
87© Brett Koonce 2021
B. Koonce, Convolutional Neural Networks with Swift for Tensorflow,
https://doi.org/10.1007/978-1-4842-6168-2_8

CHAPTER 8

MobileNet v1
There were some interesting attempts to get smaller models running on

device post SqueezeNet. What was needed was a model designed specifically

on mobile devices. What a group of researchers at Google produced was

called MobileNet, which is an important family of networks for you to

understand and where we will be spending a few chapters. At a high level, we

will use depthwise separable convolutions to produce an even more accurate

network than SqueezeNet that runs well on mobile phone hardware.

�MobileNet (v1)
> MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision Applications

> https://arxiv.org/abs/1704.04861

Model designed specifically to run on mobile hardware, much better

use of parameter + data space.

�Spatial separable convolutions
Let’s look again at our Sobel filter from our chapter where we introduced

convolutions. There, we looked at it as being two 3x3 matrix operations.

But if we are clever with our math, we can reduce this to a [3x1] and [1x3]

multiplication.

https://doi.org/10.1007/978-1-4842-6168-2_8#DOI

88

This gives us the same result, but has the additional property that it

can be computed much more cheaply. Our [3x3] • [3x3] combination ends

up requiring nine operations, whereas our [3x1] • [1x3] only requires six

operations, a reduction of 33% percent! However, not all kernels can be

broken up like this.

�Depthwise convolutions
We can exploit one key property in our image data: color. We have three

channels – red, green, blue – that we are running through the same sets of

filter operations each time we evaluate our neural network.

We can create separate sets of convolutional filters for each area of the

input image, combined together by color channel. In academic settings,

channels are also referred to as depth, so these are called depthwise

convolutions. A variant of this you need to know is increasing the number

of filter outputs, which is called a channel multiplier.

�Pointwise convolutions
This is only half the puzzle; we still need to combine our channel data

back together. In our last chapter on SqueezeNet, we looked at how we

can put a 1x1 convolution into our stack as a way to reduce data down

significantly before applying our 3x3 convolution. Conceptually, this

is called a pointwise convolution because all of the channel input data

passes through it. By using these pointwise convolutions, we can map our

reduced data space back to our desired final filter size. Then, we simply

need to increase the number of pointwise operators to match our desired

number of output filters.

Conceptually, we are taking our input image and running groups

of depthwise convolutions and then using a stack of small pointwise

convolutions to combine them back to our desired output shape. This

combination of filters together is called a depthwise separable convolution

Chapter 8 MobileNet v1

89

and is key to the performance of this network. We have gotten most of the

benefits of SqueezeNet’s compression approach, but with a less destructive

approach than SqueezeNet. In addition, we are now using cheaper

operations because depthwise separable convolutions can be accelerated

in mobile hardware.

�ReLU 6
We have used a ReLU activation function for our models so far, which looks

like this:

relu(x) = max(features, 0)

When building models which we know we are going to quantize, it is

valuable to instead limit the output of the ReLU layers and by extension

force the network to work with smaller numbers from the start. So, we

simply introduce a ceiling function for our ReLU activation like so:

relu6(x) = min(max(features, 0), 6)

Now, we can simplify our output logic to take advantage of this

reduced space.

�Example of the reduction in MACs with
this approach

> Benchmark Analysis of Representative Deep Neural Network

Architectures

> https://arxiv.org/abs/1810.00736

This paper has a nice graph on page 3 visualizing the differences

between these networks. Conceptually, we have a slightly larger network

than SqueezeNet, but we have a top 1 accuracy comparable to ResNet 18

Chapter 8 MobileNet v1

90

(a smaller version of ResNet 34 from earlier). Look at VGG16 vs. MobileNet

v2 if you want to know where we’re going next.

�Code
This network uses many more types of layers than our SqueezeNet

approach, but produces significantly better results because they are cheaper

computationally. This is something we will see repeatedly going forward.

```

import TensorFlow

public struct ConvBlock: Layer {

  �public var zeroPad = ZeroPadding2D<Float>(padding:  

((0, 1), (0, 1)))

  public var conv: Conv2D<Float>

  public var batchNorm: BatchNorm<Float>

  public init(filterCount: Int, strides: (Int, Int)) {

    conv = Conv2D<Float>(

      filterShape: (3, 3, 3, filterCount),

      strides: strides,

      padding: .valid)

    batchNorm = BatchNorm<Float>(featureCount: filterCount)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    �let convolved = input.sequenced(through: zeroPad, conv, 

batchNorm)

    return relu6(convolved)

  }

}

Chapter 8  MobileNet v1



91

public struct DepthwiseConvBlock: Layer {

  @noDerivative let strides: (Int, Int)

  �@noDerivative public let zeroPad = 

ZeroPadding2D<Float>(padding: ((0, 1), (0, 1)))

  public var dConv: DepthwiseConv2D<Float>

  public var batchNorm1: BatchNorm<Float>

  public var conv: Conv2D<Float>

  public var batchNorm2: BatchNorm<Float>

  public init(

    filterCount: Int, pointwiseFilterCount: Int,

    strides: (Int, Int)

  ) {

    self.strides = strides

    dConv = DepthwiseConv2D<Float>(

      filterShape: (3, 3, filterCount, 1),

      strides: strides,

      padding: strides == (1, 1) ? .same : .valid)

    batchNorm1 = BatchNorm<Float>(

      featureCount: filterCount)

    conv = Conv2D<Float>(

      filterShape: (

        1, 1, filterCount,

        pointwiseFilterCount

      ),

      strides: (1, 1),

      padding: .same)

    �batchNorm2 = BatchNorm<Float>(featureCount: 

pointwiseFilterCount)

  }

Chapter 8  MobileNet v1



92

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    var convolved1: Tensor<Float>

    if self.strides == (1, 1) {

      convolved1 = input.sequenced(through: dConv, batchNorm1)

    } else {

      �convolved1 = input.sequenced(through: zeroPad, dConv, 

batchNorm1)

    }

    let convolved2 = relu6(convolved1)

    �let convolved3 = relu6(convolved2.sequenced(through: conv, 

batchNorm2))

    return convolved3

  }

}

public struct MobileNetV1: Layer {

  @noDerivative let classCount: Int

  @noDerivative let scaledFilterShape: Int

  public var convBlock1: ConvBlock

  public var dConvBlock1: DepthwiseConvBlock

  public var dConvBlock2: DepthwiseConvBlock

  public var dConvBlock3: DepthwiseConvBlock

  public var dConvBlock4: DepthwiseConvBlock

  public var dConvBlock5: DepthwiseConvBlock

  public var dConvBlock6: DepthwiseConvBlock

  public var dConvBlock7: DepthwiseConvBlock

  public var dConvBlock8: DepthwiseConvBlock

  public var dConvBlock9: DepthwiseConvBlock

  public var dConvBlock10: DepthwiseConvBlock

  public var dConvBlock11: DepthwiseConvBlock

  public var dConvBlock12: DepthwiseConvBlock

Chapter 8  MobileNet v1



93

  public var dConvBlock13: DepthwiseConvBlock

  public var avgPool = GlobalAvgPool2D<Float>()

  public var dropoutLayer: Dropout<Float>

  public var outputConv: Conv2D<Float>

  public init(

    classCount: Int = 10,

    dropout: Double = 0.001

  ) {

    self.classCount = classCount

    scaledFilterShape = Int(1024.0 * 1.0)

    convBlock1 = ConvBlock(filterCount: 32, strides: (2, 2))

    dConvBlock1 = DepthwiseConvBlock(

      filterCount: 32,

      pointwiseFilterCount: 64,

      strides: (1, 1))

    dConvBlock2 = DepthwiseConvBlock(

      filterCount: 64,

      pointwiseFilterCount: 128,

      strides: (2, 2))

    dConvBlock3 = DepthwiseConvBlock(

      filterCount: 128,

      pointwiseFilterCount: 128,

      strides: (1, 1))

    dConvBlock4 = DepthwiseConvBlock(

      filterCount: 128,

      pointwiseFilterCount: 256,

      strides: (2, 2))

    dConvBlock5 = DepthwiseConvBlock(

      filterCount: 256,

      pointwiseFilterCount: 256,

      strides: (1, 1))

Chapter 8  MobileNet v1



94

    dConvBlock6 = DepthwiseConvBlock(

      filterCount: 256,

      pointwiseFilterCount: 512,

      strides: (2, 2))

    dConvBlock7 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 512,

      strides: (1, 1))

    dConvBlock8 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 512,

      strides: (1, 1))

    dConvBlock9 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 512,

      strides: (1, 1))

    dConvBlock10 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 512,

      strides: (1, 1))

    dConvBlock11 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 512,

      strides: (1, 1))

    dConvBlock12 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 1024,

      strides: (2, 2))

    dConvBlock13 = DepthwiseConvBlock(

      filterCount: 1024,

      pointwiseFilterCount: 1024,

      strides: (1, 1))

Chapter 8  MobileNet v1



95

    dropoutLayer = Dropout<Float>(probability: dropout)

    outputConv = Conv2D<Float>(

      filterShape: (1, 1, scaledFilterShape, classCount),

      strides: (1, 1),

      padding: .same)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let convolved = input.sequenced(

      through: convBlock1, dConvBlock1,

      dConvBlock2, dConvBlock3, dConvBlock4)

    let convolved2 = convolved.sequenced(

      through: dConvBlock5, dConvBlock6,

      dConvBlock7, dConvBlock8, dConvBlock9)

    let convolved3 = convolved2.sequenced(

      �through: dConvBlock10, dConvBlock11, dConvBlock12, 

dConvBlock13, avgPool

    ).reshaped(to: [

      input.shape[0], 1, 1, scaledFilterShape,

    ])

    �let convolved4 = convolved3.sequenced(through: 

dropoutLayer, outputConv)

    return convolved4.reshaped(to: [input.shape[0], classCount])

  }

}

```

Chapter 8 MobileNet v1

96

�Results
Our results are on par with our Resnet 50 network from before, but this

network is smaller in general and can be evaluated much, much faster at

runtime and so is a solid improvement for mobile devices.

Starting training...

[Epoch 1] Accuracy: 50/500 (0.1) Loss: 2.5804458

[Epoch 2] Accuracy: 262/500 (0.524) Loss: 1.5034955

[Epoch 3] Accuracy: 224/500 (0.448) Loss: 1.928577

[Epoch 4] Accuracy: 286/500 (0.572) Loss: 1.4074985

[Epoch 5] Accuracy: 306/500 (0.612) Loss: 1.3206513

[Epoch 6] Accuracy: 334/500 (0.668) Loss: 1.0112444

[Epoch 7] Accuracy: 362/500 (0.724) Loss: 0.8360394

[Epoch 8] Accuracy: 343/500 (0.686) Loss: 1.0489439

[Epoch 9] Accuracy: 317/500 (0.634) Loss: 1.6159635

[Epoch 10] Accuracy: 338/500 (0.676) Loss: 1.0420185

[Epoch 11] Accuracy: 354/500 (0.708) Loss: 1.0034739

[Epoch 12] Accuracy: 358/500 (0.716) Loss: 0.9746185

[Epoch 13] Accuracy: 344/500 (0.688) Loss: 1.152486

[Epoch 14] Accuracy: 365/500 (0.73) Loss: 0.96197647

[Epoch 15] Accuracy: 353/500 (0.706) Loss: 1.2438473

[Epoch 16] Accuracy: 367/500 (0.734) Loss: 1.044013

[Epoch 17] Accuracy: 365/500 (0.73) Loss: 1.1098087

[Epoch 18] Accuracy: 352/500 (0.704) Loss: 1.3609929

[Epoch 19] Accuracy: 376/500 (0.752) Loss: 1.2861694

[Epoch 20] Accuracy: 376/500 (0.752) Loss: 1.0280938

[Epoch 21] Accuracy: 369/500 (0.738) Loss: 1.1655327

[Epoch 22] Accuracy: 369/500 (0.738) Loss: 1.1702954

[Epoch 23] Accuracy: 363/500 (0.726) Loss: 1.151112

[Epoch 24] Accuracy: 378/500 (0.756) Loss: 0.94088197

[Epoch 25] Accuracy: 386/500 (0.772) Loss: 1.03443

Chapter 8 MobileNet v1

97

[Epoch 26] Accuracy: 379/500 (0.758) Loss: 1.1582794

[Epoch 27] Accuracy: 384/500 (0.768) Loss: 1.1210178

[Epoch 28] Accuracy: 377/500 (0.754) Loss: 1.136668

[Epoch 29] Accuracy: 382/500 (0.764) Loss: 1.2300915

[Epoch 30] Accuracy: 381/500 (0.762) Loss: 1.0231776

�Recap
We’ve looked at MobileNet, an important computer vision network from

2017 that makes heavy use of depthwise separable convolutions in order to

produce results on par with ResNet 18 (a smaller version of our ResNet 34

network) at a significantly reduced size and computational budget. We can

run this on a phone at near real time (e.g., ~50ms/prediction speed) with

hardware of the day. Next, let’s look at how we can tweak our MobileNet

network slightly to produce even better results.

Chapter 8 MobileNet v1

	Chapter 8: MobileNet v1
	MobileNet (v1)
	Spatial separable convolutions
	Depthwise convolutions
	Pointwise convolutions

	ReLU 6
	Example of the reduction in MACs with this approach

	Code
	Results

	Recap

