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CHAPTER 14

You Are Here
Congratulations on making it this far! You now have a solid working 

knowledge of the current state of the art of convolutional neural networks 

for image recognition, using swift for tensorflow. Let’s look toward the 

future by first looking at the past.

�A (short and opinionated) history 
of computing
It is valuable to study the history of to understand its future. There are 

many trends that are obvious only in hindsight. So, let us go all the way 

back to the beginning. The birth of Silicon Valley was arguably an overflow 

of military computing funding in the aftermath of World War II. The 

military wanted to fund various things, but they could not build them 

themselves, and so they started buying hardware from various labs that 

were set up in the valley to construct transistors. This was the real genesis 

of Silicon Valley, the ability to build strange new things with the knowledge 

that there was a willing buyer for what were extremely beta technologies.

The Internet itself, then, was an outgrowth of the ARPANET project, 

an initiative by DARPA to network various previously unconnected 

servers. If we can connect computers together locally using a network, 

then extending the network a few miles down the road is a fairly logical 

next step. But to quote Metcalfe’s law, as each new node was added, the 

value of the network grew exponentially. What is interesting then is that, 
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at a certain point, the value of adding new nodes to the network exceeded 

the cost. At which point, the process of adding new computers to the 

network became self-sustaining and then grew to what we see today. Or 

rather, I would argue that at a certain point, the commercial value of the 

invention itself exceeded the cost to bootstrap it, and after that point, it was 

impossible to halt the growth of what became the Internet. The genie was 

out of the bottle, so to speak.

In the 1970s, a different phenomenon occurred with supercomputing 

and AI in particular. The military funded many different strategies in 

the field, which started making more and more outlandish claims in 

order to get a bigger piece of the pie. Once it became clear many of these 

approaches weren’t going to work came the AI winter, when DARPA 

pulled funding for many of these projects and the field was forced to try 

and fend for itself. Without a wealthy benefactor, or more precisely a clear 

commercial plan, both supercomputing and AI fell on hard times. The UK 

and Japan experienced similar phenomena a decade later.

And so the supercomputer race failed for the most part. But computers 

had proven their value in general and so continued to become cheaper 

and cheaper in general. Personal computing took off and a similar 

scenario happened, whereas the value of a computer to individual users 

exceeded the threshold of cost, and so as a result, the personal computer 

revolution became self-sustaining. As a result of this massive interest into 

home computers came the PC revolution of the 1980s and 1990s. What 

is interesting to me in particular is the third-generation supercomputing 

wave of the late 1990s, which was largely the result of taking off the 

shelf commodity processors (which had progressed far faster than the 

specialized supercomputing manufacturers could ever dream of) and 

wiring them together using advanced networks in order to tackle problems 

in a distributed fashion. Commoditized general hardware beat building 

specialized processors and methodology. Most current/fourth-generation 
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supercomputing follows this trend, using commodity computing 

hardware and focusing on custom networking to increase intraprocess 

communication.

�History of GPUs
And so, to look at another wave, we can consider the story of video cards. 

Originally, monochrome color and basic text were all that computers could 

generate. Memory capacity then increased to where larger amounts of 

data could be stored, leading to color becoming possible and gradually 

increasing resolutions. At some point, rastering 3D graphics on the fly 

became possible, and the 3dfx brought the first real GPU to market. Using 

a graphics programming language, all of a sudden a whole new world of 

interactive experiences (aka games) became possible. And so, to mirror the 

Internet and personal computing waves of before, the commercial value 

of playing games created a self-sustaining revolution in chipsets, which is 

still going on today. The entire reason we are running models on graphics 

cards today is due to the popularity of video gaming decades ago.

GPUs are getting close to becoming consumed by commoditization as 

well. While the market for new experiences continues to grow at this point 

today, even budget cards support features such as 4k video, which would 

have been unthinkable a few years ago. Running nongame code (notably 

bitcoin and deep learning) on the GPU itself is an extremely recent 

innovation that has breathed new life into the market. The companies 

making these devices are quickly reaching the limits of raw processing to 

make all of this possible. They are trying to bring new hardware to market 

without straying too far from the gaming market which drives everything. 

This is a large part of the push for VR and AR experiences. As GPUs 

become more general, they are increasingly absorbing more and more of 

the compute stack previously only controlled by CPUs.
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�Cloud computing
Virtual machines have significantly changed how people interact with 

computing, even if they are not aware of it. At one point, setting up and 

configuring a server took days; now it can be done in seconds. This enables 

workflows where resources are spun up on demand and then promptly 

discarded. Software is increasingly run at higher and higher abstractions 

which has allowed entirely new approaches to become commonplace. 

This will have long-term ramifications that we cannot even fully 

comprehend today. The largest computing clusters in the world are not 

supercomputers but rather managed servers running thousands of virtual 

machines for the cloud providers.

�Crossing the chasm
AI and ML are not new fields. Neural networks, in the form of the perceptron, 

were invented in 1958. Only recently with the mentioned advances in 

compute power and hardware have they become practical to implement. 

Moreover, I would argue that they have finally crossed the chasm from 

intellectual curiosity into something driving the bottom line at large 

companies. As such, they have made the necessary transition to become a 

self-sustaining technology like the given examples. Google could delete the 

tensorflow repository tomorrow. Nvidia could stop shipping video cards. 

But these techniques will continue to be refined and improved regardless 

because they have real-world practical use cases in the industry. As such, the 

genie is out of the bottle. There is no going back to the pre-AI world. One way 

or another, the gains that AI brings will be brought to every field.

�Computer vision
Let us look at the big areas that I believe will be important for the  

next decade.
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�Direct applications
Many of the more advanced forms of computer vision are finally seeing the 

hardware and compute capacity needed to run them become mainstream. 

I am particularly interested in the field of real-time systems, be it cameras 

on self-driving cars, being able to analyze medical data in the field, or even 

simply finding new ways to use the cameras on mobile phones. This area is 

only just now beginning to be touched.

�Indirect applications
A number of interesting problems that are not necessarily image 

related can be converted into images and then solved using CNN-style 

approaches. Historically, many of these techniques have been impractical 

from a resource standpoint, but as more and more AI-specific hardware 

becomes mainstream, a lot of approaches that were previously infeasible 

become doable. AlphaGo, as an example, is a large-scale reinforcement 

algorithm that converts the board game go’s game state into an image 

representation and then applies an extremely large convolutional neural 

network to it. The basic approach, though, is a convolutional neural 

network built using residual layers and large-scale compute. When average 

researchers gain access to similar amounts of resources, I think many 

interesting new approaches will be found in fields that are just now starting 

to experiment with AI.

�Natural language processing
By using big data approaches (e.g., data corpuses from Wikipedia, scanned 

books, and gathered from the Internet at large), simpler approaches 

suddenly become powerful by virtue of giving the machine a lot more 
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information to work with. This in turn has direct financial ramifications 

(e.g., improving search and recommendation engines), and so a lot of 

resources are being poured into this right now. It is going to become 

commonplace eventually.

�Reinforcement learning and GANs
I am somewhat bearish on these fields in the short term, in that they still 

seem to require massive amounts of resources and there are still not a lot 

of clear commercial applications at this point in time. Having said that, 

I believe that in the long term, this is the field that is most going to drive 

progress in AI/ML in general. Most improvements in computer vision are 

now very small incremental tweaks, and any time an idea shows promise 

upstream in RL, then very quickly people will be trying to use it elsewhere. 

Using synthetic data to train neural networks is the area that seems most 

poised to become a commercial driver in the near future. Supersampling/

resolution is making its way into silicon and is clearly here to stay.

�Simulations in general
The other interesting area that I think is poised to be revolutionized 

by neural techniques is physical simulations in general. A very large 

amount of compute power is thrown regularly at performing complicated 

simulations of interactions based upon physics. I’m bearish on neural 

networks replacing physical simulations directly, because there will always 

be a place for raw math, but using networks to simulate real-world datasets 

opens up an interesting window of being able to simulate simulations, 

so to speak, and by extension being able to build approximately correct 

models much, much more quickly than traditional approaches. If the 

neural network–based simulation proves itself, then the traditional  

method can be run as the final phase, giving the best of both worlds  
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(e.g., fast experimentation and fundamental rigor when desired). There is a 

danger of the networks losing touch with reality (e.g., simulating the wrong 

things), but I believe that having domain experts will obviate this problem.

�To infinity and beyond
My experience is that this field as a whole has no shortage of ideas right 

now. There are thousands of papers being published each year on arXiv, 

and the rate of submissions only continues to grow. Many other fields, 

in particular mathematics, seem finally convinced that deep learning 

techniques are here to stay and that they need to get on the bandwagon, 

and so many extremely smart people are out there doing these hello 

world exercises, the same as you. In the short term, this is creating a lot 

of churn. There are countless blog posts by people attempting to explain 

their new ideas and online debates over the best approaches. Every new 

major release of pytorch or tensorflow breaks existing projects in all sorts 

of exciting new ways. People throw up their hands at the complexity and 

decide they’re going to create a new unified system for doing things, and 

voilà, there’s yet another new framework. This is literally going on as 

we speak. The industry as a whole is lurching from shiny thing to shiny 

thing. The simple truth is that nobody really knows what the right path 

forward is. New techniques are being discovered daily, and deep learning 

approaches have brought together dozens of related fields. Neural network 

and big data approaches have proven themselves on disparate problems 

such as biology, astronomy, physics, and economics. Every field now has 

to learn computer science or they will get left behind by those who do.

And so let me tell you grizzled programmer story of the early days of 

iOS. With the second generation, Apple let people submit apps. There 

was a massive gold rush where people could (and did try to) ship almost 

everything under the sun. The next few years were interesting as more 
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and more of the approaches finally stabilized and became popular. After 

a while, libraries and frameworks became standardized. To me, all of this 

deep learning hullabaloo is very much the same experience of yore.

�Why Swift
Swift has been an interesting revolution within the iOS ecosystem. 

Objective-C was showing its age, and swift brought iOS programmers a 

long way forward in a hurry. Garbage collection is a traditional approach 

in this field that works well on systems with large amounts of memory 

and spare cycles to run garbage collection. But in production systems 

with hard real-time requirements, be they servers providing 24/7 packet 

handling guarantees or mobile devices with quasi-random use patterns, 

this approach doesn’t work as well as would be desired. Android has tried 

to cover up this gap by getting manufacturers to ship more and more RAM 

with their devices, but this makes devices cost more, which is often not 

viable in the real world.

LLVM initially snuck into iOS in the form of automatic reference 

counting, a feature added to Objective-C to count/track memory cycles 

and by extension be able to manually add malloc and free calls for the 

developer. Once this tech had proven itself, by eliminating memory 

management from the day-to-day workflow of programmers, Lattner et al. 

set their sights significantly higher.

Swift is designed to be a modern language that does not look out of 

place to existing Objective-C programmers, and I feel like at this point 

it succeeded extremely well. It brought functional programming ideas 

and concepts into the world of iOS by making it easy to bridge between 

the worlds. Have a particular section of code that needs C raw memory 

access? Just drop down to raw memory access directly, and the compiler 

can put boundary checking on that entire region of code. Have an existing 

C library that needs to be brought to swift? Simply write a simple API layer 
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that encapsulates your library. Then all the system-level communication 

for iOS (and Mac proper, eventually) was forced to go through a swift layer 

of indirection. In the short term, this was painful in that it forced coders 

to no longer be able to do direct system calls. But over time, this approach 

drastically modularized the codebase at the system level and isolated 

many different bugs in their own particular islands.

While Apple was eating their own dogfood, iOS developers were going 

through a similar transition. Many open source libraries sprung up in the 

early days, each with their own set of trade-offs and patterns. By moving 

to swift, this forced much of the ecosystem to either evolve or get stuck in 

the past. In turn, though, this transition allowed people to concentrate on 

higher-level problems and not get stuck on low-level details.

And so then Apple did the crucial final step of making the language 

open source and opening it up fully to outside developers to make 

contributions and shape its future. Anybody can contribute and thousands 

have now. It is extremely hard for new programming languages to 

come into being. Small niche languages usually toil in obscurity. Large 

companies push new languages on the world, but this top-down approach 

usually only works so long as the original company is driving progress.

So to me then the strengths of swift are manyfold. It is an easy-to-

learn language for beginners. It has the support of a large benefactor 

(Apple) that is committed to its success, but not technically in charge. It 

has a diverse ecosystem of open source contributors and is solving real 

problems in the real world daily while utilizing decades of experience 

building C libraries. It brings functional programming concepts to the 

procedural world in a pragmatic way without forcing people to completely 

change how they have been doing things.
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�Why LLVM
Swift’s real magic power, though, is that it is the original language of LLVM. 

Compilers have historically focused on generating really, really fast code. 

This is great for progress but also means that many implementations 

chase speed over doing things correctly, so to speak. What happened as 

a result is that we ended up with many different compilers generating 

slightly different code for dozens of slightly different computers, and then 

build systems became really large and complicated. Generating a new 

programming language became very difficult because people demanded 

performance out of the gate.

LLVM rebuilt the foundations of compiler theory and has spawned a 

renaissance in new languages by reunifying these worlds. At a high level, 

all you have to do is generate an IR, and then LLVM can figure out how 

to get it to run on your device. This means that many, many different 

languages are using LLVM now. As a direct result, by using LLVM, you get 

the collective improvements of many, many different ecosystems.

This is a little bit more work up front for the programmer in terms 

of complexity, but as a result fundamentally makes it possible for the 

compiler to do much, much more. We’ve seen amazing progress in the 

LLVM world; people have demonstrated running gigantic jobs on large 

clusters and other approaches.

Machine learning is still in its infancy in many ways. Single-GPU code 

is the largest paradigm. People write stuff for clusters, but it is still very 

much custom code most of the time. We’ve got a ton of experience with 

single instruction and single variable code (CPU-style programming), but 

historically single-instruction multidata code has been really hard to write. 

We end up with lots of hand-customized kernels for different things. This 

works fine in a general sense, in that programmers can make system calls 

and get optimized code, but it means that it is hard for programmers to 

easily take advantage of whatever hardware they have at hand.
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�Why MLIR
The end result is that there’s been a tremendous amount of churn in 

the machine learning ecosystem in general the past few years. Each 

manufacturer ends up trying to build libraries to provide an optimal 

experience for their hardware. Researchers have tried to make tensorflow 

do many things it was never designed to do, and so trying to support every 

permutation has been difficult for Google. Pytorch effectively rebuilt a 

framework just to make generating CUDA code simpler. MLIR provides 

a convenient bridge between these worlds. Hardware manufacturers can 

simply focus on getting an IR together that generates code for their device. 

Coders can write in arguably whatever language they prefer, and then 

language wonks simply need to find a way to convert their LLVM AST to an 

MLIR syntax. Then we can dream of a future in which we take our swift (or 

any language that supports LLVM) code and can compile it for whatever 

back end we desire.

�Why ML is the most important field
Machine learning has the ability to absorb all of the world’s compute 

capacity for the next few decades. This quiet revolution will have 

ramifications in dozens of fields and domains. The more and more we 

make it easier to use these tools and make them able to flexibly scale up 

to work on larger and larger compute systems, the greater the long-term 

potential of humanity as a whole. Large-scale compute has the ability to 

fundamentally do things that have never been possible before.

Clusters are only increasing in size. But all this emphasis on scaling 

ignores the reality that more compute resources are available to the 

individual today than at any point in history. If you are willing to invest the 

time and energy now, then as these things continue to improve, you will be 

the first to be able to take advantage of this revolution.
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Toward this end, you can take two paths. One is to pick a particular 

horse, be it hardware or framework, and put all your efforts behind it. 

The other is to focus on helping make it so no particular framework or 

technology gains control of the ecosystem. Getting all these sundry groups 

of people working together as a whole has the potential to fundamentally 

revolutionize this field.

The hardware is just now being figured out, but this is going to change 

dramatically in the next few years. The software is a bit rough around 

the edges right now, I will admit. But opportunity never comes wrapped 

up neatly in a package with a bow. More often than not, it looks like 

hard work. But a little bit of work today will leave you well positioned for 

whatever tomorrow brings.

�Why now
Progress is the result of many, many people working together over the 

centuries, not isolated to any one place or time. By helping make machine 

learning more accessible, you are helping improve tools that will indirectly 

touch millions of other people’s lives. This has the potential to allow 

progress on a scale never before seen in history.

�Why you
You can wait for other people to bring you the future or help them build 

it. There’s never been a better time to get started. The future is now! Come 

join us!
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