Recipes

A Problem-Solution Approach
J.J. Merelo

Apress

Raku Recipes
A Problem-Solution Approach

J.J. Merelo

Apress’

Raku Recipes: A Problem-Solution Approach

].J. Merelo
Granada, Granada, Spain

ISBN-13 (pbk): 978-1-4842-6257-3 ISBN-13 (electronic): 978-1-4842-6258-0
https://doi.org/10.1007/978-1-4842-6258-0

Copyright © 2020 by J.J. Merelo

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Vincent Guth on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484262573. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6258-0

Dedicated to my family, for their understanding,
encouragement, and support, and to the late Jeff Goff,
for introducing me to Raku

Table of Contents

About the AUROFccciiemmisnmmissnsmmsssnsssssnssssssssssansesssnsesssnsesssnnesssnnesssnnesssnnsessnnssss xvii
About the Technical REVIEWETccuseesrsssnsssssnsssssnsssssnsssssnssssssnsssssnsssssnssssanssssnnssssas Xix
AcKkNOWIEdgmMEeNTSccuuuiissmmmmmmsssnnnmmssssssnnesssssnnsesssssnnsesssssnnsessssnnnnsssssnnnnsssssnnnnssssnnns XXi
INtroductioncocierniemmmsssnnmsssnnmsssnnmsssnnesssnnesssnnesssnnesssnnenssnnesssnnssssnnesssnnssssnnnssnnns Xxiii
Chapter 1: Putting Raku to Use in a Real-World Environment..........cussemmennnnnnnssssnns 1
Recipe 1-1. Get YOUr TOOIS REAUY.........ccoverrrererrinerissesesesese s e se s sss e sesse s ssssssessessssenens 1

o0 (0]0] T 1 4 SO S SRS SRORRRN 1
SOIULION .ttt e e nan 1

HOW [EWOTKS ..o ss e sne s s sn e s s n e s nn e e ne s s n e nesnennnnns 2
Recipe 1-2. Put Concepts from Other Languages to Use in RaKU...........cccveerievnsensenernsensensennes 12
PrODIBM ... ——————————————— 12
SOIULION ...t e e e R e e R R e e e nan 13

HOW [EWOPKSeeeciccirie e st s n e s ne s 13
Recipe 1-3. Get Involved in the COMMUNILY........ccccvverivninienie e enes 15
PrODIBM ... —————— 15
SOIULION <.t s 15

HOW [EWOTKS ...t 15
Recipe 1-4. Install Some External, USeful MOUUIESccccvvererrrrenrerierenensenesesessessessessesessessesaes 16
PrODIBIM ... s 16

£ 10 0] 17

HOW [EWOTKS ...t s 17
Recipe 1-5. Detect the 0S Environment and Change the Program Behavior Accordingly 19

e 10]] PN 19
£S04 19

HOW [EWOTKS ...t e 19

TABLE OF CONTENTS

Chapter 2: Input and Qutputc.ccccmmininnmmmnisennr s ————— 23
Recipe 2-1. Read Files Handled as Arguments.........c.ccocucvirienninsnsenssnsessessessssessesessesessessesnes 23
(0]] T N 23

£ 10 0SS 23
HOW [EWOTKS ...t 23
Recipe 2-2. Read and Process Files ASynchronouslycccovnnnnnnsnnnnesnsnsesesesessessennes 25
o 10] T 25

ST 11 0] P 25
HOW [EWOTKS ... e 25
Recipe 2-3. Connect Input and Output of External Utilities and Filesccccveevvervrvensereriennens 29
(0]] T 29
S0 11 0] 29
HOW [EWOTKS ...t s 29
Recipe 2-4. Read and Process Binary Filesccovvererrnnenereneresesesesese e 33
(0]] T P 33
S0 111 0] T 33
HOW [EWOTKS ... s 33
Recipe 2-5. Watch a File for Changes..........c.cuovrrnenenmrnsmsnsesesssesssesesesesss s sesssssssssesessesenns 34
(0]] T SO SPSST 34

30 0] OSSO 34
HOW [EWOTKS ... se e e e s s sss e s senssssnsssensnns 35

Recipe 3-1. Extract Unique Email Addresses/User Names from Several Filescccoevvevverennen 39
PrODIBIM ... s 39
£S04 39
HOW [EWOTKS ...t s 40

Recipe 3-2. Create a Weighted Random Number GEnerator...........ccoveeverrerrerereesensesersesessersenaes 42
e 10] T N 42
£ 10 0] 42
HOW [EWOTKS ...t 42

TABLE OF CONTENTS

Recipe 3-3. Work with a Spreadsheet, Filtering, Sorting, and Converting Data..........c.ccccveevuenee. 43
PrODIBIM ... s 43
£S04 44
HOW [EWOTKS ...ttt 44

Recipe 3-4. Apply a Series of Transformations and Extract Data from Themcccceevvvverene. 48
o 10] T SN 48
£ 10 10§ 49
HOW [EWOTKS ...t 49

Recipe 3-5. Create a Random Data Generator..........c.ccocvcvvriersiinsniens s s 52
(0]] T 52
£ 10 0TSSR 52
HOW [EWOTKS ...t 52

Recipe 3-6. Process Big, Structured Files.........couvrniininnninssnsese s s sesse e 55
(0]] T 55
S0 11 70 T 55
HOW [EWOTKS ...t 55

Chapter 4: Math..........cccccmmiiiemmmmmisnnnmmmssssnmmmssssnmmsssssnmessssn s s sassneess 57

Recipe 4-1. Generate Mathematical Sequences and Extract Random Elements from Them. 57
PrODIBIM ... e e 57
RS0 10 OSSPSR 57
HOW HEWOIKS ...t s s s 57

Recipe 4-2. Program a Divide-and-Conquer Algorithm........c.ccococvvrirnvniniennens e sensennes 59
PrOBIBM ...t ——————————————— 59
SOIULION .t ——————— 59
HOW [EWOTKS ...t s 59

Recipe 4-3. WOrk With MatriCeS......cviivrrrierernnenseresesessessesessssessessessessssessessesssssssessessesassessesns 63
PrODIBM ... ———————— 63
SOIULION .ot 63
HOW [EWOTKS ...t 63

vii

TABLE OF CONTENTS

Recipe 4-4. Compute the Mandelbrot Set.........ccvvirrnnrrniennnsrese e e sessessesnes 65
PrODIBIM ... e 65
RST8] 11 TR 65
HOW [EWOTKS ...t e 66

Recipe 4-5. Leverage the Infinite Precision of Integer NUMDErscccocvvvvrvvvevcrcenseeceniennens 69
e £0]] T N 69
B30 11 TP 69
HOW [EWOTKS ...t e 69

Chapter 5: Configuring and Executing Programsccccusssesnnmssssssnsssssssssssssssssnsenss 73

Recipe 5-1. Configure a Program Using JSON/YAMLY/.ini FileSccccevrererenernserneneseereeeens 73
(0]] T 73
S0 11 0] T 73
0L L0 74

Recipe 5-2. Configure a Command-Line Command with Flags and Arguments...........cccocvcnce. 80
(0] T P 80
ST 11 0] T 80
HOW [EWOTKS ... e s nas s 81

Recipe 5-3. Use Shell Environment Variables in @ Program...........cccccvvrenmnenernsennsesesenesensesenns 86
(0] T SRS 86
830} 0] R 86
HOW [EWOTKS ... se s e s sss s s ssssssesssssnsssensnns 87

Recipe 5-4. Create a Docker Container for an Application to Distribute It Easily............cccenucn.e. 88
PrODIBIM ... e e 88
RS0 10 OSSOSO 88
HOW IEWOIKS ...t s s s 89

Recipe 5-5. Use Advanced/Distributed Configuration with etcd........ccocvvvirivninincnesncenenn, 91
PrODIBM ... ———————————————— 91
SOIULION .t ———————————— 91
HOW HEWOIKS ...t 91

viii

TABLE OF CONTENTS

Chapter 6: Automating System TasKS.......ccrrssssnnnsessssnnsssssssnnsssssssnsnssssssnnnsssssnnnnssss 95
Recipe 6-1. Check Log for Certain EVENtSccccccovevrnccrnic s 95
(0]] T N 95

310 0SS 95
HOW [EWOTKS ...t 96
Recipe 6-2. Check Logs Interactively on the Console..........ccvvvnvrrnnnsnsnens s 98
(0] T 98

ST 11 0] P 99
HOW [EWOTKS ...t s 99
Recipe 6-3. Check Git Commits for Patterns and Metadata, or to Store Them........c.cceceveerenee 101
g 10] T 101
30 11 0] 101
HOW [EWOTKS ...t s 102
Recipe 6-4. Clean Up Your Docker Image STOre........cocvvrnennsniencsnsinsense s sessessens 104
(0]] T TS 104
30 11 0] ST 104
HOW [EWOTKS ... e s 104
Recipe 6-5. Process the Last Person Who Logged onto Your System..........ccoccvvvenerenerencnen. 107
(0]] T SRS 107

B30 0] OSSPSR 107
HOW [EWOTKSecerecesiceriee e se s e s se s s sessssesss e sessssssssnsnssssnsnnis 107

Recipe 7-1. Design Classes, Roles, and Modules in RaKUccceverrrierserienenensensesessssensensens 109
PrODIBIM ...t e 109
£S04 109
HOW [EWOTKS ...t s 109

Recipe 7-2. Document Your MOdUIE...........ccocvvererierre s rerse s s s e s sne e saeens 115
g 10]] =T N 115
£S04 115
HOW [EWOTKS ... s s 116

ix

TABLE OF CONTENTS

Recipe 7-3. Test YOUr MOQUIE........cccvvireririene e ses s sn e s s ss e sne s 124
PrODIBIM ... s 124

RS0 11 O 124
HOW [EWOTKS ... s 124
Recipe 7-4. Release Your Module as an Open Source Moduleccoevververererenserserersssensenaens 127
g 10]] =T T 127

B30 11 TR 127
HOW [EWOTKS ...t s e 128
Recipe 7-5. Use Multiple Dispatch To Speed Up Applications.........c.ccocuvvvnirennnnnenennsensennens 133
g £0]] T TS 133

£ 10 10O 133
HOW [EWOTKS ... s s 133
Chapter 8: Dealing with Errorsccceeemmmsmnmmsssssssssssmssssssssssssssssssssssssssssssssssnssnnss 141
Recipe 8-1. Design an Exception Hierarchy...........coocvvnnrennsssnsessssses e sessesenns 141
(0]] T TS 141

£ o] 11 170 TS 141
HOW [EWOTKS ... e nns e 142
Recipe 8-2. Deliver Meaningful Error Messages 10 the USErccovvvvrenennsennnenenssesenenenns 146
g (0] 0] [T 1 SRS 146

B3 0] 0] OSSPSR 146
HOW [EWOTKS ... se s nns s 147
Recipe 8-3. Catch and Deal with Errors in Your Programccveevvennnsennnesnsesesnssessnsenenns 150
PrODIBIM ... e 150

B30 0] OSSPSR 150
HOW HEWOIKS ...ttt s s 151
Recipe 8-4. Debug Your Application in Comma IDEccccooevvvnverennnensensesesessesessesessessesaens 155
PrODIBM ... —————————————— 155
SOIULION ..ot 155
HOW [EWOTKS ...t s s s 155

TABLE OF CONTENTS

Recipe 8-5. Debug Grammars by Making Them Fail Graciously with Pretty Errors.........ccceu... 158
PrODIBIM ... 158
£S04 158
HOW [EWOTKS ...t s 158

Chapter 9: Client-Side Web and APIS........cccccusseemnmmsssssnnmsssssssnssssssssssssssssssssssssnnns 165

Recipe 9-1. Query a GeolP Databasec.ccovcrvrerninsncne s 165
g 10] T T 165
£ 10 10§ 165
HOW [EWOTKS ...t s 165

Recipe 9-2. Download and Extract Information from a Websitec.ccovriniinincniccninicnnens 167
g 10] T T 167
£ 0] 11 0] T 167
HOW [EWOTKS ... e 167

Recipe 9-3. Use a Web API to Get Information from a Site..........ccccvvviininininnnsnsnccncniennens 172
(0]] T 172
30 11 0] T 172
HOW [EWOTKS ... e 172

Recipe 9-4. Check IPs and Addresses by Querying Internet SErvicescouevrrenereserensenenns 176
(0]] T TS 176
30 11 0] TSRS 177
HOW [EWOTKS ... s nns e s 177

Chapter 10: Text ProceSSing......cccsssssssssanssssansssssnsssssnsssssnsssssnsssssnsssssnnssssnnssssnnssssns 179

Recipe 10-1. Scrape Markdown DOCUMENTSccvcevvierierieresensersere s sessese e sessessessessssessesnens 179
PrODIBM ... ———————— 179
SOIULION .t 179
HOW [EWOTKS ...t s 179

Recipe 10-2. Generate a Set of Static Web Pagescccccveereverrenrerenssensesessesessesessessssessenaens 182
PrODIBIM ... s 182
£S04 182
HOW [EWOTKS ...t s 182

xi

TABLE OF CONTENTS

Recipe 10-3. Create a Dictionary and Do Fast Searches OVer It.........cccvvvirevnsnienevensensenens 191
PrODIBIM ... s 191

RS0 11 O 191
HOW [EWOTKS ... s 191
Recipe 10-4. Compute Differences in Plain Text DOCUMENTScccvvevvververieresenserserenessensenaens 194
g 10]] =T T 194

B30 11 TR 194
HOW [EWOTKS ...t s e 194
Chapter 11: MiCrOSerVICeS. uuueerrrssssnnrrsssssnnsssssssnnsssssssnnsssssssnnsssssssnnssssssnnnssssssnnnnss 197
Recipe 11-1. Create @ MiCrOSEIVICE........ccucreriririre s se s st snens 197
g 18]] T T 197
30 11 0] 197
HOW [EWOTKS ... s e 197
Recipe 11-2. Work with Websockets to Connect to a Clientcccovvnvnininnsniniennsnienens 206
(0]] T S 206

£ 0] 11 0] ST 206
HOW [EWOTKS ... se s e s ses e 206
Recipe 11-3. Create a Mini-Bot for a Messaging Application Such as Telegram...................... 214
(0]] T RSP STS 214

830 0] T 215
HOW [EWOTKS ... se s e s se s s sesss e s s sessssssssssnssssnsnnis 215
Recipe 11-4. Test YOUr MICIOSEIVICE........ccvcerreriererrererresessessesesessessessessssesessessssessessessesssssssessens 223
PrODIBIM ... e 223

B3 0] 0] OSSPSR 223
HOW IEWOIKS ... e s s s s 224
Recipe 11-5. Respond 10 WED HOOKSccccvevivrinrenennsinsene s sese s ssssssse s ssssessessessessssessesaens 229
PrODIBM ... ———————————————————— 229
SOIULION .t ———————————— 230
HOW IEWOIKS ...t s s s e 230

xii

TABLE OF CONTENTS

Chapter 12: Working with Data SoUrces.......cc.uccurrmsssnnnmsssssnssmssssssnssssssssssssssssnnns 235
Recipe 12-1. Work with Relational Databases..........ccccvvrrrinnsninesnsnsesse s 235
(0]] T TN 235

£ 10 10§ 235
HOW [EWOTKS ... s s 235
Recipe 12-2. Interface With RediS.........cccucrirnininnsnsn s 246
o0] T T 246

£ 0] 11 0] 246
HOW [EWOTKS ... e 246
Recipe 12-3. Use an ORM for High-Level Data Description and ACCESS.......cccevvrvererenseriennens 252
g 10] T 252
30 11 0] 252
HOW [EWOTKS ...t s 252
Recipe 12-4. Work with MONGODBcccoriirecrrseresese s 255
(0]] T TS 255
30 11 0] ST 255
HOW [EWOTKS ... e s 255
Recipe 12-5. Extract Information from Wikidata............c.cceriernininininininns s 259
(0]] T SRS 259

B30 0] OSSPSR 260
HOW [EWOTKSecerecesiceriee e se s e s se s s sessssesss e sessssssssnsnssssnsnnis 260

Recipe 13-1. USe FUIl-CONSOIE Ul........cccverrerererrerrerersesensessessessssessessessssessessesssssssessessesssssssenaens 265
PrODIBIM ... s 265
£S04 265
HOW [EWOTKS ...t s 266

Recipe 13-2. Create an Application That Uses System WindOWS.........ccccvvrrererennersereressensenens 273
g 10]] =T 273
£ 10 10O 273
HOW [EWOTKS ... s s 273

xiii

TABLE OF CONTENTS

Recipe 13-3. Create @ Mini-GaAmE........cccccvverrererrerrereresesseressessssessessesssssssessesssssssessessesssssssesaens 282
PrODIBIM ... s 282

RS0 11 O 282
HOW [EWOTKS ... s 282
Chapter 14: Interfacing with Library and Code in Other Languages.........ccussssennss 293
Recipe 14-1. Embed Perl Programs.........cccoeviininennninsine s sesesesssssssessesssssssessessssssssssesnens 293
g 10] T T 293

£ 10 10§ 293
HOW [EWOTKS ...t s s 294
Recipe 14-2. Run External Programs and Capture Qutput..........cccceivinnvninnnnnsnscniesnsensennens 300
10] T T 300

£ 0] 11 0] 300
HOW [EWOTKS ... 300
Recipe 14-3. Wrap External Libraries Written in C with NativeCall............ccccocevnvnininniniennens 304
g 10] T T 304

£ o] 11 0] S 304
HOW [EWOTKS ... e 305
Recipe 14-4. Work with Graphic Processing LiDraries.........ccocoovvnvriennvnsnnennnnnsensessessssensenens 308
(0]] T TS 308
30 11 0] TS 308
HOW [EWOTKS ... s s nns e 308
Chapter 15: Speeding Up ProCesSingccccsrusssssnsssssssnsssssssssnsssssssnnsssssssnnssssssnnnnss 315
Recipe 15-1. Use Data Parallelism with HYper/Racec.ccocvvrvrverernnensensesesensesessesessensenaens 315
PrODIBIM ... ——————— 315
SOIUTION .t 315
HOW [EWOTKS ... s s s 315
Recipe 15-2. Work with Asynchronous INput/Qutputccceeevrvrrniennrnsenne s seseeaens 318
PrODIBIM ... s 318

£ 10 10O 318
HOW [EWOTKS ... s s s 318

Xiv

TABLE OF CONTENTS

Recipe 15-3. Make Your Program Work Concurrently Using Channels and Threads................. 321
PrODIBIM ...t s 321
£S04 321
HOW [EWOTKS ...t s s 321

Recipe 15-4. Monitor Goncurrency Using Comma IDE.........c.ccocevvverevnrenvensesssessessessessssessenaens 326
g 10]] T O 326
£ 10 10O 326
HOW [EWOTKS ... e 327

Recipe 15-5. Create Powerful Concurrent Programs...........ccccoeevrcnereneresesessesesesessesesesesenns 333
g 10] T T 333
£ 10 10T 334
HOW [EWOTKS ... s 334

Chapter 16: Creating Mini-LangUAgescccsrusssnmnnmsssssnnsmsssssnsnssssssnnnsssssnnnssssssnnnnss 343

Recipe 16-1. Use Mini-Languages That Show Off Their PoSSiDilitiesccoovvrnrenerenerensenenns 343
(0]] T TS 343
£ o] 11 70 OSSR 343
HOW [EWOTKS ... s nns s 344

Recipe 16-2. Create and Process Mini-Programs Written in a Mini-Language for Recipes...... 355
g (0] 0] [T 1 OSSR 355
RS0 0] OSSPSR 355
HOW [EWOTKS ... se e s nns e 355

Recipe 16-3. Process Recipes and Generate REPOIS........c.cccvvvernenenesesesesnsessssesesesessssesenns 359
PrODIBIM ... e 359
B30 10 OSSPSR 359
HOW HEWOIKS ...ttt s 360

Recipe 16-4. Convert a Grammar Into a Full Recipe-Processing Application That Generates

HTML or Another External FOrmat.............ccovinnnnnnnnsss s 37
PrODIBIM ... 37
£S04 372
HOW [EWOTKS ...t 372

TABLE OF CONTENTS

Recipe 16-5. Reuse Common Language Patternsccocevevnnenienenssensensesessssessessessssessensens 378
PrODIBIM ... s 378

RS0 11 O 378

HOW [EWOTKS ... s 379
Chapter 17: Fun One-LiNerscccccuussssmmmssssnssmssssssssssssssssssssssssssssssssnnssssssssnssssssnnnnss 381
Recipe 17-1. Write a Guessing Game in a Single Code Line........cccccocvverrrccrnicnnienesecerensenenns 381

g 10] T T 381

£ 10 10§ 381

HOW [EWOTKS ...t s s 382
Recipe 17-2. Compute the nth Element in a Sequence Using a Single Line.........c.ccocevviniennens 384
10] T T 384
RS0) T 384

HOW [EWOTKS ... 385
Recipe 17-3. Perform a System Administration Task Repeatedly Using a Single Code Line 390

g 10] T T 390

£ o] 11 0] S 390

HOW [EWOTKS ... e 390

] 1L T T 393
D 1) TSSO 393
DiStro/DiSTrIDULION........cucecrirericcsere s 393
LCT T 1 F (0] P 393
L] A Lo O 394
PUNNING ... e e e s e e s b e et e e e b b e e e ne 394
L3210 | ST 394
ST Tod (T 0] 0T (0] OO RSN 394
3T 1 T OSSN 395
0= O 395
L]0 LT 0T < O 395
1T - 397

About the Author

J.J. Merelo is a professor at the University of Granada, where he has been teaching since
1988. He has been using Perl since 1994, and Raku intensively since December 2016. He
is currently in charge of Raku documentation, and he trains, teaches, and consults on
Perl and Raku projects. He likes to take pictures of sunsets, to look up at buildings and
wonder who made them, to practice a bit of yoga on the side, and to meet new students
and see them grow in the classes he teaches.

Xvii

About the Technical Reviewer

Moritz Lenz is a software engineer and architect. In the
Raku community, he is well known for his contributions to
the Raku programming language, the Rakudo compiler, and
the related test suite, infrastructure, and tools. He is also a
prolific Perl and Python programmer.

Acknowledgments

Again, to Apress for trusting me on this second book about Raku and the team that
helped me get through it: Mark Powers, Matthew Moodie, and Steve Anglin. Moritz
Lenz has been immensely constructive in his comments and taught me lots of things

in little blue pills at the margins. He also started the Raku documentation project, so
undoubtedly I wouldn’t be here (for several dimensions of the world here) without him.

I'd like to specially dedicate this book to Jeff Goff. I probably heard first about Raku
from one of his talks; the last section of the last chapter of this book uses his distribution,
Grammar : : Common. His knowledge of the language and his enthusiasm for it really helped
the community, where he was a positive force. He will be missed.

Again, I need to thank the Raku community, whose support and answers to
StackOverflow (and other) questions helped me solve many conundrums; their
encouragement has never faltered. I know them by their nicks, and this is what I will use
here; they're listed in no particular order. Raiph, jnthn, alexdaniels, altai-man, wendyga,
lizmat, ugexe, patrickbbkry, tbrowder, xliff, jonathanstowe, and many, many others. Their
enthusiasm makes Raku possible and improves the (programming) lives of a great (and
undoubtedly larger in the near future) community.

Also, to my family. Charo, Charete, Ceci, and Elena have put up with me talking
about obscure features of the language as well as with my cooking. I love you.

xxi

Introduction

This book is about Raku, and when it’s published it will probably be the first book with
the Raku name in its cover, Although the name of the language is barely one year old,
the language itself goes way back. Raku’s functionalities are a superset of those found in
most other modern languages. This book tries to show you how to use, in practice, the
most common but also the most outstanding of these functionalities.

In order to use this book properly, you need to have some knowledge of how to
program, at the least. I wrote the recipes to be self-explanatory, but if you get lost in
the syntax or in the capabilities of the language, it might be better if you read a basic
textbook like my Perl 6 Quick Syntax Reference, published by Apress. Having the
documentation at docs . raku.org handy will also help.

The main objective of this book is to give you a series of patterns you can reuse
to build your own Raku modules and applications. Many recipes include direct code,
but others walk you through the process of creating, checking, and improving them,
so that you get in the groove of how to program using Raku. The book attempts to be
comprehensive in that effort: it helps you not only with the syntax and semantics, but
also with the tools that are used with Raku.

You can read this book in any order; different chapters cover different parts of the
language, so it’s not required that you follow it in sequential order. It’s true, however, that
in some of the later chapters, we build on previous chapters, so following the original
order will not hurt. You can start wherever you like and follow cross-references to other
chapters if you feel like doing so. Within a chapter, it’s a good idea to you read them in
order, since recipes sometimes build on each other within the chapter. That’s not a rule,
and again you can simply follow references when they appear if you prefer.

xxiii

CHAPTER 1

Putting Raku to Use
In a Real-World
Environment

Before solving any problems, you need to prepare your environment to edit, test, and
run your Raku programs. This chapter will propose solutions to the problems that you
will face. Raku can be used as a first language (and, in fact, I encourage you to see it that
way), but you can also use concepts from other languages straight away.

Let’s say that you like cooking, and you have decided to create an app with recipes
you created, as well as others from content providers and the public at large. People
will be able to see, upload, comment, and rate recipes. The back office will be written in
Raku, since that will allow you to leverage all its capabilities.

You will need to perform a range of different tasks related to processing, handling,
rendering, and applying all kinds of operations to these files.

But before you do that, you need to have your tools ready. You will start to do that
immediately in this chapter.

Recipe 1-1. Get Your Tools Ready
Problem

You need to create a program, module, or script in Raku.

Solution

Install Rakudo Raku and the Comma IDE and start using them.

©].J. Merelo 2020
].J. Merelo, Raku Recipes, https://doi.org/10.1007/978-1-4842-6258-0_1

https://doi.org/10.1007/978-1-4842-6258-0_1#DOI

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

How It Works

Raku is a compiled language that uses a virtual machine that runs bytecode assemblies
created by a compiler. This is similar to the way that Java creates .class and . jar files
that are then run in the Java Virtual Machine or the way that C# creates assemblies that
are run in the CLR.

The Raku compiler, then, is actually a stack of different programs.

e The lower level is occupied by the virtual machine that runs the
bytecode assemblies. Raku is not committed to a single virtual
machine, and in fact there are currently three virtual machines
available: MoarVM, the JavaScript Virtual Machine, and the JVM. In
general, MoarVM is the reference VM and, unless stated otherwise,
the one that will be used in this book.

e The nextlevel is occupied by NQP (an acronym meaning Not Quite
Perl or possibly something totally different), a simplified language
that generates the bytecode via translation to Java or MoarVM
bytecode.

e The top level is occupied by the compiler(s). An interpreter will parse
the Raku code, leaving the job of generating bytecode to NQP. Using
an intermediate language means that the Raku interpreters can be
written in Raku. A program is considered a Raku interpreter as long
as it’s able to pass all the tests in the roast suite. Instead of opting
for a reference implementation, like Perl (the sister language) or a
specification like ECMAScript, Raku opts for a reference test suite,
which gives the implementers much more flexibility when creating
interpreters/compilers. As of today, however, there is a single
implementation, which is called Rakudo Raku or simply Rakudo.

Installing Raku in this case assumes you are installing this full stack, with at least one
virtual machine, usually MoarVM.

Raku is open source, and you can simply clone all three repositories and create
your own version of Raku by fiddling with the compiler options. The Raku community
encourages you to do this, if what you want is to hack and learn using Raku. However, the
advice of the community is to install Raku in one of the two following ways.

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

Use the rakudobrew Version Manager

This will get you the full stack, compile MoarVM if needed, and create a per16
executable that, after configuring it correctly, you can run from the command line. This
also downloads the zef module manager, which you can install afterward. Download
rakudobrew and follow the instructions in its repository (https://github.com/tadzik/
rakudobrew). Be sure to include the installation of any prerequisite that is not present
and make it available from the command line.

These commands will download the version manager, select the version that has
been downloaded, and build zef, as well as make it available to you:

rakudobrew build moar-2019.11
rakudobrew global moar-2019.11
rakudobrew build zef

You can run these commands:

raku -version
zef -version

You will obtain something like this, showing what has been installed and the stack of
versions that it includes:

This is Rakudo version 2019.11 built on MoarVM version 2019.11 implementing
Perl 6.d. and v0.8.2

The output indicates the versions of Rakudo and MoarVM; generally they will
match (if you use rakudobrew), but you can of course mix and match them. In general,
our advice is to use the last versions. The implementing bit refers to the version of the
language specification that is being used. The first production-ready version was 6.c, the
one developed at the time of this writing is 6.d, and 6.e is currently in the works.

Note Versions of Rakudo/MoarVM/Raku follow a year.month.version scheme.
Several versions are produced every year. You can keep updated on the latest
releases (and other Raku-related news) by following the @raku_news Twitter
account.

https://github.com/tadzik/rakudobrew
https://github.com/tadzik/rakudobrew

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

If you develop modules or need to check your code against several versions, this is
probably the best option.

Use Rakudo Star

Rakudo Star is a distribution, that is, a package that not only includes Raku, but also
zef, the documentation, and the most fundamental modules. It’s a batteries included
download that you can use straight away to start your own programs. Packages are
prepared for the three most widely used operating systems: Linux, Windows, and
OSX. You can download them from https://raku.org/downloads.

Rakudo Star releases are (usually) made shortly after the corresponding Rakudo
releases and have the same numbering system. They are tested for stability, and
they include fixes for the included packages. They are easier to install and are highly
encouraged by the Rakudo developers. You can’t go wrong if you use them for this book
and for your development environment.

Source Control Tools

Using source control is no longer optional in professional or homebrew software
development. Using Git with any of the online hosting sites, GitLab and GitHub, is
convenient every step of the way. We will assume from now on that your programs are
created in a repository. Additionally, you might want to install the GitHub or GitLab CLI
to take advantage of extensions to the basic Git tool.

So, for starters, we'll create a repository in our favorite Git hosting environment,
GitHub, GitLab, or BitBucket. For the time being, GitHub does not allow you to select
Raku as a language in the drop-down menu to create an appropriate .gitignore, so
just leave that blank and we’ll do that later. After creating the repository, clone it locally.
Alternatively, you can just create an empty folder and initialize it with git init.

Comma, the Raku Integrated Development Environment

The IDE of choice for Raku is called Comma. Edument, a Swedish-Czech company,
created it based on Intelli] IDEA. It’s released in a Community edition, which is free, and
a Comma Complete edition, whose license can be purchased from the company. The
Community edition includes an incredible amount of tools to develop, run, and debug
Raku programs.

https://raku.org/downloads

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

We will use the Comma Community edition to solve the first problem. In the recipes-
related startup we created, we need to count the total number of recipes, which are
spread over all the different directories.

Recipes will be structured in a tree, just like the one shown in Figure 1-1.

Figure 1-1. Initial subdirectory structure of the recipes repository

No matter what the structure, the program will be able to determine how many
recipes there are by descending recursively into the files and counting them. These
files are in the Markdown format and have a certain structure, but we are not going to
take that into account for the time being. We just count the number of files—a relatively
simple endeavor.

However, projects can and do evolve, and Comma understands that it’s going to be
working within a repository and is aware of the status of the files in that repository. So
the first thing you are going to do is choose File » New » Project from existing sources.
You'll get a dialog like the one shown in Figure 1-2.

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

x Open File or Project

Figure 1-2. The list of projects, prompting you to select one. The ones already
controlled by Comma have the butterfly icon

Among the grayed-out folders, we will see perl6-recipes-apress, which is where
the cloned repository resides. Select that folder to host the project and let Comma
manage it. You'll get a pop-up like the one in Figure 1-3, where you'll be prompted to
select the project name, which by default is the directory name (and it’s reasonable to
leave it exactly that way). By clicking Next, you can then select the SDK. You can just skip
that step for the time being. By choosing File » Project Structure, you can set both at any
time.

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

x Perl 6 Project Structure

Project name:

Figure 1-3. Select a project name and, later on, an SDK

You need to select the SDK, or software development kit. In Intelli] IDEA-speak,
that’s tantamount to selecting the Raku compiler you are going to use from within the
IDE. This is not necessary until you actually run something, but you can do it now. By
clicking New, you'll be able to select from the versions of Raku that have been installed,
as shown in Figure 1-4.

Project SDK:

Figure 1-4. Select the SDK, or version of Perl, you are going to use in the project

The combo will show all the versions you installed via rakudobrew or using any other
method. In this case, select the current version of Raku.

Before you actually create the script, you can do an additional bit of configuration.
Comma creates a series of files that track your local repository configuration, including
things such as the two choices you made before. They are saved to a series of XML files
in a directory called .idea, as well as an .iml file in the repository root. It’s probably a

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

good idea to also add that to the repository. Since Comma knows where you are working,
you’ll be prompted to add them to the repository, as shown in Figure 1-5.

Project configurations files can be added to Git

Figure 1-5. Comma prompt to add Comma configuration files to the source
control system

This adds a series of files to Git. From the console, you can write git status and
you'll get an answer like the one shown in Figure 1-6.

nuevo archivo:
nuevo archivo:
nuevo archivo:
nuevo archivo:
nuevo archivo:

.1dea/codeStyles/codeStyleConfig.xml
.1dea/modules.xml
.idea/perl6-recipes-apress.iml
.1dea/vcs.xml
Chapter-1/count-files.pé6

S S T T

Archivos sin seguimiento:
(use «git add <archivo>...» para incluir en lo que se ha de confirmar)

Figure 1-6. git status showing all Comma configuration files added to Git

The .idea/workspace.xml file contains the layout of the workspace; that is, how
your Comma IDE is laid out, the open files, and so on. It probably makes sense to keep it
local and off the repository. For the same reason, keep it off your local status by writing
the following

echo workspace.xml > .gitignore

Which, at the same time, will create the workspace.xml file. Wrap it up by
committing and pushing all the changes before you create the file.

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

Choosing File » New will open the dialog shown in Figure 1-7. Select Raku Script
(Perl 6 Script), since you are going to create a simple script. The menu allows you to
create all kinds of things, from undetermined files, to test files, to Raku Modules (which
you will do later in this book).

MAIN(

Figure 1-7. Create a Raku script from the Comma IDE

The file you create, whose name you're prompted to enter, will have the basic
structure of a Raku script, including the pound-bang line, as shown in Figure 1-8.

Figure 1-8. Boilerplate for a script created by Comma (we added use v6;)

The template for the script includes a sub MAIN. We will add use v6; which is only
needed if you also have Perl interpreters ready and available, because it produces an
error with them. I also added the $dir = '.' argument, which will hold the top-most
directory of the recipes repository you'll be processing.

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT
The typical pound-bang line is as follows
#!/usr/bin/env raku

This line uses a system utility to look for the raku binary in the current environment;
that includes the one installed with rakudobrew as well as the one included with Rakudo
Star, and it allows you to use any of them.

Caution This does not work in Windows, where instead you have to run raku
from the command line. It does work in Linux-like environments like the Linux
subsystem or msys.

You need to add use v6; as the next line, which will prevent the perl5 interpreter
from erroring and will produce an error indicating that you should switch to Raku to run it.
You can fill in the rest of the program like this:

use vb;

sub MAIN($dir = ".") {
say tree($dir)».List.flat.elems;
}

sub tree($dir) {
my @files = gather for dir($dir) -> $f {
if (($F.10.F) {
take $f
} else {
take tree($f);

}

return @files;

The gist of this program is in the subroutine tree, which recursively descends into
all subdirectories and creates an array with all the files. That array is converted to a list,
which is flattened, and the number of elements is counted.

10

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

We can directly commit this file from Comma, as shown in Figure 1-9.

Figure 1-9. Checking in a change from Comma by clicking the clouded area on
the top right

The IDE will prompt for a commit message, and you will get a system message like
the one shown in Figure 1-10.

Figure 1-10. Comma reports on commit done and shows the commit message

If you click the Commit button, you get the option to commit and push at the same
time. You can also push from the command line if you prefer to do so.

After this, we need to run the script. Comma lets you open a console on the work
directory by clicking Terminal in the bottom bar. You will get all the goodies if you add
arun configuration, including the possibility to debug it. By default, you have no Run/
Debug configurations created, since Comma does not assume that you will be creating a
particular kind of project. You need to click Add Configuration and you'll get a dialog like
the one shown in Figure 1-11.

11

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

x Run/Debug Configurations

Click the + button to

- Perl 6

« Perl 6 test

Figure 1-11. Run/Debug Configurations dialog, with Perl 6 selected

Perl 6, as selected in Figure 1-11, refers to a Raku script. You'll get that dialog
when you click +, to select the type of script you will be using. When you select that, a
dialog will open, and you need to select the path to the script, as well as give it a name,
something like Count Recipes. Since the script needs the top-most directory where the
recipes reside, add recipes as a Script parameter. That name will appear then, instead of
the previous Add Configurations name.

You can click the green Play sign to the right of the script to run it. The result of running
the script will appear on the console, in a window tagged with the name you've given it.

With this, you've managed to run your first script from the Comma IDE. In general,
Comma is ready to run and debug all your Raku code, from simple scripts to complex,
concurrent modules, for which it’s especially prepared. So we strongly advise you to use
Comma for all your Raku projects.

Recipe 1-2. Put Concepts from Other Languages
to Use in Raku

Problem

Since Raku is not your first language, you know how to do most things in another
programming language. Therefore, you want to hit the road running with Raku.

12

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

Solution

Raku is a multi-paradigm language; it’s functional, concurrent, and object oriented. If

you know any language that follows one or any of those paradigms, you can apply what

you know to Raku by simply Googling the syntax or using the language documentation.

There are also specific documentation pages that compare Raku to other languages.

Consult them for particular examples and for direct translations of function names and

constructs.

How It Works

The official Raku documentation at https://docs.raku.org includes a set of migration

guides for the following languages:

Perl. There are several pages devoted to migrating from Perl to
Raku. They are totally different languages, but a sizeable part of

the community is skilled in that language, so the six pages cover
operators, functions, and most of the specific syntax used by Perl for
regular expressions, for instance.

Node.js/JavaScript
Ruby
Python

Haskell. The first Raku compiler was written by Audrey Tang in
Haskell, so these languages are closer than you might think.

Searching for “how to do X in Raku” will take you to the right place in the

documentation, the StackOverflow answers, or online tutorials. In some cases, Raku

gives specific names to certain commands or data structures. Table 1-1 provides a short

translation guide of Raku names to names in other languages.

13

https://docs.perl6.org/

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

Table 1-1. Raku Names Compared to Other Languages

Raku Name Other Languages
Range Python, Go: A function, not a data structure
Ruby: Range

Haskell: Range

Seq Ruby: Range (not lazy)
Haskell: Seq (not lazy)
Clojure: lazy-seq

Traits Elixir: @behaviour

Roles Called traits in almost every language
Kotlin: Interfaces
JavaScript: Traits and Mixins

Ruby: Mixins
Sink context Void context
Phasers Some languages, like Python, use specific files like __init__.py for running

code at some specific phase of program or module loading.
Perl has similar BEGIN, END and other blocks.
Kotlin has init blocks in classes.
Multi-dispatch Multiple dispatch in most languages
Proto Elixir: Protocols
Subset In general, this corresponds to the concept of refinement types, for instance in

TypeScript or Liquid Haskell.
Ada: Subtypes or constrained types

In general, Raku incorporates many paradigms, data structures, and constructs
found in modern programming languages; it’s very difficult to find a language that has
such a wealth of them. If you know any language, especially functional languages such as
Haskell or Scala, it will be very easy to map the data and control structures you know to
Raku by using Table 1-1 or a search engine.

14

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

Of course, there are many control and data structures that are unique to Raku:
Junctions and Grammars, for instance. I strongly encourage you to check out the Per!
6 Quick Syntax Reference book, from Apress and the same author, to get acknowledged
with them.

When books and reference fail, you will need a helping hand. We’ll get to that next.

Recipe 1-3. Get Involved in the Community
Problem

You need help with the finer points of Raku, and/or you want to get to know other people
who are working with Raku.

Solution

There are several Twitter accounts you can follow, as well as some StackOverflow tags
and several IRC channels.

How It Works

A community is essential to the health of a programming language or technology. They
are places where you can pick up nuances about new languages and learn about any
new developments and patterns.

The Raku community uses IRC, the Internet Relay Chat, extensively. It’s the
predecessor of Slack, with different hosts divided into channels, every one of which uses
as a prefix. The main channel is #raku in Freenode, which is indicated with this URL:
irc://irc.freenode.net/#raku. When clicking or typing that URL, your browser will
ask you to open an IRC client, of which there are many. I favor weechat, a console client,
but there are console-oriented as well as more window-oriented ones for any operating
system. You can also use a pre-installed web client from this URL: https://webchat.
freenode.net/#raku.

In addition to the people who hang out there, #raku is populated by a series of bots
that will help you evaluate Raku expressions as well as navigate the code and its history.

15

https://webchat.freenode.net/#raku
https://webchat.freenode.net/#raku

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

Other channels that might be useful are the following:
o #raku-dev is where the core developers hang out.

o #whateverable is a channel where you can consult with the friendly
bot Camelia, which will evaluate your Raku expressions for you. You
can do this also in any of the other channels. If you intend to use it
heavily, it’s better if you move aside to this channel, so that you don’t
disturb the flow of conversation there.

There are several mailing lists you can also subscribe to; these can be useful for
seeking advice. See https://raku.org/archive/lists/. The perl6-user list is probably
the one you should be subscribing to. It does not have too much traffic, and you can help
and be helped by other users.

The “extraofficial” official Raku Twitter handle is @raku_news, with weekly news
curated by Liz Matijsen and other Raku related events, tutorials, and trivia. There are
other Perl6ers with varying degrees of activity on Twitter and Raku-related tweets. An
interesting one, even if it’s not Raku exclusive, is @perlwchallenge, a weekly challenge
that can be solved using Perl 5 or Raku. It points to blog posts that feature how to solve
the challenges in both languages. It’s a very interesting way to learn new things and to
challenge yourself by solving these problems.

Finally, StackOverflow gets a few Raku related questions a week in the [raku] tag.
Becoming part of the community implies not only checking it out for helpful answers to
your questions, but also voting up helpful questions and answers, and checking it out
from time to time just in case you can help someone else.

It’s also very likely that there’s a Perl (and Raku) meeting in your country or nearby.
There are major Perl conferences in the US, Asia, and Europe every year, and they feature
Perl and Raku talks, developers, and users. Nothing beats meeting face to face, and you
can always learn new things about the language and its libraries.

Recipe 1-4. Install Some External, Useful Modules
Problem

You need to create a program, and you need a library or module that is not included in
the core library or is part of the Rakudo Star distribution.

16

https://perl6.org/archive/lists/

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

Solution

Use zef to install the modules you need, search for them, and automatically install all
their dependencies.

How It Works

Raku comes with a few “batteries” included in the form of standard libraries. These
include all the basic classes and types, as well as additional modules for working with
native libraries (NativeCall) and Rakudo-specific modules and classes.

The Rakudo Star distribution packs a few more libraries in its bundle—for instance
a few libraries that deal with JSON, some testing libraries and scripts, HTML templates,
and HTTP libraries and utilities. That is more than enough for basic applications, with
the added value that they have been extensively tested against the Raku version they are
bundled with.

There are many more libraries in the Raku ecosystem, around 2,000 by the end of
2019. You can access them at https://modules.raku.org, where they are organized by
tags and names.

In your case, you want to process the recipes in the library to extract their titles. They
are written in Markdown. You can search for modules that include Markdown in their
names or descriptions by simply using zef, the Raku module manager.

zef search Markdown

This will return a list of modules that implement Markdown, or somehow do
something related to it. From the (shortened) description, Text: :Markdown seems to be
what we are looking for. You can install it with the following:

zef install Text::Markdown

This will also install all needed dependencies, if there are any. All modules use Pods,
the Raku markup language, to describe what they do. You can check out their repository
for the APIs they publish. In some cases there will be additional tutorials. For instance,
this module is featured in a Raku Advent Calendar article at https://perl6advent.
wordpress.com/2017/12/03/1letterops-with-perlé6/.

17

https://modules.perl6.org/
https://perl6advent.wordpress.com/2017/12/03/letterops-with-perl6/
https://perl6advent.wordpress.com/2017/12/03/letterops-with-perl6/

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

You can then use that module to write this program, which will take one file and take
care of its main header:

use Text::Markdown;
sub MAIN($file) {
if $file.I0.e {
my $md = parse-markdown-from-file($file);
say "Recipe title: ", $.text
for $md.document.items
.grep(Text::Markdown::Heading)
.grep({ $_.level == 1 });

The first line (after the shebang, which we will stop featuring from now on)
includes the sentence that imports Text: :Markdown into the current program and
makes all its exported functions available. One of these functions is parse-markdown-
from-file, which takes a file and converts it into a complex object, an array of
Text: :Markdown: : * objects. You can print just the name of the recipe by taking all
items in the document ($md.document.items) and filtering only those that are a
heading (* ~~ Text::Markdown: :Heading), and again filtering only those headings
that have alevel equalto 1 ({ $_.level == 1 }).

While this module is useful for this particular problem, there are several other
modules that you might be interested in downloading. These modules have a high
river score, which means that they are used very often, and at varying depths, by other
modules in the ecosystem. They add interesting functionality to Raku, and thus it’s a
good idea to get acquainted with them.

o Template::Mustache: A module for rendering data structures into
templates.

e URI: A module for handling universal resource identifiers.

e Cro: Amodule for creating distributed applications, including
microservices and many others.

e File::Temp: A module that creates temporal files in an OS-
independent way.

18

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

In general, the Raku ecosystem will contain the tried and mature module that you
need to complete your application. Just use zef and/or modules.raku.org to search for
it, and zef to install it into your coding environment.

Recipe 1-5. Detect the 0S Environment and Change
the Program Behavior Accordingly

Problem

Your program might eventually run in an unknown operating system. You need it to be

aware of its environment.

Solution

Use $*DISTRO, $*SPEC, and other dynamic variables to determine specific characteristics
of the operating system and write code specific it it.

Also avoid direct references to operating system paths; use I0: :Path instead to
access those paths in an OS-independent way.

How It Works

In your recipes site, you need to create a simple catalog of all the files in a directory in
order to check them. This can be solved idiomatically using directories and globs, but
you opt for a more direct approach by issuing the corresponding call in the operating
system. This program will do that for you.

class Recipes {
has $.folder;
has $!is-win = $*DISTRO.is-win;

multi method show($self where .is-win:) {
shell "dir {$self.folder}";

19

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

multi method show($self:) {
shell "1s {$self.folder}";

}

Recipes.new(folder => "recipes").show

In Raku, there are many ways to do anything, and idiomatic methods are not
something you will hear about often. Using the OS-specific command issued from the
Raku program is as idiomatic as using the dir subroutine or the sub method of I0: : Path.
In this case, we also use two idiomatic Raku constructs: including the invocant in the
signature via the colon:

multi method show($self:) {

And using where in the signature to determine which version of the method we are
going to call.

Allin all, this recipe does the following: it initializes the is-win attribute of the
Recipes class as soon as an object is built and it receives as a default value the result of
calling is-win on $*DISTRO. The multi indicates that, if is-win called on the object itself
($self)is True, the first version of the method (which uses dir) will be called. Failing
that, it will go to the second version, which uses 1s, a command that works in Linux and
OSX. Multiple dispatch acting on the object itself is an interesting pattern that can be
applied in Raku, and is peculiar to it.

This variable is a dynamic scope variable, which is denoted by the twigil * following
the sigil $. These all-caps variables are initialized by the compiler, so their values depend
on a series of heuristics (and compile-time set variables) that detect the operating
system the script is running in.

By default,

say $*DISTRO

will return something like debian (9.stretch). That is the result of calling the gist
method on the variable. However, the variable contains more information about the
operating system:

say $*DISTRO.perl
OUTPUT: «Distro.new(release => "9", is-win => Bool::False, path-sep => ":",

20

CHAPTER 1 PUTTING RAKU TO USE IN A REAL-WORLD ENVIRONMENT

name => "debian", auth => "https://www.debian.org/", version =>
v9.stretch,
signature => Blob, desc => "Debian GNU/Linux 9 (stretch)")'»

The most interesting pieces of information are the path-separator used in the shell,
which is : in Debian, and the release numbers, which might be useful when adapting
code to different versions of the specific OS.

Another variable, $*SPEC, is specifically related to the way the files are specified, and
it contains a class that will be used to work with files. There are four classes available in
Raku: I0: :Spec: :Cygwin, I0::Spec::0NX, I0::Spec::Unix, and IO: :Spec::Win32. Since
these are used internally by the I0: :Path class, it’s always better to use them (instead
of the name of the file directly) to build a path, so that it’s guaranteed to work in any
operating system. As a matter of fact, this was not considered in the previous version of
the class, so we will modify it this way:

class Recipes {
has $.folder;
has $.folder-path = I0::Path.new($!folder);;
has $!is-win = $*DISTRO.is-win;

multi method show($self where .is-win:) {
shell "dir {$self.folder-path}";

}

multi method show($self:) {
shell "1s {$self.folder-path}";

}

Recipes.new(folder => "recipes/desserts").show

As long as there’s a slash in the path, we might need to adapt that to the specific
operating system. I0: : Path does that for you. Previously we were using the name
directly, now we’re using an I0: :Path object, which will stringify to an OS-adequate
path when we insert it into the command to list the files. Since this path is not going to
change, it’s created automatically with the object.

21

CHAPTER 2

Input and Output

Most programs need to interact with the filesystem and the network to obtain data

and to produce a result. Input/output routines and classes, or I/0O for short, group that
functionality. In this chapter we include several recipes that will help you work with files
of different kinds in different ways.

Recipe 2-1. Read Files Handled as Arguments
Problem

You need to process a series of files, but you don’t know in advance which files you are
going to work with, so it’s better if the script works with the files you provide as arguments.

Solution

The dynamic variable $*ARGFILES is an alias to a pseudo-file that includes all files whose
names have been provided in the command line. Use it in your script.

How It Works

You need to compute the weight of your recipes site, which is the gross number of
sentences that are there. Or, you need to compute that number by directory. Either way,
it'’s an operation that you need to do on a set of files, and it will treat the content of the
files uniformly. So let’s create a script that prints the number of sentences (separated by
a period, or a double line separator, as in headers).

This can be done, as a matter of fact, with a single line of code:

say "Sentences — ", $*ARGFILES.lines.join("\n")
split(/7 ["L | \v¥*2] /).elems;

23
©].J. Merelo 2020

].J. Merelo, Raku Recipes, https://doi.org/10.1007/978-1-4842-6258-0_2

https://doi.org/10.1007/978-1-4842-6258-0_2#DOI

CHAPTER 2 INPUT AND OUTPUT

$*ARGFILES behaves as a single file handle with the files already open. You don’t
need to worry about opening or closing every file handle in turn; as long as you call
the script with a list of files, Raku will collate them and make them available under that
single variable. You can perform different operations on this file, such as read it line by
line. This allows you to collate lines using whatever you want, for instance, a carriage
return. The regular expression used by split will divide the resulting string either by a
literal period ('. ") or two vertical spaces (\v ** 2).

You can run this script this way, for instance:

perl6 Chapter-2/count-sentences.p6 recipes/desserts/*.md

And it will return 5 as the version that’s currently in the repository.

Note | also encourage you to run this script from Comma, at least to get used to
it. In this case, it’s a single file and there’s not much to debug, but multi-line scripts
and more complex modules will really profit from the tools and tips provided by
Comma. If you want to do so, you will have to include a configuration, with the
script name and working directory (the top of the repository, for instance). The only
thing you have to take into account is that Comma does not understand globs,

S0 as script parameters you will have to flesh out the names of the files, this

way: recipes/desserts/buckwheat-pudding.md recipes/desserts/
guacustard.md

This is, in fact, equivalent to doing this:
say "Sentences — ", $*ARGFILES.slurp.split(/ ["." | \v**2] /).elems;

The set of files is simply slurped, that is, swallowed whole to a single string, carriage
returns and all. Separating by lines and then joining using whatever you like gives
you a bit of more flexibility; you might, for instance, want to eliminate lines that act as
headlines. The splitting expression above could create empty “sentences” (if there’s a
period followed by two vertical spaces, for instance), and, besides, we want to eliminate
headers (which start with a #). This version will take care of that:

say "Sentences — ", $*ARGFILES.lines.grep(/"<:L>/)
Jjoin("\n").split(/ ["." | \v**2] /).elems;

24

CHAPTER 2 INPUT AND OUTPUT

By using grep to select only those lines that start with a letter (<:L>), we eliminate
headlines, which start with a hash mark, empty lines (provided that there are no lines
that start with a space and are followed by any other letter, which we will take care not
to use), and headings. All that’s left are lines that start with a letter. But there might be
some cases where there are empty lines at the end of a section or file, and we might have
forgotten to add a period that ends a sentence there. We'll mark this also as the end of
a sentence, which explains the double vertical space in the split. Finally, we count the
number of elements of the created array, which will indicate the number of sentences.

The script will work the same with a single file instead of several. If you want to find
and process files individually, you can of course do so. In the next recipe, we will see how
to deal with them asynchronously.

Recipe 2-2. Read and Process Files Asynchronously
Problem

You need to read files with an unknown size without blocking the program.

Solution

Raku includes many facilities for asynchronous operation. You can work either with
asynchronous input/output or using taps for event-driven operation.

How It Works

Asynchronous programming is a powerful, if not exactly popular, way of working with
tasks whose duration is not known in advance. Synchronous programs start the task,
and the rest of the program waits until that task is finished. This kind of behavior is quite
inconvenient when a response needs to be given in a timely manner, such as on the web.
Asynchronous programming started to be popular with JavaScript. Designed
originally for web interfaces, JavaScript works with events that are processed in order,
but that do not block the UI. When the server-based version Node was created, this kind
of behavior extended itself to all kind of events. The interpreter runs an event loop, with
some tasks creating events and callbacks that are invoked when the event is activated.

25

CHAPTER 2 INPUT AND OUTPUT

This is quite convenient in input/output. Instead of synchronously waiting for the
whole file to be read, a reading task is initiated, and a callback function is called when
that task is finished. Reading proceeds in the background, while the rest of the program
is left to its own devices, processing other things, or creating other events, that will be
processed in turn.

Let’s assume that you need to check all files in the recipes database, and then
perform some operation on them, such as extracting their titles as we did in the last
chapter. These files might have different sizes, or be at different depths in the filesystem,
which means all operations will be delayed if one of the files takes longer than usual.

Use this script:

use Text::Markdown;

sub MAIN($dir = ".") {
my @promises = do for tree($dir).List.flat -> $f {
start extract-titles($f)
}

my @results = await @promises;
say "Recipes =\n\t", @results.map(*.chomp).join: "\t";

sub tree($dir) {
my @files = gather for dir($dir) -> $f {
if ($f.10.F) {
take $f
} else {
take tree($f);

}

return @files;

sub extract-titles ($f) {
my @titles;
if $f.10.e {
my $md = parse-markdown($f[0].slurp);
@titles = $md.document.items

26

CHAPTER 2 INPUT AND OUTPUT

.grep(Text::Markdown::Heading)
.grep({ $_.level == 1});

}
@titles;

The tree routine, which is the same one we used before, runs recursively over the
directories to collect all files. That should not take long, although we could also run that
part asynchronously, and even in parallel. What we will do in an asynchronous way is
open and then process the content of the files.

The main part of the program runs over the list of files and creates a promise for
each. The start command does precisely that: It creates a promise out of the block
it receives as an argument. In Raku, the for loop returns a list of the results of the last
sentence of every iteration. The single sentence here, start, will return a promise; we
assign that array of promises to a variable, effectively called @promises.

Within every promise, there’s a plain vanilla block of code that checks for the
existence of the file (who knows, it might have disappeared on its way from the tree
routine, it's always better to err on the safe side). Blocks cannot use the return keyword,
but they will return whatever the last statement produces. So that promise, which will be
kept when finished, will return that value.

However, that value is not assigned to anything for the time being. It’s stored in
the promise, but you will not know what it’s worth until the promise is actually kept.
The await statement does precisely that: it waits until all promises in its argument are
fulfilled and returns their value; @results will contain those values, which are then
printed, in a synchronous way, in the next step.

Reading files this way is going to be marginally to noticeably faster than doing it
synchronously. The increase will depend on how big the files are and the amount of
processing that needs to be done in each. But there’s still a part of the script that’s not
asynchronous. We might as well go async all the way using supplies.

A supply is a sequence of objects that can be populated and picked asynchronously,
always in the order it’s filled. You emit to a supply to fill it up, and tap from it to use its
values. The good thing about these taps is that they can occur asynchronously, and there
can be as many taps for a single supply as are needed. Check out this script:

|.|){
supply tree-emit($dir);

sub MAIN($dir

my $supply

27

CHAPTER 2 INPUT AND OUTPUT

my @titles = gather {
$supply.tap(-> $f { take $f.I0.lines.head })
}s

say "Recipes =\n", @titles.join("\n");

}

sub tree-emit($dir) {
for dir($dir) -> $f {
if ($f.10.F) {
emit $f
} else {
tree-emit($f);

It dives recursively into the directory, emitting the name of the file for every one it
finds. Since the tree-emit routine is called from within a supply, that supply will gather
all the filenames. The tap that’s called with $supply.tap will obtain the first line of every
file and gather it in an array, but the code within the supply block will not be run until
it’s actually tapped. Think about a supply not as buffer, but as a list of tasks that are not
run until they are absolutely needed. If we make this alteration to the script:

sub MAIN($dir = ".") {
my $supply = supply tree-emit($dir);
say "Now let's rock";
my @titles = gather {
$supply.tap(-> $f { take $f.I0.slurp.lines.head })
};

say "Recipes =\n", @titles.join("\n");

28

CHAPTER 2 INPUT AND OUTPUT
The result will be printed in this order:

Now let's rock
Let's emit recipes/main/rice/tuna-risotto.md

(and the rest of the files)

This style of operation is also called reactive programming; the taps react to every
object in the supply, in turn. It’s an efficient way of working with I/0, since it will reduce
the overhead incurred by loops. Many modern languages—from Node.js to Dart through
Python in its latest 3.x versions—use this kind of reactive operation for everything from
simple file I/O to serving web pages and other services.

Recipe 2-3. Connect Input and Output of External
Utilities and Files

Problem

You need to run an external program and process its output, or conversely, you need to

provide an external program with text in order to process it.

Solution

The Proc: :Async class provides all kinds of facilities to interface with external interactive
command-line programs.

How It Works

Once the foundations for working asynchronously are set, you can use it for all kinds of
things. You can interact with files and with other programs that issue text at unknown
intervals. Think about system logs or other kinds of programs that append to a file from
time to time. For instance, this script takes snapshots of a process running across the
system and appends them to a file:

watch "ps -e | tail --lines=+2 >> /tmp/ps.log"

29

CHAPTER 2 INPUT AND OUTPUT

The file will look like this:

28485
28821
28829
30976
31001 ¢
31029 pts/0
31189 pts/4

NN Y Y oV

00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:

03
19
01
00
00
00
02

kworker/u8:0
gimp-2.8
script-fu
docker
containerd-shim
sh

zsh

This is a basic structure that includes, as the last two elements in each line, the time

the command ran and the short form of the actual statement.

This program will monitor this file and act on it:

my $proc =

$proc.stdout.tap(-> $v {

Proc::Async.new: 'tail', '-f', '/tmp/ps.log’;

$v ~~ mig/([\d+] ** 3 % ") \s+ (\S+)/;

with $/

{

for $.list -> $match {
my $command = $match[1];
my $time = $match[o0];
given $command {
when .contains("sh") {

say "Running shell $command for $time"

}
}
}
}s

}

when none("watch", "ps", "tail") { say "Seen $command" }

say "Listening to /tmp/ps.log";

await $proc.start;

say "Finished";

30

CHAPTER 2 INPUT AND OUTPUT

It's somewhat long, but its structure is quite simple. First, the asynchronous
connection is created, then the monitor is set up, and finally the actual process is run,
also asynchronously.

As indicated in the solution, Proc: :Async is the class that drives all this interaction;
it’s documented in https://docs.raku.org/type/Proc: :Async. We use it in the first
line, creating a process that is going to run tail -f /tmp/ps.log. We need to split it this
way to protect it from shell escaping. Proceeding to the last part of the script, we create
a promise by starting the process and using await to wait for the promise to finish. That
will never happen, actually, since tail -f runs until it’s interrupted

But the async processing is done in the middle. As we did in the previous recipe,
we use taps. Proc: :Async creates supplies out of every process handle: standard input
or stdin, standard output or stdout, and standard error. We're only interested in
stdout, so that’s the supply we tap. We run every line through a regular expression.

The ([\d+] ** 3 % ':' partis a set of three groups of one or more digits, separated by
a colon. That’s the time it's been running. The second part is simply the beginning of
the command. The parentheses capture the content and we run the loop only if there’s
actually something captured (with $/). The $_will be equal to $/ (since with topicalizes,
making $ equal to its expression).

As you can imagine, connecting this to the input of another program will work more
or less in the same way. You can, for instance, run a program and connect its output to
the input of another program. For instance, to count the number of recipes (which are
Markdown files) in the repository, we use this:

my $find-proc = Proc::Async.new: 'find', @*ARGS[0] // "recipes", "-name",
"*.mdll;

my $wc-proc = Proc::Async.new: 'wc';

$wc-proc.bind-stdin: $find-proc.stdout;
$wc-proc.stdout.tap({ $_.print });

my $wc = $wc-proc.start;

my $find = $find-proc.start;
await $wc, $find;

say "v Finished"

31

https://docs.raku.org/type/Proc::Async

CHAPTER 2 INPUT AND OUTPUT

This program uses two asynchronous processes. We will read from the find process,
which uses a UNIX command-line utility that finds files in the filesystem. It takes as
the first argument the starting directory and starts to go deeper from there, until all
the subdirectories are checked. We will use a command-line argument for that, but by
default it will use recipes as the top directory.

The second process is another command-line utility that counts words. It produces a
line like this:

6 6 209

It shows the number of words (6), the number of lines (6), and the total number of
characters (209). Since the first program will produce one file for every line, the two first
numbers are the same.

The next line uses bind-stdin to connect the input of the wc utility to the output of
the find utility, kind of as if you made the following (in UNIX/Linux):

find recipes -name "*.md" -print | wc

As you probably know, the pipe symbol | connects output from the left side to the
input from the right side. Raku will do that programmatically, and also efficiently. Once
that is done, you can tap the supply of the wc process, which will print the output.

Since we have two processes now, you will have to await until both promises are
fulfilled, which you do in the next-to-last line of the program.

These pipelines can be as complicated as you want; you can bind output to several
inputs, for instance, and create glue scripts that connect different, and readily available,
utilities.

These scripts will also work in MacOS and in the Linux subsystem of Windows, as
well as in the different bash command lines that are available for Windows. In this case,
however, we use PowerShell commands. In any case, Raku will use whatever operating
system facilities are available to run the commands you launch.

32

CHAPTER 2 INPUT AND OUTPUT

Recipe 2-4. Read and Process Binary Files
Problem

You need to work with binary files such as images or video.

Solution

Reading binary files is possible with any file-reading command. Its content, however,
needs to be stored in special data structures called blobs. Depending on the format, there
will also be Raku Modules that can deal with them; for instance, modules for images or
sound files.

How It Works

Suppose you stored a series of images on your recipe website, and you need to check
them for size before they are served so that they can be reduced, adapted to a certain
screen, or whatever. You need to know the width and height of an image, anyway.

These are two pieces of data that are stored inside the file. They are part of the header.
Specialized tools called EXIF readers are able to collect this data, along with all the rest
of the data related to the camera settings, and even GPS data in some cases. Let’s keep it
simple and obtain just the width and height using Raku. This program will do the trick:

my Blob $image = slurp(@*ARGS[0] // "../recipes-images/rice.jpg", :bin);

From here https://stackoverflow.com/a/43313299/891440 by user6096479
my $index = 0;
until $image[$index] == 255 and $image[$index+1] == any(0xCo, OxC2) {
$index++;
last if $index > $image.elems;

}

if ($index < $image.elems) {
say "Height ", $image[$index+5]*256 + $image[$index+6];
say "Width ", $image[$index+7]*256 + $image[$index+8];
} else {
die "JPG metadata not found, damaged file or wrong file format";

33

CHAPTER 2 INPUT AND OUTPUT

Despite its many numbers, it boils down to these steps: get the data (in binary form),
look for a marker (that indicates the chunk of the file where the data starts), and then get
the data and print it. Let’s break this process down:

o First, we use a blob to store the binary contents of a file; slurp
will return a blob if it’s run with the option :bin, as in binary. A
blob is basically a list of bytes (actually, uint8, unsigned integers
represented with eight bits). The until loop explores until it finds
the marker for that segment: a byte valued FF in hexadecimal, or 255,
followed by another whose value is either CO or C2 in hexa.

e When that marker is found, the height is stored in two bytes in the
fifth and sixth bytes, which we convert to decimal by multiplying the
first by 256. The width is stored in the next two bytes, and we convert
it in the exact same way.

o [Ifafile that has been damaged or has any other format is issued in
the command line, those markers will not be found. The loop will
end and the script will exit with an error message.

If you need to obtain more information from these images, or simply store them in

the self-same form somewhere else, blobs are the way to go.

Recipe 2-5. Watch a File for Changes
Problem

You need to check a file or directory for changes of any kind.

Solution

Use I0: :Notification.watch-path, which will return a supply you can tap to check or
otherwise act on the changes, which will have the shape of I0: :Notification: :Change
objects.

34

CHAPTER 2 INPUT AND OUTPUT

How It Works

You have already seen how asynchronous code works in Raku. In general, it watches a
series of events and runs some code when an event occurs.

In the previous recipes in this chapter, other pieces of code generated the events.
However, the system itself also generates events all the time at a low level and we can
work with them if we just tap into that stream. Did I say tap? Well, we got taps in Raku,
don’t we? So you can just write a program that taps into the stream (or supply) of events
created by changes in the appropriate file or directory.

For instance, suppose we need to check if new recipes have been added to our
collection of recipes in the filesystem, or if something has been done to them. We could,
after a new recipe is added, run some checks, or raise an alarm if one that didn’t include
broccoli was deleted (it’s totally justified if it includes broccoli). Let’s do that with this script:

my $dir = @*ARGS[0] // 'recipes’;
my $dir-watch-supply= I0::Notification.watch-path($dir);

$dir-watch-supply.tap: -> $change {
given $change.event {
when FileChanged { say "{$change.path} has changed"}
when FileRenamed { say "{$change.path} has been renamed, deleted or
created" }

}s
await Promise.in(30).then: { say "Finished watch"; };

As indicated in the solution to the recipe, we are using the convenient
I0::Notification Raku class to check on the recipes directory. This class includes a
single method, watch-path, which takes a string representing the path to watch as an
argument. This method produces a supply, which we can effectively tap.

The tap will produce change events, objects of the class I0: :Notification::Change
that have two attributes: the type of event, that is, if it'’s been FileChanged (changed
size, for instance) or FileRenamed (which includes creation or deletion, as well as actual
renaming), as well as the path. That is why we check for the value of $change.event,
adapting the message about the involved path depending on the type.

35

CHAPTER 2 INPUT AND OUTPUT

However, a supply just creates a stream of events, and a tap asynchronously runs
when one of those events is produced. We need something to wait, though, for the events
to happen. We need an event loop that allows the script to continue execution until a
certain condition is met. That is what the last statement does. It creates a promise that is
kept after 30 seconds; effectively, this is a waiting loop that will be there for 30 seconds,
after which the script will be finished.

Note It's very likely that the messages produced by the tap are kept in a buffer
and will all be printed by the end of the program. This is also why these kinds of

event loops must be exited gracefully, so that all the buffers are flushed and the

events and the messages produced by them are not lost.

The problem with this is that the event loop can’t go on forever. It will be watching
for 30 seconds; then, it would have to be restarted again to catch new changes. That
might eventually become annoying; a watch should be always watching. The next script
will do that:

my $dir = @*ARGS[0] // 'recipes';

my $dir-watch-supply= $dir.IO.watch;
my $ctrl-c = Promise.new;

$dir-watch-supply.tap: -> $change {
given $change.event {
when FileChanged { say "{$change.path} has changed"}
when FileRenamed { say "{$change.path} has been renamed, deleted or
created" }

};
signal(SIGINT).tap({ say "Exiting"; $ctrl-c.keep });
await $ctrl-c;

This script uses an alternate form for the file watch, creating an I0: :Path out of
the string and putting a watch on it. This is not the main change, however. A new and
literally empty promise is created next; we call it $ctrl-c because that is what it will take
care of. The checking tap is exactly the same, but it changes right after that.

36

CHAPTER 2 INPUT AND OUTPUT

First, we set up a tap on the supply of SIGINT signals. SIGINT is the system signal
that is invoked when Ctrl+C is pressed. We can capture that signal and act on it; in this
case, we will print a message indicating that we are gracefully exiting the application,
and then we keep the promise, that had so far been unfulfilled. Since the program will
be kept waiting until that promise is kept, which is what the next statement does, it will
effectively get out, flushing the output buffers and generally doing the right thing to exit
the program.

37

CHAPTER 3

Data Science and Data
Analytics

Scripting (and other) languages are great resources for getting data from one format to
another, or for performing operations on data that has already been massaged. Data
science refers to data gathering, data munging, and performing operations to produce a
result; data analytics is less mathematically oriented and refers to simple aggregation or
performing individual operations on the data.

Some programming paradigms, like functional programming, are used for these
kinds of tasks. Thanks to its multi-paradigm nature and its extensive set of native
functions, Raku is uniquely suited to these kinds of tasks, as we will see in this chapter.

Recipe 3-1. Extract Unique Email Addresses/User
Names from Several Files

Problem

For a set of email addresses that exist across three files, you need to determine which
ones are repeated in all three files, and conversely, which emails appear uniquely in only
one of the files.

Solution

Use set operations to determine the intersection among all files, or the symmetric
difference between two of them.

39
©].J. Merelo 2020

].J. Merelo, Raku Recipes, https://doi.org/10.1007/978-1-4842-6258-0_3

https://doi.org/10.1007/978-1-4842-6258-0_3#DOI

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

How It Works

You have decided to create a newsletter with new monthly recipes on your recipes
website. The system collects new addresses in files, one address to a line. Unfortunately
and provisionally, just files are used instead of a proper newsletter application, which
could manage all of this easily. Every person in the office saves the email addresses they
receive for the first few weeks. As new sign-on drives occur, you eventually end up with
many different emails. These people are often interested in different versions of the
newsletter (only desserts, just vegan, and so on). You decide to create a core list of email
addresses that will receive all the newsletters. You do this by determining which people
signed up for all the different versions, through all the different file creators.

The files will be listed like this:

one@ema.il
another@electron.ic
yetan@oth.er

... and so on. One to a line.
This script can do that for you:

say [n] do for dir(@*ARGS[0] // "emails", test => /txt$/) -> $f {
$f.1lines;

This is a lot of work in what is essentially a single line, so let’s break it up. Essentially,
this script is reading only the files whose names end with . txt from a directory,
dividing them up by lines, creating a list-of-lists, and applying a reduction operator to
that list-of-lists. That reduction operator takes every member in turn, computes the
intersection, and leaves the result to intersect with the next list on the list-of-lists.

Let’s break down this expression from bottom to top, right to left.

1. $f.lines will create a list with the email addresses, which are
placed on different lines. The slurp method will read a whole file.
The result of this will be returned.

2. $f will contain an I0: :Path, which will be used as the loop
variable.

40

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

3. The loop will run over a list returned by dir; this command will
examine the directory that is passed as the first argument in the
command line (@*ARGS[0]) or, if that’s not defined (//), "emails".
There might be other files in the directory, so we get only those
whose name ends with txt (/txt$/). This is a regular expression,
and you could use any expression in principle to filter the files.

As a matter of fact, test can be any kind of test, including file
permissions or type tests. We will be using it on a directory with
that name that includes several files—email-(1,2,3).txt—which
is why we use that pattern for filtering.

4. We use do before for, which places for in a list-creation context.
This will create a list with the result of every iteration, which in our
case is also a list (of emails in every file).

5. In front of that, the list reduction hyper-operator, [], is applied to
the intersection operator, [N]; these are called hyper because they
need an underlying operator to work, combining their semantics.
In this case, it combines the semantics of the intersection operator
with the apply-in-sequence-to-list semantics of the [] hyper-
operator. Raku supports many Unicode mathematical operators
with their implied semantics, but it’s not always easy to determine
how to type them in a particular editor or operating system. Every
one has an ASCII (read: easily typed) counterpart, generally
some symbol surrounded by parentheses. In this case it’s (&)
(mnemonic rule: & means and; intersection selects those elements
that are in one set and the other). Reduction is a common list
operation that sequentially applies an operator to the first two
items in a list, and the result of this is operated on the third
element, and so on. So in this case, for three files, what it’s doing
is (@list[0] n @list[1]) n @list[2]. Using reduction hyper-
operators means we don’t need to know in advance how many

items there are in a list.

This eventually results in a very compact script that can run from the command line:

raku -e 'say [n] do .slurp.lines for dir(@*ARGS[0] // "emails", test =>
/txt$/)5

41

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

We reduce it even further by moving the loop body in front of for and eliminating
the loop placeholder variable. We have to make a simple change to extract the emails
that appear in a single file:

raku -e 'say [(-)] do .slurp.lines for dir(@*ARGS[0] // "emails", test =>
/txt$/);!

The (-) (ASCII equivalent) or © is the symmetric difference operator. One of the
nice things about Raku is its ability to use these kinds of operators on sets. Sets are not
only good for mathematical calculations, they also have very nice business use cases, as
shown in these two examples.

Recipe 3-2. Create a Weighted Random Number
Generator

Problem

We need to create a cheating roulette or loaded die that yields winning numbers with
greater probability than others.

Solution

Use Mixes. This data structure is a set with weights, and the weights of the elements of
the set can be used to “load” the result, relative to the others.

How It Works

Mixes are sets of different elements, every one of which has a weight assigned to it. For
instance, we want to generate new recipes by throwing a die with as many elements as
ingredients, but we also want to take into account our preferences for some ingredients.
We can load onion, and unload garlic, for instance, and use this small program to create
a list of ingredients we will use.

my $ingredients = (rice => 1, chickpeas => 1,
onion => 2, tomatoes => 1,
garlic => 0.5, pasta => 1,
chestnut => 0.25, bellpeppers => 1).Mix;

42

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

for *10 {
say "New recipe =

, $ingredients.roll(5).unique.join(", ");

Mixes are essentially hashes or associative arrays with real values, which is why we
declare them by creating that kind of hash and calling .Mix on them.

There’s not much more to this recipe. Mixes are created exactly for this kind of thing.
We are loading the onion and unloading the garlic and the chestnut (it’s expensive and
not very good if it’s not the season). We are actually rolling that loaded die five times, and
it will yield the ingredients with the (relative) probability we need. That roll will create a
list of five elements, of which we extract the unique components (which will make some
of the recipes shorter). Finally, we print the whole thing, resulting in something like this:

New recipe = chickpeas, onion

New recipe = pasta, bellpeppers, tomatoes, onion

New recipe = onion, rice, pasta

New recipe = bellpeppers, onion

New recipe = bellpeppers, onion, chickpeas, pasta, garlic
New recipe = onion, chestnut, tomatoes, garlic

New recipe = tomatoes, onion, rice

New recipe = tomatoes, onion, garlic, pasta

New recipe = onion, rice, tomatoes

New recipe = onion, pasta, rice, bellpeppers

There’s a lot of onion, which should only be expected, and not many chestnuts. It’s
obviously random, and some of the time it will have to be eliminated from recipes where
it appears twice, but still it’s quite clear where the loaded die falls.

Recipe 3-3. Work with a Spreadsheet, Filtering,
Sorting, and Converting Data

Problem

We need to access data that is included in an Excel spreadsheet.

43

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

Solution

There’s a working module in the ecosystem, Parser: :FreeXL: :Native, that can read
spreadsheets directly. If the spreadsheet has been saved in the text-based CSV format, it
can be read and parsed directly or via the Text: : CSV module.

How It Works

It’s quite normal for businesses to keep structured data in a spreadsheet; the Excel
format is widespread and can be produced and read by Microsoft Office products, as well
as by open source applications like LibreOffice and online apps like Google Suite. Data
in these spreadsheets is distributed in rows and columns, so it’s easy to enter it as well as
produce charts or apply operations on it.

You have received a spreadsheet of calorie data for the ingredients that you will be

using.

Note As a matter of fact, government organizations such as the FDA produce
spreadsheets with useful nutritional information all the time. The one we will use
here, however, is created specifically for this purpose.

The spreadsheet we will work with is shown in Figure 3-1. It will have three columns,
with the name of the ingredient (which we will use as key), the unit for which we show

the calories, and the calories.

Ingredient Unit Calories

Rice 100g 130
Chickpeas 100g 364
Lentils 100g 116
Egg Unit 78
Apple Unit 52
Beer 4 liter 216
Tuna 100g 130

Figure 3-1. Sample ingredient database

44

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

You need to read that information, contained in a calories.xls file, and compute
the calories of a nice tuna risotto dish. This script will do that:

use Parser::FreeXL::Native;

my %ingredients = %(Rice => g => 350,
Tuna => g => 400 ,
Cheese => g => 200);

my Parser::FreeXL::Native $xl-er .= new;

$x1-er.open("data/calories.x1ls");
$x1l-er.select sheet(0);

my $total-calories = 0;
for 1..7$x1l-er.sheet dimensions[0] -> $r {
my $ingredient = $xl-er.get cell($r,0).value;
if %ingredients{$ingredient} {
my ($q, $unit)= extract-measure($xl-er.get cell($r,1).value);
if %ingredients{$ingredient}.key eq $unit {
$total-calories += $xl-er.get cell($r,2).value
* %ingredients{$ingredient}.value / $q;

}

say "Total calories = $total-calories";

sub extract-measure($str) {
$str ~~ /™ $<g> = (<:N>*) \s* $<cunit>=(\w+)/;
my $value = val(~$<q>) // unival($<q>);
return ($value,~$<unit>)

In order to run this program, you need to install the module it’s using, via the

following:

zef install Parser::FreeXL::Native

45

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

This is a native module. This means that it provides a Raku front to a compiled, a
shared library, which in this case is called FreeXL. This library can be installed in Linux
or the Linux subsystem in Windows via the usual installation command (in the case of
Ubuntu):

sudo apt install install libfreexl-dev

You should follow the usual procedure to install it in MacOS or Windows.

That is a nice feature of Raku; the NativeCall interface provides an easy way to wrap
around native libraries, so that you can leverage them in your programs via a natural
Raku interface.

This script has two different parts: the first one reads the values in the spreadsheet,
the second will use those values to compute the calories in the dish, whose ingredients,
units used to measure them, and quantities are contained in the %#ingredients variable.
This variable uses a pair to represent the quantity; the key of that pair will be the unit
(grams, in this case), and the value will be the number of units. In this case, 350 of rice,
400 of tuna, 200 of cheese. Which may be a bit too much for you, but my family loves
cheese.

The first part reads the values from the spreadsheet: it reads the file, selects the
only sheet in it (index = 0), and starts to run over the rows. It starts with the second row
(index = 1), since row 0 just contains the headers.

The second part is a loop that runs over the rows of the spreadsheet, whose index
will go to the $r variable.

The regex, that is, the regular expression (sometimes the plural is written regexen)
that extracts the unit and quantity of measurement from the second column (index 1) is
a bit tricky, which is why we have put them in a separate extract-measures routine. But
we need to know how calories are counted, and this is a convenient way of determining
it. Regular expressions get a bad reputation, but once you get the gist of them they are
excellent for the kind of task—getting data from text that has a bit of structure.

Let’s try to understand the regular expression. For these ingredients, it says things
like 100g, which means that we measure calories per 100 grams (which is the usual
way). But we need to break that into the measure (100) and the unit (g). First, we anchor
the regex to the beginning of the string via **. Right after that, a number, if present, will
indicate the measure. We express that via (< :N>*), with the asterisk implying that, in
some cases, as when it simply says Unit, it’s going to be absent. Parentheses are used to

46

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

capture the result. Note that we're using < :N> here, as opposed to the more familiar \d:
Unicode property. We have a % in our set of measurements (for beer, that’s close to half
a pint and it’s one of the ways we measure beer in Spain, un tercio), and that wouldn’t
match \d, so we use a character class description that covers it. Then the unit will be
separated (or not) by some whitespace (hence again the *) and will be a set of one or
more “word” (\w) characters.

That regex will get, for the three ingredients we're interested in, the figure 100 into
the $<q> variable, and g into the $<unit> variable. Variables that use angular brackets
can be defined and assigned inside regular expressions and used outside them, as we do
in the defined routine. However, $<q> needs additional processing, once again thanks to
el tercio. Usual routines converting strings to numbers can’t deal with them directly; they
will only work with number literals such as 3, 2.3e7, or the ASCII version of the fraction,
1/3. As a matter of fact, this is not going to happen to any of the ingredients in this script,
but that does not mean we shouldn’t take that case into account.

Note We could have used this shape, like 1/3, to express fractional numbers in
our table. However, that would have created a whole host of other problems in the
regular expression. So let’s just don’t.

If we use val over a string containing just “%4’, it will return a failure. But failures are
nils in disguise, so we use this fact to assign a value to $value. If conversion with val
fails, unival will be applied to it, returning the numeric value, which is what we return.

The routine will return a list of two values: the quantity used to measure calories and
the unit. The first could be an empty string.

Once the data has been extracted from the spreadsheet, we need to add it. The lines
of the loop do that: first we obtain the name of the ingredient, which is the first column
in the spreadsheet. We proceed only if that ingredient is in our dish; only then do we use
the regular expression to extract the measurement and unit. Then, if the unit is the same
as in our list of ingredients, we do an operation to compute the number of calories based
on the weight (in this case) of the ingredients.

The result here will be a whopping 1,231 calories. Not to worry, though, since it’s a
recipe for four people. You can even splurge on the cheese if you want, just a few calories
will be added.

47

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

As commented in the solution, we can also read CSV files using an alternative
module. A CSV file with the same information is a text file that looks like this:

Ingredient;Unit;Calories
Rice;100g;130
Chickpeas;100g;364
Lentils;100g;116
Egg;Unit;78
Apple;Unit;52

Beer;'s liter;216
Tuna;100g;130
Cheese;100g;128

The semicolon acts as a separator, and there’s one row in every line. This script will
read and print the contents of the file:
use Text::CSV;

say csv(in => "data/calories.csv”, sep => ';', headers => "auto");

You will need to install Text: : CSV first, but as you see, it’s a single statement. Besides
the filename, we indicate which separator to use (if it’s not the default comma), and with
the auto-headers option, we make it automatically create a hash for every row, using the
headers as the keys. The first row, for instance, will become:

{Calories => 130, Ingredient => Rice, Unit => 100g}

CSV is a format that, along with JSON and other data serialization methods, is used
extensively in data science. We will come back to it in the next recipe.

Recipe 3-4. Apply a Series of Transformations
and Extract Data from Them

Problem

You have data stored in a list of arrays, and you want to apply one or several
transformations to that data, including processing or filtering, and then extract a single
quantity. For instance, say you want to compute the total number of calories in a set of
dishes and then exclude those dishes with more than 1,000 calories.

48

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

Solution

This operation is called map/reduce. In Raku, there are several mapping operators,
including map itself, and reduce operators that can be built from binary (infix) operators
using the hyper-operator. Additionally, the feed operator allows you to create a single
chain of operations that can be easily identified visually.

How It Works

Map/reduce is functional operation where the elements of a list are first mapped to
another list (via any kind of operation and/or filtering) and eventually, an operation is
applied to the resulting, giving a single, reduced, result.

That is, we initially have something like this:

al,a2,...,an ==>bl,b2,...,bn ==> cl,c2,...,cm
And then, after the different map phases, it’s reduced by doing this:
((c1 op c2) op c3).... op cm) ==> X

There are two main functions doing the map part in Raku—map and grep. We have
encountered them before. Since they produce another list, they can be simply chained
by being applied as a method to the result of the previous operation. This can be visually
confusing, so Raku also uses the feed operator ==> (also called the rocket) as syntactic
sugar for these kind of (chained) map operations.

For instance, we have to process the CSV files with the calorie data and produce a
single map with only the non-dairy ingredients. We will then refer to that map later to
compute the calories in the dishes. You can do it this way:

use Text::CSV;

my %calories = csv(in => "data/calories.csv", sep => ';', headers =>
"auto", key => "Ingredient");

%calories.keys
==> map({ %calories{$ }<Ingredient>:delete })
==> grep({ %calories{$ }<Dairy> eq 'No'})
==> my @non-dairy-ingredients;

49

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

%calories.keys
==> map({ %calories{$ }<Dairy>:delete });

say %calories{ @non-dairy-ingredients}.map: { parse-measure($ <Unit>) };
sub parse-measure ($description) {

$description ~~ / $<unit>=(<:N>*) \s* $<measure>=(\S+) /;

my $unit = $<unit> // 1;

return ($unit,$<measure>);

In this example, the CSV file is read in such a way that instead of having an array of
hashes, we have a hash of hashes, with the column indicated by key.

We have two map chains in this script. The first works on the keys of the calories
table, which is an array, so it will eventually return an array. It will first delete the
Ingredient key, which we already know as the key to the hash. It does not really affect
the output, but changes the aspect of the calories table. Then grep is used to select only
those ingredients that are non-dairy. In the next step, we also delete the Dairy key from
the calories table, since we know those selected are non-dairy.

Eventually, we produce a list of units and measures used in the calories table. We
slightly change the regex from the one we used before, which was able to catch only
digits. Since we measure beer by 4 liters, we need something that has the Unicode
property “N” to capture it too. We will use this subroutine later on, in the next script.

This script was intended as a warm-up and as an introduction to the next one, which
actually solves the problem. It will read the recipe ingredient breakdown from the files,
add the calories for every dish, filter only those that have less than 1,600 calories (that is,
400 calories per person, which is reasonable) and add that quantity. This program will
do all this:

use Text::CSV;

csv(in => "data/calories.csv", sep => ';', headers => "auto", key =>
"Ingredient"”).pairs
==> map({
$_.value<Ingredient>:delete;
$_.value<parsed-measures> = parse-measure($.value<Unit>);

$_ 1)

==> my %calories;

50

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

my @recipes;
for dir("data/recipes/", test => /\.csv$/) -> $r {
my %data = csv(in => $r.path, headers => "auto", key => "Ingredient").
pairs
==> map({ $_.value<Ingredient>:delete; $; });
push @recipes: %data;

}

say qq:to/END/;

Your non-caloric recipes add up to

{[+] (@recipes ==> map({ get-calories($) }) ==> grep(* < 1600))}
calories

END

sub parse-measure taken from the previous script

sub get-calories(%recipe) {
my $total-calories = 0;
for %recipe.keys -> $i {
if %recipe{$i}<Unit> eq %calories{$i}<parsed-measures>[1] {
$total-calories +=
%calories{$i}<Calories> * %recipe{$i}<Quantity> /
%calories{$i}<parsed-measures>[0]

}

$total-calories;

It's the longest script so far, even if we eliminate the parsing sub. But it’s conceptually
simple: it reads the calories table and puts it into a single associative array called
%calories, reads the recipes and puts them into an array called @recipes, and then, in
a single sentence, maps recipes to their calories, selects those that have less than 1,600,
and tallies them up to a single number.

The sub that computes calories is also very similar to the one we’ve seen before, so
we will just focus on the map/reduce operation that is midway through the script. First,
the map part: @recipes ==> map({ get-calories($_) }) will map (or convert)
the array of associative arrays that contain the recipe ingredients (and quantities) into

51

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

a list of numbers. This list of numbers will be filtered by grep in the next stage: ==>
grep(* < 1600)).Justa couple of recipes, whose name we're not interested in now,
have that quantity. These recipes’ calories will be added in the reduce phase, the [+] at
the beginning of the map chain. This is wrapped in curly braces to evaluate it before
inserting it into the output string, and it uses the heredocs syntax to avoid a bit of clutter.
The qq:to/END/ is a quoting construct, with the double q guaranteeing any expression
inside is going to be evaluated, and END indicating the marker that will be posted at the
end of the string.

In general, using map/reduce will save you a lot of nested loops, and will allow you to
process data in a functional way. If you have lots of data, it can even be parallelized using
hyper or race. So thinking about data flows in this way is a win-win proposition.

Recipe 3-5. Create a Random Data Generator
Problem

For testing and other purposes, we need a random data generator that generates
appropriate data structures.

Solution

Use pick, which is class-specific and works with many different data structures.

How It Works

When working with labeled data, it is sometimes necessary to create combinations that
can be used as suggestions, such as for testing algorithms or simply as an end result. This
data needs to have some kind of structure; for instance, a string that follows a certain
regular expression or a set of items, every one of them with a certain quality.

For instance, you might need to generate random dishes for your recipes. Most
dishes will have a main ingredient (say, rice) and an additional ingredient on the side
(say, chickpeas). What? Chickpeas and rice are a delicious Mediterranean dish, same
as beans and rice across the Caribbean. Of all the ingredients we have on the table, we
can mix and match them to generate new dishes. Let’s change our ingredient table to
something like this:

52

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

Ingredient;Unit;Calories;Dairy;Vegan;Main;Side
Rice;100g;130;No;Yes;Yes;Yes
Chickpeas;100g;364;No;Yes;Yes;Yes

We added two columns to the CSV where we keep the data: the Main and Side
columns indicate whether that ingredient can be used as a main ingredient, or added to
a main ingredient to create a full dish.

What you want now is to generate a dish with a main and a side ingredient. This
script can help you with that:

use Raku::Recipes;
my %calories-table = calories-table;
my @main-course =
%calories-table.keys.grep: { %calories-table{$ }<Main> eq 'Yes' };
my @side-dish =
%calories-table.keys.grep: { %calories-table{$ }<Side> eq 'Yes' };

with ", @side-dish.pick, " on

say "Your recipe = ", @main-course.pick,

the side";

We created Raku: :Recipes for all the utility routines that we keep using in several
recipes; in this case, we will use calories-table (which we have used before a couple
of times), a routine that reads the CSV, parses the description of measures for every
ingredient, and places everything into a hash.

Note This module is available at the book’s GitHub site and the Apress website.
After downloading it using Git (git pull JJ/raku-recipes-apress),or
downloading it from the URL Apress makes available, change to the directory
where it’s downloaded and write zef install.

We are just going to use the name of the ingredients: those that act as the main
course will go to @main-course and side dishes will go to @side-dish. We use a filter on
the keys of the table to select only those keys (ingredients) that have the corresponding
field (Main or Side) marked as Yes.

53

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

Random generation, after that, is straightforward: we use pick on both arrays to
select a random ingredient from each one. This will print something like:

Your recipe = Pasta with Chickpeas on the side

That'’s all good and well, but pasta is in both arrays. A dish of pasta with pasta on the
side is kind of underwhelming. Let’s try to avoid that next:

given (@main-course X @side-dish).grep({ @ _[0] ne @ [1] }).pick {
say "Your recipe — @ [0] with ", 1c(@ [1]), " on the side"

The two arrays are defined exactly the same way. However, we use a grep filter to
get only pairs that have different ingredients. @main-course X @side-dish will create
a list of ingredient pairs that constitute a dish. grep checks that the first and the second
ingredient are different, so the resulting list will have only proper pairs. By using given,
we put the pair into the topic variable, @ . Finally, we take our pick over the resulting
array of (guaranteed) pairs of ingredients; we use 1c to lowercase the second one to
avoid having a capital letter in the middle of a sentence.

We use given because it’s a topicalizing statement, that is, it puts its argument into a
proper topic variable, $,% or@ , depending on its type. In general, given will be used
in the same way switch is used in other languages: it will perform checks on the topic
and run different blocks of code when there’s a match. However, in this case it will simply
run the block of code without any further checks. Also, this topic variable is an array, so
the block will have @ _defined with the two ingredients. This variable is used to print the
dish directly.

Additionally, you could use the loaded die technique you learned about earlier in
this chapter. An additional column with preferences could be used for that, and you
would have to store the ingredients in a Mix, instead of an array, and use roll. The
principle would be exactly the same. With these different options, you can see the “There
Are Many Ways To Do It” principle in action, something that informs every design
decision in Raku.

54

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

Recipe 3-6. Process Big, Structured Files
Problem

Big files contain information that needs to be processed efficiently, possibly with some
memory constraints.

Solution

You can either use .1ines on a file handle, which will create a lazy sequence out of the
lines of the file, or use . Supply on it to read it in chunks if it’s not easily divided into lines.

How It Works

Current computers have a good amount of memory. But it’s a law of nature that the size
of the files that your computer will need to process will always grow to twice the size

of the available memory in no time. So, although in most cases slurping a whole file in
memory will do, in some cases that might be too slow, or simply impossible given the
available memory. For instance, LibreOffice Calc, the open source spreadsheet, will
choke when trying to read a file with a few hundred megabytes. Will Raku be able to keep
up with it? Spoiler alert: yes it will.

Let’s talk first about the concept of laziness. A lazy data structure is simply one
that computes its components only when they are requested. A lazy sequence that is
generated using a function will only reify its element number n when it’s requested.
Meanwhile, it will be in limbo, but, more importantly, it will not be in memory, gobbling
up space, and the resources needed to compute it will be available for the rest of
operating system.

The I0::Handle objects that take care of input/output in Raku are quite powerful,
and among other things, they can be turned into lazy data structures that return lines of
a text file only when needed.

For instance, you need to load the nutrients-per-product database that is published
by the U.S. department of Agriculture as a 179MB CSV file. As such, you could, in
principle, use Text: : CSV to deal with it. But that will gobble up north of 179MB, and,
worse than that, will take a long time before you see results pop up in the console.

55

CHAPTER 3 DATA SCIENCE AND DATA ANALYTICS

(In this case, you could use a line-oriented API, but you've already seen in another
recipes how to use it, so let’s try a different approach with no dependencies.) Let’s use
I0::Handle.lines this way:

.say for "/home/jmerelo/Documentos/Nutrients.csv".I0.lines.grep: {
my @data = $.split('","');
$ if @data[2] eq "Protein" and @data[4] > 70 and @data[5] ~~ /"g/

This script will print only those products that have more than 70 grams of protein
(an arbitrarily chosen number). This script will immediately start to print the lines in the
console, just like this:

"45332602";"203","Protein","LCCS","70.59","g"
"45333759","203","PIOtein","LCCS","77.42","g"
"45333760","203","PIOtein","LCCS","72.73","g"

Processing the whole file is not going to take long—28 seconds on my desktop
computer. More importantly, the process monitor reveals that the program never uses
more than approximately 100MB of the resident memory, substantially smaller than the
file size.

The good thing about having these results immediately available is that we could, for
instance, create a supply and emit them to that supply. A tap would pick up those lines
and, for instance, look up the product code (which is cross-referenced in another file)
asynchronously.

A supply can also be used if the file is organized in some other way; for instance, as
atext or as a JSON file. I0: :Handle.Supply will read chunks of a particular size from
it, and then emit them as a string. Text files can be processed by lines anyway and, as
shown in the previous recipe, this chunking is a technique better reserved for binary
files. It's good to know, anyway, that there is more than one way to do it.

56

CHAPTER 4

Math

Programming languages are the offspring of mathematics, but they have different
capabilities to translate mathematical language and expressions to code. By
implementing operators using their Unicode glyph, you will find that Raku code is closer
to math than it is to other languages. By its functional nature, Raku functions can also
work as pure functions (applications, in mathematical terms) and thus the data flow can
be seen more clearly in Raku code.

In this chapter, we will work through several recipes that deal with mathematical
objects and apply mathematical operations in sensible ways.

Recipe 4-1. Generate Mathematical Sequences
and Extract Random Elements from Them

Problem

A mathematical sequence has an initial value and a generator that computes the next
term in the sequence from the previous values. You need a straightforward way to work
with these potentially infinite data structures and extract arbitrary elements from them.

Solution

Use Seq together with the sequence operators. Additionally, you can use ready-made
sequences from the Math: : Sequences module in the ecosystem.

How It Works

Raku includes the built-in (or core) data structure, Seq. The Seq data structure is used to
represent a lazy sequence, which can represent infinite sequences and compute every

57
©].J. Merelo 2020

].J. Merelo, Raku Recipes, https://doi.org/10.1007/978-1-4842-6258-0_4

https://doi.org/10.1007/978-1-4842-6258-0_4#DOI

CHAPTER4 MATH

term on demand. It goes a little bit further, in that it can deduce the rest of the sequence
from the first terms, especially with simple geometric or arithmetic progressions.

You've probably heard the story about the inventor of chess. He was asked by the
king to quote his price for such a great game. He wanted to be paid in grains of wheat,
to the tune of putting one grain in the first square in the chessboard, and double the
quantity of grains in every successive square. “Done deal,” answered the king. However,
if he had Raku at hand, he could have typed the following and realized immediately how
large this number was:

say [+] (1,2,4...%)["64]

The (1,2,4...%) is the actual Seq. We need to type at least the first three elements so
that Raku knows enough to tag it as an arithmetic progression and can then compute the
rest. The ... is the sequence operator, a smart operator that is able to generate sequences
of any kind of element, including these infinite sequences. The square brackets take a
slice that goes from the first to the 64th element (excluded), and finally we use the hyper-
ed sum to sum everything. The result, as expected, is 18446744073709551615. By the
way, you can also compute this in Raku with the following:

say 2% -1;

Note The king was amused or not amused, depending on who you ask, and
either had a good laugh or cut the dude’s hair at the neck.

Sequences can be also computed recursively from an operation applied to the
previous terms. The one that follows, for instance, combines the two previous elements
in the sequence and takes modulo 9.

sub digits($ 1, $ 2) {
return $ 1, $ 2, { ($7a~$b) %9} ... *
}

for 1..5 X 1..5 -> @_ {
say digits(| @_)["10];

The $"a and $"b are placeholder variables that will take the value of the previous and
next-to-previous variables in alphabetical order. The block they are in will compute the

58

CHAPTER4 MATH

nth element out of the previous two. Instead of using a single pair of numbers to start,
we create a sub that returns a Seq. That sub is invoked in the loop that’s created next:

it creates an array of 25 pairs that are handed to the sub by flattening them. The | will
create two arguments out of an array. We eventually print the first ten elements of every
sequence, obtaining something like this:

(1123584371)
(1235843718)
(1347202246)

In many cases, using Seq will save you lots of work in building complicated loops or
recursive functions, and its syntax in Raku will be easier to understand.

Recipe 4-2. Program a Divide-and-Conquer
Algorithm

Problem

You need to solve a mathematical problem by dividing it into smaller problems that are
solvable.

Solution

Use recursion so that the base case, that is, the smallest one, is solved, and you can build
up from there.

How It Works

Divide-and-conquer is a technique that is used in many problem domains to convert
difficult problems into ones that can be solved with relative ease. A classical example
is sorting. Sorting a long list is solved by using a pivot. It involves putting all elements
smaller than a certain size in a list and those larger in another list. You have therefore
divided the problem of sorting into two problems, the problem of sorting those two
smaller lists. This algorithm is called quicksort, and it’s extremely efficient time- and
memory-wise.

59

CHAPTER4 MATH

The same types of problems present themselves in cooking. How can we cook a meal
that has the highest protein content, without surpassing a certain calorie level? Or cook
one with the highest fiber content without surpassing a certain amount of protein?

Note You have probably noticed that this is an example of the knapsack problem.

Let’s use the calories table to find a combination of ingredients, in the same
dosage as in the table, that optimizes the amount of protein. This time we’ll do so
without paying attention to amounts or to rules about how to create a good meal.
This program will do that:

use Raku::Recipes;

We're using this code from Raku::Recipes:
sub calories-table($dir = ".") is export {
csv(in => "$dir/data/calories.csv", sep => ';', headers => "auto",
key => "Ingredient").pairs
==> map({
$_.value<Ingredient>:delete;
$_.value<parsed-measures> = parse-measure($.value<Unit>);

$_1);
}

my %calories-table = calories-table;
multi sub recipes(-1, $) { return [] };

multi sub recipes($index,
$weight where
%calories-table{@products[$index]}<Calories> > $weight) {
return recipes($index - 1, $weight);

}

multi sub recipes($index, $weight) {
my $lhs = proteins(recipes($index - 1, $weight));
my @recipes = recipes($index - 1,
$weight - %calories-table{
@products[$index]}<Calories>);

60

CHAPTER4 MATH

my $rhs = %calories-table{@products[$index]}<Protein> + proteins(
@recipes);
if $rhs > $1lhs {
return @recipes.append: @products[$index];
} else {
return @recipes;

}

my $max-calories = 1000;
my @products = %calories-table.keys;
my @ingredients = recipes(@products.elems -1 , $max-calories);

say @ingredients, " with ", proteins(@ingredients), "g protein”;

sub proteins(@items) {
return [+] %calories-table{@items}.map: *<Protein>;

This program uses the helper module we have used before to load the ingredients
table, which it does in the first two lines. We include the routine calories-table anyway
for reference. As you probably remember, this was the code used in the previous chapter
for the recipe that applied a series of transformations to a data set. Additionally, this
routine uses parse-measure, also discussed in that chapter.

This is a divide-and-conquer algorithm, so we have to start with the biggest problem
and solve smaller problems. That’s what we do in the last lines, which set up the
algorithm, establish the calorie count and the array of products (simply the keys of the
calories table, which contain the name of the product), and call the recipes subroutine.

multi sub recipes(-1, $) { return [] };

multi sub recipes($index,
$weight where
%calories-table{@products[$index]}<Calories> > $weight) {
return recipes($index - 1, $weight);

61

CHAPTER4 MATH

multi sub recipes($index, $weight) {
my $lhs = proteins(recipes($index - 1, $weight));
my @recipes = recipes($index - 1,
$weight - %calories-table{
@products[$index]}<Calories>);
my $rhs = %calories-table{@products[$index]}<Protein> + proteins(
@recipes);
if $rhs > $1lhs {
return @recipes.append: @products[$index];
} else {
return @recipes;

}

my $max-calories = 1000;
my @products = %calories-table.keys;
my @ingredients = recipes(@products.elems -1 , $max-calories);

That subroutine is where all the fun is. We use Raku’s multi for the different options

we have.

o Ifindex becomes negative, we're out of products. It just returns an
empty array of ingredients. This is going to be the base case. Also,
it does not really matter what weight is there, so we use the dummy
variable $ to represent the weight.

o With a non-negative index, but when the product in that position in
the array has more calories than we want, we skip one and go down
one step, “eliminating” that product (simply skipping it). This will not
occur in this case, except if we cut the calories to 400 and leave the
chorizo out.

e The nextmulti is the real workhorse. We compare two things: the
protein in the recipes without the current product, and the products
that yield the optimal protein computed without the current product.
That goes to the @recipes array. If the protein content in this product
is better than without it, we pick the current product, appending it to
the list. If it is not, we simply return the list of products without it.

62

CHAPTER4 MATH

You can play with the total number of calories to get different high-protein
combinations. You will notice that every time you run it, you'll obtain a different set of
ingredients. Something like this:

[Kale Tomato Olive 0il Kidney beans Lentils Chicken breast Rice] with 53.6g
protein
[Lentils Egg Tuna] with 43.9g protein

There are a couple of reasons for this. First, this divide-and-conquer method is a
greedy algorithm: the order in which the products are sorted in the array will have an
influence, since they will be dropped or added depending on the current calorie count
when the recurrent algorithm reaches them. Second, this array is simply the list of keys
in a hash table, so why is this random? The list of elements in a hash table are returned
in random order, and it’s also guaranteed to happen that way as a defense against denial-
of-service attacks.

We need to run the algorithm several times to get the combination with the greatest
calorie content. Chicken, lentils, and bean stew, anyone?

Recipe 4-3. Work with Matrices
Problem

Matrices are used the greatest for a variety of problems, from image processing to
machine learning. Dealing with data structures whose dimensions is known in advance

is quite convenient.

Solution

Raku has limited data support for two-dimensional matrices, but a few operators. Use
Math: :Matrix, an ecosystem module, to work with matrices.

How It Works

Math::Matrix is an ecosystem module, so you need to download it first. It is very well
documented in the GitHub repository at https://github.com/pierre-vigier/Perl6-
Math-Matrix. It enables you to work with matrices, which are simply two-dimensional
arrays, or tables.

63

https://github.com/pierre-vigier/Perl6-Math-Matrix
https://github.com/pierre-vigier/Perl6-Math-Matrix

CHAPTER4 MATH

Matrix operations are great when you want to compute something on a series of
quantities, and they can be used in our recipe-computing environment. For instance,
we might have a table with the quantity of different ingredients in different recipes, and
another table with the percentage of a dish that was actually consumed by several users.
Say we want to compute the quantity of different ingredients that were consumed, so
that we can, for instance, compute the amount of calories or protein.

The following table lists the amount, in grams, of three different ingredients—rice,
chickpeas, and tomatoes—in three different recipes.

Recipe 1 Recipe 2 Recipe 3
Rice 150 50 50
Chickpeas 50 150 50
Tomatoes 100 150 100

Now we have three different people who, because of being picky or simply being full,
consume only a part of the three recipes.

Person 1 Person 2 Person 3
Recipe 1 0.5 0.8 0.3
Recipe 2 0.9 1 1
Recipe 3 0.2 0.8 0.7

We need to know how many grams of every ingredient were consumed by each
person. This program will compute that:

use Math::Matrix;
my $food-matrix = Math::Matrix.new([[150, 50, 50],
[50, 150, 50],
[100, 150, 100]]);

my $person-recipes = Math::Matrix.new([[0.5, 0.8, 0.3],

[0.9,1,1],

[0.2, 0.8, 0.7 1]);
say $food-matrix dot $person-recipes;

64

CHAPTER4 MATH
This will print the following:

130 210 130
170 230 200
205 310 250

As with many problems in mathematics, once you have the correct representation,
it’s simply a matter of choosing the correct operator. In this case, the dot product
(appropriately called dot) multiplies rows by the equivalent column and then adds the
result. Good ol’ Person 1 consumed 130 grams of rice, while Person 3 consumed 310
grams of chickpeas. That’s almost 1,000 calories.

The module includes a good amount of operations, including decompositions and
most matrix arithmetic, which you can use for anything in which this is essential, such as
neural networks. And it uses the expected operators:

use Math::Matrix;

my $first = Math::Matrix.new([[1,2],[3,4]]);
my $second = $first * 2;

say $second + $first;

The $second array is double the first; that is, every element is multiplied by two.
Then we add the second to the first to yield the sum, in every case with the usual
arithmetic operators. This expressiveness, and the ability to overload all kinds of
operators with new operations (in this case matrices), are two of the things that make
Raku useful and powerful.

Recipe 4-4. Compute the Mandelbrot Set
Problem

Just for fun, you need to compute the Mandelbrot set.

Solution

The Mandelbrot set is a set of numbers where the function doesn’t change when the
numbers are iterated (i.e. they remain bounded in absolute value). When you map the
values after a number of iterations (what is usually called escape time) to colors, they

65

CHAPTER4 MATH

produce visually amazing graphs. Essentially, you can work with complex numbers in

Raku to program these sets. The Julia set and the Fatou set are two complimentary sets
defined for specific functions, usually quadratic polynomials. They consist of complex
plane elements for which the sequence value is bounded by a certain number.

How It Works

With Mandelbrot and Julia sets, it’s about creating a recursively defined sequence and
computing its value after a certain number of iterations. We'll work out the Mandelbrot
set, and will leave the Julia set as an exercise.

This script will compute a section of the Mandelbrot set and print it to the console
using filled squares:

use Array::Shaped::Console;

sub mandelbrot(Complex $c --> Seq) {
0, *+$c ... *.abs > 2;

}

my $min-x = -40;

my $max-x = 40;

my $min-y = -60;

my $max-y = 20;

my $scale = 1/40;

my $limit = 100;

my @mandelbrot[$max-y - $min-y + 1; $max-x - $min-x + 1];

for $min-y..$max-y X $min-x..$max-x -> ($re, $im) {
my $mandel-seq := mandelbrot(Complex.new($re*$scale, $im*$scale));
@mandelbrot[$re-$min-y;$im-$min-x] = $mandel-seq[$limit].defined??

oo !l $mandel-seq.elems;

}
say printed(@mandelbrot);

It looks a bit longish, but as a matter of fact, the gist of it is less than half a dozen
lines. First, let’s look at the Mandelbrot sequence itself:

0, *+$c ... *.abs > 2;

66

CHAPTER4 MATH

To determine if a certain complex number $c belongs to the Mandelbrot set, we
start a sequence with 0 and compute every subsequent number by squaring it and then
adding $c. The number will belong to the Mandelbrot set if the values in the sequence
do not go to infinity; that is, if the sequence goes on forever. We also know heuristically
that if, at a certain point, the absolute value of the number in the sequence is bigger than
2, it will eventually go to infinity and thus does not belong to the Mandelbrot set. So this
sequence will be an infinite (but lazy) sequence if $c belongs to the Mandelbrot set, and
it will be finite if not.

We create a (coarse) grid with numbers. It’s bound by -40,40 in the x axis and -60,20
in the y axis, which we have chosen so that the familiar picture of the Mandelbrot set
really shows up. We use 100 as the limit: if within 100 iterations, it’s not stopped, it’s
likely it will never stop (of course, we could be wrong, but that’s what you need to do if
you have a finite amount of resources and no way to prove a theorem about every single
complex number). Also, we scale down that grid to have a better look at the set, and we
use 1/40 as that scale. The grid will actually go from -1,1 in the x axis and - 0.5 to 1.5 in
the y axis. That sequence is generated for every single number, and then we check what
happens to element 100 (after the first 0) in the sequence. It exists, so it belongs to the
Mandelbrot set. Let assign an oo to it, because it’s going to go to infinity. If it does not,
let’s note the escape time, which will be what we represent.

We are storing this in a shaped array, which is a nifty feature of Raku. They are arrays
that, instead of being one-dimensional (essentially vectors), are in different dimensions.
Since we are computing elements of a grid and getting a value for every one of them,
we store them in a two-dimensional array, with dimensions adjusted to the number
of points we are going to have in every dimension. We use the semicolon ; to separate
indices in every dimension: @mandelbrot[$re-$min-y;$im-$min-x]. The fact that it
remembers its shape will be used later.

This is then handled to the printed routine, which belongs to the
Array: :Shaped: :Console module. This routine uses symbols to represent values and
automatically adjusts itself to the shape of the array and to the range of values available.
It will eventually print something like this:

67

CHAPTER4 MATH

OOO0O000000000000000000000000000000000000RO00
OOOO0000000000000000000000000000000000000ROOO00000000000000000000000000000000000000
OOO00OCOO000COOO0000O0O0000O0O0000O0000CCO0000COROOOCOO00OOO000C0O000COO0000COO0000CO000000O00
OOOO0000000000000000000000000000000000000ROO00000000000000000000000000000000000000
OOO0O00000000000000000000000000000000OO0ERECHOOOOO0000000000000000000000000000000
O0O0000000000000000000000000000000000=ECEEEOEOCOOCO0O000000000000000000000000000000
OOOOO0O0O0OOCOOCCOOO00000000OCOCOO000000000m) EIOOCOO000COO0000O00000O00000O000000000000
OOO000000000000000000000000000000000=E HEECOOOO00O000000000000000000000000000000
OOOO0O0OOOCOOCCOOOO00000000OCCO000000000m)| EOOOOO000C0OOOOOOOO0000000OOOOO00000000
OOO00000000000000000000000000000000000 0O00O0OOIOOOOOOOONOOOOO0CO0000000000000
OOO0000000000000000000000000000000mOOEENERENIE=EOOECOOOO00000OO0O00000000000000000000
O0O0000000000000000000000000000000 MM [MEEMOOOC00OONOOO00O00000000000000000000
OOOO00O0O0OCOOOCDOOO0000000000C000000 = | | (6] 8]0)
OOO0000000000000000000000000mO0SkEmE EEOEOOOO0O0000000000000000000000
OOOOO00O0OOCOOOCCOOO0000000000CDoO0E. EOOOOOO0OOOO000CO00000COO0000O0O00
O0O0O00000000000000000000000000El EOO0O00O000000000000000000000000
OOOOO0O0O0OOCOOOCCOOO00000000000000m OOOOOO0000OODOOOOO000000000000O
OOO00000000000000000000000000Sm EOO0000000000000000000000000000
OOOO00000COOOCCOO00000000000000. OOO0OODOIOOOOO000CO0000COO0000O0O00
O0O000000000000000000000000000=N EOOOO0HNOIOOOOO00000000000000000
OOOOO0O0O0OOCOOCOOO0000000000COoE ECHO0OODDODOOO0000000OOCOO000d
OOOO00000000000000000000000008 OOOOOO0OO00000000000000000000
OOOOO00O0O00COOOCCOOO0000000000C0oo0. OOOOOO0000OOOOOOOO000000000000O
OOOO00000000000000000000000000=R EOOOOOO00000000000000000000000
OOOOO0O0O0OOOOOCOOOO00000000000O0m) L0
OOOO000000000000000000000000000= N EOOOOO0000O000000000000000000000
0 (@[EOOOCOO00OCOO000OOO000COO00000O0000
OOO00000000000000000000000000000= R EOOOOOOO0O00000000000000000000000
OOOO000000CODCOOO0000000000O0O00O00N N\ 0
O0O00000000000000000000000000000000N 0O000HOOOINO0OO00O0000000000000000000
OOOOO00O00O0OCOOOCOOOO00000000000O00000E=E J111=][C1{9] 9] 9] o
OOOO00000000000000000000000E00 M=/ DN IEEEOCOENDDCOO0O000CO00000000000000
OOOOO0O0O0O00OOOOCOO000000ECC= MO OEECOO=EOOO0OOOO00O0O0O00000O0O0000
O0000000000000000000008000 EOOOEOCOONNNOOOONO00000000000
OOOO00O0000C0COOOOO0000CEmzZON EEOZEEOCDNOOOO0OOOO00000O0000
OOOO00000000000000000O0OHEE EEEREOCONDINDOOO0000000000000
O00O0O0000000000000000000 OOOO000O00OO00000000000
O0O0O00000000000EEONEO MOENOEENONOOOOO0O0000
OOO0O00000000000CENIEN ORENNEOCONOO000000000
OOOO000000000EEOEMR EOEEOOO000000000
OOO0000000000O00 OOO00000OO0000O
O0OO000000000000ZEl Bz000000000000000
OOOO0000000000O00m) EEOOOOO000COO0000O00O0
OOOO0000000000000EN EO000000000000000

O000000000000002 CZ00000000000000
O000000000000O=EmE BEEOOOO000000000
O00O000O0000000COEE COO00000O000000
OOOO000000000000EE OOOOOO000000000
O0000000000O00M OCO000000000000

EnEEReiee Ceee | ||
OO00000OEEERNEOZER

OCOOEROOMmOOOO00
ENEEEROOOO000

0000000 BEOOO0000
OO00OmEOE EEOEOOO0
OO0OE =/, EEEE0000
0000m EEEEOOO00
O0mEm HEEEOO
OmOO0m OEOO0mEO
0000000z L 70000000
OOOO00O0REMNEO NN NI=ROOOO0O000
MOOO000mOO0ECOOEE COO0ECOmOOOCONM
O000000000000000mE mOOO00000000000
0000000000000 @EmE EEC0000000000000
O00000000000000N D OOOOO000000000
0 9\ DOO00000000000O
O000000000000000E M EOOO00000000000

OOO0O0000000000mEON EOENOOOOO000000000
EOOONOO00000000000
OOoOOOOO0000OO000000
OOOOOO0O000000000000
|_1=[60 [0 A
EIOOO0000000000000
MmOOOCOOO0000COO000000
EEECOERNIROOCOOO00000000000
EEOIOCOEEEOOOOOOOOOONOOOONON

OOOO0000000000OOo0
OOO000000000000000
OOOO00000000OOOooosE
OOOO000000000000O0MmM
OOOO000000000O0O0oo
OOO00000000000000RIEEOCE
OOO00OOO0000CC0O000EEEOCIOMmO /M
OOOO000000000OEO00ECOOO0C00M EOECOOOOOOO=OM EEEROCOOOO0OEO0CEOOO0000000000
0o 1| (9] 0 (@9/= (@@ {0
O0O00000000000000000000000000000EOO0000000000000EOOO00000000O00000000000000000000
GGG GGG
OOO00
0

68

CHAPTER4 MATH

This image has the familiar, heart shape of the Mandelbrot set. The black squares, in
this case, will be the elements that belong to it, and the white squares show those with a
very low escape time, less than ten.

At any rate, this shows how easy it is to perform sequence calculations, even with
complex numbers, using Raku. The key part of the computation is a sequence defined in
a single line. The rest is mainly used for rendering it visually. Using more mathematically
appropriate data structures, like shaped arrays, also makes life easier for programmers.

Recipe 4-5. Leverage the Infinite Precision
of Integer Numbers

Problem

You need to check some property over the whole integer set, which implies working on
an infinite set and working with numbers that might have infinite precision.

Solution

Just use normal Ints in Raku, which have arbitrary precision by default. You can also use
infinite sequences or combinations of them, so you can apply any kind of operation to
the infinite sequence and generate results only when needed.

How It Works

Let’s start by computing contiguous prime numbers; these are prime numbers that are
separated by two. They are also called twin prime numbers, and together they are called
twin prime pairs. It’s been proved that there is an infinite number of twin prime pairs,
which is why we need infinite precision to compute them. It will obviously take a long
time to work with them as we increase the number of digits. But since Raku can work
with lazy sequences, we can compute contiguous numbers using this short script:

my Int @primes = (1,2,3..00).grep: *.is-prime;

my $prev = 0;
my @contiguous = lazy gather {
for @primes -> $prime {

69

CHAPTER4 MATH

take [$prime, $prev] if ($prime - $prev) == 2;
$prev=$prime;

}

say @contiguous[300..310];

The essential part of this is the definition of a list of (potentially) all primes in the first
line. That sequence will contain a generator for all possible primes and will compute
them on demand. Which is what we do in the next loop. Again, the essential part of this is
that we need to process lazy sequences lazily. The gather statement will pick up all data
sent by take within the loop, but making it lazy will make the resulting data structure,
@contiguous, lazy, and thus will not go over the (infinite) for loop before it stops. If we
want to compute the 300 to 310" contiguous primes, it will not go to infinity and back,
but will stop when the 310th pair of contiguous primes has been computed. It’s [17791
17789], by the way. Also, this takes around two seconds on my laptop. It takes a good
while to compute the 3000", which is [300499 300497] and the 10000®*, which is [1260991
1260989] (in this case, about five minutes). We could continue with any sequence, with
no need to specify big integers or whatever, as long as we're ready to wait. But it’s obvious
that these numbers are in the ballpark of other integers used here and there, the only
advantage being that there’s no need to use some special data structure for them.

Let’s try to work with really big numbers. We only need to start the sequence
somewhere else. For instance, here:

my Int @primes = (2%..c0).grep: *.is-prime;

In this case, the first prime is 18446744073709551629. If we want to know the first
three pairs, the former program will print the following:

([18446744073709552423 18446744073709552421]
[18446744073709554151 18446744073709554149]
[18446744073709558603 18446744073709558601])

This happens in less than 1/20th of a second. There are, apparently, lots of
contiguous prime numbers. These numbers do have lots of digits, showing the arbitrary
precision we needed.

There are not so many amicable numbers, which are those pairs whose divisors
(excluding itself and one), when added, yield the second number. In this case, it
involves easily indexing the list of divisors of a number so that they can be summed and

70

CHAPTER4 MATH

compared to other numbers. This was posted as a challenge in the Perl Weekly Challenge,
and Laurent Rosenfeld came up with this solution (slightly transformed, because
originally it only returned the first pair):

sub sum-divisors (Int $num) {
my @divisors = grep { $num %% $_}, 2..($num / 2).Int;
return [+] 1, | @divisors;

}

for 2..Inf -> $i {
my $sum _div = sum-divisors $i;
if $sum div > $i and $i == sum-divisors $sum_div {
say "$i and $sum div are amicable numbers";

Again, it’s using a lazy so that the whole set of integers can be processed; however, it
needs to be stopped by using Control+C, because it will keep printing amicable numbers
as soon as it finds them. Additionally, it’s not storing the result of sum-divisors, so when
$sum_div reaches the value of $i again, it’s computed all over again. Let’s make two
small changes to take care of these issues:

use experimental :cached;

sub sum-divisors (Int $num) is cached {
my @divisors = grep { $num %% $_ }, 2..($num / 2).Int;
return [+] 1, | @divisors;

}

my @amicable = lazy gather {
for 2..Inf -> $i {
my $sum_div = sum-divisors $i;
take [$i, $sum div] if $sum div > $i and $i == sum-divisors $sum div;

}
say @amicable["3];

71

https://github.com/LaurentRosenfeld/Perl-6-Miscellaneous/blob/master/Challenges-in-Perl6/Amicable-numbers.md

CHAPTER4 MATH

The (still experimental) cached feature stores the result of a routine with the is
cached trait. With this, we will have the value of the divisors of a number if it has been
seen before, and it saves quite a bit of time. Then we assign the result of the loop to
a lazy sequence, so that we can compute the nth element on demand. We obtain the
three classically known pairs of amicable numbers straight away, and in six seconds, we
compute the first four pairs:

([220 284] [1184 1210] [2620 2924] [5020 5564])

72

CHAPTER 5

Configuring
and Executing Programs

So far we have been working with small scripts and modules that, in general, had
everything they needed to get the job done. Most real programs, however, will need
some information from the user to run properly, even if they work with default values.
These will come in the shape of environment information, command-line flags, or
configuration files in some standard format. In this chapter, we’ll see how these work in
Raku.

Recipe 5-1. Configure a Program Using JSON/
YAML/.ini Files

Problem

You need to run a program with a series of values that are not known at the time you
design the program, or are simply different for different instances.

Solution

Nowadays, JSON is probably the most widely used format for configuration, as well as
the serialization of data structures. You can use JSON: : Fast (available from https://
modules.raku.org/dist/JISON: :Fast:cpan:TIMOTIMO and, as usual, using zef), a
module in the ecosystem, to convert data stored in JSON format to the corresponding
Raku data structure.

73
©].J. Merelo 2020

].J. Merelo, Raku Recipes, https://doi.org/10.1007/978-1-4842-6258-0_5

https://doi.org/10.1007/978-1-4842-6258-0_5#DOI
https://modules.raku.org/dist/JSON::Fast:cpan:TIMOTIMO
https://modules.raku.org/dist/JSON::Fast:cpan:TIMOTIMO

CHAPTER5 CONFIGURING AND EXECUTING PROGRAMS

YAML, .ini, and other formats, such as TOML, are also relatively popular, and
they can all be parsed by modules in the ecosystem. Choose the format you feel most
comfortable with or the most popular one.

How It Works

Programs have many different ways to receive the values of variables such as filenames,
port values, or any other string or number they might need. Using positional and
named parameters on a MAIN sub is one way (and we will see how to do that next),

but configuration files have the advantage of being legible, editable, and amenable to
be put under source control files (or encrypted, if they contain sensitive information).
At any rate, it makes sense to leave some values for the user to determine, and thus
configuration files come in handy for that kind of thing.

Let’s rewrite a program we used before, the one that computed the maximum
amount of protein in a certain calorie count. We will use three configuration items: the
file that holds the calorie count, the max calorie count, and the number of times we will
repeat it to get the best of n. Since the result will depend on the order of the products in
the product matrix, using several iterations will help us obtain a better value.

Here’s the JSON configuration file:

{
"calories" : 1000,
"repetitions" : 3,
“dir" @ "."

}

We use unimaginative names for the variables and store them in a JSON hash table,
with variables as key-value pairs. The program is as follows:

use Raku::Recipes;
use JSON::Fast;

my %conf = from-json(slurp(@*ARGS[0] // "config.json"));
%calories-table = calories-table(%conf<dir>);
@products = %calories-table.keys;

my $max-calories = %conf<calories>;

74

CHAPTER 5 CONFIGURING AND EXECUTING PROGRAMS

my @results = gather for "%conf<repetitions> {
@products = @products.pick(*);
my @ingredients = optimal-ingredients(@products.end , $max-calories);
my $proteins = proteins(@ingredients);
say @ingredients, " with $proteins g protein”;
take @ingredients => $proteins;
}

say "Best ", @results.Hash.maxpairs;

First, we renamed the routine used to maximize protein optimal-ingredients and
placed it in the Raku: :Recipes module, which contains other different subroutines we
are reusing from former recipes. This routine will use the calories table in the same
%calories-table variable; this and @products will be variables with module scope, but
they get the value in this main program. That is only incidental to the main theme of this
recipe, which is using the JSON configuration.

The main action, in that sense, is in the %conf variable. That variable will be a hash
read from a file that will have either been received as the first argument in the command
line (@*ARGS[0]) or will have the default value config.json in the self-same directory.
The values of that hash are used to load the calories table (using the directory
contained in %conf<dir>) to get the max calories allowed (in %conf<calories>) and the
number of times we are going to shuffle the product array to get a new combination of
products with optimal protein content.

The shuffle is done via @roducts = @products.pick(*). While pick will return
arandom element out of the array, using Whatever (*) will pick as many elements
as there are in the array. Effectively, this will shuffle the array, and since optimal-
ingredients uses that variable, we assign it back to the same variable.

Every repetition will generate a pair in the form [array of ingredients], [protein
content]. We use gather and take to generate this result from the loop. This is
conveniently arranged to use maxpairs, which will print the pair whose second element
has the maximum value.

We run this recipe from the main directory of the example code repository like so:

raku -Ilib Chapter-5/max-proteins-with-conf.p6 Chapter-5/config.json
We will then obtain a result similar to this one:

[Chicken breast Kale Rice Chickpeas Kidney beans Cheese] with 77.7 g protein

75

CHAPTER5 CONFIGURING AND EXECUTING PROGRAMS

[Potatoes Chorizo Beer Pasta Chicken breast] with 64.9 g protein
[Chicken breast Potatoes Cheese Chorizo Tomato Sardines] with 109.3 g protein
Best (Chicken breast Potatoes Cheese Chorizo Tomato Sardines => 109.3)

In order for maxpairs to work correctly, we need to turn it into a hash; the Best
line shows a ingredients-protein pair that looks quite good, at 100 grams of protein. I
wouldn’t recommend mixing chorizo with sardines, though, so you might want to run it
several times (or reconfigure it for another number of repetitions) so that you eventually
get something palatable.

Configuration Using INI Files

The INI format, originally used in Windows but now found anywhere, is simpler and
used in many cases when all you need are a few variable/value pairs. It’s also divided
into sections, whose names are surrounded by square braces:

[food]
calories = 500

[algorithm]
repetitions = 5

[meta]
dir = .

Areliable module for processing this is Config: : INI, found at https://github.com/
tadzik/perl6-Config-INI, and which you can install in the usual way. The previous
program can be adapted to use it this way:

use Raku::Recipes;
use Config::INI;

my %conf = Config::INI::parse file(@*ARGS[0].I0.e ?? @*ARGS[0] !!
"config.ini");

say ’%conf;

%calories-table = calories-table(%conf<meta><dir>);

@products = %calories-table.keys;

my $max-calories = %conf<food><calories>;

76

https://github.com/tadzik/perl6-Config-INI
https://github.com/tadzik/perl6-Config-INI

CHAPTER 5 CONFIGURING AND EXECUTING PROGRAMS

my @results = gather for “%conf<algorithm><repetitions> {
@products = @products.pick(*);
my @ingredients = optimal-ingredients(@products.elems -1 , $max-
calories);
my $proteins = proteins(@ingredients);
say @ingredients, " with $proteins g protein”;
take @ingredients => $proteins;
}

say "Best ", @results.Hash.maxpairs;

This module reads the file directly with Config: :INI: :parse file, and now the
hash has a hierarchical organization of variables, with the first key being the section and
the second the name of the variable itself. Other than that, the results are notably the
same except for the change of repetitions and the number of calories, which we have
reduced.

Configuration Using YAML Files

YAML has more recently become popular with its use in cloud configurations, but it has
had along life and thus has good support in many languages. This includes Raku, which
has alibrary called YAMLish, frequently updated and with excellent support.

We'll try to tackle another problem, similar to the backpack problem, but simpler:
we'll try to create a recipe with a certain number of calories using two ingredients. These
ingredients must include one side and one main ingredient, and we can additionally
impose restrictions like making them vegan or non-dairy. Before doing its job, the code
will perform checks on the configuration and emit an error if it’s not correct or if the
restrictions are not met.

Here’s an example of a configuration file in YAML:

main: Cod
side: Potatoes
calories: 500

The three dashes indicate the beginning of a document in YAML; the rest are key-
value pairs. YAML admits the serialization of any kind of data structure, but for this
problem, this will be more than enough. Specify a main and a side dish, as well as the

77

CHAPTER5 CONFIGURING AND EXECUTING PROGRAMS

amount of calories you want the dish to have. To simplify things, we’ll just spread it
evenly between side and dish.

We need to process this configuration file so that, if there’s a problem, the user is
informed of what we were expecting and what went wrong. This will also ensure that the
error does not propagate further into the library and produce a more obscure error that
the user can’t interpret. We need to check anything that could possibly go wrong and
produce an exception that can guide the user into fixing whatever was amiss.

Note For this, we will use custom-defined exceptions, which will be covered more
extensively in Chapter 8. For the time being, just take them at face value. Exceptions,
and typed exceptions at that, can be designed into an application and conjured by
giving them a parameter that will customize the exception to a specific situation.

This program will have to read the YAML file and then perform a series of checks,
emitting exceptions (and ending the program) if there’s something essential missing, or
if there’s simply something wrong. When everything is checked, it will then generate the
recipe.

use YAMLish;
use Raku::Recipes::Roly;
use X::Raku::Recipes;

my $conf = slurp(@*ARGS[0] // "Chapter-5/recipe.yaml");
my $recipes = Raku::Recipes::Roly.new;

my %conf = load-yaml($conf);
%conf<calories> //= 500;
constant @conf-keys = <main side calories>;

die "There are unknown keys in the configuration file"
if %conf.keys © @conf-keys # @;

my @recipe;
for <main side> -> $part {

without %conf{$part} { X::Raku::Recipes::MissingPart.new(:$part
).throw() };

given %conf{$part} {

78

CHAPTER 5 CONFIGURING AND EXECUTING PROGRAMS

when %conf{$part} ¢ $recipes.products {
X::Raku::Recipes::ProductMissing.new(:product(%conf{$part})
) .throw()

}

when not $recipes.check-type(%conf{$part}, $part.tc) {
X::Raku: :Recipes: :WrongType.new(:desired-type($part
)).throw() ;

}
my %this-product = $recipes.calories-table{%conf{$part}};

my $portion = %conf<calories>/(2 * %this-product<Calories>);
@recipe.push: $portion * %this-product<parsed-measures>[0] ~ " " ~
%this-product<parsed-measures>[1] ~ " of " ~ %conf{$part}.lc;

}

say "Use

, @recipe.join(" and ");

This program seems longer than it actually is, simply because all the checks that
are being performed. This is essential, however, and even more so in a production
environment, where the configuration must be just right.

The preface to the program includes the modules we've already talked about.
X::Raku: :Recipes is a file with all the exceptions defined and all of them will use that as
their namespace.

After that, we read the configuration file (either from the command line or from
a default value) and assign a reasonable default to the number of calories in case it’s
missing. We initialize (pun) the role, which also reads the calories table, and load the
configuration into a Raku hash. That variable should have just the three keys, and every
value there must be correct. From there, several checks are performed:

o Are there only the keys that we understand? If there’s any other keys,
the program will die and the user will be informed of that.

e Arethe two parts of the dish included? If any of them is missing, a
MissingPart exception will be thrown. In this case, we might want
to include potatoes as a reasonable default. However, in Spain the
default side is simply bread, so in absence of a reasonable default,
let’s throw an exception if it’s missing. We'll get something like
Object does not seem to be sideifweuseside: Cod.

79

CHAPTER5 CONFIGURING AND EXECUTING PROGRAMS

o Do we know something about the ingredient mentioned? If it’s
missing from the table, throw a ProductMissing exception.

o Isthatingredient really that kind of dish? Are we requesting kiwi with
potatoes, for instance? If they don’t match, another exception should
be thrown.

When all these checks have passed, it’s simply a matter of dividing the measure the
ingredient uses to measure calories by the number of calories it needs to fill (250 in this
case). We elaborate that as a string, including lowercasing the ingredient, which is always
uppercase. Eventually, this might print something like the following:

Use 236.111111 g of cod and 304.878049 g of potatoes

That'’s a good piece of cod and a medium-size potato. Seems reasonable.
Proper handling of the configuration should always go with precise handling of
possible errors. We'll learn much more about this in Chapter 8.

Recipe 5-2. Configure a Command-Line Command
with Flags and Arguments

Problem

You need to invoke a script with different values from the command line.

Solution

Use the MAIN subroutine to determine how the program is going to be invoked. Multiple
instances can be defined, permitting more efficiency in the invocation. Besides, it’s auto-
documented, with a -h or - ? generated automatically and an explanation of every one
of the parameters and their values. MAIN is a normal subroutine, so it will also perform
type checks for you and convert them from strings in the command line to the adequate
format required by the program.

80

CHAPTER 5 CONFIGURING AND EXECUTING PROGRAMS

How It Works

At this point, we have a nice table of ingredients in a CSV file, and we might need some
tool to consult it from the command line. For instance, how many vegan ingredients do
we have? How many vegan side dishes? A command-line tool that used these as flags
and gave us a list of ingredients would be really useful. We could use it to get a list that
we could look up on the web to cook a recipe. We already have the ingredients on a CSV
table in this form:

Ingredient;Unit;Calories;Dairy;Vegan;Main;Side;Protein;Dessert
Rice;100g;130;No;Yes;Yes;Yes;2.7;No
Chickpeas;100g;364;No;Yes;Yes;Yes;7;No

So there are five different characteristics we can filter by: Dairy, Vegan, Main, Side,
and Dessert. That will make five flags in all for our command-line program. This small
program will do the trick:

use Raku::Recipes::Classy;

sub MAIN(Bool :$Dairy, Bool :$Vegan, Bool :$Main, Bool :$Side, Bool
:$Dessert) {
my %ingredients = Raku::Recipes::Classy.new().calories-table;
my @flags;
for <Dairy Vegan Main Side Dessert> -> $f {
@flags.push($f) with ::{"\$$f"};
}
my @filtered = %ingredients.keys.grep: -> $i {
my @checks = @flags.map: -> $k {
%ingredients{$i}{$k} eq ::{"\$$k"}
}

so @checks.all;

}
say @filtered;

First, we use an object oriented version of our calories table (which now includes
many more things) and load it into our program; we will include it in the %ingredients
variable.

81

CHAPTER5 CONFIGURING AND EXECUTING PROGRAMS

Let’s look at how we use command-line flags. For every one we want to check, there
will be a named variable in the signature of the specially-named MAIN sub. We will
therefore have a variable for every one of the five filters we define, and we force them
to be Bool. The presence of a flag will set the variable to True; we can also set the flag to
False by using --/, asin --/Dairy. For instance, main ingredients that are not also side
ingredients will be listed using the following:

raku Chapter-5/filter-ingredients.p6 --Main --/Side

It would be cumbersome to check every single variable in turn, so we use a nice
Raku trick to access the value of a variable whose name is in a variable: : : {"\$$f"}.
This builds the name of a variable, which will have the dollar (\$) and then its identifier,
which is the value of the variable $f. If the variable exists, we add it to the array with the
filters. This loop and declaration can in fact be shortened to this:

my @flags = <Dairy Vegan Main Side Dessert>.grep: { defined ::{"\$$ "} };

This effectively filters only those variables that are defined. We then filter again the
list of ingredients by running a grep on its keys: the @checks variable will contain a list
of the result of comparing the value for that ingredient to the value required. That will
eventually be a list in the form [True False True].But we need the ingredient to fulfill
all conditions defined, so we create a junction out of that: @checks.all. Junctions are
extremely useful for comparisons; with a single operator, we can perform an operation
over all elements of a list (and possibly simultaneously using auto-threading), but in this
case what we do is return that value converted to a single Bool value via so. This will be
True only if all the elements in the list are true; @filtered will contain all elements for
which all conditions are true. For instance, the result of the previous command will be as
follows:

[Tomato Kale Potatoes]

These are only those sides that can’t be main dishes at the same time. Others, like
chickpeas, can be the main ingredient (chickpea stew or salad), or a garnish, so they
wouldn’t go on this list. Once it’s clear what these commands are doing, we can also
shorten them, eliminating any intermediate variables:

say %ingredients.keys.grep: -> $i {
so all @flags.map: { %ingredients{$i}{$_} eq ::{"\$$ "} };

82

CHAPTER 5 CONFIGURING AND EXECUTING PROGRAMS

Leaving the program, all in all, to fewer than 10 lines.

Note This will also return a list instead of an array, but that detail is not so
important.

As an added value, using MAIN automatically adds an -h flag, so that when you run this:
raku -Ilib Chapter-5/filter-ingredients.p6 -h
You get the following:

Usage:
Chapter-5/filter-ingredients.p6 [--Dairy] [--Vegan] [--Main] [--Side]
[--Dessert]

What happens if you run it with no filter? It will return all ingredients. But it will still
run the same code; it’s designed in such a way that with no filter it will do that, but it will
still have to run a good amount of code to achieve something that could be achieved very
easily. To solve this, we can simply define multiple MAINs, using multi:

use Raku::Recipes::Classy;

multi sub MAIN() {
say Raku::Recipes::Classy.new.products;

}

multi sub MAIN(Bool :$Dairy, Bool :$Vegan, Bool :$Main, Bool :$Side, Bool
:$Dessert) {
say Raku::Recipes::Classy.new.filter-ingredients(:$Dairy, :$Vegan,
:$Main, :$Side, :$Dessert);

We also added filter-ingredients to the Raku: :Recipes: :Classy class, containing
the same code as before. This new version uses the multiple schedule mechanism: Raku
will simply call the method or sub whose signature matches the call. In the case of the
MAIN sub, it will call one or the other depending on the flags that are used. No flags?

It will call the first, which simply calls the method that returns the list of products or
ingredients. Any flag? It will call the second. This is going to be marginally faster in this
case, but conceptually it’s going to show the intent more easily.

83

CHAPTER5 CONFIGURING AND EXECUTING PROGRAMS

What happens if we want to use additional filters, for instance, by minimum quantity
of proteins or max number of calories? Let’s use this multiple schedule mechanism to
add a new MAIN that will filter by minimum protein content. That’s an integer number, so
we add that to the new MAIN'’s signature:

This is added to the previous example
multi sub MAIN(Bool :$Dairy, Bool :$Vegan, Bool :$Main,
Bool :$Side, Bool :$Dessert,
Int :$min-proteins) {
my $rr = Raku::Recipes::Classy.new;
my @filtered = $rr.filter-ingredients(:$Dairy, :$Vegan,
:$Main, :$Side, :$Dessert);
my %ingredients = $rr.calories-table;
say @filtered.grep: { %ingredients{$ }<Protein> > $min-proteins };

Actually, the only thing we added is a new statement that filters ingredients by the
minimum amount of proteins; that’s the last one before the closing brace. Using the
already known grep, we take the filtered list of ingredients (which is in @filtered)
and check that the amount of proteins is higher than the amount requested. This will
eliminate from the original list, filtered by characteristics, those with less protein content
and produce something like this:

raku -Ilib Chapter-5/filter-ingredients-proteins.p6 --min-proteins=5 --Vegan
(Chickpeas Lentils Kidney beans)

This result shows that chickpeas, lentils, and kidney beans are not only delicious, but
also nutritious. At home, we eat dishes based on those three ingredients at least twice a
week.

In the same way we used a configuration file to get the data for generating a recipe
in this chapter, we can do this from the command line. The fact that we can add types to
the arguments makes it much easier to catch errors in arguments before they get into the
program, making it all much faster. Let’s repeat the recipe on reading configuration files
with YAML using the command line this time:

84

CHAPTER 5 CONFIGURING AND EXECUTING PROGRAMS

use Raku::Recipes::Roly;

my $recipes = Raku::Recipes::Roly.new;

subset Main of Str where {
$ € $recipes.products && $recipes.check-type($_, "Main")

b

subset Side of Str where {
$ € $recipes.products && $recipes.check-type($_, "Side")

s

sub MAIN(Int :$calories = 500,

Main :$main!,
Side :$side!) {

my @recipe;
for <main side> -> $part {

}

say "Use

my $this-value = ::{"\$$part"};

my %this-product = $recipes.calories-table{$this-value};

my $portion = $calories/(2 * %this-product<Calories>);

@recipe.push: $portion * %this-product<parsed-measures>[0] ~ " " ~
%this-product<parsed-measures>[1] ~ " of " ~ $this-value.lc;

, @recipe.join(" and ");

The part that performs the program, the last eight lines, is substantially the same. It’s

the setup that is different. We don’t need to take care of exceptions, since Raku itself will

do it for us, through several mechanisms:

We create two subsets, Main and Side, that will only allow values that
are of the right type and included in the set of products available in
the product table. Anything other than those values will produce an
invocation error.

We make the two variables $main and $side mandatory. If they are
not used, the program will die with the corresponding error.

We don’t produce an error if additional keys are added, but the usage
string clarifies what’s mandatory and what’s optional:

85

CHAPTER5 CONFIGURING AND EXECUTING PROGRAMS

Usage:
Chapter-5/generate-recipe-cli.p6 --main=<Main> --side=<Side>
[--calories=<Int>]

In order to obtain the value of the variable whose name is in another variable, $part,
we use the same trick as before, consulting the symbol table: : : {"\$$part"};.

If this runs with a main or side missing, it will produce the usage string. If the type is
incorrect, like for instance here, it will produce the same kind of message:

raku -Ilib Chapter-5/generate-recipe-cli.p6 -Ilib --main=Sardines --side=
"Green kiwi"

Note You will have to use quotes if you want to pass as argument a product with
whitespace in it.

This is not ideal, since it’s not really clear why that argument didn’t get through. You
can however supplement the terse message with more documentation. If that proves
inadequate for your use case, simply go to the recipe that uses the config