
CHAPTER 10

Fault Detection

Introduction
Fault detection is the process of detecting failures, also known as faults, in a dynamical system.
It is an important area for systems that are supposed to operate without human supervision.
There are many ways of detecting failures. The simplest is using boolean logic to check against
fixed thresholds. For example, you might check an automobile’s speed against a speed limit.
Other methods include fuzzy logic, parameter estimation, expert systems, statistical analysis,
and parity space methods. In this section, we will implement one type of fault detection system,
a detection filter. This is based on linear filtering. The detection filter is a state estimator tuned
to detect specific failures. We will design a detection filter system for an air turbine. We will
also show how to build a graphical user interface (GUI) as a front end to the fault detection
simulation.

10.1 Modeling an Air Turbine
Problem

We need to make a numerical model of an air turbine to demonstrate detection filters.

Solution

Write the equations of motion for an air turbine. We will use a linear model of the air turbine
to simplify the detection filter design. This will allow us to model the system with a linear state
space model.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 10

277

https://doi.org/10.1007/978-1-4842-6124-8_10

CHAPTER 10 FAULT DETECTION

Figure 10.1: Air turbine. The arrows show the airflow. The air flows through the turbine blade tips
causing it to turn.

How It Works

Figure 10.1 shows an air turbine.1 It has a constant pressure air supply. We can control the
valve from the air supply, the pressure regulator, to control the speed of the turbine. The air
flows past the turbine blades causing it to turn. The control needs to adjust the air pressure to
handle variations in the load. We measure the air pressure p downstream from the valve, and
we also measure the rotational speed of the turbine ω with a tachometer.

The dynamical model for the air turbine is

[
ṗ
ω̇

]
=

[
− 1

τp
0

Kt
τt

− 1
τt

][
p
ω

]
+

[
Kp

τp

0

]
u (10.1)

This is a state space system:
ẋ = ax+ bu (10.2)

where

a =

[
− 1

τp
0

Kt
τt

− 1
τt

]
(10.3)

b =

[
Kp

τp

0

]
(10.4)

1PhD thesis of Jere Schenck Meserole, “Detection Filters for Fault-Tolerant Control of Turbofan Engines,” Mas-
sachusetts Institute of Technology, Department of Aeronautics and Astronautics, 1981.

278

CHAPTER 10 FAULT DETECTION

The state vector is [
p
ω

]
(10.5)

The pressure downstream from the regulator is equal toKpu when the system is in equilibrium.
τp is the regulator time constant, and τt is the turbine time constant. The turbine speed is
Ktp when the system is in equilibrium. The tachometer measures ω, and the pressure sensor
measures p. The load is folded into the time constant for the turbine.

The code for the right-hand side of the dynamical equations is shown in the following.
Only one line of code is needed. The rest returns the default data structure. The simplicity of
the model is due to its being a state space model. The number of states could be large, yet the
code would not change.

RHSAirTurbine.m

27 function xDot = RHSAirTurbine(˜, x, d)
28

29 % Default data structure
30 if(nargin < 1)
31 kP = 1;
32 kT = 2;
33 tauP = 10;
34 tauT = 40;
35 c = eye(2);
36 b = [kP/tauP;0];
37 a = [-1/tauP 0; kT/tauT -1/tauT];
38

39 xDot = struct('a',a,'b',b,'c',c,'u',0);
40 if(nargout == 0)
41 disp('RHSAirTurbine struct:');
42 end
43 return
44 end

The response to a step input for u is shown in Figure 10.2. The pressure settles faster than
the turbine speed. This is due to the turbine time constant and the lag in the pressure change.
The residuals are very small because there are no failures.

279

CHAPTER 10 FAULT DETECTION

0 2 4 6 8 10 12 14 16 18
Time (min)

0
50

100

p

Detection Filter Simulation

0 2 4 6 8 10 12 14 16 18
Time (min)

0
100
200

Detection Filter Simulation

0 2 4 6 8 10 12 14 16 18
Time (min)

-2
-1
0
1

R
es

id
ua

l P 10-14 Detection Filter Simulation

0 2 4 6 8 10 12 14 16 18
Time (min)

-4
-2
0

R
es

id
ua

l 10-14 Detection Filter Simulation

Figure 10.2: Air turbine response to a step pressure regulator input. The residuals are zero as expected.

10.2 Building a Detection Filter
Problem

We want to build a system to detect failures in our air turbine using the linear model developed
in the previous recipe.

Solution

We will build a detection filter that detects pressure regulator failures and tachometer failures.
Our plant model (continuous a, b, and c state space matrices) will be an input to the filter
building function.

280

CHAPTER 10 FAULT DETECTION

How It Works

The detection filter is an estimator with a specific gain matrix that multiplies the residuals. The
residuals are the difference between the estimated outputs and the outputs:[

˙̂p
˙̂ω

]
=

[
− 1

τp
0

Kt
τt

− 1
τt

][
p̂
ω̂

]
+

[
Kp

τp

0

]
u+

[
d11 d12
d21 d22

] [
p− p̂
ω − ω̂

]
(10.6)

where p̂ is the estimated pressure and ω̂ is the estimated angular rate of the turbine. TheD ma-
trix is the matrix of detection filter gains. These feedback the residuals, the difference between
the measured and estimated states, into the detection filter. The residual vector is

r =

[
p− p̂
ω − ω̂

]
(10.7)

The residuals are the difference between the measured values and the estimated values. The D
matrix needs to be selected so that this vector tells us the nature of the failure. The gains should
be selected so that

1. The filter is stable.

2. If the pressure regulator fails, the first residual p − p̂ is nonzero, but the second remains
zero.

3. If the turbine fails, the second residual ω − ω̂ is nonzero, but the first remains zero.

A gain matrix is

D = a+

[1
τ1

0

0 1
τ2

]
(10.8)

The time constant τ1 is the pressure residual time constant. The time constant τ2 is the
tachometer residual time constant. In effect, we cancel out the dynamics of the plant and replace
them with decoupled detection filter dynamics. These time constants should be shorter than the
time constants in the dynamical model so that we detect failures quickly. However, they need
to be at least twice as long as the sampling period to prevent numerical instabilities.

We will write a function with three actions, an initialize case, an update case, and a reset
case. varargin is used to allow the three cases to have different input lists. The function
signature is

DetectionFilter.m

49 function d = DetectionFilter(action, varargin)

The header and syntax for DetectionFilter are shown as follows. We used LaTeX
equations to describe the function.

281

CHAPTER 10 FAULT DETECTION

1 %% DETECTIONFILTER Builds and updates a linear detection filter.
2 %% Forms
3 % d = DetectionFilter('initialize', d, tau, dT)
4 % d = DetectionFilter('update', u, y, d)
5 % d = DetectionFilter('reset', d)
6 %
7 %% Description
8 % The detection filter gain matrix d is designed during the initialize
9 % action. The continuous matrices are then discretized using the

internal
10 % function CToDZOH. The esimated state and residual vectors are

initialized
11 % to the size dictated by a. During the update action, the residuals

and
12 % new estimated state are calculated and stored in the data structure d

.
13 %
14 % The residuals calculation is
15 %
16 % $$r = y - c\hat{x}$$
17 %
18 % The estimated state calculated with the detection filter gains is
19 %
20 % $$\hat{x}_{k+1} = a*\hat{x} + +b*u + d*r$$
21 %
22 %% Inputs
23 % action (1,:) 'initialize' or 'update'
24 % d (.) Data structure
25 % .a (:,:) State space continuous a matrix
26 % .b (:,1) State space continuous b matrix
27 % .c (:,:) State space continuous c matrix
28 % tau (:,1) Vector of time constants
29 % dT (1,1) Time step
30 % u (:,1) Actuation input
31 % y (:,1) Measurement vector
32 %
33 %% Outputs
34 % d (.) Updated data structure
35 % .a (:,:) State space discrete a matrix
36 % .b (:,1) State space discrete b matrix
37 % .c (:,:) State space discrete c matrix
38 % .d (:,:) Detection filter gain matrix
39 % .x (:,1) Estimated states
40 % .r (:,1) Residual vector

282

CHAPTER 10 FAULT DETECTION

The filter is built and initialized in the following code in DetectionFilter. The con-
tinuous state space model of the plant, in this case, our linear air turbine model, is an input.
The selected time constants τ are also an input, and they are added to the plant model as in
Equation 10.8. The function discretizes the plant a and b matrices and the computed detection
filter gain matrix d.

48

49 function d = DetectionFilter(action, varargin)
50

51 switch lower(action)
52 case 'initialize'
53 d = varargin{1};
54 tau = varargin{2};
55 dT = varargin{3};
56

57 % Design the detection filter
58 d.d = d.a + diag(1./tau);
59

60 % Discretize both
61 d.d = CToDZOH(d.d, d.b, dT);
62 [d.a, d.b] = CToDZOH(d.a, d.b, dT);
63

64 % Initialize the state
66 d.x = zeros(m,1);
67 d.r = zeros(m,1);

The update for the detection filter is in the same function, as the next action in the switch
statement. Note the equations implemented as described in the header.

69 case 'update'
70 u = varargin{1};
71 y = varargin{2};
72 d = varargin{3};
73 r = y - d.c*d.x;
74 d.x = d.a*d.x + +d.b*u + d.d*r;
75 d.r = r;

Finally, we create a reset action to allow us to reset the residual and state values for the filter
in between simulations. After this action, we end the switch statement.

77 case 'reset'
78 d = varargin{1};
79 m = size(d.a,1);
80 d.x = zeros(m,1);
81 d.r = zeros(m,1);
82 end

283

CHAPTER 10 FAULT DETECTION

10.3 Simulating the Fault Detection System
Problem

We want to simulate a failure in the plant and demonstrate the performance of the failure detec-
tion.

Solution

We will build a MATLAB script that designs the detection filter using the function from the
previous recipe and then simulates it with a user selectable pressure regulator or tachometer
failure. The failure can be total or partial.

How It Works

The script designs a detection filter using DetectionFilter from the previous recipe and
implements it in a loop. Runge-Kutta integration propagates the continuous domain right-hand
side of the air turbine, RHSAirTurbine. The detection filter is discrete time.

The script has two scale factors uF and tachF that multiply the regulator input and the
tachometer output to simulate failures. Setting a scale factor to zero is a total failure, and setting
it to one indicates that the device is working perfectly. If we fail one, we expect the associated
residual to be nonzero and the other to stay at zero. Failures can be any number between zero
and one. Partial failures are not necessarily related to a specific mechanical failure but are useful
for testing the system.

DetectionFilterSim.m

1 %% Simulation of a detection filter
2 % Simulates detecting failures of an air turbine.
3 % An air turbine has a constant pressure air source that sends air
4 % through a duct that drives the turbine blades. The turbine is
5 % attached to a load.
6 %
7 % The air turbine model is linear. Failures are modeled by multiplying
8 % the regulator input and tachometer output by a constant. A constant
9 % of 0 is a total failure and 1 is perfect operation.

14

15 %% User inputs
16

17 % Failures. Set to any number betweem 0 and 1 is 0 is total failure. 1
is working perfectly.

18 % uF scales the actuation u. tachF scales the rate measurement.
19 uF = 0;
20 tachF = 1;
21

22 % Time constants for failure detection
23 tau1 = 0.3; % sec

284

CHAPTER 10 FAULT DETECTION

24 tau2 = 0.3; % sec
25

26 % End time
27 tEnd = 1000; % sec
28

29 % State space system
30 d = RHSAirTurbine;
31

32 %% Initialization
33 dT = 0.02; % sec
34 n = ceil(tEnd/dT);
35

36 % Initial state
37 x = [0;0];
38

39 %% Detection Filter design
40 dF = DetectionFilter('initialize',d,[tau1;tau2],dT);
41

42 %% Run the simulation
43

44 % Control. This is the regulator input.
45 u = 100;
46

47 % Plotting array
48 xP = zeros(4,n);
49 t = (0:n-1)*dT;
50

51 for k = 1:n
52 % Measurement vector including measurement failure
53 y = [x(1);tachF*x(2)]; % Sensor failure
54 xP(:,k) = [x;dF.r];
55

56 % Update the detection filter
57 dF = DetectionFilter('update',u,y,dF);
58

59 % Integrate one step
60 d.u = uF*u; % Actuator failure
61 x = RungeKutta(@RHSAirTurbine, t(k), x, dT, d);
62 end
63

64 %% Plot the states and residuals
65 [t,tL] = TimeLabel(t);
66 yL = {'p' '\omega' 'Residual P' 'Residual \omega' };
67 tTL = 'Detection Filter Simulation';
68 PlotSet(t, xP,'x label',tL,'y label',yL,'plot title',tTL,'figure title

',tTL)

285

CHAPTER 10 FAULT DETECTION

0 2 4 6 8 10 12 14 16 18
Time (min)

-1

0

1

p

Detection Filter Simulation

0 2 4 6 8 10 12 14 16 18
Time (min)

-1

0

1
Detection Filter Simulation

0 2 4 6 8 10 12 14 16 18
Time (min)

-0.2

-0.1

0

R
es

id
ua

l P

Detection Filter Simulation

0 2 4 6 8 10 12 14 16 18
Time (min)

-1

-0.5

0

R
es

id
ua

l

10-4 Detection Filter Simulation

Figure 10.3: Air turbine response to a failed regulator.

In Figure 10.3, the regulator fails and its residual is nonzero. In Figure 10.4, the tachometer
fails and its residual is nonzero. The residuals show what has failed clearly. Simple boolean
logic (i.e., if end statements) are all that is needed.

286

CHAPTER 10 FAULT DETECTION

0 2 4 6 8 10 12 14 16 18
Time (min)

0

50

100

p
Detection Filter Simulation

0 2 4 6 8 10 12 14 16 18
Time (min)

0

100

200
Detection Filter Simulation

0 2 4 6 8 10 12 14 16 18
Time (min)

-2
-1
0
1

R
es

id
ua

l P

10-14 Detection Filter Simulation

0 2 4 6 8 10 12 14 16 18
Time (min)

-0.1

-0.05

0

R
es

id
ua

l

Detection Filter Simulation

Figure 10.4: Air turbine response to a failed tachometer.

10.4 Building a GUI for the Detection Filter Simulation
Problem

We want a GUI to provide a graphical interface to the fault detection simulation that will allow
us to evaluate the filter’s performance.

Solution

We will use the MATLAB App Designer to build a GUI that will allow us to

1. Set the residual time constants

2. Set the end time for the simulation

287

CHAPTER 10 FAULT DETECTION

3. Set the pressure regulator input

4. Introduce a pressure regulator or tachometer fault at any time

5. Display the states and residuals in a plot

How It Works

The MATLABApp Designer is invoked by typing appdesigner at the command line. There
are several options for GUI templates, or a blank GUI; we will start from the GUI with
uicontrols. First, let’s make a list of the controls we will need from our desired features
list earlier:

• Edit boxes for the simulation duration, residual time constants τ1 and τ2, pressure regu-
lator setting u

• Edit boxes for the pressure regulator and tachometer fault parameters, with buttons for
sending the newly commanded values to the simulation

• Text box for displaying the calculated detection filter gains
• Run button for starting a simulation
• Two plot axes

In order to change the fault parameters while the simulation is running, we will need the
loop to be checking a variable that can be externally set by the GUI. We can do this using global
variables.

There are several templates that we can use. We will start with the basic blank template.
Type appdesigner in the command window. Figure 10.5 shows the interface.

Double-click the blank app template.
Add the app DFGUI. It will appear in your folder as DFGUI.mlapp.
Add the following to the blank template:

1. Parameter input boxes

(a) Duration

(b) Input

(c) Tau 1

(d) Tau 2

(e) Gains (2-by-2 matrix)

288

CHAPTER 10 FAULT DETECTION

Figure 10.5: The interface to appdesigner.

2. Failure input boxes

(a) Tachometer

(b) Input

(c) Send button for tachometer

(d) Send button for input

289

CHAPTER 10 FAULT DETECTION

Figure 10.6: Snapshot of the blank app.

3. Calculate button

4. Reset button

5. State plot

6. Residual plot

You add items by dragging and dropping them on the window from the items on the left-
hand side. We use numeric for the input text boxes. Figure 10.7 shows the completed interface.
There are four push buttons.

290

CHAPTER 10 FAULT DETECTION

Figure 10.7: Snapshot of the app after the interface is done.

You can add information about the app. Figure 10.8 shows the window for app information.
The app appears in the app menu as shown in Figure 10.9.
We select the callback for calculate. The App Designer highlights where the code should

go. We copy relevant code from the simulation script. We get the inputs from the text boxes.

291

CHAPTER 10 FAULT DETECTION

Figure 10.8: App Details let you add information about the app for users.

Figure 10.10 shows the code. You access parameters from the text boxes using
app.xxx.Value. For all plot-related functions, you need to add the axes handle using
app.UAxes. or app.UAxe2s.

292

CHAPTER 10 FAULT DETECTION

Figure 10.9: The app appears in the app menu. You get to this window by hitting the design app button.

Figure 10.11 shows a debugger breakpoint. You have full access to the debugger in App
Designer. You will also see MATLAB warnings on the right.

Figure 10.12 shows the app after a run.

293

CHAPTER 10 FAULT DETECTION

Figure 10.10: The light area is where the code goes. The code is from the simulation script.

294

CHAPTER 10 FAULT DETECTION

Figure 10.11: You can use the debugger in the App Designer.

295

CHAPTER 10 FAULT DETECTION

Figure 10.12: The app after a run.

296

CHAPTER 10 FAULT DETECTION

Summary
This chapter has demonstrated how to design a detection filter for detecting faults in a dynam-
ical system. The system is demonstrated with an air turbine that can experience a pressure
regulator failure and a tachometer failure. In addition, we used App Designer to design a GUI
to automate filter simulations. The GUI demonstrates real-time plotting and injecting failures
into an ongoing simulation loop. Table 10.1 lists the code developed in the chapter.

Table 10.1: Chapter Code Listing

File Description
RHSAirTurbine Air turbine dynamical model in continuous state space form
DetectionFilter Builds and updates a linear detection filter
DetectionFilterSim Simulation of a detection filter
DetectionFilterGUI Run the detection filter simulation from a GUI
DFGUI.m1App App Designer app
DFGUI.mlappinstall DFGUI app installer

297

	10 Fault Detection
	10.1 Modeling an Air Turbine
	Problem
	Solution
	How It Works

	10.2 Building a Detection Filter
	Problem
	Solution
	How It Works

	10.3 Simulating the Fault Detection System
	Problem
	Solution
	How It Works

	10.4 Building a GUI for the Detection Filter Simulation
	Problem
	Solution
	How It Works

