
67© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9_4

CHAPTER 4

More Commands
In the last chapter, we learned the useful file- and directory-related

commands. We also got ourselves acquainted with a few test editors. In

that process, we also learned to use the APT utility to manage packages on

Debian.

In this chapter, we will see more Linux commands. The following is the

list of topics we will learn in this chapter:

• Configuring the RPi Board

• Getting Help on Commands

• Network-Related Commands

• Commands: File Operations

• Printing a String

• Control Operators

• Filename Globbing

• Command: History

• Pipes

After completing this chapter, we will be very comfortable with various

useful commands in Linux. This chapter will instill more confidence in

users about the command prompt.

https://doi.org/10.1007/978-1-4842-6510-9_4#DOI

68

 Configuring the RPi Board
At the time of the installation of the RPi OS, we had seen the GUI tool for

configuration of the RPi board. The command-line version of the same tool

is known as the raspi-config utility. We can invoke it with the following

command:

sudo raspi-config

The utility’s main menu is as shown in Figure 4-1.

It has all the options we learned in the graphical tool. You may want to

explore it further as an exercise for this section.

Note This command does not work in other distributions of Linux.
It is specific to the RPi OS on RPi boards.

Figure 4-1. Raspberry Pi configuration utility at the command
prompt

ChaPTeR 4 MORe COMMandS

69

 What Is sudo?
By this time, you must have noticed that we use the command sudo before

a few commands. You also might have tried to run them without sudo and

must have gotten the following error:

pi@raspberrypi:~ $ raspi-config

Script must be run as root. Try 'sudo raspi-config'

This is because a few commands and utilities need the security

privileges of another user (usually superuser or the user root throughout

this book). sudo is a program in Unix-like operating systems. It allows users

to run programs with the security privileges of another user. By default,

another user is the superuser (in our case, the user root). The command is

expanded as "substitute user do" or "superuser do."

If any command needs sudo and we run it without sudo, it returns the

error we learned in the preceding example.

 Getting Help on Commands
We can get help on various commands with the commands man and info.

We can use the command man with any other command as follows:

man ls

We will see a screen with the information of the command ls. This is

known as a man page, and it is a form of documentation in the Unix-like

systems. We can quit this documentation screen by pressing the key Q on

the keyboard.

We can find similar information using the command info as follows:

info ls

It will show the information about the usage of the command. We can

quit this information screen too by pressing the key Q on the keyboard.

ChaPTeR 4 MORe COMMandS

70

 Network-Related Commands
Let us have a look at a few network-related commands. The first command

is ifconfig. It is a system administration utility and is run at the time of

the boot. This command is used to set the IP address and netmask. If we

run it without any parameters, then it shows the network details as follows:

pi@raspberrypi:~ $ ifconfig

eth0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

 ether dc:a6:32:12:0c:e8 txqueuelen 1000 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 0 bytes 0 (0.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0x10<host>

 loop txqueuelen 1000 (Local Loopback)

 RX packets 17 bytes 1004 (1004.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 17 bytes 1004 (1004.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.0.2 netmask 255.255.255.0 broadcast

192.168.0.255

 inet6 fe80::7d45:b9a:284a:26bf prefixlen 64 scopeid

0x20<link>

 ether dc:a6:32:12:0c:e9 txqueuelen 1000 (Ethernet)

 RX packets 4650 bytes 422988 (413.0 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 4297 bytes 2465513 (2.3 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

ChaPTeR 4 MORe COMMandS

71

Currently, the RPi is connected to a WLAN network of my home. That

is why the entries in the wlan0 section of the output (the last section) are

enabled. For wired LAN, we can check the eth0 section (the first section) in

the output.

Here, we can see important information like IPV4 and IPV6 addresses,

netmask, broadcast address, and MAC settings. We also can see details like

the number of received and sent packets.

Note The command ifconfig has many similarities to the
command ipconfig in Windows and Mac.

Another command that shows similar information is iwconfig. It

shows information about the currently connected WiFi as follows:

pi@raspberrypi:~ $ iwconfig

eth0 no wireless extensions.

lo no wireless extensions.

wlan0 IEEE 802.11 ESSID:"Ashwin_Ion"

 Mode:Managed Frequency:2.432 GHz Access Point:

6C:72:20:43:89:31

 Bit Rate=81 Mb/s Tx-Power=31 dBm

 Retry short limit:7 RTS thr:off Fragment thr:off

 Power Management:on

 Link Quality=50/70 Signal level=-60 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:13 Invalid misc:0 Missed

beacon:0

ChaPTeR 4 MORe COMMandS

72

We can test the reachability to a host in the internal or external network

with the command ping as follows:

pi@raspberrypi:~ $ ping -c4 www.google.com

PING www.google.com (172.217.27.196) 56(84) bytes of data.

64 bytes from bom07s15-in-f4.1e100.net (172.217.27.196): icmp_

seq=1 ttl=119 time=8.80 ms

64 bytes from bom07s15-in-f4.1e100.net (172.217.27.196): icmp_

seq=2 ttl=119 time=8.15 ms

64 bytes from bom07s15-in-f4.1e100.net (172.217.27.196): icmp_

seq=3 ttl=119 time=7.86 ms

64 bytes from bom07s15-in-f4.1e100.net (172.217.27.196): icmp_

seq=4 ttl=119 time=8.03 ms

--- www.google.com ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 8ms

In the example, -c4 means we are sending four packets to the target

host. It is optional, and in its absence, the command will run indefinitely.

We can download a file from the Internet with the command wget as

follows:

wget ftp://ftp.gnu.org/pub/gnu/wget/wget-latest.tar.gz

This will download the mentioned file into the current directory. We

can see the downloaded file with the command ls as follows:

pi@raspberrypi:~ $ ls *.gz

wget-latest.tar.gz

These are a few examples of very frequently used network-related

commands in Linux.

ChaPTeR 4 MORe COMMandS

73

 Commands: File Operations
We can perform a variety of operations on files. Create an empty file and

an empty directory in the current directory with the following commands:

touch abc

mkdir practice

Let us learn a few useful commands related to files. Let us see how to copy

the file. We can copy it in the same location with a different name as follows:

cp abc abc1

We can see the original and the copy with the command ls as follows:

pi@raspberrypi:~ $ ls abc* -la

-rw-r--r-- 1 pi pi 0 Aug 22 15:33 abc

-rw-r--r-- 1 pi pi 0 Aug 22 15:33 abc1

In the output, we can see the file attributes too. We will learn about

them later in the book.

We can copy it into a folder as follows:

cp abc ./practice/

The folder (or directory) practice is in the same folder. So we can

provide the relative path. If it is not in the same folder, then we must

provide the absolute path. Also, we can copy a file from any source to any

target by providing the absolute paths.

We can rename the original file with the command mv as follows:

mv abc1 abc2

The original file will be renamed to another name. We can do this

operation between directories too just as the command cp.

ChaPTeR 4 MORe COMMandS

74

Let us see a few more commands. Open the created file in a text editor

and add 15–20 lines and save it. Then run the following command:

cat abc

It will show the contents of the file:

head abc

It shows the first ten lines. The head command shows the top lines in

any source fed to it. Here, we are working with files. We can customize how

many lines we want to see as follows:

head -5 abc

We can see the bottom lines with another command tail as follows:

tail abc

tail -5 abc

Let us study another file-related command cut in detail. It is used to

extract the sections of each line in the output. A great example is extraction

of data from a comma-separated value (CSV) file. In a CSV file, the data

is arranged in columns, and they are separated by a comma (or some

other delimiter like :). Data can be extracted by bytes, characters, or fields

separated by a delimiter. The following command extracts the first two

characters from the file:

cut -c 1-2 abc

We can use -f to choose the fields separated by a delimiter specified

by -d. We can also use -b for bytes.

ChaPTeR 4 MORe COMMandS

75

 Printing a String
We can print a string with the command echo. The following are examples:

pi@raspberrypi:~ $ echo test

test

pi@raspberrypi:~ $ echo 'test'

test

pi@raspberrypi:~ $ echo "test"

test

 Control Operators
Let us see a few control operators. Unix and derivatives have many control

operators. Let us learn them one by one.

Run the following commands in sequence:

ls

echo $?

The last command returns 0. This is because $? stores the exit code of

execution of the last command. If it is a success, it stores 0 and otherwise

other code.

We can separate two commands with a semicolon (;) as follows:

echo test1 ; echo test2

Let us see the usage of the operator &. When a line ends with it, the

shell does not wait for the command to finish execution. We get the shell

prompt back.

ChaPTeR 4 MORe COMMandS

76

Open the lxterminal program in GUI or using VNC. Then run the

command leafpad to open the text editor. You will notice that as long as the

editor is running, the command prompt is locked and not running typed-

in commands. Once we close the editor, it will run those commands one by

one (they are actually stored in a buffer). If we run the following command

leafpad &

it prints the PID (Process ID) of the program in the prompt, and the

prompt is available for us to use. It does not wait for the editor to be closed.

Let us see the usage of the operator &&. It is a logical operator. Let us

see an example as follows:

echo abc && echo xyz

When it is used between two commands, if the first command

succeeds, then the second one is executed. If the first command fails, the

second one is not executed. In the preceding example, both the commands

run fine. Let us see another example:

fecho abc && echo xyz

In this case, both the commands are not executed.

Another logical operator is ||. It is the logical OR. When placed between

two commands, if the first command succeeds, the second one is not

executed. The second command executes only if the first one fails. Check

yourself by running the following examples:

echo abc || echo xyz

fecho abc || echo xyz

We can combine both the operators in such a way that it prints a

success message if the command succeeds; otherwise, it prints a failure

message. The following is an example:

rm file1 && echo SUCCESS || echo FAIL

ChaPTeR 4 MORe COMMandS

77

Finally, we can use the backlash operator \ as an escape character. We

need to print ; on the command prompt, but the shell interprets it as end

of the command. We can avoid that using a backslash as follows:

pi@raspberrypi:~ $ echo We want to print \;

We want to print ;

 Filename Globbing
Filename globbing is a feature of the UNIX shell. It means representing

multiple filenames by using special characters called wildcards with a

single filename. A wildcard is a symbol which is used to substitute for one

or more characters. We can use wildcards to create a string that represents

multiple filenames:

• * represents zero or more characters.

• ? represents exactly one character.

Let us see a few examples. Run the following command:

ls a?c

It lists the file abc. As of now, in the home location, there is only one

file that matches this criterion. The first and the last characters in the

filename are a and c.

Let us see another example. Let us list all the files starting with

character a in the filename:

ls a*

We can also list a file with the extension txt as follows:

ls *.txt

This is how we can use filename globbing with the command ls.

ChaPTeR 4 MORe COMMandS

78

 Command: History
Operating systems maintain the history of commands executed. We can

find out the sequence of the commands executed in the shell with the

command history. The following is a sample output of the command:

 125 tail -5 abc

 126 cut cut -c 1-2 abc

 127 echo test

 128 echo 'test'

 129 echo "test"

 130 echo abc && echo xyz

 131 fecho abc && echo xyz

 132 echo abc || echo xyz

 133 fecho abc || echo xyz

 134 rm file1 && echo SUCCESS && echo FAIL

 135 rm file1 && echo SUCCESS || echo FAIL

 136 history

I have shown only the ending part of the entire output as it will fill up

several pages to show the whole output. As we can see, it shows the recent

commands executed in the command prompt.

 Pipes
Piping is a form of redirection. Using this, we can redirect the output of one

command to another. Suppose I wish to see only the history of the last ten

commands executed. Then I must use piping as follows:

history | tail -10

ChaPTeR 4 MORe COMMandS

79

In the preceding command, | is the pipe operator. We are feeding the

output of the command history to the command tail. The output is as

follows:

 131 fecho abc && echo xyz

 132 echo abc || echo xyz

 133 fecho abc || echo xyz

 134 rm file1 && echo SUCCESS && echo FAIL

 135 rm file1 && echo SUCCESS || echo FAIL

 136 history

 137 hist

 138 history

 139 ls -l

 140 history | tail -10

While writing shell scripts, pipes are usually used in a creative way to

filter the output of the commands executed.

 Summary
In this chapter, we have started with a few commands of intermediate

difficulty. These commands will be useful in writing the shell scripts which

we will study later in this book. Now we all are very comfortable with the

basic and intermediate-level use of the command prompt.

In the next chapter, we will study a few more useful commands and

more complex concepts.

ChaPTeR 4 MORe COMMandS

	Chapter 4: More Commands
	Configuring the RPi Board
	What Is sudo?

	Getting Help on Commands
	Network-Related Commands
	Commands: File Operations
	Printing a String
	Control Operators
	Filename Globbing
	Command: History
	Pipes
	Summary

