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ABSTRACT

Though modern graphics hardware offers features and performance for
real-time ray tracing, consumer applications like games must target legacy
hardware to serve a large install base. This chapter addresses some
challenges and solutions for working with ray tracing in this legacy content. In
particular, it demonstrates a solution for mixing raster and ray traced
translucency, as well as a set of solutions for animated foliage.

Figure 50-1. A forest scene rendered with ray tracing in Unreal Engine 4 (UE4) using animated
foliage. The scene uses ray tracing for shadows and reflections. The scene was authored by
Richard Cowgill using the Forest - Environment Set by Nature Manufacture available through the
UE4 Marketplace [4].
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RAY TRACING GEMS II

50.1 INTRODUCTION

Ray tracing opens up an impressive array of graphical effects that were
previously challenging or impractical for real-time applications such as
games. However, all consumer-focused applications like games have a heavy
burden of legacy support. The effects and art must be authored to work well
on the platforms that represent the vast majority of the install base when they
release. This constraint demands that the primary focus of the development
effort be on content tuned to work well for rasterization. These current
market needs to prioritize rasterization during development limit the cycles
available to tune specifically for ray tracing.

Due to the practical limitations of revising many man-years of asset
development, the current path to enabling ray tracing effects in real-time
games is to adapt the ray tracing effects to the raster-centric content already
required. This chapter presents techniques for resolving challenges in two
common rendering regimes: translucency and foliage. These techniques
have been successfully used to enable ray tracing effects in shipping games.

Though the algorithms here were implemented in the context of the Unreal
Engine, they are broadly applicable. NVIDIA’s custom NvRTX branch of Unreal
Engine 4 (available to anyone registered for Unreal Engine access through
GitHub at https://github.com/NvRTX/UnrealEngine) demonstrates the
implementation of these techniques and several more.

50.2 HYBRID TRANSLUCENCY

Translucency in games typically means anything that is not opaque. For
rasterization, this implies alpha blending over other geometry. This category
covers common objects like glass and water, but it also includes particle
effects such as smoke and fire. Importantly, translucent objects bring special
shading and composition challenges to raster graphics due to their many
overlapping surfaces.

50.2.1 MOTIVATION

The standard implementation of ray traced translucency in Unreal Engine 4
(UE4) handles all translucent effects in a single pass. Primary rays are traced
from the viewer to just in front of the closest opaque surface. The depth buffer
provides this max ray distance. Rays shade the closest hit, including a
reflection bounce and any necessary shadow rays, then fire a continuation ray.
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(a) Ray traced translucency (b) Rasterized translucency

Figure 50-2. Ray traced translucency offers an impressive upgrade in shading. However, artists
typically author the content with rasterization in mind. This scene is a variant of the Amazon
Lumberyard Bistro [1].

Depending on the settings and material type, the continuation ray potentially
refracts. With the right settings and content, this algorithm produces a
high-quality result. Translucent interactions are perfectly sorted, shading is
substantially improved over shading used for raster translucency
(Figure 50-2), and refraction effects are supported natively. Importantly,
achieving this result requires that the content be configured appropriately.
Without proper tuning, performance challenges and graphical artifacts
commonly occur.

The most direct performance challenge with fully ray traced translucency
comes from particle effects authored for rasterization. Particle systems often
create volumetric effects with several sprites overlapping a single pixel.
Capturing each layer with full ray traced translucency requires tracing an
additional ray and one additional shading invocation. Though this may
produce high-quality volumetric effects, the performance scales quite
differently than originally intended by the artist. For example, even eight
layers of ray tracing interactions are too few to render a simple fire and
smoke particle system without clear hole artifacts where the rays terminate
too early. More importantly, ray tracing a particle system at that level of
overlap costs roughly 10 times the cost of rasterizing it. Although particle
systems are the most common example to encounter this performance
concern, the performance challenges are not limited to them alone. Artists
may place dozens of small glasses inside a restaurant that they never
intended to have a dramatic impact on the scene visuals. Due to the
order-dependent nature of compositing, one cannot mix and match the
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methods of rendering translucency. As fully ray traced translucency is an
all-or-nothing affair, the only choices are to pay that cost for everything or to
forgo the enhancements entirely.

Quality challenges with fully ray traced translucency are more varied than
those of performance issues. Particles again show up at the top of the list of
concerns. In UE4, first among the particle challenges is that much legacy
content relies on a particle system referred to as Cascade, as opposed to a
newer system named Niagara. The older Cascade system completely lacks
ray tracing support, so enabling full ray traced translucency causes all
particles from Cascade to completely disappear. This forces a developer using
the legacy particle system to choose between re-authoring those systems or
foregoing ray traced translucency. Even when all particle systems are
supported, the authoring process of treating them as screen-aligned
billboards may or may not hold up well under the different rendering
methodology.

The next challenge for fully ray traced translucency comes from refraction
and distortion. Raster translucency generally only offers distortion as a
special effect carefully placed in the scene. Ray traced translucency
accomplishes this distortion naturally through refraction. This requires that
either refraction is disabled or all materials are configured properly with their
index of refraction. The result is a choice between no distortion/refraction or
editing potentially hundreds of materials as well as geometry to ensure that
refraction properties have all been properly configured. Misconfigured
refraction parameters are quite common in content that has been developed
without the intention of supporting ray tracing from the start. A simple
example is that of a window. Games will generally use a two-sided
quadrilateral for the window. Even if the index of refraction is correct to drive
the physically based rendering used by the engine, the lack of a second
quadrilateral representing the backside of the glass will result in distortion.
The ray will continue in the refracted direction as if looking into a solid block
of glass. Finally, the best performance-tuning parameter for fully ray traced
translucency presents its own image artifact challenges. Ray traced
translucency requires that users place a limit on the number of layers traced.
Though this greatly helps performance in cases of high depth complexity, the
translucent surfaces beyond the limit are simply not rendered. Although the
front one or two layers will have the most important impact on the image,
having objects completely disappear is unfortunate (Figure 50-3).
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(a)Multi-layer ray traced translucency (b) Single-layer ray traced translucency

Figure 50-3. With only a single layer of translucency, overlapping glasses result in the glasses
farther from the viewer disappearing in the overlapping sections.

50.2.2 OUR HYBRID APPROACH

The hybrid translucency solution described here bridges the gap between ray
traced translucency and raster translucency. Effects best suited for
rasterization can use rasterization, while ray traced shading is applied to
more important surfaces like window panes. Hybrid translucency fixes the
ordering problem described previously by having the ray tracing pass place its
results in an offscreen cache. The cache captures the radiance for translucent
layers independently, rather than compositing them. This allows the
rasterization phase of translucency to look up the shading result in the cache
and substitute it for the shading value produced via rasterization. Importantly,
all translucent primitives that wish to receive ray tracing effects are rendered
twice (once via ray tracing and once via rasterization). As rasterization is used
to composite everything, hybrid translucency is unable to provide the
order-independent translucency benefit of fully ray traced translucency.
However, hybrid translucency is intended to work with legacy content, which
has already had to deal with this challenge. Further, hybrid translucency uses
the same refraction and distortion methods as rasterization. Although those
effects will not look any better than they did under rasterization, they will now
function identically without the need for an artist to tune the effect specially
for ray tracing. The result is a technique that functions and performs in a
manner consistent with the rasterization systems for which the content has
already been tuned, while offering greatly improved shading on surfaces like
windows at little cost to the asset pipeline (Figure 50-4).

Hybrid translucency’s ray traced shading cache functions by storing samples
in a screen-space texture array. Each pixel in the framebuffer contains up to

849



RAY TRACING GEMS II

(a) Fully ray traced translucency (b) Hybrid translucency with two layers

Figure 50-4. Hybrid translucency replicates the most important visual enhancements of full ray
tracing while continuing to support rasterized elements.

N layers of shaded translucent surfaces (or events). Each event stores the
reflected irradiance as well as the distance from the viewpoint. Importantly, it
does not composite any transmission through the surface. The transmission
is applied by the blending operations during compositing. Creating the cache
is accomplished by a simple modification to the standard algorithm for
handling ray traced transparency. Each pixel traces a ray from the eye into the
scene with the maximum distance limited by the opaque geometry already
written to the framebuffer. The closest hit is shaded and written to the first
layer of the cache, then the ray is stepped forward and traced again to record
additional events if necessary. The pseudocode in Listing 50-1 demonstrates
the basic algorithm for the ray generation shader.

Once the shading cache is created, the ray traced results must be composited
into the scene with the raster transparency. Compositing is performed in the
standard rasterization order. The shader for translucent materials is
enhanced with code to check the shading cache. The check first examines
layer 0 to see if any ray traced data was written for the pixel. If so, it compares
the distance from the viewpoint against what was stored in the cache. If the
distance matches within a threshold, the shading data from the cache is used.
To prevent paying the cost of searching with every translucent pixel, objects
not supporting ray tracing skip the search by using a uniform branch.
Listing 50-2 contains code for applying the data from the cache.

Importantly, the compositing pass for hybrid translucency maintains the
shading functionality that would have otherwise applied. This allows for the
production of reasonable results, no matter how many layers of translucency
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Listing 50-1. Ray generation pseudocode.

1 GBufferData OpaqueData = ReadGBufferForPixel();
2

3 FarPosition = ReconstructionPosition(OpaqueData);
4

5 RayDescription Ray;
6 Ray.Origin = ViewerPosition;
7 Ray.Direction = normalize(FarPosition - ViewerPosition);
8 Ray.MinT = 0.0;
9 Ray.MaxT = length(FarPosition - ViewerPosition) - Epsilon;
10

11 for(int Event = 0; Event < MaxEvents; Event++)
12 {
13 Payload HitData = Trace(Ray);
14 if(!HitData.IsHit)
15 {
16 Break;
17 }
18 else
19 {
20 Color = ShadeHit(HitData);
21 Distance = HitData.Distance;
22 RecordLayer(Event, Color, Distance);
23 }
24

25 // Step forward for next search.
26 Ray.MinT += HitData.Distance + Epsilon;
27 }

Listing 50-2. Translucent cache search pseudocode.

1 Color = ComputeShadingForTranslucentPixel();
2

3 if (SupportRayTracing)
4 {
5 // Check if any layers were captured.
6 if (Layers[pixel][0].Distance > 0)
7 {
8 Distance = Length(WorldPosition - ViewPosition);
9

10 for(Layer = 0 : NumLayers - 1)
11 {
12 LayerDist = Layers[Pixel][Layer].Distance;
13 Delta = abs(Distance - LayerDistance);
14

15 if (Delta/Distance < Threshold)
16 {
17 // Surface matches the cached data.
18 Color = Layers[pixel][Layer].Color;
19 break; // Exit the loop.
20 }
21 }
22 }
23 }
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(a) Two-layer hybrid translucency (b) Single-layer hybrid translucency

Figure 50-5. Hybrid translucency gracefully falls back to the raster effect, on which the content
already needs to rely for most systems.

are present. The top N layers will receive ray traced shading, while the deeper
layers will simply fall back to the effect as it would have been with
rasterization (Figure 50-5). As the topmost layer will provide the most
significant contribution to the image, ray tracing only a single layer of
translucency is typically enough.

50.2.3 RELATIONSHIP TO ORDER-INDEPENDENT TRANSPARENCY

The hybrid translucency approach described in this chapter explicitly avoids
solving the problem of the order of translucent surfaces, but it does share
some similarities. Depth peeling [3] converts translucency into layers to allow
compositing in depth order, and A-buffers [2] produce sorted per-pixel lists of
transparent surfaces. These concepts relate to the ordered sample cache
used by this hybrid translucency algorithm. In contrast to these
order-independent transparency (OIT) algorithms, the structure only serves
to ensure that the closest events were captured and to optimize cache
lookups. Importantly, this hybrid algorithm does not preclude the use of OIT
approaches during the compositing pass. It relies on whichever one is in use
for compositing standard raster transparency, with the key requirement that a
single method be used to order both the raster and the ray traced
components.

50.2.4 PERFORMANCE

As with all advanced visual effects, managing and scaling performance is
important with hybrid translucency. As discussed previously, hybrid
translucency can cut the amount of shading both by reducing the objects
considered for translucent ray tracing and by restricting the number of layers
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(a) Ray traced translucency with two refraction events:
16.2 ms

(b) Half-resolution hybrid translucency with only the
top layer traced: 4 ms + 1.5 ms

Figure 50-6. Hybrid translucency produces overall better image quality at one third of the cost in
this scene. Notice that much of the glassware is not completely visible in the purely ray traced
version due to exhausting its refraction event count. All timings were taken on an RTX 3090 at
1920× 1080

captured. The ability to degrade more gracefully is the soul of the hybrid
translucency’s performance advantage over standard ray traced translucency.
The tracing pass for hybrid translucency is effectively identical in cost when
comparing equal numbers of events shaded. Shading two layers of refraction
rays in a complex test scene shows a cost of 16.1 milliseconds (ms) for pure
ray tracing and 16.2 ms for hybrid ray tracing (Figure 50-6a). The hybrid
method also requires an additional 1.5 ms to rasterize the translucency. (All
tests performed at 1920× 1080 resolution on an RTX 3090.) However, the ray
traced scene suffers from translucent objects disappearing even with two
layers of events. The hybrid scene has no objects disappearing, and it can
reduce the cost to a single layer with hardly any visual impact, reducing its
cost to 7.9 ms. Additionally, the shading cache layers of hybrid translucency
can be rendered at half the resolution in a checkerboard or interleaved style
while upsampling at compositing time. As expected, halving the number of
samples halves the cost of ray tracing, reducing the cost to 4 ms for this test
case (Figure 50-6b).

Finally, all ray traced translucency can benefit from using rasterization to
compute a mask of potentially transparent pixels on the screen. Rasterizing
the few translucent objects that participate in ray tracing against the depth
buffer very quickly marks which pixels can ever produce a translucency hit.
This allows the ray generation shader to terminate without firing a ray for
regions with no coverage. For most scenes, this saves hundreds of thousands
of rays cast for what is often under one tenth of a millisecond in cost.
However, the benefit depends on the amount of translucency in the scene, so
the utility of this technique will vary.
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50.3 FOLIAGE

Foliage is an integral part of outdoor environments in nearly all games. The
term foliage in the context of games covers everything from large trees to
grass. In UE4, as in most games, the majority of foliage is handled through
somewhat specialized systems to allow the high density typically desired.
This system replicates dozens to hundreds of identical copies, commonly
called instances, of the meshes with different transformations to produce a
rich environment. On top of the varied static transforms, foliage systems
typically utilize some form of vertex shader animation. Though it may be as
simple as a sine wave to sway the grass back and forth, this ambient motion
brings life to a scene.

50.3.1 REPRESENTING ANIMATED FOLIAGE

Data management is the key issue with supporting foliage in a ray tracing
context for games. Exploiting the instanced nature of foliage is the first step
in managing the costs. Placing foliage as instances into the top-level
acceleration structure (TLAS) with shared entries in the shader binding table
provides the solution to manage the costs associated with thousands of
objects. A modest forest scene in UE4 spends over 6 ms of CPU time setting
up ray tracing instances that are setup independently, as opposed to 0.6 ms
for using shared setup. Importantly, it may even be worthwhile to forego
multiple levels of detail, as the costs associated with managing the multiple
levels of detail may outweigh the gains. One aspect to managing the instances
is efficiently culling to ensure that only the relevant instances are processed.
In general, ray tracing makes the culling problem more difficult, as reflection
rays are harder to account for. A good solution is to cull by projecting the
bounding sphere to a solid angle from the viewpoint. A culling angle of
1–2 degrees ensures that the screen area impacted by the object is respected
across all but the most extreme regimes. Tall trees will accurately cast their
long shadows and be prominent in reflections, while the impact of the
thousands of small tufts of grass will be minimized.

The ambient motion of foliage substantially magnifies the data management
issue while also introducing costs of its own. Bottom-level acceleration
structures (BLASs) must be created uniquely for each different deformation.
This means that the simple vertex shaders used to add ambient motion to all
the foliage in a scene are producing thousands of unique meshes each from
the perspective of ray tracing. The naive solution requires running a compute
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shader over each instance to update the vertices, then refitting or rebuilding
the BLAS each frame. A test of a simple forest scene in UE4 shows that even
capping this processing at 256 instances per type costs over 50 ms of GPU
processing on an NVIDIA RTX 3090. Such a solution is untenable in a
real-time application. A more practical fallback is to simply skip the ambient
motion and leave all instances in their neutral poses. Placing just the static
objects instanced into the TLAS produces a very reasonable representation for
many gaming scenarios. It ensures that the foliage is accurately represented
in size and approximate location. Importantly, the ray tracing representation
is only observed as part of secondary effects. Reflections will show correctly
placed and lit foliage. Without close inspection, the lack of motion will
frequently be missed, as large near-perfect mirror reflections are
uncommon. Though occlusion effects like shadows and ambient occlusion
may often get by with a lack of motion especially when casting on moving
objects, the degree to which it is acceptable will vary based on the content.
The appearance of stationary leaf shadows on static objects will sometimes
stand out as objectionable, especially when the shadows created via shadow
maps move. Importantly, fully accurate motion, which would require the
50 ms cost mentioned previously, is not typically necessary. As long as
shadows have motion generally consistent with the behavior of the foliage as
seen by the viewer, a convincing effect is possible.

Reusing animations across multiple instances allows the shadows to have
behavior consistent with the motion prescribed for the foliage, while not
paying the cost for matching the animations exactly. Sharing the animations
between instances is a simple extension to the simulations used for
stand-alone deformed meshes. The only additional effort required is that the
result must keep the same neutral coordinate frame as the original mesh.
The translations, rotations, and scales for the instances still apply to produce
a convincing animated instance in the world. Minimizing the number of
simulated instances is important, as each additional simulated instance is
work and limits reuse. Often, convincing results are achievable with only a
single simulated instance for each distinct foliage mesh in a forest. Again, the
user never views the ray traced results directly.

50.3.2 INEXACT OCCLUSION

Though purely static foliage or replicated animations do a reasonably good job
on reflections and shadow casting from foliage onto other objects,
self-occlusion effects of foliage require a bit more care. Because the vertex
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(a) Raster and ray tracing geometry out of sync while
using an exact shadow test

(b) Raster and ray tracing geometry out of sync while
using an inexact shadow test

Figure 50-7. The exact shadow test shows substantial hard shadow artifacts where the geometry
used to cast shadow rays does not match the geometry used to test the shadow rays. Applying a
stochastic bias to only the pixels known to have this challenge hides the artifact while preserving
the overall appearance.

shader animation fails to exactly match the animation used by the foliage
instances in the bounding volume hierarchy (BVH), incorrect self-occlusion is
likely to occur. This is easiest to observe with unanimated foliage in the BVH
testing against animated foliage in the raster scene. The result is streaky
shadows that slice through the foliage as it moves in and out of intersecting
with the static representation (Figure 50-7a).

Like most of the other challenges with foliage, a good solution involves
leaning into the approximations already occurring. Foliage rendering uses
several billboards and leaf cards to represent the volume of leaves on a
typical plant. Because the space being rendered can be thought of as a
volume, the occlusion testing can be as well. Statistical sampling can
approximate shadow results within the volume (Figure 50-7b). This sampling
can be accomplished by applying random offsets to the minimum hit distance
(TMin) for the shadow rays (Figure 50-8). The result is as if a cloud of samples
was evaluated above the foliage in the direction of the light source. Clearly,
the randomization will result in a noisy shadow result. However, the shadows
already rely on denoising and temporal antialiasing passes to produce soft
antialiased results. Importantly, placing the bias on TMin rather than on the
origin for the shadow ray increases the reported distance for the rays that still
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(a)Mismatched geometry (b) Inexact shadow rays

Figure 50-8. The purple and blue surfaces are logically the same, but different ray traced (purple)
and raster (blue) representations. Due to the mismatch, the blue surface is in shadow with rays
traced directly from the surface. Applying a stochastic offset to the rays allows several samples to
avoid the self-occlusion.

return a shadow result. This aides the denoising process, as the sharpness of
denoising is tied to the reported hit distance. See Listing 50-3 for the setup of
this inexact shadow test.

Listing 50-3. Inexact shadow ray setup.

1 RayDesc Ray = GenerateOcclusionRay(
2 LightParameters,
3 WorldPosition, WorldNormal,
4 RandSample);
5

6 // Apply standard bias to avoid depth fighting artifacts.
7 ApplyCameraRelativeDepthBias(Ray, PixelCoord, DeviceZ, WorldNormal,

NormalBias);
8

9 // If using inexact occlusion tests, apply bias to TMin.
10 if (NeedsInexactOcclusion())
11 {
12 Ray.TMin += GetRandomOffset() * MaxBiasForInexactGeometry;
13 }

Finally, the inexact shadow testing is only desirable on objects and materials
that require the inexact test. Two different solutions have been deployed to
solve this. First, as foliage is the primary use case, attributes from the
G-buffer such as the shading model are useful to identify geometry wishing to
receive the effect. Simply applying it to the TWO_SIDED_FOLIAGE shading
model in UE4 will cover the most common cases. The downside is that
objects like tree branches will not participate. A more exact solution comes
from marking the target geometry explicitly. This can be done by an extra bit
in the G-buffer when there is room. For the more general case, simply
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running an extra stencil-only pass offers a good solution. Because the
geometry already exists in the depth buffer, the pass can skip running a pixel
shader to produce alpha blending and can rely on setting the depth function to
equal for handling pixels cut out by alpha testing.

50.4 SUMMARY

The hybrid translucency and the foliage techniques described in this chapter
are insufficient on their own to handle all challenges when adding ray tracing
to content authored for rasterization. However, they stand as part of the
toolbox of methods to accomplish the task, and when combined with other
tools in an engine like UE4, impressive results are possible.
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