
CHAPTER 3

Visualization

MATLAB provides extensive capabilities for visualizing your data. You can produce 2D plots,
3D plots, and animations; view images; and create histograms, contour and surface plots, as
well as other graphical representations of your data. You are probably familiar with making
simple 2D plots with lines and markers, and pie and bar charts, but you may not be aware of
the additional possibilities made available by the MATLAB low-level routines that underpin the
frequently used functions like plot. There are also interactive capabilities for editing plots and
figures and adding annotations before printing or exporting them.

MATLAB excels in scientific visualization and in engineering visualization of 3D objects.
Three-dimensional visualization is used to visualize data that is a function of two parameters,
for example, the height on the surface of the Earth, or to visualize objects. The former is used in
all areas of science and engineering. The latter is particularly useful in the design and simulation
of any kind of machine including robots, aircraft, automobiles, and spacecraft.

Three-dimensional visualization of objects can be further divided into engineering visual-
ization and photo-realistic visualization. The latter helps you understand what an object looks
like and how it is engineered. When the inside of an object is considered, we move into the
realm of solid modeling which is used for creating models suitable for the manufacturing of
the object. Photo-realistic rendering focuses on the interaction of light with the object and the
eye. MATLAB does provide some capabilities for lighting and camera interaction but does not
provide true photo-realistic rendering.

The main plotting routines are organized into several categories in the command-line help:

graphics – Low-level routines for figures, axes, lines, text, and other graphics objects.

graph2d – Two-dimensional graphs like linear plots, log scale plots, and polar plots.

graph3d – Three-dimensional graphs like lines, meshes, and surfaces; control of color, light-
ing, and the camera.

specgraph – Specialized graphs, the largest category. Special 2D graphs like bar and pie charts
and histograms, contour plots, special 3D plots, volume and vector visualization, image
display, movies, and animation.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas, MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 3

101

https://doi.org/10.1007/978-1-4842-6124-8_3

CHAPTER 3 VISUALIZATION

The online help has an entire top-level section devoted to graphics, including plots, format-
ting and annotation, images, printing and saving, graphics objects and performance, and major
changes to plotting internals that occurred in R2014b.

A good command of these functions allows you to create very sophisticated graphics as well
as to adapt them to different publication media, whether you need to adjust the dimensions,
color, or font attributes of your plot. In this chapter, we will present recipes that cover what
you need to know to use MATLAB graphics effectively. We don’t have space to discuss every
available plotting routine, and that is well covered in the available help, but we will cover the
basic functionality and provide recipes for common usage.

3.1 Plotting Data Interactively from the MATLAB Desktop
Problem

You would like to plot data in your workspace but aren’t sure of the best method for visualizing
it.

Solution

You can use the PLOTS tab in the MATLAB desktop to plot data directly by selecting variables
in the Workspace display as shown in Figure 3.1. You select from a variety of plot options, and
MATLAB automatically only shows you those which are applicable to the selected data set.

How It Works

Let’s create some sample data to demonstrate this interactive capability, which is a fairly new
feature in MATLAB. We’ll start with some trigonometric functions to create sample data that
oscillates.

theta = linspace(0,4*pi);
y = sin(theta).*cos(2*theta) + 0.05*theta;

We now have two vector variables available in the workspace. Select the PLOTS tab in
the desktop as shown in Figure 3.1, then select the y variable in the Workspace display. The
variable will appear on the far left of the PLOTS tab area, and various plot icons in the ribbon

Figure 3.1: PLOTS tab with plot icon ribbon.

102

CHAPTER 3 VISUALIZATION

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1

1.5

2

Figure 3.2: Linear plot of trigonometric data.

will become active: plot, bar, area, pie, and so on. Note the radio buttons on the far left for
either reusing the current figure for the plot or creating a new figure.

Close all open figures with a close all and click the plot icon to create a new figure
with a simple 2D plot of the data. Note that clicking the icon results in the plot command being
printed to the command line:

>> plot(y)

The data is printed with linear indices along the x axis, as shown in Figure 3.2.
You simply click another plot icon to replot the data using a different function, and again

the function call will be printed to the command line. The plot icons that are displayed are not
all the plots available, but simply the default favorites from among all the many options; to see
more icons, click the pop-up arrow at the right of the icon ribbon. The available plot types are
organized by category, and there is a Catalog button that you can press to bring up a dedicated
plot catalog window with the documentation for each function.

To plot our data y against our input theta, you need to select both variables in the
workspace view. They will both be displayed in the plot ribbon with a button shown to re-
verse their order. Now click an area plot to get a plot with the angle on the x axis as shown in
Figure 3.3.

>> area(theta,y)

103

CHAPTER 3 VISUALIZATION

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1

1.5

2

Figure 3.3: Parametric area plot of trigonometric data.

Note how this time the x-axis range is from 0 to 4π as expected.
You can annotate the plot interactively with arrows and text, add subplots, change line

properties, and more using the Plot Edit toolbar and Figure Palette window shown in Figure 3.4.
These are available from the View menu of the figure window and by clicking the “Show Plot
Tools” button in the standard Figure Toolbar. For example, using the plot tools, we can select
the axes, double-click it to open the property editor, type in an X Label, and turn on grid lines.
We can add another subplot, plot the values of theta against linear indices, and then change the
plot type to a stem plot, all from this window. See Figure 3.4.

The same changes can be made programmatically as will be shown in the following recipes.
In fact, you can generate code from the Figure Palette, and MATLAB will create a function
with all the commands necessary to replicate your figure from your data. The Generate Code
command is under the File menu of the window. This allows you to interactively create a
visualization that works with some example data and then programmatically adapt it to your
toolbox. MATLAB calls the new autogenerated function createfigure. You can see the
use of the following functions: figure, axes, box, hold, ylabel, xlabel, title,
area, stem, and annotation.

104

CHAPTER 3 VISUALIZATION

Figure 3.4: Plot of trigonometric data in the Figure Palette.

createfigure.m

1 function createfigure(X1, yvector1)
2 %CREATEFIGURE(X1, YVECTOR1) Autogenerated figure code.
3 % X1: area x
4 % YVECTOR1: area yvector
5

6 % Auto-generated by MATLAB on 03-Jun-2015 14:32:43
7

8 % Create figure
9 figure1 = figure;

10

11 % Create axes
12 axes1 = axes('Parent',figure1,'XGrid','on','OuterPosition',[0 0.5 1

0.5]);
13 box(axes1,'on');

105

CHAPTER 3 VISUALIZATION

14 hold(axes1,'on');
15

16 % Create ylabel
17 ylabel('Data');
18

19 % Create xlabel
20 xlabel('Angle (rad)');
21

22 % Create title
23 title('Area Plot');
24

25 % Create area
26 area(X1,yvector1,'DisplayName','Area','Parent',axes1);
27

28 % Create axes
29 axes2 = axes('Parent',figure1,'OuterPosition',[0 0 1 0.5]);
30 box(axes2,'on');
31 hold(axes2,'on');
32

33 % Create ylabel
34 ylabel('Theta');
35

36 % Create xlabel
37 xlabel('Increment');
38

39 % Create stem
40 stem(X1,'DisplayName','theta','Parent',axes2,'Marker','none',...
41 'Color',[0 0.447 0.741]);
42

43 % Create textarrow
44 annotation(figure1,'textarrow',[0.609822646657571

0.568894952251023],...
45 [0.827828828828829 0.717117117117118]);
46

47 % Create textbox
48 annotation(figure1,'textbox',...
49 [0.553888130968622 0.814895792699917 0.120787482806052

0.0489690721649485],...
50 'String',{'Point of interest'});

Note that this code did not in fact use the subplot function, but rather the option to specify
the exact axes location in the figure with the 'OuterPosition' property. Note also how the
units of the axes position and of the annotations are between 0 and 1, that is, normalized. This
is in fact an option for axes, as can be seen by the following call using gca to get the handle to
the current axes:

>> set(gca,'units')
'inches'
'centimeters'
'characters'

106

CHAPTER 3 VISUALIZATION

'normalized'
'points'
'pixels'

Using other units may be helpful for certain applications, but normalized units are always
the default.

There are additional interactive buttons in the Figure Toolbar we should mention:

• Zoom in
• Zoom out
• Hand tool – Move an object in the plane of the figure
• Rotate tool – Rotate the view
• Data cursor
• Brush/select data
• Colorbar
• Legend

The hand and rotate tools are very helpful with 3D data. The data cursor displays the values
of a plot point right in the figure. The brush highlights a segment of data using a contrast color
of your choosing using the colors pop-up. The colorbar and legend buttons serve as on/off
switches.

3.2 Incrementally Annotate a Plot
Problem

You need to annotate a curve in a plot at a subset of points on the curve.

Solution

Use the text function to annotate the plot.

How It Works

We will call text within a for loop in AnnotatePlot. Use sprintf to create the text
for the annotations, which gives you control over the formatting of any numbers. In this case,
we will use %d for integer display. linspace creates an evenly spaced index array into the
data to give us the selected points to annotate, in this case, five points. linspace is used to
produce evenly spaced points.

AnnotatePlot.m

8 %% Parameters
9 nPoints = 5; % Number of plot points to have annotations

10

11 %% Create the line
12 v = [1;2;3];

107

CHAPTER 3 VISUALIZATION

13 t = linspace(0,1000);
14 r = [v(1)*t;v(2)*t;v(3)*t];
15

16 %% Create the figure and plot
17 s = 'Annotated Plot';
18 h = figure('name',s);
19 plot3(r(1,:),r(2,:),r(3,:));
20 xlabel('X');
21 ylabel('Y');
22 zlabel('Z');
23 title(s)
24 grid
25

26 %% Add the annotations
27 n = length(t);
28 j = ceil(linspace(1,n,nPoints));
29

30 for k = j
31 text(r(1,k), r(2,k), r(3,k), sprintf('- Time %d',floor(t(k))));
32 end

Note that we passed the index array j directly to the loop index k. Figure 3.5 shows the
annotated plot. We create a three-dimensional straight line to annotate.

Figure 3.5: Annotated three-dimensional plot.

108

CHAPTER 3 VISUALIZATION

3.3 Create a Custom Plot Page with Subplot
Problem

You need multiple plots of your data for a particular application, and as you rerun your script,
they are cluttering your screen and hogging memory. We often create many dozens of plots as
we work on our commercial toolboxes.

Solution

Create a single plot with several subplots on it so you only need one figure to see the results of
one run of your application.

How It Works

The subplot function allows you to create a symmetric array of plots in a figure in two dimen-
sions. You generate an m-by-n array of small axes which are spaced in the figure automatically.
A good example is a 3D trajectory with views from different angles. We can create a plot with a
2 x 2 array of axes, with the 3D plot in the lower left-hand corner and views from each direction
around it. The function is QuadPlot. It has a built-in demo creating the figure in Figure 3.6.

Note that you must use the size of your axes array, in this case (2,2), in each call to
subplot.

QuadPlot.m

1 %% QUADPLOT Create a quad plot page using subplot.
2 % This creates a 3D view and three 2D views of a trajectory in one

figure.
3 %% Form
4 % QuadPlot(x)
5 %% Input
6 % x (3,:) Trajectory data
7 %
8 %% Output
9 % None. But you may want to return the graphics handles for further

programmatic
10 % customization.
11 %
12

13 function QuadPlot(x)
14

15 if nargin == 0
16 disp('Demo of QuadPlot');
17 th = logspace(0,log10(4*pi),101);
18 in = logspace(-1,0,101);
19 x = [sin(th).*cos(in);cos(th).*cos(in);sin(in)];
20 QuadPlot(x);
21 return;

109

CHAPTER 3 VISUALIZATION

Figure 3.6: QuadPlot using subplot for axes placement.

22 end
23

24 h = figure('Name','QuadPage');
25 set(h,'InvertHardcopy','off')
26

27 % Use subplot to create plots
28 subplot(2,2,3)
29 plot3(x(1,:),x(2,:),x(3,:));
30 xlabel('X')
31 ylabel('Y')
32 zlabel('Z')
33 grid on
34 title('Trajectory')
35 rotate3d on
36

37 subplot(2,2,1)

110

CHAPTER 3 VISUALIZATION

38 plot(x(1,:),x(2,:));
39 xlabel('X')
40 ylabel('Y')
41 grid on
42 title('Along Z')
43

44 subplot(2,2,2)
45 plot(x(2,:),x(3,:));
46 xlabel('Y')
47 ylabel('Z')
48 grid on
49 title('Along X')
50

51 subplot(2,2,4)
52 plot(x(1,:),x(3,:));
53 xlabel('X')
54 ylabel('Z')
55 grid on
56 title('Along Y')

In the latest versions of MATLAB, you can easily access figure and axes properties using
field names. For instance, let’s get the figure generated by the demo using gcf, then look at the
children, which should include our four subplots.

>> h = gcf

h =

Figure (5: PlotPage) with properties:

Number: 5
Name: 'PlotPage'

Color: [0.94 0.94 0.94]
Position: [440 378 560 420]

Units: 'pixels'

Show all properties

>> h.Children

ans =

5x1 graphics array:

ContextMenu
Axes (Along Y)
Axes (Along X)
Axes (Along Z)
Axes (Trajectory)

111

CHAPTER 3 VISUALIZATION

Note that the titles of our axes are helpfully displayed. If you wanted to add additional
objects or change the properties of the axes, you could access the handles this way. Or, you
might want to provide the handles as an output for your function. You can also make a subplot
in a figure the current axes just by calling subplot again with the array size and ID.

1 subplot(2,2,1)

3.4 Create a Heat Map
Problem

You would like to create a heat map from data. A heat map shows the variation of magnitude
using color in a two-dimensional image.

Solution

You can create a heat map using the heatmap function.

How It Works

We’ll create a random set of data and two cell arrays for the x and y names.

HeatMapDemo.m

1 %% Heat map
2 % Heat map plot from random data
3

4 cD = rand(4,3);
5 xV = {'1' '2' '3'};
6 yV = {'a' 'b' 'c' 'd'};
7

8 NewFigure('Heat Map')
9

10 heatmap(xV,yV,cD)

heatmap generates the map from the data shown in Figure 3.7.

>> HeatMapDemo

ans =

Figure (3: Heat Map) with properties:

Number: 3
Name: 'Heat Map'

Color: [0.9400 0.9400 0.9400]
Position: [616 598 560 420]

Units: 'pixels'

Show all properties

112

CHAPTER 3 VISUALIZATION

1 2 3

a

b

c

d

0.7094

0.276

0.6797

0.6551

0.1626

0.119

0.4984

0.3404

0.5853

0.2238

0.7547

0.9597

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.7: A heat map from random data.

ans =

HeatmapChart with properties:

XData: {3x1 cell}
YData: {4x1 cell}

ColorData: [4x3 double]

Show all properties

3.5 Create a Plot Page with Custom-Sized Axes
Problem

You would like to group some plots together in one figure but not as evenly spaced subplots.

Solution

You can create custom-sized axes using the 'OuterPosition' property of the axes, placing
them anywhere in the figure you wish.

113

CHAPTER 3 VISUALIZATION

How It Works

We’ll create a custom figure with two plots, one spanning the width of the figure and a second
smaller axes. This will leave room for a block of descriptive text, which might describe the
figure itself or display the results. In order to make the plots more interesting, we will add
markers and text annotations using num2str.

The function is PlotPage shown in Figure 3.8. Using 'OuterPosition' for the axes
instead of 'Position' means the limits will include the axes labels, so we can use the full
range of the figure from 0 to 1 (normalized units). Figure 3.8 shows the resulting figure.

PlotPage.m

18 function PlotPage(t, x)
19

20 if nargin == 0
21 disp('Demo of PlotPage');
22 t = linspace(0,100,101);
23 th = logspace(0,log10(4*pi),101);
24 in = logspace(-1,0,101);
25 x = [sin(th).*cos(in);cos(th).*cos(in);sin(in)];
26 PlotPage(t,x);
27 return
28 end
29

30 h = figure('Name','PlotPage');
31 set(h,'InvertHardcopy','off')
32

33 % Specify the axes position as [left, bottom, width, height]
34 axes('outerposition',[0.5 0 0.5 0.5]);
35 plot(t,x);
36 xlabel('Time')
37 grid on
38

39 % Specify an additional axes and make a 3D plot
40 axes('outerposition',[0 0.5 1 0.5]);
41 plot3(x(1,:),x(2,:),x(3,:));
42 xlabel('X')
43 ylabel('Y')
44 zlabel('Z')
45 grid on
46

47 % add markers evenly spaced with time
48 hold on
49 for k=1:10:length(t)
50 plot3(x(1,k),x(2,k),x(3,k),'x');
51 % add a text label
52 label = [' ' num2str(t(k)) ' s'];
53 text(x(1,k),x(2,k),x(3,k),label);
54 end
55 hold off
56

114

CHAPTER 3 VISUALIZATION

57 uh = uicontrol('Style','text','String','Description of the plots',...
58 'units','normalized','position',[0.05 0.1 0.35 0.3]);
59 set(uh,'string',['You may wish to provide a detailed description '...
60 'of the visualization of your data or the results

right on the figure '...
61 'itself in a uicontrol text box such as this.']);
62 set(uh,'fontsize',14);
63 set(uh,'foregroundcolor',[1 0 0]);

Figure 3.8: PlotPage with custom-sized plots.

3.6 Plotting with Dates
Problem

You want to plot data as a function of time using dates on the x axis.

115

CHAPTER 3 VISUALIZATION

Figure 3.9: Plotting with manual month labels.

Solution

Access the tick labels directly using handles for the axis, or use datetick with serial date
numbers.

How It Works

First, we will manually specify the tick labels. You plot the data as a function of index and then
replace the x labels with strings of your choice, in this case specific months. For example, we
will plot power consumption of a home in kilowatt hours (kWh). Note how we set the xlim,
xtick, and xticklabel properties using set after generating the plot. The limits are set to
[0 13] instead of [1 12] to accommodate the width of the bars. Figure 3.9 shows plotting with
month labels.

PlottingWithDates.m

1 %% Plot using months as the x label
2 % First we will set the labels manually. Then we will use MATLAB's

serial date
3 % numbers to set the labels automatically.
8

9 %% Specify specific months as labels
10 kWh = [2500 2600 2900 1500 1300 1500 1600 1000 1400 1100 1200

2300];
11 month = {'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul' 'Aug' 'Sep' 'Oct' '

Nov' 'Dec'};
12

13 figure('Name','Plotting With Manual Date Labels');
14 bar(1:12,kWh)
15 xlabel('Month');

116

CHAPTER 3 VISUALIZATION

Power Consumption with datetick

10/13 01/14 04/14 07/14 10/14 01/15 04/15

Date

0

500

1000

1500

2000

2500

3000

Figure 3.10: Plotting using datetick with serial dates.

16 ylabel('kWh')
17 title('Power Consumption');
18 grid on
19

20 set(gca,'xlim',[0 13],'xtick',1:12,'xticklabel',month);

If you are plotting data against complete dates, you can also use MATLAB’s serial date
numbers, which can be automatically displayed as tickmarks using datetick. You can con-
vert between calendar dates and serial numbers using datestr, datenum, and datevec. A
date vector is the six-component date as [year month day hour minute second]. So, for instance,
let’s assign our data in the preceding example to actual dates in the year 2014. The default date
tickmarks will show months just like in our manual example, but for demonstration purposes,
we specify a format including the year: 'mmmyy'. Figure 3.10 shows plotting with serial dates.

22 %% Specify full dates and use serial dates to automatically produce
labels

23 % Specifying only the month will use the current year by default. We
will set

24 % the year to 2014 by using datevec.
25 N = datenum(month,'mmm');
26 V = datevec(N);
27 V(:,1) = 2014;
28 N = datenum(V);
29

30 figure('Name','Plotting With Serial Dates');

117

CHAPTER 3 VISUALIZATION

31 bar(N,kWh)
32 xlabel('Date');
33 title('Power Consumption with datetick');
34 datetick('x','mm/yy')
35 grid on

Note that the ticks themselves are no longer one per month; if you want to specify them
manually, you now need to use date numbers. We have printed out the properties using get to
show the XTicks used.

>> get(gca)
...

XLim: [735508 735965]
XLimMode: 'manual'

XMinorGrid: 'off'
XMinorTick: 'off'

XScale: 'linear'
XTick: [735508 735600 735690 735781 735873 735965]

XTickLabel: [6x5 char]

MATLAB’s serial date numbers do not correspond to other serial date formats like Julian
date. MATLAB simply counts days from Jan-1-0000, so the year 2000 starts at a serial number
of 2000*365 = 730,000. The following quick example demonstrates this as well as using now
to get the current date:

>> v = datevec(now)
v =

2015 7 31 11 37
0.6198

>> n = datenum(v)
n =

7.3618e+05
>> s = datestr(n,'local')
s =
31-Jul-2015 11:37:00

3.7 Generating a Color Distribution
Problem

You want to assign colors to markers or lines in your plot.

118

CHAPTER 3 VISUALIZATION

Solution

Specify the HSV components algorithmically from around the color wheel and convert to RGB.

How It Works

ColorDistribution chooses n colors from around the color wheel. The colors are selected
using the hue component of HSV, with a full range from 0 to 1. Parameters allow the user to
separately specify the saturation and value for all the colors generated. You could alternatively
use these components to select a variety of colors of one hue.

Reducing the saturation (sat) lightens the colors while remaining on the same “spoke”
of the color wheel. A saturation of 0 produces all grays. The value (val) keeps the ratio
between RGB components remain the same, but lowering the magnitude makes colors darker,
for example, [1 0.85 0] and [0.684 0.581 0]. See Figure 3.11.

ColorDistribution.m

1 %% Demonstrate a color distribution for an array of lines.
2 % Colors are calculated around the color wheel using hsv2rgb.
3

4 val = 1;
5 sat = 1;
6 n = 100;
7 dTheta = 360/n;
8 thetaV = linspace(0,360-dTheta,n);
9

10 h = linspace(0,1-1/n,n);
11 s = sat*ones(1,n);
12 v = val*ones(1,n);
13 colors = hsv2rgb([h;s;v]');
14 y = sin(thetaV*pi/180);
15 hF = figure;
16 hold on;
17 set(hF,'name','Color Wheel')
18 l = gobjects(n);
19 for k = 1:n
20 l(k) = plot(thetaV,k*y);
21 end
22 set(gca,'xlim',[0 360]);
23 grid on
24 pause
25

26 for k = 1:n
27 set(l(k),'color',colors(k,:)*val);
28 end

Figure 3.11 plots a color distribution.

119

CHAPTER 3 VISUALIZATION

Figure 3.11: Original lines and lines with a color distribution with values and saturation of 1.

3.8 Visualizing Data over 2D or 3D Grids
Problem

You need to perform a calculation over a grid of data and view the results.

Solution

The function meshgrid produces grids over x and y that can be used for calculations and
subsequently input to surf. This is also useful for contour and quiver plots.

How It Works

Our solution is in GridVisualization.m. First, you define the vectors in x and y that
define your grid. You can perform your calculations in a for loop or in a vectorized function.
The vectors do not have to be physical dimensions; indeed, in general, they are quite different
quantities involved in a parametric study. The classic example is an exponential function of two
variables, which is viewed as a surface in Figure 3.12.

GridVisualization.m

8 %% 2D example of meshgrid
9 figure('Name','2D Visualization');

10 xv = -1.5:0.1:1.5;
11 yv = -2:0.2:2;
12 [X,Y] = meshgrid(xv, yv);
13 Z = Y .* exp(-X.ˆ2 - Y.ˆ2);
14 surf(X,Y,Z,'edgecolor','none')
15 title('2D Grid Example')
16 zlabel('z = y exp(-xˆ2-yˆ2)')
17 colormap hsv
18

120

CHAPTER 3 VISUALIZATION

Figure 3.12: 3D surface generated over a 2D grid.

19 size(X)
20 size(Y)

The generated matrices are square and consist of the input vector replicated in the correct
dimension. You could achieve the same result by hand using repmat, but meshgrid elimi-
nates the need to remember the details.

>> size(X)
ans =

41 41
>> size(Y)
ans =

41 41
>> X(1:5,1:5)
ans =

-2 -1.9 -1.8 -1.7 -1.6
-2 -1.9 -1.8 -1.7 -1.6
-2 -1.9 -1.8 -1.7 -1.6
-2 -1.9 -1.8 -1.7 -1.6
-2 -1.9 -1.8 -1.7 -1.6

>> Y(1:5,1:5)
ans =

-2 -2 -2 -2 -2
-1.9 -1.9 -1.9 -1.9 -1.9
-1.8 -1.8 -1.8 -1.8 -1.8
-1.7 -1.7 -1.7 -1.7 -1.7
-1.6 -1.6 -1.6 -1.6 -1.6

121

CHAPTER 3 VISUALIZATION

Contour and Quiver Demo

-1.5 -1 -0.5 0 0.5 1 1.5

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

Figure 3.13: 3D surface visualized as contours.

For fun, we can plot contours of the data as well. We can use the gradient function to
calculate the slope and plot this using quiver. This uses meshgrid that returns a 2D mesh
from x and y vectors. Figure 3.13 shows a contour plot.

22 figure('Name','Contour and Quiver')
23 [px,py] = gradient(Z,0.1,0.2);
24 contour(X,Y,Z), hold on
25 quiver(X,Y,px,py)
26 title('Contour and Quiver Demo')
27 xlabel('x')
28 ylabel('y')
29 colormap hsv
30 axis equal

You can also generate a 3D grid and compute data over the volume, for a fourth dimension.
In order to view this extra data over the volume, you can use slice. This uses interpolation
to draw slices at any location along the axes you specify. If you want to see the exact planes in
your data, you can use pcolor, surf, or contour in individual figures. quiver3 can be
used to plot arrows in 3D space. We are going to generate five slices at three different x values
and at two different z values. The result is shown in Figure 3.14.

122

CHAPTER 3 VISUALIZATION

Figure 3.14: 3D volume with slices.

34 %% 3D example of meshgrid
35 % meshgrid can be used to produce 3D matrices, and slice can display

selected
36 % planes using interpolation.
37 figure('Name','3D Visualization');
38 zv = -3:0.3:3;
39 [x,y,z] = meshgrid(xv, yv, zv);
40 v = x .* exp(-x.ˆ2 - y.ˆ2 - z.ˆ2);
41 slice(x,y,z,v,[-1.2 -0.5 0.8],[],[-0.25 1])
42 title('3D Grid Example')
43 zlabel('v = y exp(-xˆ2-yˆ2-zˆ2)')
44 colormap hsv

3.9 Generate 3D Objects Using Patch
Problem

You would like to draw a 3D box.

Solution

You can create a 3D box using the patch function.

123

CHAPTER 3 VISUALIZATION

How It Works

The patch function in MATLAB uses vertices and faces to define an area in two or three
dimensions. The vertex list is an n-by-3 array specifying the vertex locations. The faces array
is an n by m array where m is the number of vertices per polygon. The faces array contains the
row indices for the vertices. We usually set m to 3 since all graphics engines eventually reduce
polygons to triangles. We draw a box in BoxPatch shown in the following. Generally, when
drawing a physical object, we set axis to equal so that the aspect ratio is correct. patch
has many properties. In this case, we just set the color of the faces to gray using RGB. The edge
color, which can also be specified, is black by default. The view(3) call sets the camera to a
position with equal x, y, and z values. rotate3d on lets us move the camera around. This is
very handy for inspecting the model. Each line in face is the three vertex elements that form a
triangle face. Figure 3.15 show a box generated with patch.

BoxPatch.m

9 %% Box design
10 x = 3;
11 y = 2;
12 z = 1;
13

14 % Faces
15 f = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6

7;5 7 8];
16

17 % Vertices
18 v = [-x x x -x -x x x -x;...
19 -y -y y y -y -y y y;...
20 -z -z -z -z z z z z]'/2;
21

Figure 3.15: Box generated using patch.

124

CHAPTER 3 VISUALIZATION

22 %% Draw the object
23 h = figure('name','Box');
24 patch('vertices',v,'faces',f,'facecolor',[0.5 0.5 0.5]);
25 axis equal
26 grid on
27 axis([-3 3 -3 3 -3 3])
28 xlabel('x')
29 ylabel('y')
30 zlabel('z')
31 view(3)
32 rotate3d on

3.10 Working with Light Objects

Problem

You would like to illuminate the 3D box drawn in the previous recipe.

Solution

You can create ambient or directed light objects using the light function. Light objects affect
both patch and surface objects, which are created by surf, mesh, pcolor, fill, fill3,
and patch.

How It Works

The main properties for working with light objects are color, style, position, and visible. The
style may be infinite, with the light shining in parallel rays from a specified direction, or local,
with a point source shining in all directions. The position property has a different meaning for
each of these styles. PatchWithLighting adds a local light to the box script. We modify
the box surface properties using material to get different effects.

PatchWithLighting.m

1 %% Add lighting to the cube patch
2 % We use findobj to locate the patch drawn in Patch, then change its

properties
3 % to be suitable for lighting. We add a local light.
8

9 %% Create the box patch object
10 BoxPatch;
11

12 %% Find and update the patch object
13 p = findobj(gcf,'type','patch');
14 c = [0.7 0.7 0.1];

125

CHAPTER 3 VISUALIZATION

15 set(p,'facecolor',c,'edgecolor',c,...
16 'edgelighting','gouraud','facelighting','gouraud');
17 material('metal');
18

19 %% Lighting
20 l = light('style','local','position',[10 10 10]);

Figure 3.16 shows dull and metal material with the same lighting. The lighting produced
by MATLAB is limited by being an OpenGL lighting. Modern 3D graphics use textures and
shaders for photo-realistic scene lighting. You also cannot generate shadows in MATLAB. The
one on the right has a somewhat sharper color gradient at the corner.

Figure 3.16: Box illuminated with a local light object. The left box has “dull” material. The one on the
right has “metal.”

126

CHAPTER 3 VISUALIZATION

The dull, shiny, and metal settings for material set the patch properties to produce these
effects. We can easily print the effects to the command line using get.

>> material dull
>> get(p)

DiffuseStrength: 0.8
...

SpecularColorReflectance: 1
SpecularExponent: 10
SpecularStrength: 0

>> material metal
>> get(p)

DiffuseStrength: 0.3
...

SpecularColorReflectance: 0.5
SpecularExponent: 25
SpecularStrength: 1

>> material shiny
>> get(p)

DiffuseStrength: 0.6
...

SpecularColorReflectance: 1
SpecularExponent: 20
SpecularStrength: 0.9

Note that the AmbientStrength is 0.3 for all the material settings listed earlier. If you
want to see the effect of only your light objects without ambient light, you have to manually
set this to zero. In Figure 3.17, we have set the ambient strength to zero and applied the shiny
material.

Figure 3.17: Shiny box with ambient lighting removed (AmbientStrength set to 0) and a different
camera viewpoint.

127

CHAPTER 3 VISUALIZATION

Figure 3.18: Shiny box with flat lighting.

MATLAB has a lighting function to control the lighting model with four settings: none,
Gouraud, Phong, and flat. Gouraud interpolates the lighting across the faces and gives the most
realistic effect. Note that setting the lighting to Gouraud for our box sets the FaceLighting
property to gouraud but the EdgeLighting to none, which will give a different effect
than in our script earlier where the edge lighting was also set to Gouraud via its property. Flat
lighting gives each entire face a uniform lighting, as in Figure 3.18, where we set the view to
(-50,30) and the lighting to flat.

The MATLAB recommendations are to use flat lighting for faceted objects and Gouraud
lighting for curved objects. The easiest way to compare these is to create a sphere, which is
simple using the sphere function and generating a surface. This is done in the following
SphereLighting. The infinite light object shines from the x axis. See Figure 3.19 for the
resulting plots.

SphereLighting.m

1 %% Create and light a sphere
2

3 %% Make the sphere surface in a new figure
4 [X,Y,Z] = sphere(16);
5 figure('Name','Sphere Demo')
6 s = surf(X,Y,Z);
7 xlabel('x')
8 ylabel('y')
9 zlabel('z')

10 axis equal
11 view(70,15)
12

13 %% Add a lighting object and display the properties
14 light('position',[1 0 0])
15 disp(s)

128

CHAPTER 3 VISUALIZATION

Figure 3.19: Sphere illuminated with an infinite light object. The left sphere has flat lighting. The one
on the right has Gouraud.

16 title('Flat Lighting')
17 pause
18

19 %% Change to Gouraud lighting and display again
20 lighting gouraud
21 title('Gouraud Lighting')
22 disp(s)

In addition to a sphere function, MATLAB also provides cylinder and ellipsoid.

3.11 Programmatically Setting the Camera Properties
Problem

You would like to have a camera in your scene that can be pointed.

Solution

Use the MATLAB cam functions. These provide the same functionality as the buttons in the
camera toolbar, but with repeatability and the ability to pass in variables for the parameters. We
demonstrate this in the script PatchWithCamera.m.

129

CHAPTER 3 VISUALIZATION

How It Works

We make two boxes in the scene. One is scaled and displayed from the other by 5 in x. We
use the MATLAB functions camdolly, camorbit, campan, camzoom, and camroll to
control the camera. We put all of these functions in the PatchWithCamera.m script and
provide examples of two sets of parameters. Note that without lighting, the edges disappear.

PatchWithCamera.m

1 %% Generate two cubes using patch and point a camera at the scene
2 % The camera parameters will be set programmatically using the cam

functions.
7

8 %% Camera parameters
9 % Orbit

10 thetaOrbit = 0;
11 phiOrbit = 0;
12

13 % Dolly
14 xDolly = 0;
15 yDolly = 0;
16 zDolly = 0;
17

18 % Zoom
19 zoom = 1;
20

21 % Roll
22 roll = 50;
23

24 % Pan
25 thetaPan = 1;
26 phiPan = 0;
27

28 %% Box design
29 x = 1;
30 y = 2;
31 z = 3;
32

33 % Faces
34 f = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6

7;5 7 8];
35

36 % Vertices
37 v = [-x x x -x -x x x -x;...
38 -y -y y y -y -y y y;...
39 -z -z -z -z z z z z]'/2;
40

41 %% Draw the object

130

CHAPTER 3 VISUALIZATION

42 h = figure('name','Box');
43

44 c = [0.7 0.7 0.1];
45 patch('vertices',v,'faces',f,'facecolor',c,'edgecolor',c,...
46 'edgelighting','gouraud','facelighting','gouraud');
47

48 c = [0.2 0 0.9];
49 v = 0.5*v;
50 v(:,1) = v(:,1) + 5;
51 patch('vertices',v,'faces',f,'facecolor',c,'edgecolor',c,...
52 'edgelighting','gouraud','facelighting','gouraud');
53

54 material('metal');
55 lighting gouraud
56 axis equal
57 grid on
58 xlabel('x')
59 ylabel('y')
60 zlabel('z')
61 view(3)
62 rotate3d on
63

64 %% Camera commands
65 campan(thetaPan,phiPan)
66 camzoom(zoom)
67 camdolly(xDolly,yDolly,zDolly);
68 camorbit(thetaOrbit,phiOrbit);
69 camroll(roll);
70

71 s = sprintf('Pan %3.1f %3.1f\nZoom %3.1f\nDolly %3.1f %3.1f %3.1f\
nOrbit %3.1f %3.1f\nRoll %3.1f',...

72 thetaPan,phiPan,zoom,xDolly,yDolly,zDolly,thetaOrbit,phiOrbit,roll);
73

74 text(2,0,0,s);

Additional functions for interacting with the scene camera include campos and camtarget,
which can be used to set the camera position and target. This can be used to image one object
from the vantage point of another. camva sets the camera view angle, so you can model a real
camera’s field of view. camup specifies the camera “up” vector or the direction of the top of
the frame.

131

CHAPTER 3 VISUALIZATION

Figure 3.20: Boxes with different camera parameters.

3.12 Display an Image
Problem

You would like to draw an image.

Solution

You can read in an image directly from an image file and draw it in a figure window. MATLAB
supports a variety of formats including GIF, JPG, TIFF, PNG, and BMP. Our solution is in the
script ReadImage.m.

How It Works

We read in a black and while image using imread and display it using imagesc. imagesc
scales the color data into the colormap. It is necessary to apply the grayscale colormap; other-
wise, you’ll get the colors in the default colormap. In parula, this is blue and yellow.

ReadImage.m

1 %% Draw a JPEG image in a figure multiple ways
2 % We will load and display an image of a mug.
3 %% See also
4 % imread, pcolor, imagesc, imshow, colormap
9

10 %% Read in the JPEG image
11 i = imread('Mug.jpg');
12

13 %% Draw the picture with imagesc

132

CHAPTER 3 VISUALIZATION

14 % This preserves an axes. Each pixel center of the image lies at
integer

15 % coordinates ranging between 1 and M or N. Compare the result of
imagesc to

16 % that of pcolor. axis image sets the aspect ratio so that tick marks
on both

17 % axes are equal, and makes the plot box fit tightly around the data.
18 h = figure('name','Mug');
19 subplot(1,2,1)
20 pcolor(i)
21 shading('interp')
22 colorbar
23 axis image
24 title('pcolor with colorbar')
25 a = subplot(1,2,2);
26 % scale the image into the colormap
27 imagesc(i);
28 colormap(a,'gray')
29 axis image
30 grid on
31 title('imagesc with gray colormap')

Figure 3.21 shows the mug first using pcolor, which creates a pseudocolor plot of a
matrix, which is really a surf with the view looking down from above. To highlight this
fact, we added a colorbar. Then on the right, the image is drawn using imagesc with a gray

Figure 3.21: Mug displayed using pcolor and imagesc.

133

CHAPTER 3 VISUALIZATION

Figure 3.22: Mug displayed using imshow, with color limits applied on the right.

colormap. Observe that imagesc has changed the direction of the axes so that the image
appears right-side up. Both plots have axes with tickmarks.

MATLAB has another image display function called imshow, which is considered the fun-
damental image display function. This optimizes the figure, axes, and image object properties
for displaying an image. If you have the Image Processing toolbox, imtool extends imshow
with additional features. Notice how the image is displayed without the axes box. This function
scales and selects the gray colormap automatically. Figure 3.22 shows the use of imshow

33 %% Draw with imshow
34 % The axes will be turned off. The image will be scaled to fit the

figure if it
35 % is too large.
36 f = figure('Name','Mug Image');
37 subplot(1,2,1)
38 imshow(i)
39 title('imshow')
40 subplot(1,2,2)
41 imshow(i,[30 200])
42 title('imshow with limits [30 200]')

Not all images use the full depth available; for instance, this mug image has a minimum
value of 30 and a maximum of 250. imshow allows you to set the color limits of the image
directly, and the pixels will be scaled accordingly. We can darken the image by increasing the
lower color limit and brighten the image by lowering the upper color limit.

134

CHAPTER 3 VISUALIZATION

3.13 Graph and Digraph
Problem

We have a stochastic process for which we want a graphical representation.

Solution

Use graph and digraph in the script RandomWalk.m.

How It Works

Generate a transition matrix showing the probability of transition from one state to a second
state.

The code in RandomWalk.m creates a digraph, graph, and a random walk. The first part
creates a transition matrix.

RandomWalk.m

1 %% Demonstrate a digraph and graph
2

3 % Generate a transition matrix
4 % x ranges from -5 to 5
5 p = zeros(11,11);
6 for k = 2:10
7 p(k,k-1) = 0.5;
8 p(k,k+1) = 0.5;
9 end

10

11 p(1,2) = 1;
12 p(11,10) = 1;
13

14 fprintf('%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f\n',p);

When we run RandomWalk at the command line we get the below output:

>> RandomWalk
0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0

The next part of RandomWalk creates a digraph shown in Figure 3.23 and a graph shown in
Figure 3.24.

135

CHAPTER 3 VISUALIZATION

1

2

3

4

5

6

7

8

9

10

11

Figure 3.23: Digraph for the random walk.

1

2

3

4

5

6

7

8

9

10

11

Figure 3.24: Graph for the random walk.

136

CHAPTER 3 VISUALIZATION

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 3.25: The random walk. The lines show the connections between the nodes in the random walk.
All possible paths are shown.

16 g = digraph(p);
17

18 NewFigure('Digraph');
19 plot(g)
20 grid on

22 g = graph(p,'upper');
23

24 NewFigure('Graph');
25 plot(g)
26 grid on

The random walk based on the transition matrix is shown in Figure 3.25.

28 n = 100;
29 m = 50;
30

31 NewFigure('Random Walk');
32 for k = 1:m
33 x = zeros(1,n);
34 for j = 2:n
35 if(x(j-1) == -5)
36 x(j) = -4;
37 elseif(x(j-1) == 5)
38 x(j) = 4;
39 else
40 x(j) = x(j-1) + sign(randn);

137

CHAPTER 3 VISUALIZATION

41 end
42 end
43 plot(x(1:n-1),x(2:n))
44 hold on
45 end
46 grid on

3.14 Adding a Watermark
Problem

You have a lot of great graphics in your toolbox, and you would like them to be marked as
having been created by your company. Alternatively, or additionally, you may want to mark
images with a version number or date of the software that generated them.

Solution

You can use low-level graphics functions to add a textual or image watermark to figures that
you generate in your toolbox. The tricky part is adding the items to the figure at the correct time
so they are not overridden.

How It Works

The best way to add watermarks is to make a special axis for each text or image item you want
to add. You turn the axis box off so all that you see is the text or image. In the first example, we
add an icon and text to the lower left-hand corner of the plot. We add a color for the edge around
the text so that it is nicely delineated. This is shown in Figure 3.26 using the Watermark.m
function. In the example, we set the hard copy inversion to off, so that when we print the figure,
we will get a gray background – this makes it easier to see in the book.

>> h = figure;
>> set(h,'InvertHardCopy','off')
>> axes
>> Watermark(h)

Watermark.m

1 %% WATERMARK Add a watermark to a figure.
2 % This function creates two axes, one for the image and one for the

text.
3 % Calling it BEFORE plotting can cause unexpected results. It will

reset
4 % the current axes after adding the watermark. The default position is
5 % the lower left corner, (2,2).
6 %% Form
7 % Watermark(fig, pos)
8 %% Inputs
9 % fig (1,1) Figure hangle

138

CHAPTER 3 VISUALIZATION

Figure 3.26: Company watermark.

10 % pos (1,2) Coordinates, (left, bottom)
11 %% Outputs
12 % None.
13

14 function Watermark(fig, pos)
15

16 if (nargin<1 || isempty(fig))
17 fig = figure('Name','Watermark Demo');
18 set(fig,'color',[0.85 0.9 0.85]);
19 end
20

21 if (nargin<2 || isempty(pos))
22 pos = [2 2];
23 end
24

25 string = 'MATLAB Recipes';
26

27 % Save the current axes so we can restore it
28 aX = [];
29 if ˜isempty(get(fig,'CurrentAxes'))
30 aX = gca;
31 end
32

33 % Draw the icon
34 %--------------
35 [d,map] = imread('matlabicon','gif');
36 posIcon = [pos(1:2) 16 16];
37 a = axes('Parent', fig, 'box', 'off', 'units', 'pixels', 'position',

posIcon);
38 image(d);
39 colormap(a,map)

139

CHAPTER 3 VISUALIZATION

40 axis off
41

42 % Draw the text
43 %--------------
44 posText = [pos(1)+18 pos(2)+1 100 15];
45 axes('Parent', fig, 'box', 'off', 'units', 'pixels', 'position',

posText);
46 t = text(0,0.5,string,'fontangle','italic');
47 set(t,'edgecolor',[0.87 0.5 0])
48 axis off
49

50 % Restore current axes in figure
51 if ˜isempty(aX)
52 set(fig,'CurrentAxes',aX);
53 end
54

55 set(fig,'tag','Watermarked')

As an additional example, we added text along the left- and right-hand sides of a figure
using text rotation in the function DraftMark.m. We gave the text a light color. This marks
the figure as a draft. We create a blank figure and axis before adding the draft mark, as shown
in Figure 3.27.

>> h = figure('Name','Draftmark Demo');
>> set(h,'color',[0.85 0.9 0.85]);
>> set(h,'InvertHardCopy','off')
>> axes;
>> Draftmark(h);

Figure 3.27: Draft watermark.

140

CHAPTER 3 VISUALIZATION

Draftmark.m

1 %% DRAFTMARK Add a draft marking to a figure.
2 % This function creates two axes, one each block of text.
3 % Calling it BEFORE plotting can cause unexpected results. It will

reset
4 % the current axes after adding the watermark. The default position is
5 % the lower left corner, (2,2).
6 %% Form
7 % Draftmark(fig, pos)
8 %% Inputs
9 % fig (1,1) Figure hangle

10 % pos (1,2) Coordinates, (left, bottom)
11 %% Outputs
12 % None.
13

14 function Draftmark(fig, pos)
15

16 if (nargin<1 || isempty(fig))
17 fig = figure('Name','Draft Demo');
18 set(fig,'color',[0.85 0.9 0.85]);
19 end
20

21 if (nargin<2 || isempty(pos))
22 pos = [2 2];
23 end
24

25 string = 'DRAFT';
26

27 % Save the current axes so we can restore it
28 aX = [];
29 if ˜isempty(get(fig,'CurrentAxes'))
30 aX = gca;
31 end
32

33 % Draw the text
34 %--------------
35 pf = get(fig,'position');
36 posText = [pos(1)+5 pos(2)+0.5*pf(4)-40 20 80];
37 axes('Parent', fig, 'box', 'on', 'units', 'pixels', 'outerposition',

posText);
38 t1 = text(0,0,string,'fontsize',20,'color',[0.8 0.8 0.8]);
39 set(t1,'rotation',90,'edgecolor',[0.8 0.8 0.8],'linewidth',2)
40 axis off
41

42 posText = [pos(1)+pf(3)-25 pos(2)+0.5*pf(4)-40 20 80];
43 axes('Parent', fig, 'box', 'on', 'units', 'pixels', 'outerposition',

posText);
44 t2 = text(0,1,string,'fontsize',20,'color',[0.8 0.8 0.8]);
45 set(t2,'rotation',270,'edgecolor',[0.8 0.8 0.8],'linewidth',2)
46 axis off
48

141

CHAPTER 3 VISUALIZATION

49 % Restore current axes in figure
50 if ˜isempty(aX)
51 set(fig,'CurrentAxes',aX);
52 end

If you want to get very fancy, you could draw objects across the front of the figure and give
them transparency, but it has to be fill or patch objects; text cannot be given transparency.

Summary
In this chapter, we reviewed key features of MATLAB visualization, from basic plotting to 3D
visualization including objects and lighting. We demonstrated accessing figure and axes han-
dles and setting properties programmatically, as well as using the interactive tools for figures.
Creating helpful visualization routines is a key part of any toolbox. MATLAB provides excel-
lent data management routines, including for large grids of data, and many options for coloriza-
tion. Table 3.1 lists the code developed in the chapter.

Table 3.1: Chapter Code Listing

File Description
AnnotatePlot Add text annotations evenly spaced along a curve
BoxPatch Generate a cube using patch
ColorDistribution Demonstrate a color distribution for an array of lines
DraftMark Add a draft marking to a figure
GridVisualization Visualize data over 2D and 3D grids
PatchWithCamera Generate two cubes using patch and point a camera at the scene
PatchWithLighting Add lighting to the cube patch
PlotPage Create a plot page with several custom plots in one figure
PlottingWithDates Plot using months as the x label
QuadPlot Create a quad plot page using subplot
ReadImage Draw a JPEG image in a figure multiple ways
SphereLighting Create and light a sphere
Watermark Add a watermark to a figure

142

	3 Visualization
	3.1 Plotting Data Interactively from the MATLAB Desktop
	Problem
	Solution
	How It Works

	3.2 Incrementally Annotate a Plot
	Problem
	Solution
	How It Works

	3.3 Create a Custom Plot Page with Subplot
	Problem
	Solution
	How It Works

	3.4 Create a Heat Map
	Problem
	Solution
	How It Works

	3.5 Create a Plot Page with Custom-Sized Axes
	Problem
	Solution
	How It Works

	3.6 Plotting with Dates
	Problem
	Solution
	How It Works

	3.7 Generating a Color Distribution
	Problem
	Solution
	How It Works

	3.8 Visualizing Data over 2D or 3D Grids
	Problem
	Solution
	How It Works

	3.9 Generate 3D Objects Using Patch
	Problem
	Solution
	How It Works

	3.10 Working with Light Objects
	Problem
	Solution
	How It Works

	3.11 Programmatically Setting the Camera Properties
	Problem
	Solution
	How It Works

	3.12 Display an Image
	Problem
	Solution
	How It Works

	3.13 Graph and Digraph
	Problem
	Solution
	How It Works

	3.14 Adding a Watermark
	Problem
	Solution
	How It Works

