CHAPTER 10

Fault Detection

Introduction

Fault detection is the process of detecting failures, also known as faults, in a dynamical system.
It is an important area for systems that are supposed to operate without human supervision.
There are many ways of detecting failures. The simplest is using boolean logic to check against
fixed thresholds. For example, you might check an automobile’s speed against a speed limit.
Other methods include fuzzy logic, parameter estimation, expert systems, statistical analysis,
and parity space methods. In this section, we will implement one type of fault detection system,
a detection filter. This is based on linear filtering. The detection filter is a state estimator tuned
to detect specific failures. We will design a detection filter system for an air turbine. We will
also show how to build a graphical user interface (GUI) as a front end to the fault detection
simulation.

10.1 Modeling an Air Turbine

Problem

We need to make a numerical model of an air turbine to demonstrate detection filters.

Solution

Write the equations of motion for an air turbine. We will use a linear model of the air turbine
to simplify the detection filter design. This will allow us to model the system with a linear state
space model.

© Michael Paluszek and Stephanie Thomas 2020 277
M. Paluszek and S. Thomas, MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 10

https://doi.org/10.1007/978-1-4842-6124-8_10

CHAPTER 10 FAULT DETECTION

Pressure Regulator Turbine /

u >
Constant]
Pressure Air Load
Supply L |
—»
p
)
Pressure Sensor
Tachometer

Figure 10.1: Air turbine. The arrows show the airflow. The air flows through the turbine blade tips
causing it to turn.

How It Works

Figure 10.1 shows an air turbine.! It has a constant pressure air supply. We can control the
valve from the air supply, the pressure regulator, to control the speed of the turbine. The air
flows past the turbine blades causing it to turn. The control needs to adjust the air pressure to
handle variations in the load. We measure the air pressure p downstream from the valve, and
we also measure the rotational speed of the turbine w with a tachometer.

The dynamical model for the air turbine is

p 0 Tp "
[W]:[[iz —%][w}—i_ OTP]u (10.1)
This is a state space system:
T =azr+ bu (10.2)
where
_1 0
a= [% 1] (10.3)
"
b= [OTP] (10.4)

'PhD thesis of Jere Schenck Meserole, “Detection Filters for Fault-Tolerant Control of Turbofan Engines,” Mas-
sachusetts Institute of Technology, Department of Aeronautics and Astronautics, 1981.

278

CHAPTER 10 FAULT DETECTION

The state vector is

W

[p] (10.5)

The pressure downstream from the regulator is equal to K, when the system is in equilibrium.
Tp is the regulator time constant, and 7; is the turbine time constant. The turbine speed is
Ky, when the system is in equilibrium. The tachometer measures w, and the pressure sensor
measures p. The load is folded into the time constant for the turbine.

The code for the right-hand side of the dynamical equations is shown in the following.
Only one line of code is needed. The rest returns the default data structure. The simplicity of
the model is due to its being a state space model. The number of states could be large, yet the
code would not change.

RHSAirTurbine.m

27 function xDot = RHSAirTurbine(7, x, d)
28

29 % Default data structure

30 if(nargin < 1)

31 kP = 1;

32 kT = 2;

33 tauP = 10;

34 tauT = 40;

35 c = eye(2);

36 b = [kP/tauP;0];

37 a = [-1/tauP 0; kT/tauT -1/tauT];
38

39 xDot = struct('a',a,'b',b,'c',c,'u',0);
40 if (nargout == 0)

41 disp ('RHSAirTurbine struct:');

2 end

43 return

4 end

The response to a step input for u is shown in Figure 10.2. The pressure settles faster than
the turbine speed. This is due to the turbine time constant and the lag in the pressure change.
The residuals are very small because there are no failures.

279

CHAPTER 10 FAULT DETECTION
Detection Filter Simulation
100 T T T T T T T T
o 50 T
0 1 | | 1 | | | l
0 2 4 6 8 10 12 14 16 18
Time (min)
Detection Filter Simulation
200 T T T T T T T
3 100 - —
0 | | | | | | | |
0 2 4 6 8 10 12 14 16 18
Time (min)
o 410 Detection Filter Simulation
(_U 1 I T T T T T T -
> 0 —
S -1 E .
g '2 ! 1 1 1 1 1 1 1 1]
X o 2 4 6 8 10 12 14 16 18
Time (min)
3 w10™ Detection Filter Simulation
§ O T T T T T T T T B
o© -2 _
‘@ -4 :
(O]
X o 2 4 6 8 10 12 14 16 18
Time (min)

Figure 10.2: Air turbine response to a step pressure regulator input. The residuals are zero as expected.

10.2

Problem

Building a Detection Filter

We want to build a system to detect failures in our air turbine using the linear model developed

in the previous recipe.

Solution

We will build a detection filter that detects pressure regulator failures and tachometer failures.
Our plant model (continuous a, b, and ¢ state space matrices) will be an input to the filter

building function.

280

CHAPTER 10 FAULT DETECTION

How It Works

The detection filter is an estimator with a specific gain matrix that multiplies the residuals. The
residuals are the difference between the estimated outputs and the outputs:

A 1 ~ K ~
| | —~ 0 P v dir di2 p—p
HIR i 1 F3 RS i CRA P o BT

Tp
d21 d22 W —w
where p is the estimated pressure and w is the estimated angular rate of the turbine. The D ma-
trix is the matrix of detection filter gains. These feedback the residuals, the difference between
the measured and estimated states, into the detection filter. The residual vector is
r:{p_p } (10.7)

w—w

The residuals are the difference between the measured values and the estimated values. The D
matrix needs to be selected so that this vector tells us the nature of the failure. The gains should
be selected so that

1. The filter is stable.

2. If the pressure regulator fails, the first residual p — p is nonzero, but the second remains
Zero.

3. If the turbine fails, the second residual w — @ is nonzero, but the first remains zero.

A gain matrix is
Lo
D:a+[76 1 } (10.8)
T2
The time constant 77 is the pressure residual time constant. The time constant 72 is the
tachometer residual time constant. In effect, we cancel out the dynamics of the plant and replace
them with decoupled detection filter dynamics. These time constants should be shorter than the
time constants in the dynamical model so that we detect failures quickly. However, they need
to be at least twice as long as the sampling period to prevent numerical instabilities.
We will write a function with three actions, an initialize case, an update case, and a reset
case. varargin is used to allow the three cases to have different input lists. The function
signature is

DetectionFilter.m

49 function d = DetectionFilter(action, varargin)

The header and syntax for DetectionFilter are shown as follows. We used LaTeX
equations to describe the function.

281

_

o° o°

o o° o° o o° o° o° o° o

O ® N L AW N

CHAPTER 10 FAULT DETECTION

DETECTIONFILTER Builds and updates a linear detection filter.
Forms

d = DetectionFilter('initialize', d, tau, dT)
d = DetectionFilter('update', u, vy, d)
d = DetectionFilter('reset',6 d)

Description

The detection filter gain matrix d is designed during the initialize

action. The continuous matrices are then discretized using the
internal

function CToDZOH. The esimated state and residual vectors are
initialized

to the size dictated by a. During the update action, the residuals
and

% new estimated state are calculated and stored in the data structure d

o° o° o° o° o° o o° o o° o° o° A° o° O° o O° A° o° A° o° A° o° o° o° o° o° o° o°

The residuals calculation is
$$r =y - c\hat{x}ss
The estimated state calculated with the detection filter gains is

$$\hat{x} {k+1} = ax\hat{x} + +b*u + dxr$$

Inputs
action (1,:) 'initialize' or 'update'
d (.) Data structure
.a (:,:) State space continuous a matrix
.b (:,1) State space continuous b matrix
.c (:,:) State space continuous c matrix
tau (:,1) Vector of time constants
daT (1,1) Time step
u (:,1) Actuation input
v (:,1) Measurement vector
Outputs
d (.) Updated data structure
(:,:) State space discrete a matrix
:,1) State space discrete b matrix

()
(:,:) State space discrete c matrix
(:,:) Detection filter gain matrix

() Estimated states
() Residual vector

B

KX oaoo

1
1

.

282

CHAPTER 10 FAULT DETECTION

The filter is built and initialized in the following code in DetectionFilter. The con-
tinuous state space model of the plant, in this case, our linear air turbine model, is an input.
The selected time constants 7 are also an input, and they are added to the plant model as in
Equation 10.8. The function discretizes the plant a and b matrices and the computed detection
filter gain matrix d.

48
49 function d = DetectionFilter(action, wvarargin)
50

51 switch lower (action)

52 case 'initialize'

53 d = varargin{1};
54 tau = varargin{2};
55 dT = varargin{3};

56
57
58
59
60
61
62
63

o\°

Design the detection filter
.d = d.a + diag(1l./tau);

[o

o\°

Discretize both
.d = CToDZOH(d.d, d.b, 4T);
d.a, d.b] = CToDZOH(d.a, d.b, 4T);

— Q

64 % Initialize the state
66 d.x = zeros(m,1);
67 d.r = zeros(m,1);

The update for the detection filter is in the same function, as the next action in the switch
statement. Note the equations implemented as described in the header.

69 case 'update'

70 u = varargin{1l}
7 = varargin{2}
7 = varargin{3};

73 y - d.c*xd.x;

74 .Xx = d.axd.x + +d.bxu + d.dxr;
75 .Y = r;

7

7

QoK AN
1

Finally, we create a reset action to allow us to reset the residual and state values for the filter
in between simulations. After this action, we end the switch statement.

77 case 'reset'

78 d = varargin{1l};
79 = size(d.a,l);
80 zeros (m, 1) ;
81 = zeros(m,1);
82 end

Q0 3
B
It

283

CHAPTER 10 FAULT DETECTION

10.3 Simulating the Fault Detection System
Problem

We want to simulate a failure in the plant and demonstrate the performance of the failure detec-
tion.

Solution

We will build a MATLAB script that designs the detection filter using the function from the
previous recipe and then simulates it with a user selectable pressure regulator or tachometer
failure. The failure can be total or partial.

How It Works

The script designs a detection filter using DetectionFilter from the previous recipe and
implements it in a loop. Runge-Kutta integration propagates the continuous domain right-hand
side of the air turbine, RHSAirTurbine. The detection filter is discrete time.

The script has two scale factors uF and tachF that multiply the regulator input and the
tachometer output to simulate failures. Setting a scale factor to zero is a total failure, and setting
it to one indicates that the device is working perfectly. If we fail one, we expect the associated
residual to be nonzero and the other to stay at zero. Failures can be any number between zero
and one. Partial failures are not necessarily related to a specific mechanical failure but are useful
for testing the system.

DetectionFilterSim.m

)

% Simulation of a detection filter
Simulates detecting failures of an air turbine.

o° o

An air turbine has a constant pressure air source that sends air
through a duct that drives the turbine blades. The turbine is
attached to a load.

o° o° o°

The air turbine model is linear. Failures are modeled by multiplying
the regulator input and tachometer output by a constant. A constant
of 0 is a total failure and 1 is perfect operation.

o° o o°

O ® N L R W N =

o\

)
o\°

% User inputs

3
o°

Failures. Set to any number betweem 0 and 1 is 0 is total failure. 1
is working perfectly.

18 % UuF scales the actuation u. tachF scales the rate measurement.

19 uF = 0;

20 tachF = 1;

22 % Time constants for failure detection

23 taul = 0.3; % sec

284

CHAPTER 10 FAULT DETECTION

24 tau2 = 0.3; % sec

25

26 % End time

27 tEnd = 1000; % sec

28

29 % State space system

30 d = RHSAirTurbine;

31

32 Initialization

33 dT = 0.02; % sec

34 ceil (tEnd/dT) ;

35

36 % Initial state

37 x = [0;0];

38

39 %% Detection Filter design
40 dF = DetectionFilter('initialize',d, [taul;tau2],dT);
41

42 %% Run the simulation

43

4 % Control. This is the regulator input.
45 u = 100;

46

47 Plotting array

48 xXP = zeros(4,n);

49 t = (0:n-1)*dT;

50

51 for k = 1:n

o\°
o\

=}
1]

o\

52 % Measurement vector including measurement failure
53 y = [x(1);tachF*x(2)]; % Sensor failure

54 xP(:,k) = [x;dF.r];

55

56 % Update the detection filter

57 dF = DetectionFilter('update',u,y,dF);

58

59 % Integrate one step

60 d.u = uFxu; % Actuator failure

61 X = RungeKutta(@RHSAirTurbine, t(k), x, 4dT, d);

62 end

63

64 %% Plot the states and residuals
65 [t,tL] = TimeLabel(t);

6 yL = {'p' '\omega' 'Residual P' 'Residual \omega' };

67 tTL = 'Detection Filter Simulation';

68 PlotSet(t, xP,'x label!',tL,'y label',vyL, 'plot title', tTL, 'figure title
', tTL)

285

CHAPTER 10 FAULT DETECTION

1 Detection Filter Simulation
T T T T T T T T

o 0 =
_1 Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18
Time (min)
1 Detection Filter Simulation
T T T T T T T T
30 -
_1 Il Il 1 Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18
Time (min)
Detection Filter Simulation
o 0 T T T T T T T T
©
3 -01F 4
(2]
(0]
¥ -02 t t t t t t t t
0 2 4 6 8 10 12 14 16 18
Time (min)
<1074 Detection Filter Simulation
3 0 T T T T T T T T
©
3 -05 _
(2]
& _1 | | | | | | | |
0 2 4 6 8 10 12 14 16 18
Time (min)

Figure 10.3: Air turbine response to a failed regulator.

In Figure 10.3, the regulator fails and its residual is nonzero. In Figure 10.4, the tachometer
fails and its residual is nonzero. The residuals show what has failed clearly. Simple boolean
logic (i.e., if end statements) are all that is needed.

286

CHAPTER 10 FAULT DETECTION

Detection Filter Simulation

100 T T T T T T T T
a 50 4
O Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18
Time (min)
Detection Filter Simulation
200 T I T T T T T
3 100 i
0 | | | | | | | |
0 2 4 6 8 10 12 14 16 18
Time (min)
%107 Detection Filter Simulation
E 1 T T T T T T
O 4 _
(7]
& -2 . 1 | 1] | | | | N
0 2 4 6 8 10 12 14 16 18
Time (min)

0 Detection Filter Simulation
T T T T T T T T

Residual w
S
o
()]
L

-0.1 t t t t t t t t
0 2 4 6 8 10 12 14 16 18

Time (min)

Figure 10.4: Air turbine response to a failed tachometer.

10.4 Building a GUI for the Detection Filter Simulation
Problem

We want a GUI to provide a graphical interface to the fault detection simulation that will allow
us to evaluate the filter’s performance.

Solution
We will use the MATLAB App Designer to build a GUI that will allow us to

1. Set the residual time constants

2. Set the end time for the simulation

287

CHAPTER 10 FAULT DETECTION

3. Set the pressure regulator input
4. Introduce a pressure regulator or tachometer fault at any time
5. Display the states and residuals in a plot

How It Works

The MATLAB App Designer is invoked by typing appdesigner at the command line. There
are several options for GUI templates, or a blank GUI; we will start from the GUI with
uicontrols. First, let’s make a list of the controls we will need from our desired features
list earlier:

» Edit boxes for the simulation duration, residual time constants 7; and 7o, pressure regu-

lator setting u
» Edit boxes for the pressure regulator and tachometer fault parameters, with buttons for

sending the newly commanded values to the simulation
» Text box for displaying the calculated detection filter gains
* Run button for starting a simulation
* Two plot axes

In order to change the fault parameters while the simulation is running, we will need the
loop to be checking a variable that can be externally set by the GUI. We can do this using global
variables.

There are several templates that we can use. We will start with the basic blank template.
Type appdesigner in the command window. Figure 10.5 shows the interface.

Double-click the blank app template.

Add the app DFGUTI. It will appear in your folder as DFGUI .mlapp.

Add the following to the blank template:

1. Parameter input boxes

(a) Duration

(b) Input

(c) Tau 1

(d) Tau?2

(e) Gains (2-by-2 matrix)

288

CHAPTER 10 FAULT DETECTION

LR] App Designar Start Page

MATLAB

Want to embed your own HTML content? Use the HTML Ul component. m

Gatting Started | GUIDE Migrasen Siraiegies | Disghiying Geaphics in Agp Desigres | Fislease Notos
1 Open
- New
Recent Apps
£ Morigage —
Blank App 2-Panel App with Auto-Feflcw 3-Panal App with Auto-Ratiow

= Examples: Genaral
s

Intprnctive Tutorisl Respand to Numerical Input FRespond to User Sslections Embad HTML Cantont

Lay Out Confrols in a Grid

= Examples: Programming Tasks

n :

Link Data to a Tree Anabyze an image Configure a Timer Display Specialized Axes
Create a Table Query Website Data Pass Data Between Apps

Figure 10.5: The interface to appdesigner.

2. Failure input boxes

(a) Tachometer
(b) Input
(c) Send button for tachometer

(d) Send button for input

289

CHAPTER 10 FAULT DETECTION

-8 App Dosignar - agpl.miapp

app misgs =

[B
= e
Date Pick Do O E
Eit Fie T a
Tex
A o
Labe o Butt
e
L L3
..... tate Button
W =
Tak ggbe Butts

Figure 10.6: Snapshot of the blank app.

3. Calculate button
4. Reset button
5. State plot

6. Residual plot

You add items by dragging and dropping them on the window from the items on the left-
hand side. We use numeric for the input text boxes. Figure 10.7 shows the completed interface.
There are four push buttons.

290

CHAPTER 10 FAULT DETECTION

[N] App Designer - [Users/Mike/syn/MATLABBocks MATLABCookbook2/MATLAB/ Chapter (9/DFGULmIapp®

] ok Paramaters Faiures
Ao Buston Chack Bax
Eurasion 1000
Tachomster 1| [Tachometer Faut
Input 100
- input Faul [] Input Fauit
W Tau 1 8 [E] et
Date Picke > Do
Tau 2 {5} L]
Tiress Stop f5) oo
= i -
Exit Fie HTML g
States
Labe List B . Caladeis
Fo05
Fesat
L =)
13 =]
Sher Sproer State Bution o
6 01 02 03 04 05 08 07 08 09
Time
Residuals
o
3
S o8
. €
B
Tron A
0 01 02 03 04 05 06 07 08 09 1
Time
d Fane Tabs Growe

Figure 10.7: Snapshot of the app after the interface is done.

You can add information about the app. Figure 10.8 shows the window for app information.

The app appears in the app menu as shown in Figure 10.9.

We select the callback for calculate. The App Designer highlights where the code should
go. We copy relevant code from the simulation script. We get the inputs from the text boxes.

291

CHAPTER 10 FAULT DETECTION

LX) App Designar - [Users/Mika/sviyMATLABB0oksMATLABCookbook2/MATLAB/Chapter_09/DF GULmiapp®

Description
Prenides & GUI for the deliction Aier script

App details display in certain siuations, such as when you share your app of view
YOUS AP in SOM SyStem o Drawsers,

(2%) [oo

Figure 10.8: App Details let you add information about the app for users.

Figure 10.10 shows the code. You access parameters from the text boxes using
app.xxx.Value. For all plot-related functions, you need to add the axes handle using
app .UAxes. or app . UAxe2s.

292

CHAPTER 10 FAULT DETECTION

MATLAB

| ™ Open...

N
Recent Apps

£, DFGUI

%2 Mortgage

Figure 10.9: The app appears in the app menu. You get to this window by hitting the design app button.

Figure 10.11 shows a debugger breakpoint. You have full access to the debugger in App
Designer. You will also see MATLAB warnings on the right.

Figure 10.12 shows the app after a run.

293

FAULT DETECTION

CHAPTER 10

SHIAILNIU 4

QUHD ! INFHYd 4

TOHLNOD NOLLNDEXNE HIVETIVD 4

NOILISO 4

AUALOVHILNI 4

I afuyued

(a] miblapuog

| angiuey

a ERRAIH SweNILOS
1NOd &

- ouy od opiog
= [seoveoren] Jopgpunaibizeg
- M woowoono] sojoppunaiban
ONITALS ONY HOMWD &
L3E JE)| NONIEOFRL

AIMURIES L°T8

NE [o
speqED | Jopedsu)
uoyngesey dde
uonngeenoesy dde
ProtIpIIne induy dde
PEdupIaawoye | dde
uopngne ginduy dde
uagngyne Jmawoyoe] dde
iPuRgsAnE dde o
petpIsdargow | dde
P 4upIszne | dde
Pietdup3s|ne) dde
£ pieiupinduy dde
PlaldupguoleIng dde
|BUR s BRI dde o
Zsanyy dde
sy dde
aunbidin dde o
o yoreeg | (B

HISMOHE LNINOINOD

HOLI3

pua - |

{,{ebawoy}"a, ', d7a, ‘ZsaxyIn dde)puabay -
{13 zsexyIn dde)1aqeyx -

{ (:'¢:g)dx ‘3'zsaxyIn-dde)ioyd =
(zsaxyIn-dde)saxe -

(.ebawoy, *,d, ‘saxyIn-dde)puabay -
(73 saxy1In-dde)aqeyx =
[(:'ZiT)dx *3'saxyIn-dde)jond = O
(saxyIn dde)saxe
S1BNPTSSS PUB S3IEIS Byl 101d %

H3NRqeTaurL = [133] 3 e e e
pua - =
P Lp fx "(4)3 "SUTQUINLITYSHES jeiinyabuny = X = L
JUN|TES JOIENIIY % Inkdn = n-p = -
days auo ajesbajul %
= ———
f{4p*A'n* ajepdn, ja231T4uU0TIda3ag = 4p - = .
193174 UOTI9933p ay) ayepdn % ==)R e = o
—— i — = il
PATAPIX] = (1 3)d% 3 =) =
a4n|Tey J05U3S % ![(Z)x*JYIeRI(T)X] = A =
24nTe) judwasnseaw BuTpN IUT J0339A JUBWIINSEI| % LNOAYT ddY &
UL =y Jo} =
‘lete] = x n
p#(1-u:@) = b =
u't)sodaz = d% =
f(lp/uotiednp)Tad = u ;
Aedse Butiiond s
f(Lp’[ZneliTne}] ‘p’ S2TIRTATUT, J423\T4U0TIIa3a(= 4p
fAUTQINLITYSHY = p
12pow ay3 dn 3ag %
‘amep p1aT43Tp3szne) "dde = zney =
‘amep p1aT43Tp3sTne] "dde = ney =
famep p1at43tpasdaisaut) tdde = 1p =
lan1eptp1aT43Tp3ilnedindug *dde = 4n =
fan1ep p1aT431Tpadaiawoyde] ~dde = 4yoey =
faniep*p1at4iTpauoTiesngdde = uoTiednp
faneAt £ PLaT4ITpIandul *dde = n
dde ayj wosy ejep ayy 196 % PONIUCTNBNENIND
(3uaAa ‘dde)paysnduolingaieni|el uoTiouny
uo3lingalelnae) :uoTidung paysnd uoling % gh g yaueag
padolg | suogaung | syIeqed
MBA BPOD i, LIBFEB(HISMOHE 3000 =
* ddepr 940
NMH 5304N0S3Y MAN a3 ETUET) LH3SNI = E
syuawnBry - - -

&1 [# [7] wepw - pud Y gnduddy Auedosd uonsund yseqeD ams

B 8% wewwoy « 0109 ka _nU mw- ANU ﬂw- mﬂ

uny - sdil mous

4 @

suaje Buipoo dde sygqeu3 A

~dde|wr|No4a/60™121dey /8y LYN/ZH000 0008y TLYIN/SH00gaY LYW /uAsfexin/sIesn/ - saubisaq ddy [B]

The light area is where the code goes. The code is from the simulation script.

Figure 10.10

294

FAULT DETECTION

CHAPTER 10

pua bl
pua
pua =
(@inbryIn-dde)aiaap -
paialap sT dde uaym aunbBT4IN 239190 %

(dde)a3ya1ap uoTiouny cmoaoe W
uor3alap dde auojaq S3INDaXa IBY) IPO) %

pua =
pua =
dde Jea1d TSRS
= jnobaeu 4t * -

(a4nbr41n-dde ‘dde)ddysaistbas -]
Jaubrsag ddy yitm dde ayy saisthay %

(dde)sjuauodwo)aies.d - -l =

sjuauodwod pue ainbT4In 21ead) % aomm, I

gl - e

In9d4a = dde uotiouny e s

dde 3anJ35u03 %

) | soizedsu LNOAYT dd¥ &
(3119nd = $S220y) spoyiaw
uoT3a13p pue uoTieasd ddy %

uoyngesey dde
uoyngaenses dde

yamsndu) dde pua
Yopmsieieicye) dde pua -
£ pagnpgindu) dde f,uo, = 31q1STA a4nbT4IN " dde

PP tewoyse L ‘dde paieatd ase sjuauodwod 11e Jalje aunbBTy 3yl Moys %

dde «
bbb o {19594, = }I¥X3L'uplingiasay dde

PIRIP3QUIED dde 1[ZZ @01 ZSZ PIS] = UOTITSO4'uoiinglasay-dde
praduepaszne) dde f{,ysnd, ‘aunbr4In-dde)juolingIn = uolingiasay-dde =
polppas|ne) dde u03INGIISIY LU %

PRSP Induy dde
prEJupIsuoneng dde
BUEJSIEIBWERE dde o

{,3181N318), = }¥3]°uolingajeynde)-dde
*[ZZ @01 E£0E $IS] = UDTITSOd uolingaie|niie)-dde o
f(,ysnd, ‘aunbrirn-ddejuolangin = uojingaieinaie)-dde

Zsaxy|n dde uo3INGAILINITe] IJeIU 5%
sy dde
nbi|ndde o '[8Z S¥ §9 SIZ] = WOTITSO4'Yd3TMSIndu] - dde - dh

apr1s, ‘1auedsanyted-dde)yszTmsTn = yo3TMsIndus *dde

HISMOHE LNINOdWNOD H3ISMOHE 3000 &
® doepu'inD4g
anE3a S3THNOSTH MIA a3 ALVDIAYN LH3sHI T4
- a -
BuiBBngag unp N0 daig £ dals enupuwo) sdi] Moys uspuy - pud Apadosd uopowny NoeqEED

s3s0je Buwpoa dde sjgeuy A
D ujdais [_.lh”_._ s (Fal Wwewwo) a 0l09 ka T

ddejuingJa/60 1adey /8y LVIN/ZH00g400D8Y T LYIN/SHOoaaY LYY I/siasn/ - Jaubisaq ddy @

soqiedong | suorouny | syseqieD

You can use the debugger in the App Designer.

Figure 10.11

295

CHAPTER 10 FAULT DETECTION
[NN MATLAB App
Parameters Failures
Duration . ‘IGU(_] - ;
—_— Tachometer | 1| | Tachometer Fault
Input 100
- - Input Fault 0 Input Fault |
Tau1(s) | 03] k | L[e J
Tau 2 (s) 03]
Time Step (s) 0.02]
1 States
—]
051 w
» Calculate
@«
T 0
»
-0.5 Reset
0 2 4 6 8 10 12 14 16 18
Time (min)
Residuals
0
o
w 005T T
[}
3
D 01
@
o
-0.15
0.2 i] i] i : : :]
0 2 4 6 8 10 12 14 16 18
Time (min)

Figure 10.12: The app after a run.

296

CHAPTER 10 FAULT DETECTION

Summary

This chapter has demonstrated how to design a detection filter for detecting faults in a dynam-
ical system. The system is demonstrated with an air turbine that can experience a pressure
regulator failure and a tachometer failure. In addition, we used App Designer to design a GUI
to automate filter simulations. The GUI demonstrates real-time plotting and injecting failures
into an ongoing simulation loop. Table 10.1 lists the code developed in the chapter.

Table 10.1: Chapter Code Listing

File Description
RHSAirTurbine Air turbine dynamical model in continuous state space form
DetectionFilter Builds and updates a linear detection filter

DetectionFilterSim Simulation of a detection filter
DetectionFilterGUI Run the detection filter simulation from a GUI
DFGUILm1App App Designer app

DFGUI.mlappinstall DFGUI app installer

297

	10 Fault Detection
	10.1 Modeling an Air Turbine
	Problem
	Solution
	How It Works

	10.2 Building a Detection Filter
	Problem
	Solution
	How It Works

	10.3 Simulating the Fault Detection System
	Problem
	Solution
	How It Works

	10.4 Building a GUI for the Detection Filter Simulation
	Problem
	Solution
	How It Works

