
65© Navin Sabharwal, Amit Agrawal 2021
N. Sabharwal and A. Agrawal, Hands-on Question Answering Systems with BERT,
https://doi.org/10.1007/978-1-4842-6664-9_4

CHAPTER 4

BERT Algorithms
Explained
This chapter takes a deep dive into the BERT algorithm for sentence

embedding along with various training strategies, including MLM and

NSP. We will also see an implementation of a text classification system

using BERT.

�How Does BERT Work?
BERT makes use of a transformer to learn contextual relations between

words in a text. A transformer has two mechanisms—an encoder and a

decoder—but BERT only requires the encoder mechanism. BERT uses a

bidirectional approach and reads the text input sequentially, which allows

the model to learn the context of a word based on its surrounding words.

The input to the encoder is a sequence of tokens that are embedded into

vectors. The vectors are then passed into the neural network and an output

sequence of vectors is then generated corresponding to the input. The

output vector for a word is dependent on the context in which it occurs.

For example, the vector for the word “like” in the sentence “He likes to

play cricket” would be different than the vector for the same word in the

sentence “His face turned red like a tomato.”

https://doi.org/10.1007/978-1-4842-6664-9_4#DOI

66

This procedure involves text processing steps before even starting the

model-building phase. The next section discusses the text processing steps

used in BERT.

�Text Processing
There is a specific set of rules for representing the input text for the BERT

model. This, too, is responsible for better functioning of the model. If we

look into the embeddings, the input embedding in BERT is a combination

of the following three types of embeddings.

•	 Position embeddings: Positional embeddings are used

to learn the information of order in the embeddings.

As in transformers the information related to order is

missed, positional embeddings are used to recover it.

For each of the positions in the input sequence, BERT

learns a unique positional embedding. With the help of

these positional embeddings, BERT is able to express

the position of words in a sentence as it captures this

sequence or order information.

•	 Segment embeddings: BERT also learns unique

embedding for the first and second sentences to

help the model distinguish between them. It can also

take sentence pairs as inputs for tasks like question

answering.

•	 Token embeddings: For every token in the WordPiece

token vocabulary, token embeddings are learned.

The WordPiece token vocabulary contains subwords

of words in the corpus. As an example, for the word

“Question,” this vocabulary set will include all possible

subwords of “Question,” such as [“Questio”, “Questi”…],

and so on.

Chapter 4 BERT Algorithms Explained

67

Figure 4-1 shows an example of sequences of embeddings in BERT.

The input representation of a given token is constructed by

summing the token, segment, and position embeddings. This makes

it a comprehensive embedding scheme that contains a lot of useful

information for the model.

For an NLP task where the job is to predict next word in a sentence,

if we go with a directional approach, it has some limitations. However,

BERT provides two strategies to learn contextual information: MLM and

NSP. During training in BERT, both of these tasks will be trained together.

When using these two strategies, the model tries to achieve the goal of

minimizing the combined loss function.

�Masked Language Modeling
BERT is a deep bidirectional model that is more powerful than a left-to-

right model or the shallow concatenation of a left-to-right and a right-to-

left model. The BERT network can effectively capture information from

both the right and left context of a token. This goes from the first layer

itself and all the way through to the last layer. Previously, language models

were trained on left-to-right context, which made them susceptible to

information less. Even though the ELMo model greatly improved on the

Figure 4-1.  BERT embeddings

Chapter 4 BERT Algorithms Explained

68

existing techniques using the shallow concatenating of the two LSTM

language models, that wasn’t enough. BERT has proven to be more

significant than the existing techniques where MLM plays a crucial role.

In a masked language task, some of the words in text are randomly

masked. The context words surrounding a [MASK] token are used to

predict the [MASK] word. When word sequences are being fed into BERT,

15% of the words in each sequence are replaced with a [MASK] token.

These 15% of words are randomly selected. Of these, 80% are masked,

10% are replaced with a random word, and 10% are retained. This is done

because if 100% of the masked words were used then the model wouldn’t

necessarily produce good token representations for nonmasked words.

The model performance is improved, as too much focusing on a particular

position or tokens has been prevented. On the basis of the context

provided by the nonmasked words in the sequence, the model tries to

predict the original value of the masked words.

These processes that need to be followed for generation of word

embedding using BERT:

•	 Addition of a classification layer on top of the encoder

output.

•	 Multiplication of the output vectors by the embedding

matrix, thus transforming them into the vocabulary

dimension.

•	 Calculation of the probability of each word in the

vocabulary with softmax.

The loss function in BERT only considers the prediction of the

masked values; the prediction of the nonmasked words is ignored. This

makes the model converge slower than directional ones. As an example,

for the sentence “The birds are flying in the clear blue sky,” if we are

training the bidirectional model instead of predicting the next word in the

sequence, a model can be built to predict the missing word from within

Chapter 4 BERT Algorithms Explained

69

the sequence itself. Now, consider a token “flying” and mask it so that it

can be considered missing. The model would now need to be trained in

such a way that it can predict the value of this missing or masked token

in the sentence “The birds are [MASK] in the clear blue sky.” This is the

essence of MLM, which enables the model to understand the relationships

between words in a sentence.

�Next Sentence Prediction
The NSP task is similar to next word prediction in a sentence. NSP predicts

the next sentence in document, whereas the latter works for prediction of

missing words in a sentence. BERT is also trained on the NSP task. This is

required so that our model is able to understand how different sentences

in a text corpus are related to each other. During the training of the BERT

model, the sentence pairs are taken as input. It then predicts if the second

sentence in the pair is the subsequent sentence in the original document.

To achieve this, 50% of inputs are taken such that the second sentence is

the subsequent sentence as in the original document, whereas the other

50% comprises the pair where the second sentence is chosen randomly

from the document. It is assumed that the random second sentence is

disconnected from the first sentence.

As an example, consider two different instances of training data for

Sentence A and Sentence B:

Instance 1

Sentence A – I saw a bird flying in the sky.

Sentence B – It was a blue sparrow.

Label – IsNextSentence

Instance 2

Sentence A – I saw a bird flying in the sky.

Sentence B – The dog is barking.

Label – NotNextSentence

Chapter 4 BERT Algorithms Explained

70

As we can see, for Instance 1 Sentence B is logically subsequent to

Sentence A, but the same is not true for Instance 2, which is quite clear

from the labels IsNextSentence and NotNextSentence, respectively.

These inputs are being processed even before the training process

starts to differentiate between two sentences. The procedure is outlined

here.

	 1.	 Two tokens are inserted in a sentence pair. One of

the tokens [CLS] is inserted at the beginning of the

first sentence and other token [SEP] is inserted at

the end of each sentence. The two sentences are

both tokenized and separated from each other by

the separation token and then fed as a single input

sequence into the model.

	 2.	 For each of the token sentences, embedding is

added that indicates whether it is Sentence A

or Sentence B. These sentence embeddings are

basically similar in concept to token embeddings

with a vocabulary of 2.

	 3.	 Along with the sentence embeddings, positional

embeddings are also added to each of the tokens,

which helps to indicate the position of the token in

the sequence.

Now, the following steps are performed to predict if the second

sentence is actually connected to the first.

	 1.	 The whole input sequence is passed though the

transformer model.

	 2.	 With the help of the simple classification layer, the

output of the [CLS] token is transformed into a 2X1

shaped vector.

Chapter 4 BERT Algorithms Explained

71

	 3.	 Thereby, the probability of IsNextSentence is

computed with the help of softmax.

As we know, BERT is used for variety of NLP tasks such as document

summarization, question answering systems, document or sentence

classification, and so on. Now, let’s see how BERT can be used for

classification of sentences.

�Text Classification Using BERT
BERT can be used for a variety of language tasks. A small layer added to

the core model allows use of BERT for tasks like classification, question

answering, named entity recognition, and so on. The BERT model is fine

tuned for this purpose. For classification tasks, a classification layer is

added on top of the transformer output for the [CLS] token, similar to

NSP. Most of the hyperparameters stay the same as in BERT training, but

some of them require tuning to achieve state-of-the art-results for text

classification tasks. Figure 4-2 gives an example of determining whether a

given tweet is hate speech or not.

Similar types of tasks such as such as document classification,

sentiment analytics, and so on, can also be achieved using BERT.

Next, we will see how a pretrained model of text classification can be

configured in your system. Follow the steps listed here to configure or

install the necessary prerequisites.

Figure 4-2.  An example of classification using BERT

Chapter 4 BERT Algorithms Explained

72

	 1.	 Make sure Python is installed on your system.

Open a command prompt and run the following

command to determine if Python is installed, as

shown in Figure 4-3.

Python

This will start the Python console at the command

prompt. If Python is not installed on your system,

download and install Python as per your operating

system using this link: https://www.python.org/

downloads/

	 2.	 Next, install Jupyter Notebook. Open a command

prompt and run the following command.

pip install notebook

	 3.	 Open a command prompt and run the following

command to run Jupyter Notebook.

jupyter notebook

The notebook will start in your default browser with

localhost as the host address and port number as 8888,

along with a unique token ID, as shown in Figure 4-4.

Figure 4-3.  Python console

Chapter 4 BERT Algorithms Explained

https://www.python.org/downloads/
https://www.python.org/downloads/

73

	 4.	 You can also use Google Colab Notebook for

the same purpose. It provides a fast and free

environment to run your Python code in case your

system doesn’t have sufficient resources available.

You can also use the graphics processing units

(GPUs) and Tensor Processing Units (TPUs) for

free, but for a limited time (12 hours) in Google

Colab. You just need a Google account to log in to

Google Colab Notebook. For this book, we will be

using Google Colab Notebook to demonstrate text

classification using BERT. Log in to your Google

account and click https://colab.research.

google.com. You will see the screen shown in

Figure 4-5.

Figure 4-4.  Jupyter Notebook console

Chapter 4 BERT Algorithms Explained

https://colab.research.google.com
https://colab.research.google.com

74

	 5.	 To create a new Colab notebook, click New

Notebook in the bottom right corner as shown in

Figure 4-5.

	 6.	 Install TensorFlow. Run the following command in

your Jupyter Notebook or Colab Notebook.

pip install tensorflow

We have now installed all prerequisites for this exercise. Please follow

the steps listed next to configure a pretrained model for text classification

using BERT.

Figure 4-5.  Google Colab interface to create or import a notebook

Chapter 4 BERT Algorithms Explained

75

	 1.	 BERT model files and required code can be

downloaded from the GitHub repository. Open the

command prompt and clone the GitHub repository

(i.e., https:/github.com/google-research/

bert.git) onto the system by typing the following

command:

git clone https://github.com/google-research/bert.git

	 2.	 Downloaded model files containing the weights

and other necessary BERT files. Depending on your

requirements, a BERT pretrained model needs to be

selected from this list.

•	 BERT Base, Uncased

•	 BERT Large, Uncased

•	 BERT Base, Cased

•	 BERT Large, Cased

	 3.	 If you have an access to a cloud TPU, BERT Large

can be used; otherwise, the BERT Base model

should be used. Further selection can be made from

the cased and uncased models.

	 4.	 The data for fine-tuning the BERT model are

expected to be in the format that BERT understands.

Data have to be divided into three parts: train, dev,

and test. As a rule of thumb, train should contain

80% of data and the remaining 20% will be divided

into dev and test. You need to make a folder

containing three separate files: train.tsv, dev.

tsv, and test.tsv. The train.tsv file will be used

for training the model, dev.tsv will be used for

Chapter 4 BERT Algorithms Explained

http://github.com/google-research/bert.git
http://github.com/google-research/bert.git

76

developing the system, and test.csv will be used

for evaluating model performance over unseen

data. Both train.tsv and dev.tsv should not have

headers and should have four columns as shown

below.

1 1 a text example belonging to class 1

2 1 a text example belonging to class 1

3 2 a text example belonging to class 2

4 0 a text example belonging to class 0

Here are details of the columns used.

a.	 First Column: Represents IDs of sample.

b.	 Second Column: Classification labels

corresponding to examples.

c.	 Third Column: Throw-away column.

d.	 Fourth Column: This represents the actual

textual sentence that needs to be classified.

	 5.	 The test.tsv file should have a header line, unlike

the other two files, and should appear as shown

here.

id sentence

1. first test example

2. second test example

3. third test example

Chapter 4 BERT Algorithms Explained

77

	 6.	 To train the model, you need to navigate to the

directory into which the model has been cloned.

Afterward, enter the following command at the

command prompt:

python bert/run_classifier.py \

--task_name=cola \

--do_train=true \

--do_eval=true \

--data_dir=./data \

--vocab_file=$BERT_BASE_DIR/vocab.txt \

--bert_config_file=$BERT_BASE_DIR/bert_config.json \

--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \

--max_seq_length=128 \

--train_batch_size=32 \

--learning_rate=2e-5 \

--num_train_epochs=3.0 \

--output_dir=./bert_output/

If length of your training data text is longer than 128

words then the value for max_seq_length can be

increased to 512. If you are training the model over a

CPU system, then you can reduce the training size to

avoid an out-of-memory error.

When the training is finished, the reports get stored

in the bert_output directory.

	 7.	 This trained BERT model is now ready to use for

prediction purposes. If we have to make a prediction

for new data, then data need to be stored in test.

tsv. Go to the directory where the trained model

files have been stored. Please refer to the highest-

Chapter 4 BERT Algorithms Explained

78

number (latest model file) model.ckpt file seen in

the bert_output directory. These files contain the

weights of the model trained. Now run the following

commands at the command prompt to obtain the

classification result, which will be stored in test_

results.tsv in the bert_output directory location.

python bert/run_classifier.py \

--task_name=cola \

--do_predict=true \

--data_dir=./data \

--vocab_file=$BERT_BASE_DIR/vocab.txt \

--bert_config_file=$BERT_BASE_DIR/bert_config.json \

--init_checkpoint=$TRAINED_CLASSIFIER \

--max_seq_length=128 \

--output_dir=./bert_output/

Please note that the value for the max_seq_length

parameters should be the same as what was used

during the training process.

For this book, we will demonstrate implementation of a question

classification dataset where questions will be classified into their

respective categories. There are mainly two types of questions, factoid

(nondescriptive) and non-factoid questions. As an example, “What is the

temperature in Delhi?” is a factoid question, as it is looking for an answer

based on some facts. “What is temperature?” is a non-factoid question, as

it is looking for text snippets about temperature. For this implementation,

please refer to the dataset at https://cogcomp.seas.upenn.edu/Data/

QA/QC/.

Now we will see how a question classification system can be

implemented using BERT.

Chapter 4 BERT Algorithms Explained

https://cogcomp.seas.upenn.edu/Data/QA/QC/
https://cogcomp.seas.upenn.edu/Data/QA/QC/

79

	 1.	 For this implementation, we will download the

BERT base-cased model from GitHub as described

previously.

	 2.	 The question classification dataset is already in the

format required for training the BERT model. The

data are split into train.tsv, dev.tsv, and test.

tsv sets. In train.tsv and dev.tsv, we do not have

any headers. The following is a description of the

columns in the file.

•	 First Column: Index for data point.

•	 Second Column: Classification label (i.e., factoid or

non-factoid). In this dataset, factoid is represented

by 0 and 1 for non-factoid.

•	 Third Column: Throwaway column with value a.

•	 Fourth Column: Actual question text.

Then we create data folder and save these files in the

folder. Please refer Figures 4-6 through 4-8 for some

examples from training files.

Figure 4-6.  Snapshot of Dev.tsv

Chapter 4 BERT Algorithms Explained

80

	 3.	 Now, navigate to the directory where the

downloaded BERT model exists.

	 4.	 As mentioned earlier, execute the command for

training at the command prompt. The model

output after completion of training gets stored in

the location that has been defined under the bert_

output parameter, as shown in Figure 4-9.

python run_classifier.py --task_name=cola --do_

train=true --do_eval=true --data_dir=$BERT_

BASE_DIR/data --vocab_file=$BERT_BASE_DIR/

bert_output/cased_L-12_H-768_A-12/vocab.

txt --bert_config_file=$BERT_BASE_DIR/bert_

output/ cased_L-12_H-768_A-12/bert_config.

json --init_checkpoint=$BERT_BASE_DIR/bert_

output/ model.ckpt-2023 --max_seq_length=

128 --train_batch_size=32 --learning_

rate=2e-5 --num_train_epochs=3.0 --output_

dir=$BERT_BASE_DIR/bert_output/

Figure 4-7.  Snapshot of train.tsv

Figure 4-8.  Snapshot of test.tsv

Chapter 4 BERT Algorithms Explained

81

$BERT_BASE_DIR is a directory where you must have

downloaded code from GitHub.

	 5.	 After completion of training, we can classify the test

data using the trained model. Run the following

command at the command prompt to get a

prediction for questions present in the test.tsv file

as shown in Figure 4-10.

python bert/run_classifier.py --task_name=cola --do_

predict=true --data_dir=$BERT_BASE_DIR/data

vocab_file=$BERT_BASE_DIR/bert_output/cased_L-

12_H-768_A-12/vocab.txt --bert_config_file=$BERT_

BASE_DIR/bert_output/ cased_L-12_H-768_A-12/

bert_config.json --init_checkpoint=$TRAINED_

CLASSIFIER --max_seq_length=128 --output_

dir=$BERT_BASE_DIR/bert_output/

$BERT_BASE_DIR is a directory where you must have

downloaded code from GitHub.

Figure 4-9.  Command to train BERT model

Figure 4-10.  Command for prediction

Chapter 4 BERT Algorithms Explained

82

	 6.	 The results of the classification are stored in the

location that has been defined as the value for the

bert_output parameter in the test_results.

tsv file. As we can see in Figure 4-11, the result

of classification is a probability distribution of a

question to two classes. The class with the higher

score will be considered the relevant one.

The first column corresponds to the label 0 (Factoid) and the second

column corresponds to the label 1 (non-factoid). From this generated

.csv we can see whether the questions in the test data are Factoid or

non-factoid questions.

This question type classification system is quite useful in a

conversational system where a query or question entered by an end user

needs to be classified to retrieve relevant results.

Figure 4-11.  Prediction results snapshot

Chapter 4 BERT Algorithms Explained

83

�Benchmarks for BERT Model
BERT embedding model performance and accuracy have been

continuously evaluated over different types of datasets for various NLP

tasks. This is being done to check if BERT is able to achieve benchmark

values already set up for these datasets by some other methods. These

benchmarks are datasets that evaluate the working of specific aspects

of a model. There exist many such benchmarks and some of them are

discussed next.

�GLUE Benchmark
General Language Understanding Evaluation (GLUE) is a collection of

datasets that can be used to train, evaluate, and analyze NLP models.

These different models are compared with each other over the GLUE

dataset. To test a model’s language understanding, the GLUE benchmark

includes nine diverse task datasets. To evaluate a model, first it is trained

over a dataset provided by GLUE and then it is scored on all nine tasks. The

final performance score is the average of all nine tasks.

	 Final GLUE Score Individual Task Score = å 	

The model is required to have representation of its input and output

changed so as to accommodate the task. For instance, during the

pretraining of BERT, few words are masked when sentences are given as

input. Because the input representation layer in BERT accommodates

all of the GLUE tasks, there is no need to change this layer. However, the

pretraining classification layer has to be removed. This layer is replaced

with the one that accommodates the output of each GLUE task. The BERT

model scores a state-of-the-art result on the GLUE benchmark, with a

score of 80.5%.

Chapter 4 BERT Algorithms Explained

84

�SQuAD Dataset
The Stanford Question Answering Dataset (SQuAD) is a reading

comprehension dataset, consisting of questions asked on a set of

Wikipedia articles. The answer to each of the questions is either a text

segment or a span from the passage, respectively. There are two versions of

the SQuAD dataset.

•	 SQuAD 1.1

•	 SQuAD 2.0

SQuAD2.0 has 100,000 questions in addition to SQuAD 1.1, which

contains 50,000 unanswered questions, but are similar to questions

that were answerable. This was done so that SQuAD2.0 can do well in

situations where no answers to questions are supported by a paragraph for

a question.

BERT is able to achieve state-of-the-art results on the SQuAD dataset

with minor modifications. It requires semicomplex preprocessing of data

and postprocessing to deal with the variable-length nature of SQuAD

context paragraphs and the character-level answer annotations used for

SQuAD training. The BERT model was able to achieve an F1 score of 93.2

and 83.1 for SQuAD 1.0 and SQuAD v2.0 over test dataset, respectively.

�IMDB Reviews Dataset
The IMDB dataset is an extensive movie review dataset that has been used

for classification of viewer sentiments about films. This dataset consists

of 25,000 highly polar movie reviews for training and 25,000 reviews

for testing. In addition to the training and testing data, there are also

additional unlabeled data. This dataset has also been used to evaluate

BERT in a sentiment classification task.

Chapter 4 BERT Algorithms Explained

85

�RACE Benchmark
RACE is a large-scale reading comprehension dataset from examinations.

The RACE dataset is used to evaluate models on a reading comprehension

task. This dataset was collected from English examinations of Chinese

students. It consists of nearly 28,000 passages and 100,000 questions

generated by human experts. The number of questions is much larger in

RACE as compared to other benchmark datasets. The BERT large model

achieves a score of 73.8% on the RACE benchmark dataset.

�Types of BERT-Based Models
BERT is a ground-breaking natural language model and its introduction

in the ML world has led to development of various models that are based

on it. Variants of the BERT model have been developed to cater to different

types of NLP-based systems. Here are a few of the major variants of BERT:

•	 ALBERT

•	 RoBERTa

•	 DistilBERT

•	 StructBERT

•	 BERTjoint for Natural Questions

�ALBERT
ALBERT is a much smaller version of BERT that was introduced jointly by

Google Research and the Toyota Technological Institute. It is a smarter,

“lite” BERT and is also considered a natural successor to BERT. It can

also be used to implement state-of-the-art NLP tasks. This is all possible

with less computation power compared to BERT, but you need to

Chapter 4 BERT Algorithms Explained

86

compromise on accuracy a little bit. ALBERT was basically created to make

improvements in architecture and training methods so that better results

are delivered with fewer required computation resources.

ALBERT has a BERT-like core architecture. It has a transformer

encoder architecture and a vocabulary of 30,000 words, which is the same

as BERT. However, there are substantial architectural improvements in

ALBERT for efficient parameter usage.

	 1.	 Factorized embedding parameterization: In the

case of BERT, the WordPiece embeddings size (E)

is directly tied to the hidden layer size (H). It was

observed that WordPiece embeddings are designed

to learn context-independent representations,

whereas the hidden layer embeddings are designed

to learn context-dependent representations.

In BERT we try to learn context-dependent

representations through the hidden layers only.

When H and E are tied together, we end up with a

model with billions of parameters that are rarely

updated in training. This happens as the embedding

matrix, which is V*E where V is the large vocabulary,

must scale with the H (hidden layers). This actually

results in inefficient parameters, as these two items

work for different purposes.

In ALBERT, to make it more efficient we untie the

two parameters and embedding parameters are split

into two smaller matrices. Now the one-hot vectors

are not directly projected into H; rather, they are

projected into a smaller, lower dimension matrix

E, and then E is projected into the hidden layers.

Thus, the parameters get reduced from O (V*H) to

Θ(V*E+E*H).

Chapter 4 BERT Algorithms Explained

87

	 2.	 Cross-layer parameter sharing: ALBERT has

a smoother transition from layer to layer in

comparison to BERT and the parameter efficiency is

improved by sharing of all the parameters across all

layers. The feed-forward and attention parameters

are all shared. This weight sharing is helpful in

stabilizing the network parameters.

	 3.	 Training changes: Sentence order prediction:
Similar to BERT, ALBERT also uses MLM but does

not use NSP. Instead of NSP, ALBERT uses its own

newly developed training method called sentence

order prediction (SOP).

The NSP loss used in BERT was not found to be a

very effective training mechanism in subsequent

studies. Hence, it was leveraged to develop SOP as

NSP was unreliable.

In ALBERT SOP, loss is used to model intersentence

coherence. SOP was mainly created to focus

on intersentence coherence loss instead of

topic prediction, whereas BERT combines topic

prediction with coherence prediction. Hence,

ALBERT is able to learn finer grained intersentence

cohesion by avoiding issues of topic prediction.

ALBERT, even though it has fewer parameters than BERT, gets results

in less time. In the language benchmark tests SQuAD1.1, SQuAD2.0, MNLI

SST-2, and RACE, ALBERT has significantly outperformed BERT, as we can

see in the comparison in Table 4-1.

Chapter 4 BERT Algorithms Explained

88

�RoBERTa
RoBERTa is an optimized method for pretraining NLP systems. RoBERTa

(Robustly optimized BERT) was developed by the Facebook AI team and

based on Google’s BERT model. RoBERTa reimplemented the neural

network architecture of BERT with additional pretraining improvements

that achieve state-of-the-art results on several benchmarks.

RoBERTa and BERT share several configurations, but there are some

model settings that differentiate the two models.

•	 Reserved token: BERT uses [CLS] and [SEP] as starting

token and separator token, respectively, whereas

RoBERTa uses <s> and </s> to convert sentences.

•	 Size of sub-word: BERT has about 30,000 sub-words,

whereas in RoBERTa there are about 50,000 sub-words.

Table 4-1.  Comparison Between BERT and ALBERT Models

Model Parameters SQuAD1.1 SQuAD2.0 MNLI SST-2 RACE Avg Speedup

BERT base 108M 90.5/83.3 80.3/77.3 84.1 91.7 68.3 82.1 17.7x

BERT large 334M 92.4/85.8 83.9/80.8 85.8 92.2 73.8 85.1 3.8x

BERT xlarge 1270M 86.3/77.9 73.8/70.5 80.5 87.8 39.7 76.7 1.0

ALBERT

base

12M 89.3/82.1 79.1/76.1 81.9 89.4 63.5 80.1 21.1x

ALBERT

large

18M 90.9/84.1 82.1/79.0 83.8 90.6 68.4 82.4 6.5x

ALBERT

xlarge

59M 93.0/86.5 85.9/83.1 85.4 91.9 73.9 85.5 2.4x

ALBERT

xxlarge

233M 94.1/88.3 88.1/85.1 88.0 95.2 82.3 88.7 1.2x

Chapter 4 BERT Algorithms Explained

89

In addition, there are specific modifications and adjustments that help

RoBERTa to perform better than BERT.

•	 More training data: During reimplementation of BERT,

several changes were made to the hyperparameters of

the BERT model and training was done with a higher

magnitude of data with more iterations. RoBERTa uses

more training data. It uses BookCorpus (16G),

CC-NEWS (76G), OpenWebText (38G), and Stories

(31G) data, whereas BERT uses only BookCorpus as

training data.

•	 Dynamic masking: When BERT was being ported

to create RoBERTa, the creators modified the word

masking strategy. BERT mainly uses static masking, in

which the words are masked from sentences during

preprocessing. RoBERTa makes use of dynamic

masking. Here, a new masking pattern is generated

whenever a sentence is fed into training. RoBERTa

duplicates training data 10 times and masks those

data differently. It is experimentally observed that the

dynamic masking improves performance and gives a

better result than static masking.

•	 Different training objective: BERT captures the

relationships between the sentences by training on

NSP. Some training approaches without application of

NSP provided better results, proving the ineffectiveness

of NSP. Experiments were done to compare models

trained with segment-pair with NSP, sentence-pair with

NSP, full sentences without NSP, and doc-sentences

without NSP. The models trained without NSP

performed better on SQuAD1.1/2.0, MNLI-m, SST-2,

and RACE.

Chapter 4 BERT Algorithms Explained

90

•	 Training on longer sequences: Better results have

been achieved when a model was trained on longer

sequences. BERT base is trained with a batch size of

256 sequences via 1 million steps, but training on 2,000

sequences and 31,000 steps shows improvement in

performance.

With the implementation of the design changes, the RoBERTa model

delivered state-of-the-art performance on the MNLI, QNLI, RTE, and

RACE tasks. It also realized a sizable performance improvement on the

GLUE benchmark with a score of 88.5.

RoBERTa demonstrates that the tuning the BERT training procedure

can result in performance improvement on a variety of NLP tasks. This

highlights the importance of exploring the design choices in BERT training

for better performance output.

�DistilBERT
DistilBERT was introduced for knowledge distillation. This knowledge

distillation was required to address the drawbacks of computation of

large numbers of parameters. The NLP models that have been developed

recently show an increase in parameter count, now reaching parameter

counts as high as in the tens of billions. Even though higher parameter

count ensures optimal performance, it prevents model training and

serving when computational resources are limited.

Knowledge distillation revolves around the idea that a larger model

acts as a teacher for a smaller one that tries to replicate its outputs and

sublayer activation for a given set of inputs. This is sometimes also known

as teacher–student learning. It is a compression technique where the

behavior of larger models is reproduced by the smaller ones. The output

distribution from the teacher can be used for all possible targets, which

helps in creation of a student with generalizability. For example, in the

Chapter 4 BERT Algorithms Explained

91

sentence “The sky is [mask]” a teacher might assign high probabilities

to words like “cloudy” and “clear.” There are also chances that a high

probability is assigned to the word “blue.” This is helpful for the student

model, so that it is able to generalize rather than only learn the correct

target. This information is captured through the loss function that is

being used to train the student. This loss function comprises a linear

combination of three factors.

�Distillation Loss

Distillation loss takes into consideration combination of the output

probabilities of the teacher (t) and the student (s) as shown in the

following equation.

Lce = ∑i ti log(si)

Distillation Loss

ti = exp(zi/T)/ ∑j exp(zj/T)

Temperature Softmax

The teacher probabilities are calculated through temperature softmax.

This is basically a modification to the softmax so that more granularities

are obtained from the teacher model output distribution. This gives

a smoother output distribution, as the size of larger probabilities are

decreased and the smaller ones are increased. This helps to minimize the

distillation loss.

�Cosine Embedding Loss

Cosine embedding loss is a distance measure between the hidden

representations for teacher and student. This helps in creation of a better

model as it enables the student to imitate the teacher not just in the output

layer, but in other layers, too.

Chapter 4 BERT Algorithms Explained

92

Masked Language Modeling Loss

This is the same loss as used in training of the BERT model to predict the

correct token value for the masked token in the sequence.

�Architectural Modifications

The DistilBERT network architecture is also a transformer encoder model

similar to BERT base, but it has half the number of layers. The hidden

representations, though, are kept the same. This affects the parameter

count, with a 66 million parameter count in the case of DistilBERT,

whereas there are 110 million parameters in the teacher model. The

reduction in the model size through the number of layers helps to achieve

the drastic reduction in computation complexity. The reduction in the size

of the vectors or the hidden state representations have also reduced the

model size.

After the knowledge distillation, DistilBERT is able to achieve 97% of

BERT base’s score on the GLUE benchmark. This knowledge distillation

has helped to condense the larger models or ensembles of models into a

smaller student network. This has proven to be helpful in situations where

the computational environment is limited.

�StructBERT
StructBERT is a model based on BERT that incorporates language

structures into BERT pretraining. The two linearization strategies help

to incorporate language structure into BERT. Word-level ordering and

sentence-level ordering are the two structural information sets that are

leveraged in StructBERT. StructBERT achieves better generalizability

and adaptability due to the incorporation of this structural pretraining.

The dependency between the words as well as sentences is encoded in

StructBERT.

Chapter 4 BERT Algorithms Explained

93

�Structural Pretraining in StructBERT

Similar to all the other BERT-based models, StructBERT also builds on

the BERT architecture. The original BERT performs two unsupervised

pretraining tasks, MLM and NSP. StructBERT is able to increase the ability

of the MLM task. It shuffles a certain number of tokens after masking of

words and predicts the right order. StructBERT is also able to understand

the relationship between sentences in a better way. This is achieved by

random swapping of the sentence order. This new BERT-based model

captures the fine-grained word structure in every sentence.

After pretraining of the StructBERT it can be fine-tuned on task-

specific data for a wide range of downstream tasks such as document

summarization.

�Pretraining Objectives

The pretraining objectives of the original BERT are extended in the case

of StructBERT to fully utilize rich inner-sentence and intersentence

structures in language. This is done in two ways.

	 1.	 Word structural objective: The BERT model fails

to model sequential order and high-order word

dependency in natural language explicitly. A good

language model should be able to reconstruct a

sentence from a given sentence that has randomly

ordered words. StructBERT is able to implement this

idea by supplementing BERT’s training objectives

with a new word structural objective. This new

model objective gives the model the ability to

restructure the sentence to have correct ordering of

the randomly shuffled word tokens. This objective is

trained together with the MLM objective from BERT.

Chapter 4 BERT Algorithms Explained

94

	 2.	 Sentence structural objective: The original BERT

model objective of NSP is extended in StructBERT

by predicting both the next sentence as well as the

previous sentence. This makes the pretrained model

learn the sequential ordering of the sentences in a

bidirectional manner.

These two auxiliary objectives are pretrained together with the original

MLM objective to exploit inherent language structures.

�BERTjoint for Natural Questions
BERTjoint is a BERT-based model for Natural Questions. The BERTjoint

model predicts short and long answers in a single model only instead of

a pipeline approach. In this model each document is split into multiple

instances of training with the help of overlapping token windows. This

approach is used to create a balanced training set and is being followed

by down sampling instances without an answer (null instances). The

[CLS] token is used during training to predict null instances, and spans at

inference time are ranked by the difference between the span score and

the [CLS] score.

The model uses the Natural Questions (NQ) dataset that is a question

answering dataset of 307,373 training examples, 7,830 development

examples, and 7,842 test examples. For every example, a query is entered

by the user over the Google search engine and the corresponding

Wikipedia page that contains an answer. The Wikipedia page is annotated

as an answer to the question.

The BERTjoint model was initialized from the original BERT model that

trained on the SQuAD 1.1 dataset. Afterward, this model was fine-tuned

on Natural Questions training instances. It has used the Adam optimizer

to minimize the loss. The BERTjoint model for Natural Questions gives

Chapter 4 BERT Algorithms Explained

95

dramatically better results than the baseline NQ systems. This variation of

BERT offers a new way to design a question-answering system.

�Conclusion
This chapter looked deeper into BERT, along with its two algorithms, MLM

and NSP. We also discussed a sample text classification model developed

using BERT. We also examined the behavior of BERT over different

benchmark datasets, along with multiple variations of BERT. In the next

chapter, we discuss the design of a question answering system using BERT.

Chapter 4 BERT Algorithms Explained

	Chapter 4: BERT Algorithms Explained
	How Does BERT Work?
	Text Processing
	Masked Language Modeling
	Next Sentence Prediction

	Text Classification Using BERT
	Benchmarks for BERT Model
	GLUE Benchmark
	SQuAD Dataset
	IMDB Reviews Dataset
	RACE Benchmark

	Types of BERT-Based Models
	ALBERT
	RoBERTa
	DistilBERT
	Distillation Loss
	Cosine Embedding Loss
	Masked Language Modeling Loss
	Architectural Modifications

	StructBERT
	Structural Pretraining in StructBERT
	Pretraining Objectives

	BERTjoint for Natural Questions

	Conclusion

