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CHAPTER 4

BERT Algorithms 
Explained
This chapter takes a deep dive into the BERT algorithm for sentence 

embedding along with various training strategies, including MLM and 

NSP. We will also see an implementation of a text classification system 

using BERT.

�How Does BERT Work?
BERT makes use of a transformer to learn contextual relations between 

words in a text. A transformer has two mechanisms—an encoder and a 

decoder—but BERT only requires the encoder mechanism. BERT uses a 

bidirectional approach and reads the text input sequentially, which allows 

the model to learn the context of a word based on its surrounding words. 

The input to the encoder is a sequence of tokens that are embedded into 

vectors. The vectors are then passed into the neural network and an output 

sequence of vectors is then generated corresponding to the input. The 

output vector for a word is dependent on the context in which it occurs. 

For example, the vector for the word “like” in the sentence “He likes to 

play cricket” would be different than the vector for the same word in the 

sentence “His face turned red like a tomato.”
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This procedure involves text processing steps before even starting the 

model-building phase. The next section discusses the text processing steps 

used in BERT.

�Text Processing
There is a specific set of rules for representing the input text for the BERT 

model. This, too, is responsible for better functioning of the model. If we 

look into the embeddings, the input embedding in BERT is a combination 

of the following three types of embeddings.

•	 Position embeddings: Positional embeddings are used 

to learn the information of order in the embeddings. 

As in transformers the information related to order is 

missed, positional embeddings are used to recover it. 

For each of the positions in the input sequence, BERT 

learns a unique positional embedding. With the help of 

these positional embeddings, BERT is able to express 

the position of words in a sentence as it captures this 

sequence or order information.

•	 Segment embeddings: BERT also learns unique 

embedding for the first and second sentences to 

help the model distinguish between them. It can also 

take sentence pairs as inputs for tasks like question 

answering.

•	 Token embeddings: For every token in the WordPiece 

token vocabulary, token embeddings are learned. 

The WordPiece token vocabulary contains subwords 

of words in the corpus. As an example, for the word 

“Question,” this vocabulary set will include all possible 

subwords of “Question,” such as [“Questio”, “Questi”…], 

and so on.
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Figure 4-1 shows an example of sequences of embeddings in BERT.

The input representation of a given token is constructed by 

summing the token, segment, and position embeddings. This makes 

it a comprehensive embedding scheme that contains a lot of useful 

information for the model.

For an NLP task where the job is to predict next word in a sentence, 

if we go with a directional approach, it has some limitations. However, 

BERT provides two strategies to learn contextual information: MLM and 

NSP. During training in BERT, both of these tasks will be trained together. 

When using these two strategies, the model tries to achieve the goal of 

minimizing the combined loss function.

�Masked Language Modeling
BERT is a deep bidirectional model that is more powerful than a left-to-

right model or the shallow concatenation of a left-to-right and a right-to-

left model. The BERT network can effectively capture information from 

both the right and left context of a token. This goes from the first layer 

itself and all the way through to the last layer. Previously, language models 

were trained on left-to-right context, which made them susceptible to 

information less. Even though the ELMo model greatly improved on the 

Figure 4-1.  BERT embeddings
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existing techniques using the shallow concatenating of the two LSTM 

language models, that wasn’t enough. BERT has proven to be more 

significant than the existing techniques where MLM plays a crucial role.

In a masked language task, some of the words in text are randomly 

masked. The context words surrounding a [MASK] token are used to 

predict the [MASK] word. When word sequences are being fed into BERT, 

15% of the words in each sequence are replaced with a [MASK] token. 

These 15% of words are randomly selected. Of these, 80% are masked, 

10% are replaced with a random word, and 10% are retained. This is done 

because if 100% of the masked words were used then the model wouldn’t 

necessarily produce good token representations for nonmasked words. 

The model performance is improved, as too much focusing on a particular 

position or tokens has been prevented. On the basis of the context 

provided by the nonmasked words in the sequence, the model tries to 

predict the original value of the masked words.

These processes that need to be followed for generation of word 

embedding using BERT:

•	 Addition of a classification layer on top of the encoder 

output.

•	 Multiplication of the output vectors by the embedding 

matrix, thus transforming them into the vocabulary 

dimension.

•	 Calculation of the probability of each word in the 

vocabulary with softmax.

The loss function in BERT only considers the prediction of the 

masked values; the prediction of the nonmasked words is ignored. This 

makes the model converge slower than directional ones. As an example, 

for the sentence “The birds are flying in the clear blue sky,” if we are 

training the bidirectional model instead of predicting the next word in the 

sequence, a model can be built to predict the missing word from within 
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the sequence itself. Now, consider a token “flying” and mask it so that it 

can be considered missing. The model would now need to be trained in 

such a way that it can predict the value of this missing or masked token 

in the sentence “The birds are [MASK] in the clear blue sky.” This is the 

essence of MLM, which enables the model to understand the relationships 

between words in a sentence.

�Next Sentence Prediction
The NSP task is similar to next word prediction in a sentence. NSP predicts 

the next sentence in document, whereas the latter works for prediction of 

missing words in a sentence. BERT is also trained on the NSP task. This is 

required so that our model is able to understand how different sentences 

in a text corpus are related to each other. During the training of the BERT 

model, the sentence pairs are taken as input. It then predicts if the second 

sentence in the pair is the subsequent sentence in the original document. 

To achieve this, 50% of inputs are taken such that the second sentence is 

the subsequent sentence as in the original document, whereas the other 

50% comprises the pair where the second sentence is chosen randomly 

from the document. It is assumed that the random second sentence is 

disconnected from the first sentence.

As an example, consider two different instances of training data for 

Sentence A and Sentence B:

Instance 1

Sentence A – I saw a bird flying in the sky.

Sentence B – It was a blue sparrow.

Label – IsNextSentence

Instance 2

Sentence A – I saw a bird flying in the sky.

Sentence B – The dog is barking.

Label – NotNextSentence
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As we can see, for Instance 1 Sentence B is logically subsequent to 

Sentence A, but the same is not true for Instance 2, which is quite clear 

from the labels IsNextSentence and NotNextSentence, respectively.

These inputs are being processed even before the training process 

starts to differentiate between two sentences. The procedure is outlined 

here.

	 1.	 Two tokens are inserted in a sentence pair. One of 

the tokens [CLS] is inserted at the beginning of the 

first sentence and other token [SEP] is inserted at 

the end of each sentence. The two sentences are 

both tokenized and separated from each other by 

the separation token and then fed as a single input 

sequence into the model.

	 2.	 For each of the token sentences, embedding is 

added that indicates whether it is Sentence A 

or Sentence B. These sentence embeddings are 

basically similar in concept to token embeddings 

with a vocabulary of 2.

	 3.	 Along with the sentence embeddings, positional 

embeddings are also added to each of the tokens, 

which helps to indicate the position of the token in 

the sequence.

Now, the following steps are performed to predict if the second 

sentence is actually connected to the first.

	 1.	 The whole input sequence is passed though the 

transformer model.

	 2.	 With the help of the simple classification layer, the 

output of the [CLS] token is transformed into a 2X1 

shaped vector.
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	 3.	 Thereby, the probability of IsNextSentence is 

computed with the help of softmax.

As we know, BERT is used for variety of NLP tasks such as document 

summarization, question answering systems, document or sentence 

classification, and so on. Now, let’s see how BERT can be used for 

classification of sentences.

�Text Classification Using BERT
BERT can be used for a variety of language tasks. A small layer added to 

the core model allows use of BERT for tasks like classification, question 

answering, named entity recognition, and so on. The BERT model is fine 

tuned for this purpose. For classification tasks, a classification layer is 

added on top of the transformer output for the [CLS] token, similar to 

NSP. Most of the hyperparameters stay the same as in BERT training, but 

some of them require tuning to achieve state-of-the art-results for text 

classification tasks. Figure 4-2 gives an example of determining whether a 

given tweet is hate speech or not.

Similar types of tasks such as such as document classification, 

sentiment analytics, and so on, can also be achieved using BERT.

Next, we will see how a pretrained model of text classification can be 

configured in your system. Follow the steps listed here to configure or 

install the necessary prerequisites.

Figure 4-2.  An example of classification using BERT
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	 1.	 Make sure Python is installed on your system. 

Open a command prompt and run the following 

command to determine if Python is installed, as 

shown in Figure 4-3.

Python

This will start the Python console at the command 

prompt. If Python is not installed on your system, 

download and install Python as per your operating 

system using this link: https://www.python.org/

downloads/

	 2.	 Next, install Jupyter Notebook. Open a command 

prompt and run the following command.

pip install notebook

	 3.	 Open a command prompt and run the following 

command to run Jupyter Notebook.

jupyter notebook

The notebook will start in your default browser with 

localhost as the host address and port number as 8888, 

along with a unique token ID, as shown in Figure 4-4.

Figure 4-3.  Python console
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	 4.	 You can also use Google Colab Notebook for 

the same purpose. It provides a fast and free 

environment to run your Python code in case your 

system doesn’t have sufficient resources available. 

You can also use the graphics processing units 

(GPUs) and Tensor Processing Units (TPUs) for 

free, but for a limited time (12 hours) in Google 

Colab. You just need a Google account to log in to 

Google Colab Notebook. For this book, we will be 

using Google Colab Notebook to demonstrate text 

classification using BERT. Log in to your Google 

account and click https://colab.research.

google.com. You will see the screen shown in 

Figure 4-5.

Figure 4-4.  Jupyter Notebook console
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	 5.	 To create a new Colab notebook, click New 

Notebook in the bottom right corner as shown in 

Figure 4-5.

	 6.	 Install TensorFlow. Run the following command in 

your Jupyter Notebook or Colab Notebook.

pip install tensorflow

We have now installed all prerequisites for this exercise. Please follow 

the steps listed next to configure a pretrained model for text classification 

using BERT.

Figure 4-5.  Google Colab interface to create or import a notebook
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	 1.	 BERT model files and required code can be 

downloaded from the GitHub repository. Open the 

command prompt and clone the GitHub repository 

(i.e., https:/github.com/google-research/

bert.git) onto the system by typing the following 

command:

git clone https://github.com/google-research/bert.git

	 2.	 Downloaded model files containing the weights 

and other necessary BERT files. Depending on your 

requirements, a BERT pretrained model needs to be 

selected from this list.

•	 BERT Base, Uncased

•	 BERT Large, Uncased

•	 BERT Base, Cased

•	 BERT Large, Cased

	 3.	 If you have an access to a cloud TPU, BERT Large 

can be used; otherwise, the BERT Base model 

should be used. Further selection can be made from 

the cased and uncased models.

	 4.	 The data for fine-tuning the BERT model are 

expected to be in the format that BERT understands. 

Data have to be divided into three parts: train, dev, 

and test. As a rule of thumb, train should contain 

80% of data and the remaining 20% will be divided 

into dev and test. You need to make a folder 

containing three separate files: train.tsv, dev.

tsv, and test.tsv. The train.tsv file will be used 

for training the model, dev.tsv will be used for 
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developing the system, and test.csv will be used 

for evaluating model performance over unseen 

data. Both train.tsv and dev.tsv should not have 

headers and should have four columns as shown 

below.

1          1         a         text example belonging to class 1

2          1         a          text example belonging to class 1

3          2         a          text example belonging to class 2

4          0         a          text example belonging to class 0

Here are details of the columns used.

a.	 First Column: Represents IDs of sample.

b.	 Second Column: Classification labels 

corresponding to examples.

c.	 Third Column: Throw-away column.

d.	 Fourth Column: This represents the actual 

textual sentence that needs to be classified.

	 5.	 The test.tsv file should have a header line, unlike 

the other two files, and should appear as shown 

here.

id sentence

1. first test example

2. second test example

3. third test example
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	 6.	 To train the model, you need to navigate to the 

directory into which the model has been cloned. 

Afterward, enter the following command at the 

command prompt:

python bert/run_classifier.py \

--task_name=cola \

--do_train=true \

--do_eval=true \

--data_dir=./data \

--vocab_file=$BERT_BASE_DIR/vocab.txt \

--bert_config_file=$BERT_BASE_DIR/bert_config.json \

--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \

--max_seq_length=128 \

--train_batch_size=32 \

--learning_rate=2e-5 \

--num_train_epochs=3.0 \

--output_dir=./bert_output/

If length of your training data text is longer than 128 

words then the value for max_seq_length can be 

increased to 512. If you are training the model over a 

CPU system, then you can reduce the training size to 

avoid an out-of-memory error.

When the training is finished, the reports get stored 

in the bert_output directory.

	 7.	 This trained BERT model is now ready to use for 

prediction purposes. If we have to make a prediction 

for new data, then data need to be stored in test.

tsv. Go to the directory where the trained model 

files have been stored. Please refer to the highest-
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number (latest model file) model.ckpt file seen in 

the bert_output directory. These files contain the 

weights of the model trained. Now run the following 

commands at the command prompt to obtain the 

classification result, which will be stored in test_

results.tsv in the bert_output directory location.

python bert/run_classifier.py \

--task_name=cola \

--do_predict=true \

--data_dir=./data \

--vocab_file=$BERT_BASE_DIR/vocab.txt \

--bert_config_file=$BERT_BASE_DIR/bert_config.json \

--init_checkpoint=$TRAINED_CLASSIFIER \

--max_seq_length=128 \

--output_dir=./bert_output/

Please note that the value for the max_seq_length 

parameters should be the same as what was used 

during the training process.

For this book, we will demonstrate implementation of a question 

classification dataset where questions will be classified into their 

respective categories. There are mainly two types of questions, factoid 

(nondescriptive) and non-factoid questions. As an example, “What is the 

temperature in Delhi?” is a factoid question, as it is looking for an answer 

based on some facts. “What is temperature?” is a non-factoid question, as 

it is looking for text snippets about temperature. For this implementation, 

please refer to the dataset at https://cogcomp.seas.upenn.edu/Data/

QA/QC/.

Now we will see how a question classification system can be 

implemented using BERT.

Chapter 4  BERT Algorithms Explained
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	 1.	 For this implementation, we will download the 

BERT base-cased model from GitHub as described 

previously.

	 2.	 The question classification dataset is already in the 

format required for training the BERT model. The 

data are split into train.tsv, dev.tsv, and test.

tsv sets. In train.tsv and dev.tsv, we do not have 

any headers. The following is a description of the 

columns in the file.

•	 First Column: Index for data point.

•	 Second Column: Classification label (i.e., factoid or 

non-factoid). In this dataset, factoid is represented 

by 0 and 1 for non-factoid.

•	 Third Column: Throwaway column with value a.

•	 Fourth Column: Actual question text.

Then we create data folder and save these files in the 

folder. Please refer Figures 4-6 through 4-8 for some 

examples from training files.

Figure 4-6.  Snapshot of Dev.tsv
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	 3.	 Now, navigate to the directory where the 

downloaded BERT model exists.

	 4.	 As mentioned earlier, execute the command for 

training at the command prompt. The model 

output after completion of training gets stored in 

the location that has been defined under the bert_

output parameter, as shown in Figure 4-9.

python run_classifier.py --task_name=cola --do_ 

train=true --do_eval=true --data_dir=$BERT_

BASE_DIR/data --vocab_file=$BERT_BASE_DIR/

bert_output/cased_L-12_H-768_A-12/vocab.

txt --bert_config_file=$BERT_BASE_DIR/bert_

output/ cased_L-12_H-768_A-12/bert_config.

json --init_checkpoint=$BERT_BASE_DIR/bert_

output/ model.ckpt-2023 --max_seq_length= 

128 --train_batch_size=32 --learning_

rate=2e-5 --num_train_epochs=3.0 --output_

dir=$BERT_BASE_DIR/bert_output/

Figure 4-7.  Snapshot of train.tsv

Figure 4-8.  Snapshot of test.tsv
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$BERT_BASE_DIR is a directory where you must have 

downloaded code from GitHub.

	 5.	 After completion of training, we can classify the test 

data using the trained model. Run the following 

command at the command prompt to get a 

prediction for questions present in the test.tsv file 

as shown in Figure 4-10.

python bert/run_classifier.py --task_name=cola --do_ 

predict=true --data_dir=$BERT_BASE_DIR/data 

vocab_file=$BERT_BASE_DIR/bert_output/cased_L-

12_H-768_A-12/vocab.txt --bert_config_file=$BERT_

BASE_DIR/bert_output/ cased_L-12_H-768_A-12/

bert_config.json --init_checkpoint=$TRAINED_

CLASSIFIER --max_seq_length=128 --output_

dir=$BERT_BASE_DIR/bert_output/

$BERT_BASE_DIR is a directory where you must have 

downloaded code from GitHub.

Figure 4-9.  Command to train BERT model

Figure 4-10.  Command for prediction
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	 6.	 The results of the classification are stored in the 

location that has been defined as the value for the 

bert_output parameter in the test_results.

tsv file. As we can see in Figure 4-11, the result 

of classification is a probability distribution of a 

question to two classes. The class with the higher 

score will be considered the relevant one.

The first column corresponds to the label 0 (Factoid) and the second 

column corresponds to the label 1 (non-factoid). From this generated 

.csv we can see whether the questions in the test data are Factoid or 

non-factoid questions.

This question type classification system is quite useful in a 

conversational system where a query or question entered by an end user 

needs to be classified to retrieve relevant results.

Figure 4-11.  Prediction results snapshot

Chapter 4  BERT Algorithms Explained



83

�Benchmarks for BERT Model
BERT embedding model performance and accuracy have been 

continuously evaluated over different types of datasets for various NLP 

tasks. This is being done to check if BERT is able to achieve benchmark 

values already set up for these datasets by some other methods. These 

benchmarks are datasets that evaluate the working of specific aspects 

of a model. There exist many such benchmarks and some of them are 

discussed next.

�GLUE Benchmark
General Language Understanding Evaluation (GLUE) is a collection of 

datasets that can be used to train, evaluate, and analyze NLP models. 

These different models are compared with each other over the GLUE 

dataset. To test a model’s language understanding, the GLUE benchmark 

includes nine diverse task datasets. To evaluate a model, first it is trained 

over a dataset provided by GLUE and then it is scored on all nine tasks. The 

final performance score is the average of all nine tasks.

	 Final GLUE Score Individual Task Score    = å 	

The model is required to have representation of its input and output 

changed so as to accommodate the task. For instance, during the 

pretraining of BERT, few words are masked when sentences are given as 

input. Because the input representation layer in BERT accommodates 

all of the GLUE tasks, there is no need to change this layer. However, the 

pretraining classification layer has to be removed. This layer is replaced 

with the one that accommodates the output of each GLUE task. The BERT 

model scores a state-of-the-art result on the GLUE benchmark, with a 

score of 80.5%.
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�SQuAD Dataset
The Stanford Question Answering Dataset (SQuAD) is a reading 

comprehension dataset, consisting of questions asked on a set of 

Wikipedia articles. The answer to each of the questions is either a text 

segment or a span from the passage, respectively. There are two versions of 

the SQuAD dataset.

•	 SQuAD 1.1

•	 SQuAD 2.0

SQuAD2.0 has 100,000 questions in addition to SQuAD 1.1, which 

contains 50,000 unanswered questions, but are similar to questions 

that were answerable. This was done so that SQuAD2.0 can do well in 

situations where no answers to questions are supported by a paragraph for 

a question.

BERT is able to achieve state-of-the-art results on the SQuAD dataset 

with minor modifications. It requires semicomplex preprocessing of data 

and postprocessing to deal with the variable-length nature of SQuAD 

context paragraphs and the character-level answer annotations used for 

SQuAD training. The BERT model was able to achieve an F1 score of 93.2 

and 83.1 for SQuAD 1.0 and SQuAD v2.0 over test dataset, respectively.

�IMDB Reviews Dataset
The IMDB dataset is an extensive movie review dataset that has been used 

for classification of viewer sentiments about films. This dataset consists 

of 25,000 highly polar movie reviews for training and 25,000 reviews 

for testing. In addition to the training and testing data, there are also 

additional unlabeled data. This dataset has also been used to evaluate 

BERT in a sentiment classification task.
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�RACE Benchmark
RACE is a large-scale reading comprehension dataset from examinations. 

The RACE dataset is used to evaluate models on a reading comprehension 

task. This dataset was collected from English examinations of Chinese 

students. It consists of nearly 28,000 passages and 100,000 questions 

generated by human experts. The number of questions is much larger in 

RACE as compared to other benchmark datasets. The BERT large model 

achieves a score of 73.8% on the RACE benchmark dataset.

�Types of BERT-Based Models
BERT is a ground-breaking natural language model and its introduction 

in the ML world has led to development of various models that are based 

on it. Variants of the BERT model have been developed to cater to different 

types of NLP-based systems. Here are a few of the major variants of BERT:

•	 ALBERT

•	 RoBERTa

•	 DistilBERT

•	 StructBERT

•	 BERTjoint for Natural Questions

�ALBERT
ALBERT is a much smaller version of BERT that was introduced jointly by 

Google Research and the Toyota Technological Institute. It is a smarter, 

“lite” BERT and is also considered a natural successor to BERT. It can 

also be used to implement state-of-the-art NLP tasks. This is all possible 

with less computation power compared to BERT, but you need to 
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compromise on accuracy a little bit. ALBERT was basically created to make 

improvements in architecture and training methods so that better results 

are delivered with fewer required computation resources.

ALBERT has a BERT-like core architecture. It has a transformer 

encoder architecture and a vocabulary of 30,000 words, which is the same 

as BERT. However, there are substantial architectural improvements in 

ALBERT for efficient parameter usage.

	 1.	 Factorized embedding parameterization: In the 

case of BERT, the WordPiece embeddings size (E) 

is directly tied to the hidden layer size (H). It was 

observed that WordPiece embeddings are designed 

to learn context-independent representations, 

whereas the hidden layer embeddings are designed 

to learn context-dependent representations. 

In BERT we try to learn context-dependent 

representations through the hidden layers only.

When H and E are tied together, we end up with a 

model with billions of parameters that are rarely 

updated in training. This happens as the embedding 

matrix, which is V*E where V is the large vocabulary, 

must scale with the H (hidden layers). This actually 

results in inefficient parameters, as these two items 

work for different purposes.

In ALBERT, to make it more efficient we untie the 

two parameters and embedding parameters are split 

into two smaller matrices. Now the one-hot vectors 

are not directly projected into H; rather, they are 

projected into a smaller, lower dimension matrix 

E, and then E is projected into the hidden layers. 

Thus, the parameters get reduced from O (V*H) to 

Θ(V*E+E*H).

Chapter 4  BERT Algorithms Explained



87

	 2.	 Cross-layer parameter sharing: ALBERT has 

a smoother transition from layer to layer in 

comparison to BERT and the parameter efficiency is 

improved by sharing of all the parameters across all 

layers. The feed-forward and attention parameters 

are all shared. This weight sharing is helpful in 

stabilizing the network parameters.

	 3.	 Training changes: Sentence order prediction: 
Similar to BERT, ALBERT also uses MLM but does 

not use NSP. Instead of NSP, ALBERT uses its own 

newly developed training method called sentence 

order prediction (SOP).

The NSP loss used in BERT was not found to be a 

very effective training mechanism in subsequent 

studies. Hence, it was leveraged to develop SOP as 

NSP was unreliable.

In ALBERT SOP, loss is used to model intersentence 

coherence. SOP was mainly created to focus 

on intersentence coherence loss instead of 

topic prediction, whereas BERT combines topic 

prediction with coherence prediction. Hence, 

ALBERT is able to learn finer grained intersentence 

cohesion by avoiding issues of topic prediction.

ALBERT, even though it has fewer parameters than BERT, gets results 

in less time. In the language benchmark tests SQuAD1.1, SQuAD2.0, MNLI 

SST-2, and RACE, ALBERT has significantly outperformed BERT, as we can 

see in the comparison in Table 4-1.
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�RoBERTa
RoBERTa is an optimized method for pretraining NLP systems. RoBERTa 

(Robustly optimized BERT) was developed by the Facebook AI team and 

based on Google’s BERT model. RoBERTa reimplemented the neural 

network architecture of BERT with additional pretraining improvements 

that achieve state-of-the-art results on several benchmarks.

RoBERTa and BERT share several configurations, but there are some 

model settings that differentiate the two models.

•	 Reserved token: BERT uses [CLS] and [SEP] as starting 

token and separator token, respectively, whereas 

RoBERTa uses <s> and </s> to convert sentences.

•	 Size of sub-word: BERT has about 30,000 sub-words, 

whereas in RoBERTa there are about 50,000 sub-words.

Table 4-1.  Comparison Between BERT and ALBERT Models

Model Parameters SQuAD1.1 SQuAD2.0 MNLI SST-2 RACE Avg Speedup

BERT base 108M 90.5/83.3 80.3/77.3 84.1 91.7 68.3 82.1 17.7x

BERT large 334M 92.4/85.8 83.9/80.8 85.8 92.2 73.8 85.1 3.8x

BERT xlarge 1270M 86.3/77.9 73.8/70.5 80.5 87.8 39.7 76.7 1.0

ALBERT 

base

12M 89.3/82.1 79.1/76.1 81.9 89.4 63.5 80.1 21.1x

ALBERT 

large

18M 90.9/84.1 82.1/79.0 83.8 90.6 68.4 82.4 6.5x

ALBERT 

xlarge

59M 93.0/86.5 85.9/83.1 85.4 91.9 73.9 85.5 2.4x

ALBERT 

xxlarge

233M 94.1/88.3 88.1/85.1 88.0 95.2 82.3 88.7 1.2x

Chapter 4  BERT Algorithms Explained



89

In addition, there are specific modifications and adjustments that help 

RoBERTa to perform better than BERT.

•	 More training data: During reimplementation of BERT, 

several changes were made to the hyperparameters of 

the BERT model and training was done with a higher 

magnitude of data with more iterations. RoBERTa uses 

more training data. It uses BookCorpus (16G),  

CC-NEWS (76G), OpenWebText (38G), and Stories 

(31G) data, whereas BERT uses only BookCorpus as 

training data.

•	 Dynamic masking: When BERT was being ported 

to create RoBERTa, the creators modified the word 

masking strategy. BERT mainly uses static masking, in 

which the words are masked from sentences during 

preprocessing. RoBERTa makes use of dynamic 

masking. Here, a new masking pattern is generated 

whenever a sentence is fed into training. RoBERTa 

duplicates training data 10 times and masks those 

data differently. It is experimentally observed that the 

dynamic masking improves performance and gives a 

better result than static masking.

•	 Different training objective: BERT captures the 

relationships between the sentences by training on 

NSP. Some training approaches without application of 

NSP provided better results, proving the ineffectiveness 

of NSP. Experiments were done to compare models 

trained with segment-pair with NSP, sentence-pair with 

NSP, full sentences without NSP, and doc-sentences 

without NSP. The models trained without NSP 

performed better on SQuAD1.1/2.0, MNLI-m, SST-2, 

and RACE.
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•	 Training on longer sequences: Better results have 

been achieved when a model was trained on longer 

sequences. BERT base is trained with a batch size of 

256 sequences via 1 million steps, but training on 2,000 

sequences and 31,000 steps shows improvement in 

performance.

With the implementation of the design changes, the RoBERTa model 

delivered state-of-the-art performance on the MNLI, QNLI, RTE, and 

RACE tasks. It also realized a sizable performance improvement on the 

GLUE benchmark with a score of 88.5.

RoBERTa demonstrates that the tuning the BERT training procedure 

can result in performance improvement on a variety of NLP tasks. This 

highlights the importance of exploring the design choices in BERT training 

for better performance output.

�DistilBERT
DistilBERT was introduced for knowledge distillation. This knowledge 

distillation was required to address the drawbacks of computation of 

large numbers of parameters. The NLP models that have been developed 

recently show an increase in parameter count, now reaching parameter 

counts as high as in the tens of billions. Even though higher parameter 

count ensures optimal performance, it prevents model training and 

serving when computational resources are limited.

Knowledge distillation revolves around the idea that a larger model 

acts as a teacher for a smaller one that tries to replicate its outputs and 

sublayer activation for a given set of inputs. This is sometimes also known 

as teacher–student learning. It is a compression technique where the 

behavior of larger models is reproduced by the smaller ones. The output 

distribution from the teacher can be used for all possible targets, which 

helps in creation of a student with generalizability. For example, in the 
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sentence “The sky is [mask]” a teacher might assign high probabilities 

to words like “cloudy” and “clear.” There are also chances that a high 

probability is assigned to the word “blue.” This is helpful for the student 

model, so that it is able to generalize rather than only learn the correct 

target. This information is captured through the loss function that is 

being used to train the student. This loss function comprises a linear 

combination of three factors.

�Distillation Loss

Distillation loss takes into consideration combination of the output 

probabilities of the teacher (t) and the student (s) as shown in the 

following equation.

Lce = ∑i ti log(si)

Distillation Loss

ti = exp(zi/T)/ ∑j exp(zj/T)

Temperature Softmax

The teacher probabilities are calculated through temperature softmax. 

This is basically a modification to the softmax so that more granularities 

are obtained from the teacher model output distribution. This gives 

a smoother output distribution, as the size of larger probabilities are 

decreased and the smaller ones are increased. This helps to minimize the 

distillation loss.

�Cosine Embedding Loss

Cosine embedding loss is a distance measure between the hidden 

representations for teacher and student. This helps in creation of a better 

model as it enables the student to imitate the teacher not just in the output 

layer, but in other layers, too.
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Masked Language Modeling Loss

This is the same loss as used in training of the BERT model to predict the 

correct token value for the masked token in the sequence.

�Architectural Modifications

The DistilBERT network architecture is also a transformer encoder model 

similar to BERT base, but it has half the number of layers. The hidden 

representations, though, are kept the same. This affects the parameter 

count, with a 66 million parameter count in the case of DistilBERT, 

whereas there are 110 million parameters in the teacher model. The 

reduction in the model size through the number of layers helps to achieve 

the drastic reduction in computation complexity. The reduction in the size 

of the vectors or the hidden state representations have also reduced the 

model size.

After the knowledge distillation, DistilBERT is able to achieve 97% of 

BERT base’s score on the GLUE benchmark. This knowledge distillation 

has helped to condense the larger models or ensembles of models into a 

smaller student network. This has proven to be helpful in situations where 

the computational environment is limited.

�StructBERT
StructBERT is a model based on BERT that incorporates language 

structures into BERT pretraining. The two linearization strategies help 

to incorporate language structure into BERT. Word-level ordering and 

sentence-level ordering are the two structural information sets that are 

leveraged in StructBERT. StructBERT achieves better generalizability 

and adaptability due to the incorporation of this structural pretraining. 

The dependency between the words as well as sentences is encoded in 

StructBERT.
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�Structural Pretraining in StructBERT

Similar to all the other BERT-based models, StructBERT also builds on 

the BERT architecture. The original BERT performs two unsupervised 

pretraining tasks, MLM and NSP. StructBERT is able to increase the ability 

of the MLM task. It shuffles a certain number of tokens after masking of 

words and predicts the right order. StructBERT is also able to understand 

the relationship between sentences in a better way. This is achieved by 

random swapping of the sentence order. This new BERT-based model 

captures the fine-grained word structure in every sentence.

After pretraining of the StructBERT it can be fine-tuned on task-

specific data for a wide range of downstream tasks such as document 

summarization.

�Pretraining Objectives

The pretraining objectives of the original BERT are extended in the case 

of StructBERT to fully utilize rich inner-sentence and intersentence 

structures in language. This is done in two ways.

	 1.	 Word structural objective: The BERT model fails 

to model sequential order and high-order word 

dependency in natural language explicitly. A good 

language model should be able to reconstruct a 

sentence from a given sentence that has randomly 

ordered words. StructBERT is able to implement this 

idea by supplementing BERT’s training objectives 

with a new word structural objective. This new 

model objective gives the model the ability to 

restructure the sentence to have correct ordering of 

the randomly shuffled word tokens. This objective is 

trained together with the MLM objective from BERT.
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	 2.	 Sentence structural objective: The original BERT 

model objective of NSP is extended in StructBERT 

by predicting both the next sentence as well as the 

previous sentence. This makes the pretrained model 

learn the sequential ordering of the sentences in a 

bidirectional manner.

These two auxiliary objectives are pretrained together with the original 

MLM objective to exploit inherent language structures.

�BERTjoint for Natural Questions
BERTjoint is a BERT-based model for Natural Questions. The BERTjoint 

model predicts short and long answers in a single model only instead of 

a pipeline approach. In this model each document is split into multiple 

instances of training with the help of overlapping token windows. This 

approach is used to create a balanced training set and is being followed 

by down sampling instances without an answer (null instances). The 

[CLS] token is used during training to predict null instances, and spans at 

inference time are ranked by the difference between the span score and 

the [CLS] score.

The model uses the Natural Questions (NQ) dataset that is a question 

answering dataset of 307,373 training examples, 7,830 development 

examples, and 7,842 test examples. For every example, a query is entered 

by the user over the Google search engine and the corresponding 

Wikipedia page that contains an answer. The Wikipedia page is annotated 

as an answer to the question.

The BERTjoint model was initialized from the original BERT model that 

trained on the SQuAD 1.1 dataset. Afterward, this model was fine-tuned 

on Natural Questions training instances. It has used the Adam optimizer 

to minimize the loss. The BERTjoint model for Natural Questions gives 
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dramatically better results than the baseline NQ systems. This variation of 

BERT offers a new way to design a question-answering system.

�Conclusion
This chapter looked deeper into BERT, along with its two algorithms, MLM 

and NSP. We also discussed a sample text classification model developed 

using BERT. We also examined the behavior of BERT over different 

benchmark datasets, along with multiple variations of BERT. In the next 

chapter, we discuss the design of a question answering system using BERT.
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