
CHAPTER 38

CPU PERFORMANCE IN DXR
Peter Morley
NVIDIA

ABSTRACT

DirectX Raytracing (DXR) performance guides have mainly focused on
accelerating ray tracing on the graphics processing unit (GPU). This chapter
will focus on avoiding stalls and bottlenecks caused by DXR on the central
processing unit (CPU) side.

38.1 INTRODUCTION

Most game engines must deal with streaming assets in and out of memory as
the player moves throughout the built environment. Typically, the game world
space is partitioned into discrete tiles or volumes, with only the elements
close to the player being resident in memory, and optionally placeholders or
reduced level of detail (LOD) geometry standing in for more distant items.

Implementing DXR ray tracing into a renderer adds several significant
memory and compute overheads. This chapter presents techniques to
optimize the management of acceleration structures and shader tables.

Methods to reduce DXR CPU overhead include the following:

> Use generic hit group shaders and use precompiled collections for a
state object.

> Use incremental state object compilation.

> Reduce shader table complexity for the local root signature.

> Limit acceleration structure (AS) builds and refits.

38.2 THE RAY TRACING PIPELINE STATE OBJECT

The ray tracing pipeline state object (RTPSO) contains a network of shaders
defining how various materials will be processed in a ray traced scene. The
following techniques that will help reduce the amount of CPU overhead

615A. Marrs, P. Shirley, I. Wald (eds.), Ray Tracing Gems II, https://doi.org/10.1007/978-1-4842-7185-8_38
© NVIDIA 2021

https://doi.org/10.1007/978-1-4842-7185-8_38

RAY TRACING GEMS II

Generic
Surface

Hit Group

Stone
Hit Group

Structure
Hit Group

Hotel
Hit Group

Granite
Hit Group

Spruce
Hit Group

Fir
Hit Group

Pine
Hit Group

Marble
Hit Group

Slate
Hit Group

School
Hit Group

Tower
Hit Group

Tree
Hit Group

Figure 38-1. The nine hit group shaders can be consolidated into a single generic surface hit
group by unifying how common materials are shaded. Engines will separate hit groups into
categories such as transparent, decals, generic, and subsurface materials, to name a few.

associated with the RTPSO include reducing hit group shaders, as well as
incremental changes to the RTPSO and state object collection multi-threaded
compilation.

One way to mitigate heavy shader permutations is to break down the shader
tables into generic hit group shaders that handle a collection of geometry
types in order to make the number of hit groups in the RTPSO manageable.
Figure 38-1 shows a state object configuration in which unique hit group
shaders can be unified by functionality. Having a predefined set of hit group
shaders in a state object is important because it not only reduces shader
execution divergence but also reduces CPU delay from recompiling the state
object every time new hit group shaders are needed.

38.2.1 INCREMENTAL STATE OBJECT MODIFICATIONS

Ray tracing pipeline state object compilation can be computationally
expensive due to the driver compiling multiple shaders. AddToStateObject
was introduced to prevent recompiling the entire RTPSO and only requires
compilation of new hit group shaders as they are added. AddToStateObject is
a very lightweight operation because the Direct3D 12 runtime does not need
to validate the entire state object and the driver only needs to perform a trivial
linking step after the new shaders are compiled. If complex state objects can’t
be avoided, then it is best practice to compile the most common hit group
shaders into a state object once and incrementally add new hit group shaders
with AddToStateObject during gameplay. The full documentation for
AddToStateObject is available [2].

616

CHAPTER 38. CPU PERFORMANCE IN DXR

Figure 38-2. Precompiled DXIL binaries are compiled into state object collections at startup then
finally compiled into a ray tracing pipeline state object.

38.2.2 STATE OBJECT COLLECTIONS

Another useful strategy to reduce the amount of compilation time for ray
tracing pipeline state objects is to use state object collections. Collections
containing ray tracing shader DirectX Intermediate Language (DXIL) libraries
can be compiled separately and in parallel on the CPU. (See Figure 38-2.)
RTPSOs can then reference these precompiled collections and in turn reduce
the amount of time it takes to prepare a ray tracing pipeline. Using multiple
CPU cores to compile collections can give a significant speedup compared to
compiling the RTPSO with raw DXIL libraries on a single CPU core. RTPSO
compilation should be lightweight due to multi-threaded collection
compilations. New hit groups can be streamed in by asynchronously
compiling new collections and using AddToStateObject to perform a trivial
linking step, assuming the collection state objects were compiled by the
driver.

38.3 THE SHADER TABLE

Generating complex shader tables is often a costly process on the CPU. A
shader table contains an array of shader records that define the resource
bindings of each top-level instance’s local root signature in the top-level
acceleration structure (TLAS).

38.3.1 BUILDING THE LOCAL ROOT SIGNATURE ON THE GPU

A local root signature (LRS) can use up to 4 KB, according to the DXR
functional spec [3], in memory for descriptors and other resource data. One
special advantage of the LRS is that the underlying memory can be allocated

617

Precompiled Offline

DXIL Library

Tree Hit Group Shaders

Streamed-in Compilation

Structure Hit Group Shaders

DXIL Library

UFO Hit Group Shaders

Multi-threaded Compilation

Collection State Object

DXIL Library 0

DXIL Library 1

Shader Configuration

Collection State Object

DXIL Library 2

Shader Configuration

Link New Collection

Single-Thread Compilation

RTP State Object

Collection 0

Collection 1

Pipeline Configuration

AddToStateObject

Collection 2

RAY TRACING GEMS II

in GPU memory for low latency during traversal shading. If the LRS uses
constant buffers or root constant buffers, it can be very costly to constantly
update those memory resources on the CPU side for a large amount of shader
records. Instead, shader tables can be generated using a compute shader to
write out shader table resource data by reading CPU system memory buffers
containing the scene’s resource information. Another advantage of building
the shader table on the GPU and using GPU visible only memory is that this
will avoid Peripheral Component Interconnect Express (PCIe) traffic reads
(GPU to CPU memory) when accessing constant buffers and all the other
resource descriptors.

> LRS pros:

– Root signature memory size is 4 KB.

– CPU overhead to update shader records.

> LRS Cons:

– Root signature memory is configurable.

38.3.2 GLOBAL ROOT SIGNATURE

One limitation of the global root signature (GRS) is that if the resources
required for state object shading exceed the memory capacity of a GRS, then
resource management will require special attention. Another limitation is
that a GRS is limited to 64 DWORDS (256 B) and only one can be bound. More
information on limitations are defined by White and Satran [6].

For example, if root constants are needed to manage resource indexing, then
the root constants would be accumulated into a single structured buffer and
accessed with a shader resource view (SRV).

> GRS pros:

– Unified root signature management.

– No shader table management if LRS isn’t used.

> GRS cons:

– Root signature memory size is 256 B.

– Root signature memory is required to be in system memory.

– Requires alternative management of large root data sets.

618

CHAPTER 38. CPU PERFORMANCE IN DXR

38.3.3 GRS VERSUS LRS

A GRS is limited to 256 B and only one can be bound, while a LRS allows up to
4 KB and can be instanced. The LRS gives each instance in the TLAS access
to 4 KB of resource memory rather than being limited to 256 B with a GRS.
Using a LRS is a convenient way to get around some of the limitations of a
GRS, but at the cost of CPU performance and more memory consumption.

38.3.4 SHARING RESOURCES WITH THE RASTERIZER

If the shader table construction can’t be performed on the GPU, then
techniques must be used to reduce CPU overhead of managing the resource
views (constant buffer view, shader resource view, or unordered access view).
This can involve extracting resources required for ray tracing from the already
established rasterization engine’s resources. Resource view management for
the LRS typically involves heavy use of CopyDescriptors or
CopyDescriptorsSimple to pull from a repository of views stored in a single
large descriptor heap. Typically, these copies are required for hybrid
(rasterization and ray tracing) renderers. The same resource sharing applies
when the rasterizer consumes new vertex and index buffers needed to be
rendered, which then must be passed along to the AS builder to include it
during ray traversal.

38.3.5 BINDLESS RESOURCE ARRAYS

The preferred solution, if possible, is to avoid building the shader table
altogether by dynamically indexing into bindless resources. Bindless
resources are implemented using a descriptor table that contains an array of
resource views. Large descriptor tables are stored in the GRS and can be
accessed based on the instance and geometry index of the intersected
primitive. (See also Chapter 17.)

38.4 THE ACCELERATION STRUCTURE

38.4.1 OVERVIEW

Processing millions of triangles into the ray tracing AS can become
prohibitively expensive on both the GPU and the CPU. The first challenge is
managing the transient geometry in the AS that enters and exits the player’s
rendering volume. For each frame, new bottom-level acceleration structures
(BLAS) need to be built for new geometry that entered this volume, and
conversely, existing acceleration structures need to be deallocated if they are

619

RAY TRACING GEMS II

Figure 38-3. A large collection of asteroids each stored in a unique BLAS structure. Frustum
culling techniques are used to reduce the BLAS memory footprint and TLAS size.

no longer in view. If the AS is being used for reflections or shadows, then all
geometry within a certain radius of the player is required, not just the
geometry in the view frustum. The movement of geometry in and out of the
AS causes multiple trips to the operating system memory manager. These
memory requests can introduce CPU overhead.

Figure 38-3 shows an asteroid field in which top-level asteroid instances are
culled from the AS if not in the radius of inclusion. The TLAS will instance into
each visible asteroid BLAS, while asteroids outside of the radius of inclusion
will not be included in the TLAS and those BLAS can be deallocated.

One tool for avoiding such CPU-side memory allocation stalls involves
sub-allocating the AS buffer memory. Infrequently requesting large memory
pools from the operating system (OS) reduces CPU overhead because the
common case would be to sub-allocate from an existing memory block.
Compaction also helps in reducing the memory required for an AS by
trimming the conservative memory allocation that was required for the initial
build. An AS that uses compaction significantly decreases the memory
footprint and, in turn, reduces CPU overhead as an added benefit. Less
memory for the AS means less requests to grab sub-allocator memory blocks
from the OS.

620

CHAPTER 38. CPU PERFORMANCE IN DXR

38.4.2 SHARING RESOURCES WITH THE RASTERIZER

The vertex and index buffer resources used to build the AS can hopefully be
reused from the rasterization resources if the buffers are in one of the
acceptable build formats. Most engines compress their vertex buffers and are
forced to decompress and duplicate resources when getting ready to build the
AS. The RT Cores can only interpret triangles in the form of 16- or 32-bit
precision vertices. More information about RT Cores can be found in the
Ampere white paper [4]. If the engine must duplicate the vertex buffers to
build the AS, then be aware that deallocating those duplicated resources after
building is recommended to reduce memory consumption.

38.4.3 DEFORMABLE, ANIMATED, AND STATIC AS BUILDS

There are three main categories of geometry types in the AS. These types can
be described as static, animated, and deformable geometry. Static geometry
can be defined as a triangle mesh that is uniformly transformed, such as
buildings, roads, and signs. Animated geometry comprises a triangle mesh
that has a grouping of triangles within the mesh that are transformed but
adhere to the original topology, such as character animations. Deformable
geometry is characterized by a triangle mesh in which all triangles can be
transformed arbitrarily without maintaining the original topology, such as
particle effects.

Static geometry has a major benefit in which it only requires a single full
build. Animated geometry requires an upfront build as well but requires fast
build updates every key frame, which are much less impactful on GPU
performance than full builds. This requires a mesh skinning compute pass
and a fast build per frame to update the AS bounding boxes for the deformed
triangles. One method to reduce build processing times is to have a higher
ratio of static objects compared to dynamic objects in the TLAS. Static objects
only require a one-time build, whereas dynamic objects can require an update
build or complete rebuild per frame. Both animated and static geometry can
be compacted but require extra memory in which both the original build and
the compacted build memory are resident.

Static topologies with extreme animation (running animations) or objects that
change topology altogether (breakables or particles) require a full build
during each of the deformable geometry’s updates to maintain optimal
traversal performance. AS traversal performance will degrade as triangles
move farther away from their original build location and thus hurts

621

RAY TRACING GEMS II

performance as time progresses. The trade-off is to do a full build of the
deformable geometry every N frames and do refit builds between the N
frames. This maintains acceptable build and traversal performance but
requires tweaking for each individual engine. Putting a limit on the number of
AS builds and updates per frame can also be a good way to maintain stable
GPU/CPU performance with build workloads. One trade-off is that sometimes
objects may appear in the AS a frame or two after they would have been
traced against and show up as popping geometry. The RTX best practices blog
post [5] details best practices for managing acceleration structures.

38.4.4 IMPROVING LOD PERFORMANCE

If the engine employs a LOD system, then the AS build workloads increase
due to extra builds for the LODs and the management of the LODs included in
the TLAS. For example, if the LOD system contains four levels of detail, then it
is possible that certain assets transitioning through the LODs have the
potential need to be built and compacted four separate times.

Instead, having only one LOD resident in memory prevents LOD transition
popping, which is another problem set described in a stochastic LOD blog
post [1]. The method described in the blog post implements smooth
transitions between LODs in the acceleration structure by randomly masking
out one of the LODs in the TLAS for each ray. This facilitates a gradual
transition of geometry between the two LODs but at the cost of having to
maintain more geometry in the AS.

One precaution with LOD selection is the potential to introduce position data
bugs between rasterization and ray tracing. LOD mismatch can result in
self-shadowing corruption if the acceleration structure is only using a single
BLAS for each model. A technique used to mitigate self-shadowing in ray
tracing is to add a bias to the ray origin. Figure 38-4 shows the self-shadowing
bug when mismatching LODs for primary rays and rasterization.

The benefit to avoiding an LOD system for ray tracing prevents not only a
reduction in BLAS memory but also a reduction in AS builds. The trade-off
here is that geometry that is far away and highly tessellated will potentially
hurt traversal performance. The TLAS is designed to prevent wasted traversal
time in these highly tessellated regions, so the performance trade-off might
not be as bad as expected.

622

CHAPTER 38. CPU PERFORMANCE IN DXR

Figure 38-4. The BLAS and rasterization vertex buffer data is different due to LOD mismatch, and
the result is self-shadowing artifacts [1, Figure 3].

38.5 CONCLUSION

The intention of this chapter is to help better understand the pros and cons
associated with certain DXR design choices and how they affect CPU
performance. In conclusion, the recommended approach is to simplify the
RTPSO as much as possible and asynchronously compile state collections for
inclusion in the RTPSO. Allocate shader tables in GPU memory and build
them on the GPU to reduce CPU overhead and improve traversal shading
performance. Limit the number of AS builds per frame, as to reduce memory
requests to the OS and reduce the amount of AS build times on the GPU.
Implementing LOD algorithms for DXR introduces a significant amount of
extra memory and additional AS builds but succeeds in preventing LOD
mismatch between the rasterizer and the ray tracer.

REFERENCES

[1] Lloyd, B., Klehm, O., and Stich, M. Implementing stochastic levels of detail with Microsoft
DirectX Raytracing. NVIDIA Developer Blog,
https://developer.nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr/,
June 15, 2020.

[2] Microsoft. ID3D12Device7::AddToStateObject method (d3d12.h). Windows Developer,
https://docs.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12device7-
addtostateobject, September 15, 2020.

[3] Microsoft. Local root signatures vs global root signatures. DirectX Raytracing (DXR)
Functional Spec, https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html#local-
root-signatures-vs-global-root-signatures, 2021.

623

Light

Spurious Shadow

Eye
LOD1

LOD0

https://developer.nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr/
https://docs.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12device7-addtostateobject
https://docs.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12device7-addtostateobject
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html#local-root-signatures-vs-global-root-signatures
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html#local-root-signatures-vs-global-root-signatures

RAY TRACING GEMS II

[4] NVIDIA. Ampere GA102 GPU architecture: Second-generation RTX. White paper,
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-
whitepaper-v2.pdf, 2021.

[5] Sjoholm, J. Best practices: Using NVIDIA RTX ray tracing. NVIDIA Developer Blog,
https://developer.nvidia.com/blog/best-practices-using-nvidia-rtx-ray-tracing/, August
10, 2020.

[6] White, S. and Satran, M. Root signature limits. Windows Developer,
https://docs.microsoft.com/en-us/windows/win32/direct3d12/root-signature-limits,
May 31, 2018.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if you modified the licensed material. You do not have permission under this license to share
adapted material derived from this chapter or parts of it.
The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

624

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://developer.nvidia.com/blog/best-practices-using-nvidia-rtx-ray-tracing/
https://docs.microsoft.com/en-us/windows/win32/direct3d12/root-signature-limits
http://creativecommons.org/licenses/by-nc-nd/4.0/

	CHAPTER 38 CPU PERFORMANCE IN DXR
	ABSTRACT
	38.1 INTRODUCTION
	38.2 THE RAY TRACING PIPELINE STATE OBJECT
	38.2.1 INCREMENTAL STATE OBJECT MODIFICATIONS
	38.2.2 STATE OBJECT COLLECTIONS

	38.3 THE SHADER TABLE
	38.3.1 BUILDING THE LOCAL ROOT SIGNATURE ON THE GPU
	38.3.2 GLOBAL ROOT SIGNATURE
	38.3.3 GRS VERSUS LRS A GRS
	38.3.4 SHARING RESOURCES WITH THE RASTERIZER
	38.3.5 BINDLESS RESOURCE ARRAYS

	38.4 THE ACCELERATION STRUCTURE
	38.4.1 OVERVIEW
	38.4.2 SHARING RESOURCES WITH THE RASTERIZER
	38.4.3 DEFORMABLE, ANIMATED, AND STATIC AS BUILDS
	38.4.4 IMPROVING LOD PERFORMANCE

	38.5 CONCLUSION
	REFERENCES

