
A Complete
Guide to
Burp Suite

Learn to Detect Application
Vulnerabilities
—
Sagar Rahalkar

A Complete Guide to
Burp Suite

Learn to Detect Application
Vulnerabilities

Sagar Rahalkar

A Complete Guide to Burp Suite

ISBN-13 (pbk): 978-1-4842-6401-0 ISBN-13 (electronic): 978-1-4842-6402-7
https://doi.org/10.1007/978-1-4842-6402-7

Copyright © 2021 by Sagar Rahalkar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6401-0.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Sagar Rahalkar
Pune, Maharashtra, India

https://doi.org/10.1007/978-1-4842-6402-7

iii

About the Author ���ix

About the Technical Reviewer ���xi

Introduction ���xiii

Chapter 1: Introduction to Burp Suite ���1

Some Basics of Application Security ��1

A Brief Introduction to Burp Suite ���5

Need for Burp Suite ���6

Editions ���6

Burp Suite Alternatives ���8

High-Level Feature Overview ��9

Summary���10

Exercises ���10

Chapter 2: Setting Up the Environment ��11

Burp Suite Installation ���11

Setting Up Vulnerable Target Web Application ��14

Configuring the Browser ���15

Firefox��17

Chrome ��19

Edge���21

Opera ���22

Table of Contents

iv

Summary���25

Exercises ���26

Chapter 3: Proxy, User Options, and Project Options ��������������������������27

Proxy ���27

Burp Suite CA Certificate ��31

Platform Authentication, Upstream Proxy Servers, SOCKS Proxy �����������������������33

Platform Authentication ���33

Upstream Proxy Servers ��35

SOCKS Proxy ��36

Hotkeys ���37

Project Backups ��39

Rest API ���39

Performance Feedback ���41

Project Options ��41

Timeouts ��42

Hostname Resolutions ���42

Out-of-Scope Requests ���44

Redirections ��45

Cookie Jar ��46

Macros ���47

Summary���48

Exercises ���48

Table of ConTenTs

v

Chapter 4: Dashboard, Target, and Engagement Tools �����������������������49

Dashboard ���49

Target Tab ��53

Engagement Tools ���58

Summary���65

Exercises ���65

Chapter 5: Intruder ���67

Introduction to Intruder ���67

Target Tab ��69

Positions ���69

Payloads ��73

Options ��76

Summary���77

Exercises ���78

Chapter 6: Repeater, Comparer, Decoder, and Sequencer�������������������79

Repeater��79

Comparer ��86

Decoder ���88

Sequencer ���89

Summary���92

Exercises ���93

Table of ConTenTs

vi

Chapter 7: Infiltrator, Collaborator, Clickbandit, and CSRF PoC
Generator ��95

Infiltrator ���95

Collaborator���99

Clickbandit ��101

CSRF ���106

Summary���109

Exercises ���110

Chapter 8: Scanner and Reporting ���111

Scan Types ��111

Crawl and Audit ���112

Scan Configuration ��115

Application Login ��123

Resource Pools ���124

Reporting ��125

Summary���130

Exercises ���130

Chapter 9: Extending Burp Suite���131

Burp Suite Extensions ���131

BApp Store ��132

Manual Installation ��136

Settings ���140

Other Useful Extensions ��142

APIs ���143

Table of ConTenTs

vii

Summary���144

Exercises ���145

Chapter 10: Testing Mobile Apps and APIs with Burp Suite �������������147

API Security Testing with Burp Suite ���147

Mobile Application Security Testing with Burp Suite ��155

Security Testing Workflow with Burp Suite ���161

Summary���164

Exercises ���164

 Index ���165

Table of ConTenTs

ix

About the Author

Sagar Rahalkar is a seasoned information security professional with more

than 13 years of experience in various verticals of information security.

His domain expertise is mainly in AppsSec, cybercrime investigations,

vulnerability assessments, penetration testing, and IT GRC. He holds a

master’s degree in computer science and several industry-recognized

certifications such as CISM, ISO 27001LA, and ECSA. He has been closely

associated with Indian law enforcement agencies for more than three

years, dealing with digital crime investigations and related training, and

he has received awards from senior officials of the police and defense

organizations in India. He is also an author and reviewer for several

publications.

xi

About the Technical Reviewer

Parag Patil (www.linkedin.com/in/
paragpatil2006) is an information security

professional currently associated with Coupa

Managing Security for the SaaS platform.

For more than the last 12 years, Parag

has worked extensively on digital forensics,

IAM, security monitoring/SecOps, security

trainings, security compliance audits,

vulnerability management, penetration

testing, information security research, and ISMS/governance. He is the

author for CIS benchmarks for AWS, Azure, and GCP.

Reviewer Acknowledgment: Thanks to my mentors (Dattatray Bhat,

Yogesh Patil, Steve O'Callaghan, Shailesh Athlye, and Hans Gustavson)

who have believed in me and have provided all possible opportunities to

learn and grow professionally in the information security domain.

Thanks to Mahesh Navaghane, Sagar Rahalkar (author of this book),

Aditi Sahasrabuddhe (my sister), Monika (my wife,) and Ira (my daughter)

for their commitment toward keeping me possibly the happiest person

that I have ever known.

http://www.linkedin.com/in/paragpatil2006
http://www.linkedin.com/in/paragpatil2006

xiii

The number of applications is growing and so are the number of application

vulnerabilities. Enterprises have shifted a lot of focus on making the

applications secure. While there are a variety of solutions and products for

application security, Burp Suite is really the tool of choice for many.

Burp Suite is a simple yet powerful tool used for application security

testing. It is widely used for manual application security testing of not

just web applications but also APIs and mobile apps. For effectively

testing security of web applications, one needs to understand various web

application vulnerabilities; at the same time, one also needs to have an

in-depth understanding of the tools used for testing. This book helps you

understand Burp Suite comprehensively, so that it can be used precisely to

uncover vulnerabilities.

The book starts with basics about Burp Suite and guides you on setting

up the testing environment. The following chapters cover basic building

blocks of Burp Suite and take you through its various components such

as the intruder, repeater, decoder, comparer, sequencer etc., in depth. In

the last chapters, we will cover other useful features such as the infiltrator,

collaborator, scanner, extender, and using Burp Suite for API and mobile

app security testing.

Introduction

1© Sagar Rahalkar 2021
S. Rahalkar, A Complete Guide to Burp Suite,
https://doi.org/10.1007/978-1-4842-6402-7_1

CHAPTER 1

Introduction to
Burp Suite
Application Security has evolved to a large extent in the last decade or so.

A decade ago, finding SQL Injections in applications was easier than it is

today. The applications were more prone to vulnerabilities as there were

fewer defenses and less awareness among the developers. However, the

situation has drastically changed today. Developers are much more aware

and conscious about security, and security controls are placed throughout

the Software Development Life Cycle (SDLC), making the end application

comparatively secure.

Though the development processes have become more secure, today’s

applications are not just limited to the web. Modern applications have

services and Application Programming Interfaces (API’s) exposed as well

as a mobile and cloud presence. This clearly increases the complexities

and attack surfaces.

For an application security tester, it is vital to find all possible

vulnerabilities in the entire application ecosystem.

 Some Basics of Application Security
Going into details of application security and various vulnerabilities are

beyond the scope of this book. In this book we will be focusing specifically

on how to use the Burp Suite tool in the most efficient manner.

https://doi.org/10.1007/978-1-4842-6402-7_1#DOI

2

However, we’ll quickly glance through what the common and top
application vulnerabilities are. The de facto standard referred to for
application vulnerabilities is OWASP. OWASP stands for Open Web
Application Security Project. The last Top 10 list for web application
vulnerabilities was published in 2017. The vulnerabilities are as follows:

 1. Injection – This includes vulnerabilities that
are exploited by sending untrusted input to an
interpreter either as part of a query or command.
Specially crafted input tricks are what the interpreter
uses in executing the commands or even giving
unauthorized access to data. The most common
type of injection is a database injection. Other
types include the Operating System (OS) command
injection or LDAP Injection, etc.

 2. Broken Authentication – This includes
vulnerabilities arising out of poor implementation of
authentication and session management functions.
Exploiting such vulnerabilities can give attackers
access to passwords, credentials, session tokens,
keys, etc.

 3. Sensitive Data Exposure – Many times,
applications lack controls to protect sensitive user
data like personally identifiable information (PII),
health data, or even financial data. Attackers can
steal such sensitive data. Lack of data encryption at
rest and in transit cause most of the vulnerabilities
related to sensitive data exposure.

 4. XML External Entities – This is a special type of
vulnerability wherein an attacker exploits the entity
tag within the XML documents to launch several
attacks like disclosing sensitive internal files, denial

of service, remote code execution, etc.

Chapter 1 IntroduCtIon to Burp SuIte

3

 5. Broken Access Control – Even if a user is

authenticated with valid credentials, it might not be

necessary to have access to all of the application.

Authorization defines what an authenticated

user can access. Broken authorization gives

unauthorized access to the attacker to view other

user accounts, sensitive files, or even modify other

users’ data.

 6. Security Misconfiguration – Security

misconfiguration issues are the most common

in the underlying infrastructure like web servers.

Insecure configurations, default credentials,

unreferenced backup files, unwanted services, open

cloud storage, missing security headers and cookie

flags, and missing security patches all contribute to

the security misconfiguration category.

 7. Cross-Site Scripting – This is indeed the classic web

application vulnerability that has been part of the

OWASP list for so long. This commonly occurs when

an attacker is able to inject and execute a script

through an application input field. This attack can

be used to hijack user sessions by stealing cookies,

defacing websites, etc. Common types of cross-site

scripting include Persistent, Reflected, and DOM

Based.

 8. Insecure Deserialization – Attackers can

manipulate the object serialization and

deserialization process to introduce malicious

payloads resulting in code execution.

Chapter 1 IntroduCtIon to Burp SuIte

4

 9. Using Components with known Vulnerabilities –

It’s very common for developers to import and use

third-party code to avoid reinventing the wheel.

However, at times the third-party code comes along

with inherent vulnerabilities. An example is using

the OpenSSL library, which is vulnerable to a Heart

Bleed attack.

 10. Insufficient Logging and Monitoring – Quite often,

applications lack capabilities to log events that

would help in case of an incident. In the absence of

audit logging and detection capabilities, attackers

can simply continue to infiltrate without getting

detected or raising alarms.

While the OWASP Top 10 list is probably the first place to go for web

application vulnerabilities, there are many potential vulnerabilities

beyond this Top 10 list. Following are some of the strongly recommended

references in order to get a broader perspective for application security

testing:

 1. OWASP Testing Guide – This guide is a very

comprehensive resource covering many security

test cases and a very handy reference guide. It is

available at https://owasp.org/www-project-

web-security-testing-guide/assets/archive/

OWASP_Testing_Guide_v4.pdf

 2. SANS Top 25 Programming Errors – Beyond

the OWASP Top 10 list, SANS has published a list

of the 25 most dangerous programming errors.

It is available at https://www.sans.org/top25-

software-errors

Chapter 1 IntroduCtIon to Burp SuIte

https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://www.sans.org/top25-software-errors
https://www.sans.org/top25-software-errors

5

 3. OWASP API Top 10 – Application Programming

Interfaces (API’s) are very commonly used these

days and have some unique vulnerabilities. OWASP

has published a special API Top 10 vulnerability

list and is available at https://owasp.org/www-

project-api-security/

 4. OWASP Mobile Top 10 – Mobile applications have

different sets of vulnerabilities, and some even

vary based on the type of platform. However, the

most common and top mobile vulnerabilities are

available at https://owasp.org/www-project-

mobile-top-10/

 5. OWASP IoT Top 10 – Today even household

devices are getting smarter and connected. Such

Internet of Things (IoT devices) are prone to many

vulnerabilities. OWASP has published an IoT Top 10

vulnerability list available at https://owasp.org/

www-project-internet-of-things/

 A Brief Introduction to Burp Suite
The birth of Burp Suite dates back to 2004 when Dafydd Stuttard gauged

the need for a robust web application security testing tool. In the past 16

years, the tool has evolved leaps and bounds and has added numerous

capabilities that benefit the security testing community. Burp Suite has

undoubtedly become a tool of choice for web application security testing.

Also it has evolved in a way that it can now be used to find vulnerabilities

in API’s and Mobile Apps as well.

Chapter 1 IntroduCtIon to Burp SuIte

https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-internet-of-things/
https://owasp.org/www-project-internet-of-things/

6

 Need for Burp Suite
Today the market for application security scanning and testing tools is

rapidly growing. There are so many tools available, commercial as well as

free, from different vendors, supporting various technologies and features.

Most of these tools are inclined toward automated scanning of software

to find vulnerabilities. This is achieved either by triggering the scanner

after spidering or crawling the target application or integrating the scanner

directly in the DevOps cycle. While this is certainly an advantage and

increases efficiency of scanning with minimum manual intervention, there

are certain vulnerabilities that can be better understood and exploited

through manual testing.

Manual Testing is largely dependent on two factors: the skills of the

tester and the tool used for testing. A tool like Burp Suite significantly

aids in fulfilling the needs of manual testing from a tooling perspective. It

provides a powerful and flexible platform where the tester can efficiently

find and exploit potential vulnerabilities. So, for application security

scanning and testing, the best strategy would be to use a combination

of both automated and manual testing. Burp Suite has excellent manual

testing capabilities along with an automated scanner. So it gives the tester

benefits of manual testing as well as automated scanning of vulnerabilities.

 Editions
Like most of the other tools, Burp Suite comes in different forms. Different

users might have different needs and one size may not fit all. Keeping

in mind the varying needs of users, Burp Suite comes in three different

editions.

Chapter 1 IntroduCtIon to Burp SuIte

7

 1. Burp Suite Community Edition – The Burp Suite

Community Edition is the most basic version, which

is free to download and use. It comes with a limited

set of tools and features to get started with web

application security testing. If you are completely

new to application security and want to explore the

basics, then the Burp Suite Community Edition is

certainly a very good starting point. It does have

good tools and features required for basic manual

web application security testing like the interception

proxy, tamper and relay requests using repeater,

encode and decode data, etc.

 2. Burp Suite Professional Edition – Once you have

a very good understanding of web application

security and you are regularly required to test

applications as part of your profession, then

the Burp Suite Professional Edition is definitely

recommended. The Burp Suite Professional Edition

comes along with many advanced features that

significantly improve your ability to find potential

vulnerabilities in applications. This is the most

suitable edition for individual professionals looking

for excellent manual and automated security testing

capabilities. Some of the advanced features include

the following:

• Testing out-of-band vulnerabilities

• Advanced brute-force and fuzzing capabilities

• Quickly generating exploits for CSRF,

Clickjacking, etc.

Chapter 1 IntroduCtIon to Burp SuIte

8

• Automated scanning for vulnerabilities

• Useful extensions to further enhance vulnerability

detection capabilities

More details on the Burp Suite Professional Edition can be found

here - https://portswigger.net/burp/pro

 3. Burp Suite Enterprise Edition – While the Burp

Suite Community Edition and the Burp Suite

Professional Edition were aimed at individual

professionals, the Burp Suite Enterprise Edition is

useful to the organizations looking for integrating

security scanning in software pipelines. It doesn’t

have the manual testing tools as compared to the

earlier editions. This edition is recommended for

enterprises looking out for DevSecOps solutions.

As part of this book, we will be covering the Burp Suite Professional

Edition.

 Burp Suite Alternatives
We have already discussed that the market for application security

scanning tools is largely growing. While Burp Suite fulfills most of the

manual and automated testing needs, it is rivaled by some other tools such

as those shown in Table 1-1.

Chapter 1 IntroduCtIon to Burp SuIte

https://portswigger.net/burp/pro

9

More information and comparative analysis on various application

security Testing tools can be found at https://www.gartner.com/

reviews/market/application-security-testing

 High-Level Feature Overview
The Burp Suite Professional Edition comes with a wide range of features

for manual penetration testing as well as for automated scanning. Some of

the useful features include the following:

 1. Manual Penetration Testing – Intercept and tamper

requests (HTTP / HTTPS), manually testing for out-

of-band vulnerabilities, testing web sockets, testing

token strength, easily test clickjacking and Cross-Site

Request Forgery (CSRF) vulnerabilities.

 2. Advanced Automated Attacks – Passive and active

scanning to find potential vulnerabilities, advanced

capabilities to brute-force and fuzz inputs.

 3. Productivity – Detailed message analysis, efficient

project options, tools to make code more readable,

easy and simple vulnerability reporting.

Table 1-1. Scanning Tools

Commercial Free / Open Source

acunetix oWaSp Zap

netsparker W3af

IBM appScan arachni

WebInspect Iron Wasp

Chapter 1 IntroduCtIon to Burp SuIte

https://www.gartner.com/reviews/market/application-security-testing
https://www.gartner.com/reviews/market/application-security-testing

10

 4. Extensions – Burp Suite Application Store to install

extensions for significantly enhancing the existing

tool capabilities.

We’ll be going through the above features more in detail as we proceed

through the book.

 Summary
We started off this chapter by explaining how application security has

evolved over the last decade or so. We then glanced at some of the top

web application vulnerabilities. Next we tried to understand the need for

a tool like Burp Suite followed by its editions and alternatives. Finally, we

concluded with a high-level overview of the features provided by Burp

Suite Professional.

In the next chapter, we’ll get started with installation and setup of the

tool.

 Exercises
• Read about the OWASP Top 10 vulnerabilities and the

OWASP Testing Guide in detail.

• Read more details about the features of all the Burp

Suite editions on the official website - https://

portswigger.net/

Chapter 1 IntroduCtIon to Burp SuIte

https://portswigger.net/
https://portswigger.net/

11© Sagar Rahalkar 2021
S. Rahalkar, A Complete Guide to Burp Suite,
https://doi.org/10.1007/978-1-4842-6402-7_2

CHAPTER 2

Setting Up the
Environment
In the last chapter, we discussed some basics of application security and

the need for tools like Burp Suite. In this chapter we’ll get started with

setting up our environment for Burp Suite.

 Burp Suite Installation
Before we attempt to either install or run the Burp Suite, we need to ensure

that Java is installed on the system. It is an essential prerequisite to run

Burp Suite. On a Windows system, you can simply open up the command

prompt and type command “java –version” to check if Java is installed, as

shown in Figure 2-1.

Figure 2-1. Check if Java is installed

https://doi.org/10.1007/978-1-4842-6402-7_2#DOI

12

If you don’t have Java installed on your system, you can download and

install Java from https://www.oracle.com/java/technologies/javase-

jre8- downloads.html

Once we are sure that Java is installed on our system, we can now

proceed with Burp Suite. We first need to download the Burp Suite from

https://portswigger.net/burp/releases/community/latest as shown

in Figure 2-2.

You’ll notice there are several forms in which you can download

the Burp Suite. There are individual installers for Linux, Mac OSX, and

Windows. There’s also an option to download a JAR file, which can be used

directly to launch Burp Suite without installing. Downloading the JAR file

is the easiest way to get started. If you choose to download the installer, it

is just like any other software installer and installs the Burp Suite in a few

clicks. However, Java is required to be installed in both cases. Once the JAR

file is downloaded, you can simply double-click it to launch the Burp Suite.

Figure 2-2. Types of Burp Suite downloads

Chapter 2 Setting Up the environment

https://www.oracle.com/java/technologies/javase-jre8-downloads.html
https://www.oracle.com/java/technologies/javase-jre8-downloads.html
https://portswigger.net/burp/releases/community/latest

13

At times, while running large projects, it might happen that Burp

Suite runs out of memory. To solve this problem, it is possible to launch

Burp Suite by allocating a fixed amount of memory at startup. This will

ensure that it doesn’t run out of memory once launched. This can be done

using command "java -jar -Xmx2G /path/to/burp.jar" where 2G

indicates 2GB of memory. This step is completely optional. We can skip

it and directly execute the JAR file to launch Burp Suite with the default

configuration.

If all prerequisites are met correctly, we get a startup screen as shown

in Figure 2-3.

Figure 2-3. Burp Suite Startup Screen

Chapter 2 Setting Up the environment

14

 Setting Up Vulnerable Target Web
Application
While we set up the Burp Suite on our system, it’s important to have

a target application on which you will be using the tool. If you are a

professional working on application security testing and penetration

testing then you would be authorized to use Burp Suite on the application

under the test. However, if you are just a beginner trying to get started with

learning Burp Suite, then you would need to have some target application

on which you could test your skills. Remember, running Burp Suite on an

application on which you are not authorized can invite legal troubles. So,

from a learning perspective, it’s important to try your Burp Suite skills only

on a test application. There are several alternatives available as shown

below:

 1. Set Up OWASP Juice Shop locally – OWASP

Juice Shop is a modern web application that is

deliberately made vulnerable. This can be an

excellent starting point. The easiest way to get

OWASP Juice Shop up and running is using its

docker image. The docker image is available at

https://hub.docker.com/r/bkimminich/juice-

shop. You can simply pull the image and run it in the

docker engine on any platform (Windows / Linux /

MacOS).

 2. Try out online version of OWASP Juice Shop –

As a beginner, it is always recommended to set up

your own copy of Juice Shop; however if you want to

quickly try it out before setting it up, you can try the

online version at https://juice-shop.herokuapp.

com/#/

Chapter 2 Setting Up the environment

https://hub.docker.com/r/bkimminich/juice-shop
https://hub.docker.com/r/bkimminich/juice-shop
https://juice-shop.herokuapp.com/#/
https://juice-shop.herokuapp.com/#/

15

 3. Damn Vulnerable Web Application (DVWA) –

Another great application that has been made

vulnerable intentionally for testing is DVWA. You

can quickly set up the DVWA using docker or on a

local web server. Detailed instructions on setting up

and using DVWA are available at https://github.

com/ethicalhack3r/DVWA

 4. Damn Vulnerable Web Services – OWASP Juice

Shop and DVWA would suffice for your learning

needs for web application vulnerabilities.

However, if you wish to explore more specifically

the vulnerabilities in web services, then Damn

Vulnerable Web Services is a good option. More

details on setup and usage can be found at https://

github.com/snoopysecurity/dvws

 Configuring the Browser
Now that we have Burp Suite up and running, we need to configure

our browser to work along with it. First let's consider a normal scenario

without Burp Suite in the picture as shown in Figure 2-4.

Figure 2-4. A user accessing a website directly without Burp Suite

Chapter 2 Setting Up the environment

https://github.com/ethicalhack3r/DVWA
https://github.com/ethicalhack3r/DVWA
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws

16

Referring to the image above, at a very high level and in simple terms,

the following sequence of events happens:

 1. The end user opens up any browser of choice.

 2. The user then enters the URL of website he/she

wishes to browse.

 3. The browser processes the URL of the website and

renders the website for the user (a series of request

and response happens in the background).

Now let’s consider another scenario wherein we have configured Burp

Suite with the browser as shown in Figure 2-5.

Referring to the image above, at a very high level and in simple terms,

the following sequence of events happens:

 1. The end user opens up any browser of choice.

 2. The user then enters the URL of the website he/she

wishes to browse.

 3. The browser redirects the request to Burp Suite,

which then forwards the request to the target

website.

 4. The target website responds to the request and

sends a response back to Burp Suite, which then

passes on the response to be rendered in the

browser.

Figure 2-5. A user accessing a website with Burp Suite

Chapter 2 Setting Up the environment

17

So in this scenario, Burp Suite is acting as ‘Man-in-the-Middle’

between the browser and the target website. Burp Suite is able to intercept

and tamper all the traffic passing through it.

We’ll now see how we can configure the most popular browsers to

work with Burp Suite.

 Firefox
For configuring Firefox with Burp Suite:

Go to Tools ➤ Options as shown in Figure 2-6.

In the search field, enter the keyword ‘network’ as shown in Figure 2-7

and click on ‘Settings’.

Figure 2-6. Navigating the Tools ➤ Options menu in Firefox

Chapter 2 Setting Up the environment

18

Select ‘Manual proxy configuration’ as shown in Figure 2-8 and enter
the IP as 127.0.0.1 (or localhost) and port as 8080.

Note: By default the Burp Suite proxy listens on port 8080. This can be
customized and we’ll see that in the next chapter. However, the same port
number must be entered both in the browser as well as in the Burp Suite in

case you wish to change the same.

Figure 2-7. Searching for ‘Network Settings’ within Firefox options

Figure 2-8. Setting up the manual proxy configuration

Chapter 2 Setting Up the environment

19

Simply click ‘OK’ once the proxy details have been configured.

 Chrome
For configuring Chrome with Burp Suite:

Click on the three vertical dots in the right-hand corner and select

‘Settings’ as shown in Figure 2-9.

Search for the keyword ‘proxy’ as shown in Figure 2-10, and click on

the ‘Open your computer’s proxy settings’ option.

Now enable the ‘Use a proxy server’ option and enter the address and

port number as shown in Figure 2-11.

Figure 2-9. Navigating to the Chrome Settings

Figure 2-10. Opening the proxy settings in Chrome

Chapter 2 Setting Up the environment

20

Once the proxy is configured, simply click on the ‘Save’ option.

Figure 2-11. Configuring the system proxy

Chapter 2 Setting Up the environment

21

 Edge
For configuring Edge with Burp Suite:

Click on the three horizontal dots in the right-hand corner and select

the ‘Open proxy settings’ as shown in Figure 2-12.

Now enable the ‘Use a proxy server’ option and enter the address and

port number as shown in Figure 2-13.

Figure 2-12. Opening the Proxy Settings in Edge browser

Chapter 2 Setting Up the environment

22

Once the proxy is configured, simply click on the ‘Save’ option.

 Opera
For configuring Opera with Burp Suite:

Click on the settings in the top right-hand corner and select the option

‘Go to browser settings’ as shown in Figure 2-14.

Figure 2-13. Configuring the system proxy

Chapter 2 Setting Up the environment

23

In the search field, type proxy and then select the option ‘Open your

computer’s proxy settings’ as shown in Figure 2-15.

Now enable the ‘Use a proxy server’ option and enter the address and

port number as shown in Figure 2-16.

Figure 2-14. Opening the browser settings in Opera

Figure 2-15. Opening up the system proxy settings

Chapter 2 Setting Up the environment

24

Once the proxy is configured, simply click on the ‘Save’ option.

So far we have seen how to configure browsers like Firefox, Chrome,

Edge, and Opera to work along with Burp Suite. It simply requires

configuring the network proxy option. However, it is important to note

that once the browser proxy is configured, all the traffic initiating from the

browser will compulsorily pass through Burp Suite. If you are working on

multiple tabs within a browser and testing an application in one tab while

Figure 2-16. Configuring the system proxy

Chapter 2 Setting Up the environment

25

accessing email in another, all this traffic will be routed through Burp

Suite. In case you with to pass only selective traffic through Burp Suite, you

need to make use of additional browser plugins such as those shown in

Table 2-1.

The above plugins are simple to use and allow custom selective traffic

to pass through Burp Suite. Using these plugins is completely optional.

If you don’t wish to use these plugins, you can simply use two separate

instances of browser, one for application testing and the other for personal

use. Or it is also possible to scope out only the required traffic in Burp Suite

that we will be learning in an upcoming chapter.

 Summary
In this chapter we saw how to download, install, and get started with the

Burp Suite tool. We then explored various options available for setting up

vulnerable targets to practice Burp Suite skills. We also learned how to

configure different browsers to work along with the Burp Suite.

In the next chapter, we’ll see how to configure some of the basic

settings in the Burp Suite like the Proxy, User Options, and Project Options.

Table 2-1. Additional Browser Plugins for Proxy

Firefox proxy Switchyomega, Foxyproxy

Chrome proxy Switchyomega, Foxyproxy

edge n/a

opera proxy Switcher & manager

Chapter 2 Setting Up the environment

26

 Exercises
• Download the latest version of the Burp Suite.

• Try to launch Burp Suite from the command line,

allocating custom memory size.

• Try and explore how to use the FoxyProxy plugin for

Firefox and Chrome.

Chapter 2 Setting Up the environment

27© Sagar Rahalkar 2021
S. Rahalkar, A Complete Guide to Burp Suite,
https://doi.org/10.1007/978-1-4842-6402-7_3

CHAPTER 3

Proxy, User Options,
and Project Options
In the last chapter, we saw some basics of Burp Suite installation, setting

up the vulnerable application and configuring different browsers to work

along. In this chapter, we’ll get started with some basics of Burp Suite

proxy along with several user and project options.

 Proxy
Proxy is really the essence of Burp Suite. Leveraging the proxy

functionality, Burp Suite is able to see all the traffic passing through it. In

the previous chapters, we have already seen how Burp Suite works as

Man- in- the-Middle and helps us intercept requests.

In order to make Burp Suite functional, we have to have a complete

configuration at two different ends. One part is configuring the network

proxy in the browser that we saw in the previous chapter. Another part is

ensuring the Burp Suite proxy is configured properly. By default, when we

start the Burp Suite, its proxy listens on port 8080. In this case you don’t

need to do any more configurations. However, if port 8080 is already being

used by some other application on your system, then there would be a port

conflict and the Burp Suite proxy service would fail to start. In this case you

can start the Burp Suite proxy listener on any other custom port that is not

already in use. To do this, navigate to the Proxy tab as shown in Figure 3-1.

https://doi.org/10.1007/978-1-4842-6402-7_3#DOI

28

Then go to the ‘Options’ tab as shown in Figure 3-2. You’ll notice that

the Burp Suite proxy is running by default on localhost and port 8080.

To enable the Burp Suite proxy on the custom port, click the ‘Add’

button as shown in Figure 3-3.

Figure 3-1. Proxy Option in the Burp Suite

Figure 3-2. Proxy options

Chapter 3 proxy, User options, and projeCt options

29

Now you can bind the Burp Suite proxy to any custom port. After

configuring the custom port, you can leave the bind address to default as

‘Loopback only’ or if there are multiple network interfaces on your system,

you can select any one of them using the drop-down menu in the “Specific

address” option.

Once the Burp Suite proxy is configured, we are all set to intercept

application requests. By default, the Burp Suite will intercept only requests.

In any particular scenario, if you are required to intercept responses as

well, then it can be done through additional configuration. To enable

interception of responses, go to Proxy ➤ Options and check the option

“Intercept responses based on the following rules:” as shown in Figure 3-4.

Figure 3-3. Adding new proxy listener

Figure 3-4. Intercepting server responses

Chapter 3 proxy, User options, and projeCt options

30

Through this option, you can specify different rules based on which the

Burp Suite proxy would intercept responses.

Now that we have the browser configuration in place along with the

Burp Suite proxy, we can try to intercept a request. Navigate to “Proxy ➤

Intercept” and Click on “Intercept if off” (to turn on the intercept). Now

in the browser enter any URL and observe the proxy tab in Burp Suite as

shown in Figure 3-5.

You will notice the request you made from the browser is trapped in

Burp Suite. You can now click on Forward if you want to allow rendering

the URL in the browser. You can drop the request and the browser won’t

load the URL. If you turn off the Intercept option, then all requests and

responses will be captured in Burp Suite without any manual intervention.

The right-hand corner also gives an option to give a color to the request if

you want to highlight it for some reason along with comments.

The HTTP History tab shows all the requests that have passed through

Burp Suite so far as shown in Figure 3-6.

Figure 3-5. Intercepting HTTP request

Figure 3-6. HTTP Proxy History

Chapter 3 proxy, User options, and projeCt options

31

The proxy history captures important information like host, method,

URL, parameters (if any), status on whether the request was edited/

tampered, HTTP Status code, Content Length, MIME Type, Extensions,

Title, IP, cookies, and time of the request. This is really a wealth of

information to start with. Burp Suite is also capable of capturing Web

Socket traffic by default and it can be seen in the Web Sockets history tab.

 Burp Suite CA Certificate
We have already seen in the previous chapter that Burp Suite proxy works

as Man-in-the-Middle. While accessing an application over HTTPS

through Burp Suite, the proxy will generate a TLS certificate signed by its

certificate authority and store it on the client system. To use Burp Suite

most efficiently in case of HTTPS, it is advisable to download and install

the Burp Suite CA Certificate as trusted in the browser.

To import and install the Burp Suite CA certificate, first ensure your

Firefox browser is configured to work along with the Burp Suite proxy.

Then in the address bar, type URL “http://burpsuite” as shown in

Figure 3-7.

Notice the right-hand corner for “CA Certificate.” Click on that option

to and download the file “cacert.der” as shown in Figure 3-8.

Figure 3-7. Burp Suite CA Certificate

Chapter 3 proxy, User options, and projeCt options

32

Next, go to Firefox Tools ➤ Options and type ‘cert’ in the search bar as

shown in Figure 3-9.

Click on the option ‘View Certificates’ and then use the ‘Import’

button as shown in Figure 3-10 to select the Burp Suite Certificate that we

previously downloaded.

Figure 3-8. Downloading the Burp Suite CA Certificate

Figure 3-9. Certificate option in Firefox

Chapter 3 proxy, User options, and projeCt options

33

 Platform Authentication, Upstream Proxy
Servers, SOCKS Proxy
 Platform Authentication
There are certain scenarios where the application hosted on the target web

server is protected by authentication. In such a case, we need to configure

the credentials in Burp Suite. In the absence of credentials, Burp Suite won't

be able to access the protected portion of the application and miss out on

potential checks. To configure platform authentication, navigate to “User

Options ➤ Connections ➤ Platform Authentication” as shown in Figure 3-11.

Figure 3-10. Firefox Certificate Manager

Chapter 3 proxy, User options, and projeCt options

34

Click on the ‘Add’ button and a pop-up window will appear as shown

in Figure 3-12.

Figure 3-11. Configuring the Platform Authentication

Figure 3-12. Setting up the Platform Authentication

Chapter 3 proxy, User options, and projeCt options

35

We need to configure the destination host either in the form of an IP

address or hostname, authentication type either of Basic, NTLM V2, NTLM

V1, Digest, Username and Password, and the Domain if applicable. Once

these settings are recorded, Burp Suite can seamlessly access the protected

part of the application with the help of these credentials.

 Upstream Proxy Servers
While testing applications in certain network environments, it may happen

that there’s no direct access to that target application. In such a case, we

might need to connect to a proxy server first and then connect to the

target application. Burp Suite allows easy configuration of upstream proxy

servers. Simply navigate to “User Options ➤ Connections ➤ Upstream

Proxy Servers” as shown in Figure 3-13.

Click on the ‘Add’ button as shown in Figure 3-14, and configure the

required proxy settings.

Figure 3-13. Configuring the Upstream Proxy Servers

Chapter 3 proxy, User options, and projeCt options

36

 SOCKS Proxy
Burp Suite also allows you to make all connection requests through a

SOCKS proxy. To configure Burp Suite with SOCKS Proxy, navigate to

“User Options ➤ Connections ➤ SOCKS Proxy” as shown in Figure 3-15,

and configure the required proxy settings.

Figure 3-14. Adding the upstream proxy rule

Chapter 3 proxy, User options, and projeCt options

37

 Hotkeys
The Burp Suite tool has many tabs, tools, and options that we can work

with. We’ll be discussing them in detail in upcoming chapters. At first,

the Burp Suite tools and tabs might seem overwhelming. But they all get

familiar as you start using them. While all these tools and tabs can be

accessed with the click of a button, at times while working on projects, it is

much easier to use keyboard shortcuts than using mouse clicks.

The Burp Suite tool offers configuration of Hotkeys, which are nothing

but the keyboard shortcuts to access certain tools or tabs. To configure

Hotkeys, navigate to User Options ➤ Misc ➤ Hotkeys as shown in Figure 3- 16.

Figure 3-16. Configuring the Burp Suite Hotkeys

Figure 3-15. Adding SOCKS proxy

Chapter 3 proxy, User options, and projeCt options

38

By default, Hotkeys for common functionalities within the Burp

Suite are already configured. However there’s an option ‘Edit hotkeys’

either to change the default hotkeys or configure hotkeys for additional

functionalities.

The Table 3-1 lists some of the common default hotkeys.

Apart from the hotkeys in the above table, all other standard keyboard

shortcuts for selecting all text, cut, copy, and paste work in the standard way.

Table 3-1. Default Hotkeys in Burp Suite

Hotkey Purpose

Ctrl + r send to repeater

Ctrl + i send to intruder

Ctrl + F Forward intercepted proxy

message

Ctrl + shift + t switch to target

Ctrl + shift + p switch to proxy

Ctrl + shift + i switch to intruder

Ctrl + shift + r switch to repeater

Ctrl + shift + o switch to project options

Ctrl + shift + U UrL decode

Ctrl + shift + B Base-64 decode

Ctrl + B Base-64 encode

Chapter 3 proxy, User options, and projeCt options

39

 Project Backups
While working on projects using Burp Suite, large amounts of data in

the form of requests and responses get generated. It becomes necessary

to save a copy of this data at regular intervals. Instead of doing this task

manually, Burp Suite offers a feature to take a backup of data automatically

after specified intervals.

To enable automatic backups, navigate to User Options ➤ Misc ➤

Automatic Project Backup as shown in Figure 3-17.

Using this feature, we can specify the duration in minutes after which

Burp Suite will automatically trigger the backup.

 Rest API
While we use the Burp Suite mostly for manual application security

testing, there could be so many other tools and use cases that need to work

along with the Burp Suite. There could be other security tools that need to

integrate with Burp Suite or certain custom automation scenarios as well

that need to automatically trigger actions in Burp Suite.

Figure 3-17. Configuring automatic project backups

Chapter 3 proxy, User options, and projeCt options

40

For all such purposes, Burp Suite provides users with a REST API

interface. REST stands for Representational State Transfer and API stands

for Application Programming Interface. REST API is the most popular way

of interconnecting different applications.

To enable the Burp Suite REST API, go to “User Options ➤ Misc” as

shown in Figure 3-18.

To enable the Burp Suite REST API, simply check the option

“Service running.” The REST API will be available by default on

http://127.0.0.1:1337 as shown in Figure 3-19.

Figure 3-18. Setting up the Burp Suite REST API interface

Figure 3-19. The Burp Suite REST API Interface

Chapter 3 proxy, User options, and projeCt options

41

The REST API interface lists all the verbs or methods supported, the

endpoints to be called, the parameters to be passed, and the expected

responses. Now it completely depends on a particular scenario or use case

on how this REST API interface can be utilized.

 Performance Feedback
As like with any other tool, Burp Suite has a provision to capture and send

certain diagnostic data that could be useful in improving Burp Suite’s

performance. This is a completely optional feature, and if enabled it only

collects data about internal functioning and not about specific users or

project data. Burp Suite also provides features to log all exceptions or to

report a specific bug to the Burp Suite team.

To use Performance Feedback options, navigate to User Options ➤

Misc ➤ Performance Feedback as shown in Figure 3-20.

 Project Options
These options include Hostname resolution, Out-of-Scope Requests,

Redirections, TLS Configuration, Session Handling Rules, Cookie Jar. and

Macros.

Figure 3-20. Configuring the performance feedback

Chapter 3 proxy, User options, and projeCt options

42

 Timeouts
Handling requests and responses is the core functionality of Burp Suite.

There could be scenarios like the target application is down, or there are

connectivity issues wherein Burp Suite needs to decide how long it should

wait for a response for a request before dropping it off. These settings are

defined by the timeout values. They are configured by default and can

be left untouched unless there’s an explicit need to change the timeout

values. For changing the default timeout values, navigate to “Project

Options ➤ Connections ➤ Time Outs” as shown in Figure 3-21.

 Hostname Resolutions
Hostname resolution usually happens with the help of either the local

host file or the network DNS. However, Burp Suite allows for custom

hostname resolutions. This might be useful in particular scenarios where

an application hosted on an intranet needs to be accessed using a specific

hostname or URL.

To define custom hostname resolution rules, navigate to “Project

Options ➤ Connections ➤ Hostname Resolutions” as shown in Figure 3- 22.

Figure 3-21. Configuring the request timeouts

Chapter 3 proxy, User options, and projeCt options

43

Click on the ‘Add’ button and then you’ll get a pop-up window to enter

a custom Hostname and associated IP address as shown in Figure 3-23.

Figure 3-23. Adding the hostname resolution rule

Figure 3-22. Configuring the hostname resolution

Chapter 3 proxy, User options, and projeCt options

44

 Out-of-Scope Requests
Once the browser is configured to work along with Burp Suite, Burp Suite

will capture all the HTTP traffic across all tabs by default. This traffic can

be overwhelming and distracting. Out of all the traffic that is captured, we

need to concentrate only on the required target that we are testing. This

can be achieved using a scope that we will be covering in a later chapter.

Burp Suite provides a feature to simply drop all the requests that are out of

scope. This can be done by navigating to “Project Options ➤ Connections

➤ Out-of-scope Requests” as shown in Figure 3-24.

Selecting the “Use custom scope” option we can explicitly add URLs

that we wish to exclude from the scope and drop off the proxy as shown in

Figure 3-25.

Figure 3-24. Configuring the rules for Out-of-Scope requests

Chapter 3 proxy, User options, and projeCt options

45

 Redirections
Automated application scanning requires processing of HTTP redirections.

The scan engine has to take action once it detects any page redirection.

Burp Suite has redirection rules configured by default and those can be

left untouched unless there's an explicit need to change them, or there's

a need for additional configuration of JavaScript-driven redirections. For

configuring redirection rules, navigate to “Project Options ➤ HTTP ➤

Redirections” as shown in Figure 3-26.

Figure 3-25. Defining rules for Out-of-Scope requests

Chapter 3 proxy, User options, and projeCt options

46

 Cookie Jar
Any application scanning / testing tool needs to maintain a repository of

cookies that it will use to manage the ongoing application sessions. The

in-session detection capability is specifically required when performing

automated scanning. Burp Suite stores the application cookies in a

container called “Cookie Jar.” By default the Cookie Jar monitors the

Proxy traffic to extract and store any cookies; however, we can explicitly

instruct Burp Suite to monitor and capture cookies out of other tools like

Scanner, Repeater, Intruder, Sequencer, and Extender. This can be done

by navigating to “Project Options ➤ Sessions ➤ Cookie Jar” as shown in

Figure 3-27.

Figure 3-26. Configuring the redirections

Chapter 3 proxy, User options, and projeCt options

47

 Macros
In the process of application security testing, it may be required to perform

a certain sequence of actions repeatedly. Burp Suite provides an excellent

functionality of macros to achieve this. The macro editor is available at

“Project Options ➤ Sessions ➤ Macros” as shown in Figure 3-28. You can

simply click on the ‘Add’ button and follow the wizard to record steps.

Figure 3-27. Configuring the Cookie Jar options

Figure 3-28. Configuring the macros

Chapter 3 proxy, User options, and projeCt options

48

 Summary
In this chapter we learned about configuring the Burp Suite proxy along

with a CA Certificate. We then glanced at several options like platform

authentication, upstream proxy, socks proxy, etc. Next we explored

several other useful configurations including hotkeys, project backups,

using Burp Suite API, project options, hostname resolutions, scoping, and

redirections.

In the next chapter we’ll explore the Burp Suite dashboard, target tab,

and engagement tools.

 Exercises
• Configure your favorite browser and Burp Suite to work

on a custom proxy port.

• Try to install Burp Suite CA Certificate for Chrome,

Edge and Opera.

• Go through the default Hotkey list and try to configure

additional shortcuts of your choice.

Chapter 3 proxy, User options, and projeCt options

49© Sagar Rahalkar 2021
S. Rahalkar, A Complete Guide to Burp Suite,
https://doi.org/10.1007/978-1-4842-6402-7_4

CHAPTER 4

Dashboard, Target,
and Engagement
Tools
In the last chapter, we saw some basics about configuring the proxy, user

options, and project options. In this chapter we’ll get started with getting

familiar with the Burp Suite dashboard, target, and engagement tools.

 Dashboard
Dashboard, as the name suggests, is that important part of Burp Suite

that essentially summarizes different activities and tasks that are running

across components. Figure 4-1 shows a typical view of the Burp Suite

dashboard.

https://doi.org/10.1007/978-1-4842-6402-7_4#DOI

50

For better understanding, we’ll divide the dashboard into four parts

and try to explain each in detail. For learning purposes, refer to the

numbers from 1 to 4 in Figure 4-1.

The first part of the dashboard shows data around the ongoing scans

as shown in Figure 4-2. The scans can be either passive or active. If there

are multiple scans running, then we can filter them based on their state:

running, paused, or finished. We also get to see a high-level summary of

issues found in the scans. There’s also an option to create a new scan task,

which we will be exploring separately in an upcoming chapter.

Figure 4-1. The Burp Suite Dashboard

Chapter 4 DashboarD, target, anD engagement tools

51

The second part of the dashboard is as shown in Figure 4-3. It might

happen that either a passive scan or an active scan is running, and in either

case the list of vulnerabilities found is highlighted in this section. This

section also highlights information like time when the issue was found, the

issue type, the host or target on which the issue was found, the vulnerable

URL Path, severity of the issue, and the confidence level. Burp Suite may

flag different confidence levels for different issues based on the responses;

however, the issues need manual verification to ascertain their validity.

Figure 4-2. Tasks in the Burp Suite Dashboard

Figure 4-3. Issue activity in the Burp Suite Dashboard

Chapter 4 DashboarD, target, anD engagement tools

52

The third part of the dashboard summarizes the Burp Suite functional

events as shown in Figure 4-4. These mainly include the status of the

proxy service, TLS connection failures (if any), authentication failures,

timeouts, etc. For example, if your system already has port 8080 configured

with some other service, this part of the dashboard will highlight that

proxy service couldn’t be started on port 8080. Or if for any reason the

proxy service stops, then it will also get highlighted here. Overall, it gives

a picture about whether the Burp Suite proxy and related services are

running properly or not.

The last part of the dashboard as shown in Figure 4-5 highlights issue

details. If you wish to see details of any of the issues highlighted during the

passive or active scan, then simply click that issue as shown in Figure 4- 3

and details will be available accordingly. The issue details include the

complete issue description and remediation recommendation, along with

the actual request and response.

Figure 4-4. The event log in the Burp Suite Dashboard

Chapter 4 DashboarD, target, anD engagement tools

53

 Target Tab
Like the Burp Suite dashboard that we saw in the previous section, the

Target tab is an equally important work area. The target tab again has

multiple panes as shown in Figure 4-6.

Figure 4-5. Issue details in the Burp Suite Dashboard

Figure 4-6. Target tab in Burp Suite

Chapter 4 DashboarD, target, anD engagement tools

54

To understand different parts of the target tab, let’s take one part at a
time referring to the numbers 1 to 6 as per Figure 4-6.

The leftmost section in the target tab numbers as ‘1’ in Figure 4-6 is
shown in Figure 4-7. This section creates the hierarchy of the site that we
are browsing through. It lists all the leaf nodes, folders, etc., in the form of a
well-defined tree structure. This helps in getting an idea about how big the
site / application could be or what its contents are in common. It is very
similar to a sitemap.

The next section numbered as ‘2’ as per Figure 4-6 is shown in
Figure 4-8. This section lists down all the HTTP requests that were made
along with other details like the exact host, HTTP method used, target
URL, if the URL had any parameters, HTTP status response code, content
length, MIME type, and the title of the page, if any. Simply going through
this section can help you find interesting URLs especially those having

parameters to inject.

Figure 4-7. Application map / hierarchy

Chapter 4 DashboarD, target, anD engagement tools

55

The next section numbered as ‘3’ as per Figure 4-6 is shown in

Figure 4-9. This section shows the actual HTTP request and response.

You can see the raw request by default but also see the request in form of

parameters. You can also see all of the headers used in the response.

Figure 4-8. List of requests

Figure 4-9. The request and response viewer

Chapter 4 DashboarD, target, anD engagement tools

56

The next section numbered as ‘4’ as per Figure 4-6 is shown in

Figure 4-10. This section shows the list of issues that were found either

during the passive scan or active scan. The issues are classified as per the

severity, with highest severity issues being shown at the top.

The next section numbered as ‘5’ as per Figure 4-6 is shown in

Figure 4-11. This section shows the issue details for any of the selected

issues. It contains the issue description along with remediation

recommendations. In this section it is also possible to view the actual

request and response based on which the issue was highlighted.

Figure 4-10. Issues found in the target application

Chapter 4 DashboarD, target, anD engagement tools

57

The next section numbered as ‘6’ as per Figure 4-6 is shown in

Figure 4-12. Once we configure our browser to work along with the Burp

Suite, a lot of traffic may get captured. Hence to filter out only the required

data, several filters can be used. Some common and useful filters include

filtering by request type, MIME type, status code, extension, etc. This

feature also allows searching for a particular item within the data collected

through proxy.

Figure 4-11. Issue details

Chapter 4 DashboarD, target, anD engagement tools

58

 Engagement Tools
Engagement tools are nothing but small utilities that help in performing

some additional tasks within Burp Suite. In this section we’ll go through

several such engagement tools serving different purposes. To access the

engagement tools, simply right-click the target URL against which you wish

to run the engagement tools as shown in Figure 4-13.

Figure 4-12. Site map filters

Chapter 4 DashboarD, target, anD engagement tools

59

The first engagement tool is the simple search as shown in Figure 4- 14.

This allows users to search for any keyword within the requests or responses

from the target selected.

Figure 4-13. The Burp Suite Engagement Tools

Chapter 4 DashboarD, target, anD engagement tools

60

The next engagement tool is the ‘Find comments’ as shown in
Figure 4-15. This simply crawls through the collected data and finds any
code comments. It is worthwhile to go through these comments as there’s

always a possibility of finding something sensitive in the comments.

Figure 4-15. Comment finder tool

Figure 4-14. Search tool

Chapter 4 DashboarD, target, anD engagement tools

61

The next engagement tool is the ‘Find scripts’ as shown in Figure 4-16. This

tool simply searches for all scripts within the scope of the target being selected.

The next engagement tool is the ‘Find references’ as shown in Figure 4- 17.

This tool lists down all the Burp Suite components where it is able to find

any reference of the selected target. For example, the URL ‘demo.testfire.

net’ appeared in Scanner as well as Target within the Burp Suite as shown

in Figure 4-17.

Figure 4-16. Script searching tool

Chapter 4 DashboarD, target, anD engagement tools

62

The next engagement tool is the ‘Target Analyzer’ as shown in Figure 4- 18.

This utility provides statistics mostly around sizing of the application in

terms of the number of dynamic URLs, number of static URLs, number of

parameters, etc. These statistics help the tester to get an estimate of effort

that will be required to test the application.

Figure 4-17. Reference finder tool

Figure 4-18. The target analyzer

Chapter 4 DashboarD, target, anD engagement tools

63

The next engagement tool is the ‘Content Discovery’ as shown in

Figure 4-19. This tool helps define the spidering or crawling rules. For

instance, this helps define spidering rules when a new target is discovered,

like how much length and breadth of it should be spidered or whether

to spider only files or directories as well. This creates a well-structured

sitemap. This is optional and can be left as the default.

The next engagement tool is the ‘Schedule Task’ as shown in Figure 4- 20.

This is a simple utility to schedule any of the Burp Suite tasks. Using this

you can either pause or resume any of the tasks.

Figure 4-19. The content discovery tool

Chapter 4 DashboarD, target, anD engagement tools

64

The next engagement tool is the ‘Manual Testing Simulator’ as shown

in Figure 4-21. This tool will send out HTTP requests to the target at

random intervals and can help keep the session alive. This can be helpful

in a scenario where the tester is on break and there’s a possibility of the

application session getting timed out due to inactivity.

Figure 4-20. The Burp Suite task scheduler

Chapter 4 DashboarD, target, anD engagement tools

65

 Summary
In this chapter we learned the basics of the Burp Suite dashboard, target

tab, and also discussed several useful engagement tools.

In the next chapter we’ll learn about how the Burp Suite Intruder can

be used to automate attack scenarios like Brute Force, etc.

 Exercises
• Browse through any of the target URLs of choice and

observe the changes in the dashboard and target tab.

• Run each of the engagement tools against the selected

target.

Figure 4-21. Manual testing simulator

Chapter 4 DashboarD, target, anD engagement tools

67© Sagar Rahalkar 2021
S. Rahalkar, A Complete Guide to Burp Suite,
https://doi.org/10.1007/978-1-4842-6402-7_5

CHAPTER 5

Intruder
In the last chapter, we saw some basics about the Burp Suite dashboard,

target, and engagement tools. Now that we have seen the basics of

intercepting requests and interpreting the summary on the dashboard,

we will move ahead with using the Intruder tool. Intruder has advanced

fuzzing capabilities that can be used in various attack scenarios.

 Introduction to Intruder
Before we get into the details of various options within Intruder, it’s

important to understand what Intruder is and how it can be helpful in web

application security testing. Intruder is part of Burp Suite, which can be

used effectively for fuzzing and performing a brute force attack.

There might be an application with a login page wherein the user

needs to enter credentials to proceed further. From a security testing

perspective, it would be worthwhile to test this login page for default

credentials, weak passwords, or lockout mechanisms. This is where

Intruder can come in handy. Given a list of usernames and passwords,

Intruder can try all those combinations to see if any of them match.

We can also consider another scenario wherein we have an interesting

request that we wish to investigate further to check if it’s vulnerable to SQL

injection or cross-site scripting. Again, Intruder can help with this. We can

simply point Intruder to the URL and parameter we wish to test and feed

https://doi.org/10.1007/978-1-4842-6402-7_5#DOI

68

it with a list of SQL injection or cross- site scripting payloads. It will then

try and insert all the payloads we provided into the parameter we want

to test and get us the responses. Once this is done, we need to check the

responses to see if any of the payload actually resulted in exploitation of

the vulnerability.

Thus Intruder tremendously helps in any of the test scenarios where

we have two of the following things:

 1. A URL and a parameter to test

 2. List of payloads to be submitted to the parameter

Now let’s try to understand how we can send a request to Intruder. We

have already seen the target tab and the hotkeys in previous chapters. Any

request can be sent to Intruder in two ways:

 1. Right-click the request you wish to send and click on

‘Send to Intruder’ as shown in Figure 5-1.

Figure 5-1. Send request to Intruder

Chapter 5 Intruder

69

 2. Select the request you want to send and press the

hotkey combination ‘Ctrl + I’.

Now that we have sent the request to Intruder, let’s see what options

need to be configured further.

 Target Tab
The first tab in Intruder is the Target tab. This lists the target URL and port

that we wish to attack through Intruder as shown in Figure 5-2.

There’s also an option to use HTTPS in case the target URL is using a

secure communication channel.

 Positions
The next tab within Intruder is the Positions tab as shown in Figure 5-3.

Figure 5-2. Configuring the attack target in Intruder

Chapter 5 Intruder

70

Whenever a request is sent to Intruder, it scans the request for probable

insertion points and marks them as variables preceding and ending with

the ‘$’ sign. There are three options with regard to selecting the insertion

points:

 1. Add $ – This option is used to add a new insertion

point. Simply point the cursor to the start and end of

the insertion point and click on ‘Add $’.

 2. Clear $ – This option will simply remove all the

insertion points that were either selected manually

or automatically.

 3. Auto $ – This option will scan the request and try
to automatically set insertion points marking them
with the ‘$’ sign.

Once we are sure about the insertion points or parameters that we
want to target, the next step is selecting the type of attack. There are four
different attack types available as shown in Figure 5-4.

Figure 5-3. Configuring the positions in Intruder

Chapter 5 Intruder

71

The four attack types are the following:

 1. Sniper – This type of attack uses a single set of
payloads. In this case Intruder inserts payloads into
each of the insertion points at once and then iterates
through it.

 2. Battering ram – This type of attack uses a single set
of payloads. In this case Intruder iterates through
payloads by inserting the same payload at all

insertion points at once.

 3. Pitchfork – This type of attack uses multiple sets

of payloads. In this case Intruder uses different

payload for each of the insertion points.

Figure 5-4. Selecting the attack type in Intruder

Chapter 5 Intruder

72

 4. Cluster bomb – This type of attack uses multiple

sets of payloads. For each of the defined insertion

points, there’s a different payload set. Intruder

iterates through each of the payload sets and all

permutations of payload combinations are then

tested. Due to the number of possible permutations

and combinations in the case of a cluster bomb, a

large number of requests would be generated.

Choosing the correct attack type depends on the attack scenario and

the number of insertion points that need to be targeted simultaneously.

See Figure 5-5.

Once the payload positions are configured and type of attack is

selected, we can move ahead to configuring the actual payloads.

Figure 5-5. Attack type and positions in Intruder

Chapter 5 Intruder

73

 Payloads
Payload is the data that Intruder would iteratively insert in the selected

insertion points. Payloads can differ widely based on the scenario or

the attack that we are targeting. In the case of the login page that we are

discussing, the payload would be a list of probable passwords. Burp Suite

provides various payload types and the most commonly used one is the

list. You can create your own list by adding elements one at a time as

shown in Figure 5-6 or you can also select a predefined list that Burp Suite

offers readily.

Burp Suite has several predefined lists in the form of usernames,

passwords, short words, fuzzing payloads for SQL injection and cross-site

scripting, directories, extensions, etc. Depending on the type of attack,

we can either use the predefined list or create our own list as shown in

Figure 5-7.

Figure 5-6. Selecting payloads in Intruder

Chapter 5 Intruder

74

Now that we have configured the positions as well as the payloads, we

can launch the attack by clicking the ‘Start attack’ button. A new window

will pop up as shown in Figure 5-8, and the payloads we provided will be

submitted in insertion points we defined earlier – one request at a time.

Figure 5-7. Selecting Intruder payloads from various options

Chapter 5 Intruder

75

From Figure 5-8, we can see that Intruder sent five requests each with

a different payload. Upon observing and comparing the content length,

we can notice that for payload ‘admin’ the response was different. Hence

it could be the password for the admin user we are trying to log in. We can

then easily verify this by manually logging into the target application.

Figure 5-8. Intruder attack results

Chapter 5 Intruder

76

 Options
The last part of Intruder is the ‘Options’ tab. We have already seen that

Intruder works as a fuzzing tool or it can perform a brute force attack.

This implies the Burp Suite engine would have to send a large number

of requests, await the responses, and then process them based on a

predefined ruleset. The ‘Request Engine’ option as shown in Figure 5-9

helps configure the number of parallel threads, number of retries on the

network failure, and pause before the retry duration. The values as shown

in Figure 5-9 are default and preconfigured. However depending on

specific use cases, these values can be tailored accordingly.

Intruder sends a large number of requests to the target along with

several permutations and combinations of payloads. The responses can be

overwhelming to go through. This is where the ‘Grep Match’ feature comes

in handy as shown in Figure 5-10. With this feature we can configure the

Intruder engine to flag or highlight interesting responses having keywords

Figure 5-9. Intruder configuration options

Chapter 5 Intruder

77

like error, exception, illegal, fail, stack, access, directory, etc. If Intruder

finds these keywords in any of the responses, they will be explicitly

highlighted, making the analysis much easier.

 Summary
In this chapter we learned about using the Intruder tool to perform fuzzing

and brute force attacks. We started off the chapter by learning how to

send requests to Intruder, configuring positions, payloads, and finally

launching the attack and interpreting the results. We also saw some of the

configurable options for Intruder.

In the next chapter we’ll see some additional useful tools within the

Burp Suite like Repeater, Comparer, Decoder, and Sequencer.

Figure 5-10. Extracting relevant data from Intruder results

Chapter 5 Intruder

78

 Exercises

 1. Use Intruder to detect cross-site scripting

vulnerability in any of the vulnerable applications.

 2. Use Intruder to detect SQL injection vulnerability in

any of the vulnerable applications.

Chapter 5 Intruder

79© Sagar Rahalkar 2021
S. Rahalkar, A Complete Guide to Burp Suite,
https://doi.org/10.1007/978-1-4842-6402-7_6

CHAPTER 6

Repeater, Comparer,
Decoder, and
Sequencer
In the last chapter we learned about how Intruder can be used for fuzzing

and performing brute force attacks. In this chapter we will look at some

more Burp Suite tools like Repeater, Comparer, Decoder, and Sequencer.

 Repeater
Repeater, as the name suggests, is a simple tool within Burp Suite that

helps in replaying requests. We have already seen in previous chapters

that when we browse an application through Burp Suite, a large number of

requests are captured. Not all of the captured requests can be helpful for

further testing or analysis. However, there could be a handful of requests

with interesting parameters that are worth spending time on for further

analysis. Repeater helps precisely in this scenario. If we find a particular

request worth investigating further, we can simply send it to Repeater.

Once in Repeater, we can play around with the request the way we want;

tamper its headers, parameters etc.; and then send the request to the

application and see how it responds. Repeater is a very simple yet powerful

tool and has an easy interface as shown in Figure 6-1.

https://doi.org/10.1007/978-1-4842-6402-7_6#DOI

80

The Repeater tab can be directly accessed in Burp Suite. By default it
opens up empty and we need to feed it with an appropriate HTTP request
data. To specify the target, click on the ‘edit’ icon next to ‘Target’ and a new
window will pop up as shown in Figure 6-2, where we can enter Host and

Port details we wish to interact with.

Figure 6-1. The Repeater console

Figure 6-2. Configuring the target details in Repeater

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

81

The more convenient way of sending data to Repeater is as shown in

Figure 6-3. Simply right-click any of the requests that you wish to send

to Repeater for further analysis and click on ‘Send to Repeater’. Another

alternative is jto ust select the request to be sent to Repeater and press the

hotkey ‘Ctrl + R’.

The request to be investigated is now sent to Repeater as shown in

Figure 6-4. The request tab contains the HTTP request we selected and the

response tab is blank as we haven’t sent the request yet.

Figure 6-3. Sending HTTP request to Repeater

Figure 6-4. Raw HTTP request in Repeater

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

82

The Request window has several tabs within as shown in Figure 6-5.

One of the tabs is ‘Params’, which lists all the parameters associated by

default with the request we loaded. We can edit the existing parameters,

add new parameters, or even delete any of the existing parameters. It

is always interesting to see how the application responds to all of these

parameter edits.

The next tab is the ‘Headers’ tab as shown in Figure 6-6, which lists all

the default headers to be sent along with the request. Again, all the header

values are editable: we can edit the existing values, add new header fields,

and remove any of the existing header fields as well.

Figure 6-5. Parameter tab in Repeater

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

83

Once we set the required parameters and header values, we can click

on the ‘Send’ button as shown in Figure 6-7 and we get a response from the

application, which is shown in the ‘Response’ tab.

Figure 6-6. Headers tab in Repeater

Figure 6-7. Response tab in Repeater

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

84

In this case the response received was HTTP status 302, which means

the page is meant to redirect. We can click the ‘Follow redirection’ option

and then get the final response as shown in Figure 6-8.

The response shown here is raw text and at times can be difficult

to interpret. Hence we can click the ‘Render’ tab within the ‘Response’

section to visually load the response as if we were seeing it in the browser,

as shown in Figure 6-9.

Figure 6-8. Response tab in Repeater

Figure 6-9. Rendering the response in Repeater

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

85

Repeater also provides an option to view the response in the real

browser. To do this, simply right-click on the response that you wish to

see in the browser, and click on ‘Show response in browser’ as shown in

Figure 6-10.

Burp Suite will pop up another window as shown in Figure 6-11, with a

link that needs to be copied into the browser.

Once the link generated by Burp Suite is copied in the browser, the

response gets rendered accordingly.

Figure 6-10. Viewing the response in the Browser

Figure 6-11. Show response in the Browser

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

86

 Comparer
In the last section we got familiar with the Repeater tool. Once the request

is sent to Repeater, there is wide scope to tamper the request parameter or

header fields and send it across to the target application. The responses in

each case may vary depending on what parameters or header fields that

were set in the request. There could be multiple responses, each of them

looking quite similar. This is where the Comparer tool comes in handy.

Comparer simply compares content head to head and highlights differences

if there are any. To send a response to Comparer, simply right- click the

response and click on ‘Send to Comparer’ as shown in Figure 6- 12.

Now as the Comparer needs at least two text blocks to compare, we

send another response to Comparer as shown in Figure 6-13.

Figure 6-12. Sending Repeater response to the Comparer

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

87

We can now navigate to the Comparer tab as shown in Figure 6-14 and

see both responses that we sent from Repeater earlier.

Now since we need to find differences in words from both of the

responses, we click on the ‘Words’ button and get a new window opened as

shown in Figure 6-15.

Figure 6-13. Sending Repeater response to the Comparer

Figure 6-14. The Comparer console

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

88

Comparer will now highlight the text changes in two of the parallel

windows.

 Decoder
Web applications commonly use various encoding schemes like Ascii,

HTML, Base 64, etc. From a security testing perspective, it's very common

to encounter such encoded strings during testing. Burp Suite Decoder is a

simple utility that can encode or decode text in a format of a URL, HTML,

Base 64, ASCII hHx, Hex, Octal, Binary, and Gzip. Simply navigate to the

Decoder tab as shown in Figure 6-16 and enter the text that needs to be

decoded.

Figure 6-16. Decoding Base 64 data

Figure 6-15. Comparing the responses in the Comparer

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

89

In this case we entered a Base 64 encoded value and then clicked

on ‘Decode as’ Base 64 to get the decoded output in the next window as

admin:admin.

We can also use this tool to encode any plain text as shown in Figure 6- 17.

We simply entered the plain text <script>alert(“XSS”)</script> and

then clicked on ‘Encode as’ the URL to get the encoded output in the next

window.

 Sequencer
Web applications depend a lot on tokens, session IDs, or other such

unique and random identifiers. From a security perspective, it is important

to test the randomness or uniqueness of these tokens and identifiers. If the

tokens aren’t strong and random enough, then attackers can easily brute

force them and get unauthorized access.

Burp Suite Sequencer is a tool that helps us test the strength of

application tokens. We can send any request to Sequencer just by right-

clicking the request and clicking on ‘Send to Sequencer’ as shown in

Figure 6-18.

Figure 6-17. Encoding data using the Burp Suite Decoder

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

90

We can now navigate to the Sequencer tab as shown in Figure 6-19.

We can clearly see the Sequencer has automatically parsed the request

and selected the JSESSIONID token present in the cookie. This token

would now be analyzed for its strength and randomness. To start the test,

simply click on ‘Start live capture’ and a new window will open up as

shown in Figure 6-20.

Figure 6-19. The Burp Suite Sequencer

Figure 6-18. Sending HTTP request to Sequencer

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

91

The live capture starts and we can pause or resume it any time we

wish. However, it’s important to note that to effectively analyze the token

strength, a sample size of at least 100 should be considered. Once the

capture is complete, Sequencer shows us the result, which was found to

be “excellent” in this case. So the token JSESSIONID is strong, unique,

random, and hence safe to use.

Sequencer also allows us to load a sample of tokens manually and

then analyze them. To do this, simply navigate to the ‘Manual load’ tab in

Sequencer as shown in Figure 6-21.

Figure 6-20. Session ID analysis using Sequencer

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

92

We can now copy and paste a sample of tokens and then analyze them

accordingly.

 Summary
In this chapter we saw how to tamper and replay requests using Repeater,

then perform a head-to-head comparison of responses using Comparer.

We then learned about the Decoder tool, which helps encode and decode

text in various formats. Lastly we got familiar with the Sequencer tool,

which can be used to assess the effectiveness of tokens.

In the next chapter, we’ll learn about some additional useful tools

within the Burp Suite like Infiltrator, Collaborator, Clickbandit, and CSRF

PoC Generator.

Figure 6-21. Manually loading tokens for analysis

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

93

 Exercises

 1. Send any of the requests to Repeater and try to

tamper with its parameters and header fields.

Then send each of the requests and analyze the

responses.

 2. Compare the multiple responses using Comparer.

 3. Use the Decoder tool to encode text in URL, HTML,

and Base 64 formats.

 4. Assess the token strength of the token from any of

the requests captured.

Chapter 6 repeater, Comparer, DeCoDer, anD SequenCer

95© Sagar Rahalkar 2021
S. Rahalkar, A Complete Guide to Burp Suite,
https://doi.org/10.1007/978-1-4842-6402-7_7

CHAPTER 7

Infiltrator, Collaborator,
Clickbandit, and
CSRF PoC Generator
In the last chapter we looked at some Burp Suite tools like Repeater,

Sequencer, Decoder, and Comparer. In this chapter we will continue to

explore more useful tools like Infiltrator, Collaborator, Clickbandit, and

CSRF PoC (proof-of-concept) generator.

 Infiltrator
Burp Suite Infiltrator is a tool that instruments the target web application

so that the vulnerability detection by the Burp Suite scanner becomes

more efficient and accurate. Infiltrator makes irreversible changes in the

code and essentially hooks into the target application. This way, it helps

the Burp Suite scanner get more visibility into the application code and

potentially detect unsafe calls and functions.

https://doi.org/10.1007/978-1-4842-6402-7_7#DOI

96

As the Infiltrator makes irreversible changes to the target application

code, it is advisable to run it only for a test instance and not on a

production instance. Currently, the Infiltrator is supported if the target

application is using any of the following technologies:

• Java

• Groovy

• Scala

• Other JVM language (JRE versions 1.4 - 1.8)

• C#

• Visual Basic

• Other .Net language (.Net versions greater than 2.0)

To get started with the Infiltrator, click on the Burp menu and then

select ‘Burp Infiltrator’ as shown in Figure 7-1.

A new window will pop up as shown in Figure 7-2. This wizard will

help us generate the Infiltrator agent.

Figure 7-1. Navigating to the Burp Suite Infiltrator

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

97

We need to select the technology our application is using like Java or

.NET and click on Next. Then the wizard will ask the location where we

wish to save the Infiltrator agent, as shown in Figure 7-3.

Figure 7-2. Generating the Infiltrator agent

Figure 7-3. Generating the Infiltrator agent

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

98

Next, the wizard will simply generate the Infiltrator agent and save it to

the location we selected earlier, as shown in Figure 7-4.

The important thing to note here is the Infiltrator agent should be in

the same directory where the target application is located as shown in

Figure 7-5.

Now that both the Infiltrator agent and the target application are in the same

directory, we can open a command prompt and type command ‘java -jar burp_

infiltrator.jar’ as shown in Figure 7-6.

Figure 7-4. Generating the Infiltrator agent

Figure 7-5. Newly generated Infiltrator agent

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

99

The Infiltrator will now run and modify the Java applications in the

directory. This is a one-time procedure, and the application needs to

restart once the patched code is available. Burp Infiltrator also makes use

of Collaborator, which we will be seeing in the next section.

 Collaborator
Collaborator is a tool provided by Burp Suite that helps in attacks like

Server Side Request Forgery (SSRF) or any of the out-of-band attacks. The

Burp Suite Collaborator service helps by generating random payloads

in the form of hostnames. These payloads can then be used as part of

requests in various attack scenarios. If the attack is successful, then an

interaction occurs between the target application server and the Burp

Collaborator server. Then using the Burp Collaborator client, we can poll

and check if any such interactions have happened.

To get started with the Burp Collaborator, simply click on the Burp

menu and click “Burp Collaborator client’. A new window will pop up as

shown in Figure 7-7.

Figure 7-6. Executing the Infiltrator agent

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

100

Now click on the ‘Copy to clipboard’ button and paste its value in the

notepad as shown in Figure 7-8.

Figure 7-7. The Burp Suite Collaborator client

Figure 7-8. Configuring the Collaborator client

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

101

The random value generated by the Burp Collaborator can now

be used in payloads in requests sent as part of an attack. The Burp

Collaborator client automatically polls the Collaborator server after every

60 seconds to check if there has been any interaction. This duration can be

customized or you can simply click on the ‘Poll now’ button to manually

check for Collaborator interactions.

 Clickbandit
Clickjacking is one of the very common attacks on web applications. Using

clickjacking, the attacker tries to trick the user into clicking something

different than what the user sees visually. If successful, the attacker can

get access to confidential information. Clickjacking is also known as a UI

redressal attack, as the attacker tries the deceptive technique of creating a

fake UI and then tricks the victim into executing malicious actions or events.

Burp Suite offers a utility called ‘Clickbandit’ that significantly

simplifies the process of generating Proof-of-Concept for an application

that is vulnerable to Clickjacking.

To get started with the Clickbandit tool, simply go to the Burp menu and

click on ‘Burp Clickbandit’. A new window will pop up as shown in Figure 7-9.

Figure 7-9. The Burp Suite Clickbandit tool

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

102

This window has steps listed that we need to follow in order to

generate the Clickjacking Proof-of-Concept. The first step is to click on

the ‘Copy Clickbandit to clipboard’ button. The next step is to open the

browser and press function key F12 to go into the browser console as

shown in Figure 7-10.

To proceed further, we need to paste the Clickbandit code into this

browser console, which we copied earlier as shown in Figure 7-11.

Figure 7-10. Target for Clickbandit

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

103

Once the code is copied into the browser console, simply press Enter

and you’ll notice the Burp Clickbandit UI appears on top of the page as

shown in Figure 7-12.

Figure 7-11. Copying the Clickbandit code in browser console

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

104

Now we need to perform and record the actions that we wish to

include as part of the Clickjacking attack. Once all the required actions are

done, click on the save button and you will be able to save a file named

‘clickjacked.html’ as shown in Figure 7-13.

Figure 7-12. The Clickbandit UI

Figure 7-13. Saving the Clickbandit code

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

105

You can now open the file ‘clickjacked.html’ separately in the browser

as shown in Figure 7-14.

You’ll notice that the actions you captured earlier are now being

replayed, and if you click, then you get a message ‘You’ve been

clickjacked!’ as shown in Figure 7-15.

Figure 7-14. Executing the Clickbandit code

Figure 7-15. Executing the Clickbandit code

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

106

 CSRF
Cross-Site Request Forgery, commonly known as CSRF, is another type of

attack on web applications that exploits session management flaws to trick

the victim into performing unwanted actions. Burp Suite has a utility that

makes it very easy to generate Proof-of-Concept for CSRF vulnerability.

We first need to identify and confirm the request for which we wish to

generate the CSRF Proof-of-Concept code. Once the request is finalized,

simply right-click the request, go to ‘Engagement tools’, and click on

‘Generate CSRF PoC’ as shown in Figure 7-16.

Now, a new window will pop up as shown in Figure 7-17, which has the

POST request along with the CSRF code.

Figure 7-16. Sending request to CSRF PoC generator

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

107

It is now easy to modify the CSRF code as required and then we can

either directly test it in the browser or generate a separate HTML file. To

test the CSRF code in the browser, click on the ‘Test in browser’ button,

and a new window will pop up as shown in Figure 7-18.

Figure 7-17. CSRF PoC generator

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

108

Now click on the ‘Copy’ button, open the browser, and paste into the

address bar as shown in Figure 7-19.

Figure 7-18. CSRF PoC generator

Figure 7-19. Verifying the CSRF PoC in browser

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

109

Now click on the button ‘Submit request’, and the CSRF code will get

executed as shown in Figure 7-20.

 Summary
In this chapter we learned about using Intruder for instrumenting

applications and increasing detection capabilities of the Burp Scanner.

Then we saw the Burp Collaborator, which can be effectively used in out-

of- band attacks like SSRF. We then looked at the Clickbandit tool that helps

generate proof-of-concept code for applications vulnerable to clickjacking;

and lastly we glanced through the CSRF PoC generator, which helps us

quickly generate and test proof-of-concept code for Cross-Site Request

Forgery attacks.

In the next chapter, we’ll see the automated scanning and reporting

capabilities of the Burp Suite.

Figure 7-20. Verifying the CSRF PoC in browser

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

110

 Exercises

 1. Use Infiltrator to instrument any of your target Java

applications.

 2. Find a vulnerable CSRF request and try to generate a

proof-of-concept using the CSRF PoC generator.

 3. Generate a clickjacking proof-of-concept code for

your target web application.

Chapter 7 InfIltrator, Collaborator, ClICkbandIt, and CSrf poC Generator

111© Sagar Rahalkar 2021
S. Rahalkar, A Complete Guide to Burp Suite,
https://doi.org/10.1007/978-1-4842-6402-7_8

CHAPTER 8

Scanner
and Reporting
In the last chapter, we learned about various tools like Infiltrator,

Collaborator, Clickbandit, and CSRF PoC generator. In this chapter,

we’ll explore the features and capabilities of the Burp Suite scanner for

automated vulnerability detection.

 Scan Types
So far throughout the book, we have seen several capabilities of Burp Suite

that are useful for manual testing. However, Burp Suite also provides a web

application vulnerability scanner that automates the process of finding

vulnerabilities. This is indeed a very feature-rich scanner and is capable of

detecting potential web vulnerabilities.

The Burp Suite offers two types of scans: Passive Scan and Active

Scan. The passive scan runs in the background, by default, while we

browse an application through Burp Suite. A passive scan simply monitors

the traffic and tries to list vulnerabilities like missing security flags in

cookies, missing security headers, traffic being sent over unencrypted

communication channels, etc. Thus the passive scanner doesn’t attempt

to inject any payloads into any of the insertion points, but rather just

highlight vulnerabilities that can be found only by passively monitoring

ongoing requests and responses. The active scan goes a step further and

https://doi.org/10.1007/978-1-4842-6402-7_8#DOI

112

tries to insert payloads into insertion points and check if parameters are

vulnerable. Active scanning is a more intense technique; however, it does a

better job in finding vulnerabilities that a passive scanner may never find.

We’ll now look further into the details of performing an active scan using

Burp Suite.

 Crawl and Audit
Active scanning is usually a two-step process. The first step involves

crawling or spidering the application and the second step involves

attacking the parameters with payloads. The Burp Suite scanner offers two

options: either crawl and audit or just crawl. To start a new audit, go to the

Dashboard tab and click on ‘New scan’ as shown in Figure 8-1.

A new window will pop up as shown in Figure 8-2. We select the option

‘Crawl and audit’. Next, we need to specify the target URL that we wish to

scan. In this case, we enter the target URL as ‘demo.testfire.net’.

Figure 8-1. New scan task

Chapter 8 SCanner and reporting

113

Next is the scoping section as shown in Figure 8-3. The URL’s that we

wish to be part of the audit need to be specified under the ‘Included URL

prefixes’ tab, and if there are any particular URLs that we don’t want to

be included in the audit, then those need to be explicitly added under

‘Excluded URL prefixes.’

Figure 8-2. New scan configuration

Chapter 8 SCanner and reporting

114

Now that we have configured the target URL, we just need to click

on ‘OK’ and the crawl and audit activity starts as shown in Figure 8-4.

However, it's important to note that this activity will start with a default

scan configuration.

Figure 8-3. New scan configuration

Figure 8-4. Scan tasks in progress

Chapter 8 SCanner and reporting

115

In the next section, we’ll be looking at customizing the scan

configuration.

 Scan Configuration
In the previous section, we configured and initiated a crawl and audit

task on a target URL but with default configuration settings. In this

section, we’ll take a look at how the scan configuration can be tailored to

suit our needs. To customize the scan configuration, click on the ‘Scan

configuration’ tab as shown in Figure 8-5.

The scan configuration allows us to customize crawl settings as well as

the audit settings. We’ll first go through the crawl configuration settings.

Click on the ‘New’ button and select ‘Crawl’. A new window will pop up as

shown in Figure 8-6.

Figure 8-5. Scan configuration

Chapter 8 SCanner and reporting

116

The crawl optimization configuration allows us to set the maximum
link depth up to which we wish to crawl along with the crawl strategy,
which is set to normal by default. We can change the crawling strategy
to fast by selecting it through the drop-down menu, depending on the
particular scan scenario.

Next, we can configure the crawl time limits as shown in Figure 8-7.
If the target application is large and complex, then it might take a lot of
time for crawling. We can set a limit to this by defining the maximum time
that we wish to spend on crawling the application. We can also limit the
crawl by the number of locations discovered or the maximum number of

requests made during the crawl function.

Figure 8-7. Crawl limit configuration

Figure 8-6. Crawl optimization settings

Chapter 8 SCanner and reporting

117

The next configuration setting is related to the login functions as

shown in Figure 8-8. It might happen that the target application has a login

function. In such a case, Burp Suite will even try to register a new test user.

The next configuration setting is related to handling application errors

during a crawl function as shown in Figure 8-9. There could be multiple

reasons behind application errors, like an authentication failure, network

problems, etc. This configuration setting tells the Burp Suite scanner

to pause the crawl and audit function if there are a certain number of

consecutive application errors.

Figure 8-8. Login function configuration

Chapter 8 SCanner and reporting

118

The next set of configuration settings are miscellaneous as shown in

Figure 8-10. This includes settings on whether we want the Burp Suite scanner

to automatically submit forms or if we wish to customize the user- agent if we

want to fetch robots.txt and the sitemap, etc.

Figure 8-9. Configuring application errors during Crawl

Chapter 8 SCanner and reporting

119

The next set of configuration settings are related to the audit function.

To start with, the first audit configuration setting is ‘Audit Optimization’ as

shown in Figure 8-11. This setting allows us to configure audit speed and

accuracy. The audit speed can be set to either fast, normal, or thorough,

while the audit accuracy can be set to normal or to minimize false

positives.

Figure 8-10. Miscellaneous crawl configuration

Chapter 8 SCanner and reporting

120

The next audit configuration setting is related to the type of issues

reported as shown in Figure 8-12. The Burp Suite scanner detects a variety

of issues. However, during a particular test scenario, it might so happen

that only a particular type of issue needs to be tested. In such a case, it

won’t be worth spending time on testing all other types of issues. Hence

this configuration setting allows us to customize the type of issues that we

want to be tested during the scan.

Figure 8-11. Audit optimization configuration

Chapter 8 SCanner and reporting

121

The next audit configuration setting is related to handling application

errors during the audit function, as shown in Figure 8-13. We have already

seen a similar configuration setting for the crawl function. This setting

helps configure the number of failures after which the audit task would be

paused.

Figure 8-12. Type of issues to be detected during an audit

Chapter 8 SCanner and reporting

122

The next audit configuration setting is related to the type of insertion

points that we want the Burp Suite scanner to attack during the audit

function as shown in Figure 8-14. Selecting all the types of insertion points

will increase the possibility of finding more vulnerabilities, but at the same

time it will also take longer to finish the audit.

Figure 8-13. Configuring application errors during Audit

Figure 8-14. Configuring insertion point types

Chapter 8 SCanner and reporting

123

All the crawl and audit scan configuration settings we saw so far are

set to optimal values by default. We can quickly trigger a new crawl and

audit task using the default scan configuration. However, depending on

particular scan scenarios, it might be required for you to customize the

scan configuration settings.

 Application Login
The next important scan configuration setting is configuring the

‘Application login’ as shown in Figure 8-15. While scanning the target

application, we may come across certain pages that do not require

authentication, while there could be a few pages that can be accessed only

after authentication. If we want the Burp Suite scanner to audit the pages

behind authentication as well, then we need to provide credentials.

Figure 8-15. Configuring application login

Chapter 8 SCanner and reporting

124

Credentials can be added by simply clicking on the ‘New’ button and

providing the required username and password.

 Resource Pools
The last scan configuration option is “Resource Pool” as shown in

Figure 8- 16. The resource pool helps define the system resources that will

be used across multiple tasks. By default, the resource pool is created,

which allows for a maximum of 10 concurrent requests. We can leave this

to default unless we want to do multitasking within the same Burp Suite

project.

Figure 8-16. Configuring resource pools

Chapter 8 SCanner and reporting

125

 Reporting
Reporting the issues in a presentable format is as important as finding

them. Burp Suite offers an excellent reporting feature that helps us

generate a report in the required format with all relevant extract about

the vulnerability. The report, once generated, can be shared with relevant

stakeholders for further action.

Once the crawl and audit task is complete, all the issues that were

found during the scan are listed in the ‘Issue activity’ pane as shown in

Figure 8-17. We now simply need to select the issues that we wish to be

part of the report. To do this, simply right-click the issue that needs to be

reported and click ‘Report issue.’

The Burp Suite reporting wizard will now ask us about the format of

the report we wish to have as shown in Figure 8-18. Currently, the Burp

Suite supports generating reports in HTML or XML formats.

Figure 8-17. Exporting issues to report

Chapter 8 SCanner and reporting

126

Next, we need to select which details about the issue are required in

the report as shown in Figure 8-19.

W then need to select whether we want full HTTP requests and

responses for the reported issues or only the relevant extracts as shown in

Figure 8-20.

Figure 8-18. Selecting format for the report

Figure 8-19. Selecting type of details to be included in the report

Chapter 8 SCanner and reporting

127

Lastly, we need to select the name and location where we want the

report to be generated along with the title of the report as shown in

Figure 8-21.

Figure 8-20. Selecting requests and response formats for report

Chapter 8 SCanner and reporting

128

Now the Burp Suite reporting wizard will generate a vulnerability

report as shown in Figure 8-22.

Figure 8-21. Configuring location where the report will be saved

Figure 8-22. Generating the report

Chapter 8 SCanner and reporting

129

The generated report can them be viewed in any of the browsers as

shown in Figure 8-23. The report shows a summary of findings based on

confidence as well as severity.

The report also shows vulnerability in detail along with the relevant

request and response as shown in Figure 8-24.

Figure 8-23. Viewing the report in the browser

Chapter 8 SCanner and reporting

130

 Summary
In this chapter, we learned about the Burp Suite scanner and how it can be

customized to effectively find application vulnerabilities in an automated

manner.

In the next chapter we’ll see how to use the Burp Suite Extender to

install additional plugins and enhance the capabilities.

 Exercises

 1. Scan any of the target web applications using the

crawl and audit function of Burp Suite.

 2. Generate an HTML report for the issues found

during the scan.

Figure 8-24. Vulnerability details in the report

Chapter 8 SCanner and reporting

131© Sagar Rahalkar 2021
S. Rahalkar, A Complete Guide to Burp Suite,
https://doi.org/10.1007/978-1-4842-6402-7_9

CHAPTER 9

Extending Burp Suite
In the last chapter, we learned about the Burp Suite scanner, which

effectively helps in automating vulnerability detection. In this chapter,

we’ll be exploring the Burp Suite extender feature through which we can

further enhance the capabilities of Burp Suite.

 Burp Suite Extensions
So far, throughout the book, we have seen various capabilities of Burp

Suite for manual as well as automated vulnerability detection. We have

explored various tools and utilities within Burp Suite that can be leveraged

for specific tasks.

Burp Suite has now evolved more like a platform that is flexible enough

to accommodate external functionalities and utilities. As we have already

seen, Burp Suite does provide numerous capabilities out of the box.

However, these capabilities can be extended further using extensions.

The Burp Suite Extensions come in various forms as below:

Default extensions – These extensions are listed

by default, out of the box in any of the Burp Suite

setups, and can be installed through the Burp Suite

Extender.

Pro extensions – These are extensions that

can be installed and run only on the Burp Suite

Professional Edition.

https://doi.org/10.1007/978-1-4842-6402-7_9#DOI

132

Regular extensions – These are extensions that can

be installed and run on the Burp Suite Community

Edition as well as the Professional Edition.

Other extensions – Burp Suite has opened up

APIs that developers can write with new custom

extensions. Such extensions are not part of the

official extension store but need to be downloaded

and installed manually.

 BApp Store
The easiest way to install an extension in Burp Suite is through the BApp

Store. To access the BApp Store, simply navigate to Extender ➤ BApp Store

as shown in Figure 9-1.

The BApp Store has a very easy-to-use interface with two panes as

shown in Figure 9-2.

Figure 9-1. BApp Store

Chapter 9 extending Burp Suite

133

The left pane lists all the available extensions along with the following

information:

• Name of the extension,

• Whether it is currently installed or not,

• Rating of the extension,

• The popularity of the extension,

• Date when the extension was last updated,

• Whether the extension is only available for use with the

Burp Suite Professional Edition or if it can be used in

the Community Edition as well.

The right pane details out information for any of the extensions we

select from the left pane. This includes information like the following:

• Details on what the extension is about and how it can

be used

• Author

• Extension version

Figure 9-2. BApp Store

Chapter 9 extending Burp Suite

134

• Source

• Date when the extension was last updated

• Rating and popularity of the extension

• Install button to install and add the extension to

current Burp Suite setup

It is important to note that new extensions keep on getting added to the

BApp Store on a regular basis. To ensure the list of extensions is the latest

one, simply click on the ‘Refresh list’ button as shown in Figure 9-3.

Some of the useful extensions from the BApp Store are as follows:

• Active Scan++ – This extension is developed to further

enhance the Burp Suite’s passive and active scanning

capabilities.

• Additional Scanner Checks – This extension adds a

few more checks to a passive scanner like DOM-based

XSS etc.

• CSRF Scanner – This extension helps passively scan for

Cross-Site Request Forgery (CSRF) vulnerabilities.

Figure 9-3. Browsing through extensions in BApp Store

Chapter 9 extending Burp Suite

135

• Discover Reverse Tabnabbing – This extension

searches the HTML code for possible Tabnabbing

vulnerabilities.

• Error Message Checks – This extension helps passively

detect any error or exception messages that may

contain sensitive information like stack traces.

• Headers Analyzer – This extension passively checks

the response headers and flags all missing security

headers like X-XSS-Protection, X-Frame-Options, and

many more.

• HTML5 Auditor – This extension checks if any of the

potentially unsafe HTML5 functions have been used

like storing sensitive data on client-side storage, client

geolocation, etc.

• J2EEScan – This extension helps improve test coverage

for J2EE applications as well as adds additional test

cases.

• Java Deserialization Scanner – This extension adds

to the Burp Suite ability to detect Java Deserialization

vulnerabilities.

• JavaScript Security – This extension further adds several

passive checks related to JavaScript security like DOM

issues, Cross-Origin Resource Sharing (CORS), etc.

• Retire.js – This extension passively monitors the traffic

and detects the use of any vulnerable third-party library

along with necessary CVE details.

• SameSite Reporter – This extension checks if the

SameSite attribute has been set in cookies or not.

Chapter 9 extending Burp Suite

136

• Software Version Reporter – This extension passively

parses the traffic and reports all the software version

details. This information can further help in application

enumeration.

• Upload Scanner – This extension adds capabilities

to Burp Suite to detect file upload functionality and

related vulnerabilities.

• Web Cache Deception Scanner – This extension scans

the application for the presence of any Web Cache

Deception vulnerability.

• CSP Auditor – This extension scans the response

headers and checks if Content Security Policy (CSP)

has been configured correctly or not.

• CVSS Calculator – This extension facilitates scoring

vulnerabilities using CVSS methodology from within

Burp Suite.

 Manual Installation
In the previous section, we saw how we could browse through, select,

and install extensions using the BApp Store. Not all extensions that are

written are available in the BApp Store. There could be extensions written

by individual authors, published on different websites like GitHub, etc.

In such a scenario where the extension is not present in the BApp Store,

we need to download it separately and install it manually. To install

extensions manually, navigate to the ‘Extensions’ tab within Extender as

shown in Figure 9-4.

Chapter 9 extending Burp Suite

137

Burp Suite accepts the installation of third-party extensions with the

following formats as shown in Figure 9-5.

• Java

• Python

• Ruby

The other options include whether we wish to show the output and

errors after extension installation on the console or if we wish to save it to a

file as shown in Figure 9-6.

Figure 9-4. Adding extensions manually

Figure 9-5. Selecting type of the extension

Chapter 9 extending Burp Suite

138

To install an extension, select the extension type (Java / Python / Ruby)

and then simply browse and select the location where the extension is

located on disk as shown in Figure 9-7.

Figure 9-6. Adding extensions manually

Chapter 9 extending Burp Suite

139

If the extension installation gets completed successfully, a message is

displayed as shown in Figure 9-8.

Figure 9-7. Selecting the extension file

Figure 9-8. Loading extensions manually

Chapter 9 extending Burp Suite

140

 Settings
Now that we have seen how to install extensions either through the BApp

Store or manually, let’s go through some additional settings related to

extensions.

• Settings can be accessed by navigating to ‘Extender ➤

Options’ as shown in Figure 9-9. The first two settings

define if you want to automatically reload extensions

when you start the Burp Suite and if you wish to

automatically update the extensions on Startup.

The next setting is related to the Java environment. Most of the

extensions are written in Java. To ensure these extensions run correctly, it

might be required to provide a path to any additional library dependencies

as shown in Figure 9-10.

Figure 9-9. BApp Store options

Chapter 9 extending Burp Suite

141

The next setting is related to setting up the Python environment. Some

extensions require a Python interpreter implemented in Java called Jython.

Jython can be downloaded and installed from https://www.jython.

org/download. Once installed, you need to update the path to the Jython

installation directory as shown in Figure 9-11.

The last setting is related to setting up the Ruby environment. As we

have seen earlier, Burp Suite supports extensions written in Ruby as well;

hence we need to specify the path to the Ruby interpreter as shown in

Figure 9-12. In order to run a Burp Suite extension written in Ruby, JRuby

needs to be downloaded and installed from https://www.jruby.org/

download.

Figure 9-10. Configuring the Java environment

Figure 9-11. Configuring the Python environment

Chapter 9 extending Burp Suite

https://www.jython.org/download
https://www.jython.org/download
https://www.jruby.org/download
https://www.jruby.org/download

142

 Other Useful Extensions
Earlier in this chapter, we already saw some useful extensions available

in the BApp Store. As the Burp Suite gives Application Programming

Interface (APIs) to developers, it is easy to write and develop custom

extensions as required. Here are some additional useful extensions that

can be manually installed to Burp Suite.

• sometime – This extension can be downloaded from

https://github.com/linkedin/sometime. This

extension passively monitors the traffic to check if the

application is vulnerable to the Same Origin Method

Execution.

• burp-suite-gwt-scan – This extension can be

downloaded from https://github.com/augustd/

burp-suite-gwt-scan - This extension helps

automatically identify insertion points for GWT

(Google Web Toolkit) requests when sending them to

the active Scanner or Burp Intruder.

• Admin panel finder – This extension can be

downloaded from https://github.com/moeinfatehi/

Admin-Panel_Finder -This extension assists in the

Figure 9-12. Configuring the Ruby environment

Chapter 9 extending Burp Suite

https://github.com/linkedin/sometime
https://github.com/augustd/burp-suite-gwt-scan
https://github.com/augustd/burp-suite-gwt-scan
https://github.com/moeinfatehi/Admin-Panel_Finder
https://github.com/moeinfatehi/Admin-Panel_Finder

143

enumeration of infrastructure and application Admin

Interfaces that might have been left open by mistake.

• Pwnback – This extension can be downloaded from

https://github.com/P3GLEG/PwnBack. This extension

helps to retrieve old and archived versions of the

application if present. It can be useful to compare the

old and current versions of the application to check the

changes and associated vulnerabilities.

• Minesweeper – This extension can be downloaded

from https://github.com/codingo/Minesweeper

 -This extension helps detect scripts being loaded from

over 23000+ malicious cryptocurrency mining domains

(cryptojacking).

For an additional and comprehensive list of the Burp Suite extensions,

refer to https://github.com/snoopysecurity/awesome-burp- extensions.

 APIs
Throughout this chapter, we have seen the use of Extender to add

and install new extensions that significantly improve the Burp Suite

capabilities. Burp Suite offers another useful feature in the form of the

Application Programming Interface (API). Using these APIs it is possible to

write our own extensions. The list of available APIs and detailed guidance

on their usage is available under the ‘Extender ➤ APIs’ tab as shown in

Figure 9-13.

Chapter 9 extending Burp Suite

https://github.com/P3GLEG/PwnBack
https://github.com/codingo/Minesweeper
https://github.com/snoopysecurity/awesome-burp-extensions

144

 Summary
In this chapter, we got familiar with the Burp Suite extender, which allows

enhancing the Burp Suite capabilities through external extensions. We

explored the BApp Store, which has a list of many useful extensions and

we also learned to install an extension manually in case it’s not present in

the BApp Store. Last, we listed a few additional extensions apart from those

officially present in the BApp Store.

In the next chapter we’ll see how we can leverage the Burp Suite

capabilities to test mobile applications and APIs. We’ll also see the

complete workflow for testing an application using the Burp Suite.

Figure 9-13. The Burp Suite Extender APIs

Chapter 9 extending Burp Suite

145

 Exercises

 1. Use the BApp Store to install extensions discussed in

this chapter.

 2. Perform an active scan on the target application

before installing the extensions and after installing

the extensions. Observe the difference in

vulnerabilities found in both the scans.

 3. Explore the additional extensions discussed in this

chapter and try to install them manually.

Chapter 9 extending Burp Suite

147© Sagar Rahalkar 2021
S. Rahalkar, A Complete Guide to Burp Suite,
https://doi.org/10.1007/978-1-4842-6402-7_10

CHAPTER 10

Testing Mobile Apps
and APIs with Burp
Suite
In the last chapter, we learned about the Burp Suite extender feature,

which allows enhancing the Burp Suite’s capabilities through third-party

extensions. In this final chapter, we’ll glance through how Burp Suite can

be used to test APIs and mobile applications as well. We’ll conclude with a

quick summary of the workflow for testing any web application using Burp

Suite.

 API Security Testing with Burp Suite
Throughout this book, we have been learning about various capabilities

of Burp Suite, which can be used for Web Application security testing.

However, today’s modern applications are more interoperable and

interconnected. This is achieved through the use of Application

Programming Interfaces (APIs).

https://doi.org/10.1007/978-1-4842-6402-7_10#DOI

148

Exposing APIs significantly helps in automating tasks; however, at

the same time, it does introduce security risks as well if not implemented

securely. While most of the web application vulnerabilities apply to

APIs, there are a few vulnerabilities that are specific to APIs. OWASP has

published the Top 10 vulnerability list for API, which can be found at

https://owasp.org/www-project-api-security/.

The approach for security testing of APIs through Burp Suite is very

similar to the regular web applications that we have seen so far in the

book. As APIs communicate over HTTP/HTTPS protocol, the traffic can

be intercepted and tampered in Burp Suite just like any other regular web

application request and response. For performing security testing on APIs

using Burp Suite, we can use one of the following approaches:

 1. Crawl the application in a regular way and figure

out the endpoints belonging to APIs. Once the API

endpoints are identified, the corresponding requests

can be sent to the Repeater or Intruder for further

testing.

 2. Many times, the APIs are invoked through the User-

Interface (UI) functionalities in the application. In

such a case, you can simply create a new ‘Crawl and

Audit’ task in the Burp Suite scanner and ensure all

scanner checks and tasks are complete.

 3. There could be a set of APIs that are not directly

invoked from any of the UIs. Such APIs are often

tested manually using tools like Postman. We can

easily integrate Postman with Burp Suite to capture

all required API traffic. Once the required API

requests and responses are in Burp Suite, it is just

a matter of testing them further using Repeater or

Intruder as necessary.

Chapter 10 testing Mobile apps and apis with burp suite

https://owasp.org/www-project-api-security/

149

We’ll now see how we can integrate Postman with Burp Suite. Postman

is a popular tool used for manual API testing. It can be downloaded

from https://www.postman.com/downloads/. The Postman application

interface is as shown in Figure 10-1.

In order to configure Postman to work along with Burp Suite, click on

the ‘Settings’ option in the upper right corner as shown in Figure 10-2.

Figure 10-1. The Postman tool

Figure 10-2. Navigating to the settings in the Postman tool

Chapter 10 testing Mobile apps and apis with burp suite

https://www.postman.com/downloads/

150

A new Settings window will open up as shown in Figure 10-3.

Now further navigate to the proxy tab and select ‘Add a custom proxy

configuration’ and enter the proxy server address as that of the machine

running the Burp Suite (usually localhost or 127.0.0.1) and port as 8080 or

the one on which we want the Burp Suite proxy listener to be active on.

Now that we are done with the configuration on the Postman side, we

need to ensure that the right proxy configuration is also done on the Burp

Suite Side. To ensure the correct proxy is configured in the Burp Suite,

navigate to the Proxy tab and Options as shown in Figure 10-4, and ensure

the IP address and port number match to what was configured earlier in

Postman.

Figure 10-3. Configuring the proxy in the Postman tool

Chapter 10 testing Mobile apps and apis with burp suite

151

Once both the Postman and Burp Suite are configured to work

together, all the traffic generated from Postman will now pass through

Burp Suite. This is very similar to how we configured our browsers to work

along with Burp Suite.

Now that we have seen how to configure the Postman to work along

with Burp Suite, we’ll see how the reverse works; that is, how do we export

data from Burp Suite into the Postman for selective testing?

While the Burp Suite Repeater and Intruder serve most of the purposes

for performing security testing of an API, there could be a need to test a

particular API in the Postman interface. In such a case, it is possible to

export the API request from Burp Suite into the Postman tool.

For exporting an API request from Burp Suite to the Postman, we

would need to install an extension called ‘Postman Integration’. Simply

navigate to the Extender tab and open the ‘BApp Store’ and install the

‘Postman Integration’ extension as shown in Figure 10-5.

Figure 10-4. Setting up the Burp Suite proxy listener

Chapter 10 testing Mobile apps and apis with burp suite

152

Once the extension is installed:

 1. Go to the Target tab,

 2. Select the request you want to export to Postman,

 3. Right-click on the request to be exported,

 4. Select option ‘Export as Postman Collection’ as

shown in Figure 10-6.

Figure 10-6. Exporting requests in the Burp Suite as Postman collection

Figure 10-5. Installing the Postman Integration extension in the
Burp Suite through BApp Store

Chapter 10 testing Mobile apps and apis with burp suite

153

A new window will pop up, as shown in Figure 10-7. Enter the required

Collection Name and Folder name and click on the Export button. The

collection would then be exported and saved to the specified location.

Next, open the Postman application and click on Import, as shown in

Figure 10-8. Click on choose files and select the file that we exported from

Burp Suite earlier.

Figure 10-7. Configuring the Postman integration settings

Chapter 10 testing Mobile apps and apis with burp suite

154

We can now see the API request exported from the Burp Suite into the

Postman application, as shown in Figure 10-9.

Figure 10-8. Importing the collection into the Postman tool

Figure 10-9. Collection imported in the Postman tool

Chapter 10 testing Mobile apps and apis with burp suite

155

 Mobile Application Security Testing
with Burp Suite
In the previous section, we saw how Burp Suite could be configured along

with the Postman to perform security testing on APIs. In this section, we’ll

have an overview of how we could leverage the Burp Suite capabilities for

performing security testing of Mobile Applications.

Before we get into further details about Mobile Application security

testing, it is important to understand the fact that the Burp Suite literally

acts and serves as an HTTP proxy. This means we can effectively use Burp

Suite for performing security testing on any device or application that

interacts over HTTP or HTTPS protocol.

Mobile applications are no different; they use the same HTTP / HTTPS

protocol for communication; hence that traffic can be routed through the

Burp Suite just like any other regular web application. Figure 10-10 shows

a mobile application client (the equivalent of the browser on PC), which is

passing all the traffic through Burp Suite to the Application Server.

We’ll now see how we can configure Burp Suite to work along with the

mobile application. First, we need to ensure that the correct Burp Suite

proxy is set to listen on all interfaces. To do so, navigate to the Proxy ➤

Options tab, as shown in Figure 10-11.

Figure 10-10. Connecting mobile application to the Burp Suite

Chapter 10 testing Mobile apps and apis with burp suite

156

Now click on the ‘Add’ button, and a new window will pop up as shown

in Figure 10-12. Configure the port number and select ‘Bind to address’ as

‘All interfaces’ and click ‘OK’.

Now notice the proxy listener section as shown in Figure 10-13, which

lists the interface as ‘*:8080’.

Figure 10-12. Setting up the Burp Suite proxy listener

Figure 10-11. Setting up the Burp Suite proxy listener

Chapter 10 testing Mobile apps and apis with burp suite

157

Now that we have configured the Burp Suite proxy to listen on port

8080 on all available interfaces, we’ll move ahead to the mobile device

configuration.

It is important to note that in order to configure the mobile device to

work along with Burp Suite, both the system running the Burp Suite and

the mobile device need to be in the same logical network. The simplest

way to achieve this is by connecting the mobile device and the system

running Burp Suite to the same Wireless Access Point. Once the mobile

device and the system running Burp Suite are connected to the same

network, we need to configure the network settings on mobile to use Burp

Suite as a proxy.

To configure the network proxy on the mobile device, go to the

Wireless Settings and select the Wireless Network that you are connected

to, as shown in Figure 10-14.

Figure 10-13. Setting up the Burp Suite proxy listener

Chapter 10 testing Mobile apps and apis with burp suite

158

Now click on the Proxy option, and a new configuration window will

open as shown in Figure 10-15.

Figure 10-15. Configuring network proxy on mobile device

Figure 10-14. Configuring network proxy on mobile device

Chapter 10 testing Mobile apps and apis with burp suite

159

By default, the network proxy is set to ‘None’. We need to change this to

‘Manual’, as shown in Figure 10-16.

Now that we have changed the Proxy type to manual, we need to

enter the IP address of the system where Burp Suite is running along with

the port number on which the Burp Suite proxy service is listening to, as

shown in Figure 10-17.

Figure 10-16. Configuring network proxy on mobile device

Chapter 10 testing Mobile apps and apis with burp suite

160

Once the manual proxy has been configured, all the traffic originating

from the mobile application would now be routed through Burp Suite.

Once the requests are in Burp Suite, they can be tampered with Repeater

or Intruder just like any other regular HTTP request.

It’s important to note two points with regard to performing security

testing on mobile applications using Burp Suite:

Figure 10-17. Configuring network proxy on mobile device

Chapter 10 testing Mobile apps and apis with burp suite

161

 1. The Burp Suite can only help to execute manual

security tests on the mobile application and, to

a certain extent, perform dynamic application

security testing.

 2. The exact process of configuring the network proxy

on mobile devices varies as per the type and version

of the operating system they run on. However, at a

high level, the process would be similar to what we

discussed in this section.

 Security Testing Workflow with Burp Suite
Throughout the book, we have seen all aspects of Burp Suite and its

capabilities. We have seen various tools and utilities that are provided out

of the box as well as the use of third-party extensions, which significantly

enhance the Burp Suite capabilities.

Now, as we are at the end of the book, it would be worth summarizing

the workflow or approach for effectively using Burp Suite to test the

security of web applications.

Following is the phased approach that one can follow for effective use

of Burp Suite:

 1. Get the right setup and configuration – Before we

actually begin using Burp Suite, it is important that

it’s set up and configured correctly.

 a. Make sure the right edition and the latest version of Burp

Suite are being used.

 b. Configure the browser proxy settings to work along with Burp

Suite.

 c. Install the Burp Suite CA certificate into the browser.

Chapter 10 testing Mobile apps and apis with burp suite

162

 d. Configure the platform authentication, upstream proxy, and

socks proxy as required.

 e. Review and define the Burp Suite HotKeys.

 f. Ensure automatic project backup is enabled and configured

correctly.

 g. Ensure project options like Timeouts, Hostname resolution,

Out of Scope Requests, Redirections, TLS Configuration,

Session Handling Rules, Cookie Jar, and Macros are

configured as needed.

 h. Make sure the proxy listener is configured and running

properly.

 i. Ensure all the required extensions are installed and loaded.

 j. Check that the target application can be patched using the

Burp Suite Infiltrator.

 2. Crawl and understand the application – Once

the Burp Suite is appropriately configured, it is

important to crawl, surf, and browse the target

application to know more about it.

 a. Use the crawl function in the scanner to browse the

application.

 b. Make use of the content discovery feature.

 c. Manually browse through the critical workflows.

 d. Carefully observe the target tab and monitor the HTTP

requests.

 e. Find out and highlight interesting requests with parameters.

 f. Use the analyze target feature to get an overview of the

application scope.

Chapter 10 testing Mobile apps and apis with burp suite

163

 g. Use engagement tools to find comments, scripts, and

references.

 h. Monitor the issues reported by the passive scans.

 3. Attack the application – Now that we have done

enough reconnaissance, it's time to attack selective

application functionalities.

 a. Run an audit task using the Burp Suite scanner.

 b. Find out the interesting requests, especially the one with

parameters, and send the request to the Repeater for further

investigation.

 c. Tamper and play around with the request, parameters,

headers, and body using the repeater.

 d. If a request and a parameter need to be tested against bulk

payloads, then make use of Intruder.

 e. Use the comparer to analyze and interpret differences in

various responses.

 f. Use a sequencer to test the strength of tokens.

 g. Use the decoder for encoding or decoding any of the

parameter values as required.

 h. Test for the Clickjacking vulnerabilities using the Clickbandit

tool.

 i. Generate proof of concept for Cross-Site Request Forgery

attack using the CSRF PoC generator.

 j. Make use of the Burp Suite collaborator to effectively detect

out-of- the band vulnerabilities like XML External Entity

Injection (XXE) and Server Side Request Forgery (SSRF)

Chapter 10 testing Mobile apps and apis with burp suite

164

 k. Monitor the issues pane under the target tab for all

vulnerabilities found.

 l. Select the required vulnerabilities and export them into an

HTML report.

 Summary
In this chapter, we saw how we could leverage Burp Suite capabilities for

performing security testing on APIs as well as mobile applications. We also

summarized the workflow that can be followed to make the best use of

Burp Suite for web application security testing.

 Exercises

 1. Configure the Postman to work along with Burp

Suite. Capture the API requests in Burp Suite and

attack them using Repeater.

 2. Test any of the target applications using the

complete workflow discussed in this chapter.

Chapter 10 testing Mobile apps and apis with burp suite

165© Sagar Rahalkar 2021
S. Rahalkar, A Complete Guide to Burp Suite,
https://doi.org/10.1007/978-1-4842-6402-7

Index
A
Active scanning, 112
API security testing, Burp Suite

approaches, 148, 149
Postman, 149, 150, 154
Postman integration, 152–154
proxy listener, 151

Application Programming
Interfaces (APIs), 1, 147

Application security testing, 1, 4, 5
Application vulnerabilities, 2–4

B
Burp Suite, 5

alternatives, 8, 9, 14
browser, 15
CA Certificate, 31, 32
Chrome, 19
Edge, 21
editions, 6
events, 16
features, 7, 8
Firefox, 17, 18
hotkeys, 37, 38
installation, 11

need, 6
Opera, 22
options

Cookie Jar monitors, 46, 47
hostname resolutions, 42, 43
macros, 47
Out-of-scope request, 44, 45
redirections, 45, 46
timeouts, 42

performance feedback, 41
platform authentication, 33, 34
project backups, 39
proxy server, 35, 36
Rest API, 39–41
SOCKS proxy, 36, 37
system proxy, 23, 24
types of downloads, 12, 13
useful features, 9, 10
website, 16

Burp Suite extender
APIs, 143
BApp Store, 132–136
extensions, 131
manual installation, 136–139
settings, 140–142
useful extensions, 142, 143

https://doi.org/10.1007/978-1-4842-6402-7#DOI

166

C
Clickjacking

browser console, 103
clickbandit code, 104
clickbandit UI, 104
code, 105
definition, 101
target, 102
tool, 101

Collaborator, 99, 101
Comparer, 86–88
Cookie Jar monitors, 46, 47
Crawl optimization

configuration, 116
Cross-Site Request Forgery (CSRF)

definition, 106
engagement tools, 106
POC generator, 106–109

D
Dashboard

Burp Suite, 49–53
defining, 49

Decoder, 88, 89

E, F, G
Engagement tools

Burp manual testing
simulator, 65

Burp Suite, 59
Burp Suite task scheduler, 64
comment finder, 60

content discovery, 63
definition, 58
reference finder, 62
script searching, 61
search, 60
target analyzer, 62

H
Hostname resolution, 42

I, J, K, L
Infiltrator

definition, 95
executing agent, 99
generating agent, 97, 98
navigating, 96
technologies, 96

Intruder
definition, 67
options, 76, 77
payload, 73–75
positions, 69–72
send request, 68
SQL injection/cross-site

scripting payloads, 68
target tab, 69

M, N, O
Mobile application security testing,

Burp Suite
HTTP / HTTPS protocol, 155

INDEX

167

HTTP proxy, 155
network proxy, 158–161
proxy listener, 156

P, Q
Payload, 73
Personally identifiable information

(PII), 2
Proxy, 27, 28, 30, 31

R
Repeater

configuring target detail, 80
console, 80
definition, 79
headers, 83
parameters, 82
raw HTTP request, 81
response, 83–85
sending HTTP request, 81

Reporting
exporting issues, 125
generating, 128
selecting format, 126, 127
viewing browser, 129
vulnerability, 130

S
Scanner

Application login, 123
configuration, 115–123

crawl/audit, 112–114
resource pools, 124
types, 111

Security testing
workflow, 161–163

Sequencer
Burp Suite, 90
definition, 89
HTTP request, 90
loading tokens, 92
session ID analysis, 91

Server Side Request Forgery
(SSRF), 163

Software Development Life
Cycle (SDLC), 1

T, U, V, W
Target tab

application, 56
application map/

hierarchy, 54
Burp Suite, 53
issue, 57
multiple panes, 53
requests, 55
requests/response

viewers, 55
site map filters, 58

X, Y, Z
XML External Entity Injection

(XXE), 163

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to Burp Suite
	Some Basics of Application Security
	A Brief Introduction to Burp Suite
	Need for Burp Suite
	Editions
	Burp Suite Alternatives
	High-Level Feature Overview
	Summary
	Exercises

	Chapter 2: Setting Up the Environment
	Burp Suite Installation
	Setting Up Vulnerable Target Web Application
	Configuring the Browser
	Firefox
	Chrome
	Edge
	Opera

	Summary
	Exercises

	Chapter 3: Proxy, User Options, and Project Options
	Proxy
	Burp Suite CA Certificate
	Platform Authentication, Upstream Proxy Servers, SOCKS Proxy
	Platform Authentication
	Upstream Proxy Servers
	SOCKS Proxy

	Hotkeys
	Project Backups
	Rest API
	Performance Feedback
	Project Options
	Timeouts
	Hostname Resolutions
	Out-of-Scope Requests
	Redirections
	Cookie Jar
	Macros

	Summary
	Exercises

	Chapter 4: Dashboard, Target, and Engagement Tools
	Dashboard
	Target Tab
	Engagement Tools
	Summary
	Exercises

	Chapter 5: Intruder
	Introduction to Intruder
	Target Tab
	Positions
	Payloads
	Options
	Summary
	Exercises

	Chapter 6: Repeater, Comparer, Decoder, and Sequencer
	Repeater
	Comparer
	Decoder
	Sequencer
	Summary
	Exercises

	Chapter 7: Infiltrator, Collaborator, Clickbandit, and CSRF PoC Generator
	Infiltrator
	Collaborator
	Clickbandit
	CSRF
	Summary
	Exercises

	Chapter 8: Scanner and Reporting
	Scan Types
	Crawl and Audit
	Scan Configuration
	Application Login
	Resource Pools
	Reporting
	Summary
	Exercises

	Chapter 9: Extending Burp Suite
	Burp Suite Extensions
	BApp Store
	Manual Installation
	Settings
	Other Useful Extensions
	APIs
	Summary
	Exercises

	Chapter 10: Testing Mobile Apps and APIs with Burp Suite
	API Security Testing with Burp Suite
	Mobile Application Security Testing with Burp Suite
	Security Testing Workflow with Burp Suite
	Summary
	Exercises

	Index

