
13
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_2

CHAPTER 2

MongoDB Architecture
and Concepts
This chapter aims to equip you with an understanding of MongoDB architecture

and internals referenced in subsequent chapters, which are necessary for MongoDB

performance tuning.

A MongoDB tuning professional should be broadly familiar with these main areas of

MongoDB technology:

•	 The MongoDB document model

•	 The way MongoDB applications interact with the MongoDB database

server through the MongoDB API

•	 The MongoDB optimizer, which is the software layer concerned with

maximizing the performance of MongoDB requests

•	 The MongoDB server architecture, which comprises the memory,

processes, and files that interact to provide database services

Readers who feel thoroughly familiar with this material may wish to skim or skip this

chapter. However, we will be assuming in subsequent chapters that you are familiar with

the core concepts presented here.

�The MongoDB Document Model
As you are no doubt aware, MongoDB is a document database. Document databases are

a family of non-relational databases which store data as structured documents – usually

in JavaScript Object Notation (JSON) format.

https://doi.org/10.1007/978-1-4842-6879-7_2#DOI

14

JSON-based document databases like MongoDB have flourished over the past

decade for many reasons. In particular, they address the conflict between object-oriented

programming and the relational database model which had long frustrated software

developers. The flexible document schema model supports agile development and

DevOps paradigms and aligns closely with dominant programming models – especially

those of modern, web-based applications.

�JSON
MongoDB uses a variation of JavaScript Object Notation (JSON) as its data model, as well

as for its communication protocol. JSON documents are constructed from a small set of

elementary constructs – values, objects, and arrays:

•	 Arrays consist of lists of values enclosed by square brackets (“[“and

“]”) and separated by commas (“,”).

•	 Objects consist of one or more name-value pairs in the format

“name”:“value”, enclosed by braces (“{“and :}”) and separated by

commas (“,”).

•	 Values can be Unicode strings, standard format numbers (possibly

including scientific notation), Booleans, arrays, or objects.

The last few words in the preceding definition are critical. Because values may

include objects or arrays, which themselves contain values, a JSON structure can

represent an arbitrarily complex and nested set of information. In particular, arrays

can be used to represent repeating groups of documents which in a relational database

would require a separate table.

�Binary JSON (BSON)
MongoDB stores JSON documents internally in the Binary JSON (BSON) format. BSON

is designed to be a more compact and efficient representation of JSON data and uses

more efficient encoding for numbers and other data types. For instance, BSON includes

field length prefixes that allow scanning operations to “skip over” elements and hence

improve efficiency.

Chapter 2 MongoDB Architecture and Concepts

15

BSON also provides a number of extra data types not supported in JSON. For

example, a numeric value in JSON could be a Double, Int, Long, or Decimal128 in

BSON. Additional types such as ObjectID, Date, and BinaryData are also commonly

used. However, most of the time, the differences between JSON and BSON are

unimportant.

�Collections
MongoDB allows you to organize “similar” documents into collections. Collections are

analogous to tables in a relational database. Usually, you’ll store only documents with a

similar structure or purpose within a specific collection, though by default the structure

of the documents in a collection is not enforced.

Figure 2-1 shows the internal structure of JSON documents and how documents are

organized into collections.

Figure 2-1.  JSON document structure

Chapter 2 MongoDB Architecture and Concepts

16

�MongoDB Schemas
The MongoDB document model allows for objects that would require many tables in a

relational database to be stored within a single document.

Consider the following MongoDB document:

{

 _id: 1,

 name: 'Ron Swanson',

 address: 'Really not your concern',

 dob: ISODate('1971-04-15T01:03:48Z'),

 orders: [

 {

 orderDate: ISODate('2015-02-15T09:05:00Z'),

 items: [

 { productName: 'Meat damper', quantity: 999 },

 { productName: 'Meat sauce', quantity: 9 }

]

 },

 { otherorders }

]

};

As in the preceding example, a document may contain another subdocument,

and that subdocument may itself contain a subdocument and so on. Two limits will

eventually stop this document nesting: a default limit of 100 levels of nesting and a 16MB

size limit for a single document (including all its subdocuments).

In database parlance, a schema defines the structure of data within a database

object. By default, a MongoDB database does not enforce a schema, so you can store

whatever you like in a collection. However, it is possible to create a schema to enforce the

document structure using the validator option of the createCollection method, as in

the following example:

db.createCollection("customers", {

 "validator": {

 "$jsonSchema": {

 "bsonType": "object",

Chapter 2 MongoDB Architecture and Concepts

17

 "additionalProperties": false,

 "properties": {

 "_id": {

 "bsonType": "objectId"

 },

 "name": {

 "bsonType": "string"

 },

 "address": {

 "bsonType": "string"

 },

 "dob": {

 "bsonType": "date"

 },

 "orders": {

 "bsonType": "array",

 "uniqueItems": false,

 "items": {

 "bsonType": "object",

 "properties": {

 "orderDate": { "bsonType": "date"},

 "items": {

 "bsonType": "array",

 "uniqueItems": false,

 "items": {

 "bsonType": "object",

 "properties": {

 "productName": {

 "bsonType": "string"

 },

 "quantity": {

 "bsonType": "int"

 }

 }

 }

Chapter 2 MongoDB Architecture and Concepts

18

 }

 }

 }

 }

 }

 }

 },

 "validationLevel": "strict",

 "validationAction": "warn"

});

The validator is in the JSON schema format – which is an open standard that allows

for JSON documents to be annotated or validated. A JSON schema document will

generate warnings or errors if a MongoDB command results in a document that does not

match the schema definition. JSON schemas can be used to define mandatory attributes,

restrict other attributes, and define the data types or data ranges that a document

attribute can adopt.

�The MongoDB Protocol
The MongoDB protocol defines the communication mechanism between the client

and the server. Although the fine details of the protocol are outside the scope of our

performance tuning efforts, it is important to understand the protocol, since many of the

diagnostic tools will display data in the MongoDB protocol format.

�Wire Protocol
The protocol for MongoDB is also known as the MongoDB wire protocol. This is the

structure of the MongoDB packets which are sent to and received from the MongoDB

server. The wire protocol runs over a TCP/IP connection – by default over port 27017.

The actual packet structure of the wire protocol is beyond our scope, but the essence

of each packet is a JSON document containing a request or a response. For instance, if

we send a command to MongoDB from the shell like this:

db.customers.find({FirstName:'MARY'},{Phone:1}).sort({Phone:1})

Chapter 2 MongoDB Architecture and Concepts

19

then the shell will send a request across the wire protocol that looks something like

this:

{ "find" : "customers",

 "filter" : { "FirstName" : "MARY" },

 "sort" : { "Phone" : 1.0 },

 "projection" : { "Phone" : 1.0},

 "$db" : "mongoTuningBook",

 "$clusterTime" : { "clusterTime" : {

 "$timestamp" : { "t" : 1589596899, "i" : 1 } },

 "signature" : { "hash" : { "$binary" : { "base64" :]

 "4RGjzZI5khOmM9BBWLz6y9xLZ9w=", "subType" : "00" } },

 "keyId" : 6826926447718825986 } },

 "lsid" : { "id" : { "$binary" : { "base64" :

 "JI3lUrOMRQm0Y6Pr3iQ8EQ==", "subType" : "04" } } } }

�MongoDB Drivers
A MongoDB driver translates requests from a programming language into wire protocol

format. Each driver can have subtle syntax differences. For instance, in NodeJS the

preceding MongoDB shell request is subtly different:

 const docs = await db.collection('customers').

 find({'FirstName': 'MARY'},

 {'Phone': 1}).

 sort({Phone: 1}).toArray();

Because NodeJS is a JavaScript platform, the syntax is still similar to the MongoDB

shell. But in other languages, the differences can be more marked. For instance, here is

the same query in the Go language:

 collection := client.Database("MongoDBTuningBook").

 Collection("customers")

 filter := bson.D{{"FirstName", "MARY"}}

 findOptions := options.Find()

 findOptions.SetSort(map[string]int{"Phone": 1})

 findOptions.SetProjection(map[string]int{"Phone": 1})

Chapter 2 MongoDB Architecture and Concepts

20

 cursor, err := collection.Find(ctx, filter, findOptions)
 var results []bson.M

 cursor.All(ctx, &results)

However, regardless of the syntax required by a MongoDB driver, the MongoDB

server always receives packets which are in the standard wire protocol format.

�MongoDB Commands
Logically MongoDB commands break down into the following categories:

•	 Query commands, such as find() and aggregate(), which return

information from the databases

•	 Data manipulation commands, such as insert(), update(), and

delete(), which modify data within the database

•	 Data definition commands, such as createCollection() and

createIndex(), which define the structure of data in the database

•	 Administration commands, such as createUser() and

setParameter(), which control the operations of the database

Database performance management is mainly concerned with the overhead and

throughput of query and data manipulation statements. However, administration and

data definition commands include some of the “tools of the trade” that we use to resolve

performance problems (see Chapter 3).

�The find Command
The find command is the workhorse of MongoDB data access. It has a quick and easy

syntax and has a flexible and powerful filtering capability. The find() command has the

following high-level syntax:

db.collection.find(
 {filter},

 {projection})

 sort({sortCondition}),
 skip(skipCount),

 limit(limitCount)

Chapter 2 MongoDB Architecture and Concepts

https://doi.org/10.1007/978-1-4842-6879-7_3

21

The preceding syntax is shown for the Mongo shell; the syntax for language-specific

drivers can vary slightly.

The key parameters to the find() command are as follows:

•	 Filter is a JSON document that defines the documents to be returned.

•	 Projection defines the attributes from each document which will be

returned.

•	 Sort defines the order in which documents will be returned.

•	 Skip allows some initial documents in the output to be skipped.

•	 Limit restricts the total number of documents to be returned.

In the wire protocol, a find() command returns just the first batch of documents

(usually 1000), and subsequent batches are fetched by a getMore command. The

MongoDB drivers generally handle getMore processing statements on your behalf, but

you can vary the batch size to optimize performance in many cases (see Chapter 6).

�The aggregate Command
find() can perform a wide variety of queries, but it lacks many of the capabilities of the

relational database’s SQL command. For instance, a find() operation cannot join data

from multiple collections and cannot aggregate data. When you need more functionality

than find(), you will generally turn to aggregate().

At a high level, the syntax for aggregate is deceptively simple:

db.collection.aggregate([pipeline]);

where pipeline is an array of instructions to the aggregate command. Aggregate

supports more than two dozen pipeline operators, and most are beyond the scope of this

book. However, the most commonly used operators are

•	 $match, which filters documents within a pipeline using a syntax

similar to the find() command

•	 $group, which aggregates multiple documents into a smaller

aggregated set

•	 $sort, which sorts documents within the pipeline

Chapter 2 MongoDB Architecture and Concepts

https://doi.org/10.1007/978-1-4842-6879-7_6

22

•	 $project, which defines the attributes to be returned from each

document

•	 $unwind, which returns one document for each element in an array

•	 $limit, which restricts the number of documents to be returned

•	 $lookup, which joins documents from another collection

Here’s an example of aggregate that uses most of these operations to return a count

of movie views by category:

db.customers.aggregate([

 { $unwind: "$views" },

 { $project: {

 "filmId": "$views.filmId"

 }

 },

 { $group:{ _id:{ "filmId":"$filmId" },

 "count":{$sum:1}

 }

 },

 { $lookup:

 { from: "films",

 localField: "_id.filmId",

 foreignField: "_id",

 as: "filmDetails"

 }

 },

 { $group:{ _id:{

 "filmDetails_Category":"$filmDetails.Category"},

 "count":{$sum:1},

 "count-sum":{$sum:"$count"}

 }

 },

Chapter 2 MongoDB Architecture and Concepts

23

 { $project: {

 "category": "$_id.filmDetails_Category" ,

 "count-sum": "$count-sum"

 }

 },

 { $sort:{ "count-sum":-1 }},

]);

Aggregation pipelines can be hard to write and hard to optimize. We’ll look in detail

at aggregation pipeline optimization in Chapter 7.

�Data Manipulation Commands
insert(), update(), and delete() allow documents to be added, changed, or removed

from a collection.

Both update() and delete() take a filter argument that defines the documents to be

processed. The filter condition is identical to that from the find() command.

Optimization of the filter condition is usually the most important factor when

optimizing updates and deletes. Their performance is also affected by the configuration

of write concern (see the following section).

Here is an example of insert, update, and delete commands:

db.myCollection.insert({_id:1,name:'Guy',rating:9});

db.myCollection.update({_id:1},{$set:{rating:10}});

db.myCollection.deleteOne({_id:1});

We discuss the optimization of data manipulation statements in Chapter 8.

�Consistency Mechanisms
All databases have to make trade-offs between consistency, availability, and

performance. Relational databases like MySQL are regarded as strongly consistent

databases because all users always see a consistent view of data. Non-relational

databases such as Amazon Dynamo are often called weakly consistent or eventually

consistent databases because users are not guaranteed to see such a consistent view.

Chapter 2 MongoDB Architecture and Concepts

https://doi.org/10.1007/978-1-4842-6879-7_7
https://doi.org/10.1007/978-1-4842-6879-7_8

24

MongoDB is – within limitations – strongly consistent by default, although it can be

made to behave like an eventually consistent database through the configuration of write

concern and read preference.

�Read Preference and Write Concern
A MongoDB application has some control over the behavior of read and write

operations, providing a degree of tunable consistency and availability.

•	 The write concern setting determines when MongoDB regards a

write operation as having completed. By default, write operations

complete once the primary has received the modification.

Consequently, if the primary should fail irrecoverably, then data

might be lost.

•	 However, if the write concern is set to “majority”, then the database

will not complete the write operation until a majority of secondaries

receive the write. We can also set the write concern to wait until all

secondaries or a specific number of secondaries receive the write

operation.

•	 Write concern can also determine if write operations proceed to the

on-disk journal before being acknowledged. This is true by default.

•	 The read preference determines where a client sends read requests.

By default, read requests are sent to the primary. However, the client

driver can be configured to send read requests to the secondary

by default, to a secondary only if the primary is not available, or to

whichever server is “nearest.” The later setting is intended to favor

low latency over consistency.

The default settings for the read preference and write concern result in MongoDB

behaving as a strictly consistent system: everybody will see the same version of a

document. Allowing reads to be satisfied from a secondary node results in a more

eventually consistent behavior.

Read preference and write concern have definite performance impacts that we will

discuss in Chapters 8 and 13.

Chapter 2 MongoDB Architecture and Concepts

https://doi.org/10.1007/978-1-4842-6879-7_8
https://doi.org/10.1007/978-1-4842-6879-7_13

25

�Transactions
Although MongoDB started its life as a non-transactional database, since version 4.0

it has been possible to perform atomic transactions across multiple documents. For

instance, in this example we atomically reduce the balance of one account by 100 and

increment another account by the same amount:

session.startTransaction();

mycollection.update({userId:1},{$inc:{balance:100}});

mycollection.update({userId:2},{$inc:{balance:-100}});

session.commitTransaction();

The two updates will either both succeed or both fail.

In practice, coding transactions require some error handling logic, and the design

of transactions can significantly affect performance. We discuss these considerations in

Chapter 9.

�Query Optimization
Like most databases, MongoDB commands represent a logical request for data, rather

than a series of instructions for retrieving that data. For instance, a find() operation

specifies the data that will be returned, but does not explicitly specify the indexes or

other access methods to be employed in retrieving the data.

As a result, the MongoDB code must determine the most efficient way to process

data requests. The MongoDB optimizer is the MongoDB code that makes these

determinations. The decision that the optimizer makes for each command is referred to

as the query plan.

When a new query or command is sent to MongoDB, the optimizer performs the

following steps:

	 1.	 The optimizer looks for a matching query in the MongoDB plan

cache. A matching query is one in which all of the filter and

operation attributes match, even if the values do not. Such queries

are said to have the same query shape. For instance, if you issue

the same query against the customers collection for different

customer names, MongoDB will consider these to have the same

query shape.

Chapter 2 MongoDB Architecture and Concepts

https://doi.org/10.1007/978-1-4842-6879-7_9

26

	 2.	 If the optimizer cannot find a matching query, then the optimizer

will consider all the possible ways of executing the query. The

query that has the lowest number of work units will be successful.

Work units are specific operations that MongoDB must perform –

correlating mostly with the number of documents that must be

processed.

	 3.	 MongoDB will select the plan that has the lowest number of work

units, use that plan to execute the query, and store that query plan

in the plan cache.

In practice, MongoDB tends to use index-based plans whenever possible and will

usually choose the index that is the most selective (see Chapter 5).

�MongoDB Architecture
You can do a lot of performance optimization without any reference to MongoDB

architecture. However, if we do our job well and completely optimize the workload,

eventually the limiting factor on performance will become the database server itself. At

this point, we need to understand the MongoDB architecture if we want to optimize its

internal efficiency.

�Mongod
In a simple MongoDB implementation, a MongoDB client sends wire protocol messages

to the MongoDB daemon process mongod. For instance, if you install MongoDB on

your laptop, a single mongod process will respond to all of the MongoDB wire protocol

requests.

�Storage Engines
A storage engine abstracts database storage from the underlying storage medium and

format. For instance, one storage engine might store data in memory, while another

might be designed to store data in cloud object stores, while a third might store data on a

local disk.

Chapter 2 MongoDB Architecture and Concepts

https://doi.org/10.1007/978-1-4842-6879-7_5

27

MongoDB can support multiple storage engines. Initially, MongoDB shipped with a

relatively simple storage engine which stored data as memory-mapped files. This storage

engine was known as the MMAP engine.

In 2014 MongoDB acquired the WiredTiger storage engine. WiredTiger has many

advantages over MMAP and became the default storage engine from MongoDB 3.6. We’ll

be focusing predominantly on WiredTiger within this book.

WiredTiger provides MongoDB with a high-performance disk access layer which

includes caching, consistency, and concurrency management and other modern data

access facilities.

Figure 2-2 illustrates the architecture of a simple MongoDB deployment.

Figure 2-2.  Simple MongoDB deployment architecture

Chapter 2 MongoDB Architecture and Concepts

28

�Replica Sets
MongoDB achieves fault tolerance through the use of replica sets.

A replica set consists of a primary node together with two or more secondary nodes.

The primary node accepts all write requests which are propagated synchronously or

asynchronously to the secondary nodes.

The primary node is selected by an election involving all available nodes. To be

eligible to become primary, a node must be able to contact more than half of the

replica set. This approach ensures that if a network partition splits a replica set into two

partitions, only one of the partitions will attempt to elect a primary. The RAFT protocol1

is used to determine which node becomes the primary, with the objective of minimizing

any data loss or inconsistencies following the failover.

The primary node stores information about document changes in a collection within

its local database called the Oplog. The primary will continuously attempt to apply these

changes to secondary instances.

Members within a replica set communicate frequently via heartbeat messages. If

a primary finds it is unable to receive heartbeat messages from more than half of the

secondaries, then it will renounce its primary status, and a new election will be called.

Figure 2-3 illustrates a three-member replica set and shows how a network partition

leads to a change of primary.

1�https://en.wikipedia.org/wiki/Raft_(computer_science)

Chapter 2 MongoDB Architecture and Concepts

https://en.wikipedia.org/wiki/Raft_(computer_science)

29

MongoDB replica sets primarily exist to support high availability – allowing a

MongoDB cluster to survive a failure in an individual node. However, they can also

provide performance advantages or disadvantages.

Figure 2-3.  MongoDB replica set election

Chapter 2 MongoDB Architecture and Concepts

30

If the MongoDB write concern is greater than 1, then every MongoDB write operation

(inserts, updates, and deletes) will need to be confirmed by more than one member of

the cluster. This will result in a cluster which performs more slowly than a single node

cluster. On the other hand, if the read preference is set to allow reads from secondary

nodes, then read performance might be improved by spreading the read load across

multiple servers. We’ll discuss the performance impact of read preference and write

concern in Chapter 13.

�Sharding
While replica sets exist primarily to support high availability, MongoDB sharding is

intended to provide scale-out capabilities. “Scaling out” allows us to increase database

capacity by adding more nodes to a cluster.

In a sharded database cluster, selected collections are partitioned across multiple

database instances. Each partition is referred to as a “shard.” This partitioning is based

on a shard key value; for instance, you could shard on a customer identifier, customer

ZIP code or birth date. Selection of a particular shard key can have positive or negative

impacts on your performance; in Chapter 14, we’ll cover how to optimize shard keys.

When operating on a particular document, the database determines which shard should

contain the data and sends the data to the appropriate node.

A high-level representation of the MongoDB sharding architecture is shown in

Figure 2-4. Each shard is implemented by a distinct MongoDB server, which in most

respects is unaware of its role in the broader sharded server (1). A separate MongoDB

server – the config server (2) – contains the metadata which is used to determine how

data is distributed across shards. A router process (3) is responsible for routing client

requests to the appropriate shard server.

Chapter 2 MongoDB Architecture and Concepts

https://doi.org/10.1007/978-1-4842-6879-7_13
https://doi.org/10.1007/978-1-4842-6879-7_14

31

To shard a collection, we choose a shard key, which are one or more indexed

attributes that will be used to determine the distribution of documents across shards.

Note that not all collections need be sharded. Traffic for unsharded collections will be

directed to a single shard.

�Sharding Mechanisms
Distribution of data across shards can be either range-based or hash-based. In range-

based partitioning, each shard is allocated a specific range of shard key values.

MongoDB consults the distribution of key values in the index to ensure that each shard

is allocated approximately the same number of keys. In hash-based sharding, keys are

distributed based on a hash function applied to the shard key.

See Chapter 14 for more details of range- and hash-based sharding.

Figure 2-4.  MongoDB sharding

Chapter 2 MongoDB Architecture and Concepts

https://doi.org/10.1007/978-1-4842-6879-7_14

32

�Cluster Balancing
When hash-based sharding is implemented, the number of documents in each shard

tends to remain balanced under most scenarios. However, in a range-based sharding

configuration, it is very easy for the shards to become unbalanced, especially if the shard

key is based on a continuously increasing value such as an auto-incrementing primary

key ID.

For this reason, MongoDB will periodically assess the balance of shards across the

cluster and perform rebalance operations if needed.

�Conclusion
In this chapter, we’ve briefly reviewed the key architectural elements of MongoDB that

are essential prerequisites for MongoDB performance tuning. Most readers will already

be broadly familiar with the concepts covered in this chapter, but it’s always good to be

sure that you have the fundamentals of MongoDB covered.

The best place to learn more about any of these topics is the MongoDB

documentation set – available online at https://docs.mongodb.com/.

In the next chapter, we’ll deep dive into the essential tools provided with MongoDB

that should be your constant companions during your tuning endeavors.

Chapter 2 MongoDB Architecture and Concepts

https://docs.mongodb.com/

	Chapter 2: MongoDB Architecture and Concepts
	The MongoDB Document Model
	JSON
	Binary JSON (BSON)
	Collections
	MongoDB Schemas

	The MongoDB Protocol
	Wire Protocol
	MongoDB Drivers

	MongoDB Commands
	The find Command
	The aggregate Command
	Data Manipulation Commands

	Consistency Mechanisms
	Read Preference and Write Concern
	Transactions

	Query Optimization
	MongoDB Architecture
	Mongod
	Storage Engines
	Replica Sets
	Sharding
	Sharding Mechanisms
	Cluster Balancing

	Conclusion

