
167© Brett Koonce 2021
B. Koonce, Convolutional Neural Networks with Swift for Tensorflow,
https://doi.org/10.1007/978-1-4842-6168-2_14

CHAPTER 14

You Are Here
Congratulations on making it this far! You now have a solid working

knowledge of the current state of the art of convolutional neural networks

for image recognition, using swift for tensorflow. Let’s look toward the

future by first looking at the past.

�A (short and opinionated) history
of computing
It is valuable to study the history of to understand its future. There are

many trends that are obvious only in hindsight. So, let us go all the way

back to the beginning. The birth of Silicon Valley was arguably an overflow

of military computing funding in the aftermath of World War II. The

military wanted to fund various things, but they could not build them

themselves, and so they started buying hardware from various labs that

were set up in the valley to construct transistors. This was the real genesis

of Silicon Valley, the ability to build strange new things with the knowledge

that there was a willing buyer for what were extremely beta technologies.

The Internet itself, then, was an outgrowth of the ARPANET project,

an initiative by DARPA to network various previously unconnected

servers. If we can connect computers together locally using a network,

then extending the network a few miles down the road is a fairly logical

next step. But to quote Metcalfe’s law, as each new node was added, the

value of the network grew exponentially. What is interesting then is that,

https://doi.org/10.1007/978-1-4842-6168-2_14#DOI

168

at a certain point, the value of adding new nodes to the network exceeded

the cost. At which point, the process of adding new computers to the

network became self-sustaining and then grew to what we see today. Or

rather, I would argue that at a certain point, the commercial value of the

invention itself exceeded the cost to bootstrap it, and after that point, it was

impossible to halt the growth of what became the Internet. The genie was

out of the bottle, so to speak.

In the 1970s, a different phenomenon occurred with supercomputing

and AI in particular. The military funded many different strategies in

the field, which started making more and more outlandish claims in

order to get a bigger piece of the pie. Once it became clear many of these

approaches weren’t going to work came the AI winter, when DARPA

pulled funding for many of these projects and the field was forced to try

and fend for itself. Without a wealthy benefactor, or more precisely a clear

commercial plan, both supercomputing and AI fell on hard times. The UK

and Japan experienced similar phenomena a decade later.

And so the supercomputer race failed for the most part. But computers

had proven their value in general and so continued to become cheaper

and cheaper in general. Personal computing took off and a similar

scenario happened, whereas the value of a computer to individual users

exceeded the threshold of cost, and so as a result, the personal computer

revolution became self-sustaining. As a result of this massive interest into

home computers came the PC revolution of the 1980s and 1990s. What

is interesting to me in particular is the third-generation supercomputing

wave of the late 1990s, which was largely the result of taking off the

shelf commodity processors (which had progressed far faster than the

specialized supercomputing manufacturers could ever dream of) and

wiring them together using advanced networks in order to tackle problems

in a distributed fashion. Commoditized general hardware beat building

specialized processors and methodology. Most current/fourth-generation

Chapter 14 You Are Here

169

supercomputing follows this trend, using commodity computing

hardware and focusing on custom networking to increase intraprocess

communication.

�History of GPUs
And so, to look at another wave, we can consider the story of video cards.

Originally, monochrome color and basic text were all that computers could

generate. Memory capacity then increased to where larger amounts of

data could be stored, leading to color becoming possible and gradually

increasing resolutions. At some point, rastering 3D graphics on the fly

became possible, and the 3dfx brought the first real GPU to market. Using

a graphics programming language, all of a sudden a whole new world of

interactive experiences (aka games) became possible. And so, to mirror the

Internet and personal computing waves of before, the commercial value

of playing games created a self-sustaining revolution in chipsets, which is

still going on today. The entire reason we are running models on graphics

cards today is due to the popularity of video gaming decades ago.

GPUs are getting close to becoming consumed by commoditization as

well. While the market for new experiences continues to grow at this point

today, even budget cards support features such as 4k video, which would

have been unthinkable a few years ago. Running nongame code (notably

bitcoin and deep learning) on the GPU itself is an extremely recent

innovation that has breathed new life into the market. The companies

making these devices are quickly reaching the limits of raw processing to

make all of this possible. They are trying to bring new hardware to market

without straying too far from the gaming market which drives everything.

This is a large part of the push for VR and AR experiences. As GPUs

become more general, they are increasingly absorbing more and more of

the compute stack previously only controlled by CPUs.

Chapter 14 You Are Here

170

�Cloud computing
Virtual machines have significantly changed how people interact with

computing, even if they are not aware of it. At one point, setting up and

configuring a server took days; now it can be done in seconds. This enables

workflows where resources are spun up on demand and then promptly

discarded. Software is increasingly run at higher and higher abstractions

which has allowed entirely new approaches to become commonplace.

This will have long-term ramifications that we cannot even fully

comprehend today. The largest computing clusters in the world are not

supercomputers but rather managed servers running thousands of virtual

machines for the cloud providers.

�Crossing the chasm
AI and ML are not new fields. Neural networks, in the form of the perceptron,

were invented in 1958. Only recently with the mentioned advances in

compute power and hardware have they become practical to implement.

Moreover, I would argue that they have finally crossed the chasm from

intellectual curiosity into something driving the bottom line at large

companies. As such, they have made the necessary transition to become a

self-sustaining technology like the given examples. Google could delete the

tensorflow repository tomorrow. Nvidia could stop shipping video cards.

But these techniques will continue to be refined and improved regardless

because they have real-world practical use cases in the industry. As such, the

genie is out of the bottle. There is no going back to the pre-AI world. One way

or another, the gains that AI brings will be brought to every field.

�Computer vision
Let us look at the big areas that I believe will be important for the

next decade.

Chapter 14 You Are Here

171

�Direct applications
Many of the more advanced forms of computer vision are finally seeing the

hardware and compute capacity needed to run them become mainstream.

I am particularly interested in the field of real-time systems, be it cameras

on self-driving cars, being able to analyze medical data in the field, or even

simply finding new ways to use the cameras on mobile phones. This area is

only just now beginning to be touched.

�Indirect applications
A number of interesting problems that are not necessarily image

related can be converted into images and then solved using CNN-style

approaches. Historically, many of these techniques have been impractical

from a resource standpoint, but as more and more AI-specific hardware

becomes mainstream, a lot of approaches that were previously infeasible

become doable. AlphaGo, as an example, is a large-scale reinforcement

algorithm that converts the board game go’s game state into an image

representation and then applies an extremely large convolutional neural

network to it. The basic approach, though, is a convolutional neural

network built using residual layers and large-scale compute. When average

researchers gain access to similar amounts of resources, I think many

interesting new approaches will be found in fields that are just now starting

to experiment with AI.

�Natural language processing
By using big data approaches (e.g., data corpuses from Wikipedia, scanned

books, and gathered from the Internet at large), simpler approaches

suddenly become powerful by virtue of giving the machine a lot more

Chapter 14 You Are Here

172

information to work with. This in turn has direct financial ramifications

(e.g., improving search and recommendation engines), and so a lot of

resources are being poured into this right now. It is going to become

commonplace eventually.

�Reinforcement learning and GANs
I am somewhat bearish on these fields in the short term, in that they still

seem to require massive amounts of resources and there are still not a lot

of clear commercial applications at this point in time. Having said that,

I believe that in the long term, this is the field that is most going to drive

progress in AI/ML in general. Most improvements in computer vision are

now very small incremental tweaks, and any time an idea shows promise

upstream in RL, then very quickly people will be trying to use it elsewhere.

Using synthetic data to train neural networks is the area that seems most

poised to become a commercial driver in the near future. Supersampling/

resolution is making its way into silicon and is clearly here to stay.

�Simulations in general
The other interesting area that I think is poised to be revolutionized

by neural techniques is physical simulations in general. A very large

amount of compute power is thrown regularly at performing complicated

simulations of interactions based upon physics. I’m bearish on neural

networks replacing physical simulations directly, because there will always

be a place for raw math, but using networks to simulate real-world datasets

opens up an interesting window of being able to simulate simulations,

so to speak, and by extension being able to build approximately correct

models much, much more quickly than traditional approaches. If the

neural network–based simulation proves itself, then the traditional

method can be run as the final phase, giving the best of both worlds

Chapter 14 You Are Here

173

(e.g., fast experimentation and fundamental rigor when desired). There is a

danger of the networks losing touch with reality (e.g., simulating the wrong

things), but I believe that having domain experts will obviate this problem.

�To infinity and beyond
My experience is that this field as a whole has no shortage of ideas right

now. There are thousands of papers being published each year on arXiv,

and the rate of submissions only continues to grow. Many other fields,

in particular mathematics, seem finally convinced that deep learning

techniques are here to stay and that they need to get on the bandwagon,

and so many extremely smart people are out there doing these hello

world exercises, the same as you. In the short term, this is creating a lot

of churn. There are countless blog posts by people attempting to explain

their new ideas and online debates over the best approaches. Every new

major release of pytorch or tensorflow breaks existing projects in all sorts

of exciting new ways. People throw up their hands at the complexity and

decide they’re going to create a new unified system for doing things, and

voilà, there’s yet another new framework. This is literally going on as

we speak. The industry as a whole is lurching from shiny thing to shiny

thing. The simple truth is that nobody really knows what the right path

forward is. New techniques are being discovered daily, and deep learning

approaches have brought together dozens of related fields. Neural network

and big data approaches have proven themselves on disparate problems

such as biology, astronomy, physics, and economics. Every field now has

to learn computer science or they will get left behind by those who do.

And so let me tell you grizzled programmer story of the early days of

iOS. With the second generation, Apple let people submit apps. There

was a massive gold rush where people could (and did try to) ship almost

everything under the sun. The next few years were interesting as more

Chapter 14 You Are Here

174

and more of the approaches finally stabilized and became popular. After

a while, libraries and frameworks became standardized. To me, all of this

deep learning hullabaloo is very much the same experience of yore.

�Why Swift
Swift has been an interesting revolution within the iOS ecosystem.

Objective-C was showing its age, and swift brought iOS programmers a

long way forward in a hurry. Garbage collection is a traditional approach

in this field that works well on systems with large amounts of memory

and spare cycles to run garbage collection. But in production systems

with hard real-time requirements, be they servers providing 24/7 packet

handling guarantees or mobile devices with quasi-random use patterns,

this approach doesn’t work as well as would be desired. Android has tried

to cover up this gap by getting manufacturers to ship more and more RAM

with their devices, but this makes devices cost more, which is often not

viable in the real world.

LLVM initially snuck into iOS in the form of automatic reference

counting, a feature added to Objective-C to count/track memory cycles

and by extension be able to manually add malloc and free calls for the

developer. Once this tech had proven itself, by eliminating memory

management from the day-to-day workflow of programmers, Lattner et al.

set their sights significantly higher.

Swift is designed to be a modern language that does not look out of

place to existing Objective-C programmers, and I feel like at this point

it succeeded extremely well. It brought functional programming ideas

and concepts into the world of iOS by making it easy to bridge between

the worlds. Have a particular section of code that needs C raw memory

access? Just drop down to raw memory access directly, and the compiler

can put boundary checking on that entire region of code. Have an existing

C library that needs to be brought to swift? Simply write a simple API layer

Chapter 14 You Are Here

175

that encapsulates your library. Then all the system-level communication

for iOS (and Mac proper, eventually) was forced to go through a swift layer

of indirection. In the short term, this was painful in that it forced coders

to no longer be able to do direct system calls. But over time, this approach

drastically modularized the codebase at the system level and isolated

many different bugs in their own particular islands.

While Apple was eating their own dogfood, iOS developers were going

through a similar transition. Many open source libraries sprung up in the

early days, each with their own set of trade-offs and patterns. By moving

to swift, this forced much of the ecosystem to either evolve or get stuck in

the past. In turn, though, this transition allowed people to concentrate on

higher-level problems and not get stuck on low-level details.

And so then Apple did the crucial final step of making the language

open source and opening it up fully to outside developers to make

contributions and shape its future. Anybody can contribute and thousands

have now. It is extremely hard for new programming languages to

come into being. Small niche languages usually toil in obscurity. Large

companies push new languages on the world, but this top-down approach

usually only works so long as the original company is driving progress.

So to me then the strengths of swift are manyfold. It is an easy-to-

learn language for beginners. It has the support of a large benefactor

(Apple) that is committed to its success, but not technically in charge. It

has a diverse ecosystem of open source contributors and is solving real

problems in the real world daily while utilizing decades of experience

building C libraries. It brings functional programming concepts to the

procedural world in a pragmatic way without forcing people to completely

change how they have been doing things.

Chapter 14 You Are Here

176

�Why LLVM
Swift’s real magic power, though, is that it is the original language of LLVM.

Compilers have historically focused on generating really, really fast code.

This is great for progress but also means that many implementations

chase speed over doing things correctly, so to speak. What happened as

a result is that we ended up with many different compilers generating

slightly different code for dozens of slightly different computers, and then

build systems became really large and complicated. Generating a new

programming language became very difficult because people demanded

performance out of the gate.

LLVM rebuilt the foundations of compiler theory and has spawned a

renaissance in new languages by reunifying these worlds. At a high level,

all you have to do is generate an IR, and then LLVM can figure out how

to get it to run on your device. This means that many, many different

languages are using LLVM now. As a direct result, by using LLVM, you get

the collective improvements of many, many different ecosystems.

This is a little bit more work up front for the programmer in terms

of complexity, but as a result fundamentally makes it possible for the

compiler to do much, much more. We’ve seen amazing progress in the

LLVM world; people have demonstrated running gigantic jobs on large

clusters and other approaches.

Machine learning is still in its infancy in many ways. Single-GPU code

is the largest paradigm. People write stuff for clusters, but it is still very

much custom code most of the time. We’ve got a ton of experience with

single instruction and single variable code (CPU-style programming), but

historically single-instruction multidata code has been really hard to write.

We end up with lots of hand-customized kernels for different things. This

works fine in a general sense, in that programmers can make system calls

and get optimized code, but it means that it is hard for programmers to

easily take advantage of whatever hardware they have at hand.

Chapter 14 You Are Here

177

�Why MLIR
The end result is that there’s been a tremendous amount of churn in

the machine learning ecosystem in general the past few years. Each

manufacturer ends up trying to build libraries to provide an optimal

experience for their hardware. Researchers have tried to make tensorflow

do many things it was never designed to do, and so trying to support every

permutation has been difficult for Google. Pytorch effectively rebuilt a

framework just to make generating CUDA code simpler. MLIR provides

a convenient bridge between these worlds. Hardware manufacturers can

simply focus on getting an IR together that generates code for their device.

Coders can write in arguably whatever language they prefer, and then

language wonks simply need to find a way to convert their LLVM AST to an

MLIR syntax. Then we can dream of a future in which we take our swift (or

any language that supports LLVM) code and can compile it for whatever

back end we desire.

�Why ML is the most important field
Machine learning has the ability to absorb all of the world’s compute

capacity for the next few decades. This quiet revolution will have

ramifications in dozens of fields and domains. The more and more we

make it easier to use these tools and make them able to flexibly scale up

to work on larger and larger compute systems, the greater the long-term

potential of humanity as a whole. Large-scale compute has the ability to

fundamentally do things that have never been possible before.

Clusters are only increasing in size. But all this emphasis on scaling

ignores the reality that more compute resources are available to the

individual today than at any point in history. If you are willing to invest the

time and energy now, then as these things continue to improve, you will be

the first to be able to take advantage of this revolution.

Chapter 14 You Are Here

178

Toward this end, you can take two paths. One is to pick a particular

horse, be it hardware or framework, and put all your efforts behind it.

The other is to focus on helping make it so no particular framework or

technology gains control of the ecosystem. Getting all these sundry groups

of people working together as a whole has the potential to fundamentally

revolutionize this field.

The hardware is just now being figured out, but this is going to change

dramatically in the next few years. The software is a bit rough around

the edges right now, I will admit. But opportunity never comes wrapped

up neatly in a package with a bow. More often than not, it looks like

hard work. But a little bit of work today will leave you well positioned for

whatever tomorrow brings.

�Why now
Progress is the result of many, many people working together over the

centuries, not isolated to any one place or time. By helping make machine

learning more accessible, you are helping improve tools that will indirectly

touch millions of other people’s lives. This has the potential to allow

progress on a scale never before seen in history.

�Why you
You can wait for other people to bring you the future or help them build

it. There’s never been a better time to get started. The future is now! Come

join us!

Chapter 14 You Are Here

	Chapter 14: You Are Here
	A (short and opinionated) history of computing
	History of GPUs
	Cloud computing

	Crossing the chasm
	Computer vision
	Direct applications
	Indirect applications

	Natural language processing
	Reinforcement learning and GANs
	Simulations in general
	To infinity and beyond
	Why Swift
	Why LLVM
	Why MLIR
	Why ML is the most important field
	Why now
	Why you

