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Introduction

In this book, we are going to learn convolutional neural networks by 

focusing on the specific problem of image recognition, using Swift for 

Tensorflow and a command-line Unix approach. If you are new to this 

field, then I would suggest you read the first few chapters and get a working 

system bootstrapped and then spend your time going through the basics 

with MNIST and CIFAR repeatedly, in particular familiarizing yourself with 

how neural networks work. If you feel comfortable with the core concepts 

already, then feel free to skip ahead to the middle where we explore some 

more powerful convolutional neural networks.

�Why Swift
The short version is that I believe swift is a modern, open source, beginner-

friendly language that has proven itself by solving real problems for 

iOS developers daily. By integrating automatic differentiation into the 

programming language, a number of interesting compiler techniques to 

address the limitations of current machine learning software and hardware 

become possible in the long term. This is in my opinion where the world is 

headed, one way or another.

�Why image recognition
Image recognition is one of the oldest, most well-understood uses of 

neural networks. As a result, we can introduce the basics and then build 

up to advanced state-of-the-art approaches in a logically consistent 

manner. With this foundation, you will be able to branch out to tackle 
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other image-related tasks (e.g., object detection and segmentation) easily. 

The deep learning techniques needed to build large-scale convolutional 

neural networks translate easily to reinforcement learning and generative 

adversarial networks (GANs), two important areas of modern research. In 

addition, I believe this foundation will make it easy to make the transition 

to time sequence models such as recurrent neural networks (RNNs) and 

long short-term memory (LSTM) once you have mastered CNNs.

�Why CLI
Broadly speaking, this book is going to focus on a command-line interface 

(CLI)–based approach using both a local machine on your home network 

and virtual machines in the remote, Google Cloud. This is in my opinion 

the best approach because

•	 We can control costs very effectively. In the worst-

case scenario, you can perform the majority of your 

work using a local machine built for under a thousand 

dollars, and your only remaining cost will be electricity 

and time.

•	 We can scale easily from anywhere in the world. 

Using cloud instances full time can quickly become 

expensive, and so many people avoid learning cloud 

workflows. But using on-demand cloud-based 

resources periodically to augment your local workflow 

means you can learn the cloud in a very practical and 

efficient way. Eventually, you will be able to prototype 

and build solutions on your primary machine, then 

quickly scale them up in the cloud to parallelize 

computation and access more powerful hardware 

when needed or available.
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•	 We can get the best of both worlds. While minimizing 

costs is certainly important, I have found that focusing 

on how much money you are spending tends to produce 

a mindset where you are afraid to try new things and 

experiment in general. Building your own machine puts 

you into the mindset of putting in more cycles to reduce 

your costs, which is in my opinion the key to success.

So, toward this end, we will utilize a command-line workflow with the 

following goals:

•	 We will use a local terminal interface to log in to all of 

our machines, so that there is literally no difference 

between our approaches on the desktop and in the 

cloud.

•	 We will utilize the same operating system and software 

locally and in the cloud so that we do not have to 

learn about differences between platforms. Then, by 

definition, any workflow you can do on your computer, 

you will be able to do in the cloud, and vice versa.

Ultimately, by blurring the line between your personal computer and 

the cloud, my goal is for you to understand that there is fundamentally 

no difference between doing things locally or remotely. The real limiting 

factor then is your imagination, not resources.

Doing things this way will be more work at first, I will admit. But once 

you have mastered this workflow, it will be much easier for you to scale 

in the future. If you are willing to put in the time now, this approach will 

make your skills much more flexible and powerful in the future. What you 

do with them is up to you.

Introduction
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How this book is organized

This book is organized as follows.

�Basics
We will explore the basic building blocks of neural networks and how to 

combine them with convolutions to perform simple image recognition 

tasks.

•	 Neural networks (1D MLP/multilayer perceptron) and 

MNIST

•	 Convolutional neural networks (2D CNN) and MNIST

•	 Color, CNN stacks, and CIFAR

�Advanced
We will build upon the above to produce actual state-of-the-art 

approaches in this field.

•	 VGG16

•	 ResNet 34

•	 ResNet 50
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�Mobile
We will look at some different approaches for mobile devices, which 

require us to utilize our computing resources carefully.

•	 SqueezeNet

•	 MobileNet v1

•	 MobileNet v2

�State of the art
We will look at the work that leads up to EfficientNet, the current state of 

the art for image recognition. Then we will look at how people are working 

on finding ways to produce similar results by combining many different 

papers together.

•	 EfficientNet

•	 MobileNetV3

•	 Bag of tricks/reading papers

�Future
We will zoom out a bit and look at why I am excited about swift for 

tensorflow as a whole and give you my vision of what the future of machine 

learning looks like.

•	 MNIST revisited

•	 You are here

How this book is organized
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�Appendices
Here’s some information that didn’t quite fit in with the above but I still 

feel is important:

•	 A: Cloud Setup

•	 B: Hardware Prerequisites, Software Installation 

Guidelines, and Unix Quickstart

•	 C: Additional Resources

How this book is organized
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CHAPTER 1

MNIST: 1D Neural 
Network
In this chapter, we will look at a simple image recognition dataset called 

MNIST and build a basic one-dimensional neural network, often called a 

multilayer perceptron, to classify our digits and categorize black and white 

images.

�Dataset overview
MNIST (Modified National Institute of Standards and Technology) is a 

dataset put together in 1999 that is an extremely important testbed for 

computer vision problems. You will see it everywhere in academic papers 

in this field, and it is considered the computer vision equivalent of hello 

world. It is a collection of preprocessed grayscale images of hand-drawn 

digits of the numbers 0–9. Each image is 28 by 28 pixels wide, for a total of 

784 pixels. For each pixel, there is a corresponding 8-bit grayscale value, a 

number from 0 (white) to 255 (completely black).

At first, we’re not even going to treat this as actual image data. We’re 

going to unroll it – we’re going to take the top row and pull off each row 

at a time, until we have a really long string of numbers. We can imagine 

expanding this concept across the 28 by 28 pixels to produce a long row of 

input values, a vector that’s 784 pixels long and 1 pixel wide, each with a 

corresponding value from 0 to 255.

https://doi.org/10.1007/978-1-4842-6168-2_1#DOI
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The dataset has been cleaned so that there’s not a lot of non-digit 

noise (e.g., off-white backgrounds). This will make our job simpler.  If 

you download the actual dataset, you will usually get it in the form of a 

comma-separated file, with each row corresponding to an entry.  We can 

convert this into an image by literally assigning the values one a time in 

reverse. The actual dataset is 60000 hand-drawn **training** digits with 

corresponding **labels** (the actual number), and 10000 **test** digits 

with corresponding **labels**. The dataset proper is usually distributed as 

a python pickle (a simple way of storing a dictionary) file (you don’t need 

to know this, just in case you run across this online).

So, our goal is to learn how to correctly guess what number we are 

looking at in the **test** dataset, based on our **model** that we have 

learned from the **training** dataset. This is called a **supervised 

learning** task since our goal is to emulate what another human (or 

model) has done. We will simply take individual rows and try to guess the 

corresponding digit using a simple version of a neural network called a 

**multilayer perceptron**. This is often shortened to **MLP**.

�Dataset handler
We can use the dataset loader from “swift-models,” part of the Swift for 

Tensorflow project, to make dealing with the preceding sample simpler. In 

order for the following code to work, you will need to use the following swift 

package manager import to automatically add the datasets to your code.

BASIC: If you are new to swift programming and just want to get 

started, simply use the swift-models checkout you got working in the 

chapter where we set up Swift for Tensorflow and place the following code 

(MLP demo) into the “main.swift” file in the LeNet-MNIST example and 

run “swift run LeNet-MNIST”.

Chapter 1  MNIST: 1D Neural Network
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ADVANCED: If you are a swift programmer already, here is the base 

swift-models import file we will be using:

```

/// swift-tools-version:5.3

// The swift-tools-version declares the minimum version of 

Swift required to build this package.

import PackageDescription

let package = Package(

  name: "ConvolutionalNeuralNetworksWithSwiftForTensorFlow",

  platforms: [

    .macOS(.v10_13),

  ],

  dependencies: [

    .package(

      �name: "swift-models", url: "https://github.com/

tensorflow/swift-models.git", .branch("master")

    ),

  ],

  targets: [

    .target(

      �name: "MNIST-1D", dependencies: [.product(name: 

"Datasets", package: "swift-models")],

      path: "MNIST-1D"),

  ]

)

```

Hopefully, the preceding code is not too confusing. Importing this 

code library will make our lives much easier. Now, let’s build our first 

neural network!

Chapter 1  MNIST: 1D Neural Network
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�Code: Multilayer perceptron + MNIST
Let’s look at a very simple demo. Put this code into a “main.swift” file with 

the proper imports, and we’ll run it:

```

/// 1

import Datasets

import TensorFlow

// 2

struct MLP: Layer {

  var flatten = Flatten<Float>()

  �var inputLayer = Dense<Float>(inputSize: 784, outputSize: 

512, activation: relu)

  �var hiddenLayer = Den se<Float>(inputSize: 512, outputSize: 

512, activation: relu)

  var outputLayer = Dense<Float>(inputSize: 512, outputSize: 10)

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    �return input.sequenced(through: flatten, inputLayer, 

hiddenLayer, outputLayer)

  }

}

// 3

let batchSize = 128

let epochCount = 12

var model = MLP()

Chapter 1  MNIST: 1D Neural Network
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let optimizer = SGD(for: model, learningRate: 0.1)

let dataset = MNIST(batchSize: batchSize)

print("Starting training...")

for (epoch, epochBatches) in  

dataset.training.prefix(epochCount).enumerated() {

  // 4

  Context.local.learningPhase = .training

  for batch in epochBatches {

    let (images, labels) = (batch.data, batch.label)

    �let (_, gradients) = valueWithGradient(at: model) { model  

-> Tensor<Float> in

      let logits = model(images)

      return softmaxCrossEntropy(logits: logits, labels: labels)

    }

    optimizer.update(&model, along: gradients)

  }

  // 5

  Context.local.learningPhase = .inference

  var testLossSum: Float = 0

  var testBatchCount = 0

  var correctGuessCount = 0

  var totalGuessCount = 0

  for batch in dataset.validation {

    let (images, labels) = (batch.data, batch.label)

    let logits = model(images)

    �testLossSum += softmaxCrossEntropy(logits: logits, labels: 

labels).scalarized()

    testBatchCount += 1

Chapter 1  MNIST: 1D Neural Network
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    �let correctPredictions = logits.argmax(squeezingAxis: 1) . 

== labels

    �correctGuessCount += Int(Tensor<Int32>(correctPredictions).

sum().scalarized())

    totalGuessCount = totalGuessCount + batch.data.shape[0]

  }

  let accuracy = Float(correctGuessCount) / Float(totalGuessCount)

  print(

    """

    [Epoch \(epoch + 1)] \

    �Accuracy: \(correctGuessCount)/\(totalGuessCount)  

(\(accuracy)) \

    Loss: \(testLossSum / Float(testBatchCount))

    """

  )

}

```

�Results
When you run the preceding code, you should get an output that looks  

like this:

```

Loading resource: train-images-idx3-ubyte Loading resource: 

train-labels-idx1-ubyte Loading resource: t10k-images-idx3-

ubyte Loading resource: t10k-labels-idx1-ubyte

Starting training…

[Epoch 1] Accuracy: 9364/10000 (0.9364) Loss: 0.21411717

[Epoch 2] Accuracy: 9547/10000 (0.9547) Loss: 0.15427242

Chapter 1  MNIST: 1D Neural Network
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[Epoch 3] Accuracy: 9630/10000 (0.963) Loss: 0.12323072

[Epoch 4] Accuracy: 9645/10000 (0.9645) Loss: 0.11413358

[Epoch 5] Accuracy: 9700/10000 (0.97) Loss: 0.094898805

[Epoch 6] Accuracy: 9747/10000 (0.9747) Loss: 0.0849531

[Epoch 7] Accuracy: 9757/10000 (0.9757) Loss: 0.076825164

[Epoch 8] Accuracy: 9735/10000 (0.9735) Loss: 0.082270846

[Epoch 9] Accuracy: 9782/10000 (0.97) Loss: 0.07173009

[Epoch 10] Accuracy: 9782/10000 (0.97) Loss: 0.06860765

[Epoch 11] Accuracy: 9779/10000 (0.9779) Loss: 0.06677916

[Epoch 12] Accuracy: 9794/10000 (0.9794) Loss: 0.063436724

Congratulations, you’ve done machine learning! This demo is only a 

few lines long, but a lot is actually happening under the hood. Let’s break 

down what’s going on.

�Demo breakdown (high level)
We will look at all of the preceding code, going through section by section 

using the number in the comments (e.g., //1, //2, etc.). We will first do 

a pass to try and explain what is going on at a high level and then do a 

second pass where we explain the nitty-gritty details.

�Imports (1)
Our first few lines are pretty simple; we’re importing the swift-models 

MNIST dataset handler and then the TensorFlow library.
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�Model breakdown (2)
Next, we build our actual neural network, an MLP model:

```

/// 2

struct MLP: Layer {

  var flatten = Flatten<Float>()

  �var inputLayer = Dense<Float>(inputSize: 784, outputSize: 

512, activation: relu)

  �var hiddenLayer = Dense<Float>(inputSize: 512, outputSize: 

512, activation: relu)

  var outputLayer = Dense<Float>(inputSize: 512, outputSize: 10)

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    �return input.sequenced(through: flatten, inputLayer, 

hiddenLayer, outputLayer)

  }

}

```

What’s in this data structure? Our first line just defines a new struct 

called MLP, which subclasses **Layer**, a type in swift for tensorflow. To 

define this class, S4tf enforces a **protocol** definition that we implement 

the function **forward** (formerly **callAsFunction**), which takes an 

**input** and maps it to an **output**. Our middle lines then actually 

define the layers of our perceptron:

```

    var flatten = Flatten<Float>()

    �var inputLayer = Dense<Float>(inputSize: 784, outputSize: 

512, activation: relu)
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    �var hiddenLayer = Dense<Float>(inputSize: 512, outputSize: 

512, activation: relu)

    �var outputLayer = Dense<Float>(inputSize: 512,  

outputSize: 10)

```

We have four internal layers:

	 1)	 A flatten operation: This just takes the input and 

reduces it to a single row of input numbers (a 

vector).

Our dataset is internally giving us a picture of 

28x28 pixels, and this just converts it into a row of 

numbers, 784 pixels long.

Next, we have three **dense** layers, which are 

a special type of neural network called **fully 

connected** layers. The first goes from our initial 

input (e.g., the flattened 784x1 vector) to 512 nodes, 

like so.

	 2)	 A dense layer: 784 (the preceding input) to 512 nodes.

	 3)	 Another dense layer: 512 nodes to 512 nodes again.

	 4)	 An output layer: 512 nodes to 10 nodes (the number 

of digits, 0–9).

And then, finally, a forward function, which is where 

our neural network logic magic happens. We literally 

take the input, run it through the flatten, dense1, 

dense2, and output layers to produce our result.
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And so our

return input.sequenced(through: flatten, inputLayer,

hiddenLayer, outputLayer)

is then the call that actually takes the input and maps it through these 

four layers. We will look at the actual training loop next to understand 

how all of that actually happens, but a very large part of the magic of swift 

for tensorflow is on these few lines. We’ll talk a little bit more about what 

is happening here in a second, but conceptually this function is nothing 

more than applying the preceding four layers in a sequence.

�Global variables (3)
These lines are just setting up some different tools we’re going to use:

```

let batchSize = 128

let epochCount = 12

var model = MLP()

let optimizer = SGD(for: model, learningRate: 0.1)

let dataset = MNIST(batchSize: batchSize)

```

The first two lines set a couple of global variables: our batchSize (how 

many MNIST examples we are going to look at each pass) and epochCount 

(number of passes over the dataset we’re going to do).

The next line initializes our model, which we talked about earlier.

The fourth line initializes our optimizer, which we’re going to talk 

about more in a second.

The last line sets up our dataset handler.
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The next line starts our actual training process by looping over our data:

```

for (epoch, epochBatches) in dataset.training.

prefix(epochCount).enumerated()  {

```

Now we can get into the actual training loop!

�Training loop: Updates (4)
Here’s what the actual core of our training loop looks like. Conceptually, we’re 

going to be taking a set of pictures or **batch** and showing each individual 

picture to the first input set of dense nodes, which will **fire** and go to the 

next hidden set of dense nodes, which will **fire** and go to the final output 

set of dense nodes. Then, we will take all of the outputs of the final layer of our 

network, select the largest one, and look at it. If this node is the same number 

as the original input we gave it, then we will give the network a **reward** and 

tell it to increase its confidence in the results. If this answer is the wrong one, 

then we will give the network a **negative reward** and tell it to decrease its 

confidence in its results. By repeating this process using thousands of samples, 

our network can learn to accurately predict inputs it has never seen before.

```

  Context.local.learningPhase = .training

  for batch in epochBatches {

    let (images, labels) = (batch.data, batch.label)

    �let (_, gradients) = valueWithGradient(at: model) { model  

-> Tensor<Float> in

      let logits = model(images)

      return softmaxCrossEntropy(logits: logits, labels: labels)

    }

    optimizer.update(&model, along: gradients)

  }
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How does this work under the hood? A little bit of calculus mixed 

together with all of our data. For each training example, we get the raw 

pixel values (image data) and then the corresponding label (actual number 

for the picture). Then, we determine the **gradient** for the **model** by 

calculating the values that the model will predict for X and then see how 

our prediction compares with the actual value y using a function called 

softmaxCrossEntropy. Conceptually, softmax just takes a collection of 

inputs and then normalizes their results across the set as a percentage. 

This can be a bit complex mathematically, so converting the numbers to 

use the natural log e and then dividing by the sum of the exponents has the 

useful dual properties of being consistent across arbitrary inputs and easy 

to evaluate on a computer. Then, we update our **model** in the direction 

of that it differs from where it should be slightly (more in the right direction 

if it’s correct, away if it’s not). Our learning rate determines how far we 

should go each pass (e.g., since our rate is .1, we’re only going to go 10% of 

the direction the network thinks is the right one each time). In the for loop 

that calls all of this, we will repeat this process across all of our data (one 

pass) for multiple rounds, or **epochs**.

�Training loop: Accuracy (5)
Next, we run our model on our test data and calculate how often it was 

correct on images it hasn’t seen yet (but that we know the right answers 

to). So then, what does accuracy mean, and how do we calculate it? Our 

code looks like this:

```

  Context.local.learningPhase = .inference

  var testLossSum: Float = 0

  var testBatchCount = 0

  var correctGuessCount = 0

  var totalGuessCount = 0

Chapter 1  MNIST: 1D Neural Network



13

  for batch in dataset.validation {

    let (images, labels) = (batch.data, batch.label)

    let logits = model(images)

    �testLossSum += softmaxCrossEntropy(logits: logits, labels: 

labels).scalarized()

    testBatchCount += 1

    �let correctPredictions = logits.argmax(squeezingAxis: 1) . 

== labels

    �correctGuessCount += Int(Tensor<Int32>(correctPredictions).

sum().scalarized())

    totalGuessCount = totalGuessCount + batch.data.shape[0]

  }

  let accuracy = Float(correctGuessCount) / Float(totalGuessCount)

  print(

    """

    [Epoch \(epoch + 1)] \

    �Accuracy: \(correctGuessCount)/\(totalGuessCount)  

(\(accuracy)) \

    Loss: \(testLossSum / Float(testBatchCount))

    """

  )

```

In a similar process to our training dataset, we simply take our test 

input images, run them through our model, and then compare our 

results to what we know the right answer to be. Then we literally calculate 

the number of correct answers divided by the total number of images 

to produce our accuracy percentage. Our final few lines just print out 

various numbers each pass through the dataset, or **epoch**, so we can 

see if our loss is decreasing (e.g., the network is getting more accurate 

with each pass).
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�Demo breakdown (low level)
Okay, we’ve walked through our MNIST example at a high level. Now let’s 

go through some of these functions we’re calling and explore our simple 

training loop more deeply.

�Fully connected neural network layers
Fully connected layers form the backbone of our network, so it’s worth 

taking some time to understand them. At a high level, each set of nodes 

from the input dataset is mapped to the output dataset. Then each edge 

of the network has a weight that is updated by our training function. The 

math then for each node is literally [weight] * [input] + [bias], with the 

value of the output node being the result of this math function. **Weight** 

is how much value we’re going to place on the input to this node, and then 

**bias** is a constant amount of value assigned to the node regardless of 

what happens. The values for both of these will be learned by our training. 

We use matrix math to represent our variables, so that is why each value is 

in [brackets].

For a single node, the preceding math is simple enough to understand, 

but the real magic of neural networks comes from many of these nodes 

firing together. Loosely each neuron learns one part or **feature** of the 

input, and then by working with the other neurons, they collectively learn 

the set of weights needed to produce the result we are looking for. The 

second element of how all this works is that we are combining multiple 

layers together. The nodes are not learning their values independently, 

they are learning from other nodes which are updating as well. What this 

means is that by combining with the idea of working together to figure out 

when to fire, the neurons are working together to find the most efficient 

way of representing the input data.
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Please note that we are using the word learn very loosely here. The 

preceding math all works correctly, but people often attribute far more 

intelligence to this process than actually exists. I believe the best way to 

think about it is simply to think of your input data as a collection of semi-

related samples (e.g., a distribution), and then the neural network is a way 

of reducing that distribution into an extremely small representation. We 

will keep on exploring different ways of understanding this key concept.

ReLU is a simple enough function to explain mathematically: relu(x) = 

max(0, x). All this means is that we return the original value, and then for 

all values below zero, we just return a zero. There are other choices here 

(which we will discuss in a future chapter), notably sigmoid functions, 

but since ReLU produces good results and is so easy to evaluate (and by 

extension fast), it has become the de facto standard activation function you 

will find in practice.

�How the optimizer works
To continue with the preceding ideas, our goal then is to try to find a set of 

neurons that will fire together to represent our data. So at a high level, we 

will show our network our data, then calculate how far our model is from 

our theoretical result, and then try to move our network slightly closer to 

being more correct the next time around. This process then is what our 

optimizer does. If our network guesses correct and is moving in the right 

direction, then we tell it to keep on going. If our network guesses wrong 

and is moving in the wrong direction, then we tell it to keep on going in the 

opposite direction.

The easiest way of representing this is to consider trying to find the 

minimum of a curve like y = x^2. We can literally take any random point on 

the curve and calculate the result at another point nearby (a step away, so 

to speak). Then either one of two possibilities will happen: either we are 

getting further away from the base (e.g., moving in the wrong direction) or 
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we are getting closer. Then for our next step, we can either keep on going 

in the same direction or reverse our course. Either way, we will eventually 

end up near the bottom of the curve.

To continue the preceding ideas, there are a few problems with our 

approach. The first is when our step size is too large. Further away from 

the bottom, this will converge faster, but as we get near the bottom, we will 

eventually end up in a state where we are jumping from side to side. The 

flip side of this is choosing too small of a step size and taking a long time to 

get to the minima, but that isn’t too much of a problem normally (if it gets 

there, it gets there). The next trick then is to add what is called momentum 

(or second-order gradients). The basic idea is that we don’t completely 

change velocity each step but rather keep our previous motion (e.g., we 

only add say 10% of the step’s change in direction each step).

�Optimizers + neural networks
The preceding idea is what is called convex optimization. When dealing 

with neural networks, though, things are a little more tricky. The first is 

that by definition we are updating an optimization function for **every** 

neuron, and so the problem explodes to dealing with many different 

functions in hyperdimensional space. To the computer, this is nothing 

more than a very large math problem, but to humans there’s no longer a 

good way to visualize what is going on. This is a large open area of math 

called nonconvex optimization.

The second problem is simpler: for our math problem, it’s easy for us 

to calculate whether or not we’re moving in the right direction because we 

know what the right answer is. A very large problem in neural networks 

(especially for more advanced areas) is finding the right goal function for 

our problem. For what we’ll be doing in this book, we’ll mostly be using 

softmax cross-entropy loss. For the problem of image recognition, this 

is easily represented by comparing our answers with the known results 
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(e.g., we’re just grading things right or not). But constructing custom 

loss functions is an interesting problem in more advanced uses of neural 

networks you should be aware of.

�Swift for Tensorflow
The preceding text covers the neural network piece. Now, let’s look 

at where swift for tensorflow comes in. The mentioned approach is 

hopefully reasonably simple enough to understand from a mathematical 

perspective. The problem with applying it to our neural network problem 

in a way that scales to larger problem is more complicated. The largest 

problem is that for real-world networks keeping track of all of our gradients 

in memory makes updating them much more simple and significantly 

faster. The second is that when building these models by hand, it is easy 

to introduce subtle bugs that will create problems down the road. Swift 

for tensorflow uses Swift’s type system to require the layer protocol, as we 

saw earlier. The basic idea then is simply that we make sure each model 

enforces this protocol. Then we can add new pieces to the model, and as 

long as they extend this protocol than in theory, any arbitrary combination 

of said pieces will work as well. Enforcing this layer protocol forces us, 

the programmer, to keep our chain of functions correct and by extension 

allows the compiler to model our gradients in whatever manner it so 

desires. By extension, then, the compiler can output code for whatever 

hardware device we have on hand. This is why we are using swift for 

tensorflow: to get compile-time checking of our networks as well as the 

ability to run our models on many different hardware back ends using 

platform-specific optimizations.
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�Side quests
Here are a couple of simple tweaks you can make to your code in order to 

understand what is happening:

•	 Try making the dense layers smaller or larger (e.g., 

change the 512 in the inputLayer, hiddenLayer, and 

outputLayer to 128 or 1024), and run things again to see 

how that affects results.

•	 Try increasing the number of epochs to 30 and 

reducing the learning rate to .001 to see how smaller 

step sizes will still converge to the same result.

�Recap
We’ve looked at how to interact with a simple dataset called MNIST, which 

is composed of grayscale hand-drawn digits from 0 to 9, ten categories 

in total. We’ve built a simple, one-dimensional neural network (called 

a **multilayer perceptron**) to classify MNIST digits using swift for 

tensorflow. We’ve looked at how we can use a statistical technique called 

**stochastic gradient descent** to update our neural network each time it 

sees a new image to produce better and better results. We’ve built a basic 

but functional training loop that goes through the dataset multiple times, 

or **epochs**, to train our neural network from an initial random state 

(where it was essentially guessing) to eventually be able to recognize more 

than 90% of the digits it is shown.

This is the hardest chapter of the book conceptually. Literally, 

everything we are going to be doing forward is simply taking this same 

basic approach and improving it more and more. Spend some time getting 

everything mentioned down before moving forward. Next, we’ll add 

some convolutions to the neural network we built to produce our first 

convolutional neural network.
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CHAPTER 2

MNIST: 2D Neural 
Network
In this chapter, we will modify our one-dimensional neural network by 

adding convolutions to produce our first actual convolutional (2D) neural 

network and use it to categorize black and white (e.g., MNIST) images again.

�Convolutions
Convolutions are a deep area of computer vision theory. At a high level we 

might think of taking an input image and producing another output image:

[cat] --> [magic black box] --> [dog]

Broadly, for any input image there’s a way to convert it to the target 

image. At the simplest level we might destroy the source image (e.g., 

multiply by zero) and then insert our target image (e.g., add its pixels in):

[cat] --> 0 * [cat] + [dog] --> [dog]

Then, we can model our middle step using simple math:

```a[X] + b```

This piece of math is called a kernel. This is a convolution, albeit not a 

terribly useful one.

https://doi.org/10.1007/978-1-4842-6168-2_2#DOI
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Broadly speaking, for every image in the universe, we can come up 

with a kernel to convert it into anything else we desire. By extension, 

there’s a kernel for **anything** that you can imagine.

This is a very, very deep area of research in computer vision in general, 

and there are many different things that can be done here.

�3x3 additive blur example
Next, let’s look at a slightly more complicated example, a 3x3 additive blur. 

The actual kernel looks like this:

[ 1, 1, 1 ]

[ 1, 1, 1 ]

[ 1, 1, 1 ]

What this convolution will do is produce a simple blur to an input 

image. It does so by literally creating an output pixel for each block of 3x3 

pixels in the input image that is the sum of the 9 pixels we are looking at. 

By then stepping over the row of the input image using a 1 step stride, 

we end up with a final image that blurred because each output pixel has 

information from not only the original corresponding pixel but also its 

neighbors.  All of our outputs are larger numbers than we started with. 

We apply a final simple step to **normalize** the result by dividing all the 

values by 9 to produce values similar to the original image.

�3x3 Gaussian blur example
This next bit you don’t need to understand 100%, we’re just trying to build 

upon the concepts.

We can change the 3x3 data and keep the same operation to produce 

something more complicated. Here’s a slightly different multiplicative 

kernel we can use:
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[1/16, 1/8, 1/16]

[1/8, 1/4, 1/8]

[1/16, 1/8, 1/16]

And we can then produce different results by using our same basic method 

as earlier. Here, we’re taking advantage of matrix multiplication to keep 

more of our center pixel and less from the ones further away. At a 3x3 size, 

it’s a bit difficult to see the difference between this and our first example, 

but if you can imagine building larger versions of the above matrix, this is 

the math that produces larger Gaussian blurs in image editing programs 

such as Photoshop.

�Combined 3x3 convolutions – Sobel filter  
example
For an even more advanced example of what can be done with 

convolutions, let’s look at combining two of these kernel operations 

together to produce what is called the Sobel filter. Once again, you don’t 

need to understand this 100%.

Our first kernel looks like this:

[1, 0, -1]

[2, 0, -2]

[1, 0, -1]

And our second kernel looks like this:

[1, 2, 1]

[0, 0, 0]

[-1, -2, -1]
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And then we combine them together with our input image like so, one 

after the other:

[A] x [B] = [C]

The result is interesting; what happens is that pixels that are similar 

get multiplied to zero (e.g., black), but sets of pixels that have significant 

differences get multiplied to infinity (e.g., white). So with a couple of basic 

convolutional kernels we have produced an edge detector! Let’s avoid 

going deeper down the rabbit hole of convolutions for now. Just know that 

this is a deep, deep field and many things are possible.

�3x3 striding
Very broadly, we’re going to not actually be building our own convolutions. 

Instead, we’re going to have the neural network learn them! For this, 

we really only need to focus on one key concept, which is the process of 

going over our image in these 3x3 blocks. This is called striding, and it’s an 

extremely important concept to understand. Basically, the neural network 

will learn to make its own convolutions on the fly and then will be using 

them to better understand our input data, and then each step will be 

updating them slightly to improve its results. Don’t worry, it’s a bit mind 

bendy at first. Let’s have the network learn some, and then we can look at 

how they work on a real-world example.

�Padding
“Same” padding and “valid” padding are the two forms of padding you will 

encounter with convolutions. We will be using the “same” padding for our 

first few chapters, but “valid” is the default of the 2D convolution operator 

in swift for tensorflow, and so you will need to understand both.
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Valid is perhaps easier to understand. Each stride advances until the 

far edge of the convolution hits the edge of the input image and then 

stops. This means that this convolutional type will by definition produce 

a smaller output than the input image (except for the special case of 1x1 

filters). “Same” padding extends the edge of the input data to continue 

working on the input image until the leading edge of the stride hits the 

limits of the input image.

This means that “same” padding (when using a stride size of 1) will 

produce an output image that is the same size as the input image. We’re 

going to use this same padding to jump to some more complicated models 

in the next few chapters, so focus on understanding that for now.

�Maxpool
The other key concept you need to understand is maxpooling. All we’re 

going to do is take each group of 4 input pixels, stepping across our image 

in strides of two, and convert it to a single output by selecting the largest 

value. For region, we’re simply going to find the largest pixel and make that 

be our output.

�2D MNIST model
If we take these two concepts together and revisit the MNIST problem, we 

can actually significantly improve our quality just by changing how we’re 

modeling our data. We’re going to take our same 784, but we’ll treat it as 

an actual image, so it’ll be 28x28 pixels now. We’ll run it through two layers 

of 3x3 convolutions, a maxpool operation, and then we’ll keep our same 

densely connected layers and output of ten categories.
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�Code
Here’s what the actual swift code for this looks like. I’ve taken the example 

from before and added a stack of convolutions on top. Then, we take our 

input, run it through our convolutional layer, and then send it to our same 

output and densely connected layers as before. This will run a bit, and 

eventually we’ll get up to about 98% accuracy on the MNIST dataset. So by 

simply changing how we modeled the input data to use convolutions instead, 

we’re able to cut our error rate in half on this toy problem. In addition, 

convolutions are much easier to evaluate than our dense layers, so as our 

datasets start getting larger, we’ll still be able to continue using this approach.

```

import Datasets

import TensorFlow

struct CNN: Layer {

  �var conv1a = Conv2D<Float>(filterShape: (3, 3, 1, 32), 

padding: .same, activation: relu)

  �var conv1b = Conv2D<Float>(filterShape: (3, 3, 32, 32), 

padding: .same, activation: relu)

  var pool1 = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))

  var flatten = Flatten<Float>()

  �var inputLayer = Dense<Float>(inputSize: 14 * 14 * 32, 

outputSize: 512, activation: relu)

  �var hiddenLayer = Dense<Float>(inputSize: 512, outputSize: 

512, activation: relu)

  var outputLayer = Dense<Float>(inputSize: 512, outputSize: 10)

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    �let convolutionLayer = input.sequenced(through: conv1a, 

conv1b, pool1)
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    �return convolutionLayer.sequenced(through: flatten, 

inputLayer, hiddenLayer, outputLayer)

  }

}

let batchSize = 128

let epochCount = 12

var model = CNN()

let optimizer = SGD(for: model, learningRate: 0.1)

let dataset = MNIST(batchSize: batchSize)

print("Starting training...")

for (epoch, epochBatches) in dataset.training.prefix(epochCount).

enumerated() {

  Context.local.learningPhase = .training

  for batch in epochBatches {

    let (images, labels) = (batch.data, batch.label)

    �let (_, gradients) = valueWithGradient(at: model) { model  

-> Tensor<Float> in

      let logits = model(images)

      return softmaxCrossEntropy(logits: logits, labels: labels)

    }

    optimizer.update(&model, along: gradients)

  }

  Context.local.learningPhase = .inference

  var testLossSum: Float = 0

  var testBatchCount = 0

  var correctGuessCount = 0

  var totalGuessCount = 0

  for batch in dataset.validation {

    let (images, labels) = (batch.data, batch.label)
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    let logits = model(images)

    �testLossSum += softmaxCrossEntropy(logits: logits, labels: 

labels).scalarized()

    testBatchCount += 1

    �let correctPredictions = logits.argmax(squeezingAxis: 1) . 

== labels

    �correctGuessCount += Int(Tensor<Int32>(correctPredictions).

sum().scalarized())

    totalGuessCount = totalGuessCount + batch.data.shape[0]

  }

  let accuracy = Float(correctGuessCount) / Float(totalGuessCount)

  print(

    """

    [Epoch \(epoch + 1)] \

    �Accuracy: \(correctGuessCount)/\(totalGuessCount) (\(accuracy)) \

    Loss: \(testLossSum / Float(testBatchCount))

    """

  )

}

You should have an output that looks something like this:

```

Loading resource: train-images-idx3-ubyte Loading resource: 

train-labels-idx1-ubyte Loading resource: t10k-images-idx3-ubyte 

Loading resource: t10k-labels-idx1-ubyte Starting training...

[Epoch 1] Accuracy: 9657/10000 (0.9657) Loss: 0.11145979

[Epoch 2] Accuracy: 9787/10000 (0.9787) Loss: 0.06319246

[Epoch 3] Accuracy: 9834/10000 (0.9834) Loss: 0.05008082

[Epoch 4] Accuracy: 9860/10000 (0.986) Loss: 0.041191828

[Epoch 5] Accuracy: 9847/10000 (0.9847) Loss: 0.04551203
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[Epoch 6] Accuracy: 9856/10000 (0.9856) Loss: 0.04516899

[Epoch 7] Accuracy: 9890/10000 (0.989) Loss: 0.036287367

[Epoch 8] Accuracy: 9860/10000 (0.986) Loss: 0.043286547

[Epoch 9] Accuracy: 9878/10000 (0.9878) Loss: 0.037299085

[Epoch 10] Accuracy: 9877/10000 (0.9877) Loss: 0.042443674

[Epoch 11] Accuracy: 9884/10000 (0.9884) Loss: 0.043763407

[Epoch 12] Accuracy: 9890/10000 (0.989) Loss: 0.038426008

```

�Side quest
LeNet is the classic approach to solving the MNIST problem, from 1998. 

We’re using a slightly different architecture to simplify making the jump to 

more advanced models later, but you should take a look at this paper.

> Gradient-based learning applied to document recognition

>  http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

�Recap
We’ve looked at how convolutions work with some different examples 

of what is possible. We’ve looked at how **striding** and *padding** 

work to step across an input image. Then, we’ve looked at **maxpool**, 

a simple operation to reduce the amount of data we have. Then, we’ve 

used two pairs of 3x3 convolutions and a maxpool operation to build our 

first convolutional neural network for image recognition on top of our 

multilayer perceptron from the last chapter. Running the same training 

loop as before, we’re able to reduce the amount of error in our simple 

network, increasing our accuracy simply by changing how we’re modeling 

our input data. Next, let’s look at how we can expand our same basic 

approach to tackle color images and real-world data.
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CHAPTER 3

CIFAR: 2D Neural 
Network with Blocks
In this chapter, we will look at how we can stack layers of convolutions 

to scale up our network to tackle a slightly more real-world problem of 

distinguishing between color pictures of animals and vehicles, called CIFAR.

�CIFAR dataset
Where do we go from here? Let’s take on a slightly larger, more 

complicated problem. This is a dataset called CIFAR. It’s a collection of 

color pictures. So we have pictures of cats, dogs, animals, as well as human 

vehicles – cars and trucks. We have ten categories. Now we’re going to be 

working with color data, so we have an RGB component.

�Color
Color, from a neural network perspective, turns out to not be as 

complicated a problem as you might think. Conceptually, we simply take 

our first 3x3 convolution from our MNIST network, like so:

var conv1a = Conv2D<Float>(filterShape: (3, 3, 1, 32), padding: 

.same, activation: relu)

https://doi.org/10.1007/978-1-4842-6168-2_3#DOI
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And we simply increase our number of input layers to 3, like so:

var conv1a = Conv2D<Float>(filterShape: (3, 3, 3, 32), padding: 

.same, activation: relu)

What's going on here? Literally, we were dealing with color as grayscale 

values (e.g., Int/255.0) in our MNIST example, so now we're moving to 

having three grayscale channels for each color component (e.g., red, green, 

blue). To our convolutional operation, this is simply adding more data for 

us to work with, but we're simply using the same process as before.

�Breakdown
For CIFAR, then, we can take our same basic approach that we used before 

and scale it up to tackle this problem. So we’ll simply take our color input 

data – three channels by 32x32 pixels. We’ll run it through two sets of 

convolutions, a maxpool, two more sets of convolutions, a maxpool, and 

our same two densely connected layers, and then we’ll have ten categories 

for our outputs.

�Code
Here's what this model looks like. We’ve done nothing more really than 

add another stack of convolutions, but now we're working with color and 

real-world photos.

```

import Datasets

import TensorFlow

struct CIFARModel: Layer {

  �var conv1a = Conv2D<Float>(filterShape: (3, 3, 3, 32), 

padding: .same, activation: relu)
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  �var conv1b = Conv2D<Float>(filterShape: (3, 3, 32, 32), 

padding: .same, activation: relu)

  var pool1 = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))

  �var conv2a = Conv2D<Float>(filterShape: (3, 3, 32, 64), 

padding: .same, activation: relu)

  �var conv2b = Conv2D<Float>(filterShape: (3, 3, 64, 64), 

padding: .same, activation: relu)

  var pool2 = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))

  var flatten = Flatten<Float>()

  �var inputLayer = Dense<Float>(inputSize: 8 * 8 * 64, 

outputSize: 512, activation: relu)

  �var hiddenLayer = Dense<Float>(inputSize: 512, outputSize: 

512, activation: relu)

  var outputLayer = Dense<Float>(inputSize: 512, outputSize: 10)

  @differentiable

  func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let conv1 = input.sequenced(through: conv1a, conv1b, pool1)

    let conv2 = conv1.sequenced(through: conv2a, conv2b, pool2)

    �return conv2.sequenced(through: flatten, inputLayer, 

hiddenLayer, outputLayer)

  }

}

let batchSize = 128

let epochCount = 12

var model = CIFARModel()

let optimizer = SGD(for: model, learningRate: 0.1)

let dataset = CIFAR10(batchSize: batchSize)

print("Starting training...")
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for (epoch, epochBatches) in dataset.training.

prefix(epochCount).enumerated() {

  Context.local.learningPhase = .training

  for batch in epochBatches {

    let (images, labels) = (batch.data, batch.label)

    �let (_, gradients) = valueWithGradient(at: model) { model  

-> Tensor<Float> in

      let logits = model(images)

      return softmaxCrossEntropy(logits: logits, labels: labels)

    }

    optimizer.update(&model, along: gradients)

  }

  Context.local.learningPhase = .inference

  var testLossSum: Float = 0

  var testBatchCount = 0

  var correctGuessCount = 0

  var totalGuessCount = 0

  for batch in dataset.validation {

    let (images, labels) = (batch.data, batch.label)

    let logits = model(images)

    �testLossSum += softmaxCrossEntropy(logits: logits, labels: 

labels).scalarized()

    testBatchCount += 1

    �let correctPredictions = logits.argmax(squeezingAxis: 1) . 

== labels

    �correctGuessCount += Int(Tensor<Int32>(correctPredictions).

sum().scalarized())

    totalGuessCount = totalGuessCount + batch.data.shape[0]

  }

  let accuracy = Float(correctGuessCount) / Float(totalGuessCount)
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  print(

    """

    [Epoch \(epoch + 1)] \

    �Accuracy: \(correctGuessCount)/\(totalGuessCount) (\(accuracy)) \

    Loss: \(testLossSum / Float(testBatchCount))

    """

  )

}

```

�Results
Our simple model can achieve over 70% accuracy using this simple 

convolutional stack. This isn't going to win awards any time soon, but this 

basic approach works. You should see results that look like this:

```

...

[Epoch 1] Accuracy: 4938/10000 (0.4938) Loss: 1.403413

[Epoch 2] Accuracy: 5828/10000 (0.5828) Loss: 1.1972797

[Epoch 3] Accuracy: 6394/10000 (0.6394) Loss: 1.0232711

[Epoch 4] Accuracy: 6857/10000 (0.6857) Loss: 0.92201495

[Epoch 5] Accuracy: 6951/10000 (0.6951) Loss: 0.9035831

[Epoch 6] Accuracy: 6778/10000 (0.6778) Loss: 1.0228367

[Epoch 7] Accuracy: 7082/10000 (0.7082) Loss: 0.95399994

[Epoch 8] Accuracy: 7088/10000 (0.7088) Loss: 1.0445035

[Epoch 9] Accuracy: 7117/10000 (0.7117) Loss: 1.1742744

[Epoch 10] Accuracy: 7183/10000 (0.7183) Loss: 1.347533

[Epoch 11] Accuracy: 7045/10000 (0.7045) Loss: 1.4588598

[Epoch 12] Accuracy: 7132/10000 (0.7132) Loss: 1.5338957

```
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�Side quest
Studying how color works in the real world and how we perceive light is 

an interesting area. You should check out CYMK (e.g., print color theory) 

and then how to compress video (e.g., YUV) color space. Sources of light, 

be they man-made (e.g., light bulbs, LEDs), monitors (TV/computer), or 

natural (e.g., fire, stars), lead to various interesting differences (hydrogen 

spectra, Hubble constant).

�Recap
We've made the jump from grayscale to color and switched to a slightly 

larger, more complicated dataset called **CIFAR**, but other than that, our 

same approach from the last chapter is roughly the same. In order to better 

categorize our images, we have added another **block** of convolutions. 

Then, we've used these multiple convolutional blocks from the last chapter 

and our same fully connected network from the first chapter to categorize 

color images of real-world objects (albeit slightly hard to look at because 

they are small). Next, we’ll build a larger version of our same network to 

tackle larger images and more data.
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CHAPTER 4

VGG Network
In this chapter, we will build VGG, a state-of-the-art network from 2014, by 

making an even larger version of our CIFAR network.

�Background: ImageNet
MNIST and CIFAR are popular, commonly cited datasets in academic 

research as a testbed for new ideas, but in the past few years people have 

increasingly reached the practical limits of building networks on top of 

them. Our next dataset is ImageNet, a popular real-world dataset for 

building and training image recognition and object detection networks. 

ImageNet has a thousand categories, so the networks we will be 

working with for the rest of the book will be able to support much larger 

categorization problems. The dataset proper is about ~1.3 million images 

scraped from the Internet. In data terms the training dataset is ~147GB  

and then there is another 7GB of test and validation files. If you go to the 

ImageNet website (e.g., http://www.image-net.org) you can browse 

some of the categories, which have names like “n01440764.” If you 

compare these numbers to the synnet files, you can figure out what each 

category corresponds to.

https://doi.org/10.1007/978-1-4842-6168-2_4#DOI
http://www.image-net.org
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�Getting ImageNet
This used to be a slightly complicated affair, but recently the swift-models 

repository added a nice dataloader for the ImageNet dataset you can work 

with on your system. But, be warned that you will need a few hundred 

gigabytes of disk space free to deal with the files (extracting, converting, 

etc.). Having said that, ImageNet is a bit large for our purposes and so we 

will be working with a subset so as to not reach the limits of our computers 

and swift for tensorflow.

�Imagenette dataset
Imagenette is a subset of ImageNet from Jeremy Howard of fast.ai, 

designed to make testing computer vision networks easier. It is specifically 

the following ten categories: tench, English springer, cassette player, chain 

saw, church, French horn, garbage truck, gas pump, golf ball, parachute.

There is a second, harder version of Imagenette, another subset of 

ten categories, called Imagewoof, that is specifically the following ten 

categories of dog breeds: Australian terrier, Border terrier, Samoyed, 

Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, Dingo, Golden 

retriever, Old English sheepdog.

We can load both of these datasets from the swift-models repository 

and swap them in your training scripts. What is nice about using the swift-

models loader is that it automates the process of downloading, extracting, 

and batch resizing the actual ImageNet images (which have semi-random 

sizes) into a predictable input size (e.g., 224 x 224 pixels).

�Data augmentation
A very important topic in image recognition/deep neural networks in 

general is **data augmentation**, which we are basically going to skip in this 

book because I would like to avoid making things complicated for people 

new to this field. But, let us discuss it here briefly before heading onward.
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We can imagine increasing the size of our neural network until we have 

a “perfect” neural network, in that for every image we show it, it gives us 

the correct result. The key concept is that the optimization function we are 

using is trying to minimize loss across the dataset we are giving it. So, our 

optimization function for this “perfect” network has gone to zero (it never 

makes a mistake), just as we desire. Sounds great, let’s write a paper and 

collect our prizes!

But wait! Before we do so, we might try, say, flipping our cat picture 

horizontally, and then give this new picture to our neural network. What 

happens? Basically, we’re showing our neural network a picture it’s never 

seen before, and so the results are going to be semi-random at best. It may 

turn out the “closest” input image (in the neural network’s search space) of 

our flipped cat is a dog picture instead, and so our network will say “dog” 

when it sees this new picture.

The basic idea of data augmentation (and training deep neural 

networks in general) then is to make sure that we’re not **overfitting** 

(e.g., getting too close to our training dataset) that we can’t **generalize** 

(e.g., correctly making new predictions on data we’ve never seen before). 

There are a few basic approaches:

	 1)	 Gather more data! You won’t see this as much 

in academic competitions/purposes, but a lot of 

real-world machine learning involves getting or 

building even larger datasets in order to make sure 

our network isn’t really guessing at new conditions 

but rather has “seen” a reasonably similar example 

already. In the same vein, another common 

problem is only giving our network pictures of gray 

cats, and then when it sees an orange one, it doesn’t 

know what to do. Having a lot of examples doesn’t 

help us much if they’re all of the same cat! Another 

common version of this problem is getting training 
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examples that are different than what we would 

like to eventually classify, for example, training 

off photos from the Internet and then trying to 

apply them to real-world camera input. Whenever 

possible, use the same data you are eventually going 

to be testing with. Likewise, whenever you can, 

gather more data!

	 2)	 Data augmentation: We can use the computer to 

perform various modifications to our data in order 

to increase the number of samples we have in 

general. Some common examples:

•	 We can flip our images left to right.

•	 Change our brightness (gamma).

•	 Rotate our images.

•	 Random crops (cutting the edges of pictures off).

•	 Random zooms (making our picture larger and 

then cutting off the now larger edges).

Often these methods will be combined as well in 

order to make sure the neural network is getting as 

many possible variants of our training data as well. 

As an important note, oftentimes, these approaches 

become domain specific. Or rather, we can flip cat/

dog pictures, but not letters of the alphabet!

	 3)	 Add noise to our network: Another extremely 

important area involves adding noise to our 

operations in order to make sure our network isn’t 

getting too tied to specific inputs/images. This 

is an incredibly valuable technique to improve 
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real-world performance by making our network 

robust to noise. There is an important related area 

of research called adversarial inputs that tries to 

fool networks by introducing subtle noise to fool 

classifiers.

Here are some interesting papers on this subject you might look at:

> Dropout: A Simple Way to Prevent Neural Networks from Overfitting

> www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

This is an important paper for you to know. By randomly pruning 

(removing) dense nodes when training our model, the resulting network 

generalizes much better. The other interesting effect is that this speeds up 

the network as well.

> mixup: Beyond Empirical Risk Minimization

> https://arxiv.org/abs/1710.09412

Loosely, we’re training our networks to recognize images and giving 

them a reward when they get the right answer. This paper randomly 

combines two input images (e.g., 50% dog and 50% cat --> new picture) 

and rewards the network for guessing a corresponding answer (e.g., 50% 

dog and 50% cat labels). This simple tweak significantly improves the 

network’s generalization ability.

> Improved Regularization of Convolutional Neural Networks with 

Cutout

> https://arxiv.org/abs/1708.04552

This idea is similar to mixup, but we are creating our target image by 

cutting and pasting images together, with similarly improved results. And 

then broadly, sometimes it’s important to tackle this issue at a higher level, 

making sure we’re not trying to make our network so deep that it always 
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ends up trying to chase “perfect” solutions but is instead learning just 

enough to be able to do well in a nontest environment. This is a subtle area 

where people often get stuck chasing the “perfect” set of parameters, but 

then their networks don’t do as well when working with new data. This is 

an area where we can spend a bunch of time. We will revisit this later in the 

book.

�VGG
Now, let’s get into our first real state-of-the-art convolutional neural 

network for image recognition. VGG stands for the Visual Geometry 

Group, a group of computer vision/math–related researchers at the 

University of Oxford in England.

> “Very Deep Convolutional Networks for Large-Scale Image 

Recognition”

> https://arxiv.org/abs/1409.1556

They produced a set of networks (named after their group) that in 2014 

were second place on the leaderboard for the ILSVRC competition that 

year, behind GoogLeNet.

However, don’t let this scare you, because their approach isn’t 

anything more technically complicated than what we’ve looked at so far 

with our MNIST and CIFAR networks. They built their large neural network 

by literally stacking the same sets of convolutions we’ve been looking at 

in the past few chapters. Their network starts literally the same as what 

we built before: two sets of 3x3 convolutions, a maxpool, two more sets of 

3x3 convolutions, and a maxpool. Next, they keep on stacking layers and 

adding three more sets of 3x3 convolutions, a maxpool, three more sets 

of 3x3 convolutions, a maxpool, three more sets of 3x3 convolutions, and 

a maxpool. Finally, for the output layers, they use two large layers of 4096 

fully connected nodes (making their network able to learn much more, so 
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to speak) and finally have an output layer of a thousand nodes to map to 

each ImageNet category.

This network is called VGG16 because it has (input) [2 + 2 + 3 + 3 + 3] 

+ 2 (fully connected neural network) + 1 (output) layers. For our purposes, 

we will only be using ten output nodes at the end (e.g., why our classCount 

init parameter is 10), to work with our smaller Imagenette dataset, but 

otherwise everything else is the same.

�Code
First, let’s look at our training loop, which should look very familiar to 

our CIFAR and MNIST training loops. The only real difference is that now 

we are working with a larger dataset. Our next network is a little bit more 

finicky about training, so we are using SGD with smaller learning rate 

(update step values) to make sure it trains correctly by not “bouncing” 

around so much.

```

import Datasets

import TensorFlow

struct VGG16: Layer {

  �var conv1a = Conv2D<Float>(filterShape: (3, 3, 3, 64), 

padding: .same, activation: relu)

  �var conv1b = Conv2D<Float>(filterShape: (3, 3, 64, 64), 

padding: .same, activation: relu)

  var pool1 = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))

  �var conv2a = Conv2D<Float>(filterShape: (3, 3, 64, 128), 

padding: .same, activation: relu)

  �var conv2b = Conv2D<Float>(filterShape: (3, 3, 128, 128), 

padding: .same, activation: relu)

  var pool2 = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
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  �var conv3a = Conv2D<Float>(filterShape: (3, 3, 128, 256), 

padding: .same, activation: relu)

  �var conv3b = Conv2D<Float>(filterShape: (3, 3, 256, 256), 

padding: .same, activation: relu)

  �var conv3c = Conv2D<Float>(filterShape: (3, 3, 256, 256), 

padding: .same, activation: relu)

  �var pool3 = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))

  �var conv4a = Conv2D<Float>(filterShape: (3, 3, 256, 512), 

padding: .same, activation: relu)

  �var conv4b = Conv2D<Float>(filterShape: (3, 3, 512, 512), 

padding: .same, activation: relu)

  �var conv4c = Conv2D<Float>(filterShape: (3, 3, 512, 512), 

padding: .same, activation: relu)

  var pool4 = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))

  �var conv5a = Conv2D<Float>(filterShape: (3, 3, 512, 512), 

padding: .same, activation: relu)

  �var conv5b = Conv2D<Float>(filterShape: (3, 3, 512, 512), 

padding: .same, activation: relu)

  �var conv5c = Conv2D<Float>(filterShape: (3, 3, 512, 512), 

padding: .same, activation: relu)

  var pool5 = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))

  var flatten = Flatten<Float>()

  �var inputLayer = Dense<Float>(inputSize: 512 * 7 * 7, 

outputSize: 4096, activation: relu)

  �var hiddenLayer = Dense<Float>(inputSize: 4096, outputSize: 

4096, activation: relu)

  var outputLayer = Dense<Float>(inputSize: 4096, outputSize: 10)

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let conv1 = input.sequenced(through: conv1a, conv1b, pool1)
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    let conv2 = conv1.sequenced(through: conv2a, conv2b, pool2)

    �let conv3 = conv2.sequenced(through: conv3a, conv3b, 

conv3c, pool3)

    �let conv4 = conv3.sequenced(through: conv4a, conv4b, 

conv4c, pool4)

    �let conv5 = conv4.sequenced(through: conv5a, conv5b, 

conv5c, pool5)

    �return conv5.sequenced(through: flatten, inputLayer, 

hiddenLayer, outputLayer)

  }

}

let batchSize = 32

let epochCount = 10

let dataset = Imagenette(batchSize: batchSize, inputSize: 

.resized320, outputSize: 224)

var model = VGG16()

let optimizer = SGD(for: model, learningRate: 0.002, momentum: 0.9)

print("Starting training...")

for (epoch, epochBatches) in dataset.training.

prefix(epochCount).enumerated() {

  Context.local.learningPhase = .training

  for batch in epochBatches {

    let (images, labels) = (batch.data, batch.label)

    �let (_, gradients) = valueWithGradient(at: model) { model  

-> Tensor<Float> in

      let logits = model(images)

      return softmaxCrossEntropy(logits: logits, labels: labels)

    }

    optimizer.update(&model, along: gradients)

  }
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  Context.local.learningPhase = .inference

  var testLossSum: Float = 0

  var testBatchCount = 0

  var correctGuessCount = 0

  var totalGuessCount = 0

  for batch in dataset.validation {

    let (images, labels) = (batch.data, batch.label)

    let logits = model(images)

    �testLossSum += softmaxCrossEntropy(logits: logits, labels: 

labels).scalarized()

    testBatchCount += 1

    �let correctPredictions = �logits.argmax(squeezingAxis: 1) 

.== labels

    �correctGuessCount += Int(Tensor<Int32>(correctPredictions).

sum().scalarized())

    totalGuessCount = totalGuessCount + batch.label.shape[0]

  }

  let accuracy = Float(correctGuessCount) / Float(totalGuessCount)

  print(

    """

    [Epoch \(epoch+1)] \

    �Accuracy: \(correctGuessCount)/\(totalGuessCount) (\(accuracy)) \

    Loss: \(testLossSum / Float(testBatchCount))

    """

  )

}

```
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�Results
Running this network on the Imagenette dataset should produce results 

that look like this:

```

[Epoch 1 ] Accuracy: 125/500 (0.25)  Loss: 2.290163

[Epoch 2 ] Accuracy: 170/500 (0.34)  Loss: 1.8886051

[Epoch 3 ] Accuracy: 205/500 (0.41)  Loss: 1.6971107

[Epoch 4 ] Accuracy: 243/500 (0.486) Loss: 1.5611153

[Epoch 5 ] Accuracy: 257/500 (0.514) Loss: 1.43015

[Epoch 6 ] Accuracy: 290/500 (0.58)  Loss: 1.2774785

[Epoch 7 ] Accuracy: 67/500  (0.534) Loss: 1.3170111

[Epoch 8 ] Accuracy: 309/500 (0.618) Loss: 1.1680012

[Epoch 9 ] Accuracy: 299/500 (0.598) Loss: 1.403522

[Epoch 10] Accuracy: 303/500 (0.606) Loss: 1.40440996

```

�Memory usage
With VGG16, you may hit the memory limits of your system. Remember 

that you may need to change the batch size to 16 (or even less) to fit your 

dataset cleanly into memory for your GPU. A good thing to practice is 

starting a job, then opening a new shell session using tmux, and running 

```nvidia-smi -l 5``` to watch how the device fills up the memory at the 

start of a job.

Before we go too much further, let’s look at one other important issue 

you’re going to run into at some point in time in general and definitely 
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with VGG, running out of memory with swift for tensorflow. Set your batch 

size to 128, run your code, and wait a little bit:

```

Fatal error: OOM when allocating tensor with 

shape[128,64,224,224] and type float on /job:localhost/

replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc: file /

home/skoonce/swift/swift-source/tensorflow-swift-apis/Sources/ 

TensorFlow/Bindings/EagerExecution.swift, line 300 Current stack trace:

0 libswiftCore.so 0x00007fcb746f6c40

swift_reportError + 5

0

1 libswiftCore.so 0x00007fcb74767590

_swift_stdlib_reportF atalErrorInFile + 115

2 libswiftCore.so 0x00007fcb7445c53e

<unavailable> + 14554

22

3 libswiftCore.so 0x00007fcb7445c147

<unavailable> + 14544

33 libswiftCore.so 0x00007fcb745fc310 valueWithPullback<A, 

B>(at:in:) + 106

34 libswiftTensorFlow.so 0x00007fcb74bb9e20 

valueWithGradient<A, B>(at:in:) + 1073

35 VGG-Imagewoof 0x000055a5370311ed

<unavailable> + 46453

57

36 libc.so.6 0x00007fcb5d6d6ab0

libc_start_main + 231

37 VGG-Imagewoof 0x000055a536bf90ba

<unavailable> + 2213$0

Illegal instruction (core dumped)

```
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The Imagenette dataset we are working with here is using about 16GB 

of primary memory. If you have a GPU with 8GB of RAM, you may need to 

reduce your batch size during the next few chapters to avoid the dreaded 

OOM (see previous text). Cutting it in half should make it easy for you to 

work with the larger dataset as needed, but for some of the larger networks, 

you may need to use even smaller batch sizes.

I would encourage you to play with different batch sizes and run 

nvidia-smi for each one to get a feel for how these concepts are related. 

This is an important skill to pick up in general in my opinion because it will 

enable you to scale your workloads up and down for devices with more/

less memory. Swift for tensorflow in particular is currently a bit “globby” 

in that it seems to grab things in multigigabyte increments, so learning this 

with s4tf won’t be as easy as with other machine learning frameworks, but 

knowing how to tune your workload for your device is a valuable skill that 

you will need for some time yet in this field (and other software packages 

as well).

�Model refactoring
At some point, we’re going to hit the limits of what we can accomplish 

by simply copying and pasting more layers to produce larger and larger 

neural networks. Now is a good time to look at how we can scale our 

approach by using a slightly more sophisticated programmatic approach. 

First, let’s do some refactoring and learn about how we can combine 

multiple layers together to reduce the amount of duplicate code.

�VGG16 with subblocks
What’s going on here? Basically, we’re building some smaller blocks, so 

that then we reduce the amount of duplicate code in our main network. 
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Since all of our VGG network blocks look the same (N 3x3 layers + a 

maxpool), we can define them programmatically.

```

struct VGGBlock2: Layer {

  var conv1a: Conv2D<Float>

  var conv1b: Conv2D<Float>

  var pool1 = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))

  init(featureCounts: (Int, Int)) {

    �conv1a = Conv2D(filterShape: (3, 3, featureCounts.0, 

featureCounts.1), padding: .same, activation: relu)

    �conv1b = Conv2D(filterShape: (3, 3, featureCounts.1, 

featureCounts.1), padding: .same, activation: relu)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    return input.sequenced(through: conv1a, conv1b, pool1)

  }

}

struct VGGBlock3: Layer {

  var conva: Conv2D<Float>

  var convb: Conv2D<Float>

  var convc: Conv2D<Float>

  var pool = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))

  init(featureCounts: (Int, Int)) {

    �conva = Conv2D(filterShape: (3, 3, featureCounts.0, 

featureCounts.1), padding: .same, activation: relu)

    �convb = Conv2D(filterShape: (3, 3, featureCounts.1, 

featureCounts.1), padding: .same, activation: relu)
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    �convc = Conv2D(filterShape: (3, 3, featureCounts.1, 

featureCounts.1), padding: .same, activation: relu)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    return input.sequenced(through: conva, convb, convc, pool)

  }

}

struct VGG16: Layer {

  var layer1 = VGGBlock2(featureCounts: (3, 64))

  var layer2 = VGGBlock2(featureCounts: (64, 128))

  var layer3 = VGGBlock3(featureCounts: (128, 256))

  var layer4 = VGGBlock3(featureCounts: (256, 512))

  var layer5 = VGGBlock3(featureCounts: (512, 512))

  var flatten = Flatten<Float>()

  �var inputLayer = Dense<Float>(inputSize: 512 * 7 * 7, 

outputSize: 4096, activation: relu)

  �var hiddenLayer = Dense<Float>(inputSize: 4096, outputSize: 

4096, activation: relu)

  var outputLayer = Dense<Float>(inputSize: 4096, outputSize: 10)

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    �let backbone = input.sequenced(through: layer1, layer2, 

layer3, layer4, layer5)

    �return backbone.sequenced(through: flatten, inputLayer, 

hiddenLayer, outputLayer)

  }

}

```
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�Side quests
AlexNet has a somewhat unorthodox structure by modern standards so 

I have deliberately skipped it in this book, but it is an important paper to 

read for historical reasons.

> ImageNet Classification with Deep Convolutional Neural Networks

> https://papers.nips.cc/paper/4824-imagenet-classification- 

with-deep-convolutional-neural-networks.pdf

Inception v1 (what GoogLeNet is better known as now) has better 

performance than VGG, but is a much more complicated model. This 

paper is historically important, but I would suggest you master residual 

networks first.

> Going Deeper with Convolutions

> https://arxiv.org/abs/1409.4842

�Recap
VGG isn’t as popular today as some of the other networks we’ll look at 

shortly, but it’s definitely still in use despite being half a decade old. This 

network is still seen in image processing contexts such as style transfer and 

as a base of object detection networks. You will also often see retrained 

VGG networks in domain-specific image recognition problems like face 

recognition. Congratulations on making it here. You’ve successfully 

reproduced your first academic paper! Next, let’s look at how we can 

modify our network slightly to produce even better results.
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CHAPTER 5

ResNet 34
In this chapter, we will look at how we can modify the VGG network 

backbone to produce ResNet 34, a network from 2015. Looking back at our 

past few chapters, the difference between our 2D MNIST, CIFAR, and VGG 

networks is simply the number of blocks of 3x3 convolutions. Why stop at 

this point, though? Let’s make even larger networks! Next, we’re going to 

look at the ResNet family of networks, starting with ResNet 34.

Conceptually, we’re going to start with a similar base to the VGG 

network we were just looking at. If the backbone of our VGG network can 

be thought of as [2, 2, 3, 3, 3] for VGG16, then the backbone of ResNet 34 is 

[6, 8, 12, 6], with each block being composed of pairs of 3x3 convolutions, 

exactly the same as the networks we have looked at before. However, we’re 

going to add one more crucial concept, called skip connections.

�Skip connections
The magic of residual networks, so to speak, is the addition of what are 

called residual layers or skip connections.

> Deep Residual Learning for Image Recognition

> https://arxiv.org/abs/1512.03385

https://doi.org/10.1007/978-1-4842-6168-2_5#DOI
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The basic idea is that we add an extra set of paths that hop from each set 

of layers to the output nodes. This is accomplished at the network level quite 

simply by adding each set of input layers to the block to the output step.

This is often illustrated as a single set of layers going down the side of 

the network.

�Noise
Conceptually, the problem with the VGG-style approach isn’t that we can’t 

build larger and larger networks. We can certainly copy/paste our blocks 

for some time yet if we have enough GPU memory! The key limitation of 

VGG-style networks is noise. Each convolution is a destructive operation. 

If each convolution only loses a tiny piece of information, say 0.1%, that 

effect over 16 or 19 layers starts to compound since the effect is reapplied 

in each layer.

So, the first real trick of ResNet is just that these skip connections 

add each set of layer’s input to the eventual layer’s output. This gives 

the network more data with which to find the right combination of 

convolutional layers for the final prediction step. The second big trick of 

ResNet is at the end. Since we are sending more data through the network, 

we can stop using our fully connected layers and instead use an average 

pooling step to produce the final output.

As compared to our nodes firing together before, the neural network 

here is effectively learning this output layer in the same manner as our 

other convolutions, which are much less expensive to compute than fully 

connected nodes. This means the evaluation of our network suddenly 

becomes much, much cheaper to do. So, even though we’ve added more 

layers to our network and the skip connections mean we’re sending more 

data through the network, this whole network is actually much faster to 

evaluate than our VGG network.
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First, our total number of parameters has dropped significantly 

(approximately one fourth as many parameters). Also, this add operation 

is actually very cheap to evaluate in comparison to our fully connected 

layers. So this means that the network is both smaller and faster.

The first layer of ResNet is a 7x7 convolution, but this is just to break 

up our input into something smaller for the network. There’s been recent 

research to show that there are better ways of doing the input/head layer 

(which we’ll look at in Chapter 12), so be aware this isn’t probably the best 

approach in general. Having said that, with the hardware limitations of the 

day, it was a good cheap way to reduce the size of the input down so that 

the convolutional neural network can do its work.

�Batch normalization
> Batch Normalization: Accelerating Deep Network Training by 

Reducing Internal Covariate Shift

> https://arxiv.org/abs/1502.03167

Batch normalization is an important training technique for you to 

know. Conceptually, it works by normalizing the output of a layer against 

the standard deviation of the data it has seen most recently. When working 

with random minibatches (what our training loop is doing), this has the 

useful property of smoothing the gradient space in order to make our 

backpropagation run much more efficiently. As a result, the network 

converges much more smoothly and the update process is an order of 

magnitude faster. Technically speaking, this process also introduces some 

noise into the training process, and so it is also sometimes considered a 

regularization technique.
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�Code
This will be our first large network that makes use of multiple code blocks.  

The first (head) block is slightly different, so we have specific logic there 

to deal with the input, and then everything else goes through the middle 

layers, which are generated programmatically.  This is a pattern we will see 

time and time again from here.

```

import Datasets

import TensorFlow

struct ConvBN: Layer {

  var conv: Conv2D<Float>

  var norm: BatchNorm<Float>

  init(

    filterShape: (Int, Int, Int, Int),

    strides: (Int, Int) = (1, 1),

    padding: Padding = .valid

  ) {

    �self.conv = Conv2D(filterShape: filterShape, strides: 

strides, padding: padding)

    self.norm = BatchNorm(featureCount: filterShape.3)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    return input.sequenced(through: conv, norm)

  }

}
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struct ResidualBasicBlock: Layer {

  var layer1: ConvBN

  var layer2: ConvBN

  init(

    featureCounts: (Int, Int, Int, Int),

    kernelSize: Int = 3,

    strides: (Int, Int) = (1, 1)

  ) {

    self.layer1 = ConvBN(

      �filterShape: (kernelSize, kernelSize, featureCounts.0, 

featureCounts.1),

      strides: strides,

      padding: .same)

    self.layer2 = ConvBN(

      �filterShape: (kernelSize, kernelSize, featureCounts.1, 

featureCounts.3),

      strides: strides,

      padding: .same)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    return layer2(relu(layer1(input)))

  }

}

struct ResidualBasicBlockShortcut: Layer {

  var layer1: ConvBN

  var layer2: ConvBN

  var shortcut: ConvBN
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  �init(featureCounts: (Int, Int, Int, Int), kernelSize: Int = 3) {

    self.layer1 = ConvBN(

      �filterShape: (kernelSize, kernelSize, featureCounts.0, 

featureCounts.1),

      strides: (2, 2),

      padding: .same)

    self.layer2 = ConvBN(

      �filterShape: (kernelSize, kernelSize, featureCounts.1, 

featureCounts.2),

      strides: (1, 1),

      padding: .same)

    self.shortcut = ConvBN(

      filterShape: (1, 1, featureCounts.0, featureCounts.3),

      strides: (2, 2),

      padding: .same)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    return layer2(relu(layer1(input))) + shortcut(input)

  }

}

struct ResNet34: Layer {

  var l1: ConvBN

  var maxPool: MaxPool2D<Float>

  var l2a = ResidualBasicBlock(featureCounts: (64, 64, 64, 64))

  var l2b = ResidualBasicBlock(featureCounts: (64, 64, 64, 64))

  var l2c = ResidualBasicBlock(featureCounts: (64, 64, 64, 64))
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  �var l3a = ResidualBasicBlockShortcut(featureCounts: (64, 128, 

128, 128))

  var l3b = ResidualBasicBlock(featureCounts: (128, 128, 128, 128))

  var l3c = ResidualBasicBlock(featureCounts: (128, 128, 128, 128))

  var l3d = ResidualBasicBlock(featureCounts: (128, 128, 128, 128))

  �var l4a = ResidualBasicBlockShortcut(featureCounts: (128, 

256, 256, 256))

  var l4b = ResidualBasicBlock(featureCounts: (256, 256, 256, 256))

  var l4c = ResidualBasicBlock(featureCounts: (256, 256, 256, 256))

  var l4d = ResidualBasicBlock(featureCounts: (256, 256, 256, 256))

  var l4e = ResidualBasicBlock(featureCounts: (256, 256, 256, 256))

  var l4f = ResidualBasicBlock(featureCounts: (256, 256, 256, 256))

  �var l5a = ResidualBasicBlockShortcut(featureCounts: (256, 

512, 512, 512))

  var l5b = ResidualBasicBlock(featureCounts: (512, 512, 512, 512))

  var l5c = ResidualBasicBlock(featureCounts: (512, 512, 512, 512))

  var avgPool: AvgPool2D<Float>

  var flatten = Flatten<Float>()

  var classifier: Dense<Float>

  init() {

    �l1 = ConvBN(filterShape: (7, 7, 3, 64), strides: (2, 2), 

padding: .same)

    maxPool = MaxPool2D(poolSize: (3, 3), strides: (2, 2))

    avgPool = AvgPool2D(poolSize: (7, 7), strides: (7, 7))

    classifier = Dense(inputSize: 512, outputSize: 10)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let inputLayer = maxPool(relu(l1(input)))
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    let level2 = inputLayer.sequenced(through: l2a, l2b, l2c)

    let level3 = level2.sequenced(through: l3a, l3b, l3c, l3d)

    �let level4 = level3.sequenced(through: l4a, l4b, l4c, l4d, 

l4e, l4f)

    let level5 = level4.sequenced(through: l5a, l5b, l5c)

    return level5.sequenced(through: avgPool, flatten, classifier)

  }

}

let batchSize = 32

let epochCount = 30

let dataset = Imagenette(batchSize: batchSize, inputSize: 

.resized320, outputSize: 224)

var model = ResNet34()

let optimizer = SGD(for: model, learningRate: 0.002, momentum: 0.9)

print("Starting training...")

for (epoch, epochBatches) in dataset.training.

prefix(epochCount).enumerated() {

  Context.local.learningPhase = .training

  for batch in epochBatches {

    let (images, labels) = (batch.data, batch.label)

    �let (_, gradients) = valueWithGradient(at: model) { model  

-> Tensor<Float> in

      let logits = model(images)

      return softmaxCrossEntropy(logits: logits, labels: labels)

    }

    optimizer.update(&model, along: gradients)

  }
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  Context.local.learningPhase = .inference

  var testLossSum: Float = 0

  var testBatchCount = 0

  var correctGuessCount = 0

  var totalGuessCount = 0

  for batch in dataset.validation {

    let (images, labels) = (batch.data, batch.label)

    let logits = model(images)

    �testLossSum += softmaxCrossEntropy(logits: logits, labels: 

labels).scalarized()

    testBatchCount += 1

    �let correctPredictions = logits.argmax(squeezingAxis: 1) . 

== labels

    �correctGuessCount += Int(Tensor<Int32>(correctPredictions).

sum().scalarized())

    totalGuessCount = totalGuessCount + batch.label.shape[0]

  }

  �let accuracy = Float(correctGuessCount) / Float(totalGuessCount)

  print(

    """

    [Epoch \(epoch+1)] \

    �Accuracy: \(correctGuessCount)/\(totalGuessCount) (\(accuracy)) \

    Loss: \(testLossSum / Float(testBatchCount))

    """

  )

}
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�Results
This network converges extremely well and is much faster to train/

evaluate than our VGG network from before due to the use of a simpler 

convolutional output and residual blocks.

Starting training...

[Epoch  1] Accuracy: 217/500 (0.434) Loss: 2.118794

[Epoch  2] Accuracy: 194/500 (0.388) Loss: 2.0524213

[Epoch  3] Accuracy: 295/500 (0.59)  Loss: 1.4818325

[Epoch  4] Accuracy: 177/500 (0.354) Loss: 2.1035159

[Epoch  5] Accuracy: 327/500 (0.654) Loss: 1.0758021

[Epoch  6] Accuracy: 278/500 (0.556) Loss: 1.680953

[Epoch  7] Accuracy: 327/500 (0.654) Loss: 1.3363588

[Epoch  8] Accuracy: 348/500 (0.696) Loss: 1.107703

[Epoch  9] Accuracy: 284/500 (0.568) Loss: 1.9379689

[Epoch 10] Accuracy: 350/500 (0.7)   Loss: 1.2561296

[Epoch 11] Accuracy: 288/500 (0.576) Loss: 1.995267

[Epoch 12] Accuracy: 353/500 (0.706) Loss: 1.2237265

[Epoch 13] Accuracy: 342/500 (0.684) Loss: 1.4842949

[Epoch 14] Accuracy: 374/500 (0.748) Loss: 1.385373

[Epoch 15] Accuracy: 313/500 (0.626) Loss: 2.0999825

[Epoch 16] Accuracy: 368/500 (0.736) Loss: 1.1946388

[Epoch 17] Accuracy: 370/500 (0.74)  Loss: 1.2470249

[Epoch 18] Accuracy: 382/500 (0.764) Loss: 1.1730658

[Epoch 19] Accuracy: 390/500 (0.78)  Loss: 1.1377627

[Epoch 20] Accuracy: 392/500 (0.784) Loss: 1.0375359

[Epoch 21] Accuracy: 371/500 (0.742) Loss: 1.3912839

[Epoch 22] Accuracy: 379/500 (0.758) Loss: 1.2445369

[Epoch 23] Accuracy: 384/500 (0.768) Loss: 1.1650964

[Epoch 24] Accuracy: 365/500 (0.73)  Loss: 1.4282515

[Epoch 25] Accuracy: 361/500 (0.722) Loss: 1.4129665

Chapter 5  ResNet 34



61

[Epoch 26] Accuracy: 376/500 (0.752) Loss: 1.3693335

[Epoch 27] Accuracy: 364/500 (0.728) Loss: 1.4527073

[Epoch 28] Accuracy: 376/500 (0.752) Loss: 1.3168014

[Epoch 29] Accuracy: 363/500 (0.726) Loss: 1.6024143

[Epoch 30] Accuracy: 383/500 (0.766) Loss: 1.1949569

�Side quest
This is beyond the scope of our book, but this approach has been proven 

to scale up to extremely large networks. Thousand-layer ResNet networks 

have been built and successfully trained on the CIFAR dataset. A slightly 

different variant of this approach is called highway networks and is also 

worth looking at. This skip connection approach lends itself naturally 

to combining different blocks together and is the basis of many modern 

neural network approaches that use residual networks to combine custom 

block types together to tackle larger and larger problems.

> Highway Networks

> https://arxiv.org/abs/1505.00387

�Recap
We’ve looked at how we can stack groups of convolutions similar to our 

VGG network to build a larger convolutional network. Then, by adding 

residual skip connections between our layer groups, we can make this 

approach resistant to noise and as a result can achieve an even higher 

level of accuracy than before. Next, we’ll look at how we can modify this 

approach slightly to produce even better results!
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CHAPTER 6

ResNet 50
ResNet 50 is a crucial network for you to understand. It is the basis of much 

academic research in this field. Many different papers will compare their 

results to a ResNet 50 baseline, and it is valuable as a reference point. As 

well, we can easily download the weights for ResNet 50 networks that have 

been trained on the ImageNet dataset and modify the last layers (called 

**retraining** or **transfer learning**) to quickly produce models to tackle 

new problems. For most problems, this is the best approach to get started 

with, rather than trying to invent new networks or techniques. Building a 

custom dataset and scaling it up with data augmentation techniques will 

get you a lot further than trying to build a new architecture.

To continue our thread from the end of the last chapter, the real power 

of residual networks is that they allow us to build, evaluate, and train much 

larger networks cheaply. As a result, we no longer need to stick with our 

3x3 convolutions but can start to introduce different cell types. So, let us 

build something even more powerful. We will look at how we can modify 

ResNet 34 to produce ResNet 50, a solid modern architecture you will 

encounter repeatedly in this field.

Bottleneck blocks
What we’re going to introduce are called bottleneck blocks. Conceptually, 

we will go from two 3x3 convolutions to a stack that looks like so: 1x1, 

3x3, 1x1. From a mathematical perspective, this is actually less powerful 

https://doi.org/10.1007/978-1-4842-6168-2_6#DOI
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than the 3x3 approach we’ve used so far. The second thing that bottleneck 

blocks allow us to do is run more of them, since the 1x1 layers are cheaper 

to implement. As a result, we can run four times as many filters using 

these bottleneck layers, which is why I would argue they are ultimately 

more powerful. Or, to phrase things differently, they’re technically less 

powerful but are also cheaper computationally. This means we can use 

more of them without significantly increasing our computation budget, 

for example, the full bottleneck block is approximately 5% more expensive 

than the ResNet 34 3x3 stack of two blocks. As a result, this network is 

able to produce even more accurate results than our ResNet 34 network 

simply by replacing these cells. This is a concept we will explore more in 

upcoming chapters.

Code
The only real difference between this network and Resnet 34 is converting 

things to use bottleneck layers and then the larger parameter inputs to the 

middle stages.

```

import Datasets

import TensorFlow

struct ConvBN: Layer {

  var conv: Conv2D<Float>

  var norm: BatchNorm<Float>

  init(

    filterShape: (Int, Int, Int, Int),

    strides: (Int, Int) = (1, 1),

    padding: Padding = .valid

  ) {
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    �self.conv = Conv2D(filterShape: filterShape, strides: 

strides, padding: padding)

    self.norm = BatchNorm(featureCount: filterShape.3)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    return input.sequenced(through: conv, norm)

  }

}

struct ResidualConvBlock: Layer {

  var layer1: ConvBN

  var layer2: ConvBN

  var layer3: ConvBN

  var shortcut: ConvBN

  init(

    featureCounts: (Int, Int, Int, Int),

    kernelSize: Int = 3,

    strides: (Int, Int) = (2, 2)

  ) {

    self.layer1 = ConvBN(

      filterShape: (1, 1, featureCounts.0, featureCounts.1),

      strides: strides)

    self.layer2 = ConvBN(

      �filterShape: (kernelSize, kernelSize, featureCounts.1, 

featureCounts.2),

      padding: .same)

    �self.layer3 = ConvBN(filterShape: (1, 1, featureCounts.2, 

featureCounts.3))

    self.shortcut = ConvBN(

Chapter 6  ResNet 50



66

      filterShape: (1, 1, featureCounts.0, featureCounts.3),

      strides: strides,

      padding: .same)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let tmp = relu(layer2(relu(layer1(input))))

    return relu(layer3(tmp) + shortcut(input))

  }

}

struct ResidualIdentityBlock: Layer {

  var layer1: ConvBN

  var layer2: ConvBN

  var layer3: ConvBN

  init(featureCounts: (Int, Int, Int, Int), kernelSize: Int = 3) {

    �self.layer1 = ConvBN(filterShape: (1, 1, featureCounts.0, 

featureCounts.1))

    self.layer2 = ConvBN(

      �filterShape: (kernelSize, kernelSize, featureCounts.1, 

featureCounts.2),

      padding: .same)

    �self.layer3 = ConvBN(filterShape: (1, 1, featureCounts.2, 

featureCounts.3))

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let tmp = relu(layer2(relu(layer1(input))))

    return relu(layer3(tmp) + input)

  }

}
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struct ResNet50: Layer {

  var l1: ConvBN

  var maxPool: MaxPool2D<Float>

  �var l2a = ResidualConvBlock(featureCounts: (64, 64, 64, 256), 

strides: (1, 1))

  var l2b = ResidualIdentityBlock(featureCounts: (256, 64, 64, 256))

  var l2c = ResidualIdentityBlock(featureCounts: (256, 64, 64, 256))

  �var l3a = ResidualConvBlock(featureCounts: (256, 128, 128, 512))

  �var l3b = ResidualIdentityBlock(featureCounts: (512, 128, 

128, 512))

  �var l3c = ResidualIdentityBlock(featureCounts: (512, 128, 

128, 512))

  �var l3d = ResidualIdentityBlock(featureCounts: (512, 128, 

128, 512))

  var l4a = ResidualConvBlock(featureCounts: (512, 256, 256, 1024))

  �var l4b = ResidualIdentityBlock(featureCounts: (1024, 256, 

256, 1024))

  �var l4c = ResidualIdentityBlock(featureCounts: (1024, 256, 

256, 1024))

  �var l4d = ResidualIdentityBlock(featureCounts: (1024, 256, 

256, 1024))

  �var l4e = ResidualIdentityBlock(featureCounts: (1024, 256, 

256, 1024))

  �var l4f = ResidualIdentityBlock(featureCounts: (1024, 256, 

256, 1024))

  �var l5a = ResidualConvBlock(featureCounts: (1024, 512,  

512, 2048))

  �var l5b = ResidualIdentityBlock(featureCounts: (2048, 512, 

512, 2048))

  �var l5c = ResidualIdentityBlock(featureCounts: (2048, 512, 

512, 2048))
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  var avgPool: AvgPool2D<Float>

  var flatten = Flatten<Float>()

  var classifier: Dense<Float>

  init() {

    �l1 = ConvBN(filterShape: (7, 7, 3, 64), strides: (2, 2), 

padding: .same)

    maxPool = MaxPool2D(poolSize: (3, 3), strides: (2, 2))

    avgPool = AvgPool2D(poolSize: (7, 7), strides: (7, 7))

    classifier = Dense(inputSize: 2048, outputSize: 10)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let inputLayer = maxPool(relu(l1(input)))

    let level2 = inputLayer.sequenced(through: l2a, l2b, l2c)

    let level3 = level2.sequenced(through: l3a, l3b, l3c, l3d)

    �let level4 = level3.sequenced(through: l4a, l4b, l4c, l4d, 

l4e, l4f)

    let level5 = level4.sequenced(through: l5a, l5b, l5c)

    return level5.sequenced(through: avgPool, flatten, classifier)

  }

}

let batchSize = 32

let epochCount = 30

let dataset = Imagenette(batchSize: batchSize, inputSize: 

.resized320, outputSize: 224)

var model = ResNet50()

let optimizer = SGD(for: model, learningRate: 0.002, momentum: 0.9)

print("Starting training...")

Chapter 6  ResNet 50



69

for (epoch, epochBatches) in dataset.training.

prefix(epochCount).enumerated() {

  Context.local.learningPhase = .training

  for batch in epochBatches {

    let (images, labels) = (batch.data, batch.label)

    �let (_, gradients) = valueWithGradient(at: model) { model  

-> Tensor<Float> in

      let logits = model(images)

      return softmaxCrossEntropy(logits: logits, labels: labels)

    }

    optimizer.update(&model, along: gradients)

  }

  Context.local.learningPhase = .inference

  var testLossSum: Float = 0

  var testBatchCount = 0

  var correctGuessCount = 0

  var totalGuessCount = 0

  for batch in dataset.validation {

    let (images, labels) = (batch.data, batch.label)

    let logits = model(images)

    �testLossSum += softmaxCrossEntropy(logits: logits, labels: 

labels).scalarized()

    testBatchCount += 1

    �let correctPredictions = logits.argmax(squeezingAxis: 1) . 

== labels

    �correctGuessCount += Int(Tensor<Int32>(correctPredictions).

sum().scalarized())

    totalGuessCount = totalGuessCount + batch.label.shape[0]

  }
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  �let accuracy = Float(correctGuessCount) / Float(totalGuessCount)

  print(

    """

    [Epoch \(epoch+1)] \

    Accuracy: \(correctGuessCount)/\(totalGuessCount) (\(accuracy)) \

    Loss: \(testLossSum / Float(testBatchCount))

    """

  )

}

```

�Results
With the above settings, you should be able to get above 75% accuracy on 

Imagenette, without any data augmentations:

[Epoch 20] Accuracy: 362/500 (0.724) Loss: 1.4309547

[Epoch 21] Accuracy: 315/500 (0.63)  Loss: 2.2550986

[Epoch 22] Accuracy: 372/500 (0.744) Loss: 1.4735502

[Epoch 23] Accuracy: 345/500 (0.69)  Loss: 1.9369599

[Epoch 24] Accuracy: 359/500 (0.718) Loss: 2.0183568

[Epoch 25] Accuracy: 337/500 (0.674) Loss: 2.2227683

[Epoch 26] Accuracy: 369/500 (0.738) Loss: 1.4570786

[Epoch 27] Accuracy: 380/500 (0.76)  Loss: 1.3399329

[Epoch 28] Accuracy: 377/500 (0.754) Loss: 1.4157851

[Epoch 29] Accuracy: 357/500 (0.714) Loss: 1.8361444

[Epoch 30] Accuracy: 377/500 (0.754) Loss: 1.3033926

Side Quest: ImageNet
Here is how we would train a ResNet50 network on the ImageNet 

dataset using Swift for TensorFlow, stochastic gradient descent, and the 

TrainingLoop API:
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```

import Datasets

import ImageClassificationModels

import TensorFlow

import TrainingLoop

// XLA mode can't load ImageNet, need to use eager mode to 

limit memory use

let device = Device.defaultTFEager

let dataset = ImageNet(batchSize: 32, outputSize: 224, on: device)

var model = ResNet(classCount: 1000, depth: .resNet50)

// 0.1 for 30, .01 for 30, .001 for 30

let optimizer = SGD(for: model, learningRate: 0.1, momentum: 0.9)

public func scheduleLearningRate<L: TrainingLoopProtocol>(

  _ loop: inout L, event: TrainingLoopEvent

) throws where L.Opt.Scalar == Float {

  if event == .epochStart {

    guard let epoch = loop.epochIndex else  { return }

    if epoch > 30 { loop.optimizer.learningRate = 0.01 }

    if epoch > 60 { loop.optimizer.learningRate = 0.001 }

    if epoch > 80 { loop.optimizer.learningRate = 0.0001 }

  }

}

var trainingLoop = TrainingLoop(

  training: dataset.training,

  validation: dataset.validation,

  optimizer: optimizer,

  lossFunction: softmaxCrossEntropy,

  metrics: [.accuracy],

  callbacks: [scheduleLearningRate])

try! trainingLoop.fit(&model, epochs: 90, on: device)

```
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As a note, the swift-models import is pulling in ResNet v1.5, the more 

common variant of Resnet that you will find in practice.  The key difference 

that the 2x2 stride is moved from the first ConvBN in each group to the 

second one.  Another paper from He et al is “Identity Mappings in Deep 

Residual Networks” (https://arxiv.org/abs/1603.05027), which is 

sometimes referred to as ResNet v2 or Pre-Activated Resnet, with the key 

difference that the batch normalization/activation steps are done before the 

convolution operation and the final activation in each group is removed.

�Recap
We’ve taken our ResNet 34 model from the last chapter and modified it 

slightly by adding bottleneck blocks. Our 3x3 + 3x3 convolutions have 

been replaced with a 1x1, 3x3, 1x1–style approach where the last 1x1 

convolution has four times as many layers. This makes our network larger, 

which improves results. Crucially, though, this approach is also cheap to 

evaluate, and so we get our improved results at roughly the same cost in 

terms of computation.

This residual approach can be combined with many other approaches 

in this field. Different sets of convolutional approaches (called **cells**) 

can be combined together using residual stacks to tackle different 

problems. Many large-scale reinforcement learning techniques 

(AlphaZero being a notable example) use large stacks of convolutional 

layers combined with residual networks.

If you only learn one network from this book, I think this is the best one 

for you to know. We have literally spent the past six chapters building up to 

this approach. Next, we are going to look at some mobile-specific networks 

to try and provide roughly similar results to our ResNet 50 network, but at 

significantly reduced cost in terms of size and complexity. Next, we will try 

to reduce the size of our network significantly in order to build networks 

that will run in resource-constrained environments.
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CHAPTER 7

SqueezeNet
For the next few chapters, we’re going to look at convolutional neural 

networks designed specifically for running on mobile devices, primarily 

phones. A lot of research has gone into building more complicated models 

using larger and larger clusters of computers to try and increase accuracy 

on the ImageNet problem. Mobile phones/edge devices are an area of 

machine learning that has not been explored as deeply, but in my opinion 

is extremely important. There is the direct goal of getting devices working 

on real-world devices, but to me what is interesting in particular is the idea 

that in finding ways of reducing the complexity of high-end approaches to 

something simpler, we can discover techniques that will allow us to build 

even larger networks.

Building upon the idea of bottleneck layers from our last chapter, 

we will sacrifice some of the quality of our network’s results to produce 

SqueezeNet, a tiny neural network that can be run on devices with limited 

compute power, like phones.

�SqueezeNet
A few years back, Cornell University published a paper discussing 

SqueezeNet and AlexNet-level accuracy.

> SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and 

<0.5MB model size

> https://arxiv.org/abs/1602.07360

https://doi.org/10.1007/978-1-4842-6168-2_7#DOI
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The purpose of this paper was to reduce the size of the network as 

much as possible.

Some of the techniques are not applicable to modern phones, but 

many of the ideas are of value for you to know. Conceptually, the key 

thing that SqueezeNet does is use a much more aggressive version of our 

bottleneck block from the last chapter, called a fire module.

�Fire modules
Each fire module takes the input and squeezes it down (e.g., applies a 1x1 

convolution at the start) and then expands it in two different ways (e.g., a 

3x3 conv and a 1x1 conv in parallel), then concatenates the result of these 

two expansion layers together to produce the final result. Conceptually, 

data gets significantly reduced before the second part of the block can 

learn from it. This is a destructive operation, but on the flip side, it reduces 

the number of parameters in our network considerably.

> Densely Connected Convolutional Networks

> https://arxiv.org/abs/1608.06993

Concatenating sets of results together is an interesting way of passing 

information through the network. Densenet is a paper later the same year 

that built took the ResNet network approach and used concat operators in 

place of add operations to produce a new state-of-the-art network (albeit 

extremely expensive computationally). We will revisit this idea later.

Since we have reduced the amount of data going through our network 

in general, the other thing that SqueezeNet does is useless maxpool 

operations in general, so we are performing less of this destructive 

operation.
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�Deep compression
Next, the SqueezeNet authors applied the techniques from another paper 

to make the model as small as possible:

> Deep Compression: Compressing Deep Neural Networks with 

Pruning, Trained Quantization and Huffman Coding

> https://arxiv.org/abs/1510.00149

It is crucial for you to understand the concepts of pruning and 

quantization in general as model compression techniques. The specific 

optimizations the authors make on top are valuable to understand as well, 

but not essential.

�Model pruning
Another thing we can do to make models run more quickly is called 

network pruning. Conceptually, neural networks follow a sort of variant 

of Zipf’s law, whereas 20% of our network activations produce 80% of the 

results. Therefore, if we’re willing to sacrifice accuracy, we can easily make 

a significantly smaller network by throwing away all but the most popular 

nodes, called sparsification or pruning.

The “Deep Compression” paper takes this idea, but then retrains 

the network after performing the sparse step. Interestingly enough, by 

performing this retraining step, we can get an end network that is as 

accurate as our input one. Then, by applying a CRC compression scheme 

(a specific approach to this paper), we can end up a network with an order 

of magnitude less parameters.
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�Model quantization
Next, we can convert our 32-bit floats into 8-bit integer weights in order to 

reduce their size by a factor of 4 again. This is an extremely common step 

when producing smaller models to run on devices that support quantized 

math as well as to produce significantly smaller models to ship over the 

Internet to mobile and embedded devices. In the simplest form of model 

quantization, floats are represented as a range of +– ~10^38, whereas 

integer 8 math has a range of –128 to 127, and we simply map the larger 

float numbers to their nearest normalized integer equivalent. The problem 

with this approach, though, is that the process of reducing the amount of 

space available to our network is usually destructive, and so the resulting 

network doesn’t work very well afterward (e.g., things work faster, but with 

a significant reduction in accuracy).

However, if we have the foresight to incorporate the knowledge that 

our network is going to be eventually quantized, then we can modify our 

training process (the technical term is quantized-aware training) to take 

advantage of this fact. In a similar style to the model pruning step earlier, 

the “Deep Compression” paper quantizes the network and trains it again 

in order to minimize the results of the quantization process. In doing so, 

they were able to eliminate any drop in accuracy, but still end up with a 

significantly smaller model.

The final paper-specific step the SqueezeNet paper did is utilize what 

is called Huffman encoding, a compression scheme that is lossless. As a 

result, they were able to compress the quantized network even more.

�Size metric
So, at a high level, this network produces networks that have the same 

accuracy on ImageNet as AlexNet, a state-of-the-art computer vision 

network in 2012. By applying their model compression techniques, they 

were able to reduce the size of AlexNet from 240MB to 6.9MB, with no loss 
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in accuracy. By using fire modules to produce SqueezeNet, they were able 

to achieve the same accuracy as AlexNet on the ImageNet dataset with a 

model that is 4.8MB, a 50x improvement. Then, they were able to apply 

their model compression techniques to this model to produce a quantized 

version that is .47MB (under half a megabyte) yet still had an accuracy 

equivalent to the original model and AlexNet. Conceptually, SqueezeNet 

is able to achieve the same quality of results as AlexNet, with 510 times less 

parameters to work with, an impressive accomplishment.

�Difference between SqueezeNet 1.0 and 1.1
There are two versions of SqueezeNet in the literature, v1.0 and v1.1. The 

major difference between the two is in the first layer, which in the 1.0 

model used a 7x7 stride and 96 filters compared to the 1.1 model, which 

uses 3x3 strides and 64 filters.

�Code
The following is a demo from 1.1. In it, the v1.1 model moves its maxpool 

layers higher up the stack (e.g., on layers 1, 3, 5 instead of 1, 4, 8). This 

produces a network with the same accuracy at approximately 2.4x less 

operations (e.g., 1.72 Gflops/image for 1.0 vs. 0.72 Gflops/image for 1.1).

```

import TensorFlow

public struct Fire: Layer {

  public var squeeze: Conv2D<Float>

  public var expand1: Conv2D<Float>

  public var expand3: Conv2D<Float>
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  public init(

    inputFilterCount: Int,

    squeezeFilterCount: Int,

    expand1FilterCount: Int,

    expand3FilterCount: Int

  ) {

    squeeze = Conv2D(

      filterShape: (1, 1, inputFilterCount, squeezeFilterCount),

      activation: relu)

    expand1 = Conv2D(

      filterShape: (1, 1, squeezeFilterCount, expand1FilterCount),

      activation: relu)

    expand3 = Conv2D(

      filterShape: (3, 3, squeezeFilterCount, expand3FilterCount),

      padding: .same,

      activation: relu)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let squeezed = squeeze(input)

    let expanded1 = expand1(squeezed)

    let expanded3 = expand3(squeezed)

    return expanded1.concatenated(with: expanded3, alongAxis: -1)

  }

}

public struct SqueezeNet: Layer {

  public var inputConv = Conv2D<Float>(

    filterShape: (3, 3, 3, 64),

    strides: (2, 2),

    padding: .same,

    activation: relu)

Chapter 7  SqueezeNet



79

  �public var maxPool1 = MaxPool2D<Float>(poolSize: (3, 3), 

strides: (2, 2))

  public var fire2 = Fire(

    inputFilterCount: 64,

    squeezeFilterCount: 16,

    expand1FilterCount: 64,

    expand3FilterCount: 64)

  public var fire3 = Fire(

    inputFilterCount: 128,

    squeezeFilterCount: 16,

    expand1FilterCount: 64,

    expand3FilterCount: 64)

  �public var maxPool3 = MaxPool2D<Float>(poolSize: (3, 3), 

strides: (2, 2))

  public var fire4 = Fire(

    inputFilterCount: 128,

    squeezeFilterCount: 32,

    expand1FilterCount: 128,

    expand3FilterCount: 128)

  public var fire5 = Fire(

    inputFilterCount: 256,

    squeezeFilterCount: 32,

    expand1FilterCount: 128,

    expand3FilterCount: 128)

  �public var maxPool5 = MaxPool2D<Float>(poolSize: (3, 3), 

strides: (2, 2))

  public var fire6 = Fire(

    inputFilterCount: 256,

    squeezeFilterCount: 48,

    expand1FilterCount: 192,

    expand3FilterCount: 192)
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  public var fire7 = Fire(

    inputFilterCount: 384,

    squeezeFilterCount: 48,

    expand1FilterCount: 192,

    expand3FilterCount: 192)

  public var fire8 = Fire(

    inputFilterCount: 384,

    squeezeFilterCount: 64,

    expand1FilterCount: 256,

    expand3FilterCount: 256)

  public var fire9 = Fire(

    inputFilterCount: 512,

    squeezeFilterCount: 64,

    expand1FilterCount: 256,

    expand3FilterCount: 256)

  public var outputConv: Conv2D<Float>

  �public var avgPool = AvgPool2D<Float>(poolSize: (13, 13), 

strides: (1, 1))

  public init(classCount: Int = 10) {

    �outputConv = Conv2D(filterShape: (1, 1, 512, classCount), 

strides: (1, 1), activation: relu)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    �let convolved1 = input.sequenced(through: inputConv, 

maxPool1)

    �let fired1 = convolved1.sequenced(through: fire2, fire3, 

maxPool3, fire4, fire5)

    �let fired2 = fired1.sequenced(through: maxPool5, fire6, 

fire7, fire8, fire9)
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    let output = fired2.sequenced(through: outputConv, avgPool)

    �return output.reshaped(to: [input.shape[0], outputConv.

filter.shape[3]])

  }

}

```

�Training loop
Put the preceding code into a file named SqueezeNet.swift, and then add a 

training loop named main.swift:

```

import Datasets

import TensorFlow

let batchSize = 128

let epochCount = 100

let dataset = Imagenette(batchSize: batchSize, inputSize: 

.resized320, outputSize: 224)

var model = SqueezeNet()

let optimizer = SGD(for: model, learningRate: 0.0001, momentum: 

0.9); print("sgd")

//let optimizer = RMSProp(for: model, learningRate: 0.0001); 

print ("rmsprop")

//let optimizer = Adam(for: model, learningRate: 0.0001); print 

("adam")

print("Starting training...")

for (epoch, epochBatches) in dataset.training.

prefix(epochCount).enumerated() {

  Context.local.learningPhase = .training

Chapter 7  SqueezeNet



82

  for batch in epochBatches {

    let (images, labels) = (batch.data, batch.label)

    �let (_, gradients) = valueWithGradient(at: model) { model  

-> Tensor<Float> in

      let logits = model(images)

      return softmaxCrossEntropy(logits: logits, labels: labels)

    }

    optimizer.update(&model, along: gradients)

  }

  Context.local.learningPhase = .inference

  var testLossSum: Float = 0

  var testBatchCount = 0

  var correctGuessCount = 0

  var totalGuessCount = 0

  for batch in dataset.validation {

    let (images, labels) = (batch.data, batch.label)

    let logits = model(images)

    �testLossSum += softmaxCrossEntropy(logits: logits, labels: 

labels).scalarized()

    testBatchCount += 1

    �let correctPredictions = logits.argmax(squeezingAxis: 1) . 

== labels

    �correctGuessCount += Int(Tensor<Int32>(correctPredictions).

sum().scalarized())

    totalGuessCount = totalGuessCount + batch.label.shape[0]

  }

  let accuracy = Float(correctGuessCount) / Float(totalGuessCount)
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  print(

    """

    [Epoch \(epoch+1)] \

    Accuracy: \(correctGuessCount)/\(totalGuessCount) (\(accuracy)) \

    Loss: \(testLossSum / Float(testBatchCount))

    """

  )

}

```

Going forward, we’re just going to swap out models and run things that 

way. If you need custom training parameters, I’ll note them here.

�Results
Run your model, and you should end up with results like this:

```

...

[Epoch 95 ] Accuracy: 79/500 (0.158) Loss: 2.3003228

[Epoch 96 ] Accuracy: 78/500 (0.156) Loss: 2.3002906

[Epoch 97 ] Accuracy: 78/500 (0.156) Loss: 2.300246

[Epoch 98 ] Accuracy: 79/500 (0.158) Loss: 2.3002024

[Epoch 99 ] Accuracy: 78/500 (0.156) Loss: 2.3001637

[Epoch 100] Accuracy: 80/500 (0.16)  Loss: 2.3001184

```

Why is our network performing poorly? The reason why we only have 

16% accuracy is because SqueezeNet is an extremely difficult network to 

train. Basic SGD will usually work for building models, but to train this 

model accurately will require a slightly more sophisticated approach on 

the optimizer front.

> SGD + momentum + (optional) Nesterov smoothing
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We’ve not actually been using vanilla SGD so far; we’ve been using 

SGD + momentum, which is what’s called a second-order method. By 

keeping track of the current path the network is currently moving toward 

and then updating based on the inertia of the vector (physics), we have a 

higher probability of not getting distracted by random updates. Nesterov 

momentum (which can be enabled with flag “nesterov: true”) improves 

upon this process by mathematically smoothing the function that 

combines these two.

> RMSProp

> www.cs.toronto.edu/~tijmen/csc321/slides/ lecture_slides_

lec6.pdf

This made its way into existence from the preceding lecture notes by 

Geoffrey Hinton and was later written up in a paper by Alex Graves (see 

https://arxiv.org/abs/1308.0850). Conceptually, we replace the SGD 

+ momentum process by storing the gradient for each vector of the search 

space, and then the update process is an exponentially decreasing sum 

of these squared gradients. Since we track multiple vectors, this does well 

when working with sparse networks.

> Adam

> https://arxiv.org/abs/1412.6980

Adam and its variants then can be loosely described as combining 

this concept of momentum with tracking of the gradient space to try and 

get the best of both worlds. Loosely, there are situations in which either 

form will have difficulty converging. For momentum-based methods, this 

occurs when the gradient search subspace is extremely bumpy. Likewise, 

tracking gradients can hit the so-called vanishing gradient effect, whereby 

the search process starts going slower and slower and ends up not moving 

at all.
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Anyway, pick one of the non-SGD methods to enable, run the network, 

and your accuracy should improve significantly:

```

[Epoch 96 ] Accuracy: 378/500 (0.756) Loss: 0.7979737

[Epoch 97 ] Accuracy: 369/500 (0.738) Loss: 0.8244314

[Epoch 98 ] Accuracy: 387/500 (0.774) Loss: 0.74936193

[Epoch 99 ] Accuracy: 377/500 (0.754) Loss: 0.7717642

[Epoch 100] Accuracy: 379/500 (0.758) Loss: 0.7441697

```

For the rest of the book, we’ll keep on working with SGD and a small 

(e.g., 0.002) learning rate, but you should be aware of the preceding 

optimizers to try in situations in which basic stochastic methods are failing.

�Side quest
If you’re interested in optimizers, Sebastian Ruder has a nice blog post you 

should read:

https://ruder.io/optimizing-gradient-descent/

�Recap
We’ve looked at SqueezeNet, a computer vision network from 2016 

that delivered good results with significantly less cycles and number of 

parameters than the networks we’ve looked at so far. Then, we looked at 

some of the optimizer tweaks sometimes needed to train these smaller 

networks. Next, let’s look at some architectures that are designed around 

the hardware available on mobile phones.
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CHAPTER 8

MobileNet v1
There were some interesting attempts to get smaller models running on 

device post SqueezeNet. What was needed was a model designed specifically 

on mobile devices. What a group of researchers at Google produced was 

called MobileNet, which is an important family of networks for you to 

understand and where we will be spending a few chapters. At a high level, we 

will use depthwise separable convolutions to produce an even more accurate 

network than SqueezeNet that runs well on mobile phone hardware.

�MobileNet (v1)
> MobileNets: Efficient Convolutional Neural Networks for Mobile 

Vision Applications

> https://arxiv.org/abs/1704.04861

Model designed specifically to run on mobile hardware, much better 

use of parameter + data space.

�Spatial separable convolutions
Let’s look again at our Sobel filter from our chapter where we introduced 

convolutions. There, we looked at it as being two 3x3 matrix operations. 

But if we are clever with our math, we can reduce this to a [3x1] and [1x3] 

multiplication.

https://doi.org/10.1007/978-1-4842-6168-2_8#DOI
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This gives us the same result, but has the additional property that it 

can be computed much more cheaply. Our [3x3] • [3x3] combination ends 

up requiring nine operations, whereas our [3x1] • [1x3] only requires six 

operations, a reduction of 33% percent! However, not all kernels can be 

broken up like this.

�Depthwise convolutions
We can exploit one key property in our image data: color. We have three 

channels – red, green, blue – that we are running through the same sets of 

filter operations each time we evaluate our neural network.

We can create separate sets of convolutional filters for each area of the 

input image, combined together by color channel. In academic settings, 

channels are also referred to as depth, so these are called depthwise 

convolutions. A variant of this you need to know is increasing the number 

of filter outputs, which is called a channel multiplier.

�Pointwise convolutions
This is only half the puzzle; we still need to combine our channel data 

back together. In our last chapter on SqueezeNet, we looked at how we 

can put a 1x1 convolution into our stack as a way to reduce data down 

significantly before applying our 3x3 convolution. Conceptually, this 

is called a pointwise convolution because all of the channel input data 

passes through it. By using these pointwise convolutions, we can map our 

reduced data space back to our desired final filter size. Then, we simply 

need to increase the number of pointwise operators to match our desired 

number of output filters.

Conceptually, we are taking our input image and running groups 

of depthwise convolutions and then using a stack of small pointwise 

convolutions to combine them back to our desired output shape. This 

combination of filters together is called a depthwise separable convolution 
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and is key to the performance of this network. We have gotten most of the 

benefits of SqueezeNet’s compression approach, but with a less destructive 

approach than SqueezeNet. In addition, we are now using cheaper 

operations because depthwise separable convolutions can be accelerated 

in mobile hardware.

�ReLU 6
We have used a ReLU activation function for our models so far, which looks 

like this:

relu(x) = max(features, 0)

When building models which we know we are going to quantize, it is 

valuable to instead limit the output of the ReLU layers and by extension 

force the network to work with smaller numbers from the start. So, we 

simply introduce a ceiling function for our ReLU activation like so:

relu6(x) = min(max(features, 0), 6)

Now, we can simplify our output logic to take advantage of this 

reduced space.

�Example of the reduction in MACs with  
this approach

> Benchmark Analysis of Representative Deep Neural Network 

Architectures

> https://arxiv.org/abs/1810.00736

This paper has a nice graph on page 3 visualizing the differences 

between these networks. Conceptually, we have a slightly larger network 

than SqueezeNet, but we have a top 1 accuracy comparable to ResNet 18  
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(a smaller version of ResNet 34 from earlier). Look at VGG16 vs. MobileNet 

v2 if you want to know where we’re going next.

�Code
This network uses many more types of layers than our SqueezeNet 

approach, but produces significantly better results because they are cheaper 

computationally.  This is something we will see repeatedly going forward.

```

import TensorFlow

public struct ConvBlock: Layer {

  �public var zeroPad = ZeroPadding2D<Float>(padding:  

((0, 1), (0, 1)))

  public var conv: Conv2D<Float>

  public var batchNorm: BatchNorm<Float>

  public init(filterCount: Int, strides: (Int, Int)) {

    conv = Conv2D<Float>(

      filterShape: (3, 3, 3, filterCount),

      strides: strides,

      padding: .valid)

    batchNorm = BatchNorm<Float>(featureCount: filterCount)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    �let convolved = input.sequenced(through: zeroPad, conv, 

batchNorm)

    return relu6(convolved)

  }

}
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public struct DepthwiseConvBlock: Layer {

  @noDerivative let strides: (Int, Int)

  �@noDerivative public let zeroPad = 

ZeroPadding2D<Float>(padding: ((0, 1), (0, 1)))

  public var dConv: DepthwiseConv2D<Float>

  public var batchNorm1: BatchNorm<Float>

  public var conv: Conv2D<Float>

  public var batchNorm2: BatchNorm<Float>

  public init(

    filterCount: Int, pointwiseFilterCount: Int,

    strides: (Int, Int)

  ) {

    self.strides = strides

    dConv = DepthwiseConv2D<Float>(

      filterShape: (3, 3, filterCount, 1),

      strides: strides,

      padding: strides == (1, 1) ? .same : .valid)

    batchNorm1 = BatchNorm<Float>(

      featureCount: filterCount)

    conv = Conv2D<Float>(

      filterShape: (

        1, 1, filterCount,

        pointwiseFilterCount

      ),

      strides: (1, 1),

      padding: .same)

    �batchNorm2 = BatchNorm<Float>(featureCount: 

pointwiseFilterCount)

  }
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  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    var convolved1: Tensor<Float>

    if self.strides == (1, 1) {

      convolved1 = input.sequenced(through: dConv, batchNorm1)

    } else {

      �convolved1 = input.sequenced(through: zeroPad, dConv, 

batchNorm1)

    }

    let convolved2 = relu6(convolved1)

    �let convolved3 = relu6(convolved2.sequenced(through: conv, 

batchNorm2))

    return convolved3

  }

}

public struct MobileNetV1: Layer {

  @noDerivative let classCount: Int

  @noDerivative let scaledFilterShape: Int

  public var convBlock1: ConvBlock

  public var dConvBlock1: DepthwiseConvBlock

  public var dConvBlock2: DepthwiseConvBlock

  public var dConvBlock3: DepthwiseConvBlock

  public var dConvBlock4: DepthwiseConvBlock

  public var dConvBlock5: DepthwiseConvBlock

  public var dConvBlock6: DepthwiseConvBlock

  public var dConvBlock7: DepthwiseConvBlock

  public var dConvBlock8: DepthwiseConvBlock

  public var dConvBlock9: DepthwiseConvBlock

  public var dConvBlock10: DepthwiseConvBlock

  public var dConvBlock11: DepthwiseConvBlock

  public var dConvBlock12: DepthwiseConvBlock
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  public var dConvBlock13: DepthwiseConvBlock

  public var avgPool = GlobalAvgPool2D<Float>()

  public var dropoutLayer: Dropout<Float>

  public var outputConv: Conv2D<Float>

  public init(

    classCount: Int = 10,

    dropout: Double = 0.001

  ) {

    self.classCount = classCount

    scaledFilterShape = Int(1024.0 * 1.0)

    convBlock1 = ConvBlock(filterCount: 32, strides: (2, 2))

    dConvBlock1 = DepthwiseConvBlock(

      filterCount: 32,

      pointwiseFilterCount: 64,

      strides: (1, 1))

    dConvBlock2 = DepthwiseConvBlock(

      filterCount: 64,

      pointwiseFilterCount: 128,

      strides: (2, 2))

    dConvBlock3 = DepthwiseConvBlock(

      filterCount: 128,

      pointwiseFilterCount: 128,

      strides: (1, 1))

    dConvBlock4 = DepthwiseConvBlock(

      filterCount: 128,

      pointwiseFilterCount: 256,

      strides: (2, 2))

    dConvBlock5 = DepthwiseConvBlock(

      filterCount: 256,

      pointwiseFilterCount: 256,

      strides: (1, 1))
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    dConvBlock6 = DepthwiseConvBlock(

      filterCount: 256,

      pointwiseFilterCount: 512,

      strides: (2, 2))

    dConvBlock7 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 512,

      strides: (1, 1))

    dConvBlock8 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 512,

      strides: (1, 1))

    dConvBlock9 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 512,

      strides: (1, 1))

    dConvBlock10 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 512,

      strides: (1, 1))

    dConvBlock11 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 512,

      strides: (1, 1))

    dConvBlock12 = DepthwiseConvBlock(

      filterCount: 512,

      pointwiseFilterCount: 1024,

      strides: (2, 2))

    dConvBlock13 = DepthwiseConvBlock(

      filterCount: 1024,

      pointwiseFilterCount: 1024,

      strides: (1, 1))
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    dropoutLayer = Dropout<Float>(probability: dropout)

    outputConv = Conv2D<Float>(

      filterShape: (1, 1, scaledFilterShape, classCount),

      strides: (1, 1),

      padding: .same)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let convolved = input.sequenced(

      through: convBlock1, dConvBlock1,

      dConvBlock2, dConvBlock3, dConvBlock4)

    let convolved2 = convolved.sequenced(

      through: dConvBlock5, dConvBlock6,

      dConvBlock7, dConvBlock8, dConvBlock9)

    let convolved3 = convolved2.sequenced(

      �through: dConvBlock10, dConvBlock11, dConvBlock12, 

dConvBlock13, avgPool

    ).reshaped(to: [

      input.shape[0], 1, 1, scaledFilterShape,

    ])

    �let convolved4 = convolved3.sequenced(through: 

dropoutLayer, outputConv)

    return convolved4.reshaped(to: [input.shape[0], classCount])

  }

}

```
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�Results
Our results are on par with our Resnet 50 network from before, but this 

network is smaller in general and can be evaluated much, much faster at 

runtime and so is a solid improvement for mobile devices.

Starting training...

[Epoch 1 ] Accuracy: 50/500  (0.1)   Loss: 2.5804458

[Epoch 2 ] Accuracy: 262/500 (0.524) Loss: 1.5034955

[Epoch 3 ] Accuracy: 224/500 (0.448) Loss: 1.928577

[Epoch 4 ] Accuracy: 286/500 (0.572) Loss: 1.4074985

[Epoch 5 ] Accuracy: 306/500 (0.612) Loss: 1.3206513

[Epoch 6 ] Accuracy: 334/500 (0.668) Loss: 1.0112444

[Epoch 7 ] Accuracy: 362/500 (0.724) Loss: 0.8360394

[Epoch 8 ] Accuracy: 343/500 (0.686) Loss: 1.0489439

[Epoch 9 ] Accuracy: 317/500 (0.634) Loss: 1.6159635

[Epoch 10] Accuracy: 338/500 (0.676) Loss: 1.0420185

[Epoch 11] Accuracy: 354/500 (0.708) Loss: 1.0034739

[Epoch 12] Accuracy: 358/500 (0.716) Loss: 0.9746185

[Epoch 13] Accuracy: 344/500 (0.688) Loss: 1.152486

[Epoch 14] Accuracy: 365/500 (0.73)  Loss: 0.96197647

[Epoch 15] Accuracy: 353/500 (0.706) Loss: 1.2438473

[Epoch 16] Accuracy: 367/500 (0.734) Loss: 1.044013

[Epoch 17] Accuracy: 365/500 (0.73)  Loss: 1.1098087

[Epoch 18] Accuracy: 352/500 (0.704) Loss: 1.3609929

[Epoch 19] Accuracy: 376/500 (0.752) Loss: 1.2861694

[Epoch 20] Accuracy: 376/500 (0.752) Loss: 1.0280938

[Epoch 21] Accuracy: 369/500 (0.738) Loss: 1.1655327

[Epoch 22] Accuracy: 369/500 (0.738) Loss: 1.1702954

[Epoch 23] Accuracy: 363/500 (0.726) Loss: 1.151112

[Epoch 24] Accuracy: 378/500 (0.756) Loss: 0.94088197

[Epoch 25] Accuracy: 386/500 (0.772) Loss: 1.03443

Chapter 8  MobileNet v1



97

[Epoch 26] Accuracy: 379/500 (0.758) Loss: 1.1582794

[Epoch 27] Accuracy: 384/500 (0.768) Loss: 1.1210178

[Epoch 28] Accuracy: 377/500 (0.754) Loss: 1.136668

[Epoch 29] Accuracy: 382/500 (0.764) Loss: 1.2300915

[Epoch 30] Accuracy: 381/500 (0.762) Loss: 1.0231776

�Recap
We’ve looked at MobileNet, an important computer vision network from 

2017 that makes heavy use of depthwise separable convolutions in order to 

produce results on par with ResNet 18 (a smaller version of our ResNet 34 

network) at a significantly reduced size and computational budget. We can 

run this on a phone at near real time (e.g., ~50ms/prediction speed) with 

hardware of the day. Next, let’s look at how we can tweak our MobileNet 

network slightly to produce even better results.
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CHAPTER 9

MobileNet v2
In this chapter, we’ll look at how we can modify our MobileNet v1 

approach to produce MobileNet v2, which is slightly more accurate and 

computationally cheaper. This network came out in 2018 and delivered an 

improved version of the v1 architecture.

> MobileNetV2: Inverted Residuals and Linear Bottlenecks

> https://arxiv.org/abs/1801.04381

The key concepts the Google team introduced in this paper were 

inverted residual blocks and linear bottleneck layers, so let’s look at how 

they work.

�Inverted residual blocks
In our ResNet 50 bottleneck blocks from before, we pass our input layer 

through a 1x1 convolution in our initial layer of each group, which reduces 

the data at this point. After passing the data through an expensive 3x3 

convolution, we then use a 1x1 convolution to expand the number of 

filters.

In an inverted residual block, which is what MobileNet v2 uses, we 

instead use an initial 1x1 convolution to increase our network depth, then 

apply our depthwise convolution from MobileNet v1, and then use a 1x1 

convolution to squeeze our network back down at the end.

https://doi.org/10.1007/978-1-4842-6168-2_9#DOI
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�Inverted skip connections
In our ResNet networks, we applied our skip connection (e.g., the add 

operation) to pass data from our input to our output layer. MobileNet v2 does 

this in a subtly different way by only performing this operation on blocks 

where the number of inputs and outputs are the same (e.g., not the first block 

of each stack but between the remaining ones). What this means is that this 

network is not as strongly connected as the original ResNet and less data 

passes through, but on the flip side, it is significantly cheaper to evaluate.

�Linear bottleneck layers
The next subtle tweak is tied to our inverted skip connections. In the original 

ResNet network, we apply a ReLU activation function to the combined 

output of our bottleneck layer and input. Interestingly enough, the 

MobileNet v2 authors found that we can eliminate this activation function 

and improve the network’s performance. This activation then simply 

becomes a linear function, so they call the result a linear bottleneck function.

�Code
For this network, we’ll use our block operator to generate the sublayers 

(e.g., InvertedBottleneckBlockStack). Conceptually, the major difference 

from our MobileNet v1 architecture is the addition of a depthwise conv to 

our residual blocks and our inverted method of calculating our gradients 

each pass.
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```

import TensorFlow

public struct InitialInvertedBottleneckBlock: Layer {

  public var dConv: DepthwiseConv2D<Float>

  public var batchNormDConv: BatchNorm<Float>

  public var conv2: Conv2D<Float>

  public var batchNormConv: BatchNorm<Float>

  public init(filters: (Int, Int)) {

    dConv = DepthwiseConv2D<Float>(

      filterShape: (3, 3, filters.0, 1),

      strides: (1, 1),

      padding: .same)

    conv2 = Conv2D<Float>(

      filterShape: (1, 1, filters.0, filters.1),

      strides: (1, 1),

      padding: .same)

    batchNormDConv = BatchNorm(featureCount: filters.0)

    batchNormConv = BatchNorm(featureCount: filters.1)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let depthwise = relu6(batchNormDConv(dConv(input)))

    return batchNormConv(conv2(depthwise))

  }

}

public struct InvertedBottleneckBlock: Layer {

  @noDerivative public var addResLayer: Bool

  @noDerivative public var strides: (Int, Int)

  �@noDerivative public let zeroPad = 

ZeroPadding2D<Float>(padding: ((0, 1), (0, 1)))
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  public var conv1: Conv2D<Float>

  public var batchNormConv1: BatchNorm<Float>

  public var dConv: DepthwiseConv2D<Float>

  public var batchNormDConv: BatchNorm<Float>

  public var conv2: Conv2D<Float>

  public var batchNormConv2: BatchNorm<Float>

  public init(

    filters: (Int, Int),

    depthMultiplier: Int = 6,

    strides: (Int, Int) = (1, 1)

  ) {

    self.strides = strides

    self.addResLayer = filters.0 == filters.1 && strides == (1, 1)

    let hiddenDimension = filters.0 * depthMultiplier

    conv1 = Conv2D<Float>(

      filterShape: (1, 1, filters.0, hiddenDimension),

      strides: (1, 1),

      padding: .same)

    dConv = DepthwiseConv2D<Float>(

      filterShape: (3, 3, hiddenDimension, 1),

      strides: strides,

      padding: strides == (1, 1) ? .same : .valid)

    conv2 = Conv2D<Float>(

      filterShape: (1, 1, hiddenDimension, filters.1),

      strides: (1, 1),

      padding: .same)

    batchNormConv1 = BatchNorm(featureCount: hiddenDimension)

    batchNormDConv = BatchNorm(featureCount: hiddenDimension)

    batchNormConv2 = BatchNorm(featureCount: filters.1)

  }
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  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let pointwise = relu6(batchNormConv1(conv1(input)))

    var depthwise: Tensor<Float>

    if self.strides == (1, 1) {

      depthwise = relu6(batchNormDConv(dConv(pointwise)))

    } else {

      depthwise = relu6(batchNormDConv(dConv(zeroPad(pointwise))))

    }

    let pointwiseLinear = batchNormConv2(conv2(depthwise))

    if self.addResLayer {

      return input + pointwiseLinear

    } else {

      return pointwiseLinear

    }

  }

}

public struct InvertedBottleneckBlockStack: Layer {

  var blocks: [InvertedBottleneckBlock] = []

  public init(

    filters: (Int, Int),

    blockCount: Int,

    initialStrides: (Int, Int) = (2, 2)

  ) {

    self.blocks = [

      InvertedBottleneckBlock(

        filters: (filters.0, filters.1),

        strides: initialStrides)

    ]
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    for _ in 1..<blockCount {

      self.blocks.append(

        InvertedBottleneckBlock(

          filters: (filters.1, filters.1))

      )

    }

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    return blocks.differentiableReduce(input) { $1($0) }

  }

}

public struct MobileNetV2: Layer {

  �@noDerivative public let zeroPad = ZeroPadding2D<Float> 

(padding: ((0, 1), (0, 1)))

  public var inputConv: Conv2D<Float>

  public var inputConvBatchNorm: BatchNorm<Float>

  �public var initialInvertedBottleneck: InitialInverted 

BottleneckBlock

  public var residualBlockStack1: InvertedBottleneckBlockStack

  public var residualBlockStack2: InvertedBottleneckBlockStack

  public var residualBlockStack3: InvertedBottleneckBlockStack

  public var residualBlockStack4: InvertedBottleneckBlockStack

  public var residualBlockStack5: InvertedBottleneckBlockStack

  public var invertedBottleneckBlock16: InvertedBottleneckBlock

  public var outputConv: Conv2D<Float>

  public var outputConvBatchNorm: BatchNorm<Float>

  public var avgPool = GlobalAvgPool2D<Float>()

  public var outputClassifier: Dense<Float>
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  public init(classCount: Int = 10) {

    inputConv = Conv2D<Float>(

      filterShape: (3, 3, 3, 32),

      strides: (2, 2),

      padding: .valid)

    inputConvBatchNorm = BatchNorm(

      featureCount: 32)

    initialInvertedBottleneck = InitialInvertedBottleneckBlock(

      filters: (32, 16))

    �residualBlockStack1 = InvertedBottleneckBlockStack(filters: 

(16, 24), blockCount: 2)

    �residualBlockStack2 = InvertedBottleneckBlockStack(filters: 

(24, 32), blockCount: 3)

    �residualBlockStack3 = InvertedBottleneckBlockStack(filters: 

(32, 64), blockCount: 4)

    residualBlockStack4 = InvertedBottleneckBlockStack(

      filters: (64, 96), blockCount: 3,

      initialStrides: (1, 1))

    �residualBlockStack5 = InvertedBottleneckBlockStack(filters: 

(96, 160), blockCount: 3)

    �invertedBottleneckBlock16 = InvertedBottleneckBlock(filters:  

(160, 320))

    outputConv = Conv2D<Float>(

      filterShape: (1, 1, 320, 1280),

      strides: (1, 1),

      padding: .same)

    outputConvBatchNorm = BatchNorm(featureCount: 1280)

    �outputClassifier = Dense(inputSize: 1280, outputSize: 

classCount)

  }
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  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    �let convolved = relu6(input.sequenced(through: zeroPad, 

inputConv, inputConvBatchNorm))

    let initialConv = initialInvertedBottleneck(convolved)

    let backbone = initialConv.sequenced(

      �through: residualBlockStack1, residualBlockStack2, 

residualBlockStack3,

      residualBlockStack4, residualBlockStack5)

    �let output = relu6(outputConvBatchNorm(outputConv(inverted 

BottleneckBlock16(backbone))))

    return output.sequenced(through: avgPool, outputClassifier)

  }

}

�Results
This network performs better than our MobileNet v1 architecture using the 

same training loop and basic setup. 

Starting training...

[Epoch 1 ] Accuracy: 50/500  (0.1)   Loss: 3.0107288

[Epoch 2 ] Accuracy: 276/500 (0.552) Loss: 1.4318728

[Epoch 3 ] Accuracy: 324/500 (0.648) Loss: 1.2038971

[Epoch 4 ] Accuracy: 337/500 (0.674) Loss: 1.1165649

[Epoch 5 ] Accuracy: 347/500 (0.694) Loss: 0.9973701

[Epoch 6 ] Accuracy: 363/500 (0.726) Loss: 0.9118728

[Epoch 7 ] Accuracy: 310/500 (0.62)  Loss: 1.2533528

[Epoch 8 ] Accuracy: 372/500 (0.744) Loss: 0.797099

[Epoch 9 ] Accuracy: 368/500 (0.736) Loss: 0.8001915

[Epoch 10] Accuracy: 350/500 (0.7)   Loss: 1.1580966
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[Epoch 11] Accuracy: 372/500 (0.744) Loss: 0.84680176

[Epoch 12] Accuracy: 358/500 (0.716) Loss: 1.1446275

[Epoch 13] Accuracy: 388/500 (0.776) Loss: 0.90346915

[Epoch 14] Accuracy: 394/500 (0.788) Loss: 0.82173353

[Epoch 15] Accuracy: 365/500 (0.73)  Loss: 0.9974839

[Epoch 16] Accuracy: 359/500 (0.718) Loss: 1.2463648

[Epoch 17] Accuracy: 333/500 (0.666) Loss: 1.5243211

[Epoch 18] Accuracy: 390/500 (0.78)  Loss: 0.8723967

[Epoch 19] Accuracy: 383/500 (0.766) Loss: 1.0088551

[Epoch 20] Accuracy: 372/500 (0.744) Loss: 1.1002765

[Epoch 21] Accuracy: 392/500 (0.784) Loss: 0.9233314

[Epoch 22] Accuracy: 395/500 (0.79)  Loss: 0.9421617

[Epoch 23] Accuracy: 367/500 (0.734) Loss: 1.1607682

[Epoch 24] Accuracy: 372/500 (0.744) Loss: 1.1685853

[Epoch 25] Accuracy: 375/500 (0.75)  Loss: 1.1443601

[Epoch 26] Accuracy: 389/500 (0.778) Loss: 1.0197723

[Epoch 27] Accuracy: 392/500 (0.784) Loss: 1.0215062

[Epoch 28] Accuracy: 387/500 (0.774) Loss: 1.1886547

[Epoch 29] Accuracy: 400/500 (0.8)   Loss: 0.9691738

[Epoch 30] Accuracy: 383/500 (0.766) Loss: 1.1193326

�Recap
We’ve looked at MobileNet v2, a state-of-the-art network from 2018 for 

performing image recognition on a device with limited computational 

capacity (e.g., a phone). Next, let’s look at how with some reinforcement 

learning we can get even better results!
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CHAPTER 10

EfficientNet
EfficientNet is the current state of the art for image recognition. I doubt this 

will remain the case forever, but I do not believe it is going to be replaced 

easily. It is the product of many years’ worth of research in this field and 

combines multiple different techniques together. What is interesting 

to me in particular about this network is that we are seeing techniques 

developed for mobile devices having applications in the larger computer 

vision community. Or rather, research on building models for resource-

constrained devices is driving progress in the cloud, while historically the 

reverse has been the case.

At a high level, EfficientNet was created using the inverted residual 

blocks of MobileNetV2 as an architecture type combined with the MnasNet 

search strategy. These smaller blocks weren’t around when MnasNet was 

created, and by using them the researchers were able to find a significantly 

improved set of networks. In addition, they were able to find a reliably 

scalable set of heuristics for constructing larger networks given an initial 

starting point, which was the key limitation of the evolutionary strategies 

we looked at earlier in the chapter.

In addition, the researchers added two important concepts from other 

papers: the swish activation function and SE (Squeeze and Excitation) 

blocks.

https://doi.org/10.1007/978-1-4842-6168-2_10#DOI
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�Swish
The ReLU function, which we introduced way back in Chapter 1, isn’t the 

only activation function that’s been tried. They’re just extremely simple 

to implement and extremely performant, both at the mathematical and 

hardware levels, and so have stood the test of time, so to speak.

> Searching for Activation Functions

> https://arxiv.org/abs/1710.05941

This paper explores a variety of alternative activation functions and 

found that the swish function (discovered in this paper) produces even 

better results when used in networks.

Swish is defined mathematically as

```f(x)=x·sigmoid(βx)```
```sigmoid(y)=1/(1+e^(-y))```

Combining these two together has the interesting property of going 

slightly negative around zero, whereas most traditional activation 

functions are always >= zero. Conceptually, this produces a smoother 

gradient space and by extension makes it easier for the network to learn 

the underlying data distribution, which translates into improved accuracy. 

Swish has been shown to improve performance in other reinforcement 

learning problem scenarios, and so it is an important activation function 

for you to know in general.

There are some limitations to swish from an implementation 

standpoint, namely, that it uses more memory than a simple ReLU. We will 

come back to this in the next chapter.
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�SE (Squeeze + Excitation) block
This is an interesting paper from the Oxford Visual Geometry Group (e.g., 

the people who produced VGG) from 2017, which won the ImageNet 

competition that year.

> Squeeze-and-Excitation Networks

> https://arxiv.org/abs/1709.01507

Conceptually, we might think of what our neural networks are actually 

learning as a collection of features. Then, when the network sees a 

picture that matches a particular collection of features, we train it to fire 

a particular neuron. To take things to the next level and avoid random 

activations, ideally for each feature map, we could define a sort of master 

neuron that decides whether or not the feature should activate as a whole.

This is loosely the idea of Squeeze and Excitation blocks. By taking the 

feature input and reducing it dramatically down (to as small as a single 

pixel in some cases), we allow the network to sort of train each block to 

teach itself as to whether or not it should fire given a particular input, so to 

speak. This produces state-of-the-art results, but is also computationally 

expensive.

EfficientNet uses a simpler variant based around combining 

two convolutions to produce similar results at a much cheaper cost 

computationally.

�Code
Pay attention to the squeeze and excite blocks and how they are used to 

boost the results in the convolutional blocks.  With this addition, the rest of 

this backbone is extremely similar to MobileNet v2.  Look also at the subtle 

differences in the parameters to the MBConvBlockStack generator, which 

we will see much more of in our next chapter.
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```

import TensorFlow

struct InitialMBConvBlock: Layer {

  @noDerivative var hiddenDimension: Int

  var dConv: DepthwiseConv2D<Float>

  var batchNormDConv: BatchNorm<Float>

  var seAveragePool = GlobalAvgPool2D<Float>()

  var seReduceConv: Conv2D<Float>

  var seExpandConv: Conv2D<Float>

  var conv2: Conv2D<Float>

  var batchNormConv2: BatchNorm<Float>

  init(filters: (Int, Int), width: Float) {

    let filterMult = filters

    self.hiddenDimension = filterMult.0

    dConv = DepthwiseConv2D<Float>(

      filterShape: (3, 3, filterMult.0, 1),

      strides: (1, 1),

      padding: .same)

    seReduceConv = Conv2D<Float>(

      filterShape: (1, 1, filterMult.0, 8),

      strides: (1, 1),

      padding: .same)

    seExpandConv = Conv2D<Float>(

      filterShape: (1, 1, 8, filterMult.0),

      strides: (1, 1),

      padding: .same)

    conv2 = Conv2D<Float>(

      filterShape: (1, 1, filterMult.0, filterMult.1),

      strides: (1, 1),

      padding: .same)
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    batchNormDConv = BatchNorm(featureCount: filterMult.0)

    batchNormConv2 = BatchNorm(featureCount: filterMult.1)

  }

  @differentiable

  func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let depthwise = swish(batchNormDConv(dConv(input)))

    �let seAvgPoolReshaped = seAveragePool(depthwise).

reshaped(to: [

      input.shape[0], 1, 1, self.hiddenDimension,

    ])

    let squeezeExcite =

      depthwise

      �* sigmoid(seExpandConv(swish(seReduceConv(seAvgPool 

Reshaped))))

    return batchNormConv2(conv2(squeezeExcite))

  }

}

struct MBConvBlock: Layer {

  @noDerivative var addResLayer: Bool

  @noDerivative var strides: (Int, Int)

  �@noDerivative let zeroPad = ZeroPadding2D<Float>(padding: 

((0, 1), (0, 1)))

  @noDerivative var hiddenDimension: Int

  var conv1: Conv2D<Float>

  var batchNormConv1: BatchNorm<Float>

  var dConv: DepthwiseConv2D<Float>

  var batchNormDConv: BatchNorm<Float>

  var seAveragePool = GlobalAvgPool2D<Float>()

  var seReduceConv: Conv2D<Float>

  var seExpandConv: Conv2D<Float>
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  var conv2: Conv2D<Float>

  var batchNormConv2: BatchNorm<Float>

  init(

    filters: (Int, Int),

    width: Float,

    depthMultiplier: Int = 6,

    strides: (Int, Int) = (1, 1),

    kernel: (Int, Int) = (3, 3)

  ) {

    self.strides = strides

    self.addResLayer = filters.0 == filters.1 && strides == (1, 1)

    let filterMult = filters

    self.hiddenDimension = filterMult.0 * depthMultiplier

    let reducedDimension = max(1, Int(filterMult.0 / 4))

    conv1 = Conv2D<Float>(

      filterShape: (1, 1, filterMult.0, hiddenDimension),

      strides: (1, 1),

      padding: .same)

    dConv = DepthwiseConv2D<Float>(

      filterShape: (kernel.0, kernel.1, hiddenDimension, 1),

      strides: strides,

      padding: strides == (1, 1) ? .same : .valid)

    seReduceConv = Conv2D<Float>(

      filterShape: (1, 1, hiddenDimension, reducedDimension),

      strides: (1, 1),

      padding: .same)

    seExpandConv = Conv2D<Float>(

      filterShape: (1, 1, reducedDimension, hiddenDimension),

      strides: (1, 1),

      padding: .same)
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    conv2 = Conv2D<Float>(

      filterShape: (1, 1, hiddenDimension, filterMult.1),

      strides: (1, 1),

      padding: .same)

    batchNormConv1 = BatchNorm(featureCount: hiddenDimension)

    batchNormDConv = BatchNorm(featureCount: hiddenDimension)

    batchNormConv2 = BatchNorm(featureCount: filterMult.1)

  }

  @differentiable

  func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let piecewise = swish(batchNormConv1(conv1(input)))

    var depthwise: Tensor<Float>

    if self.strides == (1, 1) {

      depthwise = swish(batchNormDConv(dConv(piecewise)))

    } else {

      depthwise = swish(batchNormDConv(dConv(zeroPad(piecewise))))

    }

    �let seAvgPoolReshaped = seAveragePool(depthwise).

reshaped(to: [

      input.shape[0], 1, 1, self.hiddenDimension,

    ])

    let squeezeExcite =

      depthwise

      �* sigmoid(seExpandConv(swish(seReduceConv(seAvgPool 

Reshaped))))

    let piecewiseLinear = batchNormConv2(conv2(squeezeExcite))

    if self.addResLayer {

      return input + piecewiseLinear

    } else {

      return piecewiseLinear
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    }

  }

}

struct MBConvBlockStack: Layer {

  var blocks: [MBConvBlock] = []

  init(

    filters: (Int, Int),

    width: Float,

    initialStrides: (Int, Int) = (2, 2),

    kernel: (Int, Int) = (3, 3),

    blockCount: Int,

    depth: Float

  ) {

    let blockMult = blockCount

    self.blocks = [

      MBConvBlock(

        filters: (filters.0, filters.1), width: width,

        strides: initialStrides, kernel: kernel)

    ]

    for _ in 1..<blockMult {

      self.blocks.append(

        MBConvBlock(

          filters: (filters.1, filters.1),

          width: width, kernel: kernel))

    }

  }

  @differentiable

  func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    return blocks.differentiableReduce(input) { $1($0) }

  }

}
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public struct EfficientNet: Layer {

  �@noDerivative let zeroPad = ZeroPadding2D<Float>(padding: 

((0, 1), (0, 1)))

  var inputConv: Conv2D<Float>

  var inputConvBatchNorm: BatchNorm<Float>

  var initialMBConv: InitialMBConvBlock

  var residualBlockStack1: MBConvBlockStack

  var residualBlockStack2: MBConvBlockStack

  var residualBlockStack3: MBConvBlockStack

  var residualBlockStack4: MBConvBlockStack

  var residualBlockStack5: MBConvBlockStack

  var residualBlockStack6: MBConvBlockStack

  var outputConv: Conv2D<Float>

  var outputConvBatchNorm: BatchNorm<Float>

  var avgPool = GlobalAvgPool2D<Float>()

  var dropoutProb: Dropout<Float>

  var outputClassifier: Dense<Float>

  public init(

    classCount: Int = 1000,

    width: Float = 1.0,

    depth: Float = 1.0,

    resolution: Int = 224,

    dropout: Double = 0.2

  ) {

    inputConv = Conv2D<Float>(

      filterShape: (3, 3, 3, 32),

      strides: (2, 2),

      padding: .valid)

    inputConvBatchNorm = BatchNorm(featureCount: 32)
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    �initialMBConv = InitialMBConvBlock(filters: (32, 16), 

width: width)

    residualBlockStack1 = MBConvBlockStack(

      filters: (16, 24), width: width,

      blockCount: 2, depth: depth)

    residualBlockStack2 = MBConvBlockStack(

      filters: (24, 40), width: width,

      kernel: (5, 5), blockCount: 2, depth: depth)

    residualBlockStack3 = MBConvBlockStack(

      filters: (40, 80), width: width,

      blockCount: 3, depth: depth)

    residualBlockStack4 = MBConvBlockStack(

      filters: (80, 112), width: width,

      �initialStrides: (1, 1), kernel: (5, 5), blockCount: 3, 

depth: depth)

    residualBlockStack5 = MBConvBlockStack(

      filters: (112, 192), width: width,

      kernel: (5, 5), blockCount: 4, depth: depth)

    residualBlockStack6 = MBConvBlockStack(

      filters: (192, 320), width: width,

      initialStrides: (1, 1), blockCount: 1, depth: depth)

    outputConv = Conv2D<Float>(

      filterShape: (

        1, 1,

        320, 1280

      ),

      strides: (1, 1),

      padding: .same)

    outputConvBatchNorm = BatchNorm(featureCount: 1280)
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    dropoutProb = Dropout<Float>(probability: dropout)

    �outputClassifier = Dense(inputSize: 1280, outputSize: 

classCount)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    �let convolved = swish(input.sequenced(through: zeroPad, 

inputConv, inputConvBatchNorm))

    let initialBlock = initialMBConv(convolved)

    let backbone = initialBlock.sequenced(

      through: residualBlockStack1, residualBlockStack2,

      �residualBlockStack3, residualBlockStack4, 

residualBlockStack5, residualBlockStack6)

    �let output = swish(backbone.sequenced(through: outputConv, 

outputConvBatchNorm))

    �return output.sequenced(through: avgPool, dropoutProb, 

outputClassifier)

  }

}

```

�Results
This network trains extremely well, achieving higher accuracy than any 

of the networks we have seen so far without the addition of any data 

augmentation techniques.

Starting training...

[Epoch 1 ] Accuracy: 50/500  (0.1)   Loss: 3.919964

[Epoch 2 ] Accuracy: 315/500 (0.63)  Loss: 1.1730766

[Epoch 3 ] Accuracy: 340/500 (0.68)  Loss: 1.042603
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[Epoch 4 ] Accuracy: 382/500 (0.764) Loss: 0.7738381

[Epoch 5 ] Accuracy: 358/500 (0.716) Loss: 0.8867168

[Epoch 6 ] Accuracy: 397/500 (0.794) Loss: 0.7941174

[Epoch 7 ] Accuracy: 384/500 (0.768) Loss: 0.7910826

[Epoch 8 ] Accuracy: 375/500 (0.75)  Loss: 0.9265955

[Epoch 9 ] Accuracy: 395/500 (0.79)  Loss: 0.7806258

[Epoch 10] Accuracy: 389/500 (0.778) Loss: 0.8921993

[Epoch 11] Accuracy: 393/500 (0.786) Loss: 0.913636

[Epoch 12] Accuracy: 395/500 (0.79)  Loss: 0.8772738

[Epoch 13] Accuracy: 396/500 (0.792) Loss: 0.819137

[Epoch 14] Accuracy: 393/500 (0.786) Loss: 0.7435807

[Epoch 15] Accuracy: 418/500 (0.836) Loss: 0.6915679

[Epoch 16] Accuracy: 404/500 (0.808) Loss: 0.79288286

[Epoch 17] Accuracy: 405/500 (0.81)  Loss: 0.8690043

[Epoch 18] Accuracy: 404/500 (0.808) Loss: 0.89440507

[Epoch 19] Accuracy: 409/500 (0.818) Loss: 0.85941887

[Epoch 20] Accuracy: 408/500 (0.816) Loss: 0.8633226

[Epoch 21] Accuracy: 404/500 (0.808) Loss: 0.7646436

[Epoch 22] Accuracy: 411/500 (0.822) Loss: 0.8865621

[Epoch 23] Accuracy: 424/500 (0.848) Loss: 0.6812671

[Epoch 24] Accuracy: 402/500 (0.804) Loss: 0.8662841

[Epoch 25] Accuracy: 425/500 (0.85)  Loss: 0.7081538

[Epoch 26] Accuracy: 423/500 (0.846) Loss: 0.7106852

[Epoch 27] Accuracy: 411/500 (0.822) Loss: 0.88567644

[Epoch 28] Accuracy: 410/500 (0.82)  Loss: 0.8509838

[Epoch 29] Accuracy: 409/500 (0.818) Loss: 0.85791296

[Epoch 30] Accuracy: 416/500 (0.832) Loss: 0.76689
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�EfficientNet variants
Once we have this base, we can then use our improved image recognition 

network to solve other related problems in different fields.

�EfficientNet [B1-8]
To play off our exploration of network architecture search functions in the 

last chapter, the problem with these sort of approaches is that trying to 

make them larger is difficult because there’s not a clear system for scaling 

them up.

What the authors introduce in this paper is a set of scaling heuristics 

for their base (B0) network that enables smooth scaling to produce larger 

and larger networks. Loosely speaking, we might say that each step of 

a larger network requires a squared amount of compute. Then, we can 

build large networks consistently given an extremely large amount of 

computational time to run on. So, here are EfficientNet variants that can be 

produced by simply scaling up our prior network compared to the various 

networks we’ve looked at so far in this book.

�RandAugment
> RandAugment: Practical automated data augmentation with a 

reduced search space

> https://arxiv.org/abs/1909.13719

We discussed data augmentation briefly in a prior chapter, and I 

mentioned that it is an area of active research. This paper combines 

various augmentation techniques (e.g., flipping, rotating, zooming, etc.) 

with a reinforcement learning algorithm in order to find the optimal 

(largest effect on accuracy with the smallest set) combination of data 

augmentation filters when applied to a dataset. Then, they run this learned 
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algorithm against the ImageNet dataset and then train the EfficientNet 

variants on top to produce a significantly (~4–5%!) improved set of 

networks using nothing more than computational time.

�Noisy Student
> Self-training with Noisy Student improves ImageNet classification

> https://arxiv.org/abs/1911.04252

Next, **network distillation** is an interesting area of research for 

building smaller networks. Loosely, we take a large network as a teacher 

and then train a smaller student network to give similar responses to the 

larger one given the same inputs and feedback on each answer from the 

teacher. This has interesting applications in building networks for devices 

with limited resources once a larger approach has proven itself on a GPU 

cluster, for example. The large area where this is of interest in natural 

language processing, where large networks (e.g., BERT) have achieved a 

state-of-the-art performance but are too large to be used for day-to-day 

problem solving.

Network distillation has been used to make networks smaller, but can 

it be used to make them larger? Loosely speaking, this paper takes data 

augmentation techniques and uses them to make the student’s inputs much 

more noisy, but keeps on requiring the student network to give answers 

that match the teacher’s answers. By iteratively training a larger student 

on a teacher and then replacing the teacher with the trained student, they 

were able to build a much larger network that was able to produce even 

more accurate ImageNet results than even Facebook’s 2019 billion-picture 

Instagram corpus (see https://arxiv.org/abs/1905.00546).
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�EfficientDet
> EfficientDet: Scalable and Efficient Object Detection

> https://arxiv.org/abs/1911.09070

We’ve not talked about object detection networks in this book, but 

the basic idea of many approaches is to use a known good existing image 

recognition network (called a **backbone**), and then we can add an 

object detection output layer at the end (called a **head**). This approach 

enables a nice sort of mix and match style technique where we can use 

the same head with multiple different backbones or data augmentation 

strategies to find the best solution for a particular problem.

So, we take EfficientNet, add a custom object detection head, apply 

our scaling techniques, and voilà, we have an object detection (and with 

some other tweaks, semantic segmentation) network with state-of-the-art 

performance.

�Recap
We’ve looked at EfficientNet, the current state of the art for image 

recognition. We’ve looked at how we can use the EfficientNet base to build 

state-of-the-art approaches in related fields. Next, let’s look at how we can 

take these ideas back to the realm of mobile devices.
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CHAPTER 11

MobileNetV3
In this chapter, we will look at a MobileNetV3, which delivers an optimized 

version of EfficientNet on mobile hardware by reducing the complexity of 

the network. This model is heavily based on EfficientNet’s search strategy 

with mobile-specific parameter space goals.

This is the current state of the art for mobile models, but at this point, 

we’re deeply into the realm of arguing about what hardware is running 

things, making 1:1 model comparisons difficult. Manufacturers are 

increasingly shipping custom hardware, and each device is going to run 

things slightly differently. The flip side of this though is that the EfficientNet 

search algorithm can be given an arbitrary starting point (e.g., knowledge of 

whatever hardware it is going to be run on) and then produce an optimized 

network for that device. I believe this is increasingly where things are going 

in the future: as more and more new AI hardware becomes available, then 

networks will be customized to run on that particular device.

First, let us look at some mobile-specific variants of the swish and sigmoid 

activation functions we can use to speed up the evaluation of our network.

https://doi.org/10.1007/978-1-4842-6168-2_11#DOI
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�Hard swish and hard sigmoid
In the last chapter, we discussed how we can use swish and sigmoid as 

activation functions to make it possible for the network to learn even 

more accurate results. At runtime, though, these functions are much more 

expensive in terms of memory than our ReLU activation function. The 

MobileNet authors introduced a relu6 variant of our sigmoid function:

hardSigmoid(x) = relu6(x + 3)/6

hardSwish(x) = x * hardSigmoid(x)

in order to reduce the amount of memory required to run the network 

and simplify the runtime.

However, they found that they couldn’t simply apply this to all of the 

nodes without sacrificing performance. We will come back to this in a 

second.

�Remove the Squeeze and Excitation (SE) 
block logic for half the network
Likewise, the SEBlock logic from EfficientNet is powerful, but this is an 

expensive operation on mobile devices. However, they found that they 

could remove this for some of the layers without sacrificing performance. 

Once again, we will come back to this in a second.

�Custom head
The authors implement a custom head logic for their output layers that I 

think is interesting. Essentially, they use a pair of convolutions to replace 

the dense output neural network layer used in EfficientNet. From a 

technical standpoint, this is less accurate than the dense approach, but is 

much simpler and faster to implement on a mobile device.
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�Hyperparameters
And finally, the authors made heavy use of the EfficientNet search 

strategy combined with the preceding pieces. Conceptually, they gave 

the search algorithm the mentioned building blocks to work with and a 

cluster of TPUs run on and let the reinforcement learning do its magic. 

From this, they produced two different networks, MobileNetV3-Large 

and MobileNetV3-Small, both of which are subtly different because of the 

preceding constraints. As an example, while both variants use SEBlocks 

in the later parts of the network, the small variant uses the SEBlock on its 

second layer, whereas the large variant does not. The number of filters at 

each layer is entirely learned to optimize performance. Both networks use 

ReLU for the first few layers but then switch to hardSwish halfway through.

�Performance
Combining all of the above, this network has a higher accuracy on 

ImageNet but can be evaluated in under 10ms on a mobile device with 

hardware that supports it. The authors then also ran their search strategy 

with different starting requirements (e.g., only allowing 3x3 convolutions) 

to produce a minimal variant which should be reasonably future-proof 

depending on whatever new hardware comes to market.

�Code
Let’s build MobileNetV3. This will combine hardware-aware network 

architecture search (NAS) and the NetAdapt algorithm to take advantage 

of both approaches. This network is significantly more complicated than 

the ones we have looked at so far, but if you look carefully, I think you can 

see it is simply a combination of all of the techniques we have looked at so 

far. The key section to note is the large collection of MBConvBlockStack 
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parameters at the end, which generate subtly different blocks which 

combine together to produce a network that is both accurate and will run 

well on mobile devices.

``

import TensorFlow

public enum ActivationType {

  case hardSwish

  case relu

}

public struct SqueezeExcitationBlock: Layer {

  // https://arxiv.org/abs/1709.01507

  public var averagePool = GlobalAvgPool2D<Float>()

  public var reduceConv: Conv2D<Float>

  public var expandConv: Conv2D<Float>

  @noDerivative public var inputOutputSize: Int

  public init(inputOutputSize: Int, reducedSize: Int) {

    self.inputOutputSize = inputOutputSize

    reduceConv = Conv2D<Float>(

      filterShape: (1, 1, inputOutputSize, reducedSize),

      strides: (1, 1),

      padding: .same)

    expandConv = Conv2D<Float>(

      filterShape: (1, 1, reducedSize, inputOutputSize),

      strides: (1, 1),

      padding: .same)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {
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    let avgPoolReshaped = averagePool(input).reshaped(to: [

      input.shape[0], 1, 1, self.inputOutputSize,

    ])

    return input

      * hardSigmoid(expandConv(relu(reduceConv(avgPoolReshaped))))

  }

}

public struct InitialInvertedResidualBlock: Layer {

  @noDerivative public var addResLayer: Bool

  @noDerivative public var useSELayer: Bool = false

  @noDerivative public var activation: ActivationType = .relu

  public var dConv: DepthwiseConv2D<Float>

  public var batchNormDConv: BatchNorm<Float>

  public var seBlock: SqueezeExcitationBlock

  public var conv2: Conv2D<Float>

  public var batchNormConv2: BatchNorm<Float>

  public init(

    filters: (Int, Int),

    strides: (Int, Int) = (1, 1),

    kernel: (Int, Int) = (3, 3),

    seLayer: Bool = false,

    activation: ActivationType = .relu

  ) {

    self.useSELayer = seLayer

    self.activation = activation

    self.addResLayer = filters.0 == filters.1 && strides == (1, 1)

    let filterMult = filters

    let hiddenDimension = filterMult.0 * 1

    let reducedDimension = hiddenDimension / 4
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    dConv = DepthwiseConv2D<Float>(

      filterShape: (3, 3, filterMult.0, 1),

      strides: (1, 1),

      padding: .same)

    seBlock = SqueezeExcitationBlock(

      �inputOutputSize: hiddenDimension, reducedSize: 

reducedDimension)

    conv2 = Conv2D<Float>(

      filterShape: (1, 1, hiddenDimension, filterMult.1),

      strides: (1, 1),

      padding: .same)

    batchNormDConv = BatchNorm(featureCount: filterMult.0)

    batchNormConv2 = BatchNorm(featureCount: filterMult.1)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    var depthwise = batchNormDConv(dConv(input))

    switch self.activation {

    case .hardSwish: depthwise = hardSwish(depthwise)

    case .relu: depthwise = relu(depthwise)

    }

    var squeezeExcite: Tensor<Float>

    if self.useSELayer {

      squeezeExcite = seBlock(depthwise)

    } else {

      squeezeExcite = depthwise

    }

    let piecewiseLinear = batchNormConv2(conv2(squeezeExcite))
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    if self.addResLayer {

      return input + piecewiseLinear

    } else {

      return piecewiseLinear

    }

  }

}

public struct InvertedResidualBlock: Layer {

  @noDerivative public var strides: (Int, Int)

  �@noDerivative public let zeroPad = 

ZeroPadding2D<Float>(padding: ((0, 1), (0, 1)))

  @noDerivative public var addResLayer: Bool

  @noDerivative public var activation: ActivationType = .relu

  @noDerivative public var useSELayer: Bool

  public var conv1: Conv2D<Float>

  public var batchNormConv1: BatchNorm<Float>

  public var dConv: DepthwiseConv2D<Float>

  public var batchNormDConv: BatchNorm<Float>

  public var seBlock: SqueezeExcitationBlock

  public var conv2: Conv2D<Float>

  public var batchNormConv2: BatchNorm<Float>

  public init(

    filters: (Int, Int),

    expansionFactor: Float,

    strides: (Int, Int) = (1, 1),

    kernel: (Int, Int) = (3, 3),

    seLayer: Bool = false,

    activation: ActivationType = .relu

  ) {

    self.strides = strides
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    self.addResLayer = filters.0 == filters.1 && strides == (1, 1)

    self.useSELayer = seLayer

    self.activation = activation

    let filterMult = filters

    �let hiddenDimension = Int(Float(filterMult.0) * 

expansionFactor)

    let reducedDimension = hiddenDimension / 4

    conv1 = Conv2D<Float>(

      filterShape: (1, 1, filterMult.0, hiddenDimension),

      strides: (1, 1),

      padding: .same)

    dConv = DepthwiseConv2D<Float>(

      filterShape: (kernel.0, kernel.1, hiddenDimension, 1),

      strides: strides,

      padding: strides == (1, 1) ? .same : .valid)

    seBlock = SqueezeExcitationBlock(

      �inputOutputSize: hiddenDimension, reducedSize: 

reducedDimension)

    conv2 = Conv2D<Float>(

      filterShape: (1, 1, hiddenDimension, filterMult.1),

      strides: (1, 1),

      padding: .same)

    batchNormConv1 = BatchNorm(featureCount: hiddenDimension)

    batchNormDConv = BatchNorm(featureCount: hiddenDimension)

    batchNormConv2 = BatchNorm(featureCount: filterMult.1)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    var piecewise = batchNormConv1(conv1(input))

    switch self.activation {
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    case .hardSwish: piecewise = hardSwish(piecewise)

    case .relu: piecewise = relu(piecewise)

    }

    var depthwise: Tensor<Float>

    if self.strides == (1, 1) {

      depthwise = batchNormDConv(dConv(piecewise))

    } else {

      depthwise = batchNormDConv(dConv(zeroPad(piecewise)))

    }

    switch self.activation {

    case .hardSwish: depthwise = hardSwish(depthwise)

    case .relu: depthwise = relu(depthwise)

    }

    var squeezeExcite: Tensor<Float>

    if self.useSELayer {

      squeezeExcite = seBlock(depthwise)

    } else {

      squeezeExcite = depthwise

    }

    let piecewiseLinear = batchNormConv2(conv2(squeezeExcite))

    if self.addResLayer {

      return input + piecewiseLinear

    } else {

      return piecewiseLinear

    }

  }

}

public struct MobileNetV3Large: Layer {

  @noDerivative public let zeroPad = ZeroPadding2D<Float> 

(padding: ((0, 1), (0, 1)))
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  public var inputConv: Conv2D<Float>

  public var inputConvBatchNorm: BatchNorm<Float>

  �public var invertedResidualBlock1: InitialInvertedResidualBlock

  public var invertedResidualBlock2: InvertedResidualBlock

  public var invertedResidualBlock3: InvertedResidualBlock

  public var invertedResidualBlock4: InvertedResidualBlock

  public var invertedResidualBlock5: InvertedResidualBlock

  public var invertedResidualBlock6: InvertedResidualBlock

  public var invertedResidualBlock7: InvertedResidualBlock

  public var invertedResidualBlock8: InvertedResidualBlock

  public var invertedResidualBlock9: InvertedResidualBlock

  public var invertedResidualBlock10: InvertedResidualBlock

  public var invertedResidualBlock11: InvertedResidualBlock

  public var invertedResidualBlock12: InvertedResidualBlock

  public var invertedResidualBlock13: InvertedResidualBlock

  public var invertedResidualBlock14: InvertedResidualBlock

  public var invertedResidualBlock15: InvertedResidualBlock

  public var outputConv: Conv2D<Float>

  public var outputConvBatchNorm: BatchNorm<Float>

  public var avgPool = GlobalAvgPool2D<Float>()

  public var finalConv: Conv2D<Float>

  public var dropoutLayer: Dropout<Float>

  public var classiferConv: Conv2D<Float>

  public var flatten = Flatten<Float>()

  @noDerivative public var lastConvChannel: Int

  public init(classCount: Int = 1000, dropout: Double = 0.2) {

    inputConv = Conv2D<Float>(

      filterShape: (3, 3, 3, 16),
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      strides: (2, 2),

      padding: .same)

    inputConvBatchNorm = BatchNorm(

      featureCount: 16)

    invertedResidualBlock1 = InitialInvertedResidualBlock(

      filters: (16, 16))

    invertedResidualBlock2 = InvertedResidualBlock(

      filters: (16, 24),

      expansionFactor: 4, strides: (2, 2))

    invertedResidualBlock3 = InvertedResidualBlock(

      filters: (24, 24),

      expansionFactor: 3)

    invertedResidualBlock4 = InvertedResidualBlock(

      filters: (24, 40),

      �expansionFactor: 3, strides: (2, 2), kernel: (5, 5), 

seLayer: true)

    invertedResidualBlock5 = InvertedResidualBlock(

      filters: (40, 40),

      expansionFactor: 3, kernel: (5, 5), seLayer: true)

    invertedResidualBlock6 = InvertedResidualBlock(

      filters: (40, 40),

      expansionFactor: 3, kernel: (5, 5), seLayer: true)

    invertedResidualBlock7 = InvertedResidualBlock(

      filters: (40, 80),

      expansionFactor: 6, strides: (2, 2), activation: .hardSwish)

    invertedResidualBlock8 = InvertedResidualBlock(

      filters: (80, 80),

      expansionFactor: 2.5, activation: .hardSwish)

    invertedResidualBlock9 = InvertedResidualBlock(

      filters: (80, 80),

      expansionFactor: 184 / 80.0, activation: .hardSwish)
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    invertedResidualBlock10 = InvertedResidualBlock(

      filters: (80, 80),

      expansionFactor: 184 / 80.0, activation: .hardSwish)

    invertedResidualBlock11 = InvertedResidualBlock(

      filters: (80, 112),

      �expansionFactor: 6, seLayer: true, activation: .hardSwish)

    invertedResidualBlock12 = InvertedResidualBlock(

      filters: (112, 112),

      expansionFactor: 6, seLayer: true, activation: .hardSwish)

    invertedResidualBlock13 = InvertedResidualBlock(

      filters: (112, 160),

      �expansionFactor: 6, strides: (2, 2), kernel: (5, 5), 

seLayer: true,

      activation: .hardSwish)

    invertedResidualBlock14 = InvertedResidualBlock(

      filters: (160, 160),

      �expansionFactor: 6, kernel: (5, 5), seLayer: true, 

activation: .hardSwish)

    invertedResidualBlock15 = InvertedResidualBlock(

      filters: (160, 160),

      �expansionFactor: 6, kernel: (5, 5), seLayer: true, 

activation: .hardSwish)

    lastConvChannel = 960

    outputConv = Conv2D<Float>(

      filterShape: (

        1, 1, 160, lastConvChannel

      ),

      strides: (1, 1),

      padding: .same)

    �outputConvBatchNorm = BatchNorm(featureCount: lastConvChannel)
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    let lastPointChannel = 1280

    finalConv = Conv2D<Float>(

      filterShape: (1, 1, lastConvChannel, lastPointChannel),

      strides: (1, 1),

      padding: .same)

    dropoutLayer = Dropout<Float>(probability: dropout)

    classiferConv = Conv2D<Float>(

      filterShape: (1, 1, lastPointChannel, classCount),

      strides: (1, 1),

      padding: .same)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let initialConv = hardSwish(

      �input.sequenced(through: zeroPad, inputConv, 

inputConvBatchNorm))

    let backbone1 = initialConv.sequenced(

      through: invertedResidualBlock1,

      �invertedResidualBlock2, invertedResidualBlock3, 

invertedResidualBlock4, invertedResidualBlock5)

    let backbone2 = backbone1.sequenced(

      through: invertedResidualBlock6, invertedResidualBlock7,

      �invertedResidualBlock8, invertedResidualBlock9, 

invertedResidualBlock10)

    let backbone3 = backbone2.sequenced(

      through: invertedResidualBlock11,

      �invertedResidualBlock12, invertedResidualBlock13, 

invertedResidualBlock14, invertedResidualBlock15)
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    �let outputConvResult = hardSwish(outputConvBatchNorm(output

Conv(backbone3)))

    let averagePool = avgPool(outputConvResult).reshaped(to: [

      input.shape[0], 1, 1, self.lastConvChannel,

    ])

    �let finalConvResult = dropoutLayer(hardSwish(finalConv( 

averagePool)))

    return flatten(classiferConv(finalConvResult))

  }

}

public struct MobileNetV3Small: Layer {

  �@noDerivative public let zeroPad = 

ZeroPadding2D<Float>(padding: ((0, 1), (0, 1)))

  public var inputConv: Conv2D<Float>

  public var inputConvBatchNorm: BatchNorm<Float>

  �public var invertedResidualBlock1: InitialInvertedResidualBlock

  public var invertedResidualBlock2: InvertedResidualBlock

  public var invertedResidualBlock3: InvertedResidualBlock

  public var invertedResidualBlock4: InvertedResidualBlock

  public var invertedResidualBlock5: InvertedResidualBlock

  public var invertedResidualBlock6: InvertedResidualBlock

  public var invertedResidualBlock7: InvertedResidualBlock

  public var invertedResidualBlock8: InvertedResidualBlock

  public var invertedResidualBlock9: InvertedResidualBlock

  public var invertedResidualBlock10: InvertedResidualBlock

  public var invertedResidualBlock11: InvertedResidualBlock

  public var outputConv: Conv2D<Float>

  public var outputConvBatchNorm: BatchNorm<Float>
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  public var avgPool = GlobalAvgPool2D<Float>()

  public var finalConv: Conv2D<Float>

  public var dropoutLayer: Dropout<Float>

  public var classiferConv: Conv2D<Float>

  public var flatten = Flatten<Float>()

  @noDerivative public var lastConvChannel: Int

  public init(classCount: Int = 1000, dropout: Double = 0.2) {

    inputConv = Conv2D<Float>(

      filterShape: (3, 3, 3, 16),

      strides: (2, 2),

      padding: .same)

    inputConvBatchNorm = BatchNorm(

      featureCount: 16)

    invertedResidualBlock1 = InitialInvertedResidualBlock(

      filters: (16, 16),

      strides: (2, 2), seLayer: true)

    invertedResidualBlock2 = InvertedResidualBlock(

      filters: (16, 24),

      expansionFactor: 72.0 / 16.0, strides: (2, 2))

    invertedResidualBlock3 = InvertedResidualBlock(

      filters: (24, 24),

      expansionFactor: 88.0 / 24.0)

    invertedResidualBlock4 = InvertedResidualBlock(

      filters: (24, 40),

      �expansionFactor: 4, strides: (2, 2), kernel: (5, 5), 

seLayer: true,

      activation: .hardSwish)

    invertedResidualBlock5 = InvertedResidualBlock(

      filters: (40, 40),
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      �expansionFactor: 6, kernel: (5, 5), seLayer: true, 

activation: .hardSwish)

    invertedResidualBlock6 = InvertedResidualBlock(

      filters: (40, 40),

      �expansionFactor: 6, kernel: (5, 5), seLayer: true, 

activation: .hardSwish)

    invertedResidualBlock7 = InvertedResidualBlock(

      filters: (40, 48),

      �expansionFactor: 3, kernel: (5, 5), seLayer: true, 

activation: .hardSwish)

    invertedResidualBlock8 = InvertedResidualBlock(

      filters: (48, 48),

      �expansionFactor: 3, kernel: (5, 5), seLayer: true, 

activation: .hardSwish)

    invertedResidualBlock9 = InvertedResidualBlock(

      filters: (48, 96),

      �expansionFactor: 6, strides: (2, 2), kernel: (5, 5), 

seLayer: true,

      activation: .hardSwish)

    invertedResidualBlock10 = InvertedResidualBlock(

      filters: (96, 96),

      �expansionFactor: 6, kernel: (5, 5), seLayer: true, 

activation: .hardSwish)

    invertedResidualBlock11 = InvertedResidualBlock(

      filters: (96, 96),

      �expansionFactor: 6, kernel: (5, 5), seLayer: true, 

activation: .hardSwish)

    lastConvChannel = 576

    outputConv = Conv2D<Float>(

      filterShape: (

        1, 1, 96, lastConvChannel

      ),
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      strides: (1, 1),

      padding: .same)

    outputConvBatchNorm = BatchNorm(featureCount: lastConvChannel)

    let lastPointChannel = 1280

    finalConv = Conv2D<Float>(

      filterShape: (1, 1, lastConvChannel, lastPointChannel),

      strides: (1, 1),

      padding: .same)

    dropoutLayer = Dropout<Float>(probability: dropout)

    classiferConv = Conv2D<Float>(

      filterShape: (1, 1, lastPointChannel, classCount),

      strides: (1, 1),

      padding: .same)

  }

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    let initialConv = hardSwish(

      �input.sequenced(through: zeroPad, inputConv, 

inputConvBatchNorm))

    let backbone1 = initialConv.sequenced(

      through: invertedResidualBlock1,

      �invertedResidualBlock2, invertedResidualBlock3, 

invertedResidualBlock4, invertedResidualBlock5)

    let backbone2 = backbone1.sequenced(

      through: invertedResidualBlock6, invertedResidualBlock7,

      �invertedResidualBlock8, invertedResidualBlock9, 

invertedResidualBlock10, invertedResidualBlock11)

    �let outputConvResult = hardSwish(outputConvBatchNorm(output

Conv(backbone2)))
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    let averagePool = avgPool(outputConvResult).reshaped(to: [

      input.shape[0], 1, 1, lastConvChannel,

    ])

    �let finalConvResult = dropoutLayer(hardSwish(finalConv( 

averagePool)))

    return flatten(classiferConv(finalConvResult))

  }

}

�Results
This network will train to be slightly less accurate than EfficientNet, but 

can be evaluated on a mobile device quickly. In addition, the resulting 

network is small and so can be sent easily over the network to edge 

devices.

Starting training...

[Epoch 1] Accuracy: 50/500 (0.1) Loss: 3.3504734

[Epoch 2] Accuracy: 253/500 (0.506) Loss: 1.4156498

[Epoch 3] Accuracy: 335/500 (0.67) Loss: 1.0543922

[Epoch 4] Accuracy: 326/500 (0.652) Loss: 1.1357045

[Epoch 5] Accuracy: 353/500 (0.706) Loss: 0.9812555

[Epoch 6] Accuracy: 350/500 (0.7) Loss: 0.9210515

[Epoch 7] Accuracy: 380/500 (0.76) Loss: 0.7407557

[Epoch 8] Accuracy: 347/500 (0.694) Loss: 1.038017

[Epoch 9] Accuracy: 343/500 (0.686) Loss: 1.0409927

[Epoch 10] Accuracy: 377/500 (0.754) Loss: 0.8882818

[Epoch 11] Accuracy: 381/500 (0.762) Loss: 0.9374979

[Epoch 12] Accuracy: 383/500 (0.766) Loss: 0.8867029

[Epoch 13] Accuracy: 365/500 (0.73) Loss: 1.3112245

Chapter 11  MobileNetV3



143

[Epoch 14] Accuracy: 377/500 (0.754) Loss: 0.9881239

[Epoch 15] Accuracy: 386/500 (0.772) Loss: 0.99048007

[Epoch 16] Accuracy: 406/500 (0.812) Loss: 0.78758305

[Epoch 17] Accuracy: 402/500 (0.804) Loss: 0.8263649

[Epoch 18] Accuracy: 407/500 (0.814) Loss: 0.8147187

[Epoch 19] Accuracy: 401/500 (0.802) Loss: 0.8540674

[Epoch 20] Accuracy: 387/500 (0.774) Loss: 0.90144944

[Epoch 21] Accuracy: 404/500 (0.808) Loss: 1.0089223

[Epoch 22] Accuracy: 396/500 (0.792) Loss: 0.97762024

[Epoch 23] Accuracy: 399/500 (0.798) Loss: 0.9001269

[Epoch 24] Accuracy: 389/500 (0.778) Loss: 1.1596041

[Epoch 25] Accuracy: 384/500 (0.768) Loss: 1.235701

[Epoch 26] Accuracy: 396/500 (0.792) Loss: 1.0384445

[Epoch 27] Accuracy: 405/500 (0.81) Loss: 0.9806802

[Epoch 28] Accuracy: 405/500 (0.81) Loss: 0.9442753

[Epoch 29] Accuracy: 411/500 (0.822) Loss: 0.85053337

[Epoch 30] Accuracy: 422/500 (0.844) Loss: 0.8129424

�EfficientNet-EdgeTPU

In the same way, we can use the EfficientNet search strategy to build 

networks for mobile devices; we can use it to build networks for even 

smaller devices. Google has produced a line (Coral is the brand name) of 

small ASIC devices, called EdgeTPU, which plug into your computer and 

allow us to run tensorflow lite models on our own hardware. Conceptually, 

these devices have extremely limited memory space and compute power, 

but they are AI hardware just the same as our video card. By giving the 

device constraints to the EfficientNet search algorithm, they were able 

to discover an optimal set of networks to run on a device with extremely 

limited compute capacity.
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�Recap
In the past few chapters, we’ve gone from small networks to large ones, 

and now we’ve come back to small ones again. These areas of research are 

all getting very close together and interrelated. Let’s look now at how to 

apply this to your own work.
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CHAPTER 12

Bag of Tricks
In this chapter, we will look at how we can modify our original ResNet 

50 network to achieve nearly as accurate of results as EfficientNet by 

combining many different approaches.

So, you’ve made it this far. We’ve gone from the very basics of using 

neural networks to perform image recognition to the current state of the 

art in this field. Allow me now to offer some qualifications on my approach. 

First, I’ve sort of clear-cut a very direct path through this field with the goal 

of making the early stages as simple as possible for somebody new. In the 

process, I’ve skipped over a lot of history, important milestones, and large 

swaths of research. There are many different papers and approaches that 

I’ve not mentioned that contain interesting ideas that you should look at. 

The short version is that progress is never as linear as I have attempted to 

present it here. There are usually lots of random approaches, false starts 

that lead to dead-end alleys, and many different things tried, of which only 

a small fraction actually work. Progress is usually ugly and tedious.

�Bag of tricks
Let’s look at an example of what are sometimes called bag of tricks style 

approaches. As a general rule, somebody will come up with a novel idea 

that they publish as a paper. We’ve seen a dozen such examples now. Then, 

various other researchers and groups will attempt to combine it together 

with as many other different approaches as possible to try and find a 

https://doi.org/10.1007/978-1-4842-6168-2_12#DOI
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magical combination that produces a novel result. At a high level, this is 

perhaps the academic version of NASNet. What often happens is that it is 

discovered that there are other ways of getting the same results and that 

the original researchers ended up in a local maxima, so to speak.

> Compounding the Performance Improvements of Assembled 

Techniques in a Convolutional Neural Network

> https://arxiv.org/abs/2001.06268

Let’s look at a recent paper, “Compounding the Performance 

Improvements of Assembled Techniques in a Convolutional Neural 

Network,” as an example of this. Lee et al. took our same ResNet 50 

approach from a few chapters back and found how to modify it to produce 

nearly as good of results as EfficientNet, at a much cheaper cost.

They add the following tweaks to the basic network we looked at 

before:

•	 Replaced our 7x7 head of the ResNet 50 with a 3x3 

stride 2 + 3x3 + 3x3 convolution approach

•	 Removed the 2x2 stride from our initial 1x1 convolution 

in the ResNet 50 block and added it to the 3x3 

convolution

•	 Added an Averagepool2d step as part of the skip 

connection convolutional layer

•	 Added a Channel Attention (CA) operator

•	 Selective Kernel (SK) block

•	 Big-little net block skip connections

To do so, they used bits of the following image recognition papers:

> Bag of Tricks for Image Classification with Convolutional Neural 

Networks

> https://arxiv.org/abs/1812.01187
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> Selective Kernel Networks

> https://arxiv.org/abs/1903.06586

> Big-Little Net: An Efficient Multi-Scale Feature Representation for 

Visual and Speech Recognition

> https://arxiv.org/abs/1807.03848

> Making Convolutional Networks Shift-Invariant Again

> https://arxiv.org/abs/1904.11486

In addition, they use the following data augmentation/training/

normalization techniques:

> Regularizing Neural Networks by Penalizing Confident Output 

Distributions

> https://arxiv.org/abs/1701.06548

> AutoAugment: Learning Augmentation Policies from Data

> https://arxiv.org/abs/1805.09501

> mixup: Beyond Empirical Risk Minimization

> https://arxiv.org/abs/1710.09412

> Distilling the Knowledge in a Neural Network

> https://arxiv.org/abs/1503.02531

> DropBlock: A regularization method for convolutional networks

> https://arxiv.org/abs/1810.12890
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�What to learn from this
To me, this is why I don’t get worked up about research groups throwing 

more and more computational power at problems. Even if their approach 

can be summed up as brute force, in proving that the larger-scale approach 

works, they leave the door open for individual researchers to be able to 

replicate their results with simpler hardware.

My experience is that things usually go like this:

•	 A lot of researchers trying to find small novel 

approaches since they don’t have large-scale 

machinery.

•	 Somebody finds something that produces consistent 

improvements (e.g., people can replicate their results).

•	 Large research groups rush in to throw large compute 

resources at the problem. A few months later, they 

publish the results of trying to scale things.

Scaling usually looks like this:

•	 Original researcher: Sigma 0.5 improvement.

•	 10x cluster: Sigma 0.85 improvement.

•	 100x cluster: Sigma 0.95 improvement.

•	 All the computational power in the world: Sigma 0.985 

improvement.

•	 Six months later: Somebody else figures out how to 

replicate the large cluster’s work with a limited amount 

of compute resources, and the cycle repeats.
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•	 Meanwhile, many small unknown researchers are 

publishing novel findings that are being roundly 

ignored.

•	 Someone publishes a blog post that goes viral, and we 

go back to the beginning.

�Reading papers
The crucial skill you need to succeed at this field then is not the most 

cutting-edge network theory or the fastest computer, both of which will 

most likely be obsolete in a year. A timeless skill instead is the ability to 

read papers on your own and keep up with progress. When you encounter 

things in papers you don’t understand, you need the ability to look up that 

paper’s references and figure out where they got their ideas from. If you go 

back far enough, the references have a tendency to converge on a few key 

concepts. Learn those and you will have a solid foundation for whatever 

you want to do.

�Stay behind the curve
A surprising number of papers come out, make a big splash, and then 

disappear. I find trying to keep up with the latest developments to have a 

high probability of getting sidetracked. My advice instead is to stay behind 

the curve by a few months. Let other people read the latest and greatest 

work and then wait for them to actually prove that things work. Look 

for code demos on GitHub showing how the new thing works or Jupyter 

Notebooks that explain what is going on. This to me is why you should pick 

up other frameworks (e.g., pytorch) as well because then you can much 

more easily absorb knowledge from the broader community of machine 

learning researchers continuously testing new ideas.
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Find a few researchers to follow on Twitter and then see what they are 

reading and talking about. Let them do the filtering for you. Perhaps from 

a game-theoretic standpoint, progress would grind to a halt if everybody 

did this, but unless you are a leading researcher in these fields, then the 

chance of getting sucked down a blind alley is high.

To use a different example, we might consider the work required to 

learn and understand and run a model on these various test datasets like so:

•	 MNIST: 1 minute

•	 CIFAR: 1 hour

•	 Imagenette: 1 day

•	 ImageNet: 1 month

I’m just making these numbers up, don’t read too much into them. To 

me, then, you should spend an order of magnitude more on the smaller 

stuff than the bigger networks. Before you jump to CIFAR, you should do 

MNIST a dozen different times; before you jump to Imagenette, you should 

do CIFAR a dozen times; and so on. For the compute it takes to do a single 

ImageNet run you could do MNIST a thousand different ways on a basic 

computer, but it is exceedingly rare to find people who have done so, even 

though the resources required should be accessible to anyone.

To me, it is difficult to compete with the high-end research teams 

with large clusters of the latest and greatest hardware able to run massive 

experiments at scale. But where we can surpass them is quite simple, 

by going deeper on a particular problem than anybody else can. The 

success of the large research groups is also their weakness, in that they are 

constantly searching for new ways to produce publishable results. If that’s 

not important to you, then you can spend a lot more time in the weeds 

than they can, so to speak. By extension, you can uncover the things they 

miss in their haste to get results out the door.
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�How I read papers
Usually, I read the abstract and hopefully get a high-level understanding of 

what the paper is about. I am happy to confess that often I read the abstract 

and first few paragraphs and feel like I have no clue what the heck is going 

on. Sometimes with papers they cover so much ground that they cannot be 

reduced to a few sentences (or maybe they’re not being terribly clear), so I 

would argue this is as much on the authors as me. I usually just skip right 

to looking at graphs and tables, which hopefully have some sort of easy 

visual of what the heck the paper is attempting to do. If that fails, then I will 

read the conclusion. And if all of this fails, then I will sit down and attempt 

to skim through the paper and try to get a high-level understanding that 

way. My basic process is to try and get a high-level understanding and then 

do successive rereadings until I actually follow what is going on.

I like to print out papers and look at them that way if I feel it is an 

important one. Making notes in the margins is an approach I do as well. 

Being able to carry thousands around on your laptop in digital form is nice 

if you are constantly on the go, but I have slowly amassed a collection of 

work that I think is important to keep at hand.

Finally, take your time! Depth is far more valuable than breadth. I have 

found that finding a few papers that are genuinely interesting and taking 

the time to understand them thoroughly is a far better plan than trying to 

dabble in a bunch of random fields.

�Recap
We’ve broken down a paper in this field trying to build an EfficientNet-

level performance by combining half a dozen other techniques from 

academia. We’ve talked about how to get started reading papers on your 

own.
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CHAPTER 13

MNIST Revisited
The twentieth century had a number of interesting inventions, but I 

believe computers are the most important one. Every year has seen more 

and more compute cycles being brought to market, and every year has 

seen appetite and demand for computing increase. We may have hit 

the limits of Dennard scaling, but there are many decades of interesting 

improvements to be made.

�Next steps
Here’s how I see the near future coming at us:

•	 More cores

•	 More RAM

•	 More bandwidth

•	 More customized hardware

•	 More generic hardware

Cores in general are simple. We’ve hit the limits of how fast we can 

make silicon go, but we can continue to build extra transistors into devices. 

The easiest trick then is to simply increase the number of individual 

processors on a chip. AMD’s recent Ryzen chiplet approach for processors 

shows that this can go on for a long time.

https://doi.org/10.1007/978-1-4842-6168-2_13#DOI
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RAM: You can provision cloud servers with terabytes of memory today 

if you so desire. There is a long way yet to go on this front. The real blocker 

on this front is not memory size, but rather our next trend.

Bandwidth: PCI 4 has made it to market and people are already 

working on PCI 5 and PCI 6. The real limitation of most modern systems 

is no longer cores but rather coordinating and synchronizing between 

them. We’ve hit the limits of raw clock speed, and so now the crucial 

trick is keeping the cores fed with instructions and data. If each core on a 

Threadripper is literally processing a bit of data a cycle, then suddenly we 

are processing faster than our memory can keep up.

Custom hardware: Apple’s ARM processors, Nvidia’s GPUs, and 

Google’s TPUv1 and recently new companies such as Cerberas using 

TSMC’s fabs are driving a lot of things in the industry right now. They 

are forcing massive economies of scale onto the market and making it 

possible for people to rent fab space cheaply which is in turn allowing it 

to be possible to build custom silicon much more cheaply than was ever 

possible before. You can literally prototype a chip in software, ship the 

designs off, and get the result back in the mail a short while later. This is 

allowing an entirely new generation of hardware to be able to make it to 

come to market, and I think we are now just only seeing the beginnings of 

what is possible.

Generic hardware: This to me is the super interesting flip side of being 

able to make your own chips. A lot of progress in the field of computing 

in general has been held up over the years because of patent issues and 

needs to cross-license intellectual property. There are open source chip 

designs (RISC-V is a good example) that you can use to build a modern 

64-bit processor at no cost. Tools like LLVM mean that if you can build an 

export module for your architecture, then all of a sudden you can bring 

entire software ecosystems to your new device.
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�Pain points
Hopefully, none of the given ideas is controversial to you. Now, I believe 

that if we look at these ideas, we can see some clear trends shaping up in 

general.

Multicore programming is not a new concept, but actually using it is. 

It has been readily available on desktop computers for over two decades 

now. Having said that, very little software actually really uses all the power 

available on the CPU, and most programmers are still stuck in single-

threaded programming models. Most modern parallelization is by running 

lots of jobs at once (e.g., hosting a dozen virtual machines on one server or 

running 10,000 jobs in a queue), not by actually breaking individual jobs 

up properly.

RAM is a significant limiting factor of deep learning in particular, but 

this is actually because of the next problem, bandwidth. The real power 

of GPUs for deep learning is not the GPU itself but rather the internal 

memory/communication bus. Higher and higher speed RAM is one of 

the most expensive components of the ecosystem currently, but every 

iteration allows even more data to be run through the GPU processor, and 

so this piece continues to evolve. I think eventually this tech will make 

its way back into the CPU’s proper and enable them to make more of a 

contribution.

Bandwidth: GPU --> RAM memory is reasonably well solved with 

the above, but whenever we want to try and coordinate the work of more 

than one GPU, we’re right back to the starting point of hitting the PCI 

bus bandwidth limits. Nvidia is well aware of this weakness and has gone 

to great lengths to implement a custom intra-GPU networking stack 

(NCCL) with their DGX series of computers. Habana Labs’ Gaudi simply 

replaces all this custom silicon and complexity by essentially gluing 

a 100 gigabit Ethernet switch onto each ASIC in order to guarantee 1 

terabit of communication bandwidth between each node. Nvidia’s recent 

acquisition of Mellanox, makers of switch hardware, to me points toward 

Chapter 13  MNIST Revisited



156

this future as well. The EGX A100 puts 200Gbps Infiniband onto each 

GPU so that the PCI bus is no longer a limiting factor and multiple cards 

can have their own dedicated backplane to talk together. Then various 

network topologies can be implemented at will without having to rely on 

custom communication protocols, which means that this approach will 

easily scale with 200 and 400GbE coming online. Doubling this again in the 

future with 800GbE and 1.6TbE should be doable as well.

Custom ops: Beyond basic MAC operations, which is what most of 

the current generation of AI hardware is targeting, there’s still uncertainty 

about what particular set of math operations are most useful in practice. 

On one side, you have say the technical approaches in the form of INT1, 

INT4, INT8, and FP16 math as natural extensions of making existing 

operations smaller and increasing the number of data that can be 

processed in a single pass. On the other side, you have the pragmatic 

approach of BFloat16 in Google’s TPU and Intel’s upcoming accelerators, 

which simplifies porting FP32 workflows to new devices by reducing the 

complexity of dealing with buffer overruns. Nvidia’s Ampere road map 

shows them supporting basically every operation possible by adding larger 

versions of the BFloat approach (e.g., supporting INT1, INT4, INT8, FP16, 

BFloat16, TFloat32, FP32, TFloat64, FP64) and putting the onus of actually 

implementing things on the coder. What is exciting about this platform is 

that by standardizing the operations available to the end user, there will no 

longer be any good excuses for not using custom precision hardware.

Generic hardware: To me, the most interesting quiet revolution 

going on is ARM chipsets in general and Amazon’s recent embrace of 

this platform for their next generation of server hardware. By removing 

proprietary silicon from the loop, even greater efficiencies of scale can be 

achieved. This will take several years to fully play out, but this is where 

we will be in the near future. ARM and RISC-V will follow the bleeding-

edge platforms and quietly absorb whatever new innovations they bring 

to market. Meanwhile, proprietary silicon approaches will have to fight 

radically cheaper commoditized innovation.
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�TPU case study
All of this tech is cool, but fundamentally in order to write optimized 

software for it, programmers must be planning their data and memory 

access ahead. Like I said before, we have hit the limits of single data–style 

programming and increasingly must learn how to embrace dataflow-

specific methodologies. Let us look then at Google’s TPU as an example of 

tackling the mentioned problem in practice:

	 1)	 Cores: The TPU uses fairly straightforward ASIC 

logic and puts multiple cores together into a single 

processing package. Then they connect many of 

these processors together into using a ring topology 

to produce a single TPU unit.

	 2)	 For RAM, Google simply throws a few hundred 

gigabytes of RAM onto each unit to simplify local 

memory access.

	 3)	 Bandwidth: This is actually one of the secret abilities 

of the TPU system. Each TPU is mounted on a 

custom network backplane that allows intra-pod 

communication at extremely fast speeds. Groups 

of TPUs are put together into pods where they 

share the same network backplanes to optimize 

communication.

	 4)	 Custom ops: BFloat16 simplifies porting logic to 

the TPU, but long term they are looking at adding 

more custom types. TPUv1 was actually INT8, as a 

historical aside.
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	 5)	 This is also off the radar, but each TPU unit has an 

internal processor that handles much of the more 

complicated logic internally so that the TPU chips can 

focus on raw math. Finding ways to do preprocessing 

on the fly so that the chips themselves can be keep fed 

is an area of active research.

�Tensorflow 1 + Pytorch
To me, many of the design decisions and limitations of the first generation 

of tensorflow make sense looking from the perspective of writing software 

for TPUs. For a custom ASIC device like the TPU, you have to have a 

predefined graph and cannot be executing arbitrary code on the fly. If 

you have access to literally thousands of TPU cores on demand, then the 

crucial trick is breaking your code up into units that can be run on each 

core, not simplification of the overall logic. I would suggest that CUDA 

support was sort of an afterthought, but the success of the framework was 

because that this was the one that people in the real world were most likely 

to have actual hardware they could use. Google has spent a lot of cycles 

optimizing TPU code only to discover that similar optimizations do not 

work on CUDA devices, and vice versa. They have tried to bridge the gap 

but have increasingly hit the limits of trying to make the various worlds 

work together. For their internal work, they can easily afford to pay people to 

write custom C++ kernels to optimize software for running on large clusters, 

but for people outside the Googleplex, this is decidedly impractical.

Pytorch has rapidly become popular in the past few years as an 

alternative to Tensorflow. A large part of this is because it allows people 

to work with in-memory (e.g., nonstatic) graphs, which makes debugging 

much simpler (e.g., we can attach a debugger and look at network 

variables in place, rather than having to add log statements and run 

things repeatedly). Tensorflow 2 embraces this paradigm fully with eager 

execution being the preferred method going forward. Likewise, the Keras 
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Python wrapper for Tensorflow has been promoted to a full-fledged part of 

Tensorflow ecosystem (e.g., it’s part of the standard library now).

With respect to optimization, Pytorch just takes the much simpler 

route of going from high-level code to CUDA as quickly as possible. This 

is significantly more easy to optimize, and the Pytorch team has a much 

simpler job of optimization as a result. However, they are now tied heavily 

to CUDA and by extension are heavily tied to whatever hardware Nvidia 

can bring to market. They have been experimenting with adding compiler 

techniques between the Pytorch and CUDA layer, but while this is where 

the problem is, I do not believe it is the right place to solve it.

�Enter functional programming
To me, then, forcing the programmer to use functional paradigms is 

where everybody is going to end up. In order for compilers to make good 

decisions about how to optimize code, they have to have access to as much 

information as possible about what is being done. Trying to generate one 

blob of intermediate code and then analyze that in order to optimize it can 

produce short-term speedups but in the long term is an exercise in futility. 

Decades of compiler theory have taught us that no matter how smart the 

meta-compiler is, so to speak, it cannot compete with the programmer for 

knowing what really needs to be done.

Or rather, to use a contrived example, there are thousands of ways for a 

compiler to try and optimize this loop:

```

var i = 0

for n in 1...100000

{

    i = i + n

}

    print (i)

```
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A human, though, can see that we can simplify it to

```f(n) = n * (n + 1) / 2```

using math. To me, the reason we use functional programming is not 

that it is easier in and of itself, but rather that by forcing the programmer 

to code in a stricter style, we make it dramatically easier for the compiler 

to make decisions for us about how to actually execute things. We are 

sacrificing a bit of time now to make our life simpler down the road. I 

have coded lots of C in my day, as an example, but have spent as much 

time debugging memory issues as I have trying to add new features. Swift 

incurs a runtime penalty on this front, but on the flip side, I have twice as 

much time to implement new features instead. The next level of functional 

programming comes when you learn to trust the compiler to catch/prevent 

certain categories of errors, and so you can focus instead on the core logic 

of your problem rather than minutiae.

No matter how you code the core deep learning logic itself, everybody 

is going to have to figure out how to actually schedule their jobs. In order 

to do so, the best approach then is to force the end user to work with data 

primitives that match the actual data they are manipulating and take 

account for the hardware it will run on. Then, the compiler can figure out 

the best way to convert the given data into actual operations. Even if you 

implement things by hand, this is where writing custom code fails, in that 

every time our end hardware changes, we have to write new kernels.

�Swift + TPU demo
Time will tell if Swift for Tensorflow is the way forward for the broader 

machine learning ecosystem. For Google proper, I am convinced it is 

increasingly how they are going to be doing things in the future.  

Let us return all the way back to our very first machine learning demo, 

a convolutional neural network applied to the MNIST dataset, and do 
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it again using a TPU. In order to convert this demo to run on a TPU, 

historically, we would have needed to work with C++ either directly or 

through a high-level API (e.g., Keras) that is hiding the rough edges from us.

For this to work, you will need to set up a remote server using the 

instructions from the chapter on Google Cloud. You do not need a GPU or 

CUDA since you will be using a TPU. Afterward, you will need to create a 

TPU instance in the same zone as your server so that they can talk together. 

Start by figuring out where you’re going to create the TPU (v3-8 is all you 

need) and then work backward to the zone for your host server. After you 

have your system up and running, set the following shell parameters for 

your cloud system:

export XLA_USE_XRT=1

export  XRT_TPU_CONFIG="tpu_worker;0;<TPU_DEVICE_IP>:8470"

export  XRT_WORKERS='localservice:0;grpc://

localhost:40934'

export  XRT_DEVICE_MAP="TPU:0;/job:localservice/replica:0/ 

task:0/device:TPU:0"

And now we can run our simple MNIST CNN demo that uses XLA to 

run our swift code on the TPU:

```

import Datasets

import TensorFlow

struct CNN: Layer {

  var conv1a = Conv2D<Float>(filterShape: (3, 3, 1, 32), 

padding: .same, activation: relu)

  var conv1b = Conv2D<Float>(filterShape: (3, 3, 32, 32), 

padding: .same, activation: relu)

  var pool1 = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
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  var flatten = Flatten<Float>()

  �var inputLayer = Dense<Float>(inputSize: 14 * 14 * 32, 

outputSize: 512, activation: relu)

  �var hiddenLayer = Dense<Float>(inputSize: 512, outputSize: 

512, activation: relu)

  var outputLayer = Dense<Float>(inputSize: 512, outputSize: 10)

  @differentiable

  public func forward(_ input: Tensor<Float>) -> Tensor<Float> {

    �let convolutionLayer = input.sequenced(through: conv1a, 

conv1b, pool1)

    �return convolutionLayer.sequenced(through: flatten, 

inputLayer, hiddenLayer, outputLayer)

  }

}

let batchSize = 128

let epochCount = 12

var model = CNN()

var optimizer = SGD(for: model, learningRate: 0.1)

let dataset = MNIST(batchSize: batchSize)

let device = Device.defaultXLA

model.move(to: device)

optimizer = SGD(copying: optimizer, to: device)

print("Starting training...")

for (epoch, epochBatches) in dataset.training.

prefix(epochCount).enumerated() {

  Context.local.learningPhase = .training

  for batch in epochBatches {

    let (images, labels) = (batch.data, batch.label)

    let deviceImages = Tensor(copying: images, to: device)
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    let deviceLabels = Tensor(copying: labels, to: device)

    �let (_, gradients) = valueWithGradient(at: model) { model  

-> Tensor<Float> in

      let logits = model(deviceImages)

      �return softmaxCrossEntropy(logits: logits, labels: 

deviceLabels)

    }

    optimizer.update(&model, along: gradients)

    LazyTensorBarrier()

  }

  Context.local.learningPhase = .inference

  var testLossSum: Float = 0

  var testBatchCount = 0

  var correctGuessCount = 0

  var totalGuessCount = 0

  for batch in dataset.validation {

    let (images, labels) = (batch.data, batch.label)

    let deviceImages = Tensor(copying: images, to: device)

    let deviceLabels = Tensor(copying: labels, to: device)

    let logits = model(deviceImages)

    �testLossSum += softmaxCrossEntropy(logits: logits, labels: 

deviceLabels).scalarized()

    testBatchCount += 1

    �let correctPredictions = logits.argmax(squeezingAxis: 1) .==  

deviceLabels

    �correctGuessCount += Int(Tensor<Int32>(correctPredictions).

sum().scalarized())

    totalGuessCount = totalGuessCount + batch.data.shape[0]

    LazyTensorBarrier()

  }
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  let accuracy = Float(correctGuessCount) / Float(totalGuessCount)

  print(

    """

    [Epoch \(epoch + 1)] \

    �Accuracy: \(correctGuessCount)/\(totalGuessCount) (\(accuracy)) \

    Loss: \(testLossSum / Float(testBatchCount))

    """

  )

}

```

�Results
You should see similar results to our second chapter:

Starting training...

[Epoch 1] Accuracy: 9645/10000 (0.9645) Loss: 0.11085216

[Epoch 2] Accuracy: 9745/10000 (0.9745) Loss: 0.078900985

[Epoch 3] Accuracy: 9795/10000 (0.9795) Loss: 0.057063542

[Epoch 4] Accuracy: 9826/10000 (0.9826) Loss: 0.05429901

[Epoch 5] Accuracy: 9857/10000 (0.9857) Loss: 0.042912092

[Epoch 6] Accuracy: 9861/10000 (0.9861) Loss: 0.043906994

[Epoch 7] Accuracy: 9871/10000 (0.9871) Loss: 0.041553106

[Epoch 8] Accuracy: 9840/10000 (0.984) Loss: 0.050182436

[Epoch 9] Accuracy: 9867/10000 (0.9867) Loss: 0.044656143

[Epoch 10] Accuracy: 9872/10000 (0.9872) Loss: 0.040160652

[Epoch 11] Accuracy: 9876/10000 (0.9876) Loss: 0.041967977

[Epoch 12] Accuracy: 9878/10000 (0.9878) Loss: 0.041590735
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�Recap
Using the power of your knowledge of Swift for Tensorflow, you’ve run 

a custom kernel on the TPU (or CPU or GPU as desired). Time will tell 

what other back ends will be supported, but to me this is the real power 

of embracing this approach, the ability to write code once and run it 

anywhere.
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CHAPTER 14

You Are Here
Congratulations on making it this far! You now have a solid working 

knowledge of the current state of the art of convolutional neural networks 

for image recognition, using swift for tensorflow. Let’s look toward the 

future by first looking at the past.

�A (short and opinionated) history 
of computing
It is valuable to study the history of to understand its future. There are 

many trends that are obvious only in hindsight. So, let us go all the way 

back to the beginning. The birth of Silicon Valley was arguably an overflow 

of military computing funding in the aftermath of World War II. The 

military wanted to fund various things, but they could not build them 

themselves, and so they started buying hardware from various labs that 

were set up in the valley to construct transistors. This was the real genesis 

of Silicon Valley, the ability to build strange new things with the knowledge 

that there was a willing buyer for what were extremely beta technologies.

The Internet itself, then, was an outgrowth of the ARPANET project, 

an initiative by DARPA to network various previously unconnected 

servers. If we can connect computers together locally using a network, 

then extending the network a few miles down the road is a fairly logical 

next step. But to quote Metcalfe’s law, as each new node was added, the 

value of the network grew exponentially. What is interesting then is that, 
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at a certain point, the value of adding new nodes to the network exceeded 

the cost. At which point, the process of adding new computers to the 

network became self-sustaining and then grew to what we see today. Or 

rather, I would argue that at a certain point, the commercial value of the 

invention itself exceeded the cost to bootstrap it, and after that point, it was 

impossible to halt the growth of what became the Internet. The genie was 

out of the bottle, so to speak.

In the 1970s, a different phenomenon occurred with supercomputing 

and AI in particular. The military funded many different strategies in 

the field, which started making more and more outlandish claims in 

order to get a bigger piece of the pie. Once it became clear many of these 

approaches weren’t going to work came the AI winter, when DARPA 

pulled funding for many of these projects and the field was forced to try 

and fend for itself. Without a wealthy benefactor, or more precisely a clear 

commercial plan, both supercomputing and AI fell on hard times. The UK 

and Japan experienced similar phenomena a decade later.

And so the supercomputer race failed for the most part. But computers 

had proven their value in general and so continued to become cheaper 

and cheaper in general. Personal computing took off and a similar 

scenario happened, whereas the value of a computer to individual users 

exceeded the threshold of cost, and so as a result, the personal computer 

revolution became self-sustaining. As a result of this massive interest into 

home computers came the PC revolution of the 1980s and 1990s. What 

is interesting to me in particular is the third-generation supercomputing 

wave of the late 1990s, which was largely the result of taking off the 

shelf commodity processors (which had progressed far faster than the 

specialized supercomputing manufacturers could ever dream of) and 

wiring them together using advanced networks in order to tackle problems 

in a distributed fashion. Commoditized general hardware beat building 

specialized processors and methodology. Most current/fourth-generation 

Chapter 14  You Are Here



169

supercomputing follows this trend, using commodity computing 

hardware and focusing on custom networking to increase intraprocess 

communication.

�History of GPUs
And so, to look at another wave, we can consider the story of video cards. 

Originally, monochrome color and basic text were all that computers could 

generate. Memory capacity then increased to where larger amounts of 

data could be stored, leading to color becoming possible and gradually 

increasing resolutions. At some point, rastering 3D graphics on the fly 

became possible, and the 3dfx brought the first real GPU to market. Using 

a graphics programming language, all of a sudden a whole new world of 

interactive experiences (aka games) became possible. And so, to mirror the 

Internet and personal computing waves of before, the commercial value 

of playing games created a self-sustaining revolution in chipsets, which is 

still going on today. The entire reason we are running models on graphics 

cards today is due to the popularity of video gaming decades ago.

GPUs are getting close to becoming consumed by commoditization as 

well. While the market for new experiences continues to grow at this point 

today, even budget cards support features such as 4k video, which would 

have been unthinkable a few years ago. Running nongame code (notably 

bitcoin and deep learning) on the GPU itself is an extremely recent 

innovation that has breathed new life into the market. The companies 

making these devices are quickly reaching the limits of raw processing to 

make all of this possible. They are trying to bring new hardware to market 

without straying too far from the gaming market which drives everything. 

This is a large part of the push for VR and AR experiences. As GPUs 

become more general, they are increasingly absorbing more and more of 

the compute stack previously only controlled by CPUs.
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�Cloud computing
Virtual machines have significantly changed how people interact with 

computing, even if they are not aware of it. At one point, setting up and 

configuring a server took days; now it can be done in seconds. This enables 

workflows where resources are spun up on demand and then promptly 

discarded. Software is increasingly run at higher and higher abstractions 

which has allowed entirely new approaches to become commonplace. 

This will have long-term ramifications that we cannot even fully 

comprehend today. The largest computing clusters in the world are not 

supercomputers but rather managed servers running thousands of virtual 

machines for the cloud providers.

�Crossing the chasm
AI and ML are not new fields. Neural networks, in the form of the perceptron, 

were invented in 1958. Only recently with the mentioned advances in 

compute power and hardware have they become practical to implement. 

Moreover, I would argue that they have finally crossed the chasm from 

intellectual curiosity into something driving the bottom line at large 

companies. As such, they have made the necessary transition to become a 

self-sustaining technology like the given examples. Google could delete the 

tensorflow repository tomorrow. Nvidia could stop shipping video cards. 

But these techniques will continue to be refined and improved regardless 

because they have real-world practical use cases in the industry. As such, the 

genie is out of the bottle. There is no going back to the pre-AI world. One way 

or another, the gains that AI brings will be brought to every field.

�Computer vision
Let us look at the big areas that I believe will be important for the  

next decade.
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�Direct applications
Many of the more advanced forms of computer vision are finally seeing the 

hardware and compute capacity needed to run them become mainstream. 

I am particularly interested in the field of real-time systems, be it cameras 

on self-driving cars, being able to analyze medical data in the field, or even 

simply finding new ways to use the cameras on mobile phones. This area is 

only just now beginning to be touched.

�Indirect applications
A number of interesting problems that are not necessarily image 

related can be converted into images and then solved using CNN-style 

approaches. Historically, many of these techniques have been impractical 

from a resource standpoint, but as more and more AI-specific hardware 

becomes mainstream, a lot of approaches that were previously infeasible 

become doable. AlphaGo, as an example, is a large-scale reinforcement 

algorithm that converts the board game go’s game state into an image 

representation and then applies an extremely large convolutional neural 

network to it. The basic approach, though, is a convolutional neural 

network built using residual layers and large-scale compute. When average 

researchers gain access to similar amounts of resources, I think many 

interesting new approaches will be found in fields that are just now starting 

to experiment with AI.

�Natural language processing
By using big data approaches (e.g., data corpuses from Wikipedia, scanned 

books, and gathered from the Internet at large), simpler approaches 

suddenly become powerful by virtue of giving the machine a lot more 
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information to work with. This in turn has direct financial ramifications 

(e.g., improving search and recommendation engines), and so a lot of 

resources are being poured into this right now. It is going to become 

commonplace eventually.

�Reinforcement learning and GANs
I am somewhat bearish on these fields in the short term, in that they still 

seem to require massive amounts of resources and there are still not a lot 

of clear commercial applications at this point in time. Having said that, 

I believe that in the long term, this is the field that is most going to drive 

progress in AI/ML in general. Most improvements in computer vision are 

now very small incremental tweaks, and any time an idea shows promise 

upstream in RL, then very quickly people will be trying to use it elsewhere. 

Using synthetic data to train neural networks is the area that seems most 

poised to become a commercial driver in the near future. Supersampling/

resolution is making its way into silicon and is clearly here to stay.

�Simulations in general
The other interesting area that I think is poised to be revolutionized 

by neural techniques is physical simulations in general. A very large 

amount of compute power is thrown regularly at performing complicated 

simulations of interactions based upon physics. I’m bearish on neural 

networks replacing physical simulations directly, because there will always 

be a place for raw math, but using networks to simulate real-world datasets 

opens up an interesting window of being able to simulate simulations, 

so to speak, and by extension being able to build approximately correct 

models much, much more quickly than traditional approaches. If the 

neural network–based simulation proves itself, then the traditional  

method can be run as the final phase, giving the best of both worlds  
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(e.g., fast experimentation and fundamental rigor when desired). There is a 

danger of the networks losing touch with reality (e.g., simulating the wrong 

things), but I believe that having domain experts will obviate this problem.

�To infinity and beyond
My experience is that this field as a whole has no shortage of ideas right 

now. There are thousands of papers being published each year on arXiv, 

and the rate of submissions only continues to grow. Many other fields, 

in particular mathematics, seem finally convinced that deep learning 

techniques are here to stay and that they need to get on the bandwagon, 

and so many extremely smart people are out there doing these hello 

world exercises, the same as you. In the short term, this is creating a lot 

of churn. There are countless blog posts by people attempting to explain 

their new ideas and online debates over the best approaches. Every new 

major release of pytorch or tensorflow breaks existing projects in all sorts 

of exciting new ways. People throw up their hands at the complexity and 

decide they’re going to create a new unified system for doing things, and 

voilà, there’s yet another new framework. This is literally going on as 

we speak. The industry as a whole is lurching from shiny thing to shiny 

thing. The simple truth is that nobody really knows what the right path 

forward is. New techniques are being discovered daily, and deep learning 

approaches have brought together dozens of related fields. Neural network 

and big data approaches have proven themselves on disparate problems 

such as biology, astronomy, physics, and economics. Every field now has 

to learn computer science or they will get left behind by those who do.

And so let me tell you grizzled programmer story of the early days of 

iOS. With the second generation, Apple let people submit apps. There 

was a massive gold rush where people could (and did try to) ship almost 

everything under the sun. The next few years were interesting as more 
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and more of the approaches finally stabilized and became popular. After 

a while, libraries and frameworks became standardized. To me, all of this 

deep learning hullabaloo is very much the same experience of yore.

�Why Swift
Swift has been an interesting revolution within the iOS ecosystem. 

Objective-C was showing its age, and swift brought iOS programmers a 

long way forward in a hurry. Garbage collection is a traditional approach 

in this field that works well on systems with large amounts of memory 

and spare cycles to run garbage collection. But in production systems 

with hard real-time requirements, be they servers providing 24/7 packet 

handling guarantees or mobile devices with quasi-random use patterns, 

this approach doesn’t work as well as would be desired. Android has tried 

to cover up this gap by getting manufacturers to ship more and more RAM 

with their devices, but this makes devices cost more, which is often not 

viable in the real world.

LLVM initially snuck into iOS in the form of automatic reference 

counting, a feature added to Objective-C to count/track memory cycles 

and by extension be able to manually add malloc and free calls for the 

developer. Once this tech had proven itself, by eliminating memory 

management from the day-to-day workflow of programmers, Lattner et al. 

set their sights significantly higher.

Swift is designed to be a modern language that does not look out of 

place to existing Objective-C programmers, and I feel like at this point 

it succeeded extremely well. It brought functional programming ideas 

and concepts into the world of iOS by making it easy to bridge between 

the worlds. Have a particular section of code that needs C raw memory 

access? Just drop down to raw memory access directly, and the compiler 

can put boundary checking on that entire region of code. Have an existing 

C library that needs to be brought to swift? Simply write a simple API layer 
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that encapsulates your library. Then all the system-level communication 

for iOS (and Mac proper, eventually) was forced to go through a swift layer 

of indirection. In the short term, this was painful in that it forced coders 

to no longer be able to do direct system calls. But over time, this approach 

drastically modularized the codebase at the system level and isolated 

many different bugs in their own particular islands.

While Apple was eating their own dogfood, iOS developers were going 

through a similar transition. Many open source libraries sprung up in the 

early days, each with their own set of trade-offs and patterns. By moving 

to swift, this forced much of the ecosystem to either evolve or get stuck in 

the past. In turn, though, this transition allowed people to concentrate on 

higher-level problems and not get stuck on low-level details.

And so then Apple did the crucial final step of making the language 

open source and opening it up fully to outside developers to make 

contributions and shape its future. Anybody can contribute and thousands 

have now. It is extremely hard for new programming languages to 

come into being. Small niche languages usually toil in obscurity. Large 

companies push new languages on the world, but this top-down approach 

usually only works so long as the original company is driving progress.

So to me then the strengths of swift are manyfold. It is an easy-to-

learn language for beginners. It has the support of a large benefactor 

(Apple) that is committed to its success, but not technically in charge. It 

has a diverse ecosystem of open source contributors and is solving real 

problems in the real world daily while utilizing decades of experience 

building C libraries. It brings functional programming concepts to the 

procedural world in a pragmatic way without forcing people to completely 

change how they have been doing things.
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�Why LLVM
Swift’s real magic power, though, is that it is the original language of LLVM. 

Compilers have historically focused on generating really, really fast code. 

This is great for progress but also means that many implementations 

chase speed over doing things correctly, so to speak. What happened as 

a result is that we ended up with many different compilers generating 

slightly different code for dozens of slightly different computers, and then 

build systems became really large and complicated. Generating a new 

programming language became very difficult because people demanded 

performance out of the gate.

LLVM rebuilt the foundations of compiler theory and has spawned a 

renaissance in new languages by reunifying these worlds. At a high level, 

all you have to do is generate an IR, and then LLVM can figure out how 

to get it to run on your device. This means that many, many different 

languages are using LLVM now. As a direct result, by using LLVM, you get 

the collective improvements of many, many different ecosystems.

This is a little bit more work up front for the programmer in terms 

of complexity, but as a result fundamentally makes it possible for the 

compiler to do much, much more. We’ve seen amazing progress in the 

LLVM world; people have demonstrated running gigantic jobs on large 

clusters and other approaches.

Machine learning is still in its infancy in many ways. Single-GPU code 

is the largest paradigm. People write stuff for clusters, but it is still very 

much custom code most of the time. We’ve got a ton of experience with 

single instruction and single variable code (CPU-style programming), but 

historically single-instruction multidata code has been really hard to write. 

We end up with lots of hand-customized kernels for different things. This 

works fine in a general sense, in that programmers can make system calls 

and get optimized code, but it means that it is hard for programmers to 

easily take advantage of whatever hardware they have at hand.
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�Why MLIR
The end result is that there’s been a tremendous amount of churn in 

the machine learning ecosystem in general the past few years. Each 

manufacturer ends up trying to build libraries to provide an optimal 

experience for their hardware. Researchers have tried to make tensorflow 

do many things it was never designed to do, and so trying to support every 

permutation has been difficult for Google. Pytorch effectively rebuilt a 

framework just to make generating CUDA code simpler. MLIR provides 

a convenient bridge between these worlds. Hardware manufacturers can 

simply focus on getting an IR together that generates code for their device. 

Coders can write in arguably whatever language they prefer, and then 

language wonks simply need to find a way to convert their LLVM AST to an 

MLIR syntax. Then we can dream of a future in which we take our swift (or 

any language that supports LLVM) code and can compile it for whatever 

back end we desire.

�Why ML is the most important field
Machine learning has the ability to absorb all of the world’s compute 

capacity for the next few decades. This quiet revolution will have 

ramifications in dozens of fields and domains. The more and more we 

make it easier to use these tools and make them able to flexibly scale up 

to work on larger and larger compute systems, the greater the long-term 

potential of humanity as a whole. Large-scale compute has the ability to 

fundamentally do things that have never been possible before.

Clusters are only increasing in size. But all this emphasis on scaling 

ignores the reality that more compute resources are available to the 

individual today than at any point in history. If you are willing to invest the 

time and energy now, then as these things continue to improve, you will be 

the first to be able to take advantage of this revolution.
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Toward this end, you can take two paths. One is to pick a particular 

horse, be it hardware or framework, and put all your efforts behind it. 

The other is to focus on helping make it so no particular framework or 

technology gains control of the ecosystem. Getting all these sundry groups 

of people working together as a whole has the potential to fundamentally 

revolutionize this field.

The hardware is just now being figured out, but this is going to change 

dramatically in the next few years. The software is a bit rough around 

the edges right now, I will admit. But opportunity never comes wrapped 

up neatly in a package with a bow. More often than not, it looks like 

hard work. But a little bit of work today will leave you well positioned for 

whatever tomorrow brings.

�Why now
Progress is the result of many, many people working together over the 

centuries, not isolated to any one place or time. By helping make machine 

learning more accessible, you are helping improve tools that will indirectly 

touch millions of other people’s lives. This has the potential to allow 

progress on a scale never before seen in history.

�Why you
You can wait for other people to bring you the future or help them build 

it. There’s never been a better time to get started. The future is now! Come 

join us!
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�APPENDIX A

Cloud Setup
We will look at how to get bootstrapped running Swift for Tensorflow on 

Google Cloud.

Technically speaking, you can skip this Appendix if you wish, but I 

would highly suggest you spend some time to learn how to use the cloud 

sooner rather than later. The cloud in general is a deep subject which we 

could spend an entire book on. I would suggest you not try to do it all at 

once, but rather get the basics down at first, and then you can slowly add 

more cloud usage into your workflows over time.

Once you are comfortable working with the command-line workflow 

we are teaching, then scaling becomes a natural extension of technique. 

There are various workflows you can make parallel very easily. For 

example, once you have a particular virtual machine configured exactly 

how you like, you can run cloud commands to literally create a dozen 

copies of it to run a job on a dozen different instances at once very quickly.

Having said that, the flip side of spinning up lots of instances is that 

these approaches can get expensive in a hurry. So, to reiterate my primary 

point, you should have a workflow where you can play with things locally 

without worrying about resources while you’re figuring out what you need, 

and then send jobs to the cloud to be scaled as needed.

For the purposes of this book, we are going to be working with Google 

Cloud. I think this is a good future-proof platform for you to learn if you 

are new to the field. I am going to try and provide a quickstart for this field 
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based on the theory that you can pick up more on your own once you 

know the basics. If you like a different cloud provider, that is fine; Ubuntu 

configuration works the same anywhere in the world.

�Outline
The three key workflows you need to know, in order of complexity:

	 1)	 How to set up, log in, and delete a basic cloud 

instance (no GPU)

	 2)	 How to deploy a preconfigured cloud instance with 

a GPU for a specific workflow

	 3)	 How to configure your own cloud instance with a 

GPU from scratch to match your local machine’s 

setup, so that you can share code between the two 

systems easily (see Appendix B)

Most cloud providers will have prebuilt system images with various 

packages preinstalled and configured for you to run, notably the Nvidia 

drivers and specific configurations of pytorch/tensorflow. This can be a 

good way to get a project going quickly, but the converse is that it is easy to 

try and add a few packages or make a few tweaks on top of somebody else’s 

system only to get stuck dealing with obscure package management issues 

or (even more fun!) subtle differences between versions of Unix. Having 

spent a nontrivial portion of my life troubleshooting such things, my basic 

rule is to use the same operating system in the cloud that we are using on 

the desktop, namely, Ubuntu 18.04 LTS. We will spend more time at first 

installing extra packages to catch up to the preconfigured approaches, but 

on the flip side, we will be able to avoid having to learn the ins and outs of 

any specific cloud vendor’s platform configurations.
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�Google Cloud with CPU instances
�How to sign up for Google Cloud
https://cloud.google.com/

You’ll need to sign up for an account. They provide $300 in free credits 

to get started; this can go a long way if you’re careful. You’ll need a credit 

card for the sign-up process, for what it’s worth.

I am going to assume you know how to get to the authentication step:

     sudo snap install google-cloud-sdk --classic

     gcloud auth login

This will give you a URL in the console. Load this in the same browser 

you used to load Google Cloud. After a security prompt, you will be given a 

long alphanumeric key.

Copy-paste this key into the console prompt.

You will also need to set your gcloud project right now:

     gcloud config set project cnn-s4tf-tutorial

�Creating your first few instances
The console may say that the compute engine is still getting ready; just wait 

a few minutes.Walk through creating an f1-micro instance.

•	 Log in.

•	 Shut down your instance.

•	 Delete your instance.

•	 Make a large RAM instance.

•	 Run free –h.

•	 Delete it.

•	 Make a large CPU instance.
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•	 Run htop.

•	 Delete it.

I would highly recommend you redo this process several times until 

you feel extremely comfortable creating and deleting instances on the fly. 

When using small instances on Google Cloud/other providers, the cost is 

usually on the order of a few pennies an hour, so mistakes are very cheap 

at this scale. You can literally spin up and destroy dozens in an hour or 

two without worrying about cost. Do it a bunch of times until you feel 

**extremely** comfortable with this step.

�Google Cloud with preconfigured GPU 
instance
This used to be much more complicated. Now Google is providing prebuilt 

binaries to make our lives much easier. Get a list of images which can run 

Swift for TensorFlow:

gcloud compute images list \

  --project deeplearning-platform-release \

  --no-standard-images | \

  grep swift

Run this to test swift with MNIST (CPU-only mode):

gcloud compute instances create s4tf-ubuntu \

  --image-project=deeplearning-platform-release \

  --image-family=swift-latest-cpu-ubuntu-1804 \

  --maintenance-policy=TERMINATE \

  --machine-type=n1-standard-2 \

  --boot-disk-size=256GB

gcloud compute ssh s4tf-ubuntu \

  --zone ${ZONE}
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Run swift:

swift

Run swift-models:

git clone https://github.com/tensorflow/swift-models.git

cd swift-models

swift run

...

error: multiple executable products available: pix2pix, WordSeg, 

VariationalAutoencoder1D, VGG-Imagewoof, Shallow-Water-PDE, 

ResNet-CIFAR10, Regression-BostonHousing, PersonLab, NeuMF-

MovieLens, MobileNetV2-Imagenette, MobileNetV1-Imagenette, 

MiniGoDemo, LeNet-MNIST, Gym-PPO, Gym-FrozenLake, Gym-DQN, Gym-

CartPole, Gym-Blackjack, GrowingNeuralCellularAutomata, GPT2-

WikiText2, GPT2-Inference, GAN, Fractals, FastStyleTransferDemo, 

DCGAN, CycleGAN, Custom-CIFAR10, Catch, Benchmarks, BERT-CoLA, 

Autoencoder2D, Autoencoder1D

swift run Custom-CIFAR10

Now let’s try the same, but with a GPU:

export GPU_TYPE="t4"

gcloud compute accelerator-types list | grep ${GPU_TYPE}

> not all zones will have gpus free

export ZONE="us-central1-b"

gcloud compute instances create s4tf-ubuntu-${GPU_TYPE} \

  --zone=${ZONE} \

  --image-project=deeplearning-platform-release \

  --image-family=swift-latest-gpu-ubuntu-1804 \

  --maintenance-policy=TERMINATE \

  --accelerator="type=nvidia-tesla-${GPU_TYPE},count=1" \
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  --metadata="install-nvidia-driver=True" \

  --machine-type=n1-highmem-2 \

  --boot-disk-size=256GB

If you’re using a brand new account, this will fail because you don’t 

have access to GPUs by default. Jump through the hoops to make a quota 

request and get access to a GPU, then try again.

After it creates, the gcloud command will return, but it will still be a few 

minutes before the image is ready to respond. SSH in eventually:

gcloud compute ssh s4tf-ubuntu-${GPU_TYPE} \

  --zone ${ZONE}

gcloud compute ssh --zone "us-central1-b" "s4tf-ubuntu-t4" 

--project "swift-cnn-gcp-tutorial"

Run swift-models:

git clone https://github.com/tensorflow/swift-models.git

cd swift-models

swift run

...

error: multiple executable products available: pix2pix, WordSeg, 

VariationalAutoencoder1D, VGG-Imagewoof, Shallow-Water-PDE, 

ResNet-CIFAR10, Regression-BostonHousing, PersonLab, NeuMF-

MovieLens, MobileNetV2-Imagenette, MobileNetV1-Imagenette, 

MiniGoDemo, LeNet-MNIST, Gym-PPO, Gym-FrozenLake, Gym-DQN, Gym-

CartPole, Gym-Blackjack, GrowingNeuralCellularAutomata, GPT2-

WikiText2, GPT2-Inference, GAN, Fractals, FastStyleTransferDemo, 

DCGAN, CycleGAN, Custom-CIFAR10, Catch, Benchmarks, BERT-CoLA, 

Autoencoder2D, Autoencoder1D

swift run Custom-CIFAR10
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Run this book:

git clone REPO_URL

cd cnn-s4tf

swift run

Resources:

Google Deep Learning Platform StackOverflow: 

https://stackoverflow.com/questions/tagged/

google-dl-platform

Google Cloud Documentation: https://cloud.

google.com/deep-learning-vm

Google Group: https://groups.google.com/

forum/#!forum/google-dl-platform

Once you’re done plvaying with the demos, shut things down:

     sudo shutdown -h now

You’ll be able to see the system shutting down in the Google Console.

Delete the instance when you’re done with it.

�Google Cloud nits
�Cattle, not pets
In general, I would advise you to not get too attached to your virtual 

machines. My broad philosophy is to create them on demand for a specific 

project and then delete them after. If it took a decent amount of work to get 

a particular configuration up and running, you can leave a machine off and 

not running for relatively cheaply (you will get charged for disk space is 

all). Another good workflow to know is saving a snapshot of a VM and then 

using it to create more systems.
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This is beyond the scope of this book, but I often need to productionize 

things by creating scripts using Docker/Kubernetes to deploy things on 

the fly easily. Figuring out what steps are needed to replicate a particular 

configuration is a good way to get rid of a bunch of complexity in a 

hurry. I will usually spend a bit of time getting something working, then 

immediately attempt to replicate my work with a new server while I still 

remember what is going on. If the new one works properly, then going 

to Docker is simply a matter of copy-pasting my workflow for the second 

server over.

These deep learning VMs, preconfigured by Google, are a good trick 

to know if you would like to experiment with other people’s code, which 

often only work with specific library versions. Basically, you can select a 

specific version of CUDA and tensorflow/pytorch and usually get things 

running quickly on a remote server. Then, in an ideal world, you can just 

download/git clone the demo you want and install its dependencies to go 

from there. This is an excellent approach to have in your toolbox for testing 

things. Let Google or somebody else worry about the security implications 

for you.

�Basic Google Cloud nomenclature
Let’s review some Google Cloud–specific terminology just to make sure 

you feel comfortable poking around. There are many, many different areas 

in Google Cloud that I do not want to explain, but I feel like you will bump 

into the following with some regularity.

�* Machine types

Just use n1 instances, the other types don’t automatically attach to GPU 

instances.
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�* Buckets

Google lets you put data into different buckets on the server. I would advise 

against you worrying about access control lists or other sophisticated 

approaches. They have a few interesting tricks, namely, a transfer 

appliance button. You can use it to easily copy data between different 

buckets or from other cloud providers (e.g., S3, Amazon’s similar utility).

�* Billing

It is always a good idea to keep an eye on your billing in general because 

cloud costs can add up in a hurry.

�Cleaning up
Now that you’re done, remember to shut down your instance!

     sudo shutdown -h now

Make sure it’s shut down fully in the Google Console. Don’t delete this 

instance; you can just start it up again when needed.

�Recap
We’ve looked at how to get started with a Google Cloud account and basic 

virtual instances. Then, we’ve looked at how we can use a prebuilt system 

configuration to quickly play with random code off the Internet.
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�APPENDIX B

Hardware 
Prerequisites, 
Software Installation 
Guidelines, and Unix 
Quickstart
In this Appendix, we will discuss what to buy to build a deep learning 

server; walk through how to install Ubuntu 18.04 LTS (long-term support), 

Swift for tensorflow, and s4tf from scratch; and wrap up with the client 

setup process and a Unix quickstart.

�Hardware
We will look at what sort of hardware you will need to build your own deep 

learning machine.
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�Don’t go alone!
If you are nontechnical, then get a friend to help you with this. Find 

somebody in your network who can explain the process and help you 

with cabling and getting the hardware working, as well as the next steps 

(installing an OS). At a high level, you will need a GPU of some sort (to run 

your code as fast as possible) and then a host CPU (computer of some sort) 

to send commands to it.

�GPU
One of my long-term hopes is that swift for tensorflow (and more broadly, 

MLIR) will enable you to build neural networks for whatever GPU 

hardware you have. In the here and now, though, Nvidia hardware is your 

best choice. Here are the cards I think you should have on your radar. 

There are three main things to look out for.

Chip architecture itself: Ampere has finally made it to market and 

this is what I think you should buy. Basically every past architecture is 

implemented and so you can run any form of research code locally with 

as much RAM as you desire. Pytorch 1.7 has integrated NVidia’s apex 

libraries and so you can use this and XLA interchangeably. Being able to 

run bfloat16 code locally will drastically simplify the process of testing 

TPU code. Swift for TensorFlow doesn’t currently support this well, but I 

think that will change. Tim Dettner has a nice article on why the Ampere 

architecture is a good choice if you enjoy technical detail.

Raw performance: CUDA cores are a good rough proxy for raw 

performance. There are various gamer cards that are overclocked to run 

slightly faster and cost a little more, but I would advise against them 

(generic hardware is fine), because:

APPENDIX B  HARDWARE PREREQUISITES, SOFTWARE INSTALLATION GUIDELINES, AND
UNIX QUICKSTART



191

GPU memory is the most important metric for machine learning, 

because it has the largest effect on what your card is capable of. More 

memory allows bigger models, allowing you to run more modern code. 

More memory allows you to put more data on the device, allowing you to 

train networks more quickly with larger batch sizes. Swift for tensorflow 

in particular isn’t terribly well optimized on this front, compared to other 

frameworks, so this is the main limitation you will run into. Assuming 

whatever machine learning you do will run on your card (don’t get off the 

beaten path with other architectures), then the memory will be the largest 

factor in what you can do.

�GPUs to buy

I think you should target 8GB of GPU memory at a minimum. The 

important cards to consider are as follows.

Used/old cards: 1070Ti, 1080, 1080Ti series cards will run Swift for 

TensorFlow fine.  Every demo in this book will run on a 1070Ti.  I have had 

good luck with older Kepler/Maxwell era workstation cards but be aware 

you will need to deal with firmware and cooling.

RTX: All of the code in this book was written on a 2080 Ti in FP32 

mode.  If you have this already, I wouldn't throw out fp16 support yet, but if 

you don't have anything just jump to Ampere.

T4: 15GB, fp16, ~2070 speed, cheap in cloud (slower but use much less 

power)

V100: 16GB, fp16, ~2080ti speed

Cheapest Ampere NVidia: Support for every single hardware format in 

existence.  $400, 8GB ram

3090: Support for every single hardware format in existence.  $1500, 

24GB ram (buy this if you can)

V100, v2: 32GB

A100: Ampere, 40GB/80GB
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DGX-1: 8 * V100 --> 128GB

DGX-2: 16 * V100 --> 256GB

DGX-2H: 16 * V100v2 --> 512GB

DGX-A100: 8 * A100 @ 80GB --> 640GB

HGX-A100: 16 * A100 @ 80GB --> 1280GB

TPU-v2-8: 64GB

TPU-v3-8: 128GB

TPU-v3-2048: 32TB

In general, for computer vision, you can get away with less RAM than 

other areas. If you are just starting out, my advice is to get an 8GB card, and 

then you can upgrade down the road. I used a 1070 Ti for a year, and it was 

a good investment. A lot of NLP and current research will use more RAM, 

but you can rent a T4 on Google Cloud to experiment with this stuff for the 

price difference at first.

Multiple GPUs
There is something to be said for having two GPUs on your local machine 

for the workflow where you start a job on one device and then experiment 

with code on another in the meantime. In general, trying to get multiple 

GPUs to work together on a problem usually adds more trouble than it 

is worth. For paired training, you need to match GPUs to work together 

(or rather, they will run in sync at the speed of the slowest one) or do 

hardware tricks (e.g., nvbridge offers a performance boost for cross-

card communication, but then you need to build your computer in a 

certain way so that the cards can be wired together), and so in general 

I would advise you not to worry about this too much unless you have a 

preconfigured multi-GPU cloud machine (you’re not there quite yet). If I 

am going to use multiple GPUs, then I might as well start to use multiple 

computers. It’s generally much easier to log in to two single-GPU machines 
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to do different versions of a job (and scaling from there to a hundred 

machines is trivial with cloud instances) than it is to do the work to make a 

single machine use two GPUs on the same problem at once effectively.

�CPU
If you are compiling swift for tensorflow from scratch, then more cores 

will be of use for sure, but in general most cloud machines are four to 

eight cores, and you are usually going to be fine with this on a workstation 

(but more won’t hurt if you can afford them). Reinforcement learning in 

particular uses lots of cores, so if that’s a long-term goal of yours, then 

consider a beefier machine. I do a lot of work using virtual machines + batch 

processing in general, so I have a few more cores than usual. If you have a 

computer already or an old PC lying around, then that should be fine, but 

be aware of how much power they use. Old workstations in particular will 

use more electricity than you might expect sometimes. You can get a cheap 

wattmeter device to figure out how much energy your device actually uses. 

Repurposing a gaming rig is fine, but you don’t need overclocked hardware 

or anything fancy on this front. Something that is stable is far, far more 

important; most of your code is going to be GPU bound anyway.

Motherboard

Getting more than 2 PCI-4 full length slots is a good future-proof 

option. You might consider faster network interfaces as well as remote 

management capabilities.

�PSU

Things to be aware of: The power supply unit (PSU) determines how much 

electricity your computer can use at once. The GPU is going to use 250 

watts or sometimes more, so make sure your system has at least twice that 

to handle the combined load of it and rest of the machine. Outervision has 
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a nice online calculator that will give you an estimate of how much power 

your system is going to draw. If in the long term you think you are going 

to buy a second GPU, then make sure your PSU will be able to handle the 

combined load. 750-1000 watts is a good current spot to target. Rewiring 

in a new PSU is a bit of a pain but might be the simplest approach to allow 

you to upgrade an older computer with a fancier GPU. If you’ve never built 

a computer before, ask around and you should be able to find somebody to 

help you with the process; it’s not that hard (and is sort of a rite of passage 

of the aspiring machine learning practitioner).

Be aware that >1600 watts will require custom wiring.

�Cooling

In the same vein, you’re going to be running your graphics card and CPU 

for hours on end at full load, so it’s important to make sure your setup has 

good cooling. Noctua makes good fans; find a hardware guru to guide you 

through getting a good heatsink setup for your particular machine. Some 

people like to do water cooling, but that’s overkill for somebody new to this 

field in my opinion.

�RAM
A simple rule of thumb is to have 2x your GPU RAM for your machine. 

16GB will work okay for getting started, but upgrade to 32GB if you can. 

I think this is a good sweet spot. More doesn’t hurt, but unless you know 

your workflows actually require more RAM than that, you should be fine.

�SSD
This is a really good cheap upgrade for older computers. Buy a cheap SSD 

drive or, even better, an M.2 drive if your motherboard supports it and 

work entirely off the flash drive (e.g., install Linux to that). 128GB, 256GB, 

and 512GB drives can be had very cheaply, and you can do a lot of work 
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with this amount of space if you are on a budget. 1TB and 2TB drives are 

a little more but certainly affordable, and then you can keep lots of data 

locally. I wouldn’t worry about the flash speed/online arguments about 

what drive is the fastest too much and would rather just have more space 

in general.

Cheap two and four bay m2 pci adapters exist so you can keep old 

drives plugged in for a long time to come, so I would consider this a 

reasonably future-proof investment. If you’re comfortable with mounting 

multiple drives under Linux, then buying two drives (e.g., a small one for 

your OS to make reinstalling easy and a larger one for data/storage) is a 

nice workflow.

�Recommendations
My budget system recommendation:

* Repurpose old computer + cheap NVidia 8gb card + cheap ram/flash

Build your own:

* CPU of your choice, Ampere GPU of your choice, motherboard 

with PCI-4 slots, 16-32GB of ram, 1-2TB M.2

My setup:

My v1 server, hermes:

* 2x M40 @ 24GB, intel i7, asus prime x370, 48GB of ram, 2TB 

M.2, corsair 750w/200R case

My v2 server, athena:

* RTX 2080 ti, ryzen 3950x, asus prime x570, 128GB of ram, 2TB 

M.2, corsair 850w/540 case
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SAN:

* 100TB @ 10 Gigabit, 1TB @ 40/56 Gigabit backbone

Saving up for:

* 2 * 3080 Ti @ 20GB (40GB)

My v3 server, venus:

* intel i9 + x399 board (eg 5+ PCI slots)

* +2 GPU --> 4x 3080Ti (80GB)

My v4 server, ares:

* 4 x 80GB setups --> 320GB

To infinity and beyond:

* a bigger gpu, faster network, more cores, more ram, more space!

�Long term

Finally, my advice is to plan your budget with the goal of future upgrades. 

Broadly speaking, spending 1K today and 1K on upgrading in six months to 

a year is a better usage of your resources than spending 2K today. Today’s 

high-end card that everybody is drooling over will be considered obsolete 

in a year more often than not. Spending more than 3K on a system is 

overkill until you have a better feel for how things work together and what 

limits you are bumping into.

�Some real-world usage examples

I have been messing with various NLP models the past year, and a lot of 

them are designed for machines with larger GPUs (e.g., they won’t run at 

all on consumer cards without heavy tweaking), so my next big purchase 

will be a card with more RAM, ideally 20GB or more.
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A surprising number of data preprocessing workflows are single 

threaded, which means you can spend hours just watching a single thread 

chug away at 100% while you wait. This is a great project for your local 

machine where cycles are cheap, and then you copy the data up to the 

cloud to run actual jobs in parallel there.

A lot of computer vision stuff fits nicely onto smaller GPUs, so then the 

bottleneck becomes the raw speed (CUDA cores/processor) of the device. 

Swift for tensorflow still needs a bit of work on the memory management 

front and batch processing in general. People are working on it!

Another workflow I have (large data processing job) needs about 

80–90GB of RAM to run comfortably, so I have bumped my RAM a bit. 

Likewise, I have been doing lots of compiles and running virtual machines 

on my primary system, so the extra cores are helpful.

If you start trying to gather your own data for a real-world project, 

video in particular, you are going to start needing a lot of scratch space. 

You can use traditional disks for this, but there will definitely be a speed hit 

going between the worlds.

�Hardware recap
I would suggest you stick with the basics for now and get a cheap computer 

working, then upgrade it down the road. Until you’re playing around with a 

bunch of things, you won’t know what you need to buy or where your pain 

points are. Likewise, don’t worry about overclocking or timing techniques 

or having the most advanced hardware. Just focus on getting something 

reliable that you will use regularly. That is the key to success.

�Installing Ubuntu
Ubuntu is a popular Linux distribution that has been out for many years 

now. The world moves quickly, and my goal is not to let this book get out 
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of date. Ubuntu 20.04 LTS is out and offers a significant improvement to 

the distribution. Having said that, swift for tensorflow still doesn’t work 

perfectly with it, so I am pushing 18.04 for now. As the situation changes, I 

will keep an online guide for you at

convolutionalneuralnetworkswithswift.com

This will keep you up to date on how to upgrade. In my work with 20.04 

so far, nothing major has changed, just a bunch of internal library cleanup 

and depreciation that has predictably made running things out of the box 

not work. Swift 5.4 and later will support 20.04 by default, and after they 

ship, then swift for tensorflow will pick up 20.04 support as well.

I have used Ubuntu for a long time and think it is the best variant for 

you to learn. My reasoning is as follows:

	 1)	 Hardware support in general in Ubuntu is very 

good. After many, many generations of software 

now, most hardware will be supported out of the 

box. If something will run Linux in general, then it 

will usually run Ubuntu without too much fuss.

	 2)	 Ubuntu upstream is generally fairly pragmatic 

in general. They have continually driven solid 

evolution of their product by working hard to bring 

people from extremely varied groups together to 

solve real-world problems.

	 3)	 Community: The Ubuntu community is very good 

in general about being friendly and welcoming 

to outsiders. One of the benefits of having a large 

community of fellow users is that many other 

people will hit the same pain points you discover. If 

you have a question or bump into a configuration 

issue, generally, you can search “ubuntu 18.04 
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KEYWORD” and find blog posts and answered 

questions on Stack Overflow or documentation by 

cloud providers on how to solve your issue. This 

makes solving many day-to-day issues generally a 

few clicks away.

Nvidia driver support: This is another big one; the Ubuntu drivers for 

Nvidia are pretty painless to get going at this point in time compared to the 

trickery that you used to have to do.

Finally, Ubuntu is a default option for all of the major cloud providers. 

So, whatever skills you learn on your local machine will eventually 

translate to the cloud without too much trouble. Toward this end, we are 

going to install the command-line (server) version of Ubuntu 18.04 LTS 

(long-term support).

I personally do not believe in installing a GUI on your machine 

learning box, because I want you to be thoroughly familiar with the 

terminal. Having said that, if you have a particular window manager you 

want to install and are familiar with desktop Linux already, go for it.

�General prep
Broadly, you will need

	 1)	 A USB key flashed with Ubuntu 18.04 LTS (use 

another computer to do this)

	 2)	 A keyboard to navigate the setup process and 

(optional) a USB mouse – my computers, with Asus 

motherboards, have a BIOS screen that is much 

easier to navigate with a mouse. If you have a mouse 

lying around, then plug it in!
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	 3)	 A monitor for the initial steps here. Most graphics 

cards have an HDMI port so you can plug your 

machine into a TV if needed for this step. You may 

need to tweak the scan size to fit all the output on 

the screen.

	 4)	 An Internet connection. You’re going to need to 

download some stuff, so make sure you can pull a 

few gigabytes down as needed.

You will need to know how to boot the post screen (e.g., you will 

hold down a certain button on the keyboard at launch, usually one of the 

function keys, to access the boot settings). If you are not familiar with this 

process, then find a friend who has done all this before and have them run 

through these instructions with you. I have streamlined this as much as 

possible; you can do it in under an hour easily.

And finally, I would suggest you reinstall your primary operating 

system periodically. Once you have jumped through all the hoops a few 

times, it will become second nature.

�OS install prep

Please just buy a USB flash drive for this. You can get a cheap one for under 

$10. All you need is for it to be 2GB large. Flash it once and leave it sitting 

by your computer for when you need to repeat all of this again. Do not 

mess with partitioning your primary drive or trying to use a random caddy 

to convert a different kind of flash memory into a drive; I’ve seen this go 

astray too many times.

�Download Ubuntu + flash to USB key

We’ll be using the Ubuntu Server installer. We will be using the Live 

installer, which is how Ubuntu is going to be doing these installs going 

forward (e.g., 20.04 and later).
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     Download here: http://releases.ubuntu.com/18.04/

     �Actual iso (disk image): http://releases.ubuntu.com/18.04/ 

ubuntu-18.04.4-live-server-amd64.iso

Add a .torrent to the end of the preceding URLs to get a distributed 

download if you prefer torrents.

You can follow these guides for how to copy your ISO to your flash drive:

�Mac guide: https://tutorials.ubuntu.com/

tutorial/tutorial-create-a-usb-stick-on-macos#0

�Windows guide: https://tutorials.ubuntu.com/

tutorial/tutorial-create-a-usb-stick-on-windows#0

Ubuntu guide: https://tutorials.ubuntu.com/

tutorial/tutorial-create-a-usb-stick-on-ubuntu#0

Each version will have you launch a disk utility (there’s a different 

name for each platform) which you will then use to overwrite your USB 

flash drive (WHICH YOU BOUGHT SPECIFICALLY FOR THIS). It will run 

a bit and do a verification pass, and then you should be ready for the next 

step. Eject your flash drive from your computer.

�OS install
     * plug into network (hard-wired cord)

     * put usb key in computer

     �* boot + hold down bios screen button (f2 on asus, search 

"BIOS KEY +MOTHERBOARD MANUFACTURER NAME")

PROTIP: If your computer has VT virtualization ability, then enable 

it now so you can do cool stuff with virtual machines later. Now is a good 

time to run an auto-tuner if your BIOS has one. As I have said elsewhere, 

I do not recommend overclocking your machine because I place an 

extremely high premium on stability, but if you know what you’re doing 

and what to watch out for, then go for it.
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Select the USB key (you should be able to identify the brand name in 

the list) as the primary boot drive. Reboot the machine (hit save and exit 

in the BIOS). Depending on your machine, you may need to reselect your 

USB device after boot and just do so manually the first time.

     select language (en)

My Live installer has this screen; you probably won’t see it:

     install ubuntu server

     select language – en

     select location - us

     detect keyboard layout - no

     english - us

     ubuntu network card working screen

If you have experience with Linux, you can configure your card later, 

but if this isn’t autocompleting for you, then go back to step 1 and make 

sure you’ve got the computer plugged in properly. You’re going to be using 

this interface a lot so it’s super important to have this set up correctly from 

the start.

In the screen, just hit done, and it will autofill in the default proxy 

server.

Then, just hit done again to keep on going.

     WARNING: PARTITION DISK STAGE

PROTIP: If you know how to do partitioning and want to dual boot, 

then go for it. I am not going to help you out when you mess things up. If 

you are new to this, just use your whole drive with ext4 (if you know how 

to use volume groups, then use that, but not if you are a beginner!). This is 

the cheapest component of your computer for a reason. If you would like 

to do something fancier, then install your operating system to one hard 

drive and mount a different one to store data. Then, you can reinstall the 
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OS really easily without worrying about data loss. But if you’re new to all of 

this, then just put everything on one drive and call it a day.

Pick your m.2 drive; the thing shows the size.

Hit done again, and it will pop up a warning.

Select continue; it will be red to show you that this is a nonreversible 

process.

Hit continue.

It will show the screen where you will set your user info.

PROTIP: Give your computer a name that will look cool on the 

network, but not something you will hate typing over and over again.

     full user name

     short username

     password 1

     verify password

Fill out whatever you like. I like a simple shortname since you will be 

typing it a lot.

OpenSSH is NOT OPTIONAL – we will be using this a lot.

Hit done.

�Extra screen

Install Postgres (optional). I like this one-click install for Postgres here; it’s 

a super quick way to get a database up and running on your system.

You can install all of this later using snap installs, so it’s not essential to 

get things running here.

Hit done and it will start installing.

After this, just sit back. Things will run for a while and then the 

computer will prompt you to restart.

One more prompt at the end asks you to remove your USB flash key.
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�Reboot

After a restart, you should have the standard Unix login screen.

Type in your shortname and password.

Let’s run one of the universal Unix utilities you should know when 

logging in to a new system:

     ```

     uname -a

     Linux mercury 4.15.0-99-generic #100-Ubuntu SMP Wed Apr 22

     20:32:56 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux

     ```

The first line is the base Unix type, the second your name, the third 

your actual Linux kernel version, and the rest a bunch of flags the actual 

compiler used to make the kernel was given. You’re now a Unix user (soon 

to be a wizard)!

Let’s test our hardware a bit before we go too far. Try pinging a remote 

server to make sure your network card + connection is working properly:

     ping google.com

     ````

     PING google.com (172.217.1.206) 56(84) bytes of data.

     64 bytes from iad23s26-in-f206.1e100.net (172.217.1.206):

     icmp_seq=1 ttl=56 time=23.6 ms

     64 bytes from iad23s26-in-f206.1e100.net (172.217.1.206):

     icmp_seq=2 ttl=56 time=23.1 ms

     64 bytes from iad23s26-in-f206.1e100.net (172.217.1.206):

     icmp_seq=3 ttl=56 time=23.4 ms

     64 bytes from iad23s26-in-f206.1e100.net (172.217.1.206):

     icmp_seq=4 ttl=56 time=23.4 ms

     ^C
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     --- google.com ping statistics ---

     4 packets transmitted, 4 received, 0% packet loss, time 3003ms

     rtt min/avg/max/mdev = 23.130/23.406/23.651/0.240 ms

Hit Ctrl+C to stop ping from running forever. This is a universal Unix 

command to kill a program; you’ll be using it a lot, so learn it now.

�Doing a sanity check of your new server

Before we go too much further, it’s a good idea to do a quick stress test of 

your system to make sure that all your hardware is working properly. Let’s 

install stress:

     sudo apt install stress

Run stress on all your cores for a few minutes to test the CPU. Make a 

new terminal and run htop to see what’s going on:

     stress -c NUMBEROFCORESONYOURMACHINE

It’s not filling up the memory bar in htop. All you really need is to be 

allocating enough RAM that each stick of memory is being used slightly 

(e.g., if you only have two sticks, then if anything over 50% is working, that 

means both sticks are fine).

     stress --vm 8 --vm-bytes 4000M

If you get warnings here, you’re going to need to find some better 

RAM before going further. Otherwise, your system will do all sorts of weird 

things internally, and things will randomly fail.

�Ubuntu recap
Congratulations, you’ve successfully installed Linux to your computer.
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�Installing swift for tensorflow
Now let’s install CUDA drivers to our machine learning box, then get a 

prebuilt version of s4tf up and running with the swift-models repository.

�Installing graphics card drivers and swift 
for tensorflow
Let’s install some drivers for your graphics card, and then we can install 

and run swift for tensorflow using our graphics card. Swift for tensorflow 

now supports CUDA 11.0, so use that (or whatever the latest supported 

version is) if possible.

�CUDA 10.2 install process

Click https://developer.nvidia.com/cuda-downloads and to go to legacy 

download page for CUDA 10.2 drivers (the current highest-supported 

version of CUDA for swift for tensorflow). We want this specific version and 

related libraries to make our lives simpler (Linux --> x86_64 --> Ubuntu --> 

18.04 --> deb (network)).

Follow the install guide:

     �wget https://developer.download.nvidia.com/compute/cuda/ 

repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin

     �sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-

repository-pin-600

     �sudo apt-key adv --fetch-keys https:// developer.download.

nvidia.com/compute/cuda/repos/ubuntu1804/ x86_64/7fa2af80.pub

     sudo add-apt-repository "deb http://
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     �developer.download.nvidia.com/compute/cuda/repos/

ubuntu1804/ x86_64/ /"

     sudo apt-get update

     sudo apt-get -y install cuda

�Installing cudnn

We also need to install libcudnn and libcudnn-dev as well, which isn’t 

quite as easy as the previous one. They are system libraries that swift for 

tensorflow uses internally, and you will need to have them installed on 

your system in order for swift for tensorflow to use your graphics card.

You will need to go to the NVidia site and sign up for an account. Then, 

you will get an email. Then you can go and log in to see the main dev 

console. Basically, you will need to download these files from the Nvidia 

site and then upload them yourself to your server.

https://developer.nvidia.com/cudnn

You will need both the cudnn runtime library **AND** dev library 

(note: you can't access these files without being logged in!)  Anyway, 

assuming you got the cudnn files to your server, let’s install libcudnn:

     �sudo dpkg -i libcudnn7_7.6.5.32-1-i-cuda10.2_amd64.deb 

sudo dpkg -i libcudnn7-dev_7.6.5.32-1-i-cuda10.2_amd64.deb

Now, let’s reboot your computer to test things:

sudo shutdown -r now
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Afterward, we should be able to call nvidia-smi:

     > nvidia-smi

     ```

     Sat Apr 25 19:09:04 2020

     +--------------------------------------------------------+

     | NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA

     Version: 10.2 |

     �|-----------------+------------------+-------------------+

     | GPU Name    Persistence-M| Bus-Id    Disp.A |

     Volatile Uncorr. ECC |

     �| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util 

Compute M. |

     |�===============================+======================+ 

======================|

     | 0 Tesla T4 On | 00000000:00:04.0 Off |

     0 |

     | N/A 70C P8 12W / 70W | 0MiB / 15109MiB | 0%

     Default |

     |---------------------+------------------+---------------+

     |--------------------------------------------------------+

     | Processes:

     GPU Memory |

     | GPU PID  Type  Process name

     Usage |

     |

     =============|

     | No running processes found

     |

     +--------------------------------------------------------+
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�Installing swift for tensorflow using prebuilt packages

Next, let’s get a working swift install using an official release of swift for 

tensorflow. This should be pretty painless, and by the end, we’ll be doing 

actual deep learning on your computer using all the pieces we’ve put 

together so far.

Download swift

Our base guide is here:

     �https://github.com/tensorflow/swift/blob/master/ Installation.md

Log in to your server, then run

     mkdir swift

     cd swift

First, install some required libraries:

     sudo apt-get install clang libpython-dev

     libblocksruntime-dev

Download the actual file (latest version + cuda10.2 build):

     �https://storage.googleapis.com/swift-tensorflow-artifacts/

releases/v0.12/rc2/swift-tensorflow-RELEASE-0.12-cuda10.2-

cudnn7-ubuntu18.04.tar.gz

Extract things locally:

     �tar -xvf swift-tensorflow-RELEASE-0.12-cuda10.2-cudnn7-

ubuntu18.04.tar.gz
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Now, we should be able to point our shell at the swift for tensorflow 

binary files:

     export PATH=~/swift/usr/bin:"${PATH}"

And then we can actually run swift:

     �$ swift --version

     Swift version 5.3-dev (LLVM 5a342fdfac, Swift 5c3508b5d6)

     Target: x86_64-unknown-linux-gnu

     $ which swift

     /home/skoonce/swift/usr/bin/swift

Congratulations, we have a working swift for tensorflow install! Let’s 

play with it a little.

�Python

Set up Python:

     sudo apt install python python-dev python-pip

     python --version

     > Python 2.7.17

     pip --version

     > pip 9.0.1 from /usr/lib/python2.7/dist-packages (python

     2.7)

     git clone https://github.com/tensorflow/swift-models.git

     cd swift-models

     swift run

    � Fetching https://github.com/apple/swift-protobuf.git 

Fetching https://github.com/apple/swift-argument-parser 

Cloning https://github.com/apple/swift-argument-parser 

Resolving https://github.com/apple/swift-argument-parser

     at 0.0.2

     Cloning https://github.com/apple/swift-protobuf.git
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     �Resolving https://github.com/apple/swift-protobuf.git at 1.7.0

     �error: multiple executable products available: pix2pix, 

Catch, Gym-Blackjack, Gym-CartPole, Gym-FrozenLake, 

Autoencoder1D, Autoencoder2D, Benchmarks, VGG-Imagewoof, 

Regression-BostonHousing, Custom-CIFAR10, ResNet-CIFAR10, 

LeNet-MNIST, MobileNetV1-Imagenette, MobileNetV2-

Imagenette, GAN, DCGAN, BERT-CoLA, FastStyleTransferDemo, 

MiniGoDemo, GPT2-Inference, GPT2-WikiText2, CycleGAN

     swift run LeNet-MNIST

     [15/15] Linking LeNet-MNIST

     Loading resource: train-images-idx3-ubyte

     �File does not exist locally at expected path: /home/

skoonce/

     swift/swift-models/t

     rain-images-idx3-ubyte and must be fetched

     ....

     [Epoch 11] Training Loss: 741.2036, Training Accuracy:

     52567/59904 (0.8775207),

     Test Loss: 123.73525, Test Accuracy: 8734/9984 (0.87479967)

     [Epoch 12] Training Loss: 740.11896, Training Accuracy:

     52683/59904 (0.8794571), Test Loss: 123.62877, Test Accuracy:

     8737/9984 (0.87510014)

     ```

�Verify you're using a GPU

While your MNIST program is running, start a new shell in tmux and run 

nvidia-smi:

     > nvidia-smi

     ```

     Sat Apr 25 19:14:08 2020

     +--------------------------------------------------------+
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     | NVIDIA-SMI 440.64.00   Driver Version: 440.64.00 CUDA

     Version: 10.2   |

     |---------------------+-------------------+--------------+

     | GPU Name Persistence-M| Bus-Id    Disp.A |

     Volatile Uncorr. ECC |

     | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-

     Util Compute M. |

     |

     �======================+===================+==============|

     |   0 Tesla T4   On   | 00000000:00:04.0 Off |

     0 |

     | N/A 52C  P0   27W / 70W |   886MiB / 15109MiB | 0%

     Default |

     |------------------+-------------------+-----------------+

     +--------------------------------------------------------+

     | Processes:

     GPU Memory |

     | GPU        PID        Type        Process name

     Usage        |

     |

     =============|

     �| 0 4004 C ..._64-unknown-linux-gnu/debug/LeNet-

     MNIST 875MiB |

     +--------------------------------------------------------+

�Autoencoder demo

Let’s try a slightly different demo next:
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     ```

     swift run GAN

     swift run GAN

     [6/6] Linking GAN

     Loading resource: train-images-idx3-ubyte

     �Loading local data at: /home/skoonce/swift/swift-models/

train-

     images-idx3-ubyte

     Succesfully loaded resource: train-images-idx3-ubyte

     Loading resource: train-labels-idx1-ubyte

     �Loading local data at: /home/skoonce/swift/swift-models/

train-

     labels-idx1-ubyte

     Succesfully loaded resource: train-labels-idx1-ubyte

     Loading resource: t10k-images-idx3-ubyte

     Loading local data at: /home/skoonce/swift/swift-models/t10k-

     images-idx3-ubyte

     Succesfully loaded resource: t10k-images-idx3-ubyte

     Loading resource: t10k-labels-idx1-ubyte

     Loading local data at: /home/skoonce/swift/swift-models/t10k-

     labels-idx1-ubyte

     Succesfully loaded resource: t10k-labels-idx1-ubyte

     Start training...

     [Epoch:1]  Loss-G: 1.1234643

     [Epoch:2]  Loss-G: 1.1434635

     [Epoch:3]  Loss-G: 1.1433427

     ```

     ```

     swift run ResNet-CIFAR10

     Downloading CIFAR dataset...

     Archive missing, downloading...
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     Archive downloaded, processing...

     Unarchiving completed

     Starting training...

     ```

�Reinforcement learning demo

First, add the gym reinforcement learning environment using pip:

     pip install gym

Now you can run bot that teaches itself how to play Blackjack using Q-

learning (and other strategies):

     ```

     swift run Gym-Blackjack

     �Solver: random, Total reward: -4002 / 10000 trials Solver: 

markov, Total reward: -2323 / 10000 trials Solver: 

qlearning, Total reward: -2035 / 10000 trials Solver: 

normal, Total reward: -1022 / 10000 trials

     ```

This is a good stopping point for today. Go tell your friends you’re 

experimenting with GANs and reinforcement learning in Swift for 

Tensorflow!

�Swift for Tensorflow recap
We installed our Nvidia drivers, then got swift for tensorflow working using 

a prebuilt package. Then we made sure we had Python working as well and 

ran some prebuilt demos. Next, we’ll repeat the preceding process in the 

cloud.
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�Installing s4tf from scratch
In this section, we will look at how to build Swift for Tensorflow from source, 

for those who want to understand how things work under the hood.

�There be dragons here
Please skip to the next section if you’re new to building 

software libraries from scratch. You don’t need any of this to 

do the exercises in the rest of the book; this simply seemed 

the most logical place to put these instructions. I would only 

advise trying to do this if you’re on a Linux box and have 

time to spare.

�How to build swift for tensorflow from scratch

Here is a quick guide to building swift for tensorflow from scratch. This is 

overkill for most users, but it is a good way to keep up to date on what is 

going on with the project day to day. If you would eventually like to help 

contribute to the project, you will need to be able to make changes locally, 

compile them, and then eventually make a pull request upstream.

At a high level, we will

	 1)	 Set up our system to compile swift for tensorflow 

from source (only need to do this once)

	 2)	 Check out the actual codebase (will do this 

everytime you need to sync with upstream)

	 3)	 Build/compile swift for tensorflow from source
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Prerequisites

I’m assuming you’ve followed the sections to get here. Therefore, you have

	 1)	 Ubuntu 18.04 LTS base installed

	 2)	 Python support

	 3)	 CUDA and cudnn installed

	 4)	 100+ GB of free disk space

Installing cmake

If you don’t have the right version of cmake, you will see weird errors like 

this halfway through the install process:

     cmake errors w/ 3.10.2 (ubuntu 18.04 default)

     ```

     /usr/bin/ar: creating t.a

     -- Building with -fPIC

     CMake Error at cmake/modules/SwiftHandleGybSources.cmake:4

     (find_package):

     �By not providing "FindPython2.cmake" in CMAKE_MODULE_

PATH this project has asked CMake to find a package 

configuration file provided by "Python2", but CMake did 

not find one.

     �Could not find a package configuration file provided by 

"Python2" with any of the following names:

       Python2Config.cmake

       python2-config.cmake

     �Add the installation prefix of "Python2" to CMAKE_PREFIX_

PATH or set
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     �"Python2_DIR" to a directory containing one of the above 

files. If "Python2" provides a separate development 

package or SDK, be sure it has been installed.

     Call Stack (most recent call first):

     CMakeLists.txt:495 (include)

     ```

Currently, swift for tensorflow requires a newer version of cmake than 

what Ubuntu is providing. As a general rule with build tools, **only use the 

recommended versions that your package requires**. In the same vein, try 

to **use the same operating system and configuration as the developers**. 

I have spent many, many hours of my life chasing weird errors that arise 

when you are using slightly different build tools or libraries, and I do not 

want you to have to do the same. Kitware has a nice repository set up for 

Ubuntu/Debian people here: https://apt.kitware.com.

Add their signing key to your computer:

     �wget -O - https://apt.kitware.com/keys/kitware-archive-

latest.asc 2>/dev/null | sudo apt-key add -

     [sudo] password for USERNAME:

     > OK

Add their repositories to your package lists:

     sudo apt-add-repository 'deb https://apt.kitware.com/

     ubuntu/ bionic main'

     sudo apt-get update

Now, you should be able to do a

     sudo apt-get install cmake

     ```

     Reading package lists... Done
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     Building dependency tree

     Reading state information... Done

     The following additional packages will be installed:

     cmake-data

     Suggested packages:

     cmake-doc ninja-build

     The following NEW packages will be installed:

     cmake cmake-data

     �0 upgraded, 2 newly installed, 0 to remove and 27 not 

upgraded.

     Need to get 9,109 kB of archives.

     �After this operation, 35.4 MB of additional disk space 

will be used.

     Do you want to continue? [Y/n]

And then afterward, you can check that you have a recent version:

     ```

     cmake --version

     cmake version 3.17.1

     �CMake suite maintained and supported by Kitware (kitware.

com/cmake)

     ```

Packages we need

Let’s install some dependencies that swift for tensorflow will need using 

the built-in Ubuntu repositories:

     >    sudo apt-get install git cmake ninja-build clang 

python uuid-dev libicu-dev icu-devtools libedit-dev libxml2-dev 

libsqlite3-dev swig libpython2-dev libncurses5-dev pkg-config 

libcurl4-openssl-dev libblocksruntime-dev systemtap-sdt-dev 

tzdata rsync
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Bazel

Bazel is a build system for building large projects in general and 

tensorflow in particular. You’ll need to get a specific version of Bazel for 

s4tf, which is usually slightly behind the official version by a few months. 

Check the docs for the currently supported version; it was 2.0.0 when I 

did this. If you’re interested in where the actual file that specifies this is, 

look at the configure.py file in the tensorflow directory:

     ... _TF _MIN _BAZEL_VERSION = '2.0.0'

     _MAX_BAZEL_VERSION = '2.0.0'

     ...

I then would use the max one if there’s a difference.

Follow the guide here: https://docs.bazel.build/versions/master/

install-ubuntu.html

     ```

     sudo apt install curl

    curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key

     add -

     �echo "deb [arch=amd64] https://storage.googleapis.com/

bazel-apt

     �stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.

list

     sudo apt-get update

`     ``

     Install bazel 2.0.0:

     sudo apt install bazel=2.0.0

     $ bazel --version:

     bazel 2.0.0

Yay!
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�Fetch swift for tensorflow sources

Create a high-level directory:

     cd ~/swift

     mkdir swift-source

     cd swift-source

Get the source:

     git clone https://github.com/apple/swift.git -b tensorflow

     ./swift/utils/update-checkout --clone --scheme tensorflow

This might take a while!

�What a checkout will look like (different hashes)

     ```

     /home/ubuntu/swift/swift-source/llvm-project

     + git submodule update --recursive

     update-checkout succeeded

     PythonKit                          :

     d921e19555e50b39606d528f2b3a7990a9cd6ce0

     cmake                              : skip

     cmark                              :

     1168665f6b36be747ffe6b7b90bc54cfc17f42b7

     icu                                :

     fd123bf023882f07bfacf51c39111be2f946d8f8

     indexstore-db                      :

     b99f773fa83640174c41e580e6ddda2abc617367

     llbuild                            :

     435e72e01369ed1397fa01e9f564a299c7e2095a

     llvm-project                       :

     8725f77b49d1e41f87f11e3a1f275e9a519a8380
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     ninja                              :

     ed7f67040b370189d989adbd60ff8ea29957231f

     sourcekit-lsp                      :

     babf190c1886ea3c1b4fe6017285a181ed09b182

     swift                              :

     9c4212a49b483f455bcd1caf4de6f2ef12a5ad54

     swift-corelibs-foundation          :

     eac91abb1d74f14ecf7cc788b25eb566e7d550f2

     swift-corelibs-libdispatch         :

     80b177209ca6960f42da07121cf86abc59ce3980

     swift-corelibs-xctest              :

     8b0eefa96c02a4cb4d3eb74e6c289eba34a744fa

     swift-format                       :

     6207f97c8602d4c34b84b0fec79759a596e50aa1

     swift-integration-tests            :

     11f0f6e8b34ba9782b5841dbeaa207d0b4620152

     swift-stress-tester                :

     225a973f42140890bb49648ca090d1a53f32ff8e

     swift-syntax                       :

     1e524b3edc47e8ff66890d914b8bcd024e061631

     swift-tools-support-core           :

     693aba4c4c9dcc4767cc853a0dd38bf90ad8c258

     swift-xcode-playground-support     :

     88043d7d320f92598efb39408c3f4b1903a4fff6

     swiftpm                            :

     afc7bd9efb0f0a0e53b060d30e47a876a888cc86

     tensorflow                         :

     3c1e8c03419266bb6ba379d303d3e03a380617a8

     tensorflow-swift-apis              :

     aad3149d56350736fca45f4c84614eb6c1ac4cdf

     ```
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�Python 2 install + packages needed

We’ll need some Python libraries in order to compile swift for tensorflow. 

Get a working pip install if you haven’t done so already:

     sudo apt install python python2-dev python-pip

Now let’s install some libraries:

     pip install six numpy future

Not having these will produce various weird import errors halfway 

through compilation.

�Build swift for tensorflow from source with  
GPU support

There are two modes for building and running swift for tensorflow, one 

based around eager execution (Tensorflow 2) and then XLA. We will be 

working with the XLA variant as I feel that is the future of the project.

XLA builds are the default, but you will need to set an environment 

variable in order to get swift for tensorflow to build for your CUDA device 

as well:

     export TF_NEED_CUDA=1

After this, we only need one command (+ something else to do while 

you’re waiting for this to complete):

     swift/utils/build-toolchain-tensorflow

Sample console output steps:

     �-DLLVM_VERSION_MAJOR:STRING=10 -DLLVM_VERSION 

MINOR:STRING=0

     -�DLLVM_ VERSION_ PATCH:STRING=0 -DCLANG_ VERSION 

MAJOR:STRING=10
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     �-DCLANG_ VERSION MINOR:STRING=0 –DCLANG _VERSION _

PATCH:STRING=0

     -DCMAKE MAKE PROGRAM=/home/skoonce/swift/swift-source/build/

     buildbot_ linux/ninja-build/ninja

     -DLLVM_ ENABLE ASSERTIONS:BOOL=TRUE '-

     �DLLVM TARGETS TO_BUILD=X86;ARM;AArch64;PowerPC;SystemZ;Mi

ps' '-

     �DCMAKE_ C_ FLAGS= -Wno-unknown-warning-option -Werror= 

unguarded-

     availability-new -fno-stack-protector' '-DCMAKE_CXX_FLAGS= -

     �Wno-unknown-warning-option -Werror=unguarded-availability-

new -

     fno-stack-protector' '-DCMAKE_C_FLAGS_RELWITHDEBINFO=-O2 -

     DNDEBUG' '-DCMAKE_CXX_ FLAGS_ RELWITHDEBINFO=-O2 -DNDEBUG'

     -DCMAKE_ BUILD_ TYPE:STRING=Release

     �-DLLVM_TOOL_ SWIFT_BUILD:BOOL=NO -DLLVM_ INCLUDE_ DOCS: 

BOOL=TRUE

     DLLVMENABLE LTOSTRING DCOMPILER RTINTERCEPTLIBDISPATCHON

     -DLLVM_TOOL_ COMPILER_ RT_ BUILD:BOOL=TRUE

     �-DLLVM_ BUILD_ EXTERNAL_ COMPILER_ RT:BOOL=TRUE '-DLLVM_ 

LIT ARGS=-v

     --time-tests -j 32' -DCMAKE_INSTALL_PREFIX:PATH=/usr/

     -DINTERNAL_ INSTALL_ PREFIX=local '-

     DLLVM_ ENABLE_ PROJECTS=clang;compiler-rt;clang-tools-extra'

     -DLLVM_TOOL_LLD_BUILD:BOOL=TRUE /home/skoonce/swift/swift-

     source/llvm-project/llvm

     /usr/bin/ar: creating t.a

     -- Version: 0.0.0

     -- Performing Test HAVE_THREAD_SAFETY_ATTRIBUTES -- failed to

     compile

     -- Performing Test HAVE_GNU_POSIX_REGEX -- failed to compile
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     -- Performing Test HAVE_POSIX_REGEX -- success

     Pfi Tt HAVES

     ```

     Total performance tests executed: 1

     --- Finished tests for benchmarks ---

     --- Creating installable package ---

     �-- Package file: /home/skoonce/swift/swift-source/swift/

swift-

     tensorflow-LOCAL-2020-05-06-a-ubuntu18.04.tar.gz --

     + pushd /home/skoonce/swift/swift-source/swift/swift-nightly-

     install/

     �"/swift/swift-source/swift/swift-nightly-install "/swift/

swift-

     source/swift

     + tar -c -z -f /home/skoonce/swift/swift-source/swift/swift-

     tensorflow-LOCAL-2020-05-06-a-ubuntu18.04.tar.gz --owner=0 --

     group=0 usr/

     + popd

     "/swift/swift-source/swift

     real    32m9.126s

     user    44m41.600s

     sys     1m40.160s

If you get an error, wait a day and try a new checkout and build again. 

If that doesn’t work, then see the following section on how to reset your 

build cache.
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�Running our swift binary

At this point, we should be able to use the following command so that our 

shell/interpreter can find our locally built install of swift:

     �export PATH="/swift/swift-source/swift/swift-nightly-

install/ usr/bin:"${PATH}"

The preceding code assumes that you’re following my build directory 

layout. If you’ve moved it elsewhere, I would suggest you just hard-code 

things going forward, using something like the following (you’ll need to 

put your Unix username into the path):

     �/home/USERNAME/swift/swift-source/swift/swift-nightly-

install/ 

Reset your build artifacts

Sometimes, a number of upstream packages or imports will get changed, 

and then tensorflow will no longer build from source because it’s pulling in 

files you’ve built cleanly on your system already but are no longer what the 

source code expects. Before spending a lot of time trying to chase random 

build errors, you should try to do a clean build first. The simplest solution 

is to delete everything the build directory in your “~/ swift/swift-source/

build” folder with an rm -rf * command (please be careful).

If that is not enough, resetting the Bazel build cache is a good idea as 

well. This one is hidden in an invisible directory in your home folder:

     cd ~/.cache/bazel

     rm -rf *

Some of the various scripts will use the tools that have been built 

(e.g., compile parts of swift for tensorflow to build other parts of swift for 
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tensorflow, also called bootstrapping), so you may have to delete the entire 

“~/swift/swift-source/swift/ swift-nightly-install/usr/” as well.

Also, swift itself will produce build artifacts (e.g., there will be an 

invisible “.build” folder in the base of the folder where you are running 

“swift run” commands), so sometimes you will need to delete that as well.

If you’ve tried all of the given solutions, remember sometimes 

upstream actually is broken, so wait a day for a new update from the 

source and try again. If that still isn’t working, then file a bug!

�Installing s4tf from scratch recap
We’ve installed the various compiler tools needed to build swift for 

tensorflow ourselves, then downloaded the latest checkout of the source 

code, and built it from scratch. From here, making your own contribution 

to the project is simply a matter of tweaking one of the files on your 

computer, making the needed changes, building/testing, and making a 

pull request!

�Client setup process + Unix quickstart
We will look at how to configure a client computer to connect to your deep 

learning box.

�Setting up your client computer/crash course 
in Unix
At a high level, here is all my advice on how to configure the computer you 

are going to use to log in to your remote machine and then a crash course 

in various remote utilities you should learn.
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I have a MacBook Air for this purpose, but any machine that can 

run a shell will do. You do not need a fancy machine for this, but rather 

something you don’t mind carrying around. Find one with a keyboard you 

like and with hopefully a light power supply. Bring a mouse (see below) 

and a sheaf of blank paper + pen to take notes with. A cellphone Internet 

connection means you can do machine learning anywhere, anytime.

�General config
I usually configure my terminal to be large with a green on black 

background. Not only does this look cool (which is obviously crucial), 

it is also much easier on your eyes after long sessions. You should also 

take care to make sure that you are using your keyboard in a manner 

that you will not be hurting your wrists. Repetitive stress injuries are a 

real thing!

In the same manner, I like trackpads, but I have found that in the long 

term you should make sure you are using a mouse whenever possible to 

reduce the amount of strain you are putting on your wrists. Taking periodic 

breaks is good practice as well! Short walks will not only exercise your body 

but often allow you crucial perspective on what you’re working on. Try it. 

The computer will always be there.

�Configuring your network for remote access
You should set up your network to allow inbound forwarding to your Linux 

box from other networks. Then, you can access your machine whenever/

wherever you have Internet access. This means you will be able to check 

and start new machine learning jobs whenever needed. This is another 

good one to find a guru for.
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�Setting up a VPN (ideal but more complicated)

VPNs are a nice way to connect to your network remotely so your computer 

simply seems to be on the local network. To do so, though, you need something 

running VPN software on your local network. I would advise against doing so 

on your deep learning box because then you will have another thing to worry 

about if you ever need to replace your operating system. Most consumer 

routers have VPN utilities you can enable, but my experience is that they often 

don’t have great performance, require the use of some weird security protocol 

variant, or have memory leaks that require periodic reboots. If you’re familiar 

with VPNs already, then great, use your existing config. Otherwise, I would 

advise you not to mess with your router’s utilities directly, but rather set up 

WireGuard on a Raspberry Pi to access your network. This can be combined 

with the next step as an additional layer of protection (e.g., you would forward 

packets from the Internet --> modem --> VPN server --> use that to access 

your server on the local network). With Ubuntu 20.04, WireGuard is going to 

officially be part of the Linux kernel, and my hope is that the VPN setup process 

will finally be painless.

�Setting up port forwarding

For outside access, a simpler solution instead is to set up port forwarding 

on port 443 to your local computer. This is slightly nonstandard, but 

basically, most real-world firewalls (e.g., network blockers) will let you talk 

to computers over this port since it is the basis of the https protocol. This 

in turn means then that many guest networks you can access (e.g., random 

coffee shops, networks designed to block casual hackers) will not block 

your traffic, and you can connect to your box remotely without having to 

do anything too clever involving redirects. If a network is messing with 

your traffic at the packet level, then find a different one to use.

     WARNING: You have a port open.

P.S. I am going to assume you know how to edit files!
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�Crash course in tmux
Tmux is a super useful skill you’re going to need to know. At a high level, 

it’s a virtual terminal, just like what you’re using to log in right now. The 

key concept is that it runs on the server for you. This means that currently 

when you type a command, the computer is being controlled by your little 

terminal program. If you shut the window (which happens) or, even more 

fun, the network connection goes offline for a second (hello wifi), then 

that program disappears and, by extension, your program! So with tmux, 

we will be running a server, on our server, that we will then connect to 

and relay all of our messages through. The practical upshot of this is that 

we can start a job on the server inside a tmux session, close our laptop, go 

someplace else, start a new terminal, and reconnect to our tmux session to 

see how our job is coming along.

•	 Starting tmux

•	 Creating windows

•	 Switching between windows

•	 Detaching from a session

•	 Resuming a session

•	 Naming a session

•	 �Scrolling through logs/deep into terminal (checkme: 

setting the scrollback option higher)

The second level of this is we can start running nested tmux sessions, 

but we will avoid this too much for now. But I usually run tmux on my 

server (which I connect to) and then make new tmux panes for each cloud 

server (Google Cloud) that I connect to, where I run tmux there as well. 

Then, I can jump between multiple machines very easily.
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�APPENDIX C

Additional Resources

�Python --> swift transition guide
The following is a discussion of the differences of swift for existing Python 

machine learning practitioners.

Many machine learning practitioners come from the world of Python. 

The purpose of this chapter is to explain the major differences between 

Swift and Python for someone with a background in Python-based ML 

already.

�Python 3
Use this in general and don't deal with Python 2; it is deprecated in general 

for Tensorflow as of 2.1, for Pytorch as of 1.4, and for s4tf as well. Please 

make the switch!

�REPL
If you are familiar with the Python REPL, then the good news is Swift 

proper has a nice REPL with many similar features to what you are used to. 

If you download regular (non-s4tf) swift, you can fire it up and play with it!

The bad news is swift for tensorflow has disabled access to this in their 

branch, encouraging people to use Swift-Jupyter instead.

https://doi.org/10.1007/978-1-4842-6168-2#DOI
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> swift

The swift for TensorFlow toolchain does not support the Swift REPL. 

Colab (https://github.com/tensorflow/swift/blob/master/Usage.

md#colaboratory) and Swift-Jupyter (https://github.com/google/

swift-jupyter) are supported alternatives.

Hopefully, this will eventually be reenabled. If you rely on a debugger, 

check out LLDB.

�Python --> Swift bridge
This is nice for the ability to bring existing Python code and libraries into 

the world of swift, but trying to go back and forth (e.g., send values back to 

Python to run a library call there) is going to set yourself up for pain. If you 

need to bring something over, using imports is fine, but in general I would 

view it as a one-way street.

�Python --> C bridge
This is less of a pain point if you are willing to go all in on Swift. Swift makes 

it easy to build library wrappers and add C code to projects in general, given 

its Objective-C heritage. If you're willing to spend some time battling cmake, 

then you should be able to write a swift wrapper for your code, and then you 

can use your library with type safety and a clean interface in general.

�Python libraries
This is a big one for Python programmers in general. If you're used to being 

able to accomplish a large part of your workflow using Python libraries for 

various tasks (e.g., data cleanup, import/export), then this is going to be 

the hardest part of making the transition. Most of the ML ecosystem won't 

have swift equivalents for some time yet. There are various library proposals 
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upstream, but until s4tf gets a bit more traction in general, you should plan 

on having to do things yourself. The broader iOS ecosystem has a large 

collection of libraries that are worth playing with, and swift package manager 

has made bringing these codebases into your project much simpler.

�Self-study guide
Here are some resources you can look at to help you on your machine 

learning journey.

�Things to study
This book is designed that you will need nothing beyond access to 

compute resources and time to get through it. Having said that, here is 

some material that I have found useful.

�Python

A lot of existing machine learning is in Python, and it is a valuable 

language to have in your toolbox. I am not a language zealot. I have written 

a lot of Python code to date, and swift for tensorflow still has a long way to 

go before it can be considered possible to do things completely in swift. 

Swift for tensorflow includes Python bindings that let you import most 

Python language tools to use existing libraries and techniques easily, so I 

feel like this will be a complementary skill for some time yet.

�Swift

If you are interested in swift, there is an Apple book on the subject 

that is worth reading. If you can get a Mac with access to Xcode (a free 

download from the app store), then you can use the playgrounds and 

debugger there, which is a good way to learn. There is an iPad app you 

can play with as well.
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Erica Sadun has good books and a blog on swift programming. Mattt 

Thompson is producing content at https://flight.school. Objc.io has a 

lot of material on swift and functional programming in general.

�iOS/Android

I have done a lot of mobile development the past few years for companies 

big and small. If you have a working knowledge of swift and a Mac, I would 

highly recommend you play with Xcode and iOS to learn how to make 

apps that can run on a mobile device.

In particular, I highly recommend the Big Nerd Ranch books on iOS 

development. They take you through building a real-world application 

from scratch without relying too much on library magic. They have a 

similar book on Android as well that is a good way to get started on that 

platform.

Ray Wenderlich has built a little empire around keeping developers 

up to date on the latest tools and techniques. There is a ton of interesting 

content on their website available for free that is good to keep an eye on.

�Tensorflow

Tensorflow is a large subject to tackle and is continually evolving, so it is 

difficult to have easy recommendations. Tensorflow 2 has currently forced 

a transitional period where existing workflows will have to be rebuilt for 

the new platform and will take some time to shake out.

Keras is the best way to get started with Tensorflow in general. It is very 

high level, which allows you to do many cool tricks easily. The flip side of 

this is that it sometimes hides the magic which can make understanding 

what is really going on difficult. There are lots of nice Keras demos on the 

Internet. You can get up to speed with running other people’s demo code, 

and then you can start to build a knowledge base of techniques you have 

played with.
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Google has Colab, which are free online shared GPU instances that can 

run many notebooks (collections of interactive code) in the cloud, so that is 

a good resource to be aware of. Swift is also available on Colab so you can 

run a lot of demos just using this platform.

�Pytorch

I think having multiple competing programming paradigms is good for 

the ecosystem in general. Pytorch is a good framework to know, and 

understanding the basics of both it and Tensorflow will serve you well. I do 

not feel like I really understood how Keras worked under the hood until I 

did a bunch of work with pytorch and had to relearn how to explain to the 

computer what I wanted it to do. Pytorch in general is extremely flexible, 

and there is a large active community of people who are exploring the 

frontiers of machine learning research, using it or porting work from other 

frameworks to it. As a result, you can download and run pytorch demos for 

most interesting new research papers a few months after they come out. A 

good rosetta stone in my opinion is to find side-by-side implementations 

of something like MNIST in pytorch/tensorflow and go through them line 

by line to understand their similarities/differences. With Tensorflow 2, the 

two frameworks have become very close, and being able to jump between 

these frameworks in theory gives you the best of both worlds.

�fast.ai

I am an extremely big fan of the fast.ai courses and have gone through their 

notebooks many times now and attended the in-person classes whenever 

possible. The hardware I would suggest you buy and set up for this course 

will work for doing the fast.ai courses on your own. It is taught in a Jupyter 

Notebook–style approach, which is extremely effective for certain kinds 

of problems. I would encourage you to be able to run all of their tutorials 

end to end at the very least and understand roughly what is going on. You 

will learn a lot of the unfun data cleanup and preprocessing bits that you 
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will have to understand when you make the transition to custom machine 

learning down the road. The 2019 sequence of the fast.ai deep learning 

from the basic course is a great way to understand the low-level bits of 

deep learning and how we can convert them into swift. They have a book 

on this subject you should check out as well.

�Cloud computing

I would suggest you learn enough to understand the basics and how to use 

the platform to accomplish small tasks. After that, the best way to improve 

is just by doing a little bit of usage day by day. Running servers 24/7 can 

consume a lot of resources in a hurry, but creating a server, clicking around 

on it for an hour, and then deleting it can be done for literally pennies. 

Once you repeat this process many, many times, you will be extremely 

comfortable with cloud instances. Then, you can layer other techniques on 

top such as spot instances and server preconfiguration techniques such as 

Docker/Kubernetes and be able to jump between different clouds easily.

Ekaba Bisong has a nice book on machine learning and Google Cloud 

from Apress that you should check out.

�TPU

TPU usage is beyond the scope of this book. I wanted to include it, 

but swift for tensorflow support isn't where I would feel comfortable 

recommending it to people new to the field. Having said that, if you are 

comfortable with cloud computing and Python in general, the Google 

team has an excellent set of TPU tutorials that you should run to learn how 

to use their platform. They walk you through a number of state-of-the-art 

approaches in different fields that you should be familiar with. Running 

these experiments from start to finish will consume a lot of resources + 

money, so I would not recommend that.

But, you can set up spot instance TPUs and start the code/training 

loops to get a feel for the process, then delete your machines and assume 
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that the code will run to completion. This can be done for a few hundred 

dollars in resources and is an extremely efficient way to learn a number of 

advanced cloud techniques. At the very least, do the Tensorflow 2 demos 

as a starting point to understanding how they work.

�Unix

The best way to learn Unix and machine learning in general is by doing 

it, not reading about it. You will have to learn this by typing lots of cryptic 

commands into the console a bunch yourself. If you can find somebody 

who can walk you through the basics to get started, that will make your 

life much simpler. If you can find a Unix sysadmin who can teach you 

the dark arts, even better. However, you don't need a terribly advanced 

understanding, just a willingness to learn.

�Git + Unix + etc

This video course covers a bunch of practical material that many people 

struggle with:

     https://missing.csail.mit.edu

�Other machine learning compiler–related projects

Here are some non-s4tf but interesting machine learning compiler (see last 

chapter) projects to know about.

Jax is an interesting Google project to simplify the process of 

generating XLA (what s4tf is moving to using under the hood) code from 

numpy. You can think of it as a much simpler route for converting existing 

ML workflows to code that will run at scale. It has an ecosystem of tools 

around it similar to the broader Tensorflow ecosystem.

     google/jax google/trax haiku

     flax
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Pytorch is working on improving their JIT capabilities and being able 

to scale to new hardware more easily in the future by using the Glow 

compiler; it is worth looking at:

     pytorch/pytorch glow

MXNet is slightly off the radar of many ML practitioners, but they have 

a project called TVM exploring the same space:

     mxnet tvm

Julia is another high-level functional programming language (think 

Lisp for supercomputers) that is working on utilizing MLIR as an export 

module for their entire ecosystem and flux ML library in particular:

     julia flux

System monitoring/utilities
You're going to need to keep track of what your computer's up to. Here are 

some useful Unix monitoring tricks.

Make sure your cores are working: htop you should see all of your cores 

here. I'm running a large job just to look cool:

```

1        [||||||80.6%]    4 [||||||80.6%]    7 [||||||80.6%]

         10 [||||||80.1%]

2        [||||||81.0%]    5 [||||||86.5%]    8 [||||||81.0%]

         11 [||||||80.8%]

3        [||||||81.6%]    6 [||||||81.5%]    9 [||||||81.4%]

         12 [||||||79.9%]
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Mem[|||||||||||||||||||32.1G/47.1G]          �Tasks: 55, 282 

thr; 12 running

         Swp[|               59.2M/1.91G]    �Load average: 

10.30 8.50

5.12

                                             �Uptime: 3 days, 

22:26:34

```

Hit “q” to quit htop. You'll have plenty of time to get familiar with it; 

don't worry.

GPU resources:

nvidia-smi should be on any system with nvidia 

drivers.

I also like nvtop, a tool to visualize usage of nvidia 

devices.

�Check standard system utilities

Here's some other quick system utilities I like to install: sudo apt-get 

install nload

     nload -u M

This one gives you a terminal-based view of what your network 

interfaces are doing. The only thing that makes it a pain for new users is 

that you will need to hit left/right arrows on your keyboard till you find the 

actual interface that goes to the Internet. This is nice if you need to check 

if the software is actually working (e.g., the network is just slow) or if there 
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is no traffic at all (generally a sign of larger problems). The -u M flag just 

puts everything into megabyte (not megabit) units, which are easier to 

keep track of in my head.

     free -h

This will print out all the memory usage on your system, in (-h) 

human-readable units:

```

skoonce@hermes:~$ free -h

        total   used   free   shared   buff/cache   available

Mem:    47G     29G    9.5G   6.6M     8.4G         17G

Swap:   1.9G    59M    1.9G            ```

Here's a quick guide to mounting a second hard drive and keeping 

track of disks:

     df -h

This will print out the current disk status.

If you install Kubernetes or a ton of snaps, they will add a bunch of 

virtual filesystems so df -h | grep dev is a good trick to keep track of your 

base system.

lsblk is my preferred utility to keep track of different filesystems. It 

prints out a tree of what drives your system has available.

iotop is another nice tool to run to keep track of disk accesses, but 

requires root access to install.

zfs: I have had good luck with the zfs libraries for ubuntu 18.04.  zpool 

init, export, and status are useful commands to know.
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