
315
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_14

CHAPTER 14

Sharding
In the previous chapter, we covered the most commonly deployed MongoDB

configuration: replica sets. Replica sets are essential for modern applications requiring

availability that a single MongoDB instance cannot provide. As we’ve seen, replica sets

can do some limited scaling of reads through secondary write. But, for large applications,

particularly where the write workload exceeds the capability of a single cluster, sharded

clusters may be deployed.

Everything we have covered in previous chapters is entirely applicable to sharded

MongoDB servers. Indeed, it’s probably best not to consider sharding until you have

optimized your application workload and individual server configuration using the

techniques covered in previous chapters.

However, there are some significant performance opportunities and challenges

presented by sharded MongoDB deployments, and these will be covered in this chapter.

�Sharding Fundamentals
We introduced sharding in Chapter 2. In a sharded database cluster, selected collections

are partitioned across multiple database instances. Each partition is referred to as a

“shard.” This partitioning is based on a shard key value.

While replica sets are designed to provide high availability, sharding is designed to

provide greater scalability. When your workload – particularly your write workload –

exceeds the capacity of your server, then sharding provides a way to spread that

workload across multiple nodes.

https://doi.org/10.1007/978-1-4842-6879-7_14#DOI
https://doi.org/10.1007/978-1-4842-6879-7_2

316

�Scaling and Sharding
Sharding is an architectural pattern developed to allow databases to support the massive

workloads of the world’s largest websites.

As application load grows, at some point the workload exceeds the capability of

a single server. The capability of the server can be extended by shifting some read

workload to secondary nodes, but eventually the amount of write workload to the

primary becomes too great. We can no longer “scale up.”

When “scaling up” becomes impossible, we turn to “scaling out.” We add more

primary nodes and split the workload across those primaries using sharding.

Sharding at scale was critical to the establishment of the modern Web – Facebook

and Twitter were both early adopters of large-scale sharding using MySQL. However,

it’s not universally loved – sharding with MySQL involves a huge amount of manual

configuration and breaks some of the core database capabilities. However, sharding in

MongoDB is fully integrated into the core database and is relatively easy to configure and

manage.

�Sharding Concepts
Sharding is a big topic, and we can’t provide a tutorial for all sharding considerations

here. Please consult the MongoDB documentation or the book MongoDB Topology

Design by Nicholas Cottrell (Apress, 2020) for a full review of sharding concepts.

The following sharding concepts are particularly significant:

•	 Shard key: The shard key is the attributes which determine into

which shard any given document will be placed. Shard keys should

have high cardinality (lots of unique values) to ensure that the data

can be evenly distributed across shards.

•	 Chunks: Documents are contained within chunks, and chunks are

allocated to specific shards. Chunking avoids MongoDB having to

laboriously move individual documents across shards.

•	 Range sharding: With range sharding, contiguous groups of shard

keys are stored within the same chunk. Range sharding allows for

efficient shard key range scans but can result in “hot” chunks if the

shard value is monotonically increasing.

Chapter 14 Sharding

317

•	 Hash sharding: In hash-based sharding, keys are distributed based

on a hash function applied to the shard key.

•	 The balancer: MongoDB tries to keep the data and workload

attributed to each shard equal. The balancer periodically moves data

from one shard to another to maintain this balance.

�To Shard or Not to Shard?
Sharding is the most sophisticated MongoDB configuration topology, and sharding is

used by some of the world’s largest and most performant websites. So sharding must be

good for performance, right? Well, it is not quite that simple.

Sharding adds a layer of complexity and processing on top of your MongoDB

database that – as often as not – makes individual operations a little slower. However,

it allows you to throw more hardware resources at your workload. If – and only if – you

have a hardware bottleneck involving operations to a replica set primary, then sharding

might be the best solution. However, in most other circumstances, sharding adds

complexity and overhead to your deployment.

Figure 14-1 compares the performance for sharded and unsharded collections for

a few simple operations on equivalent hardware.1 In most cases, operations against

sharded collections are slower than against unsharded collections. Of course, every

workload will be different, but the point is that sharding alone does not make things go

faster!

1�To make it a fair comparison, the shards were located on the same host as the single replica set
option. Each node had an equivalent cache size, and there was no memory bottleneck.

Chapter 14 Sharding

318

Sharding is expensive in terms of dollar costs for the hardware and in terms of

operational overhead. It should truly only be a recourse of last resort. Only when you

have exhausted all other tuning measures, and all “scale-up” options, should you

consider sharding. In particular, make sure that the disk subsystem on your primary is

optimized before considering sharding. It’s much cheaper and easier to buy and deploy

some new SSDs than to shard a primary!

Warning  Sharding should be the last resort for scaling a MongoDB deployment.
Make sure your workload, server, and replica set configuration are optimized
before commencing a sharding project.

Even if you believe that sharding is inevitable, you should still thoroughly tune your

database before commencing the sharding project. If your workload and configuration

are creating unnecessary load, then you may end up creating more shards than are

necessary. Only when your workload is tuned can you make a rational determination of

your sharding requirements.

Figure 14-1.  Sharding doesn't always help performance

Chapter 14 Sharding

319

�Shard Key Selection
Sharding occurs at the collection level. While the number of shards in a cluster is the

same for all collections, not all collections need be sharded and collections need not all

have the same shard key.

Collections should be sharded if the aggregate IO write demand on the collection

exceeds the capacity of a single primary. We then choose the shard key based on the

following criteria:

•	 The keys should have a high cardinality so that data can be divided

into small chunks if necessary.

•	 The keys should have an even distribution of values. If any single

value is particularly common, then the shard key may be a poor

choice.

•	 The key should be frequently included in queries so that queries

can be routed to specific shards.

•	 The key should be non-monotonically increasing. When a shard key

value increases monotonically (e.g., always increases by a set value),

then the new documents appear in the same chunk, causing a hot

spot. If you do have a monotonically increasing key value, consider

using a hashed shard key.

Tip  Choosing the correct sharding key is critical to the success of your sharding
project. A shard key should support a good balance of documents across shard and
support as many query filter conditions as possible.

�Range- vs. Hash-Based Sharding
Distribution of data across shards can be either range-based or hash-based. In range-

based partitioning, each shard is allocated a specific range of shard key values.

MongoDB consults the distribution of key values in the index to ensure that each shard

is allocated approximately the same number of keys. In hash-based sharding, keys are

distributed based on a hash function applied to the shard key.

Chapter 14 Sharding

320

There are advantages and compromises involved in each scheme. Figure 14-2

illustrates the performance trade-offs inherent in range and hash sharding for inserts

and range queries.

Figure 14-2.  Range- and hash-based sharding compared

Chapter 14 Sharding

321

Range-based partitioning allows for efficient execution of shard key range scans

since these queries can often be resolved by accessing a single shard. Hash-based

sharding requires that range queries be resolved by accessing all shards. On the other

hand, hash-based sharding is more likely to distribute “hot” documents (unfilled

orders or recent posts, for instance) evenly across the cluster, thus balancing load more

effectively.

Tip H ashed shard keys result in more evenly distributed data and workload.
However, they result in poor performance for range-based queries.

Hashed shard keys do result in a more even distribution of data. However, as we’ll

soon see, hashed shard keys do create significant challenges for a variety of query

operations, particularly those which involve sorting or range queries. Furthermore,

we can only hash on a single attribute, while our ideal shard key is often composed of

multiple attributes.

However, there is one use case in which a hashed shard key is clearly indicated.

If we must shard on an attribute which is constantly increasing – often referred to

as monotonically increasing – then a range sharding strategy will result in all new

documents being inserted into a single shard. This shard will become “hot” in terms of

inserts and probably in terms of reads as well since recent documents are often more

likely to be updated and read than older documents.

Hashed shard keys come to the rescue here because the hashed values will be evenly

distributed across the shards.

Figure 14-3 illustrates how monotonically increasing shard keys affect inserts into

collections using hashed or range shard keys. In this example, the shard key is the

orderDate which is always increasing as time moves forward. With hash sharding,

inserts are distributed evenly between shards. In the range sharded scenario, all

documents are inserted into a single shard. The hashed shard key not only distributes

the workload across multiple nodes, it also results in greater throughput since there is

less contention on that single node.

Chapter 14 Sharding

322

Tip I f your shard key must be a perpetually (monotonically) increasing value, then
a hashed shard key is preferable. However, consider the possibility of sharding on
another attribute if range queries on the shard key are required.

�Zone Sharding
Most of the time, our sharding strategy is to distribute documents and workload evenly

across all shards. Only by distributing the load evenly can we hope to gain effective

scalability. If one shard is responsible for a disproportionate amount of the workload,

then that shard may become a limiting factor in our overall application throughput.

However, there’s another possible motivation for sharding – to distribute workload

across shards so that data is close, in network terms, to the applications that want that

data or to distribute data so that “hot” data is on expensive high-powered hardware,

while “cold” data is stored on cheaper hardware.

Zone sharding allows the MongoDB administrator to fine-tune the distribution of

documents to shards. By associating a shard with a zone and associating a range of

Figure 14-3.  Time to insert 120,000 documents into a sharded collection – hash vs.
range monotonically increasing key

Chapter 14 Sharding

323

keys within a collection within that zone, the administrator can explicitly determine the

shard on which these documents will reside. This can be used to archive data to shards

on cheaper, but slower storage or to direct particular data to a specific data center or

geography.

To create zones, we first allocate shards to zones. Here, we create one zone for the

United States and another zone for the rest of the world:

sh.addShardToZone("shardRS2", "US");

sh.addShardToZone("shardRS", "TheWorld");

Even though we have only two zones, we can have as many shards as we want – each

zone can have multiple shards.

Now we assign shard key ranges to each zone. Here, we have sharded by Country and

City, so we use minKey and maxKey as proxies for the high and low City values within a

Country range:

sh.addTagRange(

 "MongoDBTuningBook.customers",

 { "Country" : "Afghanistan", "City" : MinKey },

 { "Country" : "United Kingdom", "City" : MaxKey },

 "TheWorld");

sh.addTagRange(

 "MongoDBTuningBook.customers",

 { "Country" : "United States", "City" : MinKey },

 { "Country" : "United States", "City" : MaxKey },

 "US");

sh.addTagRange(

 "MongoDBTuningBook.customers",

 { "Country" : "Venezuela", "City" : MinKey },

 { "Country" : "Zambia", "City" : MaxKey },

 "TheWorld");

We would then locate the hardware for the “US” zone somewhere in the United

States and the hardware for “TheWorld” somewhere in the rest of the world (Europe

maybe). We would also deploy mongos routers in each of these regions. Figure 14-4

illustrates what this deployment might look like.

Chapter 14 Sharding

324

The end result is lower latency for US queries issued from the US router and similarly

for other geographies. Of course, if you issue a query for US data from Europe, your

round trip time would be higher. But if queries issued from a region are mainly for data

zoned to that region, then overall performance is improved.

We could add more zones in other regions as our application grows.

Tip  Zone sharding can be used to distribute data across geographies, reducing
latencies for region-specific queries.

Another use of zone sharding is to create archives of old data on slow but cheap

hardware. For instance, if we have decades of order data, we could create a zone for

older data which is hosted on VMs or servers with less CPU, memory, and maybe even

using magnetic disk rather than premium SSD. Recent data could be kept on high-speed

servers. This might result in a better overall performance for a given hardware budget.

�Shard Balance
The getShardDistribution() method can show the breakdown of data across shards.

Here’s an example of a well-balanced sharded collection:

Applica�on

mongos

primary

secondarysecondary

Applica�on

mongos

primary

secondarysecondary

Figure 14-4.  Zone sharding to reduce geographic network latency

Chapter 14 Sharding

325

mongo> db.iotDataHshard.getShardDistribution()

Shard shard02 at shard02/localhost:27022,localhost:27023

 data : 304.04MiB docs : 518520 chunks : 12

 estimated data per chunk : 25.33MiB

 estimated docs per chunk : 43210

Shard shard01 at shard01/localhost:27019,localhost:27020

 data : 282.33MiB docs : 481480 chunks : 11

 estimated data per chunk : 25.66MiB

 estimated docs per chunk : 43770

Totals

 data : 586.38MiB docs : 1000000 chunks : 23

 �Shard shard02 contains 51.85% data, 51.85% docs in cluster, avg obj size

on shard : 614B

 �Shard shard01 contains 48.14% data, 48.14% docs in cluster, avg obj size

on shard : 614B

In a well-balanced sharded cluster, there are approximately the same number of

chunks and the same amount of data in each shard. If the number of chunks between

shards is inconsistent, then the balancer should be able to migrate chunks to return

balance to the cluster.

If the number of chunks is roughly equivalent, but the amount of data in each shard

varies significantly, then it may be that your shard key is not evenly distributed. A single

shard key value cannot span chunks, so if some shard keys have massive document

counts, then massive “jumbo” chunks will result. Jumbo chunks are sub-optimal, as the

data within cannot be effectively distributed across shards and thus a larger proportion

of queries may be sent to a single shard.

�Rebalancing Shards
Let’s say you have selected an appropriate shard key type (range or hashed) and the key

possesses the right attributes – high cardinality, even distribution, frequently queried,

non-monotonically increasing. In that case, your chunks will likely be well balanced

across shards, and consequently, you will achieve a well-distributed workload. However,

several factors may cause the shards to fall out of balance, with many more chunks

Chapter 14 Sharding

326

existing on one shard than another. When this occurs, that single node will become a

bottleneck until the data can be evenly redistributed across multiple nodes – as shown in

Figure 14-5.

If we can maintain an appropriate balance among our shards, query load is more

likely to be divided evenly among the nodes – as shown in Figure 14-6.

Figure 14-5.  A set of poorly balanced shards, most queries will go to Shard 01

Figure 14-6.  A set of well-balanced shards: query load will be evenly
distributed

Chapter 14 Sharding

327

Fortunately, MongoDB will automatically rebalance a sharded collection whenever

a large enough disparity is detected between shards. The threshold for this disparity

depends on the number of total chunks. For example, if there are 80 or more chunks, the

threshold will be a difference of eight between the most chunks on a shard and the least.

For between 20 and 80, the threshold is four, and if there are fewer than 20 chunks, the

threshold is two.

If this disparity is detected, the shard balancer will begin to migrate chunks to

rebalance the distribution of data. This migration might be triggered by large amounts of

new data being inserted within a specific range or simply by the addition of a shard. A new

shard is initially empty and therefore causes a large disparity in chunk distribution that

requires rebalancing.

The balancerStatus command allows you to see the current balancer status:

mongos> db.adminCommand({ balancerStatus: 1})

{

 "mode" : "full",

 "inBalancerRound" : false,

 "numBalancerRounds" : NumberLong(64629),

 "ok" : 1,

 "operationTime" : Timestamp(1604706062, 1),

 . . .

}

In the preceding output, the mode field indicates that the balancer is enabled, and the

inBalancerRound field indicates the balancer is not currently distributing chunks.

Although MongoDB automatically handles the rebalancing, rebalancing does not

come without performance implications. Bandwidth, workload, and disk space usage

will all increase during chunk migration. To mitigate this performance hit, MongoDB

will only migrate a single shard at a time. Additionally, each shard can only participate in

one migration at a time. If the impact of chunk migrations is affecting your application

performance, there are a few things to try:

•	 Modifying the balancer window

•	 Manually enabling and disabling the balancer

•	 Changing the chunk size

We’ll discuss each of these options in the following few pages.

Chapter 14 Sharding

328

�Modifying the Balancer Window

The balancer window defines the time periods during which the balancer will be active.

Modifying the balancer window will prevent the balancer from running outside of a

given time window; for example, you may only want to balance chunks when application

load is at its lowest. In this example, we limit rebalancing to a 90-minute window starting

at 10:30 PM:

mongos> use config

switched to db config

mongos> db.settings.update(

... { _id: "balancer" },

... { $set: {activeWindow :{ start: "22:30", stop: "23:59" } } },

... { upsert: true })

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

Note  When selecting a balancing window, you must ensure that enough time
is provided to balance all the new documents from that day. If your window is too
small, there will be a cumulative effect of leftover chunks which will increasingly
unbalance your shards.

�Disabling the Balancer

It is possible to disable the balancer and re-enable it later. You could, for instance,

disable the balancer during a nightly batch window that modifies lots of documents

because you don’t want the balancer to “thrash” during the process.

Be careful when using this approach, however, as failing to re-enable the balancer

could cause shards becoming heavily out of balance. Here’s some code showing the

balancer being stopped and restarted:

mongos> sh.getBalancerState()

true

mongos> sh.stopBalancer()

{

 "ok" : 1,

Chapter 14 Sharding

329

 "operationTime" : Timestamp(1604706472, 3),

 . . .

}

mongos> sh.getBalancerState()

false

mongos> sh.startBalancer()

{

 "ok" : 1,

 "operationTime" : Timestamp(1604706529, 3),

 . . .

 }

mongos> sh.getBalancerState()

true

Note  Migrations may still be in progress after the balancer is disabled. You may
need to wait until sh.isBalancerRunning() returns false to be sure that the
balancer has completely stopped.

�Changing the Chunk Size

The chunksize option – 64MB by default – will determine how large a chunk will grow

before being split. By reducing the chunksize option, you will have a larger number of

small chunks. This will increase migrations and query routing time, but also provide a

more even distribution of data. By increasing the chunk size, you will have fewer, larger

chunks; this will be more efficient in terms of migrations and routing but may result in

a larger proportion of your data sitting in a single chunk. This option won’t take effect

immediately, and you will have to update or insert into an existing chunk to trigger a split.

Note  Once chunks are split, they cannot be recombined by increasing the
chunksize option, so be careful when reducing this parameter. Additionally,
sometimes a chunk may grow beyond this parameter but cannot be split because
all the documents have the same shard key. These unsplittable chunks are known
as jumbo chunks.

Chapter 14 Sharding

330

Each of these rebalancing options involves a trade-off between maintaining cluster

balance and optimizing the overhead of rebalancing. Continual rebalancing might create

a noticeable drag on your throughput, while allowing a cluster to become out of balance

may create a performance bottleneck on a single shard. There’s no “one-size-fits-all”

solution, but establishing a maintenance window for rebalancing operations is a low-risk

and low-impact way of ensuring that rebalancing operations do not cause performance

degradation during peak periods.

Tip E stablishing a maintenance window for rebalancing operations is often
the best way to maintain cluster balance while avoiding excessive rebalancing
overhead.

Before using any of these methods to control the balancer directly, try to avoid the

shards getting out of balance in the first place! Careful selection of a well-distributed

shard key is a good first step. Hashed shard keys might also be worth considering if a

cluster is experiencing a continually high rebalancing overhead.

�Changing Shard Keys
If you have determined that a poorly chosen shard key is creating performance

overheads, there are ways to change that shard key. Changing or recreating your shard

key is not an easy or quick process in MongoDB. There is no automatic process or

command you can run. The process of changing the shard key for a collection is even

more work than creating it in the first place. The procedure to change an existing shard

key is to

	 1.	 Back up your data

	 2.	 Drop the entire collection

	 3.	 Create a new shard key

	 4.	 Import the old data

As you can imagine, with large datasets, this can be a prolonged and tedious process.

This awkward procedure makes it even more important to consider, design, and

implement a good shard key from the beginning. If you’re not sure you have the right

shard key, it can be useful to create a test collection with a smaller subset of the data.

Chapter 14 Sharding

331

You can then create and recreate the shard keys while observing the distribution. Just

remember, when selecting the subset of data to test on, it must be representative of the

whole dataset, not just a single chunk.

Although MongoDB does not explicitly support changing shard keys, starting

in version 4.4, it does support a method for improving existing sharded collection

performance without fully recreating it. In MongoDB, this is called refining a shard key.

When refining a shard key, we can add additional fields to the shard key, but not

remove or edit the existing fields. These suffix fields can be added to increase the

granularity and reduce the size of our chunks. Remember, the balancer cannot split or

move jumbo chunks (chunks larger than the chunksize option) consisting of documents

for a single shard key. By refining our shard key, we may be able to break a jumbo chunk

into many smaller chunks which can then be rebalanced.

Imagine our application was relatively small, and initially, sharding by the country

field was good enough. However, as our application grew, we have a lot of users in a

single country, creating jumbo chunks. By refining this shard key with the district

field, we have increased the granularity of our chunks and thus removed the permanent

imbalance created by jumbo chunks.

Here is an example of refining the country shard key with the district attribute:

mongos> db.adminCommand({

 refineCollectionShardKey:

 "MongoDBTuningBook.customersSCountry",

 key: {

 Country: 1, District: 1}

})

{

 "ok" : 1,

 "operationTime" : Timestamp(1604713390, 40),

 . . .

}

Note T o refine a shard key, you must ensure that a matching index exists on the
new shard key attributes. For example, in the preceding code snippet, an index
must exist on {Country: 1, District: 1}.

Chapter 14 Sharding

332

Keep in mind that refining a shard key will not have an immediate effect on the data

distribution: it will merely increase the ability for the balancer to split and rebalance

existing data. Furthermore, newly inserted data will be of finer granularity, and this

should lead to fewer jumbo chunks and more balanced sharding.

�Sharded Queries
Sharding might help you escape a write bottleneck, but if critical queries are negatively

affected, then your sharding project is unlikely to be deemed a success. We want to be

sure that sharding is not causing any degradation in queries.

�Sharded Explain Plans
As usual, we can use the explain() method to see how MongoDB will execute a

request – even if the request is executed across multiple nodes of a sharded cluster.

Generally, we’ll want to use the executionStats option when looking at a sharded

query, since only that option will show us how work was distributed across the cluster.

Here’s an example of the executionStats section for a sharded query. Within the

output, we should see a shards step, which has child steps for each shard. Here’s a

truncated version of explain output for a sharded query:

var exp=db.customers.explain('executionStats').

 find({'views.title':'PRINCESS GIANT'}).next();

mongos > exp.executionStats {

 "nReturned": 17874,

 "executionTimeMillis": 9784,

 "executionStages": {

 "stage": "SHARD_MERGE",

 "nReturned": 17874,

 "executionTimeMillis": 9784,

 "shards": [

 {"shardName": "shard01",

 "executionStages": {

 "stage": "SHARDING_FILTER",

 "inputStage": {

Chapter 14 Sharding

333

 "stage": "COLLSCAN"}}},

 {"shardName": "shard02",

 "executionStages": {

 "stage": "SHARDING_FILTER",

 "inputStage": {

 "stage": "COLLSCAN"}}}}}

This plan shows that the query was resolved by performing collection scans on each

shard, then merging the results – SHARD_MERGE – before returning the data to the client.

Our tuning script (see Chapter 3) generates an easy-to-read execution plan for a

sharded query. Here’s an example of this output which shows the plans on each shard:

mongos> var exp=db.customers.explain('executionStats').

 find({'views.title':'PRINCESS GIANT'}).next();

mongos> mongoTuning.executionStats(exp)

1 COLLSCAN (ms:4712 returned:6872 docs:181756)

2 SHARDING_FILTER (ms:4754 returned:6872)

3 Shard ==> shard01 ()

4 COLLSCAN (ms:6395 returned:11002 docs:229365)

5 SHARDING_FILTER (ms:6467 returned:11002)

6 Shard ==> shard02 ()

7 SHARD_MERGE (ms:6529 returned:17874)

Totals: ms: 6529 keys: 0 Docs: 411121

The SHARD_MERGE step occurs when we combine output from multiple shards. It

indicates that the mongos router received data from multiple shards and combined them

into unified output.

However, if we issue a query filtered against the shard key, then we may see a

SINGLE_SHARD plan. In the following example, the collection was sharded on LastName,

so the mongos was able to retrieve all the needed data from a single shard:

mongos> var exp=db.customersShardName.explain('executionStats').

 find({'LastName':'HARRISON'})

mongos> mongoTuning.executionStats(exp)

Chapter 14 Sharding

https://doi.org/10.1007/978-1-4842-6879-7_3

334

1 IXSCAN (LastName_1_FirstName_1 ms:0

 returned:730 keys:730)

2 SHARDING_FILTER (ms:0 returned:730)

3 FETCH (ms:149 returned:730 docs:730)

4 Shard ==> shard01 ()

5 SINGLE_SHARD (ms:158 returned:730)

Totals: ms: 158 keys: 730 Docs: 730

�Shard Key Lookups
As we’ve seen, when a query contains the shard key, MongoDB may be able to satisfy the

query from a single shard.

For instance, if we have sharded on LastName, then a query on LastName resolves as

follows:

mongos> var exp=db.customersSLName.explain('executionStats').

 find({LastName:'SMITH','FirstName':'MARY'});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (LastName_1 ms:0 returned:711 keys:711)

2 FETCH (ms:93 returned:9 docs:711)

3 SHARDING_FILTER (ms:93 returned:9)

4 Shard ==> shardRS (ms:97 returned:9)

5 SINGLE_SHARD (ms:100 returned:9)

Totals: ms: 100 keys: 711 Docs: 711

However, note that in the preceding example, we lack a combined index on LastName

and FirstName so the query is less efficient than it might be. We should refine the shard

key to include the FirstName, or we can simply create a new compound index on both

attributes:

mongo> var exp=db.customersSLName.explain('executionStats').

 find({LastName:'SMITH','FirstName':'MARY'});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (LastName_1_FirstName_1 ms:0 returned:9 keys:9)

Chapter 14 Sharding

335

2 SHARDING_FILTER (ms:0 returned:9)

3 FETCH (ms:0 returned:9 docs:9)

4 Shard ==> shardRS (ms:1 returned:9)

5 SINGLE_SHARD (ms:2 returned:9)

Totals: ms: 2 keys: 9 Docs: 9

Tip I f a query contains the shard key and additional filter conditions, you can
optimize the query by creating an index that includes both the shard key and those
additional attributes.

�Accidental Shard Merge
Wherever possible, we want to send queries to a single shard. To achieve this, we should

make sure that our shard key is aligned with our query filters.

For instance, if we shard by Country, but query by City, MongoDB will need to do

a shard merge, even though all the documents for a given City will be in the shard that

contains that City’s Country:

mongo> var exp=db.customersSCountry.explain('executionStats').

 find({City:"Hiroshima"});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (City_1 ms:0 returned:544 keys:544)

2 FETCH (ms:0 returned:544 docs:544)

3 SHARDING_FILTER (ms:0 returned:0)

4 Shard ==> shardRS (ms:2 returned:0)

5 IXSCAN (City_1 ms:0 returned:684 keys:684)

6 FETCH (ms:0 returned:684 docs:684)

7 SHARDING_FILTER (ms:0 returned:684)

8 Shard ==> shardRS2 (ms:2 returned:684)

9 SHARD_MERGE (ms:52 returned:684)

Totals: ms: 52 keys: 1228 Docs: 1228

Chapter 14 Sharding

336

It may have been better to shard by City, not Country – since City has a higher

cardinality. However, in this case, it’s equally effective to simply add Country to the

query filter:

mongo> var exp=db.customersSCountry.explain('executionStats').
 find({Country:'Japan',City:"Hiroshima"});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (City_1 ms:0 returned:684 keys:684)
2 FETCH (ms:0 returned:684 docs:684)
3 SHARDING_FILTER (ms:0 returned:684)
4 Shard ==> shardRS2 (ms:2 returned:684)
5 SINGLE_SHARD (ms:55 returned:684)

Totals: ms: 55 keys: 684 Docs: 684

Tip  Whenever it makes sense, add the shard key to queries that execute against
a sharded cluster. If the shard key is not included in a query filter, then the query
will be sent to all shards even if the data is only present in one of the shards.

�Shard Key Range
If the shard key is range sharded, then we can use the key to perform an index range
scan. For instance, in this example, we have sharded orders by orderDate:

mongo> var startDate=ISODate("2018-01-01T00:00:00.000Z");
mongo> var exp=db.ordersSOrderDate.explain('executionStats').
 find({orderDate:{$gt:startDate}});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (orderDate_1 ms:0 returned:7191 keys:7191)
2 SHARDING_FILTER (ms:0 returned:7191)
3 FETCH (ms:0 returned:7191 docs:7191)
4 Shard ==> shardRS2 (ms:16 returned:7191)
5 SINGLE_SHARD (ms:68 returned:7191)

Totals: ms: 68 keys: 7191 Docs: 7191

Chapter 14 Sharding

337

However, if hash sharding is implemented, then collection scans in every shard are

required:

mongo> var exp=db.ordersHOrderDate.explain('executionStats').

 find({orderDate:{$gt:startDate}});

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:1 returned:2615 docs:28616)

2 SHARDING_FILTER (ms:1 returned:2615)

3 Shard ==> shardRS (ms:17 returned:2615)

4 COLLSCAN (ms:1 returned:4576 docs:29881)

5 SHARDING_FILTER (ms:1 returned:4576)

6 Shard ==> shardRS2 (ms:20 returned:4576)

7 SHARD_MERGE (ms:72 returned:7191)

Totals: ms: 72 keys: 0 Docs: 58497

Tip I f you frequently perform range scans on the sharding key, range sharding is
preferable to hash sharding. However, remember that range sharding can lead to
hot spots if the key values are constantly incrementing.

�Sorting
When sorted data is retrieved from more than one shard, the sort operation occurs in

two stages. First, data is sorted on each shard and then returned to the mongos where a

SHARD_MERGE_SORT combines the sorted inputs into a consolidated, sorted output.

Indexes that exist to support the sort – including the shard key index if appropriate –

can be used on each shard to facilitate the sort, but even if you are sorting by shard key, a

final sort operation must still be performed on the mongos.

Here’s an example of a query which sorts orders by orderDate. The shard key is

used to return data in sorted order from each shard before a final SHARD_MERGE_SORT is

performed on the mongos:

1 IXSCAN (orderDate_1 ms:22 returned:527890 keys:527890)

2 SHARDING_FILTER (ms:58 returned:527890)

Chapter 14 Sharding

338

3 FETCH (ms:87 returned:527890 docs:527890)

4 Shard ==> shardRS2 (ms:950 returned:527890)

5 IXSCAN (orderDate_1 ms:29 returned:642050 keys:642050)

6 SHARDING_FILTER (ms:58 returned:642050)

7 FETCH (ms:102 returned:642050 docs:642050)

8 Shard ==> shardRS (ms:1011 returned:642050)

9 SHARD_MERGE_SORT (ms:1013 returned:1169940)

Totals: ms: 1013 keys: 1169940 Docs: 1169940

If there is no appropriate index to support the sort, then blocking sorts will need to

be performed on each shard:

1 COLLSCAN (ms:37 returned:564795 docs:564795)

2 SHARDING_FILTER (ms:70 returned:564795)

3 SORT (ms:237 returned:564795)

4 Shard ==> shardRS (ms:1111 returned:564795)

5 COLLSCAN (ms:30 returned:605145 docs:605145)

6 SHARDING_FILTER (ms:78 returned:605145)

7 SORT (ms:273 returned:605145)

8 Shard ==> shardRS2 (ms:1315 returned:605145)

9 SHARD_MERGE_SORT (ms:1363 returned:1169940)

Totals: ms: 1363 keys: 0 Docs: 1169940

The normal considerations for optimizing sorts apply to each of the shard sorts.

In particular, you need to make sure you don’t exceed the sort memory limit on each

shard – see Chapter 6 for more details.

�Non-Shard Key Lookups
If a query does not include a shard key predicate, then the query is sent to each shard,

and the results merged back on the mongos. For instance, here we perform a collection

scan on each shard and merge the results in the SHARD_MERGE step:

mongo> var exp=db.customersSCountry.explain('executionStats').

 find({'views.filmId':637});

mongo> mongoTuning.executionStats(exp);

Chapter 14 Sharding

https://doi.org/10.1007/978-1-4842-6879-7_6

339

1 COLLSCAN (ms:648 returned:10331 docs:199078)

2 SHARDING_FILTER (ms:648 returned:10331)

3 Shard ==> shardRS (ms:1602 returned:10331)

4 COLLSCAN (ms:875 returned:4119 docs:212043)

5 SHARDING_FILTER (ms:882 returned:4119)

6 Shard ==> shardRS2 (ms:1954 returned:4119)

7 SHARD_MERGE (ms:2002 returned:14450)

Totals: ms: 2002 keys: 0 Docs: 411121

There’s nothing wrong with a SHARD_MERGE – we should totally expect that many

queries will need to resolve in this manner. However, you should make sure that the

query that runs on each shard is optimized. In the preceding example, a need for an

index on views.filmId is clearly indicated.

Tip  For queries that must be executed against every shard, ensure that each
shard’s workload is minimized using the indexing and document design principles
outlined in previous chapters.

�Aggregations and Sorts
When performing aggregation operations, MongoDB tries to push as much work as

possible to the shards. The shards are responsible not just for the data access portions of

the aggregation (such as $match and $project) but also pre-aggregations necessary to

satisfy $group and $unwind operations.

The explain plan for a sharded aggregation includes unique sections to illustrate how

the aggregation was resolved.

For instance, consider this aggregation:

db.customersSCountry.aggregate([

 { $unwind: "$views" },

 { $group:{ _id:{ "views_title":"$views.title" },

 "count":{$sum:1}

 }

 },

]);

Chapter 14 Sharding

340

An execution plan for this aggregation contains a unique section showing how the

work will be split across the aggregation:

 "mergeType": "mongos",

 "splitPipeline": {

 "shardsPart": [

 {

 "$unwind": {

 "path": "$views"

 }

 },

 {

 "$group": {

 "_id": {

 "views_title": "$views.title"

 },

 "count": {

 "$sum": {

 "$const": 1

 }

 }

 }

 }

],

 "mergerPart": [

 {

 "$group": {

 "_id": "$$ROOT._id",

 "count": {

 "$sum": "$$ROOT.count"

 },

 "$doingMerge": true

 }

 }

]

 },

Chapter 14 Sharding

341

The mergeType section tells us which component will perform the merge. We expect

to see mongos here, but in some circumstances, we might see the merge allocated to one

of the shards, in which case we’d see “primaryShard” or “anyShard”.

The splitPipeLine shows the aggregation stages that are sent to the shards. In this

example, we can see that the $group and $unwind operations will be performed on the

shards.

Finally, mergerPart shows us what operations will occur in the merging node – in

this case, on the mongos.

For the most commonly used aggregate steps, MongoDB will push down the

majority of work to the shards and combine output on the mongos.

�Sharded $lookup Operations
Join operations using $lookup are only partially supported on sharded collections.

The collection referenced in the from section of the $lookup stage cannot be sharded.

Consequently, The work of the $lookup cannot be distributed across the shard. All the

work will occur on the master shard that contains the lookup collection.

Warning  $lookup is not fully supported on sharded collections. A collection
referenced in a $lookup pipeline stage cannot be a sharded collection, although
the initiating collection may be sharded.

�Summary
Sharding provides a scale-out solution for very large MongoDB implementations. In

particular, it allows the write workload to be spread across multiple nodes. However,

sharding adds operational complexity and performance overhead and should not be

implemented lightly.

The most important consideration for sharded cluster implementation is to pick a

shard key with care. The shard key should have a high cardinality to allow for chunks to

split as data grows, should support queries that can operate against individual shards,

and should distribute workload evenly across shards.

Chapter 14 Sharding

342

Rebalancing is a background operation that MongoDB performs to keep shards

balanced. Rebalancing operations can cause performance degradation: you may wish to

tweak rebalancing to avoid this or limit rebalancing to a maintenance window.

Query tuning on a sharded cluster is driven by most of the same considerations

that exist for single node MongoDB – indexing and document design are still the most

important factors. However, you should make sure that queries that can include the

shard key do include that key and that indexes exist to support the queries that are

routed to each shard.

Chapter 14 Sharding

	Chapter 14: Sharding
	Sharding Fundamentals
	Scaling and Sharding
	Sharding Concepts
	To Shard or Not to Shard?
	Shard Key Selection
	Range- vs. Hash-Based Sharding
	Zone Sharding

	Shard Balance
	Rebalancing Shards
	Modifying the Balancer Window
	Disabling the Balancer
	Changing the Chunk Size

	Changing Shard Keys

	Sharded Queries
	Sharded Explain Plans
	Shard Key Lookups
	Accidental Shard Merge
	Shard Key Range
	Sorting
	Non-Shard Key Lookups
	Aggregations and Sorts
	Sharded $lookup Operations

	Summary

