
CHAPTER 5

Testing and Debugging

The MATLAB unit test framework now allows you to incorporate testing into your MATLAB
software just as you would your C++ or Java packages. Since entire textbooks have been written
on testing methodologies, we will limit ourselves in this chapter to covering the mechanics of
using the test framework itself. We also present a couple of recipes that are useful for debugging.

We should, however, say a few words about the goal of software testing. Testing should
determine if your software functions as designed. The first step is to have a concrete design
against which you are coding. The functionality needs to be carefully described as a set of
requirements. The requirements need to specify what inputs the software expects and what
outputs it will generate. Testing needs to verify that for all valid inputs, it generates the expected
outputs. A second consideration is that the software should handle expected errors and warn
the user. For example, a simple function adds two MATLAB variables:

c = a + b;

You need to verify that it will work for any numeric a and b. You would not generally need
to have a warning to the user if a or b is not numeric; that would just fill your code up with
unneeded tests. A case where you might want a check is a function containing

b = acos(a);

If it is supposed to return a real number (perhaps as part of another function), you might
want to limit a to have a magnitude less than 1. If you have the code

if( abs(a) > 1 )
a = sign(a);

end
b = acos(a);

©Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 5

175

https://doi.org/10.1007/978-1-4842-6124-8_5


CHAPTER 5 TESTING AND DEBUGGING

in this case, your test code needs to pass in values of a that are greater than one. This is
also a case where you might want to add a custom warning to the user if the magnitude limiting
code is exercised, as shown in the following. If you have custom warnings and errors in your
code, you also need to test them.

if( abs(a) > 1 )
warning('MyToolbox:MyFunction:OutOfBounds','Input a is out of bounds');
a = sign(a);

end
b = acos(a);

For engineering software, your test code should include known outputs generated by known
inputs. In the preceding code, you might include inputs of 1.1, 1, 0.5, 0, -0.5, -1, and -1.1.
This would span the range of expected inputs. You might also be very thorough and input
linspace(-1.1,1.1) and test against another source of values for the inverse cosine. As
shown in the later chapters, we usually include a demo function that tests the function with an
interesting set of inputs. Your test code can use the code from the demo function as part of the
testing.

All test procedures should employ the MATLAB code coverage tools. The Coverage Re-
port, used in conjunction with the MATLAB Profiler, keeps track of what lines of code are
exercised during execution. For a given function or script, it is essential that all code be exer-
cised in its test. Studies have shown that testing done without coverage tools typically exercises
only 55% of the code. In reality, it is impossible to actually test every path in anything but the
simplest software, and this must be factored into the software development and quality assur-
ance processes. MATLAB does not currently support running the coverage tools on a suite of
tests, or during your regression testing, so you should exercise the coverage tools on a per-test
basis as you design them.

Once you start using your software, any bug you find should be used to add an additional
test case to your software.

5.1 Creating a Unit Test
Problem

Your functions require unit tests.

Solution

Use MATLAB’s built-in test capabilities (now available using Java classes) to write and execute
unit test functions. Test functions and scripts are identified by using the word “test” as a prefix
or suffix to the filename and are run via the runtests function.

176



CHAPTER 5 TESTING AND DEBUGGING

How It Works

The matlab.unittest package is an xUnit-style, unit testing framework for MATLAB.
You can write scripts with test cases separated using cell titles, or functions with test cases in
subfunctions, and execute them using the framework. We will show an example of each. There
is extensive documentation of the framework and examples in the MATLAB documentation;
these lists will get you started.

These are the relevant MATLAB packages implementing the framework:

• matlab.unittest
• matlab.unittest.constraints
• matlab.unittest.fixtures
• matlab.unittest.qualifications

The qualifications package provides all the methods for checking function results, including
numerical values, errors, and warnings. The fixtures package allows you to provide setup and
teardown code for individual or groups of tests.

Here are the relevant classes you will use when coding tests:

• matlab.unittest.TestCase
• matlab.unittest.TestResult
• matlab.unittest.TestSuite
• matlab.unittest.qualifications.Verifiable

TestCase is the superclass for writing test classes.
Here are the relevant functions:

• assert
• runtest
• functiontests
• localfunctions

The simplest way to implement some tests for a function is to write a script. Each test case
is identified with a cell title, using %%. Use the assert function to check the function output.
The script can then be run via runtest, which will run each test even if a prior test fails, and
collate the output into a useful report.

Let’s write tests for an example function, CompleteTriangle, that computes the re-
maining data for a triangle given two sides and the interior angle:

CompleteTriangle.m

22 function [A,B,c] = CompleteTriangle(a,b,C)
23

24 c = sqrt(aˆ2 + bˆ2 - 2*a*b*cosd(C));
25 sinA = sind(C)/c*a;
26 sinB = sind(C)/c*b;

177



CHAPTER 5 TESTING AND DEBUGGING

27 cosA = (cˆ2+bˆ2-aˆ2)/2/b/c;
28 cosB = (cˆ2+aˆ2-bˆ2)/2/a/c;
29 A = atan2(sinA,cosA)*180/pi;
30 B = atan2(sinB,cosB)*180/pi; % insert typo: change a B to A
31

32 end

This is similar to the right triangle function used as an example in the MATLAB documen-
tation, but we need the four quadrant inverse tangent as we are allowing obtuse triangles. Since
there are very similar lines of code for the two angles A and B, we’ve made a note that having
a typo in one of these lines would be likely, especially if you use copy/paste while writing the
function; we’ll demonstrate the effect of such a typo via our tests.

Now let’s look at a script that defines a few test cases for this function, TriangleTest.
We use assert with a logical statement for every check.

TriangleTest.m

11 %% Test 1: sum of angles
12 % Test that the angles add up to 180 degrees.
13 C = 30;
14 [A,B] = CompleteTriangle(1,2,C);
15 theSum = A+B+C;
16 assert(theSum == 180,'PSS:Book:triangle','Sum of angles: %f',theSum)
17

18 %% Test 2: isosceles right triangles
19 % Test that if sides a and b are equal, angles A and B are equal.
20 C = 90;
21 [A,B] = CompleteTriangle(2,2,C);
22 assert(A == B,'PSS:Book:triangle','Isoceles Triangle')
23

24 %% Test 3: 3-4-5 right triangle
25 % Test that if side a is 3 and side b is 4, side c (hypotenuse) is 5.
26 C = 90;
27 [˜,˜,c] = CompleteTriangle(3,4,C);
28 assert(c == 5,'PSS:Book:triangle','3-4-5 Triangle')
29

30 %% Test 4: equilateral triangle
31 % Test that if sides a and b are equal, all angles are 60.
32 [A,B,c] = CompleteTriangle(1,1,60);
33 assert(A == 60,'PSS:Book:triangle','Equilateral Triangle %d',1)
34 assert(B == 60,'PSS:Book:triangle','Equilateral Triangle %d',2)
35 assert(c == 1,'PSS:Book:triangle','Equilateral Triangle %d',3)

178



CHAPTER 5 TESTING AND DEBUGGING

Note how we have used the additional inputs available to assert to add a message ID
string and an error message. The error message can take formatted strings with any of the
specifiers supported by sprintf, such as %d and %f.

You can simply execute this script, in which case it will exit on the first assert that fails.
Even better, you can run it with runtests, which will automatically distinguish between the
test cases and run them independently should one fail.

>> runtests('TriangleTest');

Running TriangleTest
...
=========================================================================
Error occurred in TriangleTest/Test4_EquilateralTriangle and it did not

run to completion.

--------------
Error Details:
--------------
Equilateral Triangle 1

=========================================================================
.
Done TriangleTest
__________

Failure Summary:

Name Failed Incomplete Reason(s)
=====================================================================
TriangleTest/Test4_EquilateralTriangle X X Errored.

The equilateral triangle test failed, and we know it was the first assert in that case due to
the index we printed out, Equilateral Triangle 1. If you run the code for that test at the
command line, you will see that the output does in fact look correct:

>> [A,B,c] = CompleteTriangle(1,1,60)
A =

60
B =

60
c =

1

179



CHAPTER 5 TESTING AND DEBUGGING

If we actually subtract the expected value, 60, from A and B, we see why our test has failed.

>> A-60
ans =

7.1054e-15
>> B-60
ans =

7.1054e-15

We are within the tolerances of the trigonometric functions in MATLAB, but our assert did
not take that into account. You can add a tolerance like so:

1 assert(abs(A-60)<1e-10,'PSS:Book:triangle','Equilateral Triangle %d',1)
2 assert(abs(B-60)<1e-10,'PSS:Book:triangle','Equilateral Triangle %d',2)

And now our tests all pass:

>> runtests('TriangleTest')
Running TriangleTest
....
Done TriangleTest
__________

ans =
1x4 TestResult array with properties:

Name
Passed
Failed
Incomplete
Duration

Totals:
4 Passed, 0 Failed, 0 Incomplete.
0.012243 seconds testing time.

Note that we left off the terminating semicolon, so in addition to the brief report, we see that
runtests returns an array of TestResult objects and prints additional total information,
including the test duration.

Now let’s consider the case of a typo in the function that you have not yet debugged. We
will change a B to an A on the last line of the function, so that it reads

1 B = atan2(sinB,cosA)*180/pi; % insert typo: change a B to A

and run the tests again, using the tolerance check. We use the table class with the
TestResult output to get a nicely formatted version of the test results.

>> tr = runtests('TriangleTest');
>> table(tr)
ans =

Name Passed Failed Incomplete

180



CHAPTER 5 TESTING AND DEBUGGING

Duration
________________________________________ _____ _____ _______

______
'TriangleTest/Test1_SumOfAngles' false true true

0.0040209
'TriangleTest/Test2_IsoscelesRightTriangles' true false false

0.002971
'TriangleTest/Test3_3_4_5RightTriangle' true false false

0.0027831
'TriangleTest/Test4_EquilateralTriangle' true false false

0.0031556

Despite this being a major error in the code, only one test has failed: the sum of the angles
test. The isosceles and equilateral triangle tests still passed because A and B are equal in both
cases. You could introduce errors into each line of your code to see if your tests catch them!

Now let’s consider the other possibility for the unit tests: a test function, as opposed to the
script. In this case, each test case has to be in its own subfunction, and the main function has to
return an array of tests. This provides you the opportunity to write setup and teardown functions
for the tests. It also makes use of the TestCase class and the qualifications package. Here is
what our tests look like in this format:

TriangleFunctionTest.m

16 function tests = TriangleFunctionTest
17 % Create an array of local functions
18 tests = functiontests(localfunctions);
19 end
20

21 %%% Test Functions
22 function testAngleSum(testCase)
23 C = 30;
24 [A,B] = CompleteTriangle(1,2,C);
25 theSum = A+B+C;
26 testCase.verifyEqual(theSum,180)
27 end
28

29 function testIsosceles(testCase)
30 C = 90;
31 [A,B] = CompleteTriangle(2,2,C);
32 testCase.verifyEqual(A,B)
33 end
34

35 function test345(testCase)
36 C = 90;
37 [˜,˜,c] = CompleteTriangle(3,4,C);
38 testCase.verifyEqual(c,5)
39 end
40

41 function testEquilateral(testCase)
42 [A,B,c] = CompleteTriangle(1,1,60);

181



CHAPTER 5 TESTING AND DEBUGGING

43 assert(abs(A-60)<testCase.TestData.tol)
44 testCase.verifyEqual(B,60,'absTol',1e-10)
45 testCase.verifyEqual(c,1)
46 end
47

48 %%% Optional file fixtures
49 function setupOnce(testCase) % do not change function name
50 % set a tolerance that can be used by all tests
51 testCase.TestData.tol = 1e-10;
52 end
53

54 function teardownOnce(testCase) % do not change function name
55 % change back to original path, for example
56 end
57

58 %%% Optional fresh fixtures
59 function setup(testCase) % do not change function name
60 % open a figure, for example
61 end
62

63 function teardown(testCase) % do not change function name
64 % close figure, for example
65 end

If you just run this function, you will get an array of the four test methods.

>> TriangleFunctionTest
ans =

1x4 Test array with properties:

Name
Parameterization
SharedTestFixtures

We have showed two methods for setting a tolerance for the tests in testEquilateral;
in one case, we hard-coded a tolerance in using the absTol parameters, and in the other we
used a setup function to pass a tolerance in via TestData. There are two types of setup
and teardown functions to choose from: file fixtures, which will run just once for the entire
set of tests in the file, and fresh fixtures, which will run for each test case. The file fixtures
are identified with the Once suffix. In the case of this tolerance, the setupOnce function is
appropriate.

To run the tests, use runtests as for the script. Happily, our tests all pass!

>> runtests('TriangleFunctionTest')
Running TriangleFunctionTest
....
Done TriangleFunctionTest
__________

182



CHAPTER 5 TESTING AND DEBUGGING

...
Totals:

4 Passed, 0 Failed, 0 Incomplete.
0.043001 seconds testing time.

You can run either set of tests in the Profiler (i.e., Run and Time) to verify the coverage of
the function being tested. It is a bit easier to navigate to the results for CompleteTriangle
using the script version of the tests; the results from the test function list many functions from
the test framework. The result in the Profiler, showing 100% coverage of our function, is shown
in Figure 5.1.

After you have run the Profiler, you can run a Coverage Report. To run the report, you have
to use the Current Folder pane of the editor, and select Reports/Coverage Report from the
context menu. We show an example in Figure 5.2. Our example function runs too quickly to
take any measurable time, but generally this report will give you insight into the time taken by
your function as well as the coverage you achieved.

Figure 5.1: Triangle tests in the Profiler.

183



CHAPTER 5 TESTING AND DEBUGGING

Figure 5.2: Coverage Report for CompleteTriangle.

5.2 Running a Test Suite
Problem

Your toolbox has dozens or hundreds of functions, each with unit tests, and you need an efficient
way to run them all or, even better, run subsets.

Solution

MATLAB’s test framework includes the construction of test suites.

184



CHAPTER 5 TESTING AND DEBUGGING

How It Works

After you have generated tests for the functions in your toolbox, you can group them into suites
in several ways. The help for the TestSuite class lists the options:

1 TestSuite methods:
2 fromName - Create a suite from the name of the test element
3 fromFile - Create a suite from a TestCase class filename
4 fromFolder - Create a suite from all tests in a folder
5 fromPackage - Create a suite from all tests in a package
6 fromClass - Create a suite from a TestCase class
7 fromMethod - Create a suite from a single test method

You can also concatenate test suites made using these methods and pass the array to the test
runner. In this way, you can easily generate subsets of your tests to run.

In the previous recipe, we create two test files for CompleteTriangle: a test script
and a test function. We can create a test suite for the folder containing this code, and it will
automatically find both sets of test cases. We assume that the current folder contains the two
test files.

>> import matlab.unittest.TestSuite
>> testSuite = TestSuite.fromFolder(pwd);
>> result = run(testSuite)

Running TriangleFunctionTest
....
Done TriangleFunctionTest
__________

Running TriangleTest
.......
Done TriangleTest
__________
result =

1x8 TestResult array with properties:

Name
Passed
Failed
Incomplete
Duration

Totals:
8 Passed, 0 Failed, 0 Incomplete.
0.04218 seconds testing time.

As you can see, test suites are really quite simple. Some advanced features of suites include
the ability to apply selectors to a suite to obtain a subset of tests. To see the full documentation
of TestSuite at the command line, type either

>> help matlab.unittest.TestSuite

185



CHAPTER 5 TESTING AND DEBUGGING

or

>> import matlab.unittest.TestSuite
>> help TestSuite

The function for performing selections is selectIf. Here is an example that selects the
two tests of an equilateral triangle from the suite:

>> subSuite = testSuite.selectIf('Name', '*Equilateral*');
>> subSuite
subSuite =

1x2 Test array with properties:

Name
Parameterization
SharedTestFixtures

>> subSuite.Name
ans =
TriangleFunctionTest/testEquilateral
ans =
TriangleTest/Test4_EquilateralTriangle

You can run the tests in the resulting suite, or concatenate it with other suites, as before.

5.3 Setting Verbosity Levels in Tests
Problem

The printouts from your tests are getting out of control, but you don’t want to just delete or
comment out all the information you have needed as you are developing the tests. If a test fails
in the future, you may need those messages.

Solution

The test framework includes a logging feature that has four levels of verbosity. To utilize it, you
create a test runner using the logging plugin and add log calls in your test cases.

How It Works

The four verbosity levels supported are Terse, Concise, Detailed, and Verbose, and they are
enumerated as follows:

1 Terse Minimal amount of information
2 Concise Typical amount of information
3 Detailed Supplemental amount of information
4 Verbose Surplus of information

186



CHAPTER 5 TESTING AND DEBUGGING

The default test runner uses the lowest verbosity setting, Terse. The log function you use
in your test cases is a method of TestCase, so to access the help, you need to use the fully
qualified name:

>> help matlab.unittest.TestCase/log

The log method syntax from the help is as follows:

log(TESTCASE, LEVEL,DIAG) logs the diagnostic at the specified LEVEL. LEVEL
can be either a numeric value (1, 2, 3, or 4) or a value from the matlab.unittest.Verbosity
enumeration. When level is unspecified, the log method uses level Concise (2).

Logging requires a TestCase object. The diagnostic data for DIAG can be a string or an
instance of matlab.unittest.diagnostics.Diagnostic. Let’s write an example
test for eig that demonstrates verbosity.

VerboseEigTest.m

1 %% VERBOSEEIGTEST Demonstrate verbosity levels in tests
2 % Run a test of the eig function using log messages. Demonstrates
3 % all four levels of verbosity. To run the tests, at the command line

use
4 % a TestRunner configured with the LoggingPlugIn:
5 %
6 % import matlab.unittest.TestRunner;
7 % import matlab.unittest.plugins.LoggingPlugin;
8 % runner = TestRunner.withNoPlugins;
9 % runner.addPlugin(LoggingPlugin.withVerbosity(4));

10 % results = runner.run(VerboseEigTest);
11 %% Form
12 % tests = VerboseEigTest
13 %% Inputs
14 % None.
15 %% Outputs
16 % tests (:) Array of test functions
21

22 function tests = VerboseEigTest
23 % Create an array of local functions
24 tests = functiontests(localfunctions);
25 end
26

27 %% Test Functions
28 function eigTest(testCase)
29 log(testCase,'Generating test data'); % default is level 2
30 m = rand(2000);
31 A = m'*m;
32 log(testCase, 1, 'About to call eig.');
33 [V,D,W] = eig(A);
34 log(testCase, 4, 'Eig finished.');
35 assert(norm(W'*A-D*W')<1e-6)

187



CHAPTER 5 TESTING AND DEBUGGING

36 log(testCase, 3, 'Test of eig completed.');
37 end
38

39 % If you want to use the Verbose enumeration in your code instead of
numbers,

40 % import the class matlab.unittest.Verbosity
41 function eigWithEnumTest(testCase)
42 import matlab.unittest.Verbosity
43 m = rand(1000);
44 A = m'*m;
45 log(testCase, Verbosity.Detailed, 'About to call eig (with enum).');
46 [V,D,W] = eig(A);
47 assert(norm(W'*A-D*W')<1e-6)
48 log(testCase, Verbosity.Terse, 'Test of eig (with enum) completed.');
49 end

If you just run this test with runtests, you will get the Terse level of output. Note that
the system time is displayed along with your log message.

>> runtests('VerboseEigTest');
Running VerboseEigTest

[Terse] Diagnostic logged (2015-09-14T12:15:29): About to call eig.
. [Terse] Diagnostic logged (2015-09-14T12:15:40): Test of eig (with

enum) completed.
.
Done VerboseEigTest
__________

To get higher levels of verbosity requires a test runner with the logging plugin. This requires
a few imports at the command line (or in your script). You need to generate a “plain” runner,
with no plugins, then add the logging plugin with the desired level of verbosity. The verbosity
level of the message is displayed in the output.

>> import matlab.unittest.TestRunner;
>> import matlab.unittest.plugins.LoggingPlugin;
>> runner = TestRunner.withNoPlugins;
>> runner.addPlugin(LoggingPlugin.withVerbosity(4));
>> results = runner.run(VerboseEigTest);
[Concise] Diagnostic logged (2015-09-14T12:19:57): Generating test data

[Terse] Diagnostic logged (2015-09-14T12:19:57): About to call eig.
[Verbose] Diagnostic logged (2015-09-14T12:20:01): Eig finished.

[Detailed] Diagnostic logged (2015-09-14T12:20:07): Test of eig completed
.

[Detailed] Diagnostic logged (2015-09-14T12:20:07): About to call eig (
with enum).
[Terse] Diagnostic logged (2015-09-14T12:20:08): Test of eig (with

enum) completed.

188



CHAPTER 5 TESTING AND DEBUGGING

5.4 Create a Logging Function to Display Data
Problem

It is easy and convenient to print out variable values by removing the semicolons from state-
ments, but code left in this state can produce unwanted printouts that are very difficult to track
down. Even using disp and fprintf can make unwanted printouts hard to find as you prob-
ably use these functions elsewhere.

Solution

Create a custom logging function to display a variable with a helpful identifying message. You
can extend this to a logging mechanism with verbosity settings similar to that described in the
previous recipe, as used in the MATLAB testing framework and in most C++ and Java testing
frameworks.

How It Works

Our example logging function is implemented in DebugLog. DebugLog prints out a message,
which can be anything, and before that displays the path to where DebugLog is called. The
backtrace is obtained using dbstack.

DebugLog.m

1 %% DEBUGLOG Logging function for debugging
2 % Use this function instead of adding disp() statements or leaving out
3 % semicolons.
4 %% Form
5 % DebugLog( msg, fullPath )
6 %% Decription
7 % Prints out the data in in msg using disp() and shows the path to the

message.
8 % The full path option will print a complete backtrace.
9 %% Inputs

10 % msg (.) Any message
11 % fullPath (1,1) If entered, print the full backtrace
12 %% Outputs
13 % None
18

19 function DebugLog( msg, fullPath )
20

21 % Demo
22 if( nargin < 1 )
23 DebugLog(rand(2,2));
24 return;
25 end
26

27 % Get the function that calls this one
28 f = dbstack;
29

30 % The second path is only if called directly from the command line

189



CHAPTER 5 TESTING AND DEBUGGING

31 if( length(f) > 1 )
32 f1 = 2;
33 else
34 f1 = 1;
35 end
36

37 if( nargin > 1 && fullPath )
38 f2 = length(f);
39 else
40 f2 = f1;
41 end
42

43 for k = f1:f2
44 disp(['-> ' f(k).name]);
45 end
52 disp(msg);

DebugLog is demonstrated in DebugLogDemo. The function has a subfunction to demon-
strate the backtrace.

DebugLogDemo.m

1 %% Demonstrate DebugLog
2 % Log a variable to the command window using DebugLog.
7

8 function DebugLogDemo
9

10 y = linspace(0,10);
11 i = FindInY(y);
12

13 function i = FindInY(y)
14

15 i = find(y < 0.5);
16 DebugLog( i, true );

The output of the demo is shown as follows:

>> DebugLogDemo
-> FindInY
-> DebugLogDemo

1 2 3 4 5

One extension of this function is to add the name of the variable being logged, if msg is a
variable, using the function inputname. These additional lines of code look like this:

47 str = inputname(1);
48 if ˜isempty(str)
49 disp(['Variable: ' str]);
50 end

190



CHAPTER 5 TESTING AND DEBUGGING

The demo output now looks like this:

>> DebugLogDemo
-> FindInY
-> DebugLogDemo
Variable: i

1 2 3 4 5

Consistently using your own logging functions for displaying messages to the user and
printing debug data will make your code easier to maintain.

5.5 Generating and Tracing MATLAB Errors and Warnings
Problem

You would like to display errors and warnings to the user in an organized fashion.

Solution

Always use the additional inputs to warning and error to specify a message ID. This al-
lows your message to be traced back to the function in your code that generated it, as well as
controlling the display of certain warnings.

How It Works

The warning function has several helpful parameters for customizing and controlling warning
displays. When you are generating a warning, use the full syntax with a message identifier:

1 warning('MSGID', 'MESSAGE', A, B, ...)

The MSGID is a mnemonic in the form <component>[:<component>]:
<mnemonic>, such as PSS:FunctionName:IllegalInput. The ID is not normally
displayed when you give a warning, unless you have turned verbose display on, via warning
on verbose and warning off verbose. This is easy to demonstrate at the command
line:

>> warning('PSS:Example:DemoWarning', 'This is an example warning')
Warning: This is an example warning
>> warning verbose on
>> warning('PSS:Example:DemoWarning', 'This is an example warning')
Warning: This is an example warning
(Type "warning off PSS:Example:DemoWarning" to suppress this warning.)

As displayed, you can turn a given warning off using its message ID by using the command
form shown or the functional form, warning(’off’, ’msgid’).

191



CHAPTER 5 TESTING AND DEBUGGING

The lastwarn function also can return the message ID if passed an additional output, as
in

>> [lastmsg, lastid] = lastwarn
lastmsg =
This is an example warning
lastid =
PSS:Example:DemoWarning

The error and lasterr functions work the same way. An added benefit of using mes-
sage identifiers is that you can select them when debugging, as an option when stopping for
errors or warnings. The debugger is integrated into the editor window, and the debugger op-
tions are grouped under the Breakpoints toolbar button. The button and the “more options”
pop-up window are shown in Figure 5.3.

In this case, we entered an example PSS message identifier. Remember, you should always
mention any warnings and errors that may be generated by a function in its header!

5.6 Testing Custom Errors and Warnings
Problem

You have code that generates warnings or errors for problematic inputs, and you need to test it.

Solution

You have two possibilities for testing the generation of errors in your code: try/catch blocks
with assert and the verifyError method available to a TestCase. With warnings, you
can either use lastwarn or verifyWarning.

How It Works

A comprehensive set of tests for your code that includes all paths, or as close to all paths as
possible, must necessarily exercise all the warnings and errors that can be generated by your
code. You can do this manually, using try/catch blocks to catch errors and comparing the error
(MException object) to the expected error. For warnings, you can check lastwarn to see that
a warning was issued, like so:

>> lastwarn('');
>> warning('PSS:Book:id','Warning!')
Warning: Warning!
>> [anywarn,anyid] = lastwarn;
>> assert(strcmp(anyid,'PSS:Book:wrongid'))
Assertion failed.

192



CHAPTER 5 TESTING AND DEBUGGING

Figure 5.3: Option to stop on an error in the debugger.

193



CHAPTER 5 TESTING AND DEBUGGING

Here is an example of a try/catch block with assert to detect a specific error.

CatchErrorTest.m

1 %% Test that we get the expected error, and pass
2 errFun = @() error('PSS:Book:id','Error!');
3 try
4 feval(errFun);
5 catch ME
6 assert(strcmp(ME.identifier,'PSS:Book:id'));
7 end

This test will verify that the error thrown is the one expected; however, it will not detect if
no error is thrown at all. For this, we need to add a boolean variable to the try block.

9 %% This time we don't get any error at all
10 wrongFun = @() disp('Some error-free code.');
11 tf = false;
12 try
13 feval(wrongFun);
14 tf = true;
15 catch ME
16 assert(strcmp(ME.identifier,'PSS:Book:id'));
17 end
18 if (tf)
19 assert(false,'CatchErrorTest: No error thrown');
20 end

When you run this code segment, you get the following output:

1 Some error-free code.
2 CatchErrorTest: No error thrown

If you run the test as part of a test script with runtests, the test will fail.
A far better way to test for warnings and errors is to use the unit test framework’s qualifiers

to check that the desired warning or error is generated. Here is an example of verifying a
warning, with one test that will pass and one that will fail; note that you need to pass a function
handle to the verifyWarning function.

WarningsTest.m

1 %% WARNINGSTEST Test generation of warnings.
2 %% Form
3 % tests = WarningsTest
4 %% Output
5 % tests (:) Array of Tests.
6

7 function tests = WarningsTest

194



CHAPTER 5 TESTING AND DEBUGGING

8 % Create an array of local functions
9 tests = functiontests(localfunctions);

10 end
11

12 %% Test Functions
13 function passTest(testCase)
14 warnFun = @() warning('PSS:Book:id','Warning!');
15 testCase.verifyWarning(warnFun, 'PSS:Book:id');
16 end
17

18 function failTest(testCase)
19 warnFun = @() warning('Wrong:id','Warning!');
20 testCase.verifyWarning(warnFun, 'PSS:id', 'Wrong id');
21 end

When we run this test function with runtests, we can see that failTest did in fact
fail.

>> runtests('WarningsTest')
Running WarningsTest
.Warning: Warning!

=========================================================================
Verification failed in WarningsTest/failTest.

----------------
Test Diagnostic:
----------------
Wrong id

---------------------
Framework Diagnostic:
---------------------
verifyWarning failed.
--> The function handle did not issue the expected warning.

Actual Warnings:
Wrong:id

Expected Warning:
PSS:id

Evaluated Function:
@()warning('Wrong:id','Warning!')

------------------
Stack Information:
------------------
In /Users/Shared/svn/Manuals/MATLABCookbook/MATLAB/Ch05-Debugging/

WarningsTest.m (failTest) at 12
=========================================================================
.

195



CHAPTER 5 TESTING AND DEBUGGING

Done WarningsTest
__________

Failure Summary:

Name Failed Incomplete Reason(s)
====================================================================
WarningsTest/failTest X Failed by verification.

Totals:
1 Passed, 1 Failed, 0 Incomplete.
0.047691 seconds testing time.

verifyErrorworks the same way. In practice, you will need to make a function handle
that includes the inputs to your function that cause the error or warning to be generated.

For advanced programmers, there is a further mechanism for constructing tests using
verifyThat with the Constraint class. You can supply your own Diagnostic ob-
jects as well. For more information, see the reference pages for these classes along with the
Verifiable class.

5.7 Testing Generation of Figures
Problem

Your function generates a figure instead of an output variable. How do you test it?

Solution

While you may need a human to verify that the figure looks correct, you can at least verify that
the correct set of figures is generated by your function using findobj.

How It Works

Routinely assigning names to your figures makes it easy to test that they have been generated,
even if you don’t have access to the handles. You can also assign tags to figures, such as having
a single tag for your entire toolbox, which allows you to locate sets of figures.

>> figure('Name','Figure 1','Tag','PSS');
>> figure('Name','Figure 2','Tag','PSS')
>> h = findobj('Tag','PSS')
h =

2x1 Figure array:

Figure (PSS)
Figure (PSS)

>> h = findobj('Name','Figure 1')
h =

Figure (PSS) with properties:

Number: 1

196



CHAPTER 5 TESTING AND DEBUGGING

Name: 'Figure 1'
Color: [0.94 0.94 0.94]

Position: [440 378 560 420]
Units: 'pixels'

In your test, you can then check that you have the correct number of figures generated using
length(h) or that each specific named figure exists using strcmp. If you are storing any
data in your figures using UserData, you can test that as well.

If you are not using tags or need to check for figures that do not have names or tags, you
can find all figures currently open using the type input to findobj:

>> findobj('type','figure')
ans =

2x1 Figure array:

Figure (PSS)
Figure (PSS)

Note that figures will only be returned by findobj if they are visible to the command line
via their HandleVisibility property. This property can have the values 'on', 'off',
and 'callback'. GUIs generated by the App Designer are generally hidden to prevent users
from accidentally altering the GUI using plot or similar commands; these figures use the
value 'callback'. Regular figures will have the value 'on' and can be located as before.
A figure with HandleVisibility set to 'off' can only be accessed using its handle.

Summary
This chapter has demonstrated how to use MATLAB’s unit test framework and provided some
recipes to help you in debugging your functions. Table 5.1 lists the code developed in the
chapter.

Table 5.1: Chapter Code Listing

File Description
CatchErrorTest Script showing how to catch errors in a try block
CompleteTriangle Example function calculating angles in a triangle
DebugLog Custom data logging function
DebugLogDemo Demo of DebugLog showing a backtrace
TriangleFunctionTest A function with test cases for CompleteTriangle
TriangleTest A script with test cases for CompleteTriangle
VerboseEigTest A test function showing all levels of verbosity
WarningsTest A test function using verifyWarning

197


	5 Testing and Debugging
	5.1 Creating a Unit Test
	Problem
	Solution
	How It Works

	5.2 Running a Test Suite
	Problem
	Solution
	How It Works

	5.3 Setting Verbosity Levels in Tests
	Problem
	Solution
	How It Works

	5.4 Create a Logging Function to Display Data
	Problem
	Solution
	How It Works

	5.5 Generating and Tracing MATLAB Errors and Warnings
	Problem
	Solution
	How It Works

	5.6 Testing Custom Errors and Warnings
	Problem
	Solution
	How It Works

	5.7 Testing Generation of Figures
	Problem
	Solution
	How It Works



