
CHAPTER 13

Spacecraft Attitude Control

Spacecraft pointing control is an essential technology for all robotic and manned spacecraft. A
control system consists of sensing, actuation, and the dynamics of the spacecraft itself. Space-
craft control systems are of many types, but in this chapter, we will be concerned only with
three axis pointing. We will use reaction wheels for actuation.

Reaction wheels are used for control through the conservation of angular momentum. The
torque on the reaction wheel causes it to spin one way and the spacecraft to spin in the opposite
direction. Momentum removed from the spacecraft is absorbed in the wheel. Reaction wheels
are classified as momentum exchange devices because they exchange momentum with the rest
of the spacecraft. You can reorient the spacecraft using reaction wheels without any external
torques. Before reaction wheels were introduced, thrusters were often used for orientation
control. This would consume the propellant which is undesirable since when you run out of
propellant, the spacecraft can no longer be used.

The spacecraft is modeled as a rigid body except for the presence of three reaction wheels
that rotate about orthogonal (perpendicular) axes. One rotates about the x axis, one rotates
about the y axis, and the third about the z axis. The shaft of the motor is attached to the rotor
of the wheel which is attached to the spacecraft. The torque applied between the wheel and
spacecraft causes the wheel and spacecraft to move in opposite angular directions. We will
assume that we have attitude sensors that measure the orientation of the spacecraft. We will
also assume that our wheels are ideal with just viscous damping friction.

13.1 Creating a Dynamical Model of the Spacecraft
Problem

The spacecraft is a rigid body with three wheels. Each wheel is connected to the spacecraft as
shown in Figure 13.1.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 13

359

https://doi.org/10.1007/978-1-4842-6124-8_13

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

Figure 13.1: A reaction wheel. The reaction wheel platter spins in one direction, and the spacecraft
spins in the opposite direction.

Solution

The equations of motion are written using angular momentum conservation. This produces a
dynamical model known as the Euler equations with the addition of the spinning wheels. This
is sometimes known as a gyrostat model.

How It Works

The spacecraft model can be partitioned into dynamics, including the dynamics of the reaction
wheels, and the kinematics of the spacecraft. If we assume that the wheels are perfectly sym-
metric, are aligned with the three body axes, and have a diagonal inertia matrix, we can model
the spacecraft dynamics with the following coupled first-order differential equations:

Iω̇ + ω× (Iω + Iw(ωw + ω)) + Iw(ω̇w + ω̇) = T (13.1)

Iw (ω̇w + ω̇) = Tw (13.2)

I is the 3-by-3 inertia matrix of the spacecraft and does not include the inertia of the wheels.

I =

⎡
⎣

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤
⎦ (13.3)

The inertia matrix is symmetric so Ixy = Iyx, Ixz = Izx, Izy = Iyz . ω is the angular rate vector
for the spacecraft seen in the spacecraft frame.

ω =

⎡
⎣

ωx

ωy

ωz

⎤
⎦ (13.4)

360

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

ωw is the angular rate of the reaction wheels:

ωw =

⎡
⎣

ω1

ω2

ω3

⎤
⎦ (13.5)

for wheels 1, 2, and 3. 1 is aligned with x, 2 with y, and 3 with z. In this way, the reaction
wheels form an orthogonal set and can be used for three-axis control. T is the external torque
on the spacecraft which can include external disturbances such as solar pressure or aerodynamic
drag and thruster or magnetic torquer coil torques. Tw is the internal torque on the wheels; Iw
is the scalar polar inertia of the wheels (we assume that they all have the same polar inertia).
We can substitute the second equation into the first to simplify the equations.

Iω̇ + ω× (Iω + Iw(ωw + ω)) + Tw = T (13.6)

Iw (ω̇w + ω̇) = Tw (13.7)

This term
Te = ω× (Iω + Iw(ωw + ω)) ≡ ω × h (13.8)

is known as the Euler torque. If the angular rates are small, we can set this term to zero and the
equations simplify to

Iω̇ + Tw = T (13.9)

Iw (ω̇w + ω̇) = Tw (13.10)

For kinematics, we will use quaternions. A quaternion is a four-parameter representation of the
orientation of the spacecraft with respect to the inertial frame. We could use angles since we
really only need three states (dynamical quantities) to specify the orientation. The problem with
Euler angles is that they introduce singularities, that is, certain orientations where an angle is
undefined, and therefore they are not suitable for simulations. The derivative of the quaternion
from the inertial frame to the body frame is

q̇ =
1

2

[
0 ωT

−ω ω×

]
(13.11)

The term ω× is the skew symmetric matrix that is the equivalent of the cross product and is

ω× =

⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ (13.12)

The skew matrix always has zeros on the diagonal, and the matrix is equal to the negative of its
transpose. The wheel torque is a combination of friction torque and control torque. Reaction
wheels are usually driven by brushless direct current (DC) motors that have the back electromo-
tive force canceled by current feedback within the motor electronics. The total reaction wheel
torque is therefore

Tw = Tc + Tf (13.13)

361

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

where Tc is the commanded reaction wheel torque and Tf is the friction torque. A simple
friction model is

Tf = −kdωk (13.14)

kd is the damping coefficient. If kd is large, we can compensate for it proactively by feeding
the expected friction torque forward into the controller. This requires careful calibration of the
wheel to determine the damping coefficient.

First, we will define the data structure for the model that is returned by the dynamics right-
hand-side function if there are no inputs. The name of the function is RHSSpacecraftWith
RWA.m. We use RWA to mean “Reaction Wheel Assembly.” We say “assembly” because the
reaction wheel is assembled from bearings, wheel, shaft, support structure, and power electron-
ics. Spacecraft are built up of assemblies.

The default unit vectors for the wheel are along orthogonal axes, that is, x, y, and z. The
default inertia matrix is the identity matrix, making the spacecraft a sphere. The default reaction
wheel inertias are 0.001. All of the nonspinning parts of the wheels are lumped in with the
inertia matrix.

RHSSpacecraftWithRWA.m

1 %% RHSSPACECRAFTWITHRWA Compute the dynamics for a spacecraft with
reaction wheels.

33 function [xDot, hECI] = RHSSpacecraftWithRWA(˜, x, d)
34

35 % Default data structure
36 if(nargin == 0)
37 xDot = struct('inr',eye(3), 'torque',[0;0;0],'inrRWA',

0.001*[1;1;1],...
38 'torqueRWA',[0;0;0],'uRWA',eye(3), 'damping',[0;0;0]);
39 if(nargout == 0)
40 disp('RHSSpacecraftWithRWA struct:')
41 end
42 return
43 end

The dynamical equations for the spacecraft are given in the following lines of code. We
need to compute the total wheel torque because it is applied both to the spacecraft and the
wheels. We use the backslash operator to multiply the equations by the inverse of the inertia
matrix. The inertia matrix is positive definite symmetric so specialized routines can be used to
speed computation of this inverse. It is a good idea to avoid computing inverses as they can be
ill-conditioned, meaning that small errors in the matrix can result in large errors in the inverse.

We save the elements of the state vector as local variables with meaningful names to make
reading the code easier. This also eliminates unnecessary multiple extraction of submatrices.

You will notice that the omegaRWA variable reads from element 8 to the end of the vector
using the end keyword. This allows the code to handle any number of reaction wheels. You
might just want to control one axis with a wheel or have more than three wheels for redundancy.
Be sure that the inputs in d match the number of wheels. We also input unit vectors for each

362

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

wheel. The unit vector is the axis or rotation for each. As a consequence, the wheels do not
have to be aligned with x, y, and z, that is, do not have to be orthogonal.

45 % Save as local variables
46 q = x(1:4);
47 omega = x(5:7);
48 omegaRWA = x(8:end);
49

50 % Total body fixed angular momentum
51 h = d.inr*omega + d.uRWA*(d.inrRWA.*(omegaRWA + d.uRWA'*omega));
52

53 % Total wheel torque
54 tRWA = d.torqueRWA - d.damping.*omegaRWA;

Note that uRWA is an array of the reaction wheel unit vectors, that is, the spin vectors.
In computing h, we have to transform ω into the wheel frame using the transpose of uRWA
and then transform back before adding the wheel component to the core component, Iω. The
wheel dynamics are given next, note the use of the backslash operator to solve the set of linear
equations for ω̇, omegaDotCore:

56 % Core angular acceleration
57 omegaDotCore = d.inr\(d.torque - d.uRWA*tRWA - cross(omega,h));

The total state derivative is in these lines:

59 % Wheel angular acceleration
60 omegaDotWheel = tRWA./d.inrRWA - d.uRWA'*omegaDotCore;
61

62 % State derivative
63 sW = [0 -omega(3) omega(2);...
64 omega(3) 0 -omega(1);...
65 -omega(2) omega(1) 0]; % skew symmetric matrix
66 qD = 0.5*[0, omega';-omega,-sW];
67 xDot = [qD*q;omegaDotCore;omegaDotWheel];

The total inertial angular momentum is an auxiliary output. In the absence of external
torques, it should be conserved so it is a good test of the dynamics. A simple way to test
angular momentum conservation is to run a simulation with anger rates for all the states and
then rerun it with a smaller time step. The change in angular momentum should decrease as the
time step is decreased.

69 % Output the inertial angular momentum
70 if(nargout > 1)
71 hECI = QTForm(q, h);
72 end

363

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

13.2 Computing Angle Errors from Quaternions
Problem

We want to point the spacecraft to a new target attitude (orientation) with the three reaction
wheels or maintain the attitude given an external torque on the spacecraft.

Solution

We will make three proportional-derivative (PD) controllers, one for each axis. We need a
function to take two quaternions and compute the small angles between them as input to these
controllers.

How It Works

If we are pointing at an inertial target and wish to control about that orientation, we can simplify
the rate equations by approximating ω as θ̇ which is valid for small angles when the order of
rotation doesn’t matter and the Euler angles can be treated as a vector.

θ̇ = ω (13.15)

We will also multiply both sides of the Euler equation, Equation 13.9, by I−1, to solve for the
derivatives. Note that Tw, the torque from the wheels, is equivalent to Iaw, where a is the
acceleration. Our system equations now become

θ̈ + aw = a (13.16)

Iw (ω̇w + ω̇) = −Tw (13.17)

The first equation is now three decoupled second-order equations, just as in our Chapter 7. We
can stabilize this system with our standard PD controller.

We need attitude angles as input to the PD controllers to compute our control torques. Our
examples will only be for small angular displacements from the nominal attitude. We will pass
the control code a target quaternion, and it will compute Δ angles, or we will impose a small
disturbance torque.

In these cases, the attitude can be treated as a vector where the order of the rotations doesn’t
matter. A quaternion derived from small angles is

qΔ ≈

⎡
⎢⎢⎣

1
−θ1/2
−θ2/2
−θ3/2

⎤
⎥⎥⎦ (13.18)

We find the required error quaternion qΔ by multiplying the target quaternion, qT , with the
transpose of the current quaternion:

qΔ = qT qT (13.19)

This algorithm to compute the angles is implemented in the following code. The quaternion
multiplication is made a subfunction. This makes the code cleaner and easier to see how it

364

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

relates to the algorithm. QMult is written to handle multiple quaternions at once so the function
is easy to vectorize. QPose finds the transpose of the quaternion. Both of these functions
would normally be separate functions, but in this chapter, they are only associated with the
error computation code so we put them in the same file.

ErrorFromQuaternion.m

1 %% ERRORFROMQUATERNION Compute small angle error between two
quaternions.

19 function deltaAngle = ErrorFromQuaternion(q, qTarget)
20

21 deltaQ = QMult(QPose(q), qTarget);
22 deltaAngle = -2.0*deltaQ(2:4);
24

25 %% ErrorFromQuaternion>QMult Multiply two quaternions
26 % Q2 transforms from A to B and Q1 transforms from B to C
27 % so Q3 transforms from A to C.
28 %
29 % Q3 = QMult(Q2 ,Q1)
30 function Q3 = QMult(Q2 ,Q1)
31

32 Q3 = [Q1(1,:).*Q2(1,:) - Q1(2,:).*Q2(2,:) - Q1(3,:).*Q2(3,:) - Q1(4,:)
.*Q2(4,:);...

33 Q1(2,:).*Q2(1,:) + Q1(1,:).*Q2(2,:) - Q1(4,:).*Q2(3,:) + Q1(3,:)
.*Q2(4,:);...

34 Q1(3,:).*Q2(1,:) + Q1(4,:).*Q2(2,:) + Q1(1,:).*Q2(3,:) - Q1(2,:)
.*Q2(4,:);...

35 Q1(4,:).*Q2(1,:) - Q1(3,:).*Q2(2,:) + Q1(2,:).*Q2(3,:) + Q1(1,:)
.*Q2(4,:)];

37

38 %% ErrorFromQuaternion>QPose Transpose of a quaternion
39 % The transpose requires changing the sign of the angle terms.
40 %
41 % q = QPose(q)
42 function q = QPose(q)
43

44 q(2:4,:) = -q(2:4,:);

The control system is implemented in the simulation loop (in the next recipe) with the
following code:

SpacecraftSim.m

57 % Find the angle error
58 angleError = ErrorFromQuaternion(x(1:4), qTarget);
59 if(controlIsOn)
60 u = [0;0;0];
61 for j = 1:3
62 [u(j), dC(j)] = PDControl('update',angleError(j),dC(j));
63 end
64 else

365

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

65 u = [0;0;0];
66 end
67

68 % Wheel torque is on the left hand side
69 d.torqueRWA = d.inr*u;

13.3 Simulating the Controlled Spacecraft
Problem

We want to test our attitude controller and see how it performs.

Solution

The solution is to build a MATLAB script in which we design the PD controller matrices and
then simulate the controller in a loop, applying the calculated torques until the desired quater-
nion is attained or until the disturbance torque is canceled.

How It Works

We build a simulation script for the controller, SpacecraftSim. The first thing we do with
the script is to set parameters at the top of the file to check the angular momentum conservation
by running the simulation for 300 seconds at time steps of 0.1 and 1 second and comparing the
magnitude of the angular momentum in the two test cases. The control is turned off by setting
the controlIsOn flag to false. In the absence of external torques, if our equations are
programmed correctly, the momentum should be constant. We will however see the growth in
the momentum due to error in the numerical integration. The growth should be much lower in
the first case than the second case as the smaller time step makes the integration more exact.
Remember that for fourth-order Runge-Kutta, the error goes as the fourth power of the time
step. Note that we give the spacecraft random initial rates in both omega and omegaRWA and
a nonspherical inertia to help catch any bugs in the dynamics code.

1 tEnd = 300;
2 dT = 0.1;
3 controlIsOn = false;
4 qECIToBody = [1;0;0;0];
5 omega = [0.01;0.02;-0.03]; % rad/sec
6 omegaRWA = [5;-3;2]; % rad/sec
7 d.inr = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2

Figure 13.2 shows the results of the tests using the above initialization code. The momentum
growth is four orders of magnitude lower in the test with a 0.1 second time step indicating that
the dynamical equations conserve angular momentum as they should. The shape of the growth
does not change and will depend on the relative magnitudes of the various angular rates.

We initialize the script by using our data structure feature of the RHS function. This is
shown in the following with parameters for a run with the control system on. The rates are

366

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (min)

0

1

2

3

4

5

6

7

8

9

 H
 (N

m
s)

10-9 Inertial Angular Momentum

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (min)

0

1

2

3

4

5

6

7

8

9

 H
 (N

m
s)

10-13 Inertial Angular Momentum

Figure 13.2: Angular momentum conservation for 1 second and 0.1 second time steps. The growth is
four orders of magnitude lower in the 0.1 second test, to 1e−13 from 1e−9.

now initialized to zero, and we use the time step of 1 second, which showed sufficiently small
momentum growth in our previous test.

1 %% Spacecraft reaction wheel simulation script
2 % An attitude control simulation using reaction wheels.

13 %% Data structure for the right hand side
14 d = RHSSpacecraftWithRWA;

The control system is designed here. Note the small value of wN and the unit damping ratio.
The frequency of the disturbances on a spacecraft is quite low, and the wheels have torque
limits, leading to a wNmuch smaller than the robotics recipe. All three controllers are identical.

28 %% Control design
29 % Design a PD controller. The same controller is used for all 3 axes.
30 dC = PDControl('struct');
31 dC(1).zeta = 1;
32 dC(1).wN = 0.02;
33 dC(1).wD = 5*dC(1).wN;
34 dC(1).tSamp = dT;
35 dC(1) = PDControl('initialize', dC(1));
36

37 % Make all 3 axis controllers identical
38 dC(2) = dC(1);
39 dC(3) = dC(1);

The simulation loop follows. As always, we initialize the plotting array with zeros. By
allocating memory for the array, we speed up the code as memory allocation is usually slow.
The first step in the loop is finding the angular error between the current state and the target
attitude. Next, the control acceleration is calculated or set to zero, depending on the value of

367

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

the control flag. The control torque is calculated by multiplying the control acceleration by the
spacecraft inertia. We compute the momentum for plotting purposes and, finally, integrate one
time step.

41 %% Simulation
42 % Initialize the plotting arrays and perform a fixed timestep loop

using
43 % Runge-Kutta integration.
44

45 % State vector
46 x = [qECIToBody;omega;omegaRWA];
47

48 % Plotting and number of steps
49 n = ceil(tEnd/dT);
50 xP = zeros(length(x)+7,n);
51

52 % Find the initial angular momentum
53 [˜,hECI0] = RHSSpacecraftWithRWA(0,x,d);
54

55 % Run the simulation
56 for k = 1:n
57 % Find the angle error
58 angleError = ErrorFromQuaternion(x(1:4), qTarget);
59 if(controlIsOn)
60 u = [0;0;0];
61 for j = 1:3
62 [u(j), dC(j)] = PDControl('update',angleError(j),dC(j));
63 end
64 else
65 u = [0;0;0];
66 end
67

68 % Wheel torque is on the left hand side
69 d.torqueRWA = d.inr*u;
70

71 % Get the delta angular momentum
72 [˜,hECI] = RHSSpacecraftWithRWA(0,x,d);
73 dHECI = hECI - hECI0;
74 hMag = sqrt(dHECI'*dHECI);
75

76 % Plot storage
77 xP(:,k) = [x;d.torqueRWA;hMag;angleError];
78

79 % Right hand side
80 x = RungeKutta(@RHSSpacecraftWithRWA,0,x,dT,d);
81 end

Our output is entirely two-dimensional plots. We break them up into pages with one to three
plots per page. This makes them easily readable on most computer displays.

368

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

83 %% Plotting
84 % Generate plots of the attitude, body and wheel rates, control torque,

angular
85 % momentum, and anglular error. If there is no external disturbance

torque than
86 % angular momentum should be conserved.
87 [t,tL] = TimeLabel((0:(n-1))*dT);
88

89 yL = {'q_s', 'q_x', 'q_y', 'q_z'};
90 PlotSet(t, xP(1:4,:), 'x label', tL, 'y label', yL,...
91 'plot title', 'Attitude', 'figure title', 'Attitude');
92

93 yL = {'\omega_x', '\omega_y', '\omega_z'};
94 PlotSet(t, xP(5:7,:), 'x label', tL, 'y label', yL,...
95 'plot title', 'Body Rates', 'figure title', 'Body Rates');
96

97 yL = {'\omega_1', '\omega_2', '\omega_3'};
98 PlotSet(t, xP(8:10,:), 'x label', tL, 'y label', yL,...
99 'plot title', 'RWA Rates', 'figure title', 'RWA Rates');

100

101 yL = {'T_x (Nm)', 'T_y (Nm)', 'T_z (Nm)'};
102 PlotSet(t, xP(11:13,:), 'x label', tL, 'y label', yL,...
103 'plot title', 'Control Torque', 'figure title', 'Control Torque');
104

105 yL = {'\Delta H (Nms)'};
106 PlotSet(t, xP(14,:), 'x label', tL, 'y label', yL,...
107 'plot title', 'Inertial Angular Momentum', 'figure title', 'Inertial

Angular Momentum');
108

109 yL = {'\theta_x (rad)', '\theta_y (rad)', '\theta_z (rad)'};
110 PlotSet(t, xP(15:17,:), 'x label', tL, 'y label', yL,...

Note how PlotSet makes plotting much easier to set up and read code than if we use
MATLAB’s built-in plot and supporting functions. You do lose some flexibility. The y axis
labels use LaTeX notation. LaTeX is a technical publications package. This provides limited
LaTeX syntax, such as Greek letters, subscripts, and superscripts. You can set the plotting to
full LaTeX mode to get access to all LaTeX commands and formatting.

Note that we compute the angle error directly from the target and true quaternion. This rep-
resents our attitude sensor. In real spacecraft, attitude estimation is quite complicated. Multiple
sensors, such as combinations of magnetometers, GPS, and earth and sun sensors, are used,
and often rate-integrating gyros are employed to smooth the measurements. Star cameras or
trackers are popular for three-axis sensing and require converting images in a camera to attitude
estimates. You can’t use gyros by themselves because they do not provide an initial orientation
with respect to the inertial frame.

We will run two tests. The first shows that our controllers can compensate for a body-fixed
disturbance torque. The second is to show that the controller can reorient the spacecraft.

369

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

The following is the initialization code for the disturbance torque test. The initial and target
attitudes are the same, a unit quaternion, but there is a small disturbance torque.

1 % Initialize duration, delta time states and inertia
2 tEnd = 600;
3 dT = 1;
4 controlIsOn = true;
5 qECIToBody = [1;0;0;0];
6 omega = [0;0;0]; % rad/sec
7 omegaRWA = [0;0;0]; % rad/sec
8 d.inr = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2
9 qTarget = QUnit([1;0;0.0;0]);

10 d.torque = [0;0.0001;0]; % Disturbance torque (N)

We are running the simulations to 600 seconds to see the transients settle out. The distur-
bance torque is very small, which is typical for spacecraft. We make the torque single axis to
make the responses clearer. Figure 13.3 shows the complete set of output plots.

The disturbance causes a change in attitude around the y axis. This offset is expected with
a PD controller. The control torque eventually matches the disturbance, and the angular error
reaches its maximum. The PD control method will have steady-state error for constant (or more
generally, nonzero-mean) disturbances. The integral control would be required to compensate
for such disturbances.

The y wheel rate grows linearly as it has to absorb all the momentum produced by the
torque. We don’t limit the maximum wheel rate. In a real spacecraft, the wheel would soon
saturate, reaching its maximum allowed speed. Our control system would need to have other
actuators to desaturate the wheel. The inertial angular momentum also grows linearly as is
expected with a constant external torque.

We now do an attitude correction around the x axis. The following is the initialization code:

1 % Initialize duration, delta time states and inertia
2 tEnd = 600;
3 dT = 1;
4 controlIsOn = true;
5 qECIToBody = [1;0;0;0];
6 omega = [0;0;0]; % rad/sec
7 omegaRWA = [0;0;0]; % rad/sec
8 d.inr = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2
9 qTarget = QUnit([1;0.004;0.0;0]); % Normalize

10 d.torque = [0;0;0]; % Disturbance torque

We command a small attitude offset around the x axis, which is done by changing the second
element in the quaternion. We unitize the quaternion to prevent numerical issues. Figure 13.4
shows the output plots.

370

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0.9999

1

q s

Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1
0
1

q x

Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-0.02
-0.01

0

q y

Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1
0
1

q z

Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

x

Body Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

1

2

y

10-4 Body Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

z

Body Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

1

RWA Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

20

402

RWA Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

3

RWA Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

T x (N
m

)

Control Torque

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

1

T y (N
m

)

10-4 Control Torque

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

T z (N
m

)

Control Torque

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

0.01

0.02

0.03

0.04

0.05

0.06

 H
 (N

m
s)

Inertial Angular Momentum

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

x (r
ad

)

Angular Errors

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-0.04

-0.02

0

y (r
ad

)

Angular Errors

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

z (r
ad

)

Angular Errors

Figure 13.3: Controlling a suddenly applied external torque.

371

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0.99999
0.999995

1

q s

Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

5

q x

10-3 Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1
0
1

q y

Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1
0
1

q z

Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-2

-1

0

x

10-4 Body Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

y

Body Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

z

Body Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

0.2

0.4

0.6

1

RWA Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

2

RWA Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

3

RWA Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

5

10
T x (N

m
)

10-5 Control Torque

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

T y (N
m

)

Control Torque

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

T z (N
m

)

Control Torque

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

1

2

3

4

5

6

7

8

 H
 (N

m
s)

10-19 Inertial Angular Momentum
X 0.7833
Y 7.047e-19

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-10

-5

0

x (r
ad

)

10-3 Angular Errors

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

y (r
ad

)

Angular Errors

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

z (r
ad

)

Angular Errors

Figure 13.4: Response to a small change in attitude.

372

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

In this case, the angular error around the x axis is reduced to zero. The inertial angular
momentum remains “constant” although it jumps around a bit due to truncation error in the
numerical integration. This is expected and it is good to keep checking the angular momen-
tum with the control system running. If it doesn’t remain nearly constant, it means that the
simulation probably has an error in the dynamical equations. Internal torques do not change
the inertial angular momentum. This is why reaction wheels are called “momentum exchange
devices.” They exchange momentum with the spacecraft body but don’t change the total inertial
angular momentum.

The attitude rates remain small in both cases so that the Euler coupling torques are small.
This justifies our earlier decision to treat the spacecraft as three double integrators. It also
justifies our quaternion error to small angle approximation.

13.4 Performing Batch Runs of a Simulation
Problem

We’ve used our simulation script to verify momentum conservation and test our controller, but
note how we have to change lines at the top by hand for each case. This is fine for development
but can make it very difficult to reproduce results; we don’t know the initial conditions that
generated any particular plot. We may want to run our simulation for a whole set of inputs and
do a Monte Carlo analysis.

Solution

We’ll create a new function based on our script with inputs for our critical parameters. A new
data structure will store both our inputs and the outputs so we can save individual runs to mat-
files. This will make it possible to replot the results of any run in the future, or redo runs from
the stored inputs, for example, if you find and fix a bug in the controller.

How It Works

Start from the simulation script copied into a new file. Add a function signature. Replace the
initialization variables with an input structure. Perform the simulation, then save the input struc-
ture along with your generated output. The resulting function header is shown in the following
listing. The input structure includes our RHS data, controller data, and simulation timing
data.

SpacecraftSimFunction.m

1 %% SPACECRAFTSIMFUNCTION Spacecraft reaction wheel simulation function
2 % Perform a simulation of a spacecraft with reaction wheels given a
3 % particular initial state. If there are no inputs it will perform a

demo for an
4 % open loop system. If there are no outputs it will create plots via
5 % PlotSpacecraftSim.
6 %% Form
7 % d = SpacecraftSimFunction(x0, qTarget, input)

373

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

8 %% Inputs
9 % x0 (7+n,1) Initial state

10 % qTarget (4,1) Target quaternion
11 % input (.) Data structure
12 % .rhs (.) RHS data
13 % .pd (:) Controllers
14 % .dT (1,1) Timestep
15 % .tEnd (1,1) Duration
16 % .controlIsOn Flag
17 %% Outputs
18 % d (.) Data structure
19 % .input (.) Input structure
20 % .x0 (7+n,1) Initial state
21 % .qTarget (4,1) Target quaternion
22 % .xPlot (7+n,:) State data
23 % .dPlot (4+n,:) Torque and angle error data
24 % .tPlot (1,:) Time data
25 % .yLabel {} State labels
26 % .dLabel {} Data labels
27 % .tLabel '' Time label string
28 %% See also
29 % RHSSpacecraftWithRWA, ErrorFromQuaternion, PDControl, RungeKutta,

TimeLabel,
30 % PlotSpacecraftSim

Now, we can write a script that calls our simulation function in a loop. The possibilities are
endless – you can test different targets, vary the initial conditions for a Monte Carlo simulation,
and apply different disturbance torques. You can perform statistical analysis on your results
or identify and plot individual runs based on some criteria. In this example, we will find the
maximum control torque applied in each run.

BatchSimRuns.m

1 %% Script performing multiple runs of spacecraft simulation
2 % Perform runs of SpacecraftSimFunction in a loop with varying initial
3 % conditions. Find the max control torque applied for each case.
4 %% See also
5 % SpacecraftSimFunction

10

11 %% Initialization
12 sim = struct;
13 % Initialize duration, delta time states and inertia
14 sim.tEnd = 600;
15 sim.dT = 1;
16 sim.controlIsOn = true;
17

18 % Spacecraft state
19 qECIToBody = [1;0;0;0];
20 omega = [0;0;0]; % rad/sec
21 omegaRWA = [0;0;0]; % rad/sec
22 x0 = [qECIToBody;omega;omegaRWA];

374

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

23

24 % Target quaternions
25 qTarget = QUnit([1;0.004;0.0;0]); % Normalize
26

27 %% Control design
28 % Design a PD controller
29 dC = PDControl('struct');
30 dC(1).zeta = 1;
31 dC(1).wN = 0.02;
32 dC(1).wD = 5*dC(1).wN;
33 dC(1).tSamp = sim.dT;
34 dC(1) = PDControl('initialize', dC(1));
35

36 % Make all 3 axis controllers identical
37 dC(2) = dC(1);
38 dC(3) = dC(1);
39

40 sim.pd = dC;
41

42 %% Spacecraft model
43 % Make the spacecraft nonspherical; no disturbances
44 rhs = RHSSpacecraftWithRWA;
45 rhs.inr = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2
46 rhs.torque = [0;0;0]; % Disturbance torque
47 sim.rhs = rhs;
49

50 %% Simulation loop
51 clear d;
52 for k = 1:10;
53 % change something in your initial conditions and simulate
54 x0(5) = 1e-3*k;
55 thisD = SpacecraftSimFunction(x0, qTarget, sim);
56

57 % save the run results as a mat-file
58 thisDir = fileparts(mfilename('fullpath'));
59 fileName = fullfile(thisDir,'Output',sprintf('Run%d',k));
60 save(fileName,'-struct','thisD');
61

62 % store the run output
63 d(k) = thisD;
64 end
65

66 %% Perform statistical analysis on results
67 % ... as you wish
68 for k = 1:length(d)
69 tMax(k) = max(max(d(k).dPlot(2:4,:)));
70 end
71 figure;
72 plot(1:length(d),tMax);
73 xlabel('Run')
74 ylabel('Torque (Nm)')
75 title('Maximum Control Torque');

375

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

1 2 3 4 5 6 7 8 9 10
Run

1

2

3

4

5

6

7

8

9
To

rq
ue

 (N
m

)
10-4 Maximum Control Torque

Figure 13.5: Maximum control torque over ten simulation runs.

76

77 % Plot a single case
78 kPlot = 4;
79 PlotSpacecraftSim(d(4));

Figure 13.5 shows the maximum torque results. Each run has a larger initial angular veloc-
ity. We expect to see this trend, because the torque control is proportional to the angular rate.

An individual run’s output is shown as follows:

>> d(1)

ans =

input: [1x1 struct]
x0: [10x1 double]

qTarget: [4x1 double]
xPlot: [10x600 double]
dPlot: [7x600 double]
tPlot: [1x600 double]

376

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

0 5 10 15 20 25 30
Time (min)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x (r
ad

)

Angular Errors

0 5 10 15 20 25 30
Time (min)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x

Body Rates

Figure 13.6: Control response to a large rate in x. The rate does damp out, eventually!

tLabel: 'Time (min)'
yLabel: {1x10 cell}
dLabel: {1x7 cell}

As another interesting example, we can give the spacecraft a higher initial rate and see how
the controller responds. From the command line, we change the initial rate around the x axis to
be 0.2 rad/sec and call the simulation function with no outputs, so that it will generate the full
suite of plots. We see that the response takes a long time, over 20 minutes, but the rate does
eventually damp out. Figure 13.6 shows the damping response.

The full simulation function is shown in the following. The built-in demo performs an
open loop simulation of the default spacecraft model with no control, as with the momentum
conservation test performed in the previous recipe (Figure 13.2).

36 function d = SpacecraftSimFunction(x0, qTarget, input)
37

38 % Handle inputs
39 if nargin == 0
40 % perform an open loop simulation
41 disp('SpacecraftSimFunction: Open loop simulation for 10 minutes.

Initial rates are random.')
42 input = struct;
43 input.rhs = RHSSpacecraftWithRWA;
44 input.pd = [];
45 input.dT = 1; % sec
46 input.tEnd = 600; % sec
47 input.controlIsOn = false;
48 x0 = [1;0;0;0;1e-3*randn(6,1)];
49 SpacecraftSimFunction(x0, [], input);
50 return;
51 end
52

377

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

53 if isempty(x0)
54 qECIToBody = [1;0;0;0];
55 omega = [0;0;0]; % rad/sec
56 omegaRWA = [0;0;0]; % rad/sec
57 x0 = [qECIToBody;omega;omegaRWA];
58 end
59

60 if isempty(qTarget)
61 qTarget = x0(1:4);
62 end
63

64 % State vector
65 x = x0;
66 nWheels = length(x0)-7;
67

68 % Plotting and number of steps
69 n = ceil(input.tEnd/input.dT);
70 xP = zeros(length(x),n);
71 dP = zeros(7,n);
72

73 % Find the initial angular momentum
74 d = input.rhs;
75 [˜,hECI0] = RHSSpacecraftWithRWA(0,x,d);
76

77 % Run the simulation
78 for k = 1:n
79 % Control
80 u = [0;0;0];
81 angleError = [0;0;0];
82 if(input.controlIsOn)
83 % Find the angle error
84 angleError = ErrorFromQuaternion(x(1:4), qTarget);
85 % Update the controllers individually
86 for j = 1:nWheels
87 [u(j), input.pd(j)] = PDControl('update',angleError(j),input.pd(j

));
88 end
89 end
90

91 % Wheel torque
92 d.torqueRWA = d.inr*u;
93

94 % Get the delta angular momentum
95 [˜,hECI] = RHSSpacecraftWithRWA(0,x,d);
96 dHECI = hECI - hECI0;
97 hMag = sqrt(dHECI'*dHECI);
98

99 % Plot storage
100 xP(:,k) = x;
101 dP(:,k) = [hMag;d.torqueRWA;angleError];
102

103 % Right hand side

378

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

104 x = RungeKutta(@RHSSpacecraftWithRWA,0,x,input.dT,d);
105 end
106

107 [t,tL] = TimeLabel((0:(n-1))*input.dT);
108

109 % Record initial conditions and results
110 d = struct;
111 d.input = input;
112 d.x0 = x0;
113 d.qTarget = qTarget;
114 d.xPlot = xP;
115 d.dPlot = dP;
116 d.tPlot = t;
117 d.tLabel = tL;
118

119 y = cell(1,nWheels);
120 for k = 1:nWheels
121 y{k} = sprintf('\\omega_%d',k);
122 end
123 d.yLabel = [{'q_s','q_x','q_y','q_z','\omega_x','\omega_y','\omega_z'}

y];
124 d.dLabel = {'\Delta H (Nms)','T_x (Nm)', 'T_y (Nm)', 'T_z (Nm)', ...
125 '\theta_x (rad)', '\theta_y (rad)', '\theta_z (rad)'};
126

127 if nargout == 0
128 PlotSpacecraftSim(d);
129 end

The plotting code is put into a separate function that accepts the output data structure. We
create and save the plot labels in the simulation function. This allows us to replot any saved
output. We add a statement to check for nonzero angle errors before creating the control and
angle error plots, since they are not needed for open loop simulations.

TIP Use the fields in your structure for plotting without renaming the variables locally,
so you can copy/paste individual plots to the command line after doing a run of your simulation.

PlotSpacecraftSim.m

1 %% PLOTSPACECRAFTSIM Plot the spacecraft simulation output
2 %% Form
3 % PlotSpacecraftSim(d)
4 %% Inputs
5 % d (.) Simulation data structure
6 %% Outputs
7 % None.

12

379

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

13 function PlotSpacecraftSim(d)
14

15 t = d.tPlot;
16

17 yL = d.yLabel(1:4);
18 PlotSet(d.tPlot, d.xPlot(1:4,:), 'x label', d.tLabel, 'y label', yL

,...
19 'plot title', 'Attitude', 'figure title', 'Attitude');
20

21 yL = d.yLabel(5:7);
22 PlotSet(d.tPlot, d.xPlot(5:7,:), 'x label', d.tLabel, 'y label', yL,...
23 'plot title', 'Body Rates', 'figure title', 'Body Rates');
24

25 yL = d.yLabel(8:end);
26 PlotSet(t, d.xPlot(8:end,:), 'x label', d.tLabel, 'y label', yL,...
27 'plot title', 'RWA Rates', 'figure title', 'RWA Rates');
28

29 yL = d.dLabel(1);
30 PlotSet(d.tPlot, d.dPlot(1,:), 'x label', d.tLabel, 'y label', yL,...
31 'plot title', 'Inertial Angular Momentum',...
32 'figure title', 'Inertial Angular Momentum');
33

34 if any(d.dPlot(5:end,:)˜=0)
35 yL = d.dLabel(2:4);
36 PlotSet(d.tPlot, d.dPlot(2:4,:), 'x label', d.tLabel, 'y label', yL

,...
37 'plot title', 'Control Torque', 'figure title', 'Control Torque');
38 yL = d.dLabel(5:end);
39 PlotSet(d.tPlot, d.dPlot(5:end,:), 'x label', d.tLabel, 'y label',

yL,...
40 'plot title', 'Angular Errors', 'figure title', 'Angular Errors');
41 end

An interesting exercise for the reader would be to replace the fixed disturbance input,
d.torque, with a function handle that calls a disturbance function. This forms the basis of
spacecraft simulation in our Spacecraft Control Toolbox, where the disturbances are calculated
from the spacecraft geometry and space environment as it rotates and moves along its orbit.

Summary
This chapter has demonstrated how to write the dynamics and implement a simple control law
for a spacecraft with reaction wheels. Our control system is only valid for small angle changes
and will not work well if the angular rates on the spacecraft get large. In addition, we do
not consider the torque or momentum limits on the reaction wheels. We also learned about
quaternions and how to implement kinematics of rigid body with quaternions. We showed how
to get angle errors from two quaternions. Table 13.1 lists the code developed in the chapter.

380

CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

Table 13.1: Chapter Code Listing

File Description
RHSSpacecraftWithRWA RHS for spacecraft with reaction wheels
ErrorFromQuaternion Spacecraft simulation script
SpacecraftSim Spacecraft simulation script
SpacecraftSimBatch Spacecraft simulation function
BatchSimRuns Multiple runs of the spacecraft simulation
PlotSpacecraftSim Plot the simulation results
QTForm Transform a vector opposite the direction of the quaternion
QUnit Normalize a quaternion

381

	13 Spacecraft Attitude Control
	13.1 Creating a Dynamical Model of the Spacecraft
	Problem
	Solution
	How It Works

	13.2 Computing Angle Errors from Quaternions
	Problem
	Solution
	How It Works

	13.3 Simulating the Controlled Spacecraft
	Problem
	Solution
	How It Works

	13.4 Performing Batch Runs of a Simulation
	Problem
	Solution
	How It Works

