
CHAPTER 9

Electric Motors

We will model a three-phase permanent magnet motor driven by a direct current (DC) power
source. This has three coils on the stator and permanent magnets on the rotor. This type of
motor is driven by a DC power source with six semiconductor switches that are connected to
the three coils, known as the A, B, and C coils. Two or more coils can be used to drive a
brushless DC motor, but three coils are particularly easy to implement. This type of motor is
used in many industrial applications today, including electric cars and robotics. It is sometimes
called a brushless DC motor (BLDC) or a permanent magnet synchronous motor (PMSM).

Pulsewidth modulation is used for the switching because it is efficient; the switches are off
when not needed. Coding the model for the motor and the pulsewidth modulation is relatively
straightforward. In the simulation, we will demonstrate using two time steps, one for the sim-
ulation to handle the pulsewidths and one for the outer control loop. The simulation script will
have multiple control flags to allow for debugging this complex system.

Figure 9.1 shows the big picture in this chapter. We will look at the motor model first (the
AC motor block), then at the pulsewidth modulation (the SVPWM and three-phase inverter
block). The controller is covered last. Each of these major functions is in a separated gray
block.

9.1 Modeling a Three-Phase Brushless Permanent Magnet
Motor

Problem

We want to model a three-phase permanent magnet synchronous motor in a form suitable for
control system design. A conceptual drawing is shown in Figure 9.2. The motor has three
stator windings and one permanent magnet on the rotor. The magnet has two poles or one pole
pair. The coordinate axes are the a, b, and c on the stator, one axis at the center of each coil
following the right-hand rule, and the (d,q) coordinates fixed to the magnet in the rotating frame.
In motor applications, the axes represent currents or voltages, not positions like in mechanical
engineering.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 9

253

https://doi.org/10.1007/978-1-4842-6124-8_9

CHAPTER 9 ELECTRIC MOTORS

Figure 9.1: Motor controller. PI is the proportional-integral controller. PWM the is pulsewidth modu-
lation. There are two current sensors measuring ia and ib and one angle sensor measuring θ.

Figure 9.2: Motor diagram showing the three-phase coils a, b, and c on the stator and the two-pole
magnet (N,S) on the rotor. The × means the current is going into the paper; the dot means it is coming
out of the paper.

254

CHAPTER 9 ELECTRIC MOTORS

Solution

The solution is to model a motor with three stator coils and permanent magnets on the rotor.
We have to model the coil currents and the physical state of the rotor.

How It Works

Permanent magnet synchronous motors use two or more windings in the stator and permanent
magnets in the rotor. The rotor can have any even number of magnet poles. The phasing of
the currents in the stator coils must be synchronized with the position of the rotor. Define the
inductance matrix L, which gives the coupling between currents in different loops1:

L =
1

d

⎡
⎣

2Lss − Lm Lm Lm

Lm 2Lss − Lm Lm

Lm Lm 2Lss − Lm

⎤
⎦ (9.1)

where
d = 2L2

ss − LssLm − L2
m (9.2)

Lm is the mutual inductance of the phase windings and Lss is the self-inductance. Self-
inductance is the effect of a current in a loop on itself. Mutual inductance is the effect of
the current in one loop on another loop. The three-phase current array, i, is

i =

⎡
⎣

ia
ib
ic

⎤
⎦ (9.3)

where ia is the phase A stator winding current, ib is the phase B current, and ic is the phase C
current.

The phase voltage vector, u, is

u =

⎡
⎣

ua
ub
uc

⎤
⎦ (9.4)

where ua is the phase A stator winding voltage. The dynamical equations are a set of first-order
differential equations and are

⎡
⎣

i̇
ω̇e

θ̇e

⎤
⎦ =

⎡
⎣

−rsL 0 0

0 − b
J 0

0 1 0

⎤
⎦
⎡
⎣

i
ωe

θe

⎤
⎦+ ψ

⎡
⎣

−Lωe
p2iT

4J
0 0 0

⎤
⎦
⎡
⎣

cos θe
cos(θe +

2π
3)

cos(θe − 2π
3)

⎤
⎦+

⎡
⎣

L
0 0 0
0 0 0

⎤
⎦u

+

⎡
⎣

0
p
2J
0

⎤
⎦TL (9.5)

1Lyshevski, S. E. “Electromechanical Systems, Electric Machines, and Applied Mechatronics,” CRC Press, 2000,
pp. 589-627.

255

CHAPTER 9 ELECTRIC MOTORS

Figure 9.3: Motor three-phase driver circuitry. The semiconductor switches shown in the diagram are
IGBT (integrated gate bipolar transistors). The pulsewidth modulation block, SVPWM, is discussed in
Recipe 9.3.

where ω is the rotor angular rate, θ is the rotor angle, p is the number of rotor poles, b is the
viscous damping coefficient, rs is the stator resistance, ψ is the magnetic flux, TL is the load
torque, and J is the rotor inertia. i and u are the phase winding 3-vectors shown earlier, and
L is the 3-by-3 inductance matrix also shown earlier. Equation 9.5 is actually five equations in
matrix form. The first three equations, for the current array i, are the electrical dynamics. The
last two for ωe and θe are the mechanical dynamics represented in electrical coordinates.

The driver circuitry is shown in Figure 9.3. It has six semiconductor switches. In this
model, they are considered ideal, meaning they can switch instantaneously at any frequency we
desire. In practice, switches will have a maximum switching speed and will have some transient
response. Note that the motor is Y connected, meaning that the ends of the three-phase windings
are tied together.

The right-hand-side code is shown in the following. The first output is the state derivative,
as needed for integration. The second output is the electrical torque needed for the control. The
first block of code defines the motor model data structure with the parameters needed by our
dynamics equation. This structure can be retrieved by calling the function with no inputs. The
remaining code implements Equation 9.5. Note the suffix M used for ω and θ, to reinforce that
these are mechanical quantities; this distinguishes them from the electrical quantities which are
related by p/2, where p is the number of poles. The use of M and E subscripts is typical when
writing software for motors.

The function returns a default data structure if no input arguments are passed to it. This is a
convenient way for the designer of the code to give users a working starting point for the model.

256

CHAPTER 9 ELECTRIC MOTORS

This way, the user only has to change parameters that are different from the default. It lets the
user get up and running quickly.

The electrical torque is a second output argument. It is not used during numerical integration
but is helpful when debugging the function. It is useful to output quantities that a user might
want to plot too. MATLAB is helpful in allowing multiple outputs for a function.

RHSPMMachine.m

1 %% RHSPMMACHINE Permanent magnet machine model in ABC coordinates.
2 % Assumes a 3 phase machine in a Y connection. The permanent magnet
3 % flux
4 % distribution is assumed sinusoidal.
5 %% Forms
6 % d = RHSPMMachine
7 % [xDot,tE] = RHSPMMachine(˜, x, d)
8 %
9 %% Inputs

10 % t (1,1) Time, unused
11 % x (5,1) The state vector [iA;iB;iC;omegaE;thetaE]
12 % d (.) Data structure
13 % .lM (1,1) Mutual inductance
14 % .psiM (1,1) Permanent magnet flux
15 % .lSS (1,1) Stator self inductance
16 % .rS (1,1) Stator resistance
17 % .p (1,1) Number of poles (1/2 pole pairs)
18 % .u (3,1) [uA;uB;uC]
19 % .tL (1,1) Load torque
20 % .bM (1,1) Viscous damping (Nm/rad/s)
21 % .j (1,1) Inertia
22 % .u (3,1) Phase voltages [uA;uB;uC]
23 %
24 %% Outputs
25 % x (5,1) The state vector derivative
26 % tE (1,1) Electrical torque
27 %
28 %% Reference
29 % Lyshevski, S. E., "Electromechanical Systems, Electric Machines, and
30 % Applied Mechatronics," CRC Press, 2000.
35

36 function [xDot, tE] = RHSPMMachine(˜, x, d)
37

38 if(nargin == 0)
39 xDot = struct('lM',0.0009,'psiM',0.069, 'lSS',0.0011,'rS',0.5,'p'

,2,...
40 'bM',0.000015,'j',0.000017,'tL',0,'u',[0;0;0]);
41 return
42 end
43

44 % Pole pairs
45 pP = d.p/2;
46

257

CHAPTER 9 ELECTRIC MOTORS

47 % States
48 i = x(1:3);
49 omegaE = x(4);
50 thetaE = x(5);
51

52 % Inductance matrix
53 denom = 2*d.lSSˆ2 - d.lSS*d.lM - d.lMˆ2;
54 l2 = d.lM;
55 l1 = 2*d.lSS - l2;
56 l = [l1 l2 l2;l2 l1 l2;l2 l2 l1]/denom;
57

58 % Right hand side
59 tP3 = 2*pi/3;
60 c = cos(thetaE + [0;-tP3;tP3]);
61 iDot = l*(d.u - d.psiM*omegaE*c - d.rS*i);
62 tE = pPˆ2*d.psiM*i'*c;
63 omegaDot = (tE - d.bM*omegaE - 0.5*pP*d.tL)/d.j;
64 xDot = [iDot;omegaDot;omegaE];

9.2 Controlling the Motor
Problem

We want to control the motor to produce a desired torque. Specifically, we need to compute the
voltages to apply to the stator coils.

Solution

We will use field-oriented control with a proportional-integral controller to control the motor.
Field-oriented control is a control method where the stator currents are transformed into two
orthogonal components. One component defines the magnetic flux of the motor and the other
defines the torque. The control voltages we calculate will be implemented using pulsewidth
modulation of the semiconductor switches as developed in the previous recipe. Torque control
is only one type of motor control. Speed control is often the goal. Robots often have position
control as the goal. One could use torque control as an inner loop for either a speed controller
or position controller.

How It Works

The motor controller is shown in Figure 9.1. This implements field-oriented control (FOC).
FOC effectively turns the brushless three-phase motor into a commutated DC motor.

There are three electrical frames of reference in this problem. The first is the (a,b,c) frame
which is the frame of the three-phase stator as in Figure 9.2. This is a time-varying frame. We
next want to transform into a two-axis time-varying frame, the (α,β) frame, and then into a
two-axis time-invariant frame, the (d, q) frame, which is also known as the direct-quadrature
axes and is fixed to the permanent magnet. In our frames, each axis is a current. Since with a

258

CHAPTER 9 ELECTRIC MOTORS

Y-connected motor the sum of the currents is zero:

0 = ia + ib + ic (9.6)

we need only work with two currents, ia and ib.
The (d, q) to (α, β) transformation is known as the Forward Park transformation:

[
uα
uβ

]
=

[
cos θe − sin θe
sin θe cos θe

] [
ud
uq

]
(9.7)

This transforms from the stationary d, q frame to the rotating (α, β) frame. θe is in electrical axes
and equals 1

2p θM where p is the number of magnet poles. The Forward Clarke transformation
for a Y-connected motor is

[
uα
uβ

]
=

[
1 0
1√
3

2√
3

][
ua
ub

]
(9.8)

These two transformations are implemented in the functions ClarkeTransformation
Matrix and ParkTransformationMatrix. They allow us to go from the time-varying
(a,b,c) frame to the time-invariant, but rotating, (d,q) frame.

The equations for a general permanent magnet machine in the direct-quadrature frame are

uq = rsiq + ωe(Ldid + ψ) +
dLqiq
dt

(9.9)

ud = rsid − ωeLqiq +
d(Ldid + ψ)

dt
(9.10)

where u are the voltages, i are the currents, rs is the stator resistance, Lq and Ld are the d and
q phase inductances, ωe is the electrical angular rate, and ψ is the flux due to the permanent
magnets. The electrical torque produced is

Te =
3

2
p((Ldid + ψ)iq − Lqiqid) (9.11)

where p is the number of pole pairs.
The torque equation is

Te = TL + bωm + J
dωm

dt
(9.12)

where b is the mechanical damping coefficient, TL is the external load torque, and J is the
inertia, and the relationship between the mechanical and the electrical angular rate is

ωe = pωm (9.13)

The more pole pairs you have, the higher the electrical frequency. In a magnet surface mount
machine with coils in slots, Ld = Lq ≡ L, and ψ and the inductances are not functions of time.
The equations simplify to

uq = rsiq + ωeLid + ωeψ + L
diq
dt

(9.14)

ud = rsid − ωeLiq + L
did
dt

(9.15)

259

CHAPTER 9 ELECTRIC MOTORS

We control direct current id to zero. If id is zero, control is linear in iq . The torque is now

Te =
3

2
pψiq (9.16)

Thus, the torque is a function of the quadrature current iq only. We can therefore control
the electrical torque by controlling the quadrature current. The quadrature current is in turn
controlled by the direct and quadrature phase voltages. The desired current isq can now be
computed from the torque set point T s

e .

isq =
2

3
T s
e /(pψ) (9.17)

We will use a proportional-integral controller to compute the (d,q) voltages. The propor-
tional part of the control drives errors to zero. However, if there is a steady disturbance, there
will be an offset. The integral part can drive an error due to such a steady disturbance to zero.
Without the integral term, a steady disturbance will result in a steady error. A proportional-
integral controller is of the form

u = K

(
1 +

1

τ

∫)
y (9.18)

where u is the control, y is the measurement, τ is the integrator time constant, and K is the
forward (proportional) gain. Our control u will be the phase voltages, and our measurement y
is the current error in the (d,q) frame.

u(d,q) = −kF

(
ierr +

1

τ

∫
ierr

)
(9.19)

where [
id
iq

]

err

=

[
id
iq

]
−

[
0
isq

]
(9.20)

We now write a function, TorqueControl, that calculates the control voltages u(α,β)
given the current state x. The state vector is the same as Recipe 9.1, that is, current i in the (a,b,c)
frame plus the angle states θ and ω. We use the Park and Clarke transformations to compute
the current in the (d,q) frame. We can then implement the proportional-integral controller with
Euler integration. The function uses its data structure as memory – the updated structure d is
passed back as an output. TorqueControl is shown as follows. This function will return a
default data structure if no inputs are passed into the function.

TorqueControl.m

1 %% TORQUECONTROL Compute torque control of an AC machine
2 % Determines the quadrature current needed to produce a torque and uses

a
3 % proportional integral controller to control the motor. We control the

260

CHAPTER 9 ELECTRIC MOTORS

4 % direct current to zero since we want to use just the magnet flux to
react

5 % with the quadrature current. We could control the direct current to
6 % another value to implement field-weakening control but this would

result
7 % in a nonlinear control system.
8 %% Forms
9 % d = TorqueControl

10 % [u, d, iAB] = TorqueControl(torqueSet, x, d)
11 %
12 %% Inputs
13 % torqueSet (1,1) Set point torque
14 % x (5,1) State [ia;ib;ic;omega;theta]
15 % d (.) Control data structure
16 % .kF (1,1) Forward gain
17 % .tauI (1,1) Integral time constant
18 % .iDQInt (2,1) Integral of current errors
19 % .dT (1,1) Time step
20 % .psiM (1,1) Magnetic flux
21 % .p (1,1) Number of magnet poles
22 %
23 %% Outputs
24 % u (2,1) Control voltage [alpha;beta]
25 % d (.) Control data structure
26 % iAB (2,1) Steady state currents [alpha;beta]
27 %
32

33 function [u, d, iAB] = TorqueControl(torqueSet, x, d)
34

35 % Default data structure
36 if(nargin == 0)
37 u = struct('kF',0.003,'tauI',0.001, 'iDQInt',[0;0], 'dT', 0.01,...
38 'psiM',0.0690,'p',2);
39 if(nargout == 0)
40 disp('TorqueControl struct:');
41 end
42 return
43 end
44

45 % Clarke and Park transforms
46 thetaE = 0.5*d.p*x(5);
47 park = ParkTransformationMatrix(thetaE);
48 iPark = park';
49 clarke = ClarkeTransformationMatrix;
50 iDQ = iPark*clarke*x(1:2);
51

52 % Set point to produce the desired torque [iD;iQ]
53 iDQSet = [0;(2/3)*torqueSet/(d.psiM*d.p)];
54

55 % Error
56 iDQErr = iDQ - iDQSet;
57

261

CHAPTER 9 ELECTRIC MOTORS

58 % Integral term
59 d.iDQInt = d.iDQInt + d.dT*iDQErr;
60

61 % Control
62 uDQ = -d.kF*(iDQErr + d.iDQInt/d.tauI);
63 u = park*uDQ;
64

65 % Steady state currents
66 if(nargout > 2)
67 iAB = park*iDQSet;
68 end

9.3 Pulsewidth Modulation of the Switches
Problem

In the previous recipe, we calculate the control voltages to apply to the stator. Now we want to
take those control voltages as an input and drive the switches via pulsewidth modulation.

Solution

We will use the Space Vector Modulation to go from a rotating two-dimensional (α,β) frame
to the rotating three-dimensional (a,b,c) stator frame, which is more computationally efficient
than modulating in (a,b,c) directly.

How It Works

We will use Space Vector Modulation to drive the switches for pulsewidth modulation.2 This
goes from (α,β) coordinates to switch states (a,b,c). Each node of each phase is either connected
to ground or to +u. These values are shown in Figure 9.4. The six spokes in the diagram, as
well as the origin, correspond to the eight discrete switch states.

Table 9.1 delineates each of these eight discrete switch states, the corresponding vector in
the (α,β) coordinates, and the resulting voltages. Note that the O vectors are at the origin of
the Space Vector Modulation, while the U vectors are at 60-degree increments. The states are
indexed from 0 to 7 with 0 being all open states and 7 being all closed.

In order to produce the desired torque, we must use a combination of the vectors or switch
states so that we achieve the desired voltage on average. We select the two vectors O or U
bracketing the desired angle in the (α,β) plane; these are designated k and k+1 where k refers
to the number of the vector in Table 9.1. We must then calculate the amount of time to spend
in each switch state, for each pulsewidth period. The durations of these two segments, Tk and
Tk+1, are found from this equation:

[
Tk

Tk+1

]
=

√
3

2

Ts

ud

[
sin kπ

3 − cos kπ
3

− sin (k−1)π
3 cos (k−1)π

3

] [
uα
uβ

]
(9.21)

2Analog Devices, “Implementing Space Vector Modulation with the ADMCF32X,” ANF32X-17, January 2000.

262

CHAPTER 9 ELECTRIC MOTORS

Figure 9.4: Space Vector Modulation in (α,β) coordinates. We determine which sector (in Roman
numerals) we are in and then pick the appropriate vectors to apply so that they on average attain the
desired voltage. The numbers in brackets are the normalized [α, β] voltages.

Table 9.1: Space Vector Modulation. In the vector names, O means open and U means a voltage is
applied, while the subscripts denote the angle in the α-β plane. The switch states are a, b, c as shown in
Figure 9.3, where 1 means a switch is closed and 0 means it is open.

k abc Vector ua/u ub/u uc/u uab/u ubc/u uac/u

0 000 O000 0 0 0 0 0 0

1 110 U60 2/3 1/3 -1/3 1 0 -1

2 010 U120 1/3 1/3 -2/3 0 1 -1

3 011 U180 -1/3 2/3 -1/3 -1 1 0

4 001 U240 -2/3 1/3 1/3 -1 0 1

5 101 U300 -1/3 -1/3 2/3 0 -1 1

6 100 U360 1/3 -2/3 1/3 1 -1 0

7 111 O111 0 0 0 0 0 0

263

CHAPTER 9 ELECTRIC MOTORS

Figure 9.5: Pulse period segments. Each pulse period Ts is divided into seven segments so that the two
switching patterns k and k + 1 are applied symmetrically.

The corresponding (a,b,c) switch patterns are each used for the calculated time, averaging to
the designated voltage.

The time spent in each pattern, Tk or Tk+1, is then split into two equal portions so that the
total pulse pattern is symmetric. The zero time T0, when no switching is required, is split evenly
between the endpoints and the middle of the pulse Ts – so that the time in the middle pattern
(O111) is twice the time in each end pattern (O000). This results in a total of seven segments
depicted in Figure 9.5. The total middle time is designated T7.

T0 =
1

4
(Ts − (Tk + Tk+1)) (9.22)

The implementation of the pulse segments is slightly different for the even and odd sectors
in Figure 9.4. Both are symmetric about the midpoint of the pulse as described, but we reverse
the implementation of patterns k and k + 1. This is shown for the resulting voltages u in the
following equations. We use the first in even sectors and the second in odd sectors.

[
u0 uk uk+1 u7 uk+1 uk u0

]
(9.23)

and [
u0 uk+1 uk u7 uk uk+1 u0

]
(9.24)

Using the different patterns for odd and even vectors minimizes the number of commutations
per cycle.

We determine the sector from the angle Θ formed by the commanded voltages uα and uβ :

Θ = atan
uβ
uα

(9.25)

264

CHAPTER 9 ELECTRIC MOTORS

The pulsewidth modulation routine, SVPWM, does not actually perform an arctangent.
Rather, it looks at the unit uα and uβ vectors and determines first their quadrant and then their
sector without any need for trigonometric operations.

The first section of SVPWM implements the timing for the pulses. Just as in the previous
recipe for the controller, the function uses its data structure as memory – the updated structure
is passed back as an output. This is an alternative to persistent variables.

SVPWM.m

44 function [s, d] = SVPWM(t, d)
45

46 % Default data structure
47 if(nargin < 1 && nargout == 1)
48 s = struct('dT',1e-6,'tLast',-0.0001,'tUpdate',0.001,'u',[0;0],...
49 'uM',10,'tP',zeros(1,7),'sP',zeros(3,7));
50 return;
51 end
52

53 % Run the demo
54 if(nargin < 1)
55 disp('Demo of SVPWM:');
56 Demo;
57 return;
58 end
59

60 % Update the pulsewidths at update time
61 if(t >= d.tLast + d.tUpdate || t == 0)
62 [d.sP, d.tP] = SVPW(d.u, d.tUpdate, d.uM);
63 d.tLast = t;
64 end
65

66 % Time since initialization of the pulse period
67 dT = t - d.tLast;
68 s = zeros(3,1);
69

70 for k = 1:7
71 if(dT < d.tP(k))
72 s = d.sP(:,k);
73 break;
74 end
75 end

The pulsewidth vectors are computed in the subfunction SVPW. We first compute the quad-
rant and then the sector without using any trigonometric functions. This is done using simple
if/else statements and a switch statement. Note that the modulation index k is simply designated
k and k+1 is designated kP1. We then compute the times for the two space vectors that bound
the sector. We then assemble the seven subperiods.

265

CHAPTER 9 ELECTRIC MOTORS

89 function [sP, tP] = SVPW(u, tS, uD)
90

91 % Make u easier to interpret
92 alpha = 1;
93 beta = 2;
94

95 % Determine the quadrant
96 if(u(alpha) >= 0)
97 if(u(beta) > 0)
98 q = 1;
99 else

100 q = 4;
101 end
102 else
103 if(u(beta) > 0)
104 q = 2;
105 else
106 q = 3;
107 end
108 end
109

110 sqr3 = sqrt(3);
111

112 % Find the sector. k1 and k2 define the edge vectors
113 switch q
114 case 1 % [+,+]
115 if(u(beta) < sqr3*u(alpha))
116 k = 1;
117 kP1 = 2;
118 oddS = 1;
119 else
120 k = 2;
121 kP1 = 3;
122 oddS = 0;
123 end
124 case 2 % [-,+]
125 if(u(beta) < -sqr3*u(alpha))
126 k = 3;
127 kP1 = 4;
128 oddS = 1;
129 else
130 k = 2;
131 kP1 = 3;
132 oddS = 0;
133 end
134 case 3 % [-,-]
135 if(u(beta) < sqr3*u(alpha))
136 k = 5;
137 kP1 = 6;
138 oddS = 1;
139 else

266

CHAPTER 9 ELECTRIC MOTORS

140 k = 4;
141 kP1 = 5;
142 oddS = 0;
143 end
144 case 4 % [+,-]
145 if(u(beta) < -sqr3*u(alpha))
146 k = 5;
147 kP1 = 6;
148 oddS = 1;
149 else
150 k = 6;
151 kP1 = 1;
152 oddS = 0;
153 end
154 end
155

156 % Switching sequence
157 piO3 = pi/3;
158 kPiO3 = k*pi/3;
159 kM1PiO3 = kPiO3-piO3;
160

161 % Space vector pulsewidths
162 t = 0.5*sqr3*(tS/uD)*[sin(kPiO3) -cos(kPiO3);...
163 -sin(kM1PiO3) cos(kM1PiO3)]*u;
164

165 % Total zero vector time
166 t0 = tS - sum(t);
167

168 t = t/2;
169

170 % Different order for odd and even sectors
171 if(oddS)
172 sS = [0 k kP1 7 kP1 k 0];
173 tPW = [t0/4 t(1) t(2) t0/2 t(2) t(1) t0/4];
174 else
175 sS = [0 kP1 k 7 k kP1 0];
176 tPW = [t0/4 t(2) t(1) t0/2 t(1) t(2) t0/4];
177 end
178 tP = [tPW(1) zeros(1,6)];
179

180 for k = 2:7
181 tP(k) = tP(k-1) + tPW(k);
182 end
183

184 % The switches corresponding to each voltage vector
185 % From 0 to 7
186 % a b c
187 s = [0 0 0;...
188 1 0 0;...
189 1 1 0;...
190 0 1 0;...
191 0 1 1;...

267

CHAPTER 9 ELECTRIC MOTORS

192 0 0 1;...
193 1 0 1;
194 1 1 1]';
195

196 sP = zeros(3,7);
197 for k = 1:7
198 sP(:,k) = s(:,sS(k)+1);
199 end

The built-in demo is fairly complex so it is in a separate subfunction. We simply specify an
example input u using trigonometric functions.

201 function Demo
202 %%% SVPWM>Demo Function demo
203 % Calls SVPWM with a sinusoidal input u.
204 % This demo will run through an array of times and create a plot of the
205 % resulting voltages.
206

207 d = SVPWM;
208 tEnd = 0.003;
209 n = tEnd/d.dT;
210 a = linspace(0,pi/4,n);
211 tP3 = 2*pi/3;
212 uABC = 0.5*[cos(a);cos(a-tP3);cos(a+tP3)];
213 uAB = ClarkeTransformationMatrix*uABC(1:2,:); % a-b to alpha-beta
214 tSamp = 0;
215 t = 0;
216 tPP = 1;
217 x = zeros(4,n);
218 for k = 1:n
219 if(t >= tSamp)
220 tSamp = tSamp + d.tUpdate;
221 tPP = ˜tPP;
222 end
223 d.u = uAB(:,k);
224 [s, d] = SVPWM(t, d);
225 t = t + d.dT;
226 x(:,k) = [SwitchToVoltage(s,d.uM);tPP];
227 end

Figure 9.6 shows the state vector pulsewidth modulation from the built-in demo. There are
three pulses in the plot, each 0.001 seconds long. Each pulse period has seven subperiods.

The function SwitchToVoltage converts switch states to voltages. It assumes instanta-
neous switching and no switch dynamics.

SwitchToVoltage.m

24

25 % Switch states [a;b;c]
26 sA = [1 1 0 0 0 1;...

268

CHAPTER 9 ELECTRIC MOTORS

Figure 9.6: The desired voltage vector and the Space Vector Modulation pulses and pulsewidth. The
bottom plot shows the pulse periods. Note that the pulse sequences are symmetric within each pulse
period.

27 0 1 1 1 0 0;...
28 0 0 0 1 1 1];
29

30 % Array of voltages
31 uA = [2 1 -1 -2 -1 1;...
32 -1 1 2 1 -1 -2;...
33 -1 -2 -1 1 2 1];
34

35 % Find the correct switch state
36 u = [0;0;0];
37 for k = 1:6
38 if(sum(sA(:,k) - s) == 0)
39 u = uA(:,k)*uDC/3;
40 break;
41 end
42 end

269

CHAPTER 9 ELECTRIC MOTORS

9.4 Simulating the Controlled Motor
Problem

We want to simulate the motor with torque control using Space Vector Modulation.

Solution

Write a script to simulate the motor with the controller. We include options for closed loop
control and balanced three-phase voltage inputs.

How It Works

The header for the script, PMMachineDemo, is shown in the following listing. The control
flags bypassPWM and torqueControlOn are described as well as the two periods imple-
mented, one for the simulation and a longer period for the control.

PMMachineDemo.m

1 %% Simulation of a permanent magnet AC motor
2 % Simulates a permanent magnet AC motor with torque control. The

simulation has
3 % two options. The first is torqueControlOn. This turns torque control

on and
4 % off. If it is off the phase voltages are a balanced three phase

voltage set.
5 %
6 % bypassPWM allows you to feed the phase voltages directly to the motor
7 % bypassing the pulsewidth modulation switching function. This is

useful for
8 % debugging your control system and other testing.
9 %

10 % There are two time constants for this simulation. One is the control
period

11 % and the second is the simulation period. The latter is much shorter
because it

12 % needs to simulate the pulsewidth modulation.
13 %
14 % For control testing the load torque and setpoint torque should be the

same.

The body of the script follows. Three different data structures are initialized from their cor-
responding functions as described in the previous recipes, that is, from SVPWM,
TorqueControl, and RHSPMMachine. Note that we are only simulating the motor for
a small fraction of a second, 0.05 seconds, and the time step is just 1e-6 seconds. The controller
time step is set to 100 times the simulation time step.

20 %% Initialize all data structures
21 dS = SVPWM;
22 dC = TorqueControl;
23 d = RHSPMMachine;

270

CHAPTER 9 ELECTRIC MOTORS

24 dC.psiM = d.psiM;
25 dC.p = d.p;
26 d.tL = 1.0; % Load torque (Nm)
27

28 %% User inputs
29 tEnd = 0.05; % sec
30 torqueControlOn = false;
31 bypassPWM = false;
32 torqueSet = 1.0; % Set point (Nm)
33 dC.dT = 100*dS.dT; % 100x larger than simulation dT
34 dS.uM = 1.0; % DC Voltage at the input to the switches
35 magUABC = 0.1; % Voltage for the balanced 3 phase

voltages
36

37 if (torqueControlOn && bypassPWM)
38 error('The control requires PWM to be on.');
39 end
40

41 %% Run the simulation
42 nSim = ceil(tEnd/dS.dT);
43 xP = zeros(10,nSim);
44 x = zeros(5,1);
45

46 % We require two timers as the control period is larger than the
simulation

47 % period
48 t = 0.0; % simulation timer
49 tC = 0.0; % control timer
50

51 for k = 1:nSim
52 % Electrical degrees
53 thetaE = x(5);
54 park = ParkTransformationMatrix(thetaE);
55 clarke = ClarkeTransformationMatrix;
56

57 % Compute the voltage control
58 if(torqueControlOn && t >= tC)
59 tC = tC + dC.dT;
60 [dS.u, dC] = TorqueControl(torqueSet, x, dC);
61 elseif(˜torqueControlOn)
62 tP3 = 2*pi/3;
63 uABC = magUABC*dS.uM*[cos(thetaE);cos(thetaE-tP3);cos(thetaE+tP3)];
64 if(bypassPWM)
65 d.u = uABC;
66 elseif(t >= tC)
67 tC = tC + dC.dT;
68 dS.u = park*clarke*uABC(1:2,:);
69 end
70 end
71

72 % Space Vector Pulsewidth Modulation
73 if(˜bypassPWM)

271

CHAPTER 9 ELECTRIC MOTORS

74 dS.u = park'*dS.u;
75 [s,dS] = SVPWM(t, dS);
76 d.u = SwitchToVoltage(s,dS.uM);
77 end
78

79 % Get the torque output for plotting
80 [˜,tE] = RHSPMMachine(0, x, d);
81 xP(:,k) = [x;d.u;torqueSet;tE];
82

83 % Propagate one simulation step
84 x = RungeKutta(@RHSPMMachine, 0, x, dS.dT, d);
85 t = t + dS.dT;
86 end
87

88 %% Generate the time history plots
89 [t, tL] = TimeLabel((0:(nSim-1))*dS.dT);
90

91 figure('name','3 Phase Currents');
92 plot(t, xP(1:3,:));
93 grid on;
94 ylabel('Currents');
95 xlabel(tL);
96 legend('i_a','i_b','i_c')
97

98 PlotSet(t, xP([4 10],:), 'x label', tL, 'y label', {'\omega_e' 'T_e (
Nm)'}, ...

99 'plot title','Electrical', 'figure title','Electrical');
100

101 thisTitle = 'Phase Voltages';
102 if ˜bypassPWM
103 thisTitle = [thisTitle ' - PWM'];
104 end
105

106 PlotSet(t, xP(6:8,:), 'x label', tL, 'y label', {'u_a' 'u_b' 'u_c'},
...

107 'plot title',thisTitle, 'figure title',thisTitle);
108

109 thisTitle = 'Torque/Speed';
110 if ˜bypassPWM
111 thisTitle = [thisTitle ' - PWM'];
112 end

We turn off torque control to test the motor simulation with the results shown in Figure 9.7.
The two plots show the torque speed curves. The first is with direct three-phase excitation,
that is, bypassing the pulsewidth modulation, by setting bypassPWM to false. Directly
controlling the phase voltages this way, while creating the smoothest response, would require
linear amplifiers which are less efficient than switches. This would make the motor much less
efficient overall and would generate unwanted heat. The second plot is with Space Vector
Pulsewidth Modulation. The plots are nearly identical, indicating that the pulsewidth modula-
tion is working.

272

CHAPTER 9 ELECTRIC MOTORS

Figure 9.7: Torque speed curves for a balanced three-phase voltage excitation and a load torque of 1.0
Nm. The left figure shows the curve for the direct three-phase input, and the right shows the curve for
the Space Vector Pulsewidth Modulation input. They are nearly identical.

Figure 9.8: PI torque control of the motor.

We now turn on torque control, via the torqueControlOnflag, and get the results shown
in Figure 9.8. The overshoot is typical for torque control. Note that the load torque is set equal
to the torque set point of 1 Nm. There is limit cycling near the end point.

The pulsewidths and resulting coil currents are shown in Figure 9.9. A zoomed view of the
end of the pulsewidth plot with shading added to alternate pulsewidths is in Figure 9.10. This
makes it easier to see the segments of the pulsewidths and verify that they are symmetric.

The code which adds the shading uses fill with transparency via the alpha parameter.
In this case, we hard-code the function to show the last five pulsewidths, but this could be
generalized to a time window, or to shade the entire plot. We did take the time to add an input
for the pulsewidth length, so that this could be changed in the main script and the function

273

CHAPTER 9 ELECTRIC MOTORS

Figure 9.9: Voltage pulsewidths and resulting currents for PI torque control.

Figure 9.10: Pulsewidths with shading.

274

CHAPTER 9 ELECTRIC MOTORS

would still work. Note that we reorder the axes children as the last step, to keep the shading
from obscuring the plot lines.

AddFillToPWM.m

17 function AddFillToPWM(dT)
18

19 if nargin == 0
20 dT = 0.001;
21 end
22

23 hAxes = get(gcf,'children');
24 nAxes = length(hAxes);
25

26 for j = 1:nAxes
27 if strcmp(hAxes(j).type,'axes')
28 axes(hAxes(j));
29 AddFillToAxes;
30 end
31 end
32

33 function AddFillToAxes
34

35 hold on;
36 y = axis;
37 xMin = y(2) - 5*dT;
38 xMax = y(2);
39 axis([xMin xMax y(3:4)])
40 x0 = xMin;
41 yMin = y(3) + 0.01*(y(4)-y(3));
42 yMax = y(4) - 0.01*(y(4)-y(3));
43 for k = [2 4]
44 xMinK = x0 + (k-1)*dT;
45 xMaxK = x0 + k*dT;
46

47 fill([xMinK xMaxK xMaxK xMinK],...
48 [yMin,yMin,yMax,yMax],...
49 [0.8 0.8 0.8],'edgecolor','none','facealpha',0.5);
50

51 end
52 babes = get(gca,'children');
53 set(gca,'children',[babes(end); babes(1:end-1)])
54 hold off;
55

56 end
57

58 end

275

CHAPTER 9 ELECTRIC MOTORS

Summary
This chapter has demonstrated how to write the dynamics and implement a field-oriented con-
trol law for a three-phase motor. We use a proportional-integral controller with Space Vector
Pulsewidth Modulation to drive the six switches. This produces a low-cost controller for a
motor. Table 9.2 lists the code developed in the chapter.

Table 9.2: Chapter Code Listing

File Description
AddFillToPWM Add shading to the motor pulsewidth plot
ClarkeTransformationMatrix Clarke transformation matrix
ParkTransformationMatrix Park transformation matrix
PMMachineDemo Permanent magnet motor demonstration
RHSPMMachine Right-hand side of a permanent magnet brushless

three-phase electrical machine
SVPWM Implements Space Vector Pulsewidth Modulation
SwitchToVoltage Converts switch states to voltages
TorqueControl Proportional-integral torque controller

276

	9 Electric Motors
	9.1 Motor Model
	Problem
	Solution
	How It Works

	9.2 Controlling the Motor
	Problem
	Solution
	How It Works

	9.3 Pulsewidth Modulation of the Switches
	Problem
	Solution
	How It Works

	9.4 Simulating the Controlled Motor
	Problem
	Solution
	How It Works

