
Cloud Native
Architecture and
Design

A Handbook for Modern Day
Architecture and Design with
Enterprise-Grade Examples
—
Shivakumar R Goniwada

Cloud Native Architecture
and Design

A Handbook for Modern Day
Architecture and Design

with Enterprise-Grade Examples

Shivakumar R Goniwada

Cloud Native Architecture and Design: A Handbook for Modern Day Architecture
and Design with Enterprise-Grade Examples

ISBN-13 (pbk): 978-1-4842-7225-1 ISBN-13 (electronic): 978-1-4842-7226-8
https://doi.org/10.1007/978-1-4842-7226-8

Copyright © 2022 by Shivakumar R Goniwada

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Mark Powers
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978- 1- 4842- 7225- 1. For more
detailed information, please visit www.apress.com/source- code.

Printed on acid-free paper

Shivakumar R Goniwada
Bangalore, India

https://doi.org/10.1007/978-1-4842-7226-8

This book is dedicated to all the unsung heroes and
frontline workers continuously fighting the COVID-19

battle to save humanity and the world.

v

Table of Contents

Part I: The Cloud Native Journey, Principles, and Patterns ���������������������������� 1

Chapter 1: Introduction to Cloud Native Architecture��� 3

Introduction to Cloud Native�� 4

Cloud Adoption Across Industries ��� 5

Reducing Costs ��� 5

Adopting the Cloud Native Mindset ��� 5

What Is Cloud Native? ��� 5

Cloud Native Maturity Model ��� 7

Cloud Enablement Wave �� 8

Cloud Native Transformation Wave �� 9

Scalability and Flexibility Advantage ��� 11

Cloud Native Culture and Innovation Wave �� 11

Elements of Cloud Native Computing �� 13

Microservices Architecture �� 14

Serverless Architecture ��� 14

Event-Driven Architecture ��� 15

Cloud Computing ��� 15

Containers ��� 16

Agile Development��� 16

DevSecOps �� 17

About the Author ���xxvii

About the Technical Reviewer ��xxix

Acknowledgments ��xxxi

Introduction ��xxxiii

vi

How Is Cloud Native Different Than Cloud-Enabled? �� 17

Cloud Native Journey �� 17

Start with Lift and Shift ��� 18

Re-engineer Migration ��� 19

Benefits of Cloud Native �� 19

Cloud Native Organization and Culture ��� 20

How Is Cloud Native Architecture Embraced Across Industries? �� 22

Migrate �� 23

Accelerate ��� 24

Scale and Innovate �� 24

What Is a Software Architect’s Role in Cloud Native? ��� 25

Summary��� 26

Chapter 2: Cloud Native Services ��� 27

Evolution of Infrastructure Services �� 27

Mainframe Services �� 29

Minicomputer Services �� 30

Personal Computing Service ��� 30

Client-Server Service �� 30

Enterprise Computing Service ��� 31

Cloud and Mobile Computing Services �� 31

IT Infrastructure Laws and Prediction ��� 32

Moore’s Law �� 32

The Laws of Mass Digital Storage ��� 33

Metcalfe’s Law �� 33

Communication Cost and Internet ��� 33

Evolution of Servers �� 34

Bare-Metal Servers ��� 34

Virtual Machine Revolution �� 34

Container Revolution ��� 37

Table of ConTenTs

vii

Understanding Cloud Services �� 40

Infrastructure as a Service �� 40

Platform as a Service �� 42

Software as a Service ��� 45

Cloud Computing Deployment Models �� 50

Public Cloud ��� 51

Private Cloud or On-Premises Cloud�� 51

Community Cloud �� 52

Hybrid �� 52

Cloud Services �� 52

Summary��� 54

Chapter 3: Cloud Native Architecture Principles �� 55

What Are Architecture Principles?��� 56

Cloud Native Design Principles ��� 57

API First Principle �� 57

Monolithic Architecture Principle �� 59

Polylithic Architecture Principle ��� 60

Polyglot Persistence Principle ��� 61

Modeled with Business Domain Principle ��� 62

Consumer First Principle ��� 63

Decentralize Everything Principle �� 64

Culture of Automation Principle ��� 65

Always Be Architecting Principle ��� 66

Interoperability Principle ��� 66

Digital Decoupling Principle �� 67

Single Source of Truth Principle �� 69

Evolutionary Design Principle �� 69

Table of ConTenTs

viii

Cloud Native Runtime Principles ��� 70

Isolate Failure Principle (IFP) ��� 70

Deploy Independently Principle ��� 72

Be Smart with State Principle ��� 72

Location-Independent Principle ��� 73

Design for Failure Principle ��� 74

Security Principles �� 75

Defense in Depth Principle �� 75

Security by Design Principle �� 76

Software Engineering Principle ��� 79

Products Not Projects Principle ��� 79

Shift-Left Principle��� 80

Container Principles �� 81

Single Concern Principle ��� 82

High Observability Principle �� 83

Lifecycle Conformance Principle ��� 84

Image Immutability Principle ��� 86

Process Disposability Principle (PDP) �� 87

Self-Containment Principle �� 90

Runtime Confinement Principle ��� 91

Principles of Orthogonal �� 92

Cohesion �� 93

Coupling �� 98

Software Quality Principles ��� 105

KISS Principle �� 106

Don’t Repeat Yourself �� 107

Isolate �� 110

Separation of Concern ��� 111

Table of ConTenTs

ix

Use Layering �� 112

Information Hiding ��� 114

You Aren’t Gonna Need It ��� 115

SOLID Design Principles �� 117

Single Responsibility Principle �� 117

Open-Closed Principle ��� 119

Liskov Substitution Principle ��� 121

Interface Segregation Principle ��� 123

Dependency Inversion Principle �� 123

Summary ��� 124

Chapter 4: Cloud Native Architecture and Design Patterns ���������������������������������� 127

Evolution of Design Patterns ��� 128

What Are Software Patterns? �� 130

Architecture Style, Architecture Pattern, and Design Pattern ��� 130

Anti-pattern ��� 131

Cloud Native Data Management Pattern for Microservices �� 131

Event Sourcing Pattern �� 132

Command and Query Responsibility Segregation Pattern ��� 135

Data Partitioning Pattern ��� 139

Data Replication �� 146

Cloud Native API Management Patterns for Microservices ��� 152

Idempotent Service Operation ��� 153

Optimistic Concurrency Control in API ��� 154

Circuit Breaker ��� 157

Service Discovery �� 159

Service Versioning ��� 162

Cloud Native Event-Driven Patterns for Microservices ��� 165

Asynchronous Nonblocking I/O �� 165

Stream Processing �� 168

Table of ConTenTs

x

Cloud Native Design Pattern for Microservices �� 170

Mediator �� 170

Orchestration ��� 171

Strangler Pattern ��� 172

Bulkhead Pattern ��� 173

Anti-corruption Pattern �� 176

Cloud Native Runtime Pattern for Microservices �� 177

Fail Fast ��� 178

Retry �� 179

Sidecar �� 180

Init Containers ��� 181

Saga Pattern �� 182

Summary��� 187

Part II: Elements of Cloud Native Architecture and Design������������������������� 189

Chapter 5: Microservices Architecture and Design �� 191

Evolution of Microservices �� 192

What Is a Microservices Architecture? �� 192

Characteristics of Microservices��� 193

Organized Around Business Capabilities ��� 193

Autonomous �� 197

Smart Endpoints and Dumb Pipes ��� 198

Resilience in Microservices ��� 201

Elasticity in Microservices ��� 205

Distributed State �� 207

Independently Deployable ��� 210

Decentralization ��� 211

Automation �� 212

Containerization��� 213

Design for Failure �� 214

Table of ConTenTs

xi

Living Continuous Design �� 216

Self-Healing ��� 217

Hexagonal Architecture ��� 220

Enterprise Microservices Examples �� 223

Case Study: Trade Finance��� 223

Case Study: Collateral Management �� 227

Microservices and User Interface: Micro Front End �� 230

Routing �� 232

Composition ��� 232

Communication ��� 232

Pros and Cons of Micro Front Ends ��� 233

Microservice Architecture in Artificial Intelligence ��� 233

AI Subcategories ��� 234

Summary��� 240

Chapter 6: Event-Driven Architecture ��� 241

Evolution of Event-Driven Architecture ��� 242

Tightly Coupled World to Loosely Coupled World ��� 242

Message Broker World to Event World �� 243

Event ��� 244

Business Events �� 245

Technical Events �� 245

Processing an Event �� 246

Event Handling in Domain Context �� 247

Event Governance �� 247

What Is Event-Driven Architecture? �� 248

How Does Event-Driven Architecture Work? ��� 248

Event-Driven Topologies�� 250

Mediator Topology ��� 250

Broker Topology ��� 252

Characteristics of Event-Driven Architecture �� 253

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-7226-8_5#Sec2015
https://doi.org/10.1007/978-1-4842-7226-8_5#Sec2016
https://doi.org/10.1007/978-1-4842-7226-8_5#Sec2017
https://doi.org/10.1007/978-1-4842-7226-8_5#Sec2018
https://doi.org/10.1007/978-1-4842-7226-8_5#Sec2019
https://doi.org/10.1007/978-1-4842-7226-8_6#Sec3000

xii

Event-Driven Messaging Models �� 254

Event Messaging ��� 254

Event Streaming �� 254

Event Processing Styles �� 255

Simple Event Processing ��� 255

Event Stream Processing �� 255

Complex Event Processing �� 256

Event-Driven Architecture Maturity Model �� 257

Decoupling Use Case by Using Event-Driven Architecture �� 259

Make Data Accessible ��� 261

Real-Time Interactivity �� 265

How to Use Existing Message Queues with Event Streams? �� 266

Transaction Management in Event-Driven Microservices ��� 268

Two-Phase Commit in Cloud Native Services �� 271

Transactions with Events ��� 274

Event-Driven Microservices Interaction �� 277

Interaction Between Microservices �� 280

Service Mesh ��� 281

Event Mesh �� 283

Box- and Port-Style Event-Driven Architecture ��� 288

Characteristics of Box- and Port-Style Architecture �� 290

DevOps for Events ��� 291

Event Security ��� 291

Field-Level Encryption Consideration �� 292

Cloud Events ��� 292

Summary��� 294

Chapter 7: Serverless Architecture �� 295

Evolution of Serverless ��� 296

What Is Serverless Computing? �� 297

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-7226-8_6#Sec3013
https://doi.org/10.1007/978-1-4842-7226-8_6#Sec3014

xiii

Essential Components of Serverless ��� 299

Serverless and Event-Driven Computing �� 300

Serverless Design Principles �� 300

Stateless Functions ��� 301

Push-Based and Event-Driven Pipelines ��� 301

Config: Store Config in the Environment �� 301

Backing Services: Treat Backing Services as Attached Resources ������������������������������������� 301

Concurrency: Scaling Out via the Process Model �� 302

Disposability: Maximize Robustness with Quick Startup and Shutdown ����������������������������� 302

Key Considerations for Serverless Computing �� 302

Why Use Serverless Architecture? �� 304

Best Practices of Serverless Architecture ��� 305

Types of Serverless Architecture �� 307

Function as a Service �� 307

Backend as a Service or Mobile Backend as a Service ��� 317

Function Deployment �� 319

When to Use Serverless �� 320

Advantages of Serverless Architecture ��� 321

Reduced Operational Cost ��� 321

Optimized Resource Utilization �� 322

Faster Time to Market ��� 322

Ability to Focus on User Experience �� 322

Fits with Microservices ��� 322

The Drawbacks of Serverless Architecture ��� 322

Standardization ��� 322

Operations Management ��� 323

Tooling Support�� 323

Security ��� 323

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-7226-8_7#Sec1009
https://doi.org/10.1007/978-1-4842-7226-8_7#Sec1010
https://doi.org/10.1007/978-1-4842-7226-8_7#Sec1011
https://doi.org/10.1007/978-1-4842-7226-8_7#Sec1012
https://doi.org/10.1007/978-1-4842-7226-8_7#Sec1012
https://doi.org/10.1007/978-1-4842-7226-8_7#Sec1013
https://doi.org/10.1007/978-1-4842-7226-8_7#Sec1014
https://doi.org/10.1007/978-1-4842-7226-8_7#Sec1015
https://doi.org/10.1007/978-1-4842-7226-8_7#Sec1016

xiv

Long-Term Tasks ��� 323

Future of Serverless �� 323

Summary��� 324

Chapter 8: Cloud Native Data Architecture ��� 325

Rethinking Data in a Cloud Native World �� 326

Cloud Native Data Persistence Layer �� 327

Cloud Native Data Characteristics ��� 328

How to Select a Data Store ��� 329

Objects, Files, and Blocks �� 329

Databases �� 330

Data Replication �� 344

Physical Database Replication �� 344

Logical Database Replication �� 345

Extract, Transfer, and Load �� 349

Decoupling Big Data Management from Distributed Data Meshes ��� 350

Step 1: Self-Service Data Infrastructure as a Platform ��� 354

Step 2: Data as a Product �� 355

Step 3: Data Infrastructure as a Platform �� 355

Step 4: Domain-Oriented Decentralized Data Ownership and Architecture ������������������������ 356

Step 5: Data Governance ��� 356

Data Processing with Real-Time Streaming for Analytics ��� 357

Lambda Architecture ��� 358

Kappa Architecture �� 360

Microservices in Data Processing with Real-Time Streaming for Analytics ������������������������ 360

Mobile Platform Database ��� 361

Intelligent Data Governance and Compliance in the Cloud Native World ���������������������������������� 363

Why Data Governance? ��� 363

What Is Data Governance? �� 364

Governance Framework �� 365

Summary��� 368

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-7226-8_7#Sec1017
https://doi.org/10.1007/978-1-4842-7226-8_8#Sec4004
https://doi.org/10.1007/978-1-4842-7226-8_8#Sec4005
https://doi.org/10.1007/978-1-4842-7226-8_8#Sec4006
https://doi.org/10.1007/978-1-4842-7226-8_8#Sec4007
https://doi.org/10.1007/978-1-4842-7226-8_8#Sec4008

xv

Chapter 9: Designing for “-ilities” �� 371

Why Do You Need “-ilities”? �� 372

Partial List of “-ilities” ��� 373

Designing for Security��� 373

Defense in Depth ��� 374

The CIA Triad �� 374

Policy as Code ��� 375

Zero-Trust Security �� 376

Decentralized Identity �� 377

Validating Input �� 377

Design for Threats ��� 377

Naive Password Complexity Requirements ��� 378

Compliance as Code �� 378

Shift-Left Security ��� 378

Single Pane of Glass for Audit ��� 379

Homomorphic Encryption �� 379

Fail Securely �� 379

Secure APIs ��� 380

Designing for Elasticity ��� 380

Designing for Resilience ��� 381

Designing for Sustainability �� 382

The JEVONS Paradox in Cloud Native �� 382

Software Engineering �� 385

Sustainability Assessment ��� 386

Designing for Failure ��� 387

Infrastructure ��� 388

Communication ��� 388

Dependencies �� 388

Internal �� 388

Table of ConTenTs

xvi

Designing for Reliability �� 389

Pareto Chart ��� 391

Designing for High Availability �� 392

Active-Active Deployments �� 394

Active-Passive Deployments ��� 394

Designing for the Customer �� 395

Designing for Interoperability�� 397

Designing for Events ��� 399

Designing for Observability ��� 400

Designing for Portability�� 401

Designing for Ethics �� 402

Designing for Accessibility �� 405

Accessibility Guidelines and Standards ��� 406

Designing for Automation�� 407

Designing for Maintainability �� 408

Designing for Usability �� 408

Summary��� 409

Part III: Modernizing Enterprise IT Systems ��� 411

Chapter 10: Modernize Monolithic Applications to Cloud Native ������������������������� 413

What Is Decoupling? ��� 414

Technical Debt��� 415

How Are Technical Debts Accumulated? ��� 415

How Is Technical Debt Impacting Your Enterprise? ��� 416

How to Decide on Decoupling? �� 417

Decoupling �� 418

Decoupling Approach��� 422

Decoupling Plan ��� 424

Decoupling Principles �� 425

Decoupling Business Case �� 425

Decoupling Strategies ��� 426

Table of ConTenTs

xvii

Domain-Driven Design �� 427

How Does Domain-Driven Design Manage Complexity? ��� 428

What Is a Domain?��� 429

Goals of Domain-Driven Design ��� 429

Domain-Driven Design Model �� 430

Guiding Principles of DDD �� 431

Event Storming ��� 432

Key Roles in an Event Storming Workshop �� 433

Event Storming Exercise ��� 434

Value of Domain-Driven Design ��� 447

Summary��� 449

Chapter 11: Enterprise IT Assessment for a Cloud Native Journey ���������������������� 451

Introduction ��� 452

Assessment ��� 453

What Is an Assessment Used For? �� 453

Assessment Objectives ��� 454

Assessment Execution Approach and Key Activities ��� 455

Cloud Native Assessment �� 456

When to Consider a Cloud Native Assessment �� 457

Cloud Native Maturity Assessment Model ��� 458

Detailed Architecture Assessment �� 464

Assessment Usage �� 464

Architecture Assessment Model �� 464

Assessment Questions Template ��� 466

Automation Maturity Assessment ��� 472

Automation Maturity Assessment Model ��� 472

Automation Maturity Assessment Questionnaire Template ��� 473

Summary��� 478

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-7226-8_11#Sec018

xviii

Chapter 12: “-ilities” Fitness Function ��� 479

What Is a Fitness Function? �� 480

Categories of Fitness Functions �� 481

Atomic vs� Holistic ��� 481

Triggered vs� Continuous ��� 481

Static vs� Dynamic ��� 482

Automated vs� Manual ��� 482

Temporal �� 482

International vs� Emergent �� 482

Domain-Specific �� 483

Design-Time Fitness Function ��� 483

Runtime Fitness Function �� 483

Execution of the Fitness Function ��� 483

Manual Execution �� 484

Automated Execution��� 484

Fitness Function Identification �� 485

Fitness Function: Coupling and Cohesion �� 485

Fitness Function: Security ��� 487

Fitness Function: Extensibility, Reusability, Adaptability, and Maintainability ���������������������� 487

Fitness Function: Performance �� 488

Fitness Function: Resiliency �� 488

Fitness Function: Scalability �� 488

Fitness Function: Observability�� 488

Fitness Function: Compliance �� 489

Fitness Function Metrics ��� 489

Review Function Metrics��� 491

Summary��� 491

Table of ConTenTs

xix

Part IV: Cloud Native Software Engineering ��� 493

Chapter 13: Enterprise Cloud Native Software Engineering ��������������������������������� 495

Cloud Native and Traditional Application Engineering ��� 496

Intelligent Software Engineering ��� 497

From Project to Product �� 499

Organization Transformation ��� 500

Agile Software Development Methodologies �� 502

Hypothesis-Driven Development ��� 502

Test-Driven Development �� 506

Behavior-Driven Development ��� 510

Feature-Driven Development ��� 515

Architecture in the Agile Methodology �� 519

Waterfall to Agile Transformation �� 520

Summary��� 521

Chapter 14: Enterprise Cloud Native Automation ��� 523

Introduction ��� 524

DevOps Today and Tomorrow �� 525

From DevOps to DevSecOps ��� 527

Driver for Shift-Left Security ��� 528

Automation Principles and Best Practices �� 529

Site Reliability Engineering ��� 530

DevSecOps �� 531

Continuous Integration �� 531

Continuous Delivery ��� 532

Continuous Deployment��� 533

DataOps��� 533

DataOps Principles �� 535

DataOps Pipeline ��� 536

Table of ConTenTs

xx

DevNetOps �� 538

Network Operation and Challenges ��� 538

Why You Need DevNetOps? ��� 539

Network Reliability Engineering �� 540

DevNetOps Pipeline ��� 541

DevOps in the Cloud �� 543

AWS Cloud ��� 544

Azure Cloud ��� 546

Google Cloud ��� 548

DevOps Transformation ��� 549

Summary��� 552

Chapter 15: AI-Driven Development ��� 555

Introduction ��� 555

Unique AI Challenges �� 557

Why AI-Driven Development?�� 557

AI-Driven Principles at a Glance ��� 558

Approach to AI ��� 559

AI Governance ��� 559

AI Framework �� 559

AI Governance Measurement �� 560

Governance Process �� 560

Governance Model ��� 560

How to Train AI-Enabled Frameworks? ��� 562

AI-Driven Methodology�� 562

AI Use Cases �� 563

Discovery and Piloting ��� 564

AI Project Execution ��� 565

Deploy and Industrialize �� 565

Table of ConTenTs

xxi

AI and ML in DevOps ��� 565

AI and ML in Code Management �� 566

Summary��� 570

Part V: Cloud Native Infrastructure ��� 571

Chapter 16: Containerization and Virtualization �� 573

Introduction ��� 574

What Is Cloud Native Infrastructure? ��� 576

Cloud Native Environment Characteristics �� 577

Cloud Virtualization ��� 578

How Does Virtualization Work? �� 578

Types of Virtualization in the Cloud�� 579

What Applications and Services Are Commonly Virtualized? �� 580

Cloud Native and Virtual Machines �� 582

Containerization �� 583

What Is a Container Image? �� 584

Container Architecture ��� 585

Container Principles �� 587

Container Patterns ��� 588

Container Benefits ��� 592

Container Adoption Best Practices �� 593

Containers in an Enterprise ��� 593

Container Orchestration �� 596

Types of Orchestration Tools �� 597

Kubernetes Features ��� 602

Kubernetes Principles and Patterns �� 603

Running a Cloud Native Application on the Container and Kubernetes Strategy ����������������� 607

Kubernetes Maturity Model ��� 609

Service Meshes and Kubernetes ��� 611

Stateful Workloads on Kubernetes �� 612

Table of ConTenTs

xxii

Kubernetes Multitenancy ��� 613

Kubernetes Secrets ��� 614

Kubernetes as a Service �� 615

Summary��� 617

Chapter 17: Infrastructure Automation �� 619

What Is Infrastructure Automation? �� 619

What Can You Automate? �� 620

What Is Infrastructure as Code? �� 621

IaC in Build Pipeline Automation ��� 622

Capture Requirements ��� 623

Prepare Automation Code �� 623

Set Up Infrastructure ��� 623

Install OS ��� 623

Set Up Network and Storage ��� 624

Deploy Services ��� 624

Define Everything As Code �� 624

How Do You Select an IaC Tool? �� 625

What Coding Language Can You Use? ��� 625

IaC Example �� 626

IaC Tools �� 627

Terraform ��� 627

Ansible ��� 629

SaltStack ��� 629

Chef ��� 630

Puppet ��� 630

CFEngine ��� 631

AWS Cloud Formation �� 632

IaC Tools Comparison �� 632

Summary��� 634

Table of ConTenTs

xxiii

Part VI: Cloud Native Operations��� 635

Chapter 18: Intelligent Operations �� 637

Introduction ��� 638

Why Do You Need Intelligent Operations? ��� 639

Elements of Intelligent Operation �� 640

Data-Driven Approach ��� 640

Applied Intelligence ��� 641

Cloud Enablement ��� 641

Right Talent and Skill ��� 641

Smart Partnership ��� 642

AIOps ��� 642

Central Functions �� 643

Example Use Case of AIOps ��� 648

Traditional Operations �� 648

AIOps-Based Operation ��� 649

Capabilities of AIOps �� 649

AIOps Transformation �� 650

Benefits of AIOps ��� 652

ChatOps ��� 652

ChatOps Benefits ��� 653

Types of ChatOps ��� 654

ChatOps in Service Support ��� 656

ChatOps (Bot) Architecture �� 656

Industry Example Use Cases ��� 658

Summary��� 659

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-7226-8_18#Sec010

xxiv

Chapter 19: Observability ��� 661

Introduction ��� 662

Difference Between Monitoring and Observability �� 663

Full-Stack Observability �� 664

Connected Across Capabilities �� 665

One Source of Truth ��� 666

Visualization �� 667

Observability and Cloud Native Services �� 668

Observability in Kubernetes �� 669

Observability and DevOps ��� 671

Common Use Cases for Observability with AIOps �� 671

Guidance to Choose Observation Tools ��� 672

Benefits of Observability ��� 673

Observability, Monitoring, and Machine Learning Models��� 674

Algorithms Help in Observability ��� 674

Workflow Steps for ML �� 675

Summary��� 676

Part VII: Cloud Native Features ��� 677

Chapter 20: Cloud Native Trends �� 679

Cloud Native Trends �� 680

Designing for “-ilities” ��� 680

Cloud Native Architecture �� 680

Open Application Model Specification ��� 681

Web Assembly ��� 682

Data Gateways ��� 682

HTTP/3 ��� 683

RSocket and Reactive Streams ��� 683

Low Code/No Code �� 684

Actor Model ��� 684

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-7226-8_19#Sec013
https://doi.org/10.1007/978-1-4842-7226-8_19#Sec014

xxv

Kubernetes on the Edge �� 685

GitOps �� 685

General Trends Across Industry ��� 686

5 G �� 686

Digital Twin �� 689

Quantum Computing �� 691

Extended Reality �� 693

Edge Computing �� 694

Summary��� 695

 Index ��� 697

Table of ConTenTs

xxvii

About the Author

Shivakumar R. Goniwada is an enterprise architect,

technology leader, and inventor with more than 23 years

of experience in developing enterprise architecture with

cloud native, event-driven systems. He currently works

at Accenture and leads a team of highly experienced

technology enterprise and cloud architects. In his 23

years of experience, he has led many highly complex

projects across industries and geographic regions. He has

ten software patents to his name in the areas of cloud,

polyglot and polylithic architecture, software engineering,

and IoT (a few yet to publish). He has been a speaker at

multiple global and in-house conferences. He holds Master

Technology Architecture Accenture, Google Professional,

AWS, and data science certifications. His executive MBA is from the MIT Sloan School

of Management. You can find him at https://www.linkedin.com/in/shivakumar-r-

goniwada.

https://www.linkedin.com/in/shivakumar-r-goniwada
https://www.linkedin.com/in/shivakumar-r-goniwada

xxix

About the Technical Reviewer

Vishal Chaudhari is an IT professional with 18 years of

extensive experience working with top IT organizations

such as Wipro, Emerson, Sterlite, IBM, TechM Geometric,

Saama technology, and Efkon. He holds a Master of

Computer Applications degree and started his career as

a Java developer, working more than a decade as an SOA

integration architect, solution designer, project manager,

enterprise architect, ethical hacker, SOC security analyst

auditor, and IoT/RPA/bots engineer.

His experience in the IT industry includes digital

transformations with cloud native architecture, microservice architecture, API-led

connectivity, cloud migration, big data, streaming platforms, bare-metal hybrid cloud

platforms, and service mesh and edge network security.

In his current role, he has adopted cloud native, digital architecture, cutting-edge

approaches for next- generation applications. He has worked in various domains

including telecom, finance, open banking, PSD2, insurance, payments, and more.

Vishal is an active mentor member of the Mulesoft community. When not working,

he works on DIY projects. You can find him at https://www.linkedin.com/in/

vishalkumarc/.

https://www.linkedin.com/in/vishalkumarc/
https://www.linkedin.com/in/vishalkumarc/

xxxi

Acknowledgments

To my mother Jayamma S and late father Rudrappa G M, who taught me the value of

hard work, and to my wife Nirmala and daughter Neeharika, without whom I wouldn’t

have been able to work long hours into the night every day of the week. Last, but not the

least, I’d like to thank my friends, colleagues, and mentors at Accenture, Mphasis, and

other corporations who guided me throughout my career.

Thank you to my colleagues Celestin Suresh John, Mathew Moodie, and Shrikant

Vishwakarma for giving me an opportunity to work with you and Apress and all who

have helped this book become a reality.

xxxiii

Introduction

The motivation to write this book goes back to the words of Swami Vivekananda:

“Everything is easy when you are busy, but nothing is easy when you are lazy” and “In a

day when you don’t come across any problems, you can be sure that you are traveling on

the wrong path.”

Cloud computing has proven to be revolutionary in IT, and the need to adapt to

the cloud across organizations has increased rapidly, especially after the COVID-19

pandemic. Cloud native architecture is part of the cloud revolution and gives you

the benefit of more flexibility over legacy systems in your IT real estate. Cloud native

architectures demonstrate seven essential components of designing, developing, and

deploying modern present-day architecture: cloud, microservices, serverless, event-

driven, containers, automation, and agility.

This book provides you with the end-to-end details of cloud native systems, from

architecting to managing them. You will learn what a cloud adoption framework looks

like and develop a cloud native architecture using microservices, serverless, and event-

driven data, and you will learn how to adopt AI and ML in your end-to-end automation

and engineering. You will not get cloud native benefits without modernizing your

existing legacy systems, so you’ll learn how to modernize your legacy systems and

infrastructure to be cloud native.

You’ll explore how to design for cloud native abilities and create fitness functions

and learn ways to achieve operational excellence.

By the end of this book, you will have learned about the modern-day techniques and

tools to design, develop, deploy, and operationalize cloud native architectures that meet

your business requirements. You will also understand future cloud native trends across

the industry.

This book will be helpful for people who want to learn and develop cloud native

architecture. Whether it’s design, development, deploy, or operation, the book will help

you on a journey from beginning to end. By reading this book, you will get a full, clear

picture of how the world of cloud native works, and you will be able to better manage

your systems.

PART I

The Cloud Native Journey,
Principles, and Patterns

3
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_1

CHAPTER 1

Introduction to
Cloud Native Architecture
A comprehensive look at cloud native architecture must first begin with its definition.

This chapter also details why cloud native plays a significant role in modern-day

architecture.

It is important to understand the industries, stakeholders, compliances, and software

producers who are affected by cloud native software architecture. This chapter will cover

the benefits of cloud native architecture for an enterprise, the pivotal roles software

architects need to play to embrace the cloud, and whether the cloud is right for all

industries.

Specifically, in this chapter, we will cover the following topics:

• What is cloud native?

• What are the steps for a cloud native journey?

• How is cloud native architecture embraced across industries?

• Why is cloud native important?

• What is the software architect’s role in cloud native?

https://doi.org/10.1007/978-1-4842-7226-8_1#DOI

4

 Introduction to Cloud Native
Today, enterprises of all sizes across industries and geographic regions are using

software as a key disruptor and source of competitive advantage in their businesses.

CxOs are looking at cloud computing as an enabler, especially during the COVID-19

pandemic, to create highly innovative products and services. During the pandemic,

technology has proven to be the most important enabler of business continuity in a

socially distanced market. The cloud sits right at the center of technology, powering

significant industry transformation. To derive maximum value from the cloud,

organizations must be planned much more than just virtualized infrastructure.

Many organizations are realizing that just simply lifting and shifting their existing

monolithic enterprise legacy systems into the cloud does not sufficiently support

modern-day business disruptions. Deploying an enterprise software application to the

cloud does not make it cloud native; cloud native is about how the software is designed

and implemented, not just where it is executed.

To address disruption in business, the cloud native approach and architecture need

to be adopted as part of technology decisions. Cloud native is a lot more than just signing

with various cloud providers and using them to run the existing enterprise applications.

Cloud technologies and services can offer greater availability, elasticity, and security.

Cloud native fundamentally changes the design, implementation, deployment,

nonfunctional requirements, and operations of applications, and the cloud creates a new

culture of technology services within industries, enabling them to become more agile

and to operate faster.

Enterprises will benefit from infrastructure as a service (IaaS) as it is readily

available, used on-demand, and scalable from 0 percent to 100 percent, and vice versa,

depending on the load. The various industry practitioners such as Netflix, Amazon,

telcos, Google, etc., have demonstrated the proven benefits of the cloud native approach

to application development.

The adoption of cloud native architectures is helping many enterprise organizations

to transform their IT landscape into a force of agility in the marketplace to support

business disruption. This revolution in infrastructure services led to a new way of

designing applications.

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

5

 Cloud Adoption Across Industries
Despite the clear advantages that the cloud can offer and the potential for innovation, cost

transformation, and greater agility, organizations across industries and geographies have

yet to truly embrace the potential that the cloud offers. Recent research suggests that while

public cloud consumption is increasing rapidly, there’s also a level of disillusionment

in the results being obtained. While 90 percent of enterprises have adopted the cloud

in some form or another, only 37 percent of enterprises say they have fully achieved the

benefits they expected from their cloud initiatives. Research organizations envision that

tomorrow’s industry leaders will be approximately 80 percent fully achieves the benefits

from the cloud initiatives. The 37 percent of organizations, who have adopted the

cloud-first approach are already seeing the benefit and return on investment (ROI).

 Reducing Costs
A cloud-based deployment reduces the capital expenditure by eliminating the need to

spend money on fixed assets such as servers, networks, real estate, software, etc. It also

reduces operational expenditures by lowering costs such as IT support staff, electricity,

security, etc.

 Adopting the Cloud Native Mindset
Organizations within an enterprise chain together the various technologies, processes,

and services of cloud native to produce an outcome that has actual business value.

The cloud native approach is much more than just a programming model or a new way

of writing code. Cloud native applications have been designed and developed from the

bottom up to be deployed in the cloud. In other words, it changes the entire lifecycle of

how requirements are collaboratively started, coded, tested, deployed, and maintained.

 What Is Cloud Native?
According to the definition developed by the Cloud Native Computing Foundation,

cloud native can “empower organizations to build and run scalable applications in

modern, dynamic environments such as public, private, and hybrid clouds.”

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

6

Cloud native refers to the architecture, design, delivery, and management of

applications that truly exploit the unique characteristics of a native of the cloud, rather

than just porting legacy monolithic applications to the cloud.

The objective of cloud native is to improve the speed and efficiency of service

assembly, enabling the business to react faster to market change.

Cloud native is an approach to building and running an application that exploits

the services of cloud computing. Cloud native is about around how your application

is architected, developed, and deployed. The applications can be easily modifiable,

is disposable without affecting the whole business use cases, and can react quickly to

business changes. See Figure 1-1 and Figure 1-2.

Figure 1-1. Monolithic legacy application

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

7

The enterprises that are embracing the cloud are already seeing the benefits from

adopting microservices, containers, event-driven, serverless, and DevSecOps along with

an agile development approach.

Cloud native architecture and design principles and patterns help to design, develop,

and manage applications for their intended resilience and scale requirements and

accelerate the software engineering process.

Cloud native provides enterprises with the capability to rapidly develop and

deploy software applications that adapt to changing the business and operational

condition automatically. Cloud native brings the greatest benefits when developing

new applications or services that drive business disruption and enables the continuous

deployment of software applications until moving to production in real time with the

automation of infrastructure, which increases resiliency and business continuity for

enterprise applications.

 Cloud Native Maturity Model
Every book and blog mentions the maturity model of cloud native architecture; in

reality, the model is entirely based on your organization’s maturity. To gauge where your

organization is, you need to conduct a maturity assessment. We will explain maturity

assessment in Chapter 11.

Figure 1-2. Polylithic and polyglot cloud native application

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

8

The three waves of cloud native architecture are cloud enablement, cloud native

transformation, and cloud native culture and innovation. Your maturity level is not an

end; cloud native architecture will continue to mature as your organization progresses

on these waves and through industry innovation.

Based on research by research institutes like Gartner, Forester, and consulting firms,

and also my experience, I believe every organization must go through this cycle of

maturity, as shown in Figure 1-3. I call this model the cloud and cloud native maturity

model (CCNMM).

 Cloud Enablement Wave
To understand where your enterprise and its landscape will fall on the CCNMM, it is

important to assess which systems are ready for the cloud journey. In the cloud journey,

being cloud native requires the adoption of cloud services. If your organization just

started with the cloud, then you need to start the migration from your own data center

to the cloud, such as migrating the VMs. During this period you need to prioritize the

system for cloud migration and also create a cloud strategy across portfolios. Each cloud

vendor will have its own set of services and cost models, with the most mature having

an advanced set of features. In this wave, you need to recognize what cloud services you

need to adopt, and in parallel, you need to embrace a cloud culture in your organization.

Wave 1 – Cloud Enablement

Migration & Cloud Enablement

Wave 3 – Cloud Native Culture & Innovation

Innovation and Organizational Evolution at scale

Wave 2 – Cloud Native Transformation

Automation Delivery

Digital decoupling &
Microservices

Platform, Infra &
Migration

Intelligent
Operation or

Zero Operation

AI, Machine Learning,
NLP, Deep Learning

Emerging –
Edge,
Quantum
Computing

Agility

Migration Roadmap
Containerization

DevSecOps – CI/CD

Cost
Optimization

Scalability

Cloud Security &
Compliance

Event-Driven

Cloud Strategy &
Adoption

Cloud Operating
Model

Cloud
Architecture

Zero Trust
Architecture

Kubernetes on
the Edge

API First

Data Mesh

Cloud Culture
Cloud Native IDEs

Cloud Native Maturity

AI Driven
Development

Blockchain

Multi-Cloud

5G

Figure 1-3. Cloud and cloud native maturity model

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

9

Regardless of which cloud provider you choose, the provider will have the basic building

blocks of infrastructure, storage, networking, etc. To start on your cloud journey, you need

to choose these services for your VM migration or lift-and-shift model. This model will

move the on-premises systems to the cloud with no changes to the design, technology, etc.

Therefore, these migrations only use the basic building blocks of the cloud.

The outcome of this wave that your organization will gain from this maturity stage

is the basic premises of the cloud. For example, your organization will move its cost

model from CAPEX to OPEX and be able to manage nonfunctional requirements such as

scaling, high availability, etc. Besides learning how to analyze your landscape and cloud

vendor, it’s important to embrace a cloud culture across the organization. Even though

the adoption of cloud in this wave is a relatively low level of maturity, it is critical for the

organization to start the cloud journey.

 Cloud Native Transformation Wave
Before the adoption of cloud native, the suggestion is to adopt a middle path

between cloud enablement and cloud native; this is called cloud optimization.

In cloud optimization, you need to optimize your migrated application that you

already completed in the cloud enablement wave by using cloud native features

without decoupling or redeveloping your cloud-enabled applications. Today, some

organizations, especially after the pandemic, are moving to the cloud optimization

world and experiencing the benefits of continuous delivery, autoscaling, redundancy,

resilience, etc.

Once you have adopted the culture of the cloud in your organization after

cloud enablement and cloud optimization, the next level of maturity is cloud native

transformation. Cloud native maturity will begin with a culture of cloud principles and

the team’s understanding of cloud native implementation. In the whole cloud native

transformation, the adoption of the cloud is one part of the design principle that is

required to make a cloud native architecture. These are used in conjunction with other

principles such as the culture of automation and culture of agility that is centered on

microservice applications.

The cloud native transformation wave is about how the application is decoupled,

designed, and architected. You need to adopt various principles and patterns to

make your application truly cloud native. Adopting microservice principles in your

application architecture is not cloud native, but you need to consider other elements

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

10

of cloud native elements such as containerization, automation, etc. The 12-factor

app is a methodology, as mentioned in Table 1-1, for building software-as-a-service

applications (http://12factor.net). This 12-factor app methodology can be adapted

to any programming techniques and database models. The objective of the 12-factor

methodology is to consider 12 steps when designing an application for cloud native that

minimizes cost and time.

In the cloud native transformation, you need to adopt microservice architecture

principles for new developments and apply the digital decoupling method for the

existing monolithic legacy applications. All the cloud native elements as mentioned

in the next section will revolve around microservices development. You need to

adopt DevSecOps for end-to-end automation, agility for software engineering,

containerization, orchestration for deployment and elasticity, and so on.

Table 1-1. Twelve-Factor App Steps

Number Step Details

1 Codebase one codebase tracked in revision control; many deploys

2 dependencies explicitly declare and isolate dependencies

3 Config Store config in the environment

4 Backing Services treat backing services as attached resources

5 Build, release, run Strictly separate build and run stages

6 processes execute the app as one or more stateless processes

7 port binding export services via port binding

8 Concurrency Scale out via the process model

9 disposability Maximize robustness with fast startup and graceful shutdown

10 dev/prod parity Keep developing, staging, and production as similar as

possible

11 logs treat logs as event streams

12 admin process run admin/management tasks as one-off processes

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

http://12factor.net

11

 Scalability and Flexibility Advantage
Taking advantage of cloud native architecture offers enterprises flexibility. The

applications can scale up and down based on demand. Almost all cloud providers have

a global scale. In addition, you can choose what kind of VM instances are required

depending on the type of application such as if your application requires more CPU, your

application is data-centric, or your application is an online gaming provider.

 Cloud Native Culture and Innovation Wave
The third wave of the maturity model is to adopt a culture across the organization of

innovation. Throughout this wave, the remaining maturity principles shown in Figure 1- 3

need to be adopted. As your systems evolve and move further on the cloud native maturity

model, they will rely more and more on applying intelligence into them. Similar to the

cloud native transformation stage, a mature cloud native architecture is constantly evolving

by adopting artificial intelligence, machine learning, and deep learning techniques to

predict your architecture, failures, operations, event streams, integrated monitoring, etc.

In the cloud native journey, your organization might find a lot of use cases to adopt

blockchain technology, digital twin, zero trust architecture, 5G, AI-driven development,

cloud native IDEs, and quantum computing.

 Blockchain as a Service
“Blockchain is a system of recording information in a way that makes it
difficult or impossible to change, hack, or cheat the system. A blockchain is
essentially a digital ledger of transactions that is duplicated and distributed
across the entire network of computer systems of the blockchain.”

—investopedia

The main characteristics of blockchain are decentralization, immutability, and public

databases. The concept of blockchain is based on a peer-to-peer network architecture

in which a transaction is not controlled by any single centralized entity. Cloud native

architecture is best when stored data on the cloud is split into smaller chunks, which are

stored on several different machines around the world. There are many options available

like blockchain as a service (BaaS), which is a third-party cloud-based infrastructure and

management of companies building and operating blockchain apps. These services are

hosted on the web and run back-end operations for a blockchain-based platform.

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

12

 Digital Twin

A digital twin platform is an effective means to reflect the physical status in virtual space. It

breaks the barrier between the physical world and the digital world of manufacturing. The

digital twin ideas were first evolved at NASA: full-scale mockups of early space capsules.

Industry 4.0 is possible only with digital twins according to Dr. Michael Grieves.

A digital twin is a sensor-enabled digital model of a physical object that simulates

the object in a live setting. All the major cloud providers have created a service for

digital twins; for example, Azure Digital Twins provides services for users to create

dynamic virtual replicas. The capabilities include flexible modeling that supports full

graph technologies, a live execution environment, and easy integration with other Azure

services. These cloud native platforms help to build digital twin capabilities, especially

for manufacturing industries.

 Zero Trust Architecture

The elements of cloud native and data continue to shift in enterprises, from monolithic to

microservices, from centralized data lakes to data meshes, and from manual to automation

delivery and deployment with the increasing proliferation of connected devices. The

approach to securing enterprises’ assets for the most part remains unchanged, with

heavy reliance and trust in the network perimeter. Enterprises continue to innovate and

adopt secured network configurations. Zero trust architecture (ZTA) is a paradigm shift

in security architecture and an organization’s strategy; it is built upon existing cloud

native architecture and does not require you to replace existing architecture. The ZTA

environment consists of a protected surface that contains a single Desktop as a Service

(DaaS) element protected by a micro perimeter enforced by layer 7 and various tools

available in the cloud. ZTA enforcing policies are code based on the least privilege,

continuous monitoring, and automated mitigation threats using service meshes to enforce

security control and implement binary attestation to verify the origin of binaries.

 5G

5G is the fifth-generation technology standard for the broadband cellular network and

delivers higher multi-Gbps peak data speeds, ultra-low latency, more reliability, massive

network capacity, increased higher availability, and a more uniform user experience.

The 5G technology comes with various features such as networking slicing, orthogonal

frequency-division multiplexing (OFDM), and multiple input and multiple output (MIMO).

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

13

Your cloud native application needs to evolve and adopt a new way of responding

to users to meet the speed of 5G; that is a latency of less than 1 millisecond. To support

this speed and end-user experience, your existing cloud native application architecture

needs to support changes that are nano and micro in nature with 2.0 code and built-in

intelligence.

 Quantum Computing

Quantum computing uses advanced physics to dramatically increase the computing

power needed for complex calculations. Traditional computing relies on information

that is translated, stored, represented, and processed in bits that can be only one of

two discrete binary states. Quantum computing, in contrast, uses qubits that can exist

either in the same discrete states as a traditional bit or in any number of superpositions

in between. All cloud providers have come up with solutions for cloud-based quantum

computing via quantum as a service (QaaS). QaaS allows enterprises to use and write

algorithms and run them on quantum computers.

This is not the end of maturity; you need to keep innovate to adopt earlier than

others, and you need to make sure your people are upskilled frequently to meet the

maturity.

 Elements of Cloud Native Computing
The traditional approach to architecture is no longer viable in the fast-paced digital

economy where business decisions need to be made quickly, the cost of change is

required to be low, and the cost of throwing away existing architecture needs to be

affordable, if not negligible. These are the types of demands that are behind the drive

toward cloud native architectures, a fundamentally new way to build software. This

approach helps create a highly agile architecture that facilitates businesses to make

changes quickly without impacting the rest of the enterprise systems.

In the cloud native technology era, the cloud is the execution platform; to the left are

DevSecOps processes, which are driven by agility, all of which are the result of present-

day polylithic and polyglot architecture, which are driven and invoked by business

disruptions.

Figure 1-4 illustrates seven key elements of a cloud native architecture, which is used

to develop cloud native applications.

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

14

 Microservices Architecture
A microservice architecture approach allows you to build a system that is composed

of many granular subsystems, whereby each system has its specialized architecture to

meet specific business and technical needs. The principle features of a microservices

architecture are as follows:

• Exclusive infrastructure: Each granular subsystem is deployed in

its virtual or container hardware environment, isolating it from

impacting other subsystems.

• Exclusive ownership of data by each subsystem: Access to subsystems

is provided through a well-defined published interface.

• Flexible system: Each subsystem inherently supports multiple

versions and backward compatibility and simplifies change

management.

 Serverless Architecture
A serverless architecture is an element of cloud native architecture. The challenges of

on-premises data center management can be addressed by abstracting the infrastructure

to the cloud. Management activities are automated as part of the platform, and near-zero

downtime can be achieved through the modular independent images of the services.

Operations of your application capability increase as your application can be scale

Event-Driven

Cloud Native
Architecture

Serverless

Microservices

Agility

DevSecOps

Cloud
Containers

Figure 1-4. Cloud native architecture elements

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

15

up and down dynamically. With the technical aspects abstracted from the solution,

the development team can focus on developing business user stories. The platform

design allows for resiliency and service monitoring and logging. Leveraging a serverless

architecture allows your enterprise to expand its IT strategy with new capabilities and

offerings.

Serverless architectures dramatically simplify the development of microservices

and event-driven architecture. The following are the characteristics of a serverless

architecture:

• Asynchronous and concurrent

• Infrequent and irregular demand

• Stateless and ephemeral process

• Changing business requirements

 Event-Driven Architecture
Event-driven architecture is a model for cloud native application design. It is a distributed,

asynchronous software architecture that integrates applications and components through

the production of handling events. In the event-driven architecture, events are triggered

and communicate asynchronously between microservices. The event-driven architecture

has three key components: event producer, event router, and event consumer. The

following are the benefits of an event-driven architecture:

• Scale and fail independently

• Develop microservices with agility

• Audit your application with ease

 Cloud Computing
Cloud computing is the use of computing resources that are delivered as a service over

the Internet. Cloud computing has the potential to offer substantial opportunities in

various IT scenarios. It is a flexible delivery platform. It can support many different

architectural and development styles, from big, monolithic systems to large virtual

machine deployments to nimble clusters of containers to data meshes and large farms

of serverless functions. The cloud can host a variety of different software applications,

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

16

including batch-style, back-end jobs; interactive, data-driven applications; and more. All

the software is deployed and scaled out quickly through the rapid provisioning of VMs,

containers, or bare metals.

The following are the main services of cloud offerings:

• Infrastructure as a service (IaaS)

• Platform as a service (PaaS)

• Software as a service (SaaS)

 Containers
Cloud native applications are distributed in nature and utilize a cloud infrastructure.

Numerous techniques and tools are used to implement cloud native applications, but

from a computing perspective, mainly containers are used. Containerization became

a de facto standard for cloud native. The container is a technology that allows you to

incorporate and configure your binaries and their dependencies in a package called an

image. This image can be used to spawn an instance of your services, called a container.

 Agile Development
Agile management is about working smarter and generating more value. An iterative

mindset that embraces failure and focuses on customer and business value is an

essential building block of it. The agile process generally promotes a disciplined

project management process that encourages frequent inspection, closer to business,

and promotes the early release of use cases in terms of user stories. There are 12 agile

principles are available to adapt to make your company truly agile. Agile embraces faster

innovation with a focus on business value. These are the few benefits of truly agile:

• Predictable cost and schedule

• Focuses on business value

• Focuses on end users

• Stakeholder engagement and early feedback

• Faster time to market and early predictable delivery

• Reduced risk

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

17

 DevSecOps
DevSecOps is the set of tools, practices, processes, and culture that enables

development, operations, and security teams to work together during the entire lifecycle

of a project or product. It focuses on speed and how quickly an artifact can get from the

requirements to design stage to development and into production. It’s largely about

automation, i.e., eliminating the need for human involvement in the production process.

Shift-left is the common usage in DevSecOps; the idea of bringing everything toward

your left means starting early and detecting early instead of at the end. The following are

a few benefits of automation:

• End-to-end automation with single touch deployment

• Cost reduction

• Speed of recovery

• Improved overall security

• Infrastructure as code

 How Is Cloud Native Different Than Cloud-Enabled?
Cloud-enabled applications are developed by using a normal traditional software

methodology but can deploy in the cloud without using many benefits of the cloud.

Cloud native applications are developed and deployed in the cloud or cloud-related

environment by using cloud native software methodologies. This software delivers to a

customer by using the benefits of the cloud such as autoscaling, infrastructure as code, etc.

 Cloud Native Journey
Cloud migration is imperative, but that doesn’t mean it’s easy to implement. Anyone

facing stumbling blocks on the cloud journey must understand that they are not

alone. The road to the cloud transformational benefits is complex, involving multiple

dimensions, including rethinking strategy, technology, skills development, business

processes, as well as organizational design.

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

18

Although all enterprises are embracing cloud native, it is not always practical to

change all the applications at once. Applications will exist in different stages of maturity,

and there are multiple ways to achieve stages of maturity. We’ll cover more details of the

assessment to identify the maturity of your application in subsequent chapters.

The cloud native transformation starts by establishing a cloud native platform and

then moving on to new application “greenfield” (development of an application from

scratch) or the modernization of an existing application “brownfield” incrementally until

enterprise-wide adoption.

The timeline shown in Figure 1-5 is dependent on the size of the enterprise. We’ll

explain more details about the timeline and risks in subsequent chapters.

 Start with Lift and Shift
The agility and speed offered by cloud native environments can be transformative for

an enterprise. To make everything cloud native, you need to adopt a culture, process,

and way of working. But your organization cannot become cloud native from day one,

so every organization has to start on a cloud journey. How and where to start? For most

organizations, start with the lift and shift of existing monolithic applications to an IaaS

cloud environment. Lift and shift means lifting monolithic applications from your data

center and shifting them to the cloud environment without much modification. This is

also called migrating into VMs.

Figure 1-5. Journey to the cloud

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

19

Shifting VMs from your data center to the cloud, that is, using the cloud as a

commodity data center, offers a few advantages. Some of the advantages are as follows:

• Fewer resources are required because the VMs are owned by the

cloud, so you have less maintenance.

• Reduced capital expenditure on facilities.

• Fewer data centers.

In the new usage model, you provision servers as and when required.

 Re-engineer Migration
Enterprises that are truly moving to be cloud native organizations will follow the

re- engineering approach for their legacy applications so they can take advantage of

scale, agility, and innovation. The applications that are migrating to the cloud get the

benefits of being cloud native, but decoupling in the process might take a longer time.

These types of applications do not lift and shift; they are designed to follow cloud native

principles as much as possible.

 Benefits of Cloud Native
For many industries, the cloud represents a part of digital transformation. Some

industries might have started their cloud journey for several reasons, including

scalability, improved customer experience, greater agility, cost savings, and access

to innovation. However, to take full advantage of the value of cloud computing,

enterprises must adopt new methodologies and processes. As mentioned, a cloud native

development is an approach to building and running applications that uses a service-

based architecture, microservices, containers, and APIs. Here are a few benefits when

enterprises adopt a cloud native approach as part of their cloud strategy:

Agility: By splitting the development process into time windows

and providing a continuous feedback loop, agile enables rapid,

more effective development—and the creation of nimble

organizations that can innovate quickly.

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

20

Speed: Cloud native applications can gain development speed and

improve automation by migrating an application to a container-

based platform, decreasing the time it takes to deliver new

products and business services to market.

DevSecOps culture: To adopt a cloud native approach, portfolios

within IT and the business need to collaborate. The development

team must align with IT operations and the lines of business to

deliver needed business functionality. The applications are the

realization of DevSecOps as they automate operational processes

such as integrated monitoring, scaling, resilience, etc.

Efficient resource consumption: Containers allow applications to

be rapidly deployed in servers with greater density than VMs and

destroyed easily and recreate with same configuration.

On-demand infrastructure: The cloud native development model

promotes on-demand provisioning that allows developers

throughout the organization to access the infrastructure they need

when they need it.

Reusability: Cloud native applications take advantage of a

ready-to-use infrastructure that allows developers to access and

reuse existing components such as caching, APIs, rules, data

virtualization, etc.

Portability: Cloud native applications are container friendly and

abstract away dependencies on their external environment and

are more easily deployed across different environments.

Scalability: Cloud native applications can automate scaling

applications based on various parameters such as CPU, load, etc.

 Cloud Native Organization and Culture
The transition to cloud native is not just a technical change; it carries with it changes to

large parts of cloud usage. Infrastructure as a service (IaaS) means that IT can reduce

its expenditures on data centers, and by taking advantage of business continuity and

disaster recovery (BC and DR) capabilities in the cloud, as well as other capabilities,

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

21

it can further reduce expenses and redirect spending to more profitable users.

Moreover, by taking advantage of more modern cloud architectures such as containers,

orchestration, serverless technologies, automation, etc., enterprises should find that

development and updates can be greatly accelerated, improving time to market and

responsiveness to business needs.

In the cloud, you can spin up services quickly, try them, and terminate them

when no longer needed. This stands in stark contrast to the traditional old way. Many

enterprises use hackathons to determine the value of new technology for a given

problem. In such events, the development team comes together and learns new

technology quickly. If the experiment fails, little has been lost. If it succeeds, your teams

have gotten a real head start.

The IT finance organization has changed the way the model was approached

compared to the earlier traditional approach, which was based on capital expanse and

deprecation. Facilities, servers, and software were purchased and typically depreciated

over time, after which the refresh cycle started. Cloud services are subscription-based.

With the cloud, the IT department and finance organization within an enterprise can

gain more control and insight into their IT spend.

Consider the following when you start your journey to the cloud:

• Monitor cloud spend.

• Verify that computing resources are used efficiently.

• Look at the CPU utilization.

• Drive accountability to the business where possible.

You need to involve the information security and risk management teams as soon

as you can when planning to move to the cloud. There are many technological and

environmental aspects of security in cloud native. You need to make sure to consider the

following questions:

• Do you have a data classification schema?

• Do you have a common authentication mechanism?

• What new regulations apply once in the cloud?

• Do you consider countries’ compliances and regulations?

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

22

The development and operations groups will experience a significant change in the

way they are working depending on the extent to which they embrace the cloud native

paradigm. In the traditional approach, a team usually follows the waterfall process.

In today’s world, many projects and teams follow an agile methodology with full

implementation of automation, a shift-left approach, etc.

As more and more of your organization’s focus is on cloud enablement, your team

requires upskilling into cloud technologies. HR organizations should be prepared to help

train or retain individuals to gain the new cloud skills they are expected to need. Many

enterprises started upskilling on cloud technologies by enabling cloud certifications,

cloud advisory roles, etc.

Finally, organizations should put controls and standards in place to verify that their

cloud journey proceeds thoughtfully. Many enterprises have created cloud steering

committees (CSCs), central bodies that facilitate departments and the adoption and

use of the cloud. The CSC comprises individuals from enterprise architecture, finance,

information security, HR, the business team, etc. The objectives of the CSC are to do the

following:

• Determine the order and priority of the enterprise applications to

migrate to the cloud.

• Create a culture of automation.

• Analyze and contract with cloud vendors.

• Keep track of emerging technologies, etc.

 How Is Cloud Native Architecture Embraced Across
Industries?
Many enterprises have made a start on their cloud journey but have yet to fully commit.

A few enterprises have advanced a bit further, and now their challenge is how to move

deeper to the cloud and take greater advantage of cloud native capabilities.

Amid the pandemic, organizations are responding to this changing landscape with a

mix of business strategies. These strategies aim to disrupt the future with more relevant

services. They’re seeking to harness digital to drive greater efficiency and become more

agile in the face of volatile market conditions and to compete with the new disruptive

competition.

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

23

Regardless of your approach and priorities, making progress requires leadership that

is commitment to targeted business outcomes and the right focus on creating a cloud

native culture, not to mention creating an environment in which the team can thrive. It is

also essential for industries such as banking and insurance to engage with regulators and

county-specific compliances as they plan for their journey.

Industries should pick the right migration path depending on their priorities and the

current degree of cloud maturity. You need to categorize these journeys into migrate,

accelerate, and scale and innovate in the cloud, and you can choose whichever path you

want depending on your strategy.

 Migrate
Cloud migration is about much more than lift-and-shift; a successful migration requires

a common language, common understanding, and organizational ability to align

technology solutions to meet business needs.

For a range of reasons—technology, security, complexity, legacy, data sovereignty—

many industries’ systems remain in the data center. Unless you migrate most of your

systems to the cloud, you will be unable to realize the full business value from these

systems, whether that’s making the business more resilient, efficient, or customer-

focused. This stage is essential to get systems to the cloud rapidly, securely, and with

confidence by selecting the right infrastructure for your business.

The following are the steps you need to consider for your migration:

 1. Conduct an assessment of applications, data repositories, and

infrastructure for either retirement, leave-as-is, rehost, refactor, or

rewrite.

 2. Determine the design, cost, and timeline for migration activities.

 3. Perform a software engineering lifecycle for migrated

applications.

 4. Perform the post-migration retirement of applications, data

repositories, and infrastructure in the source data center and

cloud.

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

24

 Accelerate
Just getting to the cloud doesn’t mean your enterprises have become a cloud native

enterprise. To do that, you need to modernize. That means building applications and

services specifically for a cloud environment and changing the operating model to

drive new business agility. The accelerated stage is where banks can ramp up their

organizational speed and agility by restructuring architectures, applications, and data for

the cloud. The COVID-19 crisis has accelerated an industry need for the cloud:

• Run an agile business and respond to changing events, for example,

regulatory impacts.

• Focus on new revenue streams enabled through digital and

disruptive technologies.

• Reduce infrastructure costs and transition to proportional technology

costs.

• Improve operating efficiencies for change and run activity.

• Provide enhanced dynamic risk management and security

capabilities.

• Monetize APIs in open banking.

• Monetize the data as a service across enterprises.

 Scale and Innovate
With the scale and speed provided by the cloud when working with cloud providers,

enterprises can free up people and funds to focus on adopting systems to what the

business and its customer will need next. The scale and innovate stage is where your

enterprises can use the cloud as a digital transformation level, creating a foundation for

rapid experimentation, innovation, and new business model.

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

25

 What Is a Software Architect’s Role in Cloud Native?
A software architect in a cloud native architecture is expected to have skills and

knowledge of a variety of topics including cloud and noncloud. This book focuses

on many of those topics. They include technical and nontechnical duties such as the

following:

• Understanding cloud environments, microservices, automation, and

agility

• Understanding nonfunctional requirements such as scalability,

elasticity, resilience, etc.

• Providing leadership

• Understanding architecture principles and patterns for cloud native

architecture

• Knowing how to manage client stakeholders’ concerns

• Ability to create architecture blueprint

• Ability to create runtime, development, integration, and operation

architecture details

• Understanding the business domain

• Participating in gathering and analyzing requirements

• Communicating with various technical and nontechnical

stakeholders

• Creating as is progress for various stakeholders

• Helping teams to design and implementation of the design

• Helping teams to choose tools and platforms

• Having the vision for future tools and a platform roadmap

• Effective verbal and written communication skills

• Able to estimate changes

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

26

• Being able to design software architecture that adapts to change and

evolve over time

• Mentoring team members

 Summary
In this chapter, we defined what cloud native architecture is. We also discussed the

current adoption of cloud native across industries and what area of focus you require

to develop a cloud native architecture. We identified a cloud maturity model that has

three waves required for mature cloud native architectures. The three waves are cloud

enablement wave, cloud native transformation, and cloud native culture and innovation.

These three waves help you to gauge your current organization’s maturity and the

steps to consider. Finally, we covered what a cloud native journey for enterprises is and

what culture and skills need to be adopted for a cloud native journey. In a nutshell,

this chapter introduced cloud native and how to start the journey, as well as what

organizational skills are required for cloud native.

The next chapter covers the evolution of services, especially cloud services, and the

elements of cloud native architecture.

Chapter 1 IntroduCtIon to Cloud natIve arChIteCture

27
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_2

CHAPTER 2

Cloud Native Services
In the previous chapter, I discussed cloud native architecture and its importance in

the IT industry. In this chapter, I will explore that topic further, but in the context of

supporting cloud services.

Cloud services were developed to support a cloud native architecture. Many

organizations start their journey by adopting various cloud services; as a result, the

organization’s business goals, objectives, and processes greatly affect how they will

provision resources and develop cloud native applications.

This chapter focuses on various cloud services and the evolution of each service. We

will look at services in detail and how to adopt these services.

In this chapter, we will cover the following topics:

• Evolution of infrastructure as a service (IaaS)

• IT infrastructure laws

• Evolution of server technology

• What is containerization?

• What is IaaS?

• What is platform as a service (PaaS)?

• What is software as a service (SaaS)?

 Evolution of Infrastructure Services
An IT infrastructure service is the shared technology resources that provide the services

to the applications. Infrastructure services include the hardware, software, operating

system (OS), networking services, telecommunication services, Internet services, etc.

https://doi.org/10.1007/978-1-4842-7226-8_2#DOI

28

Infrastructure services are a result of five decades of evolution in computing. To

reach the present-day container technology level, the infrastructure has undergone

six stages of evolution, each representing different subservices. Figure 2-1 shows the

six stages.

Technologies that are used in one stage may also be used in another stage

for other business services. For example, a lot of financial- and insurance-sector

business processes are using mainframe services, and these mainframe services are

consumed by container-based microservice use cases. The mainframe shared model

demonstrates a stage 1 evolution used by a stage 6 evolution in many enterprises as

shown in above figure.

1. Mainframe
services

2. Mini
Computing

Services

3. Personal
Computing
Services

4. Client-Server
Service

5. Enterprise
Computing

Service

6. Cloud and
Mobile

Computing
Service

Figure 2-1. Six stages of infrastructure services

Chapter 2 Cloud Native ServiCeS

29

Figure 2-2 shows the stages of IT infrastructure.

 Mainframe Services
The first general-purpose automatic digital computer was built by IBM around 1944. It

was an electromechanical machine developed in conjunction with Harvard University.

In 1952, IBM announced its first fully electronic data processing system, the IBM 701;

in the next few years, the IBM 650 was created. In 1959, IBM introduced two of its most

important computers. These were the 1401 Data Processing System, widely used for

business applications, and the 1620 Data Processing System, a small scientific and

engineering computer used for such diverse applications as automatic typesetting,

highway design, etc.

The IBM introduced the large-scale 7000 series, the 1410, and Stretch (IBM 7030),

the most powerful scientific computer ever designed. In the 1960s, IBM announced

Mainframe
Services

Mini Computing
Services

Personal Computing
Services

Client-Server
Services

Enterprise Computing
Services

Cloud and Mobile Computing
Services

Figure 2-2. Stages in IT evolution

Chapter 2 Cloud Native ServiCeS

30

System/360, which was the first system where companies integrated all of their data

processing systems.

In the 1990s, IBM introduced System/390 with high-speed fiber-optic channels,

ESCON architecture, ultra-dense circuits, and circuit packaging for higher performance.

Currently, a mainframe runs with the Z series, z900, which includes the newly

designed 64-bit z/architecture; most enterprises use a mainframe for their core business.

 Minicomputer Services
The small computer was developed in the 1960s and sold for a much lower price than

mainframes. Examples of minicomputers are Control Data’s CDC 160A and CDC 1700, HP

3000 series and HP 2000 series, IBM midrange computer, Texas Instrument T1-990, etc.

 Personal Computing Service
The PC started with the IBM PC in 1981 and was widely adopted by the business

community; later the Macintosh (Apple) computer and Intel-based Windows PCs came

on the scene. A personal computer works in a stand-alone state with its CPU and is

used by an individual. Worldwide sales at the end of the third quarter of 2020 were $71.4

million, which is a 3.6 percent increase from the previous year. Predominantly PCs are

used by end users to connect various ancillaries and servers. In recent years, the PC has

become more and more difficult to pin down. A PC can be any personal device with a

microprocessor.

 Client-Server Service
Client-server architecture is a computing model in which the server hosts and manages

most of the services to be consumed by the client. This type of architecture has one or

more client computers connected to a central server (the central server can be Linux,

Solaris, AIX, or Windows) over a local or wide area network or the Internet. Currently

we are calling this legacy software; these legacy software packages are based on a client-

server architecture. The server is a single monolithic application and provides services

to a thick client hosted on a PC, and the data is exchanged between the client and server

over the network by using RPC.

Chapter 2 Cloud Native ServiCeS

31

 Enterprise Computing Service
Enterprise computing was among the most important developments in information

technology in the 1990s. Nearly every top company has implemented some form of

enterprise system. Enterprise computing involves the use of computers in networks,

such as LANs and WANs, or a series of interconnected networks encompassing a variety

of different operating systems, protocols, and network architectures.

The enterprises turned to network standards and software tools that could integrate

disparate networks and applications within and across business units (BUs) over the

TCP/IP protocol. The commonly used tools in enterprise computing include enterprise

resource planning (ERP), customer relationship manager (CRM), reporting, order

systems, etc. All these systems are in a monolithic single unit and running on a single

CPU in memory.

 Cloud and Mobile Computing Services
Cloud computing as a term has been around since the 2000s, but the concept of

computing as a service has been around for much longer, since the 1960s, when

IBM allowed companies to rent time on a mainframe, rather than have to buy one

themselves.

The growing bandwidth power of the Internet and disruption in business and

technology pushed the client-server model to the cloud computing model. Cloud

computing is the result of the evolution and adoption of existing technologies and

paradigms. The goal of cloud computing is to allow users to get the benefits of all the

services without the need for deep knowledge about or expertise in each one of them.

According to Wikipedia, cloud computing is the on-demand availability of computer

system resources, especially cloud storage and computing power, typically over the

Internet and on a pay-as-you-go basis.

Rather than each enterprise owning its infrastructure or data centers, companies can

rent services from cloud providers. This helps enterprises to outsource servers, space,

resources, etc., with the most security possible.

Cloud computing services provide a vast range of options starting with

infrastructure, software, storage, platform, networking, natural language process, and

artificial intelligence, and also provide traditional software like ERP, CRM, etc.

Chapter 2 Cloud Native ServiCeS

32

Today, cloud computing is becoming the de facto standard for all enterprises, and

some software providers are discontinuing on-prem licenses and provide only cloud

service licenses.

Enterprises can use single cloud provider services or a combination of multicloud

provider services or hybrid services or private cloud services. Cloud providers are now in

competition, so each provider provides free tools and solutions to port from one cloud

provider to another provider seamlessly.

In the future, the cloud will become the de facto standard for all computing.

Especially after the COVID-19 pandemic, most enterprises (even financial enterprises)

are moving toward the cloud. Various research institutes predict that half of all global

enterprises use the cloud now.

According to Gartner, global spending on cloud services will reach $350 billion by

2021 and will reach $500 billion by 2023.

 IT Infrastructure Laws and Prediction
As the stages progress as shown in Figure 2-1, infrastructure services are becoming

cheaper, with exponentially increased computing power. The following are the theories

that predict the IT infrastructure changes in the years to come.

 Moore’s Law
Moore’s law is a prediction made by American engineer Gordon Moore in 1965 that

the number of transistors per silicon chip will double every year. He observed that the

number of transistors on a computer chip was doubling about every 18–24 months. This

is an observation and projection based on historical trends, rather than a law of physics.

There are three interpretations of Moore’s law.

• The power of microprocessors doubles every 18 months.

• Computing power doubles every 18 months.

• The price of computing falls by half every 18 months.

For example, Moore’s law means we get ever-more powerful personal computers for

less and less money. A computer chip that contained 2,000 transistors and cost $1,000 in

1970, $500 in 1972, $250 in 1974, $0.97 in 1990, and less than $0.02 to manufacture today.

Chapter 2 Cloud Native ServiCeS

33

 The Laws of Mass Digital Storage
The amount of information is roughly doubling every year, and the cost of storing digital

information is falling at an exponential rate. Currently, the compound annual growth

rate is roughly around 60 percent, with an exponential decrease in the cost of storing

data.

 Metcalfe’s Law
Metcalfe’s law states that the effect of a telecommunication network is proportional

to the square of the number of connected users of the system. The law shows that a

network’s value to participants grows exponentially as the network takes on more

members. The increasing scale of that network grows exponentially as more and more

people join the network, as shown in Figure 2-3. As the number of members in a network

grows linearly, the value of the entire system grows exponentially and continues to grow

as members increase.

 Communication Cost and Internet
There has been a rapid decline of the cost of communication and an exponential growth

in the size of the Internet. Estimated Internet access is around 4.12 billion, which

means more than 50 percent of the global population is connected to the Internet. As

communication costs fall, the utilization of communication and computing facilities

grows.

Figure 2-3. Network increases linearly

Chapter 2 Cloud Native ServiCeS

34

 Evolution of Servers
The servers used have evolved from bare-metal physical servers to virtual servers to

cloud servers and containers to serverless.

 Bare-Metal Servers
We began with a bare-metal server/physical server, as shown in Figure 2-4. Each server

offered for rental is a distinct physical piece of hardware that is a functional server on its

own; in other words, each physical box hosts one piece of hardware.

These servers require a physical box and deploy an OS on it, after which we layer

on specific application software to perform the required business functionality on that

system.

In the early 2000s, it became evident that enterprises were not getting appropriate

value for their server dollar. The CEOs of enterprises questioned why so many expensive

servers were running such low utilization rates.

 Virtual Machine Revolution
Virtualization uses the same physical hardware, but rather than installing a single OS

and running a single workload on that physical box, install a hypervisor OS and set it up

to support multiple virtual machines or virtualized servers that can run many different

business applications all at the same time on one physical server.

Physical Server

Operating System (OS)

Application

Figure 2-4. Bare-metal architecture

Chapter 2 Cloud Native ServiCeS

35

The VMs are hosted with their CPU, memory, network interface, and storage on

physical hardware, as shown in Figure 2-5. The hypervisor separates the single physical

server resources from the hardware and provisions them appropriately so they can be

used by the VM. The VMs that use physical server resources are guest machines, guest

computers, and guest OSs. The hypervisor treats compute resources such as CPU,

memory, and storage as a pool of resources.

Virtualization technology allows you to share resources with many virtual

environments. The hypervisor manages the hardware and separates the physical

resources from the virtual environments. Resources are partitioned as needed from the

physical environment to the VMs. When the VM is running and a user or program issues

an instruction that requires additional resources from the physical environment, the

hypervisor schedules the request to the physical system’s resources so that the VM’s OS

and applications can access the shared pool.

Each VMs is isolated from the rest of the VMs and can be co-located on a single piece

of hardware, and VMs can allow multiple OSs to run simultaneously on a single computer,

such as a Linux distro on a macOS laptop or a Linux distro on a Windows OS laptop.

Host Hardware

Operating System (OS)

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Application Application Application

VM3VM2VM1

Figure 2-5. Virtual machine architecture

Chapter 2 Cloud Native ServiCeS

36

 Adoption of Virtual Machines

Organizations soon recognized that they could get much more value by virtualizing

applications. Virtualization provides a significant improvement in enterprise computing

and realizes benefits from managing servers and the applicable costs, as mentioned

here:

• Better utilization of server, network, and storage resources

• Better return on investment on infrastructure

• Better portability

• Better management of server setup, network, etc.

 Virtual Machines in the Cloud

The introduction of virtual machine technology into the organization’s own data center

was hardly a cure-all, from a financial and resource point of view. The organization

still faced the high costs of data center real estate, electricity, and environmental

conditioning, of computer storage and networking hardware, and of managing the

software and platforms.

To alleviate some of these issues in the data center and managing platforms,

enterprises turned to co-location, third-parties, and a service model; this means renting

data center space from a third party and outsourcing the server management to the third

party in their data center. This strategy relieved enterprises of the cost of maintaining

real estate and facilities, but companies directly or indirectly own the servers and other

accessories.

With the availability of the public cloud, a new cost model—renting capacity—

emerged, which allowed companies to think of computing as an on-demand resource.

A few enterprises started to migrate a few systems from their own data centers to VMs in

the cloud; this process is called lift and shift. This type of model started with AWS in 2006

and followed by others like Google’s GCP and Microsoft’s Azure. These infrastructure

as a service solutions provided a way to run your VMs on their cloud. Thus, this was the

beginning of the cloud revolution.

Let’s discuss a few benefits and drawbacks of VM migration to the cloud.

Chapter 2 Cloud Native ServiCeS

37

Here are the benefits:

• Less management required because VMs in the cloud are developed

and maintained like VMs on-premises

• Vastly reduced the real-estate expenditure

• New cost model based on a rental approach to computing instead of

a capital expense

• New usage model for scaling up and down depending on the demand

Here are the drawbacks:

• Costs can increase with VMs if care is not taken in the planning stage.

• Without changes, some applications are not an ideal fit for the cloud.

• It is a better, but still suboptimal, use of server resources.

 Container Revolution
Many organizations first experienced the cloud by migrating virtual machines from the

data center to the cloud and then facing costs that were higher than expected or business

value that was less than anticipated. Over the last few years, a new form of virtualization

has arisen, called containers.

The concept of containers has been around for a while; for example, IBM supported

the notion of web application containers. However, these early approaches suffered from

an increasing scope, compounding rather than alleviating the issue of idle capacity on

servers.

The philosophy of a container is to put in what you need to make it whole, and

nothing more. Easy-to-use and compact container technology supporting a higher

degree of isolation has been mainstream only since mid-2014, when Docker introduced

version 1.0. Since then, containers have become widely popular.

A container is a standard unit of software that packages the application code and

all its dependencies, so the application runs quickly and reliably and is abstracted from

the environment in which it runs. It is a lightweight, standalone, executable package

of software that includes everything needed to run an application. This decoupling

allows container-based applications to be deployed easily and consistently, regardless of

whether the target environment is a private data center, the public cloud, or even a PC.

Chapter 2 Cloud Native ServiCeS

38

The container uses the same physical hardware and OS but in an isolated, lightweight

silo for running an application on the host OS. Each container can host a single service

or multiple services depending on the nature of services.

As mentioned in Figure 2-6, in VMs, the guest OS such as Linux or Windows runs

on top of the host OS with virtualized access to the underlying host hardware. Like

VMs, the containers allow you to package your application together with libraries and

dependencies, providing isolated environments for running software services.

The virtual machines are virtualized on the hardware stack, and containers virtualize

at the OS kernel, start much faster, and use a fraction of the memory compared to

booting an entire OS. A virtual machine virtualizes CPU, memory, storage, and network

resources at the OS level.

Containers can run virtually anywhere: on Linux, Windows, and macOS; on VMs

or on bare metal. All cloud native applications will use a container to host business use

cases. There are many companies that provide container images other than Docker such

as Mesos, Open VZ, CoreOS rkt, and more.

Figure 2-7 shows a high-level comparison between virtual machines and containers.

Host Hardware

Operating System (OS)

Container Runtime

Application Application Application

Container 1 Container 2 Container 3

Bins/Libs Bins/Libs Bins/Libs

Figure 2-6. Container environment architecture

Chapter 2 Cloud Native ServiCeS

39

Since their introduction, containers have become wildly popular for several reasons,

including the following:

• Server density: There is only one copy of the OS; you can often create

many container images on a given VM server.

• Startup time: You do not need any initialization required like the OS;

startup time is much faster.

• Portability: Containers can run in a variety of environments including

public, private, hybrid, or on-prem.

• Scalability: They can scale up and down in few seconds without any

human intervention.

• Wide support: All the cloud providers support containers, and wide

community support is available.

VMs have a few limitations. Since there is only a copy of the operating system, you

can’t run an application written in a different OS on the same server. For example, if

your application is running on Windows, Red Hat, or Ubuntu, then all applications in a

container run this as a full VM.

Host Hardware

Operating System (OS)

Hypervisor

Operating
System

(OS)

Operating
System

(OS)

Operating
System

(OS)

Application
1

Application
2

Application
3

VM3VM2VM1

Host Hardware

Operating
System

(OS)

Hypervisor

App
1

Container 1 Container 2 Container 3

Bins/Libs Bins/Libs Bins/LibsBins/Libs Bins/Libs Bins/Libs

Operating
System

(OS)

Operating
System

(OS)

Container
Runtime

Container
Runtime

Container
Runtime

App
2

App
3

App
4

App
5

App
6

Figure 2-7. Virtual machine and container comparison

Chapter 2 Cloud Native ServiCeS

40

 Understanding Cloud Services
Cloud computing provides various services delivered on-demand to the customers

over the Internet. These services are designed to provide easy, affordable access to

applications and resources, without the need for internal infrastructure or hardware.

The cloud services are fully managed by cloud computing providers, as shown in

Figure 2-8; they’re made available to customers or enterprises from the provider’s data

center, so there’s no need for a company to host the application on its on-premises

servers.

The benefits of cloud services are the ability to scale, increased flexibility, lowered

cost, etc.

The following are the types of services offered by various cloud providers.

 Infrastructure as a Service
IaaS is a form of cloud computing that delivers fundamental compute, network, and

storage resources to consumers on-demand over the Internet and on a pay-as-you-go

basis. IaaS enables consumers to scale and shrink resources on an as-needed basis.

This service reduces an enterprise’s need for high, up-front capital expenditure or

unnecessary procured infrastructure.

Essential
Characteristics

Resource
pooling

Broad network
access

Measured
Service

Rapid
Elasticity

On-demand
Self-service

SaaS
Software-as-a-Service

applied to
Applications
e.g., email, Drop Box, productivity,
CRM

PaaS
Platform-as-a-Service

applied to
App Infrastructure
e.g., app runtimes, DB, messaging

IaaS
Infrastructure-as-a-Service

applied to
System Infrastructure
e.g., compute, storage, network

Private Cloud

Public Cloud

Multi- Cloud

Hybrid Cloud

Consumers

Community Cloud

Figure 2-8. Cloud services

Chapter 2 Cloud Native ServiCeS

41

IaaS consists of a collection of physical and virtualized resources, as shown in

Figure 2-9, that provide consumers with the building blocks needed to run business

applications.

IaaS providers manage large data centers across geographies that contain the

physical and virtual machines and create a layer on top of these servers over the web.

The end users do not interact directly with the physical infrastructure in the data center

but are provided as REST services to them with parameters.

IaaS is typically a virtualized environment; IaaS providers manage the hypervisors,

and end consumers can provision them through program and REST APIs with the

desired amount of compute and memory for different types of use cases.

Networking in a cloud environment is defined by the software, and the consumer can

access the required networking resources such as routers and switches through REST

APIs. A consumer can create a virtual private cloud (VPC) on a single DC or multi- DC.

IaaS offers three types of storage options, listed here:

• Block storage: Block storage is used to store data files on a storage

area network (SAN).

• File storage: File storage is a hierarchical storage methodology like

the file or folder organization on your PC. The file storage can be

organized on hardware or a network-attached storage (NAS) device.

IaaS REST API

Storage

Network
Compute

Consumers

Figure 2-9. IaaS

Chapter 2 Cloud Native ServiCeS

42

• Object storage: This type of storage stores large amounts of

unstructured data such as images, documents, etc. This data is

organized in a folder called a bucket.

 Platform as a Service
With PaaS, the consumer can deploy onto the cloud infrastructure consumer-created

or acquired applications written using programming languages, libraries, services, and

tools supported by the cloud providers. The consumer does not manage or control

the underlying cloud infrastructure, including the network, servers, operating system,

or storage, but has control over the deployed applications and possibly configuration

settings for the application-hosting environment.

Like IaaS, the PaaS includes the infrastructure: servers, storage, and networking.

The middleware services, development tools, BI services, data services, etc., as shown in

Figure 2-10, will be used IaaS services.

 PaaS Taxonomy

As of 2020, Gartner has identified 21 categories of xPaaS offerings, as shown in

Figure 2- 11, which refer to a particular type of application infrastructure functionality.

aPaaS and xPaaS can be used together or independently.

Figure 2-10. Platform as a service

Chapter 2 Cloud Native ServiCeS

43

The application platform as a service (aPaaS) platform consists of the following:

• Automated deployment of code (IaC)

• Multitenant platform

• Service catalog

• Provisioning middleware services

• Provisioning development tools

• Tenant management

• Role-based access

• DevOps tools

 PaaS Architecture Styles

The PaaS architecture style is a family of architectures that share certain characteristics.

The architecture styles don’t require the use of particular technologies, but some

technologies or services are well suited for certain styles. The architecture styles in

Figure 2-12 are not related to any xPaaS and can be used across xPaaS services.

dbPaaS
Database

iPaaS

Integration

mPaaS

Messaging

IotPaaS

IOT

xPaaS
PaaS

fPaaS

function

…

Others…

aPaaS
Application

Platform

Figure 2-11. PaaS taxonomy

Chapter 2 Cloud Native ServiCeS

44

 PaaS Deployment Model

The PaaS model can be deployed in three ways, as shown in Figure 2-13.

Public cloud model: The PaaS capability provisioned for use by the

general public over the Internet. The characteristics of the public cloud

model are elasticity, utility pricing, and leverage of expertise, and a

public cloud can be shared with all tenants with limited customization.

PaaS

PaaS-
as-a-

Service

Private
PaaS

Public
PaaS

Figure 2-13. PaaS deployment model

Virtual
Machines

OS
Process

Metadata

Instance-based PaaS

Framework-based PaaS

Metadata-base PaaS

An architectural style where application code is deployed to
instances of virtual machines, which are dedicated to that
specific application.

An architectural style where application code that conforms
to a specific framework is deployed to a dedicated runtime
running in in an OS process that supports the framework.

An architectural style where application code in the form of
metadata is deployed to a shared runtime engine.

SHARED HARDWARE

SHARED OS

SHARED
EVERYTHING

Figure 2-12. PaaS architecture styles

Chapter 2 Cloud Native ServiCeS

45

Private PaaS model: The PaaS capability provisioned for exclusive

use by a single organization. It offers the same characteristics of

the public cloud, such as elasticity and resource utilization but

with total control and regulation flexibility. This type of model can

run in the cloud or on-premises.

PaaS-as-a-service model: The PaaS capability is provisioned for

exclusive use by a single organization and managed by a third

party. It offers the same characteristics of both public and private

PaaS but is managed privately by a single organization.

The following are some PaaS limitations and concerns:

• Data security: The enterprises can run their developed apps and APIs

using PaaS platforms. The data will reside on the vendor platform.

The vendor-controlled cloud servers pose a concern. Every enterprise

needs to do a thorough security review with the vendor before using

services.

• Vendor lock-in: The enterprises make decisions based on certain

requirements that drive them to use certain PaaS solutions; these

decisions may not apply in the future due to business and technology

disruption. Enterprises need to review the migration policies when

moving to another vendor.

 Software as a Service
SaaS is essentially on-demand software that is provided to the client over the Internet.

SaaS has found more traction from small and midsize enterprises primarily due to its low

capital and operational overhead.

According to Wikipedia, “SaaS is a software licensing and delivery model in which

software is licensed on a subscription basis and is centrally hosted. It is sometimes

referred to as on-demand software and was formerly referred to as software plus services

by Microsoft. SaaS applications are also known as web-based software, on-demand

software, and hosted software.”

Chapter 2 Cloud Native ServiCeS

46

Figure 2-14 shows a high-level view of the SaaS architecture. SaaS utilizes the

Internet to provide services that are managed by third-party vendors. Most SaaS

applications run directly through your web browser via an API.

Client apps: Application modules/features that a client subscribed

to as a service, provided by SaaS.

SaaS layer: Provides common and cross-product functional and

technical services and abstracts the SaaS services.

Platform layer: Provides virtualized computing power, storage,

networking, and cloud availability zones.

Data center services: Provides the physical facility, network

services, etc.

Client Apps

App App App

Service
Provisioning

Identity &
Access

Telemetry &
Logging

Metering &
Billing

Asset Mgmt.,
CMDB APIs

Core
Services

Consumers

Infrastructure / Cloud
Connectivity

Data CenterData Center
Services

Regional CloudPlatform
Services

C
lo

ud
 P

la
tfo

rm
C

lie
nt

 P
la

tfo
rm

Sa
aS

APIs

Figure 2-14. SaaS architecture

Chapter 2 Cloud Native ServiCeS

47

SaaS provides numerous advantages to enterprises by reducing operational activity

such as installing and managing applications.

Common software offered vi a SaaS model includes sales software, CRM solutions,

tax software, etc.

 SaaS Limitations

The following are the limitations of SaaS:

• Vendor lock-in: It is easy to join SaaS services but difficult to leave.

Most SaaS providers are not flexible on portability and compatibility,

so it takes a huge amount of time to port from one vendor application

to another.

• Interoperability: It is not easy to integrate SaaS applications with an

existing legacy application. You need to modify existing applications

to the vendor’s SaaS APIs. Sometimes you may require a separate

integration layer for consumer SaaS services.

• Data security: SaaS software holds most of your business data.

Security at rest and security in transit are concerns, even though all

the APIs are security enabled and data is stored with encryption.

 Architectural Considerations: How to Decide on a Custom vs.
SaaS Platform

You can compare a custom platform to a SaaS platform solution, as shown in Figure 2- 15.

Identify the key contrasting dimensions and compare the architect’s involvement in those

dimensions across the two platforms.

Chapter 2 Cloud Native ServiCeS

48

Table 2-1 shows the key factors to use when comparing custom and SaaS platforms.

Custom Platform SaaS Platform

…
…

Figure 2-15. Custom and SaaS platforms

Table 2-1. Custom vs. SaaS Platform

Factors Custom Platform SaaS Platform

Customization By definition is fully customized to

your needs.

Meets most needs based on your

requirements but does not necessarily

meet them 100 percent.

Continuously
evolving for
business
disruption

a custom platform can keep up-to-

date with the business requirements

and optimization and standards.

however, every enhancement must

undergo development, which has its

pros and cons.

a SaaS platform keeps close watch on

business disruption and continuously

improves its product features.

Integration You can design your custom-built

software to integrate with any

software and with any protocols.

open apis allow most SaaS solutions

to integrate with a wide range of third-

party software.

(continued)

Chapter 2 Cloud Native ServiCeS

49

The chart in Table 2-2 indicates the extent of various indicators on both the custom

and SaaS platforms.

Factors Custom Platform SaaS Platform

Cost impact it is expensive due to team setup

and must go through the entire SdlC

process.

it is cheap and based on the

subscription cost model. this

eliminates up-front cost, and SaaS

providers indirectly distribute

the development costs across all

subscribers.

Delivery and
deploy maturity

Custom platforms have a mature

devops process with the presence

of continuous integration and

continuous delivery. implementation

takes its own time.

May not have high devops maturity; a

SaaS platform allows custom language

and platform code storage. the

devops process is dependent on the

built-in tooling of the SaaS provider.

implementation is quick.

Platform upgrades upgrades can be seamless based on

requirements.

the upgrades are vendor driven,

and sometimes certain vendors are

required for upgrades.

Data You are owning your data. You leave your data with the vendor

you are subscribed to.

Table 2-1. (continued)

Table 2-2. Custom vs. SaaS Platform Indicators

Functional
Evolvement Integration Cost Impact Delivery &

Deploy
Platform

Upgrades Data

Custom
Platform

SaaS Platform

Customization

Chapter 2 Cloud Native ServiCeS

50

Both custom and SaaS are good solutions, but you need to evaluate which one is

best for you based on your business requirements and other needs. In some cases, SaaS

is good. As mentioned, you do not have any operational and management headaches

compared to custom, and in some cases customization is good for custom software. It

is important to evaluate alternatives on both sides of the development spectrum and

choose the option that is best for your business requirements. SaaS services like Gmail,

Office 365, etc., are difficult to customize, but it is better to use these SaaS services

instead of reinventing the wheel.

 Cloud Computing Deployment Models
As cloud computing adoption has increased, several different deployment strategies

have emerged to help you to meet the specific needs of your enterprise. Each type of

cloud service and deployment method provides you with different levels of control,

flexibility, and management. Various models can be utilized to deploy the application in

production. Understanding different deployment models, as shown in Figure 2-16, will

help you to decide what set of services is right for your needs.

A cloud deployment model is defined according to where the infrastructure for the

deployment resides and who has control over the infrastructure.

Public
Cloud

Private
Cloud

Community
Cloud

Hybrid
Cloud

Deployment Model

Figure 2-16. Cloud deployment model

Chapter 2 Cloud Native ServiCeS

51

Deciding which deployment model you will choose is one of the important

organization strategies. Each cloud deployment model satisfies different organizational

needs, so it is important to choose a model that meets your strategy. One of the main

strategies is based on the value proposition and cost associated with it.

 Public Cloud
In public cloud computing, the use of computing resources and software is based on

the subscription model. The resources are provisioned for open use by the public and

various organizations. The architecture of the public cloud is a multitenant type. This

kind of architecture allows you to share resources across organizations and applications,

but data is isolated from each other, and there will be a stricter security firewall between

tenants. A multitenant is like houses on one floor of an apartment, with each apartment

separated by walls, but with the common area being shared by all apartments on that

floor.

The flexibility, reliability, scalability, and cost are advantages of the public cloud.

 Private Cloud or On-Premises Cloud
In private cloud computing, the infrastructure is used by a single organization. Such

an infrastructure is managed within an organization or dedicated infrastructure in the

cloud. Technically, there is no difference between the public and private clouds. We

often think that a private cloud is only on-premises, but that assumption is not true; you

can deploy your application entirely on a private cloud at various cloud providers and

provision exclusive use by a single organization comprising multiple portfolios within an

organization.

The private cloud offers some benefits and features the public cloud, but there is no

compromise of security on both the public and private clouds. A private cloud may be

necessary due to various compliances and regulations like HIPAA, PCI DSS, etc.

The benefits of the private cloud are flexibility in the deployment and customization

of infrastructure based on your requirements, but all these come with a cost, so the price

of this model is higher than the public cloud.

Chapter 2 Cloud Native ServiCeS

52

 Community Cloud
In community cloud computing, multiple organizations share computing resources

that are part of a community. The community must have a shared concern, for example,

shared policies, SLAs, shared security requirements, etc. The concern may be owned by

one organization or a third-party provider, and it may exist on or off-premises.

 Hybrid
A hybrid model is a combination or composition of two or more distinct cloud

infrastructures, such as private, public, or community. It is a way to connect

infrastructure and applications between cloud-based resources and existing

enterprise resources that reside in your data center. This model is most adopted across

organizations. A hybrid cloud architecture helps organizations to integrate their on-

premises and cloud operations to support various use cases using a set of cloud service

tools and APIs on-premises and across cloud environments.

 Cloud Services
Table 2-3 lists the main feature services of three cloud providers: AWS, Azure, and

Google.

Table 2-3. Main Services of Top Three Cloud Providers

Product Type AWS Azure GCP

Compute eC2 azure vM Compute engine

Serverless lambda azure Functions app engine

Cloud Function

Containers elastic Container

Service (eCS)

elastic Kubernetes

Service (eKS)

Container instances

azure Kubernetes

Service (aKS)

Google Kubernetes

engine (GKe)

(continued)

Chapter 2 Cloud Native ServiCeS

53

Cloud service providers offer all types of services to develop and deploy cloud

native applications. Depending on the maturity of the organization and the skills

of its employees, starting the cloud native journey might mean leveraging basic

services such as the ones mentioned in the table. Adopting these services is a bare-

minimum step to developing cloud native applications. You can use a combination

of various cloud services to develop a cloud native application. For example, you can

use containers, NoSQL, event-driven architecture, monitoring, and API integration to

develop a microservices application; all these combinations depend on the use cases

and resources within your organization. Along with the major cloud providers, there are

Product Type AWS Azure GCP

RDBMS aurora azure SQl Cloud Spanner

NoSQL dynamodB Cosmos dB Cloud Bigtable

Object storage S3 Blob Cloud Storage

Caching elastiCache azure redis Memorystore

Managed database
(MySQL/PostgreSQL)

rdS azure database Cloud SQl

Event-driven SQS, MQ, SNS event hubs pub/Sub

Streaming Kinesis, Kafka Kafka

Data warehouse redshift, eMr Bigquery

Developer tools aWS devops GCp developer tools

Monitoring and OpsWorks CloudWatch,

Cloudtrail, opsWork

Cloud Monitoring, Cloud

trace, logging

Security identity and access

Cognito

CloudhSM

WaF

Cloud key management,

workloads

API integration Gateway api management Cloud endpoints

Table 2-3. (continued)

Chapter 2 Cloud Native ServiCeS

54

various vendors such as Alibaba, IBM, OpenShift, and VMware Tanzu. Lots of financial

clients and other industries are embracing OpenShift and Tanzu. Recently I used

OpenShift for payment infrastructure.

 Summary
This chapter covered how infrastructure has evolved from mainframes to the present-

day containers. We also looked at some principles behind this evolution that helped you

to reduce the infrastructure costs.

To illustrate the evolution of servers, we covered bare-metal servers, VMs, and

containers, and we provided the scenarios for which you would adopt them.

We explained types of cloud services such as IaaS, PaaS, and SaaS, and when to use

SaaS over custom services, etc. We talked about their usage and provided the details of

the featured cloud services of major cloud providers.

We explained the different cloud deployment options like the public cloud, private

cloud, community cloud, and hybrid cloud.

The next chapter provides more about the principles of cloud native architecture.

Chapter 2 Cloud Native ServiCeS

55
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_3

CHAPTER 3

Cloud Native Architecture
Principles
Cloud native principles define the underlying general rules and guidelines for the

use and architecture of your system. They reflect a level of consensus for the various

elements of your system and enterprise and offer a basis for making future decisions.

The principles are typically created at the same time as the architecture is defined.

Without architecture principles, your enterprises has no compass to guide its journey

from its current state to its future cloud native state and no standard way to measure its

progress.

In this chapter, we will cover the following principles; some have existed for three to

four decades, but they are still very much relevant in modern cloud native architecture

and design.

• Orthogonal architecture principles such as coupling and cohesion

• Principles such as KISS, DRY, isolate, encapsulate, group-related

function, use layering

• The SOLID design principles such as single responsibility, open-

close principle, Liskov substitution, interface segregation, etc.

• Modern architecture principles such as automated deployment, no

single point of failure, polylithic and polyglot, API first, event-driven,

choreography, etc.

• Cloud native architecture principles such as infrastructure

independent, location independent, resilient to latency, etc.

• Development principles such as shift-left testing, shift-left security,

containerization, infrastructure as code, agile, etc.

https://doi.org/10.1007/978-1-4842-7226-8_3#DOI

56

 What Are Architecture Principles?
A principle is a law or rule that is usually followed when making key architecture

decisions. It’s important to note that principles are not commandments; exceptions are

acceptable when necessary.

Architecture and design principles play a critical role in guiding the software

architecture work that includes defining an enterprise’s future direction and the

transitions it needs to reach the future state of architecture. The principles are usually

created at the beginning of the architecture definition and are reviewed and ratified by

the architecture board. While defining principles, you need to align with the existing

enterprise’s principles.

Architecture and design principles define the fundamental assumptions of the IT

organization when creating and maintaining the IT capabilities. Without principles, IT

projects have no compass to guide their journey. Without a common set of principles,

the executives in an IT organization will be left on their own to determine which projects

will be funded, which assets will be leveraged, which cloud model will be used, etc.

It is useful to understand the definition of various architecture and design principles.

In addition, you need to understand the associated rationale and implications of

these principles. The most important step is to promote these principles across all the

stakeholders and development teams so that the adoption of the principles will achieve

the desired result.

Architecture and design principles are usually developed by architects and

designers, in conjunction with various key stakeholders, and all the defined principles

must be clearly traceable and clearly articulated to guide the decision-making.

According to TOGAF,

“A good set of principles will be founded in the beliefs and values of the
organization and expressed in language that the business understands and
uses. Principles should be few in number, future-oriented, and endorsed
and championed by senior management. They provide a firm foundation
for making architecture and planning decisions, framing policies, proce-
dures, and standards, and supporting the resolution of contradictory situa-
tions. A poor set of principles will quickly become discussed, and the
resultant architectures, policies, and standards will appear arbitrary or
self-serving, and thus lack credibility. Essentially, principles of driver
behavior.”

Chapter 3 Cloud Native arChiteCture priNCiples

57

These are six criteria to distinguish a good set of principles:

• Understandable: The principles should be written in plain language

that is easy to understand.

• Robust: The principles should enable good-quality decisions about

the architecture and plans.

• Complete: The statements must be accurate and complete.

• Consistent: All the principles must be consistent and work together.

• Stable: The principles should be enduring and accommodate change

when required.

• Resilience: Failure is unavoidable in systems; these principles enable

companies to self-heal quickly from difficulties.

 Cloud Native Design Principles
The following sections cover cloud native design principles.

 API First Principle
Using an application programming interface (API) is not a new approach in IT, as APIs

have been used in IT for more than 20 years. But APIs were limited to specific internal

applications.

The API first principle is the de facto principle of modern architecture. Every

application is designed and developed with the API first principle. This principle allows

all implementation details to be exposed through APIs to the consumers and encourages

the application design and development teams to have resources accessible through

REST HTTP interfaces.

The API first approach means designing an API so that it has consistency, as well as

adaptability, regardless of the type of projects. The API first principle is as follows:

• The API is the first user interface of an application.

• The API comes first and then the implementation.

• The API is described.

Chapter 3 Cloud Native arChiteCture priNCiples

58

• The API is contracted between the provider and the consumer.

For example, let’s say client 1 and client 2 are two client-facing applications, as

shown in Figure 3-1, and interact with various users by consuming its implementation in

services A, B, and C through APIs via API management. The APIs are contracts between

clients 1 and 2 with services A, B, and C.

These are the benefits of the API first principle:

• Development teams can work in parallel: API first involves

establishing the contract. Creating a contract between services that

are followed by the team across enterprises allows those teams to

work on multiple APIs at the same time.

• Reduces the cost of developing an application: The reusability of the

API first approach allows code to be recycled from project to project

so that development teams always have a baseline architecture with

which they can work.

• Increases speed to market: Automated discoverable APIs have the

ability to be discovered quickly and automate development with

readily available tools like Swagger.

Client 1

User User

Client 2

API Management

Item
Service

Product
Service

Customer
Service

APIs

Figure 3-1. API management

Chapter 3 Cloud Native arChiteCture priNCiples

59

• Improved developer experience: The consumers of APIs are most

often the development team. API first ensures the developers have a

positive experience using APIs.

• Reduce the risk of failure: The possibility of error is greatly reduced

due to the inherent reliability and consistency of the design and

implementation.

 Monolithic Architecture Principle
The monolithic architecture principle (MAP) is building the architecture as a single unit

with a single codebase. Most applications in an enterprise are based on this principle

because enterprises have been using this approach for ages. Sometimes these applications

are called multitiered applications and use the Model-View-Controller (MVC) pattern.

The monolithic architecture can expose APIs to the client applications and also focus on

desktop/laptop devices with a web browser as a client, as shown in Figure 3-2.

The following are the drawbacks of monolithic applications:

• Scaling a monolithic application is a challenge.

• It is difficult to embrace agility.

• Monolithic applications require more infrastructure due to scaling

the entire application irrespective of load.

• Monolithic applications are not business friendly, do not support

business disruption, and are slow to market.

Web Applica�ons

Mobile
Applica�ons

AP
I

eCommerce Applica�on

Catalog Product Payment

Order Shipping Item

Database

Figure 3-2. Monolithic application

Chapter 3 Cloud Native arChiteCture priNCiples

60

 Polylithic Architecture Principle
The polylithic architecture principle (PAP) provides a different variant of microservices.

Each microservice provides domain functionality. These separated modules are

consolidated through several programming techniques. This principle refers to a

technology-agnostic approach of building systems as a composition of multiple mini/

microarchitectures for the granular subsystem.

The PAP simplifies your back-end services and tools by enabling you to construct

them as modular monoliths using composable components.

In the polylithic principle, you create a domain-based service by using a domain-

driven design methodology. Most communication within the polylithic system is done

using industry-standard communication protocols.

 Applying the Polylithic Principle in Architecture

An e-commerce platform, as shown in Figure 3-3, will deal with many types of business

functionality instead of trying to implement all these business use cases in one

programming language. For example, for the parallel processing use case, implementing

parallel techniques in functional programming is better than object-oriented

programming.

Catalog Service
Spring Boot

Product Service
Node JS

Payment Service
Scala

Shipping Service
Python

User Service
GoLang

Figure 3-3. Microservices with polylihic programming languages

Chapter 3 Cloud Native arChiteCture priNCiples

61

 Properties of Polylithic Principles

The simplicity of a domain-based service makes for good building blocks of code. But

the architecture approach will be incomplete without a discussion about the essential

properties that enable, deliver, and sustain operations.

• Encapsulation: Services hide their implementation and expose only

their signature.

• Simplicity: Services have a single responsibility.

• Stateless: Services are just code; they don’t contain state or instances.

• Purity: Services can be pure, which makes them easy to understand,

reuse, test, and parallelize.

The polylithic principle refers to an approach of a building system as a composition

of multiple granular subsystems, each of which has its specialized architectures selected

to suit specific needs on a best-fit basis.

• Each granular subsystem will be housed in its container environment

and isolated from other subsystems.

• Each subsystem will take exclusive ownership of data and provide

access through a well-defined published interface.

To support change management, polylithic principle will also make backward

compatibility and interface versions aware of first-class architectural concerns, which

means that each subsystem will support the coexistence of multiple versions of the

same service.

 Polyglot Persistence Principle
Neal Ford coined the term polyglot in 2006 to express the idea that applications should

be written in a mix of languages to take advantage of the fact that different languages are

suitable for different problems. The polyglot persistence principle is about is choosing

the way data is stored based on the way data is being used by individual applications. In

short, you need to pick the right storage for the right kind of data.

Chapter 3 Cloud Native arChiteCture priNCiples

62

 Applying the Polyglot Persistence Principle in Architecture

Let’s take the example of Martin Fowler’s ecommerce application, as shown in Figure 3- 4

(Amazon, Flipkart, JioMart, etc.), that can be broken down into many microservices

such as catalog, user, audit, inventory, etc. Storing all this data in one single monolithic

database would be a nightmare. Instead, use the appropriate database technologies for

the respective use cases.

 Modeled with Business Domain Principle
The modeled with business domain principle (MBDP) is about using domain-driven

design (DDD), which will be explained in Chapter 10.

DDD is an approach for developing software for complex needs by deeply

connecting the implementation to an evolving model of the core business concept.

DDD is needed to decouple the existing system that you do not have any knowledge

of or a large enterprise with a complex map of departments and systems, for which you

are asked to implement a solution that is coherent and works seamlessly.

When you are applying this principle, follow the nine steps shown in Figure 3-5 of

event storming to identify the microservices.

Redis

User Session

RDBMS

Financial
Data

Riak

Shopping Cart

Neo4J

Recommendations

MongoDB

Product Catalog

RDBMS

Reporting

Cassandra

Analytics

Cassandra

User Activity Logs

Figure 3-4. Polyglot persistence

Chapter 3 Cloud Native arChiteCture priNCiples

63

When you are identifying microservices by using this principle, some designers try

to separate the parts by business domain and domain entities, users, and individual

requests from the UI, but this leads to your design becoming data-oriented and

technical-centric and doesn’t help you to design your microservices across business

capabilities. Always think of each request or service as a collection of capabilities.

 Consumer First Principle
The consumer first principle (CFP) is about designing your API services to the consumers,

before starting any design activity. The first thing is that you need to analyze what a

consumer wants. It is not about consumer rights advocacy, but it’s about recognizing

that when we create all these services for the consumer, the services need to be called by

all types of consumers.

Before the start any services design, you need to ask questions like, do you know who

your consumers are? Do you know where they are in an organization? Do you have any

collaboration with which you can interact? In nutshell, you need to have the full request

details before initiating a design.

Every design starts with the basics, meaning consumer-driven contracts, as those

contracts define for your consumers the process in your microservices.

Next, you need to decide on standards and consistency across all APIs. In the

consumer-first approach, each person or design team defines their APIs differently.

Some teams define them with nouns, some teams define them with verbs, and some

teams handle user search, error handling, and pagination in different ways. To address

this, you need to define an organizational standard for API design that will be useful for

API governance and operations.

You need to make sure you define the documentation for APIs. For anyone in a client

organization who wants to consume an API, knowing what the API does is important.

There are many ways to create a document, but nowadays developers use Swagger

API ModelService modelMicro-Service
Iden�fica�on

Iden�fy
Bounded
Contexts

Iden�fy
Aggregates

Capture Read
Models

Iden�fy
Commands /

Triggers

Capture
Domain
Events

Iden�fy
Objec�ve

Event Storming

Strategic Domain Driven Design

Figure 3-5. DDD with event storming

Chapter 3 Cloud Native arChiteCture priNCiples

64

effectively to design and document an API. It allows you to define metadata about

API endpoints and expose them in multiple ways. There are various tools available

to annotate metadata on your endpoints and have exposed Swagger documentation.

For better traceability between consumer requirements, design, and documentation,

integrate Confluence, JIRA, and Swagger or create a developer portal if you are using API

management software.

 Decentralize Everything Principle
The decentralize everything principle (DEP) is about providing self-direction, self-

sufficiency, and self-reliance to cloud native development, deployment, and governance;

this provides much freedom to the development community to think, develop, and

deploy each service.

When you’re thinking about decentralization, you need to provide autonomy to

solve the problem without necessarily having to coordinate with lots of other people,

but coordination is required but not at the extent of snatching freedom from the core

problem-solving team. Teams building microservices prefer a different approach to

standards too, rather than using a set of the standard defined by a centralized team.

Netflix is a good example of an organization that follows this philosophy.

In software development, the decentralization to be adopted is as follows; note that

not every problem is a nail, and not every solution a hammer:

• Decentralize microservices that are isolated from other microservices

to help the team to achieve concerns such as testability, extensibility,

scalability, etc. Apply domain-driven design and bounded context to

decentralize domain-based microservices.

• Deploy microservices independently on any environment without

affecting other services, use containers, and use Kubernetes

technology by using infrastructure as code.

• Decentralize governance, popularized by Amazon. This promotes

innovation and speed to market.

• Decentralize DevOps, and let each team have its pipeline with the

various self-service tools. Centralizing the tools doesn’t help.

Chapter 3 Cloud Native arChiteCture priNCiples

65

• Decentralize data management, and use the polyglot principle

to decentralize data for each microservice. But be cautious about

licenses, data dependency, transactions, etc.

In the end, you need to know that decentralizing everything doesn’t ease your

problem. Sometimes it can get out of control. To mitigate this, you need to audit each

team regularly.

 Culture of Automation Principle
The culture of automation principle (CAP) states that it’s imperative for organizations to

first create a foundation that is conducive for automation. Automation must be threaded

into the company culture and fully embraced across the business at all levels.

Apparently, 75 percent of an IT professional’s time is spent “keeping the lights on,”

with the remaining 25 percent focused on innovation that moves their business forward.

Everyone wants to flip those percentages.

Look at how Netflix, Amazon, Google, etc., are embracing cloud native, and the time

it took them to get up to speed moving from a few hundred services to thousands of

services into production: all of that work was centered around the culture of automation,

tooling, and discipline. A few teams in your organization are probably pretty good at

automating their everyday work, but the challenge is to apply a culture of automation

across the entire enterprise so that the organization can drive toward the common goal

of developing applications faster and more efficiently.

The most important thing in automation is developer mindset and quality; when

developers check in the code in SCM tools, they should be confident that the code can

go into production. Modeling the process from check-in through production, I get my

release candidate, move my code through my pipeline, and think it’s good enough for

the build; if it fails a test, I move the next version through, and hopefully, I can move it

into the production environment. This sort of automation and visibility of the quality

of the software is key in enterprises because we want to move software as quickly as

possible without human intervention. Once base automation available, you can leverage

the AI-driven development principle to take it further and develop a foundation for

streamlining processes, accelerating application production and deployment, and

allowing everyone to learn from each other.

Chapter 3 Cloud Native arChiteCture priNCiples

66

The following best practices should be helpful to adopt a culture of automation:

• Change the mindset.

• Create an automation community of practice.

• Have a common repository for automation code.

• Create a product mindset, not a project mindset.

• Treat automation as a product, not a project.

• Embrace AI in your automation process.

 Always Be Architecting Principle
One of the core objectives of cloud native applications is the always be architecting

principle (AbAP), which means always keep evolving. You should always use this

principle when you are architecting the system as your application seeks to refine,

simplify, and improve the architecture to support business disruption, organization

change, system change, and technology disruption. Dead, rigid IT systems bring the

organization to a standstill and are unable to support business disruption.

Cloud native architecture does not replace traditional architecture, but it is better

adapted to the very different environment of the cloud.

 Interoperability Principle
The interoperability principle is an enterprise architecture principle that states

that software and hardware should conform to defined standards that promote

interoperability for data, applications, and technology platforms.

Enterprise architecture frameworks state the principle as follows:

• The ability of a system to use the parts of another system

• The ability of a business entity to use functionality or information

provided by another business entity

Interoperability improvement across applications and business can be realized

through the following objectives:

Chapter 3 Cloud Native arChiteCture priNCiples

67

• Design your application based on open industry best practices; this

helps your application interoperate across any public, private, or

hybrid cloud infrastructure.

• Design your application with industry best practices and standards;

therefore, the information and services are shared across various

other applications in an enterprise.

Here’s how to manage the interoperability across various architecture segments:

• At the architecture level, you need to specify and/or define how you

exchange or share information across various modules or systems.

• At the data level, you need to specify and/or define information

exchange model details and the content of the information exchange.

Here’s how to apply interoperability in architecture:

• User experience integration: A common look-and-feel approach is

used to access the underlying functionality of the applications.

• Information integration: A commonly accepted corporate ontology is

followed for seamlessly sharing information across applications.

• Application integration: Use choreography or the orchestration

principle to seamlessly link functionality to avoid duplication.

• Technical integration: Use common methods to share data across

application platforms and communication infrastructure domains.

 Digital Decoupling Principle
The digital decoupling principle (DDP) was coined by Accenture and is as follows

“A process of using new technologies, development methodologies and
migration methods to build systems that execute strategy on top of legacy
systems. The organization can decouple the rapid execution of their busi-
ness strategy from the lengthy and gradual transformation of the
enterprises.”

—Accenture

When applied to the enterprise landscape, digital decoupling leads to exponential IT,

a scalable, flexible, and resilient architecture that gives companies the agility to innovate.

Chapter 3 Cloud Native arChiteCture priNCiples

68

A few examples of DDP include data meshes, APIs, agile, DevSecOps, journey

to cloud, microservices, RPA, and automation, as shown in Figure 3-6. Using these

approaches, enterprises can gradually decouple their core systems, migrating critical

customer-facing functionality and data to new service-based platforms.

Here are some tips to achieve digital decoupling in your enterprise:

• Automate using RPA.

• Utilize cloud native to quickly build microservices.

• Use a data lake or data mesh with real-time eventing capabilities.

• Adopt API first and consumer first principles.

• Use interactions that react in real time to use behavior.

• Use systems of intelligence to enable smart interactions.

• Remove conflicts of interest and increase agility and enable future

replacement.

• Do not use batches; the systems go straight through with minimal

human interaction.

• Leverage cloud capabilities to isolate the infrastructure and platform.

User Interface

Business Logic

Storage

Platform

Computing

User Interface

Business Logic

Storage

Platform

Computing

AI

API

Events

PaaS

IaaS

Pre-Digital Decoupling

Digital Decoupling

Figure 3-6. Digital decoupling

Chapter 3 Cloud Native arChiteCture priNCiples

69

By adopting DDP, enterprises can focus on continuous modernization without

the pain of wholesale migration of legacy systems. The more systems are decoupled,

the more enterprises can evolve toward an even greater service-based exponential IT

architecture that maximizes agility. This approach helps manage costs, diminishes the

accumulation of technical debt, and significantly reduces legacy transformation risk.

 Single Source of Truth Principle
The single source of truth principle (SSOTP) is not a tool but a practice of aggregating

the data from many sources in an enterprise to a single location. In an enterprise, data

exists everywhere, and this data exists in silos and does not help a business to make

data-driven decisions. Without a single source, how can an organization improve the

efficiency and effectiveness of its operational environment, its transparency, and its

future growth?

If the company does not have any single authentic source of information, it often

spends far too much time debating the accuracy of numbers, and this hinders the

decision-making ability and loses competition to their peers.

Use various tools and techniques to aggregate data from across systems in an

enterprise to a single location in near real time so the team can run business intelligence

tools to generate the required information.

 Evolutionary Design Principle
The main idea of the evolutionary design principle (EDP) is that design elements are

changeable later. When you build in an evolutionary change in your architecture,

changes will become cheaper and easy.

Traditionally, software architecture and design phases have been considered as an

initial discovery phase. In this approach, the architecture and design decisions were

considered valid for the entire life of the system.

In a modern system architecture and design, you need to assume that you don’t

have all the required details up front. As a result, having a detailed design phase at

the beginning of the project is impractical. The domain services must evolve through

iteration, and services mature as they progress. This evolution is necessary for modern-

day architecture, which necessitates a different set of approaches in the direction of

continuous planning, continuous integration, integrated monitoring, and tools thus

providing guiderails for the system to evolve.

Chapter 3 Cloud Native arChiteCture priNCiples

70

As a result of this principle, the team can build a minimum viable product (MVP)

with a set of features and rollout to the users. The development team doesn’t need to

cover all the design features to roll out features; instead, the development team can focus

on the needed pieces and evolve the design as customer feedback comes in. You can

freeze initial feedback, refactor, and complete the service.

The following software design patterns (more details in Chapter 4) can be used to

achieve evolutionary design:

• Sidecar extends and enhances the main service.

• Ambassador creates helper services that send network requests on

behalf of the consumer service or application.

• The chain provides a defined order of starting and stopping

containers.

• The proxy provides surrogates or placeholder.

• An iterator is a way to access the elements of aggregate objects.

Infrastructure as code provides additional automation for container images and

deploys automatically in any place at any given point of time.

 Cloud Native Runtime Principles
These are the cloud native runtime principles.

 Isolate Failure Principle (IFP)
Embracing a cloud native architecture doesn’t automatically make your system

more stable. Designing to isolate failure in your microservices can ensure that your

microservices don’t become fragile. Microservices are not reliable by default; therefore,

you can’t assume that your microservices become more resilient or scalable by default.

For example, say you have five microservices in one system, as shown in Figure 3- 7.

For this system to work, all five services have to be up and running. If any service is down,

it may impact the whole process; therefore, all five must be available at any given point of

time or the system stops processing all requests. In other words, if one service goes down,

it takes them all down.

Chapter 3 Cloud Native arChiteCture priNCiples

71

If any one of the services fails, the system stops working; if any one of the networks

between services stops, it fails, and your services stop working. Therefore, your services

are less reliable.

You must consider the failure of microservices so you can avoid the single point of

failure. Ask yourself, what happens if one of your services fails? Can your system keep

running? Do you even know what happens when your users talk to your services? For

example, the user clicks Catalogs, and your application invokes the catalog microservice,

and the catalog microservice depends on the inventory microservice for an inventory,

but your catalog microservice cannot invoke the inventory services to show the catalog

because the inventory microservice is in a failed status. In this case, do you want to stop

the whole system, or do you want to allow users to buy a product without availability in

the inventory?

A particularly subtle sort of failure that can happen in a distributed system is the

cascading failure, where all the way down the chain fails (service A calls service B and

service B calls service E); this ripples all the way down the whole system.

A cascading failure can hurt a whole system, and you need to design your system to

protect against this. You need to isolate the failure in every part of your system.

Container C

Price

Container A

Catalog

Container B

Shopping
Cart

Container D

Payment

Container E

Inventory

Figure 3-7. Microservice failure

Chapter 3 Cloud Native arChiteCture priNCiples

72

 Deploy Independently Principle
The deploy independently principle (DIP) says that every service should be deployed

independently in an infrastructure as a service (IaaS) by using containers and

Kubernetes.

When you bundle more services into a single machine, you limit your ability to

change things independently; this is the reason why you should deploy one service

per container. The reason is the side effects; when you deploy a service in the same

container with other services on it, what happens if one service fails? You need to

forcefully stop other services also. Therefore, always consider one service per container.

The container provides a great way (as defined in the container principle) to deploy

microservices. The following are the key tips you need to consider when deploying

microservices in a container:

• Bundle the microservices into a container image.

• Deploy each service instance as a container.

• Deploy state and storage outside of the container.

 Be Smart with State Principle
The be smart with state principle (BSSP) states when and how you store state in your

design. Storing the state is the hardest aspect of architecting a distributed, cloud native

architecture. Therefore, architect your system as stateless wherever it is possible.

Stateless means that any state must be stored outside of a container, and this external

state can be stored in various storage. By storing data externally, you remove data from

the container itself, meaning that the container can be cleanly shut down and destroyed

at any time without fear of data loss. If a new container is created to replace the old one,

you just connect the new container to the same datastore or bind it to the same disk.

Stateless components are as follows:

• Easy to destroy and easy to create: The stateless components have

no dependency on the state to carry; therefore, the application in a

container can be destroyed and created easily with no hassle.

• Easy to repair: If you want to repair failed instances in your

deployment, simply terminate gracefully and spin up a replacement.

Chapter 3 Cloud Native arChiteCture priNCiples

73

• Auto scale/horizontal scale: To scale more instances, just add more

copies; the orchestrator can manage the scale-up and down. This

scale can be managed automatically based on load or CPU usage.

• Rollback: If you have a wrong deployment, the stateless containers

are much easier to replace with new ones without any human

intervention.

Load balancing across services is much easier since any instances can serve any

request from the requestor. If you have a state for an instance, you need to send a request

to the same instance, and this can be managed with sticky sessions.

 Location-Independent Principle
The location-independent principle (LIP) is about abstracting the physical location of the

data from the logical representation that an application on a server uses to access data.

In the cloud native application, the location of your deployment does not matter to the

end customer or user, but they both should be able to access services ubiquitously and

responsively regardless of location.

In a cloud native application, your services do not require you to define where you

want to deploy a service, and one service doesn’t need to know another service as both

services are loosely coupled in nature if the services are required to communicate,

though only in terms of API and events, as shown in Figure 3-8.

Chapter 3 Cloud Native arChiteCture priNCiples

74

Follow these best practices when implementing location independence:

• Design your services based on a domain model and bounded

context, which helps to avoid intercommunication.

• A distributed cloud provides public cloud options to a different

physical locations, which helps latency and data privacy and

regulations that require certain data to remain in a specific

geographic location.

• Use the automation principle to deploy your services on any location.

 Design for Failure Principle
The design for failure principle (DFFP) states that applications need to be designed

so that they can tolerate the failure of services. Since services can fail at any time, it is

important to be able to detect the failures quickly and, if possible, automate to restore

quickly. Designing a failure means testing the design and watching services cope

with deteriorating conditions. Design of failure yields a self-healing application and

infrastructure.

Container C

Price Service

Container A

Catalog
Service

Container B

Payment
Service

VM1- Location 1

REST - Synchronous

Event Driven -
Asynchronous

VM3- Location 3

VM2- Location 2

Figure 3-8. Microservice deployments

Chapter 3 Cloud Native arChiteCture priNCiples

75

Any call to microservices could fail due to the unavailability of the service; the client

code must respond to the user as gracefully as possible. This emphasizes the real-time

integrated monitoring of the application. Semantic monitoring can provide an early

warning system of something going wrong that triggers stakeholders to follow up and

investigate.

Designing for failure will help your services have greater availability and customer

confidence on your application. Here are the key factors from the 12-factor app pattern

methodology (more details in the “Architecture and Design of microservice Chapter 5”)

that provide best practices when designing for failure:

• Disposability: Maximize robustness with fast startup and graceful

shutdown. Use lean container images and strive for processes that

can start and stop in a matter of seconds.

• Logs: Treat logs as event streams. If a system fails, ensure you have

collected all the integrated logs to troubleshoot.

• Dev/prod parity: Keep development, staging, and production as

similar as possible.

Implement the failure as a service model to test all your services; for example, Netflix

uses Simian Army or Chaos Monkey to test the failure of services. Amazon’s use of a

microservices architecture for its application means that the application never goes

down, but there could be a problem in individual services. Amazon has built a user

interface to gracefully degrade in the face of service failures.

 Security Principles
These are security principles.

 Defense in Depth Principle
The defense in depth principle (DiDP) provides a series of security mechanisms, and

controls are layered throughout a computer network to protect the confidentiality,

integrity, and availability of services.

Chapter 3 Cloud Native arChiteCture priNCiples

76

Services in a cloud native architecture deploy and process requests for Internet

applications, and there will always be a threat from external and internal attacks. Always

use an authentication mechanism between services, that increases the trust between

those services, whether it is an internal or external service.

You will apply this principle not just for authenticating the services to avoid rate

limiting or script injection, but also you should protect your services from any threat.

This makes your architecture more resilient and easier to deploy and creates more trust

for your services. The DiDP principle ensures network security is redundant, preventing

any single point of failure.

An effective DiDP strategy may include the following security best practices, tools,

and policies:

• Strong credentials management

• Firewalls

• Intrusion prevention or detection system

• Endpoint detection and response

• Network segmentation

• Patch management

• APIs authentication

• Auditing and accounting

 Security by Design Principle
The security by design principle (SBDP) means that the product has been designed from

the ground up to be secure. The alternate security patterns are researched, and the best

are selected and enforced by the architecture design.

Most attacks of any Internet-facing services either in a private or public cloud are

performed because of software vulnerabilities. Software vulnerabilities are often found

in the design and development lifecycle, so if you ignore any findings, you leave your

service exposed to the hands of cybercriminals.

As I mentioned in Chapter 2, cloud applications are made up of IaaS, PaaS, and

SaaS. In IaaS, a cloud vendor provides the physical or virtual infrastructure; you are

responsible for the administering of network and system infrastructure, applications,

Chapter 3 Cloud Native arChiteCture priNCiples

77

and data. With the PaaS model, the cloud provider manages the infrastructure and

managed components such as databases, middleware, etc., and you are responsible

for the application and data security. In a SaaS model, the cloud provider provides

everything from the infrastructure to the application, and you are responsible for access

and data.

In a cloud native application, you are responsible for most of your application and

data security; therefore, you need to provide utmost importance for security. There are

various techniques and best practices available to secure your application.

The following practices help when designing and developing an application:

• Minimize attack surface area: This restricts the services that a user

can access.

• Establish secure defaults: Implement strong security rules for how

users are registered to access your services.

• The principle of least privilege: The user should have the minimum

set of privileges required to perform a special task.

• The principle of defense in depth: Add multiple layers of security

validations.

• Fail securely: Failure is unavoidable; therefore, fail in a secure way.

• Don’t trust services: Don’t trust third-party services without

implementing a security mechanism.

• Separation of duties: Prevent individuals from acting fraudulently.

• Avoid security by obscurity: There should be sufficient security

controls in place to keep your application safe without hiding core

functionality or source code.

• Keep security simple: Avoid the use of very sophisticated architecture

when developing security controls.

• Fix security issues correctly: Developers should carefully identify all

affected systems.

• Implement shift-left security: Implement security from the developer

box.

Chapter 3 Cloud Native arChiteCture priNCiples

78

The Open Web Application Security Project (OWASP) provides security design

techniques and best practices that designers should adopt while designing services. The

OWASP updates the list of vulnerabilities often and rates them based on the security

reports. You need to well aware of the implementation and adherence of the security

risks. The following are the few implementation of OWASP security risks.

 SQL Injection

SQL injection is a security risk where a SQL query is input to your query. If an attacker

can exploit your SQL query and can read sensitive data from your databases and even

modify the data, the consequences are confidentiality, authentication, authorization,

and integrity.

• Standard SQL syntax: select id, firstname, lastname from

customer;

• With query string: select id, firstname, lastname from

customer where firstname='Peter's' and lastname ='john'

The database tries to run this example but provides incorrect syntax.

Figure 3-9 shows the correct implementation.

 Cross-Site Scripting (XSS)

XSS attacks are type of injection like SQL injection; here the attacker injects malicious

scripts into a web application. Flaws in your user experience code like Angular,

JavaScript, etc., allow these attacks to succeed. XSS attacks occur when:

• Data enters a web application through an untrusted source.

Figure 3-9. SQL injection implementation

Chapter 3 Cloud Native arChiteCture priNCiples

79

• The data included in the dynamic content is sent to a web user

without any proper validation for request.

Implement the following best practices to avoid XSS in your web application:

• Use the OWASP XSS prevention sheet from the OWASP community

(https://cheatsheetseries.owasp.org/cheatsheets).

• Turn off HTTP trace, or an attacker can steal cookie data.

• Use the proper syntax in your code, don’t hard-code, and use

variables and parameters.

Here I have provided a few examples. You can find more details and implementation

best practices on the OWASP.org community website.

 Software Engineering Principle
These are software engineering principles.

 Products Not Projects Principle
Amazon states that the core benefit of treating software as a product is an improved end-

user experience. When an enterprise treats its software as an always improving product

rather than a one-off project, like with the products not projects principle (PNPP), it will

produce code that is better architected for future work.

Traditionally, enterprises and service organizations delivered software as a project

with a set of resources and start and end dates with a list of predefined features. A

product-centric development lives for an indefinite period and evolves and has no fixed

predefined features.

In the project-centric approach, there will be a little room for iteration and

improvement as the software spends a small amount of time in the hands of end users

before the budget is exhausted. But in the product-centric approach, you will adopt

the MVP approach, where the smallest increment is delivered to real users as soon as

possible, so the team can get early feedback that sets the future direction.

Chapter 3 Cloud Native arChiteCture priNCiples

https://cheatsheetseries.owasp.org/cheatsheets

80

The core benefits of treating software as a product are the following:

• Improved end-user experience

• Matured architecture

• Automation and innovation culture

• MVP approach

• Easier to extend, maintain, and test

• More visibility into how their software is performing in real-world

scenarios

• Accelerates feedback loop

The following concepts are crucial for adopting a product approach:

• Automated provisioning with cloud-enabled: Use the infrastructure

automation principle.

• Self-service, self-healing: Configure own dependencies and better

configuration management by adopting the separation of concerns

principle.

• DevSecOps pipeline with infrastructure as code: Adopt automation

culture.

 Shift-Left Principle
The shift-left principle (SLP) refers to a practice in software engineering development

in which scrum teams can focus on quality, work on problem anticipation instead of

detection, and begin testing from the developer system.

This principle in DevOps is a set of a process aimed at the following:

• Finding and preventing defects early in the software delivery lifecycle

• Beginning testing, security, and performance earlier than ever before

• Focusing on quality

The idea of this principle is to improve quality by moving tasks to the left as early in

the lifecycle as possible, thus reducing the technical debt and cycle time.

Chapter 3 Cloud Native arChiteCture priNCiples

81

 Shift-Left Security

SLP will be applicable to functional, security, and performance testing and related

processes, techniques, and tools to be integrated as part of the DevSecOps and

developer integrated development environment (IDE).

The shifting left of the security review process requires a new way of developing the

application compared to the traditional approach; these changes are not a significant

deviation. You need to follow these tips for shift-left security:

• Involve an information security expert early in the lifecycle of the

project.

• Use security tools.

• Integrate security tools as part of the continuous integration and as

part of the developer IDE.

 Shift-Left Performance

Shifting performance testing means enabling developers and testers to conduct

performance testing in the early stages of the development lifecycle. Performance

means not just a request or stress; actual performance starts with the code and therefore

involves practices at the developer level to prevent performance-related issues. To

implement the shift-left approach, implement best practices, tools, and techniques as

part of the continuous integration pipeline and as part of the developer environment.

The following are the best practices to be adopted for shift left:

• Implement performance testing with or in parallel to development

activities.

• Include performance testing along with the unit, system, and

integration test lifecycles.

• Create performance attributes.

• Integrate tools as part of DevSecOps.

 Container Principles
The following are the container principles.

Chapter 3 Cloud Native arChiteCture priNCiples

82

 Single Concern Principle
In many ways, the single concern principle (SCP) is like the single responsibility principle

from SOLID, which says that a module or class must have only one responsibility.

In a cloud native architecture, SCP highlights higher level of single of responsibility.

The single responsibility enables you to define a clear boundary for every microservices.

The main motivation for the single responsibility principle is to have a single

reason for a change; the main objective of the SCP is for container image reuse and

replaceability. You can create a container that addresses a single responsibility with

the common feature, and then you can reuse the same container image in different

applications without modification and testing.

The SCP principle objective is that every container must address a single

resposibility with a microservices architecture style. Always use a single responsibility

in the container even though your microservice provides multiple resposnibility. If you

have microservices with multiple resposibility, use sidecar and init-containers patterns

as explained in Chapter 4 to combine multiple containers into a single deployment unit

(pod), where each container still holds single responsibility, as shown in Figure 3-10.

You can swap a container that addresses the same responsibility. For example, replace

service A container with service C by using infrastructure as code.

Container C

User Service
GoLang

Container A

Catalog Service
Spring Boot

Container B

Product Service
Node JS

Container D

Payment Service
Scala

Container E

Shipping Service
Python

Deployment Unit (pod)

Figure 3-10. Microservices deployed in separate containers

Chapter 3 Cloud Native arChiteCture priNCiples

83

 High Observability Principle
Observability is a measure of how well internal states of microservices can be derived

from external outputs. The concept of observability was introduced by Rudolf E. Kalman

for linear dynamic systems.

The observability principle states that an application is said to be observable if one

can determine the behavior of the entire application from the application output.

Logs, metrics, traces, liveness, readiness, and process health are known as the pillars

of observability, as shown in Figure 3-11, in a cloud native architecture. While having

access to these pillars doesn’t make your application more observable, you need to

create interfaces to access these pillars for further analysis.

Containers provide a unified way of packaging and running microservices by treating

the application as a black box. You need to configure containers with APIs to access

runtime environments to observe the container health and act accordingly. These are

the prerequisite for automating container updates and lifecycles in a unified way, which

in turn improves the system’s resilience and user experience.

You need to design your container and application with APIs for the different kinds

of health checks. The microservices should log events into the standard error (STDERR)

and standard output (STDOUT) for log aggregation by using tools such as FluentD,

Logstash, Nagios, etc., and should integrate with tracing and metrics-gathering libraries

such as Zipkin, open tracing, etc.

Container

Service A

Spring Boot

Process
Health

Readiness

Liveness

Metrics

Tracing

Logs

Figure 3-11. Observability in cloud native application

Chapter 3 Cloud Native arChiteCture priNCiples

84

At runtime, your application is a black box to you; implement the necessary APIs to

help the platform observe and manage your application in the best way possible.

 Lifecycle Conformance Principle
The lifecycle conformance principle (LCP) states that a container should have a way to

read the events coming from the platform and conform by reacting to those events.

All kinds of events are available for managing platforms that are intended to help

you to manage the lifecycle of the container and microservices, based on all types of

available events; it is up to you to decide which events to handle and whether to react to

those events or not.

By looking into all sorts of events, you need to pick important events, as shown in

Figure 3-12, for example.

• Graceful shutdown process

• Terminate message (SIGTERM)

• Forceful shutdown (SIGKILL)

When you issue a docker stop command, Docker will wait for 10 seconds to stop the

process; if there no action in 10 seconds, then it will forcibly kill the process.

Command to stop process:

Container

Service A

Spring Boot

SIGTERM

SIGKILL

PreStop

PostStart

Figure 3-12. Container lifecycle

Chapter 3 Cloud Native arChiteCture priNCiples

85

The docker stop command attempts to stop running the container by sending a

SIGTERM signal to the root process in the container; if the process hasn’t exited within

the timeout period, a SIGKILL signal will be sent.

Command to kill process:

There are other events such as PreStop and PostStart, which might be significant in

your application lifecycle management. For example, some applications need to warm

up before a service request, and some need to release resources before shutting down

clearly, as shown in Figure 3-13.

In this configuration file, you can see how to use the PostStart and PreStop

command to write a message file to the container’s /usr/share directory. The presto

command shuts down Nginx gracefully

apiVersion: v1.0
kind: Pod
metadata:

name: lifecycle-cloudnative
spec:

containers:
- name: containerA

image: nginx
lifecycle:

postStart:
exec:

command: ["/bin/sh", "-c", "Event from ServiceA >
/usr/share/message"]

preStop:
exec:

command: ["/bin/sh","-c","nginx -s quit; while killall -0 nginx; do sleep
1; done"]

Figure 3-13. Configuration file

Chapter 3 Cloud Native arChiteCture priNCiples

86

 Image Immutability Principle
The image immutability principle (IIP) states an image is unchangeable once it is built

and requires creating a new image if changes need to be made. Container applications

like microservices are meant to be immutable. Once you have developed applications,

they aren’t expected to change between different environments except for runtime data

like environment configuration and variables such as listening port, runtime options,

etc. You need to store configurations and variables external to the container. For each

image change, you need to build a new image and reuse it across various environments

in your development lifecycle.

Immutability makes deployments safer and more repeatable. If you need to roll

back, you simply redeploy the old image. This approach allows you to deploy the same

container image in all your environments. Containers are usually configured with

environment variables or configuration files mounted on a specific path. You can use

secrets and config maps to inject configurations in containers as environment variables

or files of Kubernetes. If you need to update a configuration, deploy a new container

(based on the same image) with the updated configuration, as shown in Figure 3-14.

Chapter 3 Cloud Native arChiteCture priNCiples

87

Immutability is one of the best qualities of container-based infrastructure.

Immutability along with statelessness allows you to automate deployments and increase

their frequency and reliability.

 Process Disposability Principle (PDP)
The process disposability principle (PDP) is a container runtime principle and states

applications must be ephemeral as possible and ready to be replaced with container

instances at any point of time by using infrastructure as code, as shown in Figure 3-15.

Container A

Product Service

Spring Boot

Container B

Item Service
Node JS

Pod A

Pod B

Container A Container B

Environment A

Environment B

ConfigMap
A

ConfigMap
B

Used as Config File

Used as Config FileProduct Service
Spring Boot

Item Service
Node JS

Update the
reference to the

config map

Figure 3-14. Immutable container images across all environments

Chapter 3 Cloud Native arChiteCture priNCiples

88

Usually, you may not replace containers regularly except for a few circumstances

such as the following:

• Container not responding to health checks

• Autoscaling down the application with CPU utilization or load

• Migrating the container to a different host

• Platform resource starvation

If you store the state within the container, then it is difficult to replace in a distributed

environment; therefore, you should keep their state externalized or distributed and

redundant.

Figure 3-16 illustrates how the PDP principle is applied.

Container A

Product Service
Spring Boot

Container B

Item Service
Node JS

Pod A

Environment A
Stat

Stop

Figure 3-15. Container replacement based on load

Chapter 3 Cloud Native arChiteCture priNCiples

89

At the beginning of your day, service A has only one container instance, but as the

day progresses and the load increases, the containers autoscale to three instances to

meet the demand. The container instances dispose gradually as and when the load

decreases, and finally it reaches the original state. This can be achieved by using the PDP.

You need to follow best practices for the size of containers and functionality of

microservices. For example, it is better to create small containers, which leads to quicker

start and stops because, before the spin of the new container, the containers need to be

physically copied to the host system.

Container A

Scaled down Containers

Container Instances

Request

Spike in CPU Load

HPA – Scaling up

Container returning to initial
state as the load decreases

Dashboard View

HPA – Scaling
down

1 2

3

4

5

67

8

Product Service
Spring Boot

Container A

Product Service
Spring Boot

Container B

Product Service
Spring Boot

Container C

Product Service
Spring Boot

Container A

Product Service
Spring Boot

Container B

Product Service
Spring Boot

Container A

Product Service
Spring Boot

Figure 3-16. Container scale-up and down based on Spile in CPU

Chapter 3 Cloud Native arChiteCture priNCiples

90

 Self-Containment Principle
The self-containment principle (SCP) addresses the build time concern, and the

objective of this principle is that the container must contain everything that it needs at

build time. The container relies on the presence of the Linux kernel or Windows silos

and any additional libraries. The Windows silos are the Microsoft variant for the Linux

namespace. With silos, Windows kernel objects such as files, registry, and pipes can be

isolated into separate logical units.

Along with the container’s Linux kernel or silos, the following should be added at the

time of build:

• Dependent libraries

• Language runtime

• Application platform

The configuration and state are not part of the build time; they should be

externalized at runtime through ConfigMap, as shown in Figure 3-17.

Some of your applications require multiple container components. For example,

your containerized microservices may also require a database container. This principle

does not suggest merging both containers; instead, this principle suggests each

container requires a dependent configuration to run respective containers.

Container

Product Service

Spring Boot

Configuration

Storage

B
ui

ld
 T

im
e

R
un

 T
im

e

Figure 3-17. Containers with build and runtime environments

Chapter 3 Cloud Native arChiteCture priNCiples

91

 Runtime Confinement Principle
The runtime confinement principle (RCP) states that every container should declare its

resource requirements and pass that information to the hosted platform.

The SCP addresses the build-time perspective, and RCP addresses the runtime

perspective. The container is not just a single black box, but it has multiple dimensions

as follows:

• CPU usage dimension

• Memory usage dimension

• Resource consumption dimension

• Control groups dimension

The container, as shown in Figure 3-18, shares the resource profile of a container to a

hosted platform in terms of CPU, memory, networking, and disk influence to specify how

the platform performs scheduling, autoscaling, capacity management, and SLAs of the

container.

In addition to passing the resource requirements to the host platform, it is important

that the application stay confined to the indicated resource requirements. If the

application stays confined, the platform is less likely to consider it for termination and

migration when resource starvation occurs.

Product Service

Spring Boot

Container

Memory

S
iz

e

Figure 3-18. Container runtime characteristics

Chapter 3 Cloud Native arChiteCture priNCiples

92

 Principles of Orthogonal
In mathematics, orthogonality describes the property of two vectors. As shown in

Figure 3-19, they are perpendicular, or 90°, to each other. Each vector will advance

indefinitely into space, never to intersect.

Well-architected software is orthogonal, and each of its components or modules

can be modified without affecting another. By considering agility in both business

and technology, the software applications undergo many changes to support business

disruption. The cost of applying orthogonal principles is a little high, but by considering

the cost at the end, the overall cost will be managed by considering changeability,

testability, extensibility, etc.

The orthogonal design is based on two principles, as shown in Figure 3-20.

• Cohesion

• Coupling

90°

A B

C

Figure 3-19. Orthogonal

Chapter 3 Cloud Native arChiteCture priNCiples

93

 Cohesion
Cohesion is the degree to which the elements inside a module belong together. It is the

strength of the relationship of elements within the module. It is the internal glue that

keeps the module together.

It is a measurer that defines the degree of intradependability within elements of a

module. The greater the cohesion, the better the program design. It is a natural extension

of the information hiding concept.

A cohesive module performs a single task within a software procedure, requiring

little interaction with procedures being performed in other parts of a program. We

always strive for high cohesion, but sometimes the middle path of the spectrum is always

acceptable, as shown in Figure 3-21.

Module A

Module B

Element 2Element 1

Element 3

Element 6Element 4

Element 5

Cohesion

Coupling

Figure 3-20. Orthogonal principle

Chapter 3 Cloud Native arChiteCture priNCiples

94

Cohesion is an ordinal type of measurement and is generally described as high

cohesion and low cohesion.

High cohesion is where you have a module that does a well-defined job with similar

elements; it gives us a better-maintaining facility and reflects a better quality of a design.

Reusability is high as all elements in the module work together as a logical unit of work

with clear functionality. This makes it easier to do the following:

• Understand what class or method does

• Use descriptive names

• Reuse classes or methods

Low cohesion is where you have a module that does a lot of unrelated jobs and

results in a monolithic module that is difficult to maintain, extend, and test. The extra

complexity in modules with low cohesion makes it more likely that defects may be

introduced and leads to high technical debt. Reusability is reduced for modules as it

performs diverse functionality.

 Types of Cohesion

Cohesion is a qualitative measure; the cohesion is measured based on the level of

cohesion in a module, as shown in Figure 3-22. Let’s examine the type of cohesion.

DataProcessing

connectSource()
checkProtocol()
readDataFromFile()
readDataFromDatabase()
readDataFromDataStorage()
validateData()

DataProcessingFile

connectSoruceFile()
checkProtocol()
validateData()
readDataFromFile()

DataProcessingDatabase

connectSoruceDatabase()
extractData()
validateData()
readDataFromTables()

Low Cohesion
High Cohesion

Figure 3-21. High and low cohesion

Chapter 3 Cloud Native arChiteCture priNCiples

95

Function Cohesion

This is the highest degree of cohesion. Every essential element for a single computation is

contained in the component because they all contributed to a single well-defined function.

It can also be reused. Modules with functional cohesion perform exactly one action.

Here are some examples:

• Lexical analysis of XML. Converting a sequence of characters or

elements in XML into a sequence of tokens. The group of elements is

grouped together to analyze XML.

• Assign a seat to train passengers.

• Calculate the interest rate; calculate the sales commission.

Sequence Cohesion

Sequential cohesion is like a sequential operation. The elements of a module are

grouped because of the output from one element and input to another element. This

type of cohesion you can see in streaming data or file or ETL jobs.

Here are some examples:

• In an ETL application, the extract, transfer, and load functions are

grouped into one module for each data element.

• In streaming, it is the continuous transmission, validation, storage,

and display of audio or video of data files.

Function Cohesion

Sequence Cohesion

Communicational Cohesion

Procedural Cohesion

Temporal Cohesion

Logical Cohesion

Coincidental Cohesion Low

High

Good

Bad

Figure 3-22. Types of cohesion

Chapter 3 Cloud Native arChiteCture priNCiples

96

Communication Cohesion

A module is said to have communicational cohesion if all functions of the module refer to

or update the same data structure, or a cohesive module is one whose elements perform

different functions, but each function references the same input information or output,

as shown in Figure 3-23. This cohesion is not flexible as it lacks the reusability principle.

Procedural Cohesion

Procedural cohesion is when elements of a module are grouped as they always follow a

certain sequence of execution and are commonly found at the top of the hierarchy such

as the main program. It is like sequential cohesion, as shown in Figure 3-24, except for

the elements in the sequence are unrelated in procedural cohesion.

The weakness of procedural cohesion is that actions in a sequence are weakly

connected and modules are unlikely reusable.

Calculate employee
information

Employee Record

Total experience

Joining Date

Project experience

Figure 3-23. Communication cohesion example

Employee records

Project experience

Checks File Permission

Open the File

Figure 3-24. Procedural cohesion example

Chapter 3 Cloud Native arChiteCture priNCiples

97

These two separate elements in a module are cut along the dotted line. We could do

separate activities in each element. Checking the file permission operation can be used

for another file also, and we can open the file if no checks are available.

Temporal Cohesion

The elements in this cohesion are related to the time; all the tasks must be executed in

the same period.

The actions of this module are weakly related to one another but strongly related to

actions in other modules. The elements are not reusable in this cohesion.

For example, consider a module in a digital twin that invokes the factory tasks that

are not functionally similar or logically related, but all tasks are needed to happen at the

moment when the failure occurs. The module might do the following:

• Cancel all outstanding requests for services.

• Cut power to all assembly line machines.

• Notify the operator console.

• Make an entry in the database.

• Invoke an alarm if a catastrophic failure occurs.

Logical Cohesion

Logical cohesion is when elements of a module are grouped because they are logically

categorized to do the same thing, even if they are different by nature.

The following are the drawbacks of logical cohesion:

• The interface is difficult to understand.

• Code for more than one action may be intertwined.

• Reusability is lessened.

The actions of this module are all logically read as input content.

The type of input, as shown in Figure 3-25, tells the module what part of its internal

logic to apply to the particular transaction data coming in for each specific invocation.

Chapter 3 Cloud Native arChiteCture priNCiples

98

Coincidental Cohesion

Coincidental cohesion is when elements of a module are grouped; the only relationship

between the parts is that they have been grouped.

• Elements contribute to activities with no meaningful relationship to

one another.

The drawbacks of this cohesion are degraded overall application maintainability and

that modules are not reusable in nature.

Helper or utility classes in your application, usually utility classes, contain many

functions that are unrelated and accessible from various other classes or modules.

Changes in one function in the utility class affect the utility class and also the calling class.

Applying High Cohesion to Software Design

Design your application by keeping high cohesion in mind. Each module should have a

single well-defined functionality. The elements within the module must be related and

perform on the same set of data.

There are ancillary elements in the module that are not directly related, and they

work on a different set of variables; consider moving nonrelated functionality into other

related modules that have the same purpose.

 Coupling
Coupling is the degree of interdependence between software modules or microservices;

a coupling measures how closely connected two modules or microservices are and

the strength of the relationship between modules or microservices. Coupling tells at

tape
Result

Read all inputs

disk
network

Figure 3-25. Logical cohesion example

Chapter 3 Cloud Native arChiteCture priNCiples

99

what level the modules interface and interact with each other, as shown in Figure 3-26,

Figure 3-27, and Figure 3-28. The coupling can be low or weak and high or strong or

tight. The degree of the coupling between modules reflects the quality of the design.

Coupling is the measure of the interdependence of one module to another. Modules

should have low coupling; low coupling minimizes the ripple effect where changes in

one module cause an error in the other module.

Software modules that are tightly coupled are more complex; it is the degree to

which one module is connected to another module. If a module is tightly coupled, then

you are bound to use/edit the rest of the connected modules where editing only one

module could have served the purpose. This impacts the principle of maintainability,

extensibility, and testability. You need to carry out the full suite on the entire connected

modules irrespective of modification, which increases the cost and effort.

A C

B D

Figure 3-27. Loosely coupled with some dependencies

A B

C D

Figure 3-26. No dependencies

A B

C D

Figure 3-28. Highly coupled with many dependencies

Chapter 3 Cloud Native arChiteCture priNCiples

100

The loose coupling design is to reduce the dependency that a change made within

one module or microservice will create unanticipated changes within other elements.

Individual modules can be altered or extended without the need to consider a lot of

information from other modules. Errors of data flow can be pointed out easily. The loose

coupling supports the principle of maintainability, extensibility, and testability.

 Types of Coupling

There are different types of coupling, as shown in Figure 3-29. This section covers the

details of these types in order from lowest to highest coupling. The coupling between the

modules can be more than one way.

No Coupling

In this coupling, the modules are isolated and do not communicate with each other.

Message Coupling

This is the loosest type of coupling. Modules are not dependent on each other; instead,

one module calls a method or interface on another and does not pass any parameters.

They are coupling only on the name of method or interface.

Example: Dependency injection and observable. Figure 3-30 depicts how message

coupling helps to interact between two modules.

Data Coupling

Stamp Coupling (data-structured
coupling)

Control Coupling

External Coupling

Common Coupling (Global
Coupling)

Content Coupling

Low

High

Loosest

Tightest

Message Coupling

No Coupling

Figure 3-29. Types of coupling

Chapter 3 Cloud Native arChiteCture priNCiples

101

In this example, the server and clients are loosely coupled and exchange details over

the socket.

Data Coupling

When data of one module is shared with another module, this condition is said to be

data coupling.

Data coupling occurs when methods share data regularly through parameters. The

two modules, Module1 and Module2, exhibit data coupling if Module1 calls Module2

directly, and they communicate using parameters. Each parameter is an elementary

piece, and the parameter is the only data shared between Module1 and Module2.

Example: As shown in Figure 3-31, the two modules Calculate EMI and Calculate

Total Loan are data coupled as they communicate by passing the parameters.

Stamp Coupling (Data-Structured Coupling)

Stamp coupling occurs when modules share a composite data structure. If the module

interacts by sharing or passing a data structure that contains more information than the

information required to perform their actions, then these modules are said to be stamp

coupled.

Two modules, module A and module B, exhibit stamp coupling if module A passes

directly to module B a composite piece of data such as record, array, tree, or list.

ClientServer

Observable
Sockets Sockets

Message
Exchange

Figure 3-30. Message coupling

Calculate
total loan

Interest

Calculate EMI

EMI Amount

Data Coupling

Figure 3-31. Data coupling

Chapter 3 Cloud Native arChiteCture priNCiples

102

Modules A and B will share a data structure and use only part of the whole data

structure.

For example, ss shown in Figure 3-32, three modules are stamp coupled if they

communicate via passed data structure, which contains more information than

necessary for the modules to perform their functions.

Here we assume Loan Number contains the loan number, date, address, etc. We are

sending more information than what it requires. In this scenario, Calculate Loan Details

requires only Loan Number to perform required functionality.

Control Coupling

Control coupling means to control data sharing between modules; in other words,

control coupling occurs when one module controls the flow of another module by

passing control information.

Two modules exhibit control coupling if module A passes to module B, a part of the

information that is intended to control the internal logic of module B.

For example, as shown in Figure 3-33, the two modules Error Module and

Notification Module are control coupled if they communicate using at least one control

flag, denoted as Notification Flag.

Print Loan
Payment

Transaction

Calculate Loan
Details

Produce Loan
Data

Figure 3-32. Stamp coupling

Chapter 3 Cloud Native arChiteCture priNCiples

103

When an error occurs in an application, the error module captures the error

and sends the notification flag to the notification module to send a notification to

the stakeholders. Here the error module controls the notification module with the

notification flag as a control flag.

External Coupling

External coupling occurs when two modules share an externally imposed data

format, communication protocol, or device interface. This coupling is related to the

communication to external tools and devices such as printers, IoT devices, etc.

For example, module A and module B exhibit external coupling if both modules

share direct access to the same I/O devices or are tied to the same external IoT devices in

some other way.

Common Coupling (Global Coupling)

Common coupling occurs when two or more modules share global data. Any changes

to them have a ripple effect on all the modules; in other words, changing the shared

resources implies changing all the modules using them.

For example, as shown in Figure 3-34, three modules are commonly coupled if they

both share the same global data area.

Module A Module B

Module C

Parameters
Passing

Figure 3-34. Common coupling

Notification
Module

Notification Flag

Error Module

Acknowledgement

Error Details

Figure 3-33. Control coupling

Chapter 3 Cloud Native arChiteCture priNCiples

104

One of the design principles we have been using for many years is this: don’t use

global data; it impacts security.

Content Coupling (Pathological Coupling)

When a module can directly access or modify or refer to the content of another module,

it is called content-level coupling. Changing the inner workings will lead to the need of

changing the dependent module. Module A refers to or changes the module B internal

data or statement directly. This type of coupling is very high or tight in nature.

Module A and module B are content coupled if:

• Module A changes a statement in module B

• Module A references or alters data contained inside module B

• Module A branches into module B

For example, the search method that adds an object that is not found in the internal

structure of the data structure is used to hold information.

Law of Demeter (LoD) or Principle of Least Knowledge

Introducing coupling increases the instability of a system. The law of Demeter is the

important principle to reduce the coupling between modules. This law is a specific case

of loose coupling. This law says:

• Each module or microservice has knowledge about only other

modules or microservices closely related to the current module or

microservices.

• Each module or microservices should talk only to its immediate

friends; don’t talk to strangers.

The advantage of LoD is that resulting software tends to be more testable,

maintainable, extensible, etc.

For example, module A could call module B’s interface for any intercommunication,

but module A should not call module B to communicate module C. If module A needs to

intercommunicate with C, then A calls directly to C.

Chapter 3 Cloud Native arChiteCture priNCiples

105

Applying Loose Coupling to Software Design

Coupling is unavoidable; we need to have coupled. Otherwise, each class in a module or

microservices would be its module. However, achieving a low coupling should be one of

the primary objectives in system design, such that individual module or microservices

can be studied and altered without the need of taking into account a lot of information

from other module or microservices and applying domain design concepts while

designing a module or microservices.

Loose coupling leads to high cohesion and together leads to a highly maintainable,

extensible, and testable system.

 Software Quality Principles
“A good architecture is important; otherwise it becomes slower and more
expensive to add new capabilities in the future. Good architecture is some-
thing that supports its evolution.”

—Martin Fowler

As architects, designers, or programmers, we spend a lot of time analyzing, designing,

and developing code, but we spend even more time maintaining that developed code.

How often do we go back and find that the application has become a tangled mess?

Sometimes we park that system as a legacy application.

The purpose of quality principles is to reduce complexity in a manageable way.

Complexity can never be eliminated; however, architects and designers can reduce it by

using quality principles.

Several problems lead to a highly complex and unmanageable system.

• The architect team does not analyze the business problems properly.

• The architect team does not have a clear view of what the end user

wants from our application.

• The architect team does not have full visibility of the enterprise or

business unit applications.

• The architect team may not get sufficient time to analyze the

architecture.

Chapter 3 Cloud Native arChiteCture priNCiples

106

• The architecture team is to embrace business and technology

disruption.

• There are too many software programming languages and platforms

with diverse features.

These complexities lead to several problems in software while creating an architecture.

• May cause the software to behave in an unanticipated state

• May create security vulnerabilities that could raise the management

of application to an enterprises

• May lead to big operation team and end up with more cost

• May lead to a schedule overrun

Minimizing the complexity and improving the quality of software helps to eliminate

or manage the difficulties. Some of the principles related to improving the quality and

reducing the complexity are covered next.

 KISS Principle
The keep it short and simple (KISS) principle was created by the late Kelly Johnson, who

was the lead engineer at Lockheed Skunk Works. Kelly’s version of the phrase was “Keep

it simple, stupid.” This phrase was embraced by Lockheed designers. There are many

variants of KISS: “Keep it simple and straightforward,” “Keep it super simple,” etc.

We are using the phrase “short and simple” in this book of cloud native architecture.

The objective of this principle is to deliver the simplest possible outcome.

Some of the famous quotes related to KISS are:

“Among competing hypotheses, the one with the fewest assumption should
be selected” —Occam’s Razor

“Make everything as simple as possible but not simpler” —Albert Einstein

This principle has been key for many years, typically when an architect or developer

is breaking down an application into smaller pieces to address the business problems

and then they think they understood the business problem and try to design and

develop a particular problem but end up with complexity. Based on my experience. it is

a complex process on how and where to break complex into simple.

Chapter 3 Cloud Native arChiteCture priNCiples

107

Applying KISS to Software Design

Simplicity is a highly desirable quality in software applications. Making software

more complicated than it needs to be lowers the overall quality of software. The

maintainability, testability, and supporting the business disruption are reduced when

complexity increases.

Here are some ways to follow the KISS principle in your day-to-day work:

• Focus on a simple solution that meets the requirements.

• Avoid the “Rolls Royce” solution when you need a low-end car.

• Break down your problems into many small problems. Each problem

should be able to be solved.

• Apply design methodologies to solve the problem and then code it.

• Design the problem as easy to develop and easy to throw away;

sometimes throwing away and re-creating is simpler and cheaper

than maintaining it.

• Make it easier for the developer to visualize the various aspects of the

application, mentally mapping the possible effects of any change.

This involves knowing the dependencies and state of the application.

• Avoid abstraction and dependencies.

• Avoid flaunting. Most architects and designers flaunt their skills and

knowledge, which makes design unnecessarily complicated.

Try to keep it as simple as possible. This is the hardest behavior pattern to apply, but

once you have it, you’ll look back and will say “ I can’t imagine how I was doing work

before.”

Don’t oversimplify a design. Stop breaking things down when you reach a point that

negatively affects the design of the application.

 Don’t Repeat Yourself
The don’t repeat yourself (DRY) principle aims to reduce repetition in the software

application. It says that every piece of knowledge must have a single, unambiguous,

authoritative representation within a system.”

Chapter 3 Cloud Native arChiteCture priNCiples

108

This principle applies at the code level and architecture level. When code is

duplicated across many packages in the application, it makes maintainability harder,

and this leads to a bigger codebase that is difficult to modify. Finally, it becomes a

technical debt. In an architecture decision, you don’t need to build everything; use the

packages or software already available on the market instead of building on your own.

Duplication Is Waste

Every line of code that goes into the system must be organized and maintained or it

will be a potential source of future bugs. Duplication needlessly bloats the codebase,

resulting in more opportunities for bugs and adding accidental complexity into the

system. The maintainability of the code becomes a nightmare. It can lead to technical

debt, and enterprises need to spend effort and time on refactoring the codebase.

The DRY Principle in Polylithic and Polyglot Architecture

When designing microservices, the DRY rule applies here also, as Sam Newman said

in his book Building Microservices: “Don’t repeat yourself inside microservices. The

dilemma is about reusing across microservices. The basic principle of microservices is

to “avoid dependencies between microservices.” Even though there is a dependency, but

it should be very minimal. As part of the microservices design, we need to reuse some

utility or generalized functionality across microservices, but the challenge is how to find

the right balance to apply the DRY principle.

As shown in Figure 3-35, one of the well-known approaches is to create a package

as a library for reusing code and maintain the package separately outside of the

microservices code, and then use well-structured build pipeline to include relevant

libraries into the microservice package.

Chapter 3 Cloud Native arChiteCture priNCiples

109

Let’s examine several considerations when you are applying the DRY principle in the

context of microservices.

• Use semantic versioning from the beginning of the project.

• Limit the code and functionality in libraries by design.

• Design a package such a way that the functionality of the code

doesn’t change often.

• Standardize on a naming convention so that other microservices

teams can discover these packages.

• You need to set up proper governance to manage these packages

How does the DRY principle reduce maintenance costs?

If the code is duplicated and needs to be changed, you need to find all the places where

it is duplicated and apply changes to all of them. This is more difficult than modifying in

one place, and this leads to more errors and technical debt. You can think of it like you

accidentally apply it differently in one location than another location, or you can modify

code that happens to be the same. Duplicate code tends to obscure the structure and

intent of your code, making it harder to understand and modify.

In some places, the DRY principle is good to follow, but some places need to

maintain duplication due to unavoidable situations, but in that duplication, make sure

you follow proper packaging such as using a library and governance to manage such

code.

Microservice C
Package Library X

Microservice B
Package Library X

Microservice A
Package Library X

Library X
Package

Artifactory

Microservice
A

Microservice
B

Microservice
C

Source Code
Repository

Microservices B

Build
Pipeline

Microservice C

Microservice B

Microservice A

Figure 3-35. DRY principle in microservices

Chapter 3 Cloud Native arChiteCture priNCiples

110

 Isolate
When building a cloud native architecture, one of the primary goals is to achieve a

degree of isolation between services within one business application.

When we design an application that is cloud native, the application should be

fragmented into multiple, independently executing services. By physically separating

services, we will introduce isolation between application modules, which allows us to

reduce the coupling between modules or microservices and potentially increase each

module’s scalability.

What do we mean by isolation?

The concept of isolation means that changes to one module of the architecture generally

don’t impact or affect elements of another module. The change is isolated to the

elements within the module, which does not have any knowledge of the inner workings

of another module.

Isolation in Cloud Native Applications

When working with cloud native architecture, we focus on three dimensions of isolation:

state, space, and failure.

One of the primary characters of a cloud native application is the state. The

individual module or microservices are wholly responsible for maintaining the state; any

access to this state from other modules is through REST APIs.

Space refers to the location in which modules are deployed. The deployment

strategy changes radically for cloud native applications. In a cloud native architecture,

the modules are deployed independently and execute with the separate process in

containers. This allows each service to be managed independently. The ability to

manage application elements independently allows remediating defects and new

features to be deployed automatically with infrastructure as code.

Failure refers to how the application modules isolate the failure between modules.

Each module in a cloud native architecture executes independently; the failure will

no longer crash the entire application. During application design, avoid propagation

of failure and try to use the Bulkhead pattern to both isolate and mitigate failure; the

patterns are explained in Chapter 4.

Chapter 3 Cloud Native arChiteCture priNCiples

111

Applying Isolation to Software Design

Software architects should design modules by following isolation principles. These best

practices will help you while designing an application:

• Limit or restrict unneeded interactions or dependencies.

• Protect system integrity by preventing one process from interfering

with another.

• Provide boundaries so individual failures do not compromise the

whole system.

• Limit exposure to a particular area of the system.

 Separation of Concern
Separation of concern (SoC) is a design principle that manages the quality and

complexities of an application by decoupling the software system so that each isolated

module is responsible for a separate concern, minimizing the dependency as much

as possible. At a low level, this principle is closely related to the single responsibility

principle.

The SoC involves decoupling larger problems into smaller manageable problems. It

improves the quality of software by reducing complexity.

The term separation of concern was probably coined by Edsger W. Dijkstra in his

1974 paper “On the role of scientific thought.”

In 1989, Chris Reade in his book Elements of Functional Programming describes SoC.

The programmer has to do several things at the same time, namely, the following:

• Describe what is to be computed.

• Organize the computation sequencing into small steps.

• Organize memory management during the computation.

Applying SoC to Software Design

SoC is achieved by establishing boundaries. A boundary is any logical or physical

constraint that delineates a given set of responsibilities. Some examples of boundaries

include the use of modules, methods, layers, and services.

Chapter 3 Cloud Native arChiteCture priNCiples

112

At the design level, the application can follow an SoC by separating different

elements such as user interfaces, APIs, database, business logic, etc. An example of a

pattern is the Model-View-Controller pattern.

 Use Layering
The most common principle is the use layering principle. This pattern was the de facto

standard principle for all the web applications since the MVC pattern and has been in

use for quite some time. In today’s world, this principle is still relevant in cloud native

architecture.

Elements within a layered architecture are organized into horizontal and vertical

layers, and each layer within an application performs specific functionality. Although

this principle does not specify the number and types of layers that exist, it all depends on

what type of application you are developing.

Layering in Traditional Application

As shown in Figure 3-36, traditional software architecture consists of four standard

layers: presentation, business, persistence, and database. A smaller application may

have only three layers, and a large and complex application may have four to five layers.

Presentationn Layer Web
Component

Web
Component

Business Layer Business
Component

Business
Component

Persistence Layer
Data Access

Object
(DAO)

Data Access
Object
(DAO)

Database Layer

Figure 3-36. Traditional architecture layering approach

Chapter 3 Cloud Native arChiteCture priNCiples

113

The presentation layer is responsible for handling all user interfaces, whereas

the business layer is responsible for executing specific business functionality, the

persistence layer is responsible for connecting and managing database access, and the

database layer is responsible for storing information.

Layering in Cloud Native Application

A cloud native application is composed of various logical layers, as shown in Figure 3-37,

and grouped according to responsibility and deployment. Each layer in a cloud native

application runs specific tasks, and each task can be a separate microservice.

The presentation layer provides a user experience through the web application and

mobile native application.

The business layer runs stateless services that expose the API; this layer can

dynamically expand and shrink depending on the usage at runtime by using the

autoscaling option of the cloud.

The security layer provides security as a service to the entire application including

access, security at rest, and security at transit.

The database layer has stateful services that are backed by polyglot persistence.

Stateful services rely on traditional RDBMS, NoSQL, object storage, graph storage, etc.

Web

Native App

API Security

Microservices RDBMS

NoSQL

Object
Storage

Event
Driven

Batch
Legacy

Enterprise
Applications

SaaS
Applications

Compliance &
Regulatory
Applications

Compliance

Presentation
Layer

Business
Layer

Security
Layer

Database
Layer

Integration
Layer Legacy Layer

External
Layer

SaaS Layer

Figure 3-37. Cloud native architecture layering approach

Chapter 3 Cloud Native arChiteCture priNCiples

114

The integration layer has an event-driven architecture and batch jobs; the event-

driven architecture can use a variety of services in the cloud that connects various

internal legacy and external third-party applications. The interconnection may be

synchronous or asynchronous or batch.

Cloud native applications interoperate with the existing enterprise applications at

the legacy layer; these legacy applications may host in the cloud or on-premises.

Cloud native applications interoperate with various third-party applications such as

payment, regulatory systems, etc.

Some cloud native applications can interoperate with third-party SaaS providers;

these SaaS applications may host in the same cloud or multicloud environment.

Applying Layering to Software Design

The layered architecture principle is general-purpose, making it a good starting point for

most applications. You need to consider the following few points when you are applying

the layering principle in your architecture:

• Divide and conquer by decomposing the system in different logical

layers.

• Apply SoC when designing the layering approach.

 Information Hiding
Information hiding focuses on hiding the nonessential details of functions and code in

a program so that they are inaccessible to other components of the software. Software

designers and developers apply information hiding in software design and coding to

hide unnecessary details from the rest of the modules. The objective of the information

hiding is to minimize complexities among different modules of the application.

The information hiding principle suggests the architecture be designed as modules

or microservices in such a way that they hide implementation details from the

consumers.

D.L. Parnas introduced the term information hiding in 1972 in “On the Criteria to be

Used in Decomposing Systems into Modules.” The idea was that each module should

hide some design decisions from the rest of the system, especially decisions that would

have cross-cutting effects if changed.

Chapter 3 Cloud Native arChiteCture priNCiples

115

A well-designed system means that it needs to be well-organized. We presented

various principles to achieve. You do not need everything in your system to know about

everything else. So, how do you limit the information the various modules can have

access to? Information hiding allows elements of the module to give accessors the

minimum amount of information needed to use them correctly and hide everything else.

Information hiding is often associated with encapsulation.

Why Information Hiding?

Information hiding is relevant in all levels of application; exposing only the details that

are required improves the quality of the software and reduces the complexity. Most

importantly, it improves maintainability and security. Hiding implementation reduces

potential coupling and dependent modules, which will reduce the effect of the change

on your implementation.

Applying Information Hiding to Software Design

Information hiding can be useful in designing your module and APIs. The gap between

theory and practice in module design is wide, and among many designers, the decision

about what to put into an API amounts to deciding what interface would be easiest to

write internal code to, which results in exposing as much of the elements in the APIs as

possible. I have seen that most programmers would rather expose all the elements and

write extra lines of excess code to keep module secrets intact.

Asking about what needs to be hidden supports good design decisions at all levels. It

promotes the use of named constants instead of literals at the implementation level. Get

into the habit of asking “What does a consumer want?” or “What should I hide?” You’ll

be surprised at how many decisions vanish before you.

 You Aren’t Gonna Need It
You Aren’t Gonna Need It YAGNI is an acronym that stands for “You Aren’t Gonna

Need It” or “You Ain’t Gonna Need It.” It is a principle from the Extreme Programming

methodology. YAGNI states that you should prioritize the functionality in a backlog until

it is completed.

Chapter 3 Cloud Native arChiteCture priNCiples

116

Idea of YAGNI

The idea of YAGNI is that you should only implement features that are required and not

just because you think you may require them sometime later. Ron Jeffries, the author and

cofounder of XP, said this:

“Always implement things when you need them, never when you just foresee
that you need them.”

Even if you are sure that you will need a feature or piece of code later, do not

implement it now. Implement it when the feature required. Most likely, you will not need

it after all, or what you need is quite different from what you foresaw needing earlier.

The reason you may consider building presumptive features is that you think it will

be cheaper to build it now rather than build it later. Before making a decision, the cost

and time comparison must be made against the cost of delay. Spending time and money

on a feature you don’t need now takes away time and money that are required for other

immediate features. This doesn’t mean you should avoid building flexibility into your

application. It means you shouldn’t overengineer something based on what you think

you might need later.

The idea of YAGNI is that you save time because you avoid writing code that you do

not need; our code is better because you avoid polluting it with guesses or assumptions

that turn out be wrong and end up with technical debt and require refactoring.

How to Decide What You Need

Martin Fowler wrote in his blog, “YAGNI only applies to capabilities built into the

software to support a presumptive feature; it does not apply to effort to make the

software easier to modify.” YAGNI is a viable strategy only if the code is easy to change, so

expending effort on refactoring isn’t a violation of YAGNI because refactoring makes the

code more malleable.

In cloud native architecture, we are building loosely coupled independently

deployable software with the principle of ease of maintenance, ease of test, and ease of

extension. By considering this, the YAGNI principle is very relevant now. It means you

can add any feature at any time without affecting the existing implementation. What you

need is to manage backlog smartly so that the features can be mapped to the particular

microservices features, this helps the team to pick easily for development.

Chapter 3 Cloud Native arChiteCture priNCiples

117

 SOLID Design Principles
SOLID principles are an object-oriented approach that is applied to software design

and coding. It was conceptualized by Robert C. Martin in 2000, and the acronym was

coined by Michael Feathers. These five principles are the de facto standard for OO

programming.

The idea of the SOLID principle is to reduce dependencies so that developers can

change one area of software without impacting others. These principles are intended

to make designs easier to understand, maintain, and extend. Ultimately, using these

principles makes it easier for software development to avoid issues and to build

adaptive, effective, and cloud native software.

These principles have become important in cloud native applications. When

followed correctly, you can achieve maintainability, extensibility, and testability of

software design.

The SOLID principle is a framework consisting of complementary principles that are

generic and open for interpretation but still give enough direction for creating a good

object-oriented design. The SOLID is a mnemonic acronym for five design principles

intended to make software designs more understandable, flexible, and maintainable.

SOLID stands for the following:

• Single responsibility principle

• Open-closed principle

• Liskov substitution principle

• Interface segregation principle

• Dependency inversion principle

 Single Responsibility Principle
The single responsibility principle is one of the most tried and tested in software design.

Every module or microservices should do one thing.

This principle states that each module should have a single responsibility or a single

job or a single purpose. The responsibility of a module should have one and only one

reason to change, meaning that a module should have only one job. This means each of

your modules or microservices should serve only one greater purpose and change only

Chapter 3 Cloud Native arChiteCture priNCiples

118

if the greater purpose changes. It doesn’t mean each module or microservices doesn’t

require you to stick just one task or contain only one unit of work, but these tasks or units

or elements all need to cohesively relate to the greater purpose of the microservice.

If a microservice has multiple responsibilities, there is a possibility that it is used all

over the place. When one responsibility changes in the microservices, then we need to

test the entire set of responsibilities whether it is changed or not.

This principle is related to the separation of concern principle; as concerns are

separated from each other, it facilitates the creation of microservices that have a single

responsibility.

Applying Single Responsibility to Microservice Design

Microservices serve a single responsibility in a domain. As shown in Figure 3- 38,

each domain like Customer Account, Payment, or Quote is considered to be a

microservice, so these domains serve a single responsibility. This domain model is from

the Auto Insurance domain.

The Customer Account provides the functionality of customer account management

like customer profile, vehicle details, payment details, customer details, etc. The

Customer Account microservice invokes payment microservices to process a payment

for insurance purchase based on the quote created.

Customer Account

QuotePayment

Customer Account

Quote

Payment

Figure 3-38. Single responsibility principle in microservices design

Chapter 3 Cloud Native arChiteCture priNCiples

119

 Open-Closed Principle
The open-closed principle states that software entities should be open for extensions

and closed for modification. When functionality changes, the entity can allow its code to

be extended without modifying the existing code that has already been developed.

At a code level or class level, you should be able to extend the class’s behavior

without modifying it. This extension can be done by extending the class, either using

inheritance or using composition.

At the architecture level, we are not modifying the functionality of an existing

module but always add new elements by using the existing design.

Applying Open-Closed to Microservices

Even though this principle was created for object-oriented programming, this principle

is still relevant in cloud native architecture.

In cloud native, you expose your functionality through either APIs or event-driven

messaging. These APIs are contracted with the consumer, and you cannot modify the

existing contract; instead, you extend it.

Let’s move on to the specific example of insurance. As shown in Figure 3-39,

imagine we work in an Auto Insurance domain, and you are building a new cloud native

application. During the insurance process, the customer requests insurance by providing

vehicle details and other customer details; your user experience invokes the customer

microservices through APIs. You define an API contract between your customer account

microservices and user experience (web and mobile native application) and to the third-

party agent application.

Chapter 3 Cloud Native arChiteCture priNCiples

120

Your business team would like to add new functionality for the existing one; in this

case, are you going to modify a customer account microservices or add new functionality

into the customer account? You will extend the functionality and provide a new API with

the new version. Here you are doing open for extension and close for modification.

Customer Account Quote

Payment

Invoicing

E
ve

nt
-D

riv
en

: P
ay

m
en

t P
ro

ce
ss

in
g

Event-Driven: Insurance
Quote E

vent-D
riven: Finalise

Q
uote

A
P

I:
C

us
to

m
er

 v
1.

0

A
P

I:
Q

uo
te

User Experience

Customer Agent

A
P

I:
C

us
to

m
er

 v
1.

1

Figure 3-39. Open-close principle in microservices

Chapter 3 Cloud Native arChiteCture priNCiples

121

 Liskov Substitution Principle
The Liskov substitution principle (LSP) defines that objects of a superclass will be

replaceable with objects of its subclasses without breaking the application. This

principle allows subclasses to inherit from a superclass, which includes the properties

and methods of the superclass. This principle is like the design by contract concept

defined by Bertrand Meyer.

In cloud native architecture, the design by contract is part of the API contract and

relies on preconditions, postconditions, and invariants. The API contract is the contract

of messages between your API provider and the consumer that will be used across

channels.

Applying Liskov Substitution to Microservices Design

The LSP in OOP is to enable your code using type T1 to use type T2 instead, as T2 is a

subtype of T1. In other words, you don’t want to break existing code but alter behavior. If

you apply LSP to microservices, you don’t want to break existing clients of the service but

replace them with better or enhanced ones.

We will use the same example as shown in the open-close principle with the

modification of the API contract.

In the example shown in Figure 3-40, you need to find a way to replace the

microservices Customer Account version 1.0 with version 1.1, not only breaking existing

consumers but having them utterly unaware of these changes.

Chapter 3 Cloud Native arChiteCture priNCiples

122

Customer Account Quote

Payment

Invoicing

E
ve

nt
-D

riv
en

: P
ay

m
en

t P
ro

ce
ss

in
g

Event-Driven: Insurance
Quote E

vent-D
riven: Finalise

Q
uote

A
P

I:
C

us
to

m
er

 v
1.

0

A
P

I:
Q

uo
te

User Experience

Customer Agent

A
P

I:
C

us
to

m
er

 v
1.

1

Figure 3-40. Liskov substitution to microservices design

The API contract for the Customer Account version 1.0 and the API version 1.0 of

Customer Account is as follows:

GET https://mydomain/customer/resource-a
Accept: application/json; version 1.0

Chapter 3 Cloud Native arChiteCture priNCiples

123

Some consumers want to add new features to the Customer Account microservice;

here you need to extend it without affecting the existing customer. Here you need to

introduce version 1.1, the API contract for the customer Account version 1.1, the API

version 1.1 of customer Account as follows:

GET https://mydomain/customer/resource-a
Accept: application/json; version 1.1

 Interface Segregation Principle
Interfaces in OOP define methods and properties but do not provide any

implementations. Classes that implement interfaces provide an implementation.

Interfaces define a contract, and consumers can use them without concerning

themselves with their implementation details. The implementation can change, and if

interfaces are not modified, the consumer does not need to change their logic.

In a cloud native architecture, an API is the interface between the consumer and

implementation; the API provides the interface with properties and HTTP methods.

Microservices that implement APIs provide an implementation.

The interface segregation principle (ISP) states that consumers should not be forced

to depend on properties and methods that they do not use. This is exactly what an API

implementation provides, you design APIs to provide an optional property with HTTP

methods so that consumers can use only relevant properties and HTTP methods.

 Dependency Inversion Principle
The dependency inversion principle (DSP) is a specific form of decoupling software

modules for handling dependencies between modules and writing loosely coupled

software systems.

The principle states the following:

• High-level modules should not depend on low-level modules. Both

should depend on abstractions.

• Abstractions should not depend on details. Details should depend on

abstractions.

Chapter 3 Cloud Native arChiteCture priNCiples

124

In cloud native architecture, you can use DSP to design your microservice’s internal

layers and decouple dependencies between the API, database, and infrastructure. It has

nothing to do with your domain but is related to the application microservice design.

This principle allows you to decouple the infrastructure layer from the application’s

deployment layers.

 Summary
In this chapter, you learned various cloud native architecture principles and how to

adopt these principles in a cloud native architecture.

To design the best cloud native architecture, several principles can be applied,

such as API first, polylithic and polyglot, consumer first, a culture of automation, digital

decoupling, evolutionary design principles, etc. After you design services, you must run

these services in production. For effective runtime efficiency, several principles can be

applied, such as isolate failure principle, deploy independently, be smart with the state,

design for failure, etc.

Security is the most important part of any application, and cloud native architecture

is no different. To implement effective security in an application, several principles can

be considered, such as defense-in-depth, shift left in security, security by design, etc.

Once you design an application, the next most important part is how you develop

and deliver the software, and a number of principles such as agility, shift-left, products

not projects principles must be adopted.

The container is the de facto standard for cloud native applications; the effective

configuration of containers in a cloud native architecture is important. Therefore, you

need to apply container principles for your deployment using principles such as SCP,

HOP, LCP, IIP, PDP, SCP, and RCP.

You learned that to design orthogonal software systems that can be extended

while minimizing the impact on existing and new functionality, you need to focus on

loose coupling and high cohesion. Complexity is an important concept in software

application; architects and designer think they need to build the Taj Mahal or Eiffel

Tower. But the customer wants something else; therefore, you need to apply these

principles to make sure you deliver what the customer wants: KISS, DRY, information

hiding, YAGNI, and SoC.

Chapter 3 Cloud Native arChiteCture priNCiples

125

The SOLID design principles, which include SRP, OCP, LSP, ISP, and DSP, can

be used to design and develop code that addresses maintainability, reusability,

testability, and flexibility concerns. Several practices, such as agility, product centric,

decentralization, and shift-left, improve the quality of software systems.

Cloud native architecture patterns are reusable solutions that can be used to solve

recurring problems. In the next chapter, we will go over some of the common cloud

native architecture patterns so that you will be aware of them and can apply them

appropriately to your services.

Chapter 3 Cloud Native arChiteCture priNCiples

127
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_4

CHAPTER 4

Cloud Native Architecture
and Design Patterns
The Pattern Language is an organized and coherent set of patterns, each of which

describes a problem and the core of a solution that can be used in many ways within a

specific field of expertise.

When architects and designers work on a particular problem, it is unusual for them

to think of a new solution that is completely distinct from existing ones. They often

recall or remember a similar problem they already solved and reuse the essence of

that solution. Their problem may in fact recur again and again in various projects and

implementations. Using the earlier solution to solve this recurring problem has a name;

it is called using a pattern.

A software pattern is a solution to a recurring problem within a given context. Each

pattern describes a context, a problem, and a solution. Patterns reflect how the code or

components are developed and interact with each other. Using patterns simplifies design

and architecture problems.

Each pattern describes a problem that occurs over and over again in our

environment and then describes the core of the solution to that problem, in such a way

that you can use this solution a million times over, without ever doing it the same way

twice.

Software architects and designers who know available software architecture and

design patterns can recognize when one can be applied in a design scenario. This

chapter explains the details of patterns with real-time problem scenarios.

This chapter begins by explaining what software architecture patterns are and

how they can be used in your design. It then briefly covers all the commonly available

patterns and provides detailed information on cloud native-related patterns including

Gang of Four patterns, enterprise integration patterns, microservices patterns, etc.

https://doi.org/10.1007/978-1-4842-7226-8_4#DOI

128

In this chapter, I will cover the following topics:

• Evolution of software architecture patterns

• Software architecture pattern usage

• Architecture styles

• Gang of Four patterns, including the enterprise integration pattern

• Details of cloud native and microservices patterns

• Infrastructure patterns, testing patterns, database patterns, and

transactional patterns

• Anti-patterns

• Do’s and don’ts of pattern usage

 Evolution of Design Patterns
Economic changes in the 19th century provided the catalyst for the rise of modern

architecture and the creation of some iconic buildings. Christopher Alexander was a

vocal critic of utilized space and developed theories for architectural and urban design.

He published a theory of architecture: The Timeless Way of Building in 1979, A Pattern

Language in 1977 and the Oregon Experiment 1975.

This Pattern Language, as it’s called, details 253 patterns that serve as generic

guiding principles for design.

Design patterns in computer science achieved prominence when Design Pattern:

Elements of Reusable Object-Oriented Software by the “Gang of Four” was published in

1994 by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. The Design

Pattern book used objects and interfaces instead of walls and doors, but at the core of

both kinds of patterns are solutions to a problem in a context.

The next progression in the pattern world was Studies in Computational Science:

Parallel Programming Paradigms, a book about programming techniques written by Per

Brinch Hansen. He was a Danish-American computer scientist known for his work in

operating systems, concurrent programming, and parallel and distributed computing.

The author’s main point is that the lack of proper programming techniques is the source

of many difficulties in computing. This book mainly addresses concurrent programs,

divide-and-conquer paradigms, parallel parallelism, etc.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

129

The next progression in the pattern world was Pattern-Oriented Software

Architecture: A System of Patterns, Volume 1, which was written in 1996 by Frank

Buschmann, Regine Meunier, Hans Rohnert, and Peter Sommerlad. This book details

how to design application and middleware software to run in concurrent and networked

environments, event handling, synchronization, services access and configuration, and

concurrency.

The next progression in the pattern world was Smalltalk Best Practices Pattern

written by Kent Beck in 1997. This book is all about choosing names of objects, variables,

and methods; how to break logic into methods; and how to communicate your

implementation. Smalltalk is one of the most influential programming languages and

was one of the first object-oriented programming languages, so all other languages that

come after Smalltalk like Java, Python, Ruby, etc., were influenced by Smalltalk.

The next progression in the pattern world was Pattern-Oriented Software

Architecture, Volume 2: Patterns for Concurrent and Networked Objects written by

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann in 2000. It is the

second volume in the Pattern-Oriented Software Architecture series. This book focuses

on networking and concurrency.

The next progression in the pattern world was Pattern of Enterprise Application

Architecture written by Martin Fowler in 2002. This book is about enterprise architecture

patterns like how to layer an enterprise application, how to organize domain logic, how

to design web-based applications, and how to implement distributed design.

The next progression in the pattern world was Enterprise Integration Pattern:

Designing, Building, and Deploying Messaging Solutions written by Gregor Hohpe and

Bobby Woolf in 2003. This book covers enterprise integration and messaging with both

synchronous and asynchronous loosely coupled patterns.

The next progression in the pattern world was Head First Design Pattern written

by Eric Freeman, Elisabeth Freeman, Bert Bates, and Kathy Sierra in 2004. In this

book, the authors illustrated already available patterns in a graphical way with simple

understandable terms and with examples.

The next book in the pattern world was Software Architecture Patterns written

by Mark Richards in 2015. In this book, the author provides details of modern-day

architecture patterns such as event-driven architecture, microservices, layered

architecture, etc.

The next book in the pattern world was Microservice Patterns written by Chris

Richardson in 2018. In this book, the author provides the details of microservices

patterns such as event-driven architecture, microservices, etc.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

130

There are various other books available on the market about patterns, and each

author gives details based on their experience with the best possible examples. In this

book, I am not covering the entire set of patterns but providing brief details of existing

patterns that are relevant to a cloud native architecture.

This chapter covers the details of relevant cloud native patterns, including object-

oriented, enterprise application, and enterprise integration patterns. It also provides

some examples.

 What Are Software Patterns?
A software pattern is a solution to a recurring problem within a given context. Each

pattern describes a context, a problem, and a solution. Patterns reflect how code or

components are developed and interact with each other. Using patterns simplifies design

and architecture problems. Some people interpret what is and isn’t a pattern differently.

One person’s pattern can be another person’s architecture style or building blocks. In

general, a pattern has a pattern name, problem, solution, and consequences.

When an architect and designer work on a particular problem, it is unusual for them

to think of a new solution that is completely distinct from existing ones. They often recall

a similar problem they have already solved and reuse the essence of that solution in the

new situation. In fact, the same problem may recur again and again in various projects

and implementations. Using the earlier solution to solve this recurring problem is called

using a pattern.

• Patterns can be seen as building blocks of more complex solutions.

• Their function is a common language used by technology architects

and designers to describe solutions.

 Architecture Style, Architecture Pattern, and Design
Pattern
The architecture style, architecture pattern, and design pattern are not mutually

exclusive but complement each other, and all of them can provide some insight into

the development of a solution. There are small differences between all three and,

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

131

again, different interpretations from person to person. Some say architecture styles and

architecture patterns are the same, but others say they are different. I will try to highlight

the differences based on my experience, and the rest I leave to you to judge.

An architecture style describes how to organize components of the architecture and

code. It is the highest granularity of architecture, and it specifies the layers and high-level

modules of the application, as well as how they interact with each other.

Architecture patterns help to specify the fundamental structure of an application.

Design patterns are more localized and solve a particular problem within the

codebase. Examples include the factory pattern, singleton pattern, etc.

 Anti-pattern
An anti-pattern describes a recurring solution to a problem that generates negative

consequences. An anti-pattern is about applying a wrong solution to the right problem

without having knowledge or analysis of either problem or applying patterns. The term

was coined in 1995 by Andrew Koenig.

An anti-pattern from the developer’s perspective is comprised of technical problems

and solutions that are encountered. From an architecture perspective, it resolves

problems in how systems are structured, and from a managerial perspective, an anti-

pattern addresses common problems in software engineering.

In a nutshell, leveraging patterns is a valuable approach, but that doesn’t mean you

have to use a particular pattern. A common mistake by architects and designers is when

they engineer a problem by using patterns. You need to understand the context and

solution to the problem before applying the pattern in your context.

 Cloud Native Data Management Pattern
for Microservices
The following are cloud native data management patterns for microservices.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

132

 Event Sourcing Pattern
The event sourcing pattern is not new; Martin Fowler wrote about it in his book Pattern

of Enterprise Application Architecture in 2002. The event sourcing pattern has not been

used much, but it gains a lot of importance with the emergence of cloud native event-

driven architecture. According to Fowler:

“Event Sourcing ensures that all changes to the application state are stored
as a sequence of events. Not just query these events, we can also use the
event log to reconstruct past states, and as a foundation to automatically
adjust the state to cope with retroactive changes.”

In your application, when any activity occurs, it should be through an event. Without

an event, the system may not function. The event can be anything such as clicking

a button, clicking the back button, sending a request to an API, scheduling a job,

transferring a payment, withdrawing a certain amount, purchasing a product, viewing

reviews, etc. You need to use these events to track, audit, log, and restore marketing,

etc. These events are difficult to store in the database by using create, read, update, and

delete (CRUD) operations. You need a special type of data store to store all kinds of

events.

The event sourcing pattern defines an approach to handling an operation on data

that is driven by a sequence of events, and each of the event records is stored as a new

record. The event-driven services publish the list of events with a description like an

event name, time, date, user, etc., to the event store. It uses the event-centric approach

to persist data. A business object is persisted in an event store with the sequence of

state-changing events. Whenever an object’s state changes, a new event happens to the

sequence of events. The event store publishes events to the consumers, so the current

state is derived from the event store.

Stream

The stream (the event store allows you to define and create as many streams as required

for your domain) comprises a log of all events that have occurred during the state of an

object. The event store can provide output as in a traditional database, and it provides

much more such as time traveling through the system and root-cause analysis. The data

in the event store is immutable and provides methods for audit logs.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

133

Event Store

Figure 4-1 shows an overview of an event sourcing pattern, including storing events,

externally consuming an application of an events, and querying an event for a specific

state or current state. For example, the user performs various activities in an ecommerce

application like logging in, searching for an item, selecting a brand, adding a brand

or removing a brand, etc. These user activities are called events. The e-commerce

application publishes all the user activities to the event stream by using event-driven

systems like Kafka and stores them in the event store database like EventStoreDB.

All the events are immutable and stored using an append-only operation; the event

capture and event store are published seamlessly in the background without affecting

the performance of an application or the user experience. All the events are simple event

objects with characteristics such as timestamps, user IDs, etc.

The event sourcing enables the following:

• You can do a complete rebuild of an application or service state by

rerunning the events from the event log on a system or service.

eCommerce Applica�on

User Logged In

Item Searched

Select Filter

Brand1 Selected

Brand 2 Selected

Brand 1 Added

Brand 2 Added

Brand 1 Removed

Cart Created

Consuming
Applica�on

Event Store

Publish Events

Query Current
state of Events

User

Shipping Applica�on

Payment Pla�orm

Order Management
Applica�on

Publish Events

Publish Events

Consume Events

Consume Events

Publish Events

Consume Events

Figure 4-1. Event source

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

134

• Temporal queries can be used to determine the application state at

any point in time. This can be achieved by initializing a blank state

and rerunning all the events up to a particular point in time.

• Event replay can be used to repair a corrupted state of an application

or service due to an incorrect event being received. This can be done

by initializing a blank application or service state and replaying all

the events while replacing the incorrect with the correct one.

There are multiple databases such as EventStoreDB, IBM DB2 Event Store, and

NEventStore designed for storing events.

Every event has a name; in this example, the event name is the shopping cart

experienceUser1. All the events are stored in a flat representation of an entity.

The following are the benefits of event sourcing:

• It enables accurate audit logging in an application.

• It makes it possible to implement temporal queries that determine

the state of an entity at any point in time.

• It helps to implement the accountability required in the compliance.

• It is used to guarantee that all changes to a service resource state are

based on events; it solves data consistency issues in a distributed

architecture by atomically saving and publishing events and enabling

event subscribers.

These are typical use cases of event sourcing:

• Enterprises in the finance industry such as banks, trading, and

insurances are mandated to do regulation. Event sourcing helps to

store audits and makes it easy to monitor the action of events.

• Up-to-date record-keeping in government agencies.

• User activity in the retail application for marketing.

These are some considerations necessary when using event sourcing:

• Event sourcing typically improves the performance of updates, but

it takes time to construct an aggregated state. Using a snapshot

may decrease the amount of time needed by taking a snapshot and

replying to the events from that point on.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

135

• The event structure may change over time. Therefore, the application

or service should have a versioning strategy and be able to handle

events with different versions.

 Command and Query Responsibility Segregation Pattern
The command and query responsibility segregation (CQRS) pattern isolates the updated

operation data from reading operation data. Implementing CQRS increases the system

performance, provides low overhead on the command database, and provides a higher

degree of security.

In a traditional architecture, as shown in Figure 4-2, usually the system uses a single

model for both command and query operations.

In Figure 4-2, the application layer consists of business logic and DAOs and uses the

same database for all CRUD operations. This type of architecture works well for basic

CRUD operations. In more complex or legacy applications, this approach becomes

unwieldy.

In one of my projects in early 2012, the client had a Temenos T24 core banking

application, and it was very old and unable to support the business expansion;

sometimes it failed to scale to meet the demand, which impacted the bank business. All

the services from various channels like web, mobile, and branch were requesting both

command and read operations from the same application with one monolithic database.

Both read and write workloads are often asymmetrical, with very different performance

and scale requirements.

The following are the drawbacks of this kind of architecture:

• Data conflicts can occur when both read and write operations are

performed on the same sets of data.

Business
Layer

Data Access
Object (DAO)

User Interface
(UI)

User

Applicationn Layer C
om

m
and/Q

uery

Figure 4-2. Traditional architecture data operations

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

136

• Performance degradation may occur due to the load on the data store

and data access objects.

• Security becomes complex for security at rest and security in transit.

As our needs become more sophisticated, we are steadily moving away from that

model. We need to look at the storage differently.

Approaching CQRS in two different ways, you can do the following:

• Segregate the application layer based on the command and query

responsibility. The write request and read request are handled by two

different objects.

• Split up the data storage, having separate reads and writes by using

the event source.

As shown in Figure 4-3, the database is split up into application layers between the

command and query model.

Application Layer Command and Query

Having separate models means different object models can be running in different

processes and separate VMs or containers. There could be a separate request from the

UI for commands (create, update and delete) and queries (read). This type of CQRS

has both pros and cons, but it does not solve the industry problems. There is no change

in the database load, and it may not improve the performance and security; however,

complexity in the application layer is reduced.

User Interface
(UI)

User

Application Layer

Query - Read

Data Access
Object
(DAO)

Business
Layer

Command Model

Data Access
Object
(DAO)

Business
Layer

Query Model

Command –
Create, Update
& Delete

Figure 4-3. Command and query model in the application layer

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

137

Command and Query in the Database

As shown in Figure 4-4, we can split storage between the commands and queries by

using event sourcing. These separate reads and writes go into different databases: the

command database for creating, updating, and deleting and the querying database for

read-only operations. The commands are usually task and transaction-based rather than

data-centric. A query never modifies the data and returns a value object or DTO that

does not encapsulate any domain knowledge.

For greater isolation, this model physically separates the read data from the write

data. In this case, the read database can use its own data schema that is optimized for

reading operations, and this type of architecture provides flexibility to choose the type of

databases such as RDBMS or NoSQL, etc.

In the previous example of Temenos T24, we adopted the second model. We

created the operational data store (ODS) from Temenos T24. We designed an event

sourcing mechanism between the T24 database to the ODS database in near-real-time

mode. From the enterprise service bus (ESB), we orchestrated all the read requests like

statements, etc., to ODS with all the debit and credit orchestrated to the Temenos T24

system.

User Interface
(UI)

User

Application Layer

Query - Read

Data Access
Object
(DAO)

Business
Layer

Command Model

Data Access
Object
(DAO)

Business
Layer

Query Model

Command –
Create, Update
& Delete

Event
Handler

Figure 4-4. Command and query in database

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

138

As mentioned, the CQRS provides a separation of concerns. The command side

is all about business or transactions and does not place much importance on queries

or different materialized views over the data or optimized APIs from the nonrelational

database, etc. On the other hand, the query side is all about read access. The main

purpose is making queries fast and efficient. In many business systems, based on my

experience, I can say approximately 70 percent of requests for read purpose from the

users.

Separating the read side and the write side into separate models within a bounded

context provides the ability to scale each one of them independently. The read data

model could be de-normalized or could be a materialized view, which in turn increases

the performance of the query execution.

The way event sourcing helps with CQRS is to have part of the application writing to

an event store or stream topic. This is paired with an event handler that subscribes to the

queue topic, transforms and cleanses the event, and writes the materialized view to read

the store.

The following are the benefits of CQRS:

• CQRS allows the read and query workloads to scale independently.

• The query side can use a schema or materialized views that are

optimized for queries, and the command side uses a schema that is

optimized for updates.

• It is easier to manage security; that is, only command domains can

perform writes on data.

• Segregating the query and command sides can result in models that

are more maintainable and flexible. Most of the complex business

logic goes into the command model, and the query model can be

relatively simple.

• By storing materialized views in the query database, the application

can avoid complex joins when querying.

• There are various options to use a query database, from RDBMS to

NoSQL databases.

• The query database can provide data to the various analytical

purposes.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

139

The following are issues of CQRS:

• The idea of CQRS is simple, but the implementation is complex; you

need very highly skilled resources.

• The best way to implement CQRS is to use event-driven architecture;

you need to take care of data cleansing, message failures, etc.

• The query data may be stale due to replication time lag.

The following are the use cases for CQRS:

• You read more query-based use cases than command-based

use cases, for example, social networking systems, retail bank

applications, etc.

• In complex business logic, you want to simplify the understanding of

the domain dividing problem into command and query.

 Data Partitioning Pattern
A partition allows a table, index, or index-organized table to be subdivided into smaller

chunks, where each chunk of such a database object is called a partition. Each partition

has its name.

Data partitioning divides the data set and distributes the data over multiple servers

or shards. Each shard is an independent database, and collectively, the shard makes up

a single database. The portioning helps manageability, performance, high availability,

security, operational flexibility, and scalability. This makes technologies an ideal fit for

microservices data storage.

The data partitioning pattern addresses these issues of scale:

• High query rates exhausting the CPU capacity of the server

• Larger data sets exceeding the storage capacity of a single machine

• Working set sizes larger than the system’s RAM, thus stressing the I/O

capacity of disk drives

You can use the following strategies for database partitioning:

• Horizontal partitioning (sharding): Each partition is a separate data

store, but all partitions have the same schema. Each partition is

known as shards and holds a subset of data.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

140

• Vertical partitioning: Each partition holds a subset of the fields for

items in the data store; the fields are divided according to how you

access the data.

• Functional partitioning: Data is aggregated according to how it is

used by each bounded context in the system.

You can combine multiple strategies in your application; for example, you apply

horizontal partitioning for high availability and use a vertical partitioning strategy to

store data based on data access.

The database, either RDBMS or NoSQL, provides different criteria to share the

database.

• Range or interval partitioning

• List partitioning

• Round-robin partitioning

• Hash partitioning

Round-robin partitioning distributes the rows of a table among the nodes in a round-

robin fashion. The range, list, hash partitioning, and an attribute called the partitioning

key must be chosen among the table attributes. The partition of the table rows is based

on the value of the partitioning key.

In range partitioning, a given range of values is assigned to a partition, and the data

distributed among the nodes in such a way that each partition contains rows for which

the partitioning key value lies within its range. The list strategy similar to the range, but a

list of values is assigned one by one. The hash partitioning is based on the partition key

and the hash values.

 Horizontal Partitioning or Sharding

Applications in an enterprise require a database to store business data. When the

business grows, the data size grows exponentially; at some point in time the database

performs very badly with limited CPU, single storage capacity, performance, or query

throughput. There should be a limit to increase the CPU, memory, etc. Therefore, you

can’t go beyond certain limitations.

Sharding is a common idea in database architectures. By sharing a table, you can

store new chunks of data across multiple physical nodes to achieve horizontal scalability.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

141

By horizontally scaling out, you can enable a flexible database design that increases the

performance and high availability of data.

Figure 4-5 shows horizontal partitioning or sharding; in this example, user employee

details are divided into two shards, HS1 and HS2, based on ID/key. Each shard holds the

data for a contiguous range of shard keys. Sharding spreads the load over more nodes,

which reduces contention and improves performance.

The shards don’t have to be the same size. It’s more important to balance the

number of requests. Some shards might be large, and other shards might be smaller; you

can choose the key based on the access operation. The smaller size is more frequent and

faster; the larger size is less frequent and slow.

Besides achieving the scalability and throughput of service level agreements (SLAs),

sharding can potentially improve unplanned outages, and each node collaborates to

make sure always available. Some database vendors use the master-slave architecture

style for sharding.

 Range Based or Interval Partitioning/Sharding

Range-based sharding separates the date based on ranges of the data value. Shard keys

with range values are separated into a separate chunk. Each shard in an architecture

preserves the same schema of the master database. Interval partitioning is an extension to

range partitioning in which, beyond a point in time, partitions are defined by the interval.

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Government $30000

1002 Alice Best Paris Private $40000

1003 Den Young Tokyo Government $35000

1004 Mohamme
d

Siraj Dubai Private $36000

1005 Anthony Doe New York Governmen
t

$45000

1006 Bob Best Kampala Private $20000

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Government $30000

1002 Alice Best Paris Private $40000

1003 Den Young Tokyo Government $35000

ID/Key First Name Last Name City Employee
Type

Income

1004 Mohammed Siraj Dubai Private $36000

1005 Anthony Doe New York Government $45000

1006 Bob Best Kampala Private $20000

Horizontal Partition/ Shards

HS1 HS2

Figure 4-5. Horizontal partition/shards

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

142

Range-based shards support more efficient range queries. Given a range query on

the shard key, the query router can easily determine which chunks overlap that range

and route the query to only to those shards that contain these values in a chunk.

Each partitioning, as shown in Figure 4-6, creates a dedicated partition for certain

values or value ranges in a table. In the previous example, the partition is based on the

income. The income less than $35,000 is shard into one, and the income greater than

$35,000 is in another shard.

Partitions may be created or dropped as needed, and applications may choose to use

range partitioning to manage data at a fine level of details.

The range partitioning specification usually takes a range of values to determine one

partition, but it is also possible to define a partition for a single value. When one row is

inserted or modified, the target partition is determined by the defined ranges. If a value

does not fit one of these ranges, an error is raised. To prevent this kind of error, create

another partition to accommodate these kinds of data that are not part of the range.

The range-based partitioning can result in the uneven distribution of data, which

may negate some of the benefits of sharding.

Consider the range or interval partition in the following cases:

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Government $30000

1002 Alice Best Paris Private $40000

1003 Den Young Tokyo Government $35000

1004 Mohammed Siraj Dubai Private $36000

1005 Anthony Doe New York Government $45000

1006 Bob Best Kampala Private $20000

Range Based Partitioning

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Government $30000

1003 Den Young Tokyo Government $35000

1006 Bob Best Kampala Private $20000

ID/Key First Name Last Name City Employee
Type

Income

1002 Alice Best Paris Private $40000

1004 Mohammed Siraj Dubai Private $36000

1005 Anthony Doe New York Government $45000

Income > $35000Income < $35000

Figure 4-6. Range-based sharding

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

143

• Large tables are frequently scanned by a range predicate on a good

partitioning column.

• You want to maintain a rolling window of data.

• You cannot complete any housekeeping activity on large tables in a

required time, but you can divide them into smaller logical chunks

based on the partition range column.

 Hash Partitioning/Sharding

Hash partitioning is a partitioning technique where a hash key is used to distribute rows

evenly across the different partitions.

Hashing is the process of converting a given key into another value and refers to the

conversion of a column’s primary key value to a database page number on which the

rows will be stored.

Hash sharding takes a shard key’s value and generates a hash value from it. The hash

value is then used to determine in which shard the data should reside. With a uniform

hashing algorithm such as Ketama (it is an implementation of a consistent hashing

algorithm, meaning you can add or remove servers from the pool without causing a

complete remap of all keys), the data with close shard keys is unlikely to be placed on the

same shard.

In Figure 4-7, the table is partitioned by using the hash function on the ID/key

column.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

144

Partitioning by hash is used primarily to ensure an even distribution of data among a

predetermined number of partitions and is focused on data distribution instead of data

grouping.

As a rule of thumb, hash partitioning can be used in the following cases:

• To enable partial or full parallel partition-wise joins with likely

equalized partitions

• To distribute data evenly among the nodes

• To randomly distribute data to avoid I/O bottlenecks

 List Partition

The list partitioning concept is like range partitioning. As detailed, the range partitioning

is done by assigning a range of values to each partition. In the list partition, we assign a

set of values to each partition.

You should use list partitioning when you want to specifically map rows to partitions

based on discrete values. For example, all users in Asia and Europe are stored in one

partition, and users in America and Africa are stored in different partitions.

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Government $30000

1002 Alice Best Paris Private $40000

1003 Den Young Tokyo Government $35000

1004 Mohamme
d

Siraj Dubai Private $36000

1005 Anthony Doe New York Government $45000

1006 Bob Best Kampala Private $20000

Hash Function

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Governmen
t

$30000

1002 Alice Best Paris Private $40000

ID/Key First Name Last Name City Employee
Type

Income

1003 Den Young Tokyo Governmen
t

$35000

1004 Mohammed Siraj Dubai Private $36000

ID/Key First Name Last Name City Employee
Type

Income

1005 Anthony Doe New York Governmen
t

$45000

1006 Bob Best Kampala Private $20000

Cluster

Figure 4-7. Hash partitioning/sharding

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

145

List partitioning is useful when we have a column that can contain only a limited set

of values; even range partitioning can be used, but list partition allows you to equally

distribute the rows by assigning a proper set of values to each partition.

 Round-Robin Partitioning

The round-robin portioning is used to achieve an equal distribution of rows to partitions.

With this technique, the new rows are assigned to partitions on a rotation basis. There is

no partition key; rows are distributed randomly across all partitions, and therefore load

balancing is achieved.

 Vertical Partitioning

Vertical partitioning splits the data vertically to reduce I/O and the performance

associated with fetching items that are frequently accessed.

In this example, as shown in Figure 4-8, different attributes of employees are stored

in different partitions. VS1 holds data that is accessed more frequently, and, in another

partition, VS2 holds the employee type and income, which are accessed intermittently.

ID/Key First Name Last Name City Employee
Type

Income

1001 Gaurav Sharma Bengaluru Governmen
t

$30000

1002 Alice Best Paris Private $40000

1003 Den Young Tokyo Governmen
t

$35000

1004 Mohamme
d

Siraj Dubai Private $36000

1005 Anthony Doe New York Governmen
t

$45000

1006 Bob Best Kampala Private $20000
Vertical

Partition/Shards

VS1 VS2

ID/Key First Name Last Name City

1001 Gaurav Sharma Bengaluru

1002 Alice Best Paris

1003 Den Young Tokyo

1004 Mohamme
d

Siraj Dubai

1005 Anthony Doe New York

1006 Bob Best Kampala

ID/Key Employee
Type

Income

1001 Governmen
t

$30000

1002 Private $40000

1003 Governmen
t

$35000

1004 Private $36000

1005 Governmen
t

$45000

1006 Private $20000

Figure 4-8. Vertical partitioning

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

146

The following are the benefits of vertical partitioning:

• Slow-access data can be separated from more dynamic data.

• Sensitive data can be stored in a separate partition with additional

security controls.

• This strategy can reduce the amount of concurrent access.

 Data Replication
Replication is the continuous copying of data changes from the primary database to

the secondary database. The two databases are generally located in different servers,

resulting in a load balancing framework by distributing various database queries and

providing a failover capability. This kind of distribution satisfies the failover and fault

tolerance characteristics.

Replication can serve many nonfunctional requirements such as the following:

• Scalability: Handling higher query throughput than a single machine

can handle

• High availability: Keeping the system running even when one or

more nodes go down

• Disconnected operations: Allowing an application to continue

working when there is a network problem

• Latency: Placing data geographically closer to users so that users can

interact with the data faster

In some cases, replication can provide increased read capacity as the client can

send read operations to different servers. Maintaining copies of data in different nodes

and different data centers can increase data locality and availability of the distributed

application. You can also maintain additional copies of dedicated purposes, such as

disaster recovery, reporting, or backup.

There are two types of replications:

• Leader-based or leader-followers replication

• Quorum-based replication

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

147

 Leader-Based or Leader-Followers Replication

In leader-based replication, one replica is designed as a leader while another replica is

a follower. Clients always send their write queries to the leader. Leaders write the data

to its local storage first and then send the data change to its followers. When the client

wants to read from the database, it can query either the leader or the follower. The leader

is responsible for making decisions on behalf of the entire cluster and propagating the

decisions to all the nodes in a cluster.

In Figure 4-9, there is a single leader with asynchronous and synchronous

replication. The user sends an update request to update the first name to the leader.

The leader updates first and then sends a synchronous request to Follower 1 and

Follower 2. After the leader receives an OK response from Follower 1 and Follower 2,

the leader sends an OK status to the user for a successful update. The leader replicates

asynchronously to Follower 3, but the leader doesn’t wait to receive any OK from

Follower 3.

Update Users set first_name=“Author A”
where user id=1001

User

Leader

Follower 1

Follower 2

Follower 3

Update Statement

Time

Waiting for follower’s OK

Data Change

Data Change

Data Change

OK
OK

OK

OK

Figure 4-9. Single leader with two synchronous and one asynchronous replication

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

148

In a multileader example, there are two data centers (DCs) or clusters across

geographies to provide high availability or latency to various users. In this model,

you need to have two separate sets of leaders and followers in each cluster or DC and

replicate each as mentioned in Figure 4-10; however, both need to synchronize and

resolve any conflicts or inconsistencies. In this case, both leaders talk to each other over

a conflict resolution object to sync each other.

Every server in a node or cluster or DC at startup looks for an existing leader. If no

leader is found, it triggers leader selection. The leader in each cluster is a must; without

the leader, there is no acceptance of any request from the user. Only the leader handles

the client request, not the followers. If a request is sent to a follower, then the follower

sends a request to the leader to act.

How are the leaders selected?

An election will be conducted to select a leader. If the existing leader is not available,

then the database cluster uses the Raft consensus algorithm to choose the leader.

Raft is designed to select a leader by ensuring each node in the cluster agrees upon

the same series of state transitions.

Leader

Follower1 Follower2 Follower3

User

Cluster 1 or DC 1

Update Statement

Change Change

Change

Conflict
Resolution

Leader

Follower1 Follower2 Follower3

User

Cluster 2 or DC 2

Update Statement

Change Change

Change

Conflict
Resolution

Figure 4-10. Multileader-based replication across clusters or data centers

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

149

The Raft protocol was developed by Diego Ongaro and John Oosterhout (Stanford

University) in 2014. Raft was designed for better understandability of how consensus

can be achieved. The consensus is a method to involve multiple servers agreeing on one

value; once they decide on a value, that decision is final.

According to Raft, each node in a replicated server cluster can stay in either leader,

follower, or candidate. At the time of election to choose the leader, the servers can ask

other servers to vote; hence, they are called candidates when they have requested votes.

Figure 4-11 shows the step-by-step process of how servers apply Raft consensus to

choose a leader. A leader election is started by a candidate server; it starts the election

by increasing the term counter, voting itself as a new leader, and sending a message

to all other nodes. Here, Follower 3 is a candidate and sends messages to Follower 2

and Follower 1. A server will vote only once per term, on a first-come, first serve basis.

If a candidate receives a majority vote, then it becomes a new leader. Here Follower 3

receives a maximum vote and then is selected as a new leader. Raft uses a randomized

election timeout to ensure that split-vote problems are resolved quickly.

The high availability of leaders is achieved using a Failover pattern. A timeout with

heartbeats is used to detect whether the replica is dead or alive. When one or more

followers fall behind a leader by a certain configurable unit, it is called a replication lag

and can cause strange side effects. Various consistency models can be used for deciding

how an application should behave under replication lag.

 Quorum-Based Replication

A cluster quorum disk is the storage medium on which the configuration database is

stored for a cluster computing network. The cluster configuration database, also called a

quorum, informs the cluster which physical server(s) should be active at any given time.

The quorum disk comprises a shared block device that allows concurrent read-write

access by all nodes in a cluster.

Leader

Follower1 Follower2 Follower3

Follower1

Follower2 Follower3

Follower1

Follower2 Follower3

Follower1Follower2

Leader

Leader Fails Initiate an Election Follower 3 node got max votes Follower 3 becomes a Leader

Request for Votes
Voting done

Figure 4-11. Election process to choose a leader

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

150

In this replication, the client is responsible for copying the data to multiple replicas.

The nodes do not actively copy data among each other. The size of the replica group

doesn’t change even when some replicas are down. The client sends both read and write

to multiple replicas. A cluster agrees that it received an update when a majority of the

nodes in the cluster have to acknowledge the update. This number is called a quorum.

The number of quorums will be decided by the following formula:

No of quorum = n/2+1

If you have five nodes in a cluster, then n=5 nodes, and then 5/2+1= 3 (round off). If

you have a cluster of five nodes, you need a quorum of three.

In the quorum, how to decide how many failures can be tolerated equals the size

of the cluster minus quorum. If you have five nodes and three quorums, then node-

quorum = failure, 5-3=2. A cluster of five nodes can tolerate two of them failing.

You can use this formula to calculate nodes in a cluster:

2f+1

f=failure (2*2+1=5)

Figure 4-12 depicts a quorum-based replication pattern that shows quorum write,

quorum read, and read repair after a node (replica 3) outage. In that case, it is sufficient

to acknowledge the write. Thus, when the user receives two OK responses from the

cluster, this satisfies the n/2+1 = 3/2+1=2.

Update Users set first_name=“Author A”
where user id=1001

User

User

Replica 1

Replica 2

Replica 3

Update Statement

Time

First_name=“AuthorA”

OKOK

Node
offline

Get Key= Users.first_name

Value=AuthorAx
version=6

Update Users set first_name=“Author A”
where user id=1001 version=7

Figure 4-12. Quorum-based replication

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

151

If there are n replicas, every write must be confirmed by w nodes to be considered

successful, and we must query at least r nodes for each read. The quorum allows the

system to tolerate unavailable nodes as follows:

• If w < n, we can still process writes if a node is unavailable.

• If r < n, we can still process reads if a node is unavailable.

• With n=3, w=2, r=2, you can tolerate one available node.

• With n=5, w=3, r=3, you can tolerate two unavailable nodes.

The cluster can function only if the majority of servers are up and running. You need

to consider the following:

• The throughput of a write operation: Every time data is written to

the cluster, it needs to be copied to multiple servers. Every node in a

cluster adds overhead to complete all the writes. The latency of data

is a directly proportionate number of servers forming the quorum;

therefore, if you increase the number of nodes, then it impacts the

throughput.

• The number of failures that need to be tolerated: The number of

failures tolerated depends on several nodes in a cluster; adding

one more node doesn’t give more fault tolerance. For example, 100

developers cannot complete the entire project in 1 day instead of 5

developers in 20 days.

Even if a client always performs quorum reads and writes, conflicts are likely to

occur.

• Two clients may write to the same key at the same time (use

concurrency control to manage this).

• If an error occurs during writing or if a node fails and needs to be re-

created, a write may be present on fewer than w replicas.

The result is that replicas disagree about what a particular value in the database

should be. In such a case, the application must be handled by using a concurrency

algorithm.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

152

Martin Fowler wrote in his blog about how to choose the optimal servers in a cluster,

as shown in Figure 4-13. He says the decision is based on the number of tolerated

failures and approximate impact on the throughput. The throughput column shows the

approximate relative throughput to highlight how the throughput degrades with the

number of servers. The number will vary from system to system. For further reading,

refer to Raft Thesis and Zookeeper’s paper (https://raft.github.io/).

In the quorum, write and read are not sufficient, as some failure scenarios can cause

clients to see data inconsistency. Each server does not have any visibility of data on

another server. The inconsistency can be resolved only when data is read from multiple

nodes in a cluster.

 Cloud Native API Management Patterns
for Microservices
These are patterns for microservices.

Number of
Servers

Quorum Number of
Tolerated
Failures

Representative
Throughput

1 1 0 100

2 2 0 85

3 2 1 82

4 3 1 57

5 3 2 48

6 4 2 41

7 5 3 36

Figure 4-13. Deciding on the number of servers in a cluster

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

https://raft.github.io/

153

 Idempotent Service Operation
There are idempotent operations on HTTP methods. If a REST service is idempotent, the

consumer of an API can make that same call repeatedly while producing the same result;

in other words, making multiple identical requests has the same effect as making a single

request.

When you design REST APIs, you must take into consideration that consumers can

make mistakes. The consumer application can write client code in such a way that there

can be duplicate requests coming to the API. In distributed architecture, failure may

occur when invoking service. A lost request should be retired, but a lost response may

cause unintended side effects if retired automatically.

These duplicate requests may be unintentional or intentional, you must design fault-

tolerant APIs in such a way that the duplicate requests do not leave the system unstable.

The idempotent service pattern is used to provide a guarantee that service

invocations are safe to repeat in the case of failures that could lead to a response

message being lost. The idempotent requests can be processed multiple times without

side effects.

When designing APIs, you must follow REST principles such as stateless, uniform

interface, code on demand, etc. You will have automatically idempotent REST APIs for

HTTP methods.

• GET, PUT, DELETE, HEAD, OPTIONS, and TRACE are idempotent.

• POST is not idempotent.

The GET, HEAD, OPTIONS, and TRACE methods should not have any significance

when taking an action other than retrieval. These methods ought to be called “safe”

methods. The POST, PUT, and DELETE are represented as “unsafe” requests and require

special handling in the case of exceptional situation (e.g., state reconciliation).

POST is an HTTP method used to send data to a server to create/update data from

the consumer. When you invoke POST requests many times, you will use the same

resources on a server, so POST is not idempotent.

GET, HEAD, OPTIONS, and TRACE are used for requesting resources from a backend

application; therefore, these methods never change a resource state on a backend

application. They are purely for retrieving application data, so invoking multiple requests

will not affect data on a server, so these methods are idempotent.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

154

The PUT method is used to update a resource in a back-end application. If you call

PUT multiple times, you are updating the existing record or overwriting the record.

Therefore, it not changing any records; hence, PUT is idempotent.

The DELETE method is used to delete a record in a back-end application. The first

request deletes a record in an application, and then the consumer will receive an HTTP

response 200 (OK) or 204 (No Content) if the consumer sends the same request again

and again, the DELETE method tries to find a record that was deleted earlier, or the

HTTP returns 404 (Not Found) message. Here only the response is different, but there is

no change in record status; hence, the DELETE method is idempotent.

 Optimistic Concurrency Control in API
Concurrency control means an object will ensure the correct results are received for

concurrent operations. Concurrency is required to avoid conflict between concurrent

requests. There are two kinds of concurrency control.

• Optimistic concurrency control

• Pessimistic concurrency control

The optimistic concurrency control allows concurrency conflicts to happen. If they

happen, the control makes sure the previously requested data is not changed. It doesn’t

lock any records to ensure the record wasn’t changed in the time between the select and

submit operations.

The pessimistic concurrency control blocks an operation of a transaction and does

not allow another request to access a particular API or data.

Concurrency locking is not new; you, me, and everyone experienced concurrency

issues in RDBMS, but how does the concurrency control impact our APIs? What

happens when two users update the same record at the same time? Will you send any

error messages? What response code will you use? In the REST API, several consumers

interact with a single resource, each consumer holding a copy of the state. Let’s imagine

author A (you) and author B (me) are editing content on the same topic at the same time.

You edit the content faster than me, and you submit the changes. When I complete my

editing, I submit the changes, but I overwrite your changes. To avoid this type of conflict,

you need a concurrency mechanism in APIs.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

155

Conflict mostly occurs in response to the HTTP PUT method request as this method

is used for the update operation. You need to use the concurrency control designed into

the HTTP protocol to protect the integrity of your data.

An entity tag, specified by the ETag HTTP header, is an opaque token that the server

associates with the particular state of a resource. It is an optional header in the HTTP

request, and it is kind of like a version stamp for a resource. Whenever the resource

changes, the ETag should change accordingly.

The API consumer and provider use the ETag value to determine whether a request

to a resource is up-to-date by comparing the value of the ETag header on an incoming

request to the value of the ETag header present on the server. If a value matches, then the

consumer will get up-to-date information; if not matched, the consumer should refresh

the request to receive the updated details.

With the previous example of content editing using an HTTP, imagine you want to

modify some content in a server. What will you do? You use GET requests to fetch content

and make a local modification and then issue a PUT request to update on the server.

With a single client, the interaction is happening without any issues. The

concurrency is required when two or more requests try to modify same content, as

shown in Figure 4-14.

Say author A gets the content and modifies it locally, and author B requests the same

content and modifies it locally. If both authors attempt to put their modifications back

on the server, the modification of author A will be lost when author B’s PUT overwrites,

as shown in Figure 4-15. In this situation, both the authors are aware of this situation.

Figure 4-14. Single request

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

156

To avoid these concurrency issues, as shown in Figure 4-16, you need to use the ETag

header with the conditional request If-Match. This allows you to implement optimistic

locking to avoid conflicts. With optimistic locking, each author is able to edit the content,

and the author notifies with conflicts in a content.

Figure 4-16. Optimistic locking with ETag

Figure 4-15. Concurrency condition: author A updates lost

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

157

Figure 4-16 shows an implementation of optimistic locking by using an ETag and

the If-Match header. If the ETag header does not match the value of the content on the

server, the server rejects the change with 412 Precondition Failed. Author B is notified of

the conflict and can try again after updating the local copy.

You need to make sure that when you are using optimistic locking, this condition is

not suitable for everything, such as if both author A and author B update their photo at

the same time on the same album. This is a feature, not a conflict.

 Circuit Breaker
The circuit breaker pattern is used to check the availability of an external service, detect

failures, and prevent them from happening constantly. In a distributed cloud native

application, calls to remote resources and services can fail due to transient faults such

as slow network connections and slow execution by microservices. These faults correct

themselves after some time, and cloud and cloud native applications should handle this

kind of situation.

For example, your mobile application needs to retrieve data from microservices

hosted in the cloud platform. During business hours, your application might access 100

transactions per second (100 tps); in this case, your microservice is not available due to

various faults such as network, slowness, etc. In this scenario, your microservice should be

able to handle quickly and gracefully without waiting for each service request to time out.

The circuit breaker pattern was popularized by Michael T. Nygard in his book Release

It!, which can prevent an application from repeatedly trying to execute an operation

that’s likely to fail. This allows it to continue without waiting for the fault to be fixed or

wasting CPU cycles while it determines that the fault is long-lasting.

As illustrated in Figure 4-17, the idea of the circuit breaker is to wrap a protected

function call in a circuit breaker object, which monitors failure. Once the failure reaches

a certain threshold, the circuit breaker trips, and all calls to the circuit breaker return

with an error, which means the circuit breaker acts as a proxy for operations that could

potentially fail.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

158

As shown in Figure 4-18, the circuit breaker pattern is implemented as a state

machine that mimics the state of an electric circuit breaker.

Figure 4-17. Circuit breaker sequence diagram

Failure Count
threshold persists

Closed
Half-Open

Open
Success or failure count
under threshold

Reset Breaker

Figure 4-18. Circuit breaker pattern states

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

159

Closed: The operation executes normally. The circuit breaker

maintains a count of the recent failures. If the number of recent

failures exceeds a threshold within a given period, the proxy is

placed into the open state. At this point, the proxy starts a timeout

timer, and when this timer expires, the proxy is placed into the

half-open state.

Open: The request from the application fails immediately, and an

exception is returned to the application.

A half-open state is used to prevent a recovering service from being hit with a large

number of requests. As a service recovers, it may be able to support a limited volume of

requests until the recovery is complete, but while recovery is in progress a flood of work

may cause the service to time out or fail again.

The circuit breaker pattern should be implemented asynchronously to offload

the logic to detect failures from the logic to execute the actual operation. The

implementation requires some form of persistence (to record the number of successful

and unsuccessful operation execution). There are various tools are available in the

industry like Istio, Hashicorp Consul, etc., to support the circuit breaker implementation.

Use this pattern in the following case:

• To prevent an application from attempting to invoke a remote service

or access a shared resource if this operation is highly likely to fail

This pattern might not be suitable for the following:

• For handling access to local private resources in an application, such

as in-memory data structure. In this environment, using a circuit

breaker would simply add overhead to your application.

• As a substitute for handling exceptions in the business logic of your

applications.

 Service Discovery
The API gateway needs to know the location (IP address and port) for each microservice

with which it communicates. In a traditional architecture and system, you could probably

hardwire the location because this application is not dynamic. In a cloud native modern

application like microservices, finding the needed location is a nontrivial problem.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

160

Infrastructure services such as MQs usually have a static physical location that

can be specified by using server OS environment variables. However, in cloud native

microservices, determining the location of an application is not easy.

Application services are assigned a location and set of instances of service changes

dynamically because of autoscaling, container orchestration, etc. Consequently, the API

gateway needs to use the system’s service discovery mechanism either in server-side

discovery or in client-side discovery.

The service registry is a key part of discovery. It is a database containing the network

locations of service instances. This is a single point of failure and therefore should be

highly available and up-to-date.

Client-Side Discovery Pattern

When using this pattern, the client is responsible for determining the network locations

of available service instances and load balancing requests across them, as shown in

Figure 4-19. The client queries a service registry, which stores available service instances.

The client then uses a load balancing algorithm to select one of the available service

instances and makes a request.

Instance A

Service A

Instance B

Service A

Instance C

Service A

REST
API

REST
API

REST
API

Registry
Client

Registry
Client

Registry
Client

Consumer

10.25.20.222:5757

10.25.20.354:4848

10.25.90.353:69696

Registry

Figure 4-19. Client-side registry

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

161

The network location of a service instance is registered with the registry when it

starts and removes when it terminates. The registration of services is refreshed regularly

by using a heartbeat mechanism.

The client-side registry pattern has a few benefits and drawbacks. The following are

the benefits:

• It is relatively simple, without additional components required except

for the registry.

• The client can make intelligent, application-specific load balancing

decisions such as using hashing consistently.

The drawbacks are as follows:

• The client is coupled with the service registry and potentially

complicated with load balancing.

• You must implement client-side service discovery logic for each

programming language and framework used by your service clients.

Server-Side Discovery Pattern

The client request to a service via a load balancer. The load balancer queries the registry

and routes each request to an available service instance, as shown in Figure 4-20.

Instance A

Service A

Instance B

Service A

Instance C

Service A

REST
API

REST
API

REST
API

Registry
Client

Registry
Client

Registry
Client

Consumer

10.25.20.222:5757

10.25.20.354:4848

10.25.90.353:69696

Registry

Router
Request

Q
uery

Register

Figure 4-20. Server-side registry

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

162

As with client-side discovery, service instances are registered with the service

registry.

The server-side pattern has several benefits and drawbacks. The benefits are as

follows:

• Compared to client-side discovery, the client does not need to know

how to deal with discovery. The discovery is abstracted away from the

client. Instead, a client simply requests the router.

• This eliminates discovery logic for each programming language and

framework used by your service consumers.

• Some cloud environments provide this functionality like cloud ELBs.

The drawbacks are as follows:

• Unless it is part of the cloud environment, the router is another

system component that must be installed and configured. It will also

need to be replicated for availability and capacity.

• More network hops are required than the client-side discovery.

 Service Versioning
There are basic principles for designing an API exposed by microservices, the first of

which is enforcing strong contracts. A microservice provides a versioned, well-defined

contract to its clients and other microservices, and each service must not break it until

it’s determined no other microservices relies on it. Figure 4-21 illustrates the relationship

between service producers like microservices and consumers such as web applications

or mobile applications. The service producer registers all its services in service registries

like Netflix Eureka and consumer contacts in the registry for service discovery, and later

it connects to microservices for consumption of the service data.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

163

There are two options for versioning the exposed API of a microservice. If you need

to provide additional information on an HTTP method like a GET or POST or PUT

operation, then the change is unlikely to be backward compatible. In that case, you need

to look at ways of handling this problem.

The following are the two most common ways of handling versioning:

• Versioning in the URI

• Versioning in the header

URI Versioning

URI versioning is when you change the URI of the resource to contain version

information, for example, /customer/v1.1/{id}. URI versioning gives you the ability to

version an entire resource hierarchy. If you model a version like this, it enables resources

for the automated navigation or discovery of resources.

The drawback of URI versioning is you need to change the resource name and

location. This introduces a complex creation of URI aliases that make it difficult to track

the production version, and it may break existing software links that do not include

version information.

Here are two ways you can version in URI versioning:

• Versioning at multiple hierarchy nodes (complicated): -/customer/

version/2/account/version/2

• Versioning as a query parameter: /customer?version=2

Producer Consumer

Service Registry

3. Connect

Figure 4-21. Service registry

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

164

There are multiple options to deal with this problem.

• Copy your old data into a new V2 database and keep the two entirely

separate.

• Update your schema in place and add code to V1 to handle the new

schema.

Header Versioning

In the header versioning, you need to include version information in a special header

of each request and response. For example, say you need to add a header with

x-version:3.1. In this approach, the resource name and location remain unchanged

throughout your URL hierarchy, so you want to create URI aliases.

The drawback of the header versioning approach is that information can’t be readily

encoded into software links. It works only with custom clients that know how to encode

the special header.

Based on the URI and header versioning mechanism, you can consider either

forward- or backward-compatible methods.

• Forward compatibility: When developing a service, you make sure

that this version will be compatible with future versions and won’t

be impacted when other services are updated (e.g., a new feature

added). Achieving forward compatibility is a complex task since you

have to deal with several unknown or unexpected features. The most

common concept is to simply ignore unrecognized elements.

• Backward compatibility: The new version of a service is compatible

with today’s version, so existing clients can start using this new

version as if there was no change. It can be verified by thoroughly

testing the new version with old data sets.

There are a few different types of changes that are important for service versioning

such as the major release, minor release, new capability, bug fix, etc.

You need a version number for each release. When a client requests a certain

service, a service proxy forwards the request to a version of the service that is compatible

with the version of the client. Therefore, all the clients have a single endpoint. While

implementing the versioning, the governance of the API is of utmost importance to avoid

any software breaks.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

165

 Cloud Native Event-Driven Patterns
for Microservices
These are the event-driven patterns.

 Asynchronous Nonblocking I/O
Compared to all the other characteristics of infrastructure such as CPU, memory, and

disk, the network is slow.

• A high-end modern system is capable of moving data between the

CPU and main memory at the speed of around 6 GB per second.

• A common local area network (LAN) of I/O is about 12.5 MB per

second.

• Today’s hard disk provides a lot of storage and transfer speeds of

around 50–60MB per second.

• A CPU can execute approximately more than a billion instructions

per second.

The I/O performance has not increased as quickly as CPU and memory

performance, partially due to neglect and physical limitation. In a cloud native

architecture, all system tasks are I/O-bound, and the I/O speed often limits the overall

system performance.

According to Amdahl’s law, as shown in Figure 4-22, improved CPU performance

alone has a limited effect on the overall system speed. This law gives a theoretical

speedup in the latency of the execution of a task at fixed workloads that can be expected

of a system whose resources are improved.

Execution time
after

improvement
Amount of Improvement

=
Time affected by improvement

+
Time

unaffected by
improvement

Figure 4-22. Amdahl’s law

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

166

Currently, the network is ubiquitous; it is the distribution of communications

infrastructure and wireless technologies throughout the environment to enable

continuous improvement. In the 5G world, network slicing enables the multiplexing

of virtualized and independent logical networks on the same physical network

infrastructure. Once the 5G network is rolled out, the speed of the network increases

tenfold. Even though the network speed increases tenfold, it cannot match the speed of

the CPU and memory. There are four fundamental performance metrics for I/O systems

of your application.

• Bandwidth (B): This is the amount of data that can be transferred

in unit time from one service A to another service B, as shown

in Figure 4-23. It is the capacity of the network like your Internet

bandwidth of 1Mbps, 1Gbps, etc.

• Latency (L): This is the time taken for the smaller transfer from

service A to service B, as shown in Figure 4-23. The measuring units

in time are transaction per second (tps), etc. For example, if the

request that starts at service A is 0 seconds and reaches service B in 2

seconds, then your transaction rate is 2tps.

• Throughput (T): This is the amount of data moved successfully from

service A to service B in a given time period, as shown in Figure 4-23.

It is measured bits per second as in Mbps and Gbps.

• Response time (R): This is the time taken from the time service A

sends a request to service B until the time that the service indicates

the request has completed and reaches service A, as shown in

Figure 4-23. For example, the response time is 4ms between your

services, etc.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

167

What is synchronous and asynchronous messaging?

As shown in Figure 4-24 A, synchronous messaging involves a sender that waits for

the server to respond to the request with a message. The thread is blocked between

the sender and the receiver. The sender cannot send another request until receiving a

response from an earlier request.

As shown in Figure 4-24 B, asynchronous messaging involves a sender that does not

wait for a message from the server. An event is used to trigger a message from a server.

Even if the sender is down, the message processes the request. The server callback is sent

once the server completes its execution. Here there is no blocking of threads.

Blocking I/O means that a given thread, after initiating an I/O operation, cannot

perform further calculations until the result is fully received, which means when an

API call is invoked to connect with the microservices, the thread that handles that

connection is blocked until there is some data to read. Until the relevant operation is

complete, that thread cannot do anything else but wait.

Instance A

Service A

Instance B

Service BBa
nd

w
id

th

Latency

Throughput

Throughput

Response Time

Figure 4-23. Relationship of BLTR

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

168

In the synchronous I/O, a thread starts an I/O operation and immediately enters a

wait state until the I/O request has been completed. This type of processing consumes a

large number of resources.

The asynchronous nonblocking I/O pattern helps in saving the I/O cost where the

total cost of I/O is more than the cost of the processing.

The asynchronous nonblocking I/O pattern immediately returns from I/O calls. On

completion, an event is emitted, or a callback is executed. The interesting characteristic

of this pattern is the fact there is no blocking or waiting at the user level. The entire

operation is shifted to the kernel space. This allows the application to take advantage

of additional CPU time while the I/O operations happen in the background on the

kernel level. In other words, the services implementing nonblocking I/O can overlap the

I/O operations with additional CPU-bound operations or can dispatch additional I/O

operations in the meantime.

Use nonblocking I/O pattern for good performance under highly concurrent

I/O. Most business use cases in modern architecture are based on asynchronous

communication by using events; that is called event-driven architecture (explained in

Chapter 6).

 Stream Processing
Stream processing is a technique that lets consumers query continuous data streams

and detect conditions quickly in a near-real-time fashion. Detecting the condition varies

depending on the type of database and infrastructure you are using. Stream processing

allows applications to exploit a limited form of parallel processing more easily. An

Container A

Service A

Container B

Service B

I/O Request

I/O Request

I/O Request

I/O Request

Initiate I/O (processing) – thread 1

Initiate I/O (blocked) – thread 2

Initiate I/O (blocked) – thread 3

Initiate I/O (blocked) – thread 4

C
onnection P

ool

Blocking I/O

Blocking I/O

Container A

Service A

Container B

Service B

I/O Request

I/O Request

I/O Request

I/O Request

E
vent Lop

Delegate I/O

I/O Response

A
synch T

hreads

Non-Blocking I/O
Delegate I/O

Synchronous Message

Asynchronous Message

A

B

Figure 4-24. Synchronous and asynchronous blocking processing

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

169

application that supports stream processing can manage multiple computational units

without explicitly managing allocation, synchronization, or communication among

those units. The stream processing pattern simplifies parallel software and hardware by

restricting the parallel computation that can be performed.

For the incoming data, a series of operations is applied to each element in the

stream, and the operation can entail multiple tasks in the incoming series of data, which

can be performed in parallel or serial or both. This workflow is referred to as a stream

processing pipeline, which includes the generation of the data, the processing of the data,

and the delivery of the analyzed data to the consumer.

Stream processing takes on data via aggregation, analytics, transformations,

enrichment, and ingestion.

In the Figure 4-25 example, for each input data, the stream processing engine

operates in real time on data and provides output. The output is delivered to a streaming

analytics application and added to the output streams.

The stream processing pattern addresses many challenges in the modern

architecture of real-time analytics and event-driven applications.

• Stream processing can handle data volumes that are much larger

than the data processing systems.

• Stream processing easily models the continuous flow of data.

• Stream processing decentralizes and decouples the infrastructure.

Stream Processing Engine OutputInput Data

Figure 4-25. Stream processing

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

170

The following are the typical use cases of stream processing:

• Trading

• Smart patient care

• IoT sensors

• Social media events

• Geospatial data processing

You can use tools such as Apache Kafka, Apache Flink, Solace, AWS Kinesis, etc.

 Cloud Native Design Pattern for Microservices
The following are design patterns.

 Mediator
Partitioning a system into many objects generally enhances the reusability, but

proliferating interconnections between those objects tends to reduce it again.

Mediator is a behavioral design pattern and was written about in the Gang of Four

pattern book. This pattern is about reducing the dependencies between two objects.

This pattern restricts the direct communications between the objects and forces them to

collaborate via the mediator object.

The mediator object (which encapsulates all interconnections), as shown in

Figure 4-26, acts as the hub of communication; it is responsible for controlling and

coordinating the interconnections of its clients and promotes loose coupling by keeping

objects from referring to each other explicitly.

• Define an object (mediator) that encapsulates how a set of objects

interact. Mediator promotes loose coupling by keeping objects from

referring to each other explicitly, and it lets you vary their interaction

independently.

• Design an intermediary to decouple many peers.

• Promote many-to-many relationships between interacting peers to

full object status.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

171

Services are not coupled with one another directly. Instead, each service talks to the

mediator, which in turn knows and conducts the orchestration of others. The many-to- many

mapping between colleagues that would otherwise exist has been promoted to full object

status. This new abstraction provides a locus on indirection where additional leverage can be

hosted.

 Orchestration
Orchestration is like a conductor in a music concert. In a concert, an orchestrator takes a

composer’s musical sketch and turns it into a score of an orchestra, ensemble, or choral

group, assigning the instruments and voices according to the composer’s intentions.

Some say that orchestration is an anti-pattern. In the microservices world, based

on my experience across industries, there are various use cases where orchestration

is beneficial. Yes, orchestration is a single point of failure (SPOF) in an entire

implementation, but that doesn’t mean this is an anti-pattern.

Companies such as Netflix and Uber each created an orchestration tool. They are

called Conductor and Cadence, respectively. Conductor is used in a workflow that adds

Netflix idents to videos. (Idents are those four-second videos with the Netflix logo that

appear at the beginning and end of the show.) You can use BPMN tools for orchestration,

but with the caveat that you need to make sure of the context, use cases, etc., before

Container A

Service A

Container B

Service B

Container C

Service C

MediatorClient

Figure 4-26. Mediator pattern

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

172

you decide on an orchestration mechanism. Since there are many risks associated with

orchestrating microservices, it is prudent for you to limit your orchestration to places

that need it.

For example, we used orchestration for a microservices implementation in the

telecom industry. This use case is about laying optical fiber in an entire country, which

requires a flow of information across systems for an approval process, billing process,

order progression, calculation of charged coupled device (CCD), V21, and NH21

validation of optical fiber. The client had a legacy workflow system that was very old and

didn’t scale as required. To start with, the customer wants to replace the flow system

and later do digital decoupling of enterprise systems. What we did was we replace

the flow with the orchestrator, and we created microservices for each task to connect

synchronously with all the enterprise legacy applications.

 Strangler Pattern
The digital decoupling of monolithic applications from scratch is a challenge. It

consumes a lot of time and effort and involves a lot of risks. The main thing is to maintain

the business continuity. You cannot apply the big-bang approach when decoupling

legacy monolithic applications to microservices; it must be done incrementally, as

shown in Figure 4-27. Feature of a legacy system can be replaced with microservices

iteratively, but, finally, the new system with microservices eventually replaces all the

features of the old system. You need to “strangle” the old system iteratively and allow the

new system to evolve.

The fundamental strategy to adopt is event interception (i.e., the new microservices

decide which events or requests will be passed on to the applications), which can be

used to gradually move functionality to the strangler.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

173

The proxy routes these requests either to the legacy application or to the new services.

Existing features can be migrated to the new microservices gradually, and consumers can

continue using the same interface, unaware that any migration has taken place.

This pattern helps to minimize the risk from decoupling and iterate the process

smoothly. You can also set the percentage of users to an old or new application; once

new microservices stabilize, then you route all users to new microservices. Over the

time, as features are migrated to microservices, the monolithic legacy application is

eventually strangled and gradually decommissioned.

 Bulkhead Pattern
The bulkhead pattern is a type of application design that is tolerant of failure. It enforces

the principle of damage containment and provides a higher degree of resilience by

partitioning the system. In general, the objective of this pattern is to avoid faults in one

part of a system taking the entire system down.

The bulkhead pattern, as shown in Figure 4-28, gets its name from cargo ship design.

In a ship, a bulkhead is a dividing wall or barrier between other compartments. This

means that if a portion of a ship hits a rock or iceberg, that portion fills with water, and

the rest of the portion is unaffected. This prevents damage caused to the entire cargo

ship and avoids sinking. If there are no partitions in the ship, the entire ship will sink.

The bulkhead enforces a principle of damage containment.

Transform – Create a
parallel microservice

Co-exist – Incrementally
redirect the traffic from the
legacy to microservice

Eliminate –eliminate the legacy
module

A B

D E

C

F

Database

Application Layer

Monolithic Legacy
Application

A B

D E

C

F

Database

Application Layer

Monolithic Legacy
Application

Consumer

Consumer

Proxy

Service C

Database

A B

D E

C

F

Database

Application Layer

Monolithic Legacy
Application

Consumer

Proxy

Service C

DB

Service D

Service A

Service E

Service F

Service B

DB

DB

Figure 4-27. Strangulation steps

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

174

The bulkhead pattern is analogous to the bulkhead on a ship and employs the same

technique in cloud native architecture by separating your application into independent

microservices. A failure in one service does not propagate to other services.

Assume that your consumer sends requests to multiple services simultaneously;

during this time, your service is unable to respond in a timely manner due to various

reasons. At that point, the request from the consumer to other services is also affected.

Eventually, the consumer can no longer send requests to other services in your system.

In a microservices world, you cannot completely avoid dependencies across

microservices to provide final responses to the consumers; therefore, you need to

maintain intercommunication between microservices to complete the transaction.

To implement this pattern, you need to make sure that all your services work

independently of each other and that failure in one will not create a failure in another

service. The pattern also depends on what kind of faults you want to protect the system.

In Figure 4-29, service A and service B use service C, because both services depend

on common functionality that resides in service C. Suddenly, service A becomes

overloaded by multiple requests from the consumer; this will impact service C as service

A needs dependent functionality from service C. In this case, service A is bombarded

with requests to service C. In the meantime, the user sends a request to service B, so

service B needs to call service C to fulfill a request to their consumers. However, service

B is unable to get a response, or the response is very slow from service C, which will

impact their consumer. This is all caused by both service A and B depending on service

C and service C being unable to pool equally for both the services.

Figure 4-28. Bulkhead in cargo ship

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

175

To minimize this impact on service B, you need to adopt a bulkhead approach to

partition service C into an equal pool of requests to serve its consumers. You don’t need

a separate database for service C; both instances of service C in each partition can share

a database.

How does the bulkhead pattern work?

Figure 4-30 illustrates the bulkhead pattern with a connection example. This is a classic

example for all synchronous connections, for example, in a database. The services request

a connection to the database, and each head in this pattern has a single responsibility to

manage the respective tasks. One component failing will not impact the whole.

While implementing the bulkhead pattern, you need to analyze the impact of the

failure and how to minimize the damage caused by a failure. One more important thing

you need to consider is to not generalize this approach for all your services as each service

has its failures. Applying this pattern should be feasible both technically and financially.

Service A

Consumer

Service B

Service C
Consumer

Service B

Service A

Partition X

Partition Y

Service C
Pool Service C

Service C
Pool Service C

Figure 4-29. Bulkhead in microservices

Initialize Connection
Pool

Receive Connection
Request

Decrease Number of
Available Connection

Wait for Predefined
Time

Return Connection Return Exception

Is Connection Available

Yes

Connection Not Available

Available

Is connection Available Now

Still Not AvailableRequest for Connection

Bulkhead

Figure 4-30. Bulkhead pattern example

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

176

Usually, you can use the bulkhead pattern to fix the following problems:

• Whenever you want to scale a service independent of another service

• Fault-isolated components of varying risk or availability requirements

• Protecting the application from cascading failures

 Anti-corruption Pattern
The anti-corruption pattern, as shown in Figure 4-31, is a layer between the new

modernized microservices and the legacy monolithic application. This pattern is useful

in decoupling legacy applications into microservices.

In the journey of modernizing your monolithic application into a cloud native

application, the journey cannot be done in one release or two releases; it takes many

releases and takes months or years depending on the complexity of the system.

Therefore, your approach should be iterative to decouple monolithic systems into

microservices. In this case, you need to deploy both monolithic legacy applications and

microservices to production, so your new microservices can’t be executed silo without

interacting with the legacy monolithic application.

A monolithic application was built on old technologies and communication

protocols and may not be compatible with new technologies like event-driven

architecture or API consumption, etc. If your microservice application needs to

interact with a monolithic application, it cannot be done directly calling incompatible

communication protocols, so you need a middle layer to marshall and unmarshall

requests between the legacy monolithic and microservice applications and also between

microservices and other enterprise applications in the organization. This middle layer is

called an anti-corruption pattern.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

177

Here is the functionality of an anti-corruption layer:

• Façade for other system; hides the implementation of service C and

service D

• Establishing API contract signature

• Communication across systems with respective protocols like

HTTP(S), MQ, etc.

• Data model interface if you are interacting with a database directly

• Translating the semantics

You can use any tools like ESBs and custom components as an anti-corruption layer.

The following are some of the drawbacks of the anti-corruption layer pattern:

• This layer may add latency between the systems.

• Scaling of anti-corruption layer does not meet the requirements.

• The anti-corruption layer is a single point of failure and requires

additional care to make sure it has high availability.

 Cloud Native Runtime Pattern for Microservices
Here are the runtime patterns.

Service A

Service B

Service C

System A

System C

System B

Anti-Corruption Layer

Protocols
(https/MQ)

AP
I S

ig
na

tu
re

Data Model (if database
connection)

Figure 4-31. Anti-corruption pattern

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

178

 Fail Fast
This pattern states that if a service has a problem in serving a request, it should fail fast.

An annoying situation is to wait for a response. It is OK for the consumer to get a Not

Available or Not Found error rather than waiting for a minute for a response.

In a distributed cloud native architecture, you should know that every service will fail

and design your application for resiliency. You can’t design a robust microservice and

expect no failures at any point in time. You need to embrace failures.

Failures can happen for a variety of reasons like an error in your service, exception in

your service, another dependent service not being available, a network failure, etc.

The circuit breaker and bulkhead patterns help you to implement failures in your

services, as shown in Figure 4-32.

Write an algorithm to detect the health of the system-based metrics. Certain metrics

like the CPU usage of the containers will be evaluated for each scenario, and prediction

methods are implemented that try to forecast failures based on these metrics. If the

performance of the service is below the threshold, then you need to inject a boot request

to the respective service to restart.

There are various online prediction methods to track failures and errors, such

as symptom monitoring by using Bayesian predictors, co-occurrence predictors,

pattern-based predictors, rule-based predictors, time-series predictors, and system

model predictors. More details of failure management are covered in the “Microservices

Architecture and Design” Chapter 5.

Closed

Open

Half-Open

Success

Multiple Failures (open circuit)

Fast Failing

Failure

Try One Request

Success (close circuit)

Figure 4-32. Fail fast implementation

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

179

 Retry
The retry pattern enables a cloud native application to handle transient failures when

it tries to connect to services by transparently retrying a failed operation as mentioned

earlier. The retry pattern improves the stability of an application by enabling the service

consumer to handle anticipated, temporary failures of the service by retrying to invoke

the same service operation that previously failed.

The retry approach is not new; you have been using the retry mechanism in all

MQ- based applications. In MQs, you can configure several retries before sending to the

dead letter queue. As shown in Figure 4-33, you need to adopt a similar approach in a

cloud native application.

There are some considerations you need to consider when using this retry pattern.

• If you receive any indication that the fault is not transient or

unlikely for a normal service request to be successful if repeated, for

example, an authentication failure, then you should not use the retry

mechanism.

start

Connect to
Service

Connect
Ok?

Execute Service Catch
Exception

Max
attempts
reached?

Wait

end

abort

TIMEOUT

YES

NO

NO

YES

Figure 4-33. Flow diagram of retry mechanism

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

180

• If the specific fault is unusual, it might have been caused by

extraordinary circumstances such as a network packet lost in

transit. In this case, the client code should use the retry mechanism

immediately.

• If the fault is caused due to the unavailability of services, the service

consumer should wait for a suitable time before retrying the request.

Be careful here; you cannot retry a service infinitely.

• Set a retry count before you terminate or throw an error if the service

is not available.

 Sidecar
The sidecar pattern segregates the technical configuration from the functional

implementation of a microservice and deploys it in a container alongside the functional

microservices container. It is like a sidecar on a scooter, as shown in Figure 4-34.

Microservice
Functionality

Container

Side Car

Figure 4-34. Sidecar on a scooter

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

181

This pattern allows you to add several configuration details from the third party

without modifying the microservice. It is a single-node pattern made up of two

containers. One container for the application container contains the core business logic,

and another container is for the technical configuration details.

The objective of the sidecar container supplements and improves the application

container without the knowledge of the application container. The sidecar container is

co-scheduled onto the same machine through the container group, and it goes wherever

the main container goes.

The sidecar container contains peripheral details of the application container such

as platform abstraction, proxy to remote services, logging and configuration, etc.

There is no burden on the main microservices application logic container if you use

the sidecar pattern as follows:

• Sidecar is independent of the main application container in terms of

the environment, programming language, etc.

• It uses the same resources as the main microservice application.

• There is no latency when you separate the technical details to the

sidecar; it runs on the same node.

• It reduces the burden on the application logic.

• There’s no dependency on the platform code in the main logic.

The sidecar container uses a service mesh; refer to Chapter 5 for more details about

service meshes.

Avoid the use of a sidecar when your application uses synchronous activity and

your application code is small; it’s not worth separating the technical functionalities

from main components and also not suitable for microservices that undergo frequent

changes.

 Init Containers
Initializing logic for any program is common, if you remember how constructors work

in an object-oriented program. The constructor will be called whenever an object gets

initiated. The objective of the constructor is to prepare the object to execute the normal

business functions.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

182

Similarly, in a cloud native architecture, Kubernetes uses the same logic. There you

are using constructors, but in Kubernetes, you need to use init containers.

A Kubernetes pod, as shown in Figure 4-35, can have multiple containers running

microservices within it; similar multiple methods in a Java class also have one or more

init containers, like the constructors in a Java class, and the init containers run before

any application containers are started.

The init containers must complete successfully before the microservice containers

start because the main microservice containers have prerequisites before they start. The

prerequisites are setting up permissions on the file system, installing application seed

data, initializing tools and libraries, etc. These prerequisites cannot be part of the main

microservice containers; these prerequisites are part of the init containers.

The init containers are small and complete the lifecycle very fast. For the pod to

be successful, the init container must complete the initialization, or the entire pod will

restart. The bottom line is that the init containers are mandatory for any pod to run

successfully.

 Saga Pattern
The saga pattern is an important pattern in the microservices world to ensure the

consistency of the data in a distributed architecture without having a single atomicity,

consistency, isolation, and durability (ACID) transaction. This pattern commits multiple

compensatory transactions at different stages.

Init Containers

Container 1 Container 1

Service A

Service B

Service C

POD

1

2

Figure 4-35. Init container

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

183

The two-phase commit transaction handles the ACID properties when the commit of

the first transactions depends on the completion of a second. It is useful especially when

you have to update multiple entities at the same time, like confirming the credit card

transaction and crediting your account.

However, when you are working with a microservices transaction, then things get

more complicated. Each service has its database, and you can no longer leverage the

benefit of local two-phase commit to maintain the consistency of your whole system.

There are many scenarios such as the merchant payment, ecommerce application,

etc., where the saga pattern is useful in a distributed microservices environment.

The saga pattern is a sequence of local transactions where each transaction updates

data within a single service. The first transaction is initiated by a customer, and each

subsequent step is triggered by the completion of the previous one.

In the order process use case, the saga pattern implementation looks like Figure 4-36.

Each microservice depends on the other; there are sequences of steps of microservices.

Step 1: Order microservices (the order is created)

Step 2: Payment microservices (the payment is processed)

Step 3: Stock microservices (prepare order and inventory management)

Step 4: Shipping microservice (ship items by using the shipping address)

Figure 4-36. Sequence steps in order

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

184

To implement these use cases, you can choose from the following options:

• Event-driven system with choreography: Each microservice produces

and listens to other microservices and self-decides whether an action

needs to be taken or not.

• Orchestration: Central orchestration software or one microservice

acts as an orchestration to coordinate saga’s decision-making and

sequence of business logic.

Event Driven and Choreography

In the choreography approach, as shown in the Figure 4-37, the Order microservice initiates

a transaction and publishes an event, and payment services listen to these events and

complete their local transaction. The Payment microservice publishes events, and the Stock

microservices listens and consumes the payment event and executes its local transaction

and publishes a new event. The final Shipping microservice consumes the event and

executes the local transaction. The entire distributed transaction ends when the Shipping

microservice completes its local transaction and there is no further publishing of events.

Order

Payment

Stock

Shipping

1
2

34

Figure 4-37. Service interaction in choreography

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

185

In the order process transaction, if the customer cancels its order or stocks are not

available after a payment is processed, then you need to roll back the entire transaction

and process a payment return to the customer. In this case, you need to implement

another compensatory transaction.

In Figure 4-38, if an item is out of stock or a customer canceled an order, the Stock

microservice publishes an event, and the Payment microservice consumes an event and

processes a refund by compensating a transaction. The Payment microservice publishes

an event, the Order microservices consume and update, and the order is canceled.

Orchestrator-Based Saga Pattern

In this approach, either we use orchestration tools like Netflix Conductor/Apache

Airflow/Uber Cadence or we create a new microservice with the responsibility of

orchestrating each microservices. The saga pattern orchestrator communicates with

participated microservices in a synchronous style or point-to-point messaging style with

commands about an action.

Order

Payment

Stock

1

3

P
aym

ent-P
rocessed

Figure 4-38. Compensatory transaction

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

186

As shown in Figure 4-39, the orchestrator sends a request to each service.

 1. The orchestrator sends an Execute Payment to the Payment

microservice, and it replies after execution.

 2. The orchestrator sends Stock Manage to the Stock microservices

and it replies with Stock Managed.

 3. The orchestrator sends Process ship to customer to the Shipping

microservices and replies after shipped.

Rollback in the orchestration is easier. If the stock is not available or the customer

cancels the order, then the orchestrator sends a command message to each service to

compensate for the transaction.

Order

Payment

Stock

Shipping

O
rc
he

st
ra
to
r

Figure 4-39. Orchestration saga

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

187

Of the two, the chorography approach is the better and recommended approach to

implement over the orchestrator approach.

 Summary
Software architects must be familiar with software architecture patterns, as they are

powerful tools when designing a cloud native architecture. Architecture patterns provide

a proven solution to recurring problems for a given context.

Leveraging patterns gives architects a high-level structure of the cloud native

system and provides a grouping of design decisions that have been repeated and used

successfully. Using them reduces complexity by placing constraints on the design and

allows us to anticipate the qualities that the cloud native system will exhibit once it is

implemented.

In this chapter, you learned about some of cloud native patterns related to data,

microservices, and event-driven architecture. You can use these patterns at design time

and runtime.

The focus of the next chapter is how to architect and design cloud native elements

such as microservices, event-driven elements, serverless, and data.

Chapter 4 Cloud Native arChiteCture aNd desigN patterNs

PART II

Elements of Cloud Native
Architecture and Design

191
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_5

CHAPTER 5

Microservices
Architecture and Design
Microservices are an architectural style for developing a single application as a set of

domain services. Each service runs its process. The services communicate with clients

and other services through synchronous and asynchronous protocols.

The microservices are highly maintainable, testable, loosely coupled, independently

deployable, organized around business capabilities, and most important owned by a

small team. This enables the rapid, frequent, and reliable delivery of large, complex

applications. It also enables an organization to evolve its technology stack.

While much of the discussion about microservices has revolved around architectural

definition and characteristics, their value can be more commonly understood through

fairly simple business and organizational benefits: code can be updated more easily, and

new features or functionality can be added without touching the entire application. This

enables IT to develop and roll out new digital offerings more quickly and faster, making

microservices an obvious choice for a cloud native application.

This chapter provides insight into implementing a microservices architecture for

those who already have an idea of software architecture, design, and development.

There are plenty of books and whitepapers available on microservices, and I will not

duplicate that information; instead, I am covering microservices in the context of cloud

native and showing some real implementations and problems you may face during

implementation.

In this chapter, I will cover the following topics:

• Microservices architecture, the implementation and characteristics

• Decoupling

• How APIs are the de facto choice for microservices

• Hexagonal architecture and how to implement it

https://doi.org/10.1007/978-1-4842-7226-8_5#DOI

192

• Reactive architecture and how to implement reactive microservices

• Resilience and fault tolerance in microservices

• Misconception of microservices

• Using AI and ML in microservices

• Case studies with real-time examples

 Evolution of Microservices
Eric Evans wrote a book about domain-driven design (DDD) on how to modularize domains.

This helped us to think about architecture, design, and code from a domain/business

angle instead of just an IT angle. The concept of continuous integration showed us how

we can automate our development and delivery process and efficiently move code to the

production environment. We used to think that layering was the only approach for software

development, but Alistair Cockburn’s concept of hexagonal architecture changed the way we

think of software architecture. The evolution of infrastructure from VMs to LXC containers

to Docker containers helped us to better manage infrastructure. Martin Fowler and his team

helped us to deliver software snippets by using agility.

DDD, agility, containers, DevOps, cloud, the microservices evolved from this world.

No one invented microservices, but they emerged from the trends for solving business

problems. Martin Fowler and his team from ThoughtWorks, Netflix, and Amazon helped

us to build microservices. I started defining microservices in 2013, and I first developed a

gaming client with the help of the former ThoughtWorks team.

In this chapter, I will explain a few important details of microservices for cloud native

architecture and show some examples.

 What Is a Microservices Architecture?
A microservices architecture, as shown in Figure 5-1, is an approach to developing one

business application as a suite of domain services, with each domain service running

on its container and communicating with a lightweight mechanism in a synchronous

or asynchronous manner by using HTTP, GRPC, or messaging. These domain services

are developed around business capabilities using independently deployable but fully

automated deployment tools. Each domain service is decentralized in nature and

developed with the polylithic and polyglot principles in mind.

Chapter 5 MiCroserviCes arChiteCture and design

193

Microservices can be adopted for any size and any type of business application

irrespective of industry. Microservices are domain-based but have their unique

characteristics. When you are considering building microservices, you need to make sure

the following characteristics apply. Without these characteristics, whatever you are building

is not a microservice; instead, you are building just a small monolithic application.

 Characteristics of Microservices
The following are the characteristics of microservices.

 Organized Around Business Capabilities
Before you start designing any microservices application, identifying and defining each

microservice is important. What is the boundary of the microservice? What domain

should it contain? What are the events and commands? What is the user role? Where will

my microservices be deployed?

Customer Catalog

Payment Shipping Price

CartDiscount User

Order

Product

Wishlist

Item

Front End

Other Applica�ons

API/Messaging

API

Figure 5-1. Cluster of microservices

Chapter 5 MiCroserviCes arChiteCture and design

194

In a traditional application development, as shown in Figure 5-2, we designed

around the technological capabilities such as the user interface, databases, business

logic, data access objects, etc., but we never had any discussion about the domain or

contract or boundary.

In a microservices development, as shown in Figure 5-3, each team owns

the lifecycle of its services to production. Small teams act autonomously and are

decentralized to build and own the microservices in production. This is called an

UI
Specialist

Middleware
Specialist

Database
Specialist

Traditional Monolithic Application Siloed Development
Team

Figure 5-2. Traditional architecture

Chapter 5 MiCroserviCes arChiteCture and design

195

agile pod culture. The structure includes all the resource capabilities to own and covers

all the inception, construction, and operation-related microservices. This is the way that

Amazon, Netflix, and Google are organized.

When the architecture and capabilities are organized around domain business

functions, the dependencies between the components are loosely coupled. As long

as there is a contract between services, then each pod can run at its own speed. The

structure of the agile pod was influenced by Conway’s law.

Specifically, Melvin Conway mentioned the following in his book:

“Organizations which design systems are constrained to produce designs
which are copies of the communication structures of these organizations.”

The meaning of this law is that communication is the key across teams; the teams

belong to capabilities that require communication and collaboration to build an effective

software system. If we work in silos like in a traditional development, there is no visibility

across other teams. What they are doing, and how they are doing it? All these teams

APIs

Organized around capabilities Cross Functional Teams with PODS

Figure 5-3. Microservices architecture definition

Chapter 5 MiCroserviCes arChiteCture and design

196

depend on well-structured documentation that consumes a lot of time, and there is no

accountability and responsibility in teams. At the end, projects face too much technical

debt and too many quality issues.

To overcome this problem, modern-day architecture follows Conway’s law with a

pod culture. The agile pod is designed as per the software deliverables, involving varying

levels of roles such as the scrum master, developers, QA, architects, API experts, UI/UX

designers, etc. These teams are customizable and may change depending on the current

requirements. Each pod team owns an end-to-end microservices lifecycle, which helps

to fix the accountability and ownership in an enterprise and also eases communication

and optimizes the delivery time.

This means that business domains can drive development decisions; organizing

around capabilities means that each microservices team owns the function and data

completely.

You need to consider the following factors when you are organized around business

capabilities:

• Process: Execute the app as one or more stateless processes. This

means each microservices owns only one domain function and

solves only one problem.

• Codebase: Have one codebase tracked in revision control and many

deploys. This means each microservice uses separate repositories.

• Build, release, run: A codebase is transformed into a deploy through

build, release, and run stages. This means each microservices has its

own DevSecOps pipeline.

• Admin process: Run admin/management tasks as a one-off process;

this means each microservices has its administrative tasks.

• Config: Store the config in the environment; this means each

microservices has its containers, and it stores the config in a sidecar.

• Disposability: Maximize robustness with fast startup and graceful

shutdown, which means each microservices is independent and has

its lifecycle without affecting other services.

Chapter 5 MiCroserviCes arChiteCture and design

197

 Autonomous
Microservices are a self-contained unit of functionality with loosely coupled

dependencies across other services. The services are separate entities and deployed

in an isolated container environment. All communication between microservices

is through network calls by using HTTP, GRPC, and messaging protocols to enforce

separation between the services.

These microservices can change independently and are deployed by themselves

without requiring the consumer or other services to change, except for service contracts

between consumer and other services. To create more autonomy in your microservices,

you need to think about what services should be exposed and what they should have

hidden. If there is too much sharing, our consuming services become coupled to our

internal representations. This decreases your autonomy, as it requires additional

coordination with consumers when making changes.

When you are adopting autonomous and DevSecOps in microservices, you need to

consider the following design principles:

• Communication independence: Microservices constrains intraservice

communication with other microservices as well as how your

microservices communicate with external consumers. You must

use nonblocking for all interservices communications. HTTP or

the GRPC protocol is an example of blocking, and messaging is

an example of a nonblocking technology; in addition, you should

not consider using an external load balancer for interservice

communication. All external communication negotiates its

initial connection with API gateways for unified access control,

and all subsequent communication is based on point-to-point

communication with microservices and uses a round-robin load

balancer to achieve equal distribution of load across microservices.

• Agnostics: The agnostic in your design dictates what should be

provided by microservices. A pod team should be able to confer with

the consumers of their service to determine what the contract should

be and deploy it with no architecture configuration required and no

concept of where and how the services are run.

Chapter 5 MiCroserviCes arChiteCture and design

198

• Scalability: The scalability principle governs rules for services

configuration and implementation to ensure that the architecture is

decentralized as much as possible and to ensure linear scalability.

Microservices should not be aware of anything about other services’

existence and their scalability. This means that any coordination of

communication cannot be controlled above the service scope.

• Independence: All microservices are based on acting on incoming

data and then responding to that by publishing their data. All

services are equal; there is no master-slave concept. All services are

terminated by themselves and not influenced by any other services.

 Smart Endpoints and Dumb Pipes
This section discusses how your microservices effectively communicate with each other

and what mechanisms need to be used. Communication across microservices is not an

issue if you have only a few sets of microservices in your organization, but it becomes

more complex when the microservices implementation grows in your organization.

If you go back to the SOA and ESB age, you used to implement services with

BPEL or orchestration by central tool or process. The ESB is used to manage

orchestration mechanisms to connect with various services or heterogeneous systems

for intercommunication and managing logic. Now, with cloud native, there is no

central tool, and we are not supposed to use one. The microservices are autonomous,

decentralized, and distributed in nature; therefore, you need some kind of similar ESB

mechanism in the microservices.

The alternative approach for an ESB-like mechanism in the microservices world is

a smart endpoints and dumb pipes mechanism. The smart endpoints and dumb pipes

simplify communication across microservices. In microservices communication, we

use two types of protocols: synchronous and asynchronous with request/response and

publish/subscribe, respectively.

The communication mechanism, security, and governance are often custom-coded

into the microservice logic. Teams build in different languages and deploy to multiple

environments, and organization services are typically siloed with a decentralized

approach.

Chapter 5 MiCroserviCes arChiteCture and design

199

There are different approaches to solve communication complexity in microservices

in which the endpoints are applications and the pipes are what connect them and allow

them to communicate with each other. The following approaches are available:

• The first approach is to create custom code in the microservices

logic as smart endpoints and use HTTP or message queues as dumb

pipes. The drawback of this implementation is that you need to

manage the code, implementation, and collaboration across various

decentralized teams.

• The second approach is to create smart pipes like ESB. This is an anti-

pattern. Microservices solve this anti-pattern. We are not suggesting

that you implement this approach.

• The third approach is to externalize a communication mechanism

to the sidecar proxy. In this case, the microservices concentrate

only on the business implementation, letting the sidecar proxy

manage communication at the network level. The drawback of this

approach is you need to write custom configurations to manage

communication across services by using sidecars.

• The fourth approach is an extension of the third approach. Use a

service mesh and event mesh to communicate across services by

using a sidecar proxy.

• The fifth approach is to use orchestration logic or software to

simplify communication between microservices. Tools like Netflix

Conductor or Uber or Zeebe, etc., provide an implementation of the

orchestration mechanism. The drawback of these implementations is

the single point of failure, and orchestration becomes too complex as

microservices grow in an organization. This type of implementation

is good for use cases like long-running services that are not best

suited for choreography.

I suggest using the third and fourth approaches for implementing smart endpoints

and dumb pipes, but the fourth approach is a clean implementation. This helps you to

externalize the communication complexity and concentrate on the business logic.

Chapter 5 MiCroserviCes arChiteCture and design

200

What Is a Service Mesh?
In cloud native environment, a designing scalable and, independently deployable services

are very much required. Services have grown largely in an organization, which creates a

problem in the mesh of service-to-service remote procedure calls (RPCs) transported over

networks. A service mesh helps you to design streamlined communication.

Service meshes provide intent-based networking for microservices and describe

the desired behavior of the network topology. The service mesh pattern is used for

microservices deployments and uses a sidecar proxy to enable secure, fast, and reliable

service-to-service communications.

The service mesh provides the following:

• Provides a services-first network

• Removes the infrastructure concerns in the application code

• Provides declarative-based network behavior, node identity, and

traffic flow through policy

Smart Endpoints and Dumb Pipes with Service Meshes

Using this approach, microservices deployed in a cluster interact with each other

through a sidecar proxy, as shown in Figure 5-4. The sidecar intercepts both the

synchronous and asynchronous communications of each service and acts according to

the security and communication rules.

Kubernetes Cluster

Control Plane

Service A

Sidecar Proxy

Container

Service B

Sidecar Proxy

Service C

Sidecar Proxy

Container Container

Figure 5-4. Smart points and dumb pipes in a service mesh

Chapter 5 MiCroserviCes arChiteCture and design

201

You can configure communication policies such as a circuit breaker, load balancing,

service discovery, and security at the control plane level and abstract the governance

considerations behind microservices from the service code.

A service mesh is used to abstract the governance regardless of the technology you

are using to build microservices, and a service mesh is independent of the microservices

architecture.

What Is an Event Mesh?

An event mesh handles the asynchronous event-driven routing of information between

microservices. It intelligently routes events between the event brokers allowing the

cluster or brokers to appear as a single virtual event broker.

A cloud native modern enterprise embraces an event architecture, and every

application requires a robust central system to move events quickly, reliably, and

securely from publisher to subscriber.

An event mesh is an architectural layer that dynamically routes events from one

microservice to another irrespective of deployment location. The event mesh is a key

enabler for event-driven architecture. An event mesh is a dynamic infrastructure that

propagates events across disparate cloud platforms and performs protocol translation.

You can find more details in Chapter 6.

 Resilience in Microservices
Being resilient is the ability to provide the required capabilities in the face of adversity.

Specifically, it is the ability of a solution to absorb the impact of a problem in one

or more parts of services while continuing to provide an acceptable service level to

the business. A resilient application must thrive even when the unexpected happens;

in other words, it provides the required capabilities despite excessive stresses that can

cause disruptions. The residual defects in the software or hardware will eventually cause

the system to fail to correctly perform a required function or cause it to fail to meet one

or more quality attributes of microservices such as availability, security, performance,

reliability, usability, etc. An unknown or uncorrected security vulnerability will enable

an attacker to compromise the system.

Microservices resilience is more complex, and no microservice is 100 percent

resilient to all adverse events or conditions. Resiliency is always a matter of degrees.

Resiliency in microservices is typically not measurable on a single ordinal scale; in other

words, you cannot say service A is more resilient than service B.

Chapter 5 MiCroserviCes arChiteCture and design

202

Resilience is not one component activity within microservices. The resilience must

be composed of its parts. To exhibit resiliency, microservices must incorporate controls

that detect a vulnerability and respond appropriately to these disturbances.

The service should be intelligent enough to detect changing conditions and act

before it fails. Even if it fails, the service must self-heal by taking corrective action to

ensure the availability of services at all time. Services must learn from past failures to

predict eventualities and act to avoid cascading failures.

Resilience Capabilities

A resilient microservice protects its key capabilities from harm by using protective

resilience techniques to resist adverse events and conditions or actively detect these

adversaries, respond to adversaries, and recover from the harm they cause.

The following are the common adverse effects that require the resilient applications:

• Load-related failures

• Age-related failures

• Network failures

• Lost communications

• Input errors and defect-related failures

• Cyberattack

• Kinetic attack

• Nonavailability of dependency services

Figure 5-5 shows how these adverse effects impact a microservice’s capabilities over

some time. This scenario was captured for two microservices over a period of three days.

Chapter 5 MiCroserviCes arChiteCture and design

203

In the y-axis are microservices capabilities, and the x-axis is time. In the first few

hours, the microservice performed with normal operation, and there were no adverse

events. As time progressed and load increased, an adverse event occurred, and the

microservices are encountered a fault and degraded the operation. This degradation

exists for a certain time until response controls mitigate the faulty operation, and then

the microservice will be in the normal working condition.

How to Build Resilient Microservices?

How do you design for automatic self-healing and application resiliency? As mentioned,

with enough services and loads on the system, the microservices will always be in

a partial failure status. But how can a designer approach microservices resilience?

Approaching for resilience is not a one-time activity but is a continuous plan, culture,

and work during the entire lifecycle of microservices.

The following patterns help you to design resiliency in microservices:

Circuit Breaker Pattern

The circuit breaker pattern prevents further damage to a failing

system. The circuit breaker pattern detects the problem in the

downstream system from timeouts and errors returned from

the system. You can learn more details of the circuit breaker in

Chapter 4.

Resilience Scenario
M
ic
ro
se

rv
ic
es

 C
ap

ab
ili
tie

s

Time

Normal
Working Withstand Recovery

Time of Degradation
of service

Time of Affect

Le
ve

l o
f A

ffe
ct

Figure 5-5. Resilience scenario

Chapter 5 MiCroserviCes arChiteCture and design

204

Bulkhead Pattern

When designing your microservices application, sometimes you

overload specific services within the application, and too much

overloading leads to degrading of the service performance. This

pattern isolates services and consumers via partitions. Learn more

in Chapter 4.

Stateless Services

Use stateless services for designing resilient microservices.

Stateless services depend on inputs and don’t hold data; any

copy of this service serves similar activity as the original services.

These services spin off instantly depending on the condition of

services such as CPU, load, etc. The load balancer can distribute

load across microservice instances to improve resiliency and

availability, and the load balancer can route based on the

availability of instances.

Retry

Use the Retry option in your services; sometimes failures are

short-lived for a few milliseconds, so retrying a few times may help

in getting a response from the services. You can find more details

in Chapter 4.

Fail Fast

Slow failure responses are the worst; it is better to have no

response than a slow response. Implement self-restart by using

the monitoring data. Use the container restart principle to

autorestart your services. Learn more about how to restart a

service in Chapter 3. Verify your service integration points early

for downstream applications and other resources and send a

validation request before processing.

Chapter 5 MiCroserviCes arChiteCture and design

205

Timeout

Use this pattern to design resilient microservices. When a

consumer requests your services, there could be many reasons

that your services might not respond or slow response. If there are

too many requests during this period of slowness, this can cause

a cascading impact, bringing the entire system down. Configuring

connections and read timeouts at the client helps to release

resources to the pool in case the microservices or database is

taking more time than usual.

Throttling

Use this pattern for resilient microservices. The throttling or

rate-limiting technique limits the number of incoming requests

to be processed within a given time window. This approach helps

to control the throughput meeting the SLAs and conserves the

resource utilization by accepting only as many requests as it can

handle.

There are various tools and software available to manage resiliency in microservices.

Hystrix is a library designed by Netflix to isolate points of access to remote systems,

services, and third-party libraries; stop cascading failures; and enable resilience in a

complex distributed system where failures are inevitable.

Resilience4J was designed for functional programming; use this tool for managing

resilience.

 Elasticity in Microservices
Microservices and containers in a production environment need the adaptation of

processes to enable elasticity. In a cloud native architecture, the microservices might

receive unpredictable workloads and need to respond quickly to match the load and

guarantee the quality objectives.

One of the most important characteristics of the cloud is elasticity. This is the degree

to which a system can adapt to changes in demand by provisioning and releasing

resources autonomously by autoscaling.

Chapter 5 MiCroserviCes arChiteCture and design

206

The following are the best practices you need to adopt for elasticity in microservices:

• Microservices must be stateless, and the states of an application must

be stored outside of a container. The stateful application requires

more care because a stateful data store will need to shard, replicate,

and scale its state across the members in the cluster and know how to

rebalance itself during scaling events.

• To keep costs to a minimum and meet quality objectives with agreed-

upon service level objectives (SLOs), you need to configure the

Kubernetes cluster to alter the required containers based on demand.

• For an event-driven architecture, each container instance is attached

as a listener to the same request queue where the request arrived for

processing. Use predictive approaches to set the arrival rate of the

requests so that provisioning and releasing of resources take place

beforehand. Here you need to add queues to the monitoring; you can

configure the scale-up and down of resources based on the load on

the queues.

Figure 5-6 illustrates how elasticity can be achieved in containerized microservices.

I am using a payment processing example to show the elasticity. This example was

captured during the first week of a month.

Chapter 5 MiCroserviCes arChiteCture and design

207

More requests are always initiated during the first week of a month because the

customer needs to use services for loan payment, payment of utility bills, etc. To meet

the SLOs and quality attributes of microservices, the containers need to scale up and

down based on the CPU load. When a spike occurs in payment services, the autoscaling

option triggers and creates more instances of containers and scales down as CPU load

decreases.

 Distributed State
The state needs to exist within a bounded context of microservices. This is an ideal

situation in a cloud native architecture.

In a distributed state across many microservices, it is difficult to say data is complete;

only messages are being passed back and forth to create the whole transaction.

Let’s see an example of collateral management in the capital market, as shown

in Figure 5-7. It shows three bounded context microservices: Exposure Validation &

Matching, Exposure Lifecycle, and Exposure Settlement. (Exposure is the entry point

into the collateralization functions of multiple parties.)

Gradual Scale
Down of Payment

Processing

Auto scaled Payment
Processing in a

container

Payment
Transfer

Instructions

Payment Processing
Container

Sudden Spike in CPU
Load during 1st week of a

month

HPA – Scale
up

Load variation

Payment Processing
return to normal

position

Dashboard
View

HPA – Scale down

1 2

3

4

5

67

8

MS1Payment
Processing

MS1Payment
Processing

MS1Payment
Processing

MS1Payment
Processing

MS1Payment
Processing

MS1Payment
Processing

MS1Payment
Processing

Figure 5-6. Elasticity in payment processing

Chapter 5 MiCroserviCes arChiteCture and design

208

All three microservices have different responsibilities. The responsibility of the

Exposure Validation & Matching microservice is to validate all the business fields

received from both APIs and event messaging, and it needs to match against other party

exposures. Exposure Lifecycle’s purpose is to manage all the exposures received from

both APIs and event messages until the full settlements, and the Exposure Settlement

microservice settles the collateral to other parties.

In the classic SOA with ESB architecture, you might see the exposure is the common

item and attempt to make it shared among these three microservices. This leads to

functional bottlenecks. In fact, with these three examples of microservices, the only shared

fields are the exposure business function. All the fields are unique to each microservice.

The state change of these microservices may be the result of many different inputs,

and the inputs may come from other microservices with very low latency. The speed

and scale at which the state is changing may make managing this with some sort of

synchronous API call seem overwhelming. Changes to the state may be relevant and not

just to the result. Synchronous API endpoints are not well suited for this type of change.

To manage various collateral types that are coming from different exposure services,

the collateral management application is to keep track of changes in collateral in an

ordered way, without having to lock or pause any other services. Everything must be

asynchronous. Given these constraints, a service may need to retrieve the state as a whole.

How to Handle Distributed State with Asynchronous microservices

Nondistributed state is not an issue; it has one centralized, canonical representation

of state. The state is accessible; you can manage the state without much complication.

Distributed state is not easy because it has many dark corners, making it tricky.

Exposure
Validation &

Matching

Container Container Container

Exposure
Lifecycle

Exposure
SettlementKafka Cluster

Figure 5-7. State management

Chapter 5 MiCroserviCes arChiteCture and design

209

In a distributed state, nothing is complete; only messages are passed between the

services. These messages arrive out of order, are partially delayed, etc. You must consider

failures when you are working with distributed systems.

As I explained in Figure 5-7, state change may be the result of many different inputs,

and inputs might be user activity or other services. For either of these inputs, users

are making relatively slow state changes or in a few service processes making high-

frequency changes, so the state will be constantly moving. The speed and scale at which

the state is changing makes managing this with API calls seem overwhelming. Changes

to the state may be relevant not just to the end result but also along the way. Therefore,

the synchronous API endpoints are not well suited to this type of change observation.

To meet these kinds of rapid state changes from various services, your architecture

must be able to keep track of changes in an ordered way, without any pausing of services.

Everything must be asynchronous.

Distributed state is vital to the management of various services. Anything backing

the state should not be ephemeral for any outages, and the state should be able to be

restored from the last known good position.

To solve the state management, the asynchronous APIs such as message queues or

Kafka streams provide several capabilities for maintaining the global state of distributed

microservices. In the collateral project, we used Kafka streams to build shared-state

microservices that provide a fault-tolerant, highly available single source of truth about

the state in our system.

As shown in Figure 5-8, exposure validation, match, and lifecycle services were built

with Kafka stream instances with a source, processor with a persistent key-value store,

and sink topic.

Container Containrer

Container

Exposure
Lifecycle

Exposure
Settlement

Kafka Cluster
Exposure

Validation &
Matching

Figure 5-8. Distributed state with Kafka streams

Chapter 5 MiCroserviCes arChiteCture and design

210

In this example, an external system produces a message to the source topic in

Kafka. Exposure microservices process the exposure messages using Kafka streams and

writes calculated exposures to sink a topic in Kafka, and the consumer consumes new

exposure messages. In this way, you can handle a seamlessly distributed state across

microservices.

The second approach, as shown in Figure 5-9, is to use a distributed key-value pair

caching technique such as Redis, Hezalcast, GemFire, etc., to handle distributed state

across microservices.

In this example, the system sends a message in MQ, and exposure services consume

and process and again publish the messages to exposure settlement and databases. The

caching software stores session across microservices. The drawback of this approach is

latency and single point of failure of caching software.

 Independently Deployable
Microservices are a small unit of work, with the principles of the model related to the

domain, bounded context, and polylithic and polyglot principles. Each microservice

serves a single business responsibility and is loosely coupled with high cohesion and low

coupling, which communicates across by using the HTTP, GRPC, and event messaging

protocol only.

Container Container

Container

Exposure
Lifecycle

Exposure
Settlement

Exposure
Validation &

Matching

Distributed Caching

Point-to-Point

Pub/sub

Figure 5-9. Distributed state with caching

Chapter 5 MiCroserviCes arChiteCture and design

211

Microservices are owned by separate pod teams with their branching strategy

and have less dependency on other microservices. These services to be deployed

independently in a container and Kubernetes cluster. This type of deployment allows

enterprises to test, modify, and add new business functionality independently without

affecting other services in an application and allows them to scale up and scale down

based on the load on a server, which helps to optimize the infrastructure cost.

 Decentralization
You need to follow the decentralization principle for effective microservices. The main

problem of centralization is to enforce central ideas, centralized technologies, etc.,

across the organization. My experience shows this approach is narrowing the thinking

of team and innovation. Not every problem is a nail, and not every solution is a hammer.

We need the right talent and the right software for the job.

Decentralization in microservices means the decentralization of governance, data,

culture, team, and technology.

Decentralized Governance

Governance is a process to establish policies, standards, best practices, and guidelines

to enable enterprise agility in an enterprise. In a traditional development methodology,

we used to have a centralized governance team or centralized architecture board, etc.,

to make an entire decision on behalf of every unit in an organization irrespective of the

team. This limited the speed, scale, innovation, automation, etc., and increased the cost

of IT applications. Essentially, it did not support modern-day business.

In a cloud native, modern-day architecture, you need to encourage innovation and a

culture of automation, scale, and speed. This can be possible only when you allow your

team to work independently. The drawbacks of the decentralization approach are lack of

control and duplication of development efforts, especially in midsize and large enterprises.

To succeed in the decentralization approach, you need to define effective

collaboration, transparency, and well-defined standards, structures, and policies. Most

important, your organization should embrace a culture of agility and automation.

At Netflix, each team collaborates by sharing useful and tested code as libraries to

encourage other teams to use them to solve similar problems and be open to picking up

different approaches or modifying existing approaches. Similar to the Netflix model, you

need to embrace a good model in your organization or develop a hybrid of your own.

Chapter 5 MiCroserviCes arChiteCture and design

212

Decentralized Data

In cloud native architecture, one of the microservice philosophies is the decentralization

of data. A traditional monolithic approach uses a monolith database to store an entire

application’s transactional data in one RDBMS. In a microservice architecture, the best

approach is to adopt a polyglot persistence architecture as defined by Martin Fowler’s

original microservices paper in 2014.

Correctly organizing data in the decentralization approach should be based on

bounded context and API design. You are designing an API by providing a contract

between your microservice and consumer, so in the database almost all the fields are

related to your API contract, including operational fields and event storming events and

related fields in the microservices. The design approach is to collect all API contract

fields and events and group them in a related table and go through multiple iterations

before finalizing the model.

The following are the main goals of a polyglot architecture:

• Remove scaling limits due to data access

• Avoid SQL joins

• Easier modeling of multipathing for performance

• Not restricted to one type of database; can use specific databases for

microservices such as NoSQL or SQL

• Less potential for data model changes to have an application-wide

microservices impact

• Simplified detection and correction of errors in production

One of the side effects of the decentralized approach is the ability to handle eventual

consistency, synchronization of data, and latency.

 Automation
Releasing microservices and new features to production rapidly and reliably with a

single click is important for successfully managing microservice applications. You can

achieve automation for the reliable deployment of microservices to production by

using the principles of continuous integration (CI) and continuous delivery (CD). The

fundamental building block of CI and CD is configuring a delivery pipeline with various

tools, starting from the developer box to the production box.

Chapter 5 MiCroserviCes arChiteCture and design

213

In the delivery pipeline, an orchestrator like Jenkins configures various tools to run

respective jobs starting from code check-in, code review, testing, security, performance,

infrastructure as a code, and continuous monitoring. There are various good open

source tools and cloud native PaaS services available to automate the entire pipeline.

Microservices are modular and intended to perform a single function. Modular

software fits very well within the DevSecOps culture; thus, incremental code changes are

easily pushed to production. Containerized microservices enable a quicker deployment,

and services are immediately operational in production. Security in the pipeline for

static code analysis (SAST) and dynamic code analysis (DAST) and container security

both check for vulnerability at the early stage of the software. Automated operations

and monitoring enhance the microservice approach to create an adaptable and

scalable environment where deployment performs rapidly. Infrastructure as code

automates the entire infrastructure, and containerization makes life easy for the entire

development and infrastructure team, which reduces the cost and increases the quality

of microservices.

By combining DevOps and microservices into development, testing will increase the

efficiency of teams and reduce the cost. You can learn more about DevSecOps and get

other automation details in Chapter 14.

 Containerization
A container is a standard unit of software that packages up code and all its dependencies

so the application runs quickly and reliably from one computing environment to

another. It is a lightweight, stand-alone, executable package of software that includes

everything needed to run microservices. Containers are built once and can be run on

any infrastructure, meaning on-premises or with any cloud provider.

A container enables the fine-grained execution of microservices and provides

isolation and a lightweight size. Virtualization is big and takes a long time to boot and

run. Microservices are elastic and tend to experience highly unreliable workloads, and

virtualization takes more time than a container takes to react to a spike. During this time,

you may lose lots of transactions.

Containers enable continuous integration by streamlining the creation of new

application environments and continuous delivery by allowing containers to run

unmodified across environments.

Chapter 5 MiCroserviCes arChiteCture and design

214

The following are the benefits of a container:

• The developer concentrates on developing an application and leaves

the rest to automation and the container.

• Containers can run on any infrastructure, such as private, hybrid, or

public cloud.

• Containers increase resource usage and control infrastructure spend.

• Containers enable standardization practices and patterns.

• Containers offer a faster time to market for new services.

• Containers reduce deployment failures.

A microservices architecture does not dictate the use of containers, but using

containers for a microservices architecture is better for implementing your applications.

Container environments accommodate colocated application components in the same

operating system instance and will help to achieve better service utilization rates. You

can find more about container architecture in Chapter 16.

 Design for Failure
Whatever system you use and however you design a system, you cannot avoid failure.

Systems are bound to fail due to various reasons like network failure, server failure,

catastrophic failure, natural disaster, a sudden spike in load, etc. An application needs

to be designed so that it can tolerate the failure of services. If microservices fail, then you

need to respond gracefully to the consumer.

Since microservices fail at any point in time, you need to design microservices to

be able to detect the failure quickly and self-heal the failure. Microservices put a lot of

emphasis on integrated real-time monitoring of application, infrastructure, and security

and semantic monitoring. They need an early warning system so that you can use

predictive analysis to heal the microservices

How Do You Design a Microservice for Failure and Stability?

The first design consideration is to use the circuit breaker pattern to avoid the effect.

As I mentioned in Chapter 4, the circuit breaker pattern is commonly used to ensure

that when there is a design failure, the microservice does not adversely affect other

Chapter 5 MiCroserviCes arChiteCture and design

215

microservices in a system. This pattern works similarly to the electrical system of your

home. It protects you from any adverse failure or power outage of your complex.

Calls to microservices are wrapped in a circuit breaker object. When your microservice

fails, the circuit breaker pattern allows subsequent calls to the service until a particular

threshold of failed attempts is reached. At this point, the circuit breaker trips, and any

further calls will be short-circuited and will not result in calls to the failed service.

The second design consideration is to use the bulkhead design pattern to avoid

the effect. As we mentioned in Chapter 4, the bulkhead pattern is like a ship’s hull

that is composed of individual watertight areas. The reason for this is if one bulkhead

fails, it does not impact the whole ship. You need to apply this kind of partition in

your microservices design. Assume that your consumer sends requests to multiple

services simultaneously. During this time your service is unable to respond in a timely

manner due to various reasons; at that point requests from the consumer to other

services are also affected. Eventually, the consumer can no longer send requests to

other services. In a microservices world, you cannot completely avoid a dependency

across microservices to provide final responses to the consumers; therefore, you need to

maintain intercommunication between microservices. You need to make sure you follow

independently deployable principles to avoid cascading failure.

The third design approach is integrated real-time monitoring to monitor the

real-time health of your microservices. You need to configure all your services with

event-driven architecture to send monitoring and traces of your services in real time to

monitoring tools. This helps you with early detection to avoid failure. More details of

integrated monitoring can be found in Chapter 19.

The fourth design approach is to apply machine learning predictive analysis to the

health of the system. There are widely different failure prediction techniques available.

The prediction algorithm can be created and trained based on the event log of a

microservices, time-series data like CPU, etc. For errors captured in the event log, you

can use pattern-recognition tools that run over log files to detect faulty behavior based

on certain rules. Rule-based predictors derive failure in log files by gathering rules that

indicate failure. The symptom monitoring method will detect symptoms of failure in the

microservices based on several metrics collected in integrated monitoring. System model

predictors use the CPU utilization and memory usage metrics to calculate the failure of a

system. Once you gather the prediction, then you send signals to the container by using

the container’s lifecycle conformance principle and infrastructure as code to spin up a

new container image of microservices and gracefully shut down the old.

Chapter 5 MiCroserviCes arChiteCture and design

216

The fifth design approach is to use failure as a service (FaaS). Failures are severe for

any services, and customers cannot wait for you to fix the problem. The top ten digital

trends in digital transformation believe the failure service influences how the software

will be developed and tested. Use failure testing in your system; it is an approach that

allows your team to discover weak spots that can lead to failure. The probability of

failure parameter plays a major role in understanding the health of an application.

Cloud service outages still take place. According to Netflix, there are many unknown real

production scenarios in which a failure recovery might not work. Amazon has leveraged

“game-day” exercises that inject real failures like EC2 failures, power outages, etc. There

are many ways to test failures and failure as a service, such as the shift-left approach and

chaos monkey. How failure services are tested will be explained in Chapter 12.

 Living Continuous Design
In traditional development, the architecture and design could be planned at the start

of the project or product. Once the team defined the architecture and design, the

development should follow it, and there was very little room to change the defined plan.

Now we have a rapidly changing environment to support unbelievable disruption in

business and rapid changes in customer expectations. The team might not have any idea

what next change comes and how your end customer interacts with your application.

In a similar way, the technology is changing rapidly, and a lot of greater innovation is

happening. Whatever the technology you use today to do development may become

obsolete in the next two years.

You should always adopt a design mechanism that can manage change. The primary

objective of a living continuous design is to enable your architects and engineers to have

continual and incremental change support embedded in the application. The living

design also ensures that your system is not fragile.

The living continuous design supports nonbreaking changes to ensure that we can

adopt continuous design and derive various services. One of the evolutions of a living

continuous design is the microservices architecture style. Microservices demonstrate a

living design need.

Two features of living continuous designs are modularity and coupling. A living

continuous design supports modularity, and microservices are decoupled from each

other. Whenever there is a change in one microservice, it will not impact any other

service in the system.

Chapter 5 MiCroserviCes arChiteCture and design

217

To get the benefits of a living continuous design, you must test the architecture and

design. This test is done by adopting a fitness evaluation and identifying challenges and

risks at the early stage. There are various fitness functions and methodologies that can be

used to identify the fit of the architecture. How and what methodology and functions are

used for fitness tests will be explained in Chapter 12.

 Self-Healing
In an enterprise, there are several microservices that evolve daily. The management

of these microservices becomes complex, which leads to a chance of failure that is

very high even though you designed your microservices with the principles of failure

and resilience. Therefore, you need to design your microservices to be self-healing at

runtime. In normal circumstances, you can configure the services to send an alert if a

service misbehaves so you can examine these alerts and fix the anomalies. You need to

bring down the service, fix it, and deploy it, and this is a manual operation. What if your

organization has more microservices across various systems? Is it possible to do that

manually? If yes, how much effort and resources are required? Self-healing of services is

one of the options to automate the failure process.

A self-healing microservices architecture, as shown in Figure 5-10, has the ability

to continuously monitor the integrated operational environment, including the

application, infrastructure, and security; detect and observe anomalous behavior; and

provide a self-healing and self-tuning mechanism to adapt to sudden changes in its

operational environment dynamically at runtime.

Chapter 5 MiCroserviCes arChiteCture and design

218

Metrics are collected continuously from the application, infrastructure, and

security. The metrics are for cluster nodes, services, and containers and include CPU

usage, memory, disk reads and writes, and network reads and writes. These metrics are

streamed in real time into the metrics database. After you capture the service metrics,

you need to run simple anomaly detection services continuously on the collected

metrics and enable the training of a model with the collected metrics with simple rules.

The anomaly detection service provides the continuous detection of anomalous

behavior and prediction about the microservice’s performance based on the metrics

collection. The identification of continuous detection is based on the parameters of

Kubernetes Cluster

Control Plane

Service A

Side Car Proxy

Container

Service B

Side Car Proxy

Container

Web
APIs, MQ

Applications
Database …

Application
Container
Network
Switch

Firewall..

Infrastructure
End Points

Infra Security
IAM

Data Security
Application
Security..

Security

Monitoring Tools Monitoring Tools Monitoring Tools

Metrics

Alert Manager
Service

Anomaly
detection service

Visualization
Service

NGINX

S
el

f H
ea

l S
er

vi
ce

N
G

IN
X

Figure 5-10. Self-healing ability in microservices

Chapter 5 MiCroserviCes arChiteCture and design

219

CPU usage, memory, disk, and network reads and writes against the normal behavior

parameters of the microservice and health scores of different services. The scores are

weighted by using a linear equation or a time decay function. Based on the score, a

microservice is bucketed into three zones such as red, yellow, and green.

The scores are calculated based on the metrics you collected. Here are some

examples:

• CPU utilization = 1

• Memory utilization = 1

• Error logging = 1

• Response time = 1

• Disk reads and writes = 1

• Network reads and writes = 1

Use the following formula to calculate the score of metrics:

• Score of each metrics = (current value – normal behavioral value)/

(critical value -normal behavioral value)

For CPU utilization, assume normal behavioral value is 0.5 and a critical value is 1.5.

• Score of CPU Utilization = (1-0.5)/(1.5-0.5) = 0.5/1= 0.5.

Here you can say your microservices are running normally.

Note the critical and normal behavioral values will be different for every metric
and every application.

The microservices score will be calculated as the summation of all the metrics

scores:

• Microservice score = Σpi*wi / Σwi

If the microservice score is less than the critical score, then there is no need to take

any action; if the score is above the critical level, take an action.

All this automated calculation is part of the anomaly detection service that calculates

automatically in real time and sends a notification to the self-healing service to execute

the action.

Chapter 5 MiCroserviCes arChiteCture and design

220

The self-healing service executes the outcome of the anomaly detection service

algorithm by injecting the container principles detailed in Chapter 3. If the algorithm

score is bad, it deletes its entry from the NGINX upstream list and kills the container

by using the lifecycle conformance principle’s SIGTERM and SIGKILL commands of the

container. If the score is average, then reduce the load on NGINX for the respective

microservices; if the score is good, then do not take any action.

 Hexagonal Architecture
The hexagonal architecture, or ports and adapters architecture, is an architectural

pattern used in software design. It creates loosely coupled application components that

can be easily connected to their software environments using ports and adapters. This

makes components exchangeable at any level and facilitates test automation.

The main idea of a hexagonal architecture is to provide interaction to the outside

world at the edges of your design. The domain logic should not depend on what you

expose as a REST or MQ, and your microservices should not depend on where you get

data, whether through a database or NoSQL etc.

In a traditional layered architecture, you have a user interface, business logic or

backend application layer, and database layer. All these layers are tightly coupled to

each other. If you want to replace a database with another, then you need to change

the data access layer within the application logic to accommodate the changes such as

connections, SQL queries, etc. The hexagonal architecture addresses these concerns of

tight coupling across various layers.

The concept of hexagonal architecture, as shown in Figure 5-11, is to create domain

microservices without a UI or a database and run a test suite on domain services

and later link the UI and services by using the adapters. It divides microservices into

several loosely coupled and replaceable components, such as domain logic, adapters,

platforms and infrastructure, test services, external systems, platform services, etc. Each

component is connected with the other through a port and through communication

with other applications or UIs or platforms through this ports.

This architecture allows you to isolate the core domain logic of microservices from

the outside. This will help to change the data source details and API protocol details

without a significant impact on code domain logic. The main advantage is to provide

a clear boundary for testing. If data source changes, test only that part, entire your not

microservice.

Chapter 5 MiCroserviCes arChiteCture and design

221

IaaS, CaaS and PaaS
API Gateway

HTTP Adapters

Domain Logic

grpc Adapter

Kafka Adapters Other Adapter

DB Adapters NoSQL Adapter

ERP Adapters Other Adapter

M
onitoring
A

dapter

Service Contract

MQ Broker

Existing System, SaaS services …

Service Discovery
Configuration as a Service

Distributed Cashing

Integrated Monitoring

Audit

Circuit Breaker

Platform
Services

Unit Testing
Assembly Testing

Functional Testing

Non-Functional Testing
Security Testing

Acceptance Testing

Testing
Service

Figure 5-11. Hexagonal architecture

In Figure 5-11, the four layers to define business logic are as follows:

• Infrastructure layer where your microservices are deployed

• Platform layer where your API gateway, Kafka cluster, MQ broker, etc. are

• Adapter layer where your adapters are placed, which connects with

external systems and your core domain logic of microservices

• Domain logic layer, where you construct the domain business

functionality

With these four layers, you can define the business logic without any knowledge of

where the data is kept and how the business logic is triggered and how consumers interact.

There are DB adapters for different storage implementations such as the RDBMS

database or NoSQL adapter for document or key-value databases. A data source

implementation method is defined in the adapters and stores the implementation of

fetching and creating the data.

The communication adapters are input for your microservices. The communication

adapters such as HTTP, GRPC, MQ, or Kafka, etc., include transport information

from the consumers or requestors. All the interaction logic is constructed in the

communication adapters and separated from the core domain business logic.

Chapter 5 MiCroserviCes arChiteCture and design

222

For some reason, you want to swap the database from existing RDBMSs like MySQL

to a NoSQL like MongoDB and then without any trouble replace the MySQL adapter with

the MongoDB adapter in very little time.

A new consumer wants to get some details from your microservices, but they

listen only with MQ messages; you can bind the MQ adapter with your microservices

and provide a queue name to the consumer. Therefore, the consumer can configure

their system with a new queue name. That’s it; they start receiving the details from

microservices.

The hexagonal architecture simplifies the testing services. For seniors such as DB

replacement and new consumers with an MQ adapter, the scope of the testing is only to

test the adapters, not the core business logic, because you have not touched the code. In

this case, just run the few regression test cases to complete the testing cycles.

Let’s figure out how the normal microservices architecture, as shown in Figure 5-12,

differs from a hexagonal microservices architecture.

In the normal way, as shown in Figure 5-12, usually in the microservices

architecture, you have domain logic created using any programming languages such

as Spring Boot, Golang, .NET, Scala, etc., and it exposes the REST API contract between

consumers and domain logic. Here the consumers can be a mobile application or web

application or third-party application. The domain logic interacts with the repository

to store or retrieve information from databases like NoSQL or RDBMS, etc., based on

the consumer request by using HTTP methods like PUT, POST, GET, TRACE, etc. Here

all service contract controllers and data logic are coupled in a single microservice with

multiple subcomponents in it.

Container

Service A

A
P

I M
anagem

ent
S

er
vi

ce

C
on

tr
ac

t

Domain Logic

D
ata A

ccess
O

bject

Figure 5-12. Normal microservices architecture

Chapter 5 MiCroserviCes arChiteCture and design

223

If you want to replace or modify the database, then you need to change the entire

microservice and carry out entire regression testing of your microservices and for the

new consumer with queues.

The following are the drawbacks of hexagonal architectures:

• Increases in the latency

• Additional complexities to manage adapters

 Enterprise Microservices Examples
In previous chapters, you learned about certain patterns, and so far in this chapter, I have

explained microservices, characteristics of microservices, etc. These topics cover how to

solve various microservices problems. In the next few sections, I will cover how to wire

all this together to explain the real-time microservices implementations. These are the

examples from various industries, and I have been personally involved in architecture,

design, and implementation of the real-life examples.

 Case Study: Trade Finance
A trade finance project was implemented for Bank A. Bank A was doing millions

of transactions with a value in the billions. They want a seamless and cloud native

architecture for their new trade finance module. We proposed microservices and event-

driven architecture and deployed them on the Azure cloud platform.

The following sections provide the details of the functional components and

architecture components.

What Is Trade Finance?

Trade finance is the financing of international trade flows. It exists to mitigate or reduce

the risk involved in an international trade transaction. In trade finance, an exporter

requires payment for their goods and services, and an importer wants to make sure they

are paying for good quality and for a specific quantity.

Chapter 5 MiCroserviCes arChiteCture and design

224

Trade Finance Ecosystem

As shown in Figure 5-13, the seller or exporter can require the purchaser or importer

to prepay for the goods shipped, and the purchaser may want to reduce the risk by

requiring the seller to document the goods that have been shipped. Banks may assist by

providing various forms of support. The importer’s bank may provide a letter of credit

to the exporter, and the exporter’s bank may provide a payment upon presentation of

certain documents, such as a bill of lading. The exporter’s bank may make a loan by

advancing funds to the exporter based on the export contract.

Trade Finance Functional Architecture

As shown in Figure 5-14, the following are the functional components required to build a

trade finance application for any commercial bank; these functional components are not

limited to the ones shown in the diagram:

Letter of credit (L/C): As shown in Figure 5-15, in a documentary

credit, a buyer asks a commercial bank to issue an L/C in favor of

a seller. The issuing bank must pay the seller once it receives and

verifies the proper documents for the trade.

Collections: Banks act as intermediaries and present the sellers’

shipping documents to the buyer as proof of transfer.

Trade Finance House

Importer Bank Exporter Bank

Exporter Producer

Manufacturer
Importer

Trader

Import Customs Export Customs
Delivery Logistics

Insurer

Document Delivery Document Delivery

Contract , PO/ Invoice

Landing Port Shipping Port

Payments

Risk Mitigation
Financing

Instructions / Doc
Transfer

Payments
Financing

Risk Mitigation

Instructions / Doc
Transfer

Regulator

Figure 5-13. Trade finance ecosystem

Chapter 5 MiCroserviCes arChiteCture and design

225

Settlements: This is the transaction wherein the securities being

trade are transferred into the buyer’s account, and the monetary

value of the security is deposited into the seller’s account after the

trade execution.

Guarantees: This is a way for buyers and sellers to prove their

credit worthiness. It promotes confidence in a transaction that will

greatly encourage the process. It is a promise to make a payment

to a seller in certain circumstances, such as failure of obligation

from the buyer.

Letter Of
Credit

Collections Guarantees

Core Banking Settlements Reporting

Billing

AML

Credit Facility

Watch List

Third Party Systems

Advising/
Nominating/Confirm

ing/Reimbursing
Banks

SWIFT

Participation/
Syndications

FX

Data warehouse

Treasury Sanctions

Limits

Charges

System
Of

Records

External SystemsTrade Finance Functional Architecture

Figure 5-14. Trade finance functional architecture

4. Confirming Bank

1. Seller

3. Issuing Bank

2. Buyer

Contract

Goods

A
pp

lic
at

io
n

fo
r L

/C

Issues L/C

Payments

Lo
an

R

eq
ue

st

P
ay

m
en

t

Figure 5-15. Letter of credit flow

Chapter 5 MiCroserviCes arChiteCture and design

226

The Figure 5-16 architecture is implemented for the previous functional architecture.

The architecture is based on the API first principle by using Open API standards,

DevSecOps for automation, cloud enablement with Azure Cloud, product principles,

and frictionless upgrade design principles.

From an architecture point of view, microservices split a functional component into

a service that is independently replaceable and upgradeable and is organized around a

business capability, as mentioned in the diagram.

The architecture is implemented with microservices and event-driven architecture

and with polyglot principles. Microservices such as settlement services, limit services,

charge services, sanction services, billing services, and L/C services are deployed in the

container by using Azure Kubernetes services, and each service interacts via an Apache

Kafka implementation.

These architecture-provided APIs are the interaction mechanism with the external

applications and UI dashboard. The architecture is provisioned in Kubernetes on Azure

and with managed security on Spring Boot services using Helmet, Passport, and NGINX

reverse proxies.

All trade finance services need to connect to various other existing bank applications

such as core banking, Forex, SWIFT, etc., that reside in the on-prem data center and

Settlement
Service

Cosmos DB

Limit
Service

Cosmos DB

Charges
Service

Cosmos DB

Sanctions
Service

Cosmos DB

Billing
Service

Cosmos DB

LOC
Service

Cosmos DB

Core
Banking FX System

Data Lake

AML SystemSWIFT Credit
Facility

Watch List Third Party
Systems Advising

External Systems

Azure APIM

UI Framework

User/Identity
Services

Legacy
Adapter

Legacy
Adapter

Legacy
Adapter

Legacy
Adapter

External
Adapter

On-Prem Systems

A
zu

re
 a

nd
 A

K
S

O
n-

P
re

m

Figure 5-16. Trade finance microservice architecture

Chapter 5 MiCroserviCes arChiteCture and design

227

connect through legacy adapters by using a VPN connection. Anti-Money Laundering

(AML) is an batch activity and audits every transaction in the trade finance industry

and also connects to third-party systems like watch list, credit facility, etc., through the

external adapter.

All events and transactions are sent to the data lake (Azure Blob) for further analytics

and reporting.

 Case Study: Collateral Management
As shown in Figure 5-17, the collateral management service aims to manage the

collateralization of exposures resulting from bilateral trading activities between

counterparties (repos, securities lending transactions, OTC derivatives, and so on)

including activities subject to clearing.

Processing between the collateral giver and taker (collateral selection, payment and

settlement, and management during the life of transaction) is managed by the agents.

These agents are the collateral portfolio managers of a bank.

Collateral
Giver

Collateral
Taker

Bilateral or
trading platforms
Repo, Loans, OTC

Derivatives,
Securities Lending

Loans

Bank

Collect
Eligible

Collateral

Allocate Eligible
Collateral

C
ol

la
te

rra
l

T
ra

di
nng

Exposures

Settlement
platforms

Figure 5-17. High-level collateral interaction

Chapter 5 MiCroserviCes arChiteCture and design

228

Collateral Management Functional Architecture

As shown in Figure 5-18, the collateral management consists of several items.

Contract setup: This module sets up and maintains legal terms

contained within the collateral management application for

collateral agreements signed between the collateral giver and

collateral taker. This module stores other eligibility metrics and

haircuts, account structure, and client preferences.

Exposure management: This is an entry point of exposure into this

application. This module performs validation, matches exposures,

and manages the lifecycle of an exposures.

Risk management: This module performs the amounts to be

covered for the collateral book and evaluates the value of the

collateral assets allocated, considering haircuts and eligible

criteria. This module calculates the uncovered amounts and

triggers margin calls to the collateral application.

Collateral management: This module assesses the available

inventory of collateralizable assets and runs an algorithm to

determine the optimal collateral allocation based on given

constraints, priorities, and preferences.

Contract Setup Exposure
Management Risk Management Collateral

Management

Settlement
Management Order Management Reports Data & Information

Management

Payments Fx Fees & Billing Book Management

Lifecycle
Management Asset Inventory Corporate Actions Optimization

Margin Call
Management Reconciliation

Collateral Management core functionality

Exposures

Client
Instructions

Settlement
Reports

Market
Data

Client Data

Payment
Instructions

Settlement
Instructions

Reports

MIS/Metric
s

Input Output

Figure 5-18. Collateral management functional architecture

Chapter 5 MiCroserviCes arChiteCture and design

229

Settlement management: This module captures the required

collateral movements and instructs the necessary settlement

systems for execution and manages the settlement failures.

Order management: This module receives collateral status

notification and updates the collateral books accordingly.

Reports: This module generates all the required data for all

different consumers including data required for optimization

algorithms.

The rest of the modules are standard such as collateral fees, billing, payments, Fx

rates, book management, etc.

Collateral Management Architecture

Collateral management is a highly transactional and real-time processing of data.

We decided to design collateral application with microservices and event-driven

architecture principles because:

• Each component in collateral modules handles different types of

transactions and needs to be scaled independently. For example, risk

management requires highly scalable and robust services because it

calculates and manages the collateral books in near real time based

on the equity, Fx rates, etc. The contract module does not require

much scalability because contracts are signed at the beginning of the

collateral agreement.

• We adopted an event-driven architecture for publish-subscribe and

real-time communication across microservices.

The technologies used for this application were Spring Boot, Active MQ, APIs, JRules,

Data Grid Distributed Cache, and Postgres SQL.

As shown in Figure 5-19, all microservices are designed to deploy independently and

scale independently. Each microservice was designed and developed with Spring Boot

and deployed in the Red Hat Open Shift environment.

Chapter 5 MiCroserviCes arChiteCture and design

230

All microservices are event sourced and stored in the distributed cache and

eventually stored in a Postgres database. The state is stored in the Active Message

Queue as events and then passed across microservices and stored in the databases.

The microservices are deployed in the container in an Open Shift environment for the

runtime platform and automatically deployed by using the Jenkins and Ansible Tower

infrastructure as code solutions.

 Microservices and User Interface: Micro Front End
There are two ways to implement the user interface of a microservice application:

• Front-end monolith, as shown in Figure 5-20

• Micro front end, as shown in Figure 5-21

Contract Setup
Service

Validate and
Matching

Exposure Service

Exposure
Lifecycle Service

Arrangement
Service Distributed

Cache

Instrument
Service

Price
Service

Fx Rate
Service

I….Account
Service

Settlement
Service

Message Queue

API Gateway

Web Application

Postgres
DB

Reference
Data

Cash
Position

Securities ….

Other Supporting Application

Collateral Management Application

Figure 5-19. Collateral management architecture

Chapter 5 MiCroserviCes arChiteCture and design

231

A micro front-end architecture is a design approach in which a front-end app is

decoupled into individual, semi-independent micro apps working loosely together.

The micro front end is an extension of microservices.

API Gateway

Frontend Monolith

Order
Service

Catalog
Service

Product
Service

Notification
Service

Payment
Service

Figure 5-20. Front-end monolithic with microservices

API Gateway

Order
Service

Catalog
Service

Product
Service

Notification
Service

Payment
Service

Order
Frontend

Catalog
Frontend

Product
Frontend

Payment
Frontend

No�fica�on
Frontend

M
ic

ro
 F

ro
nt

 E
nd

M
ic

ro
se

rv
ic

es

Figure 5-21. Micro front end with microservices

Chapter 5 MiCroserviCes arChiteCture and design

232

The micro front-end approach is different from other architectures in the way we think

about and build features. Teams have an end-to-end responsibility for a given functionality

and start building from the polyglot persistence, microservices, and micro front end.

The next question is, how do we integrate all the siloed pages and serve customers as

a single unit? You can achieve this by using the front-end integration technique.

Front-end integration is a set of techniques you use to assemble the user interfaces of

the teams into an integrated application. The techniques are as follows:

• Routing

• Composition

• Communication

Routing
The routing technique is about integration at the page level. You need a system to get

from a page owned by the Order and Catalog pages. Here you can use an HTML link

to integrate the Order and Catalog micro front ends. If you want to navigate from the

Catalog page to the Order page, you don’t need to reload; use a shared application shell

or meta-framework like single-spa.

Composition
In the composition technique, each fragment in pages is collated and put in the right slot

on a page. A separate composition technique does the final assembly. You can do that

assembly by using server-side composition and client-side composition with SSI, ESI,

iFrames, Ajax, or web components.

Communication
For interaction across applications, you need communication across multiple micro

front ends. In our example, the Order page gets an update after adding an Order button

to a Catalog page, and payment is done after the order is completed. You can achieve this

integration by using communication techniques.

Chapter 5 MiCroserviCes arChiteCture and design

233

Pros and Cons of Micro Front Ends
The advantages of micro front ends are as follows:

• The individual team can choose their technology and ownership.

• Combined with microservices, fully autonomous end-to-end

teams can be deployed.

• The business has flexibility to create teams focused on specific

domains.

• Development and deployment are very quick.

• The benefits of microservices are leveraged in a much better way.

These are the challenges of the micro front end:

• UX consistency is an important aspect.

• User experience may become a challenge if each individual team

goes in their own direction; hence, there should be some common

medium to ensure UX is not compromised.

• Dependency needs to be managed properly.

• Multiple teams working on one product should be aligned and have a

common understanding.

 Microservice Architecture in Artificial Intelligence
You already know that some of the applications you use in day-to-day life use artificial

intelligence (AI), such as Alexa, Google Home, Spotify, Siri, etc. These AIs are a set of

programs developed to perform specific tasks.

AI will be a de facto standard and usage pattern for several objects in an industry,

and it will grow spontaneously year after year. This will increase the number of objects

or use cases and creates many challenges and opportunities for enterprises. In the

broader vision of AI, every connected object in an industry will be reused in multiple AI

application domains for enhancing the smartness and intelligence of the AI application.

Chapter 5 MiCroserviCes arChiteCture and design

234

The intelligence in AI is composed of the following five characteristics:

• Reasoning

• Learning

• Problem solving

• Perception

• Linguistic intelligence

When you define an AI application with this set of characteristics, the AI

architecture must follow the pattern of separation of concern. If not, then it becomes

a single, all-in-one, monolith kind of application. Then it follows the same approach

for the provisioning of AI services. A better architecture for AI must be based on the

microservice architecture style.

In the era of digital transformation, AI is emerging with improved data collection

methods, data training sets, advanced data processing mechanisms, enhanced analytic

techniques, and a modern service platform. If you separate the implementation into similar

groupings, then it can be developed and maintained easily without much effort and risk.

The microservices style can be adopted in AI systems for marketing, banking, finance

to predict future data, agriculture such as climate change, population growth, healthcare

like medical care systems, clinical decision support systems, gaming, autonomous

vehicles, and social media.

For all these kinds of AIs, microservices are the best approach for the activities such

as data processing, data aggregation, and data transformation. They can be processed by

using a pipeline with events.

AI Subcategories
The horizontally layered platforms do not address the issues of specific AI domains, but

they support necessary technical solutions across the platform; however, the vertical

components are used to resolve domain-specific problems. Figure 5-22 shows the

vertical components.

Chapter 5 MiCroserviCes arChiteCture and design

235

Generally, the architecture of an AI component is modular and layered.

The first layer is to read the data and do data processing, data aggregation, data

transformation, etc.

The second layer is to apply the execution layer like ML models and the execution

layer for machine learning, foundation model and cognitive services for intelligent

agents, automation engine and recognition engine for robotics, etc.

The third layer is for exposing the APIs like the Text/Speech API, Image API,

Predictive API, Ecosystem API, etc.

The vertical components can be developed by using the microservice architecture

style, which improves the service modularity, extensibility, availability, scalability,

resilience, etc., for AI services.

Microservices Vertical Components: Speech AI
Let’s look at an example of a Speech AI implementation to explain the details of

microservices adoption; you can follow a similar approach for other AI implementations.

Machine Learning

Natural Language Processing

Speech

Planning, Scheduling & Optimization

Robotics

Artificial Intelligence
(AI)

Image Recognition

Predictive Analytics

Translation

Classification &
Clustering

Information
Extraction

Speech to Text

Text to Speech

Expert Systems

Vision

Deep Learning

Machine Vision

Figure 5-22. AI subcategories

Chapter 5 MiCroserviCes arChiteCture and design

236

Speech recognition is an area of natural language processing and artificial

intelligence. When trying to achieve good accuracy and efficiency of automatic speech

recognition systems of various languages, the challenges are morphology, language

barriers, different dialects, etc.

Here are a few AI-based speech implementations:

• Google’s AI speech recognition to human captioning for television

news

• AI that can understand the meaning of a baby’s different cries to tell if

the baby is hungry, tired, or in pain by listening to their cries

• Transcription performance milestones on automatic broadcast news

captioning

• Alexa for Business Review

• Google updates to Maps, Search, and Assistant so you can order food

without an app

• Google AI to help you speak another language in your voice

• DIY kid smart speaker that features a private voice assistant

• Google AI Translation to make anyone a real-time polyglot

If you search Google, you can find hundreds of different AI-based speech

applications and implementations. Do you think all these application architectures are

reusable, resilient, easily deployable, and easy to discard? No? How do you create new

AI-enabled microservices speech software?

A speech recognition program works using an algorithm through the following:

• Acoustic modeling

• Linguistic modeling

In Figure 5-23, each blue box has its responsibility and can be developed with

polylith and polyglot principles, and each box can scale and deploy independently;

hypothetically, each box is a candidate for microservices.

For example, let’s consider an example of any Indo-Aryan language that evolved from

Devanagari script. Each language is spoken by more than a million people. Each language

in India has a rich morphology and a complex structure of syntax. The diversity of dialects

Chapter 5 MiCroserviCes arChiteCture and design

237

in the form of pronunciation, grammar, and vocabulary make speech recognition more

complex. Converting speech into a text mechanism for Indian languages includes major

limitations regarding accuracy because of the bulk corpora set, etc.

As shown in Figure 5-23, the basic architecture of speech processing, recognition,

and modeling requires a well-thought-out and reusable design model to process many

languages with accuracy and to encapsulate data.

The general architecture of speech recognition and write-to-text consists of

several functionalities, and each functional box in Figure 5-23 can be developed as a

microservice.

• Speech preprocessing: Through the recording tool, the input speech

data is stored in WAV format. The components of microservices are

as follows:

 A. The external interface to read WAV file, AIFF, AU, or PCM files

(either batch or near real-time with event-driven concept).

 B. Checks the quality, frame size, etc.

 C. Stores the data into the database and is handled by all kinds

of interfaces either batch, event-driven, interfaces, etc.

Speech Pre-
Processing

Acoustic
Analysis

Speech
Modeling

Input Speech

Output

ML Modeling
Intelligent Agent

Figure 5-23. Speech recognition modules

Chapter 5 MiCroserviCes arChiteCture and design

238

• Intelligent agent: This microservice provides a cognitive capability

and recognition capability that communicates in natural language

with humans and provides an advisory using machine learning

and NLP-like intelligence. It provides a set of services that enables

services like NLP, speech to text, and text to speech to make an agent

see, hear, speak, convert, understand, and interpret natural methods

of communication. There are two components in NLP.

 A. Natural language understanding: Mapping the given input

in the natural language into useful representations and

analyzing the different aspects of the language.

 B. Natural language generation: Producing meaningful phrases

and sentences in the form of natural languages like text

planning, sentence planning, etc.

• Acoustic analysis: This microservice implements feature extraction

and is used to extract related information such as pitch, frequency,

and environment by using the intelligent agent.

• Speech modeling: This microservice generates the models for the

speech generation process and provides the end output of text for

each voice input with the help of various machine learning models.

• ML modeling: This microservice is used to make predictions about data;

an algorithm together with the training data generates an ML model.

Figure 5-24 provides a high-level view of microservice architecture with domain

objects and provides flow with events and objects.

Chapter 5 MiCroserviCes arChiteCture and design

239

Speech preprocessing microservices: This microservice is

developed by using Python and components in the microservices

that read various types of files and segment raw data speech

signals into evenly spaced frames. The frame size can be selected

based on rapid transition and enough resolution in frequency.

This microservice uses intelligent agent microservices for the NPL

process.

Intelligent agent microservices: These microservices use

open source NPL processes like Apache Open NLP (http://

opennlp.apache.org/), which supports tokenization, sentence

segmentation, tagging, chunking, etc. These microservices follow

the steps to provide NLP capabilities.

Acoustic analysis microservices: These microservices extend the

details provided by IA microservices along with pitch, frequency, and

environment for the statistical analysis. The MFCC (Multi-frequency

Cepstral coefficients) Cepstral analysis is a standard technique used

for feature extraction. All input files are converted into the MFCC

files, which include a list of cepstrum coefficients.

Speech Tools

Speech Pre Processing Microservice

Adapter

.wav, AIFF, AU,
PCM. files.

Segmenta�on

Pre-Processor
Controller

Storage

Converter

Data Access

Event Sender

Service to expose
files

Intelligent Agent Microservice

Natural Language Understanding

Lexical & Pragma�c Analysis

Rules

N
LP Algorithm

NLU details

Natural Language Genera�on

Acous�c Analysis Microservice

M
essage

Listener

Feature Vector

MFCC Cepstral
Analysis

Storage

Converter

HMM Pa�ern Recogni�on

Event Sender

Converted
file as an
event

Speech Modeling Microservice

M
essage

Listener

Speech
Synthesizer

Pronuncia�on
Model

Storage

Decoder

Event Sender

ML Modeling Microservice

Re-
es�m

a�on

Baum-Welch Algorithm

Transi�on probabili�es

Storage

ML Models

Converted file
as an event

Acous�c Results Final Output
with Models

Figure 5-24. AI microservices architecture

Chapter 5 MiCroserviCes arChiteCture and design

http://opennlp.apache.org/
http://opennlp.apache.org/

240

Speech modeling microservices: These microservices use the

hidden Markov model (HMM), represented as the simplest

dynamic Bayesian network. The speech signals are quasi-

stationary and stable for only a short period. The stability of

signals can be viewed in the form of states in an HMM topology.

ML model microservices: The ML model microservice is an

extension of the speech modeling process with the algorithms

split across microservices. This microservice provides the

capability of re-estimating the model of the Baum-Welch

algorithm; it is used to update the active state with optimal

values for HMM parameters. The pronunciation model is used

to develop correspondence between different HMMs to form

a model for each input. The decoding concatenating subword

models are composed into a decoding network.

 Summary
Software applications today have expectations and requirements that are different

from traditional architecture. They have demands related to resilience, time to market,

flexibility, failure, self-healing, and reliability.

In this chapter, you learned how microservices support agility in order to keep their

software systems closely aligned with the business goals and market opportunities.

Chapter 5 MiCroserviCes arChiteCture and design

241
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_6

CHAPTER 6

Event-Driven Architecture
Event-driven architecture is not new; it has existed since the Unix operating system came

on the scene.

Event-driven technology enables high-speed, asynchronous, machine-to-machine,

or program-to-program communication with guaranteed, reliable delivery of events.

Machines or programs exchange data each other. The queues or channels are the

pathways that connect both the sender and the receiver. A sender or producer is a

machine or program that sends events by writing data to the queues, and the receiver

or consumer consumes the messages and sends an acknowledgment to confirm the

message is received. The data exchange between the sender and receiver can be an

object, JSON, XML, and byte. There are two ways to exchange information; the first is a

point to point, and the second is publish and subscribe.

This chapter provides insight for anyone considering implementing an

event- driven architecture; you should have a basic idea of software architecture, design,

and development. There are plenty of books and whitepapers available on event-driven

technology; I am not going to duplicate that information here. Instead, I will cover

event- driven technology in the context of cloud native and real implementations as well

as the problems you may face during implementation.

In this chapter, I will cover the following topics:

• What is event-driven architecture?

• What are events?

• Characteristics of event-driven architecture

• When to consider event-driven architecture

• What is complex event processing?

• Role of event-driven in microservices

• Case studies

https://doi.org/10.1007/978-1-4842-7226-8_6#DOI

242

 Evolution of Event-Driven Architecture
Most applications in enterprises are required to interact with each other by transferring

data. In 1971, File Transfer Protocol (FTP) was introduced to transfer data across

applications and machines on Network Control Program (NCP). In the early 1980s,

the TCP/IP protocol was introduced to draw communication across systems. Later,

applications can use a shared database, located in a single physical box; therefore, no

data has to be transferred from one application to another. After the introduction of

TCP/IP, applications were developed to start exposing some of their functionality so

that they could be accessed remotely by other applications via a remote procedure. The

communication occurs in real time and is synchronous with high coupling and low

cohesion.

The FTP, TCP/IP, and Remote Procedure Call (RPC) protocols are slow and

unreliable, and the interaction between applications needs to support the evolution

of applications and keep pace with changes in the applications being connected. To

overcome the slowness and reliability, the messaging infrastructure was introduced.

Messaging is more immediate than FTP, better encapsulated than shared databases, and

more reliable than RPC.

Tightly Coupled World to Loosely Coupled World
The messaging in applications and across applications in an enterprise became popular

with the maturity of message brokers and message-oriented middleware (MOM).

Messaging is a technology that enables high-speed, asynchronous communication with

reliable delivery. Applications communicate by sending data called messages to each

other over a pipe known as a queue.

Messaging capabilities are typically provided by a separate software system

called message brokers. A messaging system manages the way the database handles

the data persistence. Just like a database administrator (DBA) manages the database,

the messaging administrator manages the messaging system. The messaging system

coordinates and manages the sending and receiving of messages across systems. The

main task of the message system is to manage reliability.

The primary features of message queues are storage, asynchronous messaging,

and routing. The message queues store messages or some type of buffer until they have

been either read by a consumer or expire or explicitly removed from the queues. The

main advantage of a messaging system is loose coupling. The receiving application may

Chapter 6 event-Driven arChiteCture

243

not be available for a few seconds to receive messages, or the network is not available,

but the receiving application can receive messages once it is available. The message

broker keeps retrying to send messages to the receiving applications. This allows for

asynchronous nonblocking communication that provides a higher level of tolerance

against failure. Enterprise messaging technologies such as IBM MQ, Active MQ, Rabbit

MQ, Zero MQ, etc., can be used to decouple your applications for the reliable and

guaranteed delivery of messages.

Message queues allow subscribers to subscribe to a message from the message

provider. Queues usually manage some level of the transaction to make sure the desired

action is executed before the message is removed from the queues. The messages are

delivered at least once. Even if the consumer is not available, the queues try to deliver

by using a retry configuration. The queues send messages to dead-letter queues after

a failure to deliver messages to consumers or the messages will expire. You can use a

point-to-point or publish-subscribe model for communication across applications or

machines or programs.

We looked at message queue systems, and we saw that message queue systems are

used extensively for interapplication communication.

Message Broker World to Event World
Over the years, there has been an evolution of microservices and real-time integration

with lightweight data interaction. We are moving from static to dynamic by accumulating

data in data lakes to enable data in transit and keep track of it while it is moving from

place to place. The shift to event-driven architecture means moving from a data-

centric model to an event-centric model. In an event-driven model, the event is a more

important component, whereas with service-oriented architecture (SOA) or message

queue platforms, the highest priorities were to not lose any data while transferring,

to deliver at least once to the consumer, and to have rest of the process leave it to the

consuming application to take care of the data. With event-driven architecture, you can

address the challenges of SOA and MQ, and the priority is to respond to events as they

occur. The older the events, the less valuable they are.

Along with the processing of events, there is a need to persist a record and allow

the application to process historical data and real-time data without the threat of

deletion by a broker. All these characteristics are not possible in message brokers; there

needs to be a streaming platform. The streaming application addresses one-event-at-

a-time processing with nanosecond latency with stateful processing and joins and the

Chapter 6 event-Driven arChiteCture

244

aggregation of messages. Event streaming platforms can be used for both simple and

complex event processing, allowing event consumers to process and perform actions

based on the result.

Today, event brokers offer efficient and scalable publish/subscribe event distribution

based on routing-labeled events and not just messages to a queue. They support the

following:

• Dealing with a consumer that is too slow or offline by managing the

state of events on the fly

• Decoupling which data to send to which consuming applications,

getting it there reliably, and managing changes to this set of

consumers over time

• Providing services such as priority delivery, load balancing to

consumers, and more

Event brokers make cloud native services simpler and allow a more real-time,

responsive, scalable, efficient, and fault-tolerant system.

There are various event streaming platforms in the industry such as Apache Kafka and

Confluent, AWS Kinesis, Spark, Google Data Flow, IBM Cloud Park, Lenses, Hazelcast Jet,

IBM Event Streams, SAS Event Streaming Process, Solace, and Azure Event Hub.

In the subsequent section, we will provide a step-by-step approach for designing and

implementing event-driven architecture.

 Event
Anything that occurs in enterprises or systems is an event, such as a customer request,

batch update, data change, an employee swiping a credit card, a customer buying a

product in a retail ecommerce application, someone checking in for a flight, etc. These

events exist everywhere and are constantly occurring, and it does not matter what kind

of application it is or what industry it is in. Events are pervasive across any business.

There is value in knowing about an event and being able to react to it quickly. The more

quickly you can get information about events, the more effectively your business can

react to them. An event is separate from a message because the event is an occurrence,

and the message is the carrier of the information that relays information about the

occurrence. In an event-driven architecture, an event likely commands one or more

actions or processes in response to its occurrence.

Chapter 6 event-Driven arChiteCture

245

An event is not the same as an event notification, which is a message or notification

sent by the system to notify another part of the system that an event has taken place. The

source of an event can be internal or external inputs.

There are two types of events:

• Business events

• Technical events

 Business Events
The business events are typically what we care about from a functional perspective. We

can derive these from the event storming exercise of domain-driven design. These events

are not always initiated externally but created by other business events. For example, an

order-placed business event creates an order-shipped business event. Ideally, we should

keep these business events around in perpetuity.

The following are examples of business events:

• The customer swipes their credit or debit card at the retail outlet.

• Employees enter the office premises by swiping an ID card.

• A bill is paid.

• An order is placed.

• The order management system sends details to update the inventory

system.

• The source data changes for replication to the target operational data

store (ODS).

 Technical Events
The technical events are derived from business events; typically many technical events

can be generated from a single business event. These events are used to communicate

between services or systems. These events are technical in nature and are the only

trigger to perform a specific action.

Chapter 6 event-Driven arChiteCture

246

The following are examples of technical events:

• Database updated

• File uploaded successfully

• Email notification sent

Each of these events is like a command of one or more actions such as the

authorization of payments, authorization of the employee entry, an update, a reduction

of inventory, etc. The response is to log events for monitoring and analytics purposes.

 Processing an Event
Events are recorded to an event log, as shown in Figure 6-1, and then processed by one

or more services. Events do not “fall off” of the log; instead, they are persisted.

In event processing, the events are persisted on an event log, in a uniform schema,

and events are typically organized by topics. Events of different types should not exist

on the same topic. For example, customer payment and customer cart data are different

topics, even though they relate to customer behavior like adding wish lists, etc. If you are

interested in the order of events by customers across systems, consider creating a third

topic of “customer actions” that relates only to the actions performed on a customer,

discarding the rest.

Consider not defining the listeners in the first place. An event can have multiple

listeners, and they may not all exist at the time of the event creation.

In Figure 6-1, the service publishes an event to the event log; the service, FaaS, ERP

system, and analytics systems subscribe to an event from the log.

EVENT LOG
EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT

EVENT

Publishes

EVENT

Receives
Function as a

Service (FaaS)

EVENT

Receives
ERP SYSTEMSEVENT

Receives

{

ANALYTIC
SYSTEMS

Receives
EVENTService

Service

Figure 6-1. Event processing in an enterprise landscape

Chapter 6 event-Driven arChiteCture

247

 Event Handling in Domain Context
Events can be used for interdomain or intradomain communication. For example, as

shown in Figure 6-2, in an ecommerce application, the ecommerce web and mobile

applications make up one domain, and the back-end applications are another domain. If

you want to send events between these two domains, you use business events.

Within the same domain, the events can be technical or business events. Across

domains, only business events are relevant. If you are using technical events, such as

notifications, database updates, or requests received, across domains, then that could be

a sign of ill-defined domains or a distributed monolithic system; in that case, it is not a

cloud native architecture.

 Event Governance
The following are the best practices for using events in an enterprise:

• Organizations should strive to make events discoverable to

subscribers.

• Events should have a standard envelope that encloses them such as

publisher ID, tracer IDs, etc., so that the events can stand alone as the

systems evolve. I suggest using cloud event specifications.

EVENT LOG
EVENT EVENT EVENT EVENT EVENT

EVENT

Publishes

EVENT

Receives
Function as a

Service (FaaS)

EVENT

Receives
ERP SYSTEMS

Receives

{

ANALYTIC
SYSTEMS

Receives

Price

Payment

Item

Order

eCommerce Web & Mobile Domain eCommerce Backend Enterprise Domain

BIZEVENT

BIZ EVENT BIZ EVENT

BIZ EVENT

BIZ EVENT BIZ EVENT BIZ EVENT

BIZ EVENT

Figure 6-2. Events across domains in an enterprise

Chapter 6 event-Driven arChiteCture

248

• Events should be as small as possible, encompassing the data needed

for that event. Topics should contain only one type of event. Smaller

events and more topics are better suited to a distributed system.

• Within a domain, the team should design how to introduce new

events, but across domains, you need to standardize namespacing

and require a governance team to manage the events or they become

uncontrollable.

 What Is Event-Driven Architecture?
An event-driven architecture (EDA) is a distributed, asynchronous architecture that

integrates applications and components through events. It is a combination of an event

producer and an event consumer; an event producer detects an event and represents

the event as a message object. After an event detection, it is transmitted from the event

producer to the consumer through a channel. The event processing platform processes

the event asynchronously and informs the event consumer about the occurrence. The

event processing platforms will execute the correct response to an event and send

it to the right consumers. For asynchronous communication, the consumer and the

subscriber do not need to know or be aware of each other. EDA can be relatively complex

given its inherent characteristics of asynchronous, distributed processing, issues that

may occur due to a lack of responsiveness, failure of mediators, and brokers.

How Does Event-Driven Architecture Work?
As shown in Figure 6-3, event-driven architecture consists of four parts.

• Event producer/publisher

• Event consumer/subscriber

• Event broker or routers

• Event persistence (part of platform)

Chapter 6 event-Driven arChiteCture

249

An event producer publishes an event to the router, which filters and pushes the

events to the consumers.

Let’s consider the example shown in Figure 6-4, showing payment processing in

banks or a centralized payment platform in a country. You will receive a lot of credit

and debit transactions, and you need to process millions of transactions. In these

transactions, there might be a few transactions that are related to terror funding or

anti-money laundering. How will you find these dubious transactions? If you scan these

transactions offline, it leads to a delay in identifying transactions. The only option is to

identify in real time just before completing the transaction. In this case, the event-driven

architecture helps you to identify the dubious transactions in real time.

Event
Publisher

Event
Subscriber

Event Platforms
Event Data

Event Data

Topic 1

Topic 2

Subscribe Topic 1

Subscribe Topic 2

Event Data

Event Data

Event
Persistence

Figure 6-3. Event-driven architecture components

Chapter 6 event-Driven arChiteCture

250

 Event-Driven Topologies
When you design an event-driven architecture, you may confuse which topology needs

to be considered for your architecture and why.

In an event-driven architecture, there are two topologies. You need to choose the

right topology for your use case.

• Mediator topology

• Broker topology

 Mediator Topology
The mediator topology is like orchestration in an SOA enterprise service bus (ESB) or

orchestrator components like Netflix Conductor or Uber Cadence. You use the mediator

topology when you need to orchestrate multiple steps within an event through a central

mediator. This topology is better suited for more complex situations where multiple

Payment
Platform

Anti-Money
Laundering

(AML)

Event Platforms
Payment Data

Topic

Subscribe Topic

Payment
Data

Event
Persistence

Retail
Banking

P
ay

m
en

t
T

ra
ns

ac
tio

n
Bank A

Central Bank
Payment Processing

Payment
Platform Bank B

P
ay

m
en

t
T

ra
ns

ac
tio

n
af

te
r

A
M

L

Figure 6-4. Event-driven architecture example, payment platform

Chapter 6 event-Driven arChiteCture

251

steps are required to complete the process, thus requiring event processing coordination

or orchestration.

The mediator topology consists of four components.

• Event queues

• Event mediator

• Channels

• Event processors

The event flow starts from the event originator by sending an event to event queues;

these queues send events to the event mediator. The event mediator is the central

component that controls the orchestration of services and is leveraged in a situation

where a particular service needs to perform multiple steps sequentially to execute

a certain business process. The event mediator sends asynchronous events to event

channels to execute each step of the process. The event processor listens to each

channel, receives an event, and executes the required business logic. The event mediator

is not a business logic executer but is configured with orchestration to process an event.

As shown in the payment use case in Figure 6-5, the consumer makes a payment,

and the “make payment” use case requires multiple steps to complete the payment

process. The payment request is sent to the event mediator by the retail banking app

or web application. The mediator orchestrates multiple steps like conducting AML,

checking the payment, sending payment instructions to the central bank, etc. These

steps are event processors to process the business logic.

Event
Originator

Event
Processor

Event Mediator

Event Queues

Event
Processor

Event Channels

Figure 6-5. Mediator topology architecture

The software components are Camel, Fuse, etc., for the mediator topology along with

Rabbit MQ, Active MQ, IBM MQ, or Kafka.

Chapter 6 event-Driven arChiteCture

252

 Broker Topology
In the broker topology, the message flow is distributed across the event processor

components in a rope fashion through lightweight message brokers. It does not have a

central component that controls the orchestration across processes as provided by the

mediator topology. The broker topology mainly consists of a dumb broker and intelligent

processor with dumb and pipe patterns.

There are two main components in the broker topology.

• Broker component

• Event processor component

The broker component can be centralized or federated and collaborates with all the

events that are used within an event flow. The events contained within the broker can be

message queues, topics, or a combination of both.

As you saw in Figure 6-6, there is no central mediator component controlling

orchestration. In this topology, each event processor component is responsible for

processing an event and publishing a new event indicating the action it just performed.

The event processor acts as a broker for the rope of events. Once the event is processed

by the processor, the other event is published so that another processor can proceed.

Event
Originator

Event Broker

Event Processor

Event
Processor

Event Processor

Event Processor Event Processor

Figure 6-6. Broker topology architecture

Chapter 6 event-Driven arChiteCture

253

In the same example of the payment processor that I mentioned, I have used a

broker topology to integrate the payment process and to update the details in a banking

application. Once the payment is processed, then we need to update the books to

complete the transaction, and the payment services write the transaction to the Kafka

broker. An event processor picks it up and inserts the record in MongoDB. The view

transaction will retrieve the records from MongoDB and expose the API to users to view

the transaction.

Choice of Topology

The rule of thumb is to choose the best topology for your use cases. The broker topology

can be considered for a single event or chain of events requiring one task as their result.

The mediator topology can be considered when using multiple tasks in response and

thus requiring orchestration of each task.

 Characteristics of Event-Driven Architecture
Almost all industry domains use event-driven architecture such as social media,

financial markets, hospitality, Internet of Things (IoT), etc. Let’s consider an example

of IoT. Say your apartment building has installed sensors in each apartment to identify

fire or smoke in the apartment building. The sensors send the details of events with a

measurement of the average temperature of a room with a timestamp. The event-driven

system will send events along with room temperature data to identify processes, and

storing these events requires various EDA characteristics to complete the process. The

following are the main characteristics of any event-driven architecture that you must

follow:

• Multicast communication: The events are generated from the

publishing systems, and event-driven systems can send these events

to multiple event processors.

• Real-time transmission: The events are processed in real time to the

event processors. The mode of processing or transmission is real time

rather than batch processing.

• Asynchronous communication: The event does not need to wait for

the event processor to be available before publishing an event.

Chapter 6 event-Driven arChiteCture

254

• Fine-grained communication: Events are small units and are

published as and when they occur.

• Event ontology: EDA systems always classify events in terms of some

form of a group/hierarchy. This allows event processors to subscribe

to a specific event or specific category of events.

 Event-Driven Messaging Models
There are two basic models for transmitting the events in an event-driven architecture;

you can use the right models for your use cases.

 Event Messaging
In event messaging, the event consumers subscribe to the messaging published by

the event originators. When an event originator publishes an event, the message is

sent directly to all subscribers who want to consume it. The event broker handles the

transmission of event messages between the originators and subscribers. The events will

be deleted after all the consumers subscribe to them. An example of event messaging is

the published/subscribe model. The event broker translates and routes messages to the

subscriber.

 Event Streaming
In event streaming, event originators publish streams of events to a broker. Event

processors subscribe to the streams, but instead of receiving and consuming every

event as it is published, event processors can consume events at any point and consume

only the required events. The events are persisted and never deleted after the event

processors consume them. The event streaming platforms are configured to persist

events from a second to infinite time. This enables event streams to process real-time

and historical data. The event streams can be used for both simple and complex event

processing styles.

Chapter 6 event-Driven arChiteCture

255

 Event Processing Styles
Event processing is the process that takes events or streams of events, analyzes them,

and takes automatic action. Each event processor must be independent and loosely

coupled with other event processors. It tracks and processes streams of events so that

opportunities and risks are proactively identified and optimized. There are three types of

styles for event processing.

• Simple event processing (SEP)

• Complex event processing (CEP)

• Event stream processing (ESP)

 Simple Event Processing
This event processing occurs when an event immediately triggers an action in the event

processor. It is used to measure events that are related to specific measurable changes in

conditions. SEP is used for real-time flow without any other constraint or consideration.

Many events in architecture are simple, such as IoT sensors in your house that trigger

when something happens in a house like a temperature change or smoke, etc. This

type of event occurs when some notable, significant, and meaningful change of state

or condition occurs. Typically this is used to take latency and cost out of the business

process; simple event processing initiates action further down the application stream

whenever a significant and meaningful change of state occurs in any hardware or

software component of the system.

 Event Stream Processing
In event stream processing, ordinary events that occur are filtered for notability and sent

to event processors. This ensures that real-time information flows in and around the

enterprise. This helps in real-time decision-making. In event stream processing, all the

events are written to a log. Event processors don’t subscribe to anything; they simply

read from any part of the stream at any time. The following are the components of event

stream processing:

• Event collect

• Event enhance

Chapter 6 event-Driven arChiteCture

256

• Event analyze

• Event dispatch

This flow creates a process in which events are detected using components. These

components detect relationships between multiple events, perform event correlation,

and establish event hierarchies.

The event stream processing uses a data streaming platform like Kafka to ingest

events and processes or transform the event stream. This can be used to detect a pattern

in event streams. The event stream processing can be used in various use cases, for

example, in order processing. If we consider the sequence of events in a jewelry shop,

the RFID sensor generates an event for each item that moves out of the display. In this

scenario, the retailer is to be informed when the item is sold and moved out of a store.

 Complex Event Processing
This is a set of processes for capturing and analyzing streams of data as they arrive in

real time. The objective of this processing is to identify meaningful events in real-time

situations and respond to them as quickly as possible. It is used when multiple events

must take place before final events are generated. Each event need not be like the others,

nor do events occur at the same time. CEP waits until all criteria are fulfilled before

generating an event message to communicate action instructions. To generate a finale

event, the CEP requires the following components:

• Event interpreters

• Event pattern definition

• Event pattern matching

• Event correlation techniques

The CEP has a strong impact on future information systems and the way we

subscribe to and consume information. It plays an important role in many domains like

logistics, energy management, finance, etc. The usage of this style is expected to grow

further with the increasing number of decentralized microservices, digital twins, etc.

CEP does not only mediate information in the form of events between providers and

consumers but supports the detection of dependencies among events by using event

patterns. The events are generated by the composition and aggregation of multiple

events and can generate a final event.

Chapter 6 event-Driven arChiteCture

257

CEP is used for a scenario in which there is a large volume of events occurring and

latency requirements are very low, in milliseconds. Some of the use cases are stock

trading, predictive maintenance (digital twin), real-time marketing, etc.

 Event-Driven Architecture Maturity Model
IT in enterprise organizations needs to support business disruption by improving the

speed and responsiveness of their internal and customer-facing processes and systems.

Irrespective of what industries you are in, there is an increase in eventing capability

across enterprise ecosystems. An EDA not only publishes and subscribes to an event but

involves planning and maturity of EDA across portfolios in an enterprise.

The EDA concept becomes more broadly adopted, and enterprises progress through

increasing levels of maturity. As shown in Figure 6-7, every organization has to undergo

five levels of steps to reach maturity because the eventing is complex, requires special

skills, and most important is part of the organizational culture. You can use assessment

techniques to assess an enterprise’s maturity level.

Level 0

Level 1

Level 2

Level 3

Level 4

There is no Asynchronous communication
in the system

There is some adoption of asynchronous
communication across applications

Install proper streaming and messaging brokers in an
enterprises and initiate self-service model between portfolios

Provide discoverability of services, API endpoints, data streaming and
ability to scale in cloud environments. Provide self-service for all
portfolios and introduce automation roadmap

Provide observability of the system environment, allow tracing events,
and integrated monitoring of application performance and resource
usage, and introduces 100% automation with Infra-as-a-code.

Figure 6-7. Maturity model

Chapter 6 event-Driven arChiteCture

258

Level 0: There is no asynchronous communication in the

enterprise. All integration is synchronous through APIs or TCP/IP

or FTPs. Few applications in an enterprise are using some kind of

ESB integration mechanism across the heterogeneous system.

Level 1: There is some adoption of an asynchronous exchange of

information across applications. An example is a point-to- point

interaction between related systems using messaging platforms

like MQs, ESB, etc.

Level 2: Business and data event streaming and messaging are

used with some level of high availability and initiating of self-

services. Multiple application interactions are carried out by using

messaging infrastructure with messaging characteristics.

Level 3: Discoverability, scalability, and failover are managed. The

application-producing events are less aware that all the clients

can subscribe to the messages and the same events can be used

for various other observability. The message network can handle

the variable load by using cloud native architecture, and the event

publisher and subscriber are unaware of the physical network

topology. Some automation is introduced to handle the software

engineering lifecycle.

Level 4: The observability principle is enabled across applications

and portfolios and the software engineering lifecycle, and the

infrastructure is fully automated. The events are pervasive

in enterprises with multiple publishers and subscribers. The

focus is more on scale and robust messaging infrastructure.

Enterprise-wide observability is configured so that administrators

can use integrated and intelligent monitoring in real time and

trace messages across multiple nodes in an event mesh. Full

automation is enabled with a single click of deployment. With this

eventing maturity, the organization embraces cloud native tech

stacks to support a variety of business disruptions, and that leads

to change in the organization culture to embrace a new set of

technologies.

Chapter 6 event-Driven arChiteCture

259

 Decoupling Use Case by Using Event-Driven
Architecture
The decoupling helps enterprises with legacy systems to engage customers in the

following ways:

• Keeping legacy systems

• Making these systems accessible from the cloud native systems

• Shipping data to modern technology

• Enabling enterprises to access cloud native technologies

The era of the big transformation project is over; enterprises are not willing to invest

in multimillion, multiyear efforts on transformation; they need to realize business

value quickly. Instead of big fat projects, you need to imagine a world in which value is

delivered quickly and accessible to customers after a short duration minimum viable

product (MVP) and then continuously thereafter, with the freedom to pivot. On the

journey to cloud native, you can’t ignore legacy systems. There are tons of business

transactions occurring in those systems; therefore, you need to keep evolving your

architecture by using decoupling principles.

Decoupling is the process of using cloud native technologies, development

methodologies, and migration methods to build systems that execute strategy on top of

legacy systems. When you apply a decoupling strategy to the entire enterprise, it leads

to exponential changes in IT and a scalable, flexible, and resilient architecture that gives

companies the agility to continuously innovate.

Organizations are under constant pressure to deliver customer expectations. The

following are the key drivers for organizations to embrace cloud native architecture:

• Changing customer expectations

• Technology innovation

• Cost pressure

• Extended enterprises

• New unicorn entrants

Chapter 6 event-Driven arChiteCture

260

Figure 6-8 illustrates a step-by-step approach of how to conduct a decoupling of an

existing system into the cloud native technologies. When your systems need to undergo

decoupling transformation, you must adhere to the following principles:

• Layering: Apply layering to isolate from the old system, and layer

within the new system.

• Suitable fragmentation: Fragment capabilities remove conflicts of

interest and increase agility, enabling cloud native replacement.

• 4Events: Make sure all data is accessible in real time.

• Available, Real-time data: Build out data meshes and data lakes with

real-time eventing capabilities to support the objectives.

• Automation: Implement single-click automation from developer box

to the production box with the use of DevSecOps and infrastructure

as code.

• Cloud: Leverage cloud capabilities to isolate infrastructure and platform.

• Intelligence built-in: Add artificial intelligence and machine learning

into your services and operations.

• No SPOF: Avoid a single point of failure (SPOF).

Computing

Platform

Data

Business Logic

User Interface

Computing

Platform

Data

Business Logic

User Interface

IaaS

PaaS

APIs

Computing

Platform

Data

Business Logic

User Interface

IaaS

PaaS

APIs

Events

AI

Decoupled System in
Cloud Native

Legacy Monolith
Systems

Decoupled Infra, Platform
and Business Logic

Figure 6-8. Decoupling architecture

Chapter 6 event-Driven arChiteCture

261

Some of the myths of decoupling that you need to dispel for stakeholders are as

follows:

• A product alone solves a business problem: Don’t rely on someone

else to solve our problems.

• Perfect architecture and governance: Avoid ivory tower thinking and

focusing on overdesigned standards that don’t drive business value.

• End state is reachable: Businesses don’t stand still; what is valid today

may not be tomorrow.

• Old = bad: Oftentimes, new technology is seen as the only way to

solve problems.

• All in one jar: Oftentimes, a business uses one technology to solve all

the problems.

When you want your application to be cloud native, then you need to apply the

following modern-day approaches for decoupling your systems:

• Make data accessible (change data capture [CDC])

• Microservices

• Event-driven architecture

• Serverless

• Cloud

• Reactive interaction gateway

 Make Data Accessible
If you look back at how application databases and data movement are designed

traditionally, all are based on the pull-based model, with no information about changes.

The data in the databases is static and reacts only when there is a request to modify the

data by using SQL queries; it never reacts on its own. In the case of data replication, you

should apply batch jobs to trigger a delta change in the source database and use extract,

transform, and load (ETL) tools to load data in an (ODS) operational data store or data

warehouse. Or use files to upload data to the ODS or data warehouse.

Chapter 6 event-Driven arChiteCture

262

In event-driven architecture, events enable new real-time functionality to move

data from the application and data store. You can apply replication either from business

change events in an application or from technical change events in a database, as shown

in Figure 6-9.

How to Get Events and Make Data Accessible?

Many systems have native support for events. For example, databases like MongoDB,

Couchbase, Cockroach DB, etc., and cloud services like AWS S3, Google Storage, and

Blob storage in Azure, all these services provide an event when a file is uploaded. GitHub

provides a webhook on all kinds of operations, and Salesforce provides change events.

If services do not support a native eventing capability, then you need to build that

functionality yourself by using the following methods:

• CDC tools such as Equalum, Hevo, Infosphere, Qlik, Oracle, etc., allow

you to integrate various legacy systems, such as Oracle and DB2.

• You can build your custom component that has central transaction

logic points, allowing you to add code to publish events.

• If you are developing a new cloud native application, then you need

to consider building an eventing capability right from the start.

Business Change Events

Technical Change Events

New Customer, Change
Address, etc.

INSERT INTO .. UPDATE ..
DELETE…

Event Broker CRM

Event Broker
Data Lake or ODS

Replicas

Machine Learning
Models

Replicas

Stream Processing
When New Customer � update

CRM

Figure 6-9. Data accessible architecture

Chapter 6 event-Driven arChiteCture

263

Where to Store Events?

An event store is a database designed for tracking events as they occur and maintaining

a record of those events. Relational databases such as MySQL, Postgres, SQL Server, and

Oracle can be used to track events but have certain limitations for this use. A relational

database stores data in a tabular structure and isn’t a good match for event data; in

addition, facts stored in a relational database can be changed. You can present up-to-

date data from a relational database, but the limitation is to track every action.

Event stores record each event as it occurs, and no event may be overwritten or deleted.

For example, as shown in the Figure 6-10, ecommerce may allow each customer to browse

catalogs and items as a set of events. Adding each item to a wish list or shopping cart, adding

payment details, entering a shipping address, and checking out are all events that should be

recorded as they happen, and records of these events never change. Events recorded in an

event store are immutable. Facts derived from those events change over time; in the same

example, the customer enters different payment methods for each purchase.

Customer
Service

Order
ServiceCustomer ID First Name Last Name Phone No

Cust_Id Deepa Dasgupta 98xxxxxxxx

Order ID Status Order Total Item ID Customer ID

85939 Checked out 9389 4560 Cust_Id

653098 Shipped 9000 4562 Cust_id

Item Selected

Added to Shopping Cart

Order selected

Payment mode selected

Payment completed

Order shipped

Order 85939

Event Store

Event
Broker

Events

eCommerce Application

Figure 6-10. Event store

Event stores are ideal for applications where an audit trail, a machine learning

model, a record of actions, etc., is desired. This is common for all event-driven

transactional applications.

How to Get Data?

Getting data is often the hardest part; there are several ways to replicate data such as the

following:

• Using CDC

• Replicating data to a log and using the log as a source of truth

• Using connectors, either industry tools or custom made

Chapter 6 event-Driven arChiteCture

264

CDC

CDC is a process for identifying and capturing changes made to a data store; those

changes can then applied to another data repository such as a data mesh or data lake

or a data warehouse or event log by using event-driven architecture or other types of

integration tools like ETL. CDC is the basis for another system with the same incremental

changes or to store an audit trail of changes. The audit trail may subsequently be used

for other uses such as updating to a data lake or data warehouse or running machine

learning models across the changes.

CDC replicates data that has changed with database functions such as INSERT,

UPDATE, and DELETE and makes a record of the change available to the CDC tool and

event hub so it’s available for other sources. CDC tools rely on database logs, which keep

track of record changes internally for system recovery.

There are different approaches that a system can use to capture changes in the

transaction databases, such as the following:

• Database transaction logs

• Use of timestamp column in a table

• Event streaming

The CDC tools scan databases for timestamp updates; if there are any updates, the

transaction implements database triggers, and CDC tools capture the changes. This

method degrades the performance of a transaction database.

Every database logs its transaction. The log scanners can identify any changes in

these transactional logs, and the log scanner interprets and captures the changes in

these transaction logs.

Event streaming is commonly used and relevant in cloud native architecture. It

uses the publish/subscribe model of CDC, where a database triggers a log or publishes

change events to a table and shares those changes with the CDC tool. The series of

updates is sent to CDC in streams to be used to capture the changes in the CDC.

The event streams start the process of taking action on a series of data that originates

from a data-driven application in an enterprise that continuously creates data. The

term event refers to each data point in an application, and stream refers to the delivery

of those events. During the streaming, there are many actions or logic that can be

applied such as aggregation, analytics, enrichment, transformation, and ingestion. Event

streaming is the real-time processing of data as soon as changes occur.

Chapter 6 event-Driven arChiteCture

265

As shown in Figure 6-11, event stream processing works by handling a data set

as one data point at a time rather than as a whole data set. Event streams are about

continuously created data. In an event stream processing setup, there are two parts.

• The event storage

• Technology to take actions on changes in the database

The event storage stores data based on the timestamp. You might capture every

action of users in an ecommerce application, and each action of the user is an event.

This is handled by streaming technologies like Kafka, Kinesis, etc. The stream processors

act on the incoming data. The enriched stream events are published to the steaming

technologies for stream persistence.

 Real-Time Interactivity
Real-time interactivity is the backbone of the modern-day customer experience.

It establishes a scalable and agile event processing capability and generates new

representation.

To provide real-time connectivity, as shown in Figure 6-12, you need to use event

processing and data streaming to integrate services and systems in your enterprises and

merge, transform, and enrich relevant data across an organization.

INSERT, UPDATE, DELETE

CDC Event Hub

Data Lake

ML Models

Figure 6-11. Data streaming by using CDC and events

Chapter 6 event-Driven arChiteCture

266

A batch process is always too late to respond to customers and introduces a bumpy

load pattern. Distributed log systems offer very high throughput, strict ordering per log

file, and independent reads from multiple systems, but they do not support the event

streaming.

In an event hub or event streaming, a log is used instead of a service bus, and the

service listens to the log and publishes messages to the log, typically on topics.

 How to Use Existing Message Queues with Event
Streams?
You can leverage your existing architecture, skills, and investments, and you can

use event-driven techniques to offer more responsive and seamless integration with

existing and new event streams. Event streams like Kafka, IBM Event Streams, etc.,

support connectivity to the existing MQs like Rabbit MQ, Active MQ, or IBM MQ. By

combining the capabilities of event streams and message queues, you can combine your

transactions in a combined application.

Event Hub

Reactive API Gateway

Mobile Web Customer Support 3rd Party ServicesE
xt

er
na

l
In

te
rn

al

G
oo

gl
e

or
 A

pp
le

 P
us

h
A

P
I

New Store

Figure 6-12. Reactive architecture

Chapter 6 event-Driven arChiteCture

267

Let’s consider a use case, as shown in Figure 6-13, in the travel and hospitality

industry. The use cases are airline booking, car rental, hotel booking, flight status, and

a weather report to provide a more personalized experience to customers. In these use

cases, your client already developed part of the airline booking by using MQ, but you

need to provide seamless and more personalized information to your customer.

Let’s consider an example of a flight reservation; the management of flight

reservation applications is already available in an enterprise with the decoupled

architecture principles via MQ technologies. The airline management wants to enhance

its business by providing a personalized experience for its customers. As mentioned

earlier, the MQ is not meant for eventing and streaming. Therefore, I used event

streaming technologies such as Kafka, IBM, or Kinesis to stream across various systems

to provide seamless information to the customers.

To achieve interaction between MQs and event streams, you need to configure

MQ to send and receive messages and events by using connectors. Event streams

connect with various applications to manage a hotel reservation and location map,

local entertainment details, and map and car rentals from the car booking management

application.

For example, as shown in Figure 6-14, for the AMQ connection to Kafka, you need to

configure a connector in the dependency file.

Flight
Reservation

Flight StatusPayments Loyalty
Program

Message Broker
(AMQ/Rabbit MQ/IBMMQ…)

Event Streams
(Kafka, IBM,Kinesis…)

Hotel Management Car Rental
Management

Weather Management

Local Entertainmen

Figure 6-13. Collaboration of eventing system with message queue systems

Chapter 6 event-Driven arChiteCture

268

 Transaction Management in Event-Driven
Microservices
A legacy application usually has a single monolithic database. The ACID transactions

can be easily maintained in a single monolithic database. ACID means the following:

• A – Atomicity: A transaction is an atomic unit. All the instructions

within a transaction will successfully execute, or none of them will

execute.

• C – Consistency: A transaction can bring the database from only

one valid state to another, and data is in a consistent state when a

transaction starts and when it ends.

• I- Isolation: One state of a transaction is invisible to another

transaction. This ensures that concurrency is maintained across

transaction and leaves the database in the same state.

• D – Durability: Changes that have been committed to the database

should remain even in the case of failures.

As a result of ACID, your monolithic application and database can easily manage the

database transactions.

When you decouple an application to a cloud native service or develop a new

cloud native service, data access management becomes complex because of polyglot

<dependency>

<groupId>org.apache.camel.kafkaconnector</groupId>

<artifactId>camel-activemq-kafka-connector</artifactId>

<version>x.x.x</version>

</dependency>

use source connector for Kafka connector

connector.class=org.apache.camel.kafkaconnector.activemq.CamelActivemqSourceConnector

Figure 6-14. AMQ and Kafka configuration file

Chapter 6 event-Driven arChiteCture

269

principles. Adopting a polyglot principle ensures that the microservices are loosely

coupled and deploy and are managed independently of one another. If multiple services

access the same data, then you need to handle coordination across cloud native services.

One more obstacle is transaction management in polyglot microservices. The polyglot

principle illustrates that each microservices can use different databases because a

modern application stores diverse kinds of data, and one type of database is not always

beneficial.

For some cloud native service, a NoSQL database might have a more convenient data

model and offer much performance and scalability. It’s similar for search microservices;

you may be considering Elasticsearch for the graph-related store, and you might use

graph databases like Neo4J, etc. In a nutshell, in one system, you might use multiple

types of databases. Using polyglot persistence provides many benefits such as scalability,

manageability, and high availability but introduces distributed data management

challenges.

The following are the real challenges of using polyglot persistence in a

cloud native service:

• Implementing a business transaction across services

• Retrieving data from multiple services

Let’s analyze how these challenges impact your cloud native services.

The first challenge is implementing a business transaction that maintains

consistency across services. Let’s consider the example of an ecommerce application.

The ecommerce application consists of hundreds of cloud native services to manage

various business cases such as Order, Customer, Inventory, Catalog, etc.

In Figure 6-15, I am considering three cloud native services (Customer Service, Order

Service, and Inventory Service) to illustrate transaction management.

• Customer Service: The responsibility of this microservice is to

maintain customer information.

• Order Service: The responsibility of this microservice is the

management of orders.

• Inventory Service: The responsibility of this microservice is to manage

the inventory, and a new order doesn’t give confirmation if the

inventory is less than the number of product requested.

Chapter 6 event-Driven arChiteCture

270

In the traditional monolithic application of ecommerce, the Order service can simply

use an ACID transaction to check the availability in the inventory and confirm the order.

In the cloud native service architecture, the Customer, Order, and Inventory tables

are aligned to their services, as shown in Figure 6-15.

The Order service cannot access the Inventory service table directly and can be used

only through the Inventory service’s APIs or channels. When cloud native services such

as Customer, Order, and Inventory services decomposes a monolithic system into self-

encapsulated services, it can break transactions.

This means a local transaction of a monolithic application becomes distributed

into multiple services. Figure 6-16 shows how the transaction could be handled in

a monolithic ecommerce application; it shows a customer order example with a

monolithic ecommerce system using a local transaction.

Customer
Service

Order
Service

Customer ID First Name Last Name PhoneNo

Cust_Id Deepa Dasgupta 98xxxxxxxx

Order_ID Status Order Total Item ID Customer ID

85939 Checked out 9389 4560 Cust_Id

653098 Shipped 9000 4562 Cust_id

Inventory
Service

Inventory_ID Description Avail_Status Stock_Level Creation_Date

002 Masks Yes 10000 02042021

003 Watch Yes 2000 31032021

Figure 6-15. Cloud native service polyglot persistence

Chapter 6 event-Driven arChiteCture

271

As shown in Figure 6-16, the user logs in to the ecommerce system after

authentication, and the system creates a session. The user places an order in the system,

and the system creates a local transaction that manages multiple database tables by

using an ACID transaction. If one step fails, the transaction can roll back.

 Two-Phase Commit in Cloud Native Services
In the cloud native services architecture, the Order service could potentially use the

Inventory service through a distributed transaction’s two-phase commit (2PC). The

2PC protocol ensures a database commit is implemented in the places where a commit

operation is divided into two separate phases.

• Prepare phase

• Commit phase

Let me explain how you can use 2PC for a cloud native services architecture for the

Customer, Order, and Inventory services.

Figure 6-16. Monolithic ecommerce system using local transaction

Chapter 6 event-Driven arChiteCture

272

In the preparation phase, the Customer, Order, and Inventory services of the

transaction prepare to commit and notify the coordinator that they ready to complete

the transaction. In the commit phase, the transaction is either a commit or rollback

command issued by the transaction coordinator to all the services. Figure 6-17 shows the

2PC implementation for customer orders.

In Figure 6-18, when a customer creates an order, the coordinator or orchestrator

creates a global transaction with all the context information. It will interact with

the Order service to create an order, and the order replies to the coordinator after

completion of order creation. Then the coordinator sends a request to the Inventory

service the check the inventory availability by product ID. The Inventory service sends

Customer
Service

Order
Service

Customer ID First Name Last Name PhoneNo

Cust_Id Deepa Dasgupta 98xxxxxxxx

Order_ID Status Order Total Item ID Customer ID

85939 Checked out 9389 4560 Cust_Id

653098 Shipped 9000 4562 Cust_id

Inventory
Service

Inventory_ID Description Avail_Status Stock_Level Creation_Date

002 Masks Yes 10000 02042021

003 Watch Yes 2000 31032021

Coordinator
or

Orchestrator

Transactionns

Transactionns

Transactionns

Figure 6-17. 2PC commit

Chapter 6 event-Driven arChiteCture

273

OK, and the stock is available. The coordinator sends a message to the Order service

to confirm the order, and at the same time the coordinator sends a message to the

Inventory service to update it. At any point in time, if the service fails to process, then the

coordinator will abort the transaction and begin the rollback process.

The benefit of 2PC is strong consistency.

• Prepare and commit 2PC phases to guarantee that transactions are

atomic, either complete or none.

• 2PC allows read-write isolation; the changes are not reflected until

the coordinator is not performing the commit.

The disadvantage of 2PC is that you can solve the transaction by using 2PC, but it is

not at all a recommended approach for any cloud native architecture systems because of

the following reasons:

• 2PC is synchronous (blocking); it will lock all the cloud native

services until it completes the entire transaction. This could end up

as a bottleneck in the whole system.

Figure 6-18. Sequence steps of 2PC

Chapter 6 event-Driven arChiteCture

274

• This approach is very slow, due to the blocking of threads of all the

participants’ microservices.

• A coordinator or orchestrator is a single point of failure, and the whole

system’s transactions are based on the availability of a coordinator.

• The consistency, availability, and partition (CAP) theorem requires

you to choose between availability and ACID properties. Based on

my experience, the availability is better for cloud native.

• Modern databases such as NoSQL do not support 2PC.

 Transactions with Events
In an event-driven architecture, a microservice publishes an event based on when a

command is issued, and related cloud native services subscribe to events.

You can use events to implement transactions that span multiple participating

services. You need to implement multiple steps to complete one business transaction,

and each step in business transaction is processed with event publishes from previous

step and triggers transaction to the next steps.

Figure 6-19 shows how to implement transactions by using event-driven architecture

and event sourcing with the same use case as mentioned for 2PC.

Customer
Service

Order
Service

Customer ID First Name Last Name PhoneNo

Cust_Id Deepa Dasgupta 98xxxxxxxx

Order_ID Status Order Total Item ID Customer ID

85939 Checked out 9389 4560 Cust_Id

653098 Shipped 9000 4562 Cust_id

Inventory
Service

Inventory_ID Description Avail_Status Stock_Level Creation_Date

002 Masks Yes 10000 02042021

003 Watch Yes 2000 31032021

E
ventB

rokerorH
ub

Place an Order

Check Inventory

Check Inventory

Inventory ReservedInventory Reserved

Update Stock Update Stock

Order Confirmed

Order Confirmed

1 2

34

5 6

7

8

Event Store

All Events

Figure 6-19. Transactions with event

Chapter 6 event-Driven arChiteCture

275

As shown in Figure 6-20, the microservices publish and subscribe to an event via an

event broker and event store. Each service publishes an event to the event broker, and

other services subscribe to an event as and when it is published.

Here are the steps a place an order transaction:

 1. The customer places an order, and the Order service initiates an

order confirmation transaction, called Begin Transaction.

 2. The Order service publishes an event to check the inventory by

passing the product ID.

 3. The Inventory service subscribes to an event from the event

broker and checks the stock level against the product.

 4. If the stock available, then the Inventory service publishes an

event after reserving a stock.

 5. The Order service subscribes to an event and confirms the order.

 6. The Order service publishes an event to update a stock.

 7. The Order service publishes an event for confirming an order.

 8. The Inventory service subscribes to an event and updates the

stock level.

 9. The Customer service subscribes to the event for a confirmed

order and updates the details.

 10. The transaction ends.

Chapter 6 event-Driven arChiteCture

276

Here each service updates its database and publishes an event, and the event

broker saves each event in the event store. All these transactions do not adhere to

ACID properties, but all follow eventual consistency properties. Throughout this entire

transaction, atomicity is important. To manage the atomicity of your transaction, your

event store plays an important role. For example, for order creation, you need to store an

order in the order service database and publish an event to the event broker; these two

things should happen atomically. If the service fails after one task, then it becomes an

inconsistency in a transaction. To achieve this inconsistency, you need to manage the

event store table to store all kinds of events that occur in the whole transaction.

The event sourcing and event table persist all kinds of events in a transaction; if any

transaction fails in between, the service can construct a state by using the event store, as

shown in Figure 6-21, and each service publishes and subscribes to an event by using the

event broker.

Figure 6-20. Event transaction sequence diagram

Chapter 6 event-Driven arChiteCture

277

One way of achieving an event-driven transaction is to use the saga pattern and

CQRS, which are explained in Chapter 4.

 Event-Driven Microservices Interaction
At a high level, there are two approaches to getting microservices to work together

toward a common goal.

• Orchestration with synchronous

• Choreography with asynchronous

Orchestration entails actively controlling microservices like a conductor directing

the musicians of an orchestra. Choreography entails establishing a pattern that

microservices follow as the music plays, without requiring supervision or instructions.

The synchronous communication and orchestration across microservices

are managed by the orchestrator. The orchestrator is not a new concept; it has

existed since the SOA and ESB implementations were introduced. The ESB acts as

an orchestrator and orchestrates across heterogeneous systems in an enterprise

ecosystem. Let’s look at an example of a utility payment from the banking web

application. You want to pay an electricity bill through your web app, so you initiate

the transaction by clicking the utility payment link. The web application sends

Customer
Service

Order
ServiceCustomer ID First Name Last Name Phone No

Cust_Id Deepa Dasgupta 98xxxxxxxx

Order ID Status Order Total Item ID Customer ID

85939 Checked out 9389 4560 Cust_Id

653098 Shipped 9000 4562 Cust_id

Place Order

Order Created

Update Stocks

Order Confirmed

Order 85939

Event Store

Event
Broker

Events

Inventory
Service

Inventory_ID Description Avail_Status Stock_Level Creation_Date

002 Masks Yes 10000 02042021

003 Watch Yes 2000 31032021

Publish an
Event

Subscribe an
Event

Figure 6-21. Event store in a transaction

Chapter 6 event-Driven arChiteCture

278

SOA requests to the ESB, and the ESB must orchestrate between the core banking

application and utility payment gateway. It follows these steps:

 1. The ESB calls the core banking API to credit an amount.

 2. The ESB calls the utility gateway to issue a request for the

payment.

 3. The utility gateway responds with success.

 4. The ESB calls the core banking API for confirmation and credits

an amount in your savings bank account.

 5. If any failure occurs in the utility gateway, then ESB needs to call

the core banking API to reverse a transaction.

You may face several challenges in the microservice implementation related to

how microservices interact with each other to complete a business use case. Choosing

between orchestration and choreography will make a difference in how seamlessly the

services function.

In an orchestra, each musician is awaiting a command from the conductor. They

are each expert in playing their instrument, and yet they’d be collectively lost without

the conductor. In orchestration, one service or any tools like Netflix Conductor or Uber

Credence handle all communication between microservices and direct each service to

perform the intended functions.

The downside of orchestration is the orchestrator is a single point of failure, and the

controller needs to directly communicate with each service and wait for each service’s

response. These interactions are occurring across the network. Invocations and I/O

blocking take longer, block threads, and impact service availability. In orchestration,

each service is tightly dependent on other services, and they are synchronous, and each

service must explicitly receive and respond to requests to make the whole service work;

failure at any point could stop the process. The orchestration could rely on RESTful

APIs. For some use cases, the orchestration is best suited; an example is Netflix using

Conductor.

A choreography-based approach is like the dancers listening to the music and making

the necessary moves because all dancers follow the same choreography. In this approach,

you will avoid dependencies. So, each service works loosely coupled and independently.

Chapter 6 event-Driven arChiteCture

279

In choreography, as shown in Figure 6-22, the event broker exchanges the

information between microservices. It is like a fire-and-forget-it, decentralized way of

broadcasting data known as events, and everything happens asynchronously, without

waiting for a response. Each service observes its environment and subscribes to the

message events to that channel and will know what to do from there.

The choreography isolates the microservices; this means if one service fails or fails

to respond, it does not impact as a whole use case. You can use a various pattern like a

circuit breaker to handle the failure.

The following are the advantages of choreography:

• Processing is faster as there is no requirement of the central

conductor.

• There is no single point of failure.

• Each service is loosely coupled and is not aware of each service;

therefore, it’s easy to add and remove services.

• This resonated well with cloud native architecture.

• You can use several patterns like circuit breaker, CQRS, or

event sourcing for effective management of interactions across

microservices.

The disadvantages are that it is complex and requires special skills to configure and

manage eventing capabilities.

Event Broker

Order
Service

Payment
Service

Wishlist
Service

Figure 6-22. Choreography in services

Chapter 6 event-Driven arChiteCture

280

 Interaction Between Microservices
Managing across a few microservices is easy and does not require any extra management

layer, but when microservices grow in your enterprises, you may face many challenges of

managing services in a cloud native environment.

Many loosely coupled services that are independently and frequently changing do

promote agility but introduce a lot of management challenges. Some of these challenges

are traffic management, communication security, communication failures, etc. Many

of these challenges can be resolved directly by writing code in a service, but embedding

these configurations in code poses a lot of challenges because these configurations are

complex and extremely error prone.

As shown in Figure 6-23, there are two ways you can handle these challenges

without embedding code in a service for API interaction and event interaction across

microservices.

• Service mesh: Provides connection-level routing and traffic management

for synchronous communication (HTTP(s)) interaction through sidecar

injection into Kubernetes pods. The service mesh is focused on routing

connections between endpoints by hijacking the connection requests

and overriding the connection requests from the microservices.

Network

ServiceMesh Event Mesh

Synchronous Microservices Asynchronous Microservices
Hybrid Microservices

PaaS/CaaS/Virtualiza�on

Figure 6-23. Mesh architecture

Chapter 6 event-Driven arChiteCture

281

• Event mesh: Handles asynchronous event-driven routing of

information between microservices. It intelligently routes events

between the event brokers, allowing the cluster or brokers to appear

as a single virtual event broker.

The mesh frameworks allow you to observe, secure, and connect microservices. They

don’t establish connectivity between microservices but instead have policies and control

applications on top of the existing network to govern how microservices interact. These

frameworks shift the implementation logic out of the microservices code and move it to

the network.

The service mesh and event mesh are not mutually exclusive, and you may consider

implementing both depending on the use cases.

 Service Mesh
A gateway centralizes the configuration and routes requests to the relevant

microservices, and it can handle orchestration but with limitations.

The advent of cloud native architecture and the use of container and microservices

platforms create a need for an orchestrator. The containers and orchestrators, coupled

with the microservices for their speed to market and silos of the development pods, lead

to service sprawl. The ability to run several distributed services requires a service mesh.

A service mesh solves the problems where microservices communicate using

APIs. A service mesh uses the sidecar pattern to establish communication between

microservices and ensures that the communication among containerized and often

ephemeral application infrastructure services is fast, reliable, and secure.

Service Mesh Implementation

As shown in Figure 6-24, a service mesh will have a control plane to program the mesh

and sidecar and serve as the control point for securing, observing, and routing decisions

between services. The control plane transfers configurations to the proxies, and each

proxy intercepts all inbound and outbound traffic. By intercepting traffic, the proxies will

inject behavior into the communication flows between microservices.

Chapter 6 event-Driven arChiteCture

282

The following behavior will be handled by the service mesh:

• Traffic shaping with dynamic routing controls

• Resiliency support for service communication such as circuit

breakers, timeouts, and retries

• Observability of traffic between services

• Tracing of communication flows

• Secure communication between services

In Figure 6-24, all services A, B, and C are executed through sidecar proxies. By

having communication routed between the proxies, the proxies serve as a key control

point for performing a task such as initiating Transport Layer Security (TLS) handshakes

for encrypted communication with the previous behaviors.

Service meshes route data based on the connection URL and the ability to redirect a

connection based on the content routing rules against the URL and HTTP header

information.

Services meshes are one layer of your infrastructure and don’t provide all that you

need. They do give you the ability to bridge the divide between your infrastructure and

your application.

Kubernetes Cluster

Service Mesh Control Plane

Service A

Side Car Proxy

Container

Service B

Side Car Proxy

Container

Service C

Side Car Proxy

Container

Figure 6-24. Service mesh architecture

Chapter 6 event-Driven arChiteCture

283

Advantages and Disadvantages of Service Meshes

The advantages of service meshe is that they offer distributed debugging, provide

topology and dependency management, participate in application lifecycle

management, and participate in service and product management, offer deeper

observability, provide multitenancy, have multicluster meshes, allow advanced circuit

breakers with fallback paths, etc.

The service mesh provides a simpler network configuration for the microservices but

with some caveats.

• The service mesh has no support for asynchronous events or stream

processing.

• Most traffic and network services apply only to synchronous

communication and the HTTP and GRPC protocols.

• A service mesh limits the connection-oriented routing and targeting

of the transport connection, not the routing of actual data.

Microservices are using diverse message interaction patterns including publish/

subscribe, point-to-point, push-with-reply, queuing, etc. In today’s world, the

microservices require a higher throughput and lower latency than you can meet by

using Kubernetes clusters. It takes choreography rather than orchestration processing. In

cloud native architecture, microservices require event-driven architecture because they

require eventing capability, performance, and real-time processing that goes beyond a

Kubernetes cluster. Here, you require an event mesh.

 Event Mesh
A cloud native modern enterprise embraces event architecture, and every event-driven

application requires a robust central system to move events quickly, reliably, and

securely from publisher to subscriber.

An event mesh is an architectural layer that dynamically routes events from one

microservice to another irrespective of deployment location. The event mesh is a key

enabler for event-driven architecture. An event mesh is a dynamic infrastructure that

propagates events across disparate cloud platforms and performs protocol translation.

A single event broker can handle only a certain volume of requests and

microservices. There are different ways to scale, and one way is the event mesh.

Chapter 6 event-Driven arChiteCture

284

In an event mesh, there is no underlying technology such as Kubernetes, and event

brokers are designed to operate with or without a cloud. Event meshes route data based

on topics and are transported with the event payload. It is a dynamic infrastructure that

propagates events across multicloud platforms and performs protocol translations.

Figure 6-25 illustrates elements of an event mesh, and events can flow bi-

directionally across the microservices irrespective of where they are deployed, whether it

is in the same cloud, multicloud, or hybrid cloud.

An event mesh is configured along with an event broker. The event mesh translates

any application into different languages and is deployed in different clouds. It publishes

an event and lets the subscriber of another application deployed in a different cloud

subscribe to that event . It also can be a different API altogether. This helps to separate

the configuration from the business logic in microservices.

Characteristics of Event Mesh

The following are the characteristics of an event mesh:

• Made up of interconnected event brokers

• Environment agnostics; can deploy in any public cloud, PaaS, or non-

cloud environment

• Dynamic and intelligent routing

• Security and WAN optimization

Event Mesh

Service A

Container

Service B

Container

Service C

Container

Figure 6-25. Event mesh architecture

Chapter 6 event-Driven arChiteCture

285

Event Mesh Capabilities

The following are the event mesh capabilities, and they are required for modern-day

architecture:

• Supports publish and subscribe for events in various protocols such

as Kafka, Knative, HTTP, AMQP, etc.

• Support for multiprotocol bridges between disparate events,

microservices, and messaging platforms

• Supports on-premises and multicloud deployment to provide a

uniform infrastructure

• Secure transmission of event messages

How Do Event Meshes Work?

Subscribers of events are connected to the event broker and register with the topic and

configure the event type. When event messages arrive in the event broker, Event mesh

routes them to the subscriber based on their subscriptions. In Figure 6-26, /Inventory

would go to the Inventory service, the event with /Payment would be routed to the

Payment service, and the /dispatch event would be routed to the Dispatch service.

Order

Container

Inventory

Container

/Payment

/Inventory

/dispatch

Event Broker

Payment

Dispatch

/Inventory

/Payment

/Dispatch
Event Messages

Publish

Subscribe to Topic

Subscribe to Topic

Subscribe to Topic

Container

Container

Figure 6-26. Event mesh implementation

Chapter 6 event-Driven arChiteCture

286

The consuming microservices such as Inventory, Payment, and Dispatch are

processing asynchronously and potentially in parallel. Each service uses processing

overhead only when the event broker forwards an event based on the subscriptions. The

event broker abstracts the routing of events between the publisher and the subscriber.

All event brokers persist messages and don’t need to be available when the event is

initially published. They have the option of receiving events that were published while

they were offline, but this impacts the customer experience.

Event Mesh in a Cluster of Brokers

I explained how the event broker manages the routing rules in a single broker. The

complexity arises when you have a cluster of brokers, and each message is subscribed

in a separate event broker. How will you manage this? The one option is to embed code

in your microservices or configure them in the event broker to manage in a cluster. This

is where an event mesh is useful to coordinate and collaborate across multiple event

brokers to streamline the routing and publishing and subscription.

In Figure 6-27, the Order microservice sends a message to Event Broker 1 and asks

for an order from the location to check inventory, local distribution, and local dispatch.

All four microservices are deployed in the separate cloud with respective event brokers.

For example, the Inventory microservice asks for any order microservices to check a

local inventory where the order is originated. All brokers are connected with the event

mesh, so that subscription is forwarded to the other event brokers in another cloud.

When the matching event is published to Event Broker 1, the event mesh will forward

it to Event Broker 2, because no microservices are connected to another event broker

for this request, but other microservices are required to subscribe to other order events

once the inventory is confirmed. The Inventory microservices checked the inventory

and published an event to Event Broker 2 for availability and an event mesh is routed to

Event Broker 1.

Chapter 6 event-Driven arChiteCture

287

Event Broker 3

Order

Container

Distribution
DispatchInventory

Event Broker 4Event Broker 1 Event Broker 2

Amazon Web Service (AWS) Google Cloud Microsoft Azure

Event Mesh

Control Plane and Data Plane Routing

Container Container Container

Figure 6-27. Event mesh across cloud providers

The Order microservice confirms the order and publishes an event called confirm. The

event mesh routes to Event Broker 2, and the Inventory microservice subscribes to confirm

events, updates stocks, and publishes an event called “confirm with the item” to Event

Broker 2. The event mesh checks Event Broker 3 and Event Broker 4 for event subscription.

The Distribution microservice subscribes to “confirm with the item,” and the event mesh

routes to Event Broker 3. The distribution microservice consumes and is ready for dispatch

by publishing events to “dispatch” to Event Broker 3. The event mesh routes to Event

Broker 4 for dispatch. All these microservices and event brokers are deployed in multicloud

environments, and the event mesh can route within the cloud or multicloud environment.

While each event broker provides its local routing table based on topics, the control

plane of the event mesh dynamically and transparently extends that routing information

among all interconnected event mesh broker nodes like the Internet does for IP routes.

This is the way the event mesh makes many event brokers look like a single virtual

event broker; it uses broker routing protocols to intelligently, dynamically, and efficiently

route events.

Event Mesh’s Control Plane

Not all event brokers enable an event mesh. The clustering of event brokers to provide

high availability or local horizontal scaling is not an event mesh. If the local cluster does

not provide intelligent routing between other clusters, then the event broker doesn’t

constitute an event mesh. Every event broker that does enable an event mesh provides a

control plane.

Chapter 6 event-Driven arChiteCture

288

The event broker must provide the tooling and capabilities like Kubernetes for

service meshes. The control plane must provide high availability (HA) for event nodes

and disaster recovery (DR) for broker nodes. The characteristics of the control plane are

as follows:

• Configuration and monitoring of event broker nods in an HA cluster

• Dynamic real-time updates for routing tables on all event brokers

nodes and clusters

The service mesh and event mesh work in different environments and for different

use cases, but both can collaborate in an application. For example, a few microservices

are required to work with synchronous HTTPS or GRPC, and a few microservices require

an event-driven capability. In this case, the service mesh can be used for synchronous

microservices, and the event mesh can be used for event-driven microservices

 Box- and Port-Style Event-Driven Architecture
The box- and port-style pattern supports the observability of microservices or

components. It provides a needed level of agility, timelines, information availability,

and simplicity in a cost-effective way and provides the surrounding observability

component to business services. This observability component can be deployed in the

containers, cloud, and on-premises. Figure 6-28 illustrates how business components or

microservices are wrapped with a componentless pattern and with observability.

Chapter 6 event-Driven arChiteCture

289

Business Component 1
Input Port Output Port

Error, Log &
Exception Port

Service Port

Box & Port
Component Less

Pattern

Monitoring

Business Component 2

Input Port Output Port

Error, Log &
Exception Port

Service Port

Box & Port
Component Less

Pattern

Monitoring

Control Port Control Port

Director

Execution
Management

Task Queues

Choreographe
r/OrchestratorError DBMonitoring DB

E
ve

nt
M

es
sa

ge

E
ve

nt
M

e s
sa

ge
Business EventsBusiness Events Business Events

Figure 6-28. Box- and port-style component less with observability

On a distributed event-based platform, events are passed from one component to

another component by using the message channels or events. This pattern externalizes

all observability, interaction with other components, etc., from the core business logic.

The ports are enabled for interaction between services or components.

As shown in Figure 6-28, the box and port are technical infrastructure components

and support any kind of services irrespective of language and platform. The responsibility

of this pattern is to convert message formats and capture errors and exceptions, log

messages and traces, configure to topics, etc. This component supports observability

to track each business component and supports multiple protocols to interact with

business services. The only responsibility of the business service/component is business

functionality, and the remaining technical details are maintained by the box and port.

The wrapper component provides an essential level of instrumentation, which

means that it is possible to observe the processing of any component from outside. For

example, the monitoring port is used to publish performance and other statistics to the

dashboard. The operational monitoring includes but not limited to the following:

• Heartbeat monitoring

• The actual latency of every input-to-output event flow as well as

average latency over a time window

Chapter 6 event-Driven arChiteCture

290

• The actual wait time for the input event

• Error rates, etc.

The director is responsible for configuring an application into the technical

component at startup time and lasts until the component or service shuts down. It

does this by using the event delivery platform through the control port. The wiring

instructions can be controlled by the director through the control port.

Components or services work with input and output ports. This is quite different

from a normal object-oriented design, where one object can invoke a method on

another object. Components do not invoke methods, nor do they call services or

other components in an event-driven architecture. They send events to some other

component, and then they continue processing input events. A response to a request

may arrive asynchronously at an input port, at which point the component correlates

that response to an earlier request and acts accordingly.

Characteristics of Box- and Port-Style Architecture
The following are the characteristics of box and port style:

• Real-time operational behavior: It can change the behavior of the

system to dynamically react to incoming events.

• Observations: It observes all kinds of behavior and generates alerts

when such behavior occurs and predicts failures based on the

historical data.

• Information dissemination: It sends the right information to the right

recipient with personalization.

• Active and predictive diagnostics: It can diagnose a problem that

occurred based on historical data, predict the details, send alerts to

the recipients, and send details to the dashboard.

• Autoscaling: Dynamic load distribution patterns such as queue with

multiple subscribers are used to ensure that the workload is evenly

distributed across all the components. The dashboard spins up the

component by sending an instruction to the component with the

manual intervention of the configuration file for Docker images.

Chapter 6 event-Driven arChiteCture

291

This architecture style provides the most benefit to the existing legacy component-

based systems where the observability details are hard-coded as part of the business

logic in a service.

 DevOps for Events
Event-driven cloud native architecture has gained a lot of attention; therefore, you need

to have a DevOps pipeline for an event-driven architecture. Event-based systems could

be comprised of many different enabling technologies such as Kafka, NATS, Solace,

Confluent, microservices, serverless, CDC, etc.

The generic guidelines for DevOps are as follows:

• Treat events as API contracts; other systems may be reliant on event

producer.

• Use schemas to encode events, with shared schema registries for

access.

• Treat event configuration as code. The topics should be created

by using scripts, and the event schema must be checked into your

Artefactory tool.

• Use infrastructure as code to automate the configuration, installation, etc.

 Event Security
In a distributed event-driven architecture, you must balance data democratization with

the protection of sensitive data. The events must be encrypted between the publisher

and the subscriber.

These are the types of encrypting events:

• Events in transit should always be encrypted using industry-standard

encryption methodologies such as SSL/TLS.

• Disks/storage holding past events should always be encrypted in the

file system or event store database.

• File-level encryption is the most secure way to encrypt the data, but it

is more expensive; therefore, consider this only for sensitive data.

Chapter 6 event-Driven arChiteCture

292

Field-Level Encryption Consideration
All data should be encrypted in transit and at rest. The level of field encryption depends

on risk tolerance. If the topic contains no sensitive data, then do not use field- level

encryption; therefore, you need a balance between security and performance. Figure 6-29

gives a clear strategy to choose what level of encryption is required in your system.

 Cloud Events
In cloud native architecture, you can find events everywhere, and each event is

published by a publisher with different event specifications. There is no common,

standard way of publishing events in enterprises. This leads to constant learning across

teams, leads to more error, and your Confluence documents might be full of event

specifications across agile pods to refer to. This limits the potential libraries, tooling, and

infrastructure to aid the delivery of events across systems in an enterprise.

As explained earlier in this chapter, an event includes context and data about an

occurrence, and each occurrence is uniquely identified by the data of the event. The

event represents facts and no destination, whereas the message conveys intent and

transporting data from source to destination.

Events can be delivered through various industry-standard protocols, for example,

AMQP, HTTP, MQTT, SMTP, and open-source protocols such as NATS, Kafka, or cloud

vendor protocols, AWS Kinesis, Azure Event Grid, Google Pub/sub, etc.

The objective of the Cloud Events specification is to define the interoperability of

event systems that allow services to produce or consume events, whereas both the teams

can be developed and deployed independently.

The Cloud Events specification contains a set of metadata, known as attributes,

about the event being transferred between systems and how those pieces of metadata

should appear in messages. This metadata contains a minimal set of information

None Shared Key Key/Entity Tokenization Key/Message

Short Lived topics
Domain specific topics

All Topics use same
encryp�on keys

Encrypt fields based
on the

person/business
en�ty of the message

Use a third-party service
to tokenize fields Every message has

separate encryp�on key

Flexible, Fast More Secure

Figure 6-29. Encryption level

Chapter 6 event-Driven arChiteCture

293

for routing to the respective services and helps to process the events. Along with this

metadata, there is also a specification to serialize the events in different formats like

JSON, and protocols like HTTP, AMQP, etc.

The Cloud Events specification defines four kinds of protocol elements.

• Base specification: Defines abstract information of attributes and

associated rules.

• The extensions: Includes use-case-specific and overlapping sets of

extension attributes and associated rules.

• Event format encoding: Defines how the information model of the

base specification with an extension is encoded for mapping the

header and payload of a protocol

• Protocol binding: Defines the application protocol transport frame, in

the case of HTTP to the HTTP messages.

As shown in Figure 6-30, the Cloud Events specification ensures a consistent

approach to traceability, schema version, origin, etc. It is just a standard and extended

to meet the needs of your enterprise systems. For more details, refer to https://

cloudevents.io/.

{
"specversion" : "1.0",

"type" : "com.github.pull_request.opened",

"source" : "h�ps://github.com/cloudevents/spec/pull",

"subject" : "123",
"id" : "A234-1234-1234",
"�me" : "2018-04-05T17:31:00Z",

"comexampleextension1" : "value",
"comexampleothervalue" : 5,
"dataconten�ype" : "text/xml",
“traceID” : “some-guid-4444-5555”,
“Schema” : h�ps://schemaregistry.com/event-schema-1,
"data" : "<much wow=\"xml\"/>“

}

A

B

C

D

Figure 6-30. Cloud event metadata

Chapter 6 event-Driven arChiteCture

https://cloudevents.io/
https://cloudevents.io/

294

• A: The spec version is the version of the specification that the

message is encoded to. This should match the Cloud Events

specification. Between this marker and B are some of the Cloud

Events spec fields you might find.

• B: This field is an “extension” of the Cloud Events specification. Here,

the trace ID is used to track the event from place to place, usually

tied to the origin. For example, a web request might be the originator

of this trace ID, and all subsequent messages that are created

throughout the system have this same trace ID. To define this tracer,

consider the OpenTracing initiative.

• C: This schema is another Cloud Events extension, which declares

how the data field is laid out. This allows the message to be decoded

by services against a schema registry.

• D: The data field contains the actual important content, or business

information, about an event. This data can be any format you like

but should conform to a schema. The way data is structured within

the data element is completely independent of the Cloud Events

specification.

 Summary
Constantly changing, real-time business needs demand cloud native transformation.

The world is not slowing down, so your best bet is to identify ways you can cost

effectively and efficiently upgrade your enterprise architecture to keep up with the times.

Events can float around on an event mesh to be consumed and acted upon by your

microservices. Architects and engineers need real-time implementation details that help

you to work together to achieve the real-time, event-driven goals. In this chapter, you

learned all the details of an event-driven architecture and its implementation.

Chapter 6 event-Driven arChiteCture

295
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_7

CHAPTER 7

Serverless Architecture
In the previous chapters, I discussed microservices and event-driven concepts and their

architecture and use cases. In this chapter, I will explain serverless and function as a

service (FaaS) and show how they are useful for your enterprises, and I will present some

relevant use cases.

Serverless architecture allows the rapid development of cloud native applications

that can handle various levels of traffic. The term serverless refers to the fact that the

cloud provider provides a service without requiring you to manage or administer servers.

Your code is executed on demand, as it is needed. You do not need to deal with physical

servers, and the complexity of how compute resources are provided is hidden from you.

Serverless is a way to define the service, practices, and strategies to be agility in your

development so you can embrace innovation and respond faster to business disruptions.

With serverless computing, you don’t need to worry about capacity management,

infrastructure management, and so on.

Serverless architecture is still maturing, and all the major cloud providers offer

various serverless services, including FaaS, databases, IoT services, and more.

In this chapter, I will cover these details of serverless architectures:

• Introduction to serverless computing and architecture

• Usage of serverless

• Journey to serverless architecture

• Relevant use cases

• The cost benefits of serverless

• Serverless in various cloud providers

https://doi.org/10.1007/978-1-4842-7226-8_7#DOI

296

 Evolution of Serverless
So that you can understand serverless better, I will explain how servers have evolved in

the context of serverless. A more thorough history of servers in general has already been

provided.

As shown in Figure 7-1, the deployment process has had several evolutions:

• Bare-metal technology is a large physical server with a single

operating system.

• Virtualization technology virtualizes bare-metal servers into

individual virtual machine resources.

• Each virtual machine is subdivided into containers.

• A service built on containers requires a function to run on managed

services, called serverless.

The evolution of IT architecture has been driven by a series of technological

innovations. In this process, the resources are broken down, operational efficiency is

increased, and management of software is simplified. The innovation of IT architecture

has followed a few characteristics:

• Hardware resources become more granular.

• Resource utilization increases.

• Operation management is gradually reduced.

• Automation and intelligence are increased.

• IT is more focused on solving business problems.

ServerlessContainerCloud
ComputingVirtualizationBare Metal

Figure 7-1. Evolution of serverless

Chapter 7 ServerleSS arChiteCture

297

Enterprises are already getting the benefits of VMs and containers in a cloud

including cost savings, operationalization, improved agility, etc. Although the cloud

eliminates the need for enterprises to manage their own data center, any server-based

architecture still requires enterprises to architect for scalability, high availability,

reliability, fault tolerance, etc., and companies need to take responsibility for patching

and deployment.

Serverless is designed to address these challenges by providing enterprises with

a different way of approaching application design. It eliminates the complexity of

managing the servers at all levels of the technology stack and implements effective pay-

per request billing models.

 What Is Serverless Computing?
Serverless is a way of describing the services, practices, and strategies that enable you

to adopt agility in your development so you can embrace innovation culture and move

faster to market.

Serverless computing is a method of providing back-end services on an as-

used basis, and it allows you to write and deploy programs without worrying about

infrastructure management.

The demand for serverless technologies is increased because it provides an

opportunity for faster time to market by dynamically allocating the required compute

and memory based on load.

Serverless services have built-in autoscaling, high availability, and pay-as-you-go

billing models. This provides a cost savings through infrastructure management, which

enables enterprises to use an IT budget for innovation and upskilling. The pay-as-you-

go model with serverless technologies shifts from having capital expenditures to flexible

on-demand consumption, allowing users to scale, customize, and provision computing

resources as and when required.

As explained earlier in the book, for a traditional architecture, if you want to

develop a web application or any software, you had to own the physical hardware,

with it managed by you or managed a third party to run a server. This required a lot of

management and resources, and in the end, it was expensive.

Serverless technologies effectively shift the operation management from you to the

cloud provider. With a serverless operational model, there are no servers to provision,

patch, or manage, and there is no management of software such as installation,

Chapter 7 ServerleSS arChiteCture

298

operations, etc. Many enterprises that have embraced serverless as mainstream are

adopting more frequent releases of services, resulting in a faster time to market.

Serverless architecture can be used for many types of software services. Some of

the common types of systems that are suited to a serverless architecture include web

applications, event-driven data processing, event workflows, scheduled tasks, mobile

applications, chatbots, and IoT systems. Figure 7-2 shows an example of a system that

has a serverless architecture.

Serverless computing has three main benefits.

• No server management: There is no operating system to install or

patch.

• Flexible scaling: Scale is managed for you or is done in a way that’s

defined in terms of the actual capacity of the application as opposed

to having to consider things such as CPUs and memory and other

kinds of server-based concepts.

• Automated high availability: All the serverless components of the

overall platform have built-in high availability. You don’t need to

design for HA. Serverless gets HA out of the box.

User Interface

API Gateway

Func�on Instance Func�on Instance Func�on Instance

Figure 7-2. Serverless computing architecture

Chapter 7 ServerleSS arChiteCture

299

To summarize, serverless computing still has the virtualized, containerized

services underneath it, but people don’t interact with those servers anymore. All

those infrastructure tasks, such as provisioning, scaling, and cleaning up, are done by

machines in a completely automated lifecycle.

 Essential Components of Serverless
Serverless architectures dramatically simplify the development of event-driven

applications and microservices by removing the need to develop and maintain many

complex architectural resources such as service meshes, event meshes, dynamic

discovery systems, load balancers, retries, circuit breakers, bulkheads, topics, and

queues. Instead, you need to focus on four essential components, as shown in Figure 7-3.

Event Triggered
The applications provide a constant stream of events to which functions subscribe

and act upon. The details of the event are stored, and a trigger for the function occurs.

Examples are triggers, orders placed, comments posted, setting changes, images

uploaded, etc.

Data Storage
Storage ranges from simple disk storage to highly scalable data stores. Storage is

always provided as software as a service (SaaS) by the cloud provider. Examples are

details stored, state stored, etc.

SERVERLESSFUNCTIONS DATA
STORAGE

EVENT
TRIGGERED

API
GATEWAY

Figure 7-3. Elements of serverless

Chapter 7 ServerleSS arChiteCture

300

Functions
Functions are the actual business logic that is spawned solely to process an event. As

events come in, they are processed based on the request.

API Gateway
A light API gateway provided by the cloud platform may be in the form of streaming

or REST calls to support endpoints for mobile devices. Examples are outcomes,

notifications created, photos shared, analytics generated, etc.

 Serverless and Event-Driven Computing
The event-driven architecture (EDA) of serverless computing means that every

component is independent and decoupled. The ability to listen to events and react to

them once they happen in an elastic, scalable manner is a key advantage of serverless.

One of the key benefits of an event-driven approach in a serverless architecture will

help to eliminate waste from an actual infrastructure perspective. Most servers in cloud

services are in data centers, waiting idle, listening to a port waiting for asynchronous

requests to come in, or waiting for an event to happen. Whether your server is active or

idle, you still need to pay for it.

With serverless, the whole model is turned on its head to where now you are paying

only for the compute time that you’re using. So, if your application goes through periods

of low utilization and periods of high utilization, as an engineer you only need to worry

about how to handle each event. Then your infrastructure, including your actual costs

to run that application, accrue only when the code itself is running in response to those

events.

 Serverless Design Principles
Serverless eliminates a lot of common application architecture problems. When

developing a serverless system, it’s more important to follow modern-day architecture

principles along with related serverless architecture principles. Several principles can

be used to design your application with serverless architecture. These define what

serverless architecture looks like and what the properties exhibit. However, serverless

makes it easy for developers to design and develop applications more readily. This

reduces a lot of operational overhead by adhering to some of the 12 Factor App

Chapter 7 ServerleSS arChiteCture

301

principles that are inherited when adopting serverless frameworks. The following

sections provide you with more clarity when designing an application using serverless

architecture.

 Stateless Functions
FaaS is ephemeral; hence, you can’t store anything in memory because the compute

containers running your code will automatically be created and destroyed by your

application. Stateless is good to scale applications horizontally. Follow the single

responsibility principle and only write functions that have a single responsibility and

follow the right granularity. The appropriate granularity should be decided based on

requirements and context.

 Push-Based and Event-Driven Pipelines
Create push-based, event-driven pipelines to carry out complex computations and tasks.

Use a choreography approach to interact between various serverless functions and try to

build a way to create event-driven pipelines. Avoid polling or manual intervention where

possible.

 Config: Store Config in the Environment
FaaS providers such as AWS Lambda, Azure Functions, and Google Cloud Functions

have separate environment variable sections where you can configure the key-value

pairs that are made available to your functions at runtime. These configs can include

resource handles, credentials, or environment-specific variables. So, by design, FaaS

providers allow you to separate these from the code and eliminate the need to use any

heavy frameworks.

 Backing Services: Treat Backing Services as Attached
Resources
FaaS frameworks inherently provide a clear separation between the business function

code and the resources it accesses through the network. The framework does not allow

you to run a dependent service or multiple processes inside the function.

Chapter 7 ServerleSS arChiteCture

302

 Concurrency: Scaling Out via the Process Model
FaaS framework scaling comes out of the box as FaaS frameworks are designed to

automatically scale in and out to meet the demands.

 Disposability: Maximize Robustness with Quick Startup
and Shutdown
FaaS frameworks are ephemeral. A container cannot be reused, so when a new function

starts, it is not possible to start quickly, and there is some latency about setting up the

execution context and bootstrapping. You need to follow best practices to keep your

container warm. Usually, when you invoke frameworks the first time, it does download

the dependencies, creating a container, and it starts the application before executing the

code. The whole duration is known as the cold-start time. Once the container is up and

running, for subsequent function invocation, the framework is already initialized, and

it just needs to execute the function logic, called the warm-start time. You need to make

sure you choose the appropriate steps to be the warm-start time.

 Key Considerations for Serverless Computing
When you are considering the serverless platform, you need a culture of cloud and a

culture of automation, and you need to embrace a nimble architecture. The following are

a few guidelines that will help you to take full advantage of serverless computing:

Leverage the entire platform in the cloud appropriately.

The best result occurs when an enterprise starts by identifying

the use cases that will optimize the dynamic serverless platform.

To help enterprises achieve this goal, cloud providers offer a

rich set of tools that integrate effectively with the serverless

platform. A large independent software provider like open source

or commercial software (COTS) also provides deployment,

monitoring, and storage solutions with great support for serverless

applications on the cloud. These include NoSQL database

partners such as MongoDB, Atlas, Couchbase, etc.; continuous

integration (CI) and continuous delivery (CD) partners such as

Chapter 7 ServerleSS arChiteCture

303

CodeShip and CloudBees for managing automated deployment

pipelines; and monitoring partners such as Dynatrace, SignalFx,

and I/O pipes with deep integration available for serverless

platforms like AWS Lambda, Azure Functions, Google Cloud

Functions, etc.

Don’t try to reuse existing application code in a serverless
environment.

You may have a ready application that was developed earlier and

would like to repurpose it. But if you do that, you’ll end up having

way more code and heft than what the serverless environment

is designed for. The suggestion is to refactor your code to adopt

serverless characteristics such as stateless, function, ephemeral, etc.

Use existing platform components from providers for
nonbusiness logic application functionality.

Serverless computing already has all the execution components

you need already designed to work with serverless computing.

For anything that is not related to business logic, the platform

components always are your first choice; otherwise, there is no

point in using serverless.

Create a reference architecture to guide all application
development.

By creating a solution blueprint for what the system should look

like, you ensure consistency across your application. This helps

to create standardization and socialization across teams and

resources, and it avoids mistakes.

Support DevOps.

Your development must create a DevSecOps pipeline before you

begin your process.

Make a culture shift.

In my experience, you may need to be ready to do as much work

restructuring organization and culture as you devote to the

building of serverless applications.

Chapter 7 ServerleSS arChiteCture

304

Be idempotent.

Functions should be designed to be idempotent so that multiple

executions of the same request yield the same result, and if the

same request is processed more than once, there should be not

any adverse effects.

Use an API gateway.

An important part of a serverless architecture is its API gateway.

An API gateway is the entry point to a system. It is an HTTP server

that takes requests from clients and routes to the relevant function

containers.

 Why Use Serverless Architecture?
The way you develop applications has changed dramatically in the past few years. As

shown in Figure 7-4, in a legacy monolith architecture, you host a single application

on the server. A few years back, the microservice architecture style started to evolve. In

microservices, each component is an independent service that can scale horizontally

and solves many problems of the day-to-day business. In a microservices architecture,

you need to provision and configure the infrastructure. Serverless almost behaves the

same as microservices, but you do not need to worry about any runtime environment or

deployment environment.

User Interface

Product
Service

Payment
Service

Delivery
Service

User
Service

Business Layer

Product User

Payment Delivery

User Interface User Interface

Authen�ca�on
Service

Payment
Service

Delivery
Service

No�fica�on
Service

Monolithic Microservices Serverless

Figure 7-4. Monolith/microservices/serverless

Chapter 7 ServerleSS arChiteCture

305

Hosting a software application in a production environment involves a few parts.

These parts are as follows:

• Code that solves a business problem

• Development and testing pipeline that automates the code build and

testing lifecycle

• Deployment and infrastructure service provision, which creates

containers, uses Kubernetes or provisions VMs, and configures the

infrastructure and required software and runtime environment for

your code

• Deployment of your code to a provisioned environment

Using an infrastructure from a cloud provider eliminates the physical hardware

concerns but still requires the management of software installation and patches.

With a serverless architecture, you focus only on the code that solves the business

problem, and serverless will take care of the rest of these points. This reduces the

overhead of the agile pod team.

 Best Practices of Serverless Architecture
After you build a serverless architecture, how do you grow an application and manage

your source code repository for serverless? Usually, moving to serverless starts with

FaaS and then you use the inherent functionality of scalability, etc., and move into

production. Your application will grow more complex over time, performing multiple

tasks to handle increasingly complex business logic, which leads to the following:

• A tightly coupled codebase

• Slower release cadence

• Poor discoverability

• Additional complexity

• Difficult to separate responsibility of ownership

• Difficult to maintain

Chapter 7 ServerleSS arChiteCture

306

Even though you added more functionality into an existing function, that will not be

an issue. It still runs and provides the required output. The problem is that the function

becomes monolithic, and you might face problems debugging and decoupling the

function. To overcome all these traps, you need to adopt the following best practices:

• Design your function as an independent reusable function.

• Each function is independent.

• This reduces the impact of bugs or failures in one area of the code

that affects the operation of other applications.

• Allow a function to scale independently according to demand.

• Share the logic, not the function, if two microservices access the

same function.

• Use contract testing and versioning.

• Maintain a single source for libraries and dependencies for easier

patching and updates in a serverless framework.

• Design your services for choreography.

• Organize source code repositories.

• Group common functionality together for ownership and

repositories.

• Create repos around a group of functions and resources.

• Design your services with zero trust security.

• Trust “no one” by default.

• Build microperimeters around each resource to enforce strict

verification of every person or service.

• Execution role permissions can be limited by the application’s

permission boundaries.

• Monitor for insecure flows and attempt to force a function into an

unsafe code path.

• Store secrets in a secret manager, not in environment variables.

Chapter 7 ServerleSS arChiteCture

307

• Do not reinvent the wheel; use already proven services in the cloud.

• Use custom resources to enable cross-account service referencing.

 Types of Serverless Architecture
Serverless architecture is a way to build and run applications and services without

having to manage infrastructure. Your application runs on servers, but all the

management is done by the providers. Serverless is focused on any service category, be it

compute, storage, database, messaging, API gateway, etc.

Serverless has two similar operational attributes that are frequently used together.

The major cloud providers include both.

• Function as a service

• Backend as a service

 Function as a Service
FaaS is a serverless way to execute a modular piece of code in a self-managed container

and is focused on event-driven computing. It is a paradigm wherein a function is a

computation that takes some input and produces some output. FaaS gives you a fast way

to focus on building cloud native microservices by abstracting away the complexities of

managing virtual machines or clusters of containers.

FaaS can be accessed through events or APIs that you define when you create a

function. There are many functions in your architecture where you deploy outside of

your service, and that service can be accessed through an event and API. Here are some

examples:

• A function can take an input of an image and output a label of that image.

• A function can take a notification and output a personalized email.

• A function can take a YouTube video URL and output a statistic of

that video.

• A function can take income numbers and output a total tax

calculation.

Various cloud vendors provide the FaaS architecture, covered in the following sections.

Chapter 7 ServerleSS arChiteCture

308

 AWS Lambda

According to Amazon, “AWS Lambda is a serverless compute service that lets you run

code without provisioning or managing servers, creating workload-aware cluster scaling

logic, maintaining event integrations, or managing runtimes. With Lambda, you can

run code for virtually any type of application—all with zero administration.” Lambda

supports Node.js, Python, Go, Java, Ruby, and .NET.

You need to use AWS Identity and Access Management (IAM) to manage security

in Lambda. For account-related tasks, you can manage permissions to access Lambda

functions in the permission policy with users, groups, and roles.

You can call Lambda functions synchronously or asynchronously, with synchronous

invocation. It is an I/O blocking service and will wait for the function to process the event

and return a response. In the asynchronous invocation, it is non-I/O blocking. Lambda

queues the event for processing and returns a response immediately. In cloud native

architecture, I suggest going with an asynchronous invocation.

In serverless architecture, some use cases require a stateful nature and require

running at the edge location. These are two features where the Lambda team is working.

Reference Architecture

The following section provides a few Lambda reference architectures; these reference

architectures are just an example to show how Lambda can be used.

Ecommerce Reference Architecture

I will use the same ecommerce architecture as illustrated in the previous sections and

will show how you can leverage Lambda for this. In the abstract version of Figure 7-5 of

the ecommerce application (which included only the main services), I considered the

following services:

• User service: Provides user management, authentication, and

authorization

• Product service: Product information

Chapter 7 ServerleSS arChiteCture

309

• Order service: Manages the order creation

• Inventory service: Manages the stock management

• Payment service: Manages payment collection and refunds

• Delivery service: Manages shipping and tracking

Figure 7-6 illustrates how you can use the Lambda function along with other AWS

services of these ecommerce services. Here I am not showing the entire architecture

that includes data synchronization, third-party payment services, etc., and showing only

high-level services and interaction across Lambda functions.

User
Service

Product
Service

Order
Service

Inventory
Service

Payment
Service

Delivery
ServiceOrder

Delivery

Customer

Product search Paym
ents

Stock

Stock

Order
Management

Authentication

Figure 7-5. Ecommerce system services

Chapter 7 ServerleSS arChiteCture

310

• API gateway: For service-to-service synchronous communication

and access from mobile and web applications, you can use any API

gateways like Layer 7, Apigee, etc.

• Event bridge: For service-to-service asynchronous communication,

you can use any event broker like Kafka, etc.

• AWS Cognito: For managing and authenticating users, this provides

the JSON web tokens used by web services.

• AWS Lambda: The service implementation communicates with APIs

and events.

• AWS DynamoDB: For storage service, you can use any service like

MongoDB, Couchbase, Cassandra, etc.

Best Practices of Lambda

Here are some best practices of Lambda:

High availability: By default, Lambda accesses S3 and DynamoDB

in a VPC and won’t access RDS, Elasticsearch, etc. To make

these available to Lambda, select multiple subnets in different

availability zones.

AWS Cognito AWS Lambda

User Service

AWS Lambda

Product Service

Dynamo DB

API Gateway

Event
Bridge

AWS Lambda

Order Service

Dynamo DB

API Gateway

AWS Lambda

Payment Service
Dynamo DB

API Gateway

AWS Lambda

Inventory Service

Dynamo DB

AWS Lambda

Delivery Service
Dynamo DB

Customer

Figure 7-6. Referencing serverless architecture for AWS Lambda

Chapter 7 ServerleSS arChiteCture

311

Concurrency: Lambda handles scalability on its own. Lambda can

scale up to 1,000 instances per region as of writing this book. You

should always consider the limitations of other integrated services so

that you can adjust the concurrency limit for the function based on

the maximum number of connections these services can handle

Throttling: The concurrency is limited to 1,000 requests as of writing

this book. If a request exceeds 1000 requests, how will you handle your

function? If the concurrency is synchronous, your service receives an

error code with error details, and if the concurrency is asynchronous,

service will retry before discarding the event. Therefore, you need to

gracefully handle errors.

Performance: Design the function with a warm start.

Security: Design your function with zero trust security with one

role per function.

 Azure Functions

Azure Functions helps you develop and deploy serverless applications. It’s a

command- line interface (CLI) that offers structure, automation, and best practices

for the deployment of both code and infrastructure, allowing you to focus on building

business code that is event-driven. Azure Functions supports multiple programming

languages such as JavaScript, Python, C#, F#, Java, etc., with extensive integration

options. Durable functions provide stateful capabilities and bindings for Azure Event

Hub, and Azure Event Grid helps you to build event-driven architecture.

Azure provides an online editor that is built on Visual Studio Online and provides a

well-defined deployment pipeline. You can set up a continuous build and deployment

using source code management software such as Team Service, GitHub, or Bitbucket.

Azure functions are logically grouped into an application container or environment

called an app service. All the Azure functions within an app service share the same

resources such as compute and memory. This enables the deployment as a whole

application instead of individual functions.

The API gateway functionalities are built natively into Azure Functions, so they do

not require any separate API gateway configuration.

Chapter 7 ServerleSS arChiteCture

312

Azure Functions supports several types of event triggers. Cron jobs enable timer-

based events for scheduled tasks; for example, OneDrive or SharePoint can be

configured to trigger operations in a function.

Reference Architecture

The following section provides a few reference architectures for Azure Functions; these

reference architectures are just an example to show how functions can be used in your

systems. I will use the same ecommerce services as illustrated in the Lambda example

and will explain them from the Azure Functions perspective. Figure 7-7 shows only the

logical application architecture, not the deployment architecture, as Azure Functions is

combined with Azure App Services for deployment.

• API gateway: There is no separate API gateway; the HTTP triggers are

built in to Azure Functions.

• Event hub: For service-to-service asynchronous communication, you

can use any event broker such as Kafka, etc.

• Azure AD: For managing and authenticating users, this provides the

JSON web tokens used by web services.

Azure AD
User Service

Azure Function

Product Service

Cosmos DB

Event
Hub

Order Service

Cosmos DB

Payment Service

Cosmos DB

Inventory Service

Cosmos DB

Delivery Service

Cosmos DB

Customer

Azure Function

Azure Function

Azure Function

Azure Function

Azure Function

Figure 7-7. Reference serverless architecture for Azure Functions

Chapter 7 ServerleSS arChiteCture

313

• Azure Functions: The service implementation communicate with

APIs or events.

• Cosmos DB: For storage service, you can use any service like

MongoDB, Couchbase, Cassandra, etc.

Best Practices of Azure Functions

The following are the best practices of using Azure Functions:

• Avoid long-running functions: Large, long-running functions can

cause unexpected timeout issues.

• Cross-function communication: Use Azure Durable Functions and

Azure Logic Apps. These were built to manage state transitions and

communicate between multiple functions.

• Stateless: Functions should be stateless and idempotent wherever

possible. Associate any required state information with your data.

• Write defensive functions: Design your function so it has the ability to

continue from a previous fail point during the next execution.

• Organize functions for performance and scaling: Optimize Azure

Functions within the function app.

• Organize functions by privileges: Apply zero trust security and

minimize the number of functions with access to specific credentials.

• Reuse connections to external resources wherever possible.

 Google Cloud Functions

Google Cloud Functions is an FaaS offering from Google’s serverless paradigm. It is a

serverless execution environment for building and connecting cloud services. It is based

on an open stack. A cloud function can be written using the JavaScript, Python, Go, or

Java runtime, as of writing this book, but its programming language support is expanding.

Google Cloud Functions provides a connective layer of logic that lets you write code

to connect and extend any cloud service. It augments existing cloud services and allows

you to address various use cases with arbitrary programming logic.

Chapter 7 ServerleSS arChiteCture

314

From the security account perspective, it has access to the Google Service Account

credentials and is thus seamlessly authenticated with the majority of Google Cloud

services.

Google Cloud Functions has a good runtime environment that scales up well and

cools down slowly and also has strong observability with the stack driver integration

results in exceptional sets of telemetry. Data, files, and stream processing are done in

real time using the Google platform. The other services in the Google Cloud help Google

enhance time efficiency and simplify technology management and administration.

Google Cloud Functions is still catching up with its peers in terms of programming

language support and efficiency.

Reference Architecture

This section provides a few Google Cloud Functions reference architecture examples,

as shown in Figure 7-8. This reference architecture is just an example to provide how

Google Cloud Functions can be used in your system. I will use the same ecommerce

services as illustrated in Lambda and Azure Functions and will explain them from the

Google Cloud Functions perspective. Here I am showing only the logical application

architecture, not the deployment architecture.

Google IAM
User Service

Google Function

Product Service

Cloud Datastore

Google
Pub/sub

Order Service

Cloud Datastore

Payment Service

Inventory Service

Delivery Service

Customer

Google Function

Google Function Cloud DatastoreGoogle Function

Cloud Datastore
Google Function

Cloud Datastore
Google Function

API Gateway

API Gateway

API Gateway

Figure 7-8. Reference serverless architecture for Google Cloud Functions

Chapter 7 ServerleSS arChiteCture

315

• API gateway: For service-to-service synchronous communication and

access from mobile and web applications, you can use any other Apigee

and also support third-party gateways such as Layer 7, Akana, etc.

• Google pub/sub: For service-to-service asynchronous communication,

you can use any other event broker such as Kafka, etc.

• Google IA: For managing and authenticating users, this provides the

JSON web tokens used by web services.

• Google function: The service implementation communicates with

APIs and events.

• Cloud datastore: For storage service, you can use any service such as

MongoDB, Couchbase, Cassandra, etc.

Best Practices of Google Function

This section describes general best practices for designing and implementing functions

via Google Cloud Functions:

• Write idempotent functions: Your function should produce the same

result every time it is called.

• Do not start background activities: Background activity is anything

that happens after your function has terminated a function invocation

finishes once the function returns or otherwise signals completion,

such as calling a callback argument in Node.js background functions.

Any code run after graceful termination cannot access the CPU and

will not make any progress.

• Always delete temporary files: Have local disk storage in the

temporary directory as an in-memory file system. Failing to explicitly

delete these files results in an out-of-memory error.

• Use dependencies wisely: A function is stateless; the execution

environment is often initialized from scratch.

• Use global variables to reuse objects in future invocation: If you

declare a variable in global scope, its value can be reused in

subsequent invocations without having to be recomputed.

Chapter 7 ServerleSS arChiteCture

316

 FaaS Platform Evaluation Criteria

FaaS is a key element of cloud native architecture, and each cloud provider has an FaaS

platform that is readily available to you, so everything may not be useful to you. Use the

Table 7-1 criteria to evolve the FaaS platforms for your use and rate each framework

against these criteria. One thing you need to remember is that not all the frameworks

are 100 percent correct, and some frameworks score higher than others. Ask questions

like these: What kind of use cases do you want. What are all the other architecture

components. Where do you want to deploy them? One thing I would like to get straight is

that the serverless technology is still maturing, and not all use cases can be serverless.

Table 7-1. FaaS Platform Evaluation Criteria

Step Criteria Details

1 Developer

experience

how easy is it to create and deploy new functions? is there any sample

template available to develop a function and list of native development

and deployment tools available?

2 programming

model

What does the programming model support? What is the state of the

workloads (for example, stateless, long-running, etc.)?

3 runtime execution

environment

how do frameworks support building and deployment, and how do they

manage cold and warm starts? What are the configuration options, and

how easy is it to configure with business code?

4 Observability What observability options does the FaaS framework provide (for

example, logs, metrics, etc.), and how are machine learning models

integrated for predictive analysis?

5 integration What are the various options that frameworks provide for integration?

What kind of events can it subscribe to and publish? is there support for

event meshes and service meshes? how are apis integrated?

6 Security features how is access management done? how does it manage serverless

specific threats such as denial-of-wallet attacks?

7 extensibility Can it support multicloud vendor configuration?

8 testability how is the framework support for nonfunctional testing such as

performance, scale, etc.?

(continued)

Chapter 7 ServerleSS arChiteCture

317

 Backend as a Service or Mobile Backend as a Service
Backend as a service (BaaS) is a cloud computing service model that serves as the

middleware that provides developers with ways to connect their web and mobile

applications to a cloud-based service. BaaS creates a unified application programming

interface (API) and software development kit (SDK) to connect mobile apps to back-end

services like cloud storage. This includes key features such as push notifications, social

networking integration, location service, and user management, etc., which reduces the

development cost and time, as a team does not have to write their code for the various

functions. BaaS offers to use existing services.

The BaaS architecture consists of infrastructure as a service (IaaS), platform as a

service (PaaS), APIs, and SDKs.

In the traditional architecture or microservices architecture, what steps do you

take during mobile or web application development? Usually, you develop a back-end

microservice process that contains business logic, authentication, authorization, data

storage, integration, etc. There are a lot more other services involved, for example, user

analytics, content management, push notification, etc.

BaaS is gaining popularity among enterprises; it is a new model for application

development and can lower development costs, allowing the developer to focus on the

development process by using APIs or SDKs. It accelerates mobile development and

transforms back-end capabilities into services.

The back-end architecture in the cloud empowers the front-end architecture, i.e.,

mobile and web applications. It comprises hardware and storage located on the cloud

service. The cloud service provider manages all the back-end services on behalf of

enterprises and acts as a serverless platform. In the Figure 7-9 architecture, the other

services of BaaS are push notification, user management, search functionality, visual

development, and file management.

Step Criteria Details

9 roadmap What is the release and upgrade strategy of frameworks?

10 ai and Ml support how does the framework support artificial intelligence and machine

learning models?

Table 7-1. (continued)

Chapter 7 ServerleSS arChiteCture

318

BaaS eliminates the need for engineers to construct their back-end services and provides

the customization features outfitted with common and necessary back-end features.

Is BaaS an advanced version of PaaS? The answer is yes and no. PaaS provides a

platform through the cloud for engineers to build their applications. Like BaaS, the PaaS

eliminates the need for the developer to build and manage the application back end, but

PaaS does not include prebuilt server-side application logic, such as push notifications

or user authentication, etc. PaaS offers you more flexibility, while BaaS offers more

flexibility and functionality.

Various companies provide BaaS offerings; some are open source, and some are

proprietary. The open source BaaS options are Parse, Back4App, Kuzzle, Couchbase,

Deployed, etc. The proprietary ones are Pubnub, Appcelerator, PlayFab, Firebase,

Kinvey, etc. All these services are hosted on any of the cloud providers or can be

downloaded and hosted on any cloud.

Pros and Cons of BaaS

BaaS solves the complexity of cross-platform development and makes it easier to learn

the skills needed to create effective back-end processing. You save time on technical

use cases such as authentication and authorization, search, data storage, etc., and you

Application Logic

Other
Services

Shared State

Mobile Native Application

Web Application

APIs

Backend as a Service

Figure 7-9. BaaS architecture service

Chapter 7 ServerleSS arChiteCture

319

don’t need to manage the servers. Also, there is virtually no back-end servers to manage.

The whole BaaS platform improves the time to market and reduces the cost of testing,

management, etc.

The downside of BaaS is related to vendor lock-in and lower coding flexibility, but

most BaaS providers offer an easy way to migrate to others, but in reality, it is not the

same. BaaS provides full back-end fixed functionality; therefore, you are losing flexibility

to move code from the front-end logic to the back-end logic. From the security front, the

platform is isolated and multitenant, so there is a challenge on sensitivity, compliance,

regulations, etc.

 Function Deployment
When your function is deployed in a serverless system, you need to use a deployment

pipeline, as shown in Figure 7-10. While the steps in the pipeline can vary depending on

the cloud provider, a few fundamental steps are common to all.

You need to upload the function definition, which contains metadata about the

function as well as the implementation code. The metadata includes a unique identifier,

name, description, version identifier, runtime language, resource requirements,

execution timeout, created date/time, and last modified date/time. When a function

is invoked, it is invoked for a specific function version. The version identifier is used to

select an appropriate function instance.

Along with the metadata, the code and dependency must be provided. Once the

metadata is uploaded to the cloud provider, the build process uses it for compilation to

produce an artifact. The resultant artifact may be a binary file or a container image.

SCM Repository

Metadata

Build Pipeline

Registry

Deploy Pipeline

Functions

Functions

Functions

Functions

Figure 7-10. Function deployment pipeline

Chapter 7 ServerleSS arChiteCture

320

The starting of an instance function can be a cold or warm start. With a warm start,

one or more function instances have already been deployed and are ready to be executed

when needed. A cold start takes longer since the function starts for an undeployed state.

The function must be deployed and then executed when it is needed.

 When to Use Serverless
As I explained earlier, the serverless work is based on a single function and is ephemeral

and stateless. In terms of computing resources, serverless functions have provided

good support in terms of memory and available duration. The duration and memory

vary from each cloud vendor, and your function should work within the upper limits of

memory and duration.

There are various concerns that serverless architecture gives cloud providers

complete control over your services. There are many advantages and use cases that make

this a good decision that can benefit the overall outcome of a solution. The following are

the best use cases for going serverless:

Data Transformation

In the data transformation function, you take input, transform it,

and provide different output. In this process, no state is required

to execute, and the execution is simply based on few rules. The

only thing you need to manage is that the data comes in different

sizes. If you predictably chunk the data, then you can use a

serverless framework.

Asynchronous Processing Use Cases

As mentioned, the FaaS is event-driven processing. In real

terms for an application, it enables the background tasks to be

well-connected and remain in the background. For example,

the mobile application request is not affected by running in the

background and still interacts with an application. You can use it

in flight searches, hotel searches, etc.

Multimedia Processing Use Cases

The function can be created for multimedia processing such as

image processing, file upload to the storage, etc.

Chapter 7 ServerleSS arChiteCture

321

Parallel Compute

In parallel computing, you require multiple instances to spin

up and execute in parallel to meet the requirements. Using a

serverless framework, you can configure with a concurrency

model, which essentially translates as one function handling at

any one time to scale thousands to meet the parallel processing.

Notifications

You can create notification functions to work with container-

based microservices. The notification can be an email notification

or SMS notification, or it can upload any image into the storage

notification.

Building Restful APIs

Serverless frameworks provide a seamless way in which to create a

scalable endpoint that processes data in real time. It has the ability

to scale and fluctuate as demand changes without the need to

maintain the servers.

 Advantages of Serverless Architecture
Using a serverless architecture provides many important benefits, which explains why it

is becoming increasingly popular.

Reduced Operational Cost
With a serverless architecture, your code is executed only when it is needed, so you are

charged only for the actual compute resources that are used. Organizations moving

to a serverless architecture will reduce hardware costs, as they no longer have servers

and network infrastructure to support and do not have to hire staff to support all of that

infrastructure.

The following are the reductions in the operational costs of serverless systems:

• Savings on the hardware

• Infrastructure management

• Managing the development and deployment of software

Chapter 7 ServerleSS arChiteCture

322

Optimized Resource Utilization
Serverless empowers you to design an application that scales up and down as per the

demands. Serverless will take care of the optimum utilization of resources by managing

the technical concerns effectively. This enables saving costs and reducing the impact on

the environment.

Faster Time to Market
You need to concentrate only on solving business problems by writing good software

code. Serverless abstracts away the infrastructure, deployment, and plumbing and

wiring activity in an environment. The time to market is greatly reduced and avoids lots

of unnecessary issues.

Ability to Focus on User Experience
Abstraction from servers allows companies to dedicate more time and resources to

developing and improving customer-facing features.

Fits with Microservices
The serverless platform paradigm helps design a microservices architecture either by

deploying a service in the serverless platform or by collaborating with the container-

based microservices by deploying reusable functions as an FaaS.

 The Drawbacks of Serverless Architecture
Although there are many benefits to using a serverless architecture, there is a potential

downside to using serverless, and each vendor comes with their own set of drawbacks

that need to be considered by architects creating such systems.

Standardization
There is no standardization across various vendors. Each vendor’s serverless

implementation has a different approach. For example, API gateway’s features are part

of Azure Functions, but AWS Lambda is an external feature. This requires locking into a

vendor. If you want to move, then you need to rewrite your code.

Chapter 7 ServerleSS arChiteCture

323

Operations Management
It is more challenging to debug or do other operationalize activity. Implementation is a black

box to you, and you will be unable to find any internal details of serverless. Understanding,

anticipating, and predicting these operations is challenging. There are operation limits

typically enforced on the duration of execution, size of the function, network utilization,

storage capacity, memory usage, thread count, request and response size, etc. The vendor

documentation does not have clear details on the operationalization of serverless.

Tooling Support
As I mentioned, serverless is still evolving, as compared to the containers. The

containers have a lot of support tooling from the various industry players and also from

open source other than the cloud vendors. Testing and deployment tools are limited, and

the industry may come up with various tools as serverless adoption evolves.

Security
As the implementation of serverless is not transparent and is entirely managed by the

cloud vendors, you need to rely on the vendor’s security management. You do not have

visibility into compliance, regulations, etc.

Long-Term Tasks
Serverless platforms are ephemeral functions that execute in a time-boxed manner. Each

function must have a well-defined execution boundary. So, the ideal use cases to run

as FaaS are deterministic computations that return execution results in a finite amount

of time. You need to be careful when architecting your solution for long- running,

probabilistic jobs. Running such jobs can incur more costs, which defeats the purpose of

adopting serverless.

 Future of Serverless
In recent years, serverless computing has gained a lot of traction, which has had a large

influence on the computing industry. Serverless vendors are constantly innovating and

enriching their offerings with better tools such as deployment, testing, and monitoring tools.

Chapter 7 ServerleSS arChiteCture

324

In the future, complex technical solutions will move from container to serverless

computing and will be implemented and fully managed. The cloud services will provide

capabilities in serverless computing platforms in the form of APIs and events.

As I explained in earlier chapters, the adoption of cloud native services has

increased, especially after the pandemic. Cloud native services are mainly connected

with other services through events. In the future, all services on the cloud and on-

premises ecosystem are connected through events. All events related to the enterprise

and extended enterprise business can be processed in a serverless manner, regardless of

where the event occurs.

VMs and containers are two virtualization technologies with different orientations

with strong security and high overheads. Serverless computing requires the highest

security and minimum resource overheads and compatibility at the same time. For

example, the serverless platform must be able to support arbitrary binary files. This

makes it impractical for users to build serverless computing with language-specific VMs.

Hence, new lightweight virtualization technologies, such as AWS Firecracker and Google

gVisor, have emerged. For example, AWS Firecracker provides a minimal required

device model and optimizes kernel loading, enabling startups within 100 milliseconds

and minimal memory overhead. As the scale and influence are constantly expanding,

it becomes important to implement end-to-end optimization at the framework level,

language, and hardware levels based on the load characteristics of serverless computing.

 Summary
Serverless approaches are designed to handle idle servers that affect enterprises’ balance

sheets without offering value; they also remove the cost of building and operating a fleet

of servers.

Various cloud vendors offer serverless solutions for long-standing problems by

eliminating the servers, containers, disks, and other infrastructure. Serverless is the

easiest and fastest way to architecture a reactive, event-based system with a cloud native

architecture.

In this chapter, you learned about the design principles, patterns, and use cases of

serverless.

Chapter 7 ServerleSS arChiteCture

325
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_8

CHAPTER 8

Cloud Native Data
Architecture
In previous chapters, we discussed the application side of cloud native architecture and

showed use cases. In this chapter, I will provide details of the data part of a cloud native

architecture. As you already know, data is a vast subject; in fact, you can find hundreds

of blogs, articles, and books about data. Here I am not covering the topic, but only what’s

relevant to cloud native architecture.

Enterprises are continuing to move to cloud native architectures, and data plays a

pivotal role in that. Data is everywhere; however, the importance and usage of data has

changed over time.

Bad data can have significant consequences in an enterprise. Poor-quality data is often

pegged as the source of operational problems, inaccurate analytics, and ill- conceived

business strategies. According to Gartner, recent research has shown that organizations

believe that poor data quality is responsible for an average of $15 million per year in losses.

This is a huge loss incurred because of data quality.

Almost every enterprise today is seeking to position itself as a data-driven

organization. Businesses are aware of the myriad benefits that can be leveraged when

making intelligently empowered decisions and providing customers with top-notch,

hyper-personalized experiences, often using artificial intelligence and machine

learning models.

This chapter covers the following details of data related to the cloud native

phenomenon:

• How has data gained importance?

• How useful is data in your day-to-day business?

• Data storage types and polyglot data architecture

• Data replication strategies

https://doi.org/10.1007/978-1-4842-7226-8_8#DOI

326

• Data lake and data mesh usage

• Data streaming and change data capture

• Data processing for an analytics platform

 Rethinking Data in a Cloud Native World
When dealing with disruption in both business and technology, one area that cannot be

forgotten is the data layer. Enterprises must rethink their data layer strategy as they move

their landscape to cloud native technologies.

In today’s digital world, if an IT application lags for even a few seconds, it can have

an enormous downstream impact on the end customer experience and on the business’s

success. Data processing must be quick enough to keep up with the real-time business-

critical applications and today’s consumer demand. If travel aggregator apps, maps, food

delivery apps, etc., don’t provide data instantly, customers will stop using them.

Cloud computing has made a big impact on how we build and operate software

today, including how we work with data. More and more companies are embracing the

cloud on a daily basis, especially after the pandemic, and shifting their data centers to

the cloud, decentralizing their organizations, and making their application architecture

more cloud native distributed in nature to enable the pace of innovation necessary to

service real-time user needs.

To deliver a consistently fast, satisfying customer experience, the data is very

important and must be modernized, moving from batch to streaming and data lake to

data mesh, etc. Your enterprise’s application is generating more and more data. The

traditional way of handling data is simply too slow and does not meet the customer’s

business goals. In cloud native architecture, the data store must follow the polyglot

principle explained in Chapter 5. Just storing static data is not enough; the polyglot

principle and analytics principles are required for future data analysis. Enterprises need

to make real- time decisions and predictions.

Organizations continue to face a range of complexities in transforming to a data-

driven approach and leveraging its full potential. While migrating legacy systems,

shunning legacy cultures, and prioritizing data management are all valid goals, the

architectural structure of data platform initiatives can prove to be a major roadblock.

Chapter 8 Cloud Native data arChiteCture

327

The need for traditional data storage functions such as backups, replication, and

security don’t go away in cloud native data services; they are just initiated and managed

in new and real-time ways. With data replication, you often pull data from multiple

sources to carry out a task, and increasingly such aggregation is on demand. Earlier you

were doing nightly batch jobs, but in the cloud native world, you use data streaming

techniques in real time.

In the data storage part, there are no changes in the storage and the create, read,

update, and delete (CRUD) operations, but there are various options available to store

data by using polyglot principles. You can choose from various storage mechanisms such

as traditional RDBMS, NoSQL, caching, etc.

There is no change in data visualization. Earlier we generated reports by using classic

reporting tools; now you have more options to choose from with rich functionality.

In a nutshell, the changes are in the way you are adopting the data and using it for

various analytical decisions.

 Cloud Native Data Persistence Layer
For a lot of businesses and enterprises, cloud computing has made a big impact on how

they store data. The cost of storing data has significantly decreased. The management

of database systems requires less work with the advent of cloud vendor-managed and

serverless data storage. This makes enterprises choose various data storage types based

on the data classification.

A polyglot persistence principle encourages cloud native services to decentralize

the data; it is also common that data is replicated and partitioned in order to scale the

system. Figure 8-1 shows how a typical cloud native architecture applies the polyglot

persistence principle with data spread across the architecture.

Chapter 8 Cloud Native data arChiteCture

328

Cloud native applications use managed and serverless data storage and processing

services; all major cloud providers offer several different managed services to store,

process, and analyze data. In addition to cloud providers, various database companies

provide managed services on the cloud. For example, MongoDB provides managed

services with Atlas, Redis provides managed cache storage, etc. By using managed cloud

storage, you can focus on developing business logic that uses the data and database

instead of spending time and resources managing the database.

 Cloud Native Data Characteristics
For a cloud native application, you can use a blueprint like the 12-factor criteria to

design it, as mentioned in Chapter 4, but for the data design, you need to consider the

following key characteristics:

• Prefer a cloud native database that shards, tolerates faults, and is

optimized for cloud storage.

• Prefer cloud native data that is independent of fixed schemas.

• Cloud native data can be duplicated for ease of access.

• Prefer managed data storage and analytics services.

Key/value
Database

User

API Gateway

Search Catalog Order

Search
Index Document

Database
RDBMS

Cache
Store Object

Storage

Figure 8-1. Cloud native polyglot persistence

Chapter 8 Cloud Native data arChiteCture

329

• Use polyglot persistence, data partitioning, and caching.

• Embrace eventual consistency and use strong consistency when

necessary.

• Cloud native data integrates through service and event streaming.

• Adopt a data mesh wherever possible instead of a data lake.

• Prefer real-time analysis to batching.

• Deal with data distribution across multiple data stores.

 How to Select a Data Store
Selecting the right database is important for the successful completion of your project.

There are about 347 databases available including RDBMS, NoSQL, event stores, etc. It

can be difficult to determine which products to use, and sometimes you may choose the

wrong database for your application that limits your whole application. I have witnessed

projects change their database after pushing it into production. This might cause heavy

loss to enterprises because you need to migrate, test, etc., so choosing the right database

from the start is important. I will provide as many details as possible to help you to

choose the right database.

I will first start with various types of data.

 Objects, Files, and Blocks
Objects, files, and blocks are storage formats that hold, organize, and present data in

different ways. Object storage manages data as an object and stores data with metadata

and a key that is used as a reference for the object. File storage organizes and represents

data as a hierarchy of files in folders. Block storage chunks data into arbitrarily

organized, evenly sized volumes.

Note objects are considered images, documents, and files.

Chapter 8 Cloud Native data arChiteCture

330

The major cloud providers such as AWS, Azure, and Google provide inexpensive

object storage, and the data can be accessed through APIs. Each object is stored in a

key-value pair with metadata linked into it, and it is stored with versions and globally

available. The object storage tools are AWS’s S3, Azure’s blob storage, and Google

Cloud storage.

Every document in a file is arranged in some type of local hierarchy. Network- attached

storage (NAS) is a file-level storage architecture. Use it when using a library or service that

requires shared access to files. Various NAS providers are available in cloud environments

including natively from cloud vendors. A few major NAS vendors are NetApp, Dell EMC,

HPE, Hitachi Vantara, IBM, Cloudian, Qumulo, and WekaIO.

Block storage breaks data into smaller blocks and stores the blocks separately. Each

block of data is given a unique identifier, which allows a storage system to place the

smaller pieces of data wherever is most convenient. Use block storage for applications

for persistent local storage. For this kind of data, use any database to store it.

 Databases
A database is a collection of data stored in an orderly manner, as shown in Figure 8-2. It

is a structured set of data hosted on the hardware. There have been some new players in

the database world over the past few years, and the number of databases available for us

to choose from continues to grow every year.

Many of these databases have been designed for specific use cases; some store

graph-related data, some store financial models, etc.

Relational NoSQL

Wide-Column Key-Value Store Document Store

Database

Search Graph Database Time Series

Figure 8-2. Database types

Chapter 8 Cloud Native data arChiteCture

331

Note i have not covered caching technology because it is part of the key-value
store family. relational and object databases are part of the relational family.

 Relational Database

A relational database is a collection of data items with a predetermined relationship

between them. This data is organized into a set of tables, columns, and rows. A relational

database provides access to data points that are related to one another. Each column in

a table holds a certain kind of data and fields to store the actual values of an attribute.

Each row in a table can be marked with a unique identifier called the primary key, and

the rows in multiple tables can be made related using foreign keys. This data can be

managed with CRUD operations.

Relational databases have been around for a long time. The most popular commonly

used database, as of today, is still a relational database. The relational model is the

best for maintaining data consistency across application and database instances. The

relational databases support atomicity, consistency, isolation, and durability (ACID)

properties with strong consistency.

Several factors can guide your decisions when choosing among relational database

types. You need to ask the following questions before choosing a vendor:

• What is our data accuracy requirement?

• Do we need scalability? What is the anticipated growth?

• How important is concurrency?

• Where are we hosting the database?

• What kind of application are we developing?

Use Figure 8-3 to decide whether you need an RDBMS for your application.

Chapter 8 Cloud Native data arChiteCture

332

 Key-Value

A key-value data store is a type of nonrelational database that uses a simple key value to

store data. In key-value pairs, a key serves as a unique identifier. Both keys and values

can be anything, ranging from simple objects to complex compound objects, and they

can store dictionary/map/array objects.

Key-value databases use compact, efficient index structures to be able to locate a

value quickly and reliably by its key, making them ideal for systems that need to find and

retrieve data in real time. Key-value databases allow programs to retrieve data via keys,

which are essential names, or identifiers, that point to some stored values.

Is your
data

structured?

No

Is your data
relational?

Do you
need

horizontal
scalability?

Yes

Yes

Do you need
strong

consistency?
Yes

RDBMS

Figure 8-3. RDBMS decision flow

Chapter 8 Cloud Native data arChiteCture

333

Key-value databases are scaled out by implementing partitioning, replication, and

autorecovery. They can scale by maintaining the database in RAM and can minimize the

effects of ACID guarantees by avoiding locks, latches, and low-overhead server calls.

Several factors can guide your decision when choosing among the key-value database

types. You need to ask the following questions before choosing any type of database:

• What kind of data do we want to store?

• Do we need scalability?

• Do we want our data to share across microservices?

• What kind of application we are developing?

Use Figure 8-4 to decide whether you need the key-value type for your

application storage.

Is your
data

structured?

No

Do you
require your
data to share
with multiple
processor?

Do you
need

horizontal
scalability?

Yes

Yes

Do you
require to
store user

related data
like session,
preference

etc.?

Yes

Key-Value

Figure 8-4. Key-value store decision flow

Chapter 8 Cloud Native data arChiteCture

334

The following are key-value stores: AWS Dynamo DB, Redis, Riak, Couchbase,

Berkeley DB, Cassandra, etc.

 Document Database

A document-oriented database is a way to store data in JSON format rather than simple

rows and columns. A document store does assume a certain document structure that

can be specified with a schema. A document store is the most natural way of storing data

among NoSQL-type databases, which are designed to store the document as is.

Each document in a store contains pairs of fields and values. The values can typically

be a variety of types including things like strings, numbers, Booleans, arrays, or objects,

and their structure is aligned with the application developer working with the code.

Because of their variety of field value types and powerful query languages, document

databases are great for a wide variety of use cases. You can use these databases for much

of what was traditionally stored in a relational database like PostgreSQL or MySQL.

Documents in a database map to the objects in your services. There is no need to

decompose data across tables, run JOINs, or integrate a separate ORM layer. The schema

in the document database is dynamic, and you don’t need to define it at design time.

The document database features are expressivity of the query language and richness of

indexing. With ACID transactions, you maintain the same guarantees you’re used to in

SQL databases.

Document databases are distributed systems at their core, and documents are

independent units, which makes it easier to distribute them across multiple servers

while preserving data locality. Replication with self-healing recovery keeps the database

highly available, and native sharding provides elastic and application-transparent

horizontal scale-out.

Several factors can guide your decision when choosing from the document database

types. The following are a few questions you need to ask before choosing any type of

database:

• What kind of data do we want to store?

• Do we need scalability?

• Does our application need to be available globally?

• Do we want SQL queries?

Chapter 8 Cloud Native data arChiteCture

335

• Do we want a flexible schema?

• Do we want to store all kinds of data like modeling, semistructured,

and unstructured data in one database?

• What kind of application are we developing?

• Do we want to store content or catalogs?

Use Figure 8-5 to decide whether you require a document database for your

application storage.

The following are a few major players in the area of document databases: MongoDB,

CouchDB, Couchbase Server, Cosmos DB, Document DB, MarkLogic, Oracle NoSQL, etc.

Is your
data

structured?

No

Is your
application is
cloud native?

Do your
application

global
presence?

Do you have
a concern on
consistency
and ACID in

NOSQL?

Yes

Yes

Yes
Document

Do you
require a
JOINs?

No

Figure 8-5. Document store decision flow

Chapter 8 Cloud Native data arChiteCture

336

 Wide-Column Database

A column database organizes data into rows and columns and can initially appear very

similar to a relational database. It stores data in tables, rows, and dynamic columns.

A columnar database stores each column in a separate file. One file stores only the key

column, and the other stores the remaining fields. Wide-column stores provide a lot of

flexibility over relational databases because each row is not required to have the same

columns.

Each column holds a set of columns that are logically related and typically retrieved

or manipulated as a unit. Other data that is accessed separately can be stored in separate

column families. The wide columns store data like a two-dimensional key-value

database. They are good to store a large amount of data when you can predict what your

query pattern will be. They are commonly used for storing Internet of Things (IoT) and

user-profile data.

Each column in a row is governed by auto-indexing on each function. It gives

improved automation with regard to vertical and horizontal partitioning with better

compression and auto-indexing columns.

Several factors can guide your decision when choosing among the wide-column

database types. The following are a few questions you need to ask before choosing a type

of database:

• What kind of data do we want to store?

• Do we want to store data with horizontal scaling?

• Is our application required to be available globally?

• Do we want SQL kinds of queries?

• Do we want data to be compressed?

• What kind of application are we developing?

• Do we want to store IoT or geographical map data?

• Do we want a database for analytics?

Chapter 8 Cloud Native data arChiteCture

337

Use Figure 8-6 to decide whether you require a wide-column database for your

application storage. The major databases are Cassandra and HBase.

 Time-Series Database

Time-series data is a sequence of data points collected over time intervals, giving you the

ability to track changes over time. Time-series data can track changes over milliseconds,

days, or even years. This could be server metrics, application performance monitoring,

network data, sensor data, trades in the market, etc.

The time-series database is optimized for a time. It is built specifically for handling

metrics and events or measurements that are time-stamped. These databases generally

need to support a very high number of writes. Time-series databases are commonly used

to collect large amounts of data in real time from many sources. Updates to the data are

rare; more common are inserts and bulk deletes.

Is your
data

structured?

No

Is your
application is
cloud native?

Do your
application

global
presence?

Do you want
to store data
for IOT and

map related?

Yes

Yes

Wide-Column

Do you want
your data for
structured

like relational
but scale

horizontally?

Yes

Yes

Figure 8-6. Wide-column decision flow

Chapter 8 Cloud Native data arChiteCture

338

The size of the data structure is small for time and other coordinates. Time-series

data is good for storing telemetry data; popular uses include Internet of Things (IoT)

sensor devices such as autonomous cars, digital twin use cases, etc.

Several factors can guide your decision when choosing a time-series databases. The

following are a few questions you need to ask before choosing any type of database:

• What kind of data do we want to store?

• Do we want stored data with horizontal scaling?

• Is our application required to be available globally?

• Do we want to store data for IoT sensors or telemetry?

• Do we want to use this data for metrics or analytics?

• What kind of application are we are developing?

Use Figure 8-7 to decide whether you require a time-series database for your

application storage. The major databases are Apache Druid, Riak-TS, and AWS

Dynamo DB.

Chapter 8 Cloud Native data arChiteCture

339

Is
 y

ou
r

da
ta

st

ru
ct

ur
ed

?

N
o

Is
 y

ou
r

ap
pl

ic
at

io
n

is

cl
ou

d
na

tiv
e?

D
o

yo
ur

ap

pl
ic

at
io

n
gl

ob
al

pr

es
en

ce
?

Ye
s

D
o

yo
u

w
an

t
to

 s
to

re
 d

at
a

fo

r I
O

T
se

ns
or

s?

Ti
m

e
Se

rie
s

Is
 y

ou
r d

at
a

us
ed

 fo
r

m
et

ric
s,

pr

ed
ic

tio
ns

,
le

ar
ni

ng
s

et
c.

?

Ye
s

Ye
s

Ye
s

Fi
gu

re
 8

-7
.

Ti
m

e-
se

ri
es

 d
at

a
st

or
e

de
ci

si
on

 fl
ow

Chapter 8 Cloud Native data arChiteCture

340

 Graph Database

A graph database is a special kind of database storing complex data structures and

most notably used for social networks, interconnected data, fraud detection, knowledge

graphs, etc.

It stores data in nodes and edges. Nodes typically store information about people,

places, and things, while edges store information about the relationship between the

nodes. You can think of a node as an entity, and edges define the relationship between

the nodes. An edge will often define the direction of the nature of a relationship.

The graph database shards data across many servers or clusters and locations. It

distributes and parallelizes queries and aggregations over multiple databases.

Several factors can guide your decision when choosing among graph database types.

The following are a few questions you need to ask before choosing any type of database:

• What kind of data do we want to store?

• Do we want stored data with multiple shardings or clusters?

• Is our application required to be available globally?

• Are our use cases related to a social network, fraud detection, or

knowledge graph?

Use Figure 8-8 to decide if you require a graph database for your application storage.

The major graph databases are Neo4J, Orient DB, Arango DB, AWS Neptune, DataStax,

IBM Graph, and Apache Graph.

Chapter 8 Cloud Native data arChiteCture

341

 Event Store Database

In event-driven architecture, streams and queues are required to store events and

messages (more details are explained in Chapter 6). In an event stream, the data is stored

as an immutable stream of events. All the events in the event store are new records and

do not allow updates; also, you cannot remove or delete an event.

The data in an event store is used to validate an aggregate sequence numbers of

events, event snapshots, event sourcing details, etc.

There is various event store data store available such as IBM DB2 Event Store, Event

Store DB, and NEventStore.

Is your
data

structured?

No

Is your
application is
cloud native?

Do your
application

global
presence?

Yes

Yes

Is your use
case related

to Social
network or

fraud
detection of
knowledge?

Graph

Yes

Figure 8-8. Graph data store decision flow

Chapter 8 Cloud Native data arChiteCture

342

 Search Engine Database

The search engine database is a type of nonrelational database that is used to search for

information held in other databases and services. Search engine databases use indexes

to categorize similar characteristics among data and facilitate search capability. A search

engine index database can index large volumes of data with near-real-time access to the

index.

The search engine databases are optimized for dealing with data that may be long,

semistructured, or unstructured, and they provide specialized methods for search such

as full-text search, complex search expression, and ranking of search results.

The search engine databases can handle full-text search faster than relational

databases with indexes.

Several factors can guide your decision when choosing among search engine

database types. The following are a few questions you need to ask before choosing any

type of database:

• What kind of data do we want to store?

• Is our data used for search or log analysis or integrated monitoring

and dashboard?

• Do we require indexing in the data store?

Use Figure 8-9 to decide whether you require a search database for your application

storage. The major databases are Elasticsearch, Splunk, ArangoDB, Solr, AWS Cloud

Search, Alibaba Cloud Log Service, and MarkLogic.

Chapter 8 Cloud Native data arChiteCture

343

Is your
data

structured?

No

Is your
application is
cloud native?

Do you
require

database to
sort and
display

structured
way?

Yes

Yes

Is your use
case related
to search or

log
monitoring?

Search Engine
Database

Yes

Figure 8-9. Search engine data store decision flow

Selecting a database is confusing when you have a vast number of options

available today and new ones are constantly improving and adapting to cloud native.

A website that tracks database popularity, DB-engines (https://db- engines.com),

lists 347 different databases as of this writing. As you are moving toward cloud native

architecture, you have the flexibility to choose a specific database based on your use

cases. When choosing the specific use cases, you need to consider the following aspects:

• Consider the skillset of the team.

• Go for the managed serverless database from cloud vendors or

individual database vendors (for example, MongoDB offering Atlas).

Chapter 8 Cloud Native data arChiteCture

https://db-engines.com

344

• Go for lightweight databases instead of big monolithic databases.

• Analyze your use cases and ask questions as provided for each

database type; nowadays most NoSQL databases offer similar

features like relational databases.

 Data Replication
Data replication is the process of updating copies of your data in multiple places at the

same time to improve reliability, fault tolerance, accessibility, and decision-making.

The goal of replication is to keep your data available for various purposes like to make

decisions or to make transactions available to your customers.

Data replication works by keeping the source and target synchronized. That means

any change in source data is reflected accurately and quickly in the target data based on

your replication model.

The use case of data replication includes high availability, migration between

systems, operational data stores or data hubs, data consolidation in the reporting system,

data warehouses, and data lakes, etc.

Traditionally, in an enterprise, the data replication occurs either from database to

database or file are uploaded to the database by using ETL tools.

There are two database replication methods.

• Physical database replication

• Logical database replication

 Physical Database Replication
Physical database replication is a block-based replication that uses a binary format

to keep an exact database copy in sync with the primary database. Using the binary

format for database replication provides completeness: the replicated database

is an exact copy of the primary database including tables, relationships, indexes,

triggers, stored procedures, etc. This kind of replication is common in disaster

recovery use cases.

Chapter 8 Cloud Native data arChiteCture

345

 Logical Database Replication
This is a method of replicating data objects and their changes based on their replication

key. Logical database replication is the most common method of replication in a cloud

native architecture. It uses the publish/subscribe paradigm to replicate data from source

to target databases. The logical replication of a table starts by taking a snapshot of the

data on the publisher database and copying that to the subscriber.

In the logical database replication, you can do full database refreshes or logical

refreshes or change data capture (CDC).

 Full Data Refresh

In the full load refresh replication, all the data in the publisher loads data to the

subscriber at an interval and overwrites all the data in the subscribed database. This

method is very resource-intensive; usually enterprises adopt this approach only for the

initial load.

 Partial Data Refresh

In the partial refresh replication, use a column in the table that is modified for every

change to the row with the timestamp. Use a filter when retrieving the data from the

publisher instead of selecting full data. This approach is reliable only when data is not

truncated.

 Change Data Capture

CDC is a replication solution that captures database changes as they happen and

delivers them to the target database. CDC typically starts by taking a snapshot of the

data on the publisher database and copying it to the subscriber database, as shown in

Figure 8-10. Once that is done, the changes on the publisher are sent to the subscriber as

they occur in real time.

Chapter 8 Cloud Native data arChiteCture

346

The subscriber applies the data in the same order as the publisher so that

transactional consistency is guaranteed for publication with the same subscription.

There are many techniques available to implement CDC depending on the nature of

your implementation.

• Timestamp: The Timestamp column in a table represents the time of

the last change; any data changes in a row can be identified with the

timestamp.

• Version number: The Version Number column in a table represents

the version of the last change; all data with the latest version number

is considered to have changed.

• Triggers: Write a trigger for each table; the triggers in a table log

events that happen to the table.

• Log-based: Databases store all changes in a transactional log to

recover the committed state of the database. The CDC reads the

changes in the log and identifies the modification and publishes

an event.

The most preferred approach is the log-based technique. In today’s world, many

databases offer a stream of data change logs and expose them through an event.

Source

Source

Event-by-Event
Processing Target

Continuously

Figure 8-10. CDC process

Chapter 8 Cloud Native data arChiteCture

347

Log-Based CDC

The log-based approach provides real-time asynchronous data integration and provides

continuous integration through database logs. This approach allows the solution to

transfer and integrate changes to the data incrementally as they occur, rather than

making larger updates all at once.

Database transaction logs that store all database events allow for the database to

be recovered in the case of a crash. The changes in the source database are captured

without making application-level changes and without the overhead on the database

and without having scans on operational tables, all of which add workload and reduce

source system performance.

In the Figure 8-11 example, service A writes data to a database, and the database

writes a change to the logs. The change is then managed by CDC tools and written to

a stream of events and subscribed to by multiple consumers; the consumer could be a

target database, data lake, or real-time analytics.

Service A Source

Logs

CDC Event Broker

Target Analy�cs

Figure 8-11. Log-based CDC

Chapter 8 Cloud Native data arChiteCture

348

There are a few areas where you need to aware of, such as the following:

• Concurrency: Most CDC tools manage the order.

• Data consistency issues: In a microservices polyglot architecture,

transactions span multiple databases. You need to write a set of

changes to the changelog and then apply those changes. All the

changes can be written to a stream maintaining order.

• The compensating transaction: Apply multiple techniques like saga

and CQRS to manage the transaction (refer to Chapter 6 for more

details).

The following are the advantages of log-based CDC approaches:

• This approach has a minimal impact on the transactional database.

• This works in near-real-time asynchronous event streaming; it helps

you to manage analytics on the fly.

• This approach maintains the order in which the transaction was

committed. This is important when the target application depends

on the order of transaction, for example, if two services modify the

same record instantly.

In cloud native architecture with polyglot persistence and decentralized datastores,

these event streams are incredibly helpful in maintaining consistency across these

databases. The following are a few common CDC uses cases:

• Materialized views: The changes in events can be used to update

these views in real time.

• Auditing and fraud management: Many transactions are required to

conduct auditing. You can use these log changes to track what was

changed and when and to help scan all the transactions in real time

for anti-money laundering and fraud management.

• Analytics: You may require data analytics both on the fly and off the

fly. This approach will apply a machine learning model on the event

streams and will use the fly analysis from a data lake or data mesh.

Chapter 8 Cloud Native data arChiteCture

349

Database A

Database B

Database C

Files

Staging Area Target Database

Figure 8-12. ETL process

• Decoupling: When you consider moving from a legacy monolithic

application to microservices, your approach should be iterative by

applying strangulation. In this case, you need to use this approach to

decouple legacy applications and their databases.

 Extract, Transfer, and Load
ETL is a process that extracts data from different source systems, transforms the data,

and finally loads the data into the target database. This process is not new; you have

been using this approach for very long time. As the name indicates, ETL has three steps,

as shown in Figure 8-12.

Extraction

In this step, data is extracted from heterogeneous systems and files into the staging

area. The source data is transformed in to the staging area without impacting the source

system. The staging area is where you can check and apply rules before loading the data

into the target database. During the data extraction, the ETL tool will do a sanity check of

the data such as type check, duplicates, keys, etc.

Chapter 8 Cloud Native data arChiteCture

350

Transform

Data extracted from the source databases is in the source database format and needs

to be cleansed, mapped to the target, and transformed. This is the key step in the ETL

process. In this transformation, you will apply a few rules such as aggregation, etc.

Load

Loading data into the target database is the last step of the ETL process. In batch mode,

you need to load a huge volume of data in a short period; hence, the load process should

be optimized for performance.

The ETL process is increasingly important to help your organization to analyze data,

reducing the load on the transaction database by keeping read data from the operational

data store.

In a modern-day cloud native architecture, moving and processing data from one

source to another is increasingly important and common. Still, a lot of use cases are

required to use the ETL process such as nightly batches in the financial domain, inventory

reconciliation in the retail domain, etc. All the major cloud providers offer managed ETL

services, such as AWS Glue, Azure Data Factory, and Google Cloud Data Flow.

 Decoupling Big Data Management from Distributed
Data Meshes
Currently, the big data platforms available in the industry are data lakes and data

warehouses. These two hold big, replicated data from various siloed domain databases

either through ETL batch jobs or event streaming jobs. The data lake implementation of

your organization or client’s organization has unclear responsibilities and ownership of

the domains in a lake.

In modern-day business, disruption is happening like never before; therefore, we

need to make sure that our technology supports the business. Data lakes and data

warehouses are good but have their limitations such as centralization of domains and

domain ownership. To overcome these challenges, the concept of a data mesh provides a

new way to address common problems. Zhamak Dehghani from ThoughtWorks coined

the data mesh and wrote a detailed paper on it.

Chapter 8 Cloud Native data arChiteCture

351

The data mesh essentially refers to the concept of breaking down data lakes and

siloes into smaller, more decentralized parts. It is like shifting from a monolithic legacy

application toward a microservice architecture. In a nutshell, the data mesh is like a

microservice architecture in application development.

You are already familiar with the microservices architecture and the decoupling

approach from legacy monolithic services to microservices based on domains by

using the domain-driven approach The domain-driven design approach addresses the

problems in an application domain and in the transactional data related to that domain,

but usually we are not addressing the domains or ownership of the data. The data mesh

addresses data domain-driven design.

In a data lake and data warehouse, you might have observed the ownership issues.

There might be an owner who can manage and operationalize the big data platforms but

not from the domains. The ownership is important. For example, in your organization,

you might have seen each vertical tower for finance, healthcare, retail, etc. There is

someone in charge of that tower who owns the entire team and is responsible for

delivering it and related clients. Similarly, you need an owner for the domain.

The data mesh implementation is based on the four principles shown in Figure 8-13.

These are as follows:

• Domain-oriented decentralized data ownership and architecture: This

principle is about implementing the data domain-driven concept to

decouple and decentralize the data and ownership.

• Data as a product: This principle is about addressing a concern

around accessibility, usability, and harmonization of distributed

datasets.

• Self-service data infrastructure as a platform: This principle is about

services and skills required to operate the data pipeline technologies

and infrastructure in each domain.

• Federated computational governance: This principle is about data

governance and standardization for interoperability, enabled by a

shared and harmonized self-service data infrastructure.

Chapter 8 Cloud Native data arChiteCture

352

A data mesh refers to the concept of decoupling data lakes and siloes into the

smaller, decentralized domain-based model. The analytical scale can scale in the

way the microservices and polyglot persistence have allowed transactional data to

scale. Zhamak Dehghani explained all four principles in a detailed way at https://

martinfowler.com/articles/data- monolith- to- mesh.html. I will cover them in a

more structured way with an example of how you can implement data meshes in your

project. I am using an example of an ecommerce application to explain data meshes.

Figure 8-14 shows the example data architecture. It’s a centralized data lake architecture

whose goals are to ingest data from all corners of the enterprises; cleanse, enrich, and

transform data to the data lake; and serve the dataset in a data lake to diverse requests.

Data Infrastructure-as-a-platform
(Storage, pipeline, catalogue, security, etc.)

New Data
Domains

Data Pipeline and
self-service
Infrastructure

Federated Global Governance & Open
standards

(enable Interoperability)

Data as a
Product

Cross Functional
Team

Data Infra Engineers

Figure 8-13. Data mesh architecture

Chapter 8 Cloud Native data arChiteCture

https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/data-monolith-to-mesh.html

353

The monolithic data lake platform contains and owns the data that belongs to

different domains, e.g., customers, sales KPIs, inventory, payments, orders, etc., with

the business changes. This kind of implementation is no longer helpful to support

the required business growth, because of the diverse customers, more adoption of

the cloud native approach in an application landscape, and the minimum viable

product (MVP) approach.

On the replication side, you are streaming from diverse sources to the data lake,

usually any in the organization. You are not building all the replication at once. You

might follow an iteration model to build as the business grows. For this replication, you

may use an ETL approach or streaming based on the events approach. Both approaches

include ingestion, cleansing, transformation, and loading or subscribing to events. In

this approach, if you want to add a new domain replication, then you need to change the

whole set of replications, which leads to maintainability and testability problems.

The data ownership of today’s monolithic data lake platform is based on who builds

the data lake. In a nutshell, the ownership is based on technology and skills, not on the

domain. The data mesh approach provides a solution to most of the problems you are

facing with today’s monolithic big data approach.

Front End
APIs

Publish an Event Customer
s

Products Orders

eCommerce Application

Data Lake

Payments Wishlist Catalogs

Inventory

…

Customer Catalog

Payment Shipping Price

CartDiscount User

Order

Product

Wishlist

Item

Figure 8-14. Current data lake architecture

Chapter 8 Cloud Native data arChiteCture

354

The following paragraphs explain the next-generation data lake implementation

steps.

Step 1: Self-Service Data Infrastructure as a Platform
The principle of shifting the dataset ownership from the tool is specific to the domain.

To support this approach, the data pipeline needs to move from the ingesting, cleansing,

transforming, and subscribing approach to the domain-based approach.

For the domain-based approach, you need to split the replication pipeline based

on domain, such as the customer pipeline, order pipeline, etc. In this split, the source

database is required to own and take the responsibility for domain-based cleansing,

deduplicating, and enriching of their domain events. Each domain dataset must

establish service-level objectives for the quality of the data it provides.

For example, as shown in Figure 8-15, your customer domain provides customer

demographic details. The “add product to wish list” domain can include cleansing and

standardizing the data pipeline in the customer domain pipeline, which provides a

stream of de-duped, near-real-time add product events. The aggregation of domains is

responsible for the new data domains.

• Customer demographics + add the product to wish list = customer

domain pipeline

To summarize, the source side of the domain data pipeline has the responsibility to

provide domain-related events, such as cleansing. The target side’s responsibility is to

subscribe to data, shown as New Data Domains.

Inges�on Transforma�on Subscrip�on

New Data Domains

Domain Data Pipeline

Customer Event

Order Event

Payment Event

Distribution Event

Figure 8-15. Domain-based pipeline

Chapter 8 Cloud Native data arChiteCture

355

Step 2: Data as a Product
Based on the previous step, the data ownership and data pipeline implementation

are the responsibility of the business domain, as shown in Figure 8-16. This raises an

important concern around the accessibility, usability, and harmonization of these new

domain datasets.

This is where you can implement data domains as a service by creating domain

capabilities as APIs and make them available to the rest of the consumers in an

organization. As part of the as-a-service approach, you need to create a set of well- designed

APIs and events with discoverable, well-documented, and well-tested sandboxes.

Step 3: Data Infrastructure as a Platform
The main concern of distributing the ownership of data to the domain is the

duplicated effort and skills required to operate the data pipeline’s technology stack and

infrastructure in each domain. Harvesting and extracting domain-agnostic infrastructure

capabilities into a data infrastructure platform duplicates the effort of creating a

domain-related pipeline, storages, and domain-specific streaming engines. The data

infrastructure as a platform should be domain agnostic and configure the platform to be

domain specific.

New Data Domains

API Gatew
ay

Event Broker

Figure 8-16. Data as a product with a “as-a-service” model

Chapter 8 Cloud Native data arChiteCture

356

To build the data infrastructure for data meshes, you can use the existing available

infrastructure; for example, you can use AWS S3, Google Cloud Storage, or Azure Blob

Storage to store domain models, and for the “as a service,” you can use standard API

stacks and event stacks. For the data pipeline, use event brokers and ETL tools to create a

separate pipeline and codebase for each domain-related replication.

Step 4: Domain-Oriented Decentralized Data Ownership
and Architecture
To decouple and decentralize the monolithic data platform, we need to start thinking

from a data domain angle, instead of just replicating data from heterogeneous sources

to target data. In my ecommerce example, the customer domain owns and serves the

dataset for access to any team for any purpose. The physical location of the customer

domain can be anywhere like Google Cloud storage or AWS S3 or Azure Blob storage on

the respective cloud implementations, but the domain owner should be the same team

that owns the overall customer domain in your enterprise.

The team that owns the customer domain is responsible not only for providing the

business domains but also for the truths of customer demographics and their likes and

dislikes of the products. The customer usage pattern is required for other transaction

details that are related to other domains; in this case, you need to create a domain-

specific data set that requires consumption.

Step 5: Data Governance
The data mesh platform should be designed with a distributed data architecture, under

the centralized governance and standardization for interoperability, and enabled by

a shared and self-service data infrastructure. Once the data infrastructure is matured,

then you can apply a centralized with decentralized governance concept to improve the

innovation, independence, etc.

Chapter 8 Cloud Native data arChiteCture

357

 Data Processing with Real-Time Streaming
for Analytics
Big data architecture is designed to handle the processing and analysis of data. Over the

years, the data processing landscape has changed, and the business dependency on data

processing has grown dramatically. Every business in any industry is relying on data

processing for key decisions and also to provide a better experience to their customers.

Therefore, you can say that managing big data processing is becoming the main interest

of the CIO office because there are business deadlines to meet.

In data processing, some data arrives in real time, and some arrives in a batch

with large chunks. Figure 8-17 shows the classic data processing of any data. You can

choose whichever option you want, either batch or stream processing, based on the

requirements. Real-time processing requires qualities such as scalability, fault tolerance,

predictability, and resiliency.

The following are the main components of data processing for analytics platforms:

• Batch processing of data source: Processing of data files using

long- running batch jobs

Database

Files

Services

Data
Source

Data Storage

Real-time Message Ingestion

Batch Processing

Stream Processing

Machine Learning
Models Analytics Data

Store

Data
Visualization

Data Processing Analytics

Figure 8-17. Classic data processing

Chapter 8 Cloud Native data arChiteCture

358

• Real-time processing of data: Processing of data in real-time stream

processing

• Machine learning models: Applying various ML models on data

analytics for predictive analysis

• Proceed data storage: Processed data storage for data visualization

• Data visualization: Generating various reports and dashboards for

business and leadership

To support your organization’s need for data analytics, you can choose from the

following available industry architectures.

 Lambda Architecture
The Lambda architecture is a reference architecture for scalable, fault-tolerant data

processing and is designed to handle a big chunk of data by using both batch and stream

processing methods. This reference architecture was first introduced by Nathan Marz.

This architecture helps you to combine both traditional batch processing and stream

processing pipelines. The Lambda architecture tries to solve the concerns around

latency, data consistency, scalability, and fault tolerance.

In the Figure 8-18 reference architecture, the main components are data source,

batch layer, serving layer, speed layer, and query.

Databases

Files

Services

Data Source

Master Data Set

Batch Layer Serving Layer

Batch
Views

Speed Layer

Real-�me Views

Data
Visualiza�onQuery

Data Processor

Figure 8-18. Lambda architecture

Chapter 8 Cloud Native data arChiteCture

359

Data sources can be combined with various sources in an enterprise. This source can

be designed by adopting ETL methods using streaming technologies. This data will be

delivered simultaneously to both the batch and speed layers.

Batch layer: The batch layer saves all the data coming into the

system as batch views in preparation for indexing. The data

is treated as immutable and append-only to ensure a trusted

historical record of all incoming data. The objective is to maintain

accuracy by being able to process all the available data when

generating views. This layer can fix any errors if they occur by

recomputing based on the data set; the output of this layer is

stored in the read-only database. A technology like Apache

Hadoop is often used as a system for ingesting the data as well as

cost-effectively storing the data.

Serving layer: The serving layer incrementally indexes the batch

views to make a query by the data visualization. This layer can

customize the indexes depending on the use cases. The objective

of this layer is to make queries fast and serve them parallelly.

While an indexing job in the service layer is for indexing data and

service layer creates a new job for every new data processing.

Speed layer: The speed layer processes data streams in real time and

handles the data that has not already been delivered to the batch layer

due to the latency of the batch layer. It also processes the latest data to

provide a complete view of the data. Technology like Apache Stream,

Flink, Spark streaming, etc., can be used to design a speed layer.

How Does the Lambda Architecture Work?

The batch and serving layers continue to index incoming batch data in batches. There

will be latency in the indexing of all batches. The speed layer complements the batch

and serving layer by indexing in real time all the new and also delayed batch indexes.

Both the batch layer and speed layer collaborate to provide a large consistent view of

data in the batch/serving layers that can be re-created at any time.

Once a batch indexing job completes the newly indexed data available for visualization,

the speed layer’s copy of the same data is no longer needed and is deleted from the speed

layer. The serving layer processes the data that is already indexed by the speed layer.

Chapter 8 Cloud Native data arChiteCture

360

 Kappa Architecture
The Kappa architecture is a reference architecture for data processing for analytics and is

used for processing streaming data. The reference architecture was introduced by Jay Kreps.

The objective of this reference architecture is to process both real-time and batch processing

for analytics, with a single technology stack. It is based on streaming immutable architecture

in which data is stored in a database. The stream engine reads the data, transforms it in an

analytical format, and finally stores it in analytical database for query and data visualization.

The Kappa architecture provides real-time analytics based on data availability. This

helps the business team to reduce the decision time. It also supports historical analytics

by reading the data stored in the data lake in the batch process. Kafka, AWS Kinesis,

Azure Stream Analytics, Azure Event Hub, Google Pub/Sub, and Confluent are stream

processing engines. For more information on the streaming, please refer Chapter 6.

The Kappa reference architecture shown in Figure 8-19 is considered simple

compared to the Lambda architecture as it uses the same layers and technology stack for

both streaming and batch processes. In a nutshell, the Kappa architecture is a simpler

reference architecture for data processing.

 Microservices in Data Processing with Real-Time
Streaming for Analytics
In the previous sections, I explained the real-time data processing reference

architecture for the data analytics platform. You are already familiar with the

microservices decentralized polyglot persistence principle. One challenge of dealing

Databases

Files

Services

Data Source

Data Lake

Stream Processing

Streams

Analy�cs
Database

Data
Visualiza�onQuery

Data Processor

Figure 8-19. Kappa architecture

Chapter 8 Cloud Native data arChiteCture

361

with decentralized data in a microservices architecture is the need to collate data

for analytics. A common way to approach this is through data movement, meaning

aggregating the data into a centralized data lake by using the Kappa architecture to

provide data visualization, as shown in Figure 8-20.

Both the service and data analytics team can collaborate with each other to replicate

data from each service to the data lake through ETL, CDC, or APIs.

 Mobile Platform Database
Mobile computing applications need to store information locally to make your

applications more responsive and less dependent on network connectivity. The trend

of offline usage, or less dependency on the network, is gaining popularity. The use cases

are a list of contacts, price information, distance traveled, etc.

Product Payment Item Order

NoSQL RDBMS NoSQL RDBMS

Data Lake

Stream Processing

Streams

Analytics
Database

Data
VisualizationQuery

ETL or CDC or APIs

Figure 8-20. Polyglot persistence with Kappa architecture

Chapter 8 Cloud Native data arChiteCture

362

A mobile application keeps the database locally or makes a copy of the database over

the cloud onto a local device and syncs with it as required, as shown in Figure 8-21. This

will help create faster and more responsive applications that are functional even when

there is no or limited back-end connectivity.

There are various mobile database providers such as Realm MongoDB, Couchbase

Lite, SQLite, and Core Data. They support a lighter version of the database being

installed as part of the mobile applications and to work on both iOS and Android.

Sync Gateway

Backend
Database

HTTP/REST Sync

Ap
pl

ica
tio

n1

Application2

HTTP/REST Sync

Figure 8-21. Mobile database architecture

Chapter 8 Cloud Native data arChiteCture

363

The mobile databases must be installed along with your app, and they store all the

data that is required to provide a customer experience on a slow network or offline.

These databases will sync often to your back-end databases through sync gateways. The

data synchronization is done via asynchronous data syncs and synchronous data syncs.

The asynchronous sync manages data events asynchronously without blocking any

app functionality through reactive REST APIs.

In synchronous, the sync services are responsible for syncing data from a remote

server to a mobile device and then storing the data locally in the mobile databases.

The data synchronization in the mobile application is achieved by using a sync

service, sync adapter, and sync gateway. A sync adapter is a plugin that handles

background syncs along with sync gateways.

A mobile database needs to have the following characteristics:

• Fast and secure

• Very lightweight

• Can work with low memory and power

• No server requirement

• Must work efficiently with mobile app code

There are various mobile databases available to choose from, such as Realm from

MongoDB, Couchbase Lite from Couchbase, SQLite, and Core Data.

 Intelligent Data Governance and Compliance
in the Cloud Native World
Digital transformation in cloud native architectures is disrupting business. Along this

journey, quality data is becoming an organization’s most strategic asset for business

decisions and better customer experiences that support business growth.

 Why Data Governance?
With the exponential growth of data, a strict regulatory environment, and cyberthreats

on the rise, protecting and extracting the value from your most strategic asset are

imperative. These tasks are also a formidable challenge. The cost of failing to comply

Chapter 8 Cloud Native data arChiteCture

364

with stringent regulatory requirements may be a legal battle. Regulations such as

General Data Protection Regulation (GDPR), Securities and Exchange Commission

(SEC) regulations, and the legislation and regulations of each country are outpacing the

capabilities of existing IT infrastructure investment. Data complication further increases

as the IDC predicts global data will grow to 163 zettabytes by 2025.

Data governance helps organizations better manage the availability, usability,

integrity, and security of their enterprise data. The objective of data governance is not

just to bring data at rest under control but also to know where data is located; how it

originated; and who, where, and access to data. Effective data governance must be self-

governed irrespective of which country is compliant.

In the modern digital economy, anyone can access data anywhere at any time,

on any device. The CxO demands easy access to data with tight regulations with the

best-in-class compliance process. To satisfy these regulations, you need more than just

strong governance; you need governance based on the data analytics with intelligence

embedded.

 What Is Data Governance?
Data governance helps you to better manage the availability, usability, integrity,

and security of your enterprise data. Data governance moves beyond information

management to support business processes and encompasses a broad set of data

strategies and functions including the following:

• Data delivery and access: Any actions related to storing, retrieving,

and acting on data.

• Data integrity: Ensuring the veracity, accuracy, and quality of data.

• Data lineage: Managing the movement of data.

• Data loss prevention (DLP): Ensuring sensitive data isn’t sent outside

your organization’s network and controlling what data can be

transferred.

• Data security: Protecting unauthorized access or data corruption.

• Data synchronization: Ensuring data consistency.

Chapter 8 Cloud Native data arChiteCture

365

• Master data management (MDM): The complete collection of

process, policies, standards, and tools for defining governance and

managing data.

• Data profile: Reviewing the source data and understanding the

structure, content, and interrelationships.

• Data quality: Measuring the condition of data based on factors such

as consistency, completeness, accuracy, and reliability.

• Data standardization: Bringing data into a common format that

allows for further analysis.

• Data General Data Protection Regulations (GDPR): This is a privacy

and security law that states that personal data is any information that

is related to an identified or identifiable natural person.

 Governance Framework
Figure 8-22 illustrates the overall framework for intelligence data governance. This

framework is based on these five pillars:

• Change management

• Intelligent tooling

• Secure

• Decentralize

• Operating model

Chapter 8 Cloud Native data arChiteCture

366

 Change Management

Change management is the approach to planning, designing, and implementing data

governance without any unintended disruption of the business. As part of the change

management plan, the following key practices need to be adopted:

• Leadership engagement: Enabling leaders and sponsors to champion

the transition.

• Communication and stakeholder management: Information,

announcements, and updates through various channels; the updates

include where and how the changes are impacting the organization.

• Training and performance support: Data governance process, policy,

roles, and competency training.

• Organization alignment: Recommendations for new roles,

performance measures, responsibilities, and workgroup structures.

• Measurement and readiness: Preparing the business and measuring

its readiness to adopt the changes.

Adapt Access

MonitorGovern

Opera�ng Model Intelligent Tooling

SecureDecentralize

Change Management

Figure 8-22. Governance framework

Chapter 8 Cloud Native data arChiteCture

367

 Intelligent Tooling

In intelligent tooling, you need to adopt best-in-class technology and accelerate business

value from data assets. The following are the different tooling strategies that need to be

adopted for data intelligence governance:

• Rapid discovery and recognition: Rapid discovery and recognition of

personal and sensitive data across the ecosystem

• Smart tagging of metadata and lineage: Smart recommendations

for business tagging of technical metadata and lineage using multi-

metadata stores

• Intelligent data quality rule recommendations: It is based on the

corpus and usage of ML models

• Auto-remediation of data: Learning from data curation actions and

auto-remediation suggestions

• Intelligent workflow triggers: Automated workflow triggers based on

user behavior

 Operating Model

In the operating model, you need to manage the roles, responsibilities, processes,

policies, and standards required to manage and govern the data ecosystem. In the

operating model, you need the following teams:

• Executive governance council: This council is the ultimate authority

in defining program-level scope, arbitrating escalated resolutions,

and approving data governance strategy with a centralized and

decentralization approach.

• Business data owners: The owners play a leadership role in

championing data management and data governance efforts.

• Data governance council: The cross-functional and cross-entity

leadership team provides direction and oversight to the overall data

governance structure.

• Data governance organization: This organization provides overall

non-IT support to the council.

Chapter 8 Cloud Native data arChiteCture

368

 Decentralization

In the decentralization approach, this framework embraces each portfolio in an

organization to set its subgovernance under the guidance of the central governance

framework. This helps an organization to decentralize the responsibility and

accountability and helps to fasten the decisions. Each portfolio follows the same tooling

and structure as central governance and tweaks it based on the nature of data.

 Secure

The security of data is of utmost importance. As mentioned, you need to have a set

of country-specific compliances in place and always conduct an audit across the

organization.

You need to consider the following points when you execute this framework:

• Data governance should be viewed as an ongoing program, not as

just a project.

• Data governance must have executive sponsorship, and they must

take significant ownership of the initiative.

• Data governance councils must have real authority to resolve overall

organization issues so the portfolio governance council can resolve

the portfolio issues.

• There should be a clearly defined set of data governance and quality

metrics published regularly and reviewed regularly.

• There must be a clear and timely communication method for data

governance initiatives.

You must train your team regularly.

 Summary
The cloud has made a big impact on how we work today, including with data. The cost

of storing data has been significantly reduced; it is now cheaper and more feasible for

companies to keep vast amounts of data. The operationalization of data has reduced

significantly due to managed services and serverless data storage; this has made it easier

to spread data across different storage types.

Chapter 8 Cloud Native data arChiteCture

369

In this chapter, I explained five main requirements of your data layer. The first is how

to choose the database based on the use cases, the second is how to replicate the data,

the third is to decouple the data lake to a data mesh, the fourth is data for analytics, and

finally the fifth is the governance model.

In the cloud native world, one thing you cannot forget is the data layer. To deliver

a consistently fast, satisfying customer experience, the data layer must also be

modernized along with your application. You must embrace all five requirements of data

modernization.

Although there are many reasons to adopt governance approach, it enables data

accessibility, data confidence and understanding, and data activation. Some of the

benefits are as follows:

• Data consistency ensures completeness and accuracy.

• Proactive data quality checks ensure data alignment.

• It removes confusion over the data meaning.

• You can make fact-based decisions in real time with accurate data.

Chapter 8 Cloud Native data arChiteCture

371
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_9

CHAPTER 9

Designing for “-ilities”
So far, we have discussed cloud native principles, patterns, and elements of the cloud. In

this chapter, I will explain the quality attributes for designing a system, i.e., how to design

for your “-ilities” in a cloud native environment.

Developing the functional requirements in your application means addressing

the business use cases, but what about the nonfunctional requirements? How will you

address them? Developing your application to meet the nonfunctional requirements is

as important as for the functional ones. In the cloud native world, you must prioritize the

“-ilities” and address them at the beginning of the project like with the functional user

stories.

You are responsible for cross-cutting concerns and making sure that the individual

components of a system can work together seamlessly to meet the overall objectives.

In this chapter, I will explain what you need to consider when designing your system

for the following “-ilities”:

• Designing for security: This is vital for a modern system in the

digital economy, with the exponential growth across the globe, strict

regulatory environments, and cyberthreats.

• Designing for resiliency: This is vital for modern-day, distributed

applications, where any individual component could fail. The overall

application should remain functional.

• Designing for integrated observability: This means providing

the required behavior of an application across applications,

infrastructures, and threat landscapes.

• Designing for portability: This helps you to design for multicloud

and hybrid cloud environments across containers, VMs, and FaaS

platforms.

https://doi.org/10.1007/978-1-4842-7226-8_9#DOI

372

• Designing for sustainability: The whole world is talking about global

warming. In IT, we need to help the world reduce its carbon footprint

by minimizing the compute usage or utilizing more sustainable cloud

hosting options.

• Designing for availability: The application must be available to serve

your customer, either from the application logic or database storage

or from the deployment environment.

• Designing for reliability: The designed application must be reliable to

serve all the requests in the stipulated time.

• Designing for business: However you design an application, you need

to ask the question, for whom are you designing this application and

for what reason?

 Why Do You Need “-ilities”?
Developing an application has always been a complex task. Cloud native, modern-

day architecture and distributed systems that are built using microservices, with

event-driven architecture, and that are deployed onto a container with a serverless

infrastructure yield many benefits but also introduce several new challenges.

Decoupling allows teams to iterate faster by adopting agility and automation, which

provides flexibility to increase the quality, release faster to market, etc. However, there

is an accompanying increase in the number and level of code changes, testing, and

deployment required.

Along with the domain requirements of your system, you need to consider

numerous factors, some explicit and some implicit, of a system and balance all

concerns optimally.

The following “-ilities” help you to develop quality systems, offer customers a great

user experience, implement security, and meet customer vision.

Chapter 9 Designing for “-ilities”

373

 Partial List of “-ilities”
Business and domain requirements exist along with “-ilities.” These “-ilities” can alter

the decision process for what and how to develop a system. Table 9-1 is the partial list of

“-ilities.” When developing a system, you must determine the most important of these

“-ilities.” However, many of these “-ilities” oppose one another. For example, achieving

both high performance and high security can be difficult.

Along with the traditional “-ilities,” I have given equal importance to sustainability

and ethics to support our planet and humans.

 Designing for Security
Designing and developing cloud native systems that are secure is of vital importance.

A system that does not follow secure practices creates vulnerabilities that can be

exploited by various threats. The result of a threat can be unauthorized access to

your system. A secure system can prevent and protect against malicious attacks and

unauthorized access to the system. It is your responsibility to design a system that

protects against malicious attacks.

Cloud native is fundamentally new, and using an existing approach to designing

and building applications raises a security challenge, because different systems have

different security requirements. It is important to understand the security needs of the

system, so your approach should be radically different.

Table 9-1. List of “-ilities”

security scalability availability operability sustainability

performance fault tolerance integrity testability Maintainability

extensibility Usability portability agility Debuggability

interoperability simplicity ethics flexibility stability

resilience inspectability robustness efficiency tolerance

Modularity Coupling Cohesion Degradability Cloudability

self-healing self-sustainability observability autonomy auditability

learnability Changeability provability Durability Composability

Chapter 9 Designing for “-ilities”

374

Cloud native security necessitates a refocusing on security that operates in step

with the overall cloud native strategy of your organization. The key emphasis of cloud

native security needs to ensure that vulnerabilities are identified and remediated during

development. The approach you are adopting must be holistic and should be baked in

through the software engineering lifecycle including operations. You should strive to

create cloud native applications that are secure by design.

Using the following proven and new concepts of security principles and methods can

make your application more secure.

 Defense in Depth
Security is more effective when each layer of the system architecture implements its own

security techniques, so your strategy should be to adopt different methods for each layer.

This redundancy ensures that if an outer layer is breached, then the subsequent layer

can potentially thwart an attack.

In cloud native architecture, all components have asynchronous and synchronous

communication. Therefore, each layer must be configured with well-matured security

controls. If one security control fails, a threat may be prevented by another security

control. Security controls in each layer with independent methods will make it much

more difficult to exploit a vulnerability.

 The CIA Triad
The CIA triad is the governing principle for information security and the protection of

assets. The CIA triad, as shown in Figure 9-1, summarizes the attributes that you want

your system to exhibit. CIA stands for confidentiality, integrity, and availability.

Confidentiality

Systems must protect confidentiality. The information that

a system manages has value to users, and you must prevent

unauthorized individuals from accessing information. The system

must protect the data, APIs, etc.

Chapter 9 Designing for “-ilities”

375

Integrity

The system must ensure integrity. The objective is to prevent

unauthorized individuals from modifying the information. You

must design your application to ensure that the data has not been

tampered with by unauthorized individuals.

Availability

Systems need to maintain availability, and you must design a

system that allows authorized individuals access to information

in a timely and reliable way. Securing data serves no purpose if

authorized users cannot access it.

 Policy as Code
The technology landscape is becoming more complex and agile, and manually

managing each policy has become more erroneous. Therefore, security needs to be

implemented with automation and well-defined engineering practices. When you are

developing a new cloud native system, you need to take into consideration the security

policies, which are the rules and procedures to protect your systems from threats and

disruptions.

Policy as code codifies the security policies, for example, access control, so this

policy can be treated as a test. When I say code, you do not need to write the code

yourself in a programming language; you write the code in a configuration file and apply

CIA
TRIAD

Confidentiality

Figure 9-1. CIA triad

Chapter 9 Designing for “-ilities”

376

practices such as keeping the code under version control, configuring these files as part

of your DevSecOps pipeline, automatically deploying by using infrastructure as code,

and configuring observations to your software artifacts.

Tools such as HashiCorp, Open Policy Agent (OPA), istio, and all the major cloud

vendors support policy as code.

 Zero-Trust Security
Traditional network security is based on the castle-and-moat concept, where external

individuals are restricted and everyone inside the network is trusted by default. The

downside of this approach is that sometimes internal individuals become offenders. Or,

if external resources gain access, then they can get access to your application and code.

In cloud native applications, your systems are decoupled into multiple microservices

and communicate synchronously and asynchronously. To secure your systems from all

kinds of network threats, you need a zero-trust model.

A zero-trust model is a network security model, based on a strict identity verification

process. This model doesn’t trust anyone either internally (inside your network) or

externally (outside your network) or a machine to access your application and code.

In this model, you need to create a strict identity verification for every individual and

device.

You need to adopt the following methods to implement zero-trust security:

• Implement a strong verification mechanism by using identity and

access management for both system and network access.

• For the principle of least privilege; each access is granted only

much as needed. To implement this, you need to categorize your

application components based on access privileges.

• Segment your network into microservices by breaking up security

perimeters into smaller zones to maintain separate access for

separate parts of the network.

• Use multifactor authentication to require more evidence to

authenticate a user.

• Use strict control for device access and implement the strict

monitoring and auditing of every access.

Chapter 9 Designing for “-ilities”

377

 Decentralized Identity
Challenges of the current centralized identity provider are all-access ties to the single

centralized identity and access management with the top-down approaches. This was

good for traditional IT, where your applications are deployed in a single monolithic and

one data center.

In a cloud native architecture, elements like microservices, data meshes, and event

meshes enable decentralized implementations, but identity management remains

centralized. In a decentralized approach, discrete identifiable units such as people,

organizations, and things are free to use any shared root of trust.

This is an emerging concept in a cloud native world; here you will give back

control of identity to consumers through the use of an identity wallet in which they

collect verified information about themselves from certified identity issuers such

as a Social Security number (SSN) in the United States, Aadhar number in India,

etc. The Decentralized Identity Foundation is leading the way to conceptualize the

implementation.

 Validating Input
A software vulnerability can be avoided by being diligent about validating input from

any untrusted sources. Whether it is user input or APIs or events, your application must

validate all the input before processing it further. In the case of external integration, that

system may have security policies and standards that differ from yours, so the system

much check the data that it receives from external integration or extended enterprises.

 Design for Threats
Threat modeling is a structured approach for analyzing security in your system.

A threat is the most vulnerable to the system and may cause serious harm to it.

Therefore, you need to create a threat model during design time. Threat modeling is a

process that identifies and prioritizes potential security threats so that you can develop

and test potential threats. Threat modeling evaluates threats to reduce a system’s

overall security risks.

For cloud native and modern architecture, use threat modeling to focus on security

from the attacker’s viewpoint.

Chapter 9 Designing for “-ilities”

378

 Naive Password Complexity Requirements
All enterprises are set up with a password policy that has a mix of capitals, lowercase,

and special characters, a length from 8 to 15, and more. In this policy, people will forget

to remember this complexity and end up using a more insecure password. According

to the National Institute of Standards and Technology (NIST), password length is the

primary factor in characterizing password strength. Passwords that are too short or too

common will encounter brute-force attacks as well as dictionary attacks using words.

 Compliance as Code
This is about building compliance into development and operations and writing

compliance policies and checks and auditing into the DevSecOps pipeline so that

regulatory compliance becomes an integral part of automation. How to implement

compliance is described by James DeLuccia and his team in “DevOps Audit Defense

Toolkit.” This toolkit provides many details with real implementation scenarios.

The Chef Compliance tool from Chef scans infrastructure and reports on compliance

issues, security risks, and outdated software, etc.

 Shift-Left Security
Shift-left security applies to functional, security, and performance testing and related

processes, techniques, and tools to be integrated as part of the DevSecOps and

developer integrated development environment (IDE).

Shifting the security review process left requires a new way of developing the

application compared to the traditional approach. These changes are not significant

deviations. You need to add the following process for shift-left security:

• Involve an information security expert in the early lifecycle of the

project.

• Use security tools.

• Integrate security tools as part of the continuous integration and as

part of the developer IDE.

Configure static application security testing (SAST) and dynamic application security

testing (DAST) as part of the DevSecOps pipeline, and implement container security to

check the vulnerability at the early stage of the software development lifecycle.

Chapter 9 Designing for “-ilities”

379

 Single Pane of Glass for Audit
Logs are essential components for helping to secure cloud native applications. Design

your application for integrated centralized log management, operations, searching,

and analysis. With this, you can use logs for detecting security threats, alerts, and

notifications in an environment.

Through a single pane of glass, the tools provide you with holistic, business-level

visibility across all environments. I will explain more about integrated monitoring in

Chapter 19.

 Homomorphic Encryption
Most encryption schemes such as Advanced Encryption Standard (AES), Rivest-

Shamir- Adleman (RSA), Triple Data Encryption Security (DES), and Twofish consist

of key generation, encryption, and decryption. Symmetric key encryption schemes

use the same secret key for both encryption and decryption, and asymmetric key

encryption schemas use a public key for encryption and a secret key for decryption.

Both symmetric and asymmetric encryption can be used to secure data at rest and

transit. Any outsourced computation will require such encryption layers to be removed

before computation can take place. Therefore, cloud services providing outsourced

computation capabilities must have access to secret keys and implement access policies

to prevent unauthorized employees from getting access to these keys.

Homomorphic encryption (HE) refers to encryption schemes that allow the cloud to

compute directly on the encrypted data, without requiring the data to be decrypted first.

The result of such encrypted computations remains encrypted and can be decrypted

only with the secret key of the data owner. Do not use HE for everything. It is a generic

technology, so use only wherever computation data is possible on encryption. You can

consider using federated machine learning results. Still, the industry is researching to

standardize it. There are various software available for HE like SEAL, Lattigo, and HElib.

 Fail Securely
Failures are bound to happen for any kind of system; therefore, you need to design

your system to fail securely. This involves several things, such as using secure defaults,

restoring to a security state, and always checking return values for failure. The

confidentiality and integrity of your system should remain even though availability has

Chapter 9 Designing for “-ilities”

380

been lost. Access must be restricted to privileged objects during failure. Application code

should be written in such a way that there is proper exception and error handling and

predictive analysis to alert required stakeholders.

 Secure APIs
Your APIs are exposed outside of your network to transfer data. Broken, exposed, or

hacked APIs are behind the major data breaches. You need to secure your API, but not all

APIs require some kind of security. Open Authorization (OAuth 2) or Open ID Connect

are open standards for authorization. They allow an application to be granted access to

resources from the consumer. Open ID is an identity layer that sits on top of OAuth2 and

OpenID Connect to enable authentication and authorization. Use a JSON Web token

(JWT) along with your APIs to securely transmit information between the provider and

the consumer as a JSON object.

There are no silver bullets when it comes to implementing security; however, there

are proven principles and practices you need to secure your application. There are more

techniques other than these; refer to the respective techniques in more detail while

designing an application.

 Designing for Elasticity
Elasticity is the degree to which a system can adapt to changes in demand by

provisioning or releasing resources autonomously. The microservices, containers, and

Kubernetes are built for elasticity. You need to design microservices to enable a view

on resources as an infinite pool and give the ability to scale the deployed containers out

and in depending on demand. To keep the costs to a minimum and quality objectives as

promised in your client SLOs, an adaption process must exist that alters the number of

container instances based on demand.

While you design an application, you should adopt the following principles:

• Design for stateless.

• Adopt a sidecar pattern.

• Make it independently deployable.

Chapter 9 Designing for “-ilities”

381

• Use the sharding principle for a database.

• Use autoscaling options from cloud providers.

You can find more information about elasticity in Chapter 5.

 Designing for Resilience
Resiliency refers to the ability of a solution to absorb the impact of a problem in one or

more parts of services while continuing to provide an acceptable service level to your

business. A resilient application must thrive even when the unexpected happens. In

other words, it provides the required capabilities despite excessive stresses that can

cause disruptions. The residual defects in the software or hardware will eventually cause

the system to fail to correctly perform a required function or cause it to fail to meet one

or more quality attributes of microservices such as availability, security, performance,

reliability, usability, etc. An unknown or uncorrected security vulnerability will enable

an attacker to compromise the system.

The question is how to design for automatic self-healing and application resiliency.

As mentioned in Chapter 5, microservices are always be on partial failure with more

load. But how can the designer approach microservices resilience? Approaching for

resilience is not a one-time activity but is a continuous plan, culture, and work during

the entire lifecycle of a microservices.

The following patterns can help you to design resilient microservices:

• Circuit breaker pattern

• Bulkhead pattern

• Stateless services

• Retry

• Fail fast

• Timeout

• Throttling

You can find more detailed information on resilience in Chapter 6.

Chapter 9 Designing for “-ilities”

382

 Designing for Sustainability

“Sustainability consists of the strategies and actions your enterprise takes to

reduce its carbon footprint and consumption of the planet’s resources so that

it is not sacrificing the health and happiness of future generations to meet its

own needs today.”

—Forrester Research

Designing for sustainability is an innovator trend, and people are realizing the software

industry is responsible for a high level of carbon usage comparable to the transportation

industry. Some of our day-to-day activities are directly measurable, as compute usage is

highly correlated to energy consumption.

In IT, energy is needed in the following areas:

• Creating, testing, launching, and maintaining applications

• Hosting and serving applications

• Interacting with users in applications

The JEVONS Paradox in Cloud Native
The Jevons paradox is an economic term coined in the 19th century by economist

William Stanley Jevons.

The Jevons paradox, as shown in Figure 9-2, occurs when technological progress or

government policy increases the efficiency with which a resource is used and increases

the demand and subsequent consumption due to what he called the rebound effect:

when something is cheap and convenient, more people want it. This theory was for

coal usage, and he observed that technical advancement increased efficiency and

reduced prices.

Chapter 9 Designing for “-ilities”

383

His original theory was about coal, but his paradox can be applied to almost all

resources and is especially relevant in present-day cloud native architecture.

Sustainability Approaches
The following approaches will help you to design your system for sustainability, as

shown in Figure 9-3:

Net zero transitions: Net zero carbon targets are no longer

optional. The challenge is making them real and visible. Your

organization must be rapidly progressing toward goals. You

unleash the potential of cloud native to transform business

models for the better.

Sustainable IT and technologies: Cloud native technology is a true

enabler of sustainability, but its energy consumption footprint is

vast. You must use technology more sustainably, as well as use

technology as a vehicle for being more sustainable.

Cloud Native Technology Adoption

Cost of Cloud Computing

A

B

%
 o

f d
ro

p
in

 c
os

ts Savings from
reduced cost
of cloud
computing

Savings more than
offset by
increasing cloud
native adoption

Figure 9-2. JEVONS paradox theory

Chapter 9 Designing for “-ilities”

384

Sustainable consumer experience: Today, consumers demand

sustainability. Your organization combines deep technology

experience to help clients deliver consumer experience without

compromising the user experience.

Culture of sustainability: This means creating the mechanisms

and cultures that bake sustainability into everything we do.

Your organization must use the design thinking workshops and

transform the way people design, work, and deliver systems.

Sustainable assessment: Use tools, techniques, and methodologies

to help organizations understand where they stand and help them

to realize the sustainability journey.

Figure 9-3 shows the six-step approach to build a sustainability system.

Deployment Environment
Where you deploy your application is a significant part of sustainability. In a cloud native

architecture, usually the cloud environment will be a deployment environment. All the

major cloud vendors have data centers across the globe, but not all data centers are

running with clean energy. So, you need to design your application to use the respective

cloud environment appropriately and choose clean energy data centers.

Categorize each services into Complex, Medium and
Low Category based on ‘-ili�es’

Brainstorm and cross check with Clients

Collect Business & Technical User Stories
Create a Backlog

GATHER REQUIREMENT

Design a Cloud Na�ve Services & Create a SLAs,
Accessibility, Availability, Scalability for each services

DESIGNA CLOUDNATIVE SERVICES

CATEGORIZE SERVICES

Create single click DevSecOps
Automate Infrastructure with Infrastructure as Code

Create Observability as a Service

AUTOMATION

Finalize Data Centers based on sustainability principle
Choose All Non-Prod on Clean Energy DC

Produc�on Environment based on categoriza�on

FINALIZE DATA CENTERS

Deploy all services based on Finalized Data Center

DEPLOYMENT

1 2

3

45

6 SIX
STEP

APPROACH

Figure 9-3. Six-step approach

Chapter 9 Designing for “-ilities”

385

In your application, not all use cases are highly critical, so you need to categorize

the use cases as critical or noncritical with higher latency. The noncritical use case can

be deployed in any data center that runs with clean energy, and the critical use cases

that require low latency can be deployed in nearby data centers, which may or may

not run on clean energy. For effective deployment management, you need to create

infrastructure as code to automate your service based on criticality.

Software Engineering
The software engineering methodology plays a critical role in sustainability; I am talking

about how you develop, test, and maintain your system. Use agility, next- generation

automation, and AI-driven development to minimize the time and resource usage for

software development.

UI Architecture

Web pages: According to the HTTP Archive and its page weight

report, the average size of a website is around 2MB, and the

average load time is 4.7 seconds for desktop and 11.4 seconds on

mobile apps. When served up on a sluggish Internet connection

with 2G, 3G, and 4G or mobile devices with slower processors,

these pages waste time and energy and frustrate users. We are

inclined toward high resolutions and multi-image carousels.

Social media: According to Statista, the average daily time spent

on social media by users is around 145 minutes per day.

Video streaming: With more than 4.5 billion Internet users in

the world as of this writing, YouTube streaming around 260MB/

hour worldwide, and Netflix accounting for around 12.6% of total

Internet traffic as of writing, the subscriptions for OTT platforms

are increasing daily.

The total energy consumed by cloud computing is more than many countries in the

world. You need to design your application effectively based on what you need to display

and how much data you need to show to the user.

Chapter 9 Designing for “-ilities”

386

Sustainability Assessment
You can consider the previous design adoption for new projects. What about existing

applications? How can you assess and improve the sustainability?

Assess the existing IT estate with the existing technology portfolio to establish

comprehensive technology-driven sustainability. Follow these four steps to conduct an

assessment:

 1. Current state assessment: The objective of this initial step is to

identify the current system landscape and deployment model:

interview stakeholders, consolidate systems and criticality, and

write a regulatory landscape report.

 2. Gap analysis: The objective of this step is to consolidate the report

of the existing landscape and map against a sustainability chart:

list and define projects and criticality, map them against the

sustainability data centers, and list automation gaps.

 3. Financial constraints and sustainability: The objective of this

step is to consolidate the sustainability report and financial

constraints: list the carbon and sustainability measures per

workstream, benchmark reports, list ambitions and target values,

and set a sustainability transformation scope.

 4. Roadmap, project charter, and recommendations: The objective

of this step is to define a path for a roadmap to project realization,

including project cost estimates and project organizations.

You need to conduct an audit by asking the following questions:

• What are you trying to accomplish? List the objectives and SLAs and

SLOs for each business use case.

• What are we trying to assess? Do an inventory of all use cases and

categorize them.

Chapter 9 Designing for “-ilities”

387

• What is the impact of our inventory? Do the impact assessment.

List the present inventory and what changes are needed to apply

sustainability, include how much CO2 is generated based on where it

is deployed, and check whether the hosted environment uses fossil

fuels or green energy.

• What does the data tell us? Create a target architecture and create a

plan to move from fossil fuels to a clear energy hosting platform.

 Designing for Failure
A cloud native architecture might fail for a variety of reasons, such as bugs in your code,

unstable deployment, poor underlying infrastructure, resources saturated by load,

unhealthy underlying nodes, faulty data center, or network between services failing.

Lastly, human error can lead to major failures. You might have seen recent outages on

Google services, Azure India availability zones, etc.

It is impossible to eliminate failure in a cloud native architecture; the cost of that

would be infinite! Your focus should be on designing services that are tolerant of

dependency failures and that are able to gracefully recover from them to mitigate the

impact of those failures on their responsibility. You need to understand the different

types of failures they might be susceptible to. Understanding the nature of these risks

and their likelihood is fundamental to both architecting the appropriate mitigation

strategies and reacting rapidly when an incident occurs.

These are the following areas of failure you need to consider while designing

your services:

• Infrastructure: The underlying infrastructure on which your service

operates such as containers and VMs

• Communication: Collaboration and coordination between various

services through APIs and events

• Dependencies: Failure independent services

• Internal: Errors within your service

Chapter 9 Designing for “-ilities”

388

Infrastructure
Regardless of where your services are deployed, the reliability of services depends on

the infrastructure that underpins them. The sources of failures in the infrastructure are

hosts, data centers, networks, operating systems, etc. The failure in the infrastructure

may affect the operations of multiple services in an application. You need to design your

application with redundancy to mitigate infrastructure failure that might happen in one

availability zone. You need to balance the redundancy because it incurs additional costs

to your project.

Communication
Communication between services or external third-party services may fail. The source

of communication failure might be firewalls, messaging, network, etc. These failures are

common. You need to design your service to maximize availability, correct operation,

and recovery when it occurs. To mitigate these errors, you need to configure your

services with a retry mechanism for asynchronous or proper error mechanism for

API implementation. Along with this, consider using circuit breaker, communication

brokers, fallback, and other patterns.

Dependencies
Failure can occur in other dependent services or databases. Failures are related to

timeouts, external dependencies, overload on other services, etc. You need to use

various patterns such as a circuit breaker, timeout, retry, etc., to mitigate dependencies

on other services and to provide the consumer experience as a whole system.

Internal
Inadequate software engineering practices might lead to failure. Services might be

poorly designed or developed, inadequately tested, have improper deployments, etc.

This leads to memory leaks, improper CPU usage, erroneous programs, etc., which leads

to performance degradation. You need to design your service with software engineering

best practices like shift-left, automation, testing, etc., and also adopt self-healing,

graceful degradation, etc.

Chapter 9 Designing for “-ilities”

389

 Designing for Reliability
Reliability is the probability that your system will continue to work normally over a

specified interval of time, under specified conditions. For example, your Payment service

might have a reliability of 99 percent during business hours; it has a 99 percent chance

of working normally during this time. A more reliable system requires less maintenance.

The reliability is design-centric, i.e., how reliable your system is comes from how you

design your system. This is the reason we collect the reliability measurement at the start

of the architecture and design it as a nonfunctional requirement.

Failures in your services are normally distributed as shown in Figure 9-4. Different

services and failure rates will apply to different kinds of services, but generally, all

services behave like Figure 9-4 irrespective of what kind of services you have.

As shown in Figure 9-4, the graph goes by the name the bathtub curve because of its

characteristic shape. The highest failure rates correspond to premature failure and end-

of- life wear-out. Your services might fail after some time due to various conditions; this is

understandable, but what about premature failure? The premature failure is the result of

bad design and development. This can be eliminated by identifying and adopting good

design practices.

Fa
ilu

re
 R

at
e

Time

Premature
Failure

Normal
Service

Wear Out

Figure 9-4. Bath tub curve

Chapter 9 Designing for “-ilities”

390

The premature failure can occur as mentioned here:

• Services are designed and developed well but inappropriately

deployed.

• Services are not built properly in the DevSecOps pipeline.

• Services are not managed by the operation team.

• Overall, service design is not good and introduces unnecessarily high

throttling.

The normal service phase failure can occur as mentioned here:

• Failure due to natural calamities

• A sudden spike in a request, for example, during Black Friday time

The wear-out service phase failure can occur as mentioned here:

• Aging of infrastructure services

• The old version of adopted software

Simply identifying a failure by using observability is a waste of time and process.

Eliminating failures saves money and time.

Good architectural design is the key to extending the service’s operational lifetime,

which is the bottom of the bathtub. The best approaches are as follows:

• Follow a minimum viable product (MVP) to evaluate your design

before industrializing the design across all services.

• Apply this knowledge and create a template and best practices for all

the services’ agile Product Oriented Delivery (POD) teams.

• Create automation in every step; this helps to quickly pivot if any

failure occurs.

• Create redundancy like a disaster recovery (DR) and replica set for

databases.

Chapter 9 Designing for “-ilities”

391

Pareto Chart
Apply Pareto analysis (the 80/20 rule), where 20 percent of service faults in the system

are responsible for 80 percent of the failure cost. Prioritize to identify this 20 percent and

provide an early remedy. Use a Pareto chart.

Fault rates under specific headings are tabulated and calculated and converted

to graphical form, as shown in Figure 9-5, so you can examine the individual cost of

running the services. The individual faults that are responsible for the highest operation

cost are the ones to remedy first, either rectifying errors or creating new ones. One of the

useful principles of cloud native services is that it is easy to create a new microservices if

the operation cost is more than the new development cost.

Although the software services are not subject to wear-and-tear, the bathtub curve

and Pareto chart provide us with insight into the operational lifecycle. The bathtub curve

and Pareto chart enable software systems to understand the reliability of your services.

This helps you to strategy your operationalization of services.

0

1

2

3

4

5

Service A Service B Service C Service D Service E

PARETO CHART

Op
er

at
io

n
Co

st

Cloud Native Services

Prioritize the faults in
Service A and C.

Figure 9-5. Pareto chart analysis

Chapter 9 Designing for “-ilities”

392

 Designing for High Availability
High availability configuration is an approach for defining the services of your system,

which ensures optimal operation performance, even at times of high loads. Although

there are no fixed rules for implementing high availability (HA) systems, there are a few

good practices that you need to follow to make your system highly available.

For any kind of system, there are two types of downtime: scheduled and

unscheduled. Scheduled downtime is a result of maintenance like a software update

or patch update. You can’t avoid this. Unscheduled downtime is caused by some

unforeseen event, like hardware, software, or network failure.

The main objective of implementing an HA architecture is to make sure your system

can handle a variety of loads and provide a great customer experience with minimal or

no downtime.

The availability of a system is measured using the following formula:

Availability = uptime/ (uptime + downtime)

The result of this formula simply refers to a system that is continuously operational

for a desirable long period of time. The result is expressed as 99.99 percent (“four nines”)

or 99.999 percent (“five nines”), etc.

An HA solution is not just adding servers or containers to the existing stack, but

actually, it is the opposite as more servers add a higher probability of failure. The cloud

native modern architecture allows for the distribution of workloads across multiple

instances of services in a cluster, which helps in optimizing resource use.

Cloud platforms are essentially built to tolerate failures and provide features to help

build reliable, highly scalable, and highly available systems. Such features include the

following:

• Infrastructure as a service (IaaS) is available across geographic

locations.

• Availability zones are engineered to be isolated from failures in

other zones.

• Your services can be deployed across availability zones across

geographic locations to provide HA.

Chapter 9 Designing for “-ilities”

393

However, you cannot leverage the previous benefits just by moving your application

to the cloud. To achieve HA in a cloud, consider these best practices:

• Design your application to be cloud native.

• Design your application for availability and recoverability.

To achieve HA, you need to strategize all the layers of the application equally. Let’s

examine each component of your application.

High Availability of Databases

You use can both SQL databases and NoSQL databases in your

architecture, but they will run on a separate server. You need to

configure databases for redundancy. This can be achieved with a

master and slave strategy. If the master fails, the voting technique

will be carried out to choose a master and also can be made highly

available by using a sharding strategy. More details of horizontal

scalability are explained in Chapter 4. I have extensively covered

database partitioning with various patterns such as horizontal

partitioning or sharding, list partition, round-robin partition,

vertical partitioning, leader-based replication, and quorum-based

replication.

High Availability of Services

Applications can scale automatically by using containers and

Kubernetes based on the load across multiple availability zones

and geography. You can find more details in Chapter 16 Cloud

Native Infrastructure.

To design an HA cloud native solution, you must remove the single point of failure at

each layer, all the way from the infrastructure to software applications. The HA is usually

accomplished with the redundant deployment of your systems. The deployment strategy can

be chosen as either active-active or active-passive. Each strategy comes with cost and effort.

Chapter 9 Designing for “-ilities”

394

Active-Active Deployments
In an active-active deployment, application instances are actively running

simultaneously.

• The load balancer distributes incoming requests across application

instances.

• Instances are always running and ready to receive a request.

• You can achieve a recovery time objective (CTO) close to zero.

• Write messages simultaneously for both the data center for

event-driven architecture by using messages queues or Kafka

streaming.

Active-Passive Deployments
In active-passive deployments, one instance will be active, and the other will be in

standby mode.

• The request sends only to primary instances.

• If the primary fails, then it routes to secondary instances.

Follow these best practices to make a system highly available:

• Data backups, recovery, and replication: Plan your databases to take

regular snapshots and create read replicas to server requests to help

recover if the primary fails.

• Clustering: You cannot avoid failure. HA is all about serving

consumers regardless of failure. An HA cluster includes multiple

nodes and shares information across nodes depending on the type of

your architecture, like event-driven or synchronous calls. In an event-

driven use, message queues or Kafka clusters share information

across nodes as mentioned for active-active deployments.

• Load balancer: Use a load balancer to route traffic to the available

instances. You can configure the load balancer to route request with

the percentege or near location.

Chapter 9 Designing for “-ilities”

395

• Geographic redundancy: You can use a cloud location to deploy your

application across geographies to make your application highly available.

• Self-healing: Apply a self-healing mechanism to heal your services

automatically without human intervention; you can find more details

about self-healing in Chapter 6.

• Design your systems with stateless as much as possible: Service states are

not stored in one instance; the loss of an instance will impact availability

and performance. Always store the state outside of the container.

• Design your application to handle disruption gracefully, without

customer impact: Deploy the application in multiple AZs and

automate the load balancer at every layer.

• Observability: Implement integrated observability across all services

to monitor the health of services.

• Prediction machine learning model: Use ML models to predict your

service health and the load; therefore, you can manage your system

effectively.

 Designing for the Customer
In the age of the digital economy, we are undergoing a lot of business and technology

disruption. The customer can become impatient and want something new. Therefore, as

an architect, you need to always think about the customer and business while designing

your system.

With cloud native, IT services that can quickly build and deliver solutions in

response to customer needs will attract and retain your customers and build enduring

success. The methodology that you adopt must enable your engineering team to iterate

faster and release software rapidly so that you can respond more effectively to customer

needs and events.

When you designing your system, you need to focus on the customers and their

needs in each phase of the design process. The team must involve users throughout

the design process through a variety of research and design techniques to create highly

usable and easily accessible applications.

Chapter 9 Designing for “-ilities”

396

Adopt the following best practices for customer-centric design:

• Cloud native microservices allow you to deliver continuously and be

agile. There is no final version of services. It’s an approach where you

see action every day.

• You need to constantly update the code based on customer

feedback, regardless of whether it’s voiced directly, comments on

social media, etc.

• Rather than the software engineering team working in a silo, you

need to enable the engineering team to engage proactively and

regularly with the business team through design thinking workshops.

• Adopt hypothesis-driven development to get early feedback from

customers and use their feedback to make valuable real-time

improvements.

• Adopt A/B testing, which helps you to discover if a customer-

suggested change represents the majority opinion and whether any

services can be modified and deployed in production without a

business impact.

• Adopt continuous integration and continuous delivery to turn

around quickly on changes and also create infrastructure as code to

automate infrastructure.

• Follow a decentralized governance approach, which allows agile

Pod teams to work independently and embrace customer-centric

innovation.

• Follow canary deployment. Test a new version of the software before

the version is introduced in the main production environment.

Make small releases available to a small group of people to get early

feedback.

• Collect customer data, analyze it instantly, and apply changes to

your software.

Chapter 9 Designing for “-ilities”

397

 Designing for Interoperability
Interoperability can be understood in multiple ways, like data transfer from one system

to another without transformation loss or the ability of different applications to interact

with each other dynamically, facilitating the smooth exchange of information. In this

section, I am use the second interoperability definition.

Each system in your enterprise is different, and systems do not interact with each

other out of the box. You need to create an integration mechanism between two systems

to work. In cloud native architecture, each domain is designed as a microservice, and

you need to implement interoperability across multiple microservices to complete

a unit of work. For example, completing payment processing with a debit or credit

card requires multiple services to perform. The degree of interoperability of a system

or service can be measured as its cost of integration. The cost of integration of your

services should be considered over its lifetime, not just at its point of first use. Changing

to a service interface implies a need to re-integrate it with other services. The lifetime

cost of a service whose interface changes will be considerably more than its initial cost.

A service should have well-defined interfaces that do not change over time and are

backward compatible.

For an ecommerce application, as shown in Figure 9-6, you are required to develop

various services and also required to integrate with various third-party applications to

fulfill the orders. In Figure 9-6, ecommerce services like order, customer, discount, item,

partner, shipping, and distributions are part of your application. The delivery partners

and selling partners are extended enterprises where you need to partner with them to

complete the order lifecycle.

Chapter 9 Designing for “-ilities”

398

For your services to be interoperable, they must be able to exchange data and

subsequently present the data in a way that is understood by other services.

In the exchange of messages among services, communication can be weaved

through many services, across many security domains. Your service must be agile in

nature, and your system must be able to modify interoperable conversation across

involved services. The robustness of the conversation depends on well-formed message

exchanges. For a well-formed message, the services must know each other for a well-

defined contract. As messages are exchanged among services, the services must cross

boundaries of local knowledge.

The interface of your service must be clearly described, and the description should

be human-readable and also machine-readable. The human-readable description is

essential for the developer to understand and integrate. Machine-readable descriptions

enable dynamic discovery and composition of your software components.

Customer

Order

Discount

Items

Partners

Shipping

Distribution

eCommerce Application

Delivery partners

Selling Partners

Figure 9-6. Interoperability of services in an enterprise

Chapter 9 Designing for “-ilities”

399

 Designing for Events
Anything that happens in enterprises or systems is an event. Examples include customer

requests, batch updates, data changes, employees swiping a card, the customer

swiping a credit or debit card, the customer buying a product in a retail ecommerce

application, or someone checking in for a flight. Events exist everywhere and are

constantly happening, no matter what the application is and what industry it is. Events

are pervasive across any business. There is value in knowing about an event and being

able to react to it quickly. The more quickly you can get information about events, the

more effectively your business can react to them. The event is separate from the message

because the event is an occurrence, and the message is the carrier of the information

that relays the occurrence. In an event-driven architecture, an event likely commands

one or more actions or processes in response to its occurrence. The following are the

decisions you need to be aware of while designing an event-driven architecture:

• Prefer domain events to technical events, consider only technical

events within a domain, and use domain events within and

across domains.

• You should consider event-driven architecture for everything by

replacing HTTP calls.

• Replicate data with ownership. Create governance for who is

responsible for what; have only one data owner per domain entity

(explained in data mesh) so that only the responsible person may write

and changes to an entity and must be requested by the data owner.

• Do use distributed tracing, because distributed systems are difficult

to observe and they use conversation IDs to track business-relevant

interactions over time and in multiple bounded contexts.

• Use the Cloud Events specification for the interoperability of events

across enterprises.

• Use event sourcing and write events to a journal table in the same

transaction; instead of publishing them, use sidecar track events from

that journal and publish them.

• Design with security and privacy concerns in mind from

the beginning.

Chapter 9 Designing for “-ilities”

400

 Designing for Observability
Observability is the extent to which you can understand the internal state of services

based on the behavior. Making the system observable involves the practice of combining

context, information, and specific knowledge about the system to create the conditions

for understanding. In cloud native architecture, all services are distributed across various

containers, which increases the need for observability because such architecture can fail

due to interaction between multiple services.

The term observability originates in the mathematics of control theory, in which

observability is a measure of how well the internal states of a system can be incidental

knowledge of external outputs.

You might use monitoring tools to track the performance of infrastructure, networks,

and services that support business use cases. As the organization is enabling cloud

native architecture, the monitoring tools have shown limitations in their ability to adapt

to the volatility of these architectures. Your existing static dashboards and manual

thresholds do not scale, are not able to provide behaviors of systems, and are inflexible in

assisting the resolution of unforeseen events. Using these tools, the business is unable to

determine the state of its services with a high degree of certainty and to understand how

its services impact key business indicators (KPIs).

Observability has evolved to solve the problems of present-day modern architecture.

There is a need for observing techniques throughout the software development lifecycle.

It encourages a shift-left approach starting from the developer laptop. It is an evolution

of established monitoring, emphasizing visibility of the behavior of your distributed

services in the traditional monitoring that focuses on individual services. To fully realize

the promise of modern development methodologies, the application must be built with

observability-driven development.

The monitoring relies on building dashboards and alerting to escalate known

problem scenarios when they occur. The monitoring dashboards may not be able to

provide the exact behavior of your services, such as when unknown problems happen

frequently especially during request spikes. In these circumstances, the monitoring

dashboards cannot get the entire picture of your services. Observability enables quick

interrogation of services to identify the underlying cause of performance degradation.

Chapter 9 Designing for “-ilities”

401

Observability enables your system to reduce the time it takes to identify the root

causes of performance issues. You can find more details of observability in subsequent

chapters. The benefits of observability include the following:

• It improves the time to identify the issues, which helps to improve the

application uptime and performance.

• The shift-left approach helps the developer to code for observability

by implementing right configuration in a code.

Observability emphasis on collection and prediction of monitoring and, logging data.

 Designing for Portability
Portability is the capability of running an application on the various platforms without

any changes. Nowadays, many organizations are prioritizing a multicloud strategy and

require you to move the application from one cloud provider to another cloud provider

automatically without changing the application. But to achieve this, you need to

design your application to be portable. Adopt a multicloud strategy for several reasons,

including vendor lock-in, optimal utilization, reduced cost, SLA issues, etc.

Portability can be categorized into three ways.

• Functional portability: This is realized by describing the application’s

functionality details in a vendor-agnostic manner.

• Data portability: This is realized when the customer is able to access

and save application data from the provider and to input this into a

corresponding application hosted by another provider.

• API enhancements: API enhancement metadata is added through

annotations; metadata provides information about other data.

In application portability, there are four areas of concerns that you need to take into

consideration while designing an application.

• Programming language and framework: To build an application,

the programming language plays an important role, and all cloud

platforms have certain languages and frameworks that they support.

For example, Google App Engine supports Java, Python, PHP, GO,

and Node.js.

Chapter 9 Designing for “-ilities”

402

• Platform-specific services: Cloud platforms provide services through

specific APIs, etc.

• Data storage services: There are two types of storage, SQL and

NoSQL. The data that you designed for SQL will not work for NoSQL,

and the data you designed for AWS Dynamo DB will not work directly

Azure Cosmos DB, etc.

• Platform-specific configuration files: Platform-specific configuration

files also exist on the cloud. For example, Google AppEngine,

for instance, uses the “app engine web XML file.” Adapting the

configuration file to each target cloud platform affects application

portability.

Along with these considerations, follow these techniques for your application design

to adopt portability:

• Choose the right programming language.

• Containerize your services.

• Use a unified cloud API.

More important, create infrastructure as code for your application; this helps to

deploy your application to any cloud vendors.

 Designing for Ethics
You can find technology everywhere. Our society is more reliant on technology than

ever before. Currently, without technology, nothing is moving. Therefore, it is everyone’s

responsibility to consider ethics when making decisions. Some in the society are

misusing the advancement of technology and so we have fake news, cyberattacks, and

technology wars against each other. The average person spends around 145 minutes per

day on social media, and the average person usage of mobile is around 7 hours per day.

Those fixated eyes never leave screens, which creates stress and anxiety.

As software engineers, it is natural that we spend most of the time focusing on how

best we can serve users and how we can better compare to peers, which is perfectly

fine. In some ways, we need to consider how we can use technology to create a better

Chapter 9 Designing for “-ilities”

403

world. For example, Facebook never realized that it would grow to become a home

of algorithmic propaganda and filter bubbles, YouTube didn’t expect to become a

conspiracy theorist, and Twitter hadn’t anticipated the hate speech or trolling.

Let’s look into another example that may occur if a company like Facebook

purchases a major bank and becomes a social credit provider. What happens if artificial

intelligence becomes a mainstream tool, spawning across terrorism, theft, and more?

While designing your system, you need to anticipate the long-term social impact

and unexpected uses of the tech you create today. Your job is not only to create a fancy

architecture but also remain ethical. So, ask yourself these questions before you make

any design decisions:

• If the technology you’re building will someday be used in unexpected

ways, how can you prepare for this?

• What are the new categories of risk that you should give special

attention?

• How can you react if any unforeseen risks occur?

There are various toolkits available for you to think through some of the future

implications of the software you are building. They are the Ethical OS and Tarot Cards of

Tech. Let’s explore briefly what they offer.

The Ethical OS comes from a partnership between the Institute of the Future

and Tech and Society Solutions Lab. It addresses social impact harms ranging from

disinformation to a dopamine economy.

The Ethical OS toolkit helps manage the design process and manage risk around the

existing technologies you are using and helps to identify dark spots of your architecture

and design. It has risk zones and provides a checklist to identify the emerging areas of

risk of your design. The following are the eight risk zones:

• Risk Zone 1: Truth, Disinformation, Propaganda: These risks

have bad actors using the data and creating propaganda against

individuals or companies, using the fake data to undermine the

credibility of a company, etc.

• Risk Zone 2: Addiction and the Dopamine Economy: This risk zone is

about addiction. As I mentioned, people are spending more hours on

mobile and social media. This is not good for the mental or physical

or social health of people. In recent times, we have seen many young

have once lost their lives due to the PUBG game.

Chapter 9 Designing for “-ilities”

404

• Risk Zone 3: Economic & Asset Inequalities: This risk zone talks

about inequalities in society. The people who don’t have access can

encounter setbacks compared to those who have access to it.

• Risk Zone 4: Machine Ethics & Algorithmic Biases: This risk zone

talks about how you use machine learning models and create a bias

against individuals or the marketing of a product.

• Risk Zone 5: Surveillance State: This risk zone provides information

about the use of technology by government bodies and military

zones, for example, in the recent case of Philadelphia police action.

• Risk Zone 6: Data Control & Monetization: This risk zone is about

data privacy, data share, and data monetization.

• Risk Zone 7: Implicit Trust & User Understanding: This risk is provided

by collecting the data or use of technology without acceptance from

the user.

• Risk Zone 8: Hateful & Criminal Actors: This risk zone helps to

identify bullying, harassing, or stalking about people and financial

fraud and illegal activities.

Each zone provides a checklist to evaluate your technology choice, tools, and

features you’re working on and choose the risk zone that is relevant to you. You can start

investigating these checklists and mitigating these risks. After you understand the risk

zones, carry out the following activities to be ethical in your software design:

• Use the relevant questions in each risk zone and design your system

to mitigate these risks.

• Use this selected checklist as part of your agile backlog.

• Socialize these questions across your project team and client.

• Collect relevant resources and brainstorm with the right subject

matter experts.

• Fine-tune your design by implementing ethics in your system.

Chapter 9 Designing for “-ilities”

405

 Designing for Accessibility
Accessibility is a design concept that means your application will include

accommodations to the user interface or for slow networking so it can reach all people

without any discrimination. Accessibility is all about supporting that flexibility for

different user needs. The following are a few incidents:

• 3,500 web and app accessibility lawsuits were filed in 2020.

• 1 in 5 adults in the world live with a disability.

• Around 70 percent of web users with a disability will simply leave a

website that is not accessible.

• 100 percent of humans in the world will face temporary and

situational impairments at some point in our lives either in touch,

sight, hearing, or speech.

In the digital world, you may use a variety of technologies and strategies in several

ways to access and use digital content depending on your needs. Human-centered

design focuses on the specific needs of individuals, including people with disabilities

and elders, who most need accessible content. Designing and creating accessible

content benefits all of us, while it is essential for some of us. Accessibility encompasses

all disabilities that affect access and engagement to digital content including physical,

speech, visuals, auditory, cognitive, learning, and neurological disabilities.

People across the organization use different technologies and strategies to access

and navigate content based on their needs and preferences. You can adopt two

approaches.

• Assistive technologies: This includes any technologies that aid in

the usability, perception, comprehension, and navigation of digital

content, such as screen readers that read content aloud, screen

magnifiers, voice recognition software, and selective switches.

• Adaptive strategies: These are techniques that people use to improve

interaction with digital content, such as increasing text size, reducing

mouse speed, and turning on captions.

People who have multiple disabilities need a combination of assistive technologies

and adaptive strategies to interact with content.

Chapter 9 Designing for “-ilities”

406

Accessibility Guidelines and Standards
The Web Accessibility Initiative (WAI) of the World Wide Web Consortium (W3C)

develops guidelines that are widely regarded as the international standard for web

accessibility. The Web Content Accessibility Guidelines (WCAG) is the set of technical

standards and recommendations developed by WAI that defines requirements on how

to make digital content such as text, images, multimedia, structure, and presentation

accessible. The WCAG is organized around the POUR principle (Perceivable, Operable,

Understandable, Robust). There are two WCAG standards; they are WCAG 2.0 and

WCAG 2.1.

These standards are categorized into three levels of conformity.

• Level A: This is the basic level; you must consider all the guidelines

included at this level as “MUST SUPPORT” requirements.

• Level AA: It is a midrange level that satisfies all Level A criteria

and more; guidelines included in this level of conformance are

considered “SHOULD SUPPORT” requirements.

• Level AAA: This is the most comprehensive level of conformance and

also the most restrictive. You consider guidelines at this level as “MAY

SUPPORT” requirements.

You need to consider the following areas for defining and designing the template of a

document with an accessibility checklist:

• Readability: Good readability should be guaranteed to all users, in

particular with disabilities. Ensuring clear and flawless readability

is key for rendering a material accessible. Some of the readability

elements are screen magnification, actionable elements, and

movement and animation.

• Use of color: Contrast is the difference between text and the

background immediately behind it. High-contrast text benefits users

with low vision, color blindness, or other visual disabilities. Ensure

that good color contrast with at least 4:5:1 is established between text

and images and the background color, and ensure a contrast ratio

of 3:0:1 between text and the neighboring text when color is used to

denote status.

Chapter 9 Designing for “-ilities”

407

• Text formatting: The readability of text can be affected by how the

text has been formatted. Ensure that you choose a typeface that

emphasizes clarity and readability, and use a font size between 12

and 14 points and use a 1.5 line space.

• Navigation and orientation: Well-organized content helps users to

orientate themselves and to navigate effectively.

There are many more checklists available such as headings, interaction and

feedback, repeated elements, metadata, images, and links.

There are different types of tools that need to be used by your quality assurance team

to test digital content for accessibility such as evaluation tools, assistive technologies,

and authoring tools.

 Designing for Automation
Automation is always required for software systems, but the cloud makes it easier for

you to automate, test, and build infrastructure. These are some common areas for

automation in cloud native applications:

• Continuous integration and continuous delivery (CI/CD)

• Infrastructure

• Observability and automated recovery

The lifecycle of CI/CD is continuous definition, continuous integration, continuous

deployment and release, and continuous operation of your packages into the cloud

environments by adopting the following principles:

• Have cohesive teams with shared objectives.

• Test early and often test right.

• Implement zero-touch deploy and configuration.

• Automate everything.

• Embrace failure, recover automatically, and degrade gracefully.

Chapter 9 Designing for “-ilities”

408

In the infrastructure, you need to automate the creation of infrastructure using

infrastructure as code. It is a process that allows you to treat your infrastructure

provisioning and configuration in the same manner that you handle application code.

The infrastructure configuration is stored in the source code repository and uses a CI/

CD pipeline to automate infrastructure.

In the case of observability and automated recovery, you should add user stories

from inception. Logging and monitoring observe the behavior of the system to give

a measure of the overall health of your system and automate your application by

applying self-healing, resizing the disk, etc. You can read more details about DevSecOps

in Chapter 14, Enterprise cloud native operation, which explains the end-to-end

DevSecOps pipeline.

 Designing for Maintainability
Maintainability focuses on the ease with which a software system can be maintained.

Maintenance of a system takes place as changes are made to it after it is in production.

Changes are constant in the present-day world; it is inevitable that the system experience

will change. It is important to build a maintainable system.

In cloud native architecture, your systems are built with microservice principles. The

core principle is to make it easy to maintain and enhance. To achieve this principle, your

microservices must be well designed with the use of domain-driven design.

 Designing for Usability
Usability describes how easy it is for users to perform the required tasks using the

system. User satisfaction is directly correlated to its level of usability. Users are more

satisfied with a system that is easy to use and that provides a good user experience.

Adopt a hypothesis-driven development approach to design for usability.

Chapter 9 Designing for “-ilities”

409

 Summary
The main principle of architecting for cloud native architecture focuses on how to

optimize system architecture for the “-ilities.” In traditional architecture, we focus on

the “-ilities” of a relatively small number of components, but in the cloud, that fixed

infrastructure makes much less sense because it is easily available and on-demand

usage. Therefore, cloud native architecture focuses on achieving the “-ilities.”

You must pay attention to designing for the “-ilities” as they influence the

architecture and design of your system. The system must meet the designated “-ilities”

while identifying and specifying them in a way that they can be measured and tested.

The success of the system depends on how you are approaching each “-ility.” Look at

the holistic design of your system while designing your application.

Now you understand more about designing the “-ilities” and the fact that they

influence your software design.

Chapter 9 Designing for “-ilities”

PART III

Modernizing Enterprise
IT Systems

413
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_10

CHAPTER 10

Modernize Monolithic
Applications
to Cloud Native
So far, I have explained various cloud native architectures such as microservices,

event- driven, and serverless. These architecture concepts can be used for both

greenfield and brownfield projects.

Business requirements can change, which is why old legacy systems in an enterprise

may not support or meet the needs of business disruptions. There are various reasons

that your enterprise must embrace modernization and go on a decoupling journey.

• Changing customer expectations and behavior

• Technology innovation

• New market entrants like unicorns (privately held startup company

valued at over $1billion)

• Blurring industry boundaries

• Cost pressures

In this chapter, I will explain how you can modernize and decouple your enterprise’s

monolithic applications by using decoupling techniques.

In this chapter, I will answer the following questions:

• What does decoupling mean to you? Why do you need decoupling

more than ever?

• What are the different approaches to follow your journey?

• What are the challenges you may face during the journey?

https://doi.org/10.1007/978-1-4842-7226-8_10#DOI

414

• How can you explore innovation while ensuring business continuity?

• How do you decide which systems require modernization?

• How will you plan the decoupling journey?

• What is the domain-driven design and approach?

 What Is Decoupling?
In today’s business environment and digital economy, organizations need to satisfy the

existing customers and also need reach out to new customers across markets with more

segments by expanding their digital offerings, without a comparable extension in IT and

or market budgets.

Digital decoupling is the combination of strategy, approach, tools, and techniques

to address speed to market at scale with designing for cloud native and when designing

for a customer in an organization’s IT estate burdened with years of technical debt. It is

the concerted approach to exploit cloud native technologies to break down monolithic

legacy IT, address technical debt, and transform to an ecosystem where IT changes are

negligible.

Decoupling enables large enterprises to reassert competitive advantages against

incubators or unicorns.

Decoupling involves replacing the technicalities of the IT system by keeping the

business functionality to support revenue growth and add the greatest value to the

customers. This way, your enterprises can respond to market forces and technological

innovation while maintaining cost levels.

When decoupling at scale, this leads to @Scale IT, a scalable, flexible, and resilient

architecture that gives your organization the agility to innovate at scale, streamline the

IT estate and retire unused systems, and rationalize the portfolio to a singular function

across the landscape. This helps your organization to compete with the unicorn

companies on equal terms.

Decoupling embraces the use of cloud native architecture and software engineering

methodologies to build new systems that execute on top of legacy systems.

@Scale IT is the emergence of cloud and cloud native technologies, various

channels, artificial and machine learning with observability, and modernized software

engineering with agility and AI-driven development. The more adaptive event-based

architecture is called @Scale IT.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

415

 Technical Debt
“The price companies pay for short-term technological fixes hinders their
ability to innovate and adapt in the digital age. One strategy to combat tech-
nical debt? Digital decoupling.” —Adam Burden, Edwin Van der Ouderaa,
Ramnath Venkataraman, Tomas Nystrom, and Prashant P. Shukla

IT is not new, and the systems in your enterprise are probably not new either. As the

business expands, the systems in your IT department become legacy by the nature of

the fact that the environment around them, such as people, process, and technologies,

progress while the systems remain relatively static.

Organizations face intense pressure to meet the business disruptions, competition

from unicorns, and customer expectations. To support this, enterprises are adding more

features into the existing legacy systems, which results in technical debt that leads to

more operation overhead. The decisions that resulted in technical debt were likely not

wrong at that time; they were made to enable the business. However, if not properly

paid attention to, the debt will continue to grow at an alarming rate. In the end, you

need to spend more money on maintaining an application than on innovation and new

technologies. Over time, the enterprise faces a lot of challenges when updating these

systems. This becomes devastating for IT teams, and digital transformation becomes

more difficult.

 How Are Technical Debts Accumulated?
As explained, technical debt is a normal result of software engineering. Some debt

occurs for good reasons, and some occurs unintentionally.

The first type of technical debt occurs when an enterprise IT team makes

an informed decision to generate some technical debt and is fully aware of the

consequences due to various reasons. The reasons can be to meet the delivery timeline,

meet a resource crunch, create business functionality in production, etc. These decisions

can accumulate quickly over time.

The second type is unplanned technical debt that arises due to poor practices,

inexperienced teams, no review and checks, poor understanding, etc. This poor

management, poor communication, or misalignment can accumulate over time.

The third type is business and technology change. These debts are unavoidable

due to business disruption and better technology and solutions being available. It

Chapter 10 Modernize MonolithiC appliCations to Cloud native

416

typically accumulates by adding more features to the existing systems to support the new

business without changing the technology.

In a nutshell, the technical debt stems from everyone’s carelessness, bad decisions,

and other reasons. Figure 10-1 shows Martin Fowler’s technical debt quadrant. I have

modified the quadrant to suit present-day software engineering.

 How Is Technical Debt Impacting Your Enterprise?
Technical debt makes your enterprise uncompetitive against peers or unicorns; it makes

it more difficult to add new business value to the software and makes fixing problems

more challenging. This will reduce the overall asset value and create greater risk in

managing the portfolio of assets. These are critical inflection points where constraints

move beyond IT to threaten core mission, business, and operational programs.

They occur when accumulated technical debt causes these critical systems to either

chronically break down, decline, or become so inadequate, sluggish, or inflexible that

your organization is forced to halt or significantly slow down investments on innovative

new cloud native systems until it consolidates, replaces, or rearchitects existing systems

into cloud native.

The leading causes of these events are legacy systems, lack of resources for

maintenance, inability to add new features and integrate across enterprises, including

poor maintenance and inadequate investments.

Prudent

“We must ship now and
deal with consequences”

Reckless

“We don’t have 	me for
design, and review”

“What’s layering &
modular?”

“Now we know how we
should have done it”

Deliberate
Inadvertent

Figure 10-1. Technical debt quadrant

Chapter 10 Modernize MonolithiC appliCations to Cloud native

417

 How to Decide on Decoupling?
As explained, technical debt can arise across enterprises irrespective of decision levels;

everyone in an organization is responsible for technical debt.

Technical debt is a metaphor that, just like in finance debt, incurs interest payments.

This means technical debt makes your enterprise’s IT more expensive to maintain than

it has to be. This is a direct impact on your business. The following section will help you

to measure technical debt in your organization to decide on a decoupling journey of a

system. I call this method the decoupling model.

 Decoupling Model

Technical debt doesn’t help decision-making if we can’t do an analysis. Once we

quantify technical debt, we can make an analytical comparison.

Legacy cost: This is the largest debt in any organization, and it is

easy to measure. It includes the cost to remediate and maintain

in-house legacy and vendor products. Like financial debt, you

make measurable progress in debt reduction by paying down the

principal.

Variable cost: These are the costs related to staffing, reviews, tools,

delays, and duplicating systems that must be maintained. By not

reducing the legacy cost, the variable cost is unavoidable and

incurred.

Maintenance cost: The legacy systems become fragile and

vulnerable. Outages, breaches, and data corruption occur, leading

to significant cost for the maintenance of replacing software,

hardware, etc.

You need to consider many variables to determine the effect technical debt has on

computation. Some of the variables include complexities, lines of code, maintainability

index, Halstead complexity measures, etc.

Technical Debt Ration (TDR) = (Remediation Cost/Development Cost) *100%

Remediation cost is a ratio of the cost to fix a software system, and development cost

is the cost of development.

Always keep the TDR below 5 percent. If the TDR is above 5 percent, then it’s time for

you to take action to decouple the legacy system.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

418

Remediation cost (RC) is the maintenance cost of a system. The RC is directly

proportional to the cyclomatic complexity of your code.

RC = k(cyclomatic complexity)

Cyclomatic complexity is a metric used to indicate the complexity of a program. You

can get cyclomatic complexity from review tools like SonarQube or CAST Software, and k

is the constant.

Development cost (DC) is a variable cost for writing some lines of code. For example,

if a file has 100 lines of code (LOC) and the average time to fix is 20 minutes to write one

line of code, the cost per line of code (CPL) is 20 minutes.

DC = 25/line * 100 lines = 2500 minutes =2500/60 = 41.66 hours

To calculate whether your application requires a decoupling, use this formula:

LOC = 25,000

RC = 735 hours

DC = 0.42/line. DC = 0.42*25000 = 10,416 hours

TDR = (RC/DC) *100%

= (735/10416)*100% = 7.05%

Your application TDR is 7.05 percent. In this example, this application requires you

to undergo a decoupling method to move into the cloud native application.

 Decoupling
Based on research from a leading consulting company, as many as 81 percent of

organizations indicate that they would like to replace their legacy core systems with a

cloud native architecture.

As mentioned, decoupling is the process of decoupling monolithic legacy

applications by using new technologies, development methodologies, and migration

methods to build new systems that execute on top of legacy systems. For example, by

using application programming interfaces (APIs), agility, automation, and cloud native,

you can gradually decouple core systems, migrating critical functionality and data to

new platforms.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

419

Decoupling is required in present-day architecture because of the following:

• Changing customer expectations: You need to connect more with

the customer with meaningful customer relationships and provide

a great user experience based on individual tastes to make a

customer’s life easier.

• Technology innovation: Your business must be accessed by any user

on preferred devices without interruption, and your system should

be able to provide real-time analytics based on real-time feedback.

• New market entrants: The rise of unicorns without any legacy

baggage shifts the market share.

• Blurring industry boundaries: Your system must be able to adjust

to real-time demands from the customers by rearranging the value

chains and providing real-time analysis on pre- and post-sales.

• Cost pressure: Organizations are under immense pressure to

deliver a higher level of services at lower cost and to remove legacy

infrastructure, reengineering processes, and rationalizing workforces.

As I mentioned, 81 percent of organizations want to move to cloud native, especially

after the COVID-19 pandemic, by removing the legacy applications, but organizations

are taking too long to decouple legacy services.

Legacy services are the main drag force to innovation and digital transformation;

however, as shown in Figure 10-2, making changes to legacy services is difficult because:

• We are dealing with tiered systems, designed to operate as a whole.

• Individual components are highly coupled and interdependent.

• Making any small change inevitably causes a ripple effect that must

be mitigated or adjusted for.

• The change will take a long time and be expensive.

• It’s hard to know where to start and exactly what to change. See

Figure 10-2.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

420

If you want to build cloud native technologies around a monolithic, it adds more

complexities. With every addition into the monolithic system, the cost of testing,

enhancement, and operation will increase.

As shown in Figure 10-3, legacy systems are typically dominated with a large

and highly complex monolithic business layer. The legacy core is a tightly coupled

monolithic architecture that acts as a brake on innovation, agility, and cloud native.

Figure 10-2. Monolithic legacy application in an IT estate

User Interface

Re
po

r�
ng

LEGACY CORE

In
te

gr
a�

on

System A

System B

System C

Core systems that have evolved over
�me and no longer meet the needs
of a business disrup�on

Figure 10-3. Typical monolithic system

Chapter 10 Modernize MonolithiC appliCations to Cloud native

421

A tightly coupled architecture increases delivery timelines, operations, and risks. The

impact assessment on change requests, the lengthy testing cycle to test the entire legacy

core for small change, and the complex code all add to the uncertainty.

Figure 10-4 indicates how organizations can change to cloud native systems. Usually,

the organization puts in five to ten years of transformation, which leads to system flaws,

complexities, and inefficiencies of a system. If you do not adopt decoupling early, then it

will be too late to come out of the mess and you might lose the customer base.

As I mentioned, the digital economy has changed the competitive landscape,

allowing new entrants to seriously challenge incumbents and change the market

overnight. Figure 10-5 provides a high-level comparison of decoupling across unicorns,

early adopters, and laggards. This is a lesson for you to adopt to cloud native early in the

lifecycle by decoupling the legacy applications. This graph should open your eyes to the

importance of decoupling.

Innovation and Agility are maximised
for a few years after transformation

TIMEBUILD MAINTAIN DECLINE RE-BUILD

TYPICALLY 5-10 YEARS

Focus on: Innovation & Agility

Focus on: Cost Efficiency

Focus on: Expensive
IT Re-boot

but technical debt increases and agility
decreases as the focus switches to cost
efficiency and ‘sweating the asset’

Focus on:
Stability

Focus on: (Another)
Expensive
IT Re-boot

@Scale IT supports business change.
Innovation and agility are at their peak

Enterprise IT is at risk. Ability to support
business can be deceivingly good

Enterprise IT limiting business flexibility
& puts business performance at risk‘Tech debt’ zone

Repeat…

Figure 10-4. Organization’s approach on digital transformation without
decoupling with cloud native

Chapter 10 Modernize MonolithiC appliCations to Cloud native

422

 Decoupling Approach
In the decoupling approach, the legacy core as shown in Figure 10-3 is evolved and

provides the business transactions to the customer. But due to disruption in the business

and changes in customer expectations, today organizations do not meet the needs

anymore. A user interface is heavily relying on the legacy core as shown in Figure 10-3

with a tightly coupled architecture. An entire stack of the system is deployed on-premises

on a virtual machine or bare metal.

As shown in Figure 10-6, the journey to a decoupled architecture starts with the

implementation of automation for the existing legacy core. In parallel, the organization

builds the cloud native services and deploys them on-premises and in the cloud,

respectively, to exchange data. All the “Specific New” applications are converted into

cloud native services with event-driven architecture and exposed as APIs to the web

and mobile interfaces with real-time interaction. Those services are decoupled from

the database by adopting the polyglot persistence principles and syncing them with the

legacy core database for other transactions.

Time

Unicorns Early Adaptors Laggards

M
ar

ke
t S

ha
re

Unicorns no legacy bag
and innovate & grab
market share

Typical organiza�on lags due
to legacy applica�on and lack
of innova�on & agility

Figure 10-5. Comparison between unicorns and traditional organizations

Chapter 10 Modernize MonolithiC appliCations to Cloud native

423

User Interface

Re
po

rt
in

g

In
te

gr
at

io
n

LEGACY CORE

User Interface
(Web & Mobile)

Re
po

rt
in

g

Specific LegacyAu
to

m
at

io
n

API Services

Online Realtime
Interaction

Specific New

Cloud Native Foundation

Events

Cloud & Cloud Native

User Interface
(Web & Mobile)

Da
ta

 A
na

ly
tic

s

Specific
LegacyAu

to
m

at
io

n

API Services

Online Realtime
Interaction

Specific New

Cloud Native Foundation

Events

Cloud & Cloud Native

Data EventsSpecific
New

Today Legacy evolves into smaller independent parts or is wholly or partially replaced

Figure 10-6. Decoupling approach

Finally, incrementally, the entire legacy core is decoupled into a cloud native system

with polyglot persistence, and data is replicated to the data lake or data mesh for analytic

purposes.

Following the decoupling approach, the organization introduces integrated

monitoring or observability, real-time data lake integration, and systems of intelligence

for smart interaction.

The end goal is to transform the monolithic legacy core system into a cloud native

platform to fully unleash its value while eliminating current constraints. This requires

understanding of future roadmaps, the business, and customer behavior.

Large-scale application modernization projects usually encounter overruns

and failure. Adopting agility, automation, strangulation, iterative development, and

incremental delivery can reduce risks while accelerating time to value.

The decoupling and continuous modernization for your organization is important

because it allows enterprise IT to be more responsive to business changes and is easy to

prioritize based on the demand. In addition, it helps to guard against the accumulation

of additional technical debt through regular upgrades and follows the easy to create and

easy destroy principle.

As you move toward @Scale IT, your enterprise can evolve toward a true service- based

IT architecture that maximizes agility. This provides rules-based decision-making across

the organization.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

424

 Decoupling Plan
You must follow the iterative MVP approach shown in Figure 10-7, not the big-bang

approach. If you follow the big-bang approach, the decoupling projects will fail.

Follow these steps for the decoupling approach:

 1. Identify a system in your enterprise to start decoupling.

 2. Create an architecture blueprint.

 3. Conduct a design thinking session and domain-driven design

with an event storming exercise to identify the microservices.

 4. Initiate DevSecOps.

 5. Identity an MVP use case.

 6. Create a proof of concept (POC) and reference architecture.

 7. Deploy the POC along with the legacy core and evaluate.

 8. Once it is successful, create a solution blueprint.

 9. Finally, go with scale to decouple the entire legacy.

Build @
Scale

MVP &
Reference

Applica�on
& Priori�za�on

evaluate

build

Business
Core

Architecture Blueprint

Ini�al DevOps Design

Solu�on Blueprint

da
ta

refinem
ent

MVP Use Cases

Scale

Proof of Architecture BuildDiscovery & Valida�on
Legacy Core

Roadmap

Decoupling Steps

Analyze & Domain Driven Design

Event Storming

Figure 10-7. Decoupling approach and plan

Chapter 10 Modernize MonolithiC appliCations to Cloud native

425

 Decoupling Principles
Use the following principles during the decoupling process:

• Layering: Apply layering to isolate parts of the core system.

• Appropriate fragmentation: Fragment capabilities to remove conflicts

of interest and increase agility.

• Simplification: Simplify systems and keep differentiated logic

separate from commoditized logic.

• Differentiated services: Build out the systems of differentiation to

support reuse, automation, data analytics, and agility.

• Cloud: Leverage cloud native capabilities to quickly adapt and build

services.

• Intelligence built-in: Build systems with AI and ML in them to enable

smart interaction.

• Event-driven: Build an application that supports asynchronous

events.

• Real-time data: Build data lakes or data meshes with real-time

eventing capabilities to support the services.

• Prediction-based model: Add prediction across the application for

self-healing and infrastructure prediction.

• Observability: Build a system with observability as a service.

 Decoupling Business Case
When you consider decoupling the legacy core, you may be required to create a business

case for your leadership before initiating @Scale IT.

You need to conduct the as-is assessment of the existing system and do a decoupled

architecture assessment to compare the costs in order to determine the value of the

decoupling.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

426

For the as-is assessment, consider the following:

Overall, as-is cost = Infrastructure cost + platform license cost (app server, DB etc.) +

Resource cost (people) + Maintenance cost + deployment cost+

opportunity loss (delay in future loss, sales impacted etc.)

For the target state assessment, consider the following:

Overall target cost = Infrastructure cost + License cost + People cost + Refactoring cost

+ Maintenance cost + Benefits

Cost-Benefit Analysis = Overall as-is cost ~Overall target cost

 Decoupling Strategies
The transition journey from the legacy core to a cloud native architecture requires an

incremental approach to decouple the legacy core and integrate it back to the legacy

core. The transition journey begins with a strategy. The following are the decoupling

strategies you need to adopt for your journey:

• Service decomposition strategy and roadmap: This strategy identifies

objectives, business context, and priorities. Assess the current

architecture; you can refer to Chapter 11 for an assessment approach

to incrementally refactor the legacy core into cloud native. Develop

a high-level roadmap based on the business value impact. Identify

the use of any relevant standards and adherence to cloud native

governance and compliance requirements.

• Decoupled architecture and integration planning: This strategy

defines the integration architecture for routing requests between

the new services and the legacy core as well as enables the service to

access data and functionality from the legacy core.

• DevSecOps strategy: This strategy defines the technical deployment

infrastructure and delivery model required to build continuous

deployment and defines infrastructure as code for automating the

infrastructure service to deploy cloud native applications.

• IT operating model: This strategy defines an integrated intelligent IT

operating model to organize around systems and value generation.

Adopt a Intelligent Operation as explained in Chapter 18 to enable

Chapter 10 Modernize MonolithiC appliCations to Cloud native

427

a faster time to market for decoupled services. Here you analyze

the organizational impact based on the recommended changes to

people, process, and technology for a decoupling journey.

• Value case: This strategy develops the business case to determine

how a decoupled architecture can be implemented to deliver greater

value to meet business disruption.

 Domain-Driven Design
Domain-driven design (DDD) is an approach for developing software for complex needs.

In this method, the implementation is a constantly evolving model to match the core

business. The concept was first introduced by Eric Evans in his book Domain- Driven

Design: Tackling Complexity in the Heart of Software.

Before getting into DDD, let’s first understand why you need DDD and what are

the difficulties of creating and maintaining a software system. Brian Foote and Joseph

Yoder have defined a pattern called big ball of mud (BBoM). The definition of BBoM is

“haphazardly structured, sprawling, sloppy, duct-tape and bailing wire, spaghetti code

jungle.”

A BBoM system appears to have no distinguishable architecture. The issue with

allowing software to dissolve into a BBoM becomes apparent when routine changes in

workflow and small feature enhancements become a challenge to implement due to the

difficulties in reading and understanding the existing codebase.

Eric Evans describes such systems as containing “code that does something useful,

but without explaining how.” As shown in Figure 10-8, this is one of the main reasons

systems become complex and difficult to manage, mixing the domain with technical

complexities.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

428

System Complexity

Dom
ain Logic Com

plexity Te
ch

ni
ca

l C
om

pl
ex

ityAd-hoc features

Le
ga

cy
 C

od
e

Fe
at

ur
e

co
de

Figure 10-8. Complexity in software

A lack of understanding of the domain, the ad hoc introduction of code, and

improper management in the source code repository makes the codebase difficult

to interpret and maintain because translation between the design model and the

development model can be costly and erroneous. Let me explain in a real-time example

how improper management of code becomes very costly.

Continuing to persist with an architectural spaghetti-like pattern can lead to a

sluggish pace of feature enhancement. When newer versions of the project are released,

there can be mismanagement of the codebase. Over time, this problem grows and

becomes unmanageable.

I was working as an architect with one client that had a monolithic tightly coupled

web-based architecture. About 100+ software engineers were working on this huge

complex platform, and they spent nearly two to three weeks identifying the right branch

in the source for building and deploying changes to the production. When I conducted

an analysis, I found nearly 2,000 branches in an SCM, and no one knew why they were

created. This illustrates how code management can become complex over time if you do

not manage it properly.

 How Does Domain-Driven Design Manage Complexity?
DDD deals with the challenges of understanding a problem domain and creating a

maintainable solution that is useful to solve problems within it. DDD uses strategic and

tactical design principles to define a domain-based design.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

429

 What Is a Domain?
A domain is the knowledge and activity around which the application logic resolves; in

other words, it is the business logic that is the core of the system.

There are three types of domains.

• Core domain: The core domains are the most strategic domains

for the business at the enterprise level and program level. This is

software that you build and is a differentiator.

• Supporting domain: The supporting domains are required by the core

domain and are either built or are commercial off-the-shelf software

(COTS) or SaaS.

• Generic domain: Generic domains are likely implemented by

selecting commercial software/services or open source software, e.g.,

identity and access management.

 Goals of Domain-Driven Design
The following are the goals of DDD:

• Build software that has a complex business process (business

domain) while the knowledge is limited.

• Identify a bounded context and its patterns of interaction to enable

independent deployment teams.

• Separate the business model (business logic) from the

implementation details.

• Collaborate between technical experts and domain experts to

implement a solution that works seamlessly.

• Create a ubiquitous language for each bounded context to use among

business architecture and software engineers throughout all phases

of development.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

430

 Domain-Driven Design Model
DDD is about distilling the legacy core into cloud native services. Figure 10-9 illustrates

the various exercises needed to identify a service. DDD is distilled into strategic and

tactical DDD.

 Strategic DDD

Strategic DDD distills the problem domain and shapes the architecture of an application.

The technical team, product owner, and domain experts use the design thinking method

to distill a large and legacy problem domain into microservices. DDD emphasizes the

need to focus effort on the microservices as these hold the most value and the way

forward.

Holding a design thinking workshop on the core domain helps the team to

understand the domain in the legacy core and how important this domain is in the

business. It will enable the software engineering team to identify and invest its time in

the important parts of the system.

The outcome of DDD is to identify a well-defined cloud native architecture solution

with microservices as its core and to identify the domain stories without changing the

core domain business logic and rules.

The cloud native services are built through a collaboration of domain experts,

product teams, and technical teams. Communication is achieved using an ever-evolving

shared language known as the ubiquitous language to connect cloud native services

Legacy Core

Design Thinking Workshop

Event Storm

Domain

Domain Expert, Technical Team,
Project Manager & Product

Owner

Ubiquitous Language

Understands the
language of the

domain

Dis�lled into

Domain Models Domain Models
within the context of
subdomain

Figure 10-9. DDD model workshop in a single diagram

Chapter 10 Modernize MonolithiC appliCations to Cloud native

431

efficiently and effectively to a conceptual domain model. The cloud native services are

bound to the domain model by using the same terms of the ubiquitous language for its

structure and class model.

Cloud native services sit within a bounded context, which defines the applicability

of the services and ensures that their integrity is retained. Larger services can be

split into appropriate services and defined within a separate bounded context where

ambiguity in terminology exists or where multiple teams are participating in a design

thinking (DT) workshop to further reduce complexity. Bounded context is used to form a

protective boundary around services that helps to prevent software from evolving into a

BBoM. This is achieved by allowing the different models of the overall solution to evolve

within well-defined business contexts without having a negative, rippling impact on

other parts of the service.

 Tactical DDD

Tactical DDD is a collection of various cloud native patterns that help to create effective

services for complex bounded contexts. Many patterns are explained in Chapter 4.

You can use these patterns appropriately for each service instead of adopting them

randomly.

 Guiding Principles of DDD
There are practices and guiding principles that are key to the success of DDD.

• Focusing on the core domain: The core domain is the area of your

system where most of the business logic resides. The behavior and

functioning of your system depend on the core domain.

• Collaboration across a team of experts: This stresses the importance

of DT workshops that allow brainstorming with the technical team,

domain experts, and product owners. Without collaboration across

teams, much of the knowledge sharing will not be able to take place.

• Use domain terminology in the code: DDD treats analysis and code

as one, which means the technical code model is bound to the

analysis model through the shared ubiquitous language. Use domain

terminology in code to reflect the business language.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

432

• Communication: The single most important facet of DDD is the

creation of the ubiquitous language. Without a shared language,

collaboration across teams would not be effective. It is the

collaboration and construction of a ubiquitous language that makes

DDD is more effective. It enables a greater understanding of the

problem domain and more effective communication.

• Continuous evolving: Without the synergy between the code and

domain language, you will end up with a codebase that is hard to

modify, resulting in a BBoM.

How does it help you?

• DDD provides a logical approach for identifying subdomains to

convert a legacy core system to multiple relatively independent

cloud native services.

• DDD allows you to identify subdomains for specialized treatment

based on specific needs.

• DDD enables the identification of core, supporting, and

generic domains, with each domain capable of being deployed

independently of others.

• The DDD process is a powerful tool for business and delivery teams

to be on the same page regarding core code.

• The business process shares a common vision of what is important to

the business.

 Event Storming
Event storming is a design thinking workshop for the collaborative exploration of

complex business domains and a modeling approach to domain-driven design. It

was created by Alberto Brandolini in 2012 as a quick alternative to Unified Modeling

Language (UML).

Chapter 10 Modernize MonolithiC appliCations to Cloud native

433

As shown in Figure 10-10, event storming in DDD consists of a four-step approach.

Event storming: This consists of design-level modeling and focuses

on domain events and business process.

Event map: Business processes are documented using events,

commands actors, and external systems.

Context map: This is a visualization of boundaries, dependencies,

and communication paths between cloud native services teams.

Ubiquitous language: This is a clearly defined language used

for all discussion between product teams, architecture, and

engineering. It is a model that acts as a universal language. This

is needed for understanding and communicating concepts in the

domain in an unambiguous manner and improves collaboration

with domain experts in order for everyone to be more creative and

valuable. This must be expressed in the domain model to unite

participants and eliminate inaccuracies and contradiction.

 Key Roles in an Event Storming Workshop
These are the key roles:

Domain experts: These are the business representatives who

understand the product vision and the target state’s business process.

Architect: The architect and designer will be building the final

solution.

EVENT MAP

EVENT STORMING

CONTEXT MAP

UBIQUITOUS
LANGUAGE

BETTER BUSINESS AND
TECHNOLOGY
ALIGNMENT

Figure 10-10. Event storming in a DDD

Chapter 10 Modernize MonolithiC appliCations to Cloud native

434

Facilitator and DDD practitioner: This person facilities the event

storming workshop. The project manager can act as a facilitator.

Product owner: This person prepares personas, stories, and

event storming output with the integrated backlog for the

implementation team.

UX designer: This persons is fully engaged in the modeling activity to

push the process toward innovation and customer-centric thinking.

Data analyst: Many solutions in a cloud native system use

data. Engaging a data analyst during design will ensure data

implications are thought through at the beginning.

 Event Storming Exercise
As shown in Figure 10-11, the event storm is a nine-step design thinking workshop that

brings together domain experts, technology team, product owner, and project manager

to model and understand the business process. It is not a technical design session nor

an exploration of the current state of the architecture. The goal is to understand the ideal

business process, not the current or future technical implementation.

Event storming is a:

• Conversation starter

• The evolving model of problem and solution

• Tool to gather requirements and build an event-based view of an

event process

• A visual reference to view problem areas and possible solution paths

API ModelService
model

Micro-Service
Identification

Identify
Bounded
Contexts

Identify
Aggregates

Capture Read
Models

Identify
Commands /

Triggers

Capture
Domain
Events

Identify
Objective

Event Storming

Strategic Domain Driven Design

Figure 10-11. Event storming steps

Chapter 10 Modernize MonolithiC appliCations to Cloud native

435

The following sections cover the nine steps of the event storming process.

• Identify objectives and capture domain events: The event storming

team can identify the domain scenarios and use cases and identify

all the events that take place during the identified scenarios and then

document and sequence events using sticky notes. The events must

be in past tense like item purchased, invoice sent, invoice paid, etc.

• Discussion: Experts brainstorm by asking questions and clarifying

details.

• Identify commands and read models: Identify the user and external

systems that interact with the events.

• Aggregates: Identify aggregates by combining the events and

commands

• Bounded contexts: Identify bounded contexts by using the events,

commands, users, and systems identified in the event map.

 Step 1: Identify the Objectives

In this step, as shown in Figure 10-12, you need to identify a domain scenario and use

cases. In this example, I am choosing the auto insurance domain. Within the domain,

there are value chains that are nothing more than the subdomains or departments in a

portfolio of your organization. In the value chain, I am selecting the Policy Management

value chain. Within the value chain, I am selecting the Quote & Policy Issuance use case

to explain event storming further.

Within Quote & Policy Issuance, the objectives are quote generated, information

provided, policy purchased, payment processed, account created, etc.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

436

 Step 2: Event Map: Capture Domain Events

In this step, as shown in Figure10-13, a team of experts discuss and identify domain

events with a sequence. In the DT workshop, use orange sticky notes to identify all the

events of an identified use case.

These are the key activities in this step:

• Document all events irrespective of minor or major occurrences for a

given use case; events are written in the past tense.

• Rearrange events in a sequential order and resolve any. Group

multiple events into larger, single events appropriately, and rearrange

them based on time.

• Identify the actors responsible for each event.

• Capture questions, risk and warnings, assumptions, and conversation

points.

Note any activity in a use case is called an event.

Quote Issuance
Policy Issuance
Policy Tier
Renewals

Use Case

Value Streams

AUTO INSURANCEPortfolio

Quote & Policy Issuance

Description
• Get risk, coverage details
• Evaluate eligibility
• Get premium
• Share quote with customer
• Make changes or Get

agreement & issue policy

Value Chain Marketing Sales Products Policy Management Claims Management Payments

API ModelService
model

Micro-
Service

Identification

Identify
Bounded
Contexts

Identify
Aggregates

Capture
Read

Models

Identify
Commands /

Triggers

Capture
Domain
Events

Identify
Objective

Figure 10-12. Identify the objectives

Chapter 10 Modernize MonolithiC appliCations to Cloud native

437

 Step 3: Event Map: Identify Commands, Triggers, and Read Models

With your events outlined, you can work on evaluating each event based on the behavior

and what triggered this event. Without a trigger, there is no event. The trigger can be

from external users or external systems or internal systems. The trigger of the event is

noted as a command. Commands are documented by using blue sticky notes in the

present tense and represent user interaction with the system.

Along with the commands, you need to add a user/role of the command and write it

on a brown sticky note.

You need to capture the information about the commands such as the type of

commands, how they are triggered etc., and write them on green sticky notes.

Figure 10-14 provides a clear view of the relationship between commands, events,

users/roles, and read models.

Account
Identified

Time

Business
Classified

Quote
Number
Generated

Uploaded
relevant
details

Eligibility
Verified

Vehicles
added to
Quote

Quote
Approved

Relevant
Forms
added to
Quote

Quote cost
calculated

Final Quote
generated

Quote
Accepted

Payment
Made

Policy
package
generated

Accepted Decline &
Reason
provided

Quote
Declined

Commission
Determined

Applied
Discount

Quota
Rejected

Payment
Declined

Policy
Issued

API ModelService modelMicro-Service
Identification

Identify
Bounded
Contexts

Identify
Aggregates

Capture Read
Models

Identify
Commands /

Triggers

Capture
Domain
Events

Identify
Objective

Figure 10-13. Domain events

Commands

Read
Model

Events
User/Role

Figure 10-14. Relationship between command and events

Chapter 10 Modernize MonolithiC appliCations to Cloud native

438

Figure 10-15 shows the steps to group relevant events and identify the respective

commands.

 Step 4: Event Map: Identify Aggregators

An aggregate is a combination of domain events and commands that can be treated as a

single unit. In an aggregate, one main domain event will be the aggregate root, and any

reference from commands should go only to the aggregate root. The root can ensure the

integrity of the aggregate as a whole. Don’t mix a UML aggregate with a DDD aggregate.

It is a domain concept, while collections are generic.

An aggregate consists of one or more entities and domain models that change

together. You can consider them as a unit of data changes, and you need to consider the

consistency of the entire aggregate for any changes. The aggregate helps you simplify

the domain model by collecting multiple domain events under a single abstraction

around domain variants and acts as the consistency and concurrency boundaries. The

most important rule to define a boundary for your aggregate cluster is that the boundary

should be based on domain invariants. Domain invariants are business rules that

must always be consistent. The consistency boundary logically asserts that everything

inside adheres to a specific set of business invariant rules no matter what operation is

performed.

Account
Iden�fied

Time

Business
Classified

Quote
Number
Generated

Uploaded
relevant
details

Eligibility
Verified

Vehicles
added to
Quote

Quote
Approved

Relevant
Forms
added to
Quote

Quote cost
calculated

Final Quote
generated

Quote
Accepted

Payment
Made Policy

package
generated

Accepted
Decline &
Reason
provided

Quote
Declined

Commission
Determined

Applied
Discount

Quota
Rejected

Payment
Declined Policy Issued

Ini�ate
Quote

Check
Eligibility

Get Quote
Approved

Generate
Quote

Accept
Quote

Make
Payment

Generate
Policy

API ModelService modelMicro-Service
Iden�fica�on

Iden�fy
Bounded
Contexts

Iden�fy
Aggregates

Capture Read
Models

Iden�fy
Commands /

Triggers

Capture
Domain
Events

Iden�fy
Objec�ve

BankAgent
System

Figure 10-15. Commands and events

Chapter 10 Modernize MonolithiC appliCations to Cloud native

439

Entities inside the same aggregate should be highly cohesive, whereas entities

outside aggregates are loosely coupled among other aggregates.

The aggregates have a local responsibility and receive commands and then emit

domain events. The aggregates are documented by using yellow sticky notes in the form

of a noun.

Figure 10-16 provides a clear view of the relationship between commands, events,

users/roles, and read models and aggregates.

As shown in Figure 10-17, you can identify an aggregate from commands and events.

The following are the rules to define an aggregate:

• Aggregates should be based on domain invariants.

• Aggregates should be modified with their invariants completely

consistent with a single transaction.

• Aggregates represent domain concepts, not just a collection of

domain events.

• Avoid having transaction across aggregates and consider them as a

single unit of work.

• Try for smaller aggregates to support the “-ilities.”

Commands

Read
Model

Events
User/Role

Aggregates

Figure 10-16. Relationship between commands, events, and aggregates

Chapter 10 Modernize MonolithiC appliCations to Cloud native

440

 Step 5: Context Map: Identify the Bounded Context

A bounded context is the logical boundary of a domain model that represents a particular

subdomain of your system. It is the focus of the strategic design section to deal with

domains and events. As I mentioned, the domain model represents the real things of the

business, such as an account, insurance, policy, etc. It is the conceptual design of your

system.

In an enterprise scenario, a bounded context is often based on ownership, with the

bounded context being maintained by a team. For each bounded context, there will be

a command and triggers along with the events produced. Typically, in strategic DDD,

the bounded context is the last step you will define for a system. Each bounded context

should be independent and owns its language and model. The rule of thumb is that each

bounded context is a microservice.

Account
Iden�fied

Time

Business
Classified

Quote
Number
Generated

Uploaded
relevant
details

Eligibility
Verified

Vehicles
added to
Quote

Quote
Approved

Relevant
Forms
added to
Quote

Quote cost
calculated

Final Quote
generated

Quote
Accepted

Payment
Made Policy

package
generated

Accepted
Decline &
Reason
provided

Quote
Declined

Commission
Determined

Applied
Discount

Quota
Rejected

Payment
Declined Policy Issued

Ini�ate
Quote

Check
Eligibility

Get Quote
Approved

Generate
Quote

Accept
Quote

Make
Payment

Generate
Policy

BankAgent
System

Account Quote
PolicyPayment

Agents
Price

API ModelService modelMicro-Service
Iden�fica�on

Iden�fy
Bounded
Contexts

Iden�fy
Aggregates

Capture Read
Models

Iden�fy
Commands /

Triggers

Capture
Domain
Events

Iden�fy
Objec�ve

Figure 10-17. Identification of aggregators

Chapter 10 Modernize MonolithiC appliCations to Cloud native

441

Figure 10-18 shows the bounded context with domain events and commands.

How do you identify a bounded context?

• Identify and collect the most meaningful domain events guided by

domain knowledge based on business capabilities.

• Identify whether there’s a clear cohesion required for certain domain

events based on dependencies.

• A domain model has specific domain entities within a bounded

context and delimits the applicability of the domain model and gives

clear ownership to the pod team.

• Apply Conway’s law to identify a bounded context; this law

emphasizes that the system will reflect the social boundaries.

• Use the context mapping pattern to identify various contexts in your

system and their boundaries.

Account

Customer Account

Account
Iden�fied

Business
Classified

Quote
Number
Generated

Ini�ate
Quote

Events

Payment

Payment

Payment
Made

Payment
Declined

Make
Payment

Events

Quote

Quote

Uploaded
relevant
details

Eligibility
Verified

Vehicles
added to
Quote

Quote
Approved

Accepted

Decline &
Reason
provided

Quote
Declined

Get Quote
Approved

Get Quote
Approved

Events

Price

Price

Relevant
Forms
added to
Quote

Quote
cost
calculated

Final
Quote
generated

Quote
Accepted

Applied
Discount

Quota
Rejected

Generate
Quote

Accept
Quote

Agents

Generate
Quote

Commission
Determined

Events

Policy

Policy

Policy
package
generated

Policy
Issued

Generate
Policy

Events

API ModelService modelMicro-Service
Iden�fica�on

Iden�fy
Bounded
Contexts

Iden�fy
Aggregates

Capture Read
Models

Iden�fy
Commands /

Triggers

Capture
Domain
Events

Iden�fy
Objec�ve

Figure 10-18. Bounded context

Chapter 10 Modernize MonolithiC appliCations to Cloud native

442

How Does a Bounded Context Communicate?

As shown in Figure 10-19, a bounded context is loosely coupled with other

bounded contexts; they interact only through synchronous or asynchronous

communication by using REST and event protocols. You can refer to the communication

details in Chapters 5 and 6.

Ubiquitous Language

A ubiquitous language is a clearly defined language used for all discussion between

domain experts, product teams, the architecture, engineers, etc. The ubiquitous

language will also be used in the documentation, test cases, and code. Generally, each

bounded context has its own ubiquitous language, and therefore a translation may be

needed when communicating with another bounded context.

The following are the reasons why a ubiquitous language is needed:

• It is needed for understanding and communicating concepts in the

domain in an unambiguous manner.

• It improves collaboration with domain experts to be more creative

and valuable for all the teams.

• It is used for all the brainstorming between domain experts, product

owners, architects, developers, testers, etc.

• It reveals the intention, not the implementation.

Service Interface

Domain Model

DDD Context Mapping Integra�on Style
• REST / HTTP/grpc
• Domain Events / Messaging

Quote Bounded Context

Service Interface

Domain Model

Price Bounded Context

Events Events

Figure 10-19. Bounded context communication

Chapter 10 Modernize MonolithiC appliCations to Cloud native

443

It helps to unite people in the project team and eliminate inaccuracies and

contradictions. The domain model will evolve and will not end at a single meeting. You

need to create a glossary of domain workshops to create a ubiquitous language.

Tactical Implementation of DDD

The goal of tactical DDD is to produce artifacts that are clearly defined and well

understood by all team members. Identify the right thing to build.

• Tactical DDD occurs at a lower level typically within a team to

support the service design.

• From a lean-agile perspective, this allows the team to share and align

on what they need to align on.

• Create an integrated backlog and discuss epics, user stories, etc.

• Apply stories within a single bounded context.

 Step 6: Microservices Identification

For microservices identification, look for entity and aggregators, as shown in

Figure 10- 20, which help you to identify the natural boundaries of the service. A general

principle you need to consider is that a microservice should be no smaller than an

aggregate and no larger than a bounded context.

Aggregate

En�ty Value Object

Figure 10-20. Microservice identification

Entity

An entity is an object with a unique identity that persists over time. For example, in an

insurance quote, vehicle details and customer details would be entities.

• An entity has a unique identifier in the cloud native service, and the

identifier is unique to the service and may span multiple bounded

contexts.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

444

• Objects have an identity that remains the same throughout the states

of the software.

• An entity must be distinguished from other similar objects having the

same attribute (e.g., customer account for an insurer).

• The attributes of an entity can change (mutable).

Value Objects

Value objects have no identity, and they are defined only by the values of the attributes.

Value objects are the things within your model that convey meaning and functionality

but have no uniqueness. These are used to pass parameters in messages between

objects, and they are immutable. Attributes of value objects cannot change; they must be

replaced with addresses, etc.

Aggregates

An aggregate defines a consistency boundary around one or more entities, and it is

a cluster of entity and value objects. One entity is an aggregate of the root, and each

aggregate is treated as one single unit that is retrieved and persisted together in a single

transaction boundary. The root identity is global. The identities of entities inside are

local, and the root is used for communication to the outside world. Internal objects

cannot be changed outside the aggregate.

Domain Model to Microservices

In the previous section, I explained the bounded context, commands, and events, and

explained how a bounded context is identified with a set of entities and aggregates.

As shown in Figure 10-21, here’s an approach that you can use to derive

microservices from the domain model:

• Let’s start with a bounded context; in general, the functionality in a

microservice should not span more than one bounded context. If you

find a microservice that spans a bounded context, that’s a sign that

you may need to go back and refine your domain analysis.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

445

• Look at the aggregates in your domain model; aggregates are often

good candidates for microservices.

• An aggregate must derive from commands and domain events.

• An aggregate should have high function cohesion.

• An aggregate is a boundary of persistence.

• Aggregates should be loosely coupled.

• Finally, look at the “-ilities” and adopt Conway’s law and an agile

POD team structure for the ownership of a service. These factors may

lead you to further decompose microservices.

• Each service must have a single responsibility and minimize

transactions across services so there are no chatty calls between

microservices.

• Each service is small enough that can build, manage, and destroy

with small POD teams.

• Services have high cohesion inside and are loosely coupled outside.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

446

In the previous example, quote, account, payment, policy, agents and price are

candidates of microservices.

API Model

A good API model has the same importance as a good design of microservices, because

all data exchange between services occurs through APIs or events. APIs must be efficient

to avoid creating chatty I/O. It is important to design and distinguish between public

APIs and private APIs. Public APIs are exposed to the outside world, and private APIs are

used for interservice communication or backend systems.

For public APIs, you need to consider REST over HTTP(s), and you need to consider

various factors such as performance, backend systems protocols, etc. Depending on

the granularity of services, interservice interaction can result in a lot of network traffic,

and the service becomes I/O bound. For this reason, your services should be designed

Quote Bounded Context

/Quote

Price Bounded Context

/Price /Agents

Policy Bounded Context

/Policy

Policy Bounded Context

/Payment

Policy Bounded Context

/Account

API ModelService modelMicro-Service
Iden�fica�on

Iden�fy
Bounded
Contexts

Iden�fy
Aggregates

Capture Read
Models

Iden�fy
Commands /

Triggers

Capture
Domain
Events

Iden�fy
Objec�ve

Figure 10-21. Microservices model

Chapter 10 Modernize MonolithiC appliCations to Cloud native

447

with the appropriate granularity. Serialization speed and payload size become more

important. You can consider REST over HTTP and gRPC, Apache Avro, and Apache

Thrift. Figure 10-22 shows the sample APIs of the previous example.

 Value of Domain-Driven Design
There are multiple benefits of DDD.

• It is an extremely flexible approach to software.

• DDD takes on the domain model to decouple the business cases or

legacy systems, and the technology will follow to realize the business

model.

• DDD understands the customer values and perspective on the issues.

The collaboration between domain experts, product teams, and

technical teams can help to create a domain model with a ubiquitous

language.

• The ubiquitous language used for each model provides clarity,

precision, and commonality between all the stakeholders.

Resource Method Operation Parameter Response Description

/Account GET Get Account ID Business Info [Account Info] Search accounts based on
accountName

/Quote POST Create Quote
Number

Basic Policy No Quote Number Stores Basic Policy info

/Quote {QNum} GET Referral
determination

Referred/Declined
/Cleared

Based on Quote number
provided referral
determination check will be
made

API ModelService modelMicro-Service
Identification

Identify
Bounded
Contexts

Identify
Aggregates

Capture Read
Models

Identify
Commands /

Triggers

Capture
Domain
Events

Identify
Objective

Figure 10-22. API model

Chapter 10 Modernize MonolithiC appliCations to Cloud native

448

The Business Value of DDD

There are many reasons why a business finds value in DDD.

• The objective of DDD is to provide value to businesses by modeling

the software from the business paradigm.

• DDD provides a clear understanding of how the business works and

provides an understanding of how the business runs.

• The users of the systems are able to contribute starting from day one as

a domain expert; this helps each service be built with a rich domain.

• This helps to focus on core domains.

Drawbacks of DDD

Because of the modular nature of DDD and the strict following of the domain,

the software itself requires significant insulation, and isolation is one part of the

development.

• There are unfamiliar processes and rules in the legacy system;

they are difficult to identify and may miss some circumstances that

become costly for the service design.

• It is effective as a domain, but you may not get an advantage by

applying it for small, simple business domains.

• Ubiquitous is the common language in DDD. If one person doesn’t

get it, then it could represent a bad design.

• DDD has a learning curve in an enterprise.

• DDD adds time to the entire DDD process; sometimes the

engineering lifecycle is very short, so the team ignores the DDD

process to identify a service. That becomes costlier later for the

service management.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

449

Where DDD Is Not Useful

There are some common misconceptions of DDD.

• DDD is not a set of patterns that exists for repurposing, and it is not

code-focused and not an object-oriented concept. If your project is

more suited toward those things, we suggest using UML.

• DDD is not for every enterprise architecture design; we also suggest

using either TOGAF or the Zachman framework.

• DDD is not a solution for everything. Different organizations will

have difficulties that require a paradigm shift that simply cannot be

solved by using DDD.

• DDD is not an architectural pattern or design pattern; it is about how

to design your application with a focus on the domain.

 Summary
DDD is a domain language that is designed to manage the creation and maintenance of

a system, and it is a collection of patterns and principles that can be applied to service

design to manage complexity. Its emphasis on the distillation of large problem domains

into subdomains can reveal the core domain, which is the area of most value. Using a

ubiquitous language across teams can better manage collaboration.

The best pace of technological change in decoupling is as follows:

• Architectural design: By adopting a cloud native architecture, you

can build out systems with greater flexibility. You can shift to lean

architecture, APIs, cloud-based service platforms, etc.

• Engineering practice: The value of architectural change accelerates

when you embrace newer ways of working that speed up

development and delivery like DevSecOps, automation, design

thinking, etc.

• Talent evolution: You need to upskill resources at greater speed and

scale than ever.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

450

You must adopt the following actions for decoupling to a cloud native architecture:

• Decoupling data from legacy systems

• Decoupling applications from legacy infrastructure

• Decoupling tightly integrated systems into loosely coupled systems

• Decoupling organizations from traditional structures and measures

• Decoupling essential differentiation from unnecessary differentiation

Modernizing your enterprise is not straightforward. One way to gauge the need for

modernization is to look at the current level of technical debt, essentially the money it

would take to upgrade legacy systems.

To make modernization a reality, you must do the following:

• Adopt decoupling as a rational approach to focus on modernization

in a way that gradually migrates systems away from legacy while

effectively managing the costs and risk.

• Conduct an application assessment to identify recommendations

that help you to draw a roadmap that offers transparency and reduces

risk.

• Socialize a modernization approach like DDD and event storming

that has a high success rate across industries.

Chapter 10 Modernize MonolithiC appliCations to Cloud native

451
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_11

CHAPTER 11

Enterprise IT Assessment
for a Cloud Native Journey
In the previous chapter, I explained how to modernize your legacy monolithic

application to cloud native services by using decoupling, domain-driven design, and

event storming.

Many enterprises fail or lose stream because they cannot demonstrate their business

value to the customers and market. The modernization of a single system to cloud native

technology does not show business value. So, you need to conduct an assessment that

considers the following: application portfolio upgrade, technology modernization,

optimization of the line of business, and the journey to the cloud to identify the maturity

of the existing IT real estate.

An architecture assessment plays a vital role in both greenfield and brownfield

application development, in the re-engineering of an existing application, and in the

modernization and rationalization of portfolios.

Assessment is an activity to validate and review the existing IT real estate of an

enterprise in terms of architecture, digital transformation, automation, software

engineering, and cloud journey.

In this chapter, I will explain different ways to assess an enterprise by using various

methods.

• What is an assessment?

• Different types of assessment

• Assessment strategic planning

• How to validate technical stability

• How to identify technology opportunities in an enterprise landscape

https://doi.org/10.1007/978-1-4842-7226-8_11#DOI

452

• Architecture assessment maturity model

• Digital transformation assessment maturity model

• Automation assessment maturity model

• Cloud transformation assessment maturity model

 Introduction
Digital-native companies across industries are fundamentally transforming every IT

system to support business disruptions and embrace technological innovation. When

confronted with large-scale digital disruption, enterprises must adapt quickly and

lean into the cloud native by reimagining and elevating IT as a strategic core business

function.

Large organizations are struggling to compete with new competitors and unicorns

because of their own complex, tightly coupled IT real estate and aging technologies.

Cloud native enterprises have invested heavily in cloud native technology platforms

to create data-driven enterprises that provide business insight and that enhance the

customer experience. Nimble new entrants like unicorns are leveraging new channels,

scaling at an unprecedented pace, stealing market share, and rewriting the rules of the

game by adopting a “culture of customer.”

Many enterprises across geographies with rigid legacy systems, siloed data, old

economy workforce skills, and outdated operating models can’t compete with cloud

native companies because emerging technologies scale quickly and can be delivered on

demand by enabling machine learning and AI models. If you want to keep up with the

digital disruptors, you must redefine IT by conducting as-is assessments. The assessment

outcome provides a look at your landscape with recommendations. This helps you to

strategize your transformation.

To reposition IT as a transformation engine, the leader of an enterprise should strive

to change how IT engages with the business. For this journey, you need to know where

your current problems are in the landscape and how to manage them.

Figure 11-1 illustrates why you need an assessment for your enterprise.

Chapter 11 enterprise it assessment for a Cloud native Journey

453

 Assessment
An assessment provides a different way of conceiving, designing, and deploying

technology across an enterprise. Assessment techniques help you to unlock unrealized

streams of business value by optimizing your enterprise’s current IT real estate to

innovate with a set of new technologies that are cloud native.

An assessment is a structured study on a well-defined set of IT capabilities or

elements focusing on the technology and business aspects. It is guided by the agreed-

upon objectives of the enterprise to analyze and document the as-is state and to make

recommendations on the to-be state.

 What Is an Assessment Used For?
When you approach technology strategically, the core objective is to create business

value for all aspects of the business, from the CxO to the back-office engineer and from

software engineering to the customer experience. When you simplify your organization

by using cloud native tools, you can better optimize your legacy estate.

…creating a compound impact on IT organizations

Disparate Architecture

Legacy manually managed Infrastructure

Siloed Organization

Complex Process, Policies & PracticesApplication Sprawl

Enterprise
Organization

Disconnected Business

Figure 11-1. Disconnected enterprise organization

Chapter 11 enterprise it assessment for a Cloud native Journey

454

There are multiple reasons to conduct an assessment.

• To prioritize resources to business objectives, continuously look

for opportunities to create new business models, and transform

experiences and industrialize operations quickly and efficiently with

agility and automation.

• To build a future-ready IT foundation. The cloud native landscape

is powered by the cloud, automation, and microservices to deliver

customer value.

• To build more IT muscle for your business.

• To develop a new kind of system.

• To evaluate an architecture relative to best practices.

• To describe the structure and state of an architecture.

• To validate technical stability. For example, can the service scale

instantly? Is the system able to self-heal?

• To identify technology opportunities, for example, cost reduction,

agility, platform consolidation, portfolio rationalization, technology

standardization, etc.

• To provide architecture for the due-diligence process, mergers and

acquisitions, etc.

• To define the technology roadmap.

• To analyze the architecture’s dynamic behavior in response to

external events.

• To provide details of value proposition, cost reduction, and decreased

cycle time.

 Assessment Objectives
The objective is to identify the widening gap between the business and IT capability

through an architecture assessment. Another objective is to improve the customer

experience, by making it faster and with higher quality, as illustrated in Figure 11-2.

Chapter 11 enterprise it assessment for a Cloud native Journey

455

 Assessment Execution Approach and Key Activities
What are the activities carried out during the assessment, and what are the deliverables

of the assessment?

Based on the scope of assessment and type of assessment, you can decide how many

weeks will be required to conduct an assessment and what key roles are required to

conduct an assessment.

Figure 11-3 helps you to create a plan and deliverables for your client.

Legacy IT Cloud Na�ve

Channels

APIs

Lean Architecture

Data & BI

Mul� Speed Enabler

Heterogenous Systems

Cloud/XaaS
Partner Ecosystem

Security/Autom
a�on

• Focus on legacy and back office
• Closed Architectures
• Centralized integra�on
• Complex & Ver�cal Legacy
• Duplicated & Unrelated data
• Single-speed
• Mostly on-premise HW & SW
• ….

• Microservice Architecture and
open API

• Automa�on
• Event driven
• Data Mesh
• Consistent real-�me analy�cs
• Mul�-speed
• Cloud-enabled as a service
• Security as a service
• Predic�ve scalability
• ….

Trends Architecture Assessment Outcomes

New technologies driving a
requirement for cloud na�ve
capabili�es

Automa�on, Agility

Analy�cs, AI enabled model

Talent , Culture &
Organiza�on

“Innovate and Preserve”

Architecture Capability
� Redefine architecture to decouple systems

to enable flexible technology models across
growth, profitability & sustainability

� Define cloud na�ve Architecture strategies
that have top line impact, bo�om line
relevance

“Ra�onalize to Future-Ready”

Technology Por�olio Strategy

� Manage the technology landscape to drive
profitable growth by elimina�ng non-
working spend, and re-inves�ng these
resources into areas that drive growth and
profitability

“Rapid Delivery”
Technology Delivery Speed

� Align architectures with rapid delivery
methodologies and new technologies

Value

Speed

Cost Reduc�on

Quality

Front End

System 1

System 4

System 3

System 2

Sy
st

em
 5

Future Architecture Capabili�es

Figure 11-2. Assessment objectives

Figure 11-3. Assessment plan and activities

Chapter 11 enterprise it assessment for a Cloud native Journey

456

Along with the execution approach and activities, you need to have strong

practitioners who have deep, relevant, and real-world experience. During the execution,

you need to provide and run a delivery governance function to ensure the assessment

is managed effectively and that the status and updates are effectively communicated

throughout the delivery. During the entire assessment cycle, try to adopt critical

governance communications by providing status reports to stakeholders.

You must adopt an agile approach for communicating findings and

recommendations and follow these activities during the assessment:

• Hold an interim review /finding review session with the key identified

stakeholders.

• Deliver formal outputs to the client team for review and distribution

for early feedback.

• Create an execute summary pack for each workstream to give a high-

level view of the approach, findings, and recommendations.

Along with this activity, you need to call out what you need from the client and who

is required and how much time you require for workshops. The following sections cover

different types of assessment.

 Cloud Native Assessment
The technologies and practices that have enabled success over the past decade are

reaching the limits of their effectiveness. The next big practice is cloud native. To thrive,

enterprises must design and execute cloud native technologies with unprecedented

agility.

The cloud, microservices, containerization, eventing, serverless, and data meshes

are all powered by cloud native. You can quickly identify promising new and emerging

technologies that are relevant for your client landscape and scale them to deliver new

capabilities, value, and business outcomes.

A cloud native assessment is more than assessing enterprises against new

technologies; it helps your client to shift fundamentally from traditional technology

strategy, development, and delivery models. This type of assessment uses modern

architecture methods, tools, and techniques to drive a shift from project orientation to

continuous development and the delivery of systems.

Chapter 11 enterprise it assessment for a Cloud native Journey

457

As shown in Figure 11-4, each system adds complexity to the cloud native journey.

The y-axis represents speed and efficiency, and the x-axis represents complexity. The

complexity of an organization increases while the speed and efficiency to cloud native

reduces, and vice versa. Therefore, you need to choose the type and level of system for a

cloud native journey.

When to Consider a Cloud Native Assessment
As shown in Figure 11-5, in the cloud native assessment, you will assess the following:

• Methods and practices such as software engineering, automation,

governance, deployment, etc.

• Technology and architecture such as cloud, microservices, event-

driven, serverless, other cloud native elements

• Business alignment in terms of talent, innovation, culture

Quan�ty is the enemy of efficiency and agility…

Speed and Efficiency

Co
m

pl
ex

ity

Cloud Na�ve

Each new system adds complexity…

new pla�orms, new manual processes,
policies, and technical debt

…inhibi�ng agility and overall efficiency

Enterprise-scale
organiza�ons

Figure 11-4. Cloud native assessment comparison

Chapter 11 enterprise it assessment for a Cloud native Journey

458

You can consider cloud native assessment for the following:

• Responding to the strategic direction: You see an immediate situation

where your client is asked to improve time to market, reduce costs by

optimizing various resources, and improve the quality by considering

automation and a shift-left approach.

• Enterprise team concerns: Your client wants to change the way they

are working and how they are working.

• Enterprise estate: An enterprise wants to move away from legacy

monolithic applications, tight coupling, or poor delivery quality.

• Manual delivery: An enterprise wants to move away from old ways

of working that result in manual builds, tests, and deployments that

could be automated.

 Cloud Native Maturity Assessment Model
A cloud native assessment is a model combined with quantitative analytics, gap

assessments, and planning methodologies. It is the combination of existing practice area

models, with a culture of automation and next-generation software engineering delivery

concepts.

For each question in a cloud native maturity assessment, you must provide a rating

based on the current practices and make recommendations based their maturity. The

ratings are as follows:

Architecture

Business

Software
Engineering

Cloud
Native

Culture of Automation
Culture of Innovation
Intelligent Development & Architecture
Cost Reduction

Figure 11-5. Cloud native assessment model

Chapter 11 enterprise it assessment for a Cloud native Journey

459

• Ad hoc: With this rating, the process is not standardized, the

architecture is not streamlined to cloud native, and agility is not

followed. There is no vision available on cloud native adoption. This

is like a one- or two-star rating.

• Streamlined: With this rating, the culture of automation exists but is

not available across enterprises. Teams have started adopting cloud

journeys but only in nonproduction environments, and few teams are

following the agile approach with all 12 agile principles. This is like a

three-star rating.

• Optimized: With this rating, a culture of automation exists but with

only continuous integration, but there is no automation testing and no

infrastructure automation. Few applications are deployed on the cloud,

but they have started modernizing legacy monolithic applications to a

cloud native architecture. This is like a four-star rating.

• Matured: With this rating, an agile pod approach is adopted across

the organization, and most of the applications embrace cloud native

architecture and collect real-time metrics. This is like a five- star

rating.

You must prepare the questions for the cloud native assessment and evaluate each

answer. Based on this evaluation, you will come to know where the current organization

stands, and this will help you to make recommendations. One thing you need to

remember, if the organization is ad hoc, don’t recommend the matured approach. None

of the organizations can go from one to five stars quickly. They need time, and therefore

make your recommendations wisely. Always provide multiple iterations before the

organization reaches the maturity.

Table 11-1 shows some sample questions with data from a cloud native assessment.

Note the score and comments are illustrative, and the data is from a global
life science client. i conducted a cloud native maturity assessment for the entire
enterprise. i interviewed all the relevant stakeholders including the leadership
architecture team, project manager, product owner, development team, and
infrastructure team. i captured these details during my workshop with the global
life science client.

Chapter 11 enterprise it assessment for a Cloud native Journey

460

Ta
bl

e
11

-1
.

C
lo

u
d

N
at

iv
e

A
ss

es
sm

en
t S

am
pl

e
Q

u
es

ti
on

s

M
ea

su
re

Ad
 H

oc
St

re
am

lin
ed

Op
tim

iz
ed

M
at

ur
ed

Cu
rr

en
t

Sc
or

e
De

si
re

d
Sc

or
e

Co
m

m
en

ts

Cl
ou

d
Na

tiv
e

Ar
ch

ite
ct

ur
e

Ro
ad

m
ap

th
er

e
is

 n
o

cl
ou

d
na

tiv
e

ar
ch

ite
ct

ur
e

ro
ad

m
ap

.

th
er

e
is

 a
 c

lo
ud

na
tiv

e
ar

ch
ite

ct
ur

e

ro
ad

m
ap

 th
at

ha
s

so
m

e
ba

si
c

el
em

en
ts

 n
ee

de
d

to
 b

ui
ld

 n
ew

ca
pa

bi
lit

ie
s.

a
cl

ou
d

na
tiv

e

ar
ch

ite
ct

ur
e

ro
ad

m
ap

 is

av
ai

la
bl

e
an

d

lo
os

el
y

fo
llo

w
ed

.

a
w

el
l-d

ef
in

ed
 c

lo
ud

na
tiv

e
ar

ch
ite

ct
ur

e

ro
ad

m
ap

 is

av
ai

la
bl

e,
 a

nd

te
am

s
ac

ro
ss

 th
e

or
ga

ni
za

tio
n

ha
ve

ad
op

te
d

it.

2
3

th
e

or
ga

ni
za

tio
n

ha
s

st
ar

te
d

a

cl
ou

d
na

tiv
e

ar
ch

ite
ct

ur
e

jo
ur

ne
y

an
d

st
ar

te
d

cr
ea

tin
g

a

ro
ad

m
ap

.

Hy
po

th
es

is
-

Dr
iv

en

De
ve

lo
pm

en
t

(H
DD

)

te
am

s
us

es

ob
se

rv
at

io
ns

an
d

in
te

rv
ie

w
s

to
 u

nd
er

st
an

d

us
er

s
bu

t s
ol

el
y

on
 q

ua
nt

ita
tiv

e

st
ud

ie
s.

te
am

 fo
llo

w
s

hd
d

an
d

us
es

 b
ot

h

qu
an

tit
at

iv
e

an
d

qu
al

ita
tiv

e
an

al
ys

is
.

te
am

 fo
llo

w
s

hd
d

an
d

us
es

 b
ot

h

qu
an

tit
at

iv
e

an
d

qu
al

ita
tiv

e
an

al
ys

is
.

te
am

 fo
llo

w
s

hd
d

an
d

re
gu

la
rly

 u
se

s

hu
m

an
-c

en
te

re
d

m
et

ho
ds

; i
nv

ol
ve

s

us
er

s
th

ro
ug

ho
ut

 th
e

lif
ec

yc
le

 o
f a

 p
ro

je
ct

.

1
2

so
m

e
pr

oj
ec

ts

fo
llo

w
 w

at
er

fa
ll,

an
d

so
m

e

fo
llo

w
 th

e
ag

ile

ap
pr

oa
ch

.

Chapter 11 enterprise it assessment for a Cloud native Journey

461

M
et

ho
ds

 &

Pr
oc

es
s

pr
oj

ec
t t

ea
m

s

do
 n

ot
 fo

llo
w

an
y

sp
ec

ifi
c

m
et

ho
ds

 o
r

pr
oc

es
s.

te
am

 h
as

 fo
llo

w
ed

so
m

e
m

et
ho

ds
, b

ut

ag
ile

 m
et

ho
ds

 a
nd

pr
oc

es
s

ar
e

no
t

fo
llo

w
ed

.

m
os

t p
ro

je
ct

s
ha

ve

co
ns

is
te

nt
 a

gi
le

m
et

ho
ds

.

m
os

t p
ro

je
ct

s
ha

ve

co
ns

is
te

nt
 a

gi
le

m
et

ho
ds

 w
ith

 @

sc
al

e
it

.

2
3

so
m

e
pr

oj
ec

ts

fo
llo

w
 a

gi
le

m
et

ho
d

bu
t d

o

no
t h

av
e

pr
od

uc
t

ow
ne

rs
 o

r

de
ta

ile
d

ba
ck

lo
gs

av
ai

la
bl

e.

St
an

da
rd

s
&

Gu

id
el

in
es

te
am

 d
oe

s

no
t f

ol
lo

w
 a

ny

st
an

da
rd

s
or

gu
id

el
in

es
.

a
fe

w
 g

ui
de

lin
es

ar
e

av
ai

la
bl

e,
 a

nd

so
m

e
te

am
s

fo
llo

w

th
e

gu
id

el
in

es
.

fo
llo

w
s

th
e

gu
id

el
in

es
 a

nd

al
so

 u
se

s
th

e
to

ol
s

to
 d

oc
um

en
t t

he

gu
id

el
in

es
.

fo
llo

w
s

th
e

gu
id

el
in

es
 a

nd

ha
s

a
pr

oc
es

s
to

sh
ar

e
th

em
 a

cr
os

s

en
te

rp
ris

e.

2
3

te
am

 fo
llo

w
s

th
e

st
an

da
rd

gu
id

el
in

es
 a

nd

pr
oc

ed
ur

es
,

bu
t t

he
y

ar
e

no
t u

pd
at

in
g

re
gu

la
rly

, a
nd

 th
e

en
tir

e
te

am
 d

oe
s

no
t h

av
e

vi
si

bi
lit

y.

(c
on

ti
n

u
ed

)

Chapter 11 enterprise it assessment for a Cloud native Journey

462

Ta
bl

e
11

-1
.

(c
on

ti
n

u
ed

)

De
si

gn

St
an

da
rd

s
no

 d
es

ig
n

st
an

da
rd

s
ex

is
t.

de
si

gn
 s

ta
nd

ar
ds

ha
ve

 b
ee

n
cr

ea
te

d,

bu
t t

he
y

ar
e

in

st
at

ic
 n

at
ur

e,
 a

nd

on
ly

 a
 fe

w
 in

 th
e

pr
oj

ec
t c

an
 a

cc
es

s

to
 th

em
.

de
si

gn
 s

ta
nd

ar
ds

ar
e

av
ai

la
bl

e,
 a

nd

th
e

pr
oj

ec
t t

ea
m

is
 a

bl
e

to
 a

cc
es

s

th
em

.

de
si

gn
 s

ta
nd

ar
ds

ar
e

av
ai

la
bl

e
an

d
ar

e

ab
le

 to
 b

e
ac

ce
ss

ed

ac
ro

ss
 te

am
 fo

r

re
us

ab
ili

ty
 in

st
ea

d

of
 re

in
ve

nt
in

g
th

e

w
he

el
.

1
2

no
 d

es
ig

n

st
an

da
rd

s
ar

e

av
ai

la
bl

e.

Cu
ltu

re
 o

f
Au

to
m

at
io

n
te

am
 d

oe
s

m
an

ua
l

de
ve

lo
pm

en
t

an
d

de
pl

oy
m

en
t.

te
am

 d
oe

s

co
nt

in
uo

us

in
te

gr
at

io
n,

bu
t t

es
tin

g
an

d

de
pl

oy
m

en
t a

re

m
an

ua
l.

te
am

 fo
llo

w
s

co
nt

in
uo

us

in
te

gr
at

io
n

an
d

de
liv

er
y

an
d

ca
pt

ur
es

a
fe

w
 s

of
tw

ar
e

en
gi

ne
er

in
g

m
et

ric
s.

en
te

rp
ris

e
us

es

au
to

m
at

io
n,

 a
nd

w
el

l-d
ef

in
ed

 m
et

ric
s

ar
e

co
lle

ct
ed

 w
ith

in
fra

st
ru

ct
ur

e

au
to

m
at

io
n.

1
3

te
am

 u
se

s
an

 a
d

ho
c

ap
pr

oa
ch

;

th
er

e
is

 n
o

pr
op

er
 C

i a
nd

 C
d

pi
pe

lin
e.

M
ea

su
re

Ad
 H

oc
St

re
am

lin
ed

Op
tim

iz
ed

M
at

ur
ed

Cu
rr

en
t

Sc
or

e
De

si
re

d
Sc

or
e

Co
m

m
en

ts
Chapter 11 enterprise it assessment for a Cloud native Journey

463

En
vi

ro
nm

en
t

St
ra

te
gy

th
er

e
is

 n
o

en
te

rp
ris

e-
w

id
e

en
vi

ro
nm

en
t

pr
ov

is
io

ni
ng

; a
ll

ar
e

m
an

ua
l w

ith

re
qu

ire
-b

as
ed

ap
pr

oa
ch

.

th
er

e
is

 a
do

pt
io

n

of
 th

e
cl

ou
d

by

a
fe

w
 te

am
s

in

th
e

or
ga

ni
za

tio
n

bu
t o

nl
y

fo
r

no
np

ro
du

ct
io

n

en
vi

ro
nm

en
ts

.

th
er

e
is

 a
do

pt
io

n

of
 th

e
cl

ou
d

ac
ro

ss

or
ga

ni
za

tio
ns

 fo
r

no
np

ro
du

ct
io

n

en
vi

ro
nm

en
ts

, b
ut

fe
w

 a
pp

lic
at

io
ns

ar
e

ru
nn

in
g

on
 th

e

cl
ou

d.

th
er

e
is

 a
 c

le
ar

st
ra

te
gy

 a
va

ila
bl

e

to
 a

do
pt

 th
e

cl
ou

d,

an
d

m
os

t o
f t

he

ap
pl

ic
at

io
ns

 a
re

al
re

ad
y

in
 th

e
cl

ou
d;

so
m

e
ar

e
on

 th
e

cl
ou

d
jo

ur
ne

y.

1
3

a
fe

w
 p

ro
je

ct
s

ar
e

ad
op

tin
g

th
e

cl
ou

d,
 b

ut

th
e

m
aj

or
ity

 o
f

te
am

s
fo

llo
w

th
e

on
-p

re
m

is
es

ap
pr

oa
ch

.

M
od

er
ni

za
tio

n
or

ga
ni

za
tio

n

ha
s

a
lo

t

of
 le

ga
cy

ap
pl

ic
at

io
ns

an
d

is
 ru

nn
in

g

in
 o

n-
 pr

em
is

es

vi
rtu

al

m
ac

hi
ne

s.

or
ga

ni
za

tio
n

st
ar

te
d

an

ap
pl

ic
at

io
n

m
od

er
ni

za
tio

n

jo
ur

ne
y

by
 a

do
pt

in
g

cl
ou

d
na

tiv
e

bu
t

no
t f

or
 a

ll
th

e

ap
pl

ic
at

io
ns

.

or
ga

ni
za

tio
n

ha
s

w
el

l-d
ef

in
ed

m
od

er
ni

za
tio

n

ro
ad

m
ap

 a
nd

st
ar

te
d

ad
op

tin
g

al
l c

lo
ud

 n
at

iv
e

el
em

en
ts

.

or
ga

ni
za

tio
n

is
 a

lre
ad

y
on

th
e

jo
ur

ne
y

of

m
od

er
ni

za
tio

n
by

ad
op

tin
g

al
l t

he

el
em

en
ts

 o
f c

lo
ud

na
tiv

e.

1
3

fo
un

d
hu

ge

te
ch

ni
ca

l d
eb

t,

an
d

80
%

 o
f

sy
st

em
s

in
 th

e

en
te

rp
ris

e
ar

e

le
ga

cy
 m

on
ol

ith
ic

sy
st

em
s.

Chapter 11 enterprise it assessment for a Cloud native Journey

464

 Detailed Architecture Assessment
The detailed architecture assessment model provides quantitative analytics, gap

assessments of detailed existing architecture, and planning methodologies. It is an

instrumental technique to validate technical stability and to identify technology

opportunities. It is an essential part of technology due diligence and technology

roadmap definition.

The cloud native architecture assessment will be used to assess the maturity

of existing enterprises against cloud native elements such as microservices, APIs,

agility, automation, event-driven, serverless, and cloud, and the detailed architecture

assessment will be used to assess the stability of the existing systems in terms of

application architecture, integration architecture, the behavior of an application for the

“-ilities,” and more.

The outcome of this assessment helps you to decide whether the system is able to

support modern-day business and can consider lift and shift to the cloud environment

or whether the system can be modernized by using the domain-driven design technique.

Assessment Usage
The main purpose of this assessment is to assess an existing behavior of a system with

the capabilities of the application architecture, infrastructure architecture, development

architecture, and “ilities” architecture. This assessment can be used to conduct a review

at each system level or enterprise level across portfolios.

In this assessment, you need to prepare a questionnaire with questions that should

be asked to drive the assessment such as interviews, workshops, and Q&A sessions with

all the relevant stakeholders.

 Architecture Assessment Model
Figure 11-6 shows the assessment model. The following assessment model capture the

current results and analyze the document findings and provide recommendations.

Chapter 11 enterprise it assessment for a Cloud native Journey

465

In the planning phase of the assessment, you need to identify the scope of an

assessment, for example, if its scope is for only one system or one portfolio/department

or the entire enterprise. Identifying the scope drives the accuracy, complexity, and

costs of an assessment. In the planning phase, you also need to define a clear objective,

investigation area, and capabilities. Once the scope is identified, you need to define a

plan for how many resources are required, what skills are required, and how much time

it will take.

In the workshop phase of the assessment, you need to work with the client team to

identify subject matter experts (SMEs), and the time required from them, and make sure

the client stakeholders are committed to this. One thing you need to remember is that

you need seriousness and active participation from client SMEs and other stakeholders

for a successful assessment. Based on their availability, schedule a workshop with the

relevant stakeholders. Note: invite only the relevant SMEs. It is better to share the list

of assessment questionnaires with the SMEs in advance so they can prepare before the

workshop.

In the capture content phase of the assessment, you collect existing documents

and review each of them. You document every discussion of the functional capabilities

of a system, the technology capabilities of a system, the architecture styles used, the

pain points, the software engineering capabilities of a system, the behavior of a system,

etc. You need to conduct a thorough investigation by going through the questions

Architecture
Assessment

Exis�ng Enterprise
Architecture

Detailed Architecture

• Gap Analysis

• Value Case

• Client Future State
Architecture & Design

• List of detailed design /
implementa�on
requirements

• Projects and owners for
detailed design /
implementa�on work

• Technology priori�zed
roadmap

Assessment Outcome

Evaluate existing system Architecture by analysing documents and
conduct a workshop with the stakeholders

Figure 11-6. Assessment model

Chapter 11 enterprise it assessment for a Cloud native Journey

466

of each capability and document answers and references by using the issues, risks,

opportunities, and strengths (IROS) model and prioritize and group them based on the

capabilities.

In the recommendation phase of the assessment, evaluate the findings based on

priority and business importance, and produce an assessment report. The assessment

report must contain only the official recommendations of findings. Usually, the final

report contains an assessment scope overview, scope element description, assessment

findings, prioritization of each finding, roadmap, reference implementation, best

practices, and conclusion.

 Assessment Questions Template
You must prepare the questions on a detailed architecture assessment for each capability

and rate each answer. The rating can be from 1 to 5 based on current industry and

technology trends, and you can document the client feedback on each question.

For example, let’s consider the rules management question, “Are you using rules

management, and if yes, how are the rules managed?” If the client feedback is yes,

then you need to probe further. What kind of rules? Are they using only action rules

or decision rules? Are the rules are externalized? Are they using any ML-based model

for rules? If they answer yes for all, then your rating will be 5. If they are using rules

management and externalizing the rules, then your rating will be 4. If they are managing

rules externally in the configuration, fine; then it should be 3. If they are hard-coding the

rules in source code, then it is 1 or 2.

Similarly, you need to probe the client by asking more questions until the end.

You can find a few sample questions for the detailed assessment in Table 11-2 and

prepare similar ones for a full-fledged assessment.

Note the score and comments are illustrative, and the data is from a global retail
client. i conducted a detailed architecture assessment for a portfolio. i interviewed
all the relevant stakeholders including the architecture team, project manager,
product owner, development team, and infrastructure team. i captured these
details during my workshop with the global retail client.

Chapter 11 enterprise it assessment for a Cloud native Journey

467

Ta
bl

e
11

-2
.

D
et

ai
le

d
A

rc
hi

te
ct

u
re

 A
ss

es
sm

en
t S

am
pl

e
Q

u
es

ti
on

s

 C
ap

ab
ili

ty
Qu

es
tio

n
Cl

ie
nt

 F
ee

db
ac

k
Cu

rr
en

t S
ta

te

(R
at

in
g)

Ta
rg

et
 S

ta
te

(R

at
in

g)
Be

st
 P

ra
ct

ic
es

Co
m

m
en

ts

UI

Ar
ch

ite
ct

ur
e

W
ha

t a
re

 th
e

ui
 a

rc
hi

te
ct

ur
e

co
m

po
ne

nt
s,

an
d

ho
w

 d
o

th
ey

co
m

m
un

ic
at

e

to
 th

e
ba

ck
- e

nd

sy
st

em
?

so
m

e
pr

oj
ec

ts

ar
e

de
si

gn
ed

 w
ith

re
sp

on
si

ve
ne

ss
,

bu
t t

he
 m

aj
or

ity
 o

f

ap
pl

ic
at

io
ns

 a
re

 in
 o

ld

le
ga

cy
 te

ch
no

lo
gi

es
.

1
3

no
 b

es
t p

ra
ct

ic
es

ar
e

fo
llo

w
ed

.

on
ly

 a
 fe

w
 p

ro
je

ct
s

us
e

th
e

la
te

st
 te

ch
no

lo
gi

es

w
ith

 re
sp

on
si

ve
 d

es
ig

n,

an
d

th
e

m
aj

or
ity

 o
f t

he

ap
pl

ic
at

io
ns

 a
re

 c
lie

nt
-

se
rv

er
 a

rc
hi

te
ct

ur
e.

UI

Ar
ch

ite
ct

ur
e

W
ha

t t
ec

hn
ol

og
ie

s

ar
e

in
vo

lv
ed

in
 b

ot
h

w
eb

an
d

m
ob

ile

ap
pl

ic
at

io
ns

?

W
eb

 a
pp

lic
at

io
ns

ar
e

us
in

g
le

ga
cy

te
ch

no
lo

gi
es

, a
nd

a
fe

w
 s

ys
te

m
s

us
e

re
sp

on
si

ve
 d

es
ig

n.

2
3

Be
st

 p
ra

ct
ic

es

ar
e

av
ai

la
bl

e,
 b

ut

te
am

s
ar

e
no

t

fo
llo

w
in

g
th

em

pr
op

er
ly.

th
er

e
is

 n
o

ro
ad

m
ap

to
 a

do
pt

 a
 re

sp
on

si
ve

de
si

gn
.

Ru
le

s
M

an
ag

em
en

t
ar

e
yo

u

us
in

g
ru

le
s

m
an

ag
em

en
t?

 if

ye
s,

 h
ow

 a
re

 ru
le

s

m
an

ag
ed

?

ru
le

s
ar

e
pa

rt
of

sy
st

em
s.

1
3

no
 b

es
t p

ra
ct

ic
es

ar
e

av
ai

la
bl

e.

ru
le

s
ar

e
no

t d
ef

in
ed

pr
op

er
ly,

 a
nd

 ru
le

s

ar
e

no
t e

xt
er

na
liz

ed
;

a
fe

w
 s

ys
te

m
s

re
qu

ire

fre
qu

en
t c

ha
ng

es
 to

up
da

te
 ru

le
s.

(c
on

ti
n

u
ed

)

Chapter 11 enterprise it assessment for a Cloud native Journey

468

BP
M

ar
e

yo
u

us
in

g

a
bu

si
ne

ss

pr
oc

es
s

in
 y

ou
r

ap
pl

ic
at

io
n?

 if
 y

es
,

is
 th

is
 a

ut
om

at
ed

?

fe
w

 s
ys

te
m

s
us

e
th

e

Bp
m

 to
ol

s.

1
3

fo
llo

w
in

g
a

fe
w

be
st

 p
ra

ct
ic

es
.

sy
st

em
s

ar
e

le
ga

cy
, a

nd

th
er

e
is

 n
o

en
te

rp
ris

e-

w
id

e
ap

pr
oa

ch
.

In
te

gr
at

io
n

W
ha

t k
in

d
of

in
te

gr
at

io
n

ar
e

yo
u

us
in

g?
 a

re

yo
u

us
in

g
ap

is

or
 e

ve
nt

-b
as

ed

in
te

gr
at

io
n?

fe
w

 s
ys

te
m

s
ar

e
ap

is
,

an
d

so
m

e
sy

st
em

s

us
e

an
 m

Q-
 ba

se
d

ap
pr

oa
ch

.

1
3

ap
i s

ta
nd

ar
ds

ar
e

no
t a

va
ila

bl
e.

th
e

ap
is

 a
re

 a
va

ila
bl

e

w
ith

ou
t a

ny
 s

ta
nd

ar
ds

,

an
d

te
am

s
ar

e
us

in
g

m
Q

fo
r p

oi
nt

-t
o-

po
in

t.

Da
ta

In

te
gr

at
io

n
ho

w
 is

 d
at

a

in
te

gr
at

ed
 a

cr
os

s

en
te

rp
ris

es
?

ar
e

yo
u

us
in

g
an

y
et

l

or
 C

dC
 a

pp
ro

ac
h?

al
l i

nt
eg

ra
tio

ns
 a

re

ba
tc

h.

1
3

et
l

st
an

da
rd

s

ar
e

fo
llo

w
ed

.

te
am

s
w

an
t t

o
m

ov
e

in
to

 re
al

-t
im

e
st

re
am

in
g

fro
m

 b
at

ch
es

, b
ut

a
ro

ad
m

ap
 is

 n
ot

av
ai

la
bl

e.

Da
ta

Ar

ch
ite

ct
ur

e
ho

w
 is

 th
e

da
ta

st
or

ed
 in

 y
ou

r

sy
st

em
?

ho
w

ar
e

tra
ns

ac
tio

ns

m
an

ag
ed

?

al
l s

ys
te

m
s

ar
e

us
in

g

m
on

ol
ith

ic
 d

at
ab

as
e.

1
2

da
ta

 s
ta

nd
ar

ds

ar
e

av
ai

la
bl

e.

te
am

s
ar

e
us

in
g

a
si

ng
le

m
on

ol
ith

ic
 r

dB
m

s.

 C
ap

ab
ili

ty
Qu

es
tio

n
Cl

ie
nt

 F
ee

db
ac

k
Cu

rr
en

t S
ta

te

(R
at

in
g)

Ta
rg

et
 S

ta
te

(R

at
in

g)
Be

st
 P

ra
ct

ic
es

Co
m

m
en

ts

Ta
bl

e
11

-2
.

(c
on

ti
n

u
ed

)
Chapter 11 enterprise it assessment for a Cloud native Journey

469

So
ftw

ar
e

En
gi

ne
er

in
g

W
ha

t m
et

ho
do

lo
gy

sh
ou

ld
 y

ou
 fo

llo
w

fo
r d

ev
el

op
m

en
t o

f

a
sy

st
em

?
ar

e
yo

u

us
in

g
an

y
de

vo
ps

pi
pe

lin
e?

ye
s,

 fe
w

 p
ro

je
ct

s
ar

e

us
in

g
Ci

 b
ut

 n
o

Cd
.

2
3

no
 b

es
t p

ra
ct

ic
es

ar
e

av
ai

la
bl

e.

te
am

s
ar

e
fo

llo
w

in
g

on
ly

 C
i,

bu
t t

es
tin

g
an

d

de
pl

oy
m

en
t a

re
 m

an
ua

l;

cl
ie

nt
 w

an
ts

 to
 a

ut
om

at
e

en
d-

to
-e

nd
 li

fe
cy

cl
e.

So
ftw

ar
e

En
gi

ne
er

in
g

ho
w

 c
an

 y
ou

co
nd

uc
t t

es
tin

g?

ar
e

yo
u

us
in

g

an
y

au
to

m
at

io
n

fra
m

ew
or

ks
 o

r

do
in

g
it

m
an

ua
lly

?

ex
ec

ut
in

g
m

an
ua

l

te
st

in
g.

2
3

te
st

 c
as

es
 a

re

av
ai

la
bl

e;
 u

si
ng

m
an

ua
l t

es
t d

at
a.

te
am

s
ar

e
co

nd
uc

tin
g

m
an

ua
l t

es
tin

g
fo

r e
ve

ry

re
le

as
e

an
d

ne
ed

 to

au
to

m
at

e
Cd

 a
s

pa
rt

of

de
liv

er
y.

So
ftw

ar
e

En
gi

ne
er

in
g

ho
w

 a
re

 th
e

is
su

es
 a

nd
 ri

sk
s

m
an

ag
ed

?

us
es

 m
ic

ro
so

ft
ex

ce
l.

1
3

fo
llo

w
s

or
ga

ni
za

tio
n

be
st

pr
ac

tic
es

.

us
es

 e
xc

el
 b

ut
 w

an
ts

to
 a

ut
om

at
e

ris
ks

 a
nd

is
su

es
 in

 a
m

l
to

ol
s.

Op
er

at
io

n
Ar

ch
ite

ct
ur

e
ho

w
 a

re
 y

ou

m
an

ag
in

g

ap
pl

ic
at

io
ns

?

ar
e

yo
u

us
in

g

bo
ts

 to
 im

pr
ov

e

th
e

op
er

at
io

n

ca
pa

bi
lit

y?

al
l o

pe
ra

tio
ns

 a
re

m
an

ua
l.

1
2

op
er

at
io

n

pr
oc

ed
ur

es
 a

re

fo
llo

w
ed

.

fi
rs

t w
an

ts
 to

 s
tre

am
lin

e

op
er

at
io

ns
 a

nd
 la

te
r

w
an

ts
 to

 u
se

 a
io

ps
.

(c
on

ti
n

u
ed

)

Chapter 11 enterprise it assessment for a Cloud native Journey

470

Ta
bl

e
11

-2
.

(c
on

ti
n

u
ed

)

Op
er

at
io

n
Ar

ch
ite

ct
ur

e
ar

e
yo

u
us

in
g

an
y

m
on

ito
rin

g
to

ol
s?

if
ye

s,
 w

ha
t k

in
d

of
 to

ol
s?

 W
ha

t a
re

th
e

m
et

ric
s

yo
u

co
lle

ct
?

so
m

e
sy

st
em

s
ar

e

us
in

g
m

on
ito

rin
g.

1
3

ad
 h

oc
; n

o

st
an

da
rd

av
ai

la
bl

e.

fe
w

 s
ys

te
m

s
us

e
th

e

m
on

ito
rin

g
to

ol
s

an
d

ca
pt

ur
e

th
e

m
et

ric
s,

tra
ce

s,
 e

tc
.,

bu
t t

he

m
aj

or
ity

 d
oe

s
no

t f
ol

lo
w

th
em

.

-i
lit

ie
s

ho
w

 is
 a

pp
lic

at
io

n

an
d

pe
rim

et
er

se
cu

rit
y

is

m
an

ag
ed

?

se
cu

rit
y

is
 v

er
y

w
el

l

es
ta

bl
is

he
d.

2
3

ye
s,

 th
ey

ha
ve

 fo
llo

w
ed

go
od

 s
ec

ur
ity

pr
ac

tic
es

.

fo
llo

w
s

se
cu

rit
y

bu
t

w
an

ts
 to

 im
pr

ov
e

w
ith

th
e

la
te

st
 to

ol
s

an
d

co
nf

ig
ur

at
io

n.

-i
lit

ie
s

ar
e

th
er

e
an

y

pa
in

 p
oi

nt
s

in
 th

e

sy
st

em
 b

eh
av

io
r

at
 ru

nt
im

e?

ye
s,

 c
om

pa
ny

 is

fa
ci

ng
 lo

t o
f i

ss
ue

s

in
 p

ro
du

ct
io

n

en
vi

ro
nm

en
t.

1
3

no
 b

es
t p

ra
ct

ic
es

ar
e

fo
llo

w
ed

.

th
e

cl
ie

nt
 w

an
ts

 to

au
to

m
at

e
th

e
sy

st
em

bo
ttl

en
ec

ks
 a

nd
 s

el
f-

he
al

in
g

m
ec

ha
ni

sm
.

-i
lit

ie
s

ho
w

 a
re

 y
ou

m
an

ag
in

g
pe

ak

lo
ad

?
is

 th
e

sy
st

em
 h

ig
hl

y

av
ai

la
bl

e?
 if

 y
es

,

ho
w

 m
an

y
ni

ne
s?

m
aj

or
ity

 o
f t

he

sy
st

em
s

ar
e

us
in

g

on
- p

re
m

is
es

.

1
3

no
 b

es
t p

ra
ct

ic
es

ar
e

fo
llo

w
ed

.

th
e

m
aj

or
ity

 o
f s

ys
te

m
s

ar
e

le
ga

cy
 a

nd
 d

ep
lo

ye
d

on
-p

re
m

; w
an

ts
 to

 s
ta

rt

cl
ou

d
jo

ur
ne

y.

 C
ap

ab
ili

ty
Qu

es
tio

n
Cl

ie
nt

 F
ee

db
ac

k
Cu

rr
en

t S
ta

te

(R
at

in
g)

Ta
rg

et
 S

ta
te

(R

at
in

g)
Be

st
 P

ra
ct

ic
es

Co
m

m
en

ts
Chapter 11 enterprise it assessment for a Cloud native Journey

471

-i
lit

ie
s

te
ll

us
 a

bo
ut

ap
pl

ic
at

io
n

pe
rfo

rm
an

ce
.

ar
e

yo
u

fa
ci

ng

an
y

pe
rfo

rm
an

ce

gl
itc

he
s?

so
m

e
sy

st
em

s

be
ha

ve
 v

er
y

w
el

l,
an

d

so
m

e
ar

e
un

ab
le

 to

sc
al

e.

1
2

no
 b

es
t p

ra
ct

ic
es

fo
r p

er
fo

rm
an

ce

tu
ni

ng
.

W
an

ts
 a

n
au

to
m

at
ed

pe
rfo

rm
an

ce

m
an

ag
em

en
t.

In
fr

as
tr

uc
tu

re

Ar
ch

ite
ct

ur
e

ho
w

 is
 y

ou
r

ap
pl

ic
at

io
n

de
pl

oy
ed

?
is

 it

de
pl

oy
ed

 in
 v

m
s

or

co
nt

ai
ne

rs
?

90
%

 o
f a

pp
lic

at
io

ns

ar
e

vm
s.

1
2

fe
w

 s
ys

te
m

s
ar

e

de
pl

oy
ed

 in
 a

 c
on

ta
in

er
;

w
an

ts
 to

 im
pr

ov
e

co
nt

ai
ne

r a
do

pt
io

n

pe
rc

en
ta

ge
.

Ap
pl

ic
at

io
n

Ar
ch

ite
ct

ur
e

te
ll

us
 a

bo
ut

th
e

ap
pl

ic
at

io
n

ar
ch

ite
ct

ur
e

of

yo
ur

 s
ys

te
m

.

W
ha

t a
re

 th
e

te
ch

no
lo

gi
es

us
ed

?

le
ga

cy
 s

ys
te

m
s;

so
m

e
ar

e
ve

ry
 o

ld
.

1
3

no
 b

es
t p

ra
ct

ic
es

ar
e

av
ai

la
bl

e.

ol
d

le
ga

cy
 m

on
ol

ith

ap
pl

ic
at

io
ns

, a
nd

 s
om

e

sy
st

em
s

de
ve

lo
pe

d
ag

es

ag
o;

 w
an

ts
 to

 e
m

br
ac

e

cl
ou

d
na

tiv
e.

Pr
oj

ec
t

M
an

ag
em

en
t

ho
w

 is
 y

ou
r

ap
pl

ic
at

io
n

de
liv

er
ed

?
W

ha
t

ki
nd

 o
f m

et
ric

s
do

yo
u

co
lle

ct
?

ho
w

do
 y

ou
 re

po
rt

to

le
ad

er
sh

ip
?

so
m

e
pr

oj
ec

ts
 fo

llo
w

ag
ile

 a
nd

 w
at

er
fa

ll

an
d

ca
pt

ur
e

de
liv

er
y

m
et

ric
s.

2
3

de
liv

er
y

be
st

pr
ac

tic
es

 a
re

av
ai

la
bl

e;
 s

om
e

ar
e

ad
 h

oc
.

te
am

 w
an

ts
 to

 e
m

br
ac

e

ag
ile

 a
nd

 p
od

 c
ul

tu
re

.

Chapter 11 enterprise it assessment for a Cloud native Journey

472

 Automation Maturity Assessment
Automation is an essential part of every organization for a cloud native journey. Based

on recent Gartner research, 39 percent of an organization wants to improve automation

strategy and innovation, 23 percent wants to develop a stronger talent model, 23 percent

feels their team lacks an understanding of automation trends, and 11 percent feels

resistant to change.

There is some kind of automation that exists in almost all enterprises around the

globe; However, these enterprises do not know whether they are following the right

automation approach, what the gaps are compared to industry standards, etc. This

maturity assessment helps you to find the client’s concerns and the level of maturity of

automation.

The automation maturity assessment framework is to assess the automation

maturity of the organization to align with the enterprise’s vision and industry standards.

It will help you to understand the current gaps and identify a case for change.

To achieve the true potential of automation, you need to look for opportunities

across the enterprise and cover every project of an organization. Automation can achieve

the following:

• Enhance user experience: Customer satisfaction with the timely

availability of data.

• Optimize process: Identify relevance in the current market and quick

responsiveness, and optimize process components with the right

process elements.

• Drive cloud native journey: Identify applications to connect better

with the customer, and automate physical and virtual environments

to support cloud native and shift left on security vulnerability.

• Focus on generating revenue: Reduce repetitive, standard work and

enhance cost, efficiency, and reliability.

 Automation Maturity Assessment Model
The maturity assessment model is a combination of capabilities, process, governance,

technical stack, and performance management that enables the enterprise to deliver

services to its customers. In the automation model shown in Figure 11-7, evaluate the

Chapter 11 enterprise it assessment for a Cloud native Journey

473

current environment using the diagnostic and maturity model and create value cases

for the automation journey. This model helps you to identify the impact of change

assessment and the impact on people, process, skills, organization, and culture.

To conduct a maturity assessment, you follow a similar approach as illustrated in the

previous assessment types, like plan for workshops, capture the current state, analyze

and document findings, and provide recommendations.

During the engagement, review the automation operating model’s current state for

the key technology elements, adoption of technologies, skills and talent availability, and

change management model.

 Automation Maturity Assessment Questionnaire Template
You must prepare the questions on automation maturity assessment for each capability

and evaluate the answers. The rating can be ad hoc, streamlined, optimized, and

matured (refer to the earlier cloud native assessment for details). Then document the

client feedback on each question.

Automation Technical Stack

Observability

Infrastructure &
Cloud

Automated Release

Intelligent
Operations

Continuous Integration &
Continuous Delivery

Methodology

Lean Governance & Process

Agility

-ilities
Data

Management

Innovation

Existing Automation Model Automation Maturity Assessment Outcome

• Gap Analysis

• Automation Operating &
Governance Model

• Enterprise Automation
Strategy

• Technology Stack and Point
of Views (POV)

• Infrastructure Automation

• Automation Roadmap

Figure 11-7. Automation maturity assessment model

Chapter 11 enterprise it assessment for a Cloud native Journey

474

You need to consider the following areas for a maturity assessment:

• Delivery organization and methodology: In this area, conduct an

assessment of release frequency to production and nonproduction

environments, delivery organization structure, delivery and process,

and metrics collection.

• Delivery governance and process: In this area, conduct an assessment

on governance approach and product management.

• Automated release software: In this area, conduct an assessment on

source control and binaries management, deployment process, and

change request management.

• Continuous integration and delivery: In this area, conduct an

assessment on pipeline, testing, and reviews.

• Infrastructure automation: In this area, conduct an assessment on

infrastructure as a code, containerization, and security configuration.

• Intelligent operation: In this area, conduct an assessment on

observability, knowledge management, and ticket management.

• Innovation: In this area, conduct an assessment, new process

adoption, culture of automation, and culture of innovation.

You can find a few sample questions for an automation maturity assessment in

Table 11-3; use them as a jumping-off point to prepare similar ones for a full-fledged

assessment.

Note the score and comments are illustrative, and the data is from a global
retail client along with cloud native journey. i conducted a detailed architecture
assessment for a portfolio. i interviewed all the relevant stakeholders including
the architecture team, scrum manager, product owner, development team, and
infrastructure team. i captured these details during my workshop with the global
retail client.

Chapter 11 enterprise it assessment for a Cloud native Journey

475

Ta
bl

e
11

-3
.

A
u

to
m

at
io

n
 M

at
u

ri
ty

 A
ss

es
sm

en
t S

am
pl

e
Q

u
es

ti
on

s

Ar
ea

Ad
-h

oc
St

re
am

lin
ed

Op
tim

iz
ed

M
at

ur
ed

Cu
rr

en
t

Sc
or

e
De

si
re

d
Sc

or
e

Co
m

m
en

ts

De
liv

er
y

Or
ga

ni
za

tio
n

an
d

M
et

ho
do

lo
gy

:
Re

le
as

e
Fr

eq
ue

nc
y

re
le

as
e

pr
oc

es
s

is
 p

oo
rly

 d
ef

in
ed

,

w
ith

 a
d

ho
c

ch
an

ge
 re

qu
es

ts

an
d

lo
ng

 g
ap

s

be
tw

ee
n

re
le

as
es

.

re
le

as
e

pr
oc

es
s

is
 m

an
ag

ed
 a

nd

ha
s

ha
d

m
ul

tip
le

po
st

po
ne

m
en

ts
 o

f

re
le

as
es

.

re
le

as
e

pr
oc

es
s

is
 w

el
l-d

ef
in

ed
,

an
d

pr
od

uc
t

ba
ck

lo
g

is

st
ab

le
.

re
le

as
es

 o
n

de
m

an
d;

 h
av

e

a
ve

ry
 g

oo
d

pr
oc

es
s;

 e
ve

n

sm
al

l c
ha

ng
es

ca
n

be
 p

us
he

d
to

en
vi

ro
nm

en
ts

.

1
3

a
fe

w
 p

ro
je

ct
s

fo
llo

w
 w

at
er

fa
ll,

an
d

a
fe

w
 p

ro
je

ct
s

fo
llo

w
 a

gi
le

, b
ut

th
er

e
is

 n
o

ba
ck

lo
g

av
ai

la
bl

e;
 w

an
ts

 a
n

in
te

gr
at

ed
 b

ac
kl

og
.

De
liv

er
y

Or
ga

ni
za

tio
n

an
d

M
et

ho
do

lo
gy

:
Pr

oc
es

s

pr
oc

es
s

an
d

m
et

ho
do

lo
gy

 a
re

no
t d

ef
in

ed
.

fo
llo

w
s

w
at

er
fa

ll

m
et

ho
do

lo
gy

.

fo
llo

w
s

a
m

ix

of
 w

at
er

fa
ll

an
d

ite
ra

tiv
e

ap
pr

oa
ch

.

fo
llo

w
s

ag
ile

 w
ith

po
d

cu
ltu

re
.

1
3

W
an

ts
 to

 e
m

br
ac

e

bo
th

 w
at

er
fa

ll

an
d

ag
ile

 w
ith

a
st

re
am

lin
ed

ap
pr

oa
ch

.

De
liv

er
y

Go
ve

rn
an

ce

an
d

Pr
oc

es
s:

Go

ve
rn

an
ce

Go
ve

rn
an

ce

pr
oc

es
s

do
es

 n
ot

ex
is

t.

de
liv

er
y

go
ve

rn
an

ce

pr
oc

es
s

is
 b

as
ed

on
 a

 tr
ad

iti
on

al

ap
pr

oa
ch

 li
ke

w
at

er
fa

ll
et

c.

Ce
nt

ra
liz

ed

go
ve

rn
an

ce

ap
pr

oa
ch

.

Ce
nt

ra
liz

ed
 w

ith

de
ce

nt
ra

liz
ed

ap
pr

oa
ch

 li
ke

fe
de

ra
te

d

ap
pr

oa
ch

.

1
3

ad
 h

oc
 g

ov
er

na
nc

e

an
d

de
ci

si
on

s

ar
e

ba
se

d
on

re
so

ur
ce

s,
 n

ot

ba
se

d
on

 ro
le

s.

(c
on

ti
n

u
ed

)

Chapter 11 enterprise it assessment for a Cloud native Journey

476

Ta
bl

e
11

-3
.

(c
on

ti
n

u
ed

)

De
liv

er
y

Go
ve

rn
an

ce
 a

nd

Pr
oc

es
s:

 P
ro

du
ct

M

an
ag

em
en

t

no
 p

ro
du

ct
 ro

ad

m
ap

 e
xi

st
s;

fo
llo

w
s

ad
 h

oc

m
an

ag
em

en
t.

pr
od

uc
t

m
an

ag
em

en
t

ex
is

ts
 b

ut
 li

m
ite

d

to
 c

er
ta

in
 e

xt
en

ts

lik
e

de
fe

ct
s,

 e
tc

.

pr
od

uc
t o

w
ne

r

is
 e

m
po

w
er

ed
 to

m
ak

e
de

ci
si

on
s.

lo
ng

-t
er

m

ro
ad

m
ap

av
ai

la
bl

e
an

d

fu
lly

 c
on

tro
lle

d
by

pr
od

uc
t o

w
ne

r.

1
3

th
er

e
is

 n
o

ro
ad

m
ap

 fo
r a

pr
oj

ec
t.

Au
to

m
at

ed

Re
le

as
e

So
ftw

ar
e:

 S
ou

rc
e

M
an

ag
em

en
t

Co
de

 m
er

ge

is
 m

an
ua

l,

an
d

no
 p

ro
pe

r

m
an

ag
em

en
t

ex
is

ts
.

Co
de

 a
nd

 b
in

ar
ie

s

m
us

t b
e

ve
rs

io
n

co
nt

ro
lle

d,
 a

nd

m
er

ge
 is

 s
em

i-

au
to

m
at

ic
.

al
l c

od
e

an
d

bi
na

rie
s

ar
e

ve
rs

io
ne

d
by

us
in

g
to

ol
s,

 a
nd

au
to

 m
er

ge

ex
is

ts
.

fo
llo

w
s

w
el

l-

de
fin

ed
 b

ra
nc

hi
ng

st
ra

te
gy

; t
ra

ce
s

us
er

 s
to

rie
s

an
d

ab
le

 to
 tr

ac
k.

1
3

Co
de

 m
er

ge
s

ar
e

m
an

ua
l,

an
d

so
m

e
sy

st
em

s

an
d

m
an

ag
in

g

br
an

ch
es

 p
ro

pe
rly

w
an

t t
o

em
br

ac
e

fe
at

ur
e

br
an

ch
in

g.

CI
/C

D:
 C

I
Ci

 p
ip

el
in

e
ex

is
ts

,

bu
t t

he
re

 a
re

 n
o

pr
op

er
 jo

bs
.

Ci
 p

ip
el

in
e

ex
is

ts
;

ha
s

pr
op

er

jo
bs

 b
ut

 n
o

au
to

m
at

ed
 re

vi
ew

m
ec

ha
ni

sm
.

Ci
 p

ip
el

in
e

ex
is

ts

w
ith

 a
ll

re
qu

ire
d

jo
bs

 w
ith

 re
vi

ew

m
ec

ha
ni

sm
 a

nd

qu
al

ity
 g

at
e.

Ci
 p

ip
el

in
e

ex
is

ts

w
ith

 a
ll

jo
bs

 a
nd

fo
llo

w
s

th
e

sh
ift

-

le
ft

ap
pr

oa
ch

.

1
3

Ci
 e

xi
st

s,
 b

ut
 fo

r

fe
w

 p
ro

je
ct

s;

w
an

ts
 to

 a
do

pt

cl
ou

d
na

tiv
e

be
st

pr
ac

tic
es

.

CI
/C

D:
 C

D
ad

 h
oc

 m
an

ua
l

te
st

in
g.

te
st

 s
cr

ip
ts

 a
re

de
fin

ed
 a

nd

ex
ec

ut
ed

.

au
to

m
at

ed
 te

st

sc
rip

t a
va

ila
bl

e

an
d

ex
ec

ut
ed

 a
s

pa
rt

of
 p

ip
el

in
e.

al
l t

es
ts

 a
re

au
to

m
at

ed

an
d

ru
n

fo
r a

ll

en
vi

ro
nm

en
ts

 a
nd

ru
n

in
 li

ve
 e

st
at

e.

1
3

al
l t

es
tin

g
is

m
an

ua
l a

nd

w
an

ts
 a

ut
om

at
ed

ap
pr

oa
ch

.

Ar
ea

Ad
-h

oc
St

re
am

lin
ed

Op
tim

iz
ed

M
at

ur
ed

Cu
rr

en
t

Sc
or

e
De

si
re

d
Sc

or
e

Co
m

m
en

ts
Chapter 11 enterprise it assessment for a Cloud native Journey

477

In
fr

as
tr

uc
tu

re

Au
to

m
at

io
n:

Au

to
m

at
io

n

de
pl

oy
m

en
t o

f

ar
tif

ac
ts

 a
re

 d
on

e

m
an

ua
lly

.

ar
tif

ac
ts

de
pl

oy
m

en
t b

y

us
in

g
au

to
 s

cr
ip

ts
.

in
fra

st
ru

ct
ur

e

co
nf

ig
ur

at
io

n

ar
e

do
ne

au
to

m
at

ic
al

ly

by
 u

si
ng

in
fra

st
ru

ct
ur

e
as

co
de

.

Co
nf

ig
ur

ed
 w

ith

in
fra

st
ru

ct
ur

e

as
 c

od
e

ac
ro

ss

m
ul

tic
lo

ud

ve
nd

or
s.

1
3

al
l i

nf
ra

st
ru

ct
ur

e

is
 m

an
ua

l;
w

an
ts

to
 d

o
m

vp
 fo

r f
ew

pr
oj

ec
ts

 b
ef

or
e

em
br

ac
in

g
ac

ro
ss

or
ga

ni
za

tio
n.

In
te

lli
ge

nt

Op
er

at
io

n:

Ob
se

rv
ab

ili
ty

no
 m

on
ito

rin
g

to
ol

s
av

ai
la

bl
e.

to
ol

s
in

 p
la

ce
, b

ut

no
t a

ll
ap

pl
ic

at
io

n

ar
e

co
nf

ig
ur

ed
.

W
el

l-d
ef

in
ed

m
on

ito
rin

g
to

ol
s

ar
e

av
ai

la
bl

e

an
d

co
nf

ig
ur

ed

pr
op

er
ly.

W
el

l-d
ef

in
ed

in
te

gr
at

ed

m
on

ito
rin

g;

fo
llo

w
s

th
e

ob
se

rv
ab

ili
ty

 a
s

a

se
rv

ic
e.

2
3

to
ol

s
ar

e
av

ai
la

bl
e

bu
t n

ot
 c

ap
tu

re
d

w
ith

 m
et

ric
s,

 e
tc

.

In
no

va
tio

n
or

ga
ni

za
tio

n
do

es

no
t h

av
e

ro
ad

m
ap

on
 a

ut
om

at
io

n.

fe
w

 p
ro

je
ct

s
in

 a
n

or
ga

ni
za

tio
n

us
e

au
to

m
at

io
n;

 s
ki

lls

ex
is

t.

W
el

l-d
ef

in
ed

ro
ad

m
ap

av
ai

la
bl

e,
 a

nd

te
am

 fo
llo

w
s

th
e

cu
ltu

re
 o

f

au
to

m
at

io
n.

W
ho

le
 e

nt
er

pr
is

e

ad
op

te
d

th
e

cu
ltu

re
 o

f

au
to

m
at

io
n

an
d

cu
ltu

re
 o

f

in
no

va
tio

n.

1
3

th
er

e
is

 n
o

en
te

rp
ris

e-
w

id
e

au
to

m
at

io
n

av
ai

la
bl

e
an

d

ex
is

ts
 fo

r o
nl

y
a

fe
w

 p
ro

je
ct

s.

Chapter 11 enterprise it assessment for a Cloud native Journey

478

 Summary
In this chapter, I explained different kinds of assessment and evaluation models and

showed examples with illustrative data. These questions are sample ones that you

need to add depending on the type of client and nature of assessment. By using these

frameworks, you can evaluate the IT real estate maturity and provide recommendations

with a clear roadmap for both tactical fixes and the strategic journey.

The following are the best practices when conducting an assessment:

• Find out the client’s and stakeholder’s commitment.

• Choose the right SME with deep skills.

• Interview the right stakeholders and pose the right questions.

• Capture all the details and take minutes at the meeting.

• Evaluate each question and rate them, and then prepare observations

and recommendations.

• For each recommendation, provide industry best practices and

references.

• Prepare a roadmap for separating tactical and strategic goals.

• Review your recommendations internally.

• Arrange regular meetings with a small group of stakeholders to

discuss your observations and recommendations.

• Finally, read the final report to a larger audience.

Similarly, you can assess the client API maturity, software engineering approach, etc.

Chapter 11 enterprise it assessment for a Cloud native Journey

479
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_12

CHAPTER 12

“-ilities” Fitness Function
After designing a solution, you must evaluate your design by using the fitness function

to ensure it can solve the problems under consideration. To check the functional

requirements fitness, you might be using test-driven development, but what about the

“-ilities”? How will you check the fitness function for the “-ilities”? This chapter gives you

insight into the step-by-step approach for the “-ilities” fitness function.

In a modern cloud native environment, the architecture will evolve constantly to

support business changes. How do you support evolution? You have everything to

support and test the functional use cases, but what about the architecture, design, and

the “-ilities”? Does your designed software support all the architecture elements and

decisions, not with theory but with actual data points? For example, how do you shift left

the PowerPoint version of the architecture block diagram into the real implementation?

In the age of cloud native and modern-day architecture, you need to predict the

performance and behavior of your architecture during the development time, not at the

end of the development lifecycle; it is about being proactive, not reactive.

In the previous chapter, I explained how to design the architecture for the “-ilities”

and assess the health of a system.

In this chapter, you will gain more insight into how to conduct a fitness check of the

designed “-ilities.”

• What is fitness in architecture?

• How do you create a fitness function?

• How do you test the fitness function?

• How do you measure the fitness function?

https://doi.org/10.1007/978-1-4842-7226-8_12#DOI

480

 What Is a Fitness Function?
In evolutionary computing, a fitness function is a type of objective function that is used

to determine how close a given solution is to achieving the desired result. The function

returns the fitness of your architecture. These functions take the solution to the problem

as input, and they produce as output details about how to fit and how good the solution

is concerning the problem under consideration.

The fitness function is being used in genetic programming and genetic algorithms to

guide simulations toward an optimal design solution.

A genetic algorithm is a machine learning technique that attempts to solve a

problem from a pool of candidate solutions. These generated candidates are iteratively

evolved and mutated and selected for survival based on a grading criterion, called the

fitness function. For example, when using a genetic algorithm to optimize a driverless

car, the fitness function assesses the identification of safety, signboards, objects, zebra

crossings, and other characteristics that are desirable to create a 100 percent safe

driverless car.

A fitness function can be applied to a cloud native architecture to determine how

close the designed architecture is to achieving the desired characteristics. Fitness

functions are an objective way to assess architectural characteristics.

In cloud native architecture, the fitness functions are used to evaluate the design

for “-ilities,” and the defined architecture must be evaluated using a fitness function

algorithm to ensure its ability to meet the required service level agreements (SLAs),

service level indicators (SLIs), and service level objectives (SLOs) under consideration.

The fitness function is not generic; each system’s “-ilities” varies. Some systems

require more security, some systems require high scalability and availability, and some

might require more resilience to failure. Therefore, your input and output of a fitness

function are system-specific.

As shown in Figure 12-1, a fitness function takes target input and applies the fitness

algorithm for all the required “-ilities” based on input and generates the output with

metrics. The fitness function represents every requirement of your system. You can

consider the fitness function as a metric or test case. Some “-ilities” require a test case;

for example, the performance fitness requires you to run performance test cases to

identify fitness metrics.

Chapter 12 “-ilities” Fitness FunCtion

481

A fitness function should be clearly defined and provide a quantitative measure of

how fit a solution is for a particular problem. A quantitative measure is how fit a solution

is for a particular problem, while a quantitative result matrix is what will allow you to

compare the architecture before and after a change is introduced.

 Categories of Fitness Functions
A fitness function protects the various architectural constraints of the system. The

constraints are not the same across the system. They vary depending on the nature of

the system. You can check the fitness function in various dimensions such as scope,

frequency, domain, global presence, architecture type, and other ways.

Atomic vs. Holistic
The atomic fitness function focuses on a single context and one architectural

characteristic. For example, you can have a single “-ilities” unit test that is designed to

test cohesion, coupling, etc., and is atomic.

A holistic fitness function takes multiple architectural characteristics into

consideration at the same time, for example, by conducting security and performance

fitness functions together and calculating the quantitative matrix.

Triggered vs. Continuous
Triggered fitness functions are executed based on some event. For example, the “-ilities”

unit test is executed as part of the build.

a1

a2

x1

x2

x3

a1

Fitness Function

Target Input
Target Input

Target Input

Scalability
Availability

Fault
tolerance

Security
…..

Target Input
Target Input

Output

Metrics

Figure 12-1. Fitness function

Chapter 12 “-ilities” Fitness FunCtion

482

A continuous fitness function runs constantly, and its execution is not based

on some occurrence of some event. For example, the monitoring tool monitors

continuously, which will send an alert when certain conditions are met.

Static vs. Dynamic
A static fitness function is one in which the value for the condition that we are testing

for is constant. A test is looking to ensure that the result is less than some static numeric

value or that a test that returns true or false returns the value that you expect.

The dynamic fitness function change is based on a different context. For example,

the performance test might be different depending on the current level of scalability. At a

much higher level of scalability, a lower level of performance might be acceptable.

Automated vs. Manual
Automated fitness functions are triggered automatically. They could be part of the

automated unit test or part of the continuous integration (CI) pipeline. In cloud native,

the preferred approach is automated. However, there are many times you may require

executing fitness tests manually.

Temporal
The temporal fitness function is based on a designated amount of time. Other fitness

functions are focused on architectural change but are triggered based on time. For

example, the fitness function is created for a system patch on certain days. This executes

based on time.

International vs. Emergent
Many fitness functions can be defined during the discovery phase of a project; these

are known as international fitness functions. However, some characteristics of the

architecture are not known right from the beginning but emerge as the system continues

its development. These fitness functions are known as emergent ones.

Chapter 12 “-ilities” Fitness FunCtion

483

Domain-Specific
Domain-specific fitness functions are based on specific concerns related to the business

domain such as compliance, regulatory, security, etc. A domain-specific fitness function

can ensure that the architecture continues to conform to these requirements.

All these categories are executed either during design or at runtime; they are further

classified here.

Design-Time Fitness Function
At design time, you need to run fitness functions related to atomic elements like a unit of

code or static security. For the code fitness function, you have to write a unit test specific

to the architectural concerns such as coupling and cohesion, and write a domain-driven

fitness function to check against the domain modularity of your system.

Runtime Fitness Function
In the runtime fitness function, you need to consider running a fitness function for the

context of one “-ility” or implement a holistic approach by combining more than one

“-ility.” In the single context, you can examine the fitness of runtime security, that is,

dynamic security testing (DAST) on OWASP vulnerabilities or scalability testing against

the SLA.

In a holistic runtime fitness function, you need to combine more than one “-ility”

to conduct a fitness function, for example, combining dynamic security and scalability,

security, and performance. This helps you to identify whether your system can meet the

target SLA holistically. Here you need to execute both security and scalability fitness

together.

 Execution of the Fitness Function
The fitness test can execute either as a single manual or as a continual part of the

DevSecOps pipeline.

Chapter 12 “-ilities” Fitness FunCtion

484

Manual Execution
The design-time and runtime fitness function tests are executed manually by the

engineers either in the development environment or in the test environments. Many

projects globally still follow a manual approach to developing, testing, and deploying;

therefore, these systems are required to conduct fitness tests by using certain tools. For

example, the “-ilities” unit test can be run by the developer on their machine or in a

development environment, and the performance engineer can execute the performance

test by using tools in a QA or performance environment.

Even though you are using automation in your project, some aspects of fitness

functions resist automation; therefore, you require a manual execution.

Automated Execution
In the automated context shown in Figure 12-2, there are both-design time and

runtime fitness test within an automated context, like a continuous integration (CI) and

continuous delivery (CD) pipeline. In the pipeline, you can execute the “-ilities” test

cases and implement a single and holistic approach of a runtime fitness test.

After collecting the fitness functions, configure them in a testing framework. Ideally,

the fitness function should address the requirements of the “-ilities” in terms of an

objective metric that is meaningful to stakeholders. Regular fitness function reviews can

focus architectural efforts on meaningful and quantifiable outcomes.

You can configure unit test jobs and domain-driven bounded context test jobs as

part of the CI/CD pipeline for the continual execution of design-time fitness. As a result

of this automation, every new and major change in service is developed in a way to pass

the fitness functions.

Domain Unit Test Build & Deploy
Functional &

Integration Test

-ilities Unit Test Code Quality Resilience Test Performance Test

Security Test Observability Test Fault Tolerance Test Availability Test

Scalability Test Auditability Test Reliability Test Sustainability Test

UAT

Production
Deployment

SCM

Figure 12-2. Automated fitness function

Chapter 12 “-ilities” Fitness FunCtion

485

For a runtime fitness function, you configure a single-context approach to execute

every “-ility” to make sure each one meets the SLAs and later executes a holistic

approach by combining various “-ilities.” For example, combine security cases like API

authentication, security at transit, and data encryption along with the performance of

state and intercommunication of services. Once you execute the functions, you can

create a matrix of both and compare the results.

 Fitness Function Identification
You need to define most of the fitness functions in the project discovery phase as they are

characteristics of architecture and design, but this is not final. As your project evolves,

you need to revisit your fitness function to accommodate evolution. As I mentioned,

the fitness function is not generic; it has to be project-specific and industry- specific. For

example, the financial industry has a lot more compliance than other industries, and an

ecommerce application and trading platform has more spikes than other industries.

During the identification of the fitness functions, you need to categorize them based

on relevance to your project because these fitness functions directly impact your design

decisions. The categorization based on relevance is as follows. Each fitness function

must have objectives and quantifiable results.

Key: These categories of fitness functions directly impact your

design decisions and architecture choice.

Relevance: These categories do not directly impact the design and

architecture decisions but relevance during the realization of a

design.

Not Relevant: These categories are not of much importance but

are nice-to-have fitness functions.

 Fitness Function: Coupling and Cohesion
To conduct a fitness test on coupling and cohesion “-ilities,” you need to write a “-ilities”

unit test that verifies against the developed code. Two strategies are available to conduct

fitness test.

• By layer

• By feature

Chapter 12 “-ilities” Fitness FunCtion

486

The layered classical approach is followed by the Model View Control (MVC) pattern;

this strategy is based on horizontal layering. The by-feature strategy is when the features

are organized by vertical layer. All domains or features related to a single domain reside

in a single layer. This matches the layout of a cloud native service.

To illustrate the by feature fitness function, as shown in Figure 12-3, I have created

a small Java project that contains a package structure with dummy classes and

components.

As shown in Figure 12-4, I defined two services and defined the rules. If you write

code that invokes service A and service B cyclically, the unit test fails. I prefer to write

these test cases along with the domain test cases. You need to make sure that all these

“-ilities” unit test cases are executed separately and owned by the architecture team.

Figure 12-3. Code package of cloud native services

Figure 12-4. Jdepends verify of fitness function for coupling and cohesion

Chapter 12 “-ilities” Fitness FunCtion

487

To execute these test cases, you need to make sure to configure the CI pipeline as a

separate job to track the metrics of the fitness function.

 Fitness Function: Security
To conduct your architecture and design fitness function, there are two strategies. Each

strategy evaluates various fitness functions for your architecture.

• Static security system testing (SAST)

• Dynamic security system testing (DAST)

SAST conducts a fitness test of your encryption, SQL injection, input validation, stack

buffer overflows, and false-positive analysis. DAST conducts a fitness test of the OWASP

Top 10 vulnerabilities like cross-site scripting, broken authentication, broken access

control, and more.

To verify SAST, there are various tools like IBM App Scan, the Fortify static code

analyzer, Code Scan, etc. To conduct DAST, tools like OWASP ZAP, Burp Suite,

Checkmarx, etc., can be used.

The design-time fitness function is executed along with the CI pipeline, as shown

in Figure 12-4. As I mentioned, you need separate unit test cases for functional

requirements and the “-ilities,” the both the test cases need to execute separately to get

the execution metrics, and need to run SAST and DAST along with the pipeline.

The execution of functional testing before or after the fitness function depends on

each pod team.

 Fitness Function: Extensibility, Reusability, Adaptability,
and Maintainability
A code quality test helps you identify fitness functions for extensibility, reusability, and

maintainability. These tests are added to the pipeline to determine the relevant “-ilities.”

This set of fitness functions can serve as quality gates to prevent unmaintainable code in

production.

Quality gate tools like SonarQube can be used to create fitness function for the

“-ilities.” You can configure a maintainability rating and reliability rating fitness function

in the tool.

Chapter 12 “-ilities” Fitness FunCtion

488

 Fitness Function: Performance
The fitness function for performance should be defined during the discovery phase; not

all services are required to perform in a similar way. Various tools and frameworks provide

mechanisms to build tests and test load in a variety of scenarios. The performance fitness

function should be executed as part of the CI/CD pipeline in a separate environment, and

the configuration of the environment should mimic the production environment.

Tools like JMeter, Load Runner, etc., can be used to test the fitness function, and

these tools should be configured as part of the CI/CD pipeline and use tools like Gatling

to execute the fitness function early in the programmer development environment. Use a

configuration environment that mirrors production for the performance fitness test.

 Fitness Function: Resiliency
Use a fitness function for resiliency to identify and ensure the availability of an

application during failure. This fitness function configures the code to handle tolerance

and then retires. You can use load test tools to check the resiliency of your service. The

metrics can be calculated as several successful versus unsuccessful requests. You can use

Chaos Monkey tool to test the resilience fitness function.

 Fitness Function: Scalability
Use a fitness function for scalability to ensure a service can scale based on user spikes.

This fitness function configures containers and Kubernetes to handle the user load. The

code must manage the state, configuration, etc., during the scalability of an application.

You can use load testing to check the scalability fitness function. Create a matrix that

shows the number of successful transactions versus unsuccessful transactions with the

transaction round-trip time.

 Fitness Function: Observability
A fitness function for observability ensures all the services in a system are monitored

and send alerts, catch errors, and meet the architectural standards of observability. It

will collect metrics across the application, infrastructure, and security environment.

The metrics, such as all the observability parameters, are collected for successful versus

missing parameters.

Chapter 12 “-ilities” Fitness FunCtion

489

 Fitness Function: Compliance
The fitness function for compliance ensures that domain-specific and country-specific

compliances or regulations are met. A matrix can display whether compliance has been

met or not (true or false).

A fitness function may come in the form of tests, monitoring, and the collection of

metrics. Not all tests are fitness functions; only those that assess the “-ilities” are fitness

functions.

The fitness function can be used to calculate various software metrics to determine

whether an architecture continues to meet the “-ilities” requirements. For example, for

cohesion, coupling, and maintainability, the fitness functions are cyclomatic complexity

details and unit test as measurement to identify fitness. This fitness function helps you to

identify whether refactoring is required.

Performance tests ensure that the architecture continues to meet your requirements

and that any recent changes to the services have not negatively impacted its

performance. Security tests can focus on the security parameters of your system to

ensure that changes have not introduced any new vulnerabilities.

Using these various types of fitness functions provides an architect with information

on the quality of the overall architecture as changes are introduced and it continues to

evolve. These fitness functions provide a way to give a software architect confidence that

the system continues to be capable and informs you if it is starting to decline in quality.

Fitness functions facilitate the creation of an evolvable architecture.

For holistic fitness, the functions test multiple parts of the system all the time. An

example of a continual holistic fitness function is Netflix’s Chaos Monkey, which tests

latency, availability, elasticity, resilience, scalability, and so on, in the cloud.

 Fitness Function Metrics
Using the fitness measurements and a matrix of fitness functions provides a software

architect with information about how fit the overall architecture is. The measurements

give a software architect a way to calculate how fit their systems are. Table 12-1 provides

insight into the requirements that can be collected for the fitness function test of one of

my projects.

Chapter 12 “-ilities” Fitness FunCtion

490

Table 12-1. Fitness Function Metrics

Fitness Function Details Requirement Measurement

Cohesion and
Coupling

Check coupling and

cohesion through

code quality.

Quality gates

unit test success: 100%

Maintainability rating

reliability rating

use sonarQube to measure

against the quality gates.

Write unit tests to check coupling

and cohesion.

Availability Check for high

availability of your

service.

availability is 99.99%

(four nines)

Measure by using

X=(n-y) *100/n
n = total number of minutes

y = total number of minutes

unavailable

For example, 31 days/month

n=31*24*60= 44,640 minutes,

if a server is not available for 15

minutes in a month

X=(44640-15)*100/44640
=99.96%

Scalability scale in and out

depending upon

the load on your

system.

annual connection =

5,000,000

average per day =

13700

peak per day = 25000

average day peak hour

= 12500

peak day peak hour =

13,500

little’s law: X=n/r

the law says that if the box

contains an average of n users

and the average user spends r

seconds, then the throughput is X.

n = transaction

r = seconds

X = throughput transaction/per

second (tps)

X = 100/1200ms = 83.33tps

Performance Check the overall

performance of

your system.

api server-side response

time: <1 seconds

DB calls: < 2 seconds

initial page load: < 4

seconds

use load testing tools to measure

the performance along with

monitoring.

(continued)

Chapter 12 “-ilities” Fitness FunCtion

491

 Review Function Metrics
After identifying and calculating the measurements of the fitness function, you need

to schedule a meeting with the key stakeholders about the goal of conformance. In the

meeting, you can check the relevance of the current fitness function, determine a change

in the scale or magnitude of each fitness function, and decide if there is any better

approach to measuring the fitness function.

 Summary
In this chapter, I covered fitness functions and how they can be used in your product or

project development. I covered how to determine whether the architecture continues to

achieve the required “-ilities” and also provided a few examples on how to identify and

measure the fitness functions.

Table 12-1. (continued)

Fitness Function Details Requirement Measurement

Security Check the overall

security of an

application; the

security is different

for each system.

oWasp top 10

vulnerabilities

static security test

threat model

Firewall

encryption

use sast and Dast tools to

measure the security and use the

threat model to create a threat

analysis.

Observability Monitor and alert

across applications.

integrated observability

across application,

infrastructure, and

security.

Check observability dashboards,

alerting, events, etc.

Chapter 12 “-ilities” Fitness FunCtion

492

You must adopt the following best practices when using fitness functions:

• You must define the fitness functions clearly with no ambiguity, and

the relevant stakeholder must understand the fitness function for the

project.

• The fitness function must be implemented efficiently.

• Each fitness function must be measured to demonstrate how fit a

created architecture is when solving the problem.

• The fitness function must generate intuitive results.

Chapter 12 “-ilities” Fitness FunCtion

PART IV

Cloud Native Software
Engineering

495
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_13

CHAPTER 13

Enterprise Cloud Native
Software Engineering
As a software engineer, you get to see your work being used in every aspect of life, and

you are responsible for how it is developed and deployed in an environment. According

to recent global surveys, a large percentage of software deployed around the world

is poorly designed and executed and the people using it are unaware of the socially

engineered risks of software exploitation. Software is not just about an executable

deployed on a server; it is about adaptability, agility, accessibility, security, and

intelligence.

A methodology is a set of guidelines and principles that can be tailored to a specific

situation. It can also be a specific approach, with templates, forms, and even checklists

used throughout the project or product lifecycle.

Note Consulting organizations use the term project for a work product delivered
to enterprises.

Methodologies enable you to implement shared experiences and a ubiquitous

language across diverse teams located geographically.

Agile methodologies introduced principles that put software development, quality,

and collaboration above contracts and plans. This improved software quality and

development approaches because now customers are involved in the requirements

phase and development phase with a clear definition of what the business and customer

wants.

https://doi.org/10.1007/978-1-4842-7226-8_13#DOI

496

In previous chapters, you learned how to create a cloud native architecture and

design cloud native systems. In this chapter, I will explain the methodologies you can

use to develop cloud native systems. There are tons of books and articles on software

engineering, which I am not going to rewrite or explain here. In this chapter, I will

cover the details of how the software engineering methodologies relate to cloud native

systems. In addition, I will explain how you can enable a culture of agility by using these

development methodologies.

In this chapter, I will cover the following:

• Distributed agile methodology

• Feature-driven development

• Hypothesis-driven development

• Test-driven development

• Behavioral-driven development

 Cloud Native and Traditional Application
Engineering
The nature of the application development process has changed in recent years,

especially with the evolution of cloud native services. This affects agility and automation

of software engineering and, cloud native has pushed enterprises to adopt modern day

technologies and process. This adoption of modern technologies help enterprises to

meet the customer expectations and to develop faster to market.

This transformation in development methodology helps to move from the traditional

to cloud native application development mindset and process.

The difference between traditional and cloud-enabled development methodologies

is vast, and the application development process in a cloud environment provides larger

operational and economic benefits by using platform as a service (PaaS).

Whether you are modernizing a legacy system or building a new one, you are likely

using a PaaS environment. Enterprises are rapidly finding that cloud native application

development offers numerous benefits over the traditional approach.

Cloud native is about how applications are developed and deployed, not where.

Innovative software engineering is required to leverage all the benefits of cloud

computing and mitigate its challenges strategically to push forward its advances.

Chapter 13 enterprise Cloud native software engineering

497

As I mentioned in earlier chapters, cloud native systems are built upon using the

cloud native elements with DevSecOps and agility, collaboration across global teams,

and stakeholders.

The priorities of cloud native application development over traditional development

are as follows:

• Speed to market, with an emphasis on quick turnaround of new

services or changes to existing services. This is compared to slow

traditional development methods, long-term development plans that

assume underlying binaries, and business value that remains stable

for a longer duration of time.

• Short, continuous development cycles, rather than long timeframes.

• Key pod culture with Conway’s law compared to traditional resource

mapping.

• Built on containers and services infrastructure utilized both in the

cloud and on-premises rather than server-centric based on VMs and

bare-metal servers.

• Feature-driven, hypothesis-driven, model-driven, test-driven,

behavioral-driven compared to traditional requirements-based

modeling.

 Intelligent Software Engineering
As you know, 20th-century engineering is a thing of the past, and 21st-century

engineering is evolving rapidly in all sectors of industry. For example, civil engineers

have moved from building over nature to designing within nature, and industrial

engineers have to consider the end-to-end lifecycle of their products from concept and

design through manufacturing and service support. Today’s engineering processes must

be connected to the pulse of the customer’s every move and understand them in real

time. Design your application for outcomes and focus on driving velocity to value.

Engineering capabilities must help your clients with the following in mind:

• Creating new markets, not increasing market share

• Small, autonomous, self-organizing “2-PIZZA” teams with a culture

of innovation, culture of governance, and culture discipline

Chapter 13 enterprise Cloud native software engineering

498

• Creating automation to bring features to market faster

• Using cloud platforms

• Focusing on customer success and tying this to rewards

• Implementing a culture of go, not consensus: test, learn, repeat

• Delegated decision-making to the level of individual contributors

• Distributed code ownership to avoid perverse incentives

Table 13-1 illustrates the differences between traditional and cloud native. In the

cloud native world, you need to use intelligent engineering for your customer, and

you need to have the right mix of methodologies to follow to develop a cloud native

application.

The following are a few methodologies we’ll cover in this chapter:

Hypothesis-driven development: In the modern-day user

experience, you need to create a prototype, test, and rebuild

services and the user experience until it’s acceptable by the

user. Hypothesis-driven development helps you to develop an

application by involving end customers.

Table 13-1. Traditional vs. Cloud Native Engineering

Traditional Software Engineering Cloud Native Intelligent Engineering

product centric Customer centric

focus on predictability and efficiency focus on speed to value and innovation (fail fast)

Co-located teams distributed teams across regions and geographies

design stand-alone products Connect to an ecosystem of products

structured, linear process faster, customer-centric, modeled agile process

large batch deployment lean product management, push-based deployment, and

single-click deployment (Mvp)

highly skilled, manual coding, testing

and deployment

automated coding, testing, deployment

on-premises development Cloud-enabled development

Chapter 13 enterprise Cloud native software engineering

499

Behavior-driven development: In present-day architecture, you

are building for business, and you cannot complete your system

architecture and development without the active participation

of the business. The behavior-driven development helps you to

develop an application by collaborating with stakeholders.

Feature-driven development: For modern-day applications, you

need to develop an application that is customer-centric, iterative,

and incremental, with the goal of tangible efficient software

results. Feature-driven development helps you track progress and

results.

Test-driven development: Writing test cases first before developing

the code helps you to improve the quality of software. Test-driven

development converts requirements to functional test cases. This

helps provide more clarity for engineers to craft their code.

 From Project to Product
The objective of every project is to deliver customer value, but how you deliver the

customer value is most important. In projects, customer value has start and stop dates,

which means the team stops supporting the project once it closes. Indirectly that is the

end of the customer value, but it doesn’t have to be.

The product mindset is to have continuous delivery of customer value, where there

are no end dates and the team continues to support the customer value. In today’s world,

there is a dramatic shift from project to product.

A project is temporary in that it has a defined beginning and end, a defined scope

of resources, and a defined set of requirements, and it doesn’t address larger market

share and new markets. On the other hand, a product is a good service, platform, or

application that is created generally for sale to meet customer and business needs.

In a present-day cloud native architecture, major mindset shifts are required to move

from executing projects to maintaining products, because of end-user expectations. Over

time, your client might enter into a new market with a different culture and a different

set of users and need to change how they engage a new set of users with business needs

that change in response. If you have a project mindset, you might not have a historical

record because resources are moved to other projects that need to address new user

expectations.

Chapter 13 enterprise Cloud native software engineering

500

 Organization Transformation
You may have experienced many projects that have delays, low quality, no collaboration,

or other issues. These kinds of projects have common problems such as the following:

• Code changes: This is the fear of making changes to the existing code,

as the non-cloud native solution is hard to maintain or evolve or so

fragile that the slightest changes can have a significant effect on the

whole system.

• No appropriate automation in the software delivery cycle: This leads

to a lot of manual effort that is needed to get new use cases into a

working application deployed into an environment.

• Nonproduction environments are limited and require more time to

provide them: This causes development efforts to be inefficient or

partially wasted.

A few matured organizations are experimenting with new modern-day software

engineering practices successfully and with great results. Companies like the Guardian,

Netflix, Google, and Amazon can put new software into production in near real time by

making small independent changes and a fully automated process of the development

lifecycles. These changes impact only a small part of an application at a time. With all

these changes, the companies save millions of dollars a month. For example, Netflix uses

chaos engineering. This allows Netflix to proactively identify and resolve platform issues

in production before they impact the customer. In addition, Sportify can create a whole

agile pod team organization/culture that is inspiring others. These success stories help

us define modern engineering.

The following are the benefits of embracing modern engineering:

• Faster to market; better user experience with hypothesis-driven

development and the ability to transform new ideas into business

value

• On-demand provision of environments; eases the nonfunctional testing

• Single-click deployment with continuous integration and delivery

and infrastructure as a code

• Use of available PaaS services across cloud providers by using

model- driven development

Chapter 13 enterprise Cloud native software engineering

501

• Decentralization approach across teams in an organization

• Shift from delivery focus to value focus

• Engineering with observability as a service

Modern engineering can be a key enabler for business agility, allowing organizations

to transform and move faster to compete in this rapidly changing business and

technology landscape. It can transform new ideas into value quickly with the highest

standards of quality.

Organizations transform because they’re looking for business agility, aligned with

these four dimensions: speed, quality, cost, and culture.

The following are the main drivers for successful transformation through modern

engineering practices:

• Change-oriented pod teams delivering in small increments: These

pod teams are cross-functional, including all functions, to deliver

the required user stories. The team must consist of product owners,

business analysts, architects, required SMEs, and cloud SMEs.

• Lifecycle management and configuration management: To remove the

code change paralysis, the team must have the proper lifecycle and

configuration management in place with clear ownership of every

aspect of the technology system.

• DevSecOps: The manual process is more error-prone. The team must

unleash the benefits of automation with a shift-left approach.

• Automated tests with production-like environments: Teams

must conduct automated tests, early and often, in production

configuration.

• Software-defined infrastructure and automated deployments: With

this practice, the team can move their changes faster to market.

• Resilient, self-healing, cloud native systems: You must prepare

software for failures, learn from failures, and build resilient, self-

healing cloud native systems.

• Observability and automated operations: Implement observability as

a service with automated operation principles.

Chapter 13 enterprise Cloud native software engineering

502

 Agile Software Development Methodologies
Agile software development methodologies were created by leading software

professionals based on real-time experience developing software. They address many of

the limitations of traditional development methodologies. As a result, this is the de facto

standard for cloud native application development.

Agile methodologies have certain values and follow certain principles of software

development. These were referenced in the Agile Manifesto and the 12 principles of agile

software, written by the thought leaders who created the agile software development approach.

There are various methodologies available for developing a cloud native application,

and each of these adheres to agile principles and values.

 Hypothesis-Driven Development
As an example, say you wake up one day in the morning and hear something that sounds

like crying outside of your window. You might think it is a baby who is crying outside.

Your hypothesis is that a baby is crying. Then you open the door and look outside.

You know ahead of time that if you see a baby crying, you’re right, whereas if you see a

playing baby, your hypothesis is wrong.

As another example, when you get into the office, you notice your end user isn’t

using the sidebar link on the website. You might think the link is not in the proper

place or it is not visible enough to the user. You decide to correct this by increasing the

visibility of the link or placing it in the right place. Then you test the UI using A/B testing.

You know ahead of time that if you see a statistically significant increase in clicks from

the end user who see a visible link, that was the problem, whereas if you don’t see an

increase, it wasn’t. When you run a test and see significant improvement, then you

decide to roll it out to all the users.

Chapter 13 enterprise Cloud native software engineering

503

In these two examples (the crying baby and the website link), you used the scientific

method to test a hypothesis and create an effective solutions. It is thinking about the

development of new ideas, products, and services—even organizational change—as a

service of experiments to determine whether an expected outcome will be achieved. The

process is iteration upon iteration until a desirable outcome is obtained or the idea is

determined to be not viable. This is called hypothesis-driven development.

 Why Do You Need a Hypothesis?

This is an approach that provides a structured way to consolidate ideas and build a

hypothesis based on objective criteria. It’s also less costly for the system to test the

prototype before actual implementation. Using this approach, you can implement the

minimum viable product (MVP) model and identify what, how, and in which order

testing should be done.

 Methodology Steps

To facilitate a highly evolutionary approach, you need to use a hypothesis instead

of requirements. Requirements are valuable when teams execute a well-known or

understood phase of an initiative and can leverage well-understood practices to achieve

the outcome, in other words, when something must be developed and delivered to

the customer. The hypothesis is a provisional estimation that must be proven. If you

disapprove a hypothesis, you need to pivot and create another set of hypotheses.

When you use a hypothesis, you recognize customer expectations and needs and are

constantly changing. To deliver what customers want at the speed that they demand, you

must hypothesize and make data-based decisions. Experiment early and often, solicit

feedback from customers about what works for them, and discard any features that

provide little benefit to customers.

Figure 13-1 shows the scientific steps.

Chapter 13 enterprise Cloud native software engineering

504

Whether you are in the initial stage of your project or some other stage, there are

always uncertain parts of an application, especially customer-facing applications, where

you have ideas to further improve the existing product. To move forward, you’ll need to

turn the ideas into structured hypotheses where they can be tested before production.

Automation is a must for successful HDD. The process of the HDD scientific steps

consists of the following:

• Test and track hypothesis experiments, by applying a feature toggle

approach.

• When defining a hypothesis, you need to define data to validate the

hypothesis, i.e., how much evidence you’ll need to make a decision.

• Test the hypothesis, and set up the test continually with automation

to gather data for your decisions.

• Once you have a significant result, act on it; in other words, roll it out

or roll it back. Note what worked and what didn’t, and keep running

experiments.

Every user story in your project does not require HDD; identify use cases where you

require HDD.

HDD

1. Make
Observation

2. Formulate
Hypothesis

3. Design
an

Experiment

5. Evaluate
of the

result of

4. Conduct
an

Experiment

6. Accept or
Reject

Hypothesises

Figure 13-1. Hypothesis-driven development steps

Chapter 13 enterprise Cloud native software engineering

505

The success or failure of the hypothesis is always a learning opportunity, no matter

what the outcome is. Even if you can’t prove the hypothesis, it provides valuable insight

for another hypothesis.

Adopt a culture of hypothesis when you are developing a customer-facing and

complex system. If a baseline test exists and the hypothesis asserts that an improvement

to your service will be beneficial, you can conduct A/B testing to determine which option

is best.

 Hypothesis Example

Let’s say you are building a small ecommerce application and expecting more

interaction from social media and certain links in other pages. The targeted users are

very active on social media and the Internet, and you want to increase your traffic.

Hypothesis: Providing an image of your product on social

media will increase the number of targeted users who visit your

ecommerce application and try the product. The changes will be

measured by an increase in social media referral traffic to the link

that is cited from the ecommerce site and other websites.

Outcome: In user stories that deliver a new feature and tasks that

require the posting images in social media or sent directly to the

customers along with the specification and make the user aware

of the product.

Framing Hypothesis

“We believe that <this feature> will result in <the outcome>. We will know we have

succeeded when <we see a measurable signal>.”

• We believe that <this feature>: What functionality will you develop to

test your hypothesis? By defining a test feature of the service that you

are attempted to build, you identify the functionality and hypothesis

you want to test.

• Will result in <the outcome>: What is the expected outcome of your

experiment? What is the specific result to achieve by building the test

capability?

Chapter 13 enterprise Cloud native software engineering

506

• We will know we have succeeded when <we see a measurable signal>:

What signals will indicate that the capability you have built is

effective? What are key metrics you will measure to provide evidence

that your experiment has succeeded and give us enough confidence

to move to the next stage?

Hypothesis: “We believe that if we write a blog on the feature of the

product, people will want to buy it. We’ll know we have succeeded

when xxx people visit and click the link.”

 Culture of Hypothesis

Organizations must continuously practice and adopt a culture of hypothesis. You can

practice in several ways by establishing metrics, establishing success and failure criteria,

running multiple experiments continually by using automation, making data-based

decisions, socializing across the organization by using various analytical methods, and

considering a different model of experiments by using A/B testing.

Use metrics properly as these are essential to making data-based decisions, the

metrics such as key performance indicators (KPIs) are often used to measure the

hypothesis.

 Test-Driven Development
First, you write a test, and then you write code to make the test pass. This approach to

building software encourages good design, produces testable code, and keeps you away

from over-engineering the system because of flawed assumptions. The problem you are

facing in today’s world is poorly written services and failure to meet actual needs.

“TDD is a technique for improving the software’s internal quality, whereas

acceptance TDD helps you keep your product’s external quality on track by giving it to

the correct features and functionality.”

TDD is a way of developing software that encourages good design and is a

disciplined process that helps you to avoid programming errors. TDD does so by making

you write small, automated tests, which eventually build up an effective alarm system for

protecting your code from regression.

The primary goal of TDD is to make the code cleaner, simpler, and bug-free. This is

made possible because of the test-first approach adopted in TDD. Tests are likely to fail

in the TDD process since the tests, specifically unit tests, are developed even before the

Chapter 13 enterprise Cloud native software engineering

507

code development. To pass the test, you have to develop and refactor the code. With this,

you can avoid duplication of code since you’re writing a small amount of code at a time

to satisfy the outcome of the tests.

 Why TDD?

TDD will help shorten the programming feedback where tests are written before the

functional code so that developers receive feedback on the quality of the code faster.

TDD highly focuses on critical analysis and design because engineers cannot create the

functional code without truly understanding what the desired result should be and how

to test it. The process is also mandating that the code should not be written without the

tests. This ensures higher-quality software.

The benefits of using TDD are as follows:

• TDD enables immediate feedback on the developed components.

• The turnaround time for the defect resolution is significantly shorter.

• TDD provides significant code coverage. TDD helps to make sure that

every feature developed is wrapped with tests, resulting in increased

test coverage.

• TDD helps to identify the problem in code quickly.

 TDD Cycle

The TDD cycle as shown in Figure 13-2 is expressed as Red, Green, and Refactor and

repeats for each unit of code.

• Red: Create a test that makes it fail.

• Green: Make the test pass by writing code.

• Refactor: Update the code to remove redundancy, and improve the

design while confirming that the tests still pass after the update.

While using TDD, ensure 100 percent code coverage. The test-early principle helps

you in detecting and fixing bugs early in the lifecycle of the product.

Chapter 13 enterprise Cloud native software engineering

508

 Steps of TDD

Kent Beck is the creator of Extreme Programming, a software development methodology

that avoids rigid formal specifications for a collaborative and iterative design process. He

sums up the five steps of TDD as follows:

 1. Quickly add a test.

 2. Run all tests and see the new one fail. Since there is no code yet to

make the test pass, this test will fail.

 3. Make a little change to pass the test as quickly as possible.

 4. Run all tests and see them all succeed.

 5. Refactor to remove duplication.

In the first step, you need to write a test. In the second step, you need to record a

requirement as a test, and finally, you need to design the question and answers. The

questions should be like the following:

• Does the method name reveal the intent?

• What are the parameters of the method?

• What is the outcome of this method?

The answers to these questions become the design decision that you express in code.

In the third step, you always need to write the simplest possible code that makes the test

pass. This allows you to keep your option open for evolutionary design.

Writing a
failing

test

Make the
test passRefactor

Figure 13-2. Test-driven development cycle

Chapter 13 enterprise Cloud native software engineering

509

Writing a failing test is a way of testing the test. If the tests all pass, it gives you

feedback about your services that there are no known problems. By writing tests to

expose a deficiency, that helps to identify the problem. Everything else is a best-painted

picture. Ask yourself the following questions when you are writing a fail test:

• What is the responsibility of the system under test?

• What is there to observe?

• How is correctness defined?

You make your test pass with the simplest code. Is it too hard to pass the test? Then

you drop back to changing your test and making it easier to pass.

TDD is a simple technique, as it has only a few steps to follow. However, in a real

implementation, the steps are not that easy to follow since engineers need to be very

disciplined. To get all the benefits of TDD, you should follow each step.

 Factors to Consider for TDD

The following factors need to be considered while implementing TDD:

• Use the appropriate unit testing tool suitable for your project needs.

• Use the appropriate mock frameworks and code coverage tools.

• All the team members must agree on what level of testing occurs

before integrating code to the source repository. You must restrict the

tested code to check it in to the source repository.

• When the build breaks, what steps should be taken, and who will be

involved?

• Use a proper naming convention for tests.

 Drawbacks of TDD

TDD is good for cloud native applications, but it has a few drawbacks.

• It fits very well with unit test tools but does not scale with web-based

GUI or data-driven development.

• Writing and maintaining an excessive number of tests costs time.

• For complex cases, the test cases are difficult to calculate.

Chapter 13 enterprise Cloud native software engineering

510

 Behavior-Driven Development
Behavior-driven development (BDD) is a process designed to aid the management and

development teams by encouraging collaboration across roles to build and share an

understanding of the problem to be solved and by working in rapid, small iterations

to increase feedback and the flow of value. It improves the communication across the

business, development, and support teams and ensures all development projects remain

focused on delivering what the business needs while meeting all the requirements of the

user.

BDD has evolved from the TDD. It brings techniques and principles from TDD

and domain-driven design (DDD) to utilize features of these approaches and focus on

delivering the prioritized business value and a behavior-based vocabulary. BDD is not

replacing your agile process, but it enhances it. It is a set of plugins for your existing

process that will make your team more able to deliver on the promise of agile.

BDD aids in system implementation from a stakeholder or product owner point of

view through the use of a given-when-then-style of representing tests or acceptance

test criteria associated with user stories. It offers guidance on organizing conversations

between developers, testers, and domain specialists.

 How BDD Helps You to Solve Problems

If you are not writing well-crafted and well-designed software, you’ll end up with

unreliable software that’s hard to change and maintain, and if you don’t know what you

are building and fail to understand what features the business needs, you’ll end up with

a system that no one wants.

TDD, clean coding, and automated testing help you to guarantee a successful

project, but what you are developing must also benefit its users and business

stakeholders.

Applications should not be developed in a vacuum. The applications are part of

the broader business strategy, and they need to align with the business goals of an

organization. At the end of the day, the software solution you are developing needs to

help users to use it effectively.

BDD helps you define the business problem that you want to solve, gives a business

value to the organization, and helps to answer the specific question of how the problem

will be solved. That is what behavior you expect, and more important it provides a

ubiquitous language for all stakeholders.

Chapter 13 enterprise Cloud native software engineering

511

TDD focuses on the technical architecture and the code, whereas BDD is focused on

the business function and system behavior as outlined in the business story acceptance

criteria. In both cases, the unit tests are written before writing the code.

 BDD Principles and Practices

Here are some tips:

Focus on features that deliver business value: Avoid heavy uplifting

of the requirements specification. Rather, attempt to pinpoint all

the requirements and engage customers or business stakeholders

to progressively build a common understanding of what features

they should create.

Work together to specify features: BDD is a highly collaborative

practice with various stakeholders who work together with end

users to define and specify features. Team members draw on their

individual experience and know-how.

Embrace uncertainty: Rather than finalizing the requirements at

the discovery of the project, BDD assumes that the requirements,

or more precisely, their understanding of the requirements, will

evolve and change throughout the lifecycle of the project.

Illustrate features with concrete examples: BDD helps you to work

together with the users and other stakeholders to define stories

and scenarios of what users expect this feature to deliver, with a

concrete example that illustrates the key outcome of the feature.

Don’t write automated tests; write an executable specification:

Write the executable specification as an automated test that

illustrates and verifies how the system delivers a specific business

requirement. These automated tests run as part of DevSecOps and

run on each change.

Chapter 13 enterprise Cloud native software engineering

512

 BDD Process

As I mentioned, BDD is an advanced version of TDD, where “test first” agile testing

practices are clubbed together by defining tests before, or as part of, specifying system

behavior. This is a collaborative process that creates a shared understanding of the

requirements between the business and development teams.

BDD is a collaborative approach used to test any application or service in a

cloud native organization and supports a team-centric workflow. Figure 13-3 shows the

process, which can be continued in parallel with the development phase.

This approach uses real data in test along with the expected result. The data change

is only in the feature files, not in the implementation code. With the use of a simple and

natural language syntax, BDD breaks down complex requirements. BDD is more about

collaboration and communication, and feature files can be written by anyone who has

good knowledge of the domain requirements.

1. Issue
Tracker

2. Failing
Scenario

3.
Coding
Phase

4.
Passing

Scenario

5.
Refactor

3.1
Failing

Unit test

3.2 Make
the test

pass

3.3
Refactor

Figure 13-3. Behavioral-driven development process

Chapter 13 enterprise Cloud native software engineering

513

 BDD Specification

BDD leverages a user story as the basic unit of functionality, and the acceptance criteria

includes required components of a user story. It defines the scope of the user story’s

behavior and provides a shared definition of done.

Each user story must have the following components:

• Name

• Narrative

• Acceptance criteria or scenarios

Example

Name: Product returns from the ecommerce application go back

into the stock.

Narrative: To keep track of the stock, “as a distributor, I want to

add items back to stock when they are returned.”

Scenarios: Multiple scenarios are possible.

Scenario 1: “Refunded stocks should be returned to stock; given

a customer previously brought a pair of 34-inch blue jeans and I

have currently 10 34-inch blue jeans in stock, when the customer

returns the pair of jeans for a refund, then I should have 12

34-inch blue jeans in stock.”

Scenario 2: “Replaced items should be returned to stock; given that a

customer buys pair of blue jeans and I have 10 34-inch blue jeans in

stock and 10 36-inch and 32-inch blue and black jeans in stock, when

the customer returns the pair of jeans for a replacement of 32-inch

black jeans, then I should have 8 32-inch black jeans in stock and 12

34-inch blue jeans, and there is no change in the rest of the stock.”

 Transition to BDD

The following steps help you to transition to BDD from an existing process:

• Coach the business on BDD practices and the expectations from the

business stakeholders on how to collaborate, the time required, and

how to read the BDD reports.

Chapter 13 enterprise Cloud native software engineering

514

• Prepare the functional team on how to write scenarios/behavior

stories.

• Train teams to do the following:

• Establish an understanding of BDD. The aim of the transition to

BDD is to reduce the effort in the unit, regression, and functional

testing.

• Understand that development should be based on the scenarios

or behaviors provided by the functional team.

• Educate development team and/or testing team to write BDD

automation code for scenarios.

• Gradually implement BDD, starting with functional teams followed

by the development team and then by the testing team.

• Use BDD to test main path scenarios and other test practices for

testing border conditions.

 Benefits of BDD

The following are the benefits of BDD:

Reduced waste: BDD is all about focusing the development effort

on discovering and delivering the features that will provide

business value and avoiding those that don’t.

Collaboration: BDD offers more precise guidance on organizing

the conversion between all the required stakeholders.

Ubiquitous language: All the stakeholders understand the same

language from the requirements to deployment.

Business value: BDD focuses on building features with

demonstrable business value and not wasting effort on features of

little value.

Easy to change: BDD allows you to easily change and extend your

system. Living documentation is generated from the executable

specification that is understood by all the stakeholders.

Chapter 13 enterprise Cloud native software engineering

515

Faster time to market: Comprehensive automated tests speed

up the release cycles. You use the acceptance test as a starting

point and spend your time more productively and efficiently on

exploratory tests.

Tests: Reduce the time on regression tests to promote incremental

development, and obtain coverage beyond unit testing.

 Drawbacks of BDD

The drawback of BDD is more business involvement and collaboration. BDD is based

on conversation and feedback across all the stakeholders including end users. If

stakeholders are unwilling to participate in the conversation and collaborate, it will hard

to get benefits from BDD.

Requirements: BDD requirements are difficult and require a

special skill to write requirements. Poorly written tests can lead to

higher test maintenance costs.

It doesn’t work with the waterfall model: BDD doesn’t work well

with the waterfall model. In a waterfall model, each team works in

a silo, and it’s difficult to collaborate.

Tools: BDD uses tools that are not designed for use in large,

complex projects that are difficult to customize.

 Feature-Driven Development
Feature-driven development (FDD) is an iterative and incremental software

development approach that combines several practices of developing client-valued

features to deliver quality. It delivers frequent, tangible working results, via an accurate

and meaningful progress, within a stipulated time. Features are an important part of

FDD. A feature is generally a small client-valued piece of functionality expressed usually

in the form of an action, or the result of an object. For example, validate the password of

a user: the action is validate, the result is the password, and the object is the user.

Chapter 13 enterprise Cloud native software engineering

516

 Why FDD?

In software engineering, especially in a cloud native application, communication is

taking place constantly at all levels of the software lifecycle. As the size of your system

grows, the complexity of the system can become uncontrollable and untraceable.

FDD decomposes the entire problem domain into tiny problems, which can be

solved in a small period of time. The decomposed problems are independent of each

other and reduce the need for communication.

FDD splits the project into iterations so that the gap and time between analysis and

test are reduced; this is a shift-left approach of errors.

FDD broadens the concept of quality, so you test not only the code but also things

such as coding standards, measuring audits, and metrics of code.

 FDD Process

FDD defines milestones that mark the progress made on each feature. As shown in

Figure 13-4, FDD consists of five processes.

 1. Develop an overall model: Define a high-level domain for the

system under development. The idea is for both domain and

development members of the team to gain a good, shared

understanding of relationships and interactions. In doing so, the

whole team learns to communicate with each other. The object

model developed in this step is breadth instead of depth. Depth is

added iteratively in the lifecycle.

 2. Build a feature list: Create a list of the state changes and

interactions required, grouping them into feature sets and

subject areas for planning. In this step, FDD defines a feature

as a small, client-valued function expressed in the form of

<action><result><object> (for example, “calculate the total of

a sale”). FDD organizes its features into a three-level hierarchy

called a feature list.

Chapter 13 enterprise Cloud native software engineering

517

 3. Plan by feature: Agree on an initial schedule and assign

responsibilities for each class and feature set. The planning

team initially sequences the feature sets representing activities

by relative business value. The feature set is also assigned to

the scrum team, which is responsible for delivery. The risk and

dependencies will be identified in this phase.

 4. Design by feature: Create an initial sequence diagram that defines

system interactions for each feature. The lead selects a group of

features from one feature set that may be developed in a time-bound

manner and forms a work package around those features that acts as

a unit of integration with feature sets produced by the feature teams.

 5. Build by feature: Develop and test the client-valued functionality

to the point it can be deployed. After successful testing and code

inspection, the completed feature will be promoted to the main

build, where it will be verified and readied for release.

 Feature Specification

A feature is a small slice of functionality producing a result of a value to a client, typically

expressed in the following form:

<action> the <result> [of | to |by| for| from|] a(n) <object>

<object> is a person, place, or thing including roles, for example, “Calculate the

total inventory,” “Authorize the sales transaction of a client,” “Provision credit card

transaction,” etc.

Features are to FDD as user stories are to scrum. They are the primary source of

requirements and the primary input into the team’s planning efforts.

Develop an
overall
model

Build a
Feature List

Plan by
Feature

Design by
Feature

Build By
Feature

Figure 13-4. FDD process steps

Chapter 13 enterprise Cloud native software engineering

518

Features should be small enough such that they can be designed, developed, and

tested within a single iteration, that is, in less than two weeks. When your team feels a

feature is taking longer, it should normally be broken down into smaller features.

Feature Set

Features are grouped into the feature set that represents the business activity or all the

steps required to achieve a business objective. A feature set has the following form:

<action>-ing a(n) <object>

Example include “making a transaction,” “adding a product to the catalog,” etc.

Subject Area

Feature sets are grouped into subject areas, subdomains of larger system, and are named

with this form:

<object> management

Examples include “inventory management,” “customer

management,” “product management,” etc.

 Benefits of FDD

With the evolution of architecture, software development requires a slice of features to

be available in production almost immediately. FDD helps you to define and develop a

cloud native application easily and provides the following benefits:

• FDD provides a client-centric, model-driven approach for ensuring

the frequent delivery of client-valued functionality.

• FDD concentrates on a small slice of design to enable the team to

design, develop, and test.

• FDD is an effective approach for getting services to market faster.

• It offers improved communication across various stakeholders in a

team.

• It works well with large-scale, long-term, or ongoing projects.

Chapter 13 enterprise Cloud native software engineering

519

 Drawbacks of FDD

While FDD offers a faster to market with slices by simplifying complex projects, there are

a few drawbacks.

• FDD is not ideal for small projects.

• FDD places a high dependency on one role; this leader is required to

coordinate across teams.

• FDD provides no written documentation to clients.

• It may not work well with the older systems.

• You might lose sight of your customers and instead only think in

terms of features.

 Architecture in the Agile Methodology
Architecture in agile projects can be built incrementally in sprints and can be moved into

the design and develop phase or into another technical architecture sprint to implement.

The first few sprints are dedicated to creating an overall architectural blueprint and later

slices go into subsequent sprints for the detailed architecture and design.

Sprint 0 is used for the planning and preparation of architecture streams. The typical

sprint duration for architecture is two to four weeks.

Perform the following tasks in architecture sprints:

• Conduct sprint planning to determine the technical requirements

that can be addressed and how they should be addressed. The

dependencies between various services need to be considered. The

requirements should be documented in the backlog with priorities.

• For each architecture sprint, suggest creating a separate sprint

backlog that is derived from the overall integrated product backlog.

• Perform the required testing before moving into the next sprint.

• Continually manage the scope of the project by evaluating and

updating the product backlog.

• Transition the sprint deliverables to the application development to

develop the code.

Chapter 13 enterprise Cloud native software engineering

520

 Waterfall to Agile Transformation
The transition from a waterfall methodology to agile should not be a sudden change

or done in a day; it requires commitment and preparation. You need to carry out the

following before transitioning to agile:

• Culture of agile: Commitment from management is a must; every

project in an enterprise has to be executed to be aligned to the

organization goals; hence, it is essential to commit sponsors or

executives.

• Training: Without a skilled resource, it is not possible to transform,

so training plays an important role in creating agile awareness and

developing cultural shifts.

• Coaching: As you move from waterfall to agile, it is essential to have

an expert who can work with the team and coach them.

• Communication: The Agile Manifesto states “individual and

interaction” over “process and tools,” and hence communication

plays a significant role for quicker turnaround time and a

collaborative approach in agile.

• Infrastructure: Infrastructure plays a key role when you move

from waterfall to agile. The infrastructure setup like source code,

environments, automation, etc., should be available.

• Metrics: Agile adopts a minimalist approach toward metrics. It states

you should measure everything required, but do not over-measure.

These metrics help you to track the progress of the project and take

corrective actions.

• Estimation: Estimation has to be precise since agile recommends

projects to be executed at a sustainable pace.

• Tools: To get started with agile, it is recommended you use a set of

tools that are required.

Figure 13-5 shows the steps you need to follow for transitioning to agile.

Chapter 13 enterprise Cloud native software engineering

521

• Create a transition strategy: The first step is to create a transition

strategy for individual projects. Every project will have its transition

strategy, which will differ from project to project.

• Mobilize the transition: Create a transition plan that will detail the

timeline along with the milestones of each stage.

• Implement releases: Define the release structure.

• Implement agile practices: Start implementing a few basic agile

practices so that the team can gradually adapt to the changes in the

project execution process.

• Continue with agile: Introduce advanced agile practices.

 Summary
As the complexity of software development in projects grows, the only way to maintain

the viability of your build and ensure success is to have development practices grow with

it. While the individual practices and processes of TDD, HDD, BDD, and FDD are all

valuable in their own right, it is when they collaborate with each other that they provide

a value to the cloud native journey.

In this chapter, I covered the software engineering principles for cloud native

applications and explained how organizations can transform from traditional to

intelligent engineering models. The way forward is product thinking, not project

thinking, because you need to think about the end user’s behavior approaches, etc.

I provided sample real-time examples of HDD and BDD scenarios.

Feature-driven development is a process for helping teams produce frequent,

concrete, working results. It uses small blocks of functionality, called features. FDD

organizes small functions into a business-related feature set. It focuses on getting a result

every two to three weeks.

Create
Transition
Strategy

Mobilize
Transition

Implement
Releases

Implement
Agile

Practices
Steady Agile

StateWaterfall Agile

Figure 13-5. Waterfall to agile transition steps

Chapter 13 enterprise Cloud native software engineering

522

BDD is the process designed to aid in the management and delivery of cloud native

software development projects by improving communication between the development

team and business team and ensuring all related projects remain focused on delivery.

The benefits of this approach are to help you to trace back to business objectives and

develop a shared understanding of all the stakeholders with ubiquitous languages.

HDD follows the idea, hypothesis, design, experimentation, and scale steps. An

iterative HDD process allows the engineering team to plan and conduct experiments;

observe, analyze, and learn from results; and integrate the correct changes. This helps

reduce uncertainty and improve knowledge. The engineering team must prioritize

experimenting with the most uncertain aspects of the system.

TDD helps you to write tests and code. Next, it helps you to create optimized bug-

free code and helps engineers to analyze and understand client requirements and

request clarity. This helps you to test important new features in present-day scenarios.

Chapter 13 enterprise Cloud native software engineering

523
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_14

CHAPTER 14

Enterprise Cloud Native
Automation
Software engineering’s main objective is to unify the development of software (Dev) and

subsequent operations (Ops), and it is this combination of cultural values, practices, and

tools that allow an organization to deliver software applications quickly.

DevOps is a set of rules, principles, or manifestos that are used to increase

automation as the code is developed, built, and deployed. Many concepts that are part of

the DevOps pipeline, such as continuous integration (CI) and continuous delivery (CD),

are used by various teams that do not follow DevOps completely. A complete DevOps

pipeline recommends process automation to be used from the discovery phase through

the deployment, infrastructure, and operation phases.

DevSecOps is primarily the addition of security, performance, and stability to the

DevOps cycle. DevSecOps is built on top of DevOps and adds extra checks and a shift-

left approach at each stage.

In this chapter, I am not covering the entire DevSecOps story, because there are tons

of books, articles and whitepapers available. The purpose of this chapter is to guide you

through the best practices and how to leverage cloud development platforms on your

journey of cloud native application development.

In this chapter, I will explain the following:

• DevSecOps pipeline

• DevSecOps and the cloud

• How to embrace a cloud development service to accelerate your

development

• How to scale DevSecOps into your enterprise

https://doi.org/10.1007/978-1-4842-7226-8_14#DOI

524

 Introduction
Innovation and continuity never stop. During the COVID-19 crisis, teams were sitting

at home and working in silos in remote places. Businesses must ensure their workforce

can still develop and deploy a solution even while remote, and the DevOps methodology

addresses these challenges. It is a popular way of working in many businesses and

provides a framework to coordinate your IT teams. It brings together your business,

development, and operations teams, eliminating the barriers caused by physical

location, organizational functionality, and business goals.

Continuous is one word that you will often use in your projects when discussing

development, deployment, and operation. Almost everything in automation is

continuous, whether it is continuous integration, continuous delivery, continuous

testing, continuous infrastructure, continuous observation, and continuous operation.

As shown in Figure 14-1, DevOps is the main pillar of automation; it builds a culture

of trust, collaboration, and continuous improvement. As a culture, it holistically views

the development process and everyone involved, like developers, testers, operations,

security, infrastructure, and client teams. DevOps is not just about tooling; it’s also about

people working on a project.

Culture: There is strong communication and integration between

all stakeholders.

Processes: An automated deployment pipeline is integrated with

security reviews and testing, with a strong feedback loop to the

development team and operations.

DevOps

Culture

ProcessesTechnologies

People

Figure 14-1. DevOps pillars

Chapter 14 enterprise Cloud native automation

525

Technologies: There is an advanced combination of open source

and commercial tools assessing various aspects of the application.

People: It is a philosophy that focuses on engineers and how they

can better work together to produce great software.

The DevOps culture brings nirvana in the development process. It helps the

organization with the following:

• Faster time to market to gain market advantage

• High quality to detect failures to fix them early

• Adopting changes based on business demands

• Adopting changes based on technology evolution

• Effective collaboration and communication

• Integrating feedback effectively in the development process to get

better

• Adopting improvement and innovations

• Avoiding an error-prone manual process

• Adopting shift left

 DevOps Today and Tomorrow
Coined in 2009, DevOps has evolved over the years. Figure 14-2 illustrates the journey of

DevSecOps.

Chapter 14 enterprise Cloud native automation

526

As shown in Figure 14-3, today DevOps is about culture, automation, lean,

measurement, and sharing. Most organizations have already adopted and matured

using this model, due to technology disruptions and business disruptions. Today’s

DevOps may not be able to meet disruptions in the future, though. Therefore, DevOps is

rapidly branching into feature streams focused on cloud, security, data science, machine

learning, artificial intelligence, and lean ways of working.

Figure 14-2. DevSecOps journey

DevOps

CONTINUOUS
MONITORING

AUTOMATED
INFRASTRUCTURE

CONTINUOUS
TESTING

CONTINUOUS
SECURITY

CONTINUOUS
INTEGRATION &

DELIVERY

DEVSECOPS @TODAY

DevOps

DEVSECOPS @TOMORROW

Figure 14-3. DevSecOps today and future

Chapter 14 enterprise Cloud native automation

527

In present and modern-day architecture, with the adoption of multicloud and

containerization, enterprises are required to embrace a new-age tool and learn new

ways of working. It makes the DevOps pipeline crucial to a business, which needs to

maintain a development pipeline with a new set of tools and quickly configure cloud

development pipelines.

Here are some trends occurring in the world of cloud native and in regard to its

relationship with DevOps:

• There’s an increase in the variety of cloud services that are leading to

multicloud and hybrid cloud platforms.

• Data science and data integration are embedding data pipelines in

the data lifecycle for speed and accuracy of the analytics and model

management.

• More business involvement is required in software engineering along

with the development team and operations teams. This requires a

foster collaboration between all stakeholders so the organization can

deliver software quickly and efficiently by using DevBizOps.

• This requires intelligence across the application lifecycle to focus on

building and releasing best-in-class products by quickly using AIOps.

• Automation of the network is important along with infrastructure;

therefore, you need to include DevOps best practices in network

operations that drive network infrastructure as code to achieve faster

delivery by using NetOps.

The future of DevOps requires “continuous everything.” This means that security,

compliance, network, “-ilities,” and all other critical software components are

automatically and continually implemented without compromising any release process.

 From DevOps to DevSecOps
In DevOps, development teams are more agile. The product goes to market quicker,

the team innovates faster, there is continuous everything, and there are measures

everywhere, but security is still segmented and siloed away from the core software

engineering functions. But as the number of cyberattacks increases, more compliance

Chapter 14 enterprise Cloud native automation

528

products are exposing all sorts of functionality across geographies, so security cannot

remain separate from the DevOps process. Security must be integrated early and

throughout the software engineering lifecycle.

You can enable DevSecOps by adding security compliance checks in the DevOps cycle.

This helps you to address the principles of a single pane of glass, design for security, etc.

• Tightly integrate security tools and processes throughout the DevOps

pipeline.

• Automate core security tasks by embedding security controls early on

in the software development lifecycle.

• Implement continuous monitoring and remediation of security

defects across the application lifecycle including development and

maintenance.

The following are the benefits of DevSecOps in the pipeline:

• DevSecOps implements the secure by design principle by using

automated security reviews such as static application security

testing (SAST) and dynamic application security testing (DAST).

• Security issues are detected and remediated during development

phases, which increase the speed of delivery and enhances quality of

software components.

• In DevSecOps, security auditing, monitoring, and notification

systems are automated and continuously monitored, which

enhances the compliance in an application.

• By integrating security in software engineering and operation,

engineering fosters collaboration across teams.

 Driver for Shift-Left Security
The shift-left security approach has many benefits including cost efficiency, shorter

release cycles, and better code quality, and it is able to provide the following:

• Business risk reduction: Test early on in the software engineering

cycle, and address and prevent vulnerabilities before deploying to

production; this significantly reduces business risk.

Chapter 14 enterprise Cloud native automation

529

• Faster release cycles: Security testing, both SAST and DAST, should be

integrated and automated as part of the pipeline to enable quicker

release to the production.

• Better code quality: Addressing defects early or preventing defects

from being introduced results in higher code quality.

 Automation Principles and Best Practices
The principles and practices of DevOps help your enterprises to innovate with greater

efficiency and agility. In this section, I will provide few practices and identify problems

they eliminate. Along with this, I will touch upon cloud principles that help to achieve

continuous operation in public, private, and hybrid clouds.

• Collaborative environment: Use the right tools to enhance the

collaborative environment and create the right communication

among all stakeholders.

• Eliminate waste: Eliminating waste is important in lean processes.

Unnecessary functionality, code, or effort is wasteful. Delaying the

delivery of value to customers and inefficient processes are other

examples of software development waste.

• Adopt agility and focus more on automation: Adopt agile

development methodologies as explained in the previous chapter

and follow the automation in every cycle of software engineering.

• Focus on shortened feedback loops: Start the feedback mechanism

early in the software engineering lifecycle.

• Create knowledge: Teams share knowledge within the team and

across teams, through code reviews, documentation, learning

sessions, training, and collaboration with Confluence tools that can

be used as a knowledge database.

• Common and shared goals across all stakeholders: Ensure that the

entire team and all relevant stakeholders, including business owners,

are engaged in deriving common and shared goals.

Chapter 14 enterprise Cloud native automation

530

• Shift-left security: Enable an end-to-end DevSecOps capability by

integrating security earlier in the software development and delivery.

• Everything as code: Enable consistency, automation, and

repeatability by adopting an as-code approach across the DevSecOps

pipeline encompassing infrastructure, configuration, security

policies, compliance validation, and testing as code.

• Tooling optimization: Optimize the use of all DevSecOps support

tooling. Enable logging whenever possible to get a holistic view of the

pipeline and application. Ensure testing remains in compliance with

regulatory requirements.

• Self-service: Enable self-serviceability with users provisioning their

services (i.e., compute, storage, environments) and empower them

with tools to make low-impact changes directly without IT support.

• Governance approach: Adopt federated governance based on

outcomes. Track and measure DevOps. Utilize enterprise-wide KPIs

to monitor progress, applied to both DevOps and traditional SDLC so

the performance improvements of DevOps will be measured.

• Continuous improvement: There is no full stop on anything; it is

a continuous evolution. Therefore, focus on hypothesis-driven

improvements and optimization of flows.

• Deployment process: Adopt a zero-touch, zero-downtime deployment

with A/B testing enabled and automatic rollback of failed changes.

 Site Reliability Engineering
Site reliability engineering (SRE) creates a bridge between development and operations

by applying software engineering best practices. SRE was first introduced in 2003 by

Google engineers. SRE is way of thinking about and approaching production. It is a set of

principles and practices. SRE is aimed at developing automated solutions for operational

aspects such as monitoring, performance, capacity planning, and disaster response.

SRE helps teams to determine what new features are launched and when by using

SLAs to define the required reliability of the system through SLI and SLO.

Chapter 14 enterprise Cloud native automation

531

DevOps is an approach to culture, automation, and platform design that delivers

increased business value and responsiveness through high-quality service delivery.

SRE can be considered an implementation of DevOps. Like DevOps, SRE is about team

culture and relationships. Both SRE and DevOps work to bridge the gap between the

development and operations teams to deliver higher quality and faster services.

According to Google, the following are the types of SRE team implementation:

• Kitchen sink, aka “everything SRE”: This describes an SRE team where

the scope of services or workflows covered is usually unbounded.

• Infrastructure: These teams focus on behind-the-scenes efforts. A

common implementation includes maintaining shared services

(such as a Kubernetes cluster) or maintaining common components

(like CI/CD, monitoring, etc.) built on top of the cloud.

• Tools: A tools-only SRE team tends to focus on building software that

help engineers to measure, maintain, and improve system reliability.

• Product/application: The SRE team works to improve the reliability of

a critical application or business area.

• Embedded: SRE is embedded with the development team, usually

one per developer team.

• Consulting: SRE is similar to consulting work of any organization,

but the difference is that the consulting SRE team tends to avoid

changing the customer code and configuring the services in scope.

 DevSecOps
This section covers DevSecOps in more detail.

 Continuous Integration
As shown in Figure 14-4, CI is the base of the DevSecOps culture of transformation

that automates the integration of code changes from multiple pod teams into a single

software project. CI is the basic pipeline of the entire DevSecOps adoption. The primary

benefit of adopting CI is that it saves you time during development by automating your

code merges, unit tests, code reviews, and builds.

Chapter 14 enterprise Cloud native automation

532

CI involves making incremental code changes and continuously integrating on a

frequent, regular basis. In this process, small changes are made to code by an engineer,

and that code is subsequently checked into the source code repository. When the code is

checked in, an automated build is typically triggered.

 Continuous Delivery
As shown in Figure 14-5, CD is the ability of an organization to release changes to users

quickly and in a sustainable and repeatable way. When CI completes, the CD begins. It

essentially automates the delivery of applications to specific environments including the

development, testing, and production environments.

CD helps you to automate testing beyond just unit tests so they can verify application

updates across multiple dimensions before deploying them into an environment. These

tests include API, UI, load, functional, integration, reliability testing, etc. This helps your

team to thoroughly validate updates and pre-emptively discover issues.

Configure Environment

Create Image API Tes�ngInfrastructure as
Code

Test Environments

Func�onal Tes�ng Integra�on Tes�ng Load/Performance
Tes�ng

Non-Func�onal Tes�ng Staging Area

Figure 14-5. Continuous delivery

SCM Repo’s

Commi�er: abc
Story:25

Commit ID: 113

In
te

gr
at

ed
Ba

ck
lo

g

Check out & Secret Check Compile & Package Run Unit Tests Code Analysis Binaries in Ar�factory

Deploy in Development
Environment

Create Image

Figure 14-4. Continuous integration

Chapter 14 enterprise Cloud native automation

533

 Continuous Deployment
As shown in Figure 14-6, continuous deployment (CD) takes continuous delivery (CD)

one step further. In continuous deployment, all the code is built and tested and then

pushed to nonproduction environments. There can be multiple parallel and various

testing before certifying the quality of software.

In continuous deployment, the software is delivered to the staging area along with

test automation. When done properly, the software application should be in a state

that it can be deployed to production at any time. Continuous deployment merely

automates the final step so that all changes are automatically deployed to the production

environment. Practically deploying to production depends on the software type and

organizational maturity because it requires certain approvals from relevant stakeholders.

In continuous deployment, you are going to automate the approval and push binaries

into the production environment.

 DataOps
“DataOps is a collaborative data management practices focused on
improving communication, integration, and automation of data flows
between data managers and data consumers across an organization.”

—Gartner

“The goal of DataOps is to create predictable delivery and change
management of data, data models, and related artifacts. DataOps seeks
to reduce the end-to-end cycle time of data analytics, from the origin
of ideas to the literal creation of charts, graphs, and models that create
values.”

—Gartner

Staging Area Production

Automatic Approval

Figure 14-6. Continuous deployment

Chapter 14 enterprise Cloud native automation

534

DevOps analytics turns data from DevOps tools into insights that aid in decision-

making. It also gives stakeholders visibility into various DevOps practices, helping

you to identify strengths and opportunities for improvement across every aspect of

the adoption process. For example, the adoption owners can find the root cause of a

bottleneck in software agility much faster among large application portfolios using

DevOps analytics.

It is an automated, collaborative, and agile practice to improve the quality and

eliminate waste, bottlenecks, and inefficiencies in the data lifecycle. It breaks data silos

and rapidly meets new business demands.

Figure 14-7 illustrates a DataOps strategy that is part of the DevOps pipeline and

strives to speed up the production of data integration, data engineering, data quality,

and data security/privacy. It accelerates the data lifecycle to reduce the time for data

analytics.

The goal of DataOps is to streamline the design, development, and maintenance

of applications based on data and analytics. It seeks to improve the way the data is

managed and products are developed and coordinates with all the relevant stakeholders.

DATAOPSDATA
ENGINEERING DATA QUALITY

DATA
INTEGRATION

DATA
SECURITY/
PRIVACY

Figure 14-7. DataOps pillars

Chapter 14 enterprise Cloud native automation

535

One thing you need to remember is that DataOps is not just DevOps applied to

data analytics. DataOps communicates the data analytics to achieve what software

engineering wants to attain with DevOps. DataOps can yield an order-of-magnitude

improvement in quality and cycle time when data teams utilize new tools and

methodologies.

 DataOps Principles
The following are a few DataOps principles defined by the DataOps Manifesto. These

principles help you to configure DataOps as part of the DevSecOps pipeline.

• Value working analytics: This primary measure of data analytics

performance is the degree to which insightful analytics are delivered,

incorporating accurate data atop a robust framework and system.

• Continuous interactions: Customers, analytics teams, and operations

must work together continually throughout the project.

• Self-organize: Analytics insight, algorithms, architectures,

requirements, and designs are well-defined by a self-organized team.

• Analytics is code: DataOps uses a variety of available tools to access,

integrate, model, and visualize data. At a basic level, these tools

generate code and configurations that describe the action taken upon

data to deliver insight.

• Version everything: You need to reproduce the result, so version

everything.

• Quality: The pipeline should be built with a foundation capable of

automatically detecting irregularities and security issues in code.

• Improve cycle time: You should strive to minimize the time and

effort to turn a customer’s need into an analytic idea. Create it in

development, release it as a repeatable production process, and

finally refactor and reuse the product.

Chapter 14 enterprise Cloud native automation

536

 DataOps Pipeline
DataOps is an operation for data analytics and works similarly to DevOps. It can yield

an order-of-magnitude improvement in quality and cycle time when data teams utilize

new tools and methodologies. As you already know, DevOps optimizes the application

software engineering delivery and deployment. Similarly, DataOps optimizes analytics

software in data engineering delivery and data operation. DataOps includes DevOps and

other methodologies that apply to managing the enterprise data operations pipeline.

DataOps builds upon the DevOps development model, as shown in Figure 14-8.

DevOps works on continuous integration with the build, check, and continuous delivery

with automated tests. Similar to DevOps, the DataOps orchestrates the data pipeline

from the data ingestion to data analytics, and the pipeline consists of many steps like

Data Ingestion, Data Integration, Data Preparation etc as shown in Figure 14-8. An

orchestrator is a tool that controls the execution of each step as shown in Figure 14-8.

For example, the orchestrator may create containers and invoke runtime processes

like machine learning models to analyze data, transfer data from one step to another,

and monitor pipeline execution.

The data supply chain represents the flow of data from source to consumer by using

various stages.

Data Source

Data Ingestion Data Integration Data
Preparation Data Traceability Data Integration

Testing Data Analytics

Config driven data
ingestion

Validation,
Profiling & Testing

Transformation,
Lineage, Quality

Data tracking,
auditing, monitoring

Test Data
Management

integration, Test
Data Pipeline

Data Query Engine,
Data APIs

Data Supply Chain

Data User Story
Check out & Secret

Check Compile & Package Test Code
Artifactory

Management

Infra as a Code Environments

Deployment

DataOps

Data Integration
Kafka

Data
Preparation

SQL/ETL code

Data Analytics
Python/R

Data Visualize
Tableau

Example

Figure 14-8. DataOps pipeline

Chapter 14 enterprise Cloud native automation

537

Data ingestion: This includes the inputs into the data supply chain

from a source like social medial, IoT, CRM, etc.

Data integration: This includes integrating data from the

identified data source. This integration could happen by using

various protocols.

Data preparation: Clean, enrich, standardize, and transform data

and prepare data to make it business consumption ready.

Data traceability: Trace data for auditing and monitoring. This

traceability could happen by using various data monitoring tools.

Data integration testing: Use the DataOps pipeline to test the data.

Data analytics: Explore data, conduct analysis, and discover

patterns. This could happen by using ML tools and exposing

analyzed data to the consumer for decision-making or could feed

into services and applications by using APIs and messaging software.

The previous example provides a clear picture of what probable software/code is

used as part of the DataOps pipeline.

The DataOps pipeline uses the DevOps process to build, test, and deploy in the

environment.

Compile and package: The pipeline compiles the ETL app code

and ETL pipeline as code and uses the streaming and batch

processing of data.

Test code: The pipeline tests data for quality measures, data

profiling, data cleansing, data validation, and data reconciliation.

The test monitors data values flowing through the data supply

chain to catch anomalies or flag data values outside statistical

norms. In DataOps, you need to conduct a test at every stage of

the data supply chain.

Infrastructure as code: In DataOps, build and test fall under CI, and

deployment is CD. So, infrastructure as code is coming under CD. By

using this method, you can create templates and configurations to

provision infrastructure and deploy your data code.

Chapter 14 enterprise Cloud native automation

538

 DevNetOps
This section covers DevNetOps.

 Network Operation and Challenges
The traditional network is hardware-based, proprietary, expensive, and difficult to scale.

It has complex lifecycle management practices with rigid configurations. Traditional

networks do not work for modern-day architecture and business.

Today’s business requires a faster time to market with more services at a lesser cost

and requires demand-based scalability. The team needs to focus on delivery with an

innovation culture that helps to stay competitive among other teams.

To overcome these hindrances and to support modern business, we require a

software-defined and highly configurable network. The software-defined network (SDN)

is a new architecture that is dynamic, manageable, cost-effective, and adaptable, making

it ideal for the high-bandwidth, dynamic nature of today’s application.

The SDN architecture consists of the following:

• Network programmable: It has a centralized control plane to control

or program network devices using software applications.

• Logical separation: The network control plane and data plane are

separate.

• Centrally managed: Network intelligence is logically located centrally

in SDN controllers.

• Network abstraction: The application will interact with the network

through APIs, instead of management interfaces tightly coupled to

the hardware.

• Open architecture and vendor neutral: Network services and

applications can run within a common software environment with

interoperability support for multivendor network devices.

As illustrated in Figure 14-9, in the past the network and IT team worked in silos by

using a different set of tools and unmatched deployment schedules. Earlier there was

no universal open architecture, which made teams learn vendor-specific hardware,

technologies, etc. All of this leads to larger capex and inefficient opex spend.

Chapter 14 enterprise Cloud native automation

539

Today, IT and network teams have a common way of working and collaborating by

using the open architecture across network vendors. This makes life simple and removes

vendor-specific training and teams.

Virtualization and SDN help to reduce the variation in capex, optimize hardware

usage, and share resources to reduce hardware maintenance costs.

 Why You Need DevNetOps?
The virtual network functions (VNFs) are virtualized network services running on

open computing platforms formerly carried out by proprietary, dedicated hardware

technology. Common VNFs include virtualized routers, firewalls, WAN optimization,

and network address translation (NAT) services. Most VNFs are run in VMs on common

virtualization infrastructure software such as VMware or KVM.

• There are no standard procedures to develop and benchmark VNFS.

• There are no standard architectural guidelines for VNFs.

• Manual configuration, updating, and testing of VNFs is time-

consuming.

• There are no standard protocols or configuration policies for VNF

across vendors.

• Service providers have their workflow in infrastructure.

• There are no common KPIs defined for realizing NFV

implementation success.

DevNetOps enables agility and quality in the following ways:

• Implements network as code and agile change management config +

templates + artifacts + OS

IT Network IT NetworkIT SDN
NFV

Yesterday Today

Figure 14-9. Journey toward a modern network

Chapter 14 enterprise Cloud native automation

540

• Implements a pipeline of continuous integration and testing, staging

simulation, and delivery

• Orchestrates deployments, rolling upgrades, and traffic management

• Implements resilience and testing drills (Chaos Monkey)

 Network Reliability Engineering
Network reliability engineering (NRE) is an emerging approach to network automation that

stabilizes and improves reliability while achieving the benefits of speed. NRE is like SRE.

DevNetOps helps NRE to easily deploy, configure, validate, and certify with simple

steps of execution. Just like SREs define their methods using DevOps, DevNetOps is a

method that embraces NRE.

The following are the NRE principles that are derived from DevOps:

• Enable automation

• Orchestration transparency

• Continuously evolve

• Monitoring metrics

NRE keeps the reliability of the network as the topmost priority along with these

qualities: agility, security, velocity, efficiency, and performance.

The NRE includes the following:

• Code: Using infrastructure as code and developing network code with

versioning

• Automation: Using DevNetOps for automating and dynamic

provision

• Test: Continuous automatic testing to meet SLAs

• Monitor: Monitoring the entire network infrastructure

The following are the activities of NRE:

Code: The NRE team develops the network software artifacts,

secrets, and configuration-as-a-service code and checks it in to

the version control similar to developer check-in to a version

control like GitHub or Bitbucket.

Chapter 14 enterprise Cloud native automation

541

Build and deploy: NRE automates versioned deployments, peer

reviews, and testing. It automates provisioning of networking

resources and configuration of the networks.

Test: Through automation, staging, stress testing, and chaos

engineering, an NRE ensures that the deliveries are reliable

enough to meet service level objectives.

Monitor: An NRE monitors service level indicators (SLIs), both

manually and automatically with analytics that trigger automatic

responses and alerts.

Measure: Use indicators to measure their effectiveness in meeting

reliability goals, such as mean time between failure (MTBF) and

mean time to repair (MTTR).

In the age of modern technology with technology and business disruption, your

network must be able to support the application with speed and reliability. You cannot

achieve these in the big-bang, manual approach; you need to have incremental

development and automation to support this change. DevNetOps philosophies, culture,

and automation will support these requirements.

 DevNetOps Pipeline
As shown in Figure 14-10 and detailed in Table 14-1, DevNetOps is like the DevOps

philosophies, culture, and behaviors of network operations (NetOps). DevNetOps helps

NRE to easily deploy, configure, validate, and certify the steps of execution.

The DevNetOps provides the following:

• Scalability: It allows for optimized capacity on demand.

• Agility: It allows for simple configuration changes/updates and

frequent upgrades with a shorter cycle of deployments and test.

• Speed: It allows for a faster time to market and updates with fewer

technology disruptions.

Chapter 14 enterprise Cloud native automation

542

• Reliability: It allows for deploying quickly and continuously with no

failures and portability to any environment.

• Security: Network and security should co-exist for the safety of

products, vendors, customers, and also end users.

• Simple: It allows for configuration as code and service handling

complexity with less human error.

Version Control
Repo’s

Committer: abc
Story:5

Commit ID: 115

In
te

gr
at

ed
Ba

ck
lo

g

Peer Review Compile &
Package

Run Automated
Testing

Automated
Deployment

Continuous
Monitoring

Design Change

Continuous Deployment of VNF Continuous Testing of VNF

Pre-Validation
Testing

Inter Operable
Testing

Inter Operable
Testing

Figure 14-10. DevNetOps pipeline

Chapter 14 enterprise Cloud native automation

543

 DevOps in the Cloud
Hosting DevOps in the cloud can help an organization evolve from a reactive to a proactive

approach. Whatever circumstances you are operating in, a cloud DevOps solution provides

a business with a way to accelerate its software development and delivery.

Table 14-1. Network Pipeline Details

Pipeline Steps What Tools Can Be
Considered?

What Process
Followed?

Who Are
Involved?

network as code Git, Gitlab, Bitbucket, Gerrit

infrastructure as code (iaC)

tooling for the cloud

declarative config as code

(Yaml)

actual code is programmed by

extension

agile methodology

reviewing

design templates

developers

network team

pipeline

orchestration

Build (for example, aminator or

packer)

testing (for example, open stack,

mano)

orchestrate deployment (for

example, spinnaker)

Continuous integration

and delivery

automatic and manual

check

Continuous deployment

test-driven

development

ops specialist

micro-immutable

architecture

Containers and functions

Container as a service (Caas) and

function as a service (Faas) to

run sdn system

secrets, configs, volumes

design/package software

into a single-purpose

service

network

architecture team

resiliency design

and drills

net Chaos monkey and

watchdogs

Kill -9 command, unplug, or cut

cables

develop stress for

staging

run periodically in

production

performance

engineering team

resilience team

measurement dashboards

Kpis

incidents playbooks operation team

Chapter 14 enterprise Cloud native automation

544

A cloud DevOps solution is cloud native, and by adopting it, your organization can

achieve delivery through continuous integration, continuous delivery, and continuous

deployment with the required level of services and testing to deploy quality solutions to

customers.

DevOps on the cloud provides a few benefits over a traditional on-prem solution:

• Backup as a code: Backup restoration is automated in the cloud,

allowing your engineers to integrate backup as code with a

continuous integration stack to automate, restore, and delete

backups.

• Business agility: Cloud DevOps solutions can be seamlessly

integrated into multiple business units. It is easy to set up and

configure CI and CD pipeline tools.

• Continuous monitoring: Cloud services provide monitoring and

observability services, and these services are very well integrated

with the DevOps pipeline to monitor services. These services provide

actionable insight to monitor applications, optimize resource

allocation, respond to performance changes, and offer an integrated

dashboard to keep track of application, infrastructure, and security.

• Infrastructure automation: The open source PaaS services manages

multicloud infrastructure and automation management.

• Configuration as a code: DevOps supports configuration across the

DevOps lifecycle including continuous integration, continuous

delivery, continuous deployment, and infrastructure as a code. It is a

string of YAML code or scripts that standardize the configuration of

the network, server location, etc.

 AWS Cloud
The AWS DevOps services provide a more reliable and quicker configuration of tools.

These services simplify provisioning and managing infrastructure, deploying application

code, automating the software release process, and monitoring your application and

infrastructure performance. The AWS services are preconfigured, and there is no setup

or software to install. This reduces your time to configure the DevOps pipeline and day-

to- day operation of the pipeline. These services are built in to the cloud and manage

Chapter 14 enterprise Cloud native automation

545

single instances or scale to thousands depending on your volume of services. These

services are linearly scaled based on your application.

AWS helps you to use automation so you can build faster and more efficiently.

Using AWS services, as shown in Figure 14-11 and Table 14-2, you can automate manual

tasks or processes such as deployments, development and test workflows, container

management, and configuration management. You can set up an access control

mechanism for your DevOps services by using identity and access management with

your AWS accounts.

AWS has a larger partner ecosystem integrated into AWS services. You’re open to use

any third-party services with AWS services. For example, if you want to use multicloud

infrastructure automation, you can use Terraform services to automate, and if your

team wants the source code to be on-prem with Bitbucket or GitHub, you can use AWS

services for the rest of the pipeline.

AWS provides a pay-as-you-go model, so you need to pay only for the duration of

usage.

Commi�er: abc
Story:25

Commit ID: 113

In
te
gr
at
ed

Ba
ck
lo
g

Build Test Deploy Provision Monitor

AWS CodeCommit

AWS CodePipeline
AWS Elas�c Beanstalk

AWS OpsWorks

AWS Elas�c Container Service

AWS Code
Deploy

AWS
CloudForma�on

AWS
CloudWatch

AWS CodeBuild

Figure 14-11. AWS development services

Chapter 14 enterprise Cloud native automation

546

 Azure Cloud
Azure DevOps is a Microsoft product that provides development services to support

teams to plan work, collaborate on code development, and build and deploy

applications.

Azure DevOps is offered in two forms.

• Azure DevOps Server: Previously known as Team Foundation

Server (TFS), this is an on-premises offering.

• Azure DevOps Service: This was previously known as Visual Studio

Team Services; it provides a PaaS-based offering to manage the

end- to- end DevOps lifecycle.

Table 14-2. Comparison Chart with AWS DevOps Tools

AWS DevOps Tools Open Stack Tools

high availability and durability included. tools supports high availability and durability, but

you need design infrastructure to support these

features.

easy access and integration with other

services.

tools will include aWs service plugins.

no provisioning servers or patching software. servers have to be configured and require regular

patching.

Build servers are auto-scaled, and pricing is

pay for what you use.

scaling can be achieved by adding additional

containers.

aWs tools are limited to aWs and do not have

support now aWs tools and services.

open stacks are matured, and more plugins are

available and work for a multicloud environment.

integrates with aWs identity and access

management (iam) for roles and access

management.

integrates with any other iam for roles and access

management.

aWs services are pay-as-you-go model. requires additional enterprise support services.

Chapter 14 enterprise Cloud native automation

547

The Azure DevOps service provides a platform for implementing the DevOps process

across different IT segments. This tool supports various practices under DevOps such

as continuous planning, continuous development, continuous integration, continuous

testing, continuous deployment, and continuous monitoring. These tools support

integration with various other open and commercial tools such as code analysis tools,

security tools to scan vulnerabilities in code, and infrastructure provisioning tools to

automate the infrastructure such as Terraform and Ansible Tower.

As shown in Figure 14-12, the Azure DevOps multistage pipeline provides an easy

way to use templates to configure CI and CD pipeline. The multistage pipeline provides

features to add extensions such as build quality checks, security checks, infrastructure

provision, etc.

The following are the Azure DevOps tools that are provided to set up a DevOps

pipeline in the Azure cloud:

• Backlog and user story: Azure Board can help your teams to manage

software projects. It provides a rich set of capabilities including native

software support for Scrum and Kanban, customized dashboards,

and integrated reporting. You can easily start tracking user stories,

backlog items, tasks, and bugs associated with your project.

• Source code management: Azure Repos is a set of version control tools

that you can configure for your source code. It supports Git and Team

Foundation Version Control (TFVC).

Commi�er: abc
Story:25

Commit ID: 113

In
te
gr
at
ed

Ba
ck
lo
g

Build Test Deploy Provision Monitor

Azure Repos

Azure Pipeline
Azure Ar�facts

AWS Monitoring

Azure Board

Azure Test Plans Terraform/Ansible/Chef

Figure 14-12. Azure development services

Chapter 14 enterprise Cloud native automation

548

• Build and release: Azure Pipeline is a cloud service that you can use

to automatically build and test your code. It combines CI and CD to

test and build your code constantly and consistently.

• Test: Azure Test Plans allows you to create test plans and test cases. It

supports both automated and manual testing.

• Binary package: Azure Artifacts stores the compiled code and other

dependent binaries with version control.

 Google Cloud
GCP provides a vast number of services for a cloud native application. Apart from these

services, GCP supports a lot of DevOps and SRE tools that make the process speedier

and deliver the services more reliably.

GCP supports DevOps efforts by providing services to build, store, and deploy apps.

Figure 14-13 are the services that you can use in your software engineering lifecycle.

Artifact registry: It enables you to centrally store binaries and build

dependencies. It is a central location for storing packages and

Docker images.

Committer: abc
Story:25

Commit ID: 113

In
te
gr
at
ed

Ba
ck
lo
g

Build Test Deploy Provision Monitor

Cloud Source Repositories
(GitHub or Bitbucket)

GCP Code Pipeline

Artifacts Registry

GCP Code Deploy

GCP Code Build

Terraform/Ansible/Chef

GCP Codestar

Stackdriver

Figure 14-13. GCP DevOps pipeline tools

Chapter 14 enterprise Cloud native automation

549

Software release workflow: The GCP Code Pipeline service is a

CI and CD tool for fast, reliable application and infrastructure

updates. The Code Pipeline builds, tests, and deploys code every

time on the system when there are changes and based on the

release process models defined.

Build and test code: The GCP Code Build service executes your

builds on GCP. It imports source code from cloud storage, cloud

source repositories, GitHub, or Bitbucket, and it executes a build

to your specification. It produces artifacts such as binaries and

Docker images. The Build config file contains the instructions for

the cloud build to perform a task based on a specification. For

example, your build config contains a function to build, package,

and push Docker images.

Deployment automation: GCP Code Deploy performs deployment

automation. It deploys on any of the instances, including EC2 and

on-premises server.

Unified CI/CD projects: GCP Cloud code quickly develops, builds,

and deploys the application on GCP. It provides a user interface to

visualize and manage software development activities.

 DevOps Transformation
The ultimate goal of DevOps is to unify development operations from end to end, but

many organizations struggle to realize the full adoption journey from one application

to the enterprise level. Challenges vary at every stage. Thus, even the most promising

efforts fail to scale products and services through the entire scope of adoption.

A DevOps journey is an organization-wide journey across all layers. Even if

your scope of DevOps adoption is within a single layer, you need to sync with other

layers. Individual applications are the basic consideration in your DevOps strategy.

Stakeholders should keep enterprise adoption in mind when deciding the process, tools,

and practices to implement.

The core tenant of DevOps is to identify dependencies among related applications

and group them by release time and strategy. These groupings are known as clusters.

This allows for the harmonious implementation of DevOps across all applications.

Chapter 14 enterprise Cloud native automation

550

These are the key factors of a DevOps transformation:

• It’s a journey about reinventing yourself.

• Focus on people, process, and tools adoption.

• Learn from other teams and use their best practices.

• Start with the most valued product (MVP).

• Measure all the KPIs.

You are at the beginning of the enterprise DevOps transformation. As shown in

Figure 14-14, DevOps is the logical next step in your agility.

The success of your DevOps transformation is based on how you use these

perspectives:

• IT landscape: This includes practices and principles to build and

configure your solution stack to enable autonomous, fast, and

reliable software delivery.

• Organization: This includes tribe and team topologies, partnerships,

a culture, and a skillset that encourage thinking across silos and

enable tribes to become autonomous.

• Practices: How you work is a key capability that supports doing the

right things in the right way.

• Enabling practices: This includes continuous automation testing,

CI, CD, continuous deployment, monitoring.

First DevOps Team Application Cluster roll-out Enterprise DevOpsTeam in each portfolio or domain

Year Year Year Year

Figure 14-14. DevOps transformation journey

Chapter 14 enterprise Cloud native automation

551

The following are the challenges of DevOps transformation:

• Governance: Creating a governance framework that is effective at the

speed of DevOps is a major hurdle for enterprises.

• Product/project management: The majority of software applications

are still hosted on-premises, and support applications are dispersed

across fragmented teams, business units, and organizations, leading

to a lack of ownership.

• Quality: DevOps practices require continuous quality across the

lifecycle.

• Compliance: Depending on the nature of the industry you are in, your

enterprises need to adhere to various compliances like GDPR, SEC, etc.

To overcome these challenges in transformation, you need to adopt the following

considerations across enterprises:

• Transformation alignment: Infuse DevOps during the transformation.

This streamlines and reduces the overall governance issues.

• Cultural and change management: Organizations that ignore cultural

and change management during the transformation journey fail

to transform successfully. Like any other transformation, DevOps

requires training mentorship, resource skilling, behavioral change,

and motivational or reward programs.

• Stakeholder management: Every project or product has multiple

stakeholders, but when a team fails to collaborate with stakeholders

cohesively, adoption tends to fail.

• Prioritizing application: Some applications benefit more from

DevOps than others. Selecting and prioritizing the right one is

important for transformation success.

• Tools setup and process design: Tools and processes should be

established before implementation.

Chapter 14 enterprise Cloud native automation

552

• Minimum viable product (MVP): Identify and create an MVP. This

philosophy aims to provide early benefits and assurance to

stakeholders before they invest in fully scaling on a DevOps

transformation.

• Identify clusters: All dependent applications should move through

development and testing cycles together in the same space.

• Create a consolidated implementation plan: Planning the

consolidated release of an application cluster requires an assessment

of the challenges at hand as well as the techniques to overcome them.

• Organization structure: Well-structured IT teams greatly enhance

DevOps adoptions.

 Summary
Automation is about combining agile, DevSecOps, SRE, and the cloud to build an elastic,

hyper-speed organization. These four elements are organized around each other in the

following ways:

• Talents and teams are like liquid and flow quickly.

• These four elements such as agile, DevSecOps, SRE and cloud are

structured around intelligent software engineering.

• Full-stack teams are end-to-end accountable for projects.

• Applications are independent of each other.

• The 12-factor app allows automation.

• These four elements focus on resilience and failure tolerance.

• These four elements are use automated change management and

resilience design patterns.

• These four elements are elastic and create a highly scalable

infrastructure.

• These four elements have an immutable infrastructure with a self-

service paradigm.

Chapter 14 enterprise Cloud native automation

553

Following best practices, you must consider the following for your DevSecOps

transformation:

• The journey is about reinventing yourself; do not restrict yourself

from learning new things.

• Focus on people and interaction over tools and process.

• Keep sharing; learn from other teams.

• Prepare yourself to kickstart DevOps.

• Theory is good for understanding; try to realize it in projects.

• Train your team; DevOps is not for everyone.

• Focus is important; don’t mix too many user stories.

• Measure as much as possible.

In this chapter, I explained the basics of the DevOps pipeline and the security in it

and also covered DevDataOps and DevNetOps and how they will help you to address

data analytics and networking. These pipelines are an integral part of your cloud native

journey. I also covered how to drive DevOps transformation to an enterprise.

Chapter 14 enterprise Cloud native automation

555
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_15

CHAPTER 15

AI-Driven Development
During the cloud and cloud native age, organizations are focusing on leveraging AI

methodologies, best practices, and enhanced tools and technologies during the software

engineering lifecycle and applying them to build or augment enterprise systems.

There is a lot of interest growing in AI-focused methodologies for creating and

distributing the development of application solutions.

In modern-day software engineering, you need a separate methodology, process,

and toolset with automation for AI development. To improve the process, various

industries and enterprises are embedding AI into their software engineering lifecycle

to make the process smarter, automated, and efficient. AI-enabled tools can optimize

engineering tasks by automating the end-to-end engineering lifecycle.

With these AI-driven development tools, the engineering team can develop

an AI- powered automation process without involving specific experts.

In this chapter, I cover the following:

• AI methodologies

• AI solutions to solve industry use cases

• AI tools and best practices

• AI governance

• AI and ML in DevOps cycle

 Introduction
The evolution of AI has changed the way organizations and engineers are approaching

software systems and development. Artificial intelligence (AI) and machine learning

(ML) are good options for enhancing the software engineering lifecycle output.

According to Gartner, by 2022, at least 40 percent of new software engineering

projects will have an AI-driven virtual engineer on the team. This is because AI and

https://doi.org/10.1007/978-1-4842-7226-8_15#DOI

556

ML- backed tools are already on the market for development, source code generation,

and testing, and they can be integrated as part of the DevOps pipeline. IDC estimates

that worldwide spending on AI is expected to double in four years, reaching $110 billion

in 2024.

Currently, humans focus on everything including solving business problems,

identifying quality attributes, testing outcomes, etc. Instead of doing everything, why

can’t we just focus on solving business problems and letting the AI- and ML-based tools

automate code generation and proactively identify failures?

Adopting an AI strategy helps enterprises to start on a journey toward integrating AI

into their fabric, not just by implementing AI solutions but by developing an AI-powered

architecture to embrace AI at the core.

AI accelerates the traditional software development techniques and eases your

coding, reviewing, and testing process. It creates a scalable and efficient workflow to

drive productivity and reduce time to market.

Human engineers are translators and engage in conversation with clients and other

stakeholders when testing and with other AI-enabled engineers (using AI-based tools).

Before engaging AI-enabled engineers, you need to train them thoroughly. Test-driven

development, hypothesis-driven development, and behavior-driven development help

you to train your AI colleagues.

Answering the following questions will position your organizations to capture

sustainable long-term value through AI:

• What role do we want AI to play in our organization? How will

important aspects of our business (for example, skilled resources,

customer experience) change?

• How will we get the most benefit from AI? Where are the most

impactful opportunities in our business, and will they be enough to

justify the investment?

• What action do we need to take to establish a foundation that makes

AI practical, effective, and responsible? How do we manage these

changes?

• How can our organization sustain the shift toward embracing AI?

How do we increasingly make AI core to the performance of our

business?

Chapter 15 aI-DrIven Development

557

 Unique AI Challenges
Adopting AI introduces unique challenges that require comprehensive AI thinking to

embrace:

• Risk of unintended consequences: AI represents a major technological

advancement with tremendous potential. However, the universal and

standard procedures are not yet available to assure the outcome.

• Bridge unconventional organization gaps: Successful AI needs to be a

joint effort across every entity of an organization.

• Specialized talent: The organization requires specialized talent,

training, and an AI career path.

• Mature data capabilities: Despite maturity in data and data science,

there remains continued gaps in the quality of data to require

effective training and operation of AI solutions.

• Culture: The organization needs to embrace AI by adopting a

culture of AI.

 Why AI-Driven Development?
The reasons to use AI-driven development are as follows:

• AI-driven development refers to the tools, process, technologies, and

best practices used for embedding AI into software applications and

for using AI tools to develop AI-enhanced solutions.

• There is a current need for software engineering to be able to operate

AI-enhanced technologies independently.

• AI-driven development provides engineering with an ecosystem of

AI algorithms and models, as well as development tools tailored to

integrate AI capabilities.

• The AI-driven development approach is well suited to minimizing

prediction errors, when there are many data points and when there

are many alternatives.

Chapter 15 aI-DrIven Development

558

• Engineers can infuse AI-powered capabilities into application

development without involving a data scientist.

• AI methodologies, reference architectures, and best practices can use

as reference for AI-driven development.

 AI-Driven Principles at a Glance
AI principles set guardrails to help enterprises address the unique challenges associated

with pursuing AI responsibly. Google and Microsoft AWS have defined and adopted the

following principles:

• Be socially beneficial: The expanded reach of new technologies

increasingly touches society as a whole.

• Avoid creating or reinforcing unfair bias: AI algorithms and datasets

can reflect, reinforce, or reduce unfair bias.

• Be built and tested for safety: Use strong safety and security practices

to avoid untended results.

• Incorporate privacy design principles: Incorporate privacy principles

in the development.

• Fairness: Throughout the lifecycle, AI systems should be inclusive

and accessible.

• Anticipate the future: AI applications can produce granular insights

into what customers and markets want.

• Act autonomously: An AI application provides value by automating

existing manual processes by enabling the autonomous operation of

the business.

• Detect invisible: AI can manage operations that humans cannot, and

AI application should take advantage of this situation in a complex

environment.

Chapter 15 aI-DrIven Development

559

 Approach to AI
There are many approaches to AI. A successful AI adoption can start in many ways.

• Top down: Leadership is fully involved in defining the AI value and

roadmap and moving quickly from strategy to MVP.

• Bottom up: Start with an MVP that will incrementally prove AI’s value

as other initiatives are considered and implemented.

• Part of a bigger picture: AI is considered as part of the broader

organization.

• Inorganic: Acquire AI startups or leverage partners to augment the AI.

 AI Governance
AI governance is about AI being explainable, transparent, and ethical. The AI

governance is to define the key mechanisms for executing AI use cases and deploying

them across the organization, and the governance framework helps you to drive the

partnership between your organization, clients, and other stakeholders. As part of the

governance, you need to outline the AI roles and responsibilities of resources within

your organization’s structure.

The governance framework outlines the decision-making process for key activities

and determines how opportunities are identified, approved, delivered, and scaled across

the enterprises and how key decisions are made around AI.

 AI Framework
The AI framework establishes trust in the AI architecture and helps you to continue

monitoring the system. Use the following three-step approach for all your AI

deliverables:

• Govern: Create an internal governance process, as explained next,

which is anchored to industry and societal shared values, regulations,

ethical guardrails, and accountability. Promote clarity around decisions.

Chapter 15 aI-DrIven Development

560

• Design: Architecture and design AI with trust by design. Empower

project teams to understand and address bias issues.

• Monitor: Monitor and audit regularly against key-value metrics,

including concerning algorithmic accountability and cybersecurity.

 AI Governance Measurement
Lack of measurement will be a weakness of your organization because these cannot

be transferred to and incorporated into processes, systems, and platforms. The AI

measurement is common for all organizations through regulations from the AI body, but

each organization can measure how AI is delivered, what direction AI projects progress

in, etc. These measurements are captured by an audit of the AI projects, accountability in

AI projects, the time they take to complete, security considerations, etc.

 Governance Process
The following list highlights the process that will take place in the event that a deployed

AI solution behaves in an unexpected way:

• When monitoring the AI solutions in a project, the center of

excellence (CoE) must highlight any red flags or anything out of the

ordinary and report it to the responsible AI board.

• A review board will evaluate the AI service that has been flagged to

review it and recommend a plan of action.

• The CoE will begin resolving the AI solutions that were flagged

according to the approved course of action with support from the AI

project team.

• Community and knowledge sharing boards work to analyze and

identify the controls in place to prevent repetition.

 Governance Model
Based on the previous principles, the best model for AI development is the hub and

spoke model because it enables controlled growth and encourages autonomy within the

business sector. You need innovation at all levels for AI, so this model allows for rapid

Chapter 15 aI-DrIven Development

561

innovation/sharing of ideas across your organization while centralizing the AI research

and best practices. According to the cloud native principles, organizations should adopt

a decentralization approach, but AI development requires a centralized decentralization

approach. This helps to keep key decisions central and decentralizes the solution

implementation.

As shown in Figure 15-1, the hub and spoke model attracts, develops, and retains

scarce talent, allowing for the flexible allocation of resources to keep resources

challenging and fresh.

In the beginning, the big centralized hub starts to increase the use of AI governance

across teams in an enterprise, because there isn’t enough skills and maturity across

spokes to decentralize governance. AI matures in an organization when skilled talent

and teams begin to empower business and technical teams to contribute to delivering AI

solutions. This leads to the allocation of AI talent and a balance of maturity between the

hub and spokes. Once the organization reaches the maturity stage, the AI CoE remains a

small group that coordinates the AI activities across enterprises.

Centralized
Governance

Team A
Governance

Team B
Governance

Team C
Governance

Team D
Governance

Figure 15-1. Hub and spoke governance

Chapter 15 aI-DrIven Development

562

 How to Train AI-Enabled Frameworks?
AI and ML enable tools to learn from data rather than explicit programming. AI and ML

algorithms ingest data to train the algorithm model and the behavior of these tools is

based on the kind and quality of data used for the training. The better-quality data you

ingest, the wiser the tool becomes. Once the base model is trained, then you can ingest

in real time to learn more precisely. The accuracy of AI and ML tools is based on training

processes and automation, which are part of ML.

The TDD, BDD, and HDD techniques provide a framework to train AI in software

engineering that can carry out repetitive works.

In TDD, engineers first write a test, and then they write the code to make the test

case pass. Use these test cases as data to train AI models. AI enables a system to learn

from data rather than through explicit programming. Algorithms ingest training data and

produce models based on the test cases and test data; similarly, you can use hypotheses

and behavior to train AI models.

 AI-Driven Methodology
As shown in Figure 15-2, the AI methodology focuses on identifying use cases and

piloting, and it industrializes the AI implementation. It enables bringing all AI projects

and execution together with lightweight deliverables and a flexibility of agile practices in

an AI environment.

Chapter 15 aI-DrIven Development

563

 AI Use Cases
AI uses are identified by synthesizing various perspectives from the external research

organization, brainstorming workshops, and stakeholder discussions.

• Opportunities can be adapted from well-established AI use cases

from different industries.

• Discuss with respective stakeholders the opportunities to apply AI to

solve some of its pain points.

You can use these sample questions during your discussion with stakeholders:

• What are your challenges that you wish you could spend less

time on?

• What are some repetitive tasks that you and your team do daily?

• Have you identified any AI use cases?

• What types of data do you think you have that no one else does?

Deploy
ReleaseConfirm

Sprint
Management

evaluate

AI Use Case

AI Value Iden�fica�on

AI Pilot

AI Architecture

da
ta

refinem
ent

Pilot Execu�on & Deployment

AI Project Execu�onDiscovery & Pilo�ng

Roadmap

AI Methodology

Pilot Opera�on Sprint 0

Sprint n

Deploy & Industrialize

Figure 15-2. AI-driven methodology

Chapter 15 aI-DrIven Development

564

 Discovery and Piloting
In the AI value identification process, you will understand the goals of AI and

expectations, analyze the use cases, and select the relevant AI technologies and

algorithms. You’ll create a prototype and prepare a benefit-cost analysis with critical

success factors. You’ll fine-tune the AI architecture and algorithms during the discovery

and piloting phase.

During the analysis of the use case, schedule a workshop with stakeholders to

understand the goals and objectives and to collect metrics and data requirements. Data

needs to be gathered and analyzed in order to model specific prioritized use cases. The

success of AI will be based on the quality of data collection.

Based on the list of requirements and use cases, the next step is to assess the right

algorithm and technology. During this phase of development, the critical factor is to

identify the right algorithm and technologies. After reviewing the use cases, list the

detailed tasks and functionalities that need to be implemented with AI. Decide on the

type of algorithm you would like to apply.

• Supervised learning: The computer makes a prediction based on

general rules for mapping inputs and outputs, and the model is

trained from a set of labeled data.

• Unsupervised learning: No labeled data is given to the learning

algorithm, leaving it on its own to find structure in its input.

• Reinforcement learning: The computer interacts with a dynamic

environment in which it must perform certain goals.

When choosing an algorithm, you need to understand some extra features for the

algorithms, such as accuracy, training time, linearity, and number of parameters.

Once you have finalized these steps, the next step is to create a proof of concept

(PoC) by leveraging the AI technology and algorithm. Once the PoC is ready, create

a benefits case for industrialization. In the piloting phase, train and test the AI

technologies. During this time, the model strength need to be captured in terms of

parameters like accuracy, precision, and recall. This might differ for various algorithms.

For example, linear regression gives the model strength in terms of the R-Squared and

adjusted R-Squared values.

Once the PoC is accepted, you need to create a roadmap to outline the key initiatives

required to support industrialization.

Chapter 15 aI-DrIven Development

565

 AI Project Execution
The sprint management discipline involves executing user stories and tasks and

tracking their progress. Generally, you will follow a similar approach as a normal agile

methodology like grooming user stories for sprints, creating a user story backlog, daily

standups with sprint team and, end of sprint demonstration, etc.

 Deploy and Industrialize
Based on the type of use case, you need to opt for end-to-end testing and full

deployment activities at the end of each sprint. During the deploy process, you execute

an end-to-end DevOps process. During the process, you develop the AI code, execute

tests, and deploy and industrialize the use cases.

 AI and ML in DevOps
In the new age, modern technologies like cloud native bring considerable change and

complexity to how modern systems are created and released. These systems require

more than agile; they need to be adaptive and capable of responding dynamically to

frequently changing conditions. Automation in regular DevOps is limited to scripting

and orchestration. Such scripts sometimes create a bottleneck, and the application and

environment can change rapidly. As shown in Figure 15-3, you need automation that

can adapt dynamically, is testable, and can self-heal based on the requirements. The

automation solution needs to be able to look at past data, keep learning from recent

data, and make flexible, intelligent forecasts about the right course of action.

Checking enormous quantities of information to find an important problem as part

of a daily routine is time-consuming. Here, AI can play a significant role in processing,

evaluating, and making instant decisions that can take a human hours.

ML Algorithm
Template

ML Model
Development

ML Model
Parallel

experiments

ML Model
Valida�on

ML Model
Management

ML Pipeline

ML Model Data
Collec�on

Figure 15-3. ML model pipeline

Chapter 15 aI-DrIven Development

566

AI and ML integrations can power DevOps by automating routine and repeatable

tasks, offering enhanced effectiveness, and minimizing the time spent on procedure

code, test, and delivery.

The following types of automation are defined as part of AI in DevOps. There are

many ways you can use AI and ML in your software engineering lifecycle.

• The solution that helps in requirements: These kinds of standard tools

help to advance requirements engineering by applying AI.

• The solution that helps engineers: This kind of standard tool helps

engineers in programming and reviewing the code.

• The solution that does quality checks: With a detailed evaluation of

testing outputs, AI performs efficient quality results, and these kinds

of standard tools help to solve the authoring, initialization, and

generation of automated testing.

• Environment management: Improve the range of automation in an

environment, including automating many routines and repeatable

jobs, using resources, and predicting the load on containers.

• Early discovery: AI tools can provide the operations teams with

the ability to detect an issue at an early stage and ensure faster

response time.

 AI and ML in Code Management
In your day-to-day development, you might have to use static analysis tools to identify

problems in your code. The overall effectiveness of these tools is based on the quality

and number of rules configured in them. Many companies are working on AI-enabled

tools that provide greater and deeper analysis.

 Source Code Progress

Git and Bitbucket are source code tools. Applying ML to them addresses the

irregularities around code quantities, long construct times, delays in check-ins, improper

resourcing, etc.

Chapter 15 aI-DrIven Development

567

DeepCode.AI

DeepCode is an AI-powered programming tool that works as a coding assistant for

software development projects. This tool is trained with a massive volume of data with

approximately 250,000 coding rules assessed from both public and private repositories.

Based on the trained rules and context, the tool suggests to engineers how to fix the

code. Along with the suggestion, it warns the engineers about critical vulnerabilities you

need to solve in your code. It learns during the usage of the tool and makes suggestions

instantly during the code review. This online tool connects to your repository in GitHub,

GitLab, or Bitbucket, via either a private or public repository.

DeepCode is based on custom AI and semantic analysis techniques that were

specially designed to learn the rules and information from the cloud.

Static code analysis tools require additional capabilities to find vulnerabilities in

code, but AI-enabled tools don’t require an understanding of the deep code analysis to

identify vulnerabilities and also learn during the analysis. DeepCode is a combination of

static analysis and custom machine learning algorithms.

Unlike static code analysis tools, it does not rely on manually hard-coded rules,

but learns automatically from data and uses the pre-defined business rules to analyze

the program. This concept of never-ending learning enables the system to constantly

improve with more data, without supervision.

Codota

Codota is AI completion for your Java code in an IDE. It learns as you are writing code

to help you code better. It is using AI and ML learnings and gives relevant suggestions

to complete the code. It gives suggestions based on a model trained on millions of open

source Java programs, which are then modified based on the code you are currently

working on.

Codota is available for IntelliJ, Android Studios, and Eclipse and you integrate as

a plug-in. Codota learned from millions of program lines. With this learning, this tool

completes lines of code based on your context, which helps you to code faster with fewer

errors. It uses the context of the code you are writing as a required input. If you are in

a dilemma to find the best code for your program, this tool is capable of suggesting the

best way to complete the code.

Figure 15-4 and Figure 15-5 show the code snippets from Eclipse when using Codota.

Chapter 15 aI-DrIven Development

568

Figure 15-4. Codota suggestion for URL connection

Figure 15-5. Codota suggestion for while loop

Chapter 15 aI-DrIven Development

569

The following are the benefits of Codota:

• Code faster: Codota helps find a reliable code prediction based on an

AI-learned code pattern.

• Prevent error: ML algorithms detect the code’s intent, not just syntax

mistakes.

• Discover code: Expand your knowledge and reveal a new and efficient

way to leverage open source code.

These are the drawbacks of Codota:

• Code secure: Codota sends minimal information on the application’s

local context, and the scope is limited to the code that you are

currently editing. It doesn’t send full blocks of code outside of your

IDE. It sends class names, variable names, and methods that are

invoked in secured communication, and it does not use your code to

train models.

 Quality Checks

ML performs efficient quality assessment results and builds test pattern libraries based

on the identification of bugs. This helps the team to evaluate results on every launch and

thus improves the quality of the application delivered.

Testim.io is a cloud platform that uses AI for fast authoring, execution, and

maintenance of automated tests. This tool supports a few test types like end-to-end

testing, functional testing, and UI testing. This tool easily identifies any changes like ID

names or attributes in a UI by using AI in real time. This tool integrates with the DevOps

pipeline, capturing the logs of tests and screenshots of test runs, and provides detailed

reporting on test runs.

 Continuous Feedback

One of the main properties of DevOps is the use of continuous feedback loops at every

stage of the process. This includes using the monitoring tools, quality checks tools, etc.

ML is already providing detailed monitoring details including performance metrics, log

files, and other types. Applying ML in this space will help to identify patterns easily.

Chapter 15 aI-DrIven Development

570

 Kubeflow

Kubeflow is the ML toolkit of Kubernetes. It progressively releases containerized AI

microservices over Kubernetes orchestration. It provides a framework-agnostic pipeline

for making AI microservices production-ready across multicloud environments. It

streamlines the creation of production-ready AI microservices and makes certain the

flexibility of containerized AI apps among Kubernetes clusters.

 Alert Monitoring

AI and ML can manage the monitoring alerts in the systems. The AI-based tools learn

and predict the problems of the system and alert proactively.

 Summary
This chapter provided you with an overview of the end-to-end design, development, and

delivery of AI projects. It provided insight into AI requirements and architecture, design,

and principles, and we covered best practices. The chapter also covered the details of

what methodologies you need to develop AI projects and how to automate the delivery

pipeline.

Governance is the most important part of AI projects. Without proper governance,

your projects may fail. Therefore, I provided insight into how to govern, manage, and

measure your AI projects.

Finally, I provided details about AI-based development, test, and delivery tools to

accelerate normal cloud native projects.

Chapter 15 aI-DrIven Development

PART V

Cloud Native
Infrastructure

573
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_16

CHAPTER 16

Containerization
and Virtualization
So far, you have learned to design and develop cloud native services from the functional

and nonfunctional perspectives. In this chapter, you will learn more about deploying and

running your developed binaries.

Infrastructure is all about the software and hardware that supports your applications.

This includes data centers, operating systems, networks, automation, security, and the

system needed to support the lifecycle of an application.

In this chapter, I will explain the details of running your services in a cloud

environment with virtualization, containerization, and orchestration.

IaaS is driven by virtualization; it enables multiple operating systems with different

configurations to run on a physical machine. The software layer in a VM is a hypervisor,

which is required to run the VM on a system. This hypervisor controls all the hardware

resources and can move resources from one VM to another depending on the needs. In

this chapter, I will explain how some of the systems need to run on VMs and how they

are useful in cloud native elements.

Containerization has become a de facto companion to virtualization for

cloud native application services. It involves encapsulating software code and all its

runtime dependencies so that the software can run uniformly and consistently on any

infrastructure. It allows you to develop and deploy your services quickly and securely.

In this chapter, I will cover how you can adopt containerization to run your services.

Containers require operational best practices; however, Kubernetes works as an

orchestrator for your containerized applications to manage, scale, and schedule. It helps

you fully implement container-based infrastructure in a production environment for

your cloud native services. In this chapter, I will cover Kubernetes features, secrets, and

configuration with monitoring and deployment.

https://doi.org/10.1007/978-1-4842-7226-8_16#DOI

574

In addition, I will cover the details of containers and how cloud native applications

are deployed in containers and in the Kubernetes environment.

• What applications and services are commonly virtualized?

• Cloud native and virtualization

• Container principles and patterns

• Best practices for adopting containers

• Container as a service (CaaS)

• Kubernetes principles and patterns

• How does Kubernetes solve common cloud native problems?

• Scaling your cloud native application

• Kubernetes as a service (KaaS)

• Observability and metrics on Kubernetes

• The stateful workload on Kubernetes

 Introduction
Cloud native infrastructure is a requirement to effectively run cloud native applications.

Without the right design and practices to manage infrastructure, even the best-designed

cloud native services can create issues; therefore, you need to provide equal importance

in designing your infrastructure.

Before providing more insight on how to build infrastructure for cloud native, you

need to understand how you got where you are.

To execute your cloud native application on the cloud, you can produce value faster

and focus on your business objectives. Developing only what you need to create your

system and consuming services from cloud providers, keep your lead time small and

agility high.

The ephemeral nature of cloud services demands automated development

workflows that can be deployed as needed. The services must be designed with

infrastructure ambiguity in mind. This has led engineers to rely on infrastructures

like VMs, containers, and Kubernetes without having to worry about the underlying

resources.

Chapter 16 Containerization and Virtualization

575

Containerization is a mature technology and adopts rapid changes in the way the

services test and run application instances on the cloud. Containerization provides a less

resource-intensive alternative to running an application on VMs because containers can

share computational resources and memory without requiring a full operating system

to underpin each application. Containers house all the runtime components that are

necessary to execute an application in an isolated environment including configuration,

libraries, etc.

All the major cloud providers offer a container as a service (CaaS) model that

manages containers on a large scale, including starting, stopping, scaling, and

organizing container workloads. CaaS offers both individual containers without

orchestration capabilities and full-featured orchestration like Kubernetes. AWS offers

the Amazon Elastic Container Service and Kubernetes services, Azure offers the Azure

container and Kubernetes service, and Google offers the Kubernetes engine.

According to a Cloud Native Computing Foundation (CNCF) survey, in 2020,

92 percent of organizations surveyed used Docker containers, and 83 percent used

Kubernetes for orchestration. This survey shows the overwhelming adoption of

containers and Kubernetes for cloud native architecture.

Kubernetes is an open source orchestration engine developed by Google for

managing cloud native services on containers across distributed cluster nodes. It

provides a highly resilient infrastructure, provides automatic rollback, is highly scalable,

and offers the self-healing of containers. The main objective of Kubernetes is to hide the

complexity of managing a cluster of containers by providing APIs for configuration.

Bare-bones Kubernetes is not enough for production applications, because you

need key services such as cluster monitoring and logging, reserved compute resources,

heartbeats, election timeout, regular etcd backups, etc.

Kubernetes is not only for containers; you can use it for VMs too. In 2019, VMware

started supporting Kubernetes as part of vSphere, which includes an ESXi hypervisor.

Now it is possible to run containers on ESXi.

Kubernetes as a service (KaaS) is offered by various cloud providers as a managed

service. The KaaS services are Google Kubernetes Engine (GKE), Amazon Elastic

Kubernetes Service (EKS), Azure Kubernetes Service (AKS), Red Hat OpenShift, VMware

Tanzu, and Docker EE. These services manage Kubernetes for deploying, managing, and

maintaining clusters. Each managed service offers customized benefits.

Chapter 16 Containerization and Virtualization

576

Cloud native integrates cloud computing technologies and enterprise management

methods, enabling enterprises to migrate services to cloud platforms more efficiently

and quickly.

Cloud native infrastructure is not a solution for every problem; it is your

responsibility to know if it is the right solution for your system environment.

 What Is Cloud Native Infrastructure?
Cloud native infrastructure not only runs your applications in cloud infrastructure but

does much more than that. The procedure to use IaaS is no different than running virtual

servers on your data center.

You may think that because you have developed your services with microservices

principles, used DevSecOps, and deployed in containers and orchestrator, this is cloud

native. However, that is not correct. This is not the entire cloud native story. It is the first

step, but still, there is a lot of work to be done to adhere to cloud native principles.

Cloud native is not just about running your services in containers and implementing

Kubernetes orchestration. For example, Netflix runs all its services in VMs, not

containers. You can’t achieve the “-ilities” by packaging your services into microservices

by just using the DevSecOps pipeline and infrastructure as code, which defines the

automation for your infrastructure in a domain-specific language (DSL). Again, cloud

native is not just about automation, services, and container in an infrastructure.

Cloud native is about the combination of all the mentioned technologies with

well-designed infrastructure to solve technical and business problems. Cloud native

applications do not directly benefit from IaaS; they run in a cloud environment with

mostly autonomous systems.

As shown in Figure 16-1, the cloud native infrastructure creates a platform on top

of IaaS that provides autonomous application lifecycle management. The platform

is created on top of dynamic infrastructure to abstract away from individual servers,

storage, etc., and it promotes dynamic resource allocation and configuration.

Chapter 16 Containerization and Virtualization

577

I will explore how cloud native infrastructure is different by looking at the processes

to deploy, manage, test, and operate infrastructure in subsequent sections.

 Cloud Native Environment Characteristics
As I mentioned, simply having a virtualized environment does not equate to being

fully cloud native. According to the National Institute of Standards Technology (NIST),

a cloud native environment should have all the following characteristics. You should

embrace all these characteristics to be truly cloud native.

• On-demand service

• Broad network access

• Elasticity

• Virtualized environment

• Pay-per-use model

• Policy as code

• Resource pooling

Infrastructure as a Service (IaaS)

Cloud Native Infrastructure

Item
Service

Catalog
Service

Product
Service

Cart
Service

Figure 16-1. Cloud native infrastructure

Chapter 16 Containerization and Virtualization

578

 Cloud Virtualization
The main enabling technology for cloud computing is virtualization. Virtualization

separates a physical computing device into one or more virtual devices, each of which

can be used to perform separate computing tasks.

Virtualization is a technique that allows the sharing single physical instances

through multiple copies of instances. It is the creation of virtual servers, desktops,

storage, networks, etc. Cloud virtualization mainly deals with server virtualization.

Cloud infrastructure can contain a variety of bare-metal, virtualization, or container

software that can be used to scale and share resources across a network to create a cloud.

At the base, cloud computing runs on a stable operating system like Linux or Windows.

Virtualization software called a hypervisor is required to run virtual machines on a

system. The hypervisor controls all the hardware resources and can take resources from

one VM to another VM depending on the needs. The hypervisor always manages the

states of all the VMs.

The cloud providers add management and automation layers for administrative

control over infrastructure, platform, applications, and data, and they reduce human

interaction for a repeatable process. Virtualization in a cloud provides agility and

reduces the cost by increasing infrastructure utilization.

The cloud provides the added benefits of autoscaling, self-service access, and

dynamic resource pooling, which is distinguished from normal virtualization.

 How Does Virtualization Work?
Virtualization plays an important role in the cloud. The virtual machines are required

to share the infrastructure across users. There are two types of hypervisors, and these

hypervisors run the virtual machines as guests.

• Hypervisors run directly on the system hardware. This is a bare-

metal, embedded hypervisor.

• Hypervisors run on a host operating system that provides

virtualization services, such as I/O support and memory

management.

Chapter 16 Containerization and Virtualization

579

Each vendor provides its own hypervisors like VMware ESX and ESXi, Microsoft

Hyper-V, Citrix Xen Server, Oracle VM Virtual Box, Red Hat Enterprise Virtualization,

KVM, etc.

As shown in Figure 16-2, a hypervisor is the software that creates VMs and then

manages the allocation of resources to them. VMs are infrastructure resources set up to

use the resources of the host hardware. You can divide these resources to accommodate

the necessary virtual machines as guests such as a server with 100GB RAM available and

a Linux OS. If you want to virtualize hardware to run your application, you can create

VMs and use a hypervisor to manage the resources of the server, like one VM is allocated

25 GB of RAM, etc. A hypervisor virtualizes the server and manages all of them in one

physical server, so each VMs operates efficiently.

 Types of Virtualization in the Cloud
The cloud computing model depends on virtualization. By virtualizing a server, storage,

network, and other physical data center resource, cloud providers can offer a range of

services to users including IaaS, PaaS, and SaaS.

Virtualization is widely applied to several concepts including the following:

• Server virtualization: With server virtualization, one physical

machine is divided into many virtual servers.

Physical Server

Operating System (OS)

Application

Infrastructure

Operating System (OS)

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Application Application Application

VM2 VM3VM1

Bare Metal Server

Virtual Machine Architecture

Figure 16-2. Cloud virtualization

Chapter 16 Containerization and Virtualization

580

• Desktop virtualization: This creates multiple desktop operating

systems, each in its VM on the same computer. One VM can be

Windows, and the other can be Linux.

• Network virtualization: With this physical resource of a network, create

different virtual networks that work independently of each other.

• Storage virtualization: This enables all storage devices on the

network like server storage and stand-alone storage. It clusters

all block storage into a single shared pool from which they can be

assigned to any VMs on the network.

There are many virtualization techniques are available for application, data, data

center, CPU, and GPU. Virtualization provides numerous benefits other than just

resource isolation. This makes up the technology for IaaS. The following are some of the

benefits of virtualization:

• It treats disks of VMs as files that can be snapshotted for quick backup

and restore.

• It can be easily migrated and relocated if the machine requires any

maintenance.

• It’s easy to expand resources such as CPU, memory, etc.

 What Applications and Services Are Commonly
Virtualized?
Virtualization is a foundational component in the cloud and serves as the underlying

infrastructure for cloud native applications. According to IDC, more than 80 percent of

workloads are virtualized today. With virtualization, you can improve efficiency, free up

resources, and enhance security. Cloud vendors provide agile, fast, and cost-effective

virtualization solutions.

Cloud vendors provide various types of customizable VMs that let you create and

run virtual machines on a cloud infrastructure. Organization will want to run VMs in

the cloud such as Google’s Compute Engine, AWS’s EC2, and Azure’s Virtual Machine.

They offer multiple machine families to choose from, each suited for specific use

cases. Table 16-1 describes the major virtual machine solutions from the major cloud

providers, as of this writing.

Chapter 16 Containerization and Virtualization

581

Table 16-1. Virtual Machine Comparison Across Cloud Providers

VIRTUAL
MACHINES

GCP AWS AZURE

GENERAL
PURPOSE

this configuration

has a lower price and

lower performance and

is suitable for most

workloads including

database, nonproduction

environment, web

application, etc.

this configuration is

general-purpose and

provides a balance of

computing, memory, and

networking resources that

can be used for general

common workloads.

this configuration is a

general-purpose ideal

for the nonproduction

environments and low and

medium levels of traffic.

COMPUTER
OPTIMIZED

this configuration is for

most compute-intensive

workloads and suitable

for game servers, iot use

cases, etc.

this configuration is for

more compute-bound

applications with high-

performance processors

and is suitable for batch

processing, gaming

servers, scientific

modeling, etc.

this configuration is

designed for a high

Cpu-to-memory ratio

and is suitable for batch

processes, network

appliances, etc.

MEMORY-
OPTIMIZED

this configuration is

required for memory-

intensive operations such

as real-time analytics etc.

this configuration

is designed for fast

performance for

workloads that process

large data sets in memory

and is suitable for iot,

high-performance dBs,

etc.

this configuration is

designed for high memory

to Cpu ratio and is suitable

for databases, distributed

caching, and in-memory

analytics.

ACCELERATOR
OPTIMIZED

this is for complex

configurations like 16

Gpus in a single VM and

is suitable for machine

learning training and

interfaces.

na

(continued)

Chapter 16 Containerization and Virtualization

582

 Cloud Native and Virtual Machines
Developing and delivering systems keeps your organization more competitive. To do so,

many organizations have adopted cloud native services with containers and Kubernetes.

In IT, you cannot develop an isolated system; you require access to legacy technologies

for any existing transaction. This is reality. Where are these applications run? How do

you handle these applications that require VMs without complicating the management

of virtualization and containers?

Table 16-1. (continued)

VIRTUAL
MACHINES

GCP AWS AZURE

STORAGE
OPTIMIZE

na this configuration is

designed for workloads

that require high,

sequential read and write

access to very large data

sets on local storage.

this configuration is

designed for high disk

throughput and iot and is

ideal for databases, etc.

GPU na na this family of VMs is

specialized and suitable

for graphic rendering

and video editing, Ml

processing, etc.

HIGH-
PERFORMANCE
COMPUTE

na na this family is the fastest

and most powerful

Cpu with optional high

throughput network

interfaces and suitable

for weather modeling,

reservoir simulation, digital

twin, etc.

Chapter 16 Containerization and Virtualization

583

The VMs cannot be easily containerized with cloud native architecture. Some tools

like KubeVirt and cloud native VMs (CNVM) reimagine VMs in Kubernetes. You can

use your existing Kubernetes tools to natively manage VMs or convert those workloads

into a container. This gives a flexible environment for a cloud native application. The

cloud native VM is a VM inside a container.

For example, the Red Hat OpenShift virtualization solution supports

containerized applications faster by hosting VM-based systems on the same platform

as container- based applications. This supports the division of the existing system as

well as the continued use of existing virtualized applications by managing virtualized

systems and containerized services as part of single application deployment.

OpenShift virtualization is enabled for a Red Hat OpenShift cluster; you can create

and add virtualized applications to your project in the same way as containerized

applications. This enables VMs to run in parallel on the same Red Hat OpenShift

nodes as a traditional system container.

 Containerization
Cloud native applications are distributed in nature and utilize cloud infrastructure.

Numerous techniques and tools are used to implement cloud native applications,

but from a computing perspective, cloud native application uses mainly containers.

Containerization became a de facto standard for cloud native systems as an alternative

to VMs.

As shown in Figure 16-3, the container is a technology that allows you to incorporate

and configure your binaries and their dependencies in a package called an image. This

image can be used to spawn an instance of your services: a container.

The services image in a container is abstracted from the environment in which

services are executed. This abstraction allows cloud native-based services to be

deployed easily and consistently across all environments, regardless of private, public, or

hybrid environments. Container architecture provides a clean separation, as engineers

can focus on a service’s business logic and dependencies.

If you compare containers with VMs, as mentioned, the guest OS runs on top

of a host OS with virtualized access to the underlying infrastructure. Like the VM,

the container allows you to package your services together with binaries and other

dependencies, providing an isolated environment for running your cluster of services.

Containers provide a more lightweight architecture to work with and with more benefits.

Chapter 16 Containerization and Virtualization

584

The containers are virtualized at the OS level, with multiple containers running

atop the OS kernel directly unlike VMs virtualization at the hardware level. This makes

a container more lightweight and allows it to share the OS kernel, start much faster, and

use a fraction of the memory compared to booting the entire OS.

Linux Containers (LXC) was created by engineers from IBM around 2008 and is

layered with some tooling on top of cgroups and namespaces. LXC works on a single

Linux kernel without requiring any patches. LXC 1.0 was released around early 2014

and leveraged longstanding security technologies. In 2013, Docker emerged, and the

container exploded in popularity and usage. Initially, Docker was built on top of LXC

containers.

After the importance of cloud native services grew, the industry saw containerization

become a foundation for modern software infrastructure. Research firm Gartner predicts

that by 2022 more than 75 percent of global organizations will be running containerized

applications in production.

 What Is a Container Image?
A container image provides packaging and isolation of your services, as shown in

Figure 16-4. The following are the few characteristics of a container image.

Infrastructure

Operating System (OS)

Container Runtime

Container 2 Container 3

Bins/Libs Bins/Libs Bins/Libs

Container1

Item
Service

Product
service

Catalog
Service

Figure 16-3. Container architecture

Chapter 16 Containerization and Virtualization

585

• A container image is immutable, and once it is built, it does not

change; it is configured.

• A container image is a unit of domain functionality that addresses a

single concern.

• A container image is owned by one agile pod team and has its release

cycle.

• A container image is self-contained and defines and carries its

runtime dependencies.

• A container image has well-defined structure APIs.

• A container image is disposable and safe to scale in and out.

• A container image is self-healing capability.

• A container image is stateless and is modular.

A container image provides a single unit of functionality, belongs to a single team,

has an independent release cycle, and provides deployment and runtime isolation. Most

of the time, one cloud native service corresponds to one image.

 Container Architecture
Docker is open source and the most popular container technology; it’s a containerization

engine that works with most of the popular products.

APIs

Organized around domain
functionality

Cross Functional Teams with Agile
Pod and owns one cloud native

service

Source Code
Management (SCM)

Container

Well defined APIs

Run�me
dependencies

Container

Run�me
dependencies

Container

Run�me
dependencies

Auto scaled Payment Processing in a container

Container

Run�me
dependencies

APIs

Load on Payment Service

Payment Service

Payment Service

Payment Service

Payment Service

CI/CD Pipeline

DevOps
Engineer

Deployed on container

Quality
EngineerDomain

Expert

Scrum
Master

Cloud
Engineer

UI/UX
Engineer

API
Developer

DeveloperPOD
Architect

Figure 16-4. Container image characteristics

Chapter 16 Containerization and Virtualization

586

Docker uses the client-server architecture paradigm, as depicted in Figure 16-5. The

client talks to the server, which does most of the work like the application client-server

architecture. The client is the Docker client, and the server is the Docker daemon. The

daemon builds, runs, and distributes Docker containers.

The Docker client and host/server communicate using REST APIs over a socket or

a network interface. The Docker daemon provides a list of services through REST APIs.

It listens to APIs and manages objects such as images, containers and networks, and

volumes. One daemon can also communicate with another daemon to manage cloud

native services.

The client is like a user interface. It is the primary interaction point for external

users for configuration, using commands. For example, the client sends commands to

the daemon over the APIs of multiple daemons in a cluster. The client can reside on the

same host as the daemon or on a remote host.

A registry stores an image. For this, you can configure your private registry or Docker-

provided registry called a hub. With the docker pull or docker run command, the

required images are pulled from your configured registry. The docker push command

pushes the images into your registry.

The image is a read-only template with instructions for creating Docker

containers. For example, an image is your service with a Tomcat server and additional

configurations.

The container is a runnable instance of your image. You can create, start, stop, move,

or delete by using the REST APIs or command-line interface (CLI). The containers are

isolated each other in the host server.

Docker build

Docker pull

Docker run

Client

Docker daemon

Docker pull

Host/Server

Containers

Docker
pull

Images

RegistryREST API

REST APIs CLI

Figure 16-5. Container architecture

Chapter 16 Containerization and Virtualization

587

 Container Principles
Today the container ecosystem has matured and has diverse and rich tooling that solves

new and large-scale problems such as container orchestration, scalability, failure, high

availability, cloud native service lifecycle management, and observability. It is not easy

to achieve a production-ready large-scale deployment with thousands of cloud native

services. The following principles and best practices help you to manage the container

cloud native infrastructure effectively. Many of the practices are inspired by the 12-factor

methodology, which is a standard way to develop a cloud native service.

The containerized application requires some principles to execute in a runtime

container environment. With these principles, you will ensure that the container

architecture is well designed to run services. The following are the principles; you can

find details in Chapter 3:

Single-Container Principle (SCP)

In a cloud native architecture, SCP is about having a higher level

of abstraction than responsibility. The single concern enables

every microservice and container to address a single concern. SCP

means every container must address a single concern with the

cloud native service architecture style.

High-Observability Principle (HOP)

Observability is a measure of how well internal states of

microservices can be derived from external outputs.

Lifecycle Conformance Principle (LCP)

LCP means that a container should have a way to read the events

coming from the platform and conform by reacting to those

events. All kinds of events are available for managing platforms

that are intended to help you to manage the lifecycle of the

container and cloud native services, based on all types of available

events; it is up to you to decide which events to handle and

whether to react to those events.

Chapter 16 Containerization and Virtualization

588

Image Immutability Principle (IIP)

IIP means an image is unchangeable once it is built and requires

creating a new image if changes need to be made. You need to

store the configuration and variables external to the container. For

each image change, you need to build a new image and reuse it

across various environments in your development lifecycle.

Process Disposability Principle (PDP)

PDP is a container runtime principle and states applications must

be ephemeral as possible and ready to be replaced with container

instances at any point of time by using infrastructure as code.

Self-Containment Principle (SCP)

SCP addresses the build-time concern, and the objective of this

principle is that the container must contain everything that it

needs at build time. The container relies on the presence of the

Linux kernel or Windows silos and any additional libraries.

Runtime Confinement Principle (RCP)

RCP states that every container should declare its resource

requirements and pass that information to the hosted platform.

 Container Patterns
The following are a few best practices for making a container easier to design and

operate. These practices cover a wide range of topics including security, monitoring, etc.

These best practices are not always applicable in all business scenarios; choose the best

one depending on the problem domain and business cases.

Container Security

Security must be built along with the DevSecOps pipeline throughout its lifecycle and

there are a variety of tools available in the industry for managing container security.

These tools can be used to scan a container, access a container cluster or vulnerabilities

in images, and more.

Chapter 16 Containerization and Virtualization

589

The containers are well placed with process isolation, meaning user namespaces and

resource encapsulation with cgroups reduce the attack vector to provide a protection.

The container image needs to be well-constructed with security guidelines because these

are the components that are eventually running your application. If there are security

vulnerabilities packed into the container image as it’s built, you increase the risk and

potential severity of issues that will happen in production. The container security is not one

concern; it spans pod teams, and there is an array of security layers that apply to containers:

• The container image and the libraries inside

• The interaction between containers and the host OS, both inbound

and outbound

• Networking and storage

• Security at runtime, Kubernetes cluster

Alcide, Clair, WhiteSource, and Portshift are a few tools that help you to manage

security in a container.

Logging Mechanism

Logs are an integral part of a system lifecycle and contain precious information about the

events. Containers offer an easy and standardize a way to handle logs by using stdout

and stderr. As shown in Figure 16-6, a container captures these logs and accesses them

using Docker logs.

You can use a log collector like Fluentd, Fluent Bit, etc., to collect data and send it to

log management services like ELK in your application landscape.

Container A

Service A Service B Service C

Host Systems

Log
Collector

Write Logs

Read Logs

Log Management
Service

Container B Container C

Figure 16-6. Log management in a container

Chapter 16 Containerization and Virtualization

590

Stateless

When you are designing your containers, don’t treat them as a normal traditional server.

For example, you might follow old practices like updating services on the running

container. Don’t do this. The containers are not designed to work this way. Always retire

existing containers and create a new one. Follow either rolling deployment or blue-green

deployment. Containers are designed to be stateless and immutable. Always store the state

outside of your containers like in databases or any other storage event for user session also.

The stateful sessions are not best for cloud native services. When the consumer

references a state on the server, the consumer opens a lot of incomplete sessions, and

transactions happen. In the stateful system, the state is calculated by the client. This

leaves the connection open and is difficult to verify the connections.

The stateless request issues a recent message in any ecommerce applications or

social media. The response is independent of any server state.

• Rolling deployment: This deployment strategy slowly replaces

previous versions of service with new versions of the service by

completely replacing the container on which your service is running.

For example, if the pod team updates an item service, then the

container running the previous item service will be replaced by the

new version of the service.

• Blue/breen deployment: This uses two identical containers in a

separate environment, while the production environment uses

one active environment. You can update the other environment

without interrupting the active environment. Then, when another is

environment ready, you route your request to another environment.

Rolling deployment is faster than blue/green deployment. Unlike blue/green, the

rolling deployment does not have any isolation environment. This allows a rolling

deployment more quickly, increases risk, and complicates the process of a rollback if

the deployment fails. For successful rolling deployment, you need to have well-defined

automation with continuous deployment and infrastructure as code.

Chapter 16 Containerization and Virtualization

591

Immutable

Immutable means containers won’t be modified during their lifetime, with no updates,

no patches, or even no configuration changes. If you want any modifications, kill the

existing container, and create a new one. Immutability makes deployment safer and

more repeatable. If you want to remove the existing image, just roll back and redeploy

with another image. This helps you to maintain uniformity across environments. To

use the same container images across the environment, like from development to

production environment, suggest externalizing the configuration.

Privileged Containers

If your application uses the root user, then avoid it. If your services are compromised, an

attacker would have full access to them. Therefore, avoid using privileged containers. A

privileged container has access to all the devices of your environment, bypassing almost all

the security features. Suggest giving specific capabilities to the container through security

context options like the –cap-add flag of Docker. If you need to modify the host settings, then

those details make it separate by using the init or sidecar pattern, as explained in Chapter 4.

Monitoring

Like logging, monitoring is an integral part of your system. In many ways, monitoring

containerized applications follow the same process as logging. However, the containers

are short-lived; you cannot add monitoring configuration within the containers. While

designing and monitoring, separate black box and white box monitoring. Black box

monitoring examines your application from outside. It is able to provide details about

the audience because it is outside of the infrastructure. White box monitoring examining

your services with privileged access and gathers metrics on its behavior that the users

cannot view. You can configure various tools like Prometheus to capture these details.

Running Container as Root

Containers provide isolation. With container default settings, a process inside a container

cannot access information from the host machine or other peer containers. Because

containers share the kernel of the host machine, the isolation isn’t complete as it is with

VMs. An attacker could find unknown vulnerabilities that would allow the attacker to

escape from a container. To avoid this, do not run processes as root inside containers.

Chapter 16 Containerization and Virtualization

592

Image Version

Always tag a version of the image you are using. Suggest using the “recent” tag, which

can be moved from image to image.

Container Networking

The portability and short lifecycle of containers eliminate manual configuration and

externalization configuration and leverage the network automation capabilities of your

container orchestration.

Container Lifecycle Management

Containers are short-lived, and their lifecycle must be managed carefully by using

automation.

 Container Benefits
The containerization of an application brings many benefits including the following:

• Agility and productivity: It brings well-streamlined and accelerated

development and improved consistency across the environment with

the right best practices.

• Fine-grained resilience: It offers isolated deployments of the highly

available components with no single point of failure.

• Portability: Containers can be deployed on any cloud provider and in

their own data centers.

• Security: It offers improved security by isolating applications from the

host system and each other.

• Scalability: Dynamic scaling and orchestration with the use of

Kubernetes provides more robust for transaction spikes.

• Edge level of networks: Containers are beneficial at the edge level of

networks. At the edge levels of networks, low latency, resiliency, and

portability requirements are significant.

• Machine learning models: Containers benefit ML models where a

problem can be separated into a small set of tasks.

Chapter 16 Containerization and Virtualization

593

• Cost: A container doesn’t require a full guest OS and hypervisor and

the container has only faster boot times, smaller memory footprints,

and generally better performance. This helps trim cost.

 Container Adoption Best Practices
The following are the best practices that are required to adopt for containerization:

• Use fine-grained components: The smaller the unit, the easier it is to

manage and orchestrate. Break your components into fine-grained

single responsibility units.

• Use disposable components: Always design and build stateless and

lightweight containers. This enables the easy to manage, easy to

create, and easy to destroy.

• Implement container security: Implement security measures and

policies across the entire container environment including container

images, hosts, config files, registries, etc.

• Implement container with orchestration: For efficient management of

a large number of containers, adopt platform orchestration.

• Automate the pipeline: Implement automation in every lifecycle

of software engineering including the DevSecOps pipeline and

infrastructure as code.

• Agility: Implement agility to help pod teams improve the

development lifecycle and move faster to market.

 Containers in an Enterprise
The following are the key considerations when you are deploying containers on a large

scale in an enterprise:

Technology Disruption

The container deployment is complex; you need to properly build,

configure, deploy, manage, monitor, and update in a production

environment. To achieve this, you need a series of tools and

culture. However, most tools are third party and are constantly

Chapter 16 Containerization and Virtualization

594

evolving. When tools evolve, you and your team need to keep

pace with the disruption of technology, and you are required to

continuously upgrade because of disruptions.

Culture

To use containers in an enterprise, you require strong backing by

the leadership team to embrace a culture of cloud native.

Most Value Product (MVP)

It is not viable to jump into creating thousands of services across

enterprises. This creates more problems than solves. Start small

by running a few services in containers and learn and create a

template and scale across enterprises. Figure 16-7 provides the

details of an MVP approach. In this example, the engineering

team creates an item microservice as an MVP and deploys it in

container. Then it measures and learns from the experiences and

mistakes and applies learnings to create another microservice

called a catalog. Once you have gained experience, then go with

@Scale IT for other services in an ecommerce application.

Build Measure

Learn

MVP Item
and Catalog

MVP Item
Service

BUILD Cloud Native Services
Agile Development

Figure 16-7. MVP development

Chapter 16 Containerization and Virtualization

595

Deployment Environment

Many options are available for your services deployments, from

local on your own data center to public and private cloud and

hybrid cloud. The cloud vendors offer a wide range of Docker

environments.

• IaaS option, running containers on AWS EC2, Azure VM, and

Google Compute Engine

• Fully managed container service (CaaS) solutions designed for

hosting containerized services, such as AWS Elastic Container

Services (ECS), and Azure Container Services

• Containers with Kubernetes

Registry

The containers are built based on images. If there is a vulnerability

in the images, the containers inherit the issues and carry them to

the production environment. You need to make sure the images

are safe to use across the environment. For this, you need to

enforce container scanning and a private registry. You adopt the

following best practices for container scanning:

• Choose the right version from the artifactory.

• Create an optimized image file.

• Scan an image as part of the DevSecOps pipeline by using tools

like Clair.

• Scan an image again in production.

• Ensure your scan images at multiple stages during the

development lifecycle.

Monitoring and Logging

To securely manage the Docker environment across enterprises,

you need to gain visibility into every deployed container in an

environment. You can achieve this by using well-established

integrated monitoring across the environment and automating

responses and fault conditions.

Chapter 16 Containerization and Virtualization

596

 Container Orchestration
Container orchestration automates the deployment, management, scaling, and

networking of containers. If your enterprises want to implement hundreds or thousands

of services in a container, then you can’t think about collaborating containers without

any orchestration. The container orchestration can be used in any environment like

public cloud, private cloud, or hybrid cloud. It can help you to deploy the same services

across different environments and automates scheduling, scalability, load balancing,

availability, and networking of containers.

Generally, container orchestration tools communicate with a human-created YAML

or JSON file that describes the configuration of the application. This configuration file

contains rules and directs orchestration on how to retrieve container images, how to

create a network between containers, where to store log data, and how to mount storage

volumes.

It manages the deployment scheduling of containers into clusters and automatically

identifies the right host. The selection of the right host depends on user-defined

guidelines, labels, or metadata. Once the host is assigned, the orchestration tool

automates and manages the services throughout the lifecycle based on the rules defined.

The orchestration tools automate and manage the cloud native services in containers

including the following:

• Configuration and scheduling containers

• Provisioning and container deployment

• Resource allocation

• Scaling containers to balance requests

• Service discovery

• Monitoring container health

• Interaction between containers security

• Traffic routing

The container orchestration tools provide a framework for managing containers in

an enterprise. There are many container orchestration tools available in the market that

can be used for managing the container lifecycle. Some popular options are Kubernetes,

Docker Swarm, Apache Mesos, etc. Some cloud provides offering PaaS services on top

Chapter 16 Containerization and Virtualization

597

of Kubernetes such as OpenShift, Google Kubernetes Engine, AWS Elastic Kubernetes

Service, Azure Kubernetes Service, etc.

 Types of Orchestration Tools
Choosing the right orchestration tool for your enterprises involves diverse factors such

as the number of containers in an environment, technical experience and skill level of

your resources, maturity of tools, widely used references, etc. The following are the most

popular ones.

 Docker Swarm

Docker Swarm is a container orchestration tool that is built into Docker engines. As

shown in Figure 16-8, a Swarm is based on the client-server architecture style. The client

is the Swarm manager, and the host servers are containers hosted in multiple nodes.

Swarm Manager

Scheduler

Discovery Service

Swarm Manager

Scheduler

Discovery Service

State

Swarm Node

Docker Daemon

Swarm Node

Docker Daemon

Swarm Node

Docker Daemon

REST APIs

REST APIs

REST APIs

Registry

Docker Client

Figure 16-8. Docker Swarm architecture

Chapter 16 Containerization and Virtualization

598

Docker Swarm consists of a node, manager, and services. The manager node uses

the Raft consensus algorithm to internally manage the cluster state. This is to ensure all

manager nodes that scheduling and controlling the containers in the cluster maintain

state. Docker Swarm can have more than one manager node lead by a single manager

node elected using a Raft algorithm, and a manager node can act as both a Swarm node

and a manager node. The manager nodes act as orchestration and cluster management

functions required to maintain the desired state of the swarm. The Manager node elects

a single leader to conduct an orchestration task.

The Raft algorithm achieves a consensus via an elected leader. A server is a Raft

cluster that is either a leader or a follower and can be a candidate in the precise cause of

an election. Consensus involves multiple servers agreeing on values. Once they decide

on a value, that is final.

The Swarm node is a cluster of Docker containers running on a cloud server. These

nodes receive and execute tasks dispatched from manager nodes. Each swarm of worker

node reports back to the manager on tasks. The swarm node notifies the manager node

of the current state of its assigned tasks so that the manager can maintain the desired

state of each worker.

 Apache Mesos

Mesos is a cluster management tool that handles the workload of both containers and

noncontainers in a distributed environment through dynamic resource sharing and

isolation. Mesos works differently than Kubernetes and Docker Swarm, which are both

container management tools with the node-to-node relationship. Mesos is more of a

resource allocation manager that allows you to manage jobs and provides a framework

that allows you to launch both containers and noncontainers on the same cluster. This

means you can run any distributed application like Spark, Hadoop, etc., that requires

clustered resources.

Mesos works between the application layer and OS and makes it easier to deploy

and manage large-scale clustered environments more efficiently. It works exactly the

opposite of virtualization. In virtualization, one physical resource is divided into multiple

virtual resources, while Mesos unites multiple distributed resources into one.

As shown in Figure 16-9, the Mesos master is the main component of a tool. It

makes sure the framework is highly available and provides user interfaces that provide

information about the resources available in a cluster. All the tasks in a master are stored

in memory.

Chapter 16 Containerization and Virtualization

599

The Mesos agent manages the containers that host the services. It manages the

communication between the Mesos master and an executor.

Mesos consists of a master daemon that manages agent daemons on each cluster

node, and Mesos runs tasks on these agents. The master enables fine-grained sharing

resources across frameworks by making them resource offers. The Mesos master

decides how many resources to offer to each framework. The framework consists of the

scheduler and an executor. The scheduler registers with the Mesos master for resources,

and the executor process launches an agent node to run the framework tasks. The

Mesos master determines how many resources are offered to each framework, and the

framework scheduler selects the resources to use.

In subsequent sections, I will consider only the Kubernetes framework to explain

further cloud native use cases.

Hadoop Scheduler MPI Scheduler

Mesos Master Standby Master Standby Master

Mesos Agent

Hadoop Executor

Tasks

Mesos Agent

MPI Executor

Tasks

MPI
Executor

Task

Hadoop
Executor

Task

ZooKeeper
quorum

Mesos Agent

Cluster Node Cluster Node Cluster Node

Figure 16-9. Apache Mesos architecture

Chapter 16 Containerization and Virtualization

600

 Kubernetes

Kubernetes is a container orchestration platform. The origin of the platform is from

Google data centers, where Google’s internal orchestration platform is named Borg.

Google used Borg for many years to run in its data centers before it transfers into a new

open source project called Kubernetes in 2014, and later it became part of Cloud Native

Computing Foundation in 2015. Currently Kubernetes is one of the most active projects

in GitHub.

As shown in Figure 16-10, Kubernetes is designed with a client-server architecture

style. It consists of a control plane (master node) and several worker nodes. The control

plane consists of an API server, control manager, scheduler, and etcd storage. Initially

the setup will contain one control plane, but you can have a multiple control planes for

high availability.

Kube
API Server

Control
Manager

Scheduler

etcd

Kubelet Kube-Proxy

Pod Pod

Containers Containers

Kubelet Kube-Proxy

Pod Pod

Containers Containers

Control Plane
Worker Node

Worker Node

Load
Balancer

Cloud Provider API

Figure 16-10. Kubernetes architecture

Chapter 16 Containerization and Virtualization

601

A control plane maintains the details of all the Kubernetes objects and continuously

manages object states, responding to changes in the worker nodes. The API server acts

as a bridge between the worker node and control plane, and engineers can access the

control plane by using this API server. The control manager is a daemon that runs the

control loop, watches the state of the nodes, and makes changes appropriately. This

manager integrates with the cloud for availability zones, VMs, storage services, etc., and

the scheduler schedules the containers across the worker nodes.

The worker nodes are the machine that runs containers and is managed by the

control plane, and the Kubelet controls the execution of containers in a node.

Orchestration Tool Comparison

Table 16-2 provides a high-level comparison between major orchestration tools.

Table 16-2. Orchestration Tool Comparison

Docker Swarm Apache Mesos Kubernetes

It is a native Docker
clustering solution that
makes it easy to integrate
and set up flexible APIs.

it is more of a resource allocation

manager that allows you to manage

jobs and provides a framework that

allows you to launch both containers

and noncontainers on the same

cluster.

the control plane maintains

the details of Kubernetes, and

the api server acts as a bridge

between the worker node and

the control plane.

YAML-based configuration
deployment.

unique format-based configuration

deployment.

YaMl-based configuration

deployment.

Mature and has good
stability.

Mature. Mature and has good stability

with continuous update and

large community.

Defined using a Docker
Compose file and same
compose file to maintain a
cluster of containers on a
single machine.

it is based on an n-ary tree with

groups as branches and applications

as leaves.

it is a combination of

replicaSets, controllers, and

pods.

(continued)

Chapter 16 Containerization and Virtualization

602

 Kubernetes Features
In a cloud native platform, you cannot just run on the siloed container; you need to have

a group of containers for your application. Kubernetes provides a management layer for

the lifecycle of a group of containers called a pod, as illustrated in Figure 16-11.

Container A

Catalog
Service

Container B

Product
Service

Disk

localhost

Pod

Figure 16-11. Pod deployment and management

Docker Swarm Apache Mesos Kubernetes

A Swarm is based on the
client-server architecture
style. The client is the
Swarm manager, and the
host servers are containers
hosted in multiple nodes.

handles the workload of both

containers and noncontainers.

Container orchestration

platform and works with the

client-server architecture.

It supports only Docker. it supports both container and

noncontainer workloads. it runs on

Swarm and Kubernetes.

it supports both docker and

rkt.

It includes a DNS server out
of the box that allows for
service discovery by name.

does not support any service

discovery.

it includes optional dnS for

discovery by name; here

services are exposed through

http ingress or mapped to an

external load balancer.

Table 16-2. (continued)

Chapter 16 Containerization and Virtualization

603

A pod is an atomic unit of scheduling, deployment, and runtime isolation for a

cluster of containers. All containers in a pod are always scheduled to the same host,

deployed together whether for scaling or host migration and sharing a namespace,

filesystem, and networking. Containers in a pod interact with each other over the

filesystem or networking. The features of the pod are as follows:

• A pod is an atomic unit of scheduling, which means the scheduler

identifies a host that satisfies all the containers in a pod.

• A pod ensures the colocation of containers, provides various means of

communication patterns like networking, provides a filesystem, etc.

• A pod has an IP address, name, and port range that are shared by all

containers within it. This means the containers in a pod are carefully

configured to avoid port clashes.

• Pods are ephemeral. They are disposable. A pod can be rescheduled

at a different node at any time if the existing node is unhealthy.

 Kubernetes Principles and Patterns
Containers are the building blocks of Kubernetes-based cloud native applications, and

containers play a fundamental role in Kubernetes. Creating modularized, reusable,

single responsibility container images is fundamental to your cloud native architecture.

Containers and pods and their unique characteristic offer a new set of principles and

patterns for designing a cloud native service. Adhering to these principles and patterns

will help ensure your applications are suitable for automation in cloud native platforms.

Here, I am covering a few, but you can find more patterns in a book called Kubernetes

Patterns.

 Predictable Demands

The successful application deployment, management, and coexistence on a multitenant

environment is dependent on application resource requirement and runtime

dependencies. This pattern is about how you declare requirements.

Kubernetes can manage polyglot containerized services, and each service has

different resource requirements. For example, some services execute faster than

other services, or some programming languages require different things from other

Chapter 16 Containerization and Virtualization

604

languages. It is difficult to identify the number of resources required for a container.

Some services require more memory and more CPU, and some may require less. Some

may require polyglot storage, and some may be stored in memory, etc. Defining all these

characteristics in a cloud native application is a must.

Knowing about these requirements is helpful because Kubernetes can make

intelligent decisions to place a container on a cluster and helps you with proper capacity

planning.

 Declarative Deployment

This pattern is about managing the rollback and upgrading a newer version of the

container in a pod. The cloud native maturity in your organization leads to more

adoption of services. The number of services increases because you have to continually

update and replace them with newer versions due to business changes. Upgrading these

services leads us to starting a new version of a pod, stopping the old version of the pod,

etc. Performing manually leads to human errors and takes time.

Kubernetes has automated these activities without involving any humans. Using

this concept, you need to describe how your application should be updated using

different strategies. Rolling deployments are the declarative way of updating services in

Kubernetes through the concept of deployment. The rolling update behavior ensures

there is no downtime during the update process.

Use a rolling deployment, fixed deployment, blue-green release, or canary release

deployment strategy.

 Health Probe

This pattern is about how a service can communicate its health state to Kubernetes.

The cloud native service must adopt an observable-as-a-service approach, which helps

Kubernetes to detect whether the service is healthy. These observations influence the

lifecycle management of pods and the way traffic is routed to the application. Kubernetes

regularly checks the container process status, but checking just the status does not

provide the complete health of a service, for example, if your service hangs or is slow to

respond. You can get the health of a service from this.

A process health check is the health check process by Kubelet that is done for all the

services in a pod. This process identifies the service failure or service shutdown in a

container.

Chapter 16 Containerization and Virtualization

605

A liveness probe is the health check process and regularly checks the Kubelet agent

to confirm the container’s health. This helps to kill the unhealthy container and replace

them with a new one.

A readiness probe performs the readiness of a container like liveness probes.

Your cloud native services must be highly observable by providing a means for

the managing platform to identify the health of the service. Health checks play a

fundamental role in cloud native services such as automating the deployment, self-

healing, scaling, etc. Logging is one good practice for health probes. You need to design

your containers such that they provide relevant APIs for health checks. These APIs are

read-only endpoints the platform is continuously probing to get application insights. You

can refer to the box and port style architecture in Chapter 5. It is recommend that you

use the health checks process to manage the pods.

 Automated Placement

One of the core functions of the Kubernetes scheduler is to assign new pods to nodes,

satisfying container resources requests and honoring scheduling policies. This pattern

talks about Kubernetes’ scheduling algorithm.

Matured cloud native enterprises might have hundreds or even thousands of

isolated processes. Containers and pods do provide a nice abstraction of packaging and

deployment but do not support how to place these processes on suitable nodes. With

growing cloud native services, assigning and placing them individually to nodes is not a

manageable activity.

In Kubernetes, assigning pods to nodes is done by a scheduler, which is highly

configurable. The main operation of the Kubernetes scheduler is to retrieve each newly

created pod definition from the API server and assign it to a node. It finds suitable nodes

for every pod like moving from unhealthier to healthier node, etc. However, for the

scheduler to do its job and allow declarative placement, the scheduler needs nodes with

available capacity and containers with declarative resource profiles and guiding policies.

 Singleton Service

This pattern ensures only one instance of a service is active at a time and yet highly

available. Pods can scale with the command kubectl scale or declaratively through

a definition replica set. Running multiple instances of the same services increases the

throughput and availability. In Kubernetes, multiple instances are replicas of a pod.

For some use cases, you may need to run only one instance of a service. For example,

Chapter 16 Containerization and Virtualization

606

when polling on specific payment interfaces, you want to ensure only single resources to

perform polling and processing. In these kinds of services, you need to have control of

several instances of services.

Running multiple replicas of the same pod creates an active-active topology where

all instances of services are active. You need an active-passive topology where only one

instance is active and all other instances are passive. This can be achieved with out-of-

application and in-application locking.

Out-of-application locking can be achieved in Kubernetes by starting a pod with one

replica. This alone does not help you to make a singleton; along with this, the replica set

turns the singleton pod into a highly available singleton.

In-application locking, in a distributed environment, is one way to control the

service instance count through a distributed lock. Whenever a service instance or a

component inside the instance is activated, it can try to acquire a lock, and if it succeeds,

the service becomes active. Any subsequent service instance that fails to acquire lock

waits continuously tries to get the lock.

 Init Container

This pattern enables the separation of concerns by providing a separate lifecycle for

initialization-related tasks distinct from the main application containers. You can find

more details of this pattern in Chapter 4.

 Sidecar

It extends and enhances the functionality of a preexisting container without changing

it. This pattern allows you to add several additional configuration details from a third

party without modifying the microservices. It is a single-node pattern made up of two

containers. One container for the application container contains the core business logic,

and another container is for technical configuration details. You can find more details of

this pattern in Chapter 4.

Chapter 16 Containerization and Virtualization

607

 Running a Cloud Native Application on the Container
and Kubernetes Strategy
Containers and Kubernetes are mature, but the ecosystem is immature due to the lack

of operational best practices in organizations. However, the adoption of container

and Kubernetes is increasing every day with the evolution of cloud native elements.

Organizations are adopting containers in production, but production deployments

are still concerned with operational challenges such as security, observability, data

management, infrastructure, and networking, and most important is automation

because cloud native services require a high degree of end-to-end automation.

If you want mature and streamlined containers and Kubernetes in production, you

need to embrace best practices and strategy, and you need strong leadership.

• You need to have a strong DevSecOps culture to ensure a seamless

move to production.

• Develop a Kubernetes platform that uses best practices and patterns

across security, governance, observability, lifecycle, and cloud

provider selections.

• Create an intelligent single operations team and development team.

• You need the right talent to create a roadmap to upskill your

resources on containers and Kubernetes.

The most important point is to select the right Kubernetes platform because there

are various platforms available in the industry. You can consider the following factors

while selecting the platforms:

• Support for OS and container runtimes

• UI and application lifecycle management

• Hybrid, private, and multicloud cluster management

• Operational capabilities such as governance, security, networking,

automation, and observability

• PaaS adoption for other services in your enterprises

• Licensing and pricing model

• Industry maturity of a vendor

Chapter 16 Containerization and Virtualization

608

For deploying containers in production, you need to create a strategy to

operationalize Kubernetes. The following are the elements and best practices:

• Security and governance: Integrate container scanning and image

scanning to prevent vulnerabilities along with the CI/CD pipeline.

Use the configuration-as-a-service model to harden the configuration

and deploy security products that provide whitelisting, behavioral

monitoring, etc. Adopt a shift-left approach for code and security

vulnerability tests.

• Automation including infrastructure as code: Automate infrastructure

provisioning by using an infrastructure-as-code tool, use the

container-aware configuration management system to manage

the lifecycle of a container image, and integrate containers and

Kubernetes with CI/CD toolchains.

• Observability: Focus on monitoring at the container level and across

services so that you are monitoring your container both internally

and externally. Use container commands and the right tools.

• Networking host: Check that your Kubernetes distribution or

software-defined networking (SDN) solution supports Kubernetes

networking. If this is not available, select the Container Networking

Interface (CNI), and ensure it provides an ingress controller support

for load balancing across hosts in the cluster. If it is not sufficient,

then consider other proxies or service meshes or event meshes.

Along with this strategy, you need the following service to make

Kubernetes production ready.

• Cluster monitoring and logging: When running in production,

containers and Kubernetes are required to scale to hundreds

or thousands of pods depending on the size of your enterprise.

Without the effective implementation of monitoring and logging,

downtime can cause serious or irreversible errors that can cause

business dissatisfaction. Create integrated monitoring by using

various open source or commercial tools.

Chapter 16 Containerization and Virtualization

609

• Reserved compute resources for daemons: Reserve resources for

system daemons, which both Kubernetes and OS require. The

system daemon utilizes CPU, memory, and temporary storage

resources. You can use Kubelet flags to reserve resources for

system daemons.

• Heartbeat and election timeout interval for etcd members:

When configuring an etcd cluster, it is important to specify the

heartbeat correctly and choose timeout settings.

• Regular etcd backups: Regularly back up etcd data because it

stores the state of the cluster.

 Kubernetes Maturity Model
If your organization is new to Kubernetes or has already been using Kubernetes in

multiple applications, Kubernetes has a complexity that you’ll need to overcome. The

Kubernetes maturity model shown in Figure 16-12 provides the end-to-end journey

of Kubernetes adoption. One thing you need to remember is that the maturity doesn’t

occur in one day. This requires a certain amount of time.

If you start using the maturity model, know that when you do reach a certain phase,

you still may go back to the previous phase to check certain things. You need to use this

framework to understand where you are and what you need to focus on.

The Kubernetes maturity model helps you to review where you are in your cloud

native journey, like whether you are new to Kubernetes or you have deployment

experience.

Ongoing
OptimizationPrepare Phase A

Transform
Phase B
Deploy

Phase C
Build Confidence

Phase D
Improve

Operations control

Phase E
Optimize &
Automate

Cloud Native Journey
Starting Point

Discuss and kick off and
prepare a business case

Baseline Implemented:
Non-production

environment

Learn foundational
knowledge and

transform and upskill
resources

Foundation Created:
Production

Practice the usage of
Kubernetes in an

Organization

Competence Grows:
Defined process for scale

Regularly deploy and
create a governance

Focus on security, policy
enforcement &

compliance

Actively deploy
Kubernetes across

Organization

Remove human error &
toil

Bring end to end
automation and remove

human errors

Continued
enhancements,

education

Single click deployment
to Kubernetes and

embrace across
organization

Figure 16-12. Kubernetes maturity model

Chapter 16 Containerization and Virtualization

610

Prepare

This is the first phase in the maturity model, and this is the preparation phase of your

cloud native Kubernetes journey. In this phase, you do the following:

• You will anticipate how cloud native and Kubernetes can help you to

support your business and technical objectives, cost, and end goal.

• You will prepare a strategy for your organization on the importance of

cloud native and Kubernetes.

• You will prepare the value proposition and impact of cloud

computing, containers, and Kubernetes.

Transform

You will start adopting Kubernetes in this phase.

• You will verify foundational knowledge and create an MVP on

Kubernetes deployments in a cluster.

• You will prepare an initial implementation, migration, and learning

curve roadmap.

• You will start socializing across teams on Kubernetes.

Deploy

If you reached this maturity, you will have covered the basics and initial steps of

Kubernetes. In this phase, you will do the following:

• One service must be deployed into production. External

dependencies are configured properly, and traffic to your services are

routed to Kubernetes through a load balancer.

• Logs and metrics are accessible and configured for autoscaling to

Kubernetes.

• You will cover the implementation, build, and deployment process,

setting up DevOps and introducing basic observability.

Chapter 16 Containerization and Virtualization

611

Build Confidence

As your Kubernetes deployment matures, you have a foundation in place. This phase is to

build confidence in your organization and get Kubernetes up and running in production.

Building confidence in Kubernetes requires experience, and the business outcome

depends on your team’s experience. In this phase, monitoring will be implemented.

Improve Operations

You are actively deploying Kubernetes across organizational successfully and on time to

improve the “-ilities” and operationalizing your Kubernetes clusters.

Measure and Control

In this phase, you introduce more measurement and control of the Kubernetes

environment. You and your teams have an overall understanding, and there is an

organization-wide option. You have started understanding the Kubernetes cluster and

overall environment on a deeper level. You will gather more data and resolve the technical

debt identified in previous phases and will streamline the monitoring and observability.

Optimize and Automate

In this phase, you introduce more measurement and control of the environment, achieve

business outcomes, and have measurable results to show to various stakeholders. You

make further improvements on cost and performance metrics. You are required to revisit

your earlier goals and fine-tune them based on the learnings. In this phase, you need to

automate as much as possible and adopt best practices and principles.

 Service Meshes and Kubernetes
A service mesh pattern is a logical extension of the sidecar proxy. As shown in

Figure 16- 13, by attaching a sidecar proxy to every pod, a service mesh can control

functionality for service-to-service requests, such as advanced routing rules, retries,

and timeouts. Along with every request pass through a proxy, service meshes can

implement mutual TLS encryption between services. There are several service mesh

tools available, such as Istio, Linkerd, Kuma, and Consul. Istio is the most popular

implementation of the service mesh pattern. You can find more details about using

service meshes in Kubernetes in Chapter 5.

Chapter 16 Containerization and Virtualization

612

 Stateful Workloads on Kubernetes
Usually, services in cloud native are stateless, which is the recommended approach,

but some use cases require stateful services. An example of a stateful application is a

database or key-value store in which the data is retrieved and stored by other services or

applications.

You can deploy the stateful application in Kubernetes with a ReplicaSet or

deployment and use StatefulSets. Many distributed stateful applications have their

clustering mechanism or consensus algorithm. For this kind of application, the

StatefulSets provide static pod naming based on an ordinal system.

To illustrate how StatefulSets can help run the stateful application on Kubernetes,

let’s look at how you might run PostgreSQL on Kubernetes with StatefulSets. Running

PostgreSQL on Kubernetes requires a container image and makes sure it has all the

necessary configuration and startup commands.

Scaling PostgreSQL is not like running stateless applications; here you can scale

your service without creating a new state. Each member of the PostgreSQL cluster knows

about the other members, and most importantly, it knows which member of the cluster

is the leader. This is how databases like PostgreSQL can offer a consistency guarantee

and ACID compliance. Since each member in a PostgreSQL cluster needs to know

about the other, you need to run your pods in a way that they have a common way to

communicate with each other. The StatefulSets offer is through ordinal pod numbering.

This way, the application that needs to self-cluster while running on Kubernetes knows

that a common naming scheme will be used. You can find more about the replica sets in

Chapter 4.

Pod

Container

Sidecar proxy

Control Plane

Infra Policy
Mesh specific

Adapter(ex: Is�o)
Monitoring

Applica�on Traffic

Logs, Metrics,
Trace

Figure 16-13. Service meshes and Kubernetes

Chapter 16 Containerization and Virtualization

613

 Kubernetes Multitenancy
A multitenant cluster is shared by multiple users and services. The operators of

multitenant clusters must isolate tenants from each other to minimize the effect. As

shown in Figure 16-14, when you plan a multitenant in a deployment model, you must

consider the layers of resource isolation in Kubernetes, cluster, namespace, node, pod,

and container. You must consider security implications when sharing among tenants.

Multitenancy capabilities aim to drive the efficient use of infrastructure while

providing operators with robust isolation mechanisms between users, services, and

teams. Kubernetes allows you to build multitenant platforms leveraging built-in

capabilities.

Kubernetes cannot guarantee perfectly secure isolation between tenants; you can

separate each tenant and their resources into their namespaces, roles and role bindings,

resource quota, network policy, etc. You can use policies to enforce isolation; it can be

scoped by namespace and can be used to restrict API access to constrain resource usage.

The control plane is important as you bring in more tenants because it becomes

a single point of failure for clusters. The Kubernetes API is a critical service for you

because it provides the interface for administrators and tenant teams to manage clusters

and services. So, the Kubernetes response of an API is a critical part of the multitenant

strategy.

The tenants of a multicluster share extensions, controllers, add-ons, and custom

resource definition and cluster control plane.

Tenant A Tenant B Tenant C

Control Plane

Namespace A Namespace B Namespace C

Cluster Admin

Figure 16-14. Multitenancy in Kubernetes

Chapter 16 Containerization and Virtualization

614

The multitenant comes with advantages, such as reduced managed overhead,

reduced resource fragmentation, improved return on investment (ROI), etc.

 Kubernetes Secrets
Kubernetes secrets are the native resources for storing and managing sensitive data

such as passwords, SSH keys, and OAuth tokens. You need to distribute these secrets

across your Kubernetes clusters. When sending these secrets, it’s critical to ensure only

authorized entities can access them.

Secrets are native Kubernetes resources, and Kubernetes provides a basic set of

protection layers to them. These protections are as follows:

• Secret resources: Pods and secrets are separate objects; you can

expose secrets during the pod lifecycle. If you are passing sensitive

information as an environment variable to pods, you should create

separate secret objects.

• Kubelet: This is an agent that runs on each Kubernetes node and

interacts with the container at runtime. Data in the secrets is used

inside containers and available to the node where the containers run.

It stores secret data in a temp file instead of disks.

• Pods: Numerous pods are running on the node, but only the pods

can access secrets specified in the definition. Pods consist of several

containers, and secrets are mounted only on required containers.

• Kubernetes API: Secrets are created and accessed over the Kubernetes

API.

• etcd: Secrets also stored in etcd; it’s possible to access secrets when

you access etcd on the control plane.

These protection measures ensure that secrets are separated from Kubernetes

resources, accessed, and stored securely, but Kubernetes is not highly secured but comes

with risks. The risks are as follows:

• Configuration as code (CaC): You can create a secret object using

JSON or YAML manifest files. Make sure this file isn’t checked into

the repository or shared.

Chapter 16 Containerization and Virtualization

615

• Service layer: When secrets are loaded in your services, be careful

about logging or monitoring.

• Pods: If a user has sufficient permissions to create a pod that mounts

and uses a secret, the secret value will visible to them.

• Nodes: Containers run on the nodes, and it is possible to retrieve any

secret from the Kubernetes API server if you’re the root on the node.

Various tools and services are available in cloud native to manage secrets. The

following are the few services you can adopt to manage secrets:

• Cloud key management system (KMS): The cloud providers such

as AWS, Azure, and Google have their KMS, a centralized cloud

service through which you can create and manage keys to perform

cryptographic operations.

• Helm secret plugins: This plugin allows you to encrypt values

files with a secret key of your choice. It is also possible to edit the

encrypted files.

 Kubernetes as a Service
Kubernetes as a service (KaaS) makes it possible to operate Kubernetes in a cloud

environment. These services are commonly provided by cloud vendors. The

functionality of the KaaS platform is to deploy, manage, and maintain Kubernetes

clusters. Key features of KaaS include self-service deployment, upgrades, scalability, and

multicloud portability. Here I will provide a brief description. For more details, you can

refer to each cloud provider’s documentation.

KaaS can help you leverage the best practices of Kubernetes without the complexities

involved in managing operations. A KaaS can take care of a variety of services including

setup, monitoring, and managing the operations and ensuring HA and release updates

as needed. The following are a few key capabilities of KaaS:

• Deploy and manage

• Continuous monitoring

• Control plane management

• Security

Chapter 16 Containerization and Virtualization

616

 Google Kubernetes Engine

Google Kubernetes Engine (GKE) was the first commercial KaaS offering. It is a

fully managed containerized service in the Google Cloud infrastructure. The GKE

environment consists of multiple machines grouped to form a cluster. When you run the

GKE cluster, you will get advanced cluster management features such as the following:

• Autopilot mode of operation

• Pod and clustering autoscaling

• Workload and network security

• Node pools to designate subsets of nodes within a cluster for

additional flexibility

• Logging and monitoring

 Amazon Elastic Kubernetes Service

Amazon Elastic Kubernetes Service (EKS) is a service used to run managed Kubernetes

on AWS. It can deploy clusters across multiple availability zones (AZs) with HA. EKS

integrates with other services in an AWS. EKS helps you provide highly available and

secure clusters and automates key tasks such as patching, node provisioning, etc. The

following are some of the benefits of EKS:

• EKS runs the Kubernetes control plane across multiple AZs,

automatically detects and replaces unhealthy control plane nodes,

and provides on-demand, zero-downtime upgrades.

• Provision and scale your services efficiently.

 Azure Kubernetes Services

Azure Kubernetes Services (AKS) is a fully managed service that lets you manage

Kubernetes on Azure resources. It allows you to deploy directly on Azure services and

also integrate with existing Azure services. These are some of the benefits of AKS:

• Elastic provisioning of capacity without the need to manage the

infrastructure

• Faster end-to-end development experience with Azure services

Chapter 16 Containerization and Virtualization

617

• Most comprehensive authentication and authorization capabilities

• Availability in more regions

 Red Hat OpenShift

Red Hat OpenShift is a highly customizable managed service you can use to deploy

Kubernetes to any infrastructure. It supports multitenancy, has a built-in dedicated

image registry, and provides extended support of the DevOps pipeline. It has several

preconfigured packages.

 VMware Tanzu

It is a platform that enables you to build and manage Kubernetes environments,

alongside traditional VMware workloads, with central control. It enables integrated

Kubernetes with VMware technologies such as vSphere, vSAN, and NSX, to manage

VMware Kubernetes clusters within the data center.

 Summary
Cloud native infrastructure is about practices and how you build and maintain

infrastructure. It impacts much more than servers, networks, and storage; it is about how

you manage services in a cloud native infrastructure.

In this chapter, I explained the elements of cloud native infrastructure and how you

can use containers and Kubernetes to deploy your cloud native services.

Chapter 16 Containerization and Virtualization

619
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_17

CHAPTER 17

Infrastructure Automation
Cloud native modern-day businesses depend on well-defined and automated

IT infrastructure. Virtualization, the cloud, containers, server automation, and

software- defined networking are meant to simplify operations. When organizations

use the manual provisioning of infrastructure, it leads to delays in setting up an

infrastructure, networking, storage, etc.

Many organizations struggle to manage manual IT tasks and processes across siloed

teams. Sometimes the infrastructure team makes you wait a week or two to provide

the infrastructure. There is a growing need to automate IT tasks and processes, and

automation helps you to streamline them.

Automation is essential for both IT optimizations and cloud native transformations.

To support business success, IT environments must be efficient, scalable, and reliable.

Infrastructure operation helps you to streamline operations, improve agility, and

increase security and availability.

This chapter helps you to understand how you effectively use principles, patterns,

and practices through the DevOps pipeline to automate infrastructure.

In this chapter, I will cover the following:

• Infrastructure-as-code principles and patterns

• Tools and services

• Testing infrastructure changes

• What can’t you automate?

 What Is Infrastructure Automation?
Automation is at the core of many organizations’ technology landscapes, propelled

by the need to innovate faster, manage increasingly complex IT environments,

accommodate new development approaches, and meet financial objectives.

https://doi.org/10.1007/978-1-4842-7226-8_17#DOI

620

Infrastructure automation is a set of processes that you use to reduce manual

efforts associated with managing and provisioning workloads in the public, private, or

hybrid cloud. It uses software/scripts to create repeatable instructions and processes to

replace or reduce human interaction with IT systems. The tools work within the limits of

instructions to perform tasks with little to no human intervention.

Automation plays a pivotal role in leveraging deployment scripts, engaging teams,

monitoring tools, and tracking performance. It can also provide a better degree of

reliability and boost cross-team collaboration.

By using automation, you can automate most IT tasks including the following:

• Managing physical infrastructure

• Deploying applications

• Administering virtualized environments

• Managing containers and Kubernetes environments

• Managing networks

• Implementing sanity checks and smoke tests

• Managing user access to infrastructure resources

• Troubleshooting and debugging system health

• Managing the inventory of your infrastructure resources

Automation simplifies IT infrastructure management and application service

delivery by streamlining error-prone, time-consuming, and manual IT tasks and

processes. Infrastructure as code (IaC) automates the provisioning of infrastructure,

enabling your organization to develop, deploy, and scale cloud native services with

speed, have fewer errors, and reduce costs by using various tools.

 What Can You Automate?
You can automate most features of your infrastructure. The key to automation in the

infrastructure is not just about provisioning infrastructure but also about connecting

teams, processes, and tools into a single automated flow. You can automate the following

along the DevOps pipeline:

• Databases: Hardware and servers or managed services from cloud

vendors.

Chapter 17 InfrastruCture automatIon

621

• Cloud native services: Virtualized infrastructure, containers,

Kubernetes, OS, networking, and storage.

• Development environment: Cloud resources in similar environments

as the cloud native services. The environment consists of the entire

CI and CD stacks like source code management, build tools, code

review tools, security scanning, Artifactory, application lifecycle

management (ALM) tools, infrastructure-as-code tools, etc.

• Test environments: Cloud resources in similar environments as cloud

 native services plus testing tools, test data management, etc.

 What Is Infrastructure as Code?
Infrastructure as code (IaC) is the engineering, managing, and provisioning of

infrastructure resources through code instead of using a manual or semi-automated

process to configure the system.

Provisioning infrastructure is a time-consuming and costly process and requires

physically setting up hardware, installing the OS, configuring the network, etc. The

virtualization, container, and cloud native environments eliminate the problem of

physical servers.

IaC uses a descriptive coding language to automate the provisioning of the IT

infrastructure. Virtualization, the cloud, containers, Kubernetes, servers, storage, and

networks should simplify the IT operational work. It should take less time to provision,

configure, update, and maintain services. Problems should be quickly identified and

rectified, and the system should all be configured.

IaC is an approach to infrastructure automation based on practices from software

engineering. It emphasizes consistent, repeatable routines for provisioning and

changing the system and its configuration.

The changes are the biggest risk to a production system. Continuous change is

inevitable due to business disruption and technology, and change is the only way to

improve your system behavior. Therefore, you need to make changes accurately, reliably,

and rapidly. The changes can be compliance, new features added, technical glitches,

configuration changes, etc.

Chapter 17 InfrastruCture automatIon

622

The following are practices you must adopt when you are implementing IaC:

• Define everything as code.

• Continuously test and deliver all work.

• Build small and incrementally.

These are the benefits of IaC:

• More quickly adapt to changes in the market

• Reduces the effort and risk of making changes to infrastructure

• Improved consistency across all environments including

nonproduction environments

• Lower costs and improved ROI

• Enables engineers of infrastructure to get resources as requested and

on time

• Streamlined process across teams in an organization

• Makes governance, security, and compliances visible

• Manages efficiently on load on services with spikes

• Improves the speed to troubleshoot and resolves failures and

conflicts

 IaC in Build Pipeline Automation
Organizations can deliver cloud native services through continuous delivery (CD).

Businesses that embrace infrastructure, applications, and compliance outperform

their peers with faster delivery, they manage risk better, and they are more assured of

software security and stability. Figure 17-1 shows the steps you are required to follow for

infrastructure automation along the CD pipeline.

Deploy ServicesCapture Requirement Prepare automation
code Setup Infrastructure Install OS Setup Network &

Storage

Figure 17-1. IaC steps

Chapter 17 InfrastruCture automatIon

623

Capture Requirements
Each service has its features that determine where it should be deployed. Some services

require higher-performance infrastructure, some services require higher CPUs, some

services require a lot memory to process, and some services require high availability.

Identify the key requirements of your services, and map each service against the

infrastructure requirements. Depending on your IT adoption, you may choose to deploy

it in the public cloud, private cloud, or hybrid cloud environment.

Prepare Automation Code
The requirements and mapping of these to the infrastructure provide a clear view of

services, the infrastructure required, and the cloud services adopted. The next step is

to identify IaC tools and create a template for every activity of infrastructure including

containers, Kubernetes, OS, storage, networking, etc. The infrastructure is the underlying

foundation for all IT operations. Automating the underlying infrastructure lifecycle

management streamlines and improves accuracy and speed.

Set Up Infrastructure
The templates you create allow you to consistently deploy services across cloud

environments including hybrid, private, public, etc.

In cloud services, you are required to provision VMs according to the templates;

create containerization and Kubernetes workloads; and set up credentials, roles, and

virtual private cloud (VPC) access for all the resources.

Provision VMs, assign an IP address, attach storage, load balance workloads, manage

hosts within clusters, create housekeeping activities, and create replicas for database HA.

Install OS
Based on your system requirements, you are required to automate a standardized

operating environment to improve efficiency and reduce costs. In the OS, use the

template to automate OS images, secure settings including authentication, and manage

compliances.

Chapter 17 InfrastruCture automatIon

624

Set Up Network and Storage
Networks connect all of your services, and they must be managed to allow the right

access and right bandwidth for clusters. The automation helps you make predefined,

pretested changes on demand. You can use templates to automate firewall ports, access

control lists (ACLs), virtual local area networks (VLANs), patches, switches, etc.

Cloud native services are based on polyglot persistence. Persistence systems like

database and caching must be configured and managed to hook the right persistence

to the right services. Automation in storage helps you to reduce human involvement

and error. You can use the template to automate the persistence layer to services,

housekeeping activity like backup and restore, etc.

Deploy Services
Service deployment is the last step of the IaC. As a key business asset, the services and

workloads in a cloud must be configured properly to ensure optimal performance and

security. Automation helps you to consistently deploy across all environments including

nonproduction environments. You can use templates to automate services to install,

configure and patch, load, and migrate data to the services; configure credentials;

dynamically scale service resources; conduct sanity and smoke tests on deployment;

and manage the lifecycle.

 Define Everything As Code
There are many more ways to provide an infrastructure than writing code and using an

IaC tool. All the cloud vendors have a nice user interface (UI); you can provision and

deploy all the required services for your project. These are good for small projects, but

what about the enterprise that has thousands of services?

Implementing and managing your system services as code enables you to leverage

speed to improve quality. More important is that you can automate everything along

with the DevSecOps pipeline.

Every infrastructure automation tool such as Terraform, Ansible, SaltStack, Chef,

Puppet, etc., has a different name for source code such as playbooks, cookbooks,

manifests, and templates. The infrastructure code specifies both the infrastructure

elements you want and how you want them configured. You run an IaC tool to apply

Chapter 17 InfrastruCture automatIon

625

your code to an instance of your infrastructure. The tools either create the required new

infrastructure or modify the existing one.

The following are the infrastructure elements you should define in your IaC code.

These are just a few items; you should create code based on your needs.

• An infrastructure stack, either in the cloud or noncloud

• Elements of server configuration such as files, user accounts, CPU,

memory, etc.

• Server role and access permissions

• A server image definition generates an image for building multiple

server instances

• An application package that defines how to build a service

• Configuration of operational services such as monitoring,

logging, etc.

• Validation rules such as smoke test and sanity check

 How Do You Select an IaC Tool?
Always externalize the configuration to build the element. Usually the configuration is

defined in the text-based file separately from the tools. Noncode infrastructure tools

store infrastructure definitions of data that you can’t directly access. Instead, you can

edit using APIs, the GUI, etc. The issue is that the noncode tools are a black box and

are a drawback of versioning the code (you can do it only if the tool supports it), CI

configurations for job triggers, etc.

A tool with an external code specification doesn’t constrain versioning to use specific

workflows. You are free to use your project source control management tool and create a

job for the same CI/CD orchestration tool as Jenkin.

 What Coding Language Can You Use?
Earlier you might have used a scripting language like Bash, Perl Power Shell, or Ruby

to automate infrastructure management tasks. CFEngine, Chef, Puppet, Ansible,

and SaltStack use declarative, domain-specific languages (DSLs) for infrastructure

management. Terraform and CloudFormation use the declarative DSL model. The

Chapter 17 InfrastruCture automatIon

626

advantages of declarative languages are that they simplify the infrastructure code by

separating the infrastructure and how to implement it.

Many IaC tools use DSL. Your code defines your desired state for your infrastructure,

such as which packages and user account should be on the server or how much RAM or

storage you should have.

 IaC Example
This example provides an overview of how to manage IaC with Terraform and Cloud

Build/Jenkins in the Google Cloud by using GitOps.

GitOps: First coined by Weaveworks, its key concept is using a Git

or Bitbucket repository to store the environment state.

Terraform is an IaC tool that uses the code to manage the infrastructure, as shown

in Figure 17-2. In this architecture, I am using GitOps practices for managing Terraform

execution.

The DevOps engineer creates a Terraform script and pushes it into the Git repository

with separate dev and test branches. In Figure 17-2, Jenkins/CloudBuild triggers and applies

Terraform manifests to achieve the state you want in the respective environment. You can use

Terraform templates to create IaC scripts. This helps you to use them across environments.

Jenkins/Google
Cloud Build

Jenkins/Google
Cloud Build

Dev-allow-
h�p

Cloud Firewall Rules

Prod-allow-
h�p

Cloud Firewall Rules

Subnet:dev-subnet-01

Dev-tomcat-
instance

Compute Engine

Subnet:Test-subnet-01

Test-tomcat-
instance

Compute Engine

VPC Network Dev

VPC Network Test

DevSecOps Pipeline

GitHub/BitBucket
Repository

DevSecOps Engineer DSL Script Branch

Terraform

Terraform

Google CloudGoogle Cloud

Figure 17-2. IaC architecture with Terraform and Google Cloud

Chapter 17 InfrastruCture automatIon

627

 IaC Tools
The following sections cover the IaC tools available in the industry; you can choose

which is best for you. Figure 17-3 illustrates how IaC tools work in your DevOps pipeline.

Note tools like Jenkins and nexus are just two examples; you can use any other
orchestration of the artefactory tools.

 Terraform
Terraform is an open source IaC tool, created by HashiCorp. It is a declarative coding

tool and enables developers to use high-level HashiCorp Configuration Language (HCL)

to describe the state of any cloud platform or hybrid platform. Terraform can provision

infrastructure across multicloud and on-premises data centers, and it works safely and

securely based on changes in a configuration like reprovisioning, adding new services

to existing platforms, etc. The Terraform architecture is based on small modules; each

module is a reusable Terraform configuration for multiple infrastructure resources. You

can make small Terraform files that are modules, and each module can be reused and

can call other modules.

1. User commits Code

2. Code uploaded to
repository

3. Jenkins or any other
orchestra�on will pull
& builds

5. Ansible Tower or Terraform or Chef or
SaltStake or Puffet or CFEngine will ini�ate
provisioning

6. Automate the Infrastructure,
Kubernetes and Docker container on
available cloud or on-premises

7. Deploys Services

Registry

4. Build and add
Services Binaries

4.1 Binaries or Container
Images

SCM Repo’s

Figure 17-3. How IaC tools integrate with the DevOps pipeline and provision
infrastructure

Chapter 17 InfrastruCture automatIon

628

The main concepts of Terraform are as follows:

• Configurations: Terraform uses text files to describe the infrastructure

and its variables. This is called a Terraform configuration file has a .tf

extension. The configuration comes in two formats: Terraform format

and JSON.

• Resources: Resources are basic building blocks of a Terraform

configuration, and resources are cloud provider specific.

• Variables: To make configurations more portable and flexible,

Terraform supports the use of variables. By changing the variables,

you can potentially reuse a single configuration file multiple times.

The following are Terraform features:

• Terraform is platform-agnostic and can work with any cloud

providers or private data centers.

• Terraform creates an immutable infrastructure.

• Terraform has a planning step where it generates an execution plan.

The execution plan shows what Terraform will do when you apply.

• Terraform constructs a graph for all your cloud native resources, and

parallelization creation of your infrastructure and modification of any

nondependent resources; therefore, it provisions the infrastructure

as efficiently as possible, and operators get insight into the

dependencies in their infrastructure.

• Complex changes sets can be applied to your infrastructure with no

or minimal interaction. With the execution plan and resource graph,

you will know exactly what Terraform will change and in what order,

avoiding many errors.

The following are the main benefits of Terraform:

• Dynamic infrastructure and safe disposal of any configuration changes

• Using version control and applying testing to the infrastructure

• Standardization of the infrastructure, since no or less human

intervention is required and a consistent infrastructure is available

across your environment even across multicloud environments

Chapter 17 InfrastruCture automatIon

629

• Validate infrastructure before deployment

• Easy to destroy a server and redeploy if your cloud native services

crashed instead of repairing themselves

 Ansible
Ansible is an open source provisioning tool for managing the configuration and

application deployment tools enabling IaC. It provides an enterprise framework for

building and operating an automation framework. You can centralize and control your

infrastructure with a visual dashboard and role-based access control. The Ansible

platform uses the YAML language for infrastructure code. Ansible’s simple, easy-to-read

automation language has made it easy for teams across the organization to understand.

Ansible works by connecting to your nodes, pushing out Ansible modules with

programs, and executing over SSH. The commercial version of Ansible is Ansible Tower

from Red Hat. The following are the benefits of Ansible:

• It’s simple to set up and use; no special coding skills are necessary to

use Ansible’s playbook.

• Ansible lets you model highly complex IT workflows.

• You can orchestrate the entire application environment no matter

where it is deployed.

• You don’t need to install any software agents.

 SaltStack
SaltStack is open source provisioning, configuration management, and application

deployment tool enabling IaC. It is built on Python. It uses simple human-readable

YAML combined with event-driven automation to deploy and configure complex IT

systems. The way it gets information about infrastructure is to query it in real time rather

than rely on stale date. It is based on a master and slave architecture; the master is a

lightweight set of instructions that send commands to slaves or minions with properties

and asks to run commands with these arguments. The minions store properties locally

and act on their own. It is designed for high performance and scalability, and the

communication between master and minions is a persistent data pipe using ZeroMQ or

raw TCP. The messages are asynchronously serialized on the wire using MessagePack

Chapter 17 InfrastruCture automatIon

630

and internally use Python Tornado as an asynchronous networking library. The

following are the benefits of SaltStack:

• It’s fault tolerant. Salt minions can connect to multiple masters at one

time with a YAML configuration.

• It is designed to handle 10,000 minions per master.

• Salt is easy to set up and provides single remote execution

architecture.

• It is language agnostic; it can support any language.

• It is a fast, lightweight communication method to provide the

foundation for a remote execution engine.

 Chef
Chef is a configuration management tool written in the Ruby DSL language and

Erlang. It uses Ruby encoding to develop basic building blocks such as recipes and

cookbooks. It integrates with any of the cloud technologies. The key building blocks of

Chef are recipes and cookbooks. A recipe is a collection of attributes used to manage

the infrastructure. These attributes have been used to change the existing state of

infrastructure. A cookbook is a collection of recipes. When Chef runs, it ensures that the

recipes present inside it get a given infrastructure to the desired state. Chef works on a

three-tier client- server model wherein the cookbooks are servers, the recipes are clients,

and the knives are communicated across Chef. The following are the features of Chef:

• It does not work on assumptions about the current status of a node.

It uses its mechanism to get the status of the machine.

• Using the Knife utility in Chef, it can integrate with any cloud

infrastructure.

 Puppet
Puppet is a configuration management tool and developed by using Ruby. This tool is

written in the Ruby DSL language that helps in converting a complete infrastructure into

code format. It follows the client-server model, wherein one machine in a node acts as a

server, called the Puppet master, and the other acts as a client called the slave on nodes.

Chapter 17 InfrastruCture automatIon

631

It manages any system from scratch, from the initial configuration to the end of the

lifecycle. The features of Puppet are as follows:

• It supports idempotency, which makes it unique. You can safely run

the same set of configurations multiple times on the same machine.

• It works very well cross-platform with the help of a resource

abstraction layer (RAL) that uses Puppet resources.

• It provides details with graphical reporting. With this you can

visualize the infrastructure and communicate and quickly respond to

modifications.

 CFEngine
CFEngine is an open source configuration management system with self-healing

capabilities and a desired state, with a model-oriented approach. It is suitable for

managing a system composed of everything from a single host to hundreds of thousands

hosts. It is based on a decentralized knowledge-based architecture. Its purpose is to

implement a knowledge-based infrastructure through configuration management, and it

simplifies the tasks of system configuration and maintenance. The CFEngine host acts as

the policy hub, which is a server where the clients fetch their policy files. It ensures that

the behavior of these clients is consistent. The following are the features of CFEngine:

• You do not need to tell it what to do. Instead, you specify the state of

the system, and it automatically decides the action to take to reach

the desired state.

• It defines the configuration of an entire IT system, including devices,

users, applications, and services.

• You can check the system state at any given moment.

• You can ensure compliance with the desired state.

• You can propagate real-time modifications or updates across the

system.

Chapter 17 InfrastruCture automatIon

632

 AWS Cloud Formation
AWS Cloud Formation gives you an easy way to model a collection of related AWS

resources and other cloud resources. You can create the code from scratch by using

a cloud formation template language, either in YAML or JSON format. A template

describes your desired resources and their dependencies so you can launch and

configure them together as a stack. You can use these templates to manage the entire

stack in a single unit. You can manage the template code locally in the source code

repository or upload it into the S3 bucket. Use CloudFormation via the browser console,

command-line tools, or APIs to create a stack based on your template code. The

following are the features of CloudFormation:

• It supports DevOps and GitOps best practices.

• You can scale your infrastructure globally. Manage resource scaling

by using templates across your organization and across AWS

accounts and regions.

• You can integrate with other AWS services. You can integrate other

services such as AWS identity and access management for access

control, AWS config for compliance, etc.

• You can manage third-party and private resources. It can manage

third-party and private resources alongside your AWS services.

 IaC Tools Comparison
Table 17-1 provides you with a key comparison across major IaC tools.

Chapter 17 InfrastruCture automatIon

633

Ta
bl

e
17

-1
.

Ia
C

 T
oo

ls
 C

om
pa

ri
so

n

Fe
at

ur
es

Te
rr

af
or

m
An

si
bl

e
Sa

ltS
ta

ck
Ch

ef
Pu

pp
et

CF
En

gi
ne

AW
S

Cl
ou

d
Fo

rm
at

io
n

To
ol

 ty
pe

pr
ov

is
io

ni
ng

Co
nf

ig

m
an

ag
em

en
t

Co
nf

ig

m
an

ag
em

en
t

Co
nf

ig

m
an

ag
em

en
t

Co
nf

ig

m
an

ag
em

en
t

pr
ov

is
io

ni
ng

pr
ov

is
io

ni
ng

Ar
ch

ite
ct

ur
e

pu
sh

pu
sh

pu
sh

 a
nd

 p
ul

l
pu

ll
pu

ll
pu

ll
pu

sh

Pr
ov

is
io

ni
ng

ap

pr
oa

ch
De

cl
ar

at
iv

e
De

cl
ar

at
iv

e
De

cl
ar

at
iv

e
De

cl
ar

at
iv

e
De

cl
ar

at
iv

e
De

cl
ar

at
iv

e
De

cl
ar

at
iv

e

La
ng

ua
ge

s
ha

sh
iC

or
p

co
nf

ig
ur

at
io

n

la
ng

ua
ge

Ya
m

L
Ya

m
L

ru
by

Ds
L

an
d

er
B

Ds
L

ts
, J

s,
 p

yt
ho

n,

Ja
va

Li
fe

cy
cl

e
(s

ta
te

)
m

an
ag

em
en

t

Ye
s

no
no

no
no

no
no

Ag
en

ts
no

no
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s

Co
m

m
un

ity
hu

ge
hu

ge
La

rg
e

La
rg

e
La

rg
e

sm
al

l
sm

al
l

Cl
ou

d
su

pp
or

t
al

l c
lo

ud
al

l c
lo

ud
al

l c
lo

ud
al

l c
lo

ud
al

l c
lo

ud
al

l c
lo

ud
aW

s

Chapter 17 InfrastruCture automatIon

634

 Summary
To get the value of cloud and infrastructure automation, you need a cloud and cloud

 native mindset. Automating your infrastructure takes time, especially when you are on

the learning path. But doing consistently helps you to make changes.

In this chapter, I covered automation in an infrastructure by using infrastructure as

code and also provided an end-to-end automation pipeline for infrastructure. I provided

the IaC tools and methodology to adopt automation in your project. Finally, I provided

one reference implementation of how we used IaC in our project.

Chapter 17 InfrastruCture automatIon

PART VI

Cloud Native Operations

637
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_18

CHAPTER 18

Intelligent Operations
In modern-day technology, with our increasingly disruptive and complex world, changes

come quickly, often without warning. Customer expectations are exceeding the abilities

of traditional management. Such trends turn today’s best practices into tomorrow’s

liabilities. Enterprises that are following the traditional approach for managing systems

simply can’t deliver what is needed to maintain next-generation customers. To survive

and thrive today and in the future, enterprises must be able to act quickly with intelligence.

The implications of this new mandate particularly affect business operations, the

heart of the entire industry. Enterprises are required to make fundamental changes and

transform operations to be the intelligence engine. Most researchers believe the future

belongs to intelligent operations, enabling quicker, insight-led decision-making.

Enterprises are required to embrace artificial intelligence for IT operations (AIOps)

for tools, processes, and best practices for streamlining the complexities of IT. AIOps

works with DevOps teams to quickly identify and fix issues that affect the behavior of an

enterprise system.

In all these chapters, you have learned about the architecture, design, and

development of a cloud native application. In this chapter, I will cover what you need

to do post-production deployment. Operation management is a huge subject area, but

I am restricting myself to concentrating on intelligent operations because that is the

future. One thing you need to keep in mind is that you need to architect and design your

systems for the best operations.

In this chapter, I will explain the following:

• AIOps

• Essentials of intelligent operations

• How data is important for the operation

• How you can leverage the power of the cloud

• ChatOps

https://doi.org/10.1007/978-1-4842-7226-8_18#DOI

638

 Introduction
As cloud native accelerates, organizations are becoming increasingly dependent

on IT. Service downtime and outages have an enormous business impact that leads

to unhappy customers. How IT operates is one of the major elements of cloud

 native transformation, tasked with meeting demanding scalability, availability, and

performance SLAs. At the same time, IT operations are expected to be an equal partner

in innovation and agility, but sometimes organizations neglect the operations part. This

is the sad part of IT.

With unicorns and modernized competitors emerging, the challenges are immense.

Customer expectations are to have better quality with high performance. Whatever the

approach your organization is adopting to improve performance, process optimization,

cost reduction, and predictability may not be able to meet the present-day expectations.

To survive the competition, you must adopt agility, intelligence, flexibility, and

responsiveness.

There has been various research conducted by leading research institutes. The

outcome of this research is that the “future belongs to an organization with intelligent

operations,” and that enables you to have a 360-degree view of the operation, enabling

quicker, insight-led decision-making.

A study supported by Accenture and Hfs Research highlights that digital disruption.

An explosion of data and the customer experience are the driving forces behind the

need for enterprises to transform how they do business and move toward intelligent

operations.

• Nearly 80 percent of enterprises are concerned with disruption and

competitive threats, especially from the unicorns.

• Data is rapidly shifting from a peripheral component to a

fundamental driver of operations and competitive advantage.

• A robust customer experience strategy is the most significant driver

of operational agility.

With intelligent operations at the center of the enterprise, your organization can

become more flexible, responsive, and more agile; can generate value more quickly; and

can achieve a sustainable competitive advantage.

Chapter 18 IntellIgent OperatIOns

639

The intelligent operation is embedding advanced intelligence and automation

capabilities into the core operational process. It enhances decision-making across

operations based on operational data.

Intelligent operation is a new strategy for companies seeking to achieve operational

excellence (OE) aligned with the OE 4.0 approach. This move shifts the focus from

a reactive to a predictive approach while improving operational performance. This

requires accurate and single-source data, so companies can embrace intelligence

in operations. Just using the data does not solve problems; you should know how to

measure it to achieve the required outcome.

 Why Do You Need Intelligent Operations?
If you look carefully at how your operation team works, you may have questions. Why

are there so many escalations? Why are your teams so inefficient at responding to the

demand? You are not alone; this is common across organizations.

The following are the most common inefficiencies in operations:

• Silos: There is a wall that exists between the development and

operations teams. Both are entirely different resources and mindsets.

Everyone is waiting on someone else to get things done such as push

the services to production so the operations team can take over.

• Builds: How do you manage builds such as server images,

infrastructure, and templates? If your processes need to be updated

one by one manually, you’ll require additional approvals and at the

end have lots of errors. Still, most organizations follow a manual

approach and are not ready to embrace any automation.

• Configuration: How do you wire up servers, storage, and networking?

If you are manually configuring these devices every time, the time is

being wasted.

• Inventory: Most of the organization does not have a full inventory

of systems, IT hardware, etc. For example, what if you want to

implement a security patch? It’s a nightmare, right?

Chapter 18 IntellIgent OperatIOns

640

• Meetings: If you have already experienced a lot of meetings without any

actionable outcomes and the only outcome is “we will meet next week

to discuss further,” you may be suffering from paralysis by analysis.

• Strategy: It is important to have a clear strategy about the delivery

and service of your system. This makes your work and goals clear to

everyone.

 Elements of Intelligent Operation
Accenture defines the five essential elements, as shown in Figure 18-1, that come with

the service approach.

Data-Driven Approach
Data is at the heart of every organization today, and data is the new oil, so using data at

the core of your intelligent operations is a must. According to a survey from Accenture,

more than 90 percent of organizations believe that data-driven decisions will help you to

generate break-through customer goals. Therefore, you must use the data effectively to

achieve a sustainable competitive advantage.

Intelligent
Opera�on

Applied
Intelligence

Cloud
Enablement

Right Talent
& Skill

Smart
Partnership

Data Driven
Approach

Figure 18-1. Intelligent operation elements

Chapter 18 IntellIgent OperatIOns

641

To ensure you are adopting this in your core operations, you need to consider how

to retrieve, store, and analyze data effectively. Data aggregation engines are either

batch or streaming and can compile data from various sources to create data sets for

analytics and data lakes or data meshes that offer a single source for data. This helps the

operations team to get the most benefit out of data.

Applied Intelligence
Applied intelligence refers to four technologies that are critical to the effective use of

data captured using the data-driven approach in decision-making. They are analytics,

automation, streaming, and artificial intelligence. For example, AI-based natural

language processing can be used to extract relevant information from unstructured data

such as audio recording in self-service vehicle insurance checks.

You need the right talent to use these tools and the required right skills to understand

the issues that are coming from data, and you need to determine the best way of utilizing

technology to generate an output.

Cloud Enablement
Technologies in intelligent operations require highly talented resources to create them

on your own and therefore embrace the cloud to adopt AI services that help you to

create intelligent operations. The cloud services allow you to easily integrate disparate

types of data from multiple sources and offer access to AI tools with analytics with the

use of the right-powered machines and features. During the enablement of the cloud,

you need to concentrate on modernizing legacy applications to cloud services by using

a decoupling approach. Therefore, modernizing these tools should be a top priority to

avoid bottlenecks hampering decision-making throughout the business.

Right Talent and Skill
Having the correct modern technologies is the core ingredient in the success of

intelligent operations, but you may not able to implement them until you have the right

skills in place. The skills needed include IT talent in the areas of artificial intelligence,

cloud computing, automation, and domain. Soft skills such as dedication, culture of

change, culture of innovation, and culture of agility are essential.

Chapter 18 IntellIgent OperatIOns

642

To meet these talent demands, you will need much more agility in human resources

functions and a more flexible approach in recruitment, as well as an organization to

create a path to upskill existing resources. According to World Economic Forum claims,

more than half of workers will require a significant reskilling by 2022.

Smart Partnership
Finally, you will require a strong consortium or partner network that can extend out from

the boundaries of your organization. Association with startups and academic institutions

can offer a different perspective on how you make use of the data and technologies at

your disposal while extending the range of expertise you can take advantage of.

In modern-day disruption, you cannot achieve anything alone. You need the right

partnership. This helps you to embrace ways of working by adopting innovation and

design thinking.

 AIOps
The term AIOps was coined by Gartner in 2016. Gartner described AIOps platforms

as “software systems that combine big data and AI or ML functionality to enhance

and partially replace a broad range of IT operations processes and tasks, including

availability and performance monitoring, event correlation, and analysis, IT service

management and automation.”

To meet the ever-increasing business and technology disruptions, the IT operations

team can no longer work in silos in the old traditional way by adding more people.

Instead of relying on IT operations, the system needs to become intelligent, working

hand in hand with IT operations staff to pinpoint service and infrastructure issues,

accelerate remediation, and drive service quality.

AIOps is artificial intelligence for operations; it combines machine learning,

data analytics, and many other AI technologies to automate the identification and

remediation of common and recurring IT operations issues. AIOps leverages data from

logs and events to monitor assets and obtain visibility into dependencies.

AIOps is about embedding advanced intelligence and automation capabilities into

the core operational process. It addresses the need for operations support by combining

data storage and analytics functionality to deliver relevant details. The AIOps is broad,

but in operations, it focuses on diagnostic information, anomaly detection, root-cause

Chapter 18 IntellIgent OperatIOns

643

analysis, data analysis to improve monitoring, service management, and automation.

The AIOps platform enables continuous insights across IT operations.

AIOps can have a significant impact on improving key IT KPIs, including the

following:

• Increasing mean time between failures (MTBF)

• Decreasing mean time detect (MTTD)

• Decreasing mean time to investigate (MTTI)

• Decreasing mean time to resolution (MTTR)

• Mean time to restore service (MTRS)

• Mean time between system incidents (MTBSI)

Figure 18-2 provides a failure metrics timeline across all KPIs.

 Central Functions
Figure 18-3 shows the central function of AIOps, and these functions include the

following:

• Data gathering: The success of AIOps depends on data collection.

It gathers data from multiple sources including infrastructure,

networks, applications, monitoring tools, etc. Once it collects the

data, it further undergoes analytics.

Service Lifecycle

Service Breaks

Monitoring tool
no�fies breaks

Diagnose the issue

You’ve Fixed issues

Back to normal behavior

Some other issues occursrmal Behavior

MTTD MTTI MTBF

MTTR

MTBSI

MTRS

Figure 18-2. Failure metrics

Chapter 18 IntellIgent OperatIOns

644

• IT assets: It collects the inventory of IT applications and machines

across organizations. It contains the metadata of IT assets

and mapping of logical dependencies across services or other

applications.

• System relationship: It establishes an event across sources to

streamline what and where these events are moving. This helps to

reduce human intervention.

• Event analysis: It processes events after establishing the relationship;

it detects and predicts incidents. AIOps continually learns and

relearns based on data.

• Remediation: It learn and improves the association between each

event. Based on a prediction, it offers a recommendation, automates

a response, and offers automatic self-healing.

The following capabilities rotate across the AIOps functions.

Infrastructure
Maintenance

Business Function

Application
Maintenance

Figure 18-3. AIOps for modern-day systems

Chapter 18 IntellIgent OperatIOns

645

 Artificial Intelligence

It focuses on business priority–aligned IT automation driving efficiency, experience,

predictability, and cost savings. The AIOps platform uses the following types of analytics:

• Business disruption prediction: This includes discovering patterns

that implicitly describe correlations in historical and streamline data.

These patterns are used to predict incidents with varying degrees of

portability.

• Problem and change management: Ticket insights identify problems

based on severity and criticality and identify a root-cause analysis

and risk prediction.

• Monitoring and diagnostics: This includes integrated monitoring

across applications, infrastructure and security, diagnostics, and

event correlation.

• Prediction and recommendations: This includes AI-driven insights to

monitor, provides early warnings, and remediates a delivery risk.

 Data

Data focuses on data gathering across systems in a landscape. It gathers data from

multiple sources including infrastructure, networks, applications, monitoring tools, etc.

Once it collects the data, it further undergoes analytics.

You need both historical and real-time data to understand the past and predict

what’s most likely to happen in the future. To achieve accuracy and a bigger picture of

events, you must access a range of historical and streaming data with human-generated

and machine-generated data.

For total visibility, you need to collate data in one place across all your related IT

systems; this helps to define key performance indicators (KPIs).

Figure 18-4 shows the AIOps data architecture; it illustrates how it enables

operations and automation in your enterprise landscape.

Chapter 18 IntellIgent OperatIOns

646

 Automation

Automation merges IT operation tools with the DevSecOps pipeline, as shown in

Figure 18-5. In automation, engineers use AI to deliver services more quickly and

securely. AIOps provides a significant advantage in automation by collecting and

correlating data from multiple sources and increases the speed and accuracy of

identifying the necessary complex relationships. An AIOps approach automates these

functions across an organization’s IT operations. AIOps automation can also applies to

networks, virtualization, cloud services, servers, storage, containers, and applications.

Collect all logs, metrics, correlation, alerting, monitoring, and reporting.

APM

ITOA

NPMD

IoT Devices and
Hardware

Network

Database

Operating System

Data and APIs

Applications

Business Processes BI

Data Stores

ITSM

Source

Figure 18-4. AIOps data process

Chapter 18 IntellIgent OperatIOns

647

Increasing the use of automation, engineers are using AI to more quickly and

securely deliver services that are easier to manage in the software lifecycle. Figure 18-5

illustrates how AIOps can be integrated with the DevOps pipeline.

• Use AIOps in development to identify the risk in code with code

scanning and security scanning.

• Identify analytics with the integrated monitoring of application,

infrastructure, and security.

• Identify event correlation and anomalies in ITOM.

• Digital agents like chatbots use knowledge management to provide

ITSM.

Anomaly Detection

Anomaly detection relies on ML algorithms. A trending algorithm monitors KPIs by

comparing its current behavior to its past. If the score grows anomalously large, the

algorithm raises an alert. A cohesive algorithm scans a group of KPIs expected to behave

SCM Repo’s

Commi�er: abc
Story:25

Commit ID: 113

In
te

gr
at

ed
Ba

ck
lo

g

Check out & Secret Check Compile & Package

Code Analysis Tes�ng Deployment

Applica�on

Iden�fy Risk in Code

Infrastructure

Security

Log File and
Monitoring Analy�cs

Event Correla�on,
Anomalies

Development

Monitoring

ITOM (IT Opera�on
Management

Digital Agents

IT Service
Management

KnowledgeManagement

Figure 18-5. AIOps in lifecycle management

Chapter 18 IntellIgent OperatIOns

648

similarly and raises alerts if the behavior of one or more changes. AIOps makes anomaly

detection faster and more effective. Once the behavior has been identified, AIOps can

monitor and detect deviations between the actual value of KPI and prediction.

Event Correlation

Event correlation gives you the ability to see an event storm of multiple, related warnings

to identify the underlying cause of events. If any red alert or warnings occur in major

systems, the traditional tools do not have features to provide insight into the problem;

they just give warnings. In this case, teams try to ignore the alerts that turn out to be

trivial. In AIOps, automatically group events based on similarity. This grouping reduces

the burden on IT teams to search and find an item. AIOps focuses on key event groups

and performs ML or rule-based actions such as closing events, consolidating duplicate

events, reducing noise, etc.

IT Service Management (ITSM)

ITSM comprises the policies, processes, and procedures of delivering IT services. AIOps

provides benefits to ITSM by letting you manage services as a group instead of one at a

time. You can use these groups as a unit to define the automated response to align with

your framework. For example, if one container in a pod of five containers encounters

problems during the normal load period, the risk of the overall service is considered low,

and then you can run automation to modify without any user-facing impact. AIOps for

ITSM can help with the following:

• Manage infrastructure performance in a multicloud and hybrid cloud

more consistently

• Help you to predict capacity planning

• Manage connected devices across the network in your organization

 Example Use Case of AIOps
Here are some use cases of AIOps.

Traditional Operations
Figure 18-6 illustrates how traditional operations works.

Chapter 18 IntellIgent OperatIOns

649

AIOps-Based Operation
Figure 18-7 illustrates how an AIOps-enabled operation is implemented.

 Capabilities of AIOps
AIOps provide the following capabilities:

• Machine learning capabilities to help in identifying patterns in the

collected data.

• A dedicated data platform for aggregating raw data and logs from

various integrated monitoring tools and data sources across your

enterprise landscape.

• Dashboards, analytics, and integrated consoles help IT admins and

operations have clear insight of the end-to-end landscape.

• Intelligent infrastructure management to be managed with

infrastructure as code and the real-time gathering of monitoring data.

• Enterprise network analytics provides a detailed view of the end-to-

end network including hosts, edge, and VPC.

Customer enter
ecommerce app and
can’t complete order
because of app issue

Customer calls Call
Center

Call Center agent tries
to resolve issue and logs

ticket

Customer is unhappy, abandons cart,
you lost customer

Ticket is sent to IT
and is added to the

cue

Once ticket is analyzed
and issue is found to be

complex: Escalation!

War Room is called,
multiple SMEs are
pulled to solve the

problem

Figure 18-6. Traditional operations

Monitoring tool triggers
proac�ve alert that web

app is failing

AIOPs tool sends alert
correla�ng app

performance issue to
server outage

Ticket is automa�cally
generated in �cke�ng

system

ITOM module provisions
new server instance and

updates environment
mappings

Service returns
opera�onal with
minimal human

interac�on

� MTTI reduced

� MTTR reduced

� Customer
experience failure
avoided/reduced

Data Store

Figure 18-7. AIOps-enabled operation

Chapter 18 IntellIgent OperatIOns

650

• ITOPs and ITSM provide IT operation and service management

integration to provide intelligence in AIOps.

The following are the value levers from the previous capabilities:

• Enable value-based ROI performance tracking and decision-making.

• Accelerate IT incident identification (MTTI).

• Improve IT incident resolution time (MTTR).

• Improve management of network policies.

• Reduce the incident volume and improve resolution time.

• Improve data model accuracy and consistency.

• Reduce workforce to remediate tickets through automation.

 AIOps Transformation
A cloud native transformation is about the evolution of technologies and the evolution

of the business with new initiatives from user experience. It adds rapid growth in the

volumes of data generated but poses challenges to IT operations. Similarly, the need

for decision-making has increased due to the large volumes of data and analysis. These

challenges make traditional IT operations obsolete and inadequate and require the

correct utilization of data to extract value. As I mentioned in Capabilities of AIOps

section, the IT operations team needs help to streamline predictable, remediated, and

automated repetitive tasks to increase efficiency and focus on value-added activities. For

this you require AIOps.

As shown in Figure 18-8, the AIOps journey can start in many ways, but you need a

streamlined approach to transform your IT operations.

Tr
ad

i�
on

al
 IT

Op

er
a�

on AIOPs Strategy

Co
ex

ist
 o

f t
ra

di
�o

na
l

&
 A

IO
PS AIOPs

Transi�on

Fu
lly

 A
IO

Ps AIOPs
Transforma�on

Define vision,
Assessment, Value Case,

MVPs and Roadmap
Implementa�on,

Migra�on

Opera�onalize in
mul�ple por�olios and

governance

Figure 18-8. AIOps transformation

Chapter 18 IntellIgent OperatIOns

651

AIOps Strategy

In this phase, you required to perform the following activities:

• Assess the industry/value chain and AIOps vision

• Work with relevant stakeholders, identify and develop use cases, and

select tools

• Prepare business and roadmaps

• Build a workable MVP with a clear outcome

• Establish a roadmap

AIOps Transition

In this phase, you required to perform the following activities:

• Conduct an assessment for existing monitoring and automation

capabilities.

• Define future-state capabilities and create an AIOps architecture and

migration approach.

• Conduct a platform migration.

• Train users on the new platform.

• Transition use case and value tracking to operational teams.

AIOps Transformation

In this phase, you are required to perform the following activities:

• Conduct an assessment of AIOps maturity and identify use cases

across DevSecOps.

• Define a change journey to implement a workforce operating model

and culture change.

• Establish enterprise-level integration and socialize across all the

stakeholders.

• Track metrics and publish them to all stakeholders.

Chapter 18 IntellIgent OperatIOns

652

 Benefits of AIOps
The main benefit of the AIOps process is that it enables IT operations to identify and

resolve problems. The following are the benefits:

• Quicker problem analysis: AIOps can analyze the causes of issues and

propose solutions more quickly compared to a manual approach.

• False apprehensions: AIOps reduces the fear among teams on every

issue and notifies them when an action is required.

• Predictive management: It uses machine learning algorithms to

identify problems and provide predictive reports.

• Decision-making: AIOps helps to make decisions by analyzing the

data.

These are additional benefits:

• It brings together data sources that had previously been siloed to

allow more complete analysis and insight.

• It accelerates root-cause analysis and remediation and saves time,

money, and resources.

• It proactively identifies, prevents errors, and empowers IT teams to

focus on higher-value analysis and optimization.

 ChatOps
ChatOps is chat-based operation and describes a collaboration model that connects

people, processes, tools, and automation seamlessly and transparently through the

chat platform. It is designed to help to improve service reliability, service recovery time,

and collaboration efficiency. In the ChatOps environment, the chat client serves as the

primary communication channel for ongoing work. ChatOps will integrate into existing

tools and processes and a collaborative communication environment to improve ticket

tracking, automated incident management, and service management.

ChatOps is the streamlined use of chat applications and communication services

to run development and operations functions and commands in line with human

collaboration.

Chapter 18 IntellIgent OperatIOns

653

The following are the categories of ChatOps:

• Notification system: This automatically notifies if some incidents

occur. Tools include PagerDuty, VictorOPs, etc.

• Chatbots: Conduct online chat conversation via text or voice to the

customers, like Yellow Messenger, Hubot, etc.

• Chatroom: Chat-based tools for collaboration for effective use in

automation such as Microsoft Teams, Slack, etc.

For example, during the troubleshooting of an L1 or L2 ticket, each person in

our team was working in a silo and was not able to resolve the issue on time, which

become an escalation to senior leadership. What was the mistake our team made?

Team members should have been collaborating over a group chat, which is designed

for human-to-human and human-to-machine interactions. This kind of collaboration

platform maintains team communication effectively and can integrate with ITSM tools

to resolve quickly.

 ChatOps Benefits
The benefits are split into who uses ChatOps; one category of users is social and another

is technical. The social users are usually nontechnical members like customers, and the

technical users are engineers who will likely find greater value in the technical benefits.

ChatOps is about increased sharing and collaboration across teams and customers.

The social benefits are as follows:

• Increased collaboration

• Improved customer experience

• Enhanced learning

The technical benefits are as follows:

• Increased automation

• Reduced manual intervention

• Faster response time

• Improved security and safety

Chapter 18 IntellIgent OperatIOns

654

 Types of ChatOps
The concept and technology behind ChatOps have been available in the industry for

quite some time. Group chats have long existed, but chatbots are quite new. With the

new age of technology, there have been advancements and evolutions in the way you

utilize them.

 Group Chat

Group chat has existed for quite some time, and Internet Relay Chat (IRC) has been part

of teams for many years. With the evolution of modern architecture like cloud native and

AI, chat applications are evolving, and they are much more user-friendly. As shown in

Figure 18-9, these group chat tools integrate seamlessly with additional IT operations

and DevOps tools.

The following are a few group chat applications:

• Microsoft Teams: From Microsoft, this integrates seamlessly with the

other suites of Microsoft tools.

• Slack: From Slack Technologies, Slack has gained popularity for its

user interface and user experience including SlackBot. It provides

open third-party integration.

Group Chat

DevOps
Orchestra�on

Source Code
Management ITSM tools

Figure 18-9. Group chat integration

Chapter 18 IntellIgent OperatIOns

655

• HipChat: From Atlassian, this integrates seamlessly with a suite of

tools such as JIRA, Confluence, etc.

• Flow Dock: From CA Technologies, it integrates seamlessly with a

suite of tools.

There are many open source and commercial group chat tools available like Grape,

Zulip, etc.

 Bots

Recent chat bots use more sophisticated technologies and do not require hosting,

configuration, or support in your organization. Currently, there are several well-known

chatbots available, and they are more focused on a business-to-customer (B2C) style.

As shown in Figure 18-10, the chatbots integrate with various capabilities like DevOps,

SCM, authentication, operation tools, and also the cloud.

• Yellow Messenger: This is the most used bot today and supports B2C

and IT operations.

LDAP

VPN

Cloud

ITSM Tools

DevOps
Orchestra�on

Source Code
Management

….

Figure 18-10. Chat bot integration

Chapter 18 IntellIgent OperatIOns

656

• Hubot: From GitHub, this is a well-known chatbot that supports B2C

and IT operations.

• Lita: This supports B2C and IT operations and is easy to implement.

There are many chatbots available that support the same features as the ones listed.

 ChatOps in Service Support
Generally, a chatbot offers the following services:

• Customer support service: In customer service, a chatbot can help you

with the onboarding process, resolving issues on the first customer

contact, predicting their needs, and keeping the customer engaged.

• Sales service: In this service, the chatbot helps you to identify

customer inhibitions and remind users about products and

payments.

• Marketing services: In this service, the chatbot helps you better

segment customers, offer personalized ads with AI conversations, etc.

• ITSM services: In this service, a chatbot helps with intelligent

operations such as incident management, access request, monitoring

and alerting, and FAQs.

• Operation services: In this service, the chatbot provides automatic trigger

workflows, processes with unstructured data, auto-escalation, etc.

• Automation services: In this service, the chatbot helps you

automate the contact center, conversational IVR automation, voice

authentication, and automation.

• HR services: In this service, the chatbot can help with employee

productivity and satisfaction, omnichannel, and ticket management.

 ChatOps (Bot) Architecture
Chatbots are used in various services including an omnichannel conversational

enablement platform for enterprises that allows you to create chatbots on various

channels like web, mobile, telephone, Google Assistant, and other group chat tools like

Teams, Slack, etc.

Chapter 18 IntellIgent OperatIOns

657

The architecture diagram in Figure 18-11 illustrates how the chatbots operate to

support your enterprises. This architecture may not be standard across all chatbots; the

source and how you analyze the data differs.

In ChatOps, the user interacts with the chatbot through a chat client, making it

possible for all team members to maintain awareness, even through mobile devices.

The remediation steps are preserved in the chat record, which assists with onboarding

and fine-tuning best practices. These best practices can then be incorporated into

orchestration scripts for the chatbot. Figure 18-11 illustrates further.

The architecture uses plugins that integrate with your web applications and

messaging layer to connect users with a chatbot engine and establishes a queue to track

all the requests and avoid losing any packets or requests.

The chatbot engine contains database storage for search, analytics database, and a

persistent database to store details. The process engine consists of an ML engine, NLP

engine, and analytics engine to process the chats. The integration services integrate

various services in an enterprise.

Transporta�on Layer

Messaging Queue

Applica�on Layer

Bot Engine ML Engine Bot Analy�cs NPL Engine

Live Chat

Admin Tools

Bot Engine ML Engine Bot Analy�cs NPL Engine

Live Chat

Admin Tools

Data Store

Web Plugin

Integra�on
Services

Figure 18-11. Chatbot architecture

Chapter 18 IntellIgent OperatIOns

658

The chatbot integrates with knowledge management to process all such

conversations, context, and commands.

The chatbots also integrate with voice integration and language models for various

language conversions.

 Industry Example Use Cases
Here are some use cases:

Group Chat Use Case: Microsoft Teams–Based Chatbot with AI Is
Integrated with ServiceNow

Microsoft Teams–based chatbot solution helps the client to serve its ServiceNow users

with the following assistance:

• Required to know the status of the ticket

• Resetting customer credentials

• Generic order management

The chatbot solution benefits the client as follows:

• Reducing service desk tickets

• Resolving ticket faster

• Offering enhanced customer experience

Chatbot Use Case: Payment Industry to Resolve Billing Queries
and Create Case Management Requests

One company used Yellow Messenger and an integrated solution to the web application

and helped the client with the following assistance:

• Required to know the invoice

• Required to get itemized billing

• Create an incident on case management

Chapter 18 IntellIgent OperatIOns

659

• Payment instruction issues

• FAQ

We integrated Yellow Messenger into a web application with text and voice-based

search and helped the client to create an incident, provide status, check billing details, etc.

 Summary
IT leverages application monitoring tools to maintain operational efficiency; however,

each tool collects a lot of data that needs to be maintained. When a team fails to detect

vulnerabilities and issues in your cloud native services, it leads to security threats. By

using AIOps, IT teams can automate and improve monitoring and remediation.

An organization that adopts AIOps can see the benefits by addressing operational

issues and analyzing issues quicker and faster.

Chapter 18 IntellIgent OperatIOns

661
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_19

CHAPTER 19

Observability
Observability has many names, such as monitoring, tracing, logging, telemetry, and

instrumenting. All of these are required to create observability. It includes measuring

your infrastructure, security, and application to understand how they are doing and then

acting on the findings, with either predictive or reactive solutions. Why do you need to

do observability? What do you measure? To get an answer to these questions, you need

to ask yourself the following:

• Is my user happy?

• Are my applications behaving as expected?

• Are my servers performing well?

• Is my deployment safe from vulnerabilities and fraud?

You have been doing monitoring, tracing, etc. for your system, but without any

insight. Current cloud native modern architecture requires more than just monitoring.

For example, your system might require processing in real time to enhance the

experience, including not just monitoring but examining its internal state based on the

outputs.

According to Gartner, by 2024, 30 percent of enterprises implementing distributed

cloud native systems will have adopted observability techniques to improve digital

business service performance.

Observability is evolving. There are no full-on tools or software available yet, but a

few tools such as Splunk and New Relic incorporate some observability features.

https://doi.org/10.1007/978-1-4842-7226-8_19#DOI

662

Observability is a must for every system; you should not deploy any systems whether

small or complex without observability.

In this chapter, I will cover the following:

• Observability in cloud native systems

• Best practices and principles of observability

• What to measure and what not to measure

• Observability use cases

 Introduction
Organizations have deployed monitoring tools for a decade to track the performance

of their infrastructure, network, security, and applications. As the IT landscape evolves,

monitoring tools have some limitations in their ability to adapt to the disruption of

business and technologies in the cloud native age.

Observability is a measure of how well the internal state of the services can be

observable from knowledge of external outputs. The concept of observability was

introduced by Rudolf E. Kalman for linear dynamic systems. A dynamic system designed

to estimate the state of a system from measurements of the outputs observes the system.

Once you have successfully deployed your services into production, you have

completed half the work. You just need to build observability into your system. Your

primary goal is to build systems that are designed to discover problems early and often

so you can learn and improve.

As your system grows with more services, each part can start grinding together

like poorly fit gears. Intentions conflict, assumptions unravel, and the system begins to

operate in increasingly unexpected ways. Rather than spending intellectual capital trying

to predict all the possible failure modes, you have learned to use practices that allow

you to see deeply into the system, detect anomalies, run experiments, and respond to

failures. Observability is required when it becomes difficult to predict the behavior of a

system and how your users will be impacted by these changes and to ensure that your

system behavior aligns with customer experiences.

Making the system observable involves the practice of combining context,

information, and specific knowledge about the system to create the conditions for

understanding. You need to integrate all the output generated by the systems such as

logs, metrics, events, traces, audits, etc., and correlate them with semantics and intent.

Chapter 19 Observability

663

Observability is most important in today’s world when considering the pace and

characteristics of cloud native systems and how they are developed, delivered, and

deployed. As mentioned in earlier chapters, the adoption of cloud native is increasing

every day, so the old practices of bolting on monitoring after the fact are no longer

effective and do not scale. It’s critical therefore to have a modern way to observe the

behavior of the system to better understand the characteristics of a system. Many

practices contribute to observability, and some of the practices are embedded within

products and tools.

Observability allows teams to monitor cloud native systems more effectively and

helps them to find and connect effects in a complex chain and trace them back to their

cause. Further, it gives the operations team more visibility into their entire end-to-end

architecture.

“You can’t perform any operation without proper end-to-end visibility.”

Observability is important in current scenarios because it gives you greater control

over complex systems. Distributed cloud native systems have a higher number of

interconnections across services and systems, so the number of failures that can occur is

too high, and distributed systems constantly are updating due to business and technical

disruptions. Therefore, every change can create a new type of failure. In a distributed

environment, the understanding current problem is very challenging, because it

produces unknown unknowns. The monitoring is able to find only known unknowns, so

how do you find unknown unknowns? You can find them only through observability.

 Difference Between Monitoring and Observability
Monitoring and observability are different concepts, but they work for the same cause,

and both depend on each other. Monitoring is an action to perform to increase the

observability of your system. Observability is part of the system like one end-to-end

functionality.

Monitoring tools collect and analyze the system behavior as data and translate it

into actionable insights such as presenting details to the dashboard, alerting, notifying

all stakeholders, etc. For example, monitoring technologies, such as application

performance monitoring, is able to provide information about whether the system is

able to perform against the service level agreement (SLA).

Chapter 19 Observability

664

On the other hand, observability is a measure of how well the internal system state

and behavior can be inferred from knowledge of its external outputs. It uses the data that

monitoring tools produce. The observability of your system depends on how well your

monitoring tools generate and correlate data.

Monitoring requires you to know what’s important to monitor in advance, but

observability lets you determine what is important by observing how the system behaves

over time and by asking relevant details about it.

Let’s look at one example of a large enterprise where they deployed it in a large data

center with a high number of VMs and containers with hundreds of systems that are

monitored using log analysis and monitoring with ITSM tools. Analyzing hundreds of

systems continually will generate a huge volume of data with unnecessary alerts and

false flags. The infrastructure may present with low observability characteristics unless

the correct metrics are evaluated. On the other hand, a small system with few containers

and servers can be easily monitored using metrics and parameters like health, CPU,

etc. These parameters are highly correlated to the health of the system, so the system

demonstrates high observability.

 Full-Stack Observability
Observability has become an important practice for cloud native modern enterprises.

The observability is one of the main strategy that you need to adopt in your architecture

that allow you to enable various designs for the “-ilities. ” .

From web and mobile applications to polyglot persistence with varied container

resources and integrated systems, there are multiple technologies in a varied

infrastructure. To observe the diverse system, you should apply the principles of

full- stack observability in your enterprise estate.

With the evolution of unicorn companies, peer competition, technology, and

business disruption, you have pressure to innovate quickly and push new features to

market faster to capture the market and meet the end customer expectations. Customers

are impatient. They want more and do not tolerate slow, error-prone, or poorly designed

user experiences. Once you have lost customers, they never come back to you. According

to a survey, 62 percent of customers want more user-friendly apps.

Chapter 19 Observability

665

To achieve this, as shown in Figure 19-1, you need to observe the end-to-end real

estate with an eye on capturing data in a single source. This helps you to troubleshoot,

analyze, debug, and optimize performance across your systems. Implementing

observability provides you with a connected context and surfaces meaningful analytics

from logs and can provide a single view to the administrators and management.

To achieve full-stack observability, you need the following core elements in your

observability architecture.

 Connected Across Capabilities
Putting telemetry data across security, infrastructure, and applications in one place

is important. Your data needs to connect the capabilities with the services within the

capabilities, and these relationships must be correlated with the metadata so you can

understand its relationship. Such connections give your data context and meaning.

When all of your telemetry data and connections are stored in one place, you can apply

intelligence to your large data set, anomalies, surface pattern, and the correlations that

are not easily identifiable by humans watching dashboards.

Endpoint and Infra Security

DataSecurity

Security Analytics

ApplicationSecurity

IAM

VMs

Firewall

VPC

Containers

Switch

Network

Microservices

Databases

APIs, Event, SFTP

Web

Security

Infrastructure

Applications

Data Ingestion& Analytics

Single Source View

One Source

View, Alert, predict …

Trace, log, metrics, audit

Figure 19-1. Full-stack observability

Chapter 19 Observability

666

You need to see how all capabilities and services in your system are related to one

another at any moment. It is difficult to maintain the mapping due to changes every

day like adding features to existing services, adding new users, or adding a new network

or new infrastructure. The context of your data relies on metadata and dimensions.

Depending on the type of your system, the volume of data varies.

 One Source of Truth
For many years, until recently, teams collected telemetry data for observability through

agents. Application teams, infrastructure teams, and security teams deploy the agents

inside applications; use hosts to collect metrics, event traces, and log data; and aggregate

this data and show it in the user interface.

But in the cloud native age, there are many sources of telemetry, and many open

systems have their built-in metrics, events, logs, and traces. For full-stack observability,

you need to collect data from all capabilities and services and store it in one source and

apply instrumentation wherever it requires based on the visibility requirement. The

metrics, logs, events, traces, and audits are the essential subtypes of observability.

Metrics: Metrics are the most important subtype telemetry of

observability, and they are easy to collect and store quickly by

using various tools. These types provide clear visibility of the

overall health of your system.

Events: Events are a critical subtype of telemetry of observability.

The events are detailed records of every action of your system

including integration points, Kubernetes clusters, and security

integrations.

Logs: Logs are the detailed subtype telemetry of observability; they

provide high fidelity data and detailed context around an event.

There are various tools available in the industry for collecting,

filtering, and exporting logs; you need to hook these into your

capabilities and services.

Traces: Traces are valuable for showing end-to-end latency and

detailed subtype telemetry of observability. They provide detailed

insight into the myriad customer journeys through a system. This

Chapter 19 Observability

667

enables you to understand the end-to-end journeys with a unit of

work and find bottlenecks with errors. There are various industry

tools available to collect traces.

Audit: An audit is a detailed view of the transactions subtype

telemetry of observability. These details are important in

identifying how and where transactions happen and in providing

the various compliance issues.

The following are the characteristics of one source of truth:

• Gathers all your telemetry data in one place and generates a

connected view of all the data points of your system. This helps you

to understand and resolve the issues that impact your business.

• You should build on a flexible schema so you can quickly get an

answer to questions; we recommend using either NoSQL or search

databases.

• It scales as your business grows, so you must able to support

unpredictable demands.

 Visualization
Visualization of your connected and well-defined data from system components is very

important to view what is going on in your system. When you provide a visualization

with insight without requiring configuration, you are better prepared to break down silos

and enable stakeholders to observe the entire system as a whole. This helps to identify

bottlenecks and resolve faster, and you are able to communicate better across teams and

stakeholders.

As part of the full-stack observability, you must provide intuitive, real-time

visualizations that focus your attention where it is needed most and communicate

the severity and scale of recent changes of your system. This allows you to discover an

unknown relationship with blind spots. These views should be customizable so you can

accommodate any type of anomaly.

The full-stack observability helps you to reduce the meantime to resolution (MTTR),

detect end-to-end issues, and predict the issues and execute fitness functions across

your system.

Chapter 19 Observability

668

 Observability and Cloud Native Services
Cloud native services in a distributed system are fundamentally changing the way

the systems are developed and deployed. Traditional monitoring capabilities such as

metrics, instrumentation, and alerting are not enough to observe systems; you need

much more to supplement these capabilities such as tracing, auditing, etc.

Cloud native services with containers address the increased risk of downtime and

other issues related to monolithic applications; you can find more details in Chapter 5.

However, container-based services add more complexity due to being loosely coupled,

independently deployed, and being scattered across multiple hosts. This makes it difficult

for engineers to know the behavior of what is running in production. Observability

addresses these challenges, providing visibility into a distributed system. It helps engineers

understand the behavior and then predict it so they can make the services self-healing.

As shown in Figure 19-2, for cloud native services, you need to adopt five

observability patterns that help to achieve observability in a distributed system.

API Gateway

Web and Mobile Applica�on

Order
Service

Catalog
Service

Product
Service

Notification
Service

Payment
ServicePayment Process

Product to catalog

Observability

Figure 19-2. Observability with microservices

Chapter 19 Observability

669

Note the architecture in Figure 19-2 is just an example of observability. i am not
endorsing any specific tools.

In the sample ecommerce architecture shown in Figure 19-2, the customer browses

the catalog, places an order, and confirms the order with a payment. You need to collect

the following telemetry data for observability in these ways:

• Instrument code verbosely. Everything flows from this. Wrap every

network or service call with a lot of context and as much details as

possible.

• Persist all the requests and identify throughout the system lifecycle

for every service and every request.

• Emit events including cardinality such as user_id, order_id,

catalog_id, and Payment_id.

• Structure your data and store it in one source.

• Don’t neglect any events and touchpoints.

• Create visualization and alerting mechanism and build analytics.

 Observability in Kubernetes
Kubernetes is one of the main cloud native tools. The Cloud Native Computing

Foundation (CNCF) defined observability/analysis as one of the main elements of the

cloud native journey. Caleb Hailey defined the top seven Kubernetes APIs for cloud

 native observability. These APIs help you to achieve a holistic view of your Kubernetes

cluster’s health.

• Kubernetes Metrics API: All the Kubernetes metrics are exposed as

Prometheus endpoints, so anything that can consume Prometheus

metrics collects these metrics. This API provides built-in Prometheus

exporters, Kubelet metrics, and Kube-state-metrics.

Chapter 19 Observability

670

• Service APIs: These APIs are important. Without proper visibility

into your services, you are able to get the proper errors. These APIs

provide networking configuration, including ingress, endpoint, and

service resources; service metadata, spec, and status; service ports;

internal and external IP addresses; load balancing and label selector

configuration details; and Kubectl describe services.

• Container API: The containers will run within pods. Kubernetes

APIs are able to provide details of both pods and containers. If you

want more drilled-down details of the container, you can use these

metrics to find the behavior of your system. These APIs provide pod

API resources, information about running containers, and container

status and details.

• Pod API: Pods are the building blocks of all Kubernetes workloads.

Pods are managed by Kubernetes controllers. These APIs provide

primary workload API resources; pod metadata, spec, and status;

controller references; and read log API.

• Kubernetes downward API: These APIs enable pods to expose

information about themselves to a container running in the pod.

These APIs provide pod configuration directives, an alternative to the

service account, etc.

• Kubernetes events API: In Kubernetes, events are most important.

They will give you information about what is happening inside a

cluster or a given namespace. These APIs provide resource state

changes, errors, and other system messages.

• Kubernetes API watchers: These APIs return lists of pods. These

APIs provide change notification, return change management

notifications, etc.

Chapter 19 Observability

671

 Observability and DevOps
Observability is more important in DevOps-based software development and the

deployment lifecycle. DevOps unites all development stakeholders like developers, QA,

infrastructure, and operations into one. The monitoring is not just collecting log data,

metrics, and event traces; now the monitoring becomes more observable. The scope of

observability encompasses the development process, technologies, and people. This

allows the team to understand services’ internal state at any given time and has access to

more accurate information about the system. The following are a few key benefits:

• There is better visibility of the services catalog in production.

• Predictive alerting helps to identify issues up front and make services

self-healing.

• Engineers can see end-to-end workflows about a particular issue.

• There is better collaboration across teams and services deployed in

production.

• With DevOps, observability provides a common data model between

development engineers and operation engineers to interpret system

state and behavior.

 Common Use Cases for Observability with AIOps
As described in the previous chapter, AIOps have been the driving force in helping you to

adapt to continually disrupting environments and enhance your operational capabilities.

AIOps consists of the AI technologies used in IT operations and helps the DevOps and

IT Ops teams to enhance your organization’s agility and detect anomalies. The following

are the few use cases for observability with AIOps:

• Cloud native systems: The cloud native services are required to

update regularly. They are required to leverage the AIOps in

observability. It helps speed up analytics and predictability.

• Cloud native transformation: AIOps features help you to collect data

from many resources and give a collective cross-domain overview in

observability.

Chapter 19 Observability

672

• Predictability: AIOps helps you to predict from one source of truth to

identify the anomalies quickly.

• The volume of data: The volume of data aggregated by tools can be

immense, and it will be difficult to understand the data without the

aid of AIOps.

 Guidance to Choose Observation Tools
Regardless of the type of tools you use, whether open source or commercial or in-house,

all observability tool should provide the following features:

• Integrate with existing tools: IT is not new, and monitoring is not new.

Every organization might use some kind of monitoring tool. You can’t

just throw away old and create new. This is the desired approach. You

need to embrace the reusability principle, so pick the observability

tool that integrates or collaborates with existing toolsets.

• Better usability: If tools provide excellent observability but will fail if

you do not have a proper dashboards, configuration management,

etc. so you need to make sure you design better usability for an

operation team.

• Able to provide real-time data: Your observability tool should be

able to provide data in both real time and batch mode and be able to

integrate streaming technologies like Kafka.

• Visualize aggregated data: The observability tool should surface

insights in easily configurable formats and be able to integrate with

other tools for dashboards, summaries, etc.

• Context details: The observability tool must provide the detailed

context of incident such as how the system behavior changed over

time, etc.

• Support machine learning: The observability toolset must support

or have a built-in capability for machine learning models for

predictions.

Chapter 19 Observability

673

• Business value: Observability tools must support metrics important to

your business, such as speed, customer experience, stability, etc.

• Open standards: Observability tools must support emerging open

standards for collection such as Open Telemetry and Open Metrics.

 Benefits of Observability
Observability enables you to reduce the time it takes to identify the root-cause analysis of

anomalies. The following are the few benefits:

• Improved coverage of distributed cloud native architecture:

Observability emphasis on a collection and analysis of telemetry

across all elements of your system.

• Improving the time to market: Observability helps you to do analysis

of anomalies. This helps with shorter resolution times.

• Infrastructure and storage optimization: Observability generates

less data compared to monitoring. This helps to optimize your

infrastructure and storage requirements.

• Shift-left observability: Observability can be integrated into the

DevSecOps cycle to identify anomalies in the early lifecycle of your

system development.

The main drawback of observability is adoption because of the lack tools maturity.

The adoption rate is still 5 percent, but there is an indication of a growing interest

because organizations are frustrated with the limitations of monitoring. As observability

is evolving, you will be able to find more tools that provide observability features.

The observability tools must include features such as arbitrarily wide structured

events, high-cardinality dimensions without the need for indexes or schemas, and

shared context propagation between contexts.

Chapter 19 Observability

674

 Observability, Monitoring, and Machine Learning
Models
You need to always think of how to avoid failure in the system when you configure

observability and monitoring tools. You might have to assume that something happened

to one service such as a request by the customer, an internal request, a bad experience,

etc. As I mentioned in earlier chapters, you can’t avoid failures, but you need to think of

how to optimize the responses to the failures. To achieve this, you are required to follow

these methods.

Data collection is important for a machine learning model. The following are the

data classes required to capture for the model:

• Logs: A log is a text record of an event in your application that

happened at a particular time that tells when it occurs and a payload

that provides the context. Usually, logs come in three formats. They

are plain text, structured, and binary. For the model, you select a

structured log, which is easier to query.

• Metrics: A metric is a numeric value measured over an interval of time

and includes specific attributes such as timestamp, name, KPIs, etc.

These are structured by default, which makes them easier to query.

• Traces: Traces provide an end-to-end journey of a request through

a distributed system. The traces provide important data of requests

moving across services.

Algorithms Help in Observability
Once you collect the data and store it in one source truth, as shown in Figure 19-1, you

need to automate the following:

• Applies AI and machine learning models to data

• Detects anomalies and eliminates noise

• Correlates relevant metrics to anomalies, traces, and log events

• Surfaces incidents with contextual data

• Identifies probable root causes

Chapter 19 Observability

675

Clustering and correlating are crucial steps for models, and they require multiple

different approaches. A combination of historical pattern matching and real-time

identification helps you to identify both recurring and new issues.

Workflow Steps for ML

• Aggregate event data, logs, metrics, traces, and changes across your

environment including your services and infrastructure.

• Integrate configuration management data to discover the system.

This provides context within the monitoring data, which helps to

understand interdependencies and relationships.

• Enrich data including parsing, aggregating of data, or combining

values in fields to equate to a value in another field. The enrichment

optimizes several processes including clustering, diagnostics, etc.

• Entropy is an algorithmically determined numerical value that rates

the importance of an event. The higher an alert’s entropy, the more

important it is.

• Correlate data across your systems. An alert correlation allows you to

see patterns across the systems to ensure your services are behaving

well. Correlation algorithms analyze alerts to identify clusters of

similarity across services. The correlation helps you to enable faster

incident management, problem management, MTTD, and MTTR.

• With root-cause analysis, you can apply supervised ML techniques. It

uses alert attributes in combination with feedback to analyze real-

time data sets and predict which alerts are most casual.

• Collaboration is the process of operation teams to quickly triage and

remediate incidents.

• Create a visual representation to illustrate all these steps.

Chapter 19 Observability

676

 Summary
In a nutshell, observability is an important and useful approach to understand the

state of your cloud native systems such as microservices, containers, Kubernetes,

and other technologies that have made systems complex. Identifying anomalies and

troubleshooting is difficult, but these systems produce a wealth of telemetry data that

provide a clear understanding of their behavior. Effective observability provides all the

instrumentation and analytics to you.

In this chapter, I covered a brief note about observability. It is a vast topic, but I tried

my best to cover the relevant details for you to understand and implement observability

in your cloud native architecture.

Chapter 19 Observability

PART VII

Cloud Native Features

679
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8_20

CHAPTER 20

Cloud Native Trends
I hope by now everyone has a clear view of the end-to-end lifecycle of cloud native

systems from architecture to design to development to operations.

What’s next? How will the cloud native journey progress? To provide the answer to

this question, I will cover cloud native future trends in this chapter.

The pace of technological change has accelerated. Customer demands are more

pronounced, and competitive threats have grown more unpredictable. Change is

happening quickly, and industries are racing for their position in the world. COVID-19

impacted the world in ways no one could have predicted, and organizations are adopting

IT in new ways.

Gartner, Forester, and other researchers publish trend reports every year about

the future, and I have been following all the research for quite some time. I’ll share my

thoughts of where things will be going from now.

ThoughtWorks publishes a technology radar report on various techniques, tools,

platforms, languages, and frameworks. They update the technologies regularly based on

maturity and industry trends.

I will divide the future trends into these two themes:

• Technology trends for cloud native

• Technology trends across industries

There is a lot more you can find via Cloud Native Foundation, Technology Radar, and

other leading consulting firms.

• Cloud native journeys related to Kubernetes on the edge, low-code

platforms, GitOps, etc.

• Industry trends like 5G, quantum computing, digital twin, etc.

https://doi.org/10.1007/978-1-4842-7226-8_20#DOI

680

 Cloud Native Trends
In this section, I will provide brief details of a few trends that are related to cloud native

architecture and design.

 Designing for “-ilities”
In a cloud native world, architecture is reprioritizing the “-ilities” such as resiliency,

observability, portability, etc. These cloud native services are distributed over the wire.

If something goes wrong with the services, you not only can observe them but also can

fix them. You had to build all these things yourself, and it was very complicated, but as

we progress, there are now more technologies available to handle them. For example,

service meshes and event meshes take care of some of the “-ilities.”

 Cloud Native Architecture
Event-driven architecture has existed for a while, but based on my experience, engineers

still need to master it when writing code. Various software is available to help you to

build event-driven systems. For example, the Distributed Application Runtime (Dapr)

helps you to build event-driven resilient distributed applications whether it b in the

cloud or hybrid or on-premises, as illustrated in Figure 20-1. Dapr codifies the best

practices for building cloud native services into open, independent building blocks that

enable you to build the business logic in your choice of language.

Payment Service Cart Service Order Service Price Service

Service-to-service
invoca�on State Management Publish and

Subscribe
Resource bridging

and triggers Actors Distributed Tracing Extensible

HTTP API grpc API

Any cloud or edge infrastructure

Figure 20-1. Dapr architecture

Chapter 20 Cloud Native treNds

681

Dapr reduces the burden on engineers to implement all the cloud native building

blocks such as state management, publish/subscribe, observability, and secrets. You can

find more details at https://dapr.io/.

 Open Application Model Specification
As shown in Figure 20-2, the Open Application Model (OAM) specification is a runtime-

agnostic specification for defining cloud native applications. This specification helps

you to focus on application business logic rather than any container, orchestration, or

infrastructure-related tasks. This specification brings modular, extensible, and portable

designs for modeling application deployment with a consistent higher-level API.

As cloud native is maturing, there is a need to have a well-defined and coherent

model that represents the complete application, not just a template but a clear

specification. The Open Web Foundation, a consortium of many companies, created

an OAM specification for describing services so that the description of the services is

separated from the details of how the services are deployed onto and managed by the

infrastructure. You can find more details at https://oam.dev/.

Service1
Business Logic

Open Applica�on Model (OAM)

Service2
Business Logic

Service3
Business Logic

Service4
Business Logic

Mul�-Cloud On Premises Data Center
Run�me Environments

Figure 20-2. OAM

Chapter 20 Cloud Native treNds

https://dapr.io/
https://oam.dev/

682

 Web Assembly
There is growing demand from customers in terms of performance, highly optimized

communication, and experience; you can’t just depend on JavaScript anymore. Web

browsers are capable of rendering user interface code, and modern architecture requires

a heavy-duty task to communicate effectively. Web Assembly helps you to do this.

The specifications are designed to do compilation within a browser for other machine

languages such as C, C++, etc.

Web Assembly (WASM) is a new type of code that can be run in web browsers and

provides high performance. It is not for engineers to write code, but it is designed to be

an effective compilation target. You don’t need to know how to create Web Assembly

code because it can be imported into a web application. It was created as an open

standard under the W3C Web Assembly community group. The following are the use

cases for WASM:

• Game development

• AR/VR live application

• Video editing

• Image recognition

You can find more details of WASM at https://webassembly.org/.

 Data Gateways
In the cloud native age, you already are familiar with API gateway and microservice

architecture. The API gateways streamline your APIs to the external and internal worlds

from microservices. Microservice principles provide you with the ability to embrace

polyglot persistence; such polyglot persistence requires an API gateway type model for

data. Like an API gateway, a data gateway offers abstraction, security, scaling, federation,

and contract-driven development, etc.

As part of the polyglot persistence, each microservice can have its own storage.

Some services require relational databases, and others require NoSQL, graph databases,

caching, etc. In modern technology, just using data for microservices is not enough; you

need data to be exposed to data analytics platforms. This is where the data gateways

help; they are similar to API gateways. API gateways work with the network, but data

gateways work with data. The following are a few features of a data gateway:

Chapter 20 Cloud Native treNds

https://webassembly.org/

683

• It abstracts away the physical data store and its specifics. This gives

you to the freedom to alter, migrate, and decommission databases.

• It understands the different data models and applies role-based

access management with a fine-grained security model.

• It speeds up access to all kinds of data sources by caching data and

providing materialized views; it can understand the queries and

optimize them based on the capabilities of the data source.

• It can act as a data federation layer.

• It allows a schema-first service like contract first for API gateways.

The data gateway tools are Apache Drill, which is a schema-free SQL language

for NoSQL database; Teiid, which is a data federation engine; PrestoDB, which is a

distributed SQL query engine; and AWS Athena, which is an ANSI SQL-based interactive

query service for analyzing data tightly with S3.

 HTTP/3
This is a third and major version of HTTP used to exchange information over the Web.

It provides the same features as HTTP/2: request methods, status codes, and message

fields. HTTP/2 uses TCP as a transport, but HTTP/3 uses QUIC as a transport layer.

The QUIC (it is not an acronym) is Google’s transport layer protocol, and later the

Internet Engineering Task Force (IETF) adopted it. The QUIC is a reliable and secure

transport protocol and addresses the shortcomings of HTTP/2 over TCP and TLS. QUIC

is a key element of HTTP/3 built on top of UDP and attempts to solve the major issues

experienced when using TCP-like connection establishment latency, multistream

handling, etc. Google uses QUIC for its server’s traffic. As of this writing, it is still in draft

form, but already 71 percent of running browsers support this. You can find more details

at https://quicwg.org/base- drafts/draft- ietf- quic- http.html.

 RSocket and Reactive Streams
For cloud native services, HTTP is the de facto standard for communication; it is

very well suited for services but may not be suitable for all use cases. If you want to

communicate other than request-response, then it is difficult. You can achieve it, but it is

not what the protocol was developed for.

Chapter 20 Cloud Native treNds

https://quicwg.org/base-drafts/draft-ietf-quic-http.html

684

RSocket is a new messaging protocol, and it is designed to solve some common

cloud native services communication drawbacks. RSocket is a flexible protocol that

works with TCP or WebSockets. You can do binary messages without any conversion and

with control of multiplexing, back-pressure, resumption, and routing, and you can use it

for fire-and-forget, streaming, and also request-response. This is best suited for reactive

architecture and ideal for high-performance and high throughput services. There are

many companies like Netflix, Alibaba, Facebook, etc., that have adopted this protocol for

respective use cases.

 Low Code/No Code
Development platforms with visual software development environments allow

enterprise engineers to drag and drop application components, connect them, and

create web or mobile apps with minimal hand-coding. They help to build quickly instead

of writing line-by-line code. Various companies are coming up with low-code tools like

AWS HoneyCode, Pega, etc.

These tools help to build custom software using the following steps:

 1. Organize data in tables.

 2. Build apps with visual tools in a drag-and-drop approach.

 3. Use automation to replace manual steps.

All the cloud vendors started with low-code services to build an app. For example,

AWS HoneyCode helps you to build software by using existing services like Lambda,

S3 buckets, etc., and HoneyCode generates relevant source code and API code for

applications. You can find more details in the respective tool providers. These tools have

started emerging due to the skill gap in cloud native services.

 Actor Model
The actor model is a design pattern that allows your team to focus on an application’s

business logic rather than low-level protocols. Self-healing, lightweight, and event-

driven, actors take a drastically different approach to messaging and processing. This

helps you to build distributed and reactive systems.

The actor model is not new; in 1970 Carl Hewitt and Alan Kay were running into

memory issues and slow programs. Their intention at the time was to create message-

Chapter 20 Cloud Native treNds

685

passing systems. The actor is a computer process or function; you are passing some

messages to the actor by calling functions, and it returns some messages.

Building reliable, scalable, event-driven, and distributed services in a multicloud

environment is not simple. Kubernetes and containers are helping us to meet the

previous characteristics. To take advantage of these technologies to build your

system, you use an actor model for simplification. You can relate the actor model to

microservices; in this way, the actor can be microservice clients, event publishers, event

handlers, message brokers, distributed loggers, error handlers, observables, etc. In a

nutshell, everything around your cloud native services is an actor. You can find more

details on InfoQ webinars.

 Kubernetes on the Edge
The edge is a topology that brings computation and storage to the location where it is

needed to improve response time and save bandwidth. Kubernetes provides a complete

edge computing solution with separated cloud and edge modules. The control plane of

Kubernetes resides in the cloud with scalability and extensibility, and at the same time

the edge can work in offline mode. These can be done by using the KubeEdge software; it

is lightweight and containerized and supports heterogenous hardware at the edge.

KubeEdge is built on Kubernetes and provides core infrastructure support for

networking, services deployment, and metadata synchronization between the cloud and

the edge. With the core business logic running at the edge, much larger volumes of data

can be secured and processed locally where data is produced. This is one of

the trends and works in parallel with edge computing. You can find more details at

https://kubeedge.io/en/#home_slider.

 GitOps
This is a way of implementing continuous deployment for cloud native services. It is an

operational framework, and it requires you to describe observability for systems with

declarative specifications that adhere to continuous everything principles. It focuses on

operating infrastructure and operations capability with DevSecOps and Kubernetes and

by using infrastructure as a code.

Chapter 20 Cloud Native treNds

https://kubeedge.io/en/#home_slider

686

The following are the main principles of GitsOps:

• The entire system is described declaratively.

• Everything is versioned in the Git repository.

• Approved changes are automatically applied to your system by using

declarative configuration.

• Software agents ensure the correctness and alert on divergence on

expectation and state.

GitOps is part of infrastructure as code; it checks the status of the infrastructure

automatically and changes according to that. You can find more details in Chapter 17.

 General Trends Across Industry
This section covers some trends.

 5G
5G is the fifth-generation technology standard for broadband cellular networks. It is

a new global wireless standard after 1G, 2G, 3G, and 4G networks. 5G enables a new

kind of network that is designed to connect virtually everyone and everything including

machines, objects, and devices.

5G wireless technology is meant to deliver higher multigigabyte per second peak

data speed, ultra-low latency, more reliability, massive network capacity, increased high

availability, and a more uniform user experience.

According to the various experts quoted in a recent economic study, 5G is driving a

global growth of $13.2 trillion, 22 million new jobs, and $2.1 trillion in GDP growth.

The scope of 5G will ultimately range from mobile broadband services to next-

generation architecture in automobiles, financial, manufacturing, consumer products,

connected devices, etc.

5G Technology

The initial 5G New Radio (NR) like LTE in the 4G specification was completed in

June 2018. 5G NR is a new Radio Access Technology (RAT) developed by the Third-

Generation Partnership Project (3GPP) for the 5G mobile network.

Chapter 20 Cloud Native treNds

687

3GPP is an umbrella group of several standards organizations that develop protocols

for mobile telecommunications.

3GPP maintains the following standards:

• GSM and the related 2G and 2.5G standards

• UMTS and the related 3G standards

• LTE and the related 4G standards

• 5G NR and the related standards

Long-Term Evolution (LTE) was developed as a 4G standard; this was a global

standard for wireless technologies and is presently used.

5G Features

5G comes with various features and capabilities like network slicing, orthogonal

frequency-division multiplexing (OFDM), and multiple input and multiple output

(MIMO).

5G NR uses two frequency ranges and operates on a new frequency spectrum:

millimeter-wave (MM wave).

• Frequency range 1 (FR1): Sub-6GHz frequency bands

• Frequency range 2 (FR2): 24.25 GHz to 52.6 GHz

The two main major trends behind 5G are as follows:

• Digital technologies with more mobile access across the globe that

can carry ultra-definition video, data, and Services in Hand (SIH)

across industries to the user

• Internet of Things (IoT), where large numbers of smart devices

communicate over the Internet with ultra-high-speed

Advantages of 5G

It is substantially different to define an architecture for 5G compared to earlier networks.

The following numbers are based on various industry leaders’ testing, and these

numbers are illustrative:

Chapter 20 Cloud Native treNds

688

• Latency: Less than 1 ms

• Latency end to end (device to the core): Less than 10 ms

• High download speeds: 10 Gbps

• Base stations: Small cells

• OFDM encoding: 100 to 800 MHz channels

• Connection density: 100 times greater than LTE

• Energy efficiency: Greater than 90 percent improvement over LTE

• 1,000,000 IoT devices per square kilometer

5G speeds will be enabled by massive MIMO communication in the millimeter-wave

frequency range. With this standard, 5G is able to provide significantly higher mobile

broadband throughput with its enhanced mobile broadband mode.

Cloud Native and 5G: Network Slicing

For your project, there are many business scenarios where you might need to build a

dedicated network to serve the customer for each business scenario. In this case, you

need to have a separate network and separate management, and there is no single

platform to host all dedicated networks on one, i.e., like virtualization.

Network slicing is a method of creating multiple unique logical and virtualized

networks over common multiple networks. It is the embodiment of the concept of

running multiple logical networks as a virtual independent network. Network slicing is

the ability to customize the capabilities and functionalities of the business use cases.

With network slicing, each slice can have its architecture, management, and security

to support specific use cases. While resources are shared across network slices, the

capabilities of the network such as capacity, connectivity, reliability, and latency can be

customized in each slice.

Automation is the key component in creating and building network slicing. As you

might need to build hundreds of network slices, you need to create similar ones like

infrastructure as code or network as code. You can find more details on Qualcomm.com

and Ericsson.com.

Chapter 20 Cloud Native treNds

689

 Digital Twin
The manufacturing industry has been facing a lot of challenges such as efficiency,

resiliency, throughput, quality, automation etc. but research is underway to adopt

modern techniques and some global manufacturing organizations are doing research

and proof of concepts on digitizing the process and machine behaviors in shop floors.

The digital twin platform is an effective means to reflect the physical status in the

virtual space. It breaks the barriers between the physical world and the digital world of

manufacturing.

“Digital Twin is a sensor-enabled digital model of a physical object that
simulates the object in a live setting.”

—Dr. Michael Grieves

A digital twin is a digital representation of the physical world. The technical

capabilities behind digital twins have expanded to include buildings, industries, people,

processes, households, etc.

A digital twin is essentially a computerized mirror of a physical asset and/or process,

in other words, a virtual replica that relies on real-time data to mimic any changes that

occur throughout the lifecycle.

The digital twin idea was first conceived by Michael Grieves at the University of

Michigan in 2002. The right technology at the time was unavailable, but now it is the

right time to consider the evolution of technologies such as AI, ML, IoT, cloud, and

quantum computing.

A digital twin is a vital software tool to help engineers to understand not only how

products are performing but how they will perform in the future. Analysis of the data

from the connected sensors, combined with another source of information, allows us to

make these predictions.

Why a Digital Twin?

A digital twin is a simulation model that represents a machine or a business process.

The digital twin will help manufacturing and business: the behavior of machines

with predictive and preventive analysis. It improves process and functioning, reduces

industrial accidents, etc. The following are the use of the digital twin:

• Optimize asset behavior by applying real-time analysis to the virtual

object and modifying the behavior of the real object system.

Chapter 20 Cloud Native treNds

690

• Suggest the optimization to the real object system.

• Observe the current real object system behavior and status by

applying sensor readings to the virtual object and observing its

behavior.

• Observe the historical behavior and the status of the asset.

• Simulate the real object system, which helps to optimize the

configuration.

• Predict the future behavior by running predictive and behavioral

analysis.

Digital Twin Implementation

Digital twins can be implemented in multiple ways depending on the type of industrial

machine that you want to create the twin.

• Digital twin prototype (DTP): The digital twin prototype describes

the physical artifact. It contains the informational sets and virtual

versions of real objects. This provides information such as the 3D

model, bill of material (BOM) with detailed specification (BOS), bill

of processes (BOP), bill of services, etc.

• Digital twin instance (DTI): A digital twin instance is a digital twin

always linked to the real system throughout the life of that physical

product; it contains an exact 3D model, BOM, BOP, BOS, etc., along

with the results of any measurements and tests on the instances

and a service record with past services and replaced components.

Operational states are captured from the actual sensor data in real

machines.

• Digital twin aggregate (DTA): This is the aggregation of all

the DTIs and captures the group of data structures from the

DTI. It queries all the data in DTIs and analyzes them together.

It continually examines sensor readings and correlates those

sensor readings.

Chapter 20 Cloud Native treNds

691

• Digital twin environment (DTE): This is the end-to-end

environment setup to operate digital twins. The operations

include receiving data from real machines, analyzing the data,

doing predictive analysis, performing behavioral analysis, etc.

You can find more details at Engineering.com.

 Quantum Computing
Quantum computing is a computing system based around quantum theory. Quantum

theory is the theoretical basis of modern physics that explains the nature and behavior

of matter and energy on the atomic and subatomic levels. Quantum computing uses a

combination of bits to perform computational tasks and to perform a calculation based

on the probability of an object’s state before it is measured. It does not use normal

computer 0s and 1s as conventional digital computers do, but it uses quantum bits or

qubits to encode information as 0s, 1s, or both at the same time.

Why Quantum Computing?

Existing servers like virtual machines are flexible and offer higher computational

performance when solving specific problems. These machines are increasingly used to

solve a certain variety of use cases, and they outperform CPUs, from low-latency stock

trade validation to streaming data to computationally intensive workloads.

• General-purpose central processing units (CPUs): Today’s CPUs

execute programs by performing a long sequence of basic

arithmetical, logical, control, and input/output operations.

• General-purpose graphics processing units (GPUs): It is an accelerator

designed for parallel calculations. GPUs outperform CPUs when large

blocks of data are processed in parallel such as graphics processing,

AR/VR, training ML models, etc. The drawback is that the complex

operations cannot be broken down into independent straightforward

calculations.

• A field programming gate array (FPGA): This is an accelerator

that is like an ASIC but can be configured or reprogrammed after

manufacturing. It is more efficient and powerful than GPUs and CPUs.

FPGA is good for parallel applications and DNA sequencing, etc.

Chapter 20 Cloud Native treNds

692

• Application-specific integrated circuity (ASIC): This is an accelerator

hardwired and used in Google’s Tensor Processing Units (TPUs). It is very

fast and power-efficient, and the logic is written in the hardware itself. It does

not require any translators or execution area to execute the software code.

The previous processing units can solve specific use cases, but you need a

paradigm shift to process large computational processes; therefore, you need to shift

from bit to qubit.

As you know, quantum is based on the principles of quantum mechanics and

increasingly attracts the interest of automotive, retail, and distribution networks because

of its ability to efficiently solve complex problems.

Potential Use Cases

Here are some use cases:

• Genome sequencing: A large amount of genomic patient data

and genome-wide association studies are researching for cross-

referencing genes and diseases, which requires enormous

computational efforts.

• Radiation therapy: Having a radiation plan can minimize damage

to the surrounding healthy tissues and body parts. Arriving at the

optimal radiation requires many simulations until an optimal

solution is achieved.

• Transaction security: Connected devices make use of secure encryption

for transactions in online retail stores and credit card payments.

• Molecular modeling: Quantum helps explore the properties of new

materials and identify the characteristics in the chemical structures

of useful materials.

There are many more use cases where you may require quantum computation. You

can find more details on quantum computation from IBM, Google, Azure, or AWS.

Chapter 20 Cloud Native treNds

693

 Extended Reality
Extended reality (XR) provides a form of digital sensory awareness that is driven by the

physical world around us. It delivers real-time, highly personalized, and contextual

experiences using a combination of audio, visual, and even tactile devices. It is an

umbrella term for all immersive technologies such as augmented reality (AR), virtual

reality (VR), and mixed reality (MR). All immersive technologies extend reality either by

combining the virtual and real worlds or by creating a fully immersive experience.

5G helps you to get an immersive experience with XR in order to transform the

way you consume and interact with content, streaming experiences, etc. XR requires a

high- bandwidth network. Figure 20-3 provides the details of how 5G is used to provide

an immersive experience.

Augmented Reality

In AR, virtual information and objects are overlaid on the real

world. This experience enhances the real world with digital details

like images, text, and animation. It goes a step beyond 2D and

blends the physical and digital worlds with interactive 3D and

spatially aware digital content and holograms. You can still have

a grasp of the physical world around you but can see 3D digital

content. You can experience all this via AR glasses or screens.

Virtual Reality

VR is a fully immersive experience where users have an in-the-

moment sense of presence in a computer-generated environment.

You can interact with highly convincing imagery and digital

content with no direct connection to the real world. You must use

a VR headset to get a 360-degree view of the world.

User

Distributed Edge Network Central Network

Network
Slicing

Low Latency

PCG (Packet
Core Gateway)

AR/VR
Applica�ons

PCG (Packet
Core Gateway)

PCC (Packet
Core

Controller)

Figure 20-3. XR with 5G network

Chapter 20 Cloud Native treNds

694

Mixed Reality

Digital and real-world objects co-exist and can interact with one

another in real time. As shown in Figure 20-4, this is a hybrid

reality technique. It requires an MR headset and more power than

AR and VR. It allows users to visualize 2D or 3D digital content.

The technology takes into account the 3D depth map of the

environment to allow hologram occlusion (hiding behind real

objects) and hologram collision (interacting with real 3D objects).

You can find more details at https://www.accenture.com/us-

en/services/technology/extended- reality, https://www.

qualcomm.com/research/extended- reality, etc.

These types of reality have been gaining traction during the COVID-19 pandemic,

especially in the retail sector, defense training, health sector, etc. With them, you are able

to shop general retail, make home purchases, etc. According to a survey, the XR market

is expected to reach $209 billion.

 Edge Computing
Edge computing is a networking model focused on bringing computing as close to the

data as possible to reduce latency and bandwidth use. It optimizes Internet devices

and Kubernetes-based and non-Kubernetes web applications by deploying computing

power closer to the source of the data or instrument like drones, IoT sensors, etc. This

minimizes the need for long-distance communications between client and server, which

reduces latency and bandwidth usage.

Hardware and services of edge computing are a local source of processing and

storage for many of these systems. An edge gateway near the source hardware processes

Real Environment Augmented Reality (AR) Virtual EnvironmentAugmented Virtuality (AV)

Mixed Reality (MR)

Figure 20-4. Reality virtuality existence

Chapter 20 Cloud Native treNds

http://www.accenture.com/us-en/services/technology/extended-reality
http://www.accenture.com/us-en/services/technology/extended-reality
https://www.qualcomm.com/research/extended-reality
https://www.qualcomm.com/research/extended-reality

695

the data and sends only the relevant data to the back-end cloud in near real time or

batches, depending on the nature of the source system.

The edge device can be anything; it can be an IoT sensor, a chip in your mobile

phone or personal computer, a drone, a security camera, or an Internet-connected home

appliance like a refrigerator or washing machine. The edge gateway in all these sourcing

systems is considered as an edge device.

Without edge computing, an online photo verification or eye scanning would be

required to run the algorithm through the cloud by sending all these details over the

Internet; this creates huge latency.

There are various companies already working on edge gateways like AWS, Google,

Azure, NVIDIA, etc.

For example, an IoT edge provides device connectivity and analytics to physical

assets in the factory IT hub environment within the digital twin environment. The

data stored in the factory IT hub with the help of IoT edge requires further immediate

processing and analysis. The edge IT hub sits in the same facility as physical assets

with sensors, because IoT data easily eats up network bandwidth and swamps your

data center environment and resources. You use a machine learning algorithm at the

edge to scan for anomalies that identify impeding maintenance problems that require

immediate action. With the ML, you could use visualization tools and techniques to

show dashboards, etc.

With this model, edge computing transforms the way data and communication

handle millions of devices across the globe. According to Statists, there are around 21.5

billion interconnected devices across the globe.

 Summary
New technologies are ushering in the cloud native environment; it is an era of global

opportunities. To support this era, organizations are growing and transforming their core

business, while also pivoting to take on new opportunities.

I covered just a few trends related to the cloud native environment in this

chapter. You can find many more in the industry. Research institutes and consulting

organizations publish trend reports every year; just follow them to understand more.

From a technology perspective, refer to the ThoughtWorks technology radar; it is

updated often to provide clear details for you.

Chapter 20 Cloud Native treNds

697
© Shivakumar R Goniwada 2022
S. R. Goniwada, Cloud Native Architecture and Design, https://doi.org/10.1007/978-1-4842-7226-8

Index

A
Accessibility, 405–407
Agile management, 16
Agile methodologies

architecture, 519
behavior-driven development, 510–515
feature-driven development, 515–519
hypothesis driven development,

502–506
principles, 502
test-drive development, 506–509
transition, 520
waterfall methodology, 520, 521

Always be architecting
principle (AbAP), 66

Amazon Elastic Kubernetes
Service (EKS), 616

Amdahl’s law, 165
Anti-corruption pattern, 176, 177
Anti-Money Laundering (AML), 227
Anti-pattern, 131
Application programming interface (API)

design principles, 57–59
Application-specific integrated

circuity (ASIC), 692
Architecture/design principles

container
configuration file, 85
image immutability principle (IIP),

86, 87

lifecycle conformance, 84, 85
observability, 83, 84
process disposability, 87–89
runtime confinement, 91
self-containment principle (SCP), 90
single concern, 82

criteria, 57
decision-making, 56
definition, 55, 56
design (see Design principles)
engineering principles

PNPP, 79
shift-left, 80, 81

orthogonality, 92–100
runtime

be smart with state, 72
deploy independently, 72
design for failure, 74, 75
isolate failure, 70, 71
location-independent, 73, 74
microservice failure, 71

security principles
defense in depth, 75
security by design, 76–79

software quality principles, 105–116
SOLID principles, 117–124
TOGAF, 56

Artificial intelligence (AI)
characteristics, 234
definition, 233

https://doi.org/10.1007/978-1-4842-7226-8#DOI

698

driven development (see Driven
development tools (AI))

microservices architecture, 239
speech implementations

acoustic analysis, 238
algorithm, 236
intelligent agent, 238
ML model, 238
preprocessing, 237
recognition modules, 237
vertical components, 236

subcategories, 235
Artificial intelligence for operations

(AIOps)
analytics, 645
anomaly detection, 647
automation, 646–648
benefits, 652
capabilities, 642, 649, 650
data gathering, 645, 646
definition, 642
DevOps pipeline, 647
enabled operation, 649
event correlation, 648
failure metrics, 643
functions, 643, 644
IT Service Management (ITSM), 648
key IT KPIs, 643
lifecycle management, 647
traditional operations, 649
transformation, 650, 651
use cases, 648

Assessment techniques
automation, 472–477
business aspects, 453, 454
capabilities/elements, 453

cloud-native (see Cloud-native
assessment)

definition, 451
detailed architecture, 464–471
disconnected enterprise organization,

452, 453
execution approach/activities, 455
findings/recommendations, 456
methods, 451
objectives, 455

Asynchronous nonblocking I/O pattern
Amdahl’s law, 165
blocking processing, 168
BLTR relationship, 166, 167
characteristics, 165
synchronous messaging, 167

Atomicity, consistency, isolation, and
durability (ACID), 331

Automate infrastructure
concepts, 619
DevOps pipeline, 620
features, 620
IaC (see Infrastructure as code (IaC))
IT tasks, 620

Automation
collaborative environment, 529
eliminating waste, 529
principles/practices, 529, 530
site reliability engineering, 530, 531

Automation maturity assessment
definition, 472
enterprises, 472
evaluation models, 478
maturity assessment

model, 473
templates, 473, 474

Azure Kubernetes Services (AKS), 616

Artificial intelligence (AI) (cont.)

Index

699

B
Bare-metal server/physical server, 34
Behavior-driven development (BDD)

benefits, 514
collaborative approach, 512
concepts, 510
disadvantages, 515
principles/practices, 511
solve problems, 510, 511
specification, 513
techniques/principles, 510
transition, 513, 514

Be smart with state principle (BSSP), 72
Big data management, see Mesh

implementation
Blockchain as a service (BaaS), 11
Box-and port-style architecture, 289–292
Broker topology, 252, 253
Bulkhead design pattern, 215
Bulkhead pattern, 173–176
Business continuity/disaster recovery

(BC/DR), 20

C
Central processing units (CPUs), 691
Change Data Capture (CDC)

implementation, 346
log-based approach, 347, 348
process, 345

Chat-based operation (ChatOps)
benefits, 653
bot integration, 655
categories, 653
chatbot architecture, 657–659
collaboration model, 652
concept and technology, 654
group chat application, 654

services, 656
use cases, 658, 659

Circuit breaker pattern, 157–159, 214
Client-server service, 30
Client-side discovery pattern, 160
Cloud and cloud-native maturity model

(CCNMM), 8
Cloud DevOps solution

AWS development services, 545–547
Azure DevOps server, 546–548
backup restoration, 544
benefits, 544
comparison chart, 546
configuration, 544
Google cloud (GCP), 548, 549
infrastructure, 544
monitoring/observability services, 544
traditional on-prem solution, 544

Cloud-native architecture, 292–294
agile development approach, 7
Agile management, 16
benefits, 4, 19, 20
cloud computing, 4, 15
cloud-enabled applications, 17
containerization, 16
CRUDoperations, 327
database

document store, 335, 336
event-driven architecture, 341
graph data store, 341
key-value data store, 332–334
RDBMS decision flow, 332
relational database, 331, 332
search engine, 343, 344
time-series, 339–341
types, 330
wide column, 337, 338

database selection, 329

Index

700

data processing, 326
definition, 5, 325
design principles/patterns, 7
DevSecOps, 17
elements, 13
event-driven, 15
industries, 22

accelerated stage, 24
approach/priorities, 23
migration, 23
scale/innovation, 24

industries/geographies, 5
intelligent data governance, 363–368
journey

advantages, 19
re-engineering approach, 19
timeline/risks, 18
transformational benefits, 17

key characteristics, 328
lift/shift, 18
maturity model

advantage, 11
cloud optimization, 9
culture/innovation, 11–13
definition, 7
elements, 14
enablement wave, 9, 10
organizational model, 8
scalability/flexibility, 11
transformation wave, 9, 10

mesh implementation, 351–357
microservice approach, 14
mobile computing applications,

361–363
Monolithic legacy application, 6
objectives, 6
objects/files/blocks, 329, 330

organization/culture, 21–23
organizations, 5
polyglot persistence layer, 327
polylithic and polyglot, 7
processing/analysis, 357–361
reduces operational expenditures, 5
replication methods, 344–350
serverless, 14
software architecture, 3
technical/nontechnical duties, 25, 26
traditional approach, 13

Cloud-native assessment
assessment model, 457
comparison, 457
maturity model, 458–463

Cloud Native Computing
Foundation (CNCF), 575

Cloud steering committees (CSCs), 22
Cohesion

coincidental cohesion, 98
communicational cohesion, 96
definition, 93
functional process, 95
high and low level, 93, 94
high cohesion, 98
logical cohesion, 97
procedural cohesion, 96
qualitative measure, 94, 95
sequential operation, 95
temporal operation, 97

Coincidental cohesion, 98
Collateral management service

architecture, 230
architecture principles, 229
functional architecture, 227, 228
high-level interaction, 227

Command and query responsibility
segregation (CQRS)

Cloud native architecture (cont.)

Index

701

application layers, 136
benefits, 138
CRUD operations, 135
databases, 137
definition, 135
disadvantages, 135
issues/use cases, 139
traditional architecture, 135

Communicational cohesion, 96
Complex event processing CEP), 256
Computing deployment models

architecture, 50
community, 52
hybrid model, 52
private/on-premises, 51
public cloud, 51

Concurrency control pattern, see
Optimistic concurrency control

Configuration as code (CaC), 614
Consumer first principle (CFP), 63
Container as a service (CaaS)

model, 575
Containerization, 16

adoption, 593
architecture, 584
benefits, 592, 593
blue/green deployment, 590
client-server architecture, 586, 587
culture, 594
definition, 573
enterprise, 593, 594
environments, 595
image characteristics, 585, 586
image process, 583
immutable, 591
infrastructure, 575
Kubernetes environment, 574
Linux Containers (LXC), 584

log management, 589
monitoring, 591, 595
Most Value Product (MVP), 594
networking, 592
orchestration (see Orchestration)
patterns, 588–592
principles, 587, 588
privileged container, 591
registry, 595
rolling deployment, 590
security, 588
stateful sessions, 590
technology disruption, 593

Container revolution, 37–39
Continuous delivery (CD), 212, 532
Continuous deployment (CD), 533
Continuous integration (CI), 212, 532
Control coupling, 103
Coupling

common coupling, 103
content-level coupling, 104
control data sharing, 102
data model, 101
dependency injection, 100
external devices, 103
highly coupled, 99
law of Demeter, 104
loose coupling, 105
loosely coupled, 99
message, 101
modules/microservices, 98
no coupling, 100
stamp coupling, 101
tightly coupled, 99
types of, 100

Cross-Site Scripting (XSS), 78
Culture of automation principle (CAP),

65, 66

Index

702

D
Database as a service (DaaS), 12
Database replication

ETL process, 349, 350
logical database replication

CDC process, 346–350
full load refresh, 345
methods, 345
partial refresh replication, 345

methods, 344
physical replication, 344

Data coupling, 101
Data management patterns

CQRS pattern, 135–139
event sourcing pattern, 132–135
partition, 139–146
replication, 146–152

DataOps analytics
data lifecycle, 534
data operations pipeline, 536, 537
definition, 534
pillars, 534
principles, 535
stages, 536

Data-Structured Coupling, 101
Decentralize everything

principle (DEP), 64, 65
Decoupling

approaches, 261
architecture, 260
change data capture, 264
cloud-native architecture, 259
data accessible

architecture, 262
databases/data movement, 261
events, 262
methods, 262

data process, 263
definition, 259
event store, 263
legacy systems, 259
MVP, 259
principles, 260
stream processing, 264, 265
techniques (see Decoupling

techniques)
transaction databases, 264

Decoupling techniques
approaches, 423, 424
big-bang approach, 424
business case, 425
combination, 414
continuous modernization, 423
DDD (see Domain-driven design

(DDD))
event storming, 432–449
forces/technological innovation, 414
monolithic legacy application

architecture, 420
business layer, 420
organization’s approach, 421
unicorns/traditional organizations,

422
monolithic legacy applications

definition, 418
legacy services, 419

present-day architecture, 419
principles, 425
requirements, 413
@Scale IT, 414
strategies, 426
technical debt (see Technical debt)

Defense in depth principle (DiDP), 75
Dependency inversion principle (DSP), 123
Deploy independently principle (DIP), 72

Index

703

Design for failure principle (DFFP), 74, 75
Design patterns, 128–130
Design principles

always be architecting principle, 66
application programming interface,

57–59
consumer first principle, 63
culture of automation principle, 65, 66
decentralize everything principle, 64, 65
digital decoupling, 67–69
event storming, 63
evolutionary design, 69
interoperability principle, 66, 67
modeled with business domain

principle, 62, 63
monolithic application, 59
polyglot persistence principle, 61, 62
polylithic architecture principle, 60, 61
single source of truth, 69

Detailed architecture assessment model
architecture, 464
capabilities, 464
capture content phase, 465
definition, 464
planning phase, 465
recommendation phase, 466
rules management, 466
workshop phase, 465

DevNetOps, 538
agility and quality, 539
network operation, 538, 539
network pipeline details, 543
NRE principles, 540, 541
pipeline, 542–544
virtualized network services, 539, 540

DevOps, 291
automation solution, 565
code management, 566

Codota, 567
continuous feedback loops, 569
DeepCode, 567
Kubeflow, 570
ML model pipeline, 565
monitoring alerts, 570
observability, 671, 672
process (see DevOps process)
quality assessment results, 569
shift-left security approach, 528
software engineering

lifecycle, 566
source code tools, 566–569
Testim.io, 569
transformation

challenges, 551
considerations, 551
development operations, 549
journey, 550
key factors, 550
perspectives, 550

DevOps process
AIOps pipeline, 647
Automate infrastructure, 620
continuous, 524
definition, 523
development process, 525
DevSecOps (see DevSecOps)
innovation, 524
journey, 525
pillars, 524

DevSecOps, 17
benefits, 528
continuous delivery, 532
continuous deployment, 533
continuous integration (CI), 532
features, 526, 527
journey, 526

Index

704

principles, 528
transformation, 553

Digital decoupling principle (DDP), 67–69
Digital twin platform, 12

aggregation, 690
definition, 689
environment setup, 691
implementation, 690
instance, 690
manufacturing/business, 689
prototype, 690

Distributed Application
Runtime (Dapr), 680

Docker Swarm, 597, 598
Domain-driven design (DDD), 62, 192

BBoM system, 427
complexities, 427, 428
concepts, 427
domains, 429
event storming (see Event storming)
goals, 429
model workshop, 430
practices and guiding principles, 431
single diagram, 430
strategic model, 430
tactical model, 431

Don’t repeat yourself (DRY)
principle, 107–109

Driven development tools (AI)
approaches, 559
concepts, 557
definition, 555
deploy/industrialize, 565
DevOps, 565–570
enable tools, 562
evolution, 555
framework, 559

governance, 559
hub/spoke model, 560, 561
identification, 563
long-term value, 556
measurement, 560
methodology, 562, 563
principles, 558
process, 560
project execution, 565
proof of concept (PoC), 564
requirements, 564
stakeholders, 563
unique challenges, 557
value identification process, 564

Dynamic code analysis (DAST), 213
Dynamic security system

testing (DAST), 487

E
Edge computing, 694, 695
Enterprise computing service, 31
Enterprise service bus (ESB), 250
Event-driven architecture (EDA), 15

asynchronous communication, 248
box-and port-style component,

289–292
characteristics, 253, 254
cloud-native architecture,

292–294, 341
components, 249
Dapr architecture, 680
decoupling, 259–265
DevOps, 291
encrypting events, 291
events

brokers, 244
business, 245

DevSecOps (cont.)

Index

705

enterprises/systems, 244
governance, 247
inter/intradomain

communication, 247
internal/external inputs, 245
processing, 246
technical events, 245

evolution, 242–244
FTP, RPC, TCP/IP protocol, 242
interaction, 277–288
maturity model, 257, 258
message queues, 242
messaging model, 254
payment platform, 250
processing styles, 255–257
real-time interactivity, 265
security, 291, 292
sender/receiver, 241
serverless architectures, 300
streams/message queue, 267–269
topologies, 250–253
transaction management, 268–277

Event-driven patterns, 165–170
Event mesh

across cloud providers, 287
architectural layer, 283
brokers, 286
capabilities, 285
characteristics, 284
control plane, 288
elements, 284
implementation, 285

Event sourcing pattern
CRUD operations, 132
definition, 132–135
event source, 133, 134
stream, 132

Event storming
activities, 436
aggregates, 444
aggregators, 440–442
API model, 446, 447
benefits, 447
bounded context, 440–443

communication, 442
domain events and commands, 441
tactical implementation, 443
ubiquitous language, 442

business process, 434
business value, 448
disadvantages, 448
domain model, 444
entity, 443
events, 437
four-step approach, 433
key roles, 433
microservices identification, 443
microservices model, 446
misconceptions, 449
objectives, 436
process, 435
relationship (command/events), 437
value objects, 444

Event stream processing (ESP), 256
Evolutionary design principle (EDP), 69
Extended reality (XR)

augmented reality (AR), 693
definition, 693
5G network, 693
mixed reality (MR), 694
reality virtuality existence, 694
virtual reality (VR), 693

External coupling, 103
Extract, Transfer, and Load (ETL), 349, 350

Index

706

F
Fail fast implementation, 178
Failure as a service (FaaS), 216
Feature-driven development (FDD)

benefits, 518
communication, 516
definition, 515
disadvantages, 519
feature specification, 517
processes, 516, 517

Field programming gate array (FPGA), 691
Fifth-generation (5G) technology, 12

advantages, 687
definition, 686–688
features and capabilities, 687
frequency ranges and operates, 687
3GPP mobile network, 687
network slicing, 688
trends, 687

File Transfer Protocol (FTP), 242
Fitness function (-ilities)

automated execution, 484
categories, 481–483
code package, 486
compliance, 489
coupling/cohesion, 485–487
definition, 481
extensibility/reusability/

maintainability, 487
genetic algorithm, 480, 481
identification, 485
identification/calculation, 491
manual/continual execution, 483–485
metrics, 490–492
objectives/quantifiable results, 485
observability, 488
performance, 488

resiliency, 488
scalability, 488
strategies, 487

G
Genome sequencing, 692
Global data coupling, 103
Google Kubernetes Engine (GKE), 616
Governance

change management, 366
decentralization approach, 368
framework, 365, 366
intelligent tooling, 367
objectives, 364
operating model, 367
security, 368
strategies and functions, 364

Graphics processing units (GPUs), 691

H
HashiCorp Configuration

Language (HCL), 627
Header versioning approach, 164
Hexagonal architecture, 220–223
High availability (HA), 392–395
High Observability Principle (HOP), 83,

84, 587
Homomorphic encryption (HE), 379
Horizontal partitioning/sharding, 141, 142
HTTP/3, 683
Hypothesis driven development (HDD)

concepts, 502
culture, 506
ecommerce application, 505, 506
evolutionary approach, 503
framing process, 505

Index

707

objective criteria, 503
scientific method, 503
scientific steps, 503–505
sidebar link, 502

I
Idempotent service operation, 153, 154
-Ilities (software design)

accessibility, 405–407
active-active deployment, 394
active-passive deployments, 394
automation, 407
bath tub curve, 389
communication failure, 388
customer-centric design, 395, 396
dependencies, 388
deployment environment, 384
designing/developing security

availability, 375
CIA triad, 374
cloud-native security, 373
compliance as code, 378
confidentiality, 374
decentralized approach, 377
defense in depth, 374
failures, 379
homomorphic encryption, 379
integrity, 375
password policy, 378
policy as code, 375
secure API, 380
shift-left security, 378
single pane/audit, 379
threat modeling, 377
validating input, 377
zero-trust model, 376

domain requirements, 372

elasticity, 380, 381
ethics, 402–404
event-driven architecture, 399
failures, 387, 388
fitness function (see Fitness function

(-ilities))
functional requirements, 371
high availability configuration,

392–395
infrastructure, 388
interoperability, 397, 398
maintainability, 408
objectives, 371
observability, 400, 401
Pareto analysis, 391
partial list, 373
portability, 401, 402
reliability, 389–391
resilient application, 381
software engineering methodology, 385
sustainability, 382–387
UI architecture, 385
usability, 408

Image immutability principle (IIP),
86, 87, 588

Infrastructure
automation (see Automate

infrastructure)
characteristics, 577
cloud-native infrastructure, 576, 577
containerization, 575
Kubernetes, 575
requirement, 574

Infrastructure as a service (IaaS), 4, 20,
40–42

Infrastructure as code (IaC)
Ansible, 629
AWS Cloud Formation, 632

Index

708

capture requirements, 623
CFEngine, 631
chef, 630
code structure, 624, 625
coding language, 626
comparison, 633
elements, 625
GitOps, 626
implementation, 622
network and storage, 624
pipeline automation, 622–625
provisioning infrastructure, 621
Puppet, 630, 631
SaltStack, 629
service deployment, 624
terraform, 627–629
terraform and Google

Cloud, 626
text-based file, 625
tools, 627

Infrastructure services
client-server, 30
cloud services, 40
communication/internet, 33
computing adoption, 50–52
enterprise computing, 31
evolution, 27, 28
IaaS, 40–42
mainframe services, 29
Metcalfe’s law, 33
minicomputers, 30
mobile computing services, 31
Moore’s law, 32
PaaS, 42–45
personal computer, 30
SaaS, 45–50
servers (see Server evolution)

services, 52–54
stages, 28, 29
storing digital information, 33

Init containers, 182, 183
Integrated development

environment (IDE), 81
Integrated real-time monitoring, 215
Intelligent operations

AIOps (see Artificial intelligence for
operations (AIOps))

applied intelligence, 641
ChatOps, 652–659
cloud enablement, 641
data-driven approach, 640
elements, 640
enterprises, 638
inefficiencies, 639
IT operates, 638
post-production deployment, 637
right talent and skill, 641
service approach, 640
smart partnership, 642
traditional approach, 637
unicorns and modernized

competitors, 638
Interactions

choreography-based
approach, 278, 279

communication, 278
event mesh, 283–288
loosely coupled services, 280
mesh architecture, 280
orchestration, 277
service mesh implementation, 281–283
SOA requests, 278

Interface segregation principle (ISP), 123
Interoperability principle, 66, 67
Isolate failure principle (IFP), 70, 71

Infrastructure as code (IaC) (cont.)

Index

709

J
JEVONS paradox theory, 382, 383

K
Keep it short and simple (KISS)

principle, 106, 107
Key management system (KMS), 615
Kubernetes as a service (KaaS), 575

Amazon Elastic Kubernetes
Service (EKS), 616

Azure Kubernetes Services (AKS), 616
capabilities, 615
definition, 615
Google Kubernetes Engine (GKE), 616
Red Hat OpenShift, 617
VMware technologies, 617

Kubernetes framework
application locking, 606
architecture, 600–602
automated placement, 605
building confidence, 611
containers, 607
declarative deployment, 604
deployment, 610
elements/practices, 608, 609
features, 603
health check process, 604
initialization, 606
Kubernetes as a service (KaaS), 615–617
mature and streamlined containers, 607
maturity model, 609–611
measurement and control, 611
multitenant cluster, 613, 614
networking host, 608
orchestration tool comparison, 601
pod deployment and management,

602, 603

predictable demands, 603, 604
preparation phase, 610
principles and patterns, 603
secrets, 614, 615
selecting factors, 607
service mesh pattern, 611, 612
sidecar, 606
singleton service, 605
stateless network, 612
transform phase, 610

L
Law of Demeter (LoD), 104
Lifecycle conformance principle (LCP),

84, 85, 587
Liskov substitution principle (LSP),

121–123
Location-independent principle (LIP),

73, 74
Logical cohesion, 97
Logical database replication

CDC process, 346–350
full load refresh, 345
partial refresh replication, 345

Long-Term Evolution (LTE), 687
Loose coupling design, 100, 105

M
Machine learning (ML), 215

DevOps, 566–570
evolution, 555

Mainframe services, 29
Mediator pattern, 171, 172
Mediator topology

architecture, 251
components, 250

Index

710

coordination/orchestration, 251
payment use case, 251

Mesh implementation
architecture, 352
data disruption, 350
data lake architecture, 353
data pipeline implementation, 355
decoupling approach, 351
domain-based pipeline, 354
domain owns and serves, 356
governance, 356
infrastructure as a platform, 355
monolithic lake platform, 353
principles, 351, 352
self-service data, 354

Mesos, 598, 599
Message-oriented middleware (MOM), 242
Message Queues (MQ)/stream system

AMQ/Kafka configuration file, 267, 268
capabilities, 266
collaboration, 267
flight reservation, 267
interaction, 267

Messaging model, 254
Metcalfe’s law, 33
Microservice architecture approach, 14
Microservices

approaches, 199
architecture, 192, 193, 195
artificial intelligence, 233–240
automation, 212, 213
autonomous, 197, 198
business capabilities, 196
characteristics, 193
collateral management, 227–230
containerization, 213, 214
Conway, Melvin, 195

CPU utilization, 219
database/NoSQL, 220
decentralization, 211
definition, 191
design consideration, 215
distributed state

asynchronous, 208, 209
caching, 210
collateral management, 207
Kafka streams, 209
responsibilities, 208
state management, 208
synchronous, 208

elasticity, 206–208
event mesh, 201
evolution, 192
failure/stability, 214–216
Governance, 211
hexagonal architecture, 220–223
implementations/problems, 191
independently dependency, 211
interaction, 277–288
living continuous design, 216, 217
payment processing, 207
polyglot architecture, 212
resilience, 201–205
self-healing service, 217–220
service mesh, 200
smart endpoints/dumb pipes, 199–202
technological capabilities, 194–197
trade finance, 223–227
traditional architecture, 194
user interface, 230–233

Minicomputer services, 30
Minimum viable product (MVP), 259
Mobile computing applications, 361–363
Modeled with business domain principle

(MBDP), 62, 63

Mediator topology (cont.)

Index

711

Model-View-Controller (MVC) pattern, 59
Molecular modeling, 692
Monolithic architecture

principle (MAP), 59
Moore’s law, 32
Multitiered applications, 59

N
Network address translation (NAT)

services, 539
Network-attached storage (NAS), 330
Network operations (NetOps), 541
Network reliability engineering (NRE),

540, 541
Network slicing, 688

O
Observability

AIOps process, 671
algorithms, 674
benefits, 673
characteristics, 663
cloud-native services, 663, 668, 669
clustering/correlating, 675
data collection, 674
DevOps, 671
features, 672, 673
full-stack observability

administrators/management, 665
capabilities/services, 665
characteristics, 667
data sources, 666, 667
evolution, 664
visualization, 667

Kubernetes, 669, 670
meaning, 661

microservices, 668
monitoring, 663, 664
monitoring tools, 662, 674
scenarios, 663
workflow steps, 675

Open Application Model (OAM), 681
Open Authorization (OAuth 2), 380
Open-closed principle, 119, 120
Open Web Application Security

Project (OWASP), 78
Optimistic concurrency control

concurrency control, 154
ETag, 156
meaning, 154
modifications, 155
pessimistic control, 154
single request, 155

Orchestration, 171, 172
Docker Swarm, 597, 598
environments, 596
Kubernetes (see Kubernetes

framework)
Mesos, 598, 599
tools, 596

Orthogonal principles
architecture, 92
cohesion, 93–98
coupling, 98–100
intersect option, 92

P
Pareto chart analysis, 391
Partitioning pattern

hash sharding, 143, 144
list partitioning concept, 144
range-based sharding, 141–143
RDBMS/NoSQL, 140

Index

712

round-robin portioning, 145
sharding/horizontal pattern, 140, 141
strategies, 139, 140
technologies, 139
vertical partitioning, 145

Pathological coupling, 104
Pattern

anti-pattern, 131
architecture style/design, 130
data management (see Data

management patterns)
definition, 127
design patterns, 128–130, 170–177
event-driven patterns, 165–170
microservices, 152–163
runtime, 177–187
software architecture, 127, 128, 130

Personal computing (PC) service, 30
Pessimistic concurrency control, 154
Platform as a service (PaaS), 496

architecture styles, 44
deployment model, 44
infrastructure, 42
limitations/concerns, 45
taxonomy, 43

Polyglot persistence principle (PPP), 61, 62
Polylithic architecture principle (PAP)

architecture, 60
definition, 60
granular subsystems, 61
properties, 61

Principle of Least Knowledge, 104
Procedural cohesion, 96
Process disposability principle (PDP),

87–89, 588
Processing/analyzing data

components, 357

definition, 357
Kappa architecture, 360
Lambda architecture, 358, 359
real-time data, 357, 360, 361

Products not projects
principle (PNPP), 79

Q
Quantum as a service (QaaS), 13
Quantum computing, 13

definition, 691
intensive workloads, 691
potential, 692

R
Radiation therapy, 692
Range-based sharding, 141–143
Red Hat OpenShift, 617
Re-engineering approach, 19
Remote procedure calls (RPCs), 200, 242
Replication

definition, 146
leader-based/leader-followers

asynchronous/synchronous, 147
candidates, 149
client request, 147
clusters/data centers, 148
election process, 149
multileader, 148
replication lag, 149
single leader, 147

quorum disk
cluster, 151
definition, 149
formula, 150
optimal servers, 152

Partitioning pattern (cont.)

Index

713

tolerate unavailable nodes, 151
write/read/read repair, 150

requirements, 146
Resilient application, 381

approaches, 202
bulkhead pattern, 204
circuit breaker pattern, 203
definition, 201
events/conditions, 201
failure responses, 204
key capabilities, 202
retry option, 204
scenario, 202, 203
stateless services, 204
throttling/rate-limiting technique, 205
timeout, 205

Retry pattern, 179, 180
Return on investment (ROI), 5
RSocket/reactive streams, 684
Runtime confinement principle (RCP),

91, 588
Runtime patterns, 177–187

S
Saga pattern

ACID properties, 183
choreography approach, 184
compensatory transaction, 185
definition, 182
microservices transaction, 183
orchestration, 186
sequence steps, 183

Security by design principle (SBDP)
designing and developing

application, 77
meaning, 76–79
OWASP security risks, 78

SQL injection, 78
XSS prevention sheet, 79

Self-containment principle (SCP), 90, 588
Self-healing service, 217–220
Separation of concern (SoC), 111, 112
Sequential cohesion, 95
Server evolution

bare-metal/physical server, 34
containers, 37–39
virtualization, 34–37

Serverless architecture, 14, 15
advantages, 302–304, 320, 321
asynchronous/multimedia

processing, 320
BaaS architecture, 317–319
business logic process, 305
characteristics, 296
computing process, 297, 298
data transformation function, 320
definition, 295
design principles, 300

backing services, 301
cold-start time, 302
concurrency, 302
push-based/event-driven

pipelines, 301
stateless function, 301
store config, 301

disadvantages, 322
essential components, 299, 300
event-driven approach, 300
evolution, 296, 297
FaaS events, 307–317
function deployment pipeline, 319, 320
independent reusable function,

306–308
monolith/microservices, 304
notification functions, 321

Index

714

operational attributes, 307
operations management, 323
parallel computing, 321
production environment, 305
technical solutions, 324
virtualization technologies, 324

Service level agreements (SLAs), 141
Service level objectives (SLOs), 206
Service-oriented architecture (SOA), 243
Service registry, 160–163
Services, 40, 52–54
Service versioning, 162–164
Sharding

hash technique, 143, 144
horizontal pattern, 140, 141
range partition, 142–144

Shift-left principle (SLP)
DevOps, 80
security, 81
shifting performance testing, 81

Sidecar pattern, 180, 181
Simple event processing (SEP), 255
Single concern principle (SCP), 82, 587
Single responsibility principle, 117, 118
Single source of truth

principle (SSOTP), 69
Site reliability engineering (SRE), 530, 531
Software as a Service (SaaS)

architecture, 46
custom vs. platform, 47–49
definition, 45
indicators, 49
limitations, 47

software-defined network (SDN), 538
Software engineering

Agile methodologies (see Agile
methodologies)

behavior/feature-driven
development, 499

capabilities, 497–499
hypothesis-driven development, 498
intelligent engineering, 498–500
methodology, 385, 495
organizations transform, 501, 502
project/product mindset, 499
test-driven development, 499
traditional application engineering,

496, 497
Software quality principles

architecture, 106
complex/unmanageable

system, 105
definition, 105
DRY principle, 107–109
information hiding, 114, 115
isolation, 110, 111
KISS principle, 106, 107
separation of concern, 111, 112
use layering principle, 112–114
YAGNI principle, 115, 116

SOLID principles
dependency inversion, 123
interface segregation, 123
Liskov substitution, 121–123
open-closed principle, 119, 120
single responsibility principle, 117, 118
software design, 117

Stamp coupling, 102
Static code analysis (SAST), 213
Static security system testing (SAST), 487
Strangulation patterns, 173, 174
Streaming platforms, 254
Stream processing pipeline, 168–170
Subject matter experts (SMEs), 465
Sustainability approaches, 383

Serverless architecture (cont.)

Index

715

T
Technical debt

accumulation, 415
decision-making, 417
decoupling model, 417, 418
definition, 415
enterprise, 416
quadrant, 416

Temporal cohesion, 97
Test-drive development (TDD)

benefits, 507
concepts, 506
cycle, 507, 508
disadvantages, 509
factors, 509
higher-quality software, 507
primary goal, 506
steps, 508, 509

Third-Generation Partnership
Project (3GPP), 686

Trade finance project
definition, 223
ecosystem, 224
functional components/architecture,

224, 225
implementation, 223–227
letter of credit flow, 225
microservice architecture, 226

Traditional architecture layering
approach, 112

Transaction management
ACID, 268
cloud-native service, 268–270
event store, 277
monolithic system, 270
polyglot persistence, 269
sequence diagram, 276

transactions, 274–277
two-phase commit (2PC), 271–274

Transaction security, 692
Transport Layer Security (TLS), 282
Trends (maturity and industry)

actor model, 684, 685
architecture/design, 680
concepts, 679
Dapr architecture, 680
digital twin platform, 689–691
edge computing, 685, 694, 695
event-driven architecture, 680
extended reality (XR), 693, 694
fifth-generation technology, 686–688
gateways streamline, 682, 683
GitOps, 686
HTTP/3, 683
-ilities, 680
Kubernetes, 685
low-code tools, 684
OAM specification, 681
quantum computing, 691, 692
RSocket/reactive streams, 684
Web Assembly (WASM), 682

U
Unified Modeling Language (UML), 432
URI versioning, 163
Use layering (UL) principle, 112–114
User interface

communication, 232
composition, 232
front-end monolith, 230, 231
implementation, 230
integration, 232
micro front ends, 231

Index

716

pros/cons, 233
routing technique, 232

V
Virtualization

applications/services, 580–582
benefits, 580
concepts, 579, 580
definition, 573
hypervisor controls, 578
technology, 578
virtual machine, 583, 584
working process, 578, 579

Virtual machines (VM)/virtualized servers
adoption, 36
architecture, 34, 35
benefits, 37

cloud platform, 36
container comparison, 39
disadvantages, 37

Virtual network functions (VNFs), 539, 540
Virtual private cloud (VPC), 41, 623
VMware technologies, 617

W, X
Web Accessibility Initiative (WAI), 406
Web Assembly (WASM), 682

Y
You Aren’t Gonna Need It YAGNI, 115, 116

Z
Zero trust architecture (ZTA), 12
Zero-trust model, 376

User interface (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: The Cloud Native Journey, Principles, and Patterns
	Chapter 1: Introduction to Cloud Native Architecture
	Introduction to Cloud Native
	Cloud Adoption Across Industries
	Reducing Costs
	Adopting the Cloud Native Mindset
	What Is Cloud Native?
	Cloud Native Maturity Model
	Cloud Enablement Wave
	Cloud Native Transformation Wave
	Scalability and Flexibility Advantage
	Cloud Native Culture and Innovation Wave
	Blockchain as a Service
	Digital Twin
	Zero Trust Architecture
	5G
	Quantum Computing

	Elements of Cloud Native Computing
	Microservices Architecture
	Serverless Architecture
	Event-Driven Architecture
	Cloud Computing
	Containers
	Agile Development
	DevSecOps

	How Is Cloud Native Different Than Cloud-Enabled?
	Cloud Native Journey
	Start with Lift and Shift
	Re-engineer Migration

	Benefits of Cloud Native
	Cloud Native Organization and Culture
	How Is Cloud Native Architecture Embraced Across Industries?
	Migrate
	Accelerate
	Scale and Innovate

	What Is a Software Architect’s Role in Cloud Native?
	Summary

	Chapter 2: Cloud Native Services
	Evolution of Infrastructure Services
	Mainframe Services
	Minicomputer Services
	Personal Computing Service
	Client-Server Service
	Enterprise Computing Service
	Cloud and Mobile Computing Services

	IT Infrastructure Laws and Prediction
	Moore’s Law
	The Laws of Mass Digital Storage
	Metcalfe’s Law
	Communication Cost and Internet

	Evolution of Servers
	Bare-Metal Servers
	Virtual Machine Revolution
	Adoption of Virtual Machines
	Virtual Machines in the Cloud

	Container Revolution

	Understanding Cloud Services
	Infrastructure as a Service
	Platform as a Service
	PaaS Taxonomy
	PaaS Architecture Styles
	PaaS Deployment Model

	Software as a Service
	SaaS Limitations
	Architectural Considerations: How to Decide on a Custom vs. SaaS Platform

	Cloud Computing Deployment Models
	Public Cloud
	Private Cloud or On-Premises Cloud
	Community Cloud
	Hybrid

	Cloud Services
	Summary

	Chapter 3: Cloud Native Architecture Principles
	What Are Architecture Principles?
	Cloud Native Design Principles
	API First Principle
	Monolithic Architecture Principle
	Polylithic Architecture Principle
	Applying the Polylithic Principle in Architecture
	Properties of Polylithic Principles

	Polyglot Persistence Principle
	Applying the Polyglot Persistence Principle in Architecture

	Modeled with Business Domain Principle
	Consumer First Principle
	Decentralize Everything Principle
	Culture of Automation Principle
	Always Be Architecting Principle
	Interoperability Principle
	Digital Decoupling Principle
	Single Source of Truth Principle
	Evolutionary Design Principle

	Cloud Native Runtime Principles
	Isolate Failure Principle (IFP)
	Deploy Independently Principle
	Be Smart with State Principle
	Location-Independent Principle
	Design for Failure Principle

	Security Principles
	Defense in Depth Principle
	Security by Design Principle
	SQL Injection
	Cross-Site Scripting (XSS)

	Software Engineering Principle
	Products Not Projects Principle
	Shift-Left Principle
	Shift-Left Security
	Shift-Left Performance

	Container Principles
	Single Concern Principle
	High Observability Principle
	Lifecycle Conformance Principle
	Image Immutability Principle
	Process Disposability Principle (PDP)
	Self-Containment Principle
	Runtime Confinement Principle

	Principles of Orthogonal
	Cohesion
	Types of Cohesion
	Function Cohesion
	Sequence Cohesion
	Communication Cohesion
	Procedural Cohesion
	Temporal Cohesion
	Logical Cohesion
	Coincidental Cohesion
	Applying High Cohesion to Software Design

	Coupling
	Types of Coupling
	No Coupling
	Message Coupling
	Data Coupling
	Stamp Coupling (Data-Structured Coupling)
	Control Coupling
	External Coupling
	Common Coupling (Global Coupling)
	Content Coupling (Pathological Coupling)
	Law of Demeter (LoD) or Principle of Least Knowledge
	Applying Loose Coupling to Software Design

	Software Quality Principles
	KISS Principle
	Applying KISS to Software Design

	Don’t Repeat Yourself
	Duplication Is Waste
	The DRY Principle in Polylithic and Polyglot Architecture
	How does the DRY principle reduce maintenance costs?

	Isolate
	What do we mean by isolation?
	Isolation in Cloud Native Applications
	Applying Isolation to Software Design

	Separation of Concern
	Applying SoC to Software Design

	Use Layering
	Layering in Traditional Application
	Layering in Cloud Native Application
	Applying Layering to Software Design

	Information Hiding
	Why Information Hiding?
	Applying Information Hiding to Software Design

	You Aren’t Gonna Need It
	Idea of YAGNI
	How to Decide What You Need

	SOLID Design Principles
	Single Responsibility Principle
	Applying Single Responsibility to Microservice Design

	Open-Closed Principle
	Applying Open-Closed to Microservices

	Liskov Substitution Principle
	Applying Liskov Substitution to Microservices Design

	Interface Segregation Principle
	Dependency Inversion Principle
	Summary

	Chapter 4: Cloud Native Architecture and Design Patterns
	Evolution of Design Patterns
	What Are Software Patterns?
	Architecture Style, Architecture Pattern, and Design Pattern
	Anti-pattern
	Cloud Native Data Management Pattern for Microservices
	Event Sourcing Pattern
	Stream
	Event Store

	Command and Query Responsibility Segregation Pattern
	Application Layer Command and Query
	Command and Query in the Database

	Data Partitioning Pattern
	Horizontal Partitioning or Sharding
	Range Based or Interval Partitioning/Sharding
	Hash Partitioning/Sharding
	List Partition
	Round-Robin Partitioning
	Vertical Partitioning

	Data Replication
	Leader-Based or Leader-Followers Replication
	How are the leaders selected?

	Quorum-Based Replication

	Cloud Native API Management Patterns for Microservices
	Idempotent Service Operation
	Optimistic Concurrency Control in API
	Circuit Breaker
	Service Discovery
	Client-Side Discovery Pattern
	Server-Side Discovery Pattern

	Service Versioning
	URI Versioning
	Header Versioning

	Cloud Native Event-Driven Patterns for Microservices
	Asynchronous Nonblocking I/O
	What is synchronous and asynchronous messaging?

	Stream Processing

	Cloud Native Design Pattern for Microservices
	Mediator
	Orchestration
	Strangler Pattern
	Bulkhead Pattern
	How does the bulkhead pattern work?

	Anti-corruption Pattern

	Cloud Native Runtime Pattern for Microservices
	Fail Fast
	Retry
	Sidecar
	Init Containers
	Saga Pattern
	Event Driven and Choreography
	Orchestrator-Based Saga Pattern

	Summary

	Part II: Elements of Cloud Native Architecture and Design
	Chapter 5: Microservices Architecture and Design
	Evolution of Microservices
	What Is a Microservices Architecture?

	Characteristics of Microservices
	Organized Around Business Capabilities
	Autonomous
	Smart Endpoints and Dumb Pipes
	What Is a Service Mesh?
	Smart Endpoints and Dumb Pipes with Service Meshes
	What Is an Event Mesh?

	Resilience in Microservices
	Resilience Capabilities
	How to Build Resilient Microservices?

	Elasticity in Microservices
	Distributed State
	How to Handle Distributed State with Asynchronous microservices

	Independently Deployable
	Decentralization
	Decentralized Governance
	Decentralized Data

	Automation
	Containerization
	Design for Failure
	How Do You Design a Microservice for Failure and Stability?

	Living Continuous Design
	Self-Healing

	Hexagonal Architecture
	Enterprise Microservices Examples
	Case Study: Trade Finance
	What Is Trade Finance?
	Trade Finance Ecosystem
	Trade Finance Functional Architecture

	Case Study: Collateral Management
	Collateral Management Functional Architecture
	Collateral Management Architecture

	Microservices and User Interface: Micro Front End
	Routing
	Composition
	Communication
	Pros and Cons of Micro Front Ends

	Microservice Architecture in Artificial Intelligence
	AI Subcategories
	Microservices Vertical Components: Speech AI

	Summary

	Chapter 6: Event-Driven Architecture
	Evolution of Event-Driven Architecture
	Tightly Coupled World to Loosely Coupled World
	Message Broker World to Event World

	Event
	Business Events
	Technical Events
	Processing an Event
	Event Handling in Domain Context
	Event Governance

	What Is Event-Driven Architecture?
	How Does Event-Driven Architecture Work?

	Event-Driven Topologies
	Mediator Topology
	Broker Topology
	Choice of Topology

	Characteristics of Event-Driven Architecture
	Event-Driven Messaging Models
	Event Messaging
	Event Streaming

	Event Processing Styles
	Simple Event Processing
	Event Stream Processing
	Complex Event Processing

	Event-Driven Architecture Maturity Model
	Decoupling Use Case by Using Event-Driven Architecture
	Make Data Accessible
	How to Get Events and Make Data Accessible?
	Where to Store Events?
	How to Get Data?
	CDC

	Real-Time Interactivity
	How to Use Existing Message Queues with Event Streams?
	Transaction Management in Event-Driven Microservices
	Two-Phase Commit in Cloud Native Services
	Transactions with Events

	Event-Driven Microservices Interaction
	Interaction Between Microservices
	Service Mesh
	Service Mesh Implementation
	Advantages and Disadvantages of Service Meshes

	Event Mesh
	Characteristics of Event Mesh
	Event Mesh Capabilities
	How Do Event Meshes Work?
	Event Mesh in a Cluster of Brokers
	Event Mesh’s Control Plane

	Box- and Port-Style Event-Driven Architecture
	Characteristics of Box- and Port-Style Architecture

	DevOps for Events
	Event Security
	Field-Level Encryption Consideration

	Cloud Events
	Summary

	Chapter 7: Serverless Architecture
	Evolution of Serverless
	What Is Serverless Computing?
	Essential Components of Serverless
	Serverless and Event-Driven Computing
	Serverless Design Principles
	Stateless Functions
	Push-Based and Event-Driven Pipelines
	Config: Store Config in the Environment
	Backing Services: Treat Backing Services as Attached Resources
	Concurrency: Scaling Out via the Process Model
	Disposability: Maximize Robustness with Quick Startup and Shutdown

	Key Considerations for Serverless Computing
	Why Use Serverless Architecture?
	Best Practices of Serverless Architecture
	Types of Serverless Architecture
	Function as a Service
	AWS Lambda
	Reference Architecture
	Ecommerce Reference Architecture
	Best Practices of Lambda

	Azure Functions
	Reference Architecture
	Best Practices of Azure Functions

	Google Cloud Functions
	Reference Architecture
	Best Practices of Google Function

	FaaS Platform Evaluation Criteria

	Backend as a Service or Mobile Backend as a Service
	Pros and Cons of BaaS

	Function Deployment
	When to Use Serverless
	Advantages of Serverless Architecture
	Reduced Operational Cost
	Optimized Resource Utilization
	Faster Time to Market
	Ability to Focus on User Experience
	Fits with Microservices

	The Drawbacks of Serverless Architecture
	Standardization
	Operations Management
	Tooling Support
	Security
	Long-Term Tasks

	Future of Serverless
	Summary

	Chapter 8: Cloud Native Data Architecture
	Rethinking Data in a Cloud Native World
	Cloud Native Data Persistence Layer
	Cloud Native Data Characteristics

	How to Select a Data Store
	Objects, Files, and Blocks
	Databases
	Relational Database
	Key-Value
	Document Database
	Wide-Column Database
	Time-Series Database
	Graph Database
	Event Store Database
	Search Engine Database

	Data Replication
	Physical Database Replication
	Logical Database Replication
	Full Data Refresh
	Partial Data Refresh
	Change Data Capture
	Log-Based CDC

	Extract, Transfer, and Load
	Extraction
	Transform
	Load

	Decoupling Big Data Management from Distributed Data Meshes
	Step 1: Self-Service Data Infrastructure as a Platform
	Step 2: Data as a Product
	Step 3: Data Infrastructure as a Platform
	Step 4: Domain-Oriented Decentralized Data Ownership and Architecture
	Step 5: Data Governance

	Data Processing with Real-Time Streaming for Analytics
	Lambda Architecture
	How Does the Lambda Architecture Work?

	Kappa Architecture
	Microservices in Data Processing with Real-Time Streaming for Analytics

	Mobile Platform Database
	Intelligent Data Governance and Compliance in the Cloud Native World
	Why Data Governance?
	What Is Data Governance?
	Governance Framework
	Change Management
	Intelligent Tooling
	Operating Model
	Decentralization
	Secure

	Summary

	Chapter 9: Designing for “-ilities”
	Why Do You Need “-ilities”?
	Partial List of “-ilities”

	Designing for Security
	Defense in Depth
	The CIA Triad
	Policy as Code
	Zero-Trust Security
	Decentralized Identity
	Validating Input
	Design for Threats
	Naive Password Complexity Requirements
	Compliance as Code
	Shift-Left Security
	Single Pane of Glass for Audit
	Homomorphic Encryption
	Fail Securely
	Secure APIs

	Designing for Elasticity
	Designing for Resilience
	Designing for Sustainability
	The JEVONS Paradox in Cloud Native
	Sustainability Approaches
	Deployment Environment
	Software Engineering
	UI Architecture

	Sustainability Assessment

	Designing for Failure
	Infrastructure
	Communication
	Dependencies
	Internal

	Designing for Reliability
	Pareto Chart

	Designing for High Availability
	Active-Active Deployments
	Active-Passive Deployments

	Designing for the Customer
	Designing for Interoperability
	Designing for Events
	Designing for Observability
	Designing for Portability
	Designing for Ethics
	Designing for Accessibility
	Accessibility Guidelines and Standards

	Designing for Automation
	Designing for Maintainability
	Designing for Usability
	Summary

	Part III: Modernizing Enterprise IT Systems
	Chapter 10: Modernize Monolithic Applications to Cloud Native
	What Is Decoupling?
	Technical Debt
	How Are Technical Debts Accumulated?
	How Is Technical Debt Impacting Your Enterprise?
	How to Decide on Decoupling?
	Decoupling Model

	Decoupling
	Decoupling Approach
	Decoupling Plan
	Decoupling Principles
	Decoupling Business Case
	Decoupling Strategies

	Domain-Driven Design
	How Does Domain-Driven Design Manage Complexity?
	What Is a Domain?
	Goals of Domain-Driven Design
	Domain-Driven Design Model
	Strategic DDD
	Tactical DDD

	Guiding Principles of DDD

	Event Storming
	Key Roles in an Event Storming Workshop
	Event Storming Exercise
	Step 1: Identify the Objectives
	Step 2: Event Map: Capture Domain Events
	Step 3: Event Map: Identify Commands, Triggers, and Read Models
	Step 4: Event Map: Identify Aggregators
	Step 5: Context Map: Identify the Bounded Context
	How Does a Bounded Context Communicate?
	Ubiquitous Language
	Tactical Implementation of DDD

	Step 6: Microservices Identification
	Entity
	Value Objects
	Aggregates
	Domain Model to Microservices
	API Model

	Value of Domain-Driven Design
	The Business Value of DDD
	Drawbacks of DDD
	Where DDD Is Not Useful

	Summary

	Chapter 11: Enterprise IT Assessment for a Cloud Native Journey
	Introduction
	Assessment
	What Is an Assessment Used For?
	Assessment Objectives
	Assessment Execution Approach and Key Activities

	Cloud Native Assessment
	When to Consider a Cloud Native Assessment
	Cloud Native Maturity Assessment Model

	Detailed Architecture Assessment
	Assessment Usage
	Architecture Assessment Model
	Assessment Questions Template

	Automation Maturity Assessment
	Automation Maturity Assessment Model
	Automation Maturity Assessment Questionnaire Template

	Summary

	Chapter 12: “-ilities” Fitness Function
	What Is a Fitness Function?
	Categories of Fitness Functions
	Atomic vs. Holistic
	Triggered vs. Continuous
	Static vs. Dynamic
	Automated vs. Manual
	Temporal
	International vs. Emergent
	Domain-Specific
	Design-Time Fitness Function
	Runtime Fitness Function

	Execution of the Fitness Function
	Manual Execution
	Automated Execution

	Fitness Function Identification
	Fitness Function: Coupling and Cohesion
	Fitness Function: Security
	Fitness Function: Extensibility, Reusability, Adaptability, and Maintainability
	Fitness Function: Performance
	Fitness Function: Resiliency
	Fitness Function: Scalability
	Fitness Function: Observability
	Fitness Function: Compliance

	Fitness Function Metrics
	Review Function Metrics
	Summary

	Part IV: Cloud Native Software Engineering
	Chapter 13: Enterprise Cloud Native Software Engineering
	Cloud Native and Traditional Application Engineering
	Intelligent Software Engineering
	From Project to Product
	Organization Transformation
	Agile Software Development Methodologies
	Hypothesis-Driven Development
	Why Do You Need a Hypothesis?
	Methodology Steps
	Hypothesis Example
	Framing Hypothesis
	Culture of Hypothesis

	Test-Driven Development
	Why TDD?
	TDD Cycle
	Steps of TDD
	Factors to Consider for TDD
	Drawbacks of TDD

	Behavior-Driven Development
	How BDD Helps You to Solve Problems
	BDD Principles and Practices
	BDD Process
	BDD Specification
	Transition to BDD
	Benefits of BDD
	Drawbacks of BDD

	Feature-Driven Development
	Why FDD?
	FDD Process
	Feature Specification
	Feature Set
	Subject Area

	Benefits of FDD
	Drawbacks of FDD

	Architecture in the Agile Methodology
	Waterfall to Agile Transformation
	Summary

	Chapter 14: Enterprise Cloud Native Automation
	Introduction
	DevOps Today and Tomorrow
	From DevOps to DevSecOps
	Driver for Shift-Left Security

	Automation Principles and Best Practices
	Site Reliability Engineering
	DevSecOps
	Continuous Integration
	Continuous Delivery
	Continuous Deployment

	DataOps
	DataOps Principles
	DataOps Pipeline

	DevNetOps
	Network Operation and Challenges
	Why You Need DevNetOps?
	Network Reliability Engineering
	DevNetOps Pipeline

	DevOps in the Cloud
	AWS Cloud
	Azure Cloud
	Google Cloud

	DevOps Transformation
	Summary

	Chapter 15: AI-Driven Development
	Introduction
	Unique AI Challenges
	Why AI-Driven Development?
	AI-Driven Principles at a Glance
	Approach to AI
	AI Governance
	AI Framework
	AI Governance Measurement
	Governance Process
	Governance Model

	How to Train AI-Enabled Frameworks?
	AI-Driven Methodology
	AI Use Cases
	Discovery and Piloting
	AI Project Execution
	Deploy and Industrialize

	AI and ML in DevOps
	AI and ML in Code Management
	Source Code Progress
	DeepCode.AI
	Codota

	Quality Checks
	Continuous Feedback
	Kubeflow
	Alert Monitoring

	Summary

	Part V: Cloud Native Infrastructure
	Chapter 16: Containerization and Virtualization
	Introduction
	What Is Cloud Native Infrastructure?
	Cloud Native Environment Characteristics

	Cloud Virtualization
	How Does Virtualization Work?
	Types of Virtualization in the Cloud
	What Applications and Services Are Commonly Virtualized?
	Cloud Native and Virtual Machines

	Containerization
	What Is a Container Image?
	Container Architecture
	Container Principles
	Container Patterns
	Container Security
	Logging Mechanism
	Stateless
	Immutable
	Privileged Containers
	Monitoring
	Running Container as Root
	Image Version
	Container Networking
	Container Lifecycle Management

	Container Benefits
	Container Adoption Best Practices
	Containers in an Enterprise

	Container Orchestration
	Types of Orchestration Tools
	Docker Swarm
	Apache Mesos
	Kubernetes
	Orchestration Tool Comparison

	Kubernetes Features
	Kubernetes Principles and Patterns
	Predictable Demands
	Declarative Deployment
	Health Probe
	Automated Placement
	Singleton Service
	Init Container
	Sidecar

	Running a Cloud Native Application on the Container and Kubernetes Strategy
	Kubernetes Maturity Model
	Prepare
	Transform
	Deploy
	Build Confidence
	Improve Operations
	Measure and Control
	Optimize and Automate

	Service Meshes and Kubernetes
	Stateful Workloads on Kubernetes
	Kubernetes Multitenancy
	Kubernetes Secrets
	Kubernetes as a Service
	Google Kubernetes Engine
	Amazon Elastic Kubernetes Service
	Azure Kubernetes Services
	Red Hat OpenShift
	VMware Tanzu

	Summary

	Chapter 17: Infrastructure Automation
	What Is Infrastructure Automation?
	What Can You Automate?
	What Is Infrastructure as Code?
	IaC in Build Pipeline Automation
	Capture Requirements
	Prepare Automation Code
	Set Up Infrastructure
	Install OS
	Set Up Network and Storage
	Deploy Services

	Define Everything As Code
	How Do You Select an IaC Tool?
	What Coding Language Can You Use?

	IaC Example
	IaC Tools
	Terraform
	Ansible
	SaltStack
	Chef
	Puppet
	CFEngine
	AWS Cloud Formation
	IaC Tools Comparison

	Summary

	Part VI: Cloud Native Operations
	Chapter 18: Intelligent Operations
	Introduction
	Why Do You Need Intelligent Operations?
	Elements of Intelligent Operation
	Data-Driven Approach
	Applied Intelligence
	Cloud Enablement
	Right Talent and Skill
	Smart Partnership

	AIOps
	Central Functions
	Artificial Intelligence
	Data
	Automation
	Anomaly Detection
	Event Correlation
	IT Service Management (ITSM)

	Example Use Case of AIOps
	Traditional Operations
	AIOps-Based Operation
	Capabilities of AIOps
	AIOps Transformation
	AIOps Strategy
	AIOps Transition
	AIOps Transformation

	Benefits of AIOps

	ChatOps
	ChatOps Benefits
	Types of ChatOps
	Group Chat
	Bots

	ChatOps in Service Support
	ChatOps (Bot) Architecture
	Industry Example Use Cases
	Group Chat Use Case: Microsoft Teams–Based Chatbot with AI Is Integrated with ServiceNow
	Chatbot Use Case: Payment Industry to Resolve Billing Queries and Create Case Management Requests

	Summary

	Chapter 19: Observability
	Introduction
	Difference Between Monitoring and Observability

	Full-Stack Observability
	Connected Across Capabilities
	One Source of Truth
	Visualization

	Observability and Cloud Native Services
	Observability in Kubernetes
	Observability and DevOps
	Common Use Cases for Observability with AIOps

	Guidance to Choose Observation Tools
	Benefits of Observability
	Observability, Monitoring, and Machine Learning Models
	Algorithms Help in Observability
	Workflow Steps for ML

	Summary

	Part VII: Cloud Native Features
	Chapter 20: Cloud Native Trends
	Cloud Native Trends
	Designing for “-ilities”
	Cloud Native Architecture
	Open Application Model Specification
	Web Assembly
	Data Gateways
	HTTP/3
	RSocket and Reactive Streams
	Low Code/No Code
	Actor Model
	Kubernetes on the Edge
	GitOps

	General Trends Across Industry
	5G
	5G Technology
	5G Features
	Advantages of 5G
	Cloud Native and 5G: Network Slicing

	Digital Twin
	Why a Digital Twin?
	Digital Twin Implementation

	Quantum Computing
	Why Quantum Computing?
	Potential Use Cases

	Extended Reality
	Edge Computing

	Summary

	Index

