
109© Brett Koonce 2021
B. Koonce, Convolutional Neural Networks with Swift for Tensorflow,
https://doi.org/10.1007/978-1-4842-6168-2_10

CHAPTER 10

EfficientNet
EfficientNet is the current state of the art for image recognition. I doubt this

will remain the case forever, but I do not believe it is going to be replaced

easily. It is the product of many years’ worth of research in this field and

combines multiple different techniques together. What is interesting

to me in particular about this network is that we are seeing techniques

developed for mobile devices having applications in the larger computer

vision community. Or rather, research on building models for resource-

constrained devices is driving progress in the cloud, while historically the

reverse has been the case.

At a high level, EfficientNet was created using the inverted residual

blocks of MobileNetV2 as an architecture type combined with the MnasNet

search strategy. These smaller blocks weren’t around when MnasNet was

created, and by using them the researchers were able to find a significantly

improved set of networks. In addition, they were able to find a reliably

scalable set of heuristics for constructing larger networks given an initial

starting point, which was the key limitation of the evolutionary strategies

we looked at earlier in the chapter.

In addition, the researchers added two important concepts from other

papers: the swish activation function and SE (Squeeze and Excitation)

blocks.

https://doi.org/10.1007/978-1-4842-6168-2_10#DOI

110

 Swish
The ReLU function, which we introduced way back in Chapter 1, isn’t the

only activation function that’s been tried. They’re just extremely simple

to implement and extremely performant, both at the mathematical and

hardware levels, and so have stood the test of time, so to speak.

> Searching for Activation Functions

> https://arxiv.org/abs/1710.05941

This paper explores a variety of alternative activation functions and

found that the swish function (discovered in this paper) produces even

better results when used in networks.

Swish is defined mathematically as

```f(x)=x·sigmoid(βx)```
```sigmoid(y)=1/(1+e^(-y))```

Combining these two together has the interesting property of going

slightly negative around zero, whereas most traditional activation

functions are always >= zero. Conceptually, this produces a smoother

gradient space and by extension makes it easier for the network to learn

the underlying data distribution, which translates into improved accuracy.

Swish has been shown to improve performance in other reinforcement

learning problem scenarios, and so it is an important activation function

for you to know in general.

There are some limitations to swish from an implementation

standpoint, namely, that it uses more memory than a simple ReLU. We will

come back to this in the next chapter.

Chapter 10 effiCientnet

https://doi.org/10.1007/978-1-4842-6168-2_1

111

 SE (Squeeze + Excitation) block
This is an interesting paper from the Oxford Visual Geometry Group (e.g.,

the people who produced VGG) from 2017, which won the ImageNet

competition that year.

> Squeeze-and-Excitation Networks

> https://arxiv.org/abs/1709.01507

Conceptually, we might think of what our neural networks are actually

learning as a collection of features. Then, when the network sees a

picture that matches a particular collection of features, we train it to fire

a particular neuron. To take things to the next level and avoid random

activations, ideally for each feature map, we could define a sort of master

neuron that decides whether or not the feature should activate as a whole.

This is loosely the idea of Squeeze and Excitation blocks. By taking the

feature input and reducing it dramatically down (to as small as a single

pixel in some cases), we allow the network to sort of train each block to

teach itself as to whether or not it should fire given a particular input, so to

speak. This produces state-of-the-art results, but is also computationally

expensive.

EfficientNet uses a simpler variant based around combining

two convolutions to produce similar results at a much cheaper cost

computationally.

 Code
Pay attention to the squeeze and excite blocks and how they are used to

boost the results in the convolutional blocks. With this addition, the rest of

this backbone is extremely similar to MobileNet v2. Look also at the subtle

differences in the parameters to the MBConvBlockStack generator, which

we will see much more of in our next chapter.

Chapter 10 effiCientnet

112

```

import TensorFlow

struct InitialMBConvBlock: Layer {

  @noDerivative var hiddenDimension: Int

  var dConv: DepthwiseConv2D<Float>

  var batchNormDConv: BatchNorm<Float>

  var seAveragePool = GlobalAvgPool2D<Float>()

  var seReduceConv: Conv2D<Float>

  var seExpandConv: Conv2D<Float>

  var conv2: Conv2D<Float>

  var batchNormConv2: BatchNorm<Float>

  init(filters: (Int, Int), width: Float) {

    let filterMult = filters

    self.hiddenDimension = filterMult.0

    dConv = DepthwiseConv2D<Float>(

      filterShape: (3, 3, filterMult.0, 1),

      strides: (1, 1),

      padding: .same)

    seReduceConv = Conv2D<Float>(

      filterShape: (1, 1, filterMult.0, 8),

      strides: (1, 1),

      padding: .same)

    seExpandConv = Conv2D<Float>(

      filterShape: (1, 1, 8, filterMult.0),

      strides: (1, 1),

      padding: .same)

    conv2 = Conv2D<Float>(

      filterShape: (1, 1, filterMult.0, filterMult.1),

      strides: (1, 1),

      padding: .same)

Chapter 10  effiCientnet



113

    batchNormDConv = BatchNorm(featureCount: filterMult.0)

    batchNormConv2 = BatchNorm(featureCount: filterMult.1)

  }

  @differentiable

  func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let depthwise = swish(batchNormDConv(dConv(input)))

     let seAvgPoolReshaped = seAveragePool(depthwise).

reshaped(to: [

      input.shape[0], 1, 1, self.hiddenDimension,

    ])

    let squeezeExcite =

      depthwise

       * sigmoid(seExpandConv(swish(seReduceConv(seAvgPool 

Reshaped))))

    return batchNormConv2(conv2(squeezeExcite))

  }

}

struct MBConvBlock: Layer {

  @noDerivative var addResLayer: Bool

  @noDerivative var strides: (Int, Int)

   @noDerivative let zeroPad = ZeroPadding2D<Float>(padding: 

((0, 1), (0, 1)))

  @noDerivative var hiddenDimension: Int

  var conv1: Conv2D<Float>

  var batchNormConv1: BatchNorm<Float>

  var dConv: DepthwiseConv2D<Float>

  var batchNormDConv: BatchNorm<Float>

  var seAveragePool = GlobalAvgPool2D<Float>()

  var seReduceConv: Conv2D<Float>

  var seExpandConv: Conv2D<Float>

Chapter 10  effiCientnet



114

  var conv2: Conv2D<Float>

  var batchNormConv2: BatchNorm<Float>

  init(

    filters: (Int, Int),

    width: Float,

    depthMultiplier: Int = 6,

    strides: (Int, Int) = (1, 1),

    kernel: (Int, Int) = (3, 3)

  ) {

    self.strides = strides

    self.addResLayer = filters.0 == filters.1 && strides == (1, 1)

    let filterMult = filters

    self.hiddenDimension = filterMult.0 * depthMultiplier

    let reducedDimension = max(1, Int(filterMult.0 / 4))

    conv1 = Conv2D<Float>(

      filterShape: (1, 1, filterMult.0, hiddenDimension),

      strides: (1, 1),

      padding: .same)

    dConv = DepthwiseConv2D<Float>(

      filterShape: (kernel.0, kernel.1, hiddenDimension, 1),

      strides: strides,

      padding: strides == (1, 1) ? .same : .valid)

    seReduceConv = Conv2D<Float>(

      filterShape: (1, 1, hiddenDimension, reducedDimension),

      strides: (1, 1),

      padding: .same)

    seExpandConv = Conv2D<Float>(

      filterShape: (1, 1, reducedDimension, hiddenDimension),

      strides: (1, 1),

      padding: .same)

Chapter 10  effiCientnet



115

    conv2 = Conv2D<Float>(

      filterShape: (1, 1, hiddenDimension, filterMult.1),

      strides: (1, 1),

      padding: .same)

    batchNormConv1 = BatchNorm(featureCount: hiddenDimension)

    batchNormDConv = BatchNorm(featureCount: hiddenDimension)

    batchNormConv2 = BatchNorm(featureCount: filterMult.1)

  }

  @differentiable

  func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let piecewise = swish(batchNormConv1(conv1(input)))

    var depthwise: Tensor<Float>

    if self.strides == (1, 1) {

      depthwise = swish(batchNormDConv(dConv(piecewise)))

    } else {

      depthwise = swish(batchNormDConv(dConv(zeroPad(piecewise))))

    }

     let seAvgPoolReshaped = seAveragePool(depthwise).

reshaped(to: [

      input.shape[0], 1, 1, self.hiddenDimension,

    ])

    let squeezeExcite =

      depthwise

       * sigmoid(seExpandConv(swish(seReduceConv(seAvgPool 

Reshaped))))

    let piecewiseLinear = batchNormConv2(conv2(squeezeExcite))

    if self.addResLayer {

      return input + piecewiseLinear

    } else {

      return piecewiseLinear

Chapter 10  effiCientnet



116

    }

  }

}

struct MBConvBlockStack: Layer {

  var blocks: [MBConvBlock] = []

  init(

    filters: (Int, Int),

    width: Float,

    initialStrides: (Int, Int) = (2, 2),

    kernel: (Int, Int) = (3, 3),

    blockCount: Int,

    depth: Float

  ) {

    let blockMult = blockCount

    self.blocks = [

      MBConvBlock(

        filters: (filters.0, filters.1), width: width,

        strides: initialStrides, kernel: kernel)

    ]

    for _ in 1..<blockMult {

      self.blocks.append(

        MBConvBlock(

          filters: (filters.1, filters.1),

          width: width, kernel: kernel))

    }

  }

  @differentiable

  func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    return blocks.differentiableReduce(input) { $1($0) }

  }

}

Chapter 10  effiCientnet



117

public struct EfficientNet: Layer {

   @noDerivative let zeroPad = ZeroPadding2D<Float>(padding: 

((0, 1), (0, 1)))

  var inputConv: Conv2D<Float>

  var inputConvBatchNorm: BatchNorm<Float>

  var initialMBConv: InitialMBConvBlock

  var residualBlockStack1: MBConvBlockStack

  var residualBlockStack2: MBConvBlockStack

  var residualBlockStack3: MBConvBlockStack

  var residualBlockStack4: MBConvBlockStack

  var residualBlockStack5: MBConvBlockStack

  var residualBlockStack6: MBConvBlockStack

  var outputConv: Conv2D<Float>

  var outputConvBatchNorm: BatchNorm<Float>

  var avgPool = GlobalAvgPool2D<Float>()

  var dropoutProb: Dropout<Float>

  var outputClassifier: Dense<Float>

  public init(

    classCount: Int = 1000,

    width: Float = 1.0,

    depth: Float = 1.0,

    resolution: Int = 224,

    dropout: Double = 0.2

  ) {

    inputConv = Conv2D<Float>(

      filterShape: (3, 3, 3, 32),

      strides: (2, 2),

      padding: .valid)

    inputConvBatchNorm = BatchNorm(featureCount: 32)

Chapter 10  effiCientnet



118

     initialMBConv = InitialMBConvBlock(filters: (32, 16), 

width: width)

    residualBlockStack1 = MBConvBlockStack(

      filters: (16, 24), width: width,

      blockCount: 2, depth: depth)

    residualBlockStack2 = MBConvBlockStack(

      filters: (24, 40), width: width,

      kernel: (5, 5), blockCount: 2, depth: depth)

    residualBlockStack3 = MBConvBlockStack(

      filters: (40, 80), width: width,

      blockCount: 3, depth: depth)

    residualBlockStack4 = MBConvBlockStack(

      filters: (80, 112), width: width,

       initialStrides: (1, 1), kernel: (5, 5), blockCount: 3, 

depth: depth)

    residualBlockStack5 = MBConvBlockStack(

      filters: (112, 192), width: width,

      kernel: (5, 5), blockCount: 4, depth: depth)

    residualBlockStack6 = MBConvBlockStack(

      filters: (192, 320), width: width,

      initialStrides: (1, 1), blockCount: 1, depth: depth)

    outputConv = Conv2D<Float>(

      filterShape: (

        1, 1,

        320, 1280

      ),

      strides: (1, 1),

      padding: .same)

    outputConvBatchNorm = BatchNorm(featureCount: 1280)

Chapter 10  effiCientnet



119

    dropoutProb = Dropout<Float>(probability: dropout)

     outputClassifier = Dense(inputSize: 1280, outputSize: 

classCount)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

     let convolved = swish(input.sequenced(through: zeroPad, 

inputConv, inputConvBatchNorm))

    let initialBlock = initialMBConv(convolved)

    let backbone = initialBlock.sequenced(

      through: residualBlockStack1, residualBlockStack2,

       residualBlockStack3, residualBlockStack4, 

residualBlockStack5, residualBlockStack6)

     let output = swish(backbone.sequenced(through: outputConv, 

outputConvBatchNorm))

     return output.sequenced(through: avgPool, dropoutProb, 

outputClassifier)

  }

}

```

 Results
This network trains extremely well, achieving higher accuracy than any

of the networks we have seen so far without the addition of any data

augmentation techniques.

Starting training...

[Epoch 1] Accuracy: 50/500 (0.1) Loss: 3.919964

[Epoch 2] Accuracy: 315/500 (0.63) Loss: 1.1730766

[Epoch 3] Accuracy: 340/500 (0.68) Loss: 1.042603

Chapter 10 effiCientnet

120

[Epoch 4] Accuracy: 382/500 (0.764) Loss: 0.7738381

[Epoch 5] Accuracy: 358/500 (0.716) Loss: 0.8867168

[Epoch 6] Accuracy: 397/500 (0.794) Loss: 0.7941174

[Epoch 7] Accuracy: 384/500 (0.768) Loss: 0.7910826

[Epoch 8] Accuracy: 375/500 (0.75) Loss: 0.9265955

[Epoch 9] Accuracy: 395/500 (0.79) Loss: 0.7806258

[Epoch 10] Accuracy: 389/500 (0.778) Loss: 0.8921993

[Epoch 11] Accuracy: 393/500 (0.786) Loss: 0.913636

[Epoch 12] Accuracy: 395/500 (0.79) Loss: 0.8772738

[Epoch 13] Accuracy: 396/500 (0.792) Loss: 0.819137

[Epoch 14] Accuracy: 393/500 (0.786) Loss: 0.7435807

[Epoch 15] Accuracy: 418/500 (0.836) Loss: 0.6915679

[Epoch 16] Accuracy: 404/500 (0.808) Loss: 0.79288286

[Epoch 17] Accuracy: 405/500 (0.81) Loss: 0.8690043

[Epoch 18] Accuracy: 404/500 (0.808) Loss: 0.89440507

[Epoch 19] Accuracy: 409/500 (0.818) Loss: 0.85941887

[Epoch 20] Accuracy: 408/500 (0.816) Loss: 0.8633226

[Epoch 21] Accuracy: 404/500 (0.808) Loss: 0.7646436

[Epoch 22] Accuracy: 411/500 (0.822) Loss: 0.8865621

[Epoch 23] Accuracy: 424/500 (0.848) Loss: 0.6812671

[Epoch 24] Accuracy: 402/500 (0.804) Loss: 0.8662841

[Epoch 25] Accuracy: 425/500 (0.85) Loss: 0.7081538

[Epoch 26] Accuracy: 423/500 (0.846) Loss: 0.7106852

[Epoch 27] Accuracy: 411/500 (0.822) Loss: 0.88567644

[Epoch 28] Accuracy: 410/500 (0.82) Loss: 0.8509838

[Epoch 29] Accuracy: 409/500 (0.818) Loss: 0.85791296

[Epoch 30] Accuracy: 416/500 (0.832) Loss: 0.76689

Chapter 10 effiCientnet

121

 EfficientNet variants
Once we have this base, we can then use our improved image recognition

network to solve other related problems in different fields.

 EfficientNet [B1-8]
To play off our exploration of network architecture search functions in the

last chapter, the problem with these sort of approaches is that trying to

make them larger is difficult because there’s not a clear system for scaling

them up.

What the authors introduce in this paper is a set of scaling heuristics

for their base (B0) network that enables smooth scaling to produce larger

and larger networks. Loosely speaking, we might say that each step of

a larger network requires a squared amount of compute. Then, we can

build large networks consistently given an extremely large amount of

computational time to run on. So, here are EfficientNet variants that can be

produced by simply scaling up our prior network compared to the various

networks we’ve looked at so far in this book.

 RandAugment
> RandAugment: Practical automated data augmentation with a

reduced search space

> https://arxiv.org/abs/1909.13719

We discussed data augmentation briefly in a prior chapter, and I

mentioned that it is an area of active research. This paper combines

various augmentation techniques (e.g., flipping, rotating, zooming, etc.)

with a reinforcement learning algorithm in order to find the optimal

(largest effect on accuracy with the smallest set) combination of data

augmentation filters when applied to a dataset. Then, they run this learned

Chapter 10 effiCientnet

122

algorithm against the ImageNet dataset and then train the EfficientNet

variants on top to produce a significantly (~4–5%!) improved set of

networks using nothing more than computational time.

 Noisy Student
> Self-training with Noisy Student improves ImageNet classification

> https://arxiv.org/abs/1911.04252

Next, **network distillation** is an interesting area of research for

building smaller networks. Loosely, we take a large network as a teacher

and then train a smaller student network to give similar responses to the

larger one given the same inputs and feedback on each answer from the

teacher. This has interesting applications in building networks for devices

with limited resources once a larger approach has proven itself on a GPU

cluster, for example. The large area where this is of interest in natural

language processing, where large networks (e.g., BERT) have achieved a

state-of-the-art performance but are too large to be used for day-to-day

problem solving.

Network distillation has been used to make networks smaller, but can

it be used to make them larger? Loosely speaking, this paper takes data

augmentation techniques and uses them to make the student’s inputs much

more noisy, but keeps on requiring the student network to give answers

that match the teacher’s answers. By iteratively training a larger student

on a teacher and then replacing the teacher with the trained student, they

were able to build a much larger network that was able to produce even

more accurate ImageNet results than even Facebook’s 2019 billion-picture

Instagram corpus (see https://arxiv.org/abs/1905.00546).

Chapter 10 effiCientnet

https://arxiv.org/abs/1905.00546

123

 EfficientDet
> EfficientDet: Scalable and Efficient Object Detection

> https://arxiv.org/abs/1911.09070

We’ve not talked about object detection networks in this book, but

the basic idea of many approaches is to use a known good existing image

recognition network (called a **backbone**), and then we can add an

object detection output layer at the end (called a **head**). This approach

enables a nice sort of mix and match style technique where we can use

the same head with multiple different backbones or data augmentation

strategies to find the best solution for a particular problem.

So, we take EfficientNet, add a custom object detection head, apply

our scaling techniques, and voilà, we have an object detection (and with

some other tweaks, semantic segmentation) network with state-of-the-art

performance.

 Recap
We’ve looked at EfficientNet, the current state of the art for image

recognition. We’ve looked at how we can use the EfficientNet base to build

state-of-the-art approaches in related fields. Next, let’s look at how we can

take these ideas back to the realm of mobile devices.

Chapter 10 effiCientnet

	Chapter 10: EfficientNet
	Swish
	SE (Squeeze + Excitation) block
	Code
	Results
	EfficientNet variants
	EfficientNet [B1-8]
	RandAugment
	Noisy Student
	EfficientDet

	Recap

