economy, organizations need to satisfy the

existing customers and also need reach out to new customers across markets with more

segments by expanding their digital offerings, without a comparable extension in IT and

or market budgets.

Digital decoupling is the combination of strategy, approach, tools, and techniques

to address speed to market at scale with designing for cloud native and when designing

for a customer in an organization’s IT estate burdened with years of technical debt. It is

the concerted approach to exploit cloud native technologies to break down monolithic

legacy IT, address technical debt, and transform to an ecosystem where IT changes are

negligible.

Decoupling enables large enterprises to reassert competitive advantages against

incubators or unicorns.

Decoupling involves replacing the technicalities of the IT system by keeping the

business functionality to support revenue growth and add the greatest value to the

customers. This way, your enterprises can respond to market forces and technological

innovation while maintaining cost levels.

When decoupling at scale, this leads to @Scale IT, a scalable, flexible, and resilient

architecture that gives your organization the agility to innovate at scale, streamline the

IT estate and retire unused systems, and rationalize the portfolio to a singular function

across the landscape. This helps your organization to compete with the unicorn

companies on equal terms.

Decoupling embraces the use of cloud native architecture and software engineering

methodologies to build new systems that execute on top of legacy systems.

@Scale IT is the emergence of cloud and cloud native technologies, various

channels, artificial and machine learning with observability, and modernized software

engineering with agility and AI-driven development. The more adaptive event-based

architecture is called @Scale IT.

Chapter 10 Modernize Monolithic Applications to Cloud Native

415

�Technical Debt
“The price companies pay for short-term technological fixes hinders their
ability to innovate and adapt in the digital age. One strategy to combat tech-
nical debt? Digital decoupling.” —Adam Burden, Edwin Van der Ouderaa,
Ramnath Venkataraman, Tomas Nystrom, and Prashant P. Shukla

IT is not new, and the systems in your enterprise are probably not new either. As the

business expands, the systems in your IT department become legacy by the nature of

the fact that the environment around them, such as people, process, and technologies,

progress while the systems remain relatively static.

Organizations face intense pressure to meet the business disruptions, competition

from unicorns, and customer expectations. To support this, enterprises are adding more

features into the existing legacy systems, which results in technical debt that leads to

more operation overhead. The decisions that resulted in technical debt were likely not

wrong at that time; they were made to enable the business. However, if not properly

paid attention to, the debt will continue to grow at an alarming rate. In the end, you

need to spend more money on maintaining an application than on innovation and new

technologies. Over time, the enterprise faces a lot of challenges when updating these

systems. This becomes devastating for IT teams, and digital transformation becomes

more difficult.

�How Are Technical Debts Accumulated?
As explained, technical debt is a normal result of software engineering. Some debt

occurs for good reasons, and some occurs unintentionally.

The first type of technical debt occurs when an enterprise IT team makes

an informed decision to generate some technical debt and is fully aware of the

consequences due to various reasons. The reasons can be to meet the delivery timeline,

meet a resource crunch, create business functionality in production, etc. These decisions

can accumulate quickly over time.

The second type is unplanned technical debt that arises due to poor practices,

inexperienced teams, no review and checks, poor understanding, etc. This poor

management, poor communication, or misalignment can accumulate over time.

The third type is business and technology change. These debts are unavoidable

due to business disruption and better technology and solutions being available. It

Chapter 10 Modernize Monolithic Applications to Cloud Native

416

typically accumulates by adding more features to the existing systems to support the new

business without changing the technology.

In a nutshell, the technical debt stems from everyone’s carelessness, bad decisions,

and other reasons. Figure 10-1 shows Martin Fowler’s technical debt quadrant. I have

modified the quadrant to suit present-day software engineering.

�How Is Technical Debt Impacting Your Enterprise?
Technical debt makes your enterprise uncompetitive against peers or unicorns; it makes

it more difficult to add new business value to the software and makes fixing problems

more challenging. This will reduce the overall asset value and create greater risk in

managing the portfolio of assets. These are critical inflection points where constraints

move beyond IT to threaten core mission, business, and operational programs.

They occur when accumulated technical debt causes these critical systems to either

chronically break down, decline, or become so inadequate, sluggish, or inflexible that

your organization is forced to halt or significantly slow down investments on innovative

new cloud native systems until it consolidates, replaces, or rearchitects existing systems

into cloud native.

The leading causes of these events are legacy systems, lack of resources for

maintenance, inability to add new features and integrate across enterprises, including

poor maintenance and inadequate investments.

Prudent

“We must ship now and
deal with consequences”

Reckless

“We don’t have 	me for
design, and review”

“What’s layering &
modular?”

“Now we know how we
should have done it”

Deliberate
Inadvertent

Figure 10-1.  Technical debt quadrant

Chapter 10 Modernize Monolithic Applications to Cloud Native

417

�How to Decide on Decoupling?
As explained, technical debt can arise across enterprises irrespective of decision levels;

everyone in an organization is responsible for technical debt.

Technical debt is a metaphor that, just like in finance debt, incurs interest payments.

This means technical debt makes your enterprise’s IT more expensive to maintain than

it has to be. This is a direct impact on your business. The following section will help you

to measure technical debt in your organization to decide on a decoupling journey of a

system. I call this method the decoupling model.

�Decoupling Model

Technical debt doesn’t help decision-making if we can’t do an analysis. Once we

quantify technical debt, we can make an analytical comparison.

Legacy cost: This is the largest debt in any organization, and it is

easy to measure. It includes the cost to remediate and maintain

in-house legacy and vendor products. Like financial debt, you

make measurable progress in debt reduction by paying down the

principal.

Variable cost: These are the costs related to staffing, reviews, tools,

delays, and duplicating systems that must be maintained. By not

reducing the legacy cost, the variable cost is unavoidable and

incurred.

Maintenance cost: The legacy systems become fragile and

vulnerable. Outages, breaches, and data corruption occur, leading

to significant cost for the maintenance of replacing software,

hardware, etc.

You need to consider many variables to determine the effect technical debt has on

computation. Some of the variables include complexities, lines of code, maintainability

index, Halstead complexity measures, etc.

Technical Debt Ration (TDR) = (Remediation Cost/Development Cost) *100%

Remediation cost is a ratio of the cost to fix a software system, and development cost

is the cost of development.

Always keep the TDR below 5 percent. If the TDR is above 5 percent, then it’s time for

you to take action to decouple the legacy system.

Chapter 10 Modernize Monolithic Applications to Cloud Native

418

Remediation cost (RC) is the maintenance cost of a system. The RC is directly

proportional to the cyclomatic complexity of your code.

RC = k(cyclomatic complexity)

Cyclomatic complexity is a metric used to indicate the complexity of a program. You

can get cyclomatic complexity from review tools like SonarQube or CAST Software, and k

is the constant.

Development cost (DC) is a variable cost for writing some lines of code. For example,

if a file has 100 lines of code (LOC) and the average time to fix is 20 minutes to write one

line of code, the cost per line of code (CPL) is 20 minutes.

DC = 25/line * 100 lines = 2500 minutes =2500/60 = 41.66 hours

To calculate whether your application requires a decoupling, use this formula:

LOC = 25,000

RC = 735 hours

DC = 0.42/line. DC = 0.42*25000 = 10,416 hours

TDR = (RC/DC) *100%

= (735/10416)*100% = 7.05%

Your application TDR is 7.05 percent. In this example, this application requires you

to undergo a decoupling method to move into the cloud native application.

�Decoupling
Based on research from a leading consulting company, as many as 81 percent of

organizations indicate that they would like to replace their legacy core systems with a

cloud native architecture.

As mentioned, decoupling is the process of decoupling monolithic legacy

applications by using new technologies, development methodologies, and migration

methods to build new systems that execute on top of legacy systems. For example, by

using application programming interfaces (APIs), agility, automation, and cloud native,

you can gradually decouple core systems, migrating critical functionality and data to

new platforms.

Chapter 10 Modernize Monolithic Applications to Cloud Native

419

Decoupling is required in present-day architecture because of the following:

•	 Changing customer expectations: You need to connect more with

the customer with meaningful customer relationships and provide

a great user experience based on individual tastes to make a

customer’s life easier.

•	 Technology innovation: Your business must be accessed by any user

on preferred devices without interruption, and your system should

be able to provide real-time analytics based on real-time feedback.

•	 New market entrants: The rise of unicorns without any legacy

baggage shifts the market share.

•	 Blurring industry boundaries: Your system must be able to adjust

to real-time demands from the customers by rearranging the value

chains and providing real-time analysis on pre- and post-sales.

•	 Cost pressure: Organizations are under immense pressure to

deliver a higher level of services at lower cost and to remove legacy

infrastructure, reengineering processes, and rationalizing workforces.

As I mentioned, 81 percent of organizations want to move to cloud native, especially

after the COVID-19 pandemic, by removing the legacy applications, but organizations

are taking too long to decouple legacy services.

Legacy services are the main drag force to innovation and digital transformation;

however, as shown in Figure 10-2, making changes to legacy services is difficult because:

•	 We are dealing with tiered systems, designed to operate as a whole.

•	 Individual components are highly coupled and interdependent.

•	 Making any small change inevitably causes a ripple effect that must

be mitigated or adjusted for.

•	 The change will take a long time and be expensive.

•	 It’s hard to know where to start and exactly what to change. See

Figure 10-2.

Chapter 10 Modernize Monolithic Applications to Cloud Native

420

If you want to build cloud native technologies around a monolithic, it adds more

complexities. With every addition into the monolithic system, the cost of testing,

enhancement, and operation will increase.

As shown in Figure 10-3, legacy systems are typically dominated with a large

and highly complex monolithic business layer. The legacy core is a tightly coupled

monolithic architecture that acts as a brake on innovation, agility, and cloud native.

Figure 10-2.  Monolithic legacy application in an IT estate

User Interface

Re
po

r�
ng

LEGACY CORE

In
te

gr
a�

on

System A

System B

System C

Core systems that have evolved over
�me and no longer meet the needs
of a business disrup�on

Figure 10-3.  Typical monolithic system

Chapter 10 Modernize Monolithic Applications to Cloud Native

421

A tightly coupled architecture increases delivery timelines, operations, and risks. The

impact assessment on change requests, the lengthy testing cycle to test the entire legacy

core for small change, and the complex code all add to the uncertainty.

Figure 10-4 indicates how organizations can change to cloud native systems. Usually,

the organization puts in five to ten years of transformation, which leads to system flaws,

complexities, and inefficiencies of a system. If you do not adopt decoupling early, then it

will be too late to come out of the mess and you might lose the customer base.

As I mentioned, the digital economy has changed the competitive landscape,

allowing new entrants to seriously challenge incumbents and change the market

overnight. Figure 10-5 provides a high-level comparison of decoupling across unicorns,

early adopters, and laggards. This is a lesson for you to adopt to cloud native early in the

lifecycle by decoupling the legacy applications. This graph should open your eyes to the

importance of decoupling.

Innovation and Agility are maximised
for a few years after transformation

TIMEBUILD MAINTAIN DECLINE RE-BUILD

TYPICALLY 5-10 YEARS

Focus on: Innovation & Agility

Focus on: Cost Efficiency

Focus on: Expensive
IT Re-boot

but technical debt increases and agility
decreases as the focus switches to cost
efficiency and ‘sweating the asset’

Focus on:
Stability

Focus on: (Another)
Expensive
IT Re-boot

@Scale IT supports business change.
Innovation and agility are at their peak

Enterprise IT is at risk. Ability to support
business can be deceivingly good

Enterprise IT limiting business flexibility
& puts business performance at risk‘Tech debt’ zone

Repeat…

Figure 10-4.  Organization’s approach on digital transformation without
decoupling with cloud native

Chapter 10 Modernize Monolithic Applications to Cloud Native

422

�Decoupling Approach
In the decoupling approach, the legacy core as shown in Figure 10-3 is evolved and

provides the business transactions to the customer. But due to disruption in the business

and changes in customer expectations, today organizations do not meet the needs

anymore. A user interface is heavily relying on the legacy core as shown in Figure 10-3

with a tightly coupled architecture. An entire stack of the system is deployed on-premises

on a virtual machine or bare metal.

As shown in Figure 10-6, the journey to a decoupled architecture starts with the

implementation of automation for the existing legacy core. In parallel, the organization

builds the cloud native services and deploys them on-premises and in the cloud,

respectively, to exchange data. All the “Specific New” applications are converted into

cloud native services with event-driven architecture and exposed as APIs to the web

and mobile interfaces with real-time interaction. Those services are decoupled from

the database by adopting the polyglot persistence principles and syncing them with the

legacy core database for other transactions.

Time

Unicorns Early Adaptors Laggards

M
ar

ke
t S

ha
re

Unicorns no legacy bag
and innovate & grab
market share

Typical organiza�on lags due
to legacy applica�on and lack
of innova�on & agility

Figure 10-5.  Comparison between unicorns and traditional organizations

Chapter 10 Modernize Monolithic Applications to Cloud Native

423

User Interface

Re
po

rt
in

g

In
te

gr
at

io
n

LEGACY CORE

User Interface
(Web & Mobile)

Re
po

rt
in

g

Specific LegacyAu
to

m
at

io
n

API Services

Online Realtime
Interaction

Specific New

Cloud Native Foundation

Events

Cloud & Cloud Native

User Interface
(Web & Mobile)

Da
ta

 A
na

ly
tic

s

Specific
LegacyAu

to
m

at
io

n

API Services

Online Realtime
Interaction

Specific New

Cloud Native Foundation

Events

Cloud & Cloud Native

Data EventsSpecific
New

Today Legacy evolves into smaller independent parts or is wholly or partially replaced

Figure 10-6.  Decoupling approach

Finally, incrementally, the entire legacy core is decoupled into a cloud native system

with polyglot persistence, and data is replicated to the data lake or data mesh for analytic

purposes.

Following the decoupling approach, the organization introduces integrated

monitoring or observability, real-time data lake integration, and systems of intelligence

for smart interaction.

The end goal is to transform the monolithic legacy core system into a cloud native

platform to fully unleash its value while eliminating current constraints. This requires

understanding of future roadmaps, the business, and customer behavior.

Large-scale application modernization projects usually encounter overruns

and failure. Adopting agility, automation, strangulation, iterative development, and

incremental delivery can reduce risks while accelerating time to value.

The decoupling and continuous modernization for your organization is important

because it allows enterprise IT to be more responsive to business changes and is easy to

prioritize based on the demand. In addition, it helps to guard against the accumulation

of additional technical debt through regular upgrades and follows the easy to create and

easy destroy principle.

As you move toward @Scale IT, your enterprise can evolve toward a true service-based

IT architecture that maximizes agility. This provides rules-based decision-making across

the organization.

Chapter 10 Modernize Monolithic Applications to Cloud Native

424

�Decoupling Plan
You must follow the iterative MVP approach shown in Figure 10-7, not the big-bang

approach. If you follow the big-bang approach, the decoupling projects will fail.

Follow these steps for the decoupling approach:

	 1.	 Identify a system in your enterprise to start decoupling.

	 2.	 Create an architecture blueprint.

	 3.	 Conduct a design thinking session and domain-driven design

with an event storming exercise to identify the microservices.

	 4.	 Initiate DevSecOps.

	 5.	 Identity an MVP use case.

	 6.	 Create a proof of concept (POC) and reference architecture.

	 7.	 Deploy the POC along with the legacy core and evaluate.

	 8.	 Once it is successful, create a solution blueprint.

	 9.	 Finally, go with scale to decouple the entire legacy.

Build @
Scale

MVP &
Reference

Applica�on
& Priori�za�on

evaluate

build

Business
Core

Architecture Blueprint

Ini�al DevOps Design

Solu�on Blueprint

da
ta

refinem
ent

MVP Use Cases

Scale

Proof of Architecture BuildDiscovery & Valida�on
Legacy Core

Roadmap

Decoupling Steps

Analyze & Domain Driven Design

Event Storming

Figure 10-7.  Decoupling approach and plan

Chapter 10 Modernize Monolithic Applications to Cloud Native

425

�Decoupling Principles
Use the following principles during the decoupling process:

•	 Layering: Apply layering to isolate parts of the core system.

•	 Appropriate fragmentation: Fragment capabilities to remove conflicts

of interest and increase agility.

•	 Simplification: Simplify systems and keep differentiated logic

separate from commoditized logic.

•	 Differentiated services: Build out the systems of differentiation to

support reuse, automation, data analytics, and agility.

•	 Cloud: Leverage cloud native capabilities to quickly adapt and build

services.

•	 Intelligence built-in: Build systems with AI and ML in them to enable

smart interaction.

•	 Event-driven: Build an application that supports asynchronous

events.

•	 Real-time data: Build data lakes or data meshes with real-time

eventing capabilities to support the services.

•	 Prediction-based model: Add prediction across the application for

self-healing and infrastructure prediction.

•	 Observability: Build a system with observability as a service.

�Decoupling Business Case
When you consider decoupling the legacy core, you may be required to create a business

case for your leadership before initiating @Scale IT.

You need to conduct the as-is assessment of the existing system and do a decoupled

architecture assessment to compare the costs in order to determine the value of the

decoupling.

Chapter 10 Modernize Monolithic Applications to Cloud Native

426

For the as-is assessment, consider the following:

Overall, as-is cost = �Infrastructure cost + platform license cost (app server, DB etc.) +

Resource cost (people) + Maintenance cost + deployment cost+

opportunity loss (delay in future loss, sales impacted etc.)

For the target state assessment, consider the following:

Overall target cost = �Infrastructure cost + License cost + People cost + Refactoring cost

+ Maintenance cost + Benefits

Cost-Benefit Analysis = Overall as-is cost ~Overall target cost

�Decoupling Strategies
The transition journey from the legacy core to a cloud native architecture requires an

incremental approach to decouple the legacy core and integrate it back to the legacy

core. The transition journey begins with a strategy. The following are the decoupling

strategies you need to adopt for your journey:

•	 Service decomposition strategy and roadmap: This strategy identifies

objectives, business context, and priorities. Assess the current

architecture; you can refer to Chapter 11 for an assessment approach

to incrementally refactor the legacy core into cloud native. Develop

a high-level roadmap based on the business value impact. Identify

the use of any relevant standards and adherence to cloud native

governance and compliance requirements.

•	 Decoupled architecture and integration planning: This strategy

defines the integration architecture for routing requests between

the new services and the legacy core as well as enables the service to

access data and functionality from the legacy core.

•	 DevSecOps strategy: This strategy defines the technical deployment

infrastructure and delivery model required to build continuous

deployment and defines infrastructure as code for automating the

infrastructure service to deploy cloud native applications.

•	 IT operating model: This strategy defines an integrated intelligent IT

operating model to organize around systems and value generation.

Adopt a Intelligent Operation as explained in Chapter 18 to enable

Chapter 10 Modernize Monolithic Applications to Cloud Native

https://doi.org/10.1007/978-1-4842-7226-8_11
https://doi.org/10.1007/978-1-4842-7226-8_18

427

a faster time to market for decoupled services. Here you analyze

the organizational impact based on the recommended changes to

people, process, and technology for a decoupling journey.

•	 Value case: This strategy develops the business case to determine

how a decoupled architecture can be implemented to deliver greater

value to meet business disruption.

�Domain-Driven Design
Domain-driven design (DDD) is an approach for developing software for complex needs.

In this method, the implementation is a constantly evolving model to match the core

business. The concept was first introduced by Eric Evans in his book Domain-Driven

Design: Tackling Complexity in the Heart of Software.

Before getting into DDD, let’s first understand why you need DDD and what are

the difficulties of creating and maintaining a software system. Brian Foote and Joseph

Yoder have defined a pattern called big ball of mud (BBoM). The definition of BBoM is

“haphazardly structured, sprawling, sloppy, duct-tape and bailing wire, spaghetti code

jungle.”

A BBoM system appears to have no distinguishable architecture. The issue with

allowing software to dissolve into a BBoM becomes apparent when routine changes in

workflow and small feature enhancements become a challenge to implement due to the

difficulties in reading and understanding the existing codebase.

Eric Evans describes such systems as containing “code that does something useful,

but without explaining how.” As shown in Figure 10-8, this is one of the main reasons

systems become complex and difficult to manage, mixing the domain with technical

complexities.

Chapter 10 Modernize Monolithic Applications to Cloud Native

428

System Complexity

Dom
ain Logic Com

plexity Te
ch

ni
ca

l C
om

pl
ex

ityAd-hoc features

Le
ga

cy
 C

od
e

Fe
at

ur
e

co
de

Figure 10-8.  Complexity in software

A lack of understanding of the domain, the ad hoc introduction of code, and

improper management in the source code repository makes the codebase difficult

to interpret and maintain because translation between the design model and the

development model can be costly and erroneous. Let me explain in a real-time example

how improper management of code becomes very costly.

Continuing to persist with an architectural spaghetti-like pattern can lead to a

sluggish pace of feature enhancement. When newer versions of the project are released,

there can be mismanagement of the codebase. Over time, this problem grows and

becomes unmanageable.

I was working as an architect with one client that had a monolithic tightly coupled

web-based architecture. About 100+ software engineers were working on this huge

complex platform, and they spent nearly two to three weeks identifying the right branch

in the source for building and deploying changes to the production. When I conducted

an analysis, I found nearly 2,000 branches in an SCM, and no one knew why they were

created. This illustrates how code management can become complex over time if you do

not manage it properly.

�How Does Domain-Driven Design Manage Complexity?
DDD deals with the challenges of understanding a problem domain and creating a

maintainable solution that is useful to solve problems within it. DDD uses strategic and

tactical design principles to define a domain-based design.

Chapter 10 Modernize Monolithic Applications to Cloud Native

429

�What Is a Domain?
A domain is the knowledge and activity around which the application logic resolves; in

other words, it is the business logic that is the core of the system.

There are three types of domains.

•	 Core domain: The core domains are the most strategic domains

for the business at the enterprise level and program level. This is

software that you build and is a differentiator.

•	 Supporting domain: The supporting domains are required by the core

domain and are either built or are commercial off-the-shelf software

(COTS) or SaaS.

•	 Generic domain: Generic domains are likely implemented by

selecting commercial software/services or open source software, e.g.,

identity and access management.

�Goals of Domain-Driven Design
The following are the goals of DDD:

•	 Build software that has a complex business process (business

domain) while the knowledge is limited.

•	 Identify a bounded context and its patterns of interaction to enable

independent deployment teams.

•	 Separate the business model (business logic) from the

implementation details.

•	 Collaborate between technical experts and domain experts to

implement a solution that works seamlessly.

•	 Create a ubiquitous language for each bounded context to use among

business architecture and software engineers throughout all phases

of development.

Chapter 10 Modernize Monolithic Applications to Cloud Native

430

�Domain-Driven Design Model
DDD is about distilling the legacy core into cloud native services. Figure 10-9 illustrates

the various exercises needed to identify a service. DDD is distilled into strategic and

tactical DDD.

�Strategic DDD

Strategic DDD distills the problem domain and shapes the architecture of an application.

The technical team, product owner, and domain experts use the design thinking method

to distill a large and legacy problem domain into microservices. DDD emphasizes the

need to focus effort on the microservices as these hold the most value and the way

forward.

Holding a design thinking workshop on the core domain helps the team to

understand the domain in the legacy core and how important this domain is in the

business. It will enable the software engineering team to identify and invest its time in

the important parts of the system.

The outcome of DDD is to identify a well-defined cloud native architecture solution

with microservices as its core and to identify the domain stories without changing the

core domain business logic and rules.

The cloud native services are built through a collaboration of domain experts,

product teams, and technical teams. Communication is achieved using an ever-evolving

shared language known as the ubiquitous language to connect cloud native services

Legacy Core

Design Thinking Workshop

Event Storm

Domain

Domain Expert, Technical Team,
Project Manager & Product

Owner

Ubiquitous Language

Understands the
language of the

domain

Dis�lled into

Domain Models Domain Models
within the context of
subdomain

Figure 10-9.  DDD model workshop in a single diagram

Chapter 10 Modernize Monolithic Applications to Cloud Native

431

efficiently and effectively to a conceptual domain model. The cloud native services are

bound to the domain model by using the same terms of the ubiquitous language for its

structure and class model.

Cloud native services sit within a bounded context, which defines the applicability

of the services and ensures that their integrity is retained. Larger services can be

split into appropriate services and defined within a separate bounded context where

ambiguity in terminology exists or where multiple teams are participating in a design

thinking (DT) workshop to further reduce complexity. Bounded context is used to form a

protective boundary around services that helps to prevent software from evolving into a

BBoM. This is achieved by allowing the different models of the overall solution to evolve

within well-defined business contexts without having a negative, rippling impact on

other parts of the service.

�Tactical DDD

Tactical DDD is a collection of various cloud native patterns that help to create effective

services for complex bounded contexts. Many patterns are explained in Chapter 4.

You can use these patterns appropriately for each service instead of adopting them

randomly.

�Guiding Principles of DDD
There are practices and guiding principles that are key to the success of DDD.

•	 Focusing on the core domain: The core domain is the area of your

system where most of the business logic resides. The behavior and

functioning of your system depend on the core domain.

•	 Collaboration across a team of experts: This stresses the importance

of DT workshops that allow brainstorming with the technical team,

domain experts, and product owners. Without collaboration across

teams, much of the knowledge sharing will not be able to take place.

•	 Use domain terminology in the code: DDD treats analysis and code

as one, which means the technical code model is bound to the

analysis model through the shared ubiquitous language. Use domain

terminology in code to reflect the business language.

Chapter 10 Modernize Monolithic Applications to Cloud Native

https://doi.org/10.1007/978-1-4842-7226-8_4

432

•	 Communication: The single most important facet of DDD is the

creation of the ubiquitous language. Without a shared language,

collaboration across teams would not be effective. It is the

collaboration and construction of a ubiquitous language that makes

DDD is more effective. It enables a greater understanding of the

problem domain and more effective communication.

•	 Continuous evolving: Without the synergy between the code and

domain language, you will end up with a codebase that is hard to

modify, resulting in a BBoM.

How does it help you?

•	 DDD provides a logical approach for identifying subdomains to

convert a legacy core system to multiple relatively independent

cloud native services.

•	 DDD allows you to identify subdomains for specialized treatment

based on specific needs.

•	 DDD enables the identification of core, supporting, and

generic domains, with each domain capable of being deployed

independently of others.

•	 The DDD process is a powerful tool for business and delivery teams

to be on the same page regarding core code.

•	 The business process shares a common vision of what is important to

the business.

�Event Storming
Event storming is a design thinking workshop for the collaborative exploration of

complex business domains and a modeling approach to domain-driven design. It

was created by Alberto Brandolini in 2012 as a quick alternative to Unified Modeling

Language (UML).

Chapter 10 Modernize Monolithic Applications to Cloud Native

433

As shown in Figure 10-10, event storming in DDD consists of a four-step approach.

Event storming: This consists of design-level modeling and focuses

on domain events and business process.

Event map: Business processes are documented using events,

commands actors, and external systems.

Context map: This is a visualization of boundaries, dependencies,

and communication paths between cloud native services teams.

Ubiquitous language: This is a clearly defined language used

for all discussion between product teams, architecture, and

engineering. It is a model that acts as a universal language. This

is needed for understanding and communicating concepts in the

domain in an unambiguous manner and improves collaboration

with domain experts in order for everyone to be more creative and

valuable. This must be expressed in the domain model to unite

participants and eliminate inaccuracies and contradiction.

�Key Roles in an Event Storming Workshop
These are the key roles:

Domain experts: These are the business representatives who

understand the product vision and the target state’s business process.

Architect: The architect and designer will be building the final

solution.

EVENT MAP

EVENT STORMING

CONTEXT MAP

UBIQUITOUS
LANGUAGE

BETTER BUSINESS AND
TECHNOLOGY
ALIGNMENT

Figure 10-10.  Event storming in a DDD

Chapter 10 Modernize Monolithic Applications to Cloud Native

434

Facilitator and DDD practitioner: This person facilities the event

storming workshop. The project manager can act as a facilitator.

Product owner: This person prepares personas, stories, and

event storming output with the integrated backlog for the

implementation team.

UX designer: This persons is fully engaged in the modeling activity to

push the process toward innovation and customer-centric thinking.

Data analyst: Many solutions in a cloud native system use

data. Engaging a data analyst during design will ensure data

implications are thought through at the beginning.

�Event Storming Exercise
As shown in Figure 10-11, the event storm is a nine-step design thinking workshop that

brings together domain experts, technology team, product owner, and project manager

to model and understand the business process. It is not a technical design session nor

an exploration of the current state of the architecture. The goal is to understand the ideal

business process, not the current or future technical implementation.

Event storming is a:

•	 Conversation starter

•	 The evolving model of problem and solution

•	 Tool to gather requirements and build an event-based view of an

event process

•	 A visual reference to view problem areas and possible solution paths

API ModelService
model

Micro-Service
Identification

Identify
Bounded
Contexts

Identify
Aggregates

Capture Read
Models

Identify
Commands /

Triggers

Capture
Domain
Events

Identify
Objective

Event Storming

Strategic Domain Driven Design

Figure 10-11.  Event storming steps

Chapter 10 Modernize Monolithic Applications to Cloud Native

435

The following sections cover the nine steps of the event storming process.

•	 Identify objectives and capture domain events: The event storming

team can identify the domain scenarios and use cases and identify

all the events that take place during the identified scenarios and then

document and sequence events using sticky notes. The events must

be in past tense like item purchased, invoice sent, invoice paid, etc.

•	 Discussion: Experts brainstorm by asking questions and clarifying

details.

•	 Identify commands and read models: Identify the user and external

systems that interact with the events.

•	 Aggregates: Identify aggregates by combining the events and

commands

•	 Bounded contexts: Identify bounded contexts by using the events,

commands, users, and systems identified in the event map.

�Step 1: Identify the Objectives

In this step, as shown in Figure 10-12, you need to identify a domain scenario and use

cases. In this example, I am choosing the auto insurance domain. Within the domain,

there are value chains that are nothing more than the subdomains or departments in a

portfolio of your organization. In the value chain, I am selecting the Policy Management

value chain. Within the value chain, I am selecting the Quote & Policy Issuance use case

to explain event storming further.

Within Quote & Policy Issuance, the objectives are quote generated, information

provided, policy purchased, payment processed, account created, etc.

Chapter 10 Modernize Monolithic Applications to Cloud Native

436

�Step 2: Event Map: Capture Domain Events

In this step, as shown in Figure10-13, a team of experts discuss and identify domain

events with a sequence. In the DT workshop, use orange sticky notes to identify all the

events of an identified use case.

These are the key activities in this step:

•	 Document all events irrespective of minor or major occurrences for a

given use case; events are written in the past tense.

•	 Rearrange events in a sequential order and resolve any. Group

multiple events into larger, single events appropriately, and rearrange

them based on time.

•	 Identify the actors responsible for each event.

•	 Capture questions, risk and warnings, assumptions, and conversation

points.

Note A ny activity in a use case is called an event.

Quote Issuance
Policy Issuance
Policy Tier
Renewals

Use Case

Value Streams

AUTO INSURANCEPortfolio

Quote & Policy Issuance

Description
• Get risk, coverage details
• Evaluate eligibility
• Get premium
• Share quote with customer
• Make changes or Get

agreement & issue policy

Value Chain Marketing Sales Products Policy Management Claims Management Payments

API ModelService
model

Micro-
Service

Identification

Identify
Bounded
Contexts

Identify
Aggregates

Capture
Read

Models

Identify
Commands /

Triggers

Capture
Domain
Events

Identify
Objective

Figure 10-12.  Identify the objectives

Chapter 10 Modernize Monolithic Applications to Cloud Native

437

�Step 3: Event Map: Identify Commands, Triggers, and Read Models

With your events outlined, you can work on evaluating each event based on the behavior

and what triggered this event. Without a trigger, there is no event. The trigger can be

from external users or external systems or internal systems. The trigger of the event is

noted as a command. Commands are documented by using blue sticky notes in the

present tense and represent user interaction with the system.

Along with the commands, you need to add a user/role of the command and write it

on a brown sticky note.

You need to capture the information about the commands such as the type of

commands, how they are triggered etc., and write them on green sticky notes.

Figure 10-14 provides a clear view of the relationship between commands, events,

users/roles, and read models.

Account
Identified

Time

Business
Classified

Quote
Number
Generated

Uploaded
relevant
details

Eligibility
Verified

Vehicles
added to
Quote

Quote
Approved

Relevant
Forms
added to
Quote

Quote cost
calculated

Final Quote
generated

Quote
Accepted

Payment
Made

Policy
package
generated

Accepted Decline &
Reason
provided

Quote
Declined

Commission
Determined

Applied
Discount

Quota
Rejected

Payment
Declined

Policy
Issued

API ModelService modelMicro-Service
Identification

Identify
Bounded
Contexts

Identify
Aggregates

Capture Read
Models

Identify
Commands /

Triggers

Capture
Domain
Events

Identify
Objective

Figure 10-13.  Domain events

Commands

Read
Model

Events
User/Role

Figure 10-14.  Relationship between command and events

Chapter 10 Modernize Monolithic Applications to Cloud Native

438

Figure 10-15 shows the steps to group relevant events and identify the respective

commands.

�Step 4: Event Map: Identify Aggregators

An aggregate is a combination of domain events and commands that can be treated as a

single unit. In an aggregate, one main domain event will be the aggregate root, and any

reference from commands should go only to the aggregate root. The root can ensure the

integrity of the aggregate as a whole. Don’t mix a UML aggregate with a DDD aggregate.

It is a domain concept, while collections are generic.

An aggregate consists of one or more entities and domain models that change

together. You can consider them as a unit of data changes, and you need to consider the

consistency of the entire aggregate for any changes. The aggregate helps you simplify

the domain model by collecting multiple domain events under a single abstraction

around domain variants and acts as the consistency and concurrency boundaries. The

most important rule to define a boundary for your aggregate cluster is that the boundary

should be based on domain invariants. Domain invariants are business rules that

must always be consistent. The consistency boundary logically asserts that everything

inside adheres to a specific set of business invariant rules no matter what operation is

performed.

Account
Iden�fied

Time

Business
Classified

Quote
Number
Generated

Uploaded
relevant
details

Eligibility
Verified

Vehicles
added to
Quote

Quote
Approved

Relevant
Forms
added to
Quote

Quote cost
calculated

Final Quote
generated

Quote
Accepted

Payment
Made Policy

package
generated

Accepted
Decline &
Reason
provided

Quote
Declined

Commission
Determined

Applied
Discount

Quota
Rejected

Payment
Declined Policy Issued

Ini�ate
Quote

Check
Eligibility

Get Quote
Approved

Generate
Quote

Accept
Quote

Make
Payment

Generate
Policy

API ModelService modelMicro-Service
Iden�fica�on

Iden�fy
Bounded
Contexts

Iden�fy
Aggregates

Capture Read
Models

Iden�fy
Commands /

Triggers

Capture
Domain
Events

Iden�fy
Objec�ve

BankAgent
System

Figure 10-15.  Commands and events

Chapter 10 Modernize Monolithic Applications to Cloud Native

439

Entities inside the same aggregate should be highly cohesive, whereas entities

outside aggregates are loosely coupled among other aggregates.

The aggregates have a local responsibility and receive commands and then emit

domain events. The aggregates are documented by using yellow sticky notes in the form

of a noun.

Figure 10-16 provides a clear view of the relationship between commands, events,

users/roles, and read models and aggregates.

As shown in Figure 10-17, you can identify an aggregate from commands and events.

The following are the rules to define an aggregate:

•	 Aggregates should be based on domain invariants.

•	 Aggregates should be modified with their invariants completely

consistent with a single transaction.

•	 Aggregates represent domain concepts, not just a collection of

domain events.

•	 Avoid having transaction across aggregates and consider them as a

single unit of work.

•	 Try for smaller aggregates to support the “-ilities.”

Commands

Read
Model

Events
User/Role

Aggregates

Figure 10-16.  Relationship between commands, events, and aggregates

Chapter 10 Modernize Monolithic Applications to Cloud Native

440

�Step 5: Context Map: Identify the Bounded Context

A bounded context is the logical boundary of a domain model that represents a particular

subdomain of your system. It is the focus of the strategic design section to deal with

domains and events. As I mentioned, the domain model represents the real things of the

business, such as an account, insurance, policy, etc. It is the conceptual design of your

system.

In an enterprise scenario, a bounded context is often based on ownership, with the

bounded context being maintained by a team. For each bounded context, there will be

a command and triggers along with the events produced. Typically, in strategic DDD,

the bounded context is the last step you will define for a system. Each bounded context

should be independent and owns its language and model. The rule of thumb is that each

bounded context is a microservice.

Account
Iden�fied

Time

Business
Classified

Quote
Number
Generated

Uploaded
relevant
details

Eligibility
Verified

Vehicles
added to
Quote

Quote
Approved

Relevant
Forms
added to
Quote

Quote cost
calculated

Final Quote
generated

Quote
Accepted

Payment
Made Policy

package
generated

Accepted
Decline &
Reason
provided

Quote
Declined

Commission
Determined

Applied
Discount

Quota
Rejected

Payment
Declined Policy Issued

Ini�ate
Quote

Check
Eligibility

Get Quote
Approved

Generate
Quote

Accept
Quote

Make
Payment

Generate
Policy

BankAgent
System

Account Quote
PolicyPayment

Agents
Price

API ModelService modelMicro-Service
Iden�fica�on

Iden�fy
Bounded
Contexts

Iden�fy
Aggregates

Capture Read
Models

Iden�fy
Commands /

Triggers

Capture
Domain
Events

Iden�fy
Objec�ve

Figure 10-17.  Identification of aggregators

Chapter 10 Modernize Monolithic Applications to Cloud Native

441

Figure 10-18 shows the bounded context with domain events and commands.

How do you identify a bounded context?

•	 Identify and collect the most meaningful domain events guided by

domain knowledge based on business capabilities.

•	 Identify whether there’s a clear cohesion required for certain domain

events based on dependencies.

•	 A domain model has specific domain entities within a bounded

context and delimits the applicability of the domain model and gives

clear ownership to the pod team.

•	 Apply Conway’s law to identify a bounded context; this law

emphasizes that the system will reflect the social boundaries.

•	 Use the context mapping pattern to identify various contexts in your

system and their boundaries.

Account

Customer Account

Account
Iden�fied

Business
Classified

Quote
Number
Generated

Ini�ate
Quote

Events

Payment

Payment

Payment
Made

Payment
Declined

Make
Payment

Events

Quote

Quote

Uploaded
relevant
details

Eligibility
Verified

Vehicles
added to
Quote

Quote
Approved

Accepted

Decline &
Reason
provided

Quote
Declined

Get Quote
Approved

Get Quote
Approved

Events

Price

Price

Relevant
Forms
added to
Quote

Quote
cost
calculated

Final
Quote
generated

Quote
Accepted

Applied
Discount

Quota
Rejected

Generate
Quote

Accept
Quote

Agents

Generate
Quote

Commission
Determined

Events

Policy

Policy

Policy
package
generated

Policy
Issued

Generate
Policy

Events

API ModelService modelMicro-Service
Iden�fica�on

Iden�fy
Bounded
Contexts

Iden�fy
Aggregates

Capture Read
Models

Iden�fy
Commands /

Triggers

Capture
Domain
Events

Iden�fy
Objec�ve

Figure 10-18.  Bounded context

Chapter 10 Modernize Monolithic Applications to Cloud Native

442

How Does a Bounded Context Communicate?

As shown in Figure 10-19, a bounded context is loosely coupled with other

bounded contexts; they interact only through synchronous or asynchronous

communication by using REST and event protocols. You can refer to the communication

details in Chapters 5 and 6.

Ubiquitous Language

A ubiquitous language is a clearly defined language used for all discussion between

domain experts, product teams, the architecture, engineers, etc. The ubiquitous

language will also be used in the documentation, test cases, and code. Generally, each

bounded context has its own ubiquitous language, and therefore a translation may be

needed when communicating with another bounded context.

The following are the reasons why a ubiquitous language is needed:

•	 It is needed for understanding and communicating concepts in the

domain in an unambiguous manner.

•	 It improves collaboration with domain experts to be more creative

and valuable for all the teams.

•	 It is used for all the brainstorming between domain experts, product

owners, architects, developers, testers, etc.

•	 It reveals the intention, not the implementation.

Service Interface

Domain Model

DDD Context Mapping Integra�on Style
• REST / HTTP/grpc
• Domain Events / Messaging

Quote Bounded Context

Service Interface

Domain Model

Price Bounded Context

Events Events

Figure 10-19.  Bounded context communication

Chapter 10 Modernize Monolithic Applications to Cloud Native

https://doi.org/10.1007/978-1-4842-7226-8_5
https://doi.org/10.1007/978-1-4842-7226-8_6

443

It helps to unite people in the project team and eliminate inaccuracies and

contradictions. The domain model will evolve and will not end at a single meeting. You

need to create a glossary of domain workshops to create a ubiquitous language.

Tactical Implementation of DDD

The goal of tactical DDD is to produce artifacts that are clearly defined and well

understood by all team members. Identify the right thing to build.

•	 Tactical DDD occurs at a lower level typically within a team to

support the service design.

•	 From a lean-agile perspective, this allows the team to share and align

on what they need to align on.

•	 Create an integrated backlog and discuss epics, user stories, etc.

•	 Apply stories within a single bounded context.

�Step 6: Microservices Identification

For microservices identification, look for entity and aggregators, as shown in

Figure 10-20, which help you to identify the natural boundaries of the service. A general

principle you need to consider is that a microservice should be no smaller than an

aggregate and no larger than a bounded context.

Aggregate

En�ty Value Object

Figure 10-20.  Microservice identification

Entity

An entity is an object with a unique identity that persists over time. For example, in an

insurance quote, vehicle details and customer details would be entities.

•	 An entity has a unique identifier in the cloud native service, and the

identifier is unique to the service and may span multiple bounded

contexts.

Chapter 10 Modernize Monolithic Applications to Cloud Native

444

•	 Objects have an identity that remains the same throughout the states

of the software.

•	 An entity must be distinguished from other similar objects having the

same attribute (e.g., customer account for an insurer).

•	 The attributes of an entity can change (mutable).

Value Objects

Value objects have no identity, and they are defined only by the values of the attributes.

Value objects are the things within your model that convey meaning and functionality

but have no uniqueness. These are used to pass parameters in messages between

objects, and they are immutable. Attributes of value objects cannot change; they must be

replaced with addresses, etc.

Aggregates

An aggregate defines a consistency boundary around one or more entities, and it is

a cluster of entity and value objects. One entity is an aggregate of the root, and each

aggregate is treated as one single unit that is retrieved and persisted together in a single

transaction boundary. The root identity is global. The identities of entities inside are

local, and the root is used for communication to the outside world. Internal objects

cannot be changed outside the aggregate.

Domain Model to Microservices

In the previous section, I explained the bounded context, commands, and events, and

explained how a bounded context is identified with a set of entities and aggregates.

As shown in Figure 10-21, here’s an approach that you can use to derive

microservices from the domain model:

•	 Let’s start with a bounded context; in general, the functionality in a

microservice should not span more than one bounded context. If you

find a microservice that spans a bounded context, that’s a sign that

you may need to go back and refine your domain analysis.

Chapter 10 Modernize Monolithic Applications to Cloud Native

445

•	 Look at the aggregates in your domain model; aggregates are often

good candidates for microservices.

•	 An aggregate must derive from commands and domain events.

•	 An aggregate should have high function cohesion.

•	 An aggregate is a boundary of persistence.

•	 Aggregates should be loosely coupled.

•	 Finally, look at the “-ilities” and adopt Conway’s law and an agile

POD team structure for the ownership of a service. These factors may

lead you to further decompose microservices.

•	 Each service must have a single responsibility and minimize

transactions across services so there are no chatty calls between

microservices.

•	 Each service is small enough that can build, manage, and destroy

with small POD teams.

•	 Services have high cohesion inside and are loosely coupled outside.

Chapter 10 Modernize Monolithic Applications to Cloud Native

446

In the previous example, quote, account, payment, policy, agents and price are

candidates of microservices.

API Model

A good API model has the same importance as a good design of microservices, because

all data exchange between services occurs through APIs or events. APIs must be efficient

to avoid creating chatty I/O. It is important to design and distinguish between public

APIs and private APIs. Public APIs are exposed to the outside world, and private APIs are

used for interservice communication or backend systems.

For public APIs, you need to consider REST over HTTP(s), and you need to consider

various factors such as performance, backend systems protocols, etc. Depending on

the granularity of services, interservice interaction can result in a lot of network traffic,

and the service becomes I/O bound. For this reason, your services should be designed

Quote Bounded Context

/Quote

Price Bounded Context

/Price /Agents

Policy Bounded Context

/Policy

Policy Bounded Context

/Payment

Policy Bounded Context

/Account

API ModelService modelMicro-Service
Iden�fica�on

Iden�fy
Bounded
Contexts

Iden�fy
Aggregates

Capture Read
Models

Iden�fy
Commands /

Triggers

Capture
Domain
Events

Iden�fy
Objec�ve

Figure 10-21.  Microservices model

Chapter 10 Modernize Monolithic Applications to Cloud Native

447

with the appropriate granularity. Serialization speed and payload size become more

important. You can consider REST over HTTP and gRPC, Apache Avro, and Apache

Thrift. Figure 10-22 shows the sample APIs of the previous example.

�Value of Domain-Driven Design
There are multiple benefits of DDD.

•	 It is an extremely flexible approach to software.

•	 DDD takes on the domain model to decouple the business cases or

legacy systems, and the technology will follow to realize the business

model.

•	 DDD understands the customer values and perspective on the issues.

The collaboration between domain experts, product teams, and

technical teams can help to create a domain model with a ubiquitous

language.

•	 The ubiquitous language used for each model provides clarity,

precision, and commonality between all the stakeholders.

Resource Method Operation Parameter Response Description

/Account GET Get Account ID Business Info [Account Info] Search accounts based on
accountName

/Quote POST Create Quote
Number

Basic Policy No Quote Number Stores Basic Policy info

/Quote {QNum} GET Referral
determination

Referred/Declined
/Cleared

Based on Quote number
provided referral
determination check will be
made

API ModelService modelMicro-Service
Identification

Identify
Bounded
Contexts

Identify
Aggregates

Capture Read
Models

Identify
Commands /

Triggers

Capture
Domain
Events

Identify
Objective

Figure 10-22.  API model

Chapter 10 Modernize Monolithic Applications to Cloud Native

448

The Business Value of DDD

There are many reasons why a business finds value in DDD.

•	 The objective of DDD is to provide value to businesses by modeling

the software from the business paradigm.

•	 DDD provides a clear understanding of how the business works and

provides an understanding of how the business runs.

•	 The users of the systems are able to contribute starting from day one as

a domain expert; this helps each service be built with a rich domain.

•	 This helps to focus on core domains.

Drawbacks of DDD

Because of the modular nature of DDD and the strict following of the domain,

the software itself requires significant insulation, and isolation is one part of the

development.

•	 There are unfamiliar processes and rules in the legacy system;

they are difficult to identify and may miss some circumstances that

become costly for the service design.

•	 It is effective as a domain, but you may not get an advantage by

applying it for small, simple business domains.

•	 Ubiquitous is the common language in DDD. If one person doesn’t

get it, then it could represent a bad design.

•	 DDD has a learning curve in an enterprise.

•	 DDD adds time to the entire DDD process; sometimes the

engineering lifecycle is very short, so the team ignores the DDD

process to identify a service. That becomes costlier later for the

service management.

Chapter 10 Modernize Monolithic Applications to Cloud Native

449

Where DDD Is Not Useful

There are some common misconceptions of DDD.

•	 DDD is not a set of patterns that exists for repurposing, and it is not

code-focused and not an object-oriented concept. If your project is

more suited toward those things, we suggest using UML.

•	 DDD is not for every enterprise architecture design; we also suggest

using either TOGAF or the Zachman framework.

•	 DDD is not a solution for everything. Different organizations will

have difficulties that require a paradigm shift that simply cannot be

solved by using DDD.

•	 DDD is not an architectural pattern or design pattern; it is about how

to design your application with a focus on the domain.

�Summary
DDD is a domain language that is designed to manage the creation and maintenance of

a system, and it is a collection of patterns and principles that can be applied to service

design to manage complexity. Its emphasis on the distillation of large problem domains

into subdomains can reveal the core domain, which is the area of most value. Using a

ubiquitous language across teams can better manage collaboration.

The best pace of technological change in decoupling is as follows:

•	 Architectural design: By adopting a cloud native architecture, you

can build out systems with greater flexibility. You can shift to lean

architecture, APIs, cloud-based service platforms, etc.

•	 Engineering practice: The value of architectural change accelerates

when you embrace newer ways of working that speed up

development and delivery like DevSecOps, automation, design

thinking, etc.

•	 Talent evolution: You need to upskill resources at greater speed and

scale than ever.

Chapter 10 Modernize Monolithic Applications to Cloud Native

450

You must adopt the following actions for decoupling to a cloud native architecture:

•	 Decoupling data from legacy systems

•	 Decoupling applications from legacy infrastructure

•	 Decoupling tightly integrated systems into loosely coupled systems

•	 Decoupling organizations from traditional structures and measures

•	 Decoupling essential differentiation from unnecessary differentiation

Modernizing your enterprise is not straightforward. One way to gauge the need for

modernization is to look at the current level of technical debt, essentially the money it

would take to upgrade legacy systems.

To make modernization a reality, you must do the following:

•	 Adopt decoupling as a rational approach to focus on modernization

in a way that gradually migrates systems away from legacy while

effectively managing the costs and risk.

•	 Conduct an application assessment to identify recommendations

that help you to draw a roadmap that offers transparency and reduces

risk.

•	 Socialize a modernization approach like DDD and event storming

that has a high success rate across industries.

Chapter 10 Modernize Monolithic Applications to Cloud Native

	Chapter 10: Modernize Monolithic Applications to Cloud ­Native
	What Is Decoupling?
	Technical Debt
	How Are Technical Debts Accumulated?
	How Is Technical Debt Impacting Your Enterprise?
	How to Decide on Decoupling?
	Decoupling Model

	Decoupling
	Decoupling Approach
	Decoupling Plan
	Decoupling Principles
	Decoupling Business Case
	Decoupling Strategies

	Domain-Driven Design
	How Does Domain-Driven Design Manage Complexity?
	What Is a Domain?
	Goals of Domain-Driven Design
	Domain-Driven Design Model
	Strategic DDD
	Tactical DDD

	Guiding Principles of DDD

	Event Storming
	Key Roles in an Event Storming Workshop
	Event Storming Exercise
	Step 1: Identify the Objectives
	Step 2: Event Map: Capture Domain Events
	Step 3: Event Map: Identify Commands, Triggers, and Read Models
	Step 4: Event Map: Identify Aggregators
	Step 5: Context Map: Identify the Bounded Context
	How Does a Bounded Context Communicate?
	Ubiquitous Language
	Tactical Implementation of DDD

	Step 6: Microservices Identification
	Entity
	Value Objects
	Aggregates
	Domain Model to Microservices
	API Model

	Value of Domain-Driven Design
	The Business Value of DDD
	Drawbacks of DDD
	Where DDD Is Not Useful

	Summary

