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Introduction

Question answering systems have revolutionized information retrieval. 

Technologies like Bidirectional Encoder Representations from 

Transformers (BERT) have made it possible for documents to be analyzed 

by machine learning systems and retrieve contextual information through 

the question-and-answer mechanism without the need for extensive 

training. Evolution of deep learning has had a great impact on the 

design of question answering systems and has enabled these systems to 

ingest enormous amounts of data and build billions of connections to 

understand human language better.

This book focuses on a recent breakthrough in the natural language 

processing (NLP) domain, BERT which has achieved benchmarks on state- 

of- art NLP tasks such as question answering system, entity recognition 

systems, and so on.

BERT implements innovative ways to generate the embedding 

of textual sentences. This book provides guidance on design and 

implementation of various types of question answering systems along 

with NLP tasks such as document summarization, entity recognition, 

and sentiment analysis. This could help data scientists and developers to 

design and implement their own NLP-based systems using BERT.

Let’s start our journey in the exciting and quickly evolving domain  

of NLP.



1© Navin Sabharwal, Amit Agrawal 2021 
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CHAPTER 1

Introduction to 
Natural Language 
Processing
With recent advances in technology, communication is one of the 

domains that has seen revolutionary developments. Communication 

and information have formed the backbone of modern society and it is 

language and communication that has led to such advances in human 

knowledge in all spheres. Humans have been fascinated by the idea 

of machines or robots having human-like abilities to converse in our 

language. Numerous science fiction books and media have dealt with 

this topic. The Turing test was designed for this purpose, to test whether 

a human being is able to decipher if the entity on the other end of a 

communication channel is a human being or a machine.

With computers, we started with a binary language that a computer 

could interpret and then compute based on the instructions. Over time, 

however, we came up with procedural and object-oriented languages 

that use syntax and instructions in languages that are more natural and 

correspond to the words and ways in which humans communicate. 

Examples of such constructs are for loops and if constructs.

https://doi.org/10.1007/978-1-4842-6664-9_1#DOI
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With the availability of increased computing capacity and the ability of 

computers to process huge amounts of data, it became easier to use machine 

learning (ML) and deep learning models to understand human language. 

With neural networks, recurrent neural networks (RNNs), and other deep 

learning technologies becoming accessible and the computing power to 

run these models available, a variety of natural language processing (NLP) 

platforms became available for developers to work with over the cloud and 

on premises. This chapter takes you through the basics of NLP.

 Natural Language Processing
NLP is a sub-branch of artificial intelligence (AI) that enables computers 

to read, understand, and process human language. It is very easy for 

computers to read data from structured systems such as spreadsheets, 

databases, JavaScript Object Notation (JSON) files, and so on. However, 

a lot of information is represented as unstructured data, which can be 

quite challenging for computers to understand and generate knowledge 

or information. To solve these problems, NLP provides a set of techniques 

or methodologies to read, process, and understand human language and 

generate knowledge from it. Currently, numerous companies including 

IBM, Google, Microsoft, Facebook, OpenAI, and others have been 

providing various NLP techniques as a service. Some open-source libraries 

such as NLTK, spaCy, and so on are also key enablers in making it possible 

to break down and understand the meaning behind linguistic texts.

As we know, processing and understanding of text is a very complex 

problem. Data scientists, researchers, and developers have been solving 

NLP problems by building a pipeline: breaking up an NLP problem into 

smaller parts; solving each of the subparts with their corresponding 

NLP techniques and ML methods such as entity recognition, document 

summarization, and so on; and finally combining or stacking all parts or 

models together as the final solution to the problem.

Chapter 1  IntroduCtIon to natural language proCessIng
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The main objective of NLP is to teach machines how to interpret 

and understand language. Any language such as English, programming 

construct, mathematics, and so on, involves the following three major 

components:

• Syntax: Defines rules for ordering of words in text. As 

an example, subject, verb, and object should be in the 

correct order for a sentence to be syntactically correct.

• Semantics: Defines the meaning of words in text and 

how these words should be combined together. As an 

example, in the sentence, “I want to deposit money in 

this bank account,” the word “bank” refers to a financial 

institution.

• Pragmatics: Defines usage or selection of words in a 

particular context. As an example, the word “bank” can 

have different meanings on the basis of context. For 

example, “bank” could also mean financial institution 

or land at the edge of a river.

For this reason, NLP employs different methodologies to extract 

these components out of text or speech to generate features that will be 

used for downstream tasks such as text classification, entity extraction, 

language translation, and document summarization. Natural language 

understanding (NLU) , a sub-branch of NLP that aims at understanding 

and generating knowledge from documents, web pages, and so. Some 

examples are listed here.

• Language translation: Language translation is 

considered one of the most complex problems in NLP 

and NLU. You can provide text snippets or documents 

and these systems will convert them into another 

language. Some of the major cloud vendors such as 
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Google, Microsoft, and IBM provide this feature as 

a service that can be leveraged by anyone for their 

NLP-based system. As an example, a developer who 

is working on development of a conversation system 

can leverage translation services from these vendors to 

enable multilingual capability in a conversation system 

without even doing any actual development.

• Question-answering system: This type of system 

is very useful if you want to implement a system 

to find an answer to a question from a document, 

paragraph, database, or any other system. Here, NLU 

is responsible for understanding a user’s query as well 

as the document or paragraph (unstructured text) that 

contains the answer to that question. There exist a 

few variations of question-answering systems, such as 

reading comprehension-based systems, mathematical 

systems, multiple choice systems, question-answering 

and so on.

• Automatic routing of support tickets: These systems 

read through the contents of customer support tickets 

and route them to the person who can solve the issue. 

Here, NLU enables these systems to process and 

understand emails, topics, chat data, and more, and 

route them to the appropriate support person, thereby 

avoiding extra hops due to incorrect assignation.

Systems such as question-answering systems, machine translation, 

named entity recognition (NER), document summarization, parts of 

speech (POS) tagging, and search engines are some of examples of  

NLP- based systems.
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As an example, consider the following text from the Wikipedia article 

for “Machine Learning”.

Machine learning (ML) is the scientific study of algorithms and 
statistical models that computer systems use to perform a specific 
task without using explicit instructions, relying on patterns and 
inference instead. Machine learning algorithms are used in a wide 
variety of applications, such as email filtering and computer vision. 
It can be divided into two types, i.e., Supervised and Unsupervised 
Learning.

This text includes a lot of useful data that can be used as information. 

It would be good if computers could read, understand, and answer the 

following questions from the text:

• What are the applications of machine learning?

• What type of study does machine learning refer to?

• What type of models do computers use to perform 

specific tasks?

There should be some way to teach a machine the basic concepts and 

rules of languages so that they can read, process, and understand text. To 

derive an insight from a text, NLP techniques combine all of the steps into 

a pipeline known as the NLP/ML pipeline. The following are some of the 

steps of an NLP pipeline.

• Sentence segmentation

• Tokenization

• POS tagging

• Stemming and lemmatization

• Identification of stop words
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 Sentence Segmentation
The first step in the pipeline is to segment the text snippet into individual 

sentences, as shown here.

• Machine learning (ML) is the scientific study of 

algorithms and statistical models that computer 

systems use to perform a specific task without using 

explicit instructions, relying on patterns and inference 

instead.

• Machine learning algorithms are used in a wide variety 

of applications, such as email filtering and computer 

vision.

• It can be divided into two types, i.e., Supervised and 

Unsupervised Learning.

Earlier implementation of sentence segmentation was quite easy, just 

splitting the text on the basis of punctuation, or a “full stop.” Sometimes 

that failed, though, when documents or a piece of text were not formatted 

correctly or were grammatically incorrect. Now, there are some advanced 

NLP methods such as sequence learning that segments a piece of 

text even if a full stop is not present or a document is not formatted 

correctly, basically extracting phrases by breaking up text using semantic 

understanding along with syntactic understanding.

 Tokenization
The next task in the NLP pipeline is tokenization. In this task, we break 

each of the sentences into multiple tokens. A token can be a character, a 

word, or a phrase. The basic methodology used in tokenization is to split 

a sentence into separate words whenever there is a space between them. 

As an example, consider the second sentence from our example text: 
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“Machine learning algorithms are used in a wide variety of applications, 

such as email filtering and computer vision.” Here is the result of applying 

tokenization to this example.

["Machine", "learning", "algorithms", "are", "used", "in" , 

"a", "wide", "variety", "of", "applications", "such", "as", 

"email", "filtering", "and", "computer", "vision"].

However, there are some advanced tokenization methods such as 

Markov chain models that can extract phrases out of a sentence. As an 

example, “machine learning” can be extracted as a phrase by applying 

advanced ML and NLP methods.

 Parts of Speech Tagging
POS tagging is the next step to determine parts of speech for each of the 

tokens or words extracted from the tokenization step. This helps us to 

identify the use of each word and its significance in a sentence. It also 

introduces first steps toward the actual understanding of the meaning of 

a sentence. Imparting a POS tag can increase the dimension of the word, 

to give better detail of the meaning the given word is trying to impart. 

The phrases “putting on an act” and “act on an instinct” both use the 

word “act,” but as a noun and a verb, respectively, so a POS tag can greatly 

help in distinguishing the meaning. In this approach, we pass the token, 

referred as Word, to the POS tagger, a classification system, along with 

some context words that will be used to classify the Word with its relevant 

tags as shown in Figure 1-1.
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These models are trained on a huge corpus of (millions or billions) 

sentences of literature in the target language where each word along with 

its POS tag is used as training data for the POS classifier. The previously 

mentioned models are completely based on statistics as per training data 

and not on actual interpretation. The model tries to find POS tag for each 

of the words based on syntactic similarity of a sentence with historical 

sentences. As an example, for the sentence “Machine learning algorithms 

are used in a wide variety of applications, such as email filtering and 

computer vision,” the POS tag is as shown here:

Machine (NN) learning (NN) algorithms (NNS) are (VBP) 

used (VBN) in (IN) a (DT) wide (JJ) variety (NN) of (IN) 

applications (NNS), such (JJ) as (IN) email (NN) filtering 

(VBG) and (CC) computer (NN) vision (NN).

As we can see from those results, there are various nouns (i.e., 

Machine, learning, variety, computer, and vision). We can thus conclude 

that the sentence may be talking about machines and computers.

 Stemming and Lemmatization
Sometimes the same word occurs in multiple sentences in different forms. 

Stemming can be defined as the process of reducing words to their root or 

base form by removing suffixes. Here, the reduced words can be dictionary 

words or nondictionary words. For example, the word “machine” can be 

INPUT OUTPUT

POS Model
e.g., Markov model

POS TAG
e.g., NN for
Machine

Word : Machine
Context Word:

Learning

Figure 1-1. POS tagging

Chapter 1  IntroduCtIon to natural language proCessIng

https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Computer_vision


9

reduced to its root form, “machin.” It doesn’t take into consideration the 

context in which word is being used. Here is the stemmed representation 

of tokenized words for our example sentence.

machin learn algorithm ar us in a wid vary of apply , such as 

email filt and comput vis

In this result, some of the words are represented as nondictionary 

words; for example, “machine” reduced to “machin,” which is a stemmed 

word but not a dictionary word.

Lemmatization can be defined as a process of deriving a canonical 

form or lemma of the word. It uses context to identify the lemma of the 

word, which must be a dictionary word. However, the same is not true 

for stemming. Using our previous example, the word “machine” will 

be converted into its canonical form as “machine.” The following is the 

lemmatized representation of tokenized words of our example sentence. It 

uses tags of words as context to derive canonical forms of words.

Machine learning algorithm be use in a wide variety of 

application , such a email filtering and computer vision.

In these results, some of the words, such as “filtering,” are reduced to 

their canonical form, in this case ”filtering,” not “filter,” because the word 

“filtering” is being used as a verb in the sentence.

Lemmatization and stemming should be used with utmost care and 

as per requirements. For example, if you are working with a search engine 

system, then stemming should be preferred, but if you are working with 

question answering, where reasoning is important, then lemmatization 

should be preferred over stemming.

Chapter 1  IntroduCtIon to natural language proCessIng



10

 Identification of Stop Words
Text snippets contain important as well as filler words. For example, in our 

example sentence, these are the filler words.

["be", "use", "in", "a", "such", “a", "and"]

These filler words introduce noise into your text and it is important 

to manage them, as they appear very frequently in the text and will have 

a much higher frequency and less importance than other words. Some 

systems use a predefined list of these stop words, such as “is,” “at,” and 

so on. This is not helpful for some domains, though. As an example, in 

documents related to health care, you will find some common terms such 

as patient, doctor, or ICU. These words appear very frequently and you 

need to somehow remove them from your text. There are two methods that 

are generally used to deal with domain-specific stop words.

• Flag words as stop words on basis of their frequency 

of occurrence. It could be either most frequent or least 

frequent.

• Flag words as stop words if they are quite common 

across all documents in the corpus.

 Phrase Extraction
Sometimes a single word doesn’t provide sufficient information for most 

of the NLP tasks. As an example, the meaning of the two words “machine” 

and “learning” from the dictionary are shown here.

• Machine: An apparatus using mechanical power to 

perform certain tasks.

• Learning: An acquisition of knowledge or skills 

through study, experience, or being taught.
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It is very clear from the definitions of these two words that our sample 

sentence should have been talking about some mechanical device and 

various media for acquiring the knowledge. However, when these words 

are used together (i.e., “machine learning”), it refers to the sub-branch of 

AI that deals with the scientific study of algorithms and statistical models 

used by computers to perform a specific task without being explicitly 

programmed.

To extract phrases, we need to combine multiple words together, or 

identify phrases. Here, phrases can be of two types, noun phrases and 

verb phrases. We can define rules to extract phrases from sentences. As 

an example, to extract a noun phrase, we can define a rule such that “two 

consecutive occurrences of nouns in a sentence should be considered 

a noun phrase.” For example, the phrase “machine learning” is a noun 

phrase in our sample sentence. In a similar manner, we can define more 

rules to extract noun phrases and verb phrases from a sentence.

 Named Entity Recognition
An entity is defined as an object or noun such as a person, organization, 

or other object that provides important information from the text. This 

information can be used as a feature for downstream tasks. As an example, 

Google, Microsoft, and IBM are entities of the type Organization.

NER is an information extraction technique that extracts and classifies 

entities into categories as per the trained model. As an example, some 

of the basic categories in the English language are names of persons, 

organizations, locations, dates, email addresses, phone numbers, and 

so on. For example, in our sample sentence phrases such as “machine 

learning” and “computer vision” are entities of type AI_Branch, which 

refers to branches of AI.

Currently, large vendors in the AI domain such as IBM, Google, and 

Microsoft provide their trained models to extract named entities from the 
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text. They also enable you to build your own NER model specific to your 

application and domain. Open-source projects such as spaCy also provide 

the capability to train and use your own custom NER model.

 Coreference Resolution
One of the major challenges in the NLP domain, especially in the English 

language, is the use of pronouns. In English, pronouns are used extensively 

to refer to nouns in a previous context or sentence. To perform semantic 

analysis or identify the relationship between these sentences, it is very 

important that somehow the system should establish dependencies 

between the sentences.

As an example, consider the sentence “It can be divided into two types, 

i.e., Supervised and Unsupervised Learning,” where “It” refers to machine 

learning in the first and second sentences. It can be accomplished by 

annotating such dependencies in the dataset for training a model and 

using the same model over unseen text snippets or documents to extract 

such relationships.

 Bag of Words
As we all know, computers work on numerical data only; therefore, to 

understand meaning of text, it must be converted into a numerical form. Bag 

of words is one of the approaches for converting text into numerical data.

Bag of words is a very popular feature extraction method that describes 

the occurrence of each word in the text. You need to first build the 

vocabulary of your corpus then calculate the occurrence of each word 

corresponding to each text snippet or document in the corpus. It doesn’t 

store any information related to order or sentence structure. That’s why it 

is known as a bag of words. It can also tell you whether a particular word 

is present in the document or not, but it doesn’t provide any information 

about the location of the word in the document. As an example, consider 
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our example text snippet, which has been segmented into three sentences 

as a result of the sentence segmentation step.

• Sentence A: Machine learning (ML) is the scientific 

study of algorithms and statistical models that 

computer systems use to perform a specific task 

without using explicit instructions, relying on patterns 

and inference instead.

• Sentence B: Machine learning algorithms are used in a 

wide variety of applications, such as email filtering and 

computer vision.

• Sentence C: It can be divided into two types, i.e., 

Supervised and Unsupervised Learning.

Figure 1-2 is a document-term matrix for our example text snippet, 

where the term value is 1 if it is present in the sentence, or 0 otherwise.

Once sentences or text snippets are converted into vectors of numbers, 

we can use these vector values as a feature for further downstream tasks 

such as a question-answering system, text summarization, and so on. This 

method has the following limitations.

• Length of vector representation for the sentence 

increases as vocabulary size increases. This requires 

higher computation for downstream tasks. It also 

increases dimensionality of sentences.

• It can’t identify different words with similar meanings 

on the basis of their context in the text.

Figure 1-2. Document-term matrix
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There are other methods that reduce computation and memory 

requirements to represent sentences in vector form. Word embedding 

is one of the approaches where we can represent a word in lower 

dimensional space while preserving the semantic meaning of the word. 

We will see in detail later how word embedding is major breakthrough for 

downstream NLP tasks.

 Conclusion
This chapter discussed the basics of NLP, along with some of the basic 

NLP tasks such as tokenization, stemming, and more. In next chapter, we 

discuss neural networks in the NLP domain.
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CHAPTER 2

Neural Networks for 
Natural Language 
Processing
Bringing human cognitive intelligence (i.e., thinking, reasoning, and 

action) to artificial systems has always been a hot topic for researchers. In 

this process, they came up with idea of neural networks that try to emulate 

how the neurons of the human brain work. Although they are still very far 

from human cognitive capability, artificial neural networks hold a very 

promising position in the area of ML, and have transformed the way NLP 

applications are developed.

In this chapter, we will discuss neural networks and their types, along 

with some special types of neural networks, such as long short-term 

memory (LSTM), convolutional neural networks (CNNs), encoders, 

decoders, and transformers. This will set the stage for us to move to more 

advanced topics on NLP and examine how the state of the art in NLP is 

now aiming to match human abilities as far as NLU is concerned.

https://doi.org/10.1007/978-1-4842-6664-9_2#DOI


16

 What Is a Neural Network?
A neural network is defined as a network of neurons that are connected 

to process information and perform actions specific to the task. To put 

it simply, human neurons have the capability to transmit and process 

information when they receive electrical signals at their synaptic 

endpoints. An artificial neural network (ANN) replicates this flow of 

information by transmitting the information across the network after 

getting triggered by an activation function. ANNs are divided into three 

types of layers: input layer, hidden layers, and output layer. Neural 

networks generally have one input and one output layer and multiple 

hidden layers, as shown in Figure 2-1.

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Figure 2-1. Neural network
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 Building Blocks of Neural Networks
In this section we discuss the basic building blocks of neural networks and 

how these blocks can be combined to form a neural network.

 Neuron
The neuron, which mimics the behavior of the human neuron, is the 

smallest unit of a neural network. It takes input, processes it, and sends 

output to other neurons that work as activation for others. A neuron can 

only be activated based on observations received from a previous layer.

 Input Layer
As per Figure 2-1, the input layer takes processed data as input. Here, 

input can be pixels in the case of an image, or numbers from a vector 

representation of a sentence for text data or feature values. This layer is 

responsible for combining all features’ values with some weight values 

(weight value defines how much importance is given to each feature). 

Once processed, the output from the input layer is fed into the next layer, a 

hidden layer, and at last into the output layer.

 Hidden Layers
These layers are responsible for generation of features that are specific 

to a task. We can have any number of hidden layers between the input 

and output layer. Each layer consists of neurons that are responsible for 

performing actions specific to the task. This layer might either implement 

an activation function (i.e., Sigmoid, tanh), or can just do a weighted 

summation of all inputs from the previous layer. This layer therefore 

receives the input from previous layer and then performs a sum of the 
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products of inputs with their corresponding weight value and applies an 

activation function to get output from this hidden layer. This information is 

then passed to the next hidden layer or output layer.

 Output Layer
The output layer is the last layer in a neural network. It is responsible for 

gathering all information from the last hidden layer to output the final 

expected results. If you are working on classification model, then the last 

layer should have a number of nodes equal to number of classes or a single 

node in the case of a regression problem.

There has always been an open question of how we decide on the 

number of nodes in layers and nodes on each of the layers. There are 

no strict guidelines, but there are some recommendations you should 

consider while designing the a neural network architecture.

• Number of nodes in the input layer must be equal to 

the size of your input data point.

• Number of nodes in the output layer depends on the 

task the neural network is performing. As an example, 

for a classification task, the number of nodes should 

be equal to the number of classes and for regression it 

should be only one node.

• Number of hidden layers and nodes in each hidden 

layer is completely dependent on your target task. It 

is quite possible that one neural network will work 

perfectly for Task A but not for Task B.

• List all intermediate transformations you want to 

perform between the input and output layers.
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• Number of nodes in a hidden layer should be greater 

than the number of nodes in the input and output 

layers.

• Number of nodes in the hidden layer should be a power 

of 2 (i.e., 2, 4, 8, 16, 32, etc.).

As an example, if you are building a sentiment model (or classification 

model) where the system will identify the sentiment of a user’s feedback 

as positive, negative, or neutral, then the result from the output layer of 

the neural network is probability distribution across all classes (positive, 

negative, and neutral), as shown in Figure 2-2.

 Activation Function
Neural networks are used to solve complex nonlinear problems, which 

is not feasible with traditional linear models. The activation function in a 

neural network is the one that introduces nonlinearity in the system, as 

shown in Figure 2-3.

Figure 2-2. Neural network
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It calculates the sum of product of input and their corresponding 

weights followed by the addition of bias. The activation function then 

decides on which feature or input value to pass on to the next layer. As 

an example, say we use a Sigmoid function at all nodes of a hidden layer 

where Sigmoid can take any values between 0 and 1 inclusive. On the 

basis of this, the activation function then decides on what proportion 

of information from this and the previous layer should be passed to the 

next layer. Tanh and ReLU are the other important examples of activation 

functions in neural network.

To this point, we have discussed the building blocks of neural 

networks. Next, we turn to the training of neural networks.

 Neural Network Training
Neural network training is based on the concept of forward and backward 

propagation. In forward propagation, input data travels from neurons in 

the input layer to neurons in a hidden layer, followed by the application of 

relevant transformations using activation functions, and then finally to the 

Figure 2-3. Activation function
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neurons of the output layer to calculate the prediction value. In backward 

propagation, loss is calculated by comparing the actual and predicted 

value of input data. This error travels from neurons of the output layer to 

all neurons of the hidden layers. It is quite possible that neurons in the 

hidden layer receive only a fraction of an error component depending on 

their contribution to the neurons in the output layer.

When we talk about propagation of information either forward or 

backward it means the weights of edges connecting these neurons and 

values of these biases to neurons will be adjusted. Also, values of weights 

and biases are initialized randomly and the learning process finds optimal 

values of these model parameters accordingly.

 Types of Neural Networks
Now that we understand how each of the neurons, weights, and activation 

functions together build a neural network, we can examine how each of 

these can be used in a different ways to achieve different results. Next we 

discuss a few types of neural networks.

 Feed-Forward Neural Networks
Feed-forward neural networks (FNNs) can be best described as a 

unidirectional neural networks that do not have any feedback or loopback 

in their structure. The architecture of an FNN includes a number of hidden 

layers and a number of hidden units in each layer, as shown in Figure 2-4.

One of the reasons that this neural network is termed a feed-forward 

network is that there is no feedback between the layers during normal 

operations when the FNN acts as a classifier.
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In an FNN, the perceptrons are arranged in layers. The first layer 

is responsible for taking in the input and the last layer produces the 

output. Because the middle layers do not have any connection with the 

external world, they are referred to as the hidden layers. The information 

is fed forward from one layer to the next as the perceptron in one layer is 

connected to every perceptron in the next layer. The perceptrons in the 

same layer, on the other hand, are not connected.

The FNN model uses a cost function during training. This cost function 

works on the difference between the approximation made by the model 

and the actual target value. Similar to ML algorithms, FNNs also use 

gradient-based learning for training purposes. The possible choices of cost 

function include quadratic cost, cross-entropy cost, exponential cost, and 

so on.

The output layer contains output units whose task is to provide the 

desired output or prediction. Both the choice of cost function and output 

units are tightly coupled together. There are various options for output 

units like linear units, sigmoid units, softmax units, and more.

Figure 2-4. Basic FNN perceptron diagram
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FNNs are susceptible to noise in data and are easy to maintain, so they 

can have a huge scope of applications in fields like computer vision. FNNs 

can help in bringing out nonlinear relations between the input and output, 

so most of the multiclassification can be easily represented with the help of 

these networks.

 Convolutional Neural Networks
A CNN is a deep learning algorithm. It takes in an input image and assigns 

weights and biases to various aspects in the image. There is comparatively 

less preprocessing in CNNs in contrast to other classification algorithms, 

as they possess the ability to learn filters and characteristics.

Similar to other neural networks, CNNs are also composed of neurons 

and have learnable weights and biases. The weighted sum is taken over 

several inputs received, and is then passed through the activation function 

along with an output. The CNN varies from other networks in the way that 

it operates over volumes. Here the input is not a vector; instead, the input 

is a multichannel image.

The CNN is used in image processing, as it captures the spatial and 

temporal dependencies in an image successfully by the application of 

relevant filters. The network understands the image in a better way as it 

performs better fitting to the image dataset while reducing the number of 

parameters involved.

Convolution is the combination of two inputs to generate an output. 

For CNNs, often this input is an image that is masked with a filter to 

generate the desired output features. When we talk in terms of spatially 

distributed data or matrixes as input, the filter that is chosen is often a set 

of weights to tune the input for the desired changes to generate a result. 

If a generic meaning is referred, then convolution stands as a dot product 

of two values to generate a third value. Figures 2-5 and 2-6 show how 

convolution works in CNNs.
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In the example shown in Figure 2-5, the input is in the form of a 5 × 5 

matrix containing information from an image. We are going to apply a filter 

to yield the output. The input is padded with zeros to convert it into the 

below matrix. This padding is done to generate a spatial representation of 

the output in the desired dimensions.

In the given example, the stride or the step size is 2, meaning the filter 

moves two steps right horizontally and two steps down vertically. The first 

time the filter convolves the top left corner submatrix shown in blue:

(0x-1 + 0x0 + 0x-1 + 0x0 + 1x1 + 4x1 + 0x1 + 2x0 + 0x-1) = 5

Figure 2-5. Convolution example

Figure 2-6. Convolution example
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The following steps fill in the rest of the output matrix. It is also 

noticeable here that the submatrices shown in blue, black, and red hold 

very different values, but after masking from the filter the blue and black 

submatrices yield an equal output and the red submatrix yields a far 

smaller value. This signifies how much an appropriate filter can help 

change the output feature matrix. For example, if an image has pixel values 

with huge contrast values, a proper filter can help tone down the image 

contrast.

CNNs play a crucial role by reducing images into a form that is easier 

to process while retaining the features that are important to obtain a good 

prediction. This ability of the CNNs makes them scalable to large datasets.

In a CNN, we have a convolutional layer that extracts the high-level 

features like edges from the input image. This layer is the building block 

of the CNN. It consists of a set of independent filters that are convolved 

with the image, giving us the feature maps. These filters are randomly 

initialized, and they become parameters on subsequent learning by the 

network.

Each of the neurons is connected to an input image’s small chunk for 

a particular feature map. There is also parameter sharing in a particular 

feature map. All the neurons have the same connection weights in a 

particular feature map. Parameter sharing and local connectivity help in 

reduction of the number of parameters in the whole system and ensure 

better computational efficiency.

The concept of pooling makes CNNs differ from other neural 

networks. Pooling functions to reduce the spatial size of the representation 

progressively to reduce the number of parameters and amount of 

computation. The pooling layer operates independently on each of the 

feature maps.

After the pooling layer, the flattened output is fed to an FNN and 

then backpropagation is applied to every iteration of training, as shown 

in Figure 2-7. Over a series of iterations, the model is able to classify the 

images using the softmax classification technique.
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 Recurrent Neural Networks
Recurrent neural networks (RNNs) are neural networks that are designed 

to process continuous data or data that are presented as streams to benefit 

from the continuity of data. Often the data that are received at each hidden 

layer have an input from the previous layer’s output as input to the current 

layer, along with a hidden input.

RNNs can prove to be very advantageous in cases with long input 

sequences where the requirement circles around maintaining the 

context of the same input, not affecting the size of the model being used. 

This makes NLP a natural fit application for RNNs, although historical 

information tends to fade over a long period of time, and also can slow 

down the process.

As we can see in Figure 2-8, the input is represented by Xt, which is 

the input to the network at time step t. For instance, X1 can be one vector 

corresponding to a word in a sentence. The hidden state is represented 

by Ht at time t. It acts as the memory of the network. The value of Ht is 

Figure 2-7. CNN siagram
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computed on the basis of current input and the previous time step’s 

hidden state:

Ht = f (U Xt + W Ht-1)

The function f is a nonlinear transformation function like tanh or ReLU.

In contrast to FNNs, RNNs make use of their internal state or memory 

to process the input sequences. All the inputs in an RNN are related to 

each other, unlike other networks where inputs are independent of each 

other. An RNN takes X0 from the sequence of inputs and then it outputs H0. 

This output, together with X1, is the input for the next step. Hence, H0 and 

X1 form the input to the next step. Similarly, Ht-1 and Xt form the input at 

time t. This way, the RNN remembers the context while training.

The current state is given by

Ht = f (Ht-1, Xt).

On applying the activation function,

H(t) = tanh (W H(t-1) + U X(t)).

Figure 2-8. RNN diagram
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• H is the single hidden vector.

• W is the weight at previous state.

• tanh is the activation function.

• U is the weight at the current input state.

The output of the network is represented by Yt. There are weights that 

parameterize the connections from input to hidden layers. The weight 

matrix U parameterizes the input to hidden connections. The hidden to 

hidden connections are parameterized by the weight matrix W, and  

hidden to output layer connections are parameterized by the weight matrix V.  

All these weights (U, V, W) are shared across time.

Hence, the output is given by

Yt = V Ht.

An RNN model enables modeling of the sequence of data so that each 

result of the sample can be assumed to be dependent on previous ones. 

There is also another advantage of RNNs, as they can even be used with 

convolutional layers to extend the effective pixel neighborhood.

The RNN model has a disadvantage when using tanh or ReLU as an 

activation function, as it fails to process long sequences. Training of an 

RNN is also a difficult task and there are problems of gradients vanishing 

and exploding.

 Long Short-Term Memory
LSTM is one of the most widely used forms of RNNs. They are capable of 

learning long-term dependencies, and their default behavior to learn or 

remember information for long periods of time.

All RNN models have the form of repeating modules of neural 

networks that are chained. In standard RNNs, this repeating module will 

have a very simple structure, such as a single tanh layer.
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LSTMs, on the other hand, also have this chain-like structure, but the 

repeating module has a different structure. Here, instead of a single neural 

network layer, there are four layers that interact in a very special way. The 

control flow of LSTM is similar to the RNN, as it processes the data and 

passes the information as the data propagates forward. The difference 

in the way LSTM works is that the cell allows the LSTM to keep or forget 

the information. In LSTM there is emphasis on cell state and the various 

gates. The cell state acts as a transport highway and transfers the relative 

information all the way through the sequence chain. The gates add or 

remove information as the cell state goes on the journey. The gates are 

different neural networks that decide which information is allowed in the 

cell state. The gates and cell state make LSTM distinctive among RNN 

models and further makes LSTM useful in various applications.

 Encoders and Decoders
The encoder–decoder is an organization of RNNs for sequence prediction 

problems that often have a variable number of inputs, outputs, or both. The 

main purpose of the encoder–decoder initially was machine translation 

problems, but it has proven to be successful at related sequence-to-sequence 

prediction problems such as question answering and text summarization.

The encoder–decoder approach involves two RNNs, one to encode 

the input sequence and the other to decode the encoded input sequence 

into the target sequence. The encoding task is performed by the encoder 

and the decoding task is performed by the decoder. This encoder–decoder 

architecture is useful for various applications of sequence-to-sequence 

models like these:

• Chatbots

• Machine translation

• Text summary

• Image captioning
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 The Encoder–Decoder Architecture

The encoder–decoder architecture consists of two main components, 

the encoder and the decoder. Both these components are trained jointly 

at the same time. The architecture of the encoder–decoder is shown in 

Figure 2- 9.

The encoder takes the input and reads the entire input sequence, 

which it encodes into an internal representation. The encoder processes 

the input sequence and collects information from the sequence and then 

propagates it further. This fixed-length internal representation vector 

is known as the context vector. The intermediate vector ID is the final 

internal state produced from the encoder part of the model. This helps 

the decoder to make accurate predictions. The decoder is responsible for 

reading the encoded sequence from the encoder and thereby generating 

the output sequence.

 Encoder Part of the Model

The encoder, which is responsible for converting the input sequence and 

encapsulating the information as the internal state vectors, is basically 

an LSTM or GRU (Gated Recurrent Unit) cell. Only the internal states are 

used; the outputs of the encoder are rejected, as shown in Figure 2-10.

INPUT OUTPUT

INTERNAL

STATES

ENCODER DECODER

Figure 2-9. Architecture of encoder–decoder
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To understand the working of the encoder part of the model, we focus 

on LSTM. In LSTM only one element is taken as input at a time. This 

implies that if we have a sequence of length m, then the LSTM takes m 

time steps to read the entire sequence.

• Xt is the input at time step t.

• ht and ct are internal states at time step t of the LSTM; 

for GRU there is only one internal state ht.

• Yt is the output at time step t.

Let’s take an example of translation of a sentence in English into 

French.

English: It is a good day.

 

French: C’est une bonne journée.

Figure 2-10. LSTM for encoder
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The English sequence shown can be considered a sentence containing 

five words. The inputs of the encoder Xt are as follows.

• X1 = It

• X2 = is

• X3 = a

• X4 = good

• X5 = day.

The LSTM will read the sequence word by word in five time steps. Each 

word Xt is represented as a vector using the word embedding. The word 

embedding converts each of the words into a vector of fixed length. The 

internal states (ht , ct) learn what LSTM has read until time step t. Here the 

LSTM will read the entire sentence in time step t = 5. The final state h5, c5 

has the information of the entire input sequence, “It is a good day.”

The output of the encoder is Yt, which at each time step is the 

prediction of the LSTM. Because in machine translation problems we take 

the output of the entire input sequence, Yt at each time step is discarded 

because it is of no use.

 Decoder Part of the Model

The decoder works in a different way than the encoder. Its training phase 

and testing phase work differently, whereas the encoder model works the 

same way during the training and testing phases.

If we take the sentence language translation example presented earlier, 

just like the encoder, the decoder also generates the output sentence word 

by word. To generate the output “C’est une bonne journée,” we need to add 

START_ at the beginning and _END at the end as delimiters of the output 

sequence so that the decoder recognizes the start and the end of the 

sequence. The decoder is basically trained to generate the output based on 
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the information gathered by the encoder, so the initial states (h0, c0) of the 

decoder are set to the final states of the encoder.

The START_ is input so that the decoder can start generating the next 

word. The decoder is made to learn the end of the French sentence using 

_END. The loss is calculated on the outputs that are predicted from each 

time step and the errors are backpropagated through time to update 

the parameters of the model. In the testing phase, output produced at 

each time step is fed as input into the next time step and the end of the 

sequence is identified using _END.

 Bidirectional Encoders and Decoders

In a bidirectional encoder–decoder architecture, the encoders and the 

decoders are bidirectional LSTMs. The last hidden state of the backward 

encoder initializes the forward decoder, whereas the backward decoder is 

initialized with the last hidden state of the forward encoder.

The bidirectional encoder is used when considering context 

information from the past and future. The sequence of input word vectors 

is fed to LSTM from forward and backward directions. The bidirectional 

decoder is also a bidirectional RNN that is made up of two separate LSTMs. 

One of the LSTMs decodes the information from left to right, whereas 

the other LSTM decodes in a backward direction from right to left. This 

bidirectionality in the RNN provides better performance.

For instance, we have to predict next word after “cloudy” in the 

sentence “The weather is cloudy; it might rain.” The unidirectional LSTM 

will see “The weather is …” and will try to predict the next word using this 

context only. When using bidirectional LSTM we will be able to see more 

information.

Forward LSTM: “The weather is …”

Backward LSTM: “… it might rain today.”
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Hence using the information from the past as well as the future makes 

it easier to predict the word “cloudy,” as the network will better understand 

the next word.

 Transformer Models
The transformer is a novel architecture with the aim of solving sequence- 

to- sequence tasks while handling long-range dependencies. The 

transformer maintains sequential information in a sample just as RNNs 

do. If we take a high-level look at the transformer model, it basically is like 

a single black box in machine translation application that takes a sentence 

in one language as an input and outputs the translation of the sentence, as 

shown in Figure 2-11.

 Model Architecture
The transformer has an encoder–decoder structure using stacked self- 

attention and fully connected layers for both the encoder and decoder. The 

transformer consists of components like encoders, decoders, positional 

encoding, and attention. There is a stack of encoders and decoders. Each 

of the encoders is very similar to the other encoders, as they have the same 

architecture. Decoders, too, share this property and are similar to each 

other in the transformer, as shown in Figure 2-12.

INPUT OUTPUT

C’est une bonne
journée

It is a good
day.TRANSFORMER

Figure 2-11. The transformer as a black box
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The encoder comprises a stack of identical layers. Every layer further 

consists of two sublayers. The first layer is for a multihead self-attention 

mechanism. The second layer, on the other hand, is a simple, fully 

connected feed-forward network. In between each of the sublayers, 

residual connections are employed along with layer normalization. The 

input flows through the self-attention layer in the encoder and helps the 

encoder to look at other words in the input sequence while encoding a 

specific word.

ENCODER DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

ENCODER

ENCODER

ENCODER

ENCODER

ENCODER

INPUT

OUTPUT

Figure 2-12. Encoder–decoder stacks in transformer
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The decoder, similar to encoder, comprises a stack of identical layers. 

It also has sublayers like the encoder, but has one more sublayer. This third 

sublayer is responsible for performing multihead attention over the output 

of the encoder stack. These layers help the decoder to focus on relevant 

parts of the input sentence only.

The encoder block has one layer of a multihead layer of FNN, and 

the decoder, on the other hand, has an extra masked multihead attention 

mechanism. Both the encoder and decoder stacks have the same 

number of units. That number of encoder and decoder units is basically a 

hyperparameter that can be varied.

To prevent unwanted attention to out-of-sequence positions, masking 

is used before softmax in the self-attention layer in both the encoder and 

the decoder. For prevention of positions from attending to subsequent 

positions, an additional mask is used in conjunction with the general mask 

in the decoder. These two masks in the decoder can be blended with the 

help of a bit-wise AND operation.

 Attention Models
Attention is the output vector of a dense layer using a softmax function. It 

enhances the results by plugging it into suitable scenarios. The translation 

mechanism is used to rely on reading of a complete sentence and 

compressing all information into a fixed-length vector. In this situation if 

we have a sentence with hundreds of words that are represented by several 

words, there will surely be a loss of information or inadequate translation.

Attention is able to partially fix this problem. It is responsible for 

allowing the machine translator to look over all of the information that the 

sentence contains. Thereby, the proper word is generated according to the 

current word and the context. Attention also provides the ability to focus 

on local or global features by allowing the translator to zoom in or out.
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 Why Is Attention Required?

As sentences consist of different numbers of words, an RNN is naturally 

introduced to model the conditional probability among words. In a 

probabilistic language model, the focus is to assign a probability to a 

sentence using a Markov assumption.

P(w1w2 … wn) ≈ ΠP(wi | wi-k … wi-1)

The translation works on input and output of variable lengths with 

this encoder–decoder model. This is adopted while the basic RNN cell 

is changed to an GRU or LSTM cell and ReLU replaces the hyperbolic 

tangent activation.

The discrete words are mapped to dense vectors for computational 

efficiency with the help of an embedding layer. These embedded words 

are then fed sequentially to the encoder. As the information flows from left 

to right, every word vector is learned according to all the previous inputs, 

not just the current word. Once the sentence is read completely, output 

is generated by the encoder. There is also a hidden state that is generated 

by the encoder for further processing. The decoder uses this hidden state 

from the encoder and generates the translation words sequentially.

 How Attention Works

The attention mechanism is basically a context vector that is plugged into 

the encoder–decoder architecture within the gap between the encoder and 

decoder. This context vector takes all the encoder cell’s output as input 

and then computes the probability distribution of source language words 

for each of the words that the decoder wants to generate. The decoder is 

able to capture global information, not just infer on the basis of one hidden 

state. This attention mechanism helps the decoder to capture a wider 

perspective.
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If we look into how a context vector is built, it is basically quite simple. 

For every fixed target word, we generate scores for each of the encoder 

states by looping over all the states of the encoder and comparing the 

target to the source states. Then softmax is used to normalize all the scores. 

We now obtain the probability distribution conditioned on the target 

states. Finally, to make the context vector easy to train, the weights are 

introduced. Once we get the context vector, the attention vector can be 

easily computed using the context vector, the attention function, and the 

target word.

 Types of Attention Models

There are three types of attention models: global and local attention, hard 

and soft attention, and self-attention. Let’s examine each in turn.

Global Attention Model

In the global attention model, inputs from every encoder state and decoder 

state prior to the current state is taken into consideration for computation 

of the output. The context vector here is obtained by taking product of 

global aligned weights and each of the encoder steps. This is then fed to 

the RNN cell to obtain the decoder output.

Local Attention Model

The local attention model varies from the global attention model as few 

positions from the encoder are used for calculation of the aligned weights. 

Local attention models are further of two types: monotonic alignment and 

predictive alignment.
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Hard and Soft Attention Model

The soft attention model is similar to the global attention model. The hard 

attention model differs from the local attention model in that the local 

model is almost differential at every point, whereas the hard attention 

model is not. The local attention model can be considered a blend of hard 

and soft attention.

Self-Attention Model

The self-attention model relates different positions of the same input 

sequence. Self-attention can theoretically adopt any score functions 

conditioned that the target sequence is to be replaced with the same input 

sequence.

 Conclusion
In this chapter, we have discussed about various Neural networks in NLP 

domain. Now that we have covered different types of neural networks, we 

turn our attention to how we can use BERT.
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CHAPTER 3

Introduction to Word 
Embeddings
NLP tasks such as document classification, sentiment analysis, clustering, 

and document summarization require processing and understanding 

of textual data. Implementation of these tasks depends on how data are 

being processed and understood by AI systems. One way of doing this is to 

convert textual representation to a numerical form using some statistical 

methods such as term frequency-inverse document frequency (TF-IDF), 

count vector, and so on, but these methods do not consider the meaning of 

a sentence and only deal with the occurrence of words in sentences.

Over the course of time, several semantic methods such as parse trees, 

contextual grammar, ontologies, and others have been developed, but 

these methods would require a great amount of human effort to prepare 

labeled training data. In the last few years, widespread availability of 

computing capacity has made it possible to use neural network–based 

methods for these tasks.

 One-Hot Representation
One-hot representation is one of the most common and basic methods 

for representation of text. It involves representation of a word using 

binary encodings (i.e., 0 and 1). It can also be used for representation of 

categorical attributes.
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As an example, assume that a dataset has color as one of the features, 

with three possible values: red, blue, and green. Therefore, this feature will 

be converted to three new columns, one for each color value, as shown 

here.

RED BLUE GREEN

1 1 0 0

2 0 1 0

3 0 0 1

As an example, the first data point has value of 1 in the RED column 

and 0 in the others. This means initially that this data point has value for 

the color column of RED. Red is represented as [1 0 0] in one-hot encoding, 

for blue 1 occupies the second position, and for green 1 is in the third 

position. This is a three-dimensional vector. The one-hot representation 

expands the feature vector as each category of the color is itself a feature 

now.

Now, when we talk about one-hot encoding for textual sentences, it 

does not care about order of occurrence of words in sentences and actually 

ignores semantic meaning of words. This approach works best in scenarios 

where the corpus is smaller and some traditional NLP methods need to be 

used.

As an example, to represent a text sentence using one-hot 

representation, following these steps.

 1. Count the total number of unique words present in 

corpus.

 2. Assign 0 or 1 depending on if the word is present in 

the sentence or not.
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Consider the sentence “The sky is clear today.” The vocabulary includes 

words such as The, sky, is, clear, and today. It forms a  five- dimensional 

vector if represented in one-hot representation as shown in Figure 3-1.

 Count Vector
In the previous section, we saw how one-hot representation of a sentence 

is generated on the basis of occurrence of words, not on the basis of their 

frequency of occurrence. The count vector for an individual sentence is 

generated on the basis of the number of times a particular word occurs in 

the sentence. The unique words in the corpus form the vocabulary.

As an example, consider these two sentences.

Sentence 1: The blue bird is flying in the clear  

blue sky.

Sentence 2: The sky is clear today.

This corpus has two sentences and the vocabulary set [bird, blue, 

flying, is, in, the, sky, clear, today] contains nine terms. For every word 

in the vocabulary set, its frequency of occurrence in a sentence is 

determined. A count vector corresponding to that sentence is thus formed. 

From these count vectors that represent the sentences we get our count 

matrix. The count matrix for the two example sentences is shown here.

The: [1 0 0 0 0]

sky: [0 1 0 0 0]

is: [0 0 1 0 0]

clear: [0 0 0 1 0]

today: [0 0 0 0 1]

Figure 3-1. One-hot representation
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is bird blue flying In the sky clear today

Sentence 1 1 1 2 1 1 2 1 0 0

Sentence 2 1 0 0 0 0 1 1 1 1

The rows in the matrix are representative of the sentences and the 

columns signify the word vector for the corresponding word in the matrix. 

The size of the matrix is S × T, where S is the number of sentences and T is 

the number of terms or words.

Count vector representation of sentences helps us to achieve several 

tasks, including these:

• Determining similarity between sentences

• Identification of relevant documents for a query

• Document summarization

As an example, we are showing how similarity between sentences can 

be computed mathematically. The count vector for Sentence 1 is [1 1 2 1 1 

2 1 0 0] and the count vector for Sentence 2 is [1 0 0 0 0 1 1 1 1]. The cosine 

similarity can be computed using the following mathematical expression.

Sim = 
x y

x y

·

Here, x and y are the two count vectors. ||x|| is the Euclidean norm of 

vector x.

So,

x.y = 1x1 + 1x0 + 2x0 + 1x0 + 1x0 + 2x1 + 1x1 + 0x1 + 0x1 = 4

||x|| = 1 1 2 1 1 2 1 0 02 2 2 2 2 2 2 2 2+ + + + + + + +  = 3.60

||y|| = 1 0 0 0 0 1 1 1 12 2 2 2 2 2 2 2 2+ + + + + + + +  = 2.24

Sim = 4/ (3.6 * 2.24) = 0.49
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This calculation means these two sentences are similar to each other 

with a similarity score of 49% (0.49). The similarity value will always lie 

between 0 and 1, where 1 indicates maximum similarity and 0 means no 

similarity.

 TF-IDF Vectorization
One-hot representation and the count vector method are the most basic 

methods that do not actually consider the importance of a particular 

word in a sentence and in a corpus. For some NLP projects such as search 

engines, it is very important to know about the importance of words in a 

query to words in documents in your corpus to determine the relevancy of 

documents to that query. Some English words that occur frequently (e.g., 

“is,” “the,” “a,” etc.) will be present in all the documents. Even though their 

count is higher, they are not useful when performing NLP-related tasks. To 

overcome this drawback of count vectors, TF-IDF is used. TF-IDF is one 

of the most popular techniques used in various applications as it is able to 

weight the words that appear more frequently in general.

In TF-IDF we form vocabulary in a way similar to the previous 

method. The vocabulary consists of unique words across the corpus. 

Now term frequency is computed for every word in the vocabulary set. 

Term frequency (TF) of a word or term t corresponds to the count of all its 

occurrences in a document d to the number of terms in the document.

TF = (Number of times term t appears in a document / Number of  
terms in the document)

We compute the inverse document frequency (IDF) by calculating the 

count of documents in which that term is present. IDF tells us about how 

much information a term or word gives. It tells you if a word is common 

across all documents or not. IDF is the log value of the ratio of total 
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number of documents to the number of documents in which a term t has 

appeared.

IDF = log(N/n) where N is the total number of documents in the corpus 
and n is the number of documents in which a term t has appeared

TF-IDF is the product of TF and IDF.

TF-IDF (t, document) = TF (t, document) * IDF(t)

For example, let’s use the previous two example sentences, where 

Sentence 1 and Sentence 2 correspond to two documents.

TF of word “blue” in Sentence 1 = 2

IDF = log (2/1) = 0.3

TF-IDF of word “blue” in Sentence 1 = 2*0.3 = 0.6

Similarly, the TF-IDF value of the word “is” in Sentence 2 is 0, as its IDF 

score is 0. This signifies that the word “is” does not have any importance 

because it is common and present across all the documents.

Methods like TF-IDF, count vector, and one-hot encoding are easy to 

compute, but they do not capture semantics (or order of occurrence of 

words) in the document. The words or the sentences represented using 

these methods do not provide any contextual information. Even though 

many NLP tasks can be performed using them, the overall results are 

mediocre, especially when the training data are sparse. A better technique 

is therefore required that can capture useful language information and at 

the same time boost generalization and performance for pretty much any 

NLP problem.

In next section, we are going to discuss one such approach, word 

embedding, where vector representation of words contains contextual 

information.
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 What Is Word Embedding?
Word embedding is a type of word representation where the words 

are embedded into vectors of real numbers. The embeddings can be 

generated through approaches like neural networks, probabilistic models, 

or dimension reduction on a word co-occurrence matrix, as shown in 

Figure 3-2. They enable the words with similar meanings to be understood 

by the ML algorithms.

Word embeddings are generally low-dimensional (usually 50–600 

dimensional) and dense representations of words or sentences as 

compared to one-hot representation. When using one-hot representation, 

the feature vectors increase with the size of the vocabulary set. Word 

embeddings, on the other hand, are more efficient. They have the ability 

to generalize. Semantically similar words are more likely to have similar 

vector representations. Hence, these vectors will give you more relevant 

results when used with NLP tasks such as document summarization, 

sentence or document similarity, and so on, as compared with one-hot 

representation.

Word embedding is also known as a distributed represented 

or distributed semantic model or semantic vector space. The word 

“semantic” here highlights the significance of word embedding as it aims 

to categorize words with similar meanings together. For example, sports 

like tennis, football, and swimming should be placed close, whereas words 

related to animals would be far away from these words. In a broader sense, 

word embedding will create vector representations of words related to 

Figure 3-2. Word embedding

Chapter 3  IntroduCtIon to Word embeddIngs



48

sports that will be placed far away from vector representations of words for 

animals. The main objective is to have words with similar contexts occupy 

the closest spatial positions.

Embeddings are generally the vectors that are indeed the representation 

of words in lower dimensions. Neural networks are also currently being 

used to generate embeddings of words. It improves the ability to learn or 

generalize representations from the last set of textual data. Neural network 

models can learn resourceful traits about words in a vocabulary set while 

reducing the dimensionality of the text data. Word embeddings prove to be 

very useful in NLP tasks, text classification, document clustering, and so on. 

There are various neural network word embedding models available such 

as Word2vec, GloVe, ELMo, and BERT, among which BERT has proven to be 

best to this point for state-of-the-art NLP tasks.

 Different Methods of Word Embedding
There are different methods to generate embedding of words and they 

differ by their implementation approach. Next we discuss some of them  

in detail.

 Word2vec

Word2vec is a shallow, two-layered neural network technique of word 

embedding in which the words are represented in vector space. A neural 

network with only a hidden layer between the input and output layer is 

termed a shallow neural network. Word2vec is a two-layer network with 

an input layer, one hidden layer, and an output layer. It takes a text corpus 

as input and gives a set of vectors as output. The feature vectors represent 

the words of the corpus. The vectors that represent the words are known as 

neural word embeddings.

This vector representation maintains a semantic relationship between 

words in the document or corpus. Words with similar meanings will be 
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located quite close to each other in vector space and the dissimilar words 

are located far away. The semantic relationship is achieved as Word2vec 

reconstructs the linguistic context of words. The linguistic context can 

be understood as the main objective of the sentence. For instance, in the 

sentence “What date is today?,” a person wants to know today’s date, which 

is actually the context of the sentence. The main context can be disclosed 

by the words and the sentences surrounding the language. Association 

of a word with other words can be guessed accurately with the help of 

Word2vec when given enough text corpus.

Word2vec is able to train the words against their neighboring words 

in the input text data. It can be implemented in two ways: continuous bag 

of words (CBOW) and skip gram. These are the two implementations of 

Word2vec that are used to create word embedding representations. In 

CBOW, context is used to predict the target word, whereas in skip gram, a 

word is used to predict the target context.

Continuous Bag of Words

The CBOW architecture tries to predict the target word using the context 

window words. The center word or target word is predicted with help of 

the surrounding words or the source context words. The Word2vec models 

are unsupervised models, which implies we need to provide only the input 

corpus without any additional information about the output. To get the 

CBOW word embeddings, the model follows a supervised classification 

methodology such that it takes the corpus as the input X and predicts the 

target word Y.

The input to the neural network will be the sum of one-hot encoded 

vectors of the context words in the given window size. The logarithmic loss 

function will be used as the loss function.
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A softmax function is being used as an activation function in the last 

layer. This will provide you a probability distribution across all words. The 

equation for softmax function is shown here:
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For example, consider the sentence “This beautiful painting belongs to 

Queen Elizabeth.” Here are some of examples of training data considering 

the context window size of 2.

• [(painting, belongs), Queen Elizabeth]

• [(This, beautiful), painting].

The input layer will have a one-hot representation of context words 

(i.e., “This” and “beautiful”) and the output layer will show probability 

distribution across all words in the corpus where the probability score for 

the word “painting” will be highest one.

Figure 3-3 shows the architecture for both variations of Word2vec 

embedding.
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Skip Gram Model

The skip gram model is an unsupervised learning technique that finds 

the most relevant words around the target word. In this context, words are 

predicted using the target word. It is the reverse of the CBOW approach. 

Here the target word is the input and the context words are the output. It 

is a comparatively difficult technique, as more than one context word is to 

be predicted. As seen in the skip gram model architecture (Figure 3-3), the 

input is the target word W(t) and the output is the vector representation of 

context words.

This is generally computed as per the following method. The dot 

product between this input vector and the weight matrix is obtained by 

the one hidden layer. Similarly, in the output layer the dot product is 

computed between the output vector of the hidden layer and the output 

layer’s weight matrix. Then to find the probability of the words to in 

context of W(t) is calculated using the softmax activation function.

Input Projection Output Input Projection Output

W(t-2)

Sum

W(t+2)

W(t-1)

W(t+1)

W(t-2)

W(t+2)

W(t-1)

W(t+1)

W(t) W(t)

CBOW SKIP-GRAM

Figure 3-3. Architecture of CBOW and skip gram models
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The hidden layer is the weight matrix where the rows contribute 

toward the output words. For instance, if the weight matrix is of dimension 

4 × 4 and the input is a one-hot encoded word, then a row will be selected 

from the matrix corresponding to the one in the input vector.

[0 0 1 0] × 

10 11 4 9

3 2 6 16

6 15 3 2

5 14 3 8

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

 = [6 15 3 2]

This word vector is obtained after the hidden layer is fed to the output 

layer, which produces an output between 0 and 1. The output layer is a 

softmax regression classifier that gives the probability of the output word 

to be in that context position near the input target word.

Figure 3-4 shows an example of word embedding using skip gram.

Figure 3-4. Neural network architecture
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 GloVe

GloVe (Global Vector) is an unsupervised technique that is used for the 

vector representation of the words in the global corpus. The word vectors 

are obtained by taking into consideration both global and local statistics of 

a corpus. The local statistics correspond to the local context information of 

words, whereas global statistics are captured by word cooccurrences.

Even though Word2vec performance was quite satisfactory, there 

remained a need for a better approach, as Word2vec only considers 

the surrounding words, which might sometimes fail to capture useful 

relationships of a word with other words. The semantics learned in case of 

Word2vec is only dependent on the local information and is affected by the 

neighboring words. In GloVe, on the other hand, the meaning of a word can be 

obtained with the help of the structure of the whole corpus. This constitutes 

word frequency and cooccurrence count. This model mainly relies on the 

intuition that word-to-word cooccurrence probabilities can contribute to 

encoding some form of meaning that gives it an extra benefit over Word2vec.

GloVe trains on these aggregated global word–word cooccurrence 

statistics and minimizes the least square error. This results in the meaningful 

linear substructure of a word vector space. For example, “man” and 

“woman” are similar in the context that they both describe human beings, 

but these two words are also opposites. To capture as much of the meaning 

specified by the two words as possible, we need a larger information corpus. 

The discrimination between the two words is based on gender, which can be 

specified by other word pairs like husband–wife, brother–sister, and so on.

 Sentence Embeddings
Word embedding generates a vector representation of words by 

considering only neighboring words, not other sentences. To capture the 

relationship between sentences, sentence embedding is the best approach. 

These are vector representations of the sentences in a document. Sentence 

Chapter 3  IntroduCtIon to Word embeddIngs



54

embedding models are essential, as they are capable of capturing 

contextual information that word embedding models fail to capture. As 

discussed previously, the word embeddings represent the meaning of 

words in a sentence or conversation. They are a representation of words 

in an N-dimensional vector space. These methods often tend to neglect 

necessary information, however, as explained in the example that follows.

Two sentences can have identical representations but entirely different 

meanings. For instance:

Sentence 1: The sky is clear not cloudy today.

Sentence 2: The sky is cloudy not clear today.

Here, Sentence 1 and Sentence 2 have similar representations, 

but their meanings are entirely different. Word embeddings won’t be 

able to differentiate between these two sentences because the vector 

representation of words present in these sentences would almost be same. 

Sentence embeddings can be used to accomplish this differentiation.

When working with textual data in the ML pipeline, we do come across 

the need to compute sentence embeddings so that we are able to embed 

full sentences into a vector space. Sentence embeddings can capture 

semantic similarity or relatedness between sentences, then paragraphs, 

then documents.

A sentence embedding for a sentence might look like: this

“The bird is flying in sky.” – [0.1, 0.7,0.4, …]

To generate sentence embedding for a sentence, the most basic 

approach will be to perform an average of word embeddings of all words 

present in that sentence.

A weighted average of the word embeddings can be used to obtain the 

sentence embeddings and reduce the dimensionality. In addition to this 

method, other methods such as Universal Sentence Encoder and ELMo 

have been introduced that have turned out to be very useful for NLP- 

related tasks.

Chapter 3  IntroduCtIon to Word embeddIngs



55

 ELMo
ELMo (Embeddings from Language Models) is a deep contextualized word 

embedding. It was developed in 2018 by the Allen Institute of AI. ELMo 

uses a deep bidirectional LSTM model to create word representations. 

The internal states of the two-layer bidirectional language model compute 

the embeddings. It is able to capture the changing contextual meaning of 

words in the sentences, as shown in Figure 3-5.

ELMo analyzes the words within the context in which they are used, 

unlike Word2vec. It does not create vectors for a dictionary of words; 

instead, vectors are created by passing text through the deep learning 

model. The representation of a word is dependent on the entire sentence 

corpus that is passed to the model. It does not use a fixed embedding 

for each word; instead the entire sentence is looked at before assigning 

embedding to a word. It is able to understand the meaning of a word along 

with the context in which it is found. Hence it is able to capture meaning 

along with the contextual information. This contextual information related 

to a word might vary depending on the sentences in which the word is 

T1 T2 Tn

E1 E2 En

Lstm Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

Figure 3-5. ELMo architecture
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used. This gives it an advantage over Word2vec and GloVe. The pretrained 

language embeddings, when added to existing models, improve the state 

of the art across NLP problems.

ELMo is character based: It takes characters as input instead of words, 

which enables it to compute meaningful representations for words not 

seen during training. When trained on a large dataset, it is also able to 

learn the language patterns, which is beneficial for tasks related to NLU, 

like determining the next word in a phrase. For example, in the phrase 

“The weather is cloudy today, it might … ,” the word “rain” is more likely 

to appear instead of the word “dog.” The model is quite useful in scenarios 

like these to find the most probable word depending on context, as shown 

in Figure 3-6.

The ELMo model is a fairly sophisticated neural language model that 

seeks to compute the probability of a word, given some prior history of 

words seen. The ELMo architecture (refer to Figure 3-5) has a two-layer 

bidirectional LSTM as its backbone. This two-layer bidirectional LSTM 

model helps the model to understand the next word as well as the previous 

The sky

sky

is

is

blue

blue EOS

ELMO blue
1, blue

f
h

blueX

2, blueh

Figure 3-6. ELMo specific representation of the word “blue”
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word in a sentence. The first and second layers are connected by residual 

connections that can skip one or multiple layers as the layer feeds into 

the next layer and directly into layers hops away. They are used to make 

deeper networks easier to optimize. In the ELMo language model, each 

token is converted into an appropriate representation using character 

embeddings. We get these character-level embeddings using a one- 

dimensional CNN to obtain a numerical representation of a word. This 

allows a valid representation even for words not in the vocabulary set. This 

is then passed through the convolutional layer using various numbers 

and types of filters. Finally, before passing as the input to the LSTM layer, 

it is passed through a two-layer highway network. This highway network 

enables smoother transfer of information through the input. These 

transformations to the input token allow selection of the morphological 

features, n-gram features, and more. This helps to build a powerful 

representation of sentences.

Let us assume we are looking at the ith word in our input. Taking 

Figure 3-5 as a reference, the ELMo representation of the word “blue” 

is the combination of the transformed word representation xi as well as 

the output of two bidirectional representations h1i and h2i. The function f 

performs the following operation on input.

ELMo i task = γi . (s0 task . xi + s1 task . h1, i + s2 task . h2, k)

Here, γi and sk are the weighting factors that are learned during 

the task-specific model. So, when we use ELMo, we freeze the weights 

and then concatenate the ELMo i task for each token to the input 

representation.

 Universal Sentence Encoder
Universal Sentence Encoder was introduced recently, and it has become 

one of the most popular pretrained models for sentence embeddings. 

It is able to convert sentences into vector representations. This versatile 
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sentence embedding model can learn rich semantic information and 

thereby use transfer learning where sentence representation from other 

tasks can be learned by retraining the last layer of the architecture.

This sentence encoder model can be used for a wide variety of NLU 

tasks. The transformer network used by the encoder is trained on a large, 

varied data corpus. The input text, which can be a sentence, phrase, 

or short paragraph, is encoded into a high-dimensional vector. Here, 

input length can be variable but the output is a 512-dimensional vector. 

This enables generation of sentence embedding for a broad range of 

downstream tasks like text classification, clustering, semantic similarity, 

and more.

Several versions and implementations of these models that have been 

trained by Google using Tensorflow are available on the TensorFlow hub 

for ML engineers to consume, including these.

• universal-sentence-encoder-large

• universal-sentence-encoder-lite

• universal-sentence-encoder-multilingual

• universal-sentence-encoder-multilingual-large

• universal-sentence-encoder-multilingual-qa

 Bidirectional Encoder Representations 
from Transformers
Bidirectional Encoder Representations from Transformers (BERT) has 

been introduced by researchers at Google. The bidirectional transformer 

for language modeling makes BERT popular in a variety of NLP tasks as 

well as question answering. This makes it different from the previous 

models where sequences are taken in one direction only, either left to right 

or right to left.
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The bidirectional encoder takes two sequences for encoding, one 

of which is the normal sequence and the other one is the reverse of it. It 

consists of two encoders for encoding the two sequences. For the final 

output, both encoding results are considered. The bidirectional training of 

language models gives them deeper insight into the context of language. 

It is indeed important for understanding the meaning of text, as shown in 

Figure 3-7.

For example, consider the following two sentences:

Sentence 1: I got scared on seeing a bat flying in my room.

Sentence 2: The player held the bat firmly while 

smashing a ball with it.

Here, the word “bat” has a different meaning in the two sentences, 

depending on the language context. This is better understood if we 

approach the sentence from both directions. If we move in only one 

direction, we might miss useful information and might not correctly obtain 

the meaning. BERT considers both the preceding and following context, 

which reduces the chances for an error before making any prediction. 

Information is gathered from both directions while training and the 

context from both directions is jointly conditioned in all the layers.

Chapter 3  IntroduCtIon to Word embeddIngs



60

The pretrained BERT model can be used for various state-of-the- 

art tasks by just modifying the output layer. It does not require any 

task-specific architectural change. It uses the transformer to grasp the 

relationship of a token or word in the text. A transformer includes an 

encoder and a decoder. The encoder reads the input text and the decoder 

helps in generating predictions for a task. The transformer encoder is 

able to read the entire sequence of words at once instead of reading 

sequentially from left to right. This makes the model bidirectional and 

allows it to learn the context of a word or token from both left and right 

side of it. The sequence of tokens that are input to the transformer are 

embedded into vectors and then vectors are further processed in the 

neural network. The output of the network is a sequence of vectors 

corresponding to the input tokens, as shown in Figure 3-8.

Figure 3-7. BERT architecture
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BERT uses two strategies to surpass unidirectional constraints. BERT 

is pretrained on these two NLP tasks: masked language modeling (MLM) 

and next sentence prediction (NSP). MLM assists in pretraining the 

bidirectional transformer by randomly masking tokens from the input 

text while the NSP task jointly pretrains text pair representations. BERT 

minimizes the combined loss function for both the tasks during training.

To use BERT, two stages are to be followed:

 1. Pretraining: In this step the model is trained on 

unlabeled data over different pretraining tasks.

 2. Fine-tuning: The BERT model is initialized with the 

pretrained parameters followed by fine-tuning using 

the data from the downstream task, which could be 

classification, question answering, and so on.

Figure 3-8. BERT transformer
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There are two implementations for the BERT model, the BERT base 

model and the BERT large model.

 BERT Base Model

The BERT base model is a pretrained BERT model that has 12 layers 

or transformer blocks, 768 hidden units in each layer, and 110 million 

parameters. It can further be classified as BERT base-cased and BERT 

base-uncased depending on the English text (cased or uncased) it has 

been trained on, as shown in Figure 3-9.

Figure 3-9. BERT base and BERT large models
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 BERT Large Model

The BERT large model is a pretrained BERT model that has 24 layers or 

transformer blocks, 1,024 hidden units in each layer, and 340 million 

parameters. It can also further be classified as BERT large-cased and BERT 

large-uncased. This model requires significantly more memory than BERT 

base.

 Conclusion
This chapter covered word embedding, sentence embeddings, and their 

different methods of implementation, such as Word2vec, GloVe, Universal 

Sentence Encoder, and so on. We have also discussed BERT and its 

variations (i.e., base and large models). In the next chapter, we will look 

deeper into BERT and its different implementations.
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CHAPTER 4

BERT Algorithms 
Explained
This chapter takes a deep dive into the BERT algorithm for sentence 

embedding along with various training strategies, including MLM and 

NSP. We will also see an implementation of a text classification system 

using BERT.

 How Does BERT Work?
BERT makes use of a transformer to learn contextual relations between 

words in a text. A transformer has two mechanisms—an encoder and a 

decoder—but BERT only requires the encoder mechanism. BERT uses a 

bidirectional approach and reads the text input sequentially, which allows 

the model to learn the context of a word based on its surrounding words. 

The input to the encoder is a sequence of tokens that are embedded into 

vectors. The vectors are then passed into the neural network and an output 

sequence of vectors is then generated corresponding to the input. The 

output vector for a word is dependent on the context in which it occurs. 

For example, the vector for the word “like” in the sentence “He likes to 

play cricket” would be different than the vector for the same word in the 

sentence “His face turned red like a tomato.”

https://doi.org/10.1007/978-1-4842-6664-9_4#DOI
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This procedure involves text processing steps before even starting the 

model-building phase. The next section discusses the text processing steps 

used in BERT.

 Text Processing
There is a specific set of rules for representing the input text for the BERT 

model. This, too, is responsible for better functioning of the model. If we 

look into the embeddings, the input embedding in BERT is a combination 

of the following three types of embeddings.

• Position embeddings: Positional embeddings are used 

to learn the information of order in the embeddings. 

As in transformers the information related to order is 

missed, positional embeddings are used to recover it. 

For each of the positions in the input sequence, BERT 

learns a unique positional embedding. With the help of 

these positional embeddings, BERT is able to express 

the position of words in a sentence as it captures this 

sequence or order information.

• Segment embeddings: BERT also learns unique 

embedding for the first and second sentences to 

help the model distinguish between them. It can also 

take sentence pairs as inputs for tasks like question 

answering.

• Token embeddings: For every token in the WordPiece 

token vocabulary, token embeddings are learned. 

The WordPiece token vocabulary contains subwords 

of words in the corpus. As an example, for the word 

“Question,” this vocabulary set will include all possible 

subwords of “Question,” such as [“Questio”, “Questi”…], 

and so on.
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Figure 4-1 shows an example of sequences of embeddings in BERT.

The input representation of a given token is constructed by 

summing the token, segment, and position embeddings. This makes 

it a comprehensive embedding scheme that contains a lot of useful 

information for the model.

For an NLP task where the job is to predict next word in a sentence, 

if we go with a directional approach, it has some limitations. However, 

BERT provides two strategies to learn contextual information: MLM and 

NSP. During training in BERT, both of these tasks will be trained together. 

When using these two strategies, the model tries to achieve the goal of 

minimizing the combined loss function.

 Masked Language Modeling
BERT is a deep bidirectional model that is more powerful than a left-to- 

right model or the shallow concatenation of a left-to-right and a right-to- 

left model. The BERT network can effectively capture information from 

both the right and left context of a token. This goes from the first layer 

itself and all the way through to the last layer. Previously, language models 

were trained on left-to-right context, which made them susceptible to 

information less. Even though the ELMo model greatly improved on the 

Figure 4-1. BERT embeddings
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existing techniques using the shallow concatenating of the two LSTM 

language models, that wasn’t enough. BERT has proven to be more 

significant than the existing techniques where MLM plays a crucial role.

In a masked language task, some of the words in text are randomly 

masked. The context words surrounding a [MASK] token are used to 

predict the [MASK] word. When word sequences are being fed into BERT, 

15% of the words in each sequence are replaced with a [MASK] token. 

These 15% of words are randomly selected. Of these, 80% are masked, 

10% are replaced with a random word, and 10% are retained. This is done 

because if 100% of the masked words were used then the model wouldn’t 

necessarily produce good token representations for nonmasked words. 

The model performance is improved, as too much focusing on a particular 

position or tokens has been prevented. On the basis of the context 

provided by the nonmasked words in the sequence, the model tries to 

predict the original value of the masked words.

These processes that need to be followed for generation of word 

embedding using BERT:

• Addition of a classification layer on top of the encoder 

output.

• Multiplication of the output vectors by the embedding 

matrix, thus transforming them into the vocabulary 

dimension.

• Calculation of the probability of each word in the 

vocabulary with softmax.

The loss function in BERT only considers the prediction of the 

masked values; the prediction of the nonmasked words is ignored. This 

makes the model converge slower than directional ones. As an example, 

for the sentence “The birds are flying in the clear blue sky,” if we are 

training the bidirectional model instead of predicting the next word in the 

sequence, a model can be built to predict the missing word from within 
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the sequence itself. Now, consider a token “flying” and mask it so that it 

can be considered missing. The model would now need to be trained in 

such a way that it can predict the value of this missing or masked token 

in the sentence “The birds are [MASK] in the clear blue sky.” This is the 

essence of MLM, which enables the model to understand the relationships 

between words in a sentence.

 Next Sentence Prediction
The NSP task is similar to next word prediction in a sentence. NSP predicts 

the next sentence in document, whereas the latter works for prediction of 

missing words in a sentence. BERT is also trained on the NSP task. This is 

required so that our model is able to understand how different sentences 

in a text corpus are related to each other. During the training of the BERT 

model, the sentence pairs are taken as input. It then predicts if the second 

sentence in the pair is the subsequent sentence in the original document. 

To achieve this, 50% of inputs are taken such that the second sentence is 

the subsequent sentence as in the original document, whereas the other 

50% comprises the pair where the second sentence is chosen randomly 

from the document. It is assumed that the random second sentence is 

disconnected from the first sentence.

As an example, consider two different instances of training data for 

Sentence A and Sentence B:

Instance 1

Sentence A – I saw a bird flying in the sky.

Sentence B – It was a blue sparrow.

Label – IsNextSentence

Instance 2

Sentence A – I saw a bird flying in the sky.

Sentence B – The dog is barking.

Label – NotNextSentence
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As we can see, for Instance 1 Sentence B is logically subsequent to 

Sentence A, but the same is not true for Instance 2, which is quite clear 

from the labels IsNextSentence and NotNextSentence, respectively.

These inputs are being processed even before the training process 

starts to differentiate between two sentences. The procedure is outlined 

here.

 1. Two tokens are inserted in a sentence pair. One of 

the tokens [CLS] is inserted at the beginning of the 

first sentence and other token [SEP] is inserted at 

the end of each sentence. The two sentences are 

both tokenized and separated from each other by 

the separation token and then fed as a single input 

sequence into the model.

 2. For each of the token sentences, embedding is 

added that indicates whether it is Sentence A 

or Sentence B. These sentence embeddings are 

basically similar in concept to token embeddings 

with a vocabulary of 2.

 3. Along with the sentence embeddings, positional 

embeddings are also added to each of the tokens, 

which helps to indicate the position of the token in 

the sequence.

Now, the following steps are performed to predict if the second 

sentence is actually connected to the first.

 1. The whole input sequence is passed though the 

transformer model.

 2. With the help of the simple classification layer, the 

output of the [CLS] token is transformed into a 2X1 

shaped vector.
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 3. Thereby, the probability of IsNextSentence is 

computed with the help of softmax.

As we know, BERT is used for variety of NLP tasks such as document 

summarization, question answering systems, document or sentence 

classification, and so on. Now, let’s see how BERT can be used for 

classification of sentences.

 Text Classification Using BERT
BERT can be used for a variety of language tasks. A small layer added to 

the core model allows use of BERT for tasks like classification, question 

answering, named entity recognition, and so on. The BERT model is fine 

tuned for this purpose. For classification tasks, a classification layer is 

added on top of the transformer output for the [CLS] token, similar to 

NSP. Most of the hyperparameters stay the same as in BERT training, but 

some of them require tuning to achieve state-of-the art-results for text 

classification tasks. Figure 4-2 gives an example of determining whether a 

given tweet is hate speech or not.

Similar types of tasks such as such as document classification, 

sentiment analytics, and so on, can also be achieved using BERT.

Next, we will see how a pretrained model of text classification can be 

configured in your system. Follow the steps listed here to configure or 

install the necessary prerequisites.

Figure 4-2. An example of classification using BERT
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 1. Make sure Python is installed on your system. 

Open a command prompt and run the following 

command to determine if Python is installed, as 

shown in Figure 4-3.

Python

This will start the Python console at the command 

prompt. If Python is not installed on your system, 

download and install Python as per your operating 

system using this link: https://www.python.org/

downloads/

 2. Next, install Jupyter Notebook. Open a command 

prompt and run the following command.

pip install notebook

 3. Open a command prompt and run the following 

command to run Jupyter Notebook.

jupyter notebook

The notebook will start in your default browser with 

localhost as the host address and port number as 8888, 

along with a unique token ID, as shown in Figure 4-4.

Figure 4-3. Python console
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 4. You can also use Google Colab Notebook for 

the same purpose. It provides a fast and free 

environment to run your Python code in case your 

system doesn’t have sufficient resources available. 

You can also use the graphics processing units 

(GPUs) and Tensor Processing Units (TPUs) for 

free, but for a limited time (12 hours) in Google 

Colab. You just need a Google account to log in to 

Google Colab Notebook. For this book, we will be 

using Google Colab Notebook to demonstrate text 

classification using BERT. Log in to your Google 

account and click https://colab.research.

google.com. You will see the screen shown in 

Figure 4-5.

Figure 4-4. Jupyter Notebook console
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 5. To create a new Colab notebook, click New 

Notebook in the bottom right corner as shown in 

Figure 4-5.

 6. Install TensorFlow. Run the following command in 

your Jupyter Notebook or Colab Notebook.

pip install tensorflow

We have now installed all prerequisites for this exercise. Please follow 

the steps listed next to configure a pretrained model for text classification 

using BERT.

Figure 4-5. Google Colab interface to create or import a notebook
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 1. BERT model files and required code can be 

downloaded from the GitHub repository. Open the 

command prompt and clone the GitHub repository 

(i.e., https:/github.com/google- research/

bert.git) onto the system by typing the following 

command:

git clone https://github.com/google-research/bert.git

 2. Downloaded model files containing the weights 

and other necessary BERT files. Depending on your 

requirements, a BERT pretrained model needs to be 

selected from this list.

• BERT Base, Uncased

• BERT Large, Uncased

• BERT Base, Cased

• BERT Large, Cased

 3. If you have an access to a cloud TPU, BERT Large 

can be used; otherwise, the BERT Base model 

should be used. Further selection can be made from 

the cased and uncased models.

 4. The data for fine-tuning the BERT model are 

expected to be in the format that BERT understands. 

Data have to be divided into three parts: train, dev, 

and test. As a rule of thumb, train should contain 

80% of data and the remaining 20% will be divided 

into dev and test. You need to make a folder 

containing three separate files: train.tsv, dev.

tsv, and test.tsv. The train.tsv file will be used 

for training the model, dev.tsv will be used for 
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developing the system, and test.csv will be used 

for evaluating model performance over unseen 

data. Both train.tsv and dev.tsv should not have 

headers and should have four columns as shown 

below.

1          1         a         text example belonging to class 1

2          1         a          text example belonging to class 1

3          2         a          text example belonging to class 2

4          0         a          text example belonging to class 0

Here are details of the columns used.

a. First Column: Represents IDs of sample.

b. Second Column: Classification labels 

corresponding to examples.

c. Third Column: Throw-away column.

d. Fourth Column: This represents the actual 

textual sentence that needs to be classified.

 5. The test.tsv file should have a header line, unlike 

the other two files, and should appear as shown 

here.

id sentence

1. first test example

2. second test example

3. third test example
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 6. To train the model, you need to navigate to the 

directory into which the model has been cloned. 

Afterward, enter the following command at the 

command prompt:

python bert/run_classifier.py \

--task_name=cola \

--do_train=true \

--do_eval=true \

--data_dir=./data \

--vocab_file=$BERT_BASE_DIR/vocab.txt \

--bert_config_file=$BERT_BASE_DIR/bert_config.json \

--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \

--max_seq_length=128 \

--train_batch_size=32 \

--learning_rate=2e-5 \

--num_train_epochs=3.0 \

--output_dir=./bert_output/

If length of your training data text is longer than 128 

words then the value for max_seq_length can be 

increased to 512. If you are training the model over a 

CPU system, then you can reduce the training size to 

avoid an out-of-memory error.

When the training is finished, the reports get stored 

in the bert_output directory.

 7. This trained BERT model is now ready to use for 

prediction purposes. If we have to make a prediction 

for new data, then data need to be stored in test.

tsv. Go to the directory where the trained model 

files have been stored. Please refer to the highest- 
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number (latest model file) model.ckpt file seen in 

the bert_output directory. These files contain the 

weights of the model trained. Now run the following 

commands at the command prompt to obtain the 

classification result, which will be stored in test_

results.tsv in the bert_output directory location.

python bert/run_classifier.py \

--task_name=cola \

--do_predict=true \

--data_dir=./data \

--vocab_file=$BERT_BASE_DIR/vocab.txt \

--bert_config_file=$BERT_BASE_DIR/bert_config.json \

--init_checkpoint=$TRAINED_CLASSIFIER \

--max_seq_length=128 \

--output_dir=./bert_output/

Please note that the value for the max_seq_length 

parameters should be the same as what was used 

during the training process.

For this book, we will demonstrate implementation of a question 

classification dataset where questions will be classified into their 

respective categories. There are mainly two types of questions, factoid 

(nondescriptive) and non-factoid questions. As an example, “What is the 

temperature in Delhi?” is a factoid question, as it is looking for an answer 

based on some facts. “What is temperature?” is a non-factoid question, as 

it is looking for text snippets about temperature. For this implementation, 

please refer to the dataset at https://cogcomp.seas.upenn.edu/Data/

QA/QC/.

Now we will see how a question classification system can be 

implemented using BERT.
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 1. For this implementation, we will download the 

BERT base-cased model from GitHub as described 

previously.

 2. The question classification dataset is already in the 

format required for training the BERT model. The 

data are split into train.tsv, dev.tsv, and test.

tsv sets. In train.tsv and dev.tsv, we do not have 

any headers. The following is a description of the 

columns in the file.

• First Column: Index for data point.

• Second Column: Classification label (i.e., factoid or 

non-factoid). In this dataset, factoid is represented 

by 0 and 1 for non-factoid.

• Third Column: Throwaway column with value a.

• Fourth Column: Actual question text.

Then we create data folder and save these files in the 

folder. Please refer Figures 4-6 through 4-8 for some 

examples from training files.

Figure 4-6. Snapshot of Dev.tsv

Chapter 4  Bert algorithms explained



80

 3. Now, navigate to the directory where the 

downloaded BERT model exists.

 4. As mentioned earlier, execute the command for 

training at the command prompt. The model 

output after completion of training gets stored in 

the location that has been defined under the bert_

output parameter, as shown in Figure 4-9.

python run_classifier.py --task_name=cola --do_ 

train=true --do_eval=true --data_dir=$BERT_

BASE_DIR/data --vocab_file=$BERT_BASE_DIR/

bert_output/cased_L-12_H-768_A-12/vocab.

txt --bert_config_file=$BERT_BASE_DIR/bert_

output/ cased_L-12_H-768_A-12/bert_config.

json --init_checkpoint=$BERT_BASE_DIR/bert_

output/ model.ckpt-2023 --max_seq_length= 

128 --train_batch_size=32 --learning_

rate=2e-5 --num_train_epochs=3.0  --output_

dir=$BERT_BASE_DIR/bert_output/

Figure 4-7. Snapshot of train.tsv

Figure 4-8. Snapshot of test.tsv
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$BERT_BASE_DIR is a directory where you must have 

downloaded code from GitHub.

 5. After completion of training, we can classify the test 

data using the trained model. Run the following 

command at the command prompt to get a 

prediction for questions present in the test.tsv file 

as shown in Figure 4-10.

python bert/run_classifier.py --task_name=cola --do_ 

predict=true --data_dir=$BERT_BASE_DIR/data 

vocab_file=$BERT_BASE_DIR/bert_output/cased_L-

12_H-768_A-12/vocab.txt --bert_config_file=$BERT_

BASE_DIR/bert_output/ cased_L-12_H-768_A-12/

bert_config.json --init_checkpoint=$TRAINED_

CLASSIFIER --max_seq_length=128 --output_

dir=$BERT_BASE_DIR/bert_output/

$BERT_BASE_DIR is a directory where you must have 

downloaded code from GitHub.

Figure 4-9. Command to train BERT model

Figure 4-10. Command for prediction
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 6. The results of the classification are stored in the 

location that has been defined as the value for the 

bert_output parameter in the test_results.

tsv file. As we can see in Figure 4-11, the result 

of classification is a probability distribution of a 

question to two classes. The class with the higher 

score will be considered the relevant one.

The first column corresponds to the label 0 (Factoid) and the second 

column corresponds to the label 1 (non-factoid). From this generated 

.csv we can see whether the questions in the test data are Factoid or 

non-factoid questions.

This question type classification system is quite useful in a 

conversational system where a query or question entered by an end user 

needs to be classified to retrieve relevant results.

Figure 4-11. Prediction results snapshot
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 Benchmarks for BERT Model
BERT embedding model performance and accuracy have been 

continuously evaluated over different types of datasets for various NLP 

tasks. This is being done to check if BERT is able to achieve benchmark 

values already set up for these datasets by some other methods. These 

benchmarks are datasets that evaluate the working of specific aspects 

of a model. There exist many such benchmarks and some of them are 

discussed next.

 GLUE Benchmark
General Language Understanding Evaluation (GLUE) is a collection of 

datasets that can be used to train, evaluate, and analyze NLP models. 

These different models are compared with each other over the GLUE 

dataset. To test a model’s language understanding, the GLUE benchmark 

includes nine diverse task datasets. To evaluate a model, first it is trained 

over a dataset provided by GLUE and then it is scored on all nine tasks. The 

final performance score is the average of all nine tasks.

 Final GLUE Score Individual Task Score    = å  

The model is required to have representation of its input and output 

changed so as to accommodate the task. For instance, during the 

pretraining of BERT, few words are masked when sentences are given as 

input. Because the input representation layer in BERT accommodates 

all of the GLUE tasks, there is no need to change this layer. However, the 

pretraining classification layer has to be removed. This layer is replaced 

with the one that accommodates the output of each GLUE task. The BERT 

model scores a state-of-the-art result on the GLUE benchmark, with a 

score of 80.5%.
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 SQuAD Dataset
The Stanford Question Answering Dataset (SQuAD) is a reading 

comprehension dataset, consisting of questions asked on a set of 

Wikipedia articles. The answer to each of the questions is either a text 

segment or a span from the passage, respectively. There are two versions of 

the SQuAD dataset.

• SQuAD 1.1

• SQuAD 2.0

SQuAD2.0 has 100,000 questions in addition to SQuAD 1.1, which 

contains 50,000 unanswered questions, but are similar to questions 

that were answerable. This was done so that SQuAD2.0 can do well in 

situations where no answers to questions are supported by a paragraph for 

a question.

BERT is able to achieve state-of-the-art results on the SQuAD dataset 

with minor modifications. It requires semicomplex preprocessing of data 

and postprocessing to deal with the variable-length nature of SQuAD 

context paragraphs and the character-level answer annotations used for 

SQuAD training. The BERT model was able to achieve an F1 score of 93.2 

and 83.1 for SQuAD 1.0 and SQuAD v2.0 over test dataset, respectively.

 IMDB Reviews Dataset
The IMDB dataset is an extensive movie review dataset that has been used 

for classification of viewer sentiments about films. This dataset consists 

of 25,000 highly polar movie reviews for training and 25,000 reviews 

for testing. In addition to the training and testing data, there are also 

additional unlabeled data. This dataset has also been used to evaluate 

BERT in a sentiment classification task.
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 RACE Benchmark
RACE is a large-scale reading comprehension dataset from examinations. 

The RACE dataset is used to evaluate models on a reading comprehension 

task. This dataset was collected from English examinations of Chinese 

students. It consists of nearly 28,000 passages and 100,000 questions 

generated by human experts. The number of questions is much larger in 

RACE as compared to other benchmark datasets. The BERT large model 

achieves a score of 73.8% on the RACE benchmark dataset.

 Types of BERT-Based Models
BERT is a ground-breaking natural language model and its introduction 

in the ML world has led to development of various models that are based 

on it. Variants of the BERT model have been developed to cater to different 

types of NLP-based systems. Here are a few of the major variants of BERT:

• ALBERT

• RoBERTa

• DistilBERT

• StructBERT

• BERTjoint for Natural Questions

 ALBERT
ALBERT is a much smaller version of BERT that was introduced jointly by 

Google Research and the Toyota Technological Institute. It is a smarter, 

“lite” BERT and is also considered a natural successor to BERT. It can 

also be used to implement state-of-the-art NLP tasks. This is all possible 

with less computation power compared to BERT, but you need to 
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compromise on accuracy a little bit. ALBERT was basically created to make 

improvements in architecture and training methods so that better results 

are delivered with fewer required computation resources.

ALBERT has a BERT-like core architecture. It has a transformer 

encoder architecture and a vocabulary of 30,000 words, which is the same 

as BERT. However, there are substantial architectural improvements in 

ALBERT for efficient parameter usage.

 1. Factorized embedding parameterization: In the 

case of BERT, the WordPiece embeddings size (E) 

is directly tied to the hidden layer size (H). It was 

observed that WordPiece embeddings are designed 

to learn context-independent representations, 

whereas the hidden layer embeddings are designed 

to learn context-dependent representations. 

In BERT we try to learn context-dependent 

representations through the hidden layers only.

When H and E are tied together, we end up with a 

model with billions of parameters that are rarely 

updated in training. This happens as the embedding 

matrix, which is V*E where V is the large vocabulary, 

must scale with the H (hidden layers). This actually 

results in inefficient parameters, as these two items 

work for different purposes.

In ALBERT, to make it more efficient we untie the 

two parameters and embedding parameters are split 

into two smaller matrices. Now the one-hot vectors 

are not directly projected into H; rather, they are 

projected into a smaller, lower dimension matrix 

E, and then E is projected into the hidden layers. 

Thus, the parameters get reduced from O (V*H) to 

Θ(V*E+E*H).
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 2. Cross-layer parameter sharing: ALBERT has 

a smoother transition from layer to layer in 

comparison to BERT and the parameter efficiency is 

improved by sharing of all the parameters across all 

layers. The  feed- forward and attention parameters 

are all shared. This weight sharing is helpful in 

stabilizing the network parameters.

 3. Training changes: Sentence order prediction: 
Similar to BERT, ALBERT also uses MLM but does 

not use NSP. Instead of NSP, ALBERT uses its own 

newly developed training method called sentence 

order prediction (SOP).

The NSP loss used in BERT was not found to be a 

very effective training mechanism in subsequent 

studies. Hence, it was leveraged to develop SOP as 

NSP was unreliable.

In ALBERT SOP, loss is used to model intersentence 

coherence. SOP was mainly created to focus 

on intersentence coherence loss instead of 

topic prediction, whereas BERT combines topic 

prediction with coherence prediction. Hence, 

ALBERT is able to learn finer grained intersentence 

cohesion by avoiding issues of topic prediction.

ALBERT, even though it has fewer parameters than BERT, gets results 

in less time. In the language benchmark tests SQuAD1.1, SQuAD2.0, MNLI 

SST-2, and RACE, ALBERT has significantly outperformed BERT, as we can 

see in the comparison in Table 4-1.
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 RoBERTa
RoBERTa is an optimized method for pretraining NLP systems. RoBERTa 

(Robustly optimized BERT) was developed by the Facebook AI team and 

based on Google’s BERT model. RoBERTa reimplemented the neural 

network architecture of BERT with additional pretraining improvements 

that achieve state-of-the-art results on several benchmarks.

RoBERTa and BERT share several configurations, but there are some 

model settings that differentiate the two models.

• Reserved token: BERT uses [CLS] and [SEP] as starting 

token and separator token, respectively, whereas 

RoBERTa uses <s> and </s> to convert sentences.

• Size of sub-word: BERT has about 30,000 sub-words, 

whereas in RoBERTa there are about 50,000 sub-words.

Table 4-1. Comparison Between BERT and ALBERT Models

Model Parameters SQuAD1.1 SQuAD2.0 MNLI SST- 2 RACE Avg Speedup

BERT base 108M 90.5/83.3 80.3/77.3 84.1 91.7 68.3 82.1 17.7x

BERT large 334M 92.4/85.8 83.9/80.8 85.8 92.2 73.8 85.1 3.8x

BERT xlarge 1270M 86.3/77.9 73.8/70.5 80.5 87.8 39.7 76.7 1.0

ALBERT 

base

12M 89.3/82.1 79.1/76.1 81.9 89.4 63.5 80.1 21.1x

ALBERT 

large

18M 90.9/84.1 82.1/79.0 83.8 90.6 68.4 82.4 6.5x

ALBERT 

xlarge

59M 93.0/86.5 85.9/83.1 85.4 91.9 73.9 85.5 2.4x

ALBERT 

xxlarge

233M 94.1/88.3 88.1/85.1 88.0 95.2 82.3 88.7 1.2x
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In addition, there are specific modifications and adjustments that help 

RoBERTa to perform better than BERT.

• More training data: During reimplementation of BERT, 

several changes were made to the hyperparameters of 

the BERT model and training was done with a higher 

magnitude of data with more iterations. RoBERTa uses 

more training data. It uses BookCorpus (16G),  

CC- NEWS (76G), OpenWebText (38G), and Stories 

(31G) data, whereas BERT uses only BookCorpus as 

training data.

• Dynamic masking: When BERT was being ported 

to create RoBERTa, the creators modified the word 

masking strategy. BERT mainly uses static masking, in 

which the words are masked from sentences during 

preprocessing. RoBERTa makes use of dynamic 

masking. Here, a new masking pattern is generated 

whenever a sentence is fed into training. RoBERTa 

duplicates training data 10 times and masks those 

data differently. It is experimentally observed that the 

dynamic masking improves performance and gives a 

better result than static masking.

• Different training objective: BERT captures the 

relationships between the sentences by training on 

NSP. Some training approaches without application of 

NSP provided better results, proving the ineffectiveness 

of NSP. Experiments were done to compare models 

trained with segment-pair with NSP, sentence-pair with 

NSP, full sentences without NSP, and doc-sentences 

without NSP. The models trained without NSP 

performed better on SQuAD1.1/2.0, MNLI-m, SST-2, 

and RACE.
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• Training on longer sequences: Better results have 

been achieved when a model was trained on longer 

sequences. BERT base is trained with a batch size of 

256 sequences via 1 million steps, but training on 2,000 

sequences and 31,000 steps shows improvement in 

performance.

With the implementation of the design changes, the RoBERTa model 

delivered state-of-the-art performance on the MNLI, QNLI, RTE, and 

RACE tasks. It also realized a sizable performance improvement on the 

GLUE benchmark with a score of 88.5.

RoBERTa demonstrates that the tuning the BERT training procedure 

can result in performance improvement on a variety of NLP tasks. This 

highlights the importance of exploring the design choices in BERT training 

for better performance output.

 DistilBERT
DistilBERT was introduced for knowledge distillation. This knowledge 

distillation was required to address the drawbacks of computation of 

large numbers of parameters. The NLP models that have been developed 

recently show an increase in parameter count, now reaching parameter 

counts as high as in the tens of billions. Even though higher parameter 

count ensures optimal performance, it prevents model training and 

serving when computational resources are limited.

Knowledge distillation revolves around the idea that a larger model 

acts as a teacher for a smaller one that tries to replicate its outputs and 

sublayer activation for a given set of inputs. This is sometimes also known 

as teacher–student learning. It is a compression technique where the 

behavior of larger models is reproduced by the smaller ones. The output 

distribution from the teacher can be used for all possible targets, which 

helps in creation of a student with generalizability. For example, in the 
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sentence “The sky is [mask]” a teacher might assign high probabilities 

to words like “cloudy” and “clear.” There are also chances that a high 

probability is assigned to the word “blue.” This is helpful for the student 

model, so that it is able to generalize rather than only learn the correct 

target. This information is captured through the loss function that is 

being used to train the student. This loss function comprises a linear 

combination of three factors.

 Distillation Loss

Distillation loss takes into consideration combination of the output 

probabilities of the teacher (t) and the student (s) as shown in the 

following equation.

Lce = ∑i ti log(si)

Distillation Loss

ti = exp(zi/T)/ ∑j exp(zj/T)

Temperature Softmax

The teacher probabilities are calculated through temperature softmax. 

This is basically a modification to the softmax so that more granularities 

are obtained from the teacher model output distribution. This gives 

a smoother output distribution, as the size of larger probabilities are 

decreased and the smaller ones are increased. This helps to minimize the 

distillation loss.

 Cosine Embedding Loss

Cosine embedding loss is a distance measure between the hidden 

representations for teacher and student. This helps in creation of a better 

model as it enables the student to imitate the teacher not just in the output 

layer, but in other layers, too.
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Masked Language Modeling Loss

This is the same loss as used in training of the BERT model to predict the 

correct token value for the masked token in the sequence.

 Architectural Modifications

The DistilBERT network architecture is also a transformer encoder model 

similar to BERT base, but it has half the number of layers. The hidden 

representations, though, are kept the same. This affects the parameter 

count, with a 66 million parameter count in the case of DistilBERT, 

whereas there are 110 million parameters in the teacher model. The 

reduction in the model size through the number of layers helps to achieve 

the drastic reduction in computation complexity. The reduction in the size 

of the vectors or the hidden state representations have also reduced the 

model size.

After the knowledge distillation, DistilBERT is able to achieve 97% of 

BERT base’s score on the GLUE benchmark. This knowledge distillation 

has helped to condense the larger models or ensembles of models into a 

smaller student network. This has proven to be helpful in situations where 

the computational environment is limited.

 StructBERT
StructBERT is a model based on BERT that incorporates language 

structures into BERT pretraining. The two linearization strategies help 

to incorporate language structure into BERT. Word-level ordering and 

sentence-level ordering are the two structural information sets that are 

leveraged in StructBERT. StructBERT achieves better generalizability 

and adaptability due to the incorporation of this structural pretraining. 

The dependency between the words as well as sentences is encoded in 

StructBERT.
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 Structural Pretraining in StructBERT

Similar to all the other BERT-based models, StructBERT also builds on 

the BERT architecture. The original BERT performs two unsupervised 

pretraining tasks, MLM and NSP. StructBERT is able to increase the ability 

of the MLM task. It shuffles a certain number of tokens after masking of 

words and predicts the right order. StructBERT is also able to understand 

the relationship between sentences in a better way. This is achieved by 

random swapping of the sentence order. This new BERT-based model 

captures the fine-grained word structure in every sentence.

After pretraining of the StructBERT it can be fine-tuned on task- 

specific data for a wide range of downstream tasks such as document 

summarization.

 Pretraining Objectives

The pretraining objectives of the original BERT are extended in the case 

of StructBERT to fully utilize rich inner-sentence and intersentence 

structures in language. This is done in two ways.

 1. Word structural objective: The BERT model fails 

to model sequential order and high-order word 

dependency in natural language explicitly. A good 

language model should be able to reconstruct a 

sentence from a given sentence that has randomly 

ordered words. StructBERT is able to implement this 

idea by supplementing BERT’s training objectives 

with a new word structural objective. This new 

model objective gives the model the ability to 

restructure the sentence to have correct ordering of 

the randomly shuffled word tokens. This objective is 

trained together with the MLM objective from BERT.
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 2. Sentence structural objective: The original BERT 

model objective of NSP is extended in StructBERT 

by predicting both the next sentence as well as the 

previous sentence. This makes the pretrained model 

learn the sequential ordering of the sentences in a 

bidirectional manner.

These two auxiliary objectives are pretrained together with the original 

MLM objective to exploit inherent language structures.

 BERTjoint for Natural Questions
BERTjoint is a BERT-based model for Natural Questions. The BERTjoint 

model predicts short and long answers in a single model only instead of 

a pipeline approach. In this model each document is split into multiple 

instances of training with the help of overlapping token windows. This 

approach is used to create a balanced training set and is being followed 

by down sampling instances without an answer (null instances). The 

[CLS] token is used during training to predict null instances, and spans at 

inference time are ranked by the difference between the span score and 

the [CLS] score.

The model uses the Natural Questions (NQ) dataset that is a question 

answering dataset of 307,373 training examples, 7,830 development 

examples, and 7,842 test examples. For every example, a query is entered 

by the user over the Google search engine and the corresponding 

Wikipedia page that contains an answer. The Wikipedia page is annotated 

as an answer to the question.

The BERTjoint model was initialized from the original BERT model that 

trained on the SQuAD 1.1 dataset. Afterward, this model was fine-tuned 

on Natural Questions training instances. It has used the Adam optimizer 

to minimize the loss. The BERTjoint model for Natural Questions gives 
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dramatically better results than the baseline NQ systems. This variation of 

BERT offers a new way to design a question-answering system.

 Conclusion
This chapter looked deeper into BERT, along with its two algorithms, MLM 

and NSP. We also discussed a sample text classification model developed 

using BERT. We also examined the behavior of BERT over different 

benchmark datasets, along with multiple variations of BERT. In the next 

chapter, we discuss the design of a question answering system using BERT.
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CHAPTER 5

BERT Model 
Applications: 
Question Answering 
System
We are surrounded by massive amounts of information present in the 

form of documents, images, blogs, websites, and more. In most cases, we 

always look for a direct answer instead of reading the entirety of lengthy 

documents. Question answering systems are generally being used for this 

purpose. These systems scan through a corpus of documents and provide 

you with the relevant answer or paragraph. It is part of the computer 

science discipline in the field of information retrieval and NLP, which 

focuses on building systems that automatically extract an answer to 

questions posed by humans or machines in a natural language.

Two of the earliest question answering systems, BASEBALL and 

LUNAR, have been popular because of their core database or information 

system. BASEBALL was built for answers to American League baseball 
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questions over a one-year cycle. LUNAR was built to answer questions 

related to geological analysis of lunar rocks based on data collected from 

the Apollo moon mission. Such earlier systems concentrated on closed 

domains where every query must be about the specific domain and the 

answer text must be from a restricted vocabulary only.

Some of the advanced question answering systems of the modern 

world are Apple Siri, Amazon Alexa, and Google Assistant. There are 

various popular datasets available for question answering systems that 

can be leveraged to check your model performance. These include the 

following.

• SQuAD: The Stanford Question Answering Dataset 

(SQuAD) is a reading comprehension dataset that we 

covered in Chapter 4.

• NewsQA: This dataset has been created to help 

the research community build algorithms that are 

capable of answering questions requiring human-level 

comprehension and reasoning skills. By using CNN 

articles from the DeepMind Q&A dataset, authors 

have prepared a crowd-sourced machine reading 

comprehension dataset of 120,000 Q&A pairs.

• WikiQA: This publicly available dataset contains pairs 

of questions and answers. It has been collected and 

annotated for research on open-domain question 

answering systems. In addition, the WikiQA dataset 

also includes questions for which there are no correct 

answers, enabling researchers to work on negative 

cases as well to avoid selection of irrelevant answers.
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 Types of QA Systems
Question answering systems are broadly divided into two categories: 

open-domain QA (ODQA) system and closed-domain QA (CDQA) system.

• Closed-domain: In closed-domain systems, questions 

belong to a particular domain. They can answer the 

questions from a single domain only. As an example, a 

question answering system for the health care domain 

cannot answer any IT-related questions. These systems 

exploit domain-specific knowledge by using a model 

that has been trained on a domain specific dataset. The 

CDQA suite can be used to build such a closed-domain 

QA system.

• Open-domain: In open-domain systems, questions 

can be from any domain, such as health care, IT, sports, 

and more. These systems are designed to answer 

questions from any domain. These systems actually 

mimic human intelligence to answer questions. One 

example of such a system is the DeepPavlov ODQA 

system, an ODQA developed by MIPT that uses a 

large dataset of articles from Wikipedia as its source of 

knowledge.

These systems can be further divided into factoid and non-factoid as 

briefly covered in Chapter 4 and described here.

• Factoid question: A factoid question is about providing 

concise facts. Answers to factoid questions are based 

on proven facts. As an example, a learner might be 

asked to look at a passage, then answer a series of 

factual questions based on what he or she just read. 

These types of questions usually start with who, what, 

when, or where.

Chapter 5  Bert Model appliCations: Question answering systeM



100

 Here are some examples of factoid questions.

• Who is the president of the United States?

• Who is the prime minister of India?

• Who is the CEO of Google?

All of these questions can be answered from any 

document or blog if text contains relevant data which is 

sufficient to answer questions.

• Non-factoid question: A non-factoid question 

expects detailed answers about any topic. As 

an example, a user can ask questions related to 

mathematical problems, how to run a vehicle, what 

does temperature mean, and so on. Non-factoid 

questions usually require multiple sentences as 

answers, and these answers come from a particular 

paragraph in a document. Thus, the context of a 

sentence plays an important role to retrieve the 

relevant answer.

Here are some examples of non-factoid questions.

• What is the process of installing Python on 

Windows?

• How can I reset my Microsoft Outlook 

password?

• What do you mean by temperature?

Answers to these questions will be a document,  

a paragraph, or a definition from a paragraph.
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 Question Answering System Design 
Using BERT
This section details how BERT can be used for implementation of a factoid 

question answering system. For this book, we are using a pretrained model 

that has been trained on the SQuAD version 1 dataset.

As an example, consider this question, along with the passage from a 

Wikipedia article on the Football League.

Question: Where was the Football League founded?

Passage: In 1888, The Football League was founded 

in England, becoming the first of many professional 

football competitions. During the 20th century, 

several of the various kinds of football grew to 

become some of the most popular team sports in 

the world.

The answer to this question will therefore be England.

Now, we look closer at how this question and passage will be 

processed using BERT to find the relevant answer. This is all in the context 

of a question answering system, compared to the text classification 

approach in Chapter 4.

BERT extracts tokens from the question and passage and combines 

them together as an input. As mentioned earlier, it starts with a [CLS] 

token that indicates the start of a sentence and uses an [SEP] separator to 

separate the question and passage. Along with the [SEP] token, BERT also 

uses segment embeddings to differentiate between the question and the 

passage that contains an answer. BERT creates two segment embeddings, 

one for the question and other for the passage, to differentiate between 

question and passage. Then these embeddings are added to a one-hot 

representation of tokens to segregate between question and passage as 

shown in Figure 5-1.

Chapter 5  Bert Model appliCations: Question answering systeM



102

Next, we pass our combined embedded representation of question and 

passage as input in the BERT model. The last hidden layer of BERT will 

then be changed and uses softmax to generate probability distributions for 

the start and end index over an input text sentence that defines a substring, 

which is an answer, as shown in Figure 5-2.

Figure 5-2. BERT architecture for question answering system

Figure 5-1. BERT input representation
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To this point, we have discussed how BERT will process input 

questions and passages. Next, we will see an implementation of a question 

answering system using BERT in Python.

Follow the steps given here to install the required prerequisites for a 

BERT-based question answering system. Many of them are the same as 

those for the examples in Chapter 4, but are included for completeness to 

ensure you can run the examples in this chapter.

 1. Make sure Python is installed on your system. 

Open a command prompt and run the following 

command to determine if Python is installed, as 

shown in Figure 5-3.

python

This will open your Python console at the command 

prompt. If Python is not installed on your system, 

download and install it as per your operating system 

from https://www.python.org/downloads/.

 2. Next, install Jupyter Notebook, which we will use 

to code. Open a command prompt and run the 

following command.

pip install notebook

Figure 5-3. Python console
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 3. Open a command prompt and run the following 

command to run Jupyter Notebook.

jupyter notebook

The notebook will open in your default browser with 

the host address as localhost and the port number 

as 8888, along with a unique token ID. Now, you 

can start writing code as mentioned in subsequent 

steps, as shown in Figure 5-4.

 4. You can also use Google Colab Notebook for 

the same purpose. It provides a fast and free 

environment to run your Python code if your system 

doesn’t have sufficient resources available. You can 

also use the GPUs and TPUs for free but for a limited 

time (12 hours) in Google Colab. You just need a 

Google account to log in to Google Colab Notebook. 

For this book, we will be using Google Colab 

Notebook to demonstrate a question answering 

Figure 5-4. Jupyter Notebook console
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system using BERT. Log in to your Google account 

and click https://colab.research.google.com. 

You will see the screen shown in Figure 5-5.

 5. To create a new Colab notebook, click New 

Notebook in the bottom right corner as shown in 

Figure 5-5.

 6. Install the transformers library from Huggingface. 

Run the following command in your Jupyter 

Notebook or Colab Notebook.

pip install transformers

Figure 5-5. Google Colab interface to create or import a notebook
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 7. After successful installation of the transformers 

library, you should be able to see the output shown 

in Figure 5-6.

Next, we will proceed to implementation of a question answering 

system using BERT. The included code snippets will provide a step-by-step 

explanation for the question answering system.

 1. Import the BertQuestionAnswering and 

BertTokenizer classes of the transformers library as 

shown here.

from transformers import BertForQuestionAnswering

from transformers import BertTokenizer

import torch

 2. Next, load the BERT question answering model 

fine-tuned on the SQuAD version 2 dataset. It will be 

a large version of BERT, with 24 layers, 340 million 

parameters, and an embedding size of 1,024. Along 

with the BERT model, we have also downloaded a 

trained model vocabulary set as shown here.

Figure 5-6. Installing transformers library
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# Load pretrained model for Question 

Answering

bert_model = BertForQuestionAnswering.from_

pretrained('bert-large-uncased-whole-word-

masking-finetuned-squad')

#Load Vocabulary

bert_tokenizer = BertTokenizer.from_

pretrained('bert-large-uncased-whole-word-

masking-finetuned-squad')

Note this will take a few minutes, depending on your internet 
bandwidth, as the model size is approximately 1.34 gB.

 3. Next, it requires a question and candidate paragraph 

context where an answer to the question would 

exist. You can find a candidate paragraph using any 

search engine or document indexer system such as 

Apache Solr or Watson Discovery Service (WDS). 

These systems will provide context paragraphs for 

the question asked by the user.

 4. Then, the question, along with the context 

paragraph, will be passed to the question answering 

system, where first they will be tokenized based 

on downloaded vocabulary. As mentioned earlier, 

these will be concatenated together using a special 

character [SEP] token in between as shown here 

(reference text has been taken from a Wikipedia 

article).
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question = "Where was the Football League 

founded?”

reference_text = " In 1888, The Football League 

was founded in England, becoming the first of 

many professional football competitions. During 

the 20th century, several of the various kinds 

of football grew to become some of the most 

popular team sports in the world."

#Perform tokenization on input text

input_ids = bert_tokenizer.encode(question, 

reference_text)

input_tokens = bert_tokenizer.convert_ids_to_

tokens(input_ids)

 5. Next, we need to concatenate them using segment 

embedding to differentiate between the question 

and the context passage. Segment embedding for 

the question will be added to the token vector of 

the question and similarly for segment embedding 

for the context passage. This should be done before 

even using it as an input to the BERT model. These 

additions are managed internally by the transformer 

library, but we need to provide Boolean values (0 or 1) 

to differentiate for each token as shown here.

#Find index of first occurrence of [SEP] token

sep_location = input_ids.index(bert_tokenizer.sep_

token_id)

first_seg_len, second_seg_len = sep_location+1, 

len(input_ids)-(sep_location+1)

seg_embedding = [0]*first_seg_len + [1]*second_seg_len
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 6. Now we can pass our example to the model.

#Test model on our example

model_scores=bert_model(torch.tensor([input_ids]), 

token_type_ids=torch.tensor([seg_embedding]))

ans_start_loc, ans_end_loc = torch.

argmax(model_scores[0]),

torch.argmax(model_scores[1])

result = ' '.join(input_tokens[ans_start_

loc:ans_end_loc+1])

result = result.replace(' ##','')

 7. The model will provide start and end index from 

context passage as an answer such as start index 

value as 11 and end index value as 18. The final 

output will be extracted from context passage using 

these indexes.

Here is the complete Python code that takes the question and 

reference passage as an input and finds the answer to that question.

from transformers import BertForQuestionAnswering

from transformers import BertTokenizer

import torch

def get_answer_using_bert(question, reference_text):

    # Load pretrained model for Question Answering

     bert_model = BertForQuestionAnswering.from_

pretrained('bert-large-uncased-whole-word-masking-

finetuned-squad')

    #Load Vocabulary

     bert_tokenizer = BertTokenizer.from_pretrained('bert-large-

uncased-whole-word-masking-finetuned-squad')
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    #Perform tokenization on input text

    input_ids = bert_tokenizer.encode(question, reference_text)

     input_tokens = bert_tokenizer.convert_ids_to_tokens(input_

ids)

#Find index of first occurrence of [SEP] token

    sep_location = input_ids.index(bert_tokenizer.sep_token_id)

     first_seg_len, second_seg_len = sep_location+1, len(input_

ids)-(sep_location+1)

    seg_embedding = [0]*first_seg_len + [1]*second_seg_len

    #Test model on our example

     model_scores = bert_model(torch.tensor([input_ids]), token_

type_ids=torch.tensor([seg_embedding]))

     ans_start_loc, ans_end_loc = torch.argmax(model_scores[0]), 

torch.argmax(model_scores[1])

     result = ' '.join(input_tokens[ans_start_loc:ans_end_

loc+1])

    result = result.replace(' ##','')

    return result

if __name__ == "__main__" :

question = "Where was the Football League founded?"

reference_text = " In 1888, The Football League was founded 

in England, becoming the first of many professional football 

competitions. During the 20th century, several of the various 

kinds of football grew to become some of the most popular team 

sports in the world."

print(get_answer_using_bert(question, reference_text))

After running this code in Colab Notebook, we get following output:

england
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Now, we have seen how a BERT-based question answering system can 

be used for research purposes. Next, consider a scenario where you need 

to deploy this feature to be consumed by some website or conversation 

system to serve the end user who is looking for an answer to his or her 

query. In this case, you need to release or expose features of the QA system 

as a REST API. Now, follow below steps to release features of QA system as 

REST API.

Let’s go through the steps to set up a REST API and public URL for 

that API (use ngrok to generate a public URL if you are inside the private 

network) for a question answering system on both Windows and Linux 

Server.

 For Windows Server
Prerequisite: Python 3.6.x and Pip need to be installed on your system.

 Creation of REST API

1. Install Flask-RESTful
Flask-RESTful is an extension of the micro-framework Flask for 

building REST APIs.

For installation, run the following command at the Windows 

command prompt, as shown in Figure 5-7.

pip install flask-restful
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This command will install the package and all its dependencies.

2. Build the REST API
A RESTful API uses HTTP requests to GET and POST data.

First create a QuestionAnswering.py file that will have the question 

answering code that you have downloaded from GitHub.

3. Deploy Flask REST API
Using Flask, deploy the REST API service and run the following 

command at the Windows command prompt as shown in Figure 5-8.

python QuestionAnswering.py

Figure 5-7. Installation of Flask-RESTful

Figure 5-8. Service deployment
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4. Response from REST API
Now the service has been hosted at the URL http://127.0.0.1:5000/

getResponse. We want the features of the question answering system to be 

publicly available. Therefore, we will use ngrok to generate a public URL 

corresponding to the local URL that we configured earlier.

Let’s look at the steps to generate a public URL using ngrok.

 1. To configure ngrok, download it from https://

ngrok.com/download .

 2. The public URL is only available when the auth 

token is downloaded from https://dashboard.

ngrok.com after signing up at https://ngrok.com/

signup.

 3. The auth token must be specified to ngrok so that 

the client is tied to this account. ngrok saves the 

auth token in ~/.ngrok2/ngrok.yml so that there is 

no need to repeat the preceding steps.

 4. Unzip the downloaded ngrok folder and run the 

ngrok.exe application.

 5. Copy the auth token from the user account 

mentioned in the command and run this command 

on the ngrok terminal prompt, as shown in Figure 5-9.

"ngrok authtoken <AUTHTOKEN>"

 6. After the previous step, authtoken gets saved to the 

configuration file, as shown in Figure 5-10.

Figure 5-9. Token generation
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 7. ngrok is a command-line application, so type ngrok 

http https://<IP>:<PORT> at this terminal prompt 

to expose the HTTPS URL. Here the IP and port 

settings correspond to the question answering API 

host and port on which the API is hosted, as shown 

in Figure 5-11.

 8. A new terminal will open after the execution 

of the command that will show the public URL 

https://44e2f215.ngrok.io corresponding to the 

local server URL, as shown in Figure 5-12.

Now, you can use the URL highlighted in Figure 5-12. That is, <URL>/

getResponse Flask is good for a development environment, but not for 

production. For a production environment, the API should be hosted on 

Figure 5-10. ngrok configuration

Figure 5-11. Generate public URL

Figure 5-12. Public URL
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Apache Server. Refer to the following URL to deploy a service on Apache 

Server in Windows.

https://medium.com/@madumalt/flask-app-deployment-in-windows-

apache-server-mod-wsgi-82e1cfeeb2ed

 For Linux Server
Prerequisite: Python 3.6.x and Pip need to be installed on your system.

 Creation of REST API

1. Install Flask-RESTful
To install, run the following command on Linux Shell as shown in 

Figure 5-13.

$ pip install flask-restful

This will install the package and its dependencies.

2. Build the REST API
Create an QuestionAnswering.py file that will have the question 

answering system code that you downloaded from GitHub.

3. Deploy Flask REST API

Figure 5-13. Installation of flask-restful
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To deploy the REST API service using Flask, run the following 

command on Linux Shell, as shown in Figure 5-14.

$ python QuestionAnswering.py

4. Response from REST API
Now the service has been hosted at the URL http://127.0.0.1:5000/

getResponse. Because we want features of the question answering 

system to be publicly available, we use ngrok to generate a public URL 

corresponding to the local URL that we have configured previously.

Let’s look at the steps to generate a public URL using ngrok.

 1. To expose a local HTTPS server, download ngrok for 

Linux server from https://bin.equinox.io/c/ 

4VmDzA7iaHb/ngrok-stable-linux-amd64.zip.

 2. The public URL is only available when the auth 

token is downloaded from https://dashboard.

ngrok.com after signing up at https://ngrok.com/

signup.

 3. The auth token must be specified to ngrok so that 

the client is bound to this account. ngrok saves the 

auth token in ~/.ngrok2/ngrok.yml so that there is 

no need to repeat this step.

Figure 5-14. Service deployment
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 4. To unzip the downloaded ngrok files, run the 

following command on the terminal as shown in 

Figure 5-15.

$ unzip /path/to/ngrok.zip

 5. Copy the auth token from the user account and add 

in the command. Run this command at the ngrok 

terminal prompt, as shown in Figure 5-16.

"ngrok authtoken <AUTHTOKEN>"

 6. After the previous step the auth token will be saved 

to the configuration file.

 7. ngrok is a command-line application, so type ngrok 

http https://<IP>:<PORT> at this terminal prompt 

to expose the HTTPS URL. Here the IP and port 

settings correspond to the question answering API 

host and port on which the API is hosted, as shown 

in Figure 5-17.

Figure 5-16. ngrok configuration

Figure 5-17. Generate public URL

Figure 5-15. Unzip ngrok
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 8. After the execution of the command, the 

terminal will be displayed with the public URL 

https://44e2f215.ngrok.io corresponding to the 

local server URL as shown in Figure 5-18.

For more details, please refer to the ngrok documentation at https://

ngrok.com/docs.

Now, you can use the URL as highlighted in Figure 5-18. That is, <URL>/

getResponse Flask is good for a development environment but not for 

production. For a production environment, the API should be hosted on 

Apache Server. Refer to the following URL for guidance on deploying a 

service on Apache Server in Linux.

https://www.codementor.io/abhishake/minimal-apache-

configuration-for-deploying-a-flask-app-ubuntu-18-04-phu50a7ft

Follow the steps given next to release features of a question answering 

system as a REST API.

 1. Create a file named QuestionAnsweringAPI.py.

 2. Copy the following code and paste it in that file, then 

save it.

from flask import Flask, request

import json

from QuestionAnsweringSystem.QuestionAnswer 

import get_answer_using_bert

app=Flask(__name__)

Figure 5-18. Public URL

Chapter 5  Bert Model appliCations: Question answering systeM

https://44e2f215.ngrok.io
https://ngrok.com/docs
https://ngrok.com/docs
https://www.codementor.io/abhishake/minimal-apache-configuration-for-deploying-a-flask-app-ubuntu-18-04-phu50a7ft
https://www.codementor.io/abhishake/minimal-apache-configuration-for-deploying-a-flask-app-ubuntu-18-04-phu50a7ft


119

@app.route ("/questionAnswering", methods=['POST'])

def questionAnswering():

    try:

        json_data = request.get_json(force=True)

       query = json_data['query']

       context_list = json_data['context_list']

       result = []

       for val in context_list:

            context = val['context']

            context = context.replace("\n"," ")

            answer_json_final = dict()

            answer = get_answer_using_bert(context, query)

            answer_json_final['answer'] = answer

            answer_json_final['id'] = val['id']

            answer_json_final['question'] = query

            result.append(answer_json_final)

           result={'results':result}

        result = json.dumps(result)

        return result

    except Exception as e:

        return {"Error": str(e)}

if __name__ == "__main__" :

    app.run(port="5000")

 3. That code processes input passed to an API, calls 

the function get_answer_using_bert, and sends a 

response from this function as an API response.

 4. Open a command prompt and run the following 

command.

Python QuestionAnsweringAPI.py
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This will start a service on http://127.0.0.1:5000/ 

as shown in Figure 5-19.

 5. Now to test the Rest API, we are going to use 

Postman. This is a REST API client that is used to 

test the API URL. We can test any complex HTTP/s 

requests and can also read their responses. First, 

go to https://www.postman.com/downloads/ to 

download the Postman tool and install it on your 

system.

 6. After the installation, test following URL and sample 

request JSON that is being sent to the question 

answering API end and response JSON that will be 

received as a response from the API as shown in 

Figure 5-20.

URL: http://127.0.0.1:5000/questionAnswering

Figure 5-19. Service deployment.
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Question answering system sample input request JSON:

{

     "query": "Where was the Football league 

founded?",

    "context_list": [

        {

            "id": 1,

             "context": "In 1888, The Football 

League was founded in England, 

becoming the first of many 

professional football competitions. 

During the 20th century, several of 

the various kinds of football grew 

to become some of the most popular 

team sports in the world"

        }

    ]

}

Question answering system sample output response 
JSON:

{

    "results": [

        {

            "answer": "england",

            "id": 1,

             "question": "Where was the Football 

leagure founded?"

        }

    ]

}
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The codebase for this exercise can be downloaded from GitHub at 

https://github.com/bertbook/Python_code/tree/master/Chapter5/

QuestionAnsweringSystem.

 Open-Domain Question Answering System
An ODQA system aims to find an exact answer to any question from 

Wikipedia articles. Thus, for a question, this system will provide a relevant 

answer. The default implementation of an ODQA system processes a batch 

of queries as an input and returns the answer.

 Model Architecture

The architecture of the DeepPavlov ODQA system consists of two 

components: a ranker and a reader. To find an answer to any question, 

the ranker first retrieves a list of relevant articles from the collection of 

documents, and then the reader scans them to identify an answer.

The ranker component is based on the DrQA architecture proposed by 

Facebook Research. Specifically, the DrQA approach uses unigram-bigram 

hashing and a TF-IDF algorithm to efficiently return a subset of relevant 

Figure 5-20. Calling question answering API
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articles based on a question. The reader component is based on R-NET 

proposed by Microsoft Research Asia and implemented by Wenxuan Zhou. 

The R-NET architecture is an end-to-end neural network model that aims 

to answer questions based on a given document. R-NET first matches the 

question and the document via gated attention-based recurrent networks 

to obtain a question-aware document representation. Then, the self-

matching attention mechanism refines the representation by matching 

the document against itself, which effectively encodes information from 

the whole document. Finally, pointer networks locate the start and end 

index of the answer in the article. Figure 5-21 shows the logical flow of a 

DeepPavlov ODQA system.

To use this model for an ODQA system, we have used the deeppavlov 

library in Python. Please note that an ODQA system uses a corpus of 

Wikipedia articles or documents. Follow these steps to configure and use 

an ODQA system.

Figure 5-21. The DeepPavlov-based ODQA system architecture
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 1. Create a new Jupyter notebook and run the 

following command to install the deeppavlov 

library, as shown in Figure 5-22.

pip install deeppavlov

 2. Run the following command to install all required 

models, vocabulary, and so on, trained on the 

Wikipedia corpus in the English language, as shown 

in Figure 5-23.

! python -m deeppavlov install en_odqa_infer_wiki

Note please use the ‘!’ symbol before the installation command as 
just shown if you are working with Colab notebook.

Figure 5-22. Installing deeppavlov library
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 3. Perform the necessary imports required for this 

implementation as shown here.

from deeppavlov import configs

from deeppavlov.core.commands.infer import build_model

 4. Then we will get an ODQA model using the build_

model class of the deeppavlov library. It takes two 

arguments:

• config file path: Define the name of the config file 

that contains details of the relevant NLP model to 

be used. For this case, we will use en_odqa_infer_

wiki. This name implies the ODQA model from 

Wikipedia.

• download: This will be True if the model needs to be 

downloaded and False otherwise.

odqa = build_model(configs.odqa.en_odqa_

infer_wiki, download = True)

Figure 5-23. Installing required packages for deeppavlov
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 5. Once the ODQA model has been loaded, you can 

test this model by providing questions such as “Who 

is Virat Kohli?” as shown here.

questions = ["Where did guinea pigs 

originate?", "Who is virat kohli?"]

answers = odqa(questions)

The output of this code will be the answer to questions asked from 

Wikipedia documents. Here is the complete code for the ODQA system.

from deeppavlov import configs

from deeppavlov.core.commands.infer import build_model

def odqa_deeppavlov(questions):

     odqa = build_model(configs.odqa.en_odqa_infer_wiki, 

download = True)

    results = odqa(questions)

    return results

if __name__ == "__main__" :

        questions = ["Where did guinea pigs originate?", "Who is 

virat kohli?"]

answers = odqa_deeppavlov(questions)

print(answers)

Here is the ouput:

['Andes of South America',  'Indian international cricketer who 

currently captains the India national team']

Now, we have seen how an ODQA system can be used for research 

or development purposes. Next, consider a scenario where you need 

to deploy this feature to be consumed by some website or conversation 

system to serve the end user who is looking for an answer to his or her 

query. In this case, you need to release or expose features of the ODQA 
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system as a REST API. Now, follow these steps to release features of the 

question answering system as a REST API.

 1. Create a file named 

OpenDomainQuestionAnsweringAPI.

 2. Copy the following code and paste it in that file, then 

save it.

from flask import Flask, request

import json

from OpenDomainQuestionAnsweringSystem.OpenDomainQA 

import odqa_deeppavlov

app=Flask(__name__)

@route ("/opendomainquestionAnswering", 

methods=['POST'])

def opendomainquestionAnswering():

    try:

        json_data = request.get_json(force=True)

        questions = json_data['questions']

        answers_list = odqa_deeppavlov(questions)

        index = 0

        result = []

        for answer in answers_list:

            qa_dict = dict()

            qa_dict['answer']=answer

            qa_dict['question']=questions[index]

            index = index+1

            result.append(qa_dict)

        results = {'results':result}

        results = json.dumps(results)

        return results
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    except Exception as e:

        return {"Error": str(e)}

if __name__ == "__main__" :

    app.run(debug=True,port="5000")

 3. This code processes input passed to an API, calls a 

function odqa_deeppavlov, and sends a response 

from this function as an API response.

 4. Open a command prompt and run the following 

command.

Python OpenDomainQuestionAnsweringAPI.py

This will start a service on http://127.0.0.1:5000/ 

as shown in Figure 5-24.

Figure 5-24. Service deployment
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 5. Now, to test this API, Postman can be used. Please 

refer to the following URL and sample request JSON 

that is being provided to the question answering 

API and response JSON that will be received as a 

response from API, as shown in Figure 5-25.

URL: http://127.0.0.1:5000/opendomain 
questionAnswering

ODQA system sample input request JSON:

{

    "questions": [

       {

             "question": "Where did guinea pigs 

originate?"

        },

{

             "question": "Who is virat kohli?"

        }

    ]

}

ODQA system sample output response JSON:

{

    "results": [

        {

            "answer": "Andes of South America",

             "question": "Where did guinea pigs 

originate?"

        },
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       {

             "answer": "Indian international 

cricketer who currently captains 

the India national team",

            "question": "Who is virat kohli?"

        }

    ]

}

The codebase for this exercise can be downloaded from GitHub at 

https://github.com/bertbook/Python_code/tree/master/Chapter5/

OpenDomainQuestionAnsweringSystem.

 DeepPavlov QA System
In the previous section, we discussed how an ODQA system that has 

been trained on Wikipedia documents can be used to answer factoid 

and non-factoid questions. Next, we look at how DeepPavlov can be 

Figure 5-25. Calling the ODQA system API
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used for an implementation of a contextual-based question answering 

system where an answer to the question exists in context. As an example, 

consider the following context and question from a Wikipedia article.

Context: In 1888, The Football League was founded in England, 

becoming the first of many professional football competitions. During the 

20th century, several of the various kinds of football grew to become some 

of the most popular team sports in the world.

Question: In which year was the Football League founded?

Answer: 1888

Please follow these steps to implement a contextual-based question 

answering system.

 1. Create a new Jupyter notebook and run the 

following command to install the deeppavlov 

library.

pip install deeppavlov

 2. Run the following command to install all required 

models, vocabulary, and so on.

! python -m deeppavlov install squad_bert

Note please use the ‘!’ symbol before the installation command as 
just shown if you are working with Colab notebook.

 3. Import the required packages as shown here.

from deeppavlov import configs, build_model
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 4. Then we will get the BERT model using the build_

model class of the deeppavlov library. It takes two 

arguments:

• config file path: Define the name of the config file 

that contains details of the relevant NLP model to 

be used. For this case, we will use squad_bert. This 

configuration contains all details for the specific 

BERT model that has been trained over the SQuAD 

dataset.

• download: This is True if the model needs to be 

downloaded and False otherwise.

odqa = build_model(configs.squad.squad_bert, 

download = True)

 5. Once the BERT model has been loaded, you can test 

it by providing a question along with the context to 

extract an answer, as shown here.

context = " In 1888, The Football League was 

founded in England, becoming the first of many 

professional football competitions. During the 

20th century, several of the various kinds of 

football grew to become some of the most popular 

team sports in the world."

question = "In which year the Football league was 

founded?"

answers = qa_ deeppavlov (context, question)

 6. The output of this code snippet will be the answer 

extracted from the context for the question asked.

Chapter 5  Bert Model appliCations: Question answering systeM



133

Here is the complete Python code that shows an implementation of a 

contextual CDQA system.

from deeppavlov import build_model, configs

def qa_deeppavlov(question, context):

     model = build_model(configs.squad.squad_bert, 

download=True)

    result = model([context], [question])

    return result [0]

if __name__=="__main__":

context = "In 1888, The Football League was founded in England, 

becoming the first of many professional football competitions. 

During the 20th century, several of the various kinds of 

football grew to become some of the most popular team sports in 

the world."

question = "In which year the Football league was founded?"

answers = qa_deeppavlov (context, question)

             print(answers)

Here is the output:

1888

Now, we have seen how a contextual-based question answering system 

(another variation of BERT) can be used for research or development 

purposes. Next, consider a scenario where you need to deploy this feature 

to be consumed by some website or conversation system to serve the end 

user who is looking for an answer to his or her query. In this case, you need 

to release or expose features of the ODQA system as a REST API. Follow the 

steps given here to release features of the question answering system as a 

REST API.
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 1. Create a file named DeepPavlovQASystemAPI.

 2. Copy the following code and paste in that file, then 

save it.

from flask import Flask, request

from DeeppavlovQASystem.QA_Deepplavlov import qa_

deeppavlov

import json

app=Flask(__name__)

@app.route ("/qaDeepPavlov", methods=['POST'])

def qaDeepPavlov():

    try:

        json_data = request.get_json(force=True)

        query = json_data['query']

        context_list = json_data['context_list']

        result = []

        for val in context_list:

            context = val['context']

            context = context.replace("\n"," ")

            answer_json_final = dict()

            answer = qa_deeppavlov(context, query)

            answer_json_final['answer'] = answer

            answer_json_final['id'] = val['id']

            answer_json_final['question'] = query

            result.append(answer_json_final)

        result = json.dumps(result)

        return result

    except Exception as e:

        return {"Error": str(e)}
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 3. This code processes input passed to an API, calls a 

function qa_deeppavlov, and sends a response from 

this function as an API response.

 4. Open a command prompt and run the following 

command.

Python DeepPavlovQASystemAPI.py

This will start a service on http://127.0.0.1:5000/ as 

shown in Figure 5-26.

 5. Now, to test this API, Postman can be used. Please 

refer to the following URL and sample request JSON 

that is being provided to the DeepPavlov QA API 

end and response JSON that will be received as a 

response from the API as shown in Figure 5-27.

Figure 5-26. Service deployment
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URL: http://127.0.0.1:5000/qaDeepPavlov
DeepPavlov QA system sample input request JSON:

{

     "query": "In which year the Football league 

was founded?",

    "context_list": [

        {

            "id": 1,

             "context": "In 1888, The Football 

League was founded in England, becoming 

the first of many professional football 

competitions. During the 20th century, 

several of the various kinds of 

football grew to become some of the 

most popular team sports in the world"

        }

    ]

}

DeepPavlov QA system sample output response 
JSON:

{

    "results": [

        {

            "answer": "1888",

            "id": 1,

             "question": "In which year the 

Football league was founded?"

        }

    ]

}
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The codebase for this exercise can be downloaded from GitHub at 

https://github.com/bertbook/Python_code/tree/master/Chapter5/

DeeppavlovQASystem.

 Conclusion
This chapter covered the question answering system, which is one of the 

important applications of the BERT model. We learned about types of 

question answering Systems like CDQA and ODQA. We built a question 

answering system using BERT and deployed it as an API for use by a third-

party system. In the next chapter, we look at how BERT is used in other 

NLP tasks.

Figure 5-27. Calling DeepPavlov QA system API
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CHAPTER 6

BERT Model 
Applications: 
Other Tasks
In the last chapter, we learned about BERT and its usage in the design of a 

question answering system. This chapter discusses how BERT can be used 

for implementation of other NLP tasks such as text classification, named 

entity recognition, language translation, and more.

BERT has performed well in many benchmark datasets for various 

NLP tasks such as SQuAD (question answering dataset), Natural Questions 

(question answering dataset for factoid and non-factoid questions), the 

IMDB movie review dataset (classification data), and so on. Now, we will 

see how a BERT-based model trained on these benchmarked datasets can 

be used as pretrained model for the following NLP tasks.

• Sentiment analysis

• Named entity recognition

• Text classification

• Text summarization

We introduce these topics and then take a looked at their 

implementation.

https://doi.org/10.1007/978-1-4842-6664-9_6#DOI
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 Sentiment Analysis
Sentiment analysis is a subfield of NLP that identifies opinions or 

sentiments of given text across blogs, reviews, news, and so on. It can 

inform businesses about acceptance of their products and consumer 

sentiments toward the same. It is also useful to identify hate speech and 

other issues over social media to identify the population’s mood toward 

a given topic of discussion. Sentiment analysis can even help companies 

plan product releases on the basis of consumer opinion about particular 

topics in particular demographic regions.

For this book, we have used a sentiment analysis model that has 

been trained using BERT, which uses a dataset in .csv format where each 

data point is pair of sentences and its opinion (i.e., not insult, insult). For 

inference, the system processes a user’s query and provides a sentiment 

for the same.

Please follow these steps to implement a sentiment analysis system.

 1. Create a new Jupyter notebook as covered 

previously and run the following command to 

install the deeppavlov library (if you didn’t do so in 

Chapter 5).

! pip install deeppavlov

Once it is installed, you will see the output shown in Figure 6-1.
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 2. Because we are going to use sentiment analysis 

we we will use a model that has been trained on 

sentiment data. Run the following command to 

download a trained model, insults_kaggle_bert.

! python -m deeppavlov install insults_kaggle_bert

Note please use the ‘!’ symbol before the installation command as 
just shown if you are working with Colab notebook.

Once it is installed, you will see the output shown in Figure 6-2.

Figure 6-1. Installation of deeppavlov
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 3. Perform the necessary imports as required for this 

implementation using this command.

from deeppavlov import build_model, configs

 4. Then we will get a sentiment analysis model using 

the build_model class of the deeppavlov library. It 

takes two arguments:

• config file path: Define the name of the config file 

that contains details of the relevant NLP model to 

be used. For this case, we will use insults_kaggle_

bert. This contains the configuration required to 

use the sentiment model.

• download: This is True if the model needs to be 

downloaded, and False otherwise. Because we 

are doing this for the first time, the value of this 

argument will be True.

sentiment_model = build_model(configs.classifiers.

insults_kaggle_bert, download=True)

Figure 6-2. Installation of packages
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 5. Once the sentiment model has been loaded, you 

can test this model by asking questions such as 

“You are so dumb!,” “This movie is good,” and so on, 

and passing these questions as an argument to the 

sentiment_model function shown here.

test_input = ['This movie is good', 'You are so dumb!']

results = sentiment_model(test_ input)

The output of this code segment will be Not Insult or Insult 

depending on the question asked. Here is the complete end-to-end 

codebase to use sentiment analysis.

from deeppavlov import build_model, configs

def build_sentiment_model ():

     model = build_model(configs.classifiers.insults_kaggle_

bert, download=True)

    return model

test_input = ['This movie is good', 'You are so dumb!']

if __name__ == "__main__" :

        sentiment_model = build_sentiment_model()

        results = sentiment_model(test_ input)

        print(results)

This is the output:

['Not Insult', 'Insult']

Now that we have seen how a sentiment analysis system based on 

BERT can be leveraged for research purposes, let’s consider a scenario 

where you need to enable sentiment analysis in a conversation system 

such that it can identify sentiments of a user based on a query or a 

response given by user. This would help the conversation system to 
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respond on the basis of the sentiments of a user. Follow the steps given 

here to release features of sentiment analysis system as a REST API.

 1. Create a file named SentimentAnalysisAPI.py.

 2. Copy the code shown here and paste it in this file, 

then save it.

from flask import Flask, request

import json

from SentimentAnalysis.SentimentAnalysis 

import build_sentiment_model

app=Flask(__name__)

@app.route ("/sentimentAnalysis", 

methods=['POST'])

def sentimentAnalysis():

    try:

        json_data = request.get_json(force=True)

        questions = json_data['questions']

         sentiment_model = build_sentiment_

model()

        questions_list =[]

        for ques in questions:

            questions_list.append(ques)

         model_output = sentiment_model 

(questions_list)

        index = 0

        result = []

        for ans in model_output:

            sentiment_qa =dict()

             sentiment_qa['qustion'] = 

questions_list[index]
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            sentiment_qa['answer'] = ans

            result.append(sentiment_qa)

        result={'results':result}

        result = json.dumps(result)

        return result

except Exception as e:

        return {"Error": str(e)}

if __name__ == "__main__" :

    app.run(port="5000")

 3. This code processes input passed to an API, calls 

the build_sentiment_model function, and sends a 

response from this function as an API response.

 4. Open a command prompt and run the following 

command.

Python SentimentAnalysisAPI.py

This will start a service on http://127.0.0.1:5000/ 

as shown in Figure 6-3.

Figure 6-3. Service deployment
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 5. Now, to test the Rest API, Postman can be used. 

Please refer to the URL and sample request JSON 

that is being provided to the sentiment analysis 

API and response JSON that will be received as a 

response from the API as shown in Figure 6-4.

URL: http://127.0.0.1:5000/sentimentAnalysis

Sentiment analysis system sample input request 
JSON:

{

    "questions": [

        {

            "question": "This movie is good."

        },

       {

             "question": "You are so dumb!"

        }

    ]

}

Sentiment analysis system sample output response 
JSON:

{

    "results": [

        {

            " question": "This movie is good.",

            "answer": "Not Insult"

        },
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        {

            " question": "You are so dumb!",

            "answer": "Insult"

        }

    ]

}

The codebase for this exercise can be downloaded from GitHub at 

https://github.com/bertbook/Python_code/tree/master/Chapter6/

SentimentAnalysis.

 Named Entity Recognition
Named entity recognition is a subfield of information extraction where it 

aims to extract nouns or noun phrases from text data and classify them 

into categories as such as person, place, time, organization, and so on. 

Figure 6-4. Calling sentiment analysis system API
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This is mainly useful for conversion of unstructured text to structured text. 

Entity recognition plays a major role in the following systems.

• Search engine: This is used to identify relevant 

documents for a query asked by the user. For an 

example, let’s use “What is Microsoft Outlook?” In 

this query, “Microsoft Outlook” is an entity of type 

application. The search engine will thus give more 

importance to a document where Microsoft Outlook is 

being identified as an entity.

• Conversation system: Entity plays a major role in the 

design of a conversation system. Entities are being used 

in conversation systems to disambiguate a question 

asked by the user if it is related to common issues 

but for different entities. As an example, a user has 

entered the query “I am facing an issue in Outlook.” 

The conversation system has two solutions: one for 

Outlook and the other for Gmail. Because Outlook and 

Gmail both are different entities, so are the solutions. 

Therefore, after identification of intent (i.e., Issue), the 

next identification will be entity (i.e., Outlook) and the 

conversation system provides a solution accordingly.

There exist many annotated datasets for entity recognition. For this 

book, though, we will demonstrate an entity model that has been trained 

on the OntoNotes dataset using BERT as a baseline. This dataset is a 

collection of 1,745,000 English, 900,000 Chinese, and 300,000 Arabic text 

data collected from a range of sources such as telephone conversations, 

newswire, broadcast news, broadcast conversation, and blogs.

In this dataset, entities have been annotated with 18 categories such 

as organization, art work, numbers in word, numbers, quantity, person, 

location, geopolitical entity, time, date, facility, event, law, nationalities or 
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religious or political groups, language, currency, percentage, and product, 

among others.

In this section, we explore how a named entity recognition system that 

has been trained on an OntoNotes dataset using BERT can be used. Please 

follow these steps to implement a named entity recognition system.

 1. Create a new Jupyter notebook, as mentioned 

previously, and run the following command to 

install the deeppavlov library.

! pip install deeppavlov

Once installed, you will see output that looks like 

Figure 6-5.

 2. We are going to use an entity recognition system that has 

been trained on OntoNotes data as shown in Figure 6-6. 

Hence, run the following command to download the 

trained model, ner_ontonotes_bert_mult.

! python -m deeppavlov install ner_ontonotes_

bert_mult

Figure 6-5. Installation of deeppavlov
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Note please use the ‘!’ symbol before the installation command as 
just shown if you are working with Colab notebook.

 3. Perform the necessary imports as required for this 

implementation using this command.

from deeppavlov import build_model, configs

 4. We will then get an entity model using the build_

model class of the deeppavlov library. It takes two 

arguments:

• config file path: Define the name of the config 

file that contains the details of the relevant NLP 

model to be used. For this case, we will use 

ner_ontonotes_bert_mult. This file contains all 

configurations required for the entity model trained 

on OntoNotes.

Figure 6-6. Installation of packages
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• download: This is True if the model needs to be 

downloaded and False otherwise. Because we 

are doing this for the first time, the value of this 

argument will be True.

ner_model = build_model(configs. ner.ner_

ontonotes_bert_mult, download=True)

 5. Once the entity recognition model has been loaded, 

you can test this model by providing text such as 

“Amazon rainforests are located in South America.” 

and passing it as an argument to the function 

named ner_model as shown here.

test_input = ["Amazon rainforests are located 

in South America."]

results = ner_model(test_ input)

The output of these code snippets contains words 

along with their tagged entities, as shown in 

Figure 6-7.

Figure 6-7. Named entity recognition system result
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Here is the complete Python code for this implementation.

from deeppavlov import build_model, configs

import pandas as pd

def build_ner_model ():

     model = build_model(configs. ner.ner_ontonotes_bert_mult, 

download=True)

    return model

if __name__=="__main__":

   test_input = ["Amazon rainforests are located in South 

America."]

   ner_model = build_ner_model()

   results = ner_model(test_ input)

    results = pd.DataFrame(zip(results[0][0],results[1][0]), 

columns=['Word','Entity'])

   print(results)

The output is the recognized entities as shown in Figure 6-8.

Figure 6-8. Named entity recognition system result
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Now that we have seen how an entity recognition system based on 

BERT can be used for research purposes, we next consider a scenario 

where we need to deploy this feature to be consumed by a conversation 

system. A conversation system generally uses entities to configure or 

develop use cases. As an example, for use case “Facing an issue with 

Outlook,” this system can be used to identify “Outlook” as an entity. In this 

case, you need to release or expose the features of the entity recognition 

system as a REST API using the following steps.

 1. Create a file with named NamedEntityAPI.

 2. Copy the following code and paste in that file, then 

save it.

from flask import Flask, request

import json

from NamedEntityRecognition.

NamedEntityRecognition import build_ner_model

app=Flask(__name__)

@app.route ("/namedEntity", 

methods=['POST'])

def namedEntity():

    try:

         json_data = request.get_json(force=True)

        query = json_data['query']

        ner_model = build_ner_model()

        model_output = ner_model([query])

        words= model_output[0][0]

        tags = model_output[1][0]

        result_json = dict()

        result_json['query'] = query
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        entities = []

        index = 0

        for word in words:

            word_tag_dict=dict()

            word_tag_dict['word'] = word

            word_tag_dict['tag'] = tags[index]

            index = index+1

            entities.append(word_tag_dict)

        result_json['entities'] = entities

        result = json.dumps(result_json)

        return result

except Exception as e:

        return {"Error": str(e)}

if __name__ == "__main__" :

    app.run(port="5000")

 3. This code processes the input passed to an API, 

calls the build_ner_model function, and sends a 

response from this function as an API response.

 4. Open a command prompt and run the following 

command.

Python NamedEntiityAPI.py

This will start a service on http://127.0.0.1:5000/ as 

shown in Figure 6-9.
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 5. Now, to test this API, Postman can be used as 

explained in Chapter 5. Please refer to the following 

URL and sample request JSON that is being 

provided to the named entity recogntion system 

API and response JSON that will be received as a 

response from the API as shown in Figure 6-10.

URL: http://127.0.0.1:5000/namedEntity
Named entity recognition system sample input 
request JSON:

{

     "query": "Amazon rainforests are located in South 

America."

}

Figure 6-9. Service deployment
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Named entity recognition system sample output 
response JSON:

{

      "query": "Amazon rainforests are located in South 

America.",

    "entities": [

        {

            "word": "Amazon",

            "tag": "B-LOC"

        },

        {

            "word": "South",

            "tag": "B-LOC "

        },

{

            "word": "America",

            "tag": "I-LOC "

        }

    ]

}
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The codebase for this exercise can be downloaded from GitHub at 

 https://github.com/bertbook/Python_code/tree/master/Chapter6/

NamedEntityRecognition.

 Text Classification
Text classification can be defined as the problem of assigning or 

categorizing text into a particular category or class. Document 

classification or categorization, intent classification, spam blog detection, 

and more falls under text classification. Here, text can be anything such 

as a sentence, a document, blogs, and so on. Text classification leverages 

NLP methods for preprocessing such as tokenization, stop-word removal, 

phrase extraction, entity extraction, and so on.

During inference, text classification analyzes the text (document, 

blog, or sentence) and assigns it to pretrained categories. As an example, 

if document is referring to politics, then this belongs to the category of 

Figure 6-10. Calling named entity recognition system API
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politics. In some cases, a document may belong to multiple categories 

(known as multilabel classification). As an example, if document is 

talking about politics as well as sports, then it will be classified into both 

categories; that is, politics and sports.

This section shows how a text categorization system trained on 

newsgroup datasets using BERT can be used. Here, we are going to 

classify news articles into their respective categories. This dataset has four 

categories for news articles:

• alt.atheism

• soc.religion.christian

• comp.graphics

• sci.med

We will use ktrain and tensorflow_gpu for this implementation. Please 

note that this implementation requires the GPU version of TensorFlow 

to be installed on the system. Therefore, please ensure you have a GPU- 

enabled system.

 1. Create a new Jupyter notebook as mentioned 

previously and run the following command to install 

tensorflow_gpu and the ktrain library.

! pip3 install -q tensorflow_gpu==2.1.0

!pip3 install -q ktrain

After successful installation of the package, it shows an 

output as displayed in Figure 6-11.
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 2. Import the packages required for this implementation, 

such as the fetch_20newsgroup dataset from sklearn 

and the ktrain library as shown here.

from sklearn.datasets import fetch_20newsgroups

import ktrain

 3. Next download and retrieve the fetch_20newsgroup 

dataset for only four categories: alt.atheism, soc.

religion.christian, comp.graphics, and sci.med. 

Divide them into a training and test set with 

shuffling enabled, as shown here.

classes = ['alt.atheism', 'soc.religion.

christian','comp.graphics', 'sci.med']

train_data = fetch_20newsgroups(subset='train', 

categories=classes, shuffle=True, random_state=42)

test_data = fetch_20newsgroups(subset='test', 

categories=classes, shuffle=True, random_state=42)

Figure 6-11. Installation of TensorFlow
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 4. Create an instance of the transformer model using 

the Transformer class of the ktrain.text library. It 

requires values of some of the parameters to be 

defined as shown here.

• Model name: This indicates the name of the 

BERT model to be used. In this case, we have used 

distillBERT instead of BERT base.

• Length of article: This sets the maximum length of 

an article. Here, maximum length can only be 512. 

If you specific any article of a length greater than 

512, it will automatically be truncated.

• Classes: This is a list of classes that needs to be 

considered for training.

 5. The next step is to preprocess training and test 

data to generate their embedded representation 

of articles using distillBERT. Pass these data and 

the model to the get_learner function of ktrain 

to get an instance of the classification model with 

all configuration parameters, such as batch_size, 

instance of a model, training data, and test data.

MODEL_NAME = 'distilbert-base-uncased'

trans = text.Transformer(MODEL_NAME, 

maxlen=500,  classes=train_classes)

train_preprocess = trans.preprocess_

train(train_features, train_labels)

val_preprocess = trans.preprocess_test(test_

features, test_labels)

model_data = trans.get_classifier()
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classification_model = ktrain.get_

learner(model_data, train_data=train_

preprocess, val_data=val_preprocess, batch_

size=6)

classification_model.fit_onecycle(5e-5, 4)

 6. Once the classification model has been trained, then 

this model can be tested on unseen data, as shown 

here.

predictor = ktrain.get_

predictor(classification_model.model, 

preproc=trans)

input_text = 'Babies with down syndrome have an 

extra chromosome.'

results = predictor.predict(input_text)

Here is the complete Python code to implement text classification.

from sklearn.datasets import fetch_20newsgroups

import ktrain

from ktrain import text

def preprocess_dataset():

     classes = ['alt.atheism', 'soc.religion.christian', 

'comp.graphics', 'sci.med']

     train_data = fetch_20newsgroups(subset='train', 

categories=classess, shuffle=True, random_state=42)

     test_data = fetch_20newsgroups(subset='test', 

categories=classes, shuffle=True, random_state=42)

     return train_data.data,train_data.target,  test_data.

data,test_data.target,classes
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def create_text_classification_model():

    MODEL_NAME = 'distilbert-base-uncased'

     train_features, train_labels, test_features, test_labels, 

train_classes =preprocess_dataset()

     trans = text.Transformer(MODEL_NAME, maxlen=500, 

classes=train_classes)

     train_preprocess = trans.preprocess_train(train_features, 

train_labels)

     val_preprocess = trans.preprocess_test(test_features,  

test_labels)

    model_data = trans.get_classifier()

     classification_model = ktrain.get_learner(model_data, 

train_data=train_preprocess, val_data=val_preprocess, 

batch_size=6)

    classification_model.fit_onecycle(5e-5, 4)

    return classification_model, trans

def predict_category(classification_model, trans, input_text):

     predictor = ktrain.get_predictor(classification_model.

model, preproc=trans)

    results = predictor.predict(input_text)

    return results

if __name__ == "__main__" :

         classification_model, trans = create_text_

classification_model()

         input_text = 'Babies with down syndrome have an extra 

chromosome.'

         print(predict_category(classification_model, trans, 

input_text))
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As you can see from the following output, for a text “Babies with down 

syndrome have an extra chromosome.” The category is sci.med.

sci.med

Now, we have seen how a text classification system based on BERT 

can be used for research purposes. Next, consider a scenario where you 

need to deploy this feature to be consumed by a conversation system. 

A conversation system can leverage this as intent classification or a 

recognition system to configure or develop use cases. As an example, for a 

use case “Facing an issue with Outlook,” this system can be used to identify 

an intent as “Issue.” In this case, you need to release or expose features of 

the intent classification system as a REST API by following these steps.

 1. Create a file named TextClassificationAPI.

 2. Copy the following code and paste it in that file, then 

save it.

from flask import Flask, request

import json

from TextClassification.TextClassification 

import create_text_classification_model, 

predict_category

from TextClassification import create_text_

classification_model

app=Flask(__name__)

result={}

@app.route ("/textClassification", 

methods=['POST'])

def textClassification ():

    try:

        json_data = request.get_json(force=True)
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        input_text = json_data['query']

         classification_model, trans = 

create_text_classification_model()

         category = predict_category 

(classification_model, trans,  

input_text)

        result = {}

        result['query'] = input_text

        result['category'] = category

        result = json.dumps(result)

        return result

    except Exception as e:

        error = {"Error": str(e)}

        error = json.dumps(error)

        return error

if __name__ == "__main__" :

    app.run(port="5000")

 3. This code processes the input passed to an API, calls 

the create_text_classification_model function, 

and sends a response from this function as an API 

response.

 4. Open a command prompt and run the following 

command.

Python TextClassificationAPI.py

This will start a service on http://127.0.0.1:5000/ as 

shown in Figure 6-12.
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 5. Now, to test the Rest API, Postman can be used, as 

mentioned in Chapter 5. Please refer the following 

URL and sample request JSON that is being 

provided to the text classification API and response 

JSON that will be received as a response from the 

API, as shown in Figure 6-13.

URL: http://127.0.0.1:5000/textClassification
Text classification system sample input request JSON:

{

             "query": "Babies with down syndrome have an extra 

chromosome."

}

Text classification system sample output response JSON:

{

      "query": "Babies with down syndrome have an extra 

chromosome.",

     "category": "sci.med"

}

Figure 6-12. Service deployment
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The codebase for this exercise can be downloaded from GitHub at 

https://github.com/bertbook/Python_code/tree/master/Chapter6/

TextClassification.

 Text Summarization
Text summarization is a process that uses NLP and NLU to generate or 

extract a summary out of a document while preserving the actual meaning 

of the document. In other words, the summary should be very similar to 

what the document says. This function has been quite popular in search 

engine systems, where a document presented to a user also includes a 

summary of the document instead of the entire document text. Document 

summarization can be single or multidocument summarization. Text 

summarization problems can be classified into two types:

• Extractive summarization: In extractive 

summarization, sentences in the generated summary 

will be only from the document itself. There won’t be 

any modification to sentences in the summary. This 

Figure 6-13. Calling text classification system API
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can also be defined as rearrangement of sentences on 

the basis of their relevance to document topics. Several 

approaches such as TF-IDF, cosine similarity, graph- 

based approaches, entity extraction, tokenization, and 

so on have been used to actively develop document 

summarization systems.

• Abstractive summarization: In abstractive 

summarization, sentences in the generated summary 

won’t be actual sentences from the document itself. 

These sentences will be modified based on language 

semantics used in the document. Various neural 

network–based approaches such as LSTM, GRU, and so 

on have been used to implement this.

In this section, we discuss how BERT is being used to generate a 

summary of a document. BERT proposes a new architecture known as 

BERTSUM that generates a summary from a document. As usual, BERT is 

used to generate embedding of multiple sentences where the token [CLS] 

is inserted before the start of the first sentence followed by other sentences 

that have been separated by the token [SEP]. Next, segment and positional 

embedding have been appended to segregate between sentences. Then 

these sentence vectors pass through the summarization layer to select 

representative sentences for the summary. In the summarization layer, 

any neural network can construct the summary. Figure 6-14 shows the 

document summarization model architecture.
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Now, let’s look at how a BERT-based extractive document 

summarization model can be leveraged. We use bert-extractive- 

summarizer, one of the implementations of extractive document 

summarization in Python to demonstrate the same.

 1. Create a new Jupyter notebook as mentioned 

previously and run the following command to install 

bert-extractive-summarizer.

! pip3 install bert-extractive-summarizer

After successful installation of the package, the output 

shown in Figure 6-15 is displayed.

Figure 6-14. Architecture of a BERTSUM model
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 2. Import the necessary packages required for this 

implementation, such as summarizer from the 

Summarizer library, using this command.

from summarizer import Summarizer

 3. This library implements HuggingFace Pytorch 

transformers to run an extractive summarization. It 

works by generating embedding of sentences and 

then uses clustering algorithms such as a density-

based algorithm, among others, to cluster sentences 

that are closest to centroids and form a highly dense 

region. Sentences from the highest density region 

will be taken to form the summary. Next, create an 

instance of Summarizer as shown here.

text_summarization_model = Summarizer()

Figure 6-15. Installation of packages
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 4. Pass the document content as an argument to the 

Summarizer instance just created, as shown here.

return text_summarization_model(<Document Content>)

This will return a summary of document. Here is the complete Python 

code to perform document summarization using BERT.

from summarizer import Summarizer

def text_summary(text):

    model=Summarizer()

    return model(text)

if __ name__=='__main__':

         text = "Machine learning (ML) is the study of computer 

algorithms that improve automatically through 

experience. It is seen as a subset of artificial 

intelligence. Machine learning algorithms build a 

mathematical model based on sample data, known as 

"training data", in order to make predictions or 

decisions without being explicitly programmed to do so. 

Machine learning algorithms are used in a wide variety 

of applications, such as email filtering and computer 

vision, where it is difficult or infeasible to develop 

conventional algorithms to perform the needed tasks."

        print(text_summary(text))

The text snippet in this example is from the Wikipedia article on 

machine learning.

Here is the resulting output:

Machine learning (ML) is the study of computer algorithms that 

improve automatically through experience. It is seen as a 

subset of artificial intelligence.
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This output shows the summary of a document, and all of the 

sentences in summary are actual sentences from the document itself. A 

document can be of any length (e.g., 100 or 200 pages) and REST API won’t 

be able to receive such an amount of data in a single API call. Therefore, 

as a best practice, a document summarization system should only be used 

as back-end application or system with a parent system such as a search 

engine, where every document returned as a part of the search result 

should have document summary as well.

The codebase for this exercise can be downloaded from GitHub at 

https://github.com/bertbook/Python_code/tree/master/Chapter6/

TextSummarization.

 Conclusion
This chapter covered the applicability of BERT in various NLP tasks such 

as sentiment analysis, text classification, entity recognition, and document 

summarization. We leveraged a BERT-based model to build NLP-based 

systems. In the next chapter, we will talk about the latest research 

happening in BERT.
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CHAPTER 7

Future of BERT 
Models
The topics we have covered thus far deal with the architecture and 

application of the BERT model. The BERT model has not only affected 

the ML domain, but other fields like content marketing as well. Now let’s 

discuss the development and future possibilities of BERT.

 Future Capabilities
Transformer-based ML models like BERT have proven to be successful 

for state-of-the-art natural processing tasks. BERT, which is a large-scale 

model, remains one of the most popular language models that delivers 

state-of-the-art accuracy.

The BERT model has also been used by the Google search team to 

improve the query understanding capabilities of Google Search. As BERT 

is a bidirectional model, it is able to understand the context of a word by 

looking at the surrounding words. BERT is particularly helpful to capture 

the intent behind search queries.

Ever since its release, the BERT model has influenced the development 

of various models that are based on BERT. It has to be credited for the 

introduction of models that not only incorporate its name, but also its 

core architecture ideas. The variants of BERT are able to successfully beat 
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records across a wide array of NLP tasks like sentiment analysis, document 

classification, question answering, and more.

Here are a few of the models that are based on BERT.

• There are models that pertain to an application or 

domain-specific corpus. BioBERT is one such model 

that is trained on biomedical text. Other examples are 

SciBERT and Clinical BERT. Training on a domain- 

specific corpus has turned out to be useful and results 

in better performance when fine-tuning is done on 

downstream NLP tasks in contrast to fine-tuning BERT, 

which is trained on BookCorpus and Wikipedia.

• The ERNIE model incorporates knowledge into 

pretraining and uses a knowledge graph to mask 

entities and phrases. It is pretrained on a large corpus 

while taking the knowledge graph into consideration 

during input.

• The TransBERT model is used for a story ending 

prediction task that uses a three-stage unsupervised 

training approach. This is then followed by two 

supervised steps.

• For making medical recommendations, G-BERT 

basically combines the power of graph neural networks 

and BERT. This model is used for medical code 

recommendations and representations. Encoding of 

medical codes with hierarchical representations in 

G-BERT is done with the help of graph neural networks.

• In addition to pretrained models there are also fine- 

tuned models like DocBERT (document classification) 

and PatentBERT (patent classification). These models 
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are fine-tuned for specific tasks. These pretrained 

BERT-based models can be fine-tuned with the help 

of NLP tasks, POS, NER, and so on, to achieve better 

results.

These models are representative of broad classes of BERT- based 

models. They depict how the BERT model can further be used in different 

domains with modifications in pretraining or fine-tuning. BERT hence 

forms a base for the development of other models that are effective in a 

wide variety of tasks.

One of the developments that relies on the BERT model is RoBERTa, 

developed by Facebook, which has proven to be highly efficient on GLUE 

benchmarking. RoBERTa uses the strategy of BERT to mask the text and the 

machine learns to predict the hidden text. The training is done on a larger 

number of mini-batches and learning rates, and the hyperparameters are 

modified to achieve better results. These changes allowed the RoBERTa 

model to prove its efficiency on MNLI, QNLI, RTE, STS-B, and RACE tasks, 

and it also shows considerable improvement on the GLUE benchmark.

RoBERTa uses 160 GB of data for pretraining, which includes 

unannotated NLP datasets and data scrapped from public news articles 

called the CC-News dataset. These data, along with training of RoBERTa 

on a 1024 V100 Tesla GPU, takes a day to complete. This results in better 

performance of RoBERTa over other available models like BERT, XLNet, 

Alice, and so on.

BERT is incorporated into Google Search, which results in precise and 

accurate searches. This will affect the content strategy of many users. The 

content now has to be more precise so that it can be rated better using 

search engine optimization. The strategies to design the content have to be 

improvised.
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 Abstractive Summarization
ML has come a long way in NLP, and one of these applications is in the 

field of summarization. The most common form of summarization is 

extractive summarization, which returns the most important sentences out 

of the content. The other type is abstractive summarization, which uses 

new sentences, keeping the important ideas or facts intact.

Content selection is integral to any summarization system. In recent 

approaches, the importance of separating content selection from summary 

generation is highly emphasized. There are many ongoing studies that 

attempt to extract content words and sentences that should be the part of 

summary and use them to guide the generation of an abstract summary.

A brief sentence can be formed by shortening or rewriting a lengthy 

text. Encoders and decoders are helpful in this context. Comprehensive 

summaries can be generated in a similar way, by selecting important 

sentences and dropping the inessential sentence elements, such as 

prepositional phrases. A summary can be generated through fusing 

multiple sentences. Selecting important sentences can be done via many 

approaches, but handling its large cardinality and identifying the sentence 

relationship to perform fusion has been a tough job. Previously it has been 

assumed that similar sentences can be fused together because they carry 

similar information to be processed.

Because abstractive summarization is difficult to perform, there is a 

lot of development in this area. BERT also has applications in abstractive 

summarization. The embeddings of multiple sentences can be generated 

using a BERT model. To perform this task, a [CLS] token can be inserted 

before the start of the first sentence. The output embeddings have to be 

processed through multiple layers, which enables the capture of important 

features. The BERTSUM model is one example.
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 Natural Language Generation
Natural language generation (NLG) is one of the more active research 

areas. It is a subgroup of NLP, along with NLU. The basic task of NLG is to 

convert some text tokens or data into natural language. The basic approach 

to achieve this is by predefining the templates for a specific domain and 

filling the empty slots using NLU techniques.

A more complex approach to this is using language modeling. 

Language modeling is used to model the natural language using the 

ways of writing, grammar, syntax, and so on, that are required to learn 

intrinsic features of the source language. We can then use this language in 

generating language content against some given input data or text.

The applications in terms of language understanding are not limited to 

NLP, but also extend to NLG. Open-AI’s GPT-2 generates text based on the 

given words and is one of the state-of-the-art models in NLG. The BERT 

model tries to attain the same feature using HuggingFace transformers.

Recent developments show that the performance of BERT in the field 

of NLG is not an optial fit. The reason behind it is that the BERT model was 

trained on MLM rather than being trained autoregressively. Apart from 

using MLM, the variations such as shuffled input and random words make 

the BERT model more generalized. Even after all these variations, BERT lags 

behind GPT-2 because the BERT model is an encoder representation, whereas 

GPT-2 is a decoder stack, which helps it create context-rich representations.

 Machine Translation
Translation is the idea of   translating text from one language to another. 

Automatic or mechanical translation is probably one of the most 

challenging brain functions given the fluctuations in human language. 

Recently, pretraining techniques, such as ELMo, GPT and GPT-2, BERT, 

the cross-language model (XLM), XLNet, and RoBERTa have attracted a lot 

of attention in the ML and NLP communities.
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A Neural Machine Translation (NMT) model usually consists of 

an encoder to map an input sequence to hidden representations, and 

a decoder to decode hidden representations and generate a sentence 

in the target language. BERT has achieved great success in NLU, and 

incorporating BERT with NMT for performance improvement might be a 

good research area.

NMT can be improved by fusing the BERT model and NMT, when 

BERT is drawn by the sensor and decoder using attention models. 

Research on open supervised NMT (including sentence-level and 

text-level translation), semisupervised NMT, and unsupervised NMT 

demonstrates the effectiveness of this approach.

To accurately predict translation quality, a model trained from scratch 

would theoretically require a large corpus of natural language source 

text, translations, and their human-labeled quality scores. Creating 

these datasets at a sufficient scale to train a neural network model is 

prohibitively expensive. Therefore, researchers have determined that they 

can transfer learnings from models trained on correctly translated parallel 

corpora to the task of identifying whether a translation is correct or not. It 

is far easier to obtain millions of correctly translated sentences to use to 

pretrain a model in areas where you don’t need a quality score.

For future work, there are many interesting directions. First, we have 

to learn how to speed up the measurement process. Second, we can use 

such an algorithm in many applications, such as query in response. How 

to compress the BERT-fused model into a simplified version is another 

topic. There are other modern functions that include information about 

distillation to integrate pretrained models with NMT, which is a test method.

 Conclusion
This chapter looked at the ongoing research in BERT and in state-of-the- 

art NLP tasks. With this we have come to the conclusion of this exciting 

journey into the world of NLP.
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