
Hands-on Question
Answering Systems
with BERT

Applications in Neural Networks and
Natural Language Processing
—
Navin Sabharwal
Amit Agrawal

Hands-on Question
Answering Systems

with BERT
Applications in Neural
Networks and Natural
Language Processing

Navin Sabharwal
Amit Agrawal

Hands-on Question Answering Systems with BERT

ISBN-13 (pbk): 978-1-4842-6663-2 ISBN-13 (electronic): 978-1-4842-6664-9
https://doi.org/10.1007/978-1-4842-6664-9

Copyright © 2021 by Navin Sabharwal, Amit Agrawal

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Navin Sabharwal
New Delhi, Delhi, India

Amit Agrawal
Mathura, India

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978- 1- 4842- 6663- 2. For more detailed information, please visit http://www.apress.com/
source- code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6664-9

Dedicated to the people I love and the God I trust.
—Navin Sabharwal

Dedicated to my family and friends.
—Amit Agrawal

v

Chapter 1: Introduction to Natural Language Processing�������������������������1

Natural Language Processing ���2

Sentence Segmentation ��6

Tokenization ��6

Parts of Speech Tagging ��7

Stemming and Lemmatization ���8

Identification of Stop Words ��10

Phrase Extraction ��10

Named Entity Recognition ���11

Coreference Resolution ���12

Bag of Words ���12

Conclusion ��14

Chapter 2: Neural Networks for Natural Language Processing ��������������15

What Is a Neural Network? ���16

Building Blocks of Neural Networks ���17

Neuron ���17

Input Layer ���17

Table of Contents

About the Authors ��� ix

About the Technical Reviewer ��xi

Acknowledgments ��xiii

Introduction ��xv

vi

Hidden Layers ��17

Output Layer ��18

Activation Function ��19

Neural Network Training ���20

Types of Neural Networks ���21

Feed-Forward Neural Networks ��21

Convolutional Neural Networks ���23

Recurrent Neural Networks ���26

Long Short-Term Memory��28

Encoders and Decoders ���29

Transformer Models ��34

Model Architecture ��34

Attention Models ���36

Conclusion ��39

Chapter 3: Introduction to Word Embeddings ���41

One-Hot Representation ��41

Count Vector ��43

TF-IDF Vectorization ��45

What Is Word Embedding? ��47

Different Methods of Word Embedding ��48

Sentence Embeddings ���53

ELMo ��55

Universal Sentence Encoder ��57

Bidirectional Encoder Representations from Transformers ���������������������������58

Conclusion ��63

Table of ConTenTs

vii

Chapter 4: BERT Algorithms Explained ���65

How Does BERT Work? ��65

Text Processing ���66

Masked Language Modeling��67

Next Sentence Prediction ��69

Text Classification Using BERT ��71

Benchmarks for BERT Model ��83

GLUE Benchmark ���83

SQuAD Dataset ��84

IMDB Reviews Dataset ��84

RACE Benchmark ���85

Types of BERT-Based Models ��85

ALBERT ��85

RoBERTa ��88

DistilBERT ��90

StructBERT ��92

BERTjoint for Natural Questions ���94

Conclusion ��95

Chapter 5: BERT Model Applications: Question Answering System �������97

Types of QA Systems ���99

Question Answering System Design Using BERT ��101

For Windows Server ��111

For Linux Server ��115

Open-Domain Question Answering System ���122

DeepPavlov QA System��130

Conclusion ��137

Table of ConTenTs

viii

Chapter 6: BERT Model Applications: Other Tasks ��������������������������������139

Sentiment Analysis ���140

Named Entity Recognition ���147

Text Classification ���157

Text Summarization ��166

Conclusion ��171

Chapter 7: Future of BERT Models ���173

Future Capabilities ��173

Abstractive Summarization ���176

Natural Language Generation ���177

Machine Translation ��177

Conclusion ��178

 Index ���179

Table of ConTenTs

ix

About the Authors

Navin Sabharwal is the Chief Architect for

HCL DryICE Autonomics. He is an innovator,

thought leader, author, and consultant in the

areas of artificial intelligence (AI), machine

learning, cloud computing, big data analytics,

and software product development. He is

responsible for Intellectual Property (IP)

development and service delivery in the areas

of AI and machine learning, automation, AIOps,

public cloud Google Cloud Platform (GCP), Amazon Web Services (AWS),

and Microsoft Azure. Navin has authored more than 15 books in the areas

of cloud computing, cognitive virtual agents, IBM Watson, GCP, containers,

and microservices. He is reachable at Navinsabharwal@gmail.com.

Amit Agrawal is a principal data scientist and

researcher delivering solutions in the fields of

AI and machine learning. He is responsible

for designing end-to-end solutions and

architecture for enterprise products. He can be

reached at agrawal.amit24@gmail.com.

xi

About the Technical Reviewer

Riya Naval is a Senior Data Scientist practicing

in the latest AI technologies. She is responsible

for designing, developing, and delivering an

end-to-end solution based on AI. She can be

contacted at https://www.linkedin.com/in/

riya- naval- 010ab2b4.

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.linkedin.com_in_riya-2Dnaval-2D010ab2b4&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=zvOwOOWpYGOA0CJTaIPTeqvnT60IrSeMLCEUCaqd8u4&m=HhO0QzPan0RU5jQLXM1LHwB4Ob7jAfCJVUKqAENEU-g&s=4CS2U8c6g61rQA1TRJxIoFYRHfPAs7W8436LyDDSPTQ&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.linkedin.com_in_riya-2Dnaval-2D010ab2b4&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=zvOwOOWpYGOA0CJTaIPTeqvnT60IrSeMLCEUCaqd8u4&m=HhO0QzPan0RU5jQLXM1LHwB4Ob7jAfCJVUKqAENEU-g&s=4CS2U8c6g61rQA1TRJxIoFYRHfPAs7W8436LyDDSPTQ&e=

xiii

Acknowledgments

I would like to thank my family, Shweta and Soumil, for always being by

my side, for sacrificing their time for my intellectual and spiritual pursuits,

and for taking care of everything while I was immersed in authoring this

book. This and other accomplishments in my life wouldn’t have been

possible without their love and support. I also thank my mom and my

sister for their love and support, as always; without their blessings, nothing

is possible.

To my coauthor, Amit, I thank you for the hard work and quick

turnarounds to deliver this book. It was an enriching experience, and I look

forward to working with you again soon.

Thanks go to all of my team members, who have been a source

of inspiration with their hard work, their always engaging technical

conversations, and their technical depth. Your constantly flowing

ideas are a source of encouragement and excitement every single day.

Piyush Pandey, Sarvesh Pandey, Amit Agrawal, Vasand Kumar, Punith

Krishnamurthy, Sandeep Sharma, Amit Dwivedi, Gauarv Bhardwaj,

Nitin Narotra, Divjot, and Vivek, thank you for being there and making

technology fun.

To all my other coauthors, colleagues, managers, mentors, and guides,

in this world of 7 billion, it was coincidence that brought us together, but it

has been an enriching experience to be associated with you and learn from

you. All ideas and paths are an assimilation of conversations that I have

had and experiences I have shared. Thank you.

—Navin Sabharwal

xiv

I thank my parents, brothers, and wife Riya for always being an

inspiration for me.

Thanks go to my coauthor, Navin, for his guidance and feedback.

I am also grateful to my colleagues Rishabh Upadhyay and Yogita

Kanwar for their technical suggestions.

—Amit Agrawal

Thank you goddess Saraswati, for guiding me to the path of knowledge

and spirituality: असतो मा साद गमय, तमसो मा ज्योतिर् गमय, मृत्योर मा अमृतम्
गमय

Asato Ma Sad Gamaya, Tamaso Ma Jyotir Gamaya,

Mrityor Ma Amritam Gamaya

Lead us from ignorance to truth, lead us from

darkness to light, lead us from illusion to reality

aCknowledgmenTs

xv

Introduction

Question answering systems have revolutionized information retrieval.

Technologies like Bidirectional Encoder Representations from

Transformers (BERT) have made it possible for documents to be analyzed

by machine learning systems and retrieve contextual information through

the question-and-answer mechanism without the need for extensive

training. Evolution of deep learning has had a great impact on the

design of question answering systems and has enabled these systems to

ingest enormous amounts of data and build billions of connections to

understand human language better.

This book focuses on a recent breakthrough in the natural language

processing (NLP) domain, BERT which has achieved benchmarks on state-

of- art NLP tasks such as question answering system, entity recognition

systems, and so on.

BERT implements innovative ways to generate the embedding

of textual sentences. This book provides guidance on design and

implementation of various types of question answering systems along

with NLP tasks such as document summarization, entity recognition,

and sentiment analysis. This could help data scientists and developers to

design and implement their own NLP-based systems using BERT.

Let’s start our journey in the exciting and quickly evolving domain

of NLP.

1© Navin Sabharwal, Amit Agrawal 2021
N. Sabharwal and A. Agrawal, Hands-on Question Answering Systems with BERT,
https://doi.org/10.1007/978-1-4842-6664-9_1

CHAPTER 1

Introduction to
Natural Language
Processing
With recent advances in technology, communication is one of the

domains that has seen revolutionary developments. Communication

and information have formed the backbone of modern society and it is

language and communication that has led to such advances in human

knowledge in all spheres. Humans have been fascinated by the idea

of machines or robots having human-like abilities to converse in our

language. Numerous science fiction books and media have dealt with

this topic. The Turing test was designed for this purpose, to test whether

a human being is able to decipher if the entity on the other end of a

communication channel is a human being or a machine.

With computers, we started with a binary language that a computer

could interpret and then compute based on the instructions. Over time,

however, we came up with procedural and object-oriented languages

that use syntax and instructions in languages that are more natural and

correspond to the words and ways in which humans communicate.

Examples of such constructs are for loops and if constructs.

https://doi.org/10.1007/978-1-4842-6664-9_1#DOI

2

With the availability of increased computing capacity and the ability of

computers to process huge amounts of data, it became easier to use machine

learning (ML) and deep learning models to understand human language.

With neural networks, recurrent neural networks (RNNs), and other deep

learning technologies becoming accessible and the computing power to

run these models available, a variety of natural language processing (NLP)

platforms became available for developers to work with over the cloud and

on premises. This chapter takes you through the basics of NLP.

 Natural Language Processing
NLP is a sub-branch of artificial intelligence (AI) that enables computers

to read, understand, and process human language. It is very easy for

computers to read data from structured systems such as spreadsheets,

databases, JavaScript Object Notation (JSON) files, and so on. However,

a lot of information is represented as unstructured data, which can be

quite challenging for computers to understand and generate knowledge

or information. To solve these problems, NLP provides a set of techniques

or methodologies to read, process, and understand human language and

generate knowledge from it. Currently, numerous companies including

IBM, Google, Microsoft, Facebook, OpenAI, and others have been

providing various NLP techniques as a service. Some open-source libraries

such as NLTK, spaCy, and so on are also key enablers in making it possible

to break down and understand the meaning behind linguistic texts.

As we know, processing and understanding of text is a very complex

problem. Data scientists, researchers, and developers have been solving

NLP problems by building a pipeline: breaking up an NLP problem into

smaller parts; solving each of the subparts with their corresponding

NLP techniques and ML methods such as entity recognition, document

summarization, and so on; and finally combining or stacking all parts or

models together as the final solution to the problem.

Chapter 1 IntroduCtIon to natural language proCessIng

3

The main objective of NLP is to teach machines how to interpret

and understand language. Any language such as English, programming

construct, mathematics, and so on, involves the following three major

components:

• Syntax: Defines rules for ordering of words in text. As

an example, subject, verb, and object should be in the

correct order for a sentence to be syntactically correct.

• Semantics: Defines the meaning of words in text and

how these words should be combined together. As an

example, in the sentence, “I want to deposit money in

this bank account,” the word “bank” refers to a financial

institution.

• Pragmatics: Defines usage or selection of words in a

particular context. As an example, the word “bank” can

have different meanings on the basis of context. For

example, “bank” could also mean financial institution

or land at the edge of a river.

For this reason, NLP employs different methodologies to extract

these components out of text or speech to generate features that will be

used for downstream tasks such as text classification, entity extraction,

language translation, and document summarization. Natural language

understanding (NLU) , a sub-branch of NLP that aims at understanding

and generating knowledge from documents, web pages, and so. Some

examples are listed here.

• Language translation: Language translation is

considered one of the most complex problems in NLP

and NLU. You can provide text snippets or documents

and these systems will convert them into another

language. Some of the major cloud vendors such as

Chapter 1 IntroduCtIon to natural language proCessIng

4

Google, Microsoft, and IBM provide this feature as

a service that can be leveraged by anyone for their

NLP-based system. As an example, a developer who

is working on development of a conversation system

can leverage translation services from these vendors to

enable multilingual capability in a conversation system

without even doing any actual development.

• Question-answering system: This type of system

is very useful if you want to implement a system

to find an answer to a question from a document,

paragraph, database, or any other system. Here, NLU

is responsible for understanding a user’s query as well

as the document or paragraph (unstructured text) that

contains the answer to that question. There exist a

few variations of question-answering systems, such as

reading comprehension-based systems, mathematical

systems, multiple choice systems, question-answering

and so on.

• Automatic routing of support tickets: These systems

read through the contents of customer support tickets

and route them to the person who can solve the issue.

Here, NLU enables these systems to process and

understand emails, topics, chat data, and more, and

route them to the appropriate support person, thereby

avoiding extra hops due to incorrect assignation.

Systems such as question-answering systems, machine translation,

named entity recognition (NER), document summarization, parts of

speech (POS) tagging, and search engines are some of examples of

NLP- based systems.

Chapter 1 IntroduCtIon to natural language proCessIng

5

As an example, consider the following text from the Wikipedia article

for “Machine Learning”.

Machine learning (ML) is the scientific study of algorithms and
statistical models that computer systems use to perform a specific
task without using explicit instructions, relying on patterns and
inference instead. Machine learning algorithms are used in a wide
variety of applications, such as email filtering and computer vision.
It can be divided into two types, i.e., Supervised and Unsupervised
Learning.

This text includes a lot of useful data that can be used as information.

It would be good if computers could read, understand, and answer the

following questions from the text:

• What are the applications of machine learning?

• What type of study does machine learning refer to?

• What type of models do computers use to perform

specific tasks?

There should be some way to teach a machine the basic concepts and

rules of languages so that they can read, process, and understand text. To

derive an insight from a text, NLP techniques combine all of the steps into

a pipeline known as the NLP/ML pipeline. The following are some of the

steps of an NLP pipeline.

• Sentence segmentation

• Tokenization

• POS tagging

• Stemming and lemmatization

• Identification of stop words

Chapter 1 IntroduCtIon to natural language proCessIng

https://en.wikipedia.org/wiki/Branches_of_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Inference
https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Computer_vision

6

 Sentence Segmentation
The first step in the pipeline is to segment the text snippet into individual

sentences, as shown here.

• Machine learning (ML) is the scientific study of

algorithms and statistical models that computer

systems use to perform a specific task without using

explicit instructions, relying on patterns and inference

instead.

• Machine learning algorithms are used in a wide variety

of applications, such as email filtering and computer

vision.

• It can be divided into two types, i.e., Supervised and

Unsupervised Learning.

Earlier implementation of sentence segmentation was quite easy, just

splitting the text on the basis of punctuation, or a “full stop.” Sometimes

that failed, though, when documents or a piece of text were not formatted

correctly or were grammatically incorrect. Now, there are some advanced

NLP methods such as sequence learning that segments a piece of

text even if a full stop is not present or a document is not formatted

correctly, basically extracting phrases by breaking up text using semantic

understanding along with syntactic understanding.

 Tokenization
The next task in the NLP pipeline is tokenization. In this task, we break

each of the sentences into multiple tokens. A token can be a character, a

word, or a phrase. The basic methodology used in tokenization is to split

a sentence into separate words whenever there is a space between them.

As an example, consider the second sentence from our example text:

Chapter 1 IntroduCtIon to natural language proCessIng

https://en.wikipedia.org/wiki/Branches_of_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Inference
https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Computer_vision

7

“Machine learning algorithms are used in a wide variety of applications,

such as email filtering and computer vision.” Here is the result of applying

tokenization to this example.

["Machine", "learning", "algorithms", "are", "used", "in" ,

"a", "wide", "variety", "of", "applications", "such", "as",

"email", "filtering", "and", "computer", "vision"].

However, there are some advanced tokenization methods such as

Markov chain models that can extract phrases out of a sentence. As an

example, “machine learning” can be extracted as a phrase by applying

advanced ML and NLP methods.

 Parts of Speech Tagging
POS tagging is the next step to determine parts of speech for each of the

tokens or words extracted from the tokenization step. This helps us to

identify the use of each word and its significance in a sentence. It also

introduces first steps toward the actual understanding of the meaning of

a sentence. Imparting a POS tag can increase the dimension of the word,

to give better detail of the meaning the given word is trying to impart.

The phrases “putting on an act” and “act on an instinct” both use the

word “act,” but as a noun and a verb, respectively, so a POS tag can greatly

help in distinguishing the meaning. In this approach, we pass the token,

referred as Word, to the POS tagger, a classification system, along with

some context words that will be used to classify the Word with its relevant

tags as shown in Figure 1-1.

Chapter 1 IntroduCtIon to natural language proCessIng

https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Computer_vision

8

These models are trained on a huge corpus of (millions or billions)

sentences of literature in the target language where each word along with

its POS tag is used as training data for the POS classifier. The previously

mentioned models are completely based on statistics as per training data

and not on actual interpretation. The model tries to find POS tag for each

of the words based on syntactic similarity of a sentence with historical

sentences. As an example, for the sentence “Machine learning algorithms

are used in a wide variety of applications, such as email filtering and

computer vision,” the POS tag is as shown here:

Machine (NN) learning (NN) algorithms (NNS) are (VBP)

used (VBN) in (IN) a (DT) wide (JJ) variety (NN) of (IN)

applications (NNS), such (JJ) as (IN) email (NN) filtering

(VBG) and (CC) computer (NN) vision (NN).

As we can see from those results, there are various nouns (i.e.,

Machine, learning, variety, computer, and vision). We can thus conclude

that the sentence may be talking about machines and computers.

 Stemming and Lemmatization
Sometimes the same word occurs in multiple sentences in different forms.

Stemming can be defined as the process of reducing words to their root or

base form by removing suffixes. Here, the reduced words can be dictionary

words or nondictionary words. For example, the word “machine” can be

INPUT OUTPUT

POS Model
e.g., Markov model

POS TAG
e.g., NN for
Machine

Word : Machine
Context Word:

Learning

Figure 1-1. POS tagging

Chapter 1 IntroduCtIon to natural language proCessIng

https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Computer_vision

9

reduced to its root form, “machin.” It doesn’t take into consideration the

context in which word is being used. Here is the stemmed representation

of tokenized words for our example sentence.

machin learn algorithm ar us in a wid vary of apply , such as

email filt and comput vis

In this result, some of the words are represented as nondictionary

words; for example, “machine” reduced to “machin,” which is a stemmed

word but not a dictionary word.

Lemmatization can be defined as a process of deriving a canonical

form or lemma of the word. It uses context to identify the lemma of the

word, which must be a dictionary word. However, the same is not true

for stemming. Using our previous example, the word “machine” will

be converted into its canonical form as “machine.” The following is the

lemmatized representation of tokenized words of our example sentence. It

uses tags of words as context to derive canonical forms of words.

Machine learning algorithm be use in a wide variety of

application , such a email filtering and computer vision.

In these results, some of the words, such as “filtering,” are reduced to

their canonical form, in this case ”filtering,” not “filter,” because the word

“filtering” is being used as a verb in the sentence.

Lemmatization and stemming should be used with utmost care and

as per requirements. For example, if you are working with a search engine

system, then stemming should be preferred, but if you are working with

question answering, where reasoning is important, then lemmatization

should be preferred over stemming.

Chapter 1 IntroduCtIon to natural language proCessIng

10

 Identification of Stop Words
Text snippets contain important as well as filler words. For example, in our

example sentence, these are the filler words.

["be", "use", "in", "a", "such", “a", "and"]

These filler words introduce noise into your text and it is important

to manage them, as they appear very frequently in the text and will have

a much higher frequency and less importance than other words. Some

systems use a predefined list of these stop words, such as “is,” “at,” and

so on. This is not helpful for some domains, though. As an example, in

documents related to health care, you will find some common terms such

as patient, doctor, or ICU. These words appear very frequently and you

need to somehow remove them from your text. There are two methods that

are generally used to deal with domain-specific stop words.

• Flag words as stop words on basis of their frequency

of occurrence. It could be either most frequent or least

frequent.

• Flag words as stop words if they are quite common

across all documents in the corpus.

 Phrase Extraction
Sometimes a single word doesn’t provide sufficient information for most

of the NLP tasks. As an example, the meaning of the two words “machine”

and “learning” from the dictionary are shown here.

• Machine: An apparatus using mechanical power to

perform certain tasks.

• Learning: An acquisition of knowledge or skills

through study, experience, or being taught.

Chapter 1 IntroduCtIon to natural language proCessIng

11

It is very clear from the definitions of these two words that our sample

sentence should have been talking about some mechanical device and

various media for acquiring the knowledge. However, when these words

are used together (i.e., “machine learning”), it refers to the sub-branch of

AI that deals with the scientific study of algorithms and statistical models

used by computers to perform a specific task without being explicitly

programmed.

To extract phrases, we need to combine multiple words together, or

identify phrases. Here, phrases can be of two types, noun phrases and

verb phrases. We can define rules to extract phrases from sentences. As

an example, to extract a noun phrase, we can define a rule such that “two

consecutive occurrences of nouns in a sentence should be considered

a noun phrase.” For example, the phrase “machine learning” is a noun

phrase in our sample sentence. In a similar manner, we can define more

rules to extract noun phrases and verb phrases from a sentence.

 Named Entity Recognition
An entity is defined as an object or noun such as a person, organization,

or other object that provides important information from the text. This

information can be used as a feature for downstream tasks. As an example,

Google, Microsoft, and IBM are entities of the type Organization.

NER is an information extraction technique that extracts and classifies

entities into categories as per the trained model. As an example, some

of the basic categories in the English language are names of persons,

organizations, locations, dates, email addresses, phone numbers, and

so on. For example, in our sample sentence phrases such as “machine

learning” and “computer vision” are entities of type AI_Branch, which

refers to branches of AI.

Currently, large vendors in the AI domain such as IBM, Google, and

Microsoft provide their trained models to extract named entities from the

Chapter 1 IntroduCtIon to natural language proCessIng

12

text. They also enable you to build your own NER model specific to your

application and domain. Open-source projects such as spaCy also provide

the capability to train and use your own custom NER model.

 Coreference Resolution
One of the major challenges in the NLP domain, especially in the English

language, is the use of pronouns. In English, pronouns are used extensively

to refer to nouns in a previous context or sentence. To perform semantic

analysis or identify the relationship between these sentences, it is very

important that somehow the system should establish dependencies

between the sentences.

As an example, consider the sentence “It can be divided into two types,

i.e., Supervised and Unsupervised Learning,” where “It” refers to machine

learning in the first and second sentences. It can be accomplished by

annotating such dependencies in the dataset for training a model and

using the same model over unseen text snippets or documents to extract

such relationships.

 Bag of Words
As we all know, computers work on numerical data only; therefore, to

understand meaning of text, it must be converted into a numerical form. Bag

of words is one of the approaches for converting text into numerical data.

Bag of words is a very popular feature extraction method that describes

the occurrence of each word in the text. You need to first build the

vocabulary of your corpus then calculate the occurrence of each word

corresponding to each text snippet or document in the corpus. It doesn’t

store any information related to order or sentence structure. That’s why it

is known as a bag of words. It can also tell you whether a particular word

is present in the document or not, but it doesn’t provide any information

about the location of the word in the document. As an example, consider

Chapter 1 IntroduCtIon to natural language proCessIng

13

our example text snippet, which has been segmented into three sentences

as a result of the sentence segmentation step.

• Sentence A: Machine learning (ML) is the scientific

study of algorithms and statistical models that

computer systems use to perform a specific task

without using explicit instructions, relying on patterns

and inference instead.

• Sentence B: Machine learning algorithms are used in a

wide variety of applications, such as email filtering and

computer vision.

• Sentence C: It can be divided into two types, i.e.,

Supervised and Unsupervised Learning.

Figure 1-2 is a document-term matrix for our example text snippet,

where the term value is 1 if it is present in the sentence, or 0 otherwise.

Once sentences or text snippets are converted into vectors of numbers,

we can use these vector values as a feature for further downstream tasks

such as a question-answering system, text summarization, and so on. This

method has the following limitations.

• Length of vector representation for the sentence

increases as vocabulary size increases. This requires

higher computation for downstream tasks. It also

increases dimensionality of sentences.

• It can’t identify different words with similar meanings

on the basis of their context in the text.

Figure 1-2. Document-term matrix

Chapter 1 IntroduCtIon to natural language proCessIng

https://en.wikipedia.org/wiki/Branches_of_science
https://en.wikipedia.org/wiki/Branches_of_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Inference
https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Computer_vision

14

There are other methods that reduce computation and memory

requirements to represent sentences in vector form. Word embedding

is one of the approaches where we can represent a word in lower

dimensional space while preserving the semantic meaning of the word.

We will see in detail later how word embedding is major breakthrough for

downstream NLP tasks.

 Conclusion
This chapter discussed the basics of NLP, along with some of the basic

NLP tasks such as tokenization, stemming, and more. In next chapter, we

discuss neural networks in the NLP domain.

Chapter 1 IntroduCtIon to natural language proCessIng

15© Navin Sabharwal, Amit Agrawal 2021
N. Sabharwal and A. Agrawal, Hands-on Question Answering Systems with BERT,
https://doi.org/10.1007/978-1-4842-6664-9_2

CHAPTER 2

Neural Networks for
Natural Language
Processing
Bringing human cognitive intelligence (i.e., thinking, reasoning, and

action) to artificial systems has always been a hot topic for researchers. In

this process, they came up with idea of neural networks that try to emulate

how the neurons of the human brain work. Although they are still very far

from human cognitive capability, artificial neural networks hold a very

promising position in the area of ML, and have transformed the way NLP

applications are developed.

In this chapter, we will discuss neural networks and their types, along

with some special types of neural networks, such as long short-term

memory (LSTM), convolutional neural networks (CNNs), encoders,

decoders, and transformers. This will set the stage for us to move to more

advanced topics on NLP and examine how the state of the art in NLP is

now aiming to match human abilities as far as NLU is concerned.

https://doi.org/10.1007/978-1-4842-6664-9_2#DOI

16

 What Is a Neural Network?
A neural network is defined as a network of neurons that are connected

to process information and perform actions specific to the task. To put

it simply, human neurons have the capability to transmit and process

information when they receive electrical signals at their synaptic

endpoints. An artificial neural network (ANN) replicates this flow of

information by transmitting the information across the network after

getting triggered by an activation function. ANNs are divided into three

types of layers: input layer, hidden layers, and output layer. Neural

networks generally have one input and one output layer and multiple

hidden layers, as shown in Figure 2-1.

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Figure 2-1. Neural network

Chapter 2 Neural Networks for Natural laNguage proCessiNg

17

 Building Blocks of Neural Networks
In this section we discuss the basic building blocks of neural networks and

how these blocks can be combined to form a neural network.

 Neuron
The neuron, which mimics the behavior of the human neuron, is the

smallest unit of a neural network. It takes input, processes it, and sends

output to other neurons that work as activation for others. A neuron can

only be activated based on observations received from a previous layer.

 Input Layer
As per Figure 2-1, the input layer takes processed data as input. Here,

input can be pixels in the case of an image, or numbers from a vector

representation of a sentence for text data or feature values. This layer is

responsible for combining all features’ values with some weight values

(weight value defines how much importance is given to each feature).

Once processed, the output from the input layer is fed into the next layer, a

hidden layer, and at last into the output layer.

 Hidden Layers
These layers are responsible for generation of features that are specific

to a task. We can have any number of hidden layers between the input

and output layer. Each layer consists of neurons that are responsible for

performing actions specific to the task. This layer might either implement

an activation function (i.e., Sigmoid, tanh), or can just do a weighted

summation of all inputs from the previous layer. This layer therefore

receives the input from previous layer and then performs a sum of the

Chapter 2 Neural Networks for Natural laNguage proCessiNg

18

products of inputs with their corresponding weight value and applies an

activation function to get output from this hidden layer. This information is

then passed to the next hidden layer or output layer.

 Output Layer
The output layer is the last layer in a neural network. It is responsible for

gathering all information from the last hidden layer to output the final

expected results. If you are working on classification model, then the last

layer should have a number of nodes equal to number of classes or a single

node in the case of a regression problem.

There has always been an open question of how we decide on the

number of nodes in layers and nodes on each of the layers. There are

no strict guidelines, but there are some recommendations you should

consider while designing the a neural network architecture.

• Number of nodes in the input layer must be equal to

the size of your input data point.

• Number of nodes in the output layer depends on the

task the neural network is performing. As an example,

for a classification task, the number of nodes should

be equal to the number of classes and for regression it

should be only one node.

• Number of hidden layers and nodes in each hidden

layer is completely dependent on your target task. It

is quite possible that one neural network will work

perfectly for Task A but not for Task B.

• List all intermediate transformations you want to

perform between the input and output layers.

Chapter 2 Neural Networks for Natural laNguage proCessiNg

19

• Number of nodes in a hidden layer should be greater

than the number of nodes in the input and output

layers.

• Number of nodes in the hidden layer should be a power

of 2 (i.e., 2, 4, 8, 16, 32, etc.).

As an example, if you are building a sentiment model (or classification

model) where the system will identify the sentiment of a user’s feedback

as positive, negative, or neutral, then the result from the output layer of

the neural network is probability distribution across all classes (positive,

negative, and neutral), as shown in Figure 2-2.

 Activation Function
Neural networks are used to solve complex nonlinear problems, which

is not feasible with traditional linear models. The activation function in a

neural network is the one that introduces nonlinearity in the system, as

shown in Figure 2-3.

Figure 2-2. Neural network

Chapter 2 Neural Networks for Natural laNguage proCessiNg

20

It calculates the sum of product of input and their corresponding

weights followed by the addition of bias. The activation function then

decides on which feature or input value to pass on to the next layer. As

an example, say we use a Sigmoid function at all nodes of a hidden layer

where Sigmoid can take any values between 0 and 1 inclusive. On the

basis of this, the activation function then decides on what proportion

of information from this and the previous layer should be passed to the

next layer. Tanh and ReLU are the other important examples of activation

functions in neural network.

To this point, we have discussed the building blocks of neural

networks. Next, we turn to the training of neural networks.

 Neural Network Training
Neural network training is based on the concept of forward and backward

propagation. In forward propagation, input data travels from neurons in

the input layer to neurons in a hidden layer, followed by the application of

relevant transformations using activation functions, and then finally to the

Figure 2-3. Activation function

Chapter 2 Neural Networks for Natural laNguage proCessiNg

21

neurons of the output layer to calculate the prediction value. In backward

propagation, loss is calculated by comparing the actual and predicted

value of input data. This error travels from neurons of the output layer to

all neurons of the hidden layers. It is quite possible that neurons in the

hidden layer receive only a fraction of an error component depending on

their contribution to the neurons in the output layer.

When we talk about propagation of information either forward or

backward it means the weights of edges connecting these neurons and

values of these biases to neurons will be adjusted. Also, values of weights

and biases are initialized randomly and the learning process finds optimal

values of these model parameters accordingly.

 Types of Neural Networks
Now that we understand how each of the neurons, weights, and activation

functions together build a neural network, we can examine how each of

these can be used in a different ways to achieve different results. Next we

discuss a few types of neural networks.

 Feed-Forward Neural Networks
Feed-forward neural networks (FNNs) can be best described as a

unidirectional neural networks that do not have any feedback or loopback

in their structure. The architecture of an FNN includes a number of hidden

layers and a number of hidden units in each layer, as shown in Figure 2-4.

One of the reasons that this neural network is termed a feed-forward

network is that there is no feedback between the layers during normal

operations when the FNN acts as a classifier.

Chapter 2 Neural Networks for Natural laNguage proCessiNg

22

In an FNN, the perceptrons are arranged in layers. The first layer

is responsible for taking in the input and the last layer produces the

output. Because the middle layers do not have any connection with the

external world, they are referred to as the hidden layers. The information

is fed forward from one layer to the next as the perceptron in one layer is

connected to every perceptron in the next layer. The perceptrons in the

same layer, on the other hand, are not connected.

The FNN model uses a cost function during training. This cost function

works on the difference between the approximation made by the model

and the actual target value. Similar to ML algorithms, FNNs also use

gradient-based learning for training purposes. The possible choices of cost

function include quadratic cost, cross-entropy cost, exponential cost, and

so on.

The output layer contains output units whose task is to provide the

desired output or prediction. Both the choice of cost function and output

units are tightly coupled together. There are various options for output

units like linear units, sigmoid units, softmax units, and more.

Figure 2-4. Basic FNN perceptron diagram

Chapter 2 Neural Networks for Natural laNguage proCessiNg

23

FNNs are susceptible to noise in data and are easy to maintain, so they

can have a huge scope of applications in fields like computer vision. FNNs

can help in bringing out nonlinear relations between the input and output,

so most of the multiclassification can be easily represented with the help of

these networks.

 Convolutional Neural Networks
A CNN is a deep learning algorithm. It takes in an input image and assigns

weights and biases to various aspects in the image. There is comparatively

less preprocessing in CNNs in contrast to other classification algorithms,

as they possess the ability to learn filters and characteristics.

Similar to other neural networks, CNNs are also composed of neurons

and have learnable weights and biases. The weighted sum is taken over

several inputs received, and is then passed through the activation function

along with an output. The CNN varies from other networks in the way that

it operates over volumes. Here the input is not a vector; instead, the input

is a multichannel image.

The CNN is used in image processing, as it captures the spatial and

temporal dependencies in an image successfully by the application of

relevant filters. The network understands the image in a better way as it

performs better fitting to the image dataset while reducing the number of

parameters involved.

Convolution is the combination of two inputs to generate an output.

For CNNs, often this input is an image that is masked with a filter to

generate the desired output features. When we talk in terms of spatially

distributed data or matrixes as input, the filter that is chosen is often a set

of weights to tune the input for the desired changes to generate a result.

If a generic meaning is referred, then convolution stands as a dot product

of two values to generate a third value. Figures 2-5 and 2-6 show how

convolution works in CNNs.

Chapter 2 Neural Networks for Natural laNguage proCessiNg

24

In the example shown in Figure 2-5, the input is in the form of a 5 × 5

matrix containing information from an image. We are going to apply a filter

to yield the output. The input is padded with zeros to convert it into the

below matrix. This padding is done to generate a spatial representation of

the output in the desired dimensions.

In the given example, the stride or the step size is 2, meaning the filter

moves two steps right horizontally and two steps down vertically. The first

time the filter convolves the top left corner submatrix shown in blue:

(0x-1 + 0x0 + 0x-1 + 0x0 + 1x1 + 4x1 + 0x1 + 2x0 + 0x-1) = 5

Figure 2-5. Convolution example

Figure 2-6. Convolution example

Chapter 2 Neural Networks for Natural laNguage proCessiNg

25

The following steps fill in the rest of the output matrix. It is also

noticeable here that the submatrices shown in blue, black, and red hold

very different values, but after masking from the filter the blue and black

submatrices yield an equal output and the red submatrix yields a far

smaller value. This signifies how much an appropriate filter can help

change the output feature matrix. For example, if an image has pixel values

with huge contrast values, a proper filter can help tone down the image

contrast.

CNNs play a crucial role by reducing images into a form that is easier

to process while retaining the features that are important to obtain a good

prediction. This ability of the CNNs makes them scalable to large datasets.

In a CNN, we have a convolutional layer that extracts the high-level

features like edges from the input image. This layer is the building block

of the CNN. It consists of a set of independent filters that are convolved

with the image, giving us the feature maps. These filters are randomly

initialized, and they become parameters on subsequent learning by the

network.

Each of the neurons is connected to an input image’s small chunk for

a particular feature map. There is also parameter sharing in a particular

feature map. All the neurons have the same connection weights in a

particular feature map. Parameter sharing and local connectivity help in

reduction of the number of parameters in the whole system and ensure

better computational efficiency.

The concept of pooling makes CNNs differ from other neural

networks. Pooling functions to reduce the spatial size of the representation

progressively to reduce the number of parameters and amount of

computation. The pooling layer operates independently on each of the

feature maps.

After the pooling layer, the flattened output is fed to an FNN and

then backpropagation is applied to every iteration of training, as shown

in Figure 2-7. Over a series of iterations, the model is able to classify the

images using the softmax classification technique.

Chapter 2 Neural Networks for Natural laNguage proCessiNg

26

 Recurrent Neural Networks
Recurrent neural networks (RNNs) are neural networks that are designed

to process continuous data or data that are presented as streams to benefit

from the continuity of data. Often the data that are received at each hidden

layer have an input from the previous layer’s output as input to the current

layer, along with a hidden input.

RNNs can prove to be very advantageous in cases with long input

sequences where the requirement circles around maintaining the

context of the same input, not affecting the size of the model being used.

This makes NLP a natural fit application for RNNs, although historical

information tends to fade over a long period of time, and also can slow

down the process.

As we can see in Figure 2-8, the input is represented by Xt, which is

the input to the network at time step t. For instance, X1 can be one vector

corresponding to a word in a sentence. The hidden state is represented

by Ht at time t. It acts as the memory of the network. The value of Ht is

Figure 2-7. CNN siagram

Chapter 2 Neural Networks for Natural laNguage proCessiNg

27

computed on the basis of current input and the previous time step’s

hidden state:

Ht = f (U Xt + W Ht-1)

The function f is a nonlinear transformation function like tanh or ReLU.

In contrast to FNNs, RNNs make use of their internal state or memory

to process the input sequences. All the inputs in an RNN are related to

each other, unlike other networks where inputs are independent of each

other. An RNN takes X0 from the sequence of inputs and then it outputs H0.

This output, together with X1, is the input for the next step. Hence, H0 and

X1 form the input to the next step. Similarly, Ht-1 and Xt form the input at

time t. This way, the RNN remembers the context while training.

The current state is given by

Ht = f (Ht-1, Xt).

On applying the activation function,

H(t) = tanh (W H(t-1) + U X(t)).

Figure 2-8. RNN diagram

Chapter 2 Neural Networks for Natural laNguage proCessiNg

28

• H is the single hidden vector.

• W is the weight at previous state.

• tanh is the activation function.

• U is the weight at the current input state.

The output of the network is represented by Yt. There are weights that

parameterize the connections from input to hidden layers. The weight

matrix U parameterizes the input to hidden connections. The hidden to

hidden connections are parameterized by the weight matrix W, and

hidden to output layer connections are parameterized by the weight matrix V.

All these weights (U, V, W) are shared across time.

Hence, the output is given by

Yt = V Ht.

An RNN model enables modeling of the sequence of data so that each

result of the sample can be assumed to be dependent on previous ones.

There is also another advantage of RNNs, as they can even be used with

convolutional layers to extend the effective pixel neighborhood.

The RNN model has a disadvantage when using tanh or ReLU as an

activation function, as it fails to process long sequences. Training of an

RNN is also a difficult task and there are problems of gradients vanishing

and exploding.

 Long Short-Term Memory
LSTM is one of the most widely used forms of RNNs. They are capable of

learning long-term dependencies, and their default behavior to learn or

remember information for long periods of time.

All RNN models have the form of repeating modules of neural

networks that are chained. In standard RNNs, this repeating module will

have a very simple structure, such as a single tanh layer.

Chapter 2 Neural Networks for Natural laNguage proCessiNg

29

LSTMs, on the other hand, also have this chain-like structure, but the

repeating module has a different structure. Here, instead of a single neural

network layer, there are four layers that interact in a very special way. The

control flow of LSTM is similar to the RNN, as it processes the data and

passes the information as the data propagates forward. The difference

in the way LSTM works is that the cell allows the LSTM to keep or forget

the information. In LSTM there is emphasis on cell state and the various

gates. The cell state acts as a transport highway and transfers the relative

information all the way through the sequence chain. The gates add or

remove information as the cell state goes on the journey. The gates are

different neural networks that decide which information is allowed in the

cell state. The gates and cell state make LSTM distinctive among RNN

models and further makes LSTM useful in various applications.

 Encoders and Decoders
The encoder–decoder is an organization of RNNs for sequence prediction

problems that often have a variable number of inputs, outputs, or both. The

main purpose of the encoder–decoder initially was machine translation

problems, but it has proven to be successful at related sequence-to-sequence

prediction problems such as question answering and text summarization.

The encoder–decoder approach involves two RNNs, one to encode

the input sequence and the other to decode the encoded input sequence

into the target sequence. The encoding task is performed by the encoder

and the decoding task is performed by the decoder. This encoder–decoder

architecture is useful for various applications of sequence-to-sequence

models like these:

• Chatbots

• Machine translation

• Text summary

• Image captioning

Chapter 2 Neural Networks for Natural laNguage proCessiNg

30

 The Encoder–Decoder Architecture

The encoder–decoder architecture consists of two main components,

the encoder and the decoder. Both these components are trained jointly

at the same time. The architecture of the encoder–decoder is shown in

Figure 2- 9.

The encoder takes the input and reads the entire input sequence,

which it encodes into an internal representation. The encoder processes

the input sequence and collects information from the sequence and then

propagates it further. This fixed-length internal representation vector

is known as the context vector. The intermediate vector ID is the final

internal state produced from the encoder part of the model. This helps

the decoder to make accurate predictions. The decoder is responsible for

reading the encoded sequence from the encoder and thereby generating

the output sequence.

 Encoder Part of the Model

The encoder, which is responsible for converting the input sequence and

encapsulating the information as the internal state vectors, is basically

an LSTM or GRU (Gated Recurrent Unit) cell. Only the internal states are

used; the outputs of the encoder are rejected, as shown in Figure 2-10.

INPUT OUTPUT

INTERNAL

STATES

ENCODER DECODER

Figure 2-9. Architecture of encoder–decoder

Chapter 2 Neural Networks for Natural laNguage proCessiNg

31

To understand the working of the encoder part of the model, we focus

on LSTM. In LSTM only one element is taken as input at a time. This

implies that if we have a sequence of length m, then the LSTM takes m

time steps to read the entire sequence.

• Xt is the input at time step t.

• ht and ct are internal states at time step t of the LSTM;

for GRU there is only one internal state ht.

• Yt is the output at time step t.

Let’s take an example of translation of a sentence in English into

French.

English: It is a good day.

French: C’est une bonne journée.

Figure 2-10. LSTM for encoder

Chapter 2 Neural Networks for Natural laNguage proCessiNg

32

The English sequence shown can be considered a sentence containing

five words. The inputs of the encoder Xt are as follows.

• X1 = It

• X2 = is

• X3 = a

• X4 = good

• X5 = day.

The LSTM will read the sequence word by word in five time steps. Each

word Xt is represented as a vector using the word embedding. The word

embedding converts each of the words into a vector of fixed length. The

internal states (ht , ct) learn what LSTM has read until time step t. Here the

LSTM will read the entire sentence in time step t = 5. The final state h5, c5

has the information of the entire input sequence, “It is a good day.”

The output of the encoder is Yt, which at each time step is the

prediction of the LSTM. Because in machine translation problems we take

the output of the entire input sequence, Yt at each time step is discarded

because it is of no use.

 Decoder Part of the Model

The decoder works in a different way than the encoder. Its training phase

and testing phase work differently, whereas the encoder model works the

same way during the training and testing phases.

If we take the sentence language translation example presented earlier,

just like the encoder, the decoder also generates the output sentence word

by word. To generate the output “C’est une bonne journée,” we need to add

START_ at the beginning and _END at the end as delimiters of the output

sequence so that the decoder recognizes the start and the end of the

sequence. The decoder is basically trained to generate the output based on

Chapter 2 Neural Networks for Natural laNguage proCessiNg

33

the information gathered by the encoder, so the initial states (h0, c0) of the

decoder are set to the final states of the encoder.

The START_ is input so that the decoder can start generating the next

word. The decoder is made to learn the end of the French sentence using

_END. The loss is calculated on the outputs that are predicted from each

time step and the errors are backpropagated through time to update

the parameters of the model. In the testing phase, output produced at

each time step is fed as input into the next time step and the end of the

sequence is identified using _END.

 Bidirectional Encoders and Decoders

In a bidirectional encoder–decoder architecture, the encoders and the

decoders are bidirectional LSTMs. The last hidden state of the backward

encoder initializes the forward decoder, whereas the backward decoder is

initialized with the last hidden state of the forward encoder.

The bidirectional encoder is used when considering context

information from the past and future. The sequence of input word vectors

is fed to LSTM from forward and backward directions. The bidirectional

decoder is also a bidirectional RNN that is made up of two separate LSTMs.

One of the LSTMs decodes the information from left to right, whereas

the other LSTM decodes in a backward direction from right to left. This

bidirectionality in the RNN provides better performance.

For instance, we have to predict next word after “cloudy” in the

sentence “The weather is cloudy; it might rain.” The unidirectional LSTM

will see “The weather is …” and will try to predict the next word using this

context only. When using bidirectional LSTM we will be able to see more

information.

Forward LSTM: “The weather is …”

Backward LSTM: “… it might rain today.”

Chapter 2 Neural Networks for Natural laNguage proCessiNg

34

Hence using the information from the past as well as the future makes

it easier to predict the word “cloudy,” as the network will better understand

the next word.

 Transformer Models
The transformer is a novel architecture with the aim of solving sequence-

to- sequence tasks while handling long-range dependencies. The

transformer maintains sequential information in a sample just as RNNs

do. If we take a high-level look at the transformer model, it basically is like

a single black box in machine translation application that takes a sentence

in one language as an input and outputs the translation of the sentence, as

shown in Figure 2-11.

 Model Architecture
The transformer has an encoder–decoder structure using stacked self-

attention and fully connected layers for both the encoder and decoder. The

transformer consists of components like encoders, decoders, positional

encoding, and attention. There is a stack of encoders and decoders. Each

of the encoders is very similar to the other encoders, as they have the same

architecture. Decoders, too, share this property and are similar to each

other in the transformer, as shown in Figure 2-12.

INPUT OUTPUT

C’est une bonne
journée

It is a good
day.TRANSFORMER

Figure 2-11. The transformer as a black box

Chapter 2 Neural Networks for Natural laNguage proCessiNg

35

The encoder comprises a stack of identical layers. Every layer further

consists of two sublayers. The first layer is for a multihead self-attention

mechanism. The second layer, on the other hand, is a simple, fully

connected feed-forward network. In between each of the sublayers,

residual connections are employed along with layer normalization. The

input flows through the self-attention layer in the encoder and helps the

encoder to look at other words in the input sequence while encoding a

specific word.

ENCODER DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

ENCODER

ENCODER

ENCODER

ENCODER

ENCODER

INPUT

OUTPUT

Figure 2-12. Encoder–decoder stacks in transformer

Chapter 2 Neural Networks for Natural laNguage proCessiNg

36

The decoder, similar to encoder, comprises a stack of identical layers.

It also has sublayers like the encoder, but has one more sublayer. This third

sublayer is responsible for performing multihead attention over the output

of the encoder stack. These layers help the decoder to focus on relevant

parts of the input sentence only.

The encoder block has one layer of a multihead layer of FNN, and

the decoder, on the other hand, has an extra masked multihead attention

mechanism. Both the encoder and decoder stacks have the same

number of units. That number of encoder and decoder units is basically a

hyperparameter that can be varied.

To prevent unwanted attention to out-of-sequence positions, masking

is used before softmax in the self-attention layer in both the encoder and

the decoder. For prevention of positions from attending to subsequent

positions, an additional mask is used in conjunction with the general mask

in the decoder. These two masks in the decoder can be blended with the

help of a bit-wise AND operation.

 Attention Models
Attention is the output vector of a dense layer using a softmax function. It

enhances the results by plugging it into suitable scenarios. The translation

mechanism is used to rely on reading of a complete sentence and

compressing all information into a fixed-length vector. In this situation if

we have a sentence with hundreds of words that are represented by several

words, there will surely be a loss of information or inadequate translation.

Attention is able to partially fix this problem. It is responsible for

allowing the machine translator to look over all of the information that the

sentence contains. Thereby, the proper word is generated according to the

current word and the context. Attention also provides the ability to focus

on local or global features by allowing the translator to zoom in or out.

Chapter 2 Neural Networks for Natural laNguage proCessiNg

37

 Why Is Attention Required?

As sentences consist of different numbers of words, an RNN is naturally

introduced to model the conditional probability among words. In a

probabilistic language model, the focus is to assign a probability to a

sentence using a Markov assumption.

P(w1w2 … wn) ≈ ΠP(wi | wi-k … wi-1)

The translation works on input and output of variable lengths with

this encoder–decoder model. This is adopted while the basic RNN cell

is changed to an GRU or LSTM cell and ReLU replaces the hyperbolic

tangent activation.

The discrete words are mapped to dense vectors for computational

efficiency with the help of an embedding layer. These embedded words

are then fed sequentially to the encoder. As the information flows from left

to right, every word vector is learned according to all the previous inputs,

not just the current word. Once the sentence is read completely, output

is generated by the encoder. There is also a hidden state that is generated

by the encoder for further processing. The decoder uses this hidden state

from the encoder and generates the translation words sequentially.

 How Attention Works

The attention mechanism is basically a context vector that is plugged into

the encoder–decoder architecture within the gap between the encoder and

decoder. This context vector takes all the encoder cell’s output as input

and then computes the probability distribution of source language words

for each of the words that the decoder wants to generate. The decoder is

able to capture global information, not just infer on the basis of one hidden

state. This attention mechanism helps the decoder to capture a wider

perspective.

Chapter 2 Neural Networks for Natural laNguage proCessiNg

38

If we look into how a context vector is built, it is basically quite simple.

For every fixed target word, we generate scores for each of the encoder

states by looping over all the states of the encoder and comparing the

target to the source states. Then softmax is used to normalize all the scores.

We now obtain the probability distribution conditioned on the target

states. Finally, to make the context vector easy to train, the weights are

introduced. Once we get the context vector, the attention vector can be

easily computed using the context vector, the attention function, and the

target word.

 Types of Attention Models

There are three types of attention models: global and local attention, hard

and soft attention, and self-attention. Let’s examine each in turn.

Global Attention Model

In the global attention model, inputs from every encoder state and decoder

state prior to the current state is taken into consideration for computation

of the output. The context vector here is obtained by taking product of

global aligned weights and each of the encoder steps. This is then fed to

the RNN cell to obtain the decoder output.

Local Attention Model

The local attention model varies from the global attention model as few

positions from the encoder are used for calculation of the aligned weights.

Local attention models are further of two types: monotonic alignment and

predictive alignment.

Chapter 2 Neural Networks for Natural laNguage proCessiNg

39

Hard and Soft Attention Model

The soft attention model is similar to the global attention model. The hard

attention model differs from the local attention model in that the local

model is almost differential at every point, whereas the hard attention

model is not. The local attention model can be considered a blend of hard

and soft attention.

Self-Attention Model

The self-attention model relates different positions of the same input

sequence. Self-attention can theoretically adopt any score functions

conditioned that the target sequence is to be replaced with the same input

sequence.

 Conclusion
In this chapter, we have discussed about various Neural networks in NLP

domain. Now that we have covered different types of neural networks, we

turn our attention to how we can use BERT.

Chapter 2 Neural Networks for Natural laNguage proCessiNg

41© Navin Sabharwal, Amit Agrawal 2021
N. Sabharwal and A. Agrawal, Hands-on Question Answering Systems with BERT,
https://doi.org/10.1007/978-1-4842-6664-9_3

CHAPTER 3

Introduction to Word
Embeddings
NLP tasks such as document classification, sentiment analysis, clustering,

and document summarization require processing and understanding

of textual data. Implementation of these tasks depends on how data are

being processed and understood by AI systems. One way of doing this is to

convert textual representation to a numerical form using some statistical

methods such as term frequency-inverse document frequency (TF-IDF),

count vector, and so on, but these methods do not consider the meaning of

a sentence and only deal with the occurrence of words in sentences.

Over the course of time, several semantic methods such as parse trees,

contextual grammar, ontologies, and others have been developed, but

these methods would require a great amount of human effort to prepare

labeled training data. In the last few years, widespread availability of

computing capacity has made it possible to use neural network–based

methods for these tasks.

 One-Hot Representation
One-hot representation is one of the most common and basic methods

for representation of text. It involves representation of a word using

binary encodings (i.e., 0 and 1). It can also be used for representation of

categorical attributes.

https://doi.org/10.1007/978-1-4842-6664-9_3#DOI

42

As an example, assume that a dataset has color as one of the features,

with three possible values: red, blue, and green. Therefore, this feature will

be converted to three new columns, one for each color value, as shown

here.

RED BLUE GREEN

1 1 0 0

2 0 1 0

3 0 0 1

As an example, the first data point has value of 1 in the RED column

and 0 in the others. This means initially that this data point has value for

the color column of RED. Red is represented as [1 0 0] in one-hot encoding,

for blue 1 occupies the second position, and for green 1 is in the third

position. This is a three-dimensional vector. The one-hot representation

expands the feature vector as each category of the color is itself a feature

now.

Now, when we talk about one-hot encoding for textual sentences, it

does not care about order of occurrence of words in sentences and actually

ignores semantic meaning of words. This approach works best in scenarios

where the corpus is smaller and some traditional NLP methods need to be

used.

As an example, to represent a text sentence using one-hot

representation, following these steps.

 1. Count the total number of unique words present in

corpus.

 2. Assign 0 or 1 depending on if the word is present in

the sentence or not.

Chapter 3 IntroduCtIon to Word embeddIngs

43

Consider the sentence “The sky is clear today.” The vocabulary includes

words such as The, sky, is, clear, and today. It forms a five- dimensional

vector if represented in one-hot representation as shown in Figure 3-1.

 Count Vector
In the previous section, we saw how one-hot representation of a sentence

is generated on the basis of occurrence of words, not on the basis of their

frequency of occurrence. The count vector for an individual sentence is

generated on the basis of the number of times a particular word occurs in

the sentence. The unique words in the corpus form the vocabulary.

As an example, consider these two sentences.

Sentence 1: The blue bird is flying in the clear

blue sky.

Sentence 2: The sky is clear today.

This corpus has two sentences and the vocabulary set [bird, blue,

flying, is, in, the, sky, clear, today] contains nine terms. For every word

in the vocabulary set, its frequency of occurrence in a sentence is

determined. A count vector corresponding to that sentence is thus formed.

From these count vectors that represent the sentences we get our count

matrix. The count matrix for the two example sentences is shown here.

The: [1 0 0 0 0]

sky: [0 1 0 0 0]

is: [0 0 1 0 0]

clear: [0 0 0 1 0]

today: [0 0 0 0 1]

Figure 3-1. One-hot representation

Chapter 3 IntroduCtIon to Word embeddIngs

44

is bird blue flying In the sky clear today

Sentence 1 1 1 2 1 1 2 1 0 0

Sentence 2 1 0 0 0 0 1 1 1 1

The rows in the matrix are representative of the sentences and the

columns signify the word vector for the corresponding word in the matrix.

The size of the matrix is S × T, where S is the number of sentences and T is

the number of terms or words.

Count vector representation of sentences helps us to achieve several

tasks, including these:

• Determining similarity between sentences

• Identification of relevant documents for a query

• Document summarization

As an example, we are showing how similarity between sentences can

be computed mathematically. The count vector for Sentence 1 is [1 1 2 1 1

2 1 0 0] and the count vector for Sentence 2 is [1 0 0 0 0 1 1 1 1]. The cosine

similarity can be computed using the following mathematical expression.

Sim =
x y

x y

·

Here, x and y are the two count vectors. ||x|| is the Euclidean norm of

vector x.

So,

x.y = 1x1 + 1x0 + 2x0 + 1x0 + 1x0 + 2x1 + 1x1 + 0x1 + 0x1 = 4

||x|| = 1 1 2 1 1 2 1 0 02 2 2 2 2 2 2 2 2+ + + + + + + + = 3.60

||y|| = 1 0 0 0 0 1 1 1 12 2 2 2 2 2 2 2 2+ + + + + + + + = 2.24

Sim = 4/ (3.6 * 2.24) = 0.49

Chapter 3 IntroduCtIon to Word embeddIngs

45

This calculation means these two sentences are similar to each other

with a similarity score of 49% (0.49). The similarity value will always lie

between 0 and 1, where 1 indicates maximum similarity and 0 means no

similarity.

 TF-IDF Vectorization
One-hot representation and the count vector method are the most basic

methods that do not actually consider the importance of a particular

word in a sentence and in a corpus. For some NLP projects such as search

engines, it is very important to know about the importance of words in a

query to words in documents in your corpus to determine the relevancy of

documents to that query. Some English words that occur frequently (e.g.,

“is,” “the,” “a,” etc.) will be present in all the documents. Even though their

count is higher, they are not useful when performing NLP-related tasks. To

overcome this drawback of count vectors, TF-IDF is used. TF-IDF is one

of the most popular techniques used in various applications as it is able to

weight the words that appear more frequently in general.

In TF-IDF we form vocabulary in a way similar to the previous

method. The vocabulary consists of unique words across the corpus.

Now term frequency is computed for every word in the vocabulary set.

Term frequency (TF) of a word or term t corresponds to the count of all its

occurrences in a document d to the number of terms in the document.

TF = (Number of times term t appears in a document / Number of
terms in the document)

We compute the inverse document frequency (IDF) by calculating the

count of documents in which that term is present. IDF tells us about how

much information a term or word gives. It tells you if a word is common

across all documents or not. IDF is the log value of the ratio of total

Chapter 3 IntroduCtIon to Word embeddIngs

46

number of documents to the number of documents in which a term t has

appeared.

IDF = log(N/n) where N is the total number of documents in the corpus
and n is the number of documents in which a term t has appeared

TF-IDF is the product of TF and IDF.

TF-IDF (t, document) = TF (t, document) * IDF(t)

For example, let’s use the previous two example sentences, where

Sentence 1 and Sentence 2 correspond to two documents.

TF of word “blue” in Sentence 1 = 2

IDF = log (2/1) = 0.3

TF-IDF of word “blue” in Sentence 1 = 2*0.3 = 0.6

Similarly, the TF-IDF value of the word “is” in Sentence 2 is 0, as its IDF

score is 0. This signifies that the word “is” does not have any importance

because it is common and present across all the documents.

Methods like TF-IDF, count vector, and one-hot encoding are easy to

compute, but they do not capture semantics (or order of occurrence of

words) in the document. The words or the sentences represented using

these methods do not provide any contextual information. Even though

many NLP tasks can be performed using them, the overall results are

mediocre, especially when the training data are sparse. A better technique

is therefore required that can capture useful language information and at

the same time boost generalization and performance for pretty much any

NLP problem.

In next section, we are going to discuss one such approach, word

embedding, where vector representation of words contains contextual

information.

Chapter 3 IntroduCtIon to Word embeddIngs

47

 What Is Word Embedding?
Word embedding is a type of word representation where the words

are embedded into vectors of real numbers. The embeddings can be

generated through approaches like neural networks, probabilistic models,

or dimension reduction on a word co-occurrence matrix, as shown in

Figure 3-2. They enable the words with similar meanings to be understood

by the ML algorithms.

Word embeddings are generally low-dimensional (usually 50–600

dimensional) and dense representations of words or sentences as

compared to one-hot representation. When using one-hot representation,

the feature vectors increase with the size of the vocabulary set. Word

embeddings, on the other hand, are more efficient. They have the ability

to generalize. Semantically similar words are more likely to have similar

vector representations. Hence, these vectors will give you more relevant

results when used with NLP tasks such as document summarization,

sentence or document similarity, and so on, as compared with one-hot

representation.

Word embedding is also known as a distributed represented

or distributed semantic model or semantic vector space. The word

“semantic” here highlights the significance of word embedding as it aims

to categorize words with similar meanings together. For example, sports

like tennis, football, and swimming should be placed close, whereas words

related to animals would be far away from these words. In a broader sense,

word embedding will create vector representations of words related to

Figure 3-2. Word embedding

Chapter 3 IntroduCtIon to Word embeddIngs

48

sports that will be placed far away from vector representations of words for

animals. The main objective is to have words with similar contexts occupy

the closest spatial positions.

Embeddings are generally the vectors that are indeed the representation

of words in lower dimensions. Neural networks are also currently being

used to generate embeddings of words. It improves the ability to learn or

generalize representations from the last set of textual data. Neural network

models can learn resourceful traits about words in a vocabulary set while

reducing the dimensionality of the text data. Word embeddings prove to be

very useful in NLP tasks, text classification, document clustering, and so on.

There are various neural network word embedding models available such

as Word2vec, GloVe, ELMo, and BERT, among which BERT has proven to be

best to this point for state-of-the-art NLP tasks.

 Different Methods of Word Embedding
There are different methods to generate embedding of words and they

differ by their implementation approach. Next we discuss some of them

in detail.

 Word2vec

Word2vec is a shallow, two-layered neural network technique of word

embedding in which the words are represented in vector space. A neural

network with only a hidden layer between the input and output layer is

termed a shallow neural network. Word2vec is a two-layer network with

an input layer, one hidden layer, and an output layer. It takes a text corpus

as input and gives a set of vectors as output. The feature vectors represent

the words of the corpus. The vectors that represent the words are known as

neural word embeddings.

This vector representation maintains a semantic relationship between

words in the document or corpus. Words with similar meanings will be

Chapter 3 IntroduCtIon to Word embeddIngs

49

located quite close to each other in vector space and the dissimilar words

are located far away. The semantic relationship is achieved as Word2vec

reconstructs the linguistic context of words. The linguistic context can

be understood as the main objective of the sentence. For instance, in the

sentence “What date is today?,” a person wants to know today’s date, which

is actually the context of the sentence. The main context can be disclosed

by the words and the sentences surrounding the language. Association

of a word with other words can be guessed accurately with the help of

Word2vec when given enough text corpus.

Word2vec is able to train the words against their neighboring words

in the input text data. It can be implemented in two ways: continuous bag

of words (CBOW) and skip gram. These are the two implementations of

Word2vec that are used to create word embedding representations. In

CBOW, context is used to predict the target word, whereas in skip gram, a

word is used to predict the target context.

Continuous Bag of Words

The CBOW architecture tries to predict the target word using the context

window words. The center word or target word is predicted with help of

the surrounding words or the source context words. The Word2vec models

are unsupervised models, which implies we need to provide only the input

corpus without any additional information about the output. To get the

CBOW word embeddings, the model follows a supervised classification

methodology such that it takes the corpus as the input X and predicts the

target word Y.

The input to the neural network will be the sum of one-hot encoded

vectors of the context words in the given window size. The logarithmic loss

function will be used as the loss function.

- × ()() + -()× - ()()

=
å1

1 1
1N
y p y y p y

i

N

i i i ilog log

Chapter 3 IntroduCtIon to Word embeddIngs

50

A softmax function is being used as an activation function in the last

layer. This will provide you a probability distribution across all words. The

equation for softmax function is shown here:

s x
e

ej

x

i

x

j

i
() = å

For example, consider the sentence “This beautiful painting belongs to

Queen Elizabeth.” Here are some of examples of training data considering

the context window size of 2.

• [(painting, belongs), Queen Elizabeth]

• [(This, beautiful), painting].

The input layer will have a one-hot representation of context words

(i.e., “This” and “beautiful”) and the output layer will show probability

distribution across all words in the corpus where the probability score for

the word “painting” will be highest one.

Figure 3-3 shows the architecture for both variations of Word2vec

embedding.

Chapter 3 IntroduCtIon to Word embeddIngs

51

Skip Gram Model

The skip gram model is an unsupervised learning technique that finds

the most relevant words around the target word. In this context, words are

predicted using the target word. It is the reverse of the CBOW approach.

Here the target word is the input and the context words are the output. It

is a comparatively difficult technique, as more than one context word is to

be predicted. As seen in the skip gram model architecture (Figure 3-3), the

input is the target word W(t) and the output is the vector representation of

context words.

This is generally computed as per the following method. The dot

product between this input vector and the weight matrix is obtained by

the one hidden layer. Similarly, in the output layer the dot product is

computed between the output vector of the hidden layer and the output

layer’s weight matrix. Then to find the probability of the words to in

context of W(t) is calculated using the softmax activation function.

Input Projection Output Input Projection Output

W(t-2)

Sum

W(t+2)

W(t-1)

W(t+1)

W(t-2)

W(t+2)

W(t-1)

W(t+1)

W(t) W(t)

CBOW SKIP-GRAM

Figure 3-3. Architecture of CBOW and skip gram models

Chapter 3 IntroduCtIon to Word embeddIngs

52

The hidden layer is the weight matrix where the rows contribute

toward the output words. For instance, if the weight matrix is of dimension

4 × 4 and the input is a one-hot encoded word, then a row will be selected

from the matrix corresponding to the one in the input vector.

[0 0 1 0] ×

10 11 4 9

3 2 6 16

6 15 3 2

5 14 3 8

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

 = [6 15 3 2]

This word vector is obtained after the hidden layer is fed to the output

layer, which produces an output between 0 and 1. The output layer is a

softmax regression classifier that gives the probability of the output word

to be in that context position near the input target word.

Figure 3-4 shows an example of word embedding using skip gram.

Figure 3-4. Neural network architecture

Chapter 3 IntroduCtIon to Word embeddIngs

53

 GloVe

GloVe (Global Vector) is an unsupervised technique that is used for the

vector representation of the words in the global corpus. The word vectors

are obtained by taking into consideration both global and local statistics of

a corpus. The local statistics correspond to the local context information of

words, whereas global statistics are captured by word cooccurrences.

Even though Word2vec performance was quite satisfactory, there

remained a need for a better approach, as Word2vec only considers

the surrounding words, which might sometimes fail to capture useful

relationships of a word with other words. The semantics learned in case of

Word2vec is only dependent on the local information and is affected by the

neighboring words. In GloVe, on the other hand, the meaning of a word can be

obtained with the help of the structure of the whole corpus. This constitutes

word frequency and cooccurrence count. This model mainly relies on the

intuition that word-to-word cooccurrence probabilities can contribute to

encoding some form of meaning that gives it an extra benefit over Word2vec.

GloVe trains on these aggregated global word–word cooccurrence

statistics and minimizes the least square error. This results in the meaningful

linear substructure of a word vector space. For example, “man” and

“woman” are similar in the context that they both describe human beings,

but these two words are also opposites. To capture as much of the meaning

specified by the two words as possible, we need a larger information corpus.

The discrimination between the two words is based on gender, which can be

specified by other word pairs like husband–wife, brother–sister, and so on.

 Sentence Embeddings
Word embedding generates a vector representation of words by

considering only neighboring words, not other sentences. To capture the

relationship between sentences, sentence embedding is the best approach.

These are vector representations of the sentences in a document. Sentence

Chapter 3 IntroduCtIon to Word embeddIngs

54

embedding models are essential, as they are capable of capturing

contextual information that word embedding models fail to capture. As

discussed previously, the word embeddings represent the meaning of

words in a sentence or conversation. They are a representation of words

in an N-dimensional vector space. These methods often tend to neglect

necessary information, however, as explained in the example that follows.

Two sentences can have identical representations but entirely different

meanings. For instance:

Sentence 1: The sky is clear not cloudy today.

Sentence 2: The sky is cloudy not clear today.

Here, Sentence 1 and Sentence 2 have similar representations,

but their meanings are entirely different. Word embeddings won’t be

able to differentiate between these two sentences because the vector

representation of words present in these sentences would almost be same.

Sentence embeddings can be used to accomplish this differentiation.

When working with textual data in the ML pipeline, we do come across

the need to compute sentence embeddings so that we are able to embed

full sentences into a vector space. Sentence embeddings can capture

semantic similarity or relatedness between sentences, then paragraphs,

then documents.

A sentence embedding for a sentence might look like: this

“The bird is flying in sky.” – [0.1, 0.7,0.4, …]

To generate sentence embedding for a sentence, the most basic

approach will be to perform an average of word embeddings of all words

present in that sentence.

A weighted average of the word embeddings can be used to obtain the

sentence embeddings and reduce the dimensionality. In addition to this

method, other methods such as Universal Sentence Encoder and ELMo

have been introduced that have turned out to be very useful for NLP-

related tasks.

Chapter 3 IntroduCtIon to Word embeddIngs

55

 ELMo
ELMo (Embeddings from Language Models) is a deep contextualized word

embedding. It was developed in 2018 by the Allen Institute of AI. ELMo

uses a deep bidirectional LSTM model to create word representations.

The internal states of the two-layer bidirectional language model compute

the embeddings. It is able to capture the changing contextual meaning of

words in the sentences, as shown in Figure 3-5.

ELMo analyzes the words within the context in which they are used,

unlike Word2vec. It does not create vectors for a dictionary of words;

instead, vectors are created by passing text through the deep learning

model. The representation of a word is dependent on the entire sentence

corpus that is passed to the model. It does not use a fixed embedding

for each word; instead the entire sentence is looked at before assigning

embedding to a word. It is able to understand the meaning of a word along

with the context in which it is found. Hence it is able to capture meaning

along with the contextual information. This contextual information related

to a word might vary depending on the sentences in which the word is

T1 T2 Tn

E1 E2 En

Lstm Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

Figure 3-5. ELMo architecture

Chapter 3 IntroduCtIon to Word embeddIngs

56

used. This gives it an advantage over Word2vec and GloVe. The pretrained

language embeddings, when added to existing models, improve the state

of the art across NLP problems.

ELMo is character based: It takes characters as input instead of words,

which enables it to compute meaningful representations for words not

seen during training. When trained on a large dataset, it is also able to

learn the language patterns, which is beneficial for tasks related to NLU,

like determining the next word in a phrase. For example, in the phrase

“The weather is cloudy today, it might … ,” the word “rain” is more likely

to appear instead of the word “dog.” The model is quite useful in scenarios

like these to find the most probable word depending on context, as shown

in Figure 3-6.

The ELMo model is a fairly sophisticated neural language model that

seeks to compute the probability of a word, given some prior history of

words seen. The ELMo architecture (refer to Figure 3-5) has a two-layer

bidirectional LSTM as its backbone. This two-layer bidirectional LSTM

model helps the model to understand the next word as well as the previous

The sky

sky

is

is

blue

blue EOS

ELMO blue
1, blue

f
h

blueX

2, blueh

Figure 3-6. ELMo specific representation of the word “blue”

Chapter 3 IntroduCtIon to Word embeddIngs

57

word in a sentence. The first and second layers are connected by residual

connections that can skip one or multiple layers as the layer feeds into

the next layer and directly into layers hops away. They are used to make

deeper networks easier to optimize. In the ELMo language model, each

token is converted into an appropriate representation using character

embeddings. We get these character-level embeddings using a one-

dimensional CNN to obtain a numerical representation of a word. This

allows a valid representation even for words not in the vocabulary set. This

is then passed through the convolutional layer using various numbers

and types of filters. Finally, before passing as the input to the LSTM layer,

it is passed through a two-layer highway network. This highway network

enables smoother transfer of information through the input. These

transformations to the input token allow selection of the morphological

features, n-gram features, and more. This helps to build a powerful

representation of sentences.

Let us assume we are looking at the ith word in our input. Taking

Figure 3-5 as a reference, the ELMo representation of the word “blue”

is the combination of the transformed word representation xi as well as

the output of two bidirectional representations h1i and h2i. The function f

performs the following operation on input.

ELMo i task = γi . (s0 task . xi + s1 task . h1, i + s2 task . h2, k)

Here, γi and sk are the weighting factors that are learned during

the task-specific model. So, when we use ELMo, we freeze the weights

and then concatenate the ELMo i task for each token to the input

representation.

 Universal Sentence Encoder
Universal Sentence Encoder was introduced recently, and it has become

one of the most popular pretrained models for sentence embeddings.

It is able to convert sentences into vector representations. This versatile

Chapter 3 IntroduCtIon to Word embeddIngs

58

sentence embedding model can learn rich semantic information and

thereby use transfer learning where sentence representation from other

tasks can be learned by retraining the last layer of the architecture.

This sentence encoder model can be used for a wide variety of NLU

tasks. The transformer network used by the encoder is trained on a large,

varied data corpus. The input text, which can be a sentence, phrase,

or short paragraph, is encoded into a high-dimensional vector. Here,

input length can be variable but the output is a 512-dimensional vector.

This enables generation of sentence embedding for a broad range of

downstream tasks like text classification, clustering, semantic similarity,

and more.

Several versions and implementations of these models that have been

trained by Google using Tensorflow are available on the TensorFlow hub

for ML engineers to consume, including these.

• universal-sentence-encoder-large

• universal-sentence-encoder-lite

• universal-sentence-encoder-multilingual

• universal-sentence-encoder-multilingual-large

• universal-sentence-encoder-multilingual-qa

 Bidirectional Encoder Representations
from Transformers
Bidirectional Encoder Representations from Transformers (BERT) has

been introduced by researchers at Google. The bidirectional transformer

for language modeling makes BERT popular in a variety of NLP tasks as

well as question answering. This makes it different from the previous

models where sequences are taken in one direction only, either left to right

or right to left.

Chapter 3 IntroduCtIon to Word embeddIngs

59

The bidirectional encoder takes two sequences for encoding, one

of which is the normal sequence and the other one is the reverse of it. It

consists of two encoders for encoding the two sequences. For the final

output, both encoding results are considered. The bidirectional training of

language models gives them deeper insight into the context of language.

It is indeed important for understanding the meaning of text, as shown in

Figure 3-7.

For example, consider the following two sentences:

Sentence 1: I got scared on seeing a bat flying in my room.

Sentence 2: The player held the bat firmly while

smashing a ball with it.

Here, the word “bat” has a different meaning in the two sentences,

depending on the language context. This is better understood if we

approach the sentence from both directions. If we move in only one

direction, we might miss useful information and might not correctly obtain

the meaning. BERT considers both the preceding and following context,

which reduces the chances for an error before making any prediction.

Information is gathered from both directions while training and the

context from both directions is jointly conditioned in all the layers.

Chapter 3 IntroduCtIon to Word embeddIngs

60

The pretrained BERT model can be used for various state-of-the-

art tasks by just modifying the output layer. It does not require any

task-specific architectural change. It uses the transformer to grasp the

relationship of a token or word in the text. A transformer includes an

encoder and a decoder. The encoder reads the input text and the decoder

helps in generating predictions for a task. The transformer encoder is

able to read the entire sequence of words at once instead of reading

sequentially from left to right. This makes the model bidirectional and

allows it to learn the context of a word or token from both left and right

side of it. The sequence of tokens that are input to the transformer are

embedded into vectors and then vectors are further processed in the

neural network. The output of the network is a sequence of vectors

corresponding to the input tokens, as shown in Figure 3-8.

Figure 3-7. BERT architecture

Chapter 3 IntroduCtIon to Word embeddIngs

61

BERT uses two strategies to surpass unidirectional constraints. BERT

is pretrained on these two NLP tasks: masked language modeling (MLM)

and next sentence prediction (NSP). MLM assists in pretraining the

bidirectional transformer by randomly masking tokens from the input

text while the NSP task jointly pretrains text pair representations. BERT

minimizes the combined loss function for both the tasks during training.

To use BERT, two stages are to be followed:

 1. Pretraining: In this step the model is trained on

unlabeled data over different pretraining tasks.

 2. Fine-tuning: The BERT model is initialized with the

pretrained parameters followed by fine-tuning using

the data from the downstream task, which could be

classification, question answering, and so on.

Figure 3-8. BERT transformer

Chapter 3 IntroduCtIon to Word embeddIngs

62

There are two implementations for the BERT model, the BERT base

model and the BERT large model.

 BERT Base Model

The BERT base model is a pretrained BERT model that has 12 layers

or transformer blocks, 768 hidden units in each layer, and 110 million

parameters. It can further be classified as BERT base-cased and BERT

base-uncased depending on the English text (cased or uncased) it has

been trained on, as shown in Figure 3-9.

Figure 3-9. BERT base and BERT large models

Chapter 3 IntroduCtIon to Word embeddIngs

63

 BERT Large Model

The BERT large model is a pretrained BERT model that has 24 layers or

transformer blocks, 1,024 hidden units in each layer, and 340 million

parameters. It can also further be classified as BERT large-cased and BERT

large-uncased. This model requires significantly more memory than BERT

base.

 Conclusion
This chapter covered word embedding, sentence embeddings, and their

different methods of implementation, such as Word2vec, GloVe, Universal

Sentence Encoder, and so on. We have also discussed BERT and its

variations (i.e., base and large models). In the next chapter, we will look

deeper into BERT and its different implementations.

Chapter 3 IntroduCtIon to Word embeddIngs

65© Navin Sabharwal, Amit Agrawal 2021
N. Sabharwal and A. Agrawal, Hands-on Question Answering Systems with BERT,
https://doi.org/10.1007/978-1-4842-6664-9_4

CHAPTER 4

BERT Algorithms
Explained
This chapter takes a deep dive into the BERT algorithm for sentence

embedding along with various training strategies, including MLM and

NSP. We will also see an implementation of a text classification system

using BERT.

 How Does BERT Work?
BERT makes use of a transformer to learn contextual relations between

words in a text. A transformer has two mechanisms—an encoder and a

decoder—but BERT only requires the encoder mechanism. BERT uses a

bidirectional approach and reads the text input sequentially, which allows

the model to learn the context of a word based on its surrounding words.

The input to the encoder is a sequence of tokens that are embedded into

vectors. The vectors are then passed into the neural network and an output

sequence of vectors is then generated corresponding to the input. The

output vector for a word is dependent on the context in which it occurs.

For example, the vector for the word “like” in the sentence “He likes to

play cricket” would be different than the vector for the same word in the

sentence “His face turned red like a tomato.”

https://doi.org/10.1007/978-1-4842-6664-9_4#DOI

66

This procedure involves text processing steps before even starting the

model-building phase. The next section discusses the text processing steps

used in BERT.

 Text Processing
There is a specific set of rules for representing the input text for the BERT

model. This, too, is responsible for better functioning of the model. If we

look into the embeddings, the input embedding in BERT is a combination

of the following three types of embeddings.

• Position embeddings: Positional embeddings are used

to learn the information of order in the embeddings.

As in transformers the information related to order is

missed, positional embeddings are used to recover it.

For each of the positions in the input sequence, BERT

learns a unique positional embedding. With the help of

these positional embeddings, BERT is able to express

the position of words in a sentence as it captures this

sequence or order information.

• Segment embeddings: BERT also learns unique

embedding for the first and second sentences to

help the model distinguish between them. It can also

take sentence pairs as inputs for tasks like question

answering.

• Token embeddings: For every token in the WordPiece

token vocabulary, token embeddings are learned.

The WordPiece token vocabulary contains subwords

of words in the corpus. As an example, for the word

“Question,” this vocabulary set will include all possible

subwords of “Question,” such as [“Questio”, “Questi”…],

and so on.

Chapter 4 Bert algorithms explained

67

Figure 4-1 shows an example of sequences of embeddings in BERT.

The input representation of a given token is constructed by

summing the token, segment, and position embeddings. This makes

it a comprehensive embedding scheme that contains a lot of useful

information for the model.

For an NLP task where the job is to predict next word in a sentence,

if we go with a directional approach, it has some limitations. However,

BERT provides two strategies to learn contextual information: MLM and

NSP. During training in BERT, both of these tasks will be trained together.

When using these two strategies, the model tries to achieve the goal of

minimizing the combined loss function.

 Masked Language Modeling
BERT is a deep bidirectional model that is more powerful than a left-to-

right model or the shallow concatenation of a left-to-right and a right-to-

left model. The BERT network can effectively capture information from

both the right and left context of a token. This goes from the first layer

itself and all the way through to the last layer. Previously, language models

were trained on left-to-right context, which made them susceptible to

information less. Even though the ELMo model greatly improved on the

Figure 4-1. BERT embeddings

Chapter 4 Bert algorithms explained

68

existing techniques using the shallow concatenating of the two LSTM

language models, that wasn’t enough. BERT has proven to be more

significant than the existing techniques where MLM plays a crucial role.

In a masked language task, some of the words in text are randomly

masked. The context words surrounding a [MASK] token are used to

predict the [MASK] word. When word sequences are being fed into BERT,

15% of the words in each sequence are replaced with a [MASK] token.

These 15% of words are randomly selected. Of these, 80% are masked,

10% are replaced with a random word, and 10% are retained. This is done

because if 100% of the masked words were used then the model wouldn’t

necessarily produce good token representations for nonmasked words.

The model performance is improved, as too much focusing on a particular

position or tokens has been prevented. On the basis of the context

provided by the nonmasked words in the sequence, the model tries to

predict the original value of the masked words.

These processes that need to be followed for generation of word

embedding using BERT:

• Addition of a classification layer on top of the encoder

output.

• Multiplication of the output vectors by the embedding

matrix, thus transforming them into the vocabulary

dimension.

• Calculation of the probability of each word in the

vocabulary with softmax.

The loss function in BERT only considers the prediction of the

masked values; the prediction of the nonmasked words is ignored. This

makes the model converge slower than directional ones. As an example,

for the sentence “The birds are flying in the clear blue sky,” if we are

training the bidirectional model instead of predicting the next word in the

sequence, a model can be built to predict the missing word from within

Chapter 4 Bert algorithms explained

69

the sequence itself. Now, consider a token “flying” and mask it so that it

can be considered missing. The model would now need to be trained in

such a way that it can predict the value of this missing or masked token

in the sentence “The birds are [MASK] in the clear blue sky.” This is the

essence of MLM, which enables the model to understand the relationships

between words in a sentence.

 Next Sentence Prediction
The NSP task is similar to next word prediction in a sentence. NSP predicts

the next sentence in document, whereas the latter works for prediction of

missing words in a sentence. BERT is also trained on the NSP task. This is

required so that our model is able to understand how different sentences

in a text corpus are related to each other. During the training of the BERT

model, the sentence pairs are taken as input. It then predicts if the second

sentence in the pair is the subsequent sentence in the original document.

To achieve this, 50% of inputs are taken such that the second sentence is

the subsequent sentence as in the original document, whereas the other

50% comprises the pair where the second sentence is chosen randomly

from the document. It is assumed that the random second sentence is

disconnected from the first sentence.

As an example, consider two different instances of training data for

Sentence A and Sentence B:

Instance 1

Sentence A – I saw a bird flying in the sky.

Sentence B – It was a blue sparrow.

Label – IsNextSentence

Instance 2

Sentence A – I saw a bird flying in the sky.

Sentence B – The dog is barking.

Label – NotNextSentence

Chapter 4 Bert algorithms explained

70

As we can see, for Instance 1 Sentence B is logically subsequent to

Sentence A, but the same is not true for Instance 2, which is quite clear

from the labels IsNextSentence and NotNextSentence, respectively.

These inputs are being processed even before the training process

starts to differentiate between two sentences. The procedure is outlined

here.

 1. Two tokens are inserted in a sentence pair. One of

the tokens [CLS] is inserted at the beginning of the

first sentence and other token [SEP] is inserted at

the end of each sentence. The two sentences are

both tokenized and separated from each other by

the separation token and then fed as a single input

sequence into the model.

 2. For each of the token sentences, embedding is

added that indicates whether it is Sentence A

or Sentence B. These sentence embeddings are

basically similar in concept to token embeddings

with a vocabulary of 2.

 3. Along with the sentence embeddings, positional

embeddings are also added to each of the tokens,

which helps to indicate the position of the token in

the sequence.

Now, the following steps are performed to predict if the second

sentence is actually connected to the first.

 1. The whole input sequence is passed though the

transformer model.

 2. With the help of the simple classification layer, the

output of the [CLS] token is transformed into a 2X1

shaped vector.

Chapter 4 Bert algorithms explained

71

 3. Thereby, the probability of IsNextSentence is

computed with the help of softmax.

As we know, BERT is used for variety of NLP tasks such as document

summarization, question answering systems, document or sentence

classification, and so on. Now, let’s see how BERT can be used for

classification of sentences.

 Text Classification Using BERT
BERT can be used for a variety of language tasks. A small layer added to

the core model allows use of BERT for tasks like classification, question

answering, named entity recognition, and so on. The BERT model is fine

tuned for this purpose. For classification tasks, a classification layer is

added on top of the transformer output for the [CLS] token, similar to

NSP. Most of the hyperparameters stay the same as in BERT training, but

some of them require tuning to achieve state-of-the art-results for text

classification tasks. Figure 4-2 gives an example of determining whether a

given tweet is hate speech or not.

Similar types of tasks such as such as document classification,

sentiment analytics, and so on, can also be achieved using BERT.

Next, we will see how a pretrained model of text classification can be

configured in your system. Follow the steps listed here to configure or

install the necessary prerequisites.

Figure 4-2. An example of classification using BERT

Chapter 4 Bert algorithms explained

72

 1. Make sure Python is installed on your system.

Open a command prompt and run the following

command to determine if Python is installed, as

shown in Figure 4-3.

Python

This will start the Python console at the command

prompt. If Python is not installed on your system,

download and install Python as per your operating

system using this link: https://www.python.org/

downloads/

 2. Next, install Jupyter Notebook. Open a command

prompt and run the following command.

pip install notebook

 3. Open a command prompt and run the following

command to run Jupyter Notebook.

jupyter notebook

The notebook will start in your default browser with

localhost as the host address and port number as 8888,

along with a unique token ID, as shown in Figure 4-4.

Figure 4-3. Python console

Chapter 4 Bert algorithms explained

https://www.python.org/downloads/
https://www.python.org/downloads/

73

 4. You can also use Google Colab Notebook for

the same purpose. It provides a fast and free

environment to run your Python code in case your

system doesn’t have sufficient resources available.

You can also use the graphics processing units

(GPUs) and Tensor Processing Units (TPUs) for

free, but for a limited time (12 hours) in Google

Colab. You just need a Google account to log in to

Google Colab Notebook. For this book, we will be

using Google Colab Notebook to demonstrate text

classification using BERT. Log in to your Google

account and click https://colab.research.

google.com. You will see the screen shown in

Figure 4-5.

Figure 4-4. Jupyter Notebook console

Chapter 4 Bert algorithms explained

https://colab.research.google.com
https://colab.research.google.com

74

 5. To create a new Colab notebook, click New

Notebook in the bottom right corner as shown in

Figure 4-5.

 6. Install TensorFlow. Run the following command in

your Jupyter Notebook or Colab Notebook.

pip install tensorflow

We have now installed all prerequisites for this exercise. Please follow

the steps listed next to configure a pretrained model for text classification

using BERT.

Figure 4-5. Google Colab interface to create or import a notebook

Chapter 4 Bert algorithms explained

75

 1. BERT model files and required code can be

downloaded from the GitHub repository. Open the

command prompt and clone the GitHub repository

(i.e., https:/github.com/google- research/

bert.git) onto the system by typing the following

command:

git clone https://github.com/google-research/bert.git

 2. Downloaded model files containing the weights

and other necessary BERT files. Depending on your

requirements, a BERT pretrained model needs to be

selected from this list.

• BERT Base, Uncased

• BERT Large, Uncased

• BERT Base, Cased

• BERT Large, Cased

 3. If you have an access to a cloud TPU, BERT Large

can be used; otherwise, the BERT Base model

should be used. Further selection can be made from

the cased and uncased models.

 4. The data for fine-tuning the BERT model are

expected to be in the format that BERT understands.

Data have to be divided into three parts: train, dev,

and test. As a rule of thumb, train should contain

80% of data and the remaining 20% will be divided

into dev and test. You need to make a folder

containing three separate files: train.tsv, dev.

tsv, and test.tsv. The train.tsv file will be used

for training the model, dev.tsv will be used for

Chapter 4 Bert algorithms explained

http://github.com/google-research/bert.git
http://github.com/google-research/bert.git

76

developing the system, and test.csv will be used

for evaluating model performance over unseen

data. Both train.tsv and dev.tsv should not have

headers and should have four columns as shown

below.

1 1 a text example belonging to class 1

2 1 a text example belonging to class 1

3 2 a text example belonging to class 2

4 0 a text example belonging to class 0

Here are details of the columns used.

a. First Column: Represents IDs of sample.

b. Second Column: Classification labels

corresponding to examples.

c. Third Column: Throw-away column.

d. Fourth Column: This represents the actual

textual sentence that needs to be classified.

 5. The test.tsv file should have a header line, unlike

the other two files, and should appear as shown

here.

id sentence

1. first test example

2. second test example

3. third test example

Chapter 4 Bert algorithms explained

77

 6. To train the model, you need to navigate to the

directory into which the model has been cloned.

Afterward, enter the following command at the

command prompt:

python bert/run_classifier.py \

--task_name=cola \

--do_train=true \

--do_eval=true \

--data_dir=./data \

--vocab_file=$BERT_BASE_DIR/vocab.txt \

--bert_config_file=$BERT_BASE_DIR/bert_config.json \

--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \

--max_seq_length=128 \

--train_batch_size=32 \

--learning_rate=2e-5 \

--num_train_epochs=3.0 \

--output_dir=./bert_output/

If length of your training data text is longer than 128

words then the value for max_seq_length can be

increased to 512. If you are training the model over a

CPU system, then you can reduce the training size to

avoid an out-of-memory error.

When the training is finished, the reports get stored

in the bert_output directory.

 7. This trained BERT model is now ready to use for

prediction purposes. If we have to make a prediction

for new data, then data need to be stored in test.

tsv. Go to the directory where the trained model

files have been stored. Please refer to the highest-

Chapter 4 Bert algorithms explained

78

number (latest model file) model.ckpt file seen in

the bert_output directory. These files contain the

weights of the model trained. Now run the following

commands at the command prompt to obtain the

classification result, which will be stored in test_

results.tsv in the bert_output directory location.

python bert/run_classifier.py \

--task_name=cola \

--do_predict=true \

--data_dir=./data \

--vocab_file=$BERT_BASE_DIR/vocab.txt \

--bert_config_file=$BERT_BASE_DIR/bert_config.json \

--init_checkpoint=$TRAINED_CLASSIFIER \

--max_seq_length=128 \

--output_dir=./bert_output/

Please note that the value for the max_seq_length

parameters should be the same as what was used

during the training process.

For this book, we will demonstrate implementation of a question

classification dataset where questions will be classified into their

respective categories. There are mainly two types of questions, factoid

(nondescriptive) and non-factoid questions. As an example, “What is the

temperature in Delhi?” is a factoid question, as it is looking for an answer

based on some facts. “What is temperature?” is a non-factoid question, as

it is looking for text snippets about temperature. For this implementation,

please refer to the dataset at https://cogcomp.seas.upenn.edu/Data/

QA/QC/.

Now we will see how a question classification system can be

implemented using BERT.

Chapter 4 Bert algorithms explained

https://cogcomp.seas.upenn.edu/Data/QA/QC/
https://cogcomp.seas.upenn.edu/Data/QA/QC/

79

 1. For this implementation, we will download the

BERT base-cased model from GitHub as described

previously.

 2. The question classification dataset is already in the

format required for training the BERT model. The

data are split into train.tsv, dev.tsv, and test.

tsv sets. In train.tsv and dev.tsv, we do not have

any headers. The following is a description of the

columns in the file.

• First Column: Index for data point.

• Second Column: Classification label (i.e., factoid or

non-factoid). In this dataset, factoid is represented

by 0 and 1 for non-factoid.

• Third Column: Throwaway column with value a.

• Fourth Column: Actual question text.

Then we create data folder and save these files in the

folder. Please refer Figures 4-6 through 4-8 for some

examples from training files.

Figure 4-6. Snapshot of Dev.tsv

Chapter 4 Bert algorithms explained

80

 3. Now, navigate to the directory where the

downloaded BERT model exists.

 4. As mentioned earlier, execute the command for

training at the command prompt. The model

output after completion of training gets stored in

the location that has been defined under the bert_

output parameter, as shown in Figure 4-9.

python run_classifier.py --task_name=cola --do_

train=true --do_eval=true --data_dir=$BERT_

BASE_DIR/data --vocab_file=$BERT_BASE_DIR/

bert_output/cased_L-12_H-768_A-12/vocab.

txt --bert_config_file=$BERT_BASE_DIR/bert_

output/ cased_L-12_H-768_A-12/bert_config.

json --init_checkpoint=$BERT_BASE_DIR/bert_

output/ model.ckpt-2023 --max_seq_length=

128 --train_batch_size=32 --learning_

rate=2e-5 --num_train_epochs=3.0 --output_

dir=$BERT_BASE_DIR/bert_output/

Figure 4-7. Snapshot of train.tsv

Figure 4-8. Snapshot of test.tsv

Chapter 4 Bert algorithms explained

81

$BERT_BASE_DIR is a directory where you must have

downloaded code from GitHub.

 5. After completion of training, we can classify the test

data using the trained model. Run the following

command at the command prompt to get a

prediction for questions present in the test.tsv file

as shown in Figure 4-10.

python bert/run_classifier.py --task_name=cola --do_

predict=true --data_dir=$BERT_BASE_DIR/data

vocab_file=$BERT_BASE_DIR/bert_output/cased_L-

12_H-768_A-12/vocab.txt --bert_config_file=$BERT_

BASE_DIR/bert_output/ cased_L-12_H-768_A-12/

bert_config.json --init_checkpoint=$TRAINED_

CLASSIFIER --max_seq_length=128 --output_

dir=$BERT_BASE_DIR/bert_output/

$BERT_BASE_DIR is a directory where you must have

downloaded code from GitHub.

Figure 4-9. Command to train BERT model

Figure 4-10. Command for prediction

Chapter 4 Bert algorithms explained

82

 6. The results of the classification are stored in the

location that has been defined as the value for the

bert_output parameter in the test_results.

tsv file. As we can see in Figure 4-11, the result

of classification is a probability distribution of a

question to two classes. The class with the higher

score will be considered the relevant one.

The first column corresponds to the label 0 (Factoid) and the second

column corresponds to the label 1 (non-factoid). From this generated

.csv we can see whether the questions in the test data are Factoid or

non-factoid questions.

This question type classification system is quite useful in a

conversational system where a query or question entered by an end user

needs to be classified to retrieve relevant results.

Figure 4-11. Prediction results snapshot

Chapter 4 Bert algorithms explained

83

 Benchmarks for BERT Model
BERT embedding model performance and accuracy have been

continuously evaluated over different types of datasets for various NLP

tasks. This is being done to check if BERT is able to achieve benchmark

values already set up for these datasets by some other methods. These

benchmarks are datasets that evaluate the working of specific aspects

of a model. There exist many such benchmarks and some of them are

discussed next.

 GLUE Benchmark
General Language Understanding Evaluation (GLUE) is a collection of

datasets that can be used to train, evaluate, and analyze NLP models.

These different models are compared with each other over the GLUE

dataset. To test a model’s language understanding, the GLUE benchmark

includes nine diverse task datasets. To evaluate a model, first it is trained

over a dataset provided by GLUE and then it is scored on all nine tasks. The

final performance score is the average of all nine tasks.

 Final GLUE Score Individual Task Score = å

The model is required to have representation of its input and output

changed so as to accommodate the task. For instance, during the

pretraining of BERT, few words are masked when sentences are given as

input. Because the input representation layer in BERT accommodates

all of the GLUE tasks, there is no need to change this layer. However, the

pretraining classification layer has to be removed. This layer is replaced

with the one that accommodates the output of each GLUE task. The BERT

model scores a state-of-the-art result on the GLUE benchmark, with a

score of 80.5%.

Chapter 4 Bert algorithms explained

84

 SQuAD Dataset
The Stanford Question Answering Dataset (SQuAD) is a reading

comprehension dataset, consisting of questions asked on a set of

Wikipedia articles. The answer to each of the questions is either a text

segment or a span from the passage, respectively. There are two versions of

the SQuAD dataset.

• SQuAD 1.1

• SQuAD 2.0

SQuAD2.0 has 100,000 questions in addition to SQuAD 1.1, which

contains 50,000 unanswered questions, but are similar to questions

that were answerable. This was done so that SQuAD2.0 can do well in

situations where no answers to questions are supported by a paragraph for

a question.

BERT is able to achieve state-of-the-art results on the SQuAD dataset

with minor modifications. It requires semicomplex preprocessing of data

and postprocessing to deal with the variable-length nature of SQuAD

context paragraphs and the character-level answer annotations used for

SQuAD training. The BERT model was able to achieve an F1 score of 93.2

and 83.1 for SQuAD 1.0 and SQuAD v2.0 over test dataset, respectively.

 IMDB Reviews Dataset
The IMDB dataset is an extensive movie review dataset that has been used

for classification of viewer sentiments about films. This dataset consists

of 25,000 highly polar movie reviews for training and 25,000 reviews

for testing. In addition to the training and testing data, there are also

additional unlabeled data. This dataset has also been used to evaluate

BERT in a sentiment classification task.

Chapter 4 Bert algorithms explained

85

 RACE Benchmark
RACE is a large-scale reading comprehension dataset from examinations.

The RACE dataset is used to evaluate models on a reading comprehension

task. This dataset was collected from English examinations of Chinese

students. It consists of nearly 28,000 passages and 100,000 questions

generated by human experts. The number of questions is much larger in

RACE as compared to other benchmark datasets. The BERT large model

achieves a score of 73.8% on the RACE benchmark dataset.

 Types of BERT-Based Models
BERT is a ground-breaking natural language model and its introduction

in the ML world has led to development of various models that are based

on it. Variants of the BERT model have been developed to cater to different

types of NLP-based systems. Here are a few of the major variants of BERT:

• ALBERT

• RoBERTa

• DistilBERT

• StructBERT

• BERTjoint for Natural Questions

 ALBERT
ALBERT is a much smaller version of BERT that was introduced jointly by

Google Research and the Toyota Technological Institute. It is a smarter,

“lite” BERT and is also considered a natural successor to BERT. It can

also be used to implement state-of-the-art NLP tasks. This is all possible

with less computation power compared to BERT, but you need to

Chapter 4 Bert algorithms explained

86

compromise on accuracy a little bit. ALBERT was basically created to make

improvements in architecture and training methods so that better results

are delivered with fewer required computation resources.

ALBERT has a BERT-like core architecture. It has a transformer

encoder architecture and a vocabulary of 30,000 words, which is the same

as BERT. However, there are substantial architectural improvements in

ALBERT for efficient parameter usage.

 1. Factorized embedding parameterization: In the

case of BERT, the WordPiece embeddings size (E)

is directly tied to the hidden layer size (H). It was

observed that WordPiece embeddings are designed

to learn context-independent representations,

whereas the hidden layer embeddings are designed

to learn context-dependent representations.

In BERT we try to learn context-dependent

representations through the hidden layers only.

When H and E are tied together, we end up with a

model with billions of parameters that are rarely

updated in training. This happens as the embedding

matrix, which is V*E where V is the large vocabulary,

must scale with the H (hidden layers). This actually

results in inefficient parameters, as these two items

work for different purposes.

In ALBERT, to make it more efficient we untie the

two parameters and embedding parameters are split

into two smaller matrices. Now the one-hot vectors

are not directly projected into H; rather, they are

projected into a smaller, lower dimension matrix

E, and then E is projected into the hidden layers.

Thus, the parameters get reduced from O (V*H) to

Θ(V*E+E*H).

Chapter 4 Bert algorithms explained

87

 2. Cross-layer parameter sharing: ALBERT has

a smoother transition from layer to layer in

comparison to BERT and the parameter efficiency is

improved by sharing of all the parameters across all

layers. The feed- forward and attention parameters

are all shared. This weight sharing is helpful in

stabilizing the network parameters.

 3. Training changes: Sentence order prediction:
Similar to BERT, ALBERT also uses MLM but does

not use NSP. Instead of NSP, ALBERT uses its own

newly developed training method called sentence

order prediction (SOP).

The NSP loss used in BERT was not found to be a

very effective training mechanism in subsequent

studies. Hence, it was leveraged to develop SOP as

NSP was unreliable.

In ALBERT SOP, loss is used to model intersentence

coherence. SOP was mainly created to focus

on intersentence coherence loss instead of

topic prediction, whereas BERT combines topic

prediction with coherence prediction. Hence,

ALBERT is able to learn finer grained intersentence

cohesion by avoiding issues of topic prediction.

ALBERT, even though it has fewer parameters than BERT, gets results

in less time. In the language benchmark tests SQuAD1.1, SQuAD2.0, MNLI

SST-2, and RACE, ALBERT has significantly outperformed BERT, as we can

see in the comparison in Table 4-1.

Chapter 4 Bert algorithms explained

88

 RoBERTa
RoBERTa is an optimized method for pretraining NLP systems. RoBERTa

(Robustly optimized BERT) was developed by the Facebook AI team and

based on Google’s BERT model. RoBERTa reimplemented the neural

network architecture of BERT with additional pretraining improvements

that achieve state-of-the-art results on several benchmarks.

RoBERTa and BERT share several configurations, but there are some

model settings that differentiate the two models.

• Reserved token: BERT uses [CLS] and [SEP] as starting

token and separator token, respectively, whereas

RoBERTa uses <s> and </s> to convert sentences.

• Size of sub-word: BERT has about 30,000 sub-words,

whereas in RoBERTa there are about 50,000 sub-words.

Table 4-1. Comparison Between BERT and ALBERT Models

Model Parameters SQuAD1.1 SQuAD2.0 MNLI SST- 2 RACE Avg Speedup

BERT base 108M 90.5/83.3 80.3/77.3 84.1 91.7 68.3 82.1 17.7x

BERT large 334M 92.4/85.8 83.9/80.8 85.8 92.2 73.8 85.1 3.8x

BERT xlarge 1270M 86.3/77.9 73.8/70.5 80.5 87.8 39.7 76.7 1.0

ALBERT

base

12M 89.3/82.1 79.1/76.1 81.9 89.4 63.5 80.1 21.1x

ALBERT

large

18M 90.9/84.1 82.1/79.0 83.8 90.6 68.4 82.4 6.5x

ALBERT

xlarge

59M 93.0/86.5 85.9/83.1 85.4 91.9 73.9 85.5 2.4x

ALBERT

xxlarge

233M 94.1/88.3 88.1/85.1 88.0 95.2 82.3 88.7 1.2x

Chapter 4 Bert algorithms explained

89

In addition, there are specific modifications and adjustments that help

RoBERTa to perform better than BERT.

• More training data: During reimplementation of BERT,

several changes were made to the hyperparameters of

the BERT model and training was done with a higher

magnitude of data with more iterations. RoBERTa uses

more training data. It uses BookCorpus (16G),

CC- NEWS (76G), OpenWebText (38G), and Stories

(31G) data, whereas BERT uses only BookCorpus as

training data.

• Dynamic masking: When BERT was being ported

to create RoBERTa, the creators modified the word

masking strategy. BERT mainly uses static masking, in

which the words are masked from sentences during

preprocessing. RoBERTa makes use of dynamic

masking. Here, a new masking pattern is generated

whenever a sentence is fed into training. RoBERTa

duplicates training data 10 times and masks those

data differently. It is experimentally observed that the

dynamic masking improves performance and gives a

better result than static masking.

• Different training objective: BERT captures the

relationships between the sentences by training on

NSP. Some training approaches without application of

NSP provided better results, proving the ineffectiveness

of NSP. Experiments were done to compare models

trained with segment-pair with NSP, sentence-pair with

NSP, full sentences without NSP, and doc-sentences

without NSP. The models trained without NSP

performed better on SQuAD1.1/2.0, MNLI-m, SST-2,

and RACE.

Chapter 4 Bert algorithms explained

90

• Training on longer sequences: Better results have

been achieved when a model was trained on longer

sequences. BERT base is trained with a batch size of

256 sequences via 1 million steps, but training on 2,000

sequences and 31,000 steps shows improvement in

performance.

With the implementation of the design changes, the RoBERTa model

delivered state-of-the-art performance on the MNLI, QNLI, RTE, and

RACE tasks. It also realized a sizable performance improvement on the

GLUE benchmark with a score of 88.5.

RoBERTa demonstrates that the tuning the BERT training procedure

can result in performance improvement on a variety of NLP tasks. This

highlights the importance of exploring the design choices in BERT training

for better performance output.

 DistilBERT
DistilBERT was introduced for knowledge distillation. This knowledge

distillation was required to address the drawbacks of computation of

large numbers of parameters. The NLP models that have been developed

recently show an increase in parameter count, now reaching parameter

counts as high as in the tens of billions. Even though higher parameter

count ensures optimal performance, it prevents model training and

serving when computational resources are limited.

Knowledge distillation revolves around the idea that a larger model

acts as a teacher for a smaller one that tries to replicate its outputs and

sublayer activation for a given set of inputs. This is sometimes also known

as teacher–student learning. It is a compression technique where the

behavior of larger models is reproduced by the smaller ones. The output

distribution from the teacher can be used for all possible targets, which

helps in creation of a student with generalizability. For example, in the

Chapter 4 Bert algorithms explained

91

sentence “The sky is [mask]” a teacher might assign high probabilities

to words like “cloudy” and “clear.” There are also chances that a high

probability is assigned to the word “blue.” This is helpful for the student

model, so that it is able to generalize rather than only learn the correct

target. This information is captured through the loss function that is

being used to train the student. This loss function comprises a linear

combination of three factors.

 Distillation Loss

Distillation loss takes into consideration combination of the output

probabilities of the teacher (t) and the student (s) as shown in the

following equation.

Lce = ∑i ti log(si)

Distillation Loss

ti = exp(zi/T)/ ∑j exp(zj/T)

Temperature Softmax

The teacher probabilities are calculated through temperature softmax.

This is basically a modification to the softmax so that more granularities

are obtained from the teacher model output distribution. This gives

a smoother output distribution, as the size of larger probabilities are

decreased and the smaller ones are increased. This helps to minimize the

distillation loss.

 Cosine Embedding Loss

Cosine embedding loss is a distance measure between the hidden

representations for teacher and student. This helps in creation of a better

model as it enables the student to imitate the teacher not just in the output

layer, but in other layers, too.

Chapter 4 Bert algorithms explained

92

Masked Language Modeling Loss

This is the same loss as used in training of the BERT model to predict the

correct token value for the masked token in the sequence.

 Architectural Modifications

The DistilBERT network architecture is also a transformer encoder model

similar to BERT base, but it has half the number of layers. The hidden

representations, though, are kept the same. This affects the parameter

count, with a 66 million parameter count in the case of DistilBERT,

whereas there are 110 million parameters in the teacher model. The

reduction in the model size through the number of layers helps to achieve

the drastic reduction in computation complexity. The reduction in the size

of the vectors or the hidden state representations have also reduced the

model size.

After the knowledge distillation, DistilBERT is able to achieve 97% of

BERT base’s score on the GLUE benchmark. This knowledge distillation

has helped to condense the larger models or ensembles of models into a

smaller student network. This has proven to be helpful in situations where

the computational environment is limited.

 StructBERT
StructBERT is a model based on BERT that incorporates language

structures into BERT pretraining. The two linearization strategies help

to incorporate language structure into BERT. Word-level ordering and

sentence-level ordering are the two structural information sets that are

leveraged in StructBERT. StructBERT achieves better generalizability

and adaptability due to the incorporation of this structural pretraining.

The dependency between the words as well as sentences is encoded in

StructBERT.

Chapter 4 Bert algorithms explained

93

 Structural Pretraining in StructBERT

Similar to all the other BERT-based models, StructBERT also builds on

the BERT architecture. The original BERT performs two unsupervised

pretraining tasks, MLM and NSP. StructBERT is able to increase the ability

of the MLM task. It shuffles a certain number of tokens after masking of

words and predicts the right order. StructBERT is also able to understand

the relationship between sentences in a better way. This is achieved by

random swapping of the sentence order. This new BERT-based model

captures the fine-grained word structure in every sentence.

After pretraining of the StructBERT it can be fine-tuned on task-

specific data for a wide range of downstream tasks such as document

summarization.

 Pretraining Objectives

The pretraining objectives of the original BERT are extended in the case

of StructBERT to fully utilize rich inner-sentence and intersentence

structures in language. This is done in two ways.

 1. Word structural objective: The BERT model fails

to model sequential order and high-order word

dependency in natural language explicitly. A good

language model should be able to reconstruct a

sentence from a given sentence that has randomly

ordered words. StructBERT is able to implement this

idea by supplementing BERT’s training objectives

with a new word structural objective. This new

model objective gives the model the ability to

restructure the sentence to have correct ordering of

the randomly shuffled word tokens. This objective is

trained together with the MLM objective from BERT.

Chapter 4 Bert algorithms explained

94

 2. Sentence structural objective: The original BERT

model objective of NSP is extended in StructBERT

by predicting both the next sentence as well as the

previous sentence. This makes the pretrained model

learn the sequential ordering of the sentences in a

bidirectional manner.

These two auxiliary objectives are pretrained together with the original

MLM objective to exploit inherent language structures.

 BERTjoint for Natural Questions
BERTjoint is a BERT-based model for Natural Questions. The BERTjoint

model predicts short and long answers in a single model only instead of

a pipeline approach. In this model each document is split into multiple

instances of training with the help of overlapping token windows. This

approach is used to create a balanced training set and is being followed

by down sampling instances without an answer (null instances). The

[CLS] token is used during training to predict null instances, and spans at

inference time are ranked by the difference between the span score and

the [CLS] score.

The model uses the Natural Questions (NQ) dataset that is a question

answering dataset of 307,373 training examples, 7,830 development

examples, and 7,842 test examples. For every example, a query is entered

by the user over the Google search engine and the corresponding

Wikipedia page that contains an answer. The Wikipedia page is annotated

as an answer to the question.

The BERTjoint model was initialized from the original BERT model that

trained on the SQuAD 1.1 dataset. Afterward, this model was fine-tuned

on Natural Questions training instances. It has used the Adam optimizer

to minimize the loss. The BERTjoint model for Natural Questions gives

Chapter 4 Bert algorithms explained

95

dramatically better results than the baseline NQ systems. This variation of

BERT offers a new way to design a question-answering system.

 Conclusion
This chapter looked deeper into BERT, along with its two algorithms, MLM

and NSP. We also discussed a sample text classification model developed

using BERT. We also examined the behavior of BERT over different

benchmark datasets, along with multiple variations of BERT. In the next

chapter, we discuss the design of a question answering system using BERT.

Chapter 4 Bert algorithms explained

97© Navin Sabharwal, Amit Agrawal 2021
N. Sabharwal and A. Agrawal, Hands-on Question Answering Systems with BERT,
https://doi.org/10.1007/978-1-4842-6664-9_5

CHAPTER 5

BERT Model
Applications:
Question Answering
System
We are surrounded by massive amounts of information present in the

form of documents, images, blogs, websites, and more. In most cases, we

always look for a direct answer instead of reading the entirety of lengthy

documents. Question answering systems are generally being used for this

purpose. These systems scan through a corpus of documents and provide

you with the relevant answer or paragraph. It is part of the computer

science discipline in the field of information retrieval and NLP, which

focuses on building systems that automatically extract an answer to

questions posed by humans or machines in a natural language.

Two of the earliest question answering systems, BASEBALL and

LUNAR, have been popular because of their core database or information

system. BASEBALL was built for answers to American League baseball

https://doi.org/10.1007/978-1-4842-6664-9_5#DOI

98

questions over a one-year cycle. LUNAR was built to answer questions

related to geological analysis of lunar rocks based on data collected from

the Apollo moon mission. Such earlier systems concentrated on closed

domains where every query must be about the specific domain and the

answer text must be from a restricted vocabulary only.

Some of the advanced question answering systems of the modern

world are Apple Siri, Amazon Alexa, and Google Assistant. There are

various popular datasets available for question answering systems that

can be leveraged to check your model performance. These include the

following.

• SQuAD: The Stanford Question Answering Dataset

(SQuAD) is a reading comprehension dataset that we

covered in Chapter 4.

• NewsQA: This dataset has been created to help

the research community build algorithms that are

capable of answering questions requiring human-level

comprehension and reasoning skills. By using CNN

articles from the DeepMind Q&A dataset, authors

have prepared a crowd-sourced machine reading

comprehension dataset of 120,000 Q&A pairs.

• WikiQA: This publicly available dataset contains pairs

of questions and answers. It has been collected and

annotated for research on open-domain question

answering systems. In addition, the WikiQA dataset

also includes questions for which there are no correct

answers, enabling researchers to work on negative

cases as well to avoid selection of irrelevant answers.

Chapter 5 Bert Model appliCations: Question answering systeM

99

 Types of QA Systems
Question answering systems are broadly divided into two categories:

open-domain QA (ODQA) system and closed-domain QA (CDQA) system.

• Closed-domain: In closed-domain systems, questions

belong to a particular domain. They can answer the

questions from a single domain only. As an example, a

question answering system for the health care domain

cannot answer any IT-related questions. These systems

exploit domain-specific knowledge by using a model

that has been trained on a domain specific dataset. The

CDQA suite can be used to build such a closed-domain

QA system.

• Open-domain: In open-domain systems, questions

can be from any domain, such as health care, IT, sports,

and more. These systems are designed to answer

questions from any domain. These systems actually

mimic human intelligence to answer questions. One

example of such a system is the DeepPavlov ODQA

system, an ODQA developed by MIPT that uses a

large dataset of articles from Wikipedia as its source of

knowledge.

These systems can be further divided into factoid and non-factoid as

briefly covered in Chapter 4 and described here.

• Factoid question: A factoid question is about providing

concise facts. Answers to factoid questions are based

on proven facts. As an example, a learner might be

asked to look at a passage, then answer a series of

factual questions based on what he or she just read.

These types of questions usually start with who, what,

when, or where.

Chapter 5 Bert Model appliCations: Question answering systeM

100

 Here are some examples of factoid questions.

• Who is the president of the United States?

• Who is the prime minister of India?

• Who is the CEO of Google?

All of these questions can be answered from any

document or blog if text contains relevant data which is

sufficient to answer questions.

• Non-factoid question: A non-factoid question

expects detailed answers about any topic. As

an example, a user can ask questions related to

mathematical problems, how to run a vehicle, what

does temperature mean, and so on. Non-factoid

questions usually require multiple sentences as

answers, and these answers come from a particular

paragraph in a document. Thus, the context of a

sentence plays an important role to retrieve the

relevant answer.

Here are some examples of non-factoid questions.

• What is the process of installing Python on

Windows?

• How can I reset my Microsoft Outlook

password?

• What do you mean by temperature?

Answers to these questions will be a document,

a paragraph, or a definition from a paragraph.

Chapter 5 Bert Model appliCations: Question answering systeM

101

 Question Answering System Design
Using BERT
This section details how BERT can be used for implementation of a factoid

question answering system. For this book, we are using a pretrained model

that has been trained on the SQuAD version 1 dataset.

As an example, consider this question, along with the passage from a

Wikipedia article on the Football League.

Question: Where was the Football League founded?

Passage: In 1888, The Football League was founded

in England, becoming the first of many professional

football competitions. During the 20th century,

several of the various kinds of football grew to

become some of the most popular team sports in

the world.

The answer to this question will therefore be England.

Now, we look closer at how this question and passage will be

processed using BERT to find the relevant answer. This is all in the context

of a question answering system, compared to the text classification

approach in Chapter 4.

BERT extracts tokens from the question and passage and combines

them together as an input. As mentioned earlier, it starts with a [CLS]

token that indicates the start of a sentence and uses an [SEP] separator to

separate the question and passage. Along with the [SEP] token, BERT also

uses segment embeddings to differentiate between the question and the

passage that contains an answer. BERT creates two segment embeddings,

one for the question and other for the passage, to differentiate between

question and passage. Then these embeddings are added to a one-hot

representation of tokens to segregate between question and passage as

shown in Figure 5-1.

Chapter 5 Bert Model appliCations: Question answering systeM

102

Next, we pass our combined embedded representation of question and

passage as input in the BERT model. The last hidden layer of BERT will

then be changed and uses softmax to generate probability distributions for

the start and end index over an input text sentence that defines a substring,

which is an answer, as shown in Figure 5-2.

Figure 5-2. BERT architecture for question answering system

Figure 5-1. BERT input representation

Chapter 5 Bert Model appliCations: Question answering systeM

103

To this point, we have discussed how BERT will process input

questions and passages. Next, we will see an implementation of a question

answering system using BERT in Python.

Follow the steps given here to install the required prerequisites for a

BERT-based question answering system. Many of them are the same as

those for the examples in Chapter 4, but are included for completeness to

ensure you can run the examples in this chapter.

 1. Make sure Python is installed on your system.

Open a command prompt and run the following

command to determine if Python is installed, as

shown in Figure 5-3.

python

This will open your Python console at the command

prompt. If Python is not installed on your system,

download and install it as per your operating system

from https://www.python.org/downloads/.

 2. Next, install Jupyter Notebook, which we will use

to code. Open a command prompt and run the

following command.

pip install notebook

Figure 5-3. Python console

Chapter 5 Bert Model appliCations: Question answering systeM

https://www.python.org/downloads/

104

 3. Open a command prompt and run the following

command to run Jupyter Notebook.

jupyter notebook

The notebook will open in your default browser with

the host address as localhost and the port number

as 8888, along with a unique token ID. Now, you

can start writing code as mentioned in subsequent

steps, as shown in Figure 5-4.

 4. You can also use Google Colab Notebook for

the same purpose. It provides a fast and free

environment to run your Python code if your system

doesn’t have sufficient resources available. You can

also use the GPUs and TPUs for free but for a limited

time (12 hours) in Google Colab. You just need a

Google account to log in to Google Colab Notebook.

For this book, we will be using Google Colab

Notebook to demonstrate a question answering

Figure 5-4. Jupyter Notebook console

Chapter 5 Bert Model appliCations: Question answering systeM

105

system using BERT. Log in to your Google account

and click https://colab.research.google.com.

You will see the screen shown in Figure 5-5.

 5. To create a new Colab notebook, click New

Notebook in the bottom right corner as shown in

Figure 5-5.

 6. Install the transformers library from Huggingface.

Run the following command in your Jupyter

Notebook or Colab Notebook.

pip install transformers

Figure 5-5. Google Colab interface to create or import a notebook

Chapter 5 Bert Model appliCations: Question answering systeM

https://colab.research.google.com

106

 7. After successful installation of the transformers

library, you should be able to see the output shown

in Figure 5-6.

Next, we will proceed to implementation of a question answering

system using BERT. The included code snippets will provide a step-by-step

explanation for the question answering system.

 1. Import the BertQuestionAnswering and

BertTokenizer classes of the transformers library as

shown here.

from transformers import BertForQuestionAnswering

from transformers import BertTokenizer

import torch

 2. Next, load the BERT question answering model

fine-tuned on the SQuAD version 2 dataset. It will be

a large version of BERT, with 24 layers, 340 million

parameters, and an embedding size of 1,024. Along

with the BERT model, we have also downloaded a

trained model vocabulary set as shown here.

Figure 5-6. Installing transformers library

Chapter 5 Bert Model appliCations: Question answering systeM

107

Load pretrained model for Question

Answering

bert_model = BertForQuestionAnswering.from_

pretrained('bert-large-uncased-whole-word-

masking-finetuned-squad')

#Load Vocabulary

bert_tokenizer = BertTokenizer.from_

pretrained('bert-large-uncased-whole-word-

masking-finetuned-squad')

Note this will take a few minutes, depending on your internet
bandwidth, as the model size is approximately 1.34 gB.

 3. Next, it requires a question and candidate paragraph

context where an answer to the question would

exist. You can find a candidate paragraph using any

search engine or document indexer system such as

Apache Solr or Watson Discovery Service (WDS).

These systems will provide context paragraphs for

the question asked by the user.

 4. Then, the question, along with the context

paragraph, will be passed to the question answering

system, where first they will be tokenized based

on downloaded vocabulary. As mentioned earlier,

these will be concatenated together using a special

character [SEP] token in between as shown here

(reference text has been taken from a Wikipedia

article).

Chapter 5 Bert Model appliCations: Question answering systeM

108

question = "Where was the Football League

founded?”

reference_text = " In 1888, The Football League

was founded in England, becoming the first of

many professional football competitions. During

the 20th century, several of the various kinds

of football grew to become some of the most

popular team sports in the world."

#Perform tokenization on input text

input_ids = bert_tokenizer.encode(question,

reference_text)

input_tokens = bert_tokenizer.convert_ids_to_

tokens(input_ids)

 5. Next, we need to concatenate them using segment

embedding to differentiate between the question

and the context passage. Segment embedding for

the question will be added to the token vector of

the question and similarly for segment embedding

for the context passage. This should be done before

even using it as an input to the BERT model. These

additions are managed internally by the transformer

library, but we need to provide Boolean values (0 or 1)

to differentiate for each token as shown here.

#Find index of first occurrence of [SEP] token

sep_location = input_ids.index(bert_tokenizer.sep_

token_id)

first_seg_len, second_seg_len = sep_location+1,

len(input_ids)-(sep_location+1)

seg_embedding = [0]*first_seg_len + [1]*second_seg_len

Chapter 5 Bert Model appliCations: Question answering systeM

109

 6. Now we can pass our example to the model.

#Test model on our example

model_scores=bert_model(torch.tensor([input_ids]),

token_type_ids=torch.tensor([seg_embedding]))

ans_start_loc, ans_end_loc = torch.

argmax(model_scores[0]),

torch.argmax(model_scores[1])

result = ' '.join(input_tokens[ans_start_

loc:ans_end_loc+1])

result = result.replace(' ##','')

 7. The model will provide start and end index from

context passage as an answer such as start index

value as 11 and end index value as 18. The final

output will be extracted from context passage using

these indexes.

Here is the complete Python code that takes the question and

reference passage as an input and finds the answer to that question.

from transformers import BertForQuestionAnswering

from transformers import BertTokenizer

import torch

def get_answer_using_bert(question, reference_text):

 # Load pretrained model for Question Answering

 bert_model = BertForQuestionAnswering.from_

pretrained('bert-large-uncased-whole-word-masking-

finetuned-squad')

 #Load Vocabulary

 bert_tokenizer = BertTokenizer.from_pretrained('bert-large-

uncased-whole-word-masking-finetuned-squad')

Chapter 5 Bert Model appliCations: Question answering systeM

110

 #Perform tokenization on input text

 input_ids = bert_tokenizer.encode(question, reference_text)

 input_tokens = bert_tokenizer.convert_ids_to_tokens(input_

ids)

#Find index of first occurrence of [SEP] token

 sep_location = input_ids.index(bert_tokenizer.sep_token_id)

 first_seg_len, second_seg_len = sep_location+1, len(input_

ids)-(sep_location+1)

 seg_embedding = [0]*first_seg_len + [1]*second_seg_len

 #Test model on our example

 model_scores = bert_model(torch.tensor([input_ids]), token_

type_ids=torch.tensor([seg_embedding]))

 ans_start_loc, ans_end_loc = torch.argmax(model_scores[0]),

torch.argmax(model_scores[1])

 result = ' '.join(input_tokens[ans_start_loc:ans_end_

loc+1])

 result = result.replace(' ##','')

 return result

if __name__ == "__main__" :

question = "Where was the Football League founded?"

reference_text = " In 1888, The Football League was founded

in England, becoming the first of many professional football

competitions. During the 20th century, several of the various

kinds of football grew to become some of the most popular team

sports in the world."

print(get_answer_using_bert(question, reference_text))

After running this code in Colab Notebook, we get following output:

england

Chapter 5 Bert Model appliCations: Question answering systeM

111

Now, we have seen how a BERT-based question answering system can

be used for research purposes. Next, consider a scenario where you need

to deploy this feature to be consumed by some website or conversation

system to serve the end user who is looking for an answer to his or her

query. In this case, you need to release or expose features of the QA system

as a REST API. Now, follow below steps to release features of QA system as

REST API.

Let’s go through the steps to set up a REST API and public URL for

that API (use ngrok to generate a public URL if you are inside the private

network) for a question answering system on both Windows and Linux

Server.

 For Windows Server
Prerequisite: Python 3.6.x and Pip need to be installed on your system.

 Creation of REST API

1. Install Flask-RESTful
Flask-RESTful is an extension of the micro-framework Flask for

building REST APIs.

For installation, run the following command at the Windows

command prompt, as shown in Figure 5-7.

pip install flask-restful

Chapter 5 Bert Model appliCations: Question answering systeM

112

This command will install the package and all its dependencies.

2. Build the REST API
A RESTful API uses HTTP requests to GET and POST data.

First create a QuestionAnswering.py file that will have the question

answering code that you have downloaded from GitHub.

3. Deploy Flask REST API
Using Flask, deploy the REST API service and run the following

command at the Windows command prompt as shown in Figure 5-8.

python QuestionAnswering.py

Figure 5-7. Installation of Flask-RESTful

Figure 5-8. Service deployment

Chapter 5 Bert Model appliCations: Question answering systeM

113

4. Response from REST API
Now the service has been hosted at the URL http://127.0.0.1:5000/

getResponse. We want the features of the question answering system to be

publicly available. Therefore, we will use ngrok to generate a public URL

corresponding to the local URL that we configured earlier.

Let’s look at the steps to generate a public URL using ngrok.

 1. To configure ngrok, download it from https://

ngrok.com/download .

 2. The public URL is only available when the auth

token is downloaded from https://dashboard.

ngrok.com after signing up at https://ngrok.com/

signup.

 3. The auth token must be specified to ngrok so that

the client is tied to this account. ngrok saves the

auth token in ~/.ngrok2/ngrok.yml so that there is

no need to repeat the preceding steps.

 4. Unzip the downloaded ngrok folder and run the

ngrok.exe application.

 5. Copy the auth token from the user account

mentioned in the command and run this command

on the ngrok terminal prompt, as shown in Figure 5-9.

"ngrok authtoken <AUTHTOKEN>"

 6. After the previous step, authtoken gets saved to the

configuration file, as shown in Figure 5-10.

Figure 5-9. Token generation

Chapter 5 Bert Model appliCations: Question answering systeM

http://127.0.0.1:5000/getResponse
http://127.0.0.1:5000/getResponse
https://ngrok.com/download
https://ngrok.com/download
https://dashboard.ngrok.com
https://dashboard.ngrok.com
https://ngrok.com/signup
https://ngrok.com/signup

114

 7. ngrok is a command-line application, so type ngrok

http https://<IP>:<PORT> at this terminal prompt

to expose the HTTPS URL. Here the IP and port

settings correspond to the question answering API

host and port on which the API is hosted, as shown

in Figure 5-11.

 8. A new terminal will open after the execution

of the command that will show the public URL

https://44e2f215.ngrok.io corresponding to the

local server URL, as shown in Figure 5-12.

Now, you can use the URL highlighted in Figure 5-12. That is, <URL>/

getResponse Flask is good for a development environment, but not for

production. For a production environment, the API should be hosted on

Figure 5-10. ngrok configuration

Figure 5-11. Generate public URL

Figure 5-12. Public URL

Chapter 5 Bert Model appliCations: Question answering systeM

https://44e2f215.ngrok.io

115

Apache Server. Refer to the following URL to deploy a service on Apache

Server in Windows.

https://medium.com/@madumalt/flask-app-deployment-in-windows-

apache-server-mod-wsgi-82e1cfeeb2ed

 For Linux Server
Prerequisite: Python 3.6.x and Pip need to be installed on your system.

 Creation of REST API

1. Install Flask-RESTful
To install, run the following command on Linux Shell as shown in

Figure 5-13.

$ pip install flask-restful

This will install the package and its dependencies.

2. Build the REST API
Create an QuestionAnswering.py file that will have the question

answering system code that you downloaded from GitHub.

3. Deploy Flask REST API

Figure 5-13. Installation of flask-restful

Chapter 5 Bert Model appliCations: Question answering systeM

116

To deploy the REST API service using Flask, run the following

command on Linux Shell, as shown in Figure 5-14.

$ python QuestionAnswering.py

4. Response from REST API
Now the service has been hosted at the URL http://127.0.0.1:5000/

getResponse. Because we want features of the question answering

system to be publicly available, we use ngrok to generate a public URL

corresponding to the local URL that we have configured previously.

Let’s look at the steps to generate a public URL using ngrok.

 1. To expose a local HTTPS server, download ngrok for

Linux server from https://bin.equinox.io/c/

4VmDzA7iaHb/ngrok-stable-linux-amd64.zip.

 2. The public URL is only available when the auth

token is downloaded from https://dashboard.

ngrok.com after signing up at https://ngrok.com/

signup.

 3. The auth token must be specified to ngrok so that

the client is bound to this account. ngrok saves the

auth token in ~/.ngrok2/ngrok.yml so that there is

no need to repeat this step.

Figure 5-14. Service deployment

Chapter 5 Bert Model appliCations: Question answering systeM

http://127.0.0.1:5000/getResponse
http://127.0.0.1:5000/getResponse
https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
https://dashboard.ngrok.com
https://dashboard.ngrok.com
https://ngrok.com/signup
https://ngrok.com/signup

117

 4. To unzip the downloaded ngrok files, run the

following command on the terminal as shown in

Figure 5-15.

$ unzip /path/to/ngrok.zip

 5. Copy the auth token from the user account and add

in the command. Run this command at the ngrok

terminal prompt, as shown in Figure 5-16.

"ngrok authtoken <AUTHTOKEN>"

 6. After the previous step the auth token will be saved

to the configuration file.

 7. ngrok is a command-line application, so type ngrok

http https://<IP>:<PORT> at this terminal prompt

to expose the HTTPS URL. Here the IP and port

settings correspond to the question answering API

host and port on which the API is hosted, as shown

in Figure 5-17.

Figure 5-16. ngrok configuration

Figure 5-17. Generate public URL

Figure 5-15. Unzip ngrok

Chapter 5 Bert Model appliCations: Question answering systeM

118

 8. After the execution of the command, the

terminal will be displayed with the public URL

https://44e2f215.ngrok.io corresponding to the

local server URL as shown in Figure 5-18.

For more details, please refer to the ngrok documentation at https://

ngrok.com/docs.

Now, you can use the URL as highlighted in Figure 5-18. That is, <URL>/

getResponse Flask is good for a development environment but not for

production. For a production environment, the API should be hosted on

Apache Server. Refer to the following URL for guidance on deploying a

service on Apache Server in Linux.

https://www.codementor.io/abhishake/minimal-apache-

configuration-for-deploying-a-flask-app-ubuntu-18-04-phu50a7ft

Follow the steps given next to release features of a question answering

system as a REST API.

 1. Create a file named QuestionAnsweringAPI.py.

 2. Copy the following code and paste it in that file, then

save it.

from flask import Flask, request

import json

from QuestionAnsweringSystem.QuestionAnswer

import get_answer_using_bert

app=Flask(__name__)

Figure 5-18. Public URL

Chapter 5 Bert Model appliCations: Question answering systeM

https://44e2f215.ngrok.io
https://ngrok.com/docs
https://ngrok.com/docs
https://www.codementor.io/abhishake/minimal-apache-configuration-for-deploying-a-flask-app-ubuntu-18-04-phu50a7ft
https://www.codementor.io/abhishake/minimal-apache-configuration-for-deploying-a-flask-app-ubuntu-18-04-phu50a7ft

119

@app.route ("/questionAnswering", methods=['POST'])

def questionAnswering():

 try:

 json_data = request.get_json(force=True)

 query = json_data['query']

 context_list = json_data['context_list']

 result = []

 for val in context_list:

 context = val['context']

 context = context.replace("\n"," ")

 answer_json_final = dict()

 answer = get_answer_using_bert(context, query)

 answer_json_final['answer'] = answer

 answer_json_final['id'] = val['id']

 answer_json_final['question'] = query

 result.append(answer_json_final)

 result={'results':result}

 result = json.dumps(result)

 return result

 except Exception as e:

 return {"Error": str(e)}

if __name__ == "__main__" :

 app.run(port="5000")

 3. That code processes input passed to an API, calls

the function get_answer_using_bert, and sends a

response from this function as an API response.

 4. Open a command prompt and run the following

command.

Python QuestionAnsweringAPI.py

Chapter 5 Bert Model appliCations: Question answering systeM

120

This will start a service on http://127.0.0.1:5000/

as shown in Figure 5-19.

 5. Now to test the Rest API, we are going to use

Postman. This is a REST API client that is used to

test the API URL. We can test any complex HTTP/s

requests and can also read their responses. First,

go to https://www.postman.com/downloads/ to

download the Postman tool and install it on your

system.

 6. After the installation, test following URL and sample

request JSON that is being sent to the question

answering API end and response JSON that will be

received as a response from the API as shown in

Figure 5-20.

URL: http://127.0.0.1:5000/questionAnswering

Figure 5-19. Service deployment.

Chapter 5 Bert Model appliCations: Question answering systeM

http://127.0.0.1:5000/
https://www.postman.com/downloads/
http://127.0.0.1:5000/questionAnswering

121

Question answering system sample input request JSON:

{

 "query": "Where was the Football league

founded?",

 "context_list": [

 {

 "id": 1,

 "context": "In 1888, The Football

League was founded in England,

becoming the first of many

professional football competitions.

During the 20th century, several of

the various kinds of football grew

to become some of the most popular

team sports in the world"

 }

]

}

Question answering system sample output response
JSON:

{

 "results": [

 {

 "answer": "england",

 "id": 1,

 "question": "Where was the Football

leagure founded?"

 }

]

}

Chapter 5 Bert Model appliCations: Question answering systeM

122

The codebase for this exercise can be downloaded from GitHub at

https://github.com/bertbook/Python_code/tree/master/Chapter5/

QuestionAnsweringSystem.

 Open-Domain Question Answering System
An ODQA system aims to find an exact answer to any question from

Wikipedia articles. Thus, for a question, this system will provide a relevant

answer. The default implementation of an ODQA system processes a batch

of queries as an input and returns the answer.

 Model Architecture

The architecture of the DeepPavlov ODQA system consists of two

components: a ranker and a reader. To find an answer to any question,

the ranker first retrieves a list of relevant articles from the collection of

documents, and then the reader scans them to identify an answer.

The ranker component is based on the DrQA architecture proposed by

Facebook Research. Specifically, the DrQA approach uses unigram-bigram

hashing and a TF-IDF algorithm to efficiently return a subset of relevant

Figure 5-20. Calling question answering API

Chapter 5 Bert Model appliCations: Question answering systeM

https://github.com/bertbook/Python_code/tree/master/Chapter5/QuestionAnsweringSystem
https://github.com/bertbook/Python_code/tree/master/Chapter5/QuestionAnsweringSystem

123

articles based on a question. The reader component is based on R-NET

proposed by Microsoft Research Asia and implemented by Wenxuan Zhou.

The R-NET architecture is an end-to-end neural network model that aims

to answer questions based on a given document. R-NET first matches the

question and the document via gated attention-based recurrent networks

to obtain a question-aware document representation. Then, the self-

matching attention mechanism refines the representation by matching

the document against itself, which effectively encodes information from

the whole document. Finally, pointer networks locate the start and end

index of the answer in the article. Figure 5-21 shows the logical flow of a

DeepPavlov ODQA system.

To use this model for an ODQA system, we have used the deeppavlov

library in Python. Please note that an ODQA system uses a corpus of

Wikipedia articles or documents. Follow these steps to configure and use

an ODQA system.

Figure 5-21. The DeepPavlov-based ODQA system architecture

Chapter 5 Bert Model appliCations: Question answering systeM

124

 1. Create a new Jupyter notebook and run the

following command to install the deeppavlov

library, as shown in Figure 5-22.

pip install deeppavlov

 2. Run the following command to install all required

models, vocabulary, and so on, trained on the

Wikipedia corpus in the English language, as shown

in Figure 5-23.

! python -m deeppavlov install en_odqa_infer_wiki

Note please use the ‘!’ symbol before the installation command as
just shown if you are working with Colab notebook.

Figure 5-22. Installing deeppavlov library

Chapter 5 Bert Model appliCations: Question answering systeM

125

 3. Perform the necessary imports required for this

implementation as shown here.

from deeppavlov import configs

from deeppavlov.core.commands.infer import build_model

 4. Then we will get an ODQA model using the build_

model class of the deeppavlov library. It takes two

arguments:

• config file path: Define the name of the config file

that contains details of the relevant NLP model to

be used. For this case, we will use en_odqa_infer_

wiki. This name implies the ODQA model from

Wikipedia.

• download: This will be True if the model needs to be

downloaded and False otherwise.

odqa = build_model(configs.odqa.en_odqa_

infer_wiki, download = True)

Figure 5-23. Installing required packages for deeppavlov

Chapter 5 Bert Model appliCations: Question answering systeM

126

 5. Once the ODQA model has been loaded, you can

test this model by providing questions such as “Who

is Virat Kohli?” as shown here.

questions = ["Where did guinea pigs

originate?", "Who is virat kohli?"]

answers = odqa(questions)

The output of this code will be the answer to questions asked from

Wikipedia documents. Here is the complete code for the ODQA system.

from deeppavlov import configs

from deeppavlov.core.commands.infer import build_model

def odqa_deeppavlov(questions):

 odqa = build_model(configs.odqa.en_odqa_infer_wiki,

download = True)

 results = odqa(questions)

 return results

if __name__ == "__main__" :

 questions = ["Where did guinea pigs originate?", "Who is

virat kohli?"]

answers = odqa_deeppavlov(questions)

print(answers)

Here is the ouput:

['Andes of South America', 'Indian international cricketer who

currently captains the India national team']

Now, we have seen how an ODQA system can be used for research

or development purposes. Next, consider a scenario where you need

to deploy this feature to be consumed by some website or conversation

system to serve the end user who is looking for an answer to his or her

query. In this case, you need to release or expose features of the ODQA

Chapter 5 Bert Model appliCations: Question answering systeM

127

system as a REST API. Now, follow these steps to release features of the

question answering system as a REST API.

 1. Create a file named

OpenDomainQuestionAnsweringAPI.

 2. Copy the following code and paste it in that file, then

save it.

from flask import Flask, request

import json

from OpenDomainQuestionAnsweringSystem.OpenDomainQA

import odqa_deeppavlov

app=Flask(__name__)

@route ("/opendomainquestionAnswering",

methods=['POST'])

def opendomainquestionAnswering():

 try:

 json_data = request.get_json(force=True)

 questions = json_data['questions']

 answers_list = odqa_deeppavlov(questions)

 index = 0

 result = []

 for answer in answers_list:

 qa_dict = dict()

 qa_dict['answer']=answer

 qa_dict['question']=questions[index]

 index = index+1

 result.append(qa_dict)

 results = {'results':result}

 results = json.dumps(results)

 return results

Chapter 5 Bert Model appliCations: Question answering systeM

128

 except Exception as e:

 return {"Error": str(e)}

if __name__ == "__main__" :

 app.run(debug=True,port="5000")

 3. This code processes input passed to an API, calls a

function odqa_deeppavlov, and sends a response

from this function as an API response.

 4. Open a command prompt and run the following

command.

Python OpenDomainQuestionAnsweringAPI.py

This will start a service on http://127.0.0.1:5000/

as shown in Figure 5-24.

Figure 5-24. Service deployment

Chapter 5 Bert Model appliCations: Question answering systeM

http://127.0.0.1:5000/

129

 5. Now, to test this API, Postman can be used. Please

refer to the following URL and sample request JSON

that is being provided to the question answering

API and response JSON that will be received as a

response from API, as shown in Figure 5-25.

URL: http://127.0.0.1:5000/opendomain
questionAnswering

ODQA system sample input request JSON:

{

 "questions": [

 {

 "question": "Where did guinea pigs

originate?"

 },

{

 "question": "Who is virat kohli?"

 }

]

}

ODQA system sample output response JSON:

{

 "results": [

 {

 "answer": "Andes of South America",

 "question": "Where did guinea pigs

originate?"

 },

Chapter 5 Bert Model appliCations: Question answering systeM

http://127.0.0.1:5000/opendomainquestionAnswering
http://127.0.0.1:5000/opendomainquestionAnswering

130

 {

 "answer": "Indian international

cricketer who currently captains

the India national team",

 "question": "Who is virat kohli?"

 }

]

}

The codebase for this exercise can be downloaded from GitHub at

https://github.com/bertbook/Python_code/tree/master/Chapter5/

OpenDomainQuestionAnsweringSystem.

 DeepPavlov QA System
In the previous section, we discussed how an ODQA system that has

been trained on Wikipedia documents can be used to answer factoid

and non-factoid questions. Next, we look at how DeepPavlov can be

Figure 5-25. Calling the ODQA system API

Chapter 5 Bert Model appliCations: Question answering systeM

https://github.com/bertbook/Python_code/tree/master/Chapter5/OpenDomainQuestionAnsweringSystem
https://github.com/bertbook/Python_code/tree/master/Chapter5/OpenDomainQuestionAnsweringSystem

131

used for an implementation of a contextual-based question answering

system where an answer to the question exists in context. As an example,

consider the following context and question from a Wikipedia article.

Context: In 1888, The Football League was founded in England,

becoming the first of many professional football competitions. During the

20th century, several of the various kinds of football grew to become some

of the most popular team sports in the world.

Question: In which year was the Football League founded?

Answer: 1888

Please follow these steps to implement a contextual-based question

answering system.

 1. Create a new Jupyter notebook and run the

following command to install the deeppavlov

library.

pip install deeppavlov

 2. Run the following command to install all required

models, vocabulary, and so on.

! python -m deeppavlov install squad_bert

Note please use the ‘!’ symbol before the installation command as
just shown if you are working with Colab notebook.

 3. Import the required packages as shown here.

from deeppavlov import configs, build_model

Chapter 5 Bert Model appliCations: Question answering systeM

132

 4. Then we will get the BERT model using the build_

model class of the deeppavlov library. It takes two

arguments:

• config file path: Define the name of the config file

that contains details of the relevant NLP model to

be used. For this case, we will use squad_bert. This

configuration contains all details for the specific

BERT model that has been trained over the SQuAD

dataset.

• download: This is True if the model needs to be

downloaded and False otherwise.

odqa = build_model(configs.squad.squad_bert,

download = True)

 5. Once the BERT model has been loaded, you can test

it by providing a question along with the context to

extract an answer, as shown here.

context = " In 1888, The Football League was

founded in England, becoming the first of many

professional football competitions. During the

20th century, several of the various kinds of

football grew to become some of the most popular

team sports in the world."

question = "In which year the Football league was

founded?"

answers = qa_ deeppavlov (context, question)

 6. The output of this code snippet will be the answer

extracted from the context for the question asked.

Chapter 5 Bert Model appliCations: Question answering systeM

133

Here is the complete Python code that shows an implementation of a

contextual CDQA system.

from deeppavlov import build_model, configs

def qa_deeppavlov(question, context):

 model = build_model(configs.squad.squad_bert,

download=True)

 result = model([context], [question])

 return result [0]

if __name__=="__main__":

context = "In 1888, The Football League was founded in England,

becoming the first of many professional football competitions.

During the 20th century, several of the various kinds of

football grew to become some of the most popular team sports in

the world."

question = "In which year the Football league was founded?"

answers = qa_deeppavlov (context, question)

 print(answers)

Here is the output:

1888

Now, we have seen how a contextual-based question answering system

(another variation of BERT) can be used for research or development

purposes. Next, consider a scenario where you need to deploy this feature

to be consumed by some website or conversation system to serve the end

user who is looking for an answer to his or her query. In this case, you need

to release or expose features of the ODQA system as a REST API. Follow the

steps given here to release features of the question answering system as a

REST API.

Chapter 5 Bert Model appliCations: Question answering systeM

134

 1. Create a file named DeepPavlovQASystemAPI.

 2. Copy the following code and paste in that file, then

save it.

from flask import Flask, request

from DeeppavlovQASystem.QA_Deepplavlov import qa_

deeppavlov

import json

app=Flask(__name__)

@app.route ("/qaDeepPavlov", methods=['POST'])

def qaDeepPavlov():

 try:

 json_data = request.get_json(force=True)

 query = json_data['query']

 context_list = json_data['context_list']

 result = []

 for val in context_list:

 context = val['context']

 context = context.replace("\n"," ")

 answer_json_final = dict()

 answer = qa_deeppavlov(context, query)

 answer_json_final['answer'] = answer

 answer_json_final['id'] = val['id']

 answer_json_final['question'] = query

 result.append(answer_json_final)

 result = json.dumps(result)

 return result

 except Exception as e:

 return {"Error": str(e)}

Chapter 5 Bert Model appliCations: Question answering systeM

135

 3. This code processes input passed to an API, calls a

function qa_deeppavlov, and sends a response from

this function as an API response.

 4. Open a command prompt and run the following

command.

Python DeepPavlovQASystemAPI.py

This will start a service on http://127.0.0.1:5000/ as

shown in Figure 5-26.

 5. Now, to test this API, Postman can be used. Please

refer to the following URL and sample request JSON

that is being provided to the DeepPavlov QA API

end and response JSON that will be received as a

response from the API as shown in Figure 5-27.

Figure 5-26. Service deployment

Chapter 5 Bert Model appliCations: Question answering systeM

http://127.0.0.1:5000/

136

URL: http://127.0.0.1:5000/qaDeepPavlov
DeepPavlov QA system sample input request JSON:

{

 "query": "In which year the Football league

was founded?",

 "context_list": [

 {

 "id": 1,

 "context": "In 1888, The Football

League was founded in England, becoming

the first of many professional football

competitions. During the 20th century,

several of the various kinds of

football grew to become some of the

most popular team sports in the world"

 }

]

}

DeepPavlov QA system sample output response
JSON:

{

 "results": [

 {

 "answer": "1888",

 "id": 1,

 "question": "In which year the

Football league was founded?"

 }

]

}

Chapter 5 Bert Model appliCations: Question answering systeM

http://127.0.0.1:5000/qaDeepPavlov

137

The codebase for this exercise can be downloaded from GitHub at

https://github.com/bertbook/Python_code/tree/master/Chapter5/

DeeppavlovQASystem.

 Conclusion
This chapter covered the question answering system, which is one of the

important applications of the BERT model. We learned about types of

question answering Systems like CDQA and ODQA. We built a question

answering system using BERT and deployed it as an API for use by a third-

party system. In the next chapter, we look at how BERT is used in other

NLP tasks.

Figure 5-27. Calling DeepPavlov QA system API

Chapter 5 Bert Model appliCations: Question answering systeM

https://github.com/bertbook/Python_code/tree/master/Chapter5/DeeppavlovQASystem
https://github.com/bertbook/Python_code/tree/master/Chapter5/DeeppavlovQASystem

139© Navin Sabharwal, Amit Agrawal 2021
N. Sabharwal and A. Agrawal, Hands-on Question Answering Systems with BERT,
https://doi.org/10.1007/978-1-4842-6664-9_6

CHAPTER 6

BERT Model
Applications:
Other Tasks
In the last chapter, we learned about BERT and its usage in the design of a

question answering system. This chapter discusses how BERT can be used

for implementation of other NLP tasks such as text classification, named

entity recognition, language translation, and more.

BERT has performed well in many benchmark datasets for various

NLP tasks such as SQuAD (question answering dataset), Natural Questions

(question answering dataset for factoid and non-factoid questions), the

IMDB movie review dataset (classification data), and so on. Now, we will

see how a BERT-based model trained on these benchmarked datasets can

be used as pretrained model for the following NLP tasks.

• Sentiment analysis

• Named entity recognition

• Text classification

• Text summarization

We introduce these topics and then take a looked at their

implementation.

https://doi.org/10.1007/978-1-4842-6664-9_6#DOI

140

 Sentiment Analysis
Sentiment analysis is a subfield of NLP that identifies opinions or

sentiments of given text across blogs, reviews, news, and so on. It can

inform businesses about acceptance of their products and consumer

sentiments toward the same. It is also useful to identify hate speech and

other issues over social media to identify the population’s mood toward

a given topic of discussion. Sentiment analysis can even help companies

plan product releases on the basis of consumer opinion about particular

topics in particular demographic regions.

For this book, we have used a sentiment analysis model that has

been trained using BERT, which uses a dataset in .csv format where each

data point is pair of sentences and its opinion (i.e., not insult, insult). For

inference, the system processes a user’s query and provides a sentiment

for the same.

Please follow these steps to implement a sentiment analysis system.

 1. Create a new Jupyter notebook as covered

previously and run the following command to

install the deeppavlov library (if you didn’t do so in

Chapter 5).

! pip install deeppavlov

Once it is installed, you will see the output shown in Figure 6-1.

Chapter 6 Bert Model appliCations: other tasks

141

 2. Because we are going to use sentiment analysis

we we will use a model that has been trained on

sentiment data. Run the following command to

download a trained model, insults_kaggle_bert.

! python -m deeppavlov install insults_kaggle_bert

Note please use the ‘!’ symbol before the installation command as
just shown if you are working with Colab notebook.

Once it is installed, you will see the output shown in Figure 6-2.

Figure 6-1. Installation of deeppavlov

Chapter 6 Bert Model appliCations: other tasks

142

 3. Perform the necessary imports as required for this

implementation using this command.

from deeppavlov import build_model, configs

 4. Then we will get a sentiment analysis model using

the build_model class of the deeppavlov library. It

takes two arguments:

• config file path: Define the name of the config file

that contains details of the relevant NLP model to

be used. For this case, we will use insults_kaggle_

bert. This contains the configuration required to

use the sentiment model.

• download: This is True if the model needs to be

downloaded, and False otherwise. Because we

are doing this for the first time, the value of this

argument will be True.

sentiment_model = build_model(configs.classifiers.

insults_kaggle_bert, download=True)

Figure 6-2. Installation of packages

Chapter 6 Bert Model appliCations: other tasks

143

 5. Once the sentiment model has been loaded, you

can test this model by asking questions such as

“You are so dumb!,” “This movie is good,” and so on,

and passing these questions as an argument to the

sentiment_model function shown here.

test_input = ['This movie is good', 'You are so dumb!']

results = sentiment_model(test_ input)

The output of this code segment will be Not Insult or Insult

depending on the question asked. Here is the complete end-to-end

codebase to use sentiment analysis.

from deeppavlov import build_model, configs

def build_sentiment_model ():

 model = build_model(configs.classifiers.insults_kaggle_

bert, download=True)

 return model

test_input = ['This movie is good', 'You are so dumb!']

if __name__ == "__main__" :

 sentiment_model = build_sentiment_model()

 results = sentiment_model(test_ input)

 print(results)

This is the output:

['Not Insult', 'Insult']

Now that we have seen how a sentiment analysis system based on

BERT can be leveraged for research purposes, let’s consider a scenario

where you need to enable sentiment analysis in a conversation system

such that it can identify sentiments of a user based on a query or a

response given by user. This would help the conversation system to

Chapter 6 Bert Model appliCations: other tasks

144

respond on the basis of the sentiments of a user. Follow the steps given

here to release features of sentiment analysis system as a REST API.

 1. Create a file named SentimentAnalysisAPI.py.

 2. Copy the code shown here and paste it in this file,

then save it.

from flask import Flask, request

import json

from SentimentAnalysis.SentimentAnalysis

import build_sentiment_model

app=Flask(__name__)

@app.route ("/sentimentAnalysis",

methods=['POST'])

def sentimentAnalysis():

 try:

 json_data = request.get_json(force=True)

 questions = json_data['questions']

 sentiment_model = build_sentiment_

model()

 questions_list =[]

 for ques in questions:

 questions_list.append(ques)

 model_output = sentiment_model

(questions_list)

 index = 0

 result = []

 for ans in model_output:

 sentiment_qa =dict()

 sentiment_qa['qustion'] =

questions_list[index]

Chapter 6 Bert Model appliCations: other tasks

145

 sentiment_qa['answer'] = ans

 result.append(sentiment_qa)

 result={'results':result}

 result = json.dumps(result)

 return result

except Exception as e:

 return {"Error": str(e)}

if __name__ == "__main__" :

 app.run(port="5000")

 3. This code processes input passed to an API, calls

the build_sentiment_model function, and sends a

response from this function as an API response.

 4. Open a command prompt and run the following

command.

Python SentimentAnalysisAPI.py

This will start a service on http://127.0.0.1:5000/

as shown in Figure 6-3.

Figure 6-3. Service deployment

Chapter 6 Bert Model appliCations: other tasks

http://127.0.0.1:5000/

146

 5. Now, to test the Rest API, Postman can be used.

Please refer to the URL and sample request JSON

that is being provided to the sentiment analysis

API and response JSON that will be received as a

response from the API as shown in Figure 6-4.

URL: http://127.0.0.1:5000/sentimentAnalysis

Sentiment analysis system sample input request
JSON:

{

 "questions": [

 {

 "question": "This movie is good."

 },

 {

 "question": "You are so dumb!"

 }

]

}

Sentiment analysis system sample output response
JSON:

{

 "results": [

 {

 " question": "This movie is good.",

 "answer": "Not Insult"

 },

Chapter 6 Bert Model appliCations: other tasks

http://127.0.0.1:5000/sentimentAnalysis

147

 {

 " question": "You are so dumb!",

 "answer": "Insult"

 }

]

}

The codebase for this exercise can be downloaded from GitHub at

https://github.com/bertbook/Python_code/tree/master/Chapter6/

SentimentAnalysis.

 Named Entity Recognition
Named entity recognition is a subfield of information extraction where it

aims to extract nouns or noun phrases from text data and classify them

into categories as such as person, place, time, organization, and so on.

Figure 6-4. Calling sentiment analysis system API

Chapter 6 Bert Model appliCations: other tasks

https://github.com/bertbook/Python_code/tree/master/Chapter6/SentimentAnalysis
https://github.com/bertbook/Python_code/tree/master/Chapter6/SentimentAnalysis

148

This is mainly useful for conversion of unstructured text to structured text.

Entity recognition plays a major role in the following systems.

• Search engine: This is used to identify relevant

documents for a query asked by the user. For an

example, let’s use “What is Microsoft Outlook?” In

this query, “Microsoft Outlook” is an entity of type

application. The search engine will thus give more

importance to a document where Microsoft Outlook is

being identified as an entity.

• Conversation system: Entity plays a major role in the

design of a conversation system. Entities are being used

in conversation systems to disambiguate a question

asked by the user if it is related to common issues

but for different entities. As an example, a user has

entered the query “I am facing an issue in Outlook.”

The conversation system has two solutions: one for

Outlook and the other for Gmail. Because Outlook and

Gmail both are different entities, so are the solutions.

Therefore, after identification of intent (i.e., Issue), the

next identification will be entity (i.e., Outlook) and the

conversation system provides a solution accordingly.

There exist many annotated datasets for entity recognition. For this

book, though, we will demonstrate an entity model that has been trained

on the OntoNotes dataset using BERT as a baseline. This dataset is a

collection of 1,745,000 English, 900,000 Chinese, and 300,000 Arabic text

data collected from a range of sources such as telephone conversations,

newswire, broadcast news, broadcast conversation, and blogs.

In this dataset, entities have been annotated with 18 categories such

as organization, art work, numbers in word, numbers, quantity, person,

location, geopolitical entity, time, date, facility, event, law, nationalities or

Chapter 6 Bert Model appliCations: other tasks

149

religious or political groups, language, currency, percentage, and product,

among others.

In this section, we explore how a named entity recognition system that

has been trained on an OntoNotes dataset using BERT can be used. Please

follow these steps to implement a named entity recognition system.

 1. Create a new Jupyter notebook, as mentioned

previously, and run the following command to

install the deeppavlov library.

! pip install deeppavlov

Once installed, you will see output that looks like

Figure 6-5.

 2. We are going to use an entity recognition system that has

been trained on OntoNotes data as shown in Figure 6-6.

Hence, run the following command to download the

trained model, ner_ontonotes_bert_mult.

! python -m deeppavlov install ner_ontonotes_

bert_mult

Figure 6-5. Installation of deeppavlov

Chapter 6 Bert Model appliCations: other tasks

150

Note please use the ‘!’ symbol before the installation command as
just shown if you are working with Colab notebook.

 3. Perform the necessary imports as required for this

implementation using this command.

from deeppavlov import build_model, configs

 4. We will then get an entity model using the build_

model class of the deeppavlov library. It takes two

arguments:

• config file path: Define the name of the config

file that contains the details of the relevant NLP

model to be used. For this case, we will use

ner_ontonotes_bert_mult. This file contains all

configurations required for the entity model trained

on OntoNotes.

Figure 6-6. Installation of packages

Chapter 6 Bert Model appliCations: other tasks

151

• download: This is True if the model needs to be

downloaded and False otherwise. Because we

are doing this for the first time, the value of this

argument will be True.

ner_model = build_model(configs. ner.ner_

ontonotes_bert_mult, download=True)

 5. Once the entity recognition model has been loaded,

you can test this model by providing text such as

“Amazon rainforests are located in South America.”

and passing it as an argument to the function

named ner_model as shown here.

test_input = ["Amazon rainforests are located

in South America."]

results = ner_model(test_ input)

The output of these code snippets contains words

along with their tagged entities, as shown in

Figure 6-7.

Figure 6-7. Named entity recognition system result

Chapter 6 Bert Model appliCations: other tasks

152

Here is the complete Python code for this implementation.

from deeppavlov import build_model, configs

import pandas as pd

def build_ner_model ():

 model = build_model(configs. ner.ner_ontonotes_bert_mult,

download=True)

 return model

if __name__=="__main__":

 test_input = ["Amazon rainforests are located in South

America."]

 ner_model = build_ner_model()

 results = ner_model(test_ input)

 results = pd.DataFrame(zip(results[0][0],results[1][0]),

columns=['Word','Entity'])

 print(results)

The output is the recognized entities as shown in Figure 6-8.

Figure 6-8. Named entity recognition system result

Chapter 6 Bert Model appliCations: other tasks

153

Now that we have seen how an entity recognition system based on

BERT can be used for research purposes, we next consider a scenario

where we need to deploy this feature to be consumed by a conversation

system. A conversation system generally uses entities to configure or

develop use cases. As an example, for use case “Facing an issue with

Outlook,” this system can be used to identify “Outlook” as an entity. In this

case, you need to release or expose the features of the entity recognition

system as a REST API using the following steps.

 1. Create a file with named NamedEntityAPI.

 2. Copy the following code and paste in that file, then

save it.

from flask import Flask, request

import json

from NamedEntityRecognition.

NamedEntityRecognition import build_ner_model

app=Flask(__name__)

@app.route ("/namedEntity",

methods=['POST'])

def namedEntity():

 try:

 json_data = request.get_json(force=True)

 query = json_data['query']

 ner_model = build_ner_model()

 model_output = ner_model([query])

 words= model_output[0][0]

 tags = model_output[1][0]

 result_json = dict()

 result_json['query'] = query

Chapter 6 Bert Model appliCations: other tasks

154

 entities = []

 index = 0

 for word in words:

 word_tag_dict=dict()

 word_tag_dict['word'] = word

 word_tag_dict['tag'] = tags[index]

 index = index+1

 entities.append(word_tag_dict)

 result_json['entities'] = entities

 result = json.dumps(result_json)

 return result

except Exception as e:

 return {"Error": str(e)}

if __name__ == "__main__" :

 app.run(port="5000")

 3. This code processes the input passed to an API,

calls the build_ner_model function, and sends a

response from this function as an API response.

 4. Open a command prompt and run the following

command.

Python NamedEntiityAPI.py

This will start a service on http://127.0.0.1:5000/ as

shown in Figure 6-9.

Chapter 6 Bert Model appliCations: other tasks

http://127.0.0.1:5000/

155

 5. Now, to test this API, Postman can be used as

explained in Chapter 5. Please refer to the following

URL and sample request JSON that is being

provided to the named entity recogntion system

API and response JSON that will be received as a

response from the API as shown in Figure 6-10.

URL: http://127.0.0.1:5000/namedEntity
Named entity recognition system sample input
request JSON:

{

 "query": "Amazon rainforests are located in South

America."

}

Figure 6-9. Service deployment

Chapter 6 Bert Model appliCations: other tasks

http://127.0.0.1:5000/namedEntity

156

Named entity recognition system sample output
response JSON:

{

 "query": "Amazon rainforests are located in South

America.",

 "entities": [

 {

 "word": "Amazon",

 "tag": "B-LOC"

 },

 {

 "word": "South",

 "tag": "B-LOC "

 },

{

 "word": "America",

 "tag": "I-LOC "

 }

]

}

Chapter 6 Bert Model appliCations: other tasks

157

The codebase for this exercise can be downloaded from GitHub at

 https://github.com/bertbook/Python_code/tree/master/Chapter6/

NamedEntityRecognition.

 Text Classification
Text classification can be defined as the problem of assigning or

categorizing text into a particular category or class. Document

classification or categorization, intent classification, spam blog detection,

and more falls under text classification. Here, text can be anything such

as a sentence, a document, blogs, and so on. Text classification leverages

NLP methods for preprocessing such as tokenization, stop-word removal,

phrase extraction, entity extraction, and so on.

During inference, text classification analyzes the text (document,

blog, or sentence) and assigns it to pretrained categories. As an example,

if document is referring to politics, then this belongs to the category of

Figure 6-10. Calling named entity recognition system API

Chapter 6 Bert Model appliCations: other tasks

https://github.com/bertbook/Python_code/tree/master/Chapter6/NamedEntityRecognition
https://github.com/bertbook/Python_code/tree/master/Chapter6/NamedEntityRecognition

158

politics. In some cases, a document may belong to multiple categories

(known as multilabel classification). As an example, if document is

talking about politics as well as sports, then it will be classified into both

categories; that is, politics and sports.

This section shows how a text categorization system trained on

newsgroup datasets using BERT can be used. Here, we are going to

classify news articles into their respective categories. This dataset has four

categories for news articles:

• alt.atheism

• soc.religion.christian

• comp.graphics

• sci.med

We will use ktrain and tensorflow_gpu for this implementation. Please

note that this implementation requires the GPU version of TensorFlow

to be installed on the system. Therefore, please ensure you have a GPU-

enabled system.

 1. Create a new Jupyter notebook as mentioned

previously and run the following command to install

tensorflow_gpu and the ktrain library.

! pip3 install -q tensorflow_gpu==2.1.0

!pip3 install -q ktrain

After successful installation of the package, it shows an

output as displayed in Figure 6-11.

Chapter 6 Bert Model appliCations: other tasks

159

 2. Import the packages required for this implementation,

such as the fetch_20newsgroup dataset from sklearn

and the ktrain library as shown here.

from sklearn.datasets import fetch_20newsgroups

import ktrain

 3. Next download and retrieve the fetch_20newsgroup

dataset for only four categories: alt.atheism, soc.

religion.christian, comp.graphics, and sci.med.

Divide them into a training and test set with

shuffling enabled, as shown here.

classes = ['alt.atheism', 'soc.religion.

christian','comp.graphics', 'sci.med']

train_data = fetch_20newsgroups(subset='train',

categories=classes, shuffle=True, random_state=42)

test_data = fetch_20newsgroups(subset='test',

categories=classes, shuffle=True, random_state=42)

Figure 6-11. Installation of TensorFlow

Chapter 6 Bert Model appliCations: other tasks

160

 4. Create an instance of the transformer model using

the Transformer class of the ktrain.text library. It

requires values of some of the parameters to be

defined as shown here.

• Model name: This indicates the name of the

BERT model to be used. In this case, we have used

distillBERT instead of BERT base.

• Length of article: This sets the maximum length of

an article. Here, maximum length can only be 512.

If you specific any article of a length greater than

512, it will automatically be truncated.

• Classes: This is a list of classes that needs to be

considered for training.

 5. The next step is to preprocess training and test

data to generate their embedded representation

of articles using distillBERT. Pass these data and

the model to the get_learner function of ktrain

to get an instance of the classification model with

all configuration parameters, such as batch_size,

instance of a model, training data, and test data.

MODEL_NAME = 'distilbert-base-uncased'

trans = text.Transformer(MODEL_NAME,

maxlen=500, classes=train_classes)

train_preprocess = trans.preprocess_

train(train_features, train_labels)

val_preprocess = trans.preprocess_test(test_

features, test_labels)

model_data = trans.get_classifier()

Chapter 6 Bert Model appliCations: other tasks

161

classification_model = ktrain.get_

learner(model_data, train_data=train_

preprocess, val_data=val_preprocess, batch_

size=6)

classification_model.fit_onecycle(5e-5, 4)

 6. Once the classification model has been trained, then

this model can be tested on unseen data, as shown

here.

predictor = ktrain.get_

predictor(classification_model.model,

preproc=trans)

input_text = 'Babies with down syndrome have an

extra chromosome.'

results = predictor.predict(input_text)

Here is the complete Python code to implement text classification.

from sklearn.datasets import fetch_20newsgroups

import ktrain

from ktrain import text

def preprocess_dataset():

 classes = ['alt.atheism', 'soc.religion.christian',

'comp.graphics', 'sci.med']

 train_data = fetch_20newsgroups(subset='train',

categories=classess, shuffle=True, random_state=42)

 test_data = fetch_20newsgroups(subset='test',

categories=classes, shuffle=True, random_state=42)

 return train_data.data,train_data.target, test_data.

data,test_data.target,classes

Chapter 6 Bert Model appliCations: other tasks

162

def create_text_classification_model():

 MODEL_NAME = 'distilbert-base-uncased'

 train_features, train_labels, test_features, test_labels,

train_classes =preprocess_dataset()

 trans = text.Transformer(MODEL_NAME, maxlen=500,

classes=train_classes)

 train_preprocess = trans.preprocess_train(train_features,

train_labels)

 val_preprocess = trans.preprocess_test(test_features,

test_labels)

 model_data = trans.get_classifier()

 classification_model = ktrain.get_learner(model_data,

train_data=train_preprocess, val_data=val_preprocess,

batch_size=6)

 classification_model.fit_onecycle(5e-5, 4)

 return classification_model, trans

def predict_category(classification_model, trans, input_text):

 predictor = ktrain.get_predictor(classification_model.

model, preproc=trans)

 results = predictor.predict(input_text)

 return results

if __name__ == "__main__" :

 classification_model, trans = create_text_

classification_model()

 input_text = 'Babies with down syndrome have an extra

chromosome.'

 print(predict_category(classification_model, trans,

input_text))

Chapter 6 Bert Model appliCations: other tasks

163

As you can see from the following output, for a text “Babies with down

syndrome have an extra chromosome.” The category is sci.med.

sci.med

Now, we have seen how a text classification system based on BERT

can be used for research purposes. Next, consider a scenario where you

need to deploy this feature to be consumed by a conversation system.

A conversation system can leverage this as intent classification or a

recognition system to configure or develop use cases. As an example, for a

use case “Facing an issue with Outlook,” this system can be used to identify

an intent as “Issue.” In this case, you need to release or expose features of

the intent classification system as a REST API by following these steps.

 1. Create a file named TextClassificationAPI.

 2. Copy the following code and paste it in that file, then

save it.

from flask import Flask, request

import json

from TextClassification.TextClassification

import create_text_classification_model,

predict_category

from TextClassification import create_text_

classification_model

app=Flask(__name__)

result={}

@app.route ("/textClassification",

methods=['POST'])

def textClassification ():

 try:

 json_data = request.get_json(force=True)

Chapter 6 Bert Model appliCations: other tasks

164

 input_text = json_data['query']

 classification_model, trans =

create_text_classification_model()

 category = predict_category

(classification_model, trans,

input_text)

 result = {}

 result['query'] = input_text

 result['category'] = category

 result = json.dumps(result)

 return result

 except Exception as e:

 error = {"Error": str(e)}

 error = json.dumps(error)

 return error

if __name__ == "__main__" :

 app.run(port="5000")

 3. This code processes the input passed to an API, calls

the create_text_classification_model function,

and sends a response from this function as an API

response.

 4. Open a command prompt and run the following

command.

Python TextClassificationAPI.py

This will start a service on http://127.0.0.1:5000/ as

shown in Figure 6-12.

Chapter 6 Bert Model appliCations: other tasks

http://127.0.0.1:5000/

165

 5. Now, to test the Rest API, Postman can be used, as

mentioned in Chapter 5. Please refer the following

URL and sample request JSON that is being

provided to the text classification API and response

JSON that will be received as a response from the

API, as shown in Figure 6-13.

URL: http://127.0.0.1:5000/textClassification
Text classification system sample input request JSON:

{

 "query": "Babies with down syndrome have an extra

chromosome."

}

Text classification system sample output response JSON:

{

 "query": "Babies with down syndrome have an extra

chromosome.",

 "category": "sci.med"

}

Figure 6-12. Service deployment

Chapter 6 Bert Model appliCations: other tasks

http://127.0.0.1:5000/textClassification

166

The codebase for this exercise can be downloaded from GitHub at

https://github.com/bertbook/Python_code/tree/master/Chapter6/

TextClassification.

 Text Summarization
Text summarization is a process that uses NLP and NLU to generate or

extract a summary out of a document while preserving the actual meaning

of the document. In other words, the summary should be very similar to

what the document says. This function has been quite popular in search

engine systems, where a document presented to a user also includes a

summary of the document instead of the entire document text. Document

summarization can be single or multidocument summarization. Text

summarization problems can be classified into two types:

• Extractive summarization: In extractive

summarization, sentences in the generated summary

will be only from the document itself. There won’t be

any modification to sentences in the summary. This

Figure 6-13. Calling text classification system API

Chapter 6 Bert Model appliCations: other tasks

https://github.com/bertbook/Python_code/tree/master/Chapter6/TextClassification
https://github.com/bertbook/Python_code/tree/master/Chapter6/TextClassification

167

can also be defined as rearrangement of sentences on

the basis of their relevance to document topics. Several

approaches such as TF-IDF, cosine similarity, graph-

based approaches, entity extraction, tokenization, and

so on have been used to actively develop document

summarization systems.

• Abstractive summarization: In abstractive

summarization, sentences in the generated summary

won’t be actual sentences from the document itself.

These sentences will be modified based on language

semantics used in the document. Various neural

network–based approaches such as LSTM, GRU, and so

on have been used to implement this.

In this section, we discuss how BERT is being used to generate a

summary of a document. BERT proposes a new architecture known as

BERTSUM that generates a summary from a document. As usual, BERT is

used to generate embedding of multiple sentences where the token [CLS]

is inserted before the start of the first sentence followed by other sentences

that have been separated by the token [SEP]. Next, segment and positional

embedding have been appended to segregate between sentences. Then

these sentence vectors pass through the summarization layer to select

representative sentences for the summary. In the summarization layer,

any neural network can construct the summary. Figure 6-14 shows the

document summarization model architecture.

Chapter 6 Bert Model appliCations: other tasks

168

Now, let’s look at how a BERT-based extractive document

summarization model can be leveraged. We use bert-extractive-

summarizer, one of the implementations of extractive document

summarization in Python to demonstrate the same.

 1. Create a new Jupyter notebook as mentioned

previously and run the following command to install

bert-extractive-summarizer.

! pip3 install bert-extractive-summarizer

After successful installation of the package, the output

shown in Figure 6-15 is displayed.

Figure 6-14. Architecture of a BERTSUM model

Chapter 6 Bert Model appliCations: other tasks

169

 2. Import the necessary packages required for this

implementation, such as summarizer from the

Summarizer library, using this command.

from summarizer import Summarizer

 3. This library implements HuggingFace Pytorch

transformers to run an extractive summarization. It

works by generating embedding of sentences and

then uses clustering algorithms such as a density-

based algorithm, among others, to cluster sentences

that are closest to centroids and form a highly dense

region. Sentences from the highest density region

will be taken to form the summary. Next, create an

instance of Summarizer as shown here.

text_summarization_model = Summarizer()

Figure 6-15. Installation of packages

Chapter 6 Bert Model appliCations: other tasks

170

 4. Pass the document content as an argument to the

Summarizer instance just created, as shown here.

return text_summarization_model(<Document Content>)

This will return a summary of document. Here is the complete Python

code to perform document summarization using BERT.

from summarizer import Summarizer

def text_summary(text):

 model=Summarizer()

 return model(text)

if __ name__=='__main__':

 text = "Machine learning (ML) is the study of computer

algorithms that improve automatically through

experience. It is seen as a subset of artificial

intelligence. Machine learning algorithms build a

mathematical model based on sample data, known as

"training data", in order to make predictions or

decisions without being explicitly programmed to do so.

Machine learning algorithms are used in a wide variety

of applications, such as email filtering and computer

vision, where it is difficult or infeasible to develop

conventional algorithms to perform the needed tasks."

 print(text_summary(text))

The text snippet in this example is from the Wikipedia article on

machine learning.

Here is the resulting output:

Machine learning (ML) is the study of computer algorithms that

improve automatically through experience. It is seen as a

subset of artificial intelligence.

Chapter 6 Bert Model appliCations: other tasks

171

This output shows the summary of a document, and all of the

sentences in summary are actual sentences from the document itself. A

document can be of any length (e.g., 100 or 200 pages) and REST API won’t

be able to receive such an amount of data in a single API call. Therefore,

as a best practice, a document summarization system should only be used

as back-end application or system with a parent system such as a search

engine, where every document returned as a part of the search result

should have document summary as well.

The codebase for this exercise can be downloaded from GitHub at

https://github.com/bertbook/Python_code/tree/master/Chapter6/

TextSummarization.

 Conclusion
This chapter covered the applicability of BERT in various NLP tasks such

as sentiment analysis, text classification, entity recognition, and document

summarization. We leveraged a BERT-based model to build NLP-based

systems. In the next chapter, we will talk about the latest research

happening in BERT.

Chapter 6 Bert Model appliCations: other tasks

https://github.com/bertbook/Python_code/tree/master/Chapter6/TextSummarization
https://github.com/bertbook/Python_code/tree/master/Chapter6/TextSummarization

173© Navin Sabharwal, Amit Agrawal 2021
N. Sabharwal and A. Agrawal, Hands-on Question Answering Systems with BERT,
https://doi.org/10.1007/978-1-4842-6664-9_7

CHAPTER 7

Future of BERT
Models
The topics we have covered thus far deal with the architecture and

application of the BERT model. The BERT model has not only affected

the ML domain, but other fields like content marketing as well. Now let’s

discuss the development and future possibilities of BERT.

 Future Capabilities
Transformer-based ML models like BERT have proven to be successful

for state-of-the-art natural processing tasks. BERT, which is a large-scale

model, remains one of the most popular language models that delivers

state-of-the-art accuracy.

The BERT model has also been used by the Google search team to

improve the query understanding capabilities of Google Search. As BERT

is a bidirectional model, it is able to understand the context of a word by

looking at the surrounding words. BERT is particularly helpful to capture

the intent behind search queries.

Ever since its release, the BERT model has influenced the development

of various models that are based on BERT. It has to be credited for the

introduction of models that not only incorporate its name, but also its

core architecture ideas. The variants of BERT are able to successfully beat

https://doi.org/10.1007/978-1-4842-6664-9_7#DOI

174

records across a wide array of NLP tasks like sentiment analysis, document

classification, question answering, and more.

Here are a few of the models that are based on BERT.

• There are models that pertain to an application or

domain-specific corpus. BioBERT is one such model

that is trained on biomedical text. Other examples are

SciBERT and Clinical BERT. Training on a domain-

specific corpus has turned out to be useful and results

in better performance when fine-tuning is done on

downstream NLP tasks in contrast to fine-tuning BERT,

which is trained on BookCorpus and Wikipedia.

• The ERNIE model incorporates knowledge into

pretraining and uses a knowledge graph to mask

entities and phrases. It is pretrained on a large corpus

while taking the knowledge graph into consideration

during input.

• The TransBERT model is used for a story ending

prediction task that uses a three-stage unsupervised

training approach. This is then followed by two

supervised steps.

• For making medical recommendations, G-BERT

basically combines the power of graph neural networks

and BERT. This model is used for medical code

recommendations and representations. Encoding of

medical codes with hierarchical representations in

G-BERT is done with the help of graph neural networks.

• In addition to pretrained models there are also fine-

tuned models like DocBERT (document classification)

and PatentBERT (patent classification). These models

Chapter 7 Future oF Bert Models

175

are fine-tuned for specific tasks. These pretrained

BERT-based models can be fine-tuned with the help

of NLP tasks, POS, NER, and so on, to achieve better

results.

These models are representative of broad classes of BERT- based

models. They depict how the BERT model can further be used in different

domains with modifications in pretraining or fine-tuning. BERT hence

forms a base for the development of other models that are effective in a

wide variety of tasks.

One of the developments that relies on the BERT model is RoBERTa,

developed by Facebook, which has proven to be highly efficient on GLUE

benchmarking. RoBERTa uses the strategy of BERT to mask the text and the

machine learns to predict the hidden text. The training is done on a larger

number of mini-batches and learning rates, and the hyperparameters are

modified to achieve better results. These changes allowed the RoBERTa

model to prove its efficiency on MNLI, QNLI, RTE, STS-B, and RACE tasks,

and it also shows considerable improvement on the GLUE benchmark.

RoBERTa uses 160 GB of data for pretraining, which includes

unannotated NLP datasets and data scrapped from public news articles

called the CC-News dataset. These data, along with training of RoBERTa

on a 1024 V100 Tesla GPU, takes a day to complete. This results in better

performance of RoBERTa over other available models like BERT, XLNet,

Alice, and so on.

BERT is incorporated into Google Search, which results in precise and

accurate searches. This will affect the content strategy of many users. The

content now has to be more precise so that it can be rated better using

search engine optimization. The strategies to design the content have to be

improvised.

Chapter 7 Future oF Bert Models

176

 Abstractive Summarization
ML has come a long way in NLP, and one of these applications is in the

field of summarization. The most common form of summarization is

extractive summarization, which returns the most important sentences out

of the content. The other type is abstractive summarization, which uses

new sentences, keeping the important ideas or facts intact.

Content selection is integral to any summarization system. In recent

approaches, the importance of separating content selection from summary

generation is highly emphasized. There are many ongoing studies that

attempt to extract content words and sentences that should be the part of

summary and use them to guide the generation of an abstract summary.

A brief sentence can be formed by shortening or rewriting a lengthy

text. Encoders and decoders are helpful in this context. Comprehensive

summaries can be generated in a similar way, by selecting important

sentences and dropping the inessential sentence elements, such as

prepositional phrases. A summary can be generated through fusing

multiple sentences. Selecting important sentences can be done via many

approaches, but handling its large cardinality and identifying the sentence

relationship to perform fusion has been a tough job. Previously it has been

assumed that similar sentences can be fused together because they carry

similar information to be processed.

Because abstractive summarization is difficult to perform, there is a

lot of development in this area. BERT also has applications in abstractive

summarization. The embeddings of multiple sentences can be generated

using a BERT model. To perform this task, a [CLS] token can be inserted

before the start of the first sentence. The output embeddings have to be

processed through multiple layers, which enables the capture of important

features. The BERTSUM model is one example.

Chapter 7 Future oF Bert Models

177

 Natural Language Generation
Natural language generation (NLG) is one of the more active research

areas. It is a subgroup of NLP, along with NLU. The basic task of NLG is to

convert some text tokens or data into natural language. The basic approach

to achieve this is by predefining the templates for a specific domain and

filling the empty slots using NLU techniques.

A more complex approach to this is using language modeling.

Language modeling is used to model the natural language using the

ways of writing, grammar, syntax, and so on, that are required to learn

intrinsic features of the source language. We can then use this language in

generating language content against some given input data or text.

The applications in terms of language understanding are not limited to

NLP, but also extend to NLG. Open-AI’s GPT-2 generates text based on the

given words and is one of the state-of-the-art models in NLG. The BERT

model tries to attain the same feature using HuggingFace transformers.

Recent developments show that the performance of BERT in the field

of NLG is not an optial fit. The reason behind it is that the BERT model was

trained on MLM rather than being trained autoregressively. Apart from

using MLM, the variations such as shuffled input and random words make

the BERT model more generalized. Even after all these variations, BERT lags

behind GPT-2 because the BERT model is an encoder representation, whereas

GPT-2 is a decoder stack, which helps it create context-rich representations.

 Machine Translation
Translation is the idea of translating text from one language to another.

Automatic or mechanical translation is probably one of the most

challenging brain functions given the fluctuations in human language.

Recently, pretraining techniques, such as ELMo, GPT and GPT-2, BERT,

the cross-language model (XLM), XLNet, and RoBERTa have attracted a lot

of attention in the ML and NLP communities.

Chapter 7 Future oF Bert Models

178

A Neural Machine Translation (NMT) model usually consists of

an encoder to map an input sequence to hidden representations, and

a decoder to decode hidden representations and generate a sentence

in the target language. BERT has achieved great success in NLU, and

incorporating BERT with NMT for performance improvement might be a

good research area.

NMT can be improved by fusing the BERT model and NMT, when

BERT is drawn by the sensor and decoder using attention models.

Research on open supervised NMT (including sentence-level and

text-level translation), semisupervised NMT, and unsupervised NMT

demonstrates the effectiveness of this approach.

To accurately predict translation quality, a model trained from scratch

would theoretically require a large corpus of natural language source

text, translations, and their human-labeled quality scores. Creating

these datasets at a sufficient scale to train a neural network model is

prohibitively expensive. Therefore, researchers have determined that they

can transfer learnings from models trained on correctly translated parallel

corpora to the task of identifying whether a translation is correct or not. It

is far easier to obtain millions of correctly translated sentences to use to

pretrain a model in areas where you don’t need a quality score.

For future work, there are many interesting directions. First, we have

to learn how to speed up the measurement process. Second, we can use

such an algorithm in many applications, such as query in response. How

to compress the BERT-fused model into a simplified version is another

topic. There are other modern functions that include information about

distillation to integrate pretrained models with NMT, which is a test method.

 Conclusion
This chapter looked at the ongoing research in BERT and in state-of-the-

art NLP tasks. With this we have come to the conclusion of this exciting

journey into the world of NLP.

Chapter 7 Future oF Bert Models

179© Navin Sabharwal, Amit Agrawal 2021
N. Sabharwal and A. Agrawal, Hands-on Question Answering Systems with BERT,
https://doi.org/10.1007/978-1-4842-6664-9

Index

A
Abstractive summarization,

167, 176
Activation function, 19
Advanced question answering

systems, 98
ALBERT, 85, 87
Artificial intelligence (AI), 2
Artificial neural

networks (ANN), 15, 16
Attention models

global attention model, 38
hard and soft attention

model, 39
local attention model, 38
output vector of dense layer, 36
requirement, 37
self-attention model, 39
working, 37, 38

Automatic routing of support
tickets, 4

B
Backward propagation, 20, 21
Bag of words, 12, 13
Benchmarks, BERT model

GLUE benchmark, 83

IMDB dataset, 84
RACE, 85
SQuAD dataset, 84

BERT, input representation, 102
BERT-based models

ALBERT, 85, 87
BERTjoint, 94, 95
DistilBERT (see DistilBERT)
RoBERTa, 88–90
StructBERT (see StructBERT)

Bidirectional encoder–decoder
architecture, 33

Bidirectional encoder
representations from
transformers (BERT)

architecture, 60
base model, 62
embeddings, 67
large model, 63
masked language

modeling, 67, 69
models, 174
next sentence

prediction, 69–71
text classification, 71–82
text processing, 66, 67

Binary encodings, 41
BioBERT, 174

https://doi.org/10.1007/978-1-4842-6664-9#DOI

180

C
Content selection, 176
Continuous bag of

words (CBOW), 49, 51
Conversation system, 148
Convolution, 23
Convolutional neural networks

(CNN), 15, 23–26
Cosine embedding loss, 91
Count vector, 41, 43–45
Cross-language model (XLM), 177
Cross-layer parameter

sharing, 87

D
Decoders, 15
Deep learning models, 2
DeepPavlov QA System, 130–137
DistilBERT

architectural modifications, 92
cosine embedding loss, 91
distillation loss, 91
marked language modeling

loss, 92
Distillation loss, 91
Distributed semantic

model, 47
Document summarization, 2–4, 47
Document-term matrix, 13
Downstream tasks, 3
Dynamic masking, 89

E
Embeddings from Language

Models (ELMo), 55–57
Encoder–decoder

approach, 29
Encoder–decoder

architecture, 29, 30
Encoders, 15
Entity extraction, 3
Entity recognition, 2
ERNIE model, 174
Extractive summarization, 166

F
Factoid question, 99
Factorized embedding

parameterization, 86
Feed-forward neural

networks (FNNs), 21–23
Fine-tuning, 61
Forward propagation, 20
Future capabilities, 173–175

G
G-BERT, 174
General language understanding

evaluation (GLUE), 83
Global attention model, 38
Global Vector (GloVe), 53
Google Search, 173, 175

INDEX

181

H
Hard attention model, 39
Human cognitive

capability, 15

I
IMDB dataset, 84
Inverse document

frequency (IDF), 45

J, K
JavaScript Object Notation (JSON)

files, 2

L
Language translation, 3
Lemmatization, 9
Linguistic context, 49
Local attention model, 38, 39
Long short-term

memory (LSTM), 15, 28

M
Machine learning (ML), 2, 5
Machine translation, 4, 177
Markov assumption, 37
Masked language modeling

(MLM), 61, 67, 69

N
Named entity recognition (NER), 4

conversation system, 148
implementation

calling named entity
recognition system API, 157

code snippets, 151
deeppavlov installation, 149
packages installation, 150
Python code, 152
REST API, 153–155
result, 151, 152
service deployment, 155

search engine, 148
Natural language generation

(NLG), 177
Natural language processing

(NLP), 2
artificial intelligence, 2
bag of words, 12, 13
based systems, 4
components, 3
coreference resolution, 12
identification of stop words, 10
named entity recognition, 11
objective, 3
phrase extraction, 10
pipeline, 5
POS tagging, 7, 8
sentence segmentation, 6
stemming and lemmatization, 8

INDEX

182

techniques/methodologies, 2
tokenization, 6

Natural language understanding
(NLU), 3

Neural network architecture, 52
Neural networks, 2

attention (see Attention models)
building blocks

activation function, 19, 20
hidden layers, 17
input layer, 17
neuron, 17
output layer, 18, 19

CNN, 23–26
definition, 16
encoder–decoder, 29–34
FNNs, 21–23
LSTM, 28
model architecture, 34–36
RNNs, 26–28
training, 20, 21
transformer models, 34

NewsQA, 98
Next sentence prediction (NSP),

61, 69–71
Neural Machine Translation

(NMT) model, 178
Non-factoid question, 100

O
One-hot representation, 41–43, 47
Open-Domain Question

Answering (ODQA) System

DeepPavlov, 130–137
DeepPavlov architecture

ranker component, 122
reader component, 123

DeepPavlov model
deeppavlov library,

installing, 124
required packages, 125

REST API, 127, 128, 130
Wikipedia documents, 126

P
Parts of speech (POS)

tagging, 4, 7, 8
Phrase extraction, 10
Pooling functions, 25
Position embeddings, 66
Pragmatics, 3
Pretrained models, 174

Q
Question answering (QA)

systems, 4
BERT architecture, 102
closed-domain, 99
implementation, BERT in

Python
code snippets, 106–109
coding, 109, 110
Google Colab

interface, 105
Jupyter Notebook

console, 104

Natural language
processing (NLP) (cont.)

INDEX

183

Python console, 103
transformers library,

installation, 106
Linux Server, REST API creation

calling question answering
API, 122

flask-restful, installation, 115
generate public URL, 117
ngrok configuration, 117
public URL, 118
release features, 118
service deployment,

116, 120
unzip ngrok, 117

open-domain, 99
prerequisites, BERT-based, 103
Windows Server, REST API

creation
Flask-RESTful,

installation, 112
generate public URL, 114
ngrok configuration, 114
public URL, 114
service deployment, 112
token generation, 113

R
RACE benchmark, 85
Recurrent neural

networks (RNNs), 2, 26–28
Reserved token, 88
R-NET architecture, 123
RoBERTa, 88–90

S
Search engines, 4, 148
Segment embeddings, 66
Self-attention model, 39
Semantic methods, 41
Semantics, 3
Sentence embeddings, 53, 54
Sentence-level ordering, 92
Sentence order prediction (SOP), 87
Sentence segmentation, 6
Sentence structural objective, 94
Sentiment analysis

implementation
calling sentiment analysis

system API, 147
deeppavlov, installation, 141
end-to-end codebase, 143
packages installation, 142
release features, 144
sample output response

JSON, 146
service deployment, 145

Sequence of vectors, 60
Sigmoid function, 20
Size of sub-word, 88
Skip gram model, 51, 52
Softmax function, 36, 38, 50
Stanford Question Answering

Dataset (SQuAD), 84, 98
StructBERT

pretraining objectives, 93, 94
structural pretraining, 93

Syntax, 3

INDEX

184

T
Teacher–student learning, 90
Term frequency-inverse document

frequency (TF-IDF), 41
Text classification, 3

implementation
calling text classification

system API, 166
GPU version of

TensorFlow, 158
ktrain.text library, 160
Python code, 161
REST API, 163, 164
service deployment, 165
TensorFlow installation, 159

newsgroup datasets using
BERT, 158

Text classification using BERT, 71–82
Text processing, 66, 67
Text summarization

abstractive summarization, 167
BERTSUM model

architecture, 168
extractive document

summarization,
implementations, 168–171

extractive summarization, 166
Textual data, 41
TF-IDF vectorization, 45, 46
Token embeddings, 66
Tokenization, 6
TransBERT model, 174
Transformer-based ML models, 173

Transformers, 15
Translation, 177
Turing test, 1

U, V
Universal Sentence Encoder, 57, 58

W, X, Y, Z
WikiQA, 98
Word2vec

CBOW architecture, 49–51
skip gram model, 51, 52

Word embeddings
BERT

architecture, 60
base model, 62
large model, 63
transformer, 61

distributed represented, 47
ELMo, 55–57
GloVe, 53
ML algorithms, 47
one-hot representation, 47
sentence embeddings, 53, 55
universal sentence

encoder, 57, 58
vectors, 48
Word2vec (see Word2vec)
word representation, 47

Word-level ordering, 92
Word structural objective, 93

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Natural Language Processing
	Natural Language Processing
	Sentence Segmentation
	Tokenization
	Parts of Speech Tagging
	Stemming and Lemmatization
	Identification of Stop Words
	Phrase Extraction
	Named Entity Recognition
	Coreference Resolution
	Bag of Words

	Conclusion

	Chapter 2: Neural Networks for Natural Language Processing
	What Is a Neural Network?
	Building Blocks of Neural Networks
	Neuron
	Input Layer
	Hidden Layers
	Output Layer
	Activation Function

	Neural Network Training
	Types of Neural Networks
	Feed-Forward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory
	Encoders and Decoders
	The Encoder–Decoder Architecture
	Encoder Part of the Model
	Decoder Part of the Model
	Bidirectional Encoders and Decoders

	Transformer Models
	Model Architecture
	Attention Models
	Why Is Attention Required?
	How Attention Works
	Types of Attention Models
	Global Attention Model
	Local Attention Model
	Hard and Soft Attention Model
	Self-Attention Model

	Conclusion

	Chapter 3: Introduction to Word Embeddings
	One-Hot Representation
	Count Vector
	TF-IDF Vectorization
	What Is Word Embedding?
	Different Methods of Word Embedding
	Word2vec
	Continuous Bag of Words
	Skip Gram Model

	GloVe

	Sentence Embeddings
	ELMo
	Universal Sentence Encoder
	Bidirectional Encoder Representations from Transformers
	BERT Base Model
	BERT Large Model

	Conclusion

	Chapter 4: BERT Algorithms Explained
	How Does BERT Work?
	Text Processing
	Masked Language Modeling
	Next Sentence Prediction

	Text Classification Using BERT
	Benchmarks for BERT Model
	GLUE Benchmark
	SQuAD Dataset
	IMDB Reviews Dataset
	RACE Benchmark

	Types of BERT-Based Models
	ALBERT
	RoBERTa
	DistilBERT
	Distillation Loss
	Cosine Embedding Loss
	Masked Language Modeling Loss
	Architectural Modifications

	StructBERT
	Structural Pretraining in StructBERT
	Pretraining Objectives

	BERTjoint for Natural Questions

	Conclusion

	Chapter 5: BERT Model Applications: Question Answering System
	Types of QA Systems
	Question Answering System Design Using BERT
	For Windows Server
	Creation of REST API

	For Linux Server
	Creation of REST API

	Open-Domain Question Answering System
	Model Architecture

	DeepPavlov QA System

	Conclusion

	Chapter 6: BERT Model Applications: Other Tasks
	Sentiment Analysis
	Named Entity Recognition
	Text Classification
	Text Summarization
	Conclusion

	Chapter 7: Future of BERT Models
	Future Capabilities
	Abstractive Summarization
	Natural Language Generation
	Machine Translation
	Conclusion

	Index

