
67
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_4

CHAPTER 4

Schema Modelling
In databases, the schema defines the internal structure or organization of the data. In

relational databases like MySQL or Postgres, the schema is implemented as tables and

columns.

MongoDB is often described as a schema-free database, but this is somewhat

misleading. By default, MongoDB does not enforce any particular document structure,

but all MongoDB applications will implement some sort of document model. It’s

therefore more accurate to describe MongoDB as supporting flexible schemas.

In MongoDB, a schema is implemented by the collections – which generally

represent sets of similar documents – and the structure of the documents within those

collections.

The performance limits of a MongoDB application are largely determined by

the document model that the application implements. The amount of work that an

application needs to do to retrieve or process information is primarily dependent on

how that information is distributed across multiple documents. In addition, the size

of documents will determine how many documents MongoDB can cache in memory.

These and many other trade-offs will determine how much physical work the database

will have to do to satisfy a database request.

Although MongoDB does not have the equivalent of the expensive and time-

consuming SQL ALTER TABLE statement, it remains very difficult to make fundamental

changes to a document model once it has been established and deployed in production.

Choosing the correct data model is, therefore, a critical early task in the design of your

application.

You could fill up a book on the topic of data modelling, and indeed some have. In

this chapter, we’ll try to cover the core tenants of data modelling from a performance

perspective.

https://doi.org/10.1007/978-1-4842-6879-7_4#DOI

68

�The Guiding Principles
Ironically, schema modelling with MongoDB flexible schemas can actually be harder

than in the fixed schemas of the relational database.

In relational database modelling, you model the data logically, eliminating

redundancy until you achieve the third normal form. Simplistically, third normal form

is achieved when every element in a row is dependent on the key, the whole key and

nothing but the key.1 You then introduce redundancy through denormalization to

support performance objectives. The resulting data model usually remains roughly in

third normal form but with some slight modifications to support critical queries.

You could model MongoDB documents into third normal form, but it would almost

always be the wrong solution. MongoDB is designed around the idea that you should

include almost all relevant information within a single document – not spread it across

multiple entities as you would in the relational model. Therefore, instead of creating a

model based on the structure of the data, you create a model based on the structure of

your queries and updates.

Here are the key objectives of MongoDB data modelling:

•	 Avoid joins: MongoDB supports a simple join capability using the

aggregation framework (see Chapter 7). However, in contrast to a

relational database, joins are expected to be an exception, not the

rule. Aggregation-based joins are unwieldy, and it’s more typical for

data to be joined within the application code. In general, we try to

ensure that our critical queries can find all the data they need within

a single collection.

•	 Manage redundancy: By encapsulating relevant data into a single

document, we create a problem of redundancy – we may have more

than one place in the database where a certain data element can be

found. For instance, consider a products collection and an orders

collection. The orders collection will probably include product

names within the order details. If we need to change a product name,

we’ll have to change it in multiple places. This will make that update

operation potentially very time-consuming.

1�In honor of the creator of the relational model Edgar Codd, we would often say “the key, the
whole key and nothing but the key, so help me Codd!”

Chapter 4 Schema Modelling

https://doi.org/10.1007/978-1-4842-6879-7_7

69

•	 Beware of the 16MB limit: MongoDB has a 16MB limit on the size of

an individual document. We need to make sure that we never try to

embed so much information that we risk exceeding that limit.

•	 Maintain consistency: MongoDB does support transactions

(see Chapter 9), but they require special programming and have

significant constraints. If we want to atomically update sets of

information, it can be advantageous to include those data elements

in a single document.

•	 Monitor memory: We want to ensure that most operations on

MongoDB documents occur in memory. However, if we make our

documents very large by embedding lots of information, then we

reduce the number of documents that can fit in memory and might

increase IO. Therefore, we want to keep documents small when we

can.

�Linking vs. Embedding
There are a wide variety of MongoDB schema design patterns, but they all involve

variations of these two approaches:

•	 Embedding everything in a single document.

•	 Linking collections using pointers to data in other collections. This is

roughly equivalent to using a relational database’s third normal form

model.

�A Case Study
There’s much room for compromise between the linking and embedding approaches

and a lot of non-performance-related reasons for choosing one over the other (atomic

updates and the 16M document limit, for instance). Nevertheless, let’s look at how

the two extremes compare from a performance point of view – at least for a specific

workload.

Chapter 4 Schema Modelling

https://doi.org/10.1007/978-1-4842-6879-7_9

70

For this case study, we will model the classic “Orders” schema. An Orders schema

includes orders, details about the customer that created the order, and the products that

comprise the order. In a relational database, we’d diagram this schema as in Figure 4-1.

If we were to model this schema using only the linking paradigm, we would create a

collection for each of the four logical entities. They might look something like this:

mongo>db.customers.findOne();

{

 "_id" : 3,

 "first_name" : "Danyette",

 "last_name" : "Flahy",

 "email" : "dflahy2@networksolutions.com",

 "Street" : "70845 Sullivan Center",

 "City" : "Torrance",

 "DOB" : ISODate("1967-09-28T04:42:22Z")

}

mongo>db.orders.findOne();

Figure 4-1.  Orders-products schema in relational form

Chapter 4 Schema Modelling

71

{

 "_id" : 1,

 "orderDate" : ISODate("2017-03-09T16:30:16.415Z"),

 "orderStatus" : 0,

 "customerId" : 3

}

mongo>db.lineitems.findOne();

{

 "_id" : ObjectId("5a7935f97e9e82f6c6e77c2b"),

 "orderId" : 1,

 "prodId" : 158,

 "itemCount" : 48

}

mongo>db.products.findOne();

{

 "_id" : 1,

 "productName" : "Cup - 8oz Coffee Perforated",

 "price" : 56.92,

 "priceDate" : ISODate("2017-07-03T06:42:37Z"),

 "color" : "Turquoise",

 "Image" : "http://dummyimage.com/122x225.jpg/cc0000/ffffff"

}

In an embedded design, we would place absolutely all information relating to an

order into a single document, as follows:

{

 "_id": 1,

 "first_name": "Rolando",

 "last_name": "Riggert",

 "email": "rriggert0@geocities.com",

 "gender": "Male",

 "Street": "6959 Melvin Way",

 "City": "Boston",

 "State": "MA",

 "ZIP": "02119",

Chapter 4 Schema Modelling

72

 "SSN": "134-53-2882",

 "Phone": "978-952-5321",

 "Company": "Wikibox",

 "DOB": ISODate("1998-04-15T01:03:48Z"),

 "orders": [

 {

 "orderId": 492,

 "orderDate": ISODate("2017-08-20T11:51:04.934Z"),

 "orderStatus": 6,

 "lineItems": [

 {

 "prodId": 115,

 "productName": "Juice - Orange",

 "price": 4.93,

 "itemCount": 172,

 "test": true

 },

Each customer has their own document, and inside that document, there are an

array of orders. Inside each order is an array of the products included in the order (line

items) and all the information about a product contained within that line item.

In our example schema, there are 1000 customers, 1000 products, 51,116 orders, and

891,551 line items. The following indexes are defined:

OrderExample.embeddedOrders {"_id":1}

OrderExample.embeddedOrders {"email":1}

OrderExample.embeddedOrders {"orders.orderStatus":1}

OrderExample.customers {"_id":1}

OrderExample.customers {"email":1}

OrderExample.orders {"_id":1}

OrderExample.orders {"customerId":1}

OrderExample.orders {"orderStatus":1}

OrderExample.lineitems {"_id":1}

OrderExample.lineitems {"orderId":1}

OrderExample.lineitems {"prodId":1}

Chapter 4 Schema Modelling

73

Let’s take a look at some typical operations that we might execute against these

schemas and compare the performance for the two extremes.

�Getting All the Data for a Customer
It’s a straightforward task to get all the data for a customer when all the information is

embedded in a single document. We can get all the data from the embedded version

with a query like this:

db.embeddedOrders.find({ email: 'bbroomedr@amazon.de' })

With an index on email, this query completes in less than a millisecond.

Life is much harder with the four-collection version. We need to use an aggregation

or custom code to achieve the same result, and we need to be sure we have indexes on

the $lookup join conditions (see Chapter 7). Here’s the aggregation:

db.customers.aggregate(

 [

 {

 $match: { email: 'bbroomedr@amazon.de' }

 },

 {

 $lookup: {

 from: 'orders',

 localField: '_id',

 foreignField: 'customerId',

 as: 'orders'

 }

 },

 {

 $lookup: {

 from: 'lineitems',

 localField: 'orders._id',

 foreignField: 'orderId',

 as: 'lineitems'

 }

 },

Chapter 4 Schema Modelling

https://doi.org/10.1007/978-1-4842-6879-7_7

74

 {

 $lookup: {

 from: 'products',

 localField: 'lineitems.prodId',

 foreignField: '_id',

 as: 'products'

 }

 }

]

)

Not surprisingly, the aggregation/join takes way longer than the embedded solution.

Figure 4-2 illustrates the relative performance – the embedded model was able to deliver

more than ten times more reads per second.

�Fetching All Open Orders
In a typical order processing scenario, we want to retrieve all the orders that are in an

incomplete state. In our example, these orders are identified by orderStatus=0.

Figure 4-2.  Time taken to perform 500 customer lookups, including all order details

Chapter 4 Schema Modelling

75

In the embedded case, we can get customers with open Orders like this:

db.embeddedOrders.find({"orders.orderStatus":0})

That does give us all customers with at least one open order, but if we only want to

retrieve orders that are open, we are going to need to use the aggregation framework:

db.embeddedOrders.aggregate([

 { $match:{ "orders.orderStatus": 0 }},

 { $unwind: "$orders" },

 { $match:{ "orders.orderStatus": 0 }},

 { $count: "count" }

]);

You might wonder why we have duplicate $match statements in our aggregation.

The first $match gets us customers with open orders, while the second $match gets us

the orders themselves. We don’t need the first to get the right results, but it does improve

performance (see Chapter 7).

It’s far easier to get these orders in the linked data model:

db.orders.find({orderStatus:0}).count()

Not surprisingly, the simpler linked query gets the better performance. Figure 4-3

compares the performance of the two solutions.

Figure 4-3.  Time taken to get a count of open orders

Chapter 4 Schema Modelling

https://doi.org/10.1007/978-1-4842-6879-7_7

76

�Top Products
Most companies want to identify bestselling products. For the embedded model, we
need to unwind the line items and aggregate by product name:

db.embeddedOrders.aggregate([
 { $unwind: "$orders" },
 { $unwind: "$orders.lineItems" },
 { $project: { "lineitems": "$orders.lineItems" }},
 { $group:{ _id:{ "prodId":"$lineitems.prodId" ,
 " productName":"$lineitems.productName" },
 " itemCount-sum":{$sum:"$lineitems.itemCount"}} },
 { $sort:{ "lineitems_itemCount-sum":-1 }},
 { $limit: 10 },
]);

In the linked model, we also need to use aggregate, with $lookup joins between line
items and products to get the product names:

db.lineitems.aggregate([
 { $group:{ _id:{ "prodId":"$prodId" },
 "itemCount-sum":{$sum:"$itemCount"} }
 },
 { $sort:{ "itemCount-sum":-1 }},
 { $limit: 10 },
 { $lookup:
 { from: "products",
 localField: "_id.prodId",
 foreignField: "_id",
 as: "product"
 }
 },
 { $project: {
 "ProductName": "$product.productName" ,
 "itemCount-sum": 1 ,
 "_id": 1
 }
 },

]);

Chapter 4 Schema Modelling

77

Despite having to perform a join, the linked data model performs best. We only have

to join after we get the top ten products, while in the embedded design we have to scan

all of the data in the collection. Figure 4-4 compares the two approaches. The embedded

data model took about twice as long as the linked data model.

�Inserting New Orders
In this example workload, we looked at inserting a new order for an existing customer.
In the embedded case, this is simply done by using a $push operation into the customer
document:

db.embeddedOrders.updateOne(
 { _id: o.order.customerId },
 { $push: { orders: orderData } }
);

In the linked data model, we have to insert into the line items collection and the
orders collection:

var rc1 = db.orders.insertOne(orderData);
var rc2 = db.lineItems.insertMany(lineItemsArray);

You might think that the single update would easily outperform the multiple
inserts required by the linked model. But actually, the update is a quite expensive
operation – especially if there’s not enough spare space in the collection to fit the new
data. The linked inserts – though more numerous – are simpler operations because
they don’t require finding the matching document to update. Consequently, the linked
model outperformed the embedded model for this example. Figure 4-5 compares the

performance for 500 order inserts.

Figure 4-4.  Time taken to retrieve the top ten products

Chapter 4 Schema Modelling

78

�Updating Products
What if we want to update the name of a product? In the embedded case, the product

names are embedded into the line items themselves. We update the names of all the

products in a single operation in MongoDB using the arrayFilters operator. Here, we

update the name of product 193:

db.embeddedOrders.update(

 { 'orders.lineItems.prodId':193 },

 { $set: { 'orders.$[].lineItems.$[i].productName':

 'Potatoes - now with extra sugar' } },

 { arrayFilters: [{ 'i.prodId': { $eq: 193 } }], multi: true });

Of course, in the linked model, we can use a very simple update to the products

collection:

db.products.update(

 { _id: 193 },

 { $set: { productName: 'Potatoes - now with extra sugar' } }

);

The embedded model requires us to touch many more documents than in the linked

model. Consequently, ten product code price updates took hundreds of times longer in

the embedded data model. Figure 4-6 illustrates the performance.

Figure 4-5.  Time to insert 500 orders

Chapter 4 Schema Modelling

79

�Deleting a Customer
If we want to delete all data for a single customer in the four-collection model, we need

to iterate through line items, orders, and customers collections. The code would look

something like this:

db.orders.find({customerId:customerId},{_id:1}).forEach((order)=>{

 db.lineitems.deleteMany({orderId:order._id});

});

db.orders.deleteMany({customerId:1});

db.customers.deleteOne({_id:1});

Of course, in the embedded case, things are a lot easier:

db.embeddedOrders.deleteOne({_id:1});

The linked example performs very poorly – Figure 4-7 compares the performance for

deleting 50 customers.

Figure 4-6.  Time to update ten product names

Figure 4-7.  Time to delete 50 customers

Chapter 4 Schema Modelling

80

�Case Study Summary
We’ve looked at quite a few scenarios, and we wouldn’t blame you if your head was

spinning slightly. So let’s aggregate all our performance data into one chart. Figure 4-8

combines the results from our six examples.

Figure 4-8.  Performance of linked vs. embedded models

Chapter 4 Schema Modelling

81

As you can see while the embedded model is pretty good at fetching all the data for

a single customer or for deleting a customer, it’s not superior to the linked alternative in

other situations.

Tip T he answer to the question “What is the best data model for my application”
is – and always has been – “it depends.”

The embedded model provides many advantages when reading all of the related

data for an entity, but it is generally not the fastest model for updates and for aggregate

queries. Which model works best for you will depend on which aspects of your

application’s performance are most critical. But remember, it’s hard to change the data

model once your application is deployed, so any time you spend getting your data model

right early in the application design process will probably pay off.

Also, remember that very few applications use an “all or nothing” approach. The

best outcomes are usually achieved when we mix linking and embedding approaches to

maximize the critical operations for the application.

�Advanced Patterns
In the previous section, we looked at the two extremes of MongoDB data modelling:

embedding everything vs. linking everything. In real life, you are likely to undertake a

combination of both techniques to get the best balance between the trade-offs involved

in each approach. Let’s look at some of the modelling patterns that combine both

approaches.

�Subsetting
As we saw in the previous section, the embedded model has significant performance

advantages when retrieving all data for an entity. However, there are two big risks that we

need to be aware of:

•	 In a typical master-detail model – customers and their orders, for

instance – the number of detail documents has no specific limit. But

in MongoDB, a document must be no more than 16MB in size. So

the embedded model can break if there are a large number of detail

documents. For instance, our biggest customers might order so many

products that we can’t fit all the orders in a single 16MB document.

Chapter 4 Schema Modelling

82

•	 Even if we are sure that the 16MB won’t be exceeded, the effect on

MongoDB memory might be undesirable. The number of documents

that can fit into memory decreases as the average document size

increases. Lots of large documents – potentially full of “old” data –

might degrade the cache and reduce performance. We’ll talk more

about this in Chapter 11.

•	 One of the most common solutions to this conflict is a hybrid

strategy, sometimes called subsetting.

•	 In the subsetting pattern, we embed a limited number of detail

documents in the master document and store the remaining details

in another collection. For instance, we might keep just the most

recent 20 orders for each customer in the customers collection and

the rest in an orders collection.

•	 Figure 4-9 illustrates the concept. Each customer has the most recent

20 orders embedded, with all orders available within the orders

collection.

Chapter 4 Schema Modelling

https://doi.org/10.1007/978-1-4842-6879-7_11

83

If we imagine that our application displays the most recent orders for each customer

on a customer lookup page, then we can see the benefits of this model. Not only have

we avoided hitting the 16M document size limit, but we can now populate this customer

lookup page from a single document.

However, the solution does come at a cost. In particular, we now have to shuffle

orders in the embedded orders array every time we add or modify an order. Each update

would need to perform additional manipulation of the embedded orders. The following

code implements the shuffle of customers data in the hybrid design:

Figure 4-9.  A hybrid “bucket” data model

Chapter 4 Schema Modelling

84

 let orders=db.hybridCustomers.

 findOne({'_id':customerId}).orders;

 orders.unshift(newOrder); // add new order

 if (orders.length>20)

 orders.pop(); // Remove the order

 db.hybridCustomers.update({'_id':customerId},

 {$set:{orders:orders}});

The resulting overhead can be significant. Figure 4-10 shows the impact of the hybrid

model when fetching customers and most recent orders and when updating customers

with new orders. Read performance was significantly improved, but the update rate was

almost halved.

�Vertical Partitioning
It generally makes sense to put everything relating to an entity in a single document. As

we’ve seen previously, we can embed the multiple details relating to an entity in a JSON

array, avoiding what would have required a join operation in a SQL database.

Figure 4-10.  The hybrid model can improve read performance, but slow down
updates

Chapter 4 Schema Modelling

85

However, sometimes we can get benefits from splitting the details for an entity across

multiple collections so that we can reduce the amount of data fetched in each operation.

This approach is similar to the hybrid data model in that it reduces the size of the core

document, but it is applied to top-level attributes, not just to arrays of details.

For instance, imagine that in each customer record we include a high-resolution

photograph of the customer. These infrequently accessed images increase the overall

size of the collection, degrading the time taken to perform collection scans (see Chapter 6).

They also reduce the number of documents that can be held in memory which might

increase the amount of IO required (see Chapter 11).

In this scenario, we can get a performance advantage if we store the binary photos in

a separate collection. Figure 4-11 illustrates the arrangement.

Figure 4-11.  Vertical partitioning

Chapter 4 Schema Modelling

https://doi.org/10.1007/978-1-4842-6879-7_6
https://doi.org/10.1007/978-1-4842-6879-7_11

86

�The Attribute Pattern
If we have documents that include a large number of attributes of the same data

type, and we know that we are going to be performing lookups using a many of these

attributes, then we can reduce the number of indexes we need by using the attribute

pattern.

Consider the following weather data:

{

 "timeStamp" : ISODate("2020-05-30T07:21:08.804Z"),

 "Akron" : 35,

 "Albany" : 22,

 "Albuquerque" : 22,

 "Allentown" : 31,

 "Alpharetta" : 24,

 <data for another 300 cities>

}

If we know that we will be supporting queries that search for specific values for a

city (find all measurements over 100 degrees in Akron, for instance), then we have a

problem. We can’t possibly create enough indexes to support all the queries. A better

organization would be to define name:value pair for each city.

Here’s how the preceding data would look like in the attribute pattern:

{

 "timeStamp" : ISODate("2020-05-30T07:21:08.804Z"),

 "measurements" : [

 {

 "city" : "Akron",

 "temperature" : 35

 },

 {

 "city" : "Albany",

 "temperature" : 22

 },

 {

 "city" : "Albuquerque",

Chapter 4 Schema Modelling

87

 "temperature" : 22

 },

 {

 "city" : "Allentown",

 "temperature" : 31

 },

 <data for another 300 cities>

}

We now have the option to define a single index on measurements.city, rather than

attempting the impossible task of creating hundreds of indexes which would have been

needed in the first design.

In some cases, you can use wildcard indexes rather than the attribute pattern – see

Chapter 5. Nevertheless, the attribute pattern provides a flexible way to provide fast

access to arbitrary data items.

�Summary
Although MongoDB supports very flexible schema modelling, your data model design

remains absolutely critical to application performance. The data model determines the

amount of logical work that MongoDB needs to perform to satisfy database requests and

can be very difficult to change once deployed to production.

The two “meta-patterns” in MongoDB modelling are embedding and linking.

Embedding involves including all information about a logical entity in a single

document. Linking involves storing related data in separate collections in a manner

reminiscent of relational databases.

Embedding improves read performance by avoiding joins but can create challenges

involving data consistency, update performance, and the 16MB document limit. Most

applications mix embedding and linking judiciously to achieve a “best of both worlds”

solution.

Chapter 4 Schema Modelling

https://doi.org/10.1007/978-1-4842-6879-7_5

	Chapter 4: Schema Modelling
	The Guiding Principles
	Linking vs. Embedding
	A Case Study
	Getting All the Data for a Customer
	Fetching All Open Orders
	Top Products
	Inserting New Orders
	Updating Products
	Deleting a Customer
	Case Study Summary

	Advanced Patterns
	Subsetting
	Vertical Partitioning
	The Attribute Pattern

	Summary

