
CHAPTER 26

RAY TRACED LEVEL OF DETAIL
CROSS-FADES MADE EASY
Holger Gruen
Intel Corporation

ABSTRACT

Ray tracing techniques in today’s game engines need to coexist with
rasterization techniques in hybrid rendering pipelines. In the same throw,
level of detail (LOD) techniques that are used to bring down the cost of
rasterization need to be matched by ray traced effects to prevent rendering
artifacts. This chapter revisits solutions to some problems that can arise from
combining ray tracing and rasterization but also touches on methods for more
generalized ray traced LOD transitions.

26.1 INTRODUCTION

The DirectX Raytracing (DXR) API [7] has incited a new wave of high-quality
effects that replace rasterization-based effects. As of the writing of this text,
fully ray traced AAA games are the exception. Even high-end GPUs struggle
with ray tracing the massive amounts of dynamic geometry that some AAA
games require. As a result, hybrid rendering pipelines that mix and match ray
tracing and rasterization are commonplace.

Games engines employ a variety of techniques (see [6]) to reduce the
geometric complexity of scene elements to bring down rendering cost. In
order to avoid the complexity and limitations of continuous geometry
decimation through vertex animation and the resulting edge collapse (also
known as geomorphing, see [3]), many game engines instead cross-fade or
cross-dither between two discrete geometry LODs (see, e.g., [2]), e.g.,
between LOD0 and LOD1. Here, LOD0 denotes a geometry that is comprised
of fewer vertices and triangles than LOD1.

Typically, a transition factor f in the interval [0.0, 1.0] is used to control
cross-faded LOD transitions (see, e.g., the ray traced transition example in
Figure 26-1). During rasterized transitions, game engines need to draw both
LOD0 and LOD1. When drawing LOD0, the pixel shader then uses a uniform

417A. Marrs, P. Shirley, I. Wald (eds.), Ray Tracing Gems II, https://doi.org/10.1007/978-1-4842-7185-8_26
© NVIDIA 2021

https://doi.org/10.1007/978-1-4842-7185-8_26

RAY TRACING GEMS II

Figure 26-1. Three stages of a ray traced LOD cross-fade. The highest LOD is shown on the left, a
half-way transition is shown in the middle, and the lowest LOD is shown on the right.

pseudo-random number r (from the interval [0.0, 1.0]) and discards the
current pixel if r < f. The pixel shader that draws LOD1 uses the same
pseudo-random number r and discards the current pixel if r > f.

This implies either that r is computed using the 2D position of a pixel as a
seed or that a screen-space aligned texture containing random numbers is
used. Low-discrepancy pseudo-random number sequences (see, e.g., [1]) or
precomputed textures that store such sequences help to make the transition
less noticeable.

Cross-faded LOD transitions are also a good choice for ray tracing
applications as they prevent bounding volume hierarchy (BVH) refitting or
rebuild operations for geomorphing geometries. Instead, bottom-level
acceleration structures (BLASs) for discrete LODs can be instanced in the
top-level acceleration (TLAS) structure as needed. So, similar to the fact that
rasterization needs to render two LODs during transitions, it is necessary to
put the geometry of two or more LODs in the BVH in order to enable ray
traced transitions (see also [5]).

418

CHAPTER 26. RAY TRACED LEVEL OF DETAIL CROSS-FADES MADE EASY

At this point in time, DXR doesn’t provide obvious direct API support for letting
potential traversal hardware handle high-quality LOD transitions, though.

The DirectX specification (see [7]) mentions traversal shaders (see [4]) as a
potential future feature, but it is unclear if and when they will become a
reality. In a hybrid ray traced technique, where the ray origin is usually
derived from the world-space position of a given pixel, a traversal shader
would allow LOD-based cross-fading using the same logic that the pixel
shaders described previously use. Instead of discarding pixels, the ray would
just be forwarded into the BLAS of the selected LOD according to the per pixel
uniform random number r.

NVIDIA’s developer blog (see [5]) describes a technique that uses the
per-instance mask of a BLAS instance along with an appropriate ray mask to
implement LOD cross-dithering that is accelerated by the traversal hardware.
In this technique, the transition factor f is mapped to two different instance
masks, e.g.,mask0 for LOD0 andmask1 for LOD1. If, e.g., f = 1.0, all bits in the
instance mask for LOD1 are set to 1 and no bits are set in the instance mask
for LOD0. A transition factor of f = 0.6 means thatmask1 has the first
uint(0.6 ∗ 8) bits of the instance mask for LOD1 set to 1. The instancemask0 for
LOD0 is then set to ∼ mask1&0xFF. This approach ensures that a per-pixel
ray mask can be computed by randomly setting only one of its eight bits.

As Lloyd et al. [5] describe, their use of the 8-bit masks limits the number of
levels for stochastic LOD transitions. Also, employing a transition technique
that utilizes instance masks blocks these instance masks from being used for
other purposes. If the limited number of LOD transitions turns out to be a
quality issue for your application or if the mask bits are needed otherwise, it is
possible to move the transition logic to the any-hit shader stage. The any-hit
shader can evaluate stochastic transition without the limits described in [5]. It
can store r in the ray payload. The any-hit shader can then ignore hits if r < f
and a triangle in the BLAS for LOD0 is hit. In the same manner, it can ignore
hits for the BLAS for LOD1 if r > f.

However, using the any-hit shader stage for LOD cross-fades has a much
higher performance impact than using the technique from [5] as it delays the
decision to ignore a hit to a programmable shader stage that needs to run on
a per-hit/triangle basis. Shader calls interrupt hardware traversal and can
have a significant performance impact. Please note that a potential traversal
shader implementation would also need to interrupt hardware traversal,

419

RAY TRACING GEMS II

though not at the frequency of triangle hits but at the much lower frequency of
hitting traversal bounding boxes.

In general, in situations where more than two LODs of an object are part of
the BVH and the programmer wants to pick and chose between a number of
LODs (e.g., purely based on the distance from the ray origin), any-hit or
traversal shaders are the only tools of choice, as instance masks don’t allow
for this degree of flexibility.

26.2 PROBLEM STATEMENT

As outlined in the prevoius section and adding more details to the description
in [5], in hybrid rendering pipelines ray traced techniques need to be able to
manage the fact that rasterized G-buffers may represent different LODs of the
same cross-faded object in neighboring pixels.

Adding, e.g., hard ray traced shadows to an engine that uses rasterization to
lay down a G-buffer can be done like this:

1. Reconstruct the world-space position WSPos for the current pixel from
the value in the depth buffer.

2. Compute the starting point of the shadow ray by offsetting WSPos along
the unit-length per-pixel normal N that has been scaled by a factor s:
ray.Origin = WSPos + s ∗ N.

3. Trace the ray from the origin toward the light source.

The normal scaling factor s is chosen in a way that prevents self-shadowing
(Lloyd et al. [5] call these self-shadowing artifacts spurious shadows if they
result from mismatching LODs) but also prevents the localized loss of
shadows from small local details. Assuming that the current G-buffer pixels
contain some LOD cross-faded object, as depicted in Figure 26-2, then
neighboring pixels may well belong to different LODs.

It is possible, depending on how the simplified LODs are built, that the
geometry of LOD1 locally is farther out when compared to the geometry of
LOD0 or vice versa, as shown in Figure 26-3.

As game engines currently place either the geometry of LOD0 or the
geometry of LOD1 in the BVH, this can create problems. Assume that LOD1 is
outside of the geometry of LOD0 and that only the geometry of LOD1 has been
placed in the BVH. Under this scenario, a shadow ray that emanates from the

420

CHAPTER 26. RAY TRACED LEVEL OF DETAIL CROSS-FADES MADE EASY

LOD1 LOD0 LOD0

LOD1 LOD0 LOD1

LOD0 LOD1 LOD0

Figure 26-2. A 3× 3 portion of a G-buffer that contains pixels that have been rasterized from
geometry of LOD0 and LOD1.

LOD
0

LOD
0

LOD
0

LOD
0

LOD
0

LOD
1

LOD
1

LOD
1

LOD
1

Figure 26-3. A 3× 3 portion of a G-buffer with pixels of LOD0 and LOD1 and a depiction of the
underlying geometry of LOD0 in yellow and LOD1 in red.

central G-buffer pixel (see Figure 26-2) and that belongs to LOD0 may well hit
the geometry LOD1. The result is that this pixel is falsely assumed to be in
shadow, as shown in Figure 26-4. Please note that which LOD is outside may
well change across a model, so it isn’t possible to pick the most suitable LOD
from an engine point of view to prevent this.

It is, of course, possible to work around this by increasing the normal scaling
factor s to a point that prevents this problem for all scene elements. But, as
described previously, this may well lead to the loss of local details, in ambient
occlusions or shadows. Also, increasing s raises the probability of moving the
ray origin into some close-by geometry. Similar problems exist with almost all
other ray traced techniques that need to work from a LOD-dithered G-buffer.

26.3 SOLUTION

The following steps help to work around the problems described above by
making sure that rasterization and ray tracing use the same random number
to implement LOD cross-fading based on an individual per-object transition
factor f:

421

RAY TRACING GEMS II

LOD
0

LOD
0

LOD
0

LOD
0

LOD
0

LOD
1

LOD
1

LOD
1

LOD
1

Figure 26-4. Choosing the wrong LOD (e.g., LOD1) can lead to self-shadowing artifacts.

1. During rasterization, pick a uniform pseudo-random number r from the
interval [0.0, 1.0] that purely depends on the 2D position of the current
pixel, or that depends on a combination of the 2D position and the
instance ID or object ID of the current object.

> If you intend to use any-hit or traversal shader–based ray traced
transitions, then do the following:

– When drawing LOD0, the pixel shader discards the current pixel
if r < f.

– The pixel shader that draws LOD1 discards the current pixel if
r > f.

> If you intend to use instance mask–based transitions (see [5]), then
do the following:

– Compute a binarymask1 that has the first uint(f ∗ 8) bits set to
one to be used by the pixel shader for LOD1:
mask1 = (1 << uint((8 + 1) ∗ f)) – 1.

– Computemask0 to be used by the pixel shader for LOD0:
mask0 = (∼ mask1)&0xFF.

– Multiply r by 7 to arrive at the bit index to compute rmask to be
used by the pixel shader for LOD1: rmask = 1 << uint(r ∗ 7).

– When drawing LOD0, the pixel shader discards the current pixel
if (rmask&mask1) == 0.

– The pixel shader that draws LOD1 discards the current pixel if
(rmask&mask0) == 0.

Please note that an instance mask–based transition may limit the
quality of a rasterized cross-fade in the same way as it may limit ray

422

CHAPTER 26. RAY TRACED LEVEL OF DETAIL CROSS-FADES MADE EASY

traced LOD transitions. If quality is a concern for you, you may need
to resort to any-hit shader–based transitions as outlined in
Section 26.1.

2. Put BLAS instances for LOD0 and LOD1 of all objects into the TLAS that
are currently undergoing a LOD transition.

3. Use the same uniform random number r that was used during rasterized
cross-fading in your ray traced cross-fading setup for the current pixel.

> For an any-hit (or a future traversal) shader–based transition, put r
into the ray payload and ignore hits if r < f and a triangle in the BLAS
for LOD0 is hit. In the same vein, ignore hits for the BLAS for LOD1 if
r > f. Local root signature constants in the shader binding table for
the hit entries for LOD0 and LOD1 can be used to detect if a triangle
from LOD0 or LOD1 has been hit.

> For the case of instance mask–based transitions, as described in [5],
do the following:

– Compute a binarymask1 that has the first uint(f ∗ 8) bits set to
one to be used by the pixel shader for LOD1:
mask1 = (1 << uint((8 + 1) ∗ f)) – 1.

– Computemask0 to be used as the instance for LOD0:
mask0 = (∼ mask1)&0xFF.

– When tracing a ray, use uint(f ∗ 7) to set one random bit in the ray
mask rmask: rmask = 1 << uint(r ∗ 7).

Using the approach outlined here, the rays cast from the reconstructed
world-space positions of a pixel always only return hits with the same
LOD that was used when rendering the pixel.

26.4 FUTURE WORK

Animating a LOD cross-fade shows that there is a clear difference in the
fluidity of the transition between a mask–based fade and a comparison
value–based fade using an any-hit shader. It would be beneficial to extend
future ray traversal hardware to include a per-BLAS instance comparison
value and a flag indicating either a less than or a greater than comparison
value, which then gets stored in the BVH. The TraceRay intrinsic could be
extended to add an additional 8-bit comparison value parameter as well.

The traversal hardware could then, on top of the binary AND operation on the
mask, perform the comparison operator on the values of the instance and the

423

RAY TRACING GEMS II

Figure 26-5. Three stages of a ray traced LOD cross-fade at f = 0.904 (left), f = 075 (middle), and
f = 0.647 (right). Top: images produced using a mask-based transition. Bottom: Using an
emulated comparison value–based transition.

value of the ray. Ray traversal into an instance could only continue if the
comparison operations returns true.

This new functionality would enable hardware-assisted LOD cross-fades that
are comparable in quality to what any-hit shader–based cross-fades produce
today.

Figure 26-5 shows three images from a LOD transition using a mask-based
and an emulation of a comparison value–based transition. While the full
difference in quality and fluidity can only be shown in a video, please note that
the comparison-based method produces transitions with many more
intermediate steps than the mask-based transition.

26.5 CONCLUSION

This chapter expands on existing solutions that make sure that there are no
mismatches between rasterized LOD and ray traced LOD. The method

424

CHAPTER 26. RAY TRACED LEVEL OF DETAIL CROSS-FADES MADE EASY

described can make use of fully accelerated hardware traversal, if the quality
of instance mask–based transitions is good enough to meet your quality
requirements. If this is not the case, you will need to pick the slower path that
involves calls to any-hit shaders for objects that are currently undergoing a
LOD transition. Future traversal hardware that features comparison
value–based conditional traversal can deliver high-quality and fluid LOD
transitions at full speed without the use of any-hit shaders.

REFERENCES

[1] Ahmed, A. G. M., Perrier, H., Coeurjolly, D., Ostromoukhov, V., Guo, J., Yan, D.-M.,
Huang, H., and Deussen, O. Low-discrepancy blue noise sampling. ACM Trans. Graph.,
35(6), Nov. 2016. ISSN: 0730-0301. DOI: 10.1145/2980179.2980218.
https://doi.org/10.1145/2980179.2980218.

[2] Arlebrink, L. and Linde, F. A study on discrete level of detail in the Unity game engine.
https://draketuroth.files.wordpress.com/2018/06/a-study-on-discrete-level-of-detail-
in-the-unity-game-engine.pdf, 2018.

[3] Hoppe, H. Progressive meshes. In Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, pages 99–108, 1996. DOI: 10.1145/237170.237216.

[4] Lee, W.-J., Liktor, G., and Vaidyanathan, K. Flexible ray traversal with an extended
programming model. In SIGGRAPH Asia 2019 Technical Briefs, pages 17–20, 2019. DOI:
10.1145/3355088.3365149.

[5] Lloyd, B., Klehm, O., and Stich, M. Implementing stochastic levels of detail with Microsoft
DirectX Raytracing.
https://developer.nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr,
June 15, 2020.

[6] Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., and Huebner, R. Level of Detail
for 3D Graphics. Morgan Kaufmann, 1st edition, 2012.

[7] Microsoft. DirectX Raytracing (DXR) functional spec.
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html, 2021.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if you modified the licensed material. You do not have permission under this license to share
adapted material derived from this chapter or parts of it.
The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

425

https://doi.org/10.1145/2980179.2980218
https://doi.org/10.1145/2980179.2980218
https://draketuroth.files.wordpress.com/2018/06/a-study-on-discrete-level-of-detail-in-the-unity-game-engine.pdf
https://draketuroth.files.wordpress.com/2018/06/a-study-on-discrete-level-of-detail-in-the-unity-game-engine.pdf
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/3355088.3365149
https://developer.nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
http://creativecommons.org/licenses/by-nc-nd/4.0/

	CHAPTER 26 RAY TRACED LEVEL OF DETAIL CROSS-FADES MADE EASY
	ABSTRACT
	26.1 INTRODUCTION
	26.2 PROBLEM STATEMENT
	26.3 SOLUTION
	26.4 FUTURE WORK
	26.5 CONCLUSION
	REFERENCES

