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Introduction

Writing software has become part of the job description for nearly every professional engineer
and engineering student. While there are many excellent prebuilt software applications for
engineers, almost everyone can benefit by writing custom software for their own problems.

MATLAB had its origins for that very reason. Scientists that needed to do operations on
matrices used numerical software written in FORTRAN.At the time, using computer languages
required the user to go through the write-compile-link-execute process that was time-consuming
and error-prone. MATLAB presented the user with a scripting language that allowed the user to
solve many problems with a few lines of a script that executed instantaneously. MATLAB had
built-in visualization tools that helped the user better understand the results. Writing MATLAB
was a lot more productive and fun than writing FORTRAN.

MATLAB has grown greatly since those days. The power of the basic MATLAB software
has grown dramatically, and hundreds of MATLAB libraries are now available, both commer-
cially and as open source. MATLAB is so sophisticated that most new users only use a fraction
of its power.

The goal ofMATLAB Recipes is to help all users harness the power of MATLAB. This book
has two parts. The first part, Chapters 1 through 5, gives a framework that you can use to write
high-quality MATLAB code that you, your colleagues, and possibly your customers can utilize.
We cover coding practices, graphics, debugging, and other topics in a problem-solution format.
You can read these sections from cover to cover or just look at the recipes that interest you and
use them in your latest MATLAB code.

The second part of the book, Chapters 6 through 12, shows complete MATLAB applications
revolving around the control of and simulation of dynamical systems. Each chapter provides
the technical background for the topic, ideas on how you can write a simple control system, and
an example of how you might simulate the system. Each system is implemented in a MATLAB
script supported by a number of MATLAB functions. Each chapter also highlights a general
MATLAB topic, like graphics or writing graphical user interfaces (GUIs). We have deliberately
made the control systems simple so that the reader won’t need a course in control theory to get
results. Control experts can easily take the script and implement their own ideas. We cover a
number of areas, ranging from chemical processes to satellites – and we apologize if we didn’t
write an example for your area of interest!

The book has something for everyone – from the MATLAB novice to the authors of com-
mercial MATLAB packages. We learned new things writing this book! We hope that you enjoy
the book and look forward to seeing your software that it inspires.
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Coding in MATLAB



CHAPTER 1

Coding Handbook

The purpose of this chapter is to provide an overview of MATLAB syntax and programming,
highlighting features that may be underutilized by many users and noting important differences
between MATLAB and other programming languages and IDEs. You should also become
familiar with the very detailed documentation that is available from the MathWorks in the help
browser. The Language Fundamentals section describes entering commands, operators, and
data types.

MATLAB has matured a lot in the last two decades from its origins as a linear algebra pack-
age. Originally, all variables were double precision matrices. Today, MATLAB provides differ-
ent variable types such as integers, data structures, object-oriented programming and classes,
and integration with Java. The MATLAB application is a full IDE with an integrated editor,
debugger, command history, and code analyzer and report capabilities. Engineers who have
been working with MATLAB for many years may find that they are not taking advantage of the
full range of capabilities now offered, and in this text we hope to highlight the more useful new
features.

The first part of this chapter provides an overview of the most commonly used MATLAB
types and constructs. We’ll then provide some recipes that make use of these constructs to show
you some practical applications of modern MATLAB.

MATLAB Language Primer
Brief Introduction to MATLAB

MATLAB is both an application and a programming language. It was developed primarily
for numerical computing and is widely used in academia and industry. MATLAB was orig-
inally developed by a college professor in the 1970s to provide easy access to linear algebra
libraries, and the MathWorks was founded in 1984 to continue the development of the product.
The name is derived from MATrix LABoratory. Today, MATLAB uses the LAPACK libraries
for the underlying matrix manipulations. Many toolboxes are available for different engineer-
ing disciplines; in this book, we will focus on features available only in the base MATLAB
application.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 1
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CHAPTER 1 CODING HANDBOOK

The MATLAB application is a rich development environment for the MATLAB language.
It provides an editor, command terminal, debugger, plotting capabilities, creation of graphical
user interfaces, and more recently the ability to install third-party apps. MATLAB can interface
with other languages including FORTRAN, C, C++, Java, and Python. A code analyzer and
profiler are built-in. Extensive online communities provide forums for sharing code and asking
questions.

The main components of the MATLAB application are

Command Window – Terminal for entering commands and operating on variables in the base
workspace. The MATLAB prompt is >>.

Command History – List of previously executed commands.

Workspace display – List of the variables and their values in the current workspace (applica-
tion memory). Variables remain in the memory once created until you explicitly clear
them or close MATLAB.

Current Folder – File browser displaying contents of the current folder and providing file
system navigation. Recent versions of MATLAB can also display SVN status on config-
uration managed files.

File details – Panel displaying information on the file selected in the Current Folder panel.

Editor – Editor for m-files with syntax coloring and a built-in debugger. This can also display
any type of text file and will recognize and appropriately color other languages including
Java, C/C++, and XML/HTML.

Variables editor – Spreadsheet-like graphical editor for variables in the workspace.

App Designer – Application development window.

Help browser – Searchable help documentation on all MATLAB products and third-party
products you have installed.

Profiler – Tool for timing code as it runs.

These components can be docked in various configurations. The default layout of the main
application window or desktop contains the first five components listed earlier and is shown in
Figure 1.1. The Command Window is in the center. The upper-left panel shows a file browser
with the contents of the Current Folder. Under this is a file information display. On the right-
hand side is the Workspace display and the Command History panel. The base workspace is all
the variables currently in the application memory. Commands from the history can be dragged
onto the command line to be executed, or double-clicked. The extensive toolbar includes but-
tons for running the code analyzer and opening the code profiler and the help window, as well as
typical file and data operations. Note the PLOTS and APPS tabs above the toolbar. The PLOTS
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Figure 1.1: MATLAB desktop with the Command Window.

tab allows the graphical creation and management of plots from data selected in the workspace
browser. The APPS tab allows you to access and manage third-party apps that you install.

You can rearrange the components in the application window, moving, resizing, or hiding
them, and save your own layouts. You can “undock” any component, moving it to its own
window. You can also revert back to the default layout at any time or choose from several
other available configurations. You can also hide the toolstrip to get more real estate for your
windows. There are new capabilities to customize your interface with each version, so explore
what’s new!

The editor with the default syntax coloring is shown in Figure 1.2, with a file from this
chapter shown. The horizontal lines show the division of the code into “cells” using a double-
percent sign, which can be used for sequential execution of code and for creating sections of text
when publishing. The cell titles are bolded in the editor. MATLAB keywords are highlighted
in blue, comments in green, and strings in pink. The toolbar includes buttons for commenting
code, indenting, and running or debugging the code. The “Go To” pop-up menu gives access
to subfunctions within a large file (see Section 1.10). Note the PUBLISH and VIEW tabs with
additional features on publishing, covered in the next chapter, and options for the editor view.

The last window we will show is the help browser in Figure 1.3. MATLAB has extensive
help including examples and links to online videos and tutorials. Third-party toolboxes can
also install help into this browser. Like any browser, you can have open multiple tabs, there is
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Figure 1.2: MATLAB file editor.

a search utility, and you can mark favorite topics. We will refer to topics available in the help
browser throughout this book.

Everything Is a Matrix

By default, all variables in MATLAB are double precision matrices. You do not need to declare
a type for these variables. Matrices can be multidimensional and are accessed using one-based
indices via parentheses. You can address elements of a matrix using a single index, taken
column-wise, or one index per dimension. Use square brackets to enclose the matrix data and
semicolons to mark the end of rows. Use a final semicolon to end the line, or leave it off to print
the result to the command line. To create a matrix variable, simply assign a value to it, like this
2x2 matrix a and 2x1 matrix b:

>> a = [1 2; 3 4];
>> a(1,1)

6
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Figure 1.3: MATLAB help window.

1
>> a(3)

2
>> b = [5; 6]
b =

5
6

You can simply add, subtract, multiply, and divide matrices with no special syntax. The
matrices must be the correct size for the linear algebra operation requested. A transpose is
indicated using a single quote suffix, A’, and the matrix power uses the operator ˆ.

>> b = a'*a;
>> c = aˆ2;
>> d = b + c;

By default, every variable is a numerical variable. You can initialize matrices to a given size
using the zeros, ones, eye, or rand functions, which produce zeros, ones, identity matri-
ces (ones on the diagonal), and random numbers, respectively. Use isnumeric to identify
numeric variables. Table 1.1 shows key matrix functions.

7
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Table 1.1: Key Functions for Matrices

Function Purpose
zeros Initialize a matrix to zeros
ones Initialize a matrix to ones
eye Initialize an identity matrix
rand, randn, randi Initialize a matrix of random numbers
isnumeric Identify a matrix or scalar numeric value
isscalar Identify a scalar value (a 1 x 1 matrix)
size Return the size of the matrix

Strings Are Simple

Character arrays are defined using single quotes. They can be concatenated using the same
syntax as matrices, namely, square brackets. They are indexed the same way as matrices. Here
is a short example of character array manipulation:

>> s = '';
>> isempty(s)
ans =

logical
1

>> s = 'Hello World';
>> msg = [s ' more chars']
msg =

'Hello World more chars'
>> hello = msg(1:5)
hello =

'Hello'

Use ischar to identify character variables. Also note that isempty returns TRUE for an
empty array, that is, ''.

Since R2016b, MATLABhas also provided a string type defined using regular quotes. Some
newer functions are designed to operate specifically on strings, but most work on both text types.
If you concatenate strings using square brackets, they are maintained as separate elements in an
array rather than combined as character arrays are. To append strings, use the “+” operator (see
Recipe 1.5). isempty returns FALSE for an empty string, that is, ``''; this creates a 1-by-1
string with no characters rather than an empty string.

>> str = "";
>> isempty(str)
ans =

logical
0

>> s = "Hello World";
>> msg = [s "additional string"]
msg =

8
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1x2 string array
"Hello World" "additional string"

For a description of string syntax, type help strings at the MATLAB command line,
and for a comprehensive list of string and character functions, type help strfun. Table 1.2
shows a selection of key string functions.

Table 1.2: Key Functions for Strings

Function Purpose
ischar Identify a character array
isstring Identify a string
char Convert integer codes or cell array to character array
sprintf Write formatted data to a string
strcmp, strncmp Compare strings
strfind Find one string within another
num2str, mat2str Convert a number or matrix to a string
lower Convert a string to lowercase
contains Search for patterns in string arrays
split Split strings at whitespace

Use Strict Data Structures

Data structures in MATLAB are highly flexible, leaving it up to the user to enforce consistency
in fields and types. You are not required to initialize a data structure before assigning fields to
it, but it is a good idea to do so, especially in scripts, to avoid variable conflicts.

Replace

d.fieldName = 0;

with

d = struct;
d.fieldName = 0;

In fact, we have found it is generally a good idea to create a special function to initialize
larger structures that are used throughout a set of functions. This is similar to creating a class
definition. Generating your data structure from a function, instead of typing out the fields in
a script, means you always start with the correct fields. Having an initialization function also
allows you to specify the types of variables and provide sample or default data. Remember,
since MATLAB does not require you to declare variable types, doing so yourself with default
data makes your code that much clearer.

9
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TIP Create an initialization function for data structures.

You make a data structure into an array simply by assigning an additional copy. The fields
must be in the same order, which is yet another reason to use a function to initialize your
structure. You can nest data structures with no limit on depth.

1 d = MyStruct;
2 d(2) = MyStruct;
3

4 function d = MyStruct
5

6 d = struct;
7 d.a = 1.0;
8 d.b = 'string';

MATLAB now allows for dynamic field names using variables, that is, structName.
(dynamicExpression). This provides improved performance over getfield, where the
field name is passed as a string. This allows for all sorts of inventive structure programming.
Take our data structure array in the previous code snippet, and let’s get the values of field a
using a dynamic field name; the values are returned in a cell array.

>> field = 'a';
>> values = {d.(field)}

values =

[1] [1]

Use isstruct to identify structure variables and isfield to check for the existence of
fields. Note that isempty will return false for a struct initialized with struct, even if it has
no fields. Table 1.3 lists some key functions for interacting with structs.

Table 1.3: Key Functions for Structs

Function Purpose
struct Initialize a structure with or without fields
isstruct Identify a structure
isfield Determine if a field exists in a structure
fieldnames Get the fields of a structure in a cell array
rmfield Remove a field from a structure
deal Set fields in a structure to a value

10
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Cell Arrays Hold Anything and Everything

One variable type unique to MATLAB is the cell array. This is really a list container, and you
can store variables of any type in elements of a cell array. Cell arrays can be multidimensional,
just like matrices, and are useful in many contexts.

Cell arrays are indicated by curly braces, {}. They can be of any dimension and contain any
data, including string, structures, and objects. You can initialize them using the cell function,
recursively display the contents using celldisp, and access subsets using parentheses just
like for a matrix. The following is a short example.

>> c = cell(3,1);
>> c{1} = 'some text';
>> c{2} = false;
>> c{3} = [1 2; 3 4];
>> b = c(1:2);
>> celldisp(b)
b{1} =
string

b{2} =
0

Using curly braces for access gives you the element data as the underlying type. When you
access elements of a cell array using parentheses, the contents are returned as another cell array,
rather than the cell contents. MATLAB help has a special section called Comma-Separated
Lists which highlights the use of cell arrays as lists. The code analyzer will also suggest more
efficient ways to use cell arrays, for instance:

Replace
a = {b{:} c};

with
a = [b {c}];

Cell arrays are especially useful for sets of strings, with many of MATLAB’s string search
functions optimized for cell arrays, such as strcmp.

Use iscell to identify cell array variables. Use deal to manipulate structure array and
cell array contents. Table 1.4 shows a selection of key cell array functions.

Table 1.4: Key Functions for Cell Arrays

Function Purpose
cell Initialize a cell array
cellstr Create cell array from a character array
iscell Identify a cell array
iscellstr Identify a cell array containing only strings
celldisp Recursively display the contents of a cell array

11
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Optimize Your Code with Logical Arrays

A logical array is composed of only ones and zeros. You can initialize logical matrices using
the true and false functions, and there is an islogical function to test if a matrix is
logical. Logical arrays are outputs of numerous built-in functions, like isnan, and are often
recommended by the code analyzer as a faster alternative to manipulating array indices. For
example, you may need to set any negative values in your array to zero.

Replace

1 k = find(x<0);
2 x(k) = 0;

with

1 x(x<0) = 0;

where x<0 produces a logical array with 1 where the values of x are negative and 0 elsewhere.
MATLAB provides both traditional relational operators, that is, && for AND and || for

OR, as well as unique element-wise operators. These element-wise operators, that is, single &
and |, compare matrices of the same size and return logical arrays. Table 1.5 shows some key
functions for logical operations.

Table 1.5: Key Functions for Logical Operations

Function Purpose
logical Convert numeric values to logical
islogical Identify a logical array (composed of 1s and 0s)
true Return a true value (1) or array (M,N)
false Return a false value (0) or array (M,N)
any Return true if any value in the array is a nonzero number
all Return true if none of the values in the array is 0
and, or Functional forms of element-wise operators & and |
isnan, isinf, isfinite Values testing functions returning logical arrays

Use Persistent and Global Scope to Minimize Data Passing

In general, variables defined in a function have a local scope and are only available within that
function. Variables defined in a script are available in the workspace and, therefore, from the
command line.

MATLAB has a global scope which is the same as any other language, applying to the
base workspace and maintaining the variable’s value throughout the MATLAB session. Global
variables are empty once declared, until initialized. The clear and clearvars functions
each have flags for removing only the global variables. This is shown in the example below.

12
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>> global MY_GLOBAL_VAR; % variable is empty
>> MY_GLOBAL_VAR = 1.0;
>> whos

Name Size Bytes Class Attributes

MY_GLOBAL_VAR 1x1 8 double global

>> clearvars -GLOBAL

MATLAB has a unique scope that pertains to a single function, persistent. This is
useful for initializing a function that requires a lot of data or computation and then saving that
data for use in later calls. The variable can be reset using the clear command on the function,
that is, clear functionName. This can also be a source of bugs so it is important to
note the use of persistent variables in a function’s help comments, so you don’t get unexpected
results when you switch models.

TIP Use a persistent variable to store initialization data for subsequent function calls.

Variables can also be in scope for multiple functions defined in a single file, if the end
keyword is used appropriately. In general, you can omit a final end for functions, but if you
use it to wrap the inner functions, the functions become nested and can access variables defined
in the parent function. This allows subroutines to share data without passing large numbers of
arguments. The editor will highlight the variables that are so defined.

In the following example, the constant variable is available to the nested function inside
the parent function.

NESTED FUNCTION

1 function y = parentFunction( x )
2

3 constant = 3.0;
4 y = nestedFunction( x );
5

6 function z = nestedFunction( x )
7

8 z = constant*x;
9

10 end
11

12 end

13
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Table 1.6 shows a selection of scope functions.

Table 1.6: Key Functions for Scope Operations

Function Purpose
persistent Specify persistent scope for a variable in a function
global Specify global scope for a variable
clear Clear a function or variable
who, whos List variables in a workspace
mlock, munlock Lock (and unlock) a function or MEX-file which prevents it from

being cleared

Understanding Unique MATLAB Operators and Keywords

Some common operators have special features in MATLAB, which we call attention to here.

Colon
The colon operator for creating a list of indices in an array is unique to MATLAB. A single
colon used by itself addresses all elements in that given dimension; a colon used between a pair
of integers creates a list.

>> a(1,1:2)
ans =

1 2

>> a(:,1)
ans =

1
3

The colon operator applies to all variable types when accessing elements of an array: cell
arrays, strings, data structure arrays.

The colon operator can also be used to create an array using an interval, as a shorthand to
linspace. The interval and the endpoints can be doubles. Using it for matrix indices is really
an edge case using a default interval of 1. For example, 0.1:0.2:0.5 produces 0.1 0.3
0.5.

>> a = 0.1:0.2:0.5
a =

0.1 0.3 0.5
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Tilde
The tilde (∼) is the logical NOT operator in MATLAB. The output is a logical matrix of the
same size as the input, with values of 1 if the input value is 0 and a value of 0 otherwise.

>> a = [0 -1; 1 0];
>> ˜a
ans =

1 0
0 1

In newer versions, it also can be used to ignore an input or output to a function, and this is
suggested often in the code analyzer as preferable to the use of a dummy variable.

1 [˜,b] = MyFunction(x,y);

Dot
By dot, we mean using a period with a standard arithmetic operator, like .* or .\ or .ˆ. This
is a special syntax in MATLAB used to apply an operator on an element per element basis
over the matrices, instead of performing the linear algebra operation otherwise implied. This is
also termed an array operation as opposed to a matrix operation. Since the matrix and array
operations are the same for addition and subtraction, the dot is not required.

1 y = a.*b;

MATLAB is optimized for array operations. Using this syntax is a key way to reduce for
loops in your MATLAB code and make it run faster. Consider the traditional alternative code:

1 a = rand(1,1000);
2 b = rand(1,1000);
3 y = zeros(1,1000);
4 for k = 1:1000
5 y(k) = a(k)*b(k);
6 end

Even this simple example takes two to three times as long to run as the vectorized version
shown above.

end
The end keyword serves multiple purposes inMATLAB. It is used to terminate for, while,
switch, try, and if statements, rather than using braces as in other languages. It is also
used to serve as the last index of a variable in a given dimension. Using end appropriately can
make your code more robust to future changes in the size of your data.

>> a = [1 2 3; 4 5 6; 7 8 9];
>> b = a(1:end-1,2:end)
b =
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2 3
5 6

Harnessing the Power of Multiple Inputs and Outputs

Uniquely, MATLAB functions can have multiple outputs. They are specified in a comma-
separated list just like the inputs. Additionally, you do not need to specify the data types of
the inputs or outputs, and you can silently override the output types by assigning any data you
want to the variables. Thus, a function can have an infinite number of syntaxes defined within
a single file. Outputs must be assigned the names given in the signature; you cannot pass a
variable to the return keyword.

MATLAB provides helper functions for specifying a variable number of inputs or outputs,
namely, varargin and varargout. These variables are cell arrays, and you access and
assign elements using curly braces. Here is an example function definition:

1 function [y,varargout] = varargFunction(x,varargin)
2

3 y = varargin{1};
4 varargout{1} = size(x,1);
5 varargout{2} = size(x,2);

The following example demonstrates that the outputs were correctly assigned.

USING VARARGOUT AND VARARGIN

>> [y,a,b] = varargFunction(rand(3,2),1.0)

y =
1

a =
3

b =
2

This allows you to accept unlimited arguments or parameter pairs in your function. It is
up to you to create consistent forms for your function and document them clearly in the help
comments.

You can also count the input and output arguments for a given call to your function using
nargin and nargout and use this with logical statements or a switch statement to handle
multiple cases.
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If you need very complex input handling, MATLAB now provides an inputParser class,
which allows you to parse and validate an input scheme. You can define functions to validate
the inputs, optional arguments, and predefine parameter pairs.

Use Function Handles for Efficiency

Function handles are pointers to functions. They are closely related to anonymous functions,
which allow you to define a short function inline, and return the function handle. When you
create a handle, you can change the input scheme and give values for certain inputs, that is,
parameters. Using handles as inputs to integrators and similar routines is much faster than
passing in a string variable of the function name.

In the following snippet, we create an anonymous function handle to myFunctionwith a
different signature and a specific value for a. Note the use of the @, which designates a function
handle. The handle can be evaluated with inputs just like a regular function.

1 function y = myFunction(a, b, c)
2 ...
3

4 a = 2;
5 h = @(c,b) myFunction(a,b,c);
6 y = h(c,b);

The handle h can be passed to a function such as an integrator that is expecting a signature
with only two variables. You will also commonly use function handles to specify an events
function for integrators or similar tools, as well as output functions that are called between
major steps. Output functions can print information to the screen or a figure. See, for example,
odeplot and odeprint.

In order to test if a variable is a function handle, you need to use the function handle class
name with isa, that is:

1 isa(f,'function_handle')

as ishandle works only for graphics handles. For more information, see the help docu-
mentation for function handle. Table 1.7 provides the few key functions for dealing with
function handles.

Table 1.7: Key Functions for Handles

Function Purpose
feval Execute a function from a handle or string
func2str Construct a string from a function handle
str2func Construct a handle from a function name string
isa Test for a function handle
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Numerics

While MATLAB defaults to doubles for any data entered at the command line or in a script, you
can specify a variety of other numeric types, including single, uint8, uint16, uint32,
uint64, logical (i.e., an array of booleans). The use of the integer types is especially
relevant to using large data sets such as images. Use the minimum data type you need, especially
when your data sets are large.

Images

MATLAB supports a variety of formats including GIF, JPG, TIFF, PNG, HDF, FITS, and BMP.
You can read in an image directly using imread, which can determine the type automatically
from the extension, or fitsread. (FITS stands for Flexible Image Transport System, and
the interface is provided by the CFITSIO library.) imread has special syntaxes for some
image types, such as handling alpha channels for PNG, so you should review the options for
your specific images. imformats manages the file format registry and allows you to specify
handling of new user-defined types, if you can provide read and write functions.

You can display an image using either imshow, image, or imagesc, which scales the
colormap for the range of data in the image.

For example, we use a set of images of cats in Chapter 7, Face Recognition. The following
is the image information for a typical image:

>> imfinfo('IMG_4901.JPG')
ans =

Filename: 'MATLAB/Cats/IMG_4901.JPG'
FileModDate: '28-Sep-2016 12:48:15'

FileSize: 1963302
Format: 'jpg'

FormatVersion: ''
Width: 3264

Height: 2448
BitDepth: 24

ColorType: 'truecolor'
FormatSignature: ''
NumberOfSamples: 3

CodingMethod: 'Huffman'
CodingProcess: 'Sequential'

Comment: {}
Make: 'Apple'

Model: 'iPhone 6'
Orientation: 1
XResolution: 72
YResolution: 72

ResolutionUnit: 'Inch'
Software: '9.3.5'
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DateTime: '2016:09:17 22:05:08'
YCbCrPositioning: 'Centered'

DigitalCamera: [1x1 struct]
GPSInfo: [1x1 struct]

ExifThumbnail: [1x1 struct]

This is the metadata that tells the camera software, and image databases, where and how the
image was generated. This is useful when learning from images as it allows you to correct for
resolution (width and height) bit depth and other factors.

If we view this image using imshow, it will publish a warning that the image is too big to fit
on the screen and that it is displayed at 33%. If we view it using image, there will be a visible
set of axes. image is useful for displaying other two-dimensional matrix data as individual
elements per pixel. Both functions return a handle to an image object; only the axes properties
are different. Figure 1.4 shows the use of imshow and image.

>> figure; hI = image(imread('IMG_2398_Zoom.png'))
hI =

Image with properties:

CData: [680x680x3 uint8]
CDataMapping: 'direct'

Show all properties

Figure 1.4: Image display options.
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Table 1.8 shows key image functions.

Table 1.8: Key Functions for Images

Function Purpose
imread Read an image in a variety of formats
imfinfo Gather information about an image file
imformats Determine if a field exists in a structure
imwrite Write data to an image file
image Display image from an array
imagesc Display image data scaled to the current colormap
imshow Display an image, optimizing figure, axes, and image object properties

and taking an array or a filename as an input

rgb2gray Write data to an image file
ind2rgb Convert index data to RGB
rgb2ind Convert RGB data to indexed image data

fitsread Read a FITS file
fitswrite Write data to a FITS file
fitsinfo Information about a FITS file returned in a data structure
fitsdisp Display FITS file metadata for all HDUs in the file

Datastore

Datastores allow you to interact with files containing data that are too large to fit in memory.
There are different types of datastores for tabular data, images, spreadsheets, databases, and
custom files. Each datastore provides functions to extract smaller amounts of data that do fit
in memory for analysis. For example, you can search a collection of images for those with the
brightest pixels or maximum saturation values. We will use the directory of cat images included
with the code as an example.

>> location = pwd

location =

'/Users/Mike/svn/MATLABBooks/MATLABCookbook2/MATLAB/Chapter_01/Cats'

>> ds = datastore(location)

ds =

ImageDatastore with properties:

Files: {
' .../svn/MATLABBooks/MATLABCookbook2/

MATLAB/Chapter_01/Cats/IMG_0191.png';
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' .../svn/MATLABBooks/MATLABCookbook2/
MATLAB/Chapter_01/Cats/IMG_1603.png';

' .../svn/MATLABBooks/MATLABCookbook2/
MATLAB/Chapter_01/Cats/IMG_1625.png'

... and 8 more
}

AlternateFileSystemRoots: {}
ReadSize: 1

Labels: {}
ReadFcn: @readDatastoreImage

Once the datastore is created, you use the applicable class functions to interact with it.
Datastores have standard container-style functions like read, partition, and reset. Each
type of datastore has different properties. The DatabaseDatastore requires the Database
Toolbox and allows you to use SQL queries.

MATLAB provides the MapReduce framework for working with out-of-memory data in
datastores. The input data can be any of the datastore types, and the output is a key-value
datastore. The map function processes the datastore input in chunks, and the reduce function
calculates the output values for each key. mapreduce can be sped up by using it with the
MATLAB Parallel Computing Toolbox, Distributed Computing Server, or Compiler. Table 1.9
shows key datastore functions.

Table 1.9: Key Functions for Datastore

Function Purpose
datastore Create a datastore
read Read a subset of data from the datastore
readall Read all of the data in the datastore
hasdata Check to see if there is more data in the datastore
reset Initialize a datastore with the contents of a folder
partition Excerpt a portion of the datastore
numpartitions Estimate a reasonable number of partitions
ImageDatastore Datastore of a list of image files
TabularTextDatastore A collection of one or more tabular text files
SpreadsheetDatastore Datastore of spreadsheets
FileDatastore Datastore for files with a custom format, for which you provide a

reader function
KeyValueDatastore Datastore of key-value pairs
DatabaseDatastore Database connection, requires the Database Toolbox
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Tall Arrays

Tall arrays were introduced in R2016b. They are allowed to have more rows than will fit in
memory. You can use them to work with datastores that might have millions of rows. Tall
arrays can use almost any MATLAB type as a column variable, including numeric data, cell
arrays, strings, datetimes, and categoricals. The MATLAB documentation provides a list of
functions that support tall arrays. Results for operations on the array are only evaluated when
they are explicitly requested using the gather function. The histogram function can be
used with tall arrays and will execute immediately.

The MATLAB Statistics and Machine Learning Toolbox™, Database Toolbox, Parallel
Computing Toolbox, Distributed Computing Server, and Compiler all provide additional ex-
tensions for working with tall arrays. For more information about this new feature, use the
following topics in the documentation:

• Tall Arrays
• Analysis of Big Data with Tall Arrays
• Functions That Support Tall Arrays
• Index and View Tall Array Elements
• Visualization of Tall Arrays
• Extend Tall Arrays with Other Products
• Tall Array Support, Usage Notes, and Limitations

Table 1.10 shows key tall array functions and Table 1.11 shows key sparse matrix functions.

Table 1.10: Key Functions for Tall Arrays

Function Purpose
tall Initialize a tall array
gather Execute the requested operations
summary Display summary information to the command line
head Access first rows of a tall array
tail Access last rows of a tall array
istall Check the type of the array to determine if it is tall
write Write the tall array to disk

Sparse Matrices

Sparse matrices are a special category of matrix in which most of the elements are zero. They
appear commonly in large optimization problems and are used by many such packages. The
zeros are “squeezed” out, and MATLAB stores only the nonzero elements along with index data
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Table 1.11: Key Functions for Sparse Matrices

Function Purpose
sparse Create a sparse matrix from a full matrix or from a list of indices and

values
issparse Determine if a matrix is sparse
nnz Number of nonzero elements in a sparse matrix
spalloc Allocate nonzero space for a sparse matrix
spy Visualize a sparsity pattern
spfun Selectively apply a function to the nonzero elements of a sparse matrix
full Convert a sparse matrix to full form

such that the full matrix can be recreated. Many regular MATLAB functions, such as chol or
diag, preserve the sparseness of an input matrix.

Tables and Categoricals

Tables were introduced in release R2013 of MATLAB and allow tabular data to be stored with
metadata in one workspace variable. It is an effective way to store and interact with data that one
might put in, or import from, a spreadsheet. The table columns can be named, assigned units
and descriptions, and accessed as one would fields in a data structure, that is, T.DataName.
See readtable on creating a table from a file, or try out the Import Data button from the
Command Window. Table 1.12 shows key Tables functions.

Categorical arrays allow for storage of discrete nonnumeric data, and they are often used
within a table to define groups of rows. For example, time data may have the day of the week,
or geographic data may be organized by state or county. They can be leveraged to rearrange
data in a table using unstack. This is more efficient searching than elements of a cell array.
See categorical and categories.

You can also combine multiple data sets into single tables using join, innerjoin, and
outerjoin, which will be familiar to you if you have worked with databases.

Large MAT-files

You can access parts of a large MAT-file without loading the entire file into memory by using the
matfile function. This creates an object that is connected to the requested MAT-file without
loading it. Data is only loaded when you request a particular variable or part of a variable. You
can also dynamically add new data to the MAT-file.
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Table 1.12: Key Functions for Tables and Categoricals

Function Purpose
table Create a table with data in the workspace
readtable Create a table from a file
join Merge tables by matching up variables
innerjoin Join tables A and B retaining only the rows that match
outerjoin Join tables including all rows
stack Stack data from multiple table variables into one variable
unstack Unstack data from a single variable into multiple variables
summary Calculate and display summary data for the table

categorical Arrays of discrete categorical data
iscategorical Create a categorical array
categories List of categories in the array
iscategory Test for a particular category
addcats Add categories to an array
removecats Remove categories from an array
mergecats Merge categories

For example, we can load a MAT-file of neural net weights.

>> m = matfile('PitchNNWeights','Writable',true)

m =

matlab.io.MatFile

Properties:
Properties.Source: '/Users/Mike/svn/MATLABBooks/MATLABCookbook2/

MATLAB/Chapter_01/PitchNNWeights.mat'
Properties.Writable: true

w: [1x8 double]

Methods

We can access a portion of the previously unloaded w variable or add a new variable name,
all using this object m.

>> y = m.w(1:4)
y =

1 1 1 1
>> m.name = 'Pitch Weights'
m =

matlab.io.MatFile

Properties:
Properties.Source: '/Users/Shared/svn/Manuals/MATLABMachineLearning
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/MATLAB/PitchNNWeights.mat'
Properties.Writable: true

name: [1x13 char]
w: [1x8 double]

>> d = load('PitchNNWeights')
d =

w: [1 1 1 1 1 1 1 1]
name: 'Pitch Weights'

There are some limits to the indexing into unloaded data, such as struct arrays and sparse
arrays. Also, matfile requires MAT-files using version 7.3, which is not the default for a
generic save operation as of R2016b. You must either create the MAT-file using matfile to
take advantage of these features or use the -v7.3’ flag when saving the file.

Advanced Data Types

The data types discussed so far are all that are needed for most engineering programming.
However, for specialized applications, there are additional options for data types, including:

Classes – Classes, with properties and methods, can be defined using the classdef keyword
in an m-file similar to writing a function. See also the properties, methods, and
events keywords. See Chapter 6 for recipes using classes.

Time series – The timeseries object and the related tscollection object provide
methods for associating data samples with timestamps. Plotting a timeseries object
will use the stored time vector automatically.

Map containers – The map container allows you to store and look up data using a key which
may be nonnumeric. This is an object instantiated via containers.Map.

Primer Recipes
The next part of this chapter provides recipes for some common tasks in modern MATLAB,
like using different data types, adding help to your functions, loading binary data, writing to a
text file, creating a MEX file, and parsing functions into “pcode.”

1.1 Initializing a Data Structure Using Parameters
It’s always a good idea to use a special function to define a data structure you are using as
a type in your codebase, similar to writing a class but with less overhead. Users can then
overload individual fields in their code, but there is an alternative way to set many fields at
once: an initialization function which can handle a parameter pair input list. This allows you to
do additional processing in your initialization function. Also, your parameter string names can
be more descriptive than you would choose to make your field names.
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Problem

We want to initialize a data structure so that the user clearly knows what they are entering.

Solution

The simplest way to implement the parameter pairs is using varargin and a switch state-
ment. Alternatively, you could write an inputParser, which allows you to specify required
and optional inputs as well as named parameters. In that case, you have to write separate or
anonymous functions for validation that can be passed to the inputParser, rather than just
write out the validation in your code.

How It Works

We will use the data structure developed for the automobile simulation as an example. The
header lists the input parameters along with the input dimensions and units, if applicable.

AutomobileInitialize.m

1 %% AUTOMOBILEINITIALIZE Initialize the automobile data structure.
2 %
3 %% Form
4 % d = AutomobileInitialize( varargin )
5 %
6 %% Description
7 % Initializes the data structure using parameter pairs.
8 %
9 %% Inputs

10 % varargin: ('parameter',value,...)
11 %
12 % 'mass' (1,1) (kg)
13 % 'steering angle' (1,1) (rad)
14 % 'position tires' (2,4) (m)
15 % 'frontal drag coefficient' (1,1)
16 % 'side drag coefficient' (1,1)
17 % 'tire friction coefficient' (1,1)
18 % 'tire radius' (1,1) (m)
19 % 'engine torque' (1,1) (Nm)
20 % 'rotational inertia' (1,1) (kg-mˆ2)
21 % 'state' (6,1) [m;m;m/s;m/s;rad;rad/s

]

The function first creates the data structure using a set of defaults and then handles the
parameter pairs entered by a user. After the parameters have been processed, two areas are
calculated using the dimensions and the height.

30 function d = AutomobileInitialize( varargin )
31

32 % Defaults
33 d.mass = 1513;
34 d.delta = 0;
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35 d.r = [ 1.17 1.17 -1.68 -1.68;...
36 -0.77 0.77 -0.77 0.77];
37 d.cDF = 0.25;
38 d.cDS = 0.5;
39 d.cF = 0.01; % Ordinary car tires on concrete
40 d.radiusTire = 0.4572; % m
41 d.torque = d.radiusTire*200.0; % N
42 d.inr = 2443.26;
43 d.x = [0;0;0;0;0;0];
44 d.fRR = [0.013 6.5e-6];
45 d.dim = [1.17+1.68 2*0.77];
46 d.h = 2/0.77;
47 d.errOld = 0;
48 d.passState = 0;
49 d.model = 'MyCar.obj';
50 d.scale = 4.7981;
51

52 fNames = fieldnames(d);
53 for k = 1:2:length(varargin)
54 if isfield(d,varargin{k})
55 d.(varargin{k}) = varargin{k+1};
56 else
57 warning('Parameter %s is not a valid field name',varargin{k});
58 end
59 end
60

61 names = {'mass','mass',1513;...
62 'steering angle','delta',0;...
63 'position tires','r',[ 1.17 1.17 -1.68 -1.68;-0.77 0.77 -0.77

0.77];...
64 'frontal drag coefficient','cDF',0.25;...
65 'side drag coefficient','cDS',0.5;...
66 'tire friction coefficient','cF',0.01;...
67 'tire radius','radiusTire',0.4572;...
68 'engine torque','torque',0;...
69 'rotational inertia','inr',2443.26;...
70 'state','x',[0;0;0;0;0;0];...
71 'rolling resistance coefficients','fRR',[0.013 6.5e-6];...
72 'side and frontal automobile dimensions','dim',[1.17+1.68

2*0.77];...
73 'height automobile','h',2/0.77;...
74 'errOld','errOld',0;...
75 'passState','passState',0;
76 'car model','model','MyCar.obj';...
77 'car scale','scale',4.7981}
78

79 d = cell2struct(names(:,3),names(:,2),1);
80 d.torque = d.radiusTire*200.0; % N
81

82 missed = {};
83 for k = 1:2:length(varargin)
84 % match to a descriptive parameter name
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85 match = strcmpi(varargin{k},names(:,1));
86 if ˜any(match)
87 % match to a field name
88 match = strcmp(varargin{k},names(:,2));
89 end
90 if ˜any(match)
91 warning('No match for the parameter %s',varargin{k});
92 missed{end+1} = varargin{k};
93 continue;
94 end
95 d.(names{match,2}) = varargin{k+1};
96 end
97

98 if ˜isempty(missed)
99 error('Unprocessed parameters.')

100 end
101

102 % Processing
103 d.areaF = d.dim(2)*d.h;
104 d.areaS = d.dim(1)*d.h;
105 d.g = LoadOBJ(d.model,[],d.scale);

To perform the same tasks with inputParser, you add either an addRequired,
addOptional, or addParameter call for every item in the switch statement. The named
parameters require default values. You can optionally specify a validation function; in the fol-
lowing example, we use isNumeric to limit the values to numeric data.

>> p = inputParser
p.addParameter('mass',0.25);
p.addParameter('cDF',1513);
p.parse('cDF',2000);
d = p.Results

p =

inputParser with properties:

FunctionName: ''
CaseSensitive: 0
KeepUnmatched: 0

PartialMatching: 1
StructExpand: 1

Parameters: {1?0 cell}
Results: [1?1 struct]

Unmatched: [1?1 struct]
UsingDefaults: {1?0 cell}

d =

struct with fields:
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cDF: 2000
mass: 0.2500

In this case, the results of the parsed parameters are stored in a Results substructure.

1.2 Performing mapreduce on an Image Datastore
Problem

We discussed the datastore class in the introduction to the chapter. Now let’s use it to
perform analysis on the full set of cat images using mapreduce, which is scalable to very
large numbers of images. This involves two steps, first a map step that operates on the datastore
and creates intermediate values and then a reduce step which operates on the intermediate values
to produce a final output.

Solution

We create the datastore by passing in the path to the folder of cat images. We also need
to create a map function and a reduce function, to pass into mapreduce. If you are using
additional toolboxes like the Parallel Computing Toolbox, you would specify the reduce envi-
ronment using mapreducer.

How It Works

First, create the datastore using the path to the images.

>> imds = imageDatastore('Cats')

imds =

ImageDatastore with properties:

Files: {
' .../svn/MATLABBooks/MATLABCookbook2/

MATLAB/Chapter_01/Cats/IMG_0191.png';
' .../svn/MATLABBooks/MATLABCookbook2/

MATLAB/Chapter_01/Cats/IMG_1603.png';
' .../svn/MATLABBooks/MATLABCookbook2/

MATLAB/Chapter_01/Cats/IMG_1625.png'
... and 8 more

}
AlternateFileSystemRoots: {}

ReadSize: 1
Labels: {}

ReadFcn: @readDatastoreImage

Second, we write the map function. This must generate and store a set of intermediate
values that will be processed by the reduce function. Each intermediate value must be stored
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as a key in the intermediate key-value datastore using add. In this case, the map function will
receive one image each time it is called. We call it catColorMapper, since it processed the
red, green, and blue values for each image using a simple average.

1 function catColorMapper(data, info, intermediateStore)
2

3 % Calculate the average (R,G,B) values
4 avgRed = mean(mean(data(:,:,1)));
5 avgGreen = mean(mean(data(:,:,2)));
6 avgBlue = mean(mean(data(:,:,3)));
7

8 % Store the calculated values with text keys
9 add(intermediateStore, 'Avg Red', struct('Filename',info.Filename,'Val'

, avgRed));
10 add(intermediateStore, 'Avg Green', struct('Filename',info.Filename,'

Val', avgGreen));
11 add(intermediateStore, 'Avg Blue', struct('Filename',info.Filename,'Val

', avgBlue));

The reduce function will then receive the list of the image files from the datastore once
for each key in the intermediate data. It receives an iterator to the intermediate datastore as
well as an output datastore. Again, each output must be a key-value pair. The hasnext and
getnext functions used are part of the mapreduceValueIterator class. In this case, we find
the minimum value for each key across the set of images.

1 function catColorReducer(key, intermediateIter, outputStore)
2

3 % Iterate over values for each key
4 minVal = 255;
5 minImageFilename = '';
6 while hasnext(intermediateIter)
7 value = getnext(intermediateIter);
8

9 % Compare values to find the minimum
10 if value.Val < minVal
11 minVal = value.Val;
12 minImageFilename = value.Filename;
13 end
14 end
15

16 % Add final key-value pair
17 add(outputStore, ['Minimum - ' key], minImageFilename);
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Finally, we call mapreduce using function handles to our two helper functions. Progress
updates are printed to the command line, first for the mapping step and then for the reduce step
(once the mapping progress reaches 100%).

>> minRGB = mapreduce(imds, @catColorMapper, @catColorMapper);

********************************
* MAPREDUCE PROGRESS *
********************************
Map 0% Reduce 0%
Map 13% Reduce 0%
Map 27% Reduce 0%
Map 40% Reduce 0%
Map 50% Reduce 0%
Map 63% Reduce 0%
Map 77% Reduce 0%
Map 90% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 33%
Map 100% Reduce 67%
Map 100% Reduce 100%

The results are stored in a MAT-file, for example, results 1 28-Sep-2016 16-28-
38 347. The store returned is a key-value store to this MAT-file, which in turn contains the
store with the final key-value results.

>> output = readall(minRGB)
output =

Key Value
_______________

______________________________________________________________
''Minimum - Avg Red' '/MATLAB/Cats/IMG_1625.png'
''Minimum - Avg Blue' '/MATLAB/Cats/IMG_4866.jpg'
''Minimum - Avg Green' '/MATLAB/Cats/IMG_4866.jpg'

You’ll notice that the image files are different file types. This is because they came from
different sources. MATLAB can handle most image types quite well.

1.3 Creating a Table from a File
Often, with big data, we have complex data in many files. MATLAB provides functions to
make it easier to handle massive sets of data. In this section, we will collect data from a set of
weather files and perform a Fast Fourier Transform (FFT) on data from two years. First, we
will write the FFT function.

31



CHAPTER 1 CODING HANDBOOK

Problem

We want to do Fast Fourier Transforms.

Solution

Write a function using fft and compute the energy from the FFT. The energy is just the real
part of the product of the FFT output and its transpose.

How It Works

The following functions take in data y with a sample time tSamp and perform an FFT:

FFTEnergy.m

26 n = size( y, 2 );
27

28 % If the input vector is odd drop one sample
29 if(2*floor(n/2) ˜= n )
30 n = n - 1;
31 y = y(1:n,:);
32 end
33

34 x = fft(y);
35 e = real(x.*conj(x))/n;
36

37 hN = n/2;
38 e = e(1:hN,:);
39 r = 2*pi/(n*tSamp);
40 w = r*(0:(hN-1));
41

42 if( nargout == 0 )
43 tL = sprintf('FFT Energy Plot: Resolution = %10.2e rad/sec',r);
44 PlotSet(w,e','x label','Frequency (rad/sec)','y label', ...
45 'Energy','plot title', tL,'plot type', 'xlog', 'figure title', 'FFT

');
46 clear e
47 end

We get the energy using these two lines:

34 x = fft(y);
35 e = real(x.*conj(x))/n;

Taking the real part just accounts for numerical errors. The product of a number and its
complex conjugate should be real.

The function computes the resolution. Notice it is a function of the sampling period and
number of points.

39 r = 2*pi/(n*tSamp);
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Figure 1.5: The input data for the FFT and the results.

The built-in demo creates a series with a frequency at 1 rad/sec and a second at 2 rad/sec.
The higher frequency one, with an amplitude of 2, has more energy as expected.

49 function Demo
50 %% Demo
51 tSamp = 0.1;
52 omega1 = 1;
53 omega2 = 3;
54 t = linspace(0,1000,10000)*tSamp;
55 y = sin(omega1*t) + 2*sin(omega2*t);
56

57 PlotSet(t,y,'x label', 'Time (s)', 'y label','Amplitude',...
58 'plot title','FFT Data', 'figure title', 'FFT Data');
59 FFTEnergy( y, tSamp );

Figure 1.5 shows the data and the FFT. Note the clearly visible frequencies in the FFT plot
that match the oscillations in the time plot.

1.4 Processing Table Data
Problem

We want to compare temperature frequencies in 1999 and 2015 using data from a table.

Solution

Use tabularTextDatastore to load the data and perform a Fast Fourier Transform on
the data.
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How It Works

First, let us look at what happens when we read in the data from the weather files.

>> tds = tabularTextDatastore('./Weather')

tds =

TabularTextDatastore with properties:

Files: {
' .../MATLABCookbook2/MATLAB/Chapter_01/

Weather/HistKTTN_1990.txt';
' .../MATLABCookbook2/MATLAB/Chapter_01/

Weather/HistKTTN_1993.txt';
' .../MATLABCookbook2/MATLAB/Chapter_01/

Weather/HistKTTN_1999.txt'
... and 5 more

}
FileEncoding: 'UTF-8'

AlternateFileSystemRoots: {}
PreserveVariableNames: false

ReadVariableNames: true
VariableNames: {'EST', 'MaxTemperatureF', 'MeanTemperatureF

' ... and 20 more}
DatetimeLocale: en_US

Text Format Properties:
NumHeaderLines: 0

Delimiter: ','
RowDelimiter: '\r\n'

TreatAsMissing: ''
MissingValue: NaN

Advanced Text Format Properties:
TextscanFormats: {'%{uuuu-MM-dd}D', '%f', '%f' ... and 20

more}
TextType: 'char'

ExponentCharacters: 'eEdD'
CommentStyle: ''

Whitespace: ' \b\t'
MultipleDelimitersAsOne: false

Properties that control the table returned by preview, read, readall:
SelectedVariableNames: {'EST', 'MaxTemperatureF', 'MeanTemperatureF

' ... and 20 more}
SelectedFormats: {'%{uuuu-MM-dd}D', '%f', '%f' ... and 20

more}
ReadSize: 20000 rows
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WeatherFFT selects the data to use. It finds all the data in the mess of data in the files.
When running the script, you need to be in the same folder as WeatherFFT.

WeatherFFT.m

6 c0 = cd;
7 p = mfilename('fullpath');
8 cd(fileparts(p));
9 secInDay = 86400;

11

12 %% Create the datastore from the directory of files
13 tDS = tabularTextDatastore('./Weather/');
14 tDS.SelectedVariableNames = {'EST','MaxTemperatureF'};
15

16 preview(tDS)
17 z = readall(tDS);
18

19 % The first column in the cell array is the date. year extracts the
year

20 y = year(z{:,1});
21 k1993 = find(y == 1993);
22 k2015 = find(y == 2015);
23 tSamp = secInDay;
24 t = (1:365)*tSamp;
25 j = {[1 2]};
26

27 %% Plot the FFT
28

29 % Get 1993 data
30 d1993 = z{k1993,2}';
31 m1993 = mean(d1993);
32 d1993 = d1993 - m1993;

If the data does not exist, TabularTextDatastore puts NaN in the data points place.
We happen to pick two years without any missing data. We use preview to see what we are
getting.

>> WeatherFFT
Warning: Variable names were modified to make them valid MATLAB

identifiers.

ans =

8x2 table

EST MaxTemperatureF
__________ _______________

1990-01-01 39
1990-01-02 39
1990-01-03 48
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Figure 1.6: 1993 and 2015 data.

1990-01-04 51
1990-01-05 46
1990-01-06 43
1990-01-07 42
1990-01-08 37

In this script, we get an output from FFTEnergy so that we can combine the plots. We
chose to put the data on the same axes. Figure 1.6 shows the temperature data and the FFT.

We get a little fancy with plotset. Our legend entries are computed to include the mean
temperatures.

35

36 % Get 2015 data
37 d2015 = z{k2015,2}';
38 m2015 = mean(d2015);
39 d2015 = d2015 - m2015;
40 [e2015,f] = FFTEnergy( d2015, tSamp );
41

42 lG = {{sprintf('1993: Mean = %4.1f deg-F',m1993) sprintf('2015: Mean =
%4.1f deg-F',m2015)}};

43

44 PlotSet(t,[d1993;d2015], 'x label', 'Days', 'y label','Amplitude (deg-
F)',...

45 'plot title','Temperature', 'figure title', 'Temperature','legend',lG
,'plot set',j);

46

47 PlotSet(f,[e1993';e2015'],'x label', 'Rad/s','y label','Magnitude',...
48 'plot title','FFT Data', 'figure title', 'FFT','plot type','ylog','

legend',lG,'plot set',j);
49

50 cd(c0);
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1.5 String Concatenation
In this next set of recipes, we will give examples of operations that work with strings but not
with character arrays. Strings are a fairly new data type in MATLAB (since R2016b).

Problem

We want to concatenate two strings.

Solution

Create the two strings and use the “+” operator.

How It Works

You can use the + operator to concatenate strings. The result is the second string after the first.

>> a = "12345";
>> b = "67";
>> c = a + b

c =

"1234567"

1.6 Arrays of Strings
Problem

We want any array of strings.

Solution

Create the two strings and put them in a matrix.

How It Works

We create the same two strings as shown earlier and use the matrix operator. If they were
character arrays, we would need to pad the shorter with blanks to be the same size as the longer.

>> a = "12345";
>> b = "67";
>> c = [a;b]

c =

2 x 1 string array
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"12345"
"67"

>> c = [a b]

c =

1 x 2 string array

"12345" "67"

You could have used a cell array for this, but strings are more convenient.

1.7 Non-English Strings
Problem

We want to write a string in Japanese.

Solution

Copy the characters into a string array.

How It Works

Strings do not have to be in English. Copy any unicode characters into a MATLAB string.
>> str = [

”恋に悩み、苦しむ。”
”恋の悩みで苦しむ。”
”空に星が輝き、瞬いている。”
”空の星が輝きを増している。”]

The resulting string is
>>str

str =

4×1 string array
”恋に悩み、苦しむ。”

”恋の悩みで苦しむ。”
”空に星が輝き、瞬いている。”
)”空の星が輝きを増している。”
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1.8 Substrings
Problem

We want to get the portion of strings after a fixed prefix.

Solution

Create a string array and use extractAfter.

How It Works

Create a string array of strings to search and use extractAfter.

>> a = ["1234";"12456";"12890"];
f = extractAfter(a,"12")

f =

3 x 1 string array

"34"
"456"
"890"

Most of the string functions work with char, but strings are a little cleaner. Here is the
preceding example with cell arrays.

>> a = {'1234';'12456';'12890'};
>> f = extractAfter(a,"12")

f =

3 x 1 cell array

{'34' }
{'456'}
{'890'}

1.9 Using JSON-Formatted Strings
JSON (JavaScript Object Notation) is a lightweight data-interchange format used in JavaScript.
MATLAB has functions for going to and from JSON. JSON covers all types of data. Encoding
and decoding works with both cell arrays and data structures. This example code will get you
started.

1 m = {rand(3,3), 'text', 3};
2 t = jsonencode(m);
3 n = jsondecode(t)
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1 n =
2

3 3x1 cell array
4

5 {3x3 double}
6 {'text' }
7 {[ 3]}

1.10 Creating Function Help
Problem

You need to document your functions so that others may use them, and you remember how they
work in the future.

Solution

MATLAB provides a mechanism for providing command-line access to documentation about
your function or script using the help command provided you put the documentation in the
right place.

How It Works

The comments you provide at the top of your function file, called a header, become the function
help. The help can be printed at the command line by typing help MyFunction. While we
will cover the style and format of these comments in the next chapter, we draw your attention
to the functionality here.

The help comments can go either above or below the declarative line of your function. If you
include the words “see also” in your comments followed by the names of additional functions,
MATLAB will helpfully supply links to those functions’ help. All comments are printed until
the first blank line is reached.

Consider the help for a function that calculates a dot product. The first line should be a
single sentence description of the function, which is utilized by lookfor. If you insert your
function name in all capital letters, MATLAB will automatically replace it with the true case
version when printing the help. Your comments might look like this:

1 function d = Dot( w, y )
2 %% DOT Dot product of two arrays.
3 %% Forms
4 % d = Dot( w, y )
5 % d = Dot( w )
6 %
7 %% Description
8 % Dot product with support for arrays. The number of columns of w and y

can be:
9 %

10 % * Both > 1 and equal
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11 % * One can have one column and the other any number of columns
12 %
13 % If there is only one input the dot product will be taken with itself.
14 %
15 %% See also
16 % Cross

When printed to the command line, MATLABwill remove the percent signs and just display
the text, like this:

>> help Dot
Dot Dot product of two arrays.

% Forms
d = Dot( w, y )
d = Dot( w )

% Description
Dot product with support for arrays. The number of columns of w and y

can be:

* Both > 1 and equal

* One can have one column and the other any number of columns

If there is only one input the dot product will be taken with itself.

% See also
Cross

You can link to additional help documentation attached to subfunctions in your file. (Sub-
functions are visible to other functions in the same file, but not outside the file in which they are
defined. However, you can output a handle to a subfunction.) This can be handy for providing
more detailed examples or descriptions of algorithms. In order to do so, you have to embed an
HTML link in your help comments, for example:

1 % More detailed help is in the <a href="matlab: help foo>extended_help
">extended help</a>.

2

3 function extended_help
4 %EXTENDED_HELP Additional technical details and examples
5 %
6 % Describe additional details of your algorithms or provide examples.
7

8 error('This is a placeholder function just for helptext');

This typesets in the Command Window as

More detailed help is in the extended help.

MATLAB also provides the capability for you to create HTML help for your functions that
will appear in the help browser. This requires the creation of XML files to provide the content
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hierarchy. See the MATLAB help topic Display Custom Documentation and the related recipe
in the next chapter.

You can also run help reports to identify functions which are missing help or missing certain
sections of help such as a copyright notice. To learn how to launch this report on your operating
system, see the help topic Check Which Programs Have Help.

1.11 Locating Directories for Data Storage
Problem

A variety of demos and functions in your toolbox generate data files, and they end up all over
your file system. You can’t use an absolute path on your computer because the code is shared
among multiple engineers.

Solution

Use mfilename to save files in the same location as the generating file or to locate a dedicated
data directory that is relative to your file location.

How It Works

It’s easy to sprinkle save commands throughout your scripts, or print figures to image files,
and end up with files spread all over your file system. MATLAB provides a handy function,
mfilename, which can provide the path to the folder of the executing m-file. You can use this
to locate a data folder dedicated to either input files or output files for your routine. This uses
the MATLAB functions fileparts and fullfile.

For example, to save an output MAT-file in the same location as your function or script:

1 thisPath = mfilename('fullpath'); % path to your file
2 thisDir = fileparts(thisPath); % path to your file's parent

directory
3 save(fullfile(thisDir,'fileName'),x,y);

To save an output to a dedicated directory, you only need an additional call to fileparts.
In this case, the directory is called DataDir. Say, for example, that your function is located in
ToolsDir at the same level as DataDir in MyToolbox:

MyToolbox/DataDir
MyToolbox/ToolsDir

1 thisPath = mfilename('fullpath'); % file in ToolsDir
2 prevDir = fileparts(fileparts(thisPath)); % path to MyToolbox
3 dataDir = fullfile(prevDir,'DataDir','fileName');
4 save(fullfile(dataDir,'fileName'),x,y);
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If you are printing images, you can either use the functional form of print as with save
or change the path to the directory you want. You should save the current directory and return
there when your script is complete.

1 thisPath = mfilename('fullpath');
2 cd0 = cd;
3 cd(fileparts(thisPath));
4 print -dpng MyFigure
5 cd(cd0)

Table 1.13 shows key functions for path operations.

Table 1.13: Key Functions for Path Operations

Function Purpose
mfilename Name and, optionally, full path to the current executing m-file
fileparts Divide a path into parts (directory, filename, extension)
fullfile Create a system-dependent filename from parts
cd The current directory
path The current MATLAB path

1.12 Loading Binary Data from a File
Problem

You need to store data in a binary file, perhaps for input to another software program.

Solution

MATLAB provides low-level utilities for creating and writing to binary files including specify-
ing the endianness.

How It Works

Reading and writing binary data do introduce some complexities beyond text files. Let’s start
with MATLAB’s example of creating a binary file of a magic square. This demonstrates
fopen, fwrite, and fread. The options for precision are specified in the help for fread.
For example, a 32-bit integer can be specified with the MATLAB-style string 'int32' or the
C-style string 'integer*4'.

>> magic(4)

ans =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
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>> fid = fopen('magic4.bin','wb');
>> fwrite(fid,magic(4),'integer*4');
>> fclose(fid);

Now, let’s try to read this data file back in. Since the data was stored as 32-bit integers, we
have to specify this precision to get the data back.

>> fid = fopen('magic4.bin','rb');
>> c = fread(fid,inf,'integer*4')

c =

16
5
9
4
2

11
7

14
3

10
6

15
13
8

12
1

The shape of our matrix was not preserved, but we can see that the data was printed to the
file in column-wise order. To fully recreate our data, we need to reshape the matrix.

>> data = reshape(c,5,5)

data =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

If you need to specify the endianness of the data, you can do so in both fopen and fread.
The local machine format is used by default, but you can specify the IEEE floating point with
little endian byte ordering, the same with big ending ordering, and both with 64-bit long data
type. This may be important if you are using binary data from an online source or using data
on embedded processors.

For example, to write the same data in a big endian format, simply add the ’ieee-be’ param-
eter.
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>> fid = fopen('magic5.bin','wb','ieee-be');
>> fwrite(fid,magic(5),`integer*4');
>> fclose(fid);

Table 1.14 lists key functions for interacting with binary data.

Table 1.14: Key Functions for Binary Data

Function Purpose
fopen Open a file in text or binary mode
fwrite Write to a file
fread Read the contents of a file
fclose Close the file

1.13 Command-Line File Interaction
Problem

You have some unexpected behavior when you try to run a script MATLAB, and you suspect a
function conflict among different toolboxes.

Solution

MATLAB provides functions for locating and managing files and paths from the command line.

How It Works

MATLAB has a file browser built-in to the Command Window, but it is still helpful to be famil-
iar with the commands for locating and managing files from the command line. In particular, if
you have a lot of toolboxes and files in your path, you may need to identify name conflicts.

For example, if you get the wrong behavior or a strange error from a function and you
recently changed your path, you may have a file shadowing it in your path. To check for
duplicate copies of a function name, use which with the -all switch. Shadowed versions of
the function will be marked. which can take a partial pathname.

>> which DemoPSS -all
/Users/.../Toolboxes/Missions/Demos/DemoPSS.m
/Users/.../Toolboxes/Math/Demos/DemoPSS.m % Shadowed
/Users/.../Toolboxes/Imaging/Demos/DemoPSS.m % Shadowed
/Users/.../Toolboxes/Common/Demos/DemoPSS.m % Shadowed

To display the contents of a file at the command line, which is helpful if you need to see
something in the file but don’t need to open the file for editing, use type, as in Unix.
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To list the contents of a directory, use what. A partial path can be used if there are multiple
directories with the same name on your path. Specifying an output returns the results in a data
structure array. MATLAB identifies which files are code, MAT-file, p-files, and so on. what
is recursive and will return all directories with the given name anywhere in the path – useful if
you use the same name of a directory for functions and demos, as follows:

>> what Database

MATLAB Code files in folder /Users/Shared/svn/Toolboxes/SourceCode/Core/
Common/Demos/Database

Contents TConstant

MATLAB Code files in folder /Users/Shared/svn/Toolboxes/SourceCode/Core/
Common/Database

BuildConstant Contents MergeConstantDB
Constant Database

Use exist to determine if a function or variable exists in the path or workspace. The
code analyzer will prompt you to use the syntax with a second argument specifying the desired
type, that is, ’var’, ’file’, ’dir’. The output is a numerical code indicating the type of the file or
variable found.

Open a file in the editor from the command line using edit.
Load a MAT-file or ascii file using load. Give an output to store the data in a variable, or

else it will be loaded directly into the workspace. For MAT-files, you can also specify particular
variables to load.

d = load('MyMatFile','var1','var2');

The final command-line function we will introduce is lookfor. This function searches
through all help available on the MATLAB path for a keyword. The keyword must appear in
the first line of the help, that is, the one-line help comment or “H1” line. The printed result looks
like a Contents file and includes links to the help of the found functions. Here is an example for
the keyword integration.

>> lookfor integration
IntegrationAccuracyDemo - Integration Accuracy for

PropagateOrbitPlugin.
PropagatorComparison - Integration accuracy study comparing RK4

, RK45, and ode113.
lotkademo - Numerical Integration of Differential

Equations
cumtrapz - Cumulative trapezoidal numerical

integration.
trapz - Trapezoidal numerical integration.
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Table 1.15 lists key functions to use at the command line.

Table 1.15: Key Functions for Command-Line Interaction

Function Purpose
which Location of a function in the path
what List the MATLAB-specific files in the directory
type Display the contents of a file
dbtype Display the contents of a file with line numbers
exist Determine if a function or variable exists
edit Open a file in the editor
load Load a MAT-file into the workspace
lookfor Search help comments in the path for a keyword

1.14 Using a MEX File to Link to an External Library
Problem

There is an external C++ library that you need to use for an application, and you would like to
perform the analysis in MATLAB.

Solution

You can write and compile a special function in MATLAB using the C/C++ matrix API that
will allow you to call the external library functions via a MATLAB function. This is called a
MEX file.

How It Works

A MEX function is actually a shared library compiled from C/C++ or FORTRAN source
code, and is callable from MATLAB. This can be used to link to external libraries such as
GLPK, BLAS, and LAPACK. When writing a MEX function, you provide a gateway routine
mexFunction in your code and use MATLAB’s C/C++ Matrix Library API. You must have
a MATLAB-supported compiler installed on your machine.

1 #include "mex.h"
2

3 void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *
prhs[])

You can see that, as with regular MATLAB functions, you can provide multiple inputs and
multiple outputs. mxArray is a C language type, actually the fundamental data type for all
matrices in MATLAB, provided by the MATLAB API.

You use the mex function to compile your C, C++, or FORTRAN function into a binary.
Passing the verbose flag, -v, provides verbose output familiar to C programmers. An extension
such as “mexmaci64”, as determined on your system by mexext, is appended, and you can
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then call the function fromMATLAB like any other m-file. For example, on Mac, MATLAB de-
tects and uses Xcode automatically when compiling one of the built-in examples, yprime.c.
This function “Solves simple 3 body orbit problem.” First, you need to copy the example into a
local working directory.

>> copyfile(fullfile(matlabroot,'extern','examples','mex','yprime.c')
,'.','f');

Some excerpts from the verbose compile are shown as follows:

>> mex -v -compatibleArrayDims yprime.c
Verbose mode is on.
No MEX options file identified; looking for an implicit selection.
... Looking for compiler 'Xcode with Clang' ...
... Looking for environment variable 'DEVELOPER_DIR' ...No.
... Executing command 'xcode-select -print-path' ...Yes ('/Applications/

Xcode.app/Contents/Developer').
... Looking for folder '/Applications/Xcode.app/Contents/Developer' ...

Yes.
... Executing command 'which xcrun' ...Yes ('/usr/bin/xcrun').
... Looking for folder '/usr/bin' ...Yes.
...
Found installed compiler 'Xcode with Clang'.
-------------------------------------------------------------------

Compiler location: /Applications/Xcode.app/Contents/Developer
Options file: /Applications/MATLAB_R2014b.app/bin/maci64/mexopts/

clang_maci64.xml
CC : /usr/bin/xcrun -sdk macosx10.9 clang
DEFINES : -DMX_COMPAT_32 -DMATLAB_MEX_FILE
MATLABMEX : -DMATLAB_MEX_FILE
CFLAGS : -fno-common -arch x86_64 -mmacosx-version-min=10.9 -

fexceptions -isysroot /Applications/Xcode.app/Contents/
Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10
.9.sdk

INCLUDE : -I"/Applications/MATLAB_R2014b.app/extern/include" -I"/
Applications/MATLAB_R2014b.app/simulink/include"

COPTIMFLAGS : -O2 -DNDEBUG
LD : /usr/bin/xcrun -sdk macosx10.9 clang
LDFLAGS : -Wl,-twolevel_namespace -undefined error -arch x86_64 -

mmacosx-version-min=10.9 -Wl,-syslibroot,/Applications/Xcode.
app/Contents/Developer/Platforms/MacOSX.platform/Developer/
SDKs/MacOSX10.9.sdk -bundle -Wl,-exported_symbols_list,"/
Applications/MATLAB_R2014b.app/extern/lib/maci64/mexFunction.
map"

LDBUNDLE : -bundle
LINKEXPORT : -Wl,-exported_symbols_list,"/Applications/

MATLAB_R2014b.app/extern/lib/maci64/mexFunction.map"
LINKLIBS : -L"/Applications/MATLAB_R2014b.app/bin/maci64" -lmx -

lmex -lmat -lstdc++
OBJEXT : .o
LDEXT : .mexmaci64
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-------------------------------------------------------------------
Building with 'Xcode with Clang'.
/usr/bin/xcrun -sdk macosx10.9 clang -c -DMX_COMPAT_32 -

DMATLAB_MEX_FILE -I"/Applications/MATLAB_R2014b.app/extern/include" -
I"/Applications/MATLAB_R2014b.app/simulink/include" -fno-common -arch
x86_64 -mmacosx-version-min=10.9 -fexceptions -isysroot /

Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/
Developer/SDKs/MacOSX10.9.sdk -O2 -DNDEBUG /Users/Shared/svn/Manuals/
MATLABCookbook/MATLAB/yprime.c -o /var/folders/22/
l715021s5rnghdtkxsy_cbk40000gp/T//mex_47653762085718_983/yprime.o

/usr/bin/xcrun -sdk macosx10.9 clang -Wl,-twolevel_namespace -undefined
error -arch x86_64 -mmacosx-version-min=10.9 -Wl,-syslibroot,/
Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/
Developer/SDKs/MacOSX10.9.sdk -bundle -Wl,-exported_symbols_list,"/
Applications/MATLAB_R2014b.app/extern/lib/maci64/mexFunction.map" /
var/folders/22/l715021s5rnghdtkxsy_cbk40000gp/T//
mex_47653762085718_983/yprime.o -O -Wl,-exported_symbols_list,"/
Applications/MATLAB_R2014b.app/extern/lib/maci64/mexFunction.map" -L
"/Applications/MATLAB_R2014b.app/bin/maci64" -lmx -lmex -lmat -lstdc
++ -o yprime.mexmaci64

rm -f /var/folders/22/l715021s5rnghdtkxsy_cbk40000gp/T//
mex_47653762085718_983/yprime.o

MEX completed successfully.

Now, assuming you copied the source into an empty directory, if you now print the contents,
you will see something like the following:

>> dir

. .. yprime.c yprime.mexmaci64

and you can run a test of the compiled library.

>> T = 0;
>> Y = rand(1,4);
>> yprime(T,Y)

Writing MEX files is not for the faint of heart and requires substantial programming knowl-
edge in the base language. In the preceding printout, you can see that the standard C++ library
is included, but you need to provide links and include explicitly to other libraries you want to
use. Note that your MEX-file will not have any function help, so it is a good idea to provide a
companion m-file that supplies the help comments and calls your MEX function internally.

TIP Provide a separate m-file with your MEX-file that contains help comments and,
optionally, calls the MEX-file.

See the help articles including Components of MEX-File in MATLAB as well as the many
included examples for help writing MEX-files. In the case of GLPK (GNULinear Programming
Kit), an excellent MEX file is available under the GNU public license. This was written by
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Nicolo Giorgetti and is maintained by Niels Klitgord. This is now available from SourceForge,
http://glpkmex.sourceforge.net.

1.15 Protect Your IP with Parsed Files
Problem

You want to share files with customers or collaborators without compromising your intellectual
property in the source code.

Solution

Create protected versions of your functions using MATLAB’s pcode function. Create a sepa-
rate file with the help comments so users will have access to the documentation.

How It Works

The pcode function provides a capability to parse m-files into executable files with the con-
tent obscured. This can be used to distribute your software while protecting your intellectual
property. A pcoded file on your path with a “p” extension, takes precedence over an m-file of
the same name. Parsing an m-file is simple:

>> pcode Dot

The only argument available is the -INPLACE flag to store the p-file in the same directory
as the source m-file; otherwise, it will be saved to the current directory.

One difficulty you may encounter is that once you have parsed your functions and moved
them into a new folder, you no longer have access to the function help you created. The
command-line help is not implemented for pcoded files, and typing “help MyFunction” will
no longer work. You have to create a separate .m file with the help comments as for MEX-files.
We can write a function to extract the header from an m-file and save it. We will use fprintf
for this, so it’s important that the header not contain any special characters like backslashes.

ParseAndSaveHeader.m

1 %% PARSEANDSAVEHEADER Save the header of a function to a new file.
19 function ParseAndSaveHeader( readFromFile, writeToFile )
20

21 filePath = which(readFromFile);
22 [pathStr,name,ext] = fileparts(filePath);
23

24 copyfile(filePath,fullfile(pathStr,[name,'_orig',ext]));
25

26 fid = fopen(filePath,'rt');
27 t = fgetl(fid);
28 hlp = '';
29 while( ˜isempty(t) && strcmp(t(1),'%') )
30 if length(t)>1 && strcmp(t(2),'%')
31 t = ['%' t];
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32 end
33 hlp = [hlp,'\n%',t];
34 t = fgetl(fid);
35 if( ˜ischar(t) )
36 break;
37 end
38 end
39 hlp = [hlp,'\n%%\n%% This function was parsed on ',date,'\n\n'];
40 fclose(fid);
41 if ischar(writeToFile)
42 fid = fopen(writeToFile,'wt');
43 else
44 fid = writeToFile;
45 end
46 fprintf(fid,hlp);
47 if ischar(writeToFile)
48 fclose(fid);
49 end
50

51 pcode(filePath);

We save a copy of the m-file with a suffix orig, to prevent unpleasant mistakes with
deleted files. Note that we add a final comment at the end with the date the function was parsed.

1.16 Writing to a Text File
Problem

You need to write some information from MATLAB to a text file. One example is creating a
template for new functions following a preferred format.

Solution

We will use fopen, fprintf, and fclose to open a new text file, print desired lines to it,
and then close it. The input function is used to allow the user to enter a one-line summary of
the function.

How It Works

MATLAB has a full set of functions for input and output, including writing to files. See help
iofun for a detailed listing. You can write to text files, spreadsheets, binary files, XML,
images, or zip files.

One useful example is creating a template for new functions for your company, following
your preferred header format. This requires using fopen and fclose, and fprintf to
print the lines to the file. The first input is the desired name of the new function. Note that
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fprintf will print to the command line if given a file ID of 1. We provide an option to do
so with the second input, which is a boolean flag. We use the date function to get the current
year for the copyright notice, which returns a string in the format ’dd-mmm-yyyy’; we use the
string function strsplit to break the string into tokens. Using string indices would be an
alternative. In addition, this demonstrates using input to prompt the user for a string, namely,
a one-line description of the new function.

NewBookFile.m

1 %% NEWBOOKFILE Create a new function with the default header style.
2 % Pass in a file name and the header template will be printed to that

file
3 % in the current directory. You will be asked to enter a one-line

summary.
4 %% Form
5 % NewBookFile( fName, outputIsFile )
6 %% Input
7 % fName (1,1) File name
8 % outputIsFile (1,1) True if a file is created, otherwise header

is
9 % printed to the command line.

10 %% Output
11 % None.
16

17 function NewBookFile( fName, outputIsFile )
18

19 if (nargin < 2)
20 outputIsFile = false;
21 end
22

23 if (nargin == 0 || isempty(fName))
24 fName = input('Function name: ','s');
25 end
26

27 % Check if the filename is valid and if such a function already exists.
28 if (˜isvarname(fName))
29 error('Book:error','invalid name');
30 end
31 if (outputIsFile && exist(fName,'file'))
32 error('Book:error','file %s already exists',fName);
33 end
34

35 % Get a one-line description (H1 line) from the user.
36 comment = input('One-line description: ','s');
37

38 % Open the file or specify command line output.
39 if (outputIsFile)
40 fid = fopen([fName '.m'],'wt');
41 c = onCleanup(@() fclose(fid));
42 else
43 fid = 1;
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44 fprintf(fid,'\n');
45 end
46

47 % Write the header to the file. Use the current year for the copyright
48 % notice.
49 fprintf(fid,'%%%% %s %s\n',upper(fName),comment);
50 fprintf(fid,'%% Description.\n');
51 fprintf(fid,'%%%% Form\n');
52 fprintf(fid,'%% y = %s( x )\n',fName);
53 fprintf(fid,'%%%% Input\n');
54 fprintf(fid,'%% x (1,1) Description\n%%\n');
55 fprintf(fid,'%%%% Output\n');
56 fprintf(fid,'%% y (1,1) Description\n%%\n');
57 fprintf(fid,'%%%% Reference\n');
58 fprintf(fid,'%% Insert the reference.\n');
59 fprintf(fid,'%%%% See also\n');
60 fprintf(fid,'%% List pertinent functions.\n\n');
61

62 today = strsplit(date,'-');
63 year = today{end};
64

65 fprintf(fid,'%%%% Copyright\n');
66 fprintf(fid,'%% Copyright (c) %s Princeton Satellite Systems, Inc.\n%%

All rights reserved.\n',year);
67 fprintf(fid,'\nfunction y = %s(x)\n',fName);
68

69 if outputIsFile
70 edit(fName);
71 end

Note that this function checks for two errors, in the case of a bad function name and if a
function with the same name already exists on the path. We use the two-input form of error
where the first input is a message identifier. The message identifier is useful if an error is
returned from a catch block. The message identifier can be verified using lasterr. For
instance, if we fail to enter a valid function name when prompted, we can see the results of the
first error.

>> NewBookFile([])
Function name:
Error using NewBookFile (line 29)
invalid name

>> [LASTMSG, LASTID] = lasterr

LASTMSG =

Error using NewBookFile (line 29)
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invalid name

LASTID =

Book:error

The function includes the ability to print the header to the Command Window, instead of
creating a file, which is useful for testing – or if you went ahead and started with a blank file
and need to add a header after the fact. This is accomplished by using 1 for the file identifier.
Here is what the header will look like:

>> NewBookFile('Test')
One-line description: This is a test function.

%% TEST This is a test function.
% Description.
%% Forms
% y = Test( x )
%% Input
% x (1,1) Description
%
%% Output
% y (1,1) Description
%
%% Reference
% Insert the reference.
%% See also
% List pertinent functions.

%% Copyright
% Copyright (c) 2015 Princeton Satellite Systems, Inc.
% All rights reserved.

function y = Test(x)

Table 1.16 summarizes some key functions for interacting with text files.

Table 1.16: Key Functions for Interacting with Text Files

Function Purpose
fprintf Print formatted text to a file
strsplit Split a string into tokens using a delimiter
fgetl Get one line of a file (until a newline character)
input Get string input from the user via the command line
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1.17 Using an Explicit Expansion
Problem

You need to use an explicit expansion.

Solution

Use the dot operator to produce an output with a higher dimension.

How It Works

Explicit expansion expands the dimensionality of the result automatically. In this case, we
have an eight-element row and an eight-element column array. Prior to 2016b, these could not
be multiplied. Now if you multiply them, it will automatically expand the dimensions of the
results.

1 %% Explicit expansion
2

3 a = 2:1:9
4 b = (0:7)'
5 a.*b

The results are shown in the following. The first element of b creates the first row of the
output by multiplying every element of a. This is continued for the remaining elements of b.

>> ImplicitExpansion

a = 2 3 4 5 6 7 8 9
b = 0

1
2
3
4
5
6
7

ans = 0 0 0 0 0 0 0 0
2 3 4 5 6 7 8 9
4 6 8 10 12 14 16 18
6 9 12 15 18 21 24 27
8 12 16 20 24 28 32 36

10 15 20 25 30 35 40 45
12 18 24 30 36 42 48 54
14 21 28 35 42 49 56 63
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1.18 Using a Script Subfunction
Problem

You need to write a script with a subfunction. This is useful when a script needs a function that
is not of general utility. You can use this feature to avoid generating many separate function
files that are only used in one place. We commonly use it for right-hand sides of simulation
loops or for plotting methods needed to visualize data generated by the script.

Solution

We will add a subfunction to a script that provides the dynamics of a model.

How It Works

We model slosh as a mass at the end of a rod attached to the center of mass of the rest of the
spacecraft. When the main engine fires, the acceleration on the mass provides a spring-like
restoring force on the mass. The damping is due to the interaction of the fluid with the walls of
the fuel tank. Figure 1.7 shows the model.

The function Slosh.m provides a simple numerical model for fuel slosh on a spacecraft.
The subfunction RHSSlosh starts with function and finishes with end. The script does not
have an end before the function statement.

Slosh.m

1 %% Slosh Model
2 % A slosh model. This also demonstrates a script with a sub function.
3 % You can run this with a step input or a doublet
4

5 n = 1000; % Number of steps
6 dT = 0.1; % Time step
7 doublet = true; % Logical
8

9 % Create the data structure for the right hand side

Figure 1.7: Simple slosh model.
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10 d.i0 = 100; % Inertia of the spacecraft
11 m0 = 1000; % Mass of the spacecraft used only for the

acceleration
12

13 % Control system
14 zeta = 0.7071; % Damping ratio of the controller
15 omega = 0.01; % Undamped natural frequency of the controller
16 d.pD = d.i0*omega*[2*zeta omega];
17

18 % Set up the pendulum model
19 thrust = 100; % Thrust that produces the slosh pendulum
20 l = 0.5; % Length of the slosh pendulum
21 m = 10; % Mass of the fuel
22 a = thrust/m0; % Acceleration
23 d.i1 = m*lˆ2; % Inertia of the fuel slosh disk
24 d.k = a*m; % Spring stiffness
25 d.damp = 0.05; % Damping
26

27 %% Simulate
28 torque = 1;
29 xP = zeros(4,n);
30 x = [0;0;0;0];
31

32 for k = 1:n
33 xP(:,k) = x;
34 if( doublet )
35 if( k == 1 )
36 d.torque = torque;
37 elseif( k == 2)
38 d.torque = -torque;
39 else
40 d.torque = 0;
41 end
42 else
43 d.torque = torque;
44 end
45 x = RK4(@RHSSlosh,x,dT,0,d); % We use a pointer
46 end
47

48 %% Plot the results
49 [t,tL] = TimeLabel((0:n-1)*dT);
50 yL = {'\phi (rad)' '\theta (rad)' '\omega_0 (rad/s)' '\omega_1 (

rad/s)'};
51

52 PlotSet(t,xP,'x label',tL,'y label',yL,'figure title','Slosh');
53

54 %% Right-hand-side is a script sub function
55 function xDot = RHSSlosh(x,˜,d)
56

57 phi = x(1);
58 theta = x(2);
59 omega0 = x(3);
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60 omega1 = x(4);
61

62 torqueHinge = d.k*(theta-phi) + d.damp*(omega1 - omega0);
63

64 omega0Dot = (d.torque - d.pD*x([3 1]) + torqueHinge)/d.i0;
65 omega1Dot = -torqueHinge/d.i1;
66

67 xDot = [omega0;omega1;omega0Dot;omega1Dot];
68

69 end

A few other things are worth noting. The subfunction RHSSlosh has an ∼, in the argument
list because time is not used. We pass the names of the y-labels as a cell array using LaTeX
symbols for the Greek letters. We set up the data structure, d, by just adding fields.

1.19 Using Memoize
Problem

You have a time-consuming process that you may have to do many times. However, the same
inputs always result in the same outputs, so over many inputs, there is a duplication of compu-
tation.

Solution

We will use the memoize function. This is an optimization technique to speed up computation
by storing the results of function calls in a cache, which can be accessed automatically when the
same inputs are seen again. This is equivalent to storing a data table of outputs in a MAT-file,
but faster.

How It Works

memoize stores the results in a buffer for later reuse. This is shown in the following script
UseMemoize.m:

UseMemoize.m

1 %% Use memoize to store the results
2

3 x = rand(2000,2000);
4

5 % Create the memorized function
6 memY = memoize(@schur);
7

8 % Evaluate it
9 tic

10 y = memY(x);
11 toc
12

13 % Now evaluate the memorized version
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14 tic
15 y2 = memY(x);
16 toc

The results are

>> UseMemoize
Elapsed time is 2.195378 seconds.
Elapsed time is 0.001552 seconds.

You can see that the second call is much faster, over 1000 times. This can be handier
than storing the output. Note that a function to be memoized should not have any additional
side effects, like affecting a global state, based on the inputs. Those side effects would not be
repeated on additional calls to the function.

1.20 Using Java
Problem

We want to use MATLAB as a computational engine in Java.

Solution

We will use the MATLAB Engine.

How It Works

This will show how to use Java on Mac OS X. It will be similar on Linux and Windows.
MATLAB provides a demo with a Java Swing GUI. First, get the demo function (or write your
own Java).

>> copyfile(fullfile(matlabroot,'extern','examples','engines','java','
EngineGUIDemo.java'),'EngineGUIDemo.java')

ls
EngineGUIDemo.java

This is a fairly complex function. An example of using the engine in Java to compute roots
is shown in the following. You define MATLABEngine.

1 import com.mathworks.engine.*;
2 public class JavaDemo
3 {
4 public static void main(String[] args) throws Exception{
5 MatlabEngine eng = MatlabEngine.startMatlab();
6 double[] a = {1.0, 2.0, 3.0};
7 double[] roots = eng.feval("roots", a);
8 eng.close();
9 }

10 }
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You will need the MATLAB root to build your Java from Terminal.

>> matlabroot

ans =

'/Applications/MATLAB_R2019b.app'

Open Terminal on Mac. cd (change directory) to the directory containing your Java. Com-
pile using

1 javac -classpath /Applications/MATLAB_R2019b.app/extern/engines/java/
jar/engine.jar EngineGUIDemo.java

Notice where we have the matlabroot. Run using

1 java -Djava.library.path=/Applications/MATLAB_R2019b.app/bin/maci64 -
classpath .:/Applications/MATLAB_R2019b.app/extern/engines/java/jar
/engine.jar EngineGUIDemo

You will see the GUI shown in Figure 1.8. Start MATLAB and then enter the number for
which you want the factorial.

Figure 1.8: EngineGUIDemo.
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1.21 Creating Documents
Problem

We want to use MATLAB to create a document, combining text, code fragments, and plots.
This can be a way to create a technical memo or document an analysis to be handed off to
another engineer.

Solution

Use live scripts.

How It Works

Live scripts allow you to create documents with active MATLAB code, text, equations, and
images. Click New Live Script and you will see
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Add text and code in the Live Editor tab.
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To add equations and graphics, click the Insert tab. The equation editor is like the one in
Microsoft Word.

Type

>> open ID.mlx

to open this document. If having trouble with running live scripts, you may need to disable
any VPNs you have installed. Live scripts have many uses. For example, you can create inter-
active technical memos in which the reader can execute the MATLAB code needed to produce
the results. This way, the reader can try different cases easily. You no longer need to list the
MATLAB code used. Another use is interactive training.
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1.22 MATLAB Online
Problem

We want to use MATLAB Online to work in MATLAB. This is using MATLAB through your
web browser.

Solution

Set up MATLAB Online and a folder on your machine to access local folders.

How It Works

If you have a current MATLAB license, you can use MATLAB Online. On the MathWorks
website, you can access MATLAB Online from the products page, under the Cloud Solutions
category. The first step is to set up access to your local folder by downloading and executing
MATLAB Drive Connector. Once that is done, drag the folders that you want to use into the
MATLAB drive folder.

In this case, we dragged in the General folder from the code for this book. Go to the
MATLAB Online web page and start the session.
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We already started the session. We created q and tried to run Q2Mat, which didn’t work.
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You first need to click the folder with the down arrow in the toolbar to select the General
folder.

This pop-up window will appear.
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Fortunately, you don’t have to do this every time! Here is how it works when we return to
the MATLAB Online.

Summary
This chapter reviewed the basic syntax for MATLAB programming. We highlighted differences
between MATLAB and similar languages, like C and C++, in the language primer. Recipes give
tips for efficient usage of key features, including writing to binary and text files. Tables at the
end of each section highlight key functions you should have at your fingertips.

This chapter did not provide any information on using MATLAB’s computational tools, like
integration and numerical search, as those will be left to subsequent chapters. Interacting with
MATLAB graphics is also left to a later chapter.
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MATLAB Style

This chapter provides guidelines and recipes for suggested style elements to make your code
and tools more understandable and easier to use.

When structuring a function, we have specific guidelines. The comments should be clear
and descriptive and follow the formatting guidelines set by your institution. The same goes for
naming conventions. In addition, we recommend supplying “built-in” inputs and outputs, that
is, example parameters, so the function can be completely executed without any input from the
user. These additional demo forms should be listed with the different syntaxes you create for
the function.

Documenting your code goes beyond adding a header and some comments to your code.
MATLAB now allows you to integrate HTML help into your toolboxes that displays in the
browser along with MATLAB’s documentation. You can also use the publishing utility to create
comprehensive technical reports. Incorporating these features into your style guidelines from
the beginning will save you a lot of work when you want to release your toolbox to others.

2.1 Developing Your Own MATLAB Style Guidelines
Problem

Each engineer in your group has their own favorite naming and whitespace styles. Whitespace
is the blank spaces and lines that are left between code elements. Some writers like the code
very compact; others add a lot of whitespace to set things off, which may make the code longer.
When people work on each other’s code, you end up with a mishmash that makes the code more
difficult to read.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 2
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Solution

Develop and publish your own style guidelines. MATLAB can help enforce some guidelines,
such as tab sizes, in the preferences.

How It Works

We recommend the classic book The Elements of MATLAB Style by Richard K. Johnson as
a starting point for developing your own style guidelines. Many of the recommendations are
generic to good coding practice across programming languages, and others are specific to MAT-
LAB, such as using publishing markup syntax in your comments. The book addresses format-
ting, naming, documentation, and programming.

We deviate from the book’s recommendations in a few ways. For one, we prefer to capital-
ize the names of functions. This distinguishes your custom functions from built-in MATLAB
functions in scripts. In another, we like to use single-letter variables for structures, rather than
long camel case names such as MyFancyDataStructure. However, the key to clear MATLAB
code, which is also emphasized in Johnson’s text, is to treat MATLAB code like compiled code.
Be mindful of variable types, use parentheses even when MATLAB doesn’t explicitly require
them, and write plentiful comments. This means, generally, at least one comment with each
code block and loop explaining its purpose. If you’ve left a blank line between code bits or
indented a section of code, there should be a comment.

For instance, when a variable value is a double, indicate this with a decimal point. This
avoids confusion that the parameter may be an integer.

Replace

value = 1;

with

value = 1.0;

In if statements, always use parentheses. If you ever want to port the code to another
language in the future, this saves you time, and it makes the code clearer and easier to read for
programmers versed in multiple languages.

Replace

if thisIsTrue && thatIsTrue

with

if (thisIsTrue && thatIsTrue)

You should always avoid “magic numbers” in your code, which are easy to use when quickly
typing out a function to test a concept. This is a number value that is typed in, such as to a logical
statement, instead of assigned to a variable. Take the time to define a properly named variable
and add a comment with the source of the number.
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Replace

if (value > 2.0 || value < 0.0)

with

if (value > minValue || value < maxValue)

With the advent of color-coding IDEs, such as MATLAB’s editor, adding a lot of whitespace
to delineate code sections has fallen out of favor in style guidelines. Generally, one line of blank
space is enough between blocks of code. We suggest adding an additional line of whitespace
between the end of a function and the start of a subfunction. You shouldn’t put whitespace
between lines of code that are closely related.

Some programmers prefer to align blocks of code on their equal signs. This can be helpful,
especially when coding sets of equations from a reference. However, it can also be tedious to
maintain when code is under active development. If you like this style, you may prefer to wait
on adding the aligning space until the function has passed internal code review and is ready for
release. In our code, we generally align on equals signs only within smaller blocks as delineated
by comments or whitespace.

Consider:

1 % Initialization
2 myVar1 = linspace(0,1);
3 b = 1.0;
4

5 % Calculation
6 [result1, result2] = MyFunction(myVar1,b);
7 plotH = plot(myVar1,result2);

This could be aligned in multiple ways, such as

1 % Initialization
2 myVar1 = linspace(0,1);
3 b = 1.0;
4

5 % Calculation
6 [result1, result2] = MyFunction(myVar1,b);
7 plotH = plot(myVar1,result2);

or, if aligning across the blocks, as

1 % Initialization
2 myVar1 = linspace(0,1);
3 b = 1.0;
4

5 % Calculation
6 [result1, result2] = MyFunction(myVar1,b);
7 plotH = plot(myVar1,result2);
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Figure 2.1: Tab preferences with size of two and spaces option checked.

In our code for this book, you will see the former, per-block style of alignment.
Another consideration with whitespace is tab sizes. Some guidelines recommend larger tabs

of four or eight spaces, arguing that MATLAB code is rarely deeply nested. We routinely write
a lot of deeply nested code so our internal guideline is for two spaces. When you set the tab size
in the MATLAB preferences, and set it to insert spaces for tabs, you can use the Smart Indent
feature to easily highlight and update code blocks. Figure 2.1 shows the tab preferences pane
in MATLAB R2014b, on a Mac.

We prefer to use uppercase for function names (MyFunction) specifically to distinguish
them from the lowercase function names of the built-in MATLAB functions. Otherwise, we
use camel case (myVariableName) for variables and often single-letter or very short names
for structures. For index variables, we tend to use k to avoid confusion with the variables i
and j and their association with imaginary numbers. We follow the standard convention of
capitalizing constant names, that is, for the Earth’s gravitational constant, MU EARTH.

In other words, you need to establish naming conventions for the following:

• Function names
• Variable names
• Structure names
• Index variables
• Constants

Additional naming conventions might include standard prefixes or suffixes for certain types
of files or variables. One example is using the letters “RHS” in the name of a function that pro-
vides dynamics for integration, that is, the right-hand side of the equations when the derivatives
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are on the left. The word “Demo” is helpful in the name of a script that demonstrates a particu-
lar function or feature. You should be consistent about the order of variable name elements. For
example, if rmeans radius and the second element is the name of the planet, then use R EARTH
and R MOON. Don’t make the second MOON R. The order should be consistent throughout your
code base.

Further rules could address the names of boolean variables or the use of verbs in function
names. The most important step is to create a set of conventions for your organization and write
them up, or create some function templates, so that your engineers write consistent code.

The guidelines we have described here and use throughout this book are summarized as
follows:

Naming – Naming guidelines

Function names – Use camel case for function names with the first letter capitalized.
The first word is ideally an action verb or “RHS.”

Script names – If the script is a demo of a particular function or set of functions, append
“Demo” to the name.

Variable names – Use camel case for variable names with a lowercase first letter.

Constants – Use all uppercase with underscores to identify constants.

Variable name length – Most variable names should be at least three characters. This
helps enforce uniqueness and makes the variables more readily distinguishable. Ex-
ceptions include commonly used data structures, index variables, and when repli-
cating equations from a text where single-letter variable names are standard and
easily recognizable to someone in the field.

Index variables – When using a single index variable, use k; when using two, j and k;
for additional variables, use l, m.

Doubles – Always use a decimal point when typing out a double value.

Magic numbers – Avoid magic numbers in your code; prefer the use of a variable to specify a
number.

Comments – Always add a comment describing the source or rationale for a hard-coded num-
ber in your code.

If statements – Always use parentheses around the conditional portion of IF statements.

Tabs – Use a tab size of two spaces and set MATLAB to insert spaces for tabs. Use Smart
Indent to enforce consistent tabs before committing files.

Blank lines – Use one blank line between most code sections and two blank lines between
subfunctions.
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Alignment – Align code on the equals sign only within the code block, as separated by blank
lines.

Guidelines for function headers are addressed in the next recipe.

2.2 Writing Good Function Help
Problem

You look at a function a couple months (or years) after you wrote it, or a colleague wrote it,
and find it has only one cryptic comment at the top. You no longer remember how the function
works, what it was supposed to do, or exactly what your comment means.

Solution

Establish a format for your function headers and stick to it. Use the publishing markup to enable
you to generate good-looking documentation from the m-file.

How It Works

Write the header for your function at the top, using the publishing markup. This means that the
very first line should start with a section break, %%, and include the name of your function,
as that will be the title of the published page. This line should also include a one-sentence
summary of the function; this must be in the first non-empty comment line of the file and is also
termed the “H1” line. This summary can be used automatically by MATLAB when generating
Contents.m files for your folders and by the lookfor function, which searches files on the
path for keywords.

Document inputs and outputs separately using section titles. Indicate the type or size of
the variable and provide a description. Using two spaces between the comment sign % and
line’s text will generate monospaced text, which we use for the input and output lists. We have
developed the following keys to indicate the variable type and size:

• {} – Cell array
• (1,1) – Scalar value
• (:) or '' – String
• (:,:) – Matrix of variable size
• (1,:) – Row of variable length
• (:,1) – Column of variable length
• (m,n) – Matrix with row and column sizes (m,n) that must match other inputs or outputs
• (.) – Data structure
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• (:) – Data structure array
• (*) – Function handle

Always include a copyright or authorship notice. Take credit for authoring your code!
The standard is to start with the initial year the function is created, then add a range of years
when you update the function, that is, Copyright (c) 2012, 2014–2015. The “c” in parentheses
approximates the actual copyright symbol. After copyright, the next line should state “All
Rights Reserved.” Add a contract number, project number, or distribution statement if pertinent.
Add a blank line between the main header and the copyright notice to suppress it from the
command-line help display.

We show an example in the following for a function which computes a dot product column-
wise for two matrices. Note that this will still be legible in the command window output of
help Dot, with the first % of the cell breaks suppressed. We use the * markup for a bulleted
list. The output will always be one row which is indicated in the size key.

FUNCTION HEADER EXAMPLE
%% DOT Dot product of two arrays.
%% Forms
% d = Dot( w, y )
% d = Dot( w )
%% Description
% Dot product with support for arrays. The number of columns of w and y can be:
%
% * Both > 1 and equal
% * One can have one column and the other any number of columns
%
% If there is only one input the dot product will be taken with itself.
%% Inputs
% w (:,:) Array of vectors
% y (:,:) Array of vectors
%% Outputs
% d (1,:) Dot product of w and y
%% See also
% Cross

When published to HTML, this will appear as follows, ignoring the generated Contents section:

DOT Dot product of two arrays.

Forms

d = Dot( w, y )
d = Dot( w )
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Description

Dot product with support for arrays. The number of columns of w and y can be:

• Both > 1 and equal
• One can have one column and the other any number of columns

If there is only one input the dot product will be taken with itself.

Inputs

w (:,:) vector
y (:,:) vector

Outputs

d (1,:) Dot product of w and y

See also

Cross

Finally, remember to describe any plots created or files generated, that is, “side effects.”
It’s also a good idea to identify if a function uses persistent or global variables, which may
require a clear command to reset. The following list summarizes the parts of the header, in
order:

1. H1 line – Start with a single line description of the function.

2. Syntax – List the syntax supporter.

3. Description – Provide a more detailed description. Describe any built-in demos, default
values for parameters, persistent or global variables users need to be aware of, and any
“side effects” including plots or files saved. Indicate if a function will request input from
the user.

4. Inputs – List the inputs with a size/format key. Include units, if applicable.

5. Outputs – List the outputs as for inputs.

6. See also – List any related functions.

7. Reference – If applicable, list any references.

8. Copyright – Include a copyright notice. There should be a blank line between the rest of
the header and the copyright notice.
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2.3 Overloading Functions and Utilizing varargin

Problem

You want to reuse a section of code you have written, but you may have to use it in different
situations or extract additional data for it in some circumstances but not others.

Solution

You can overload functions in MATLAB easily and implicitly. This means calling the same
function with different inputs and outputs. varargin and varargout make it simple to
manage variable-length input and output lists.

How It Works

MATLAB allows you to overload a function in any way you would like, inside the file that
defines it. This applies to the inputs and the outputs. There is generally a trade-off between
writing the clearest code you can, with a single calling syntax, and avoiding duplication of
code. Perhaps there are intermediate variables which may be useful as outputs in some cases,
or you want to provide backward compatibility with an older syntax. When creating libraries
for numerical computations, there always seem to be additional syntaxes that are useful. We
recommend the following when overloading functions:

• Use varargin and varargoutwhen possible and rename the variables with descrip-
tive names as close to the top of the function as you can.

• Be sure to document all input and output variants clearly in the header. Adding another
optional input or output and neglecting to document it is the #1 reason for out-of-date
headers.

• Use comments to clearly identify what the outputs are when you are renaming them to
match the function’s syntax, or use varargout.

• Clear the function outputs if you are creating a plot and they are not needed, to avoid
unnecessary printing to the command line.

The following example highlights the use of these guidelines. We often use functions with
a string “action” defining multiple input variations by name. This provides additional clarity
beyond depending on the input number or type to select an overloaded method.

FUNCTION OVERLOADING

1 % d = OverloadedFunction('default data');
2 % OverloadedFunction('demo');
3 % [y,d] = OverloadedFunction('update',x,d);
4

5 function varargout = OverloadedFunction( action, varargin )
6
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7 switch action
8 case 'default data'
9 d = DefaultData;

10 varargout{1} = d;
11

12 case 'demo'
13 d = DefaultData;
14 x = linspace(0,1);
15 y = OverloadedFunction('update',x,d);
16 figure('name','OverloadedFunction Demo');
17 plot(x,y);
18

19 case 'update'
20 x = varargin{1};
21 d = varargin{2};
22 y = Update(x,d);
23 varargout{1} = y;
24 varargout{2} = d;
25

26 end

2.4 Adding Built-in Inputs and Outputs to Functions
Problem

You would like to provide default values for some optional inputs or provide a short demonstra-
tion of how a function works.

Solution

Add built-in inputs and outputs to your function using an enumerated input or with nargin.
This can include a full demo that calls the function and generates plots, as appropriate.

How It Works

Built-in inputs provide an example set of parameters that produce output. In many cases, we
provide an input range that can create a plot demonstrating the computation performed in the
function. In the case of MATLAB, you must explicitly handle input options in the code, as you
can’t add a default value in the function definition itself.

One convention that we find useful is to allow for an empty matrix, [], to be entered for
an input to use its default value. This allows you to request a default for one input but provide
values for subsequent inputs. The following example shows both a demo that creates a plot and
a default value for a constant.
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1 function output = MyFunction( variable, constant )
2

3 if (nargin == 0)
4 % perform demo
5 variable = linspace(0,100);
6 output = MyFunction( variable );
7 return;
8 end
9 if (nargin < 2 || isempty(constant))

10 % default value of constant
11 constant = 2.05;
12 end

Notice that the built-in demo, which is performed when there are no inputs at all, calls the
function itself and then returns. This makes the demo also a built-in test. The code to generate
the built-in outputs, which could be a text report to the command line or a plot, generally
comes at the end of the function. This enables you to create the built-in outputs with inputs the
user specifies and not just the built-in inputs. For instance, there might be alternative values
of the constant. Note that in the following output generation example, the name of the figure
is specified including the name of the function, which is exceedingly helpful if you routinely
generate dozens of plots during your work.

1 ... body of function with calculations ...
2

3 if (nargout==0)
4 % Default output is a plot
5 figure('Name',sprintf('Demo of %s',mfilename))
6 plot(variable, output)
7 clear output
8 end

TIP Assign a name to figures that you create. Include the name of the function or demo
for clarity. The name will be displayed in the title bar of the figure and in MATLAB’sWindows
menu.

Writing all your functions this way has several advantages. For one, you are showing
valid ranges of the variables up front, without requiring a reader to refer to a separate test
function or demo in another folder. Having this hard data available every time you open the
function helps keep your code and your comments consistent. Also, you have a test of the
function, which you can easily rerun at any time right from the editor. You can publish the
function with execution turned on which will perform the demo and include the command-line
output and plots right in the HTML file (or LaTeX or Word, if you so choose.) All of this helps
reduce bugs and documents your function for other readers or yourself in the future.
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Following this guideline, here is the general format we follow for all functions in this
book:

1. Detailed header

2. Copyright

3. Function definition

4. Default inputs

5. Function demo that calls itself

6. Code body with calculations

7. Default output

Note that no final return statement is necessary.
In summary, we have enabled the following usages of this function by adding default

inputs and outputs:

1 output = MyFunction( variable, constant );
2 output = MyFunction( variable ); % uses default value of constant
3 MyFunction; % performs built-in demo
4 MyFunction(variable, constant); % creates a plot for the given input

2.5 Adding Argument Checking to Functions
Problem

You would like to check arguments to make sure the user has entered valid values. Perhaps the
function only works for a certain range of values or only positive inputs. You would like to give
the user specific feedback on why a function has failed due to a known input issue rather than
let the function throw an error.

Solution

Add argument validation. The MATLAB document has details about the syntax.

How It Works

We create the following function, ArgCheckFun, and use the new arguments feature avail-
able since R2019b. This allows you to explicitly define the type of each function argument. You
can define default values for arguments and supply validation functions. A table of predefined
functions exists, including mustBePositive and mustBeNegative.

80



CHAPTER 2 MATLAB STYLE

1 function [x,c] = ArgCheckFun(a,b,c)
2

3 arguments
4 a (2,1) double
5 b (2,1) double
6 c (1,:) char
7 end
8

9 x = a'*b;

Now let’s run a few tests.

>> ArgCheckFun
Error using ArgCheckFun
Invalid input argument list. Not enough input arguments.
Function requires 3 input(s).

This first test fails as expected.

>> ArgCheckFun(1,1,1)

ans =
2

The second does not fail, even though the arguments are not what is specified in the argument
block. Note that the third input is unused except for being passed back as an output, so the
wrong form does not cause an error.

>> ArgCheckFun(rand(3,1),1,1)
Error using ArgCheckFun
Invalid input argument at position 1. Value must be vector with 2

elements.

The third does fail, as it should, as the first input has too many elements.

>> [x,c] = ArgCheckFun(rand(2,1),rand(2,1),'test1')

x =
0.2652

c =
'test1'

The last text works.
There may be cases where this is useful. However, if you properly document your argu-

ments in the header, you won’t have much need for this feature.

81



CHAPTER 2 MATLAB STYLE

2.6 Adding Dot Indexing
Problem

You would like to use dot indexing with a function that outputs a data structure.

Solution

Create a function with a single data structure output. Dot indexing is a new feature available by
default.

How It Works

Create the following function:

1 function d = StructFun(v)
2 d = struct('x',v,'y',0);

Now run two tests, passing 2 for the value v, and in the first test, accessing x, and in the second,
accessing y.

>> StructFun(2).x

ans =
2

>> StructFun(2).y

ans =
0

You can see that you can now access a field directly. It is not necessary to use a data
structure variable as an intermediate step if you only need a single field’s value.

2.7 Smart Structuring of Scripts
Problem

You write a few lines of code in a script to test some idea. Can you figure out what it does a
year later?

Solution

Treat your scripts like functions, and structure them well. Take the time to follow a template.
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How It Works

A script is any collection of commands that you put in a file and execute together. In our
toolboxes, we treat scripts as demos of our toolbox functions, and therefore as instructional.
Here are some guidelines we recommend when creating scripts:

Create help – Help headers are not just for functions; write them for your scripts too. Will
you remember what this script does in a year? Will someone else in your company be
able to understand it? Write a detailed description including a list of any files required or
generated.

Use publishing markup – Create cells in your scripts (using %%) to delineate sections. Write
detailed comments after the section headings. Publish your script to HTML and see how
it looks. You can even add equations using LaTeX markup or insert images.

Initialize your variables – Take care to fully initialize your variables or you could have con-
flicts when you run multiple scripts in a row. This especially applies to data structures
and cell arrays. See the recipes for data types in Chapter 1 for the correct way to initialize
different variables.

Specify a directory for saved files – Make sure you are saving any data into a particular loca-
tion and not just wherever the current directory happens to be.

Our scripts follow the following pattern. Cell breaks are used between the sections.

1. Detailed header using publishing markup.

2. Copyright notice.

3. User parameters, meant to be changed between runs, are grouped at the top.

4. Constants are defined.

5. Initialize plotting arrays before loops.

6. Perform calculations.

7. Create plots.

8. Store outputs in files, if desired.
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A complete example, which can be executed, is shown as follows:

ScriptDemo.m

1 %% This is a template for a script layout.
2 % A detailed description of the script includes any files loaded or

generated
3 % and an idea of what data and plots will be created. We will calculate

a sine
4 % or cosine with or without scaling of the input. The script creates

one plot
5 % and saves the workspace to a file called Demo.mat.
6 %% See also
7 % sin, cos
8

9 %% User parameters
10 param1 = 0.5;
11 nPoints = 50;
12 useSine = false;
13

14 %% Constants
15 MY_CONSTANT = 0.25;
16

17 %% Calculation loop
18 yPlot = zeros(2,nPoints);
19 x = linspace(0,4*pi,nPoints);
20 for k = 1:nPoints
21 if (useSine)
22 y = sin( [1.0;param1]*x(k) + MY_CONSTANT );
23 else
24 y = cos( [1.0;param1]*x(k) + MY_CONSTANT );
25 end
26 yPlot(:,k) = y;
27 end
28

29 %% Plotting
30 figure('Name','DEMO');
31 plot(x,yPlot);
32

33 %% Save workspace to a file
34 saveDir = fileparts(mfilename('fullpath'));
35 save(fullfile(saveDir,'Demo'))
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We can verify that the data is stored by clearing the workspace and loading the mat-file
after the demo has been run.

>> clear all
>> ScriptDemo
>> clear all
>> load Demo.mat
>> who

Your variables are:

MY_CONSTANT nPoints useSine y
k param1 x yPlot

2.8 Implementing MATLAB Command-Line Help
for Folders

Problem

You have a set of folders in your code base and you would like users to easily navigate them as
they can the built-in MATLAB library.

Solution

Placing Contents.m files in each folder can provide metadata for the contents of the folders,
and this can be displayed on the command line.

How It Works

Command-line help isn’t just for functions and scripts. Folders can also have help in the form
of a contents listing, which includes the function names and a single-line description of each.
Toolboxes can also provide documentation in response to a ver command with a toolbox-level
contents listing. This information is provided in a Contents.m file that consists entirely of
comments.

The built-in Contents Report can generate Contents.m files for you. It can also check
and fix existing Contents.m files. This will automatically use the “H1” line, or the first line
of the header in the function or script. In Recipe 2.2, we provide an example of a function
header that includes this line. This report is accessed, along with other reports, in the Current
Folder window, using the pop-up menu. To read more and learn how to run the report on your
operating system, see the MATLAB help topic “Create Help Summary Files.” It’s typically
accessed from the context menu in the Current Folder window.
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Version information isn’t limited to a single Contents file per toolbox; it is generated by
special lines inserted into the top of any Contents.m file:

% Version xxx dd-mmm-yyyy

You can also add a descriptive line above the version information and add subheadings
to groups of files. For example, consider the output from the codetools directory included
in MATLAB:

>> help codetools
Commands for creating and debugging code
MATLAB Version 8.4 (R2014b) 08-Sep-2014

Editing and publishing
edit - Edit or create a file
grabcode - Copy MATLAB code from published HTML
mlint - Check files for possible problems
notebook - Open MATLAB Notebook in Microsoft Word (on

Microsoft Windows platforms)
publish - Publish file containing cells to output file
snapnow - Force snapshot of image for published

document

Directory tools
mlintrpt - Run mlint for file or folder, reporting

results in browser
visdiff - Compare two files (text, MAT, or binary) or

folders

As with the header of a function, there can be no blank lines in the Contents file, only
comments. This is shown in an example from Chapter 7 of this book, the double integrator,
where we have added letters of the alphabet as section breaks.

1 % MATLAB/Ch06-DoubleIntegrator
2 %
3 % D
4 % DoubleIntegratorSim - Double Integrator Demo
5 %
6 % P
7 % PDControl - PDCONTROL Design and implement a PD

Controller in sampled time.
8 % PlotSet - PlotSet Create two-dimensional plots from a

data set.
9 %

10 % R
11 % RHSDoubleIntegrator - RHSDoubleIntegrator Right hand side of a

double integrator.
12 % RungeKutta - RungeKutta Fourth order Runge-Kutta

numerical integrator.
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13 %
14 % T
15 % TimeLabel - TimeLabel Produce time labels and scaled

time vectors

Figure 2.2 shows how to access the Contents Report for this folder from the command
window. If a Contents.m file doesn’t already exist, the report will create one for you, which
will then be available from the command line via help FolderName.

The actual report is shown in Figure 2.3. You can see that there are links to edit the
Contents.m file, such as for adding version information, fixing the spacing, or fixing all
problems. The report will detect if you have changed the H1 description line of the function,
and it conflicts with the text in the Contents file. It allows you to update those descriptions with
a single click, avoiding any copy/paste.

Figure 2.2: Access the Contents Report on double integrator.
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Figure 2.3: Completed double integrator contents report.

2.9 Publishing Code into Technical Reports
Problem

You are creating a report based on some analysis you are doing in MATLAB. You are labori-
ously copying and pasting code snippets and figures into your report document. You discover a
bug in your code, and you have to do it all over again.

Solution

The publishing feature in MATLAB allows you to run a script and automatically generate a
document containing the results, including images of each figure generated and the code itself,
with text and equations that you insert. These reports can be easily regenerated when you
change your code.
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How It Works

The publishing features allow you to generate HTML, LaTeX, Word, and PowerPoint docu-
ments from your code. These documents can display the code itself as well as command-line
output and plots. You can even capture snapshots of your figures during loops and include equa-
tions using LaTeX markup. Every programmer should become familiar with these features. We
highlight the main features in the following.

The very first section at the top of your file gives a title to the published document. The
comments which follow in your header will be published as discussed in Recipe 2.2. Having
a good header is important since this can be displayed at the command line, up until the first
blank line of your function. However, you can also add more sections, text, equations, and
images throughout your code. MATLAB will automatically generate a table of contents of all
the sections and will insert the generated plots and command-line output in each section.

You need to be careful about putting section breaks inside loops, since this will produce a
snapshot of any figures at every iteration. This could be a desired behavior if you want to capture
the evolution of a figure, but could also accidentally produce hundreds of unwanted images. The
following is an example script, MemoExample.m, created to demonstrate publishing.

CREATE A TECHNICAL MEMO FROM YOUR CODE

MemoExample.m

1 %% Technical Memo Example
2 % Summary of example objective.
3 % Evaluate a function, in this case $\sin(x)$, in a loop. Show how the
4 % equation looks on its own line:
5 %
6 % $$ y = sin(x) $$
7

8 %% Section 1 Title
9 % Description of first code block.

10 % Define a customizable scale factor that is treated as a constant.
11 SCALE_FACTOR = 1.0;
12

13 %% Section 2 Title
14 % Description of second code block.
15 % Perform a for loop that updates a figure.
16 %
17 h = figure('Name','Example Memo Figure');
18 hold on;
19 y = zeros(1,100);
20 x = linspace(0,2*pi);
21 for k = 1:100
22 %%% Evaluate the function. Comments not in a block after the

title will
23 %%% not be included in the main text.
24 y(k) = sin(SCALE_FACTOR*x(k));
25 plot(x(k),y(k),'.')
26 end
27
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28 %% Conclusions
29 % You can add additional text throughout your script. You can insert

lists,
30 % HTML, links, images, etc.

Figure 2.4 shows this script in the publishing tab of the MATLAB editor, with the pop-up
menu opened to access the publishing options.

There are a number of settings that apply to publishing. You can save a set of settings
with a name and easily reuse it for all of your files. The default settings for code are to both
evaluate it and include the source code in the published document, but these may be turned
off independently. To create a technical memo from a script without including the source code
itself, you set the “include code” option to false. You can set maximum dimensions on fig-
ures and select the format – JPEG, PNG, bitmap, or TIFF. You can even specify a MATLAB

Figure 2.4: Preparing to publish a script in the editor.
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Figure 2.5: Editing the publish settings for a file.

expression for a function to include input arguments, rather than just running it as a built-in
demo.

Figure 2.5 shows the settings window with PDF selected as the output type. Note the
Save As... button which allows you to save settings. We set the maximum width of the
figure to 200 pixels to enable the memo to fit on one page, for the purposes of this book.

Figure 2.6 shows a LaTeX memo generated and compiled for the preceding listing pub-
lished without the code, with the figure generated in a loop. Note the table of contents, equation,
and insertion of the graphic. We had to remove some extra \vspace commands that MATLAB
added to the LaTeX to fit the memo on one page.
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Figure 2.6: Technical memo published to LaTeX and compiled to PDF.
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2.10 Integrating Toolbox Documentation into the MATLAB
Help System

Problem

You would like to write a user’s guide and provide it with your toolbox.

Solution

If you write HTML help files, you can in fact include them with your toolbox when you dis-
tribute it, and the help will show up in MATLAB’s help browser.

How It Works

You are not limited to the command-line help when providing documentation for your code
or toolbox. MATLAB now provides an API for writing HTML documentation and displaying
it to users in the help browser. You can write an entire HTML manual and include published
versions of your demos.

In order to integrate your HTML help files into the MATLAB help system, you need
to generate a few XML files. One provides a top-level table of contents for your toolboxes.
Another provides a list of the demos or examples. The third identifies your product. The help
topics to read are “Display Custom Documentation” and “Display Custom Examples.” The help
for third-party products is displayed in a separate section of the MATLAB help browser entitled
“Supplemental Software.” The files you need to generate are

info.xml – Identify your documentation

helptoc.xml – Table of contents

demos.xml – Table of examples

The MATLAB documentation describes the XML tags you need and provides template
documents. Comments can be included within the files using standard HTML comments with
<!-- and -->.

The main purpose of the info.xml file is to provide a name for your toolbox, identify
it as a toolbox or blockset, and provide a path to the remaining HTML documentation. The
following is an example for our Recipes code.

EXAMPLE INFO.XML

1 <productinfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
2 xsi:noNamespaceSchemaLocation="optional">
3 <?xml-stylesheet type="text/xsl"href="optional"?>
4

5 <matlabrelease>R2019b</matlabrelease>
6 <name>MATLAB Recipes</name>
7 <type>toolbox</type>
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8 <icon></icon>
9 <help_location>Documentation</help_location>

10 <help_contents_icon>$toolbox/matlab/icons/bookicon.gif</
help_contents_icon>

11

12 </productinfo>

The table of contents file, helptoc.xml, must provide a listing of all the HTML files in
your help. This is accomplished with a <tocitem> tag that can be nested. You are generally
providing a starting or main page for your toolbox, a getting started page, users guide pages, re-
lease notes, and further pages listing the functions provided. <tocitem> can have references
to HTML anchors; they do not all need to refer to separate HTML files.

A small set of icons is included that can be displayed in the help contents. Consider the
following helptoc.xml:

EXAMPLE HELPTOC.XML

1 <?xml version='1.0' encoding="utf-8"?>
2 <toc version="2.0">
3 <!-- First tocitem specifies top level page in Help browser Contents

-->
4 <tocitem target="index.html">Recipes Toolbox
5 <!-- A Getting Started page is generally first -->
6 <tocitem target="getting_started.html" image="HelpIcon.

GETTING_STARTED">
7 Getting Started
8 <tocitem target="requirements.html">System Requirements</

tocitem>
9 <tocitem target="features.html">Features

10 <!-- TOC levels may include anchor IDs -->
11 <tocitem target="features.html#10187">Feature 1</

tocitem>
12 <tocitem target="features.html#10193">Feature 2</

tocitem>
13 </tocitem>
14 </tocitem>
15 <!-- There is a special icon for the User Guide -->
16 <tocitem target="guide_intro.html"
17 image="HelpIcon.USER_GUIDE">Recipes User Guide
18 <tocitem target="setup.html">Setting Up</tocitem>
19 <tocitem target="data_processing.html">Processing Data</

tocitem>
20 <tocitem target="verification.html">Verifying Outputs
21 <tocitem target="test_failures.html">Handling Test

Failures</tocitem>
22 </tocitem>
23 </tocitem>
24 <!-- The function reference is next with the FUNCTION icon -->
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25 <!-- First item is page describing function categories, if any
-->

26 <tocitem target="function_categories.html"
27 image="HelpIcon.FUNCTION">Function Reference
28 <tocitem target="function_categories.html#1">Double

Integrator
29 <!-- Inside category, list the functions -->
30 <tocitem target="function_1.html">function_1</tocitem>
31 <tocitem target="function_2.html">function_2</tocitem>
32 <!-- ... -->
33 </tocitem>
34 <tocitem target="function_categories.html#2">Aircraft
35 <tocitem target="function_3.html">function_3</tocitem>
36 <tocitem target="function_4.html">function_4</tocitem>
37 </tocitem>
38 <tocitem target="function_categories.html#3">Spacecraft
39 <!-- ... -->
40 </tocitem>
41 </tocitem>
42 <!-- Web links with the webicon.gif -->
43 <tocitem target="http://www.psatellite.com"
44 image="$toolbox/matlab/icons/webicon.gif">
45 Web Site (psatellite.com)
46 </tocitem>
47 </tocitem>
48 </toc>

This produces the contents listing in the help browser shown in Figure 2.7. The ma-
jor icons helping to delineate the help sections are used. Anchor IDs are used for both fea-
tures.html and function categories.html. There is even a reference to an external website.
Note that this means you need to have written the following HTML files:

• index.html
• getting started.html
• requirements.html
• features.html
• guide intro.html
• setup.html
• data processing.html
• verification.html
• test failures.html
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Figure 2.7: Custom toolbox table of contents.

• function categories.html
• function 1.html
• function 2.html
• ...

Clearly, generating a function list for a large toolbox by hand could be cumbersome.
At PSS, we have functions to generate this XML automatically from a directory, using dir.
You can use the functional form of publish to publish your functions and scripts to HTML
automatically as well.

The demos file is similar to the toc file in that it provides a nested list of demos or
examples. There are two main tags, <demosection> and <demoitem>. Items can be m-
files or videos. Published demos will display a thumbnail for one of the figures from the demo,
if any exist; the thumbnail image will have the same name as the HTML file but a different
extension. The demos are completely independent from the HTML table of contents, and you
can implement an examples listing without creating any other HTML help pages.

Here is a short example from our Cubesat Toolbox that includes a published demo called
MagneticControlDemo.

EXAMPLE DEMOS.XML

1 <?xml version="1.0" encoding="utf-8"?>
2 <demos>
3 <name>CubeSat</name>
4 <type>toolbox</type>
5 <icon>$toolbox/matlab/icons/demoicon.gif</icon>
6 <description>Contains all the demo files for the CubeSat</

description>
7 <website>
8 <a href="http://www.psatellite.com">For more info see psatellite.

com</a>
9 </website>
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10 <demosection>
11 <label>AttitudeControl</label>
12 <demoitem>
13 <label>MagneticControlDemo: Magnetic control demand analysis</

label>
14 <callback>MagneticControlDemo</callback>
15 <file>../CubeSat/Demos/AttitudeControl/html/

MagneticControlDemo.html</file>
16 </demoitem>
17 </demosection>
18 </demos>

Once you have created a set of HTML files, you can create a database that will allow
MATLAB to search them efficiently. To do this, you use builddocsearchdbwith a path to
the folder containing your help files, that is, the same path you enter in your info.xml file. This
function will create a subfolder called helpsearch containing the database. With this subfolder
added to your help installation, users will get results from your documentation when they search
in the help browser. Figure 2.8 shows a complete Documentation folder including the
helpsearch database.

Figure 2.8: Documentation including the search database for this toolbox.
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2.11 Structuring a Toolbox
Problem

You have a jumble of functions and scripts that you would like to organize into a toolbox that
you can distribute to others.

Solution

A previous recipe showed how you can create or generate Contents.m files for individual
folders in your toolbox. You can also create a top-level Contents.m file. We will describe
our usual toolbox structure including the placement of these files.

How It Works

We have a fixed structure for our commercial toolboxes that is used by our build tools and
testing routines.

• Group related functions together in folders.
• Place scripts in separate folders.
• Place script folders together in a Demos folder.
• Use the same name for the function folder and corresponding demos folder, for example,
Mechanics/ being a folder with functions and Demos/Mechanics/ holding the correspond-
ing demos.

• Organize folder groups into Modules or Toolboxes.

Once you create the help files as described in the previous recipes, they will appear in the
directory structure as shown in the following – not in literal alphabetical order. Note that the
published demos are stored in the html directories within the demo folders. We do not display
them all, but every folder should have its own Contents.m file.

Module
| Contents.m
| Folder1
| | Contents.m
| | Function1.m
| Folder2
| | Function2.m
| Demos
| | Folder1
| | | Function1Demo.m
| | | html
| | Folder2
| | | Function2Demo.m
| | | html
| | CombinedDemos
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| | | SuperDemo.m
| | | html
| Documentation
| | demos.xml
| | info.xml
| | ToolboxHelp
| | | helptoc.xml
| | | GettingStarted.html
| | | ...

You will note that there is a top-level Contents.m file within the Module, as the same
level as the folders. MATLAB does not have any automated utility to make this for you. You
can create one with a version line, the name of your toolbox, and any other information you
would like to be displayed when the user types “help Module”; we generate a list of folders
within the module using dir. Here is an example, noting that all lines in a Contents.m file
are comments:

A Sample Contents.m

1 % PSS Toolbox Folder NewModule
2 % Version 2015.1 05-Mar-2015
3 %
4 % Directories:
5 % Folder1
6 % Folder1
7 % Demos
8 % Demos/Folder1
9 % Demos/Folder1

Your toolbox module will now appear when the user types ver at the command, for
example:

>> ver
------------------------------------------------------------------
MATLAB Version: 8.4.0.150421 (R2014b)
MATLAB License Number: 6xxxxx
Operating System: Mac OS X Version: 10.9.5 Build: 13F1066
Java Version: Java 1.7.0_55-b13 with Oracle Corporation Java HotSpot(TM)

64-Bit Server VM mixed mode
------------------------------------------------------------------
MATLAB Version 8.4

(R2014b)
PSS Toolbox Folder NewModule Version 2015.1
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Summary
In this chapter, we reviewed style guidelines for writing MATLAB code and highlighted some
differences between styles for MATLAB and other languages. When establishing guidelines for
your own toolboxes, consider the features you may want to use, such as automatic generation of
contents files, publishing your results to HTML or Word, and even incorporating HTML help
in the web browser. Also take the time to create proper headers and initialization when you
generate code to avoid unpleasant surprises down the road!. Table 2.1 lists the code developed
in the chapter.

Table 2.1: Chapter Code Listing

File Description
Dot Dot product header example
MemoExample Example of a technical memo for publishing
OverloadedFunction An internally overloaded function
ScriptDemo Demo template for a script layout
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Visualization

MATLAB provides extensive capabilities for visualizing your data. You can produce 2D plots,
3D plots, and animations; view images; and create histograms, contour and surface plots, as
well as other graphical representations of your data. You are probably familiar with making
simple 2D plots with lines and markers, and pie and bar charts, but you may not be aware of
the additional possibilities made available by the MATLAB low-level routines that underpin the
frequently used functions like plot. There are also interactive capabilities for editing plots and
figures and adding annotations before printing or exporting them.

MATLAB excels in scientific visualization and in engineering visualization of 3D objects.
Three-dimensional visualization is used to visualize data that is a function of two parameters,
for example, the height on the surface of the Earth, or to visualize objects. The former is used in
all areas of science and engineering. The latter is particularly useful in the design and simulation
of any kind of machine including robots, aircraft, automobiles, and spacecraft.

Three-dimensional visualization of objects can be further divided into engineering visual-
ization and photo-realistic visualization. The latter helps you understand what an object looks
like and how it is engineered. When the inside of an object is considered, we move into the
realm of solid modeling which is used for creating models suitable for the manufacturing of
the object. Photo-realistic rendering focuses on the interaction of light with the object and the
eye. MATLAB does provide some capabilities for lighting and camera interaction but does not
provide true photo-realistic rendering.

The main plotting routines are organized into several categories in the command-line help:

graphics – Low-level routines for figures, axes, lines, text, and other graphics objects.

graph2d – Two-dimensional graphs like linear plots, log scale plots, and polar plots.

graph3d – Three-dimensional graphs like lines, meshes, and surfaces; control of color, light-
ing, and the camera.

specgraph – Specialized graphs, the largest category. Special 2D graphs like bar and pie charts
and histograms, contour plots, special 3D plots, volume and vector visualization, image
display, movies, and animation.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 3
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The online help has an entire top-level section devoted to graphics, including plots, format-
ting and annotation, images, printing and saving, graphics objects and performance, and major
changes to plotting internals that occurred in R2014b.

A good command of these functions allows you to create very sophisticated graphics as well
as to adapt them to different publication media, whether you need to adjust the dimensions,
color, or font attributes of your plot. In this chapter, we will present recipes that cover what
you need to know to use MATLAB graphics effectively. We don’t have space to discuss every
available plotting routine, and that is well covered in the available help, but we will cover the
basic functionality and provide recipes for common usage.

3.1 Plotting Data Interactively from the MATLAB Desktop
Problem

You would like to plot data in your workspace but aren’t sure of the best method for visualizing
it.

Solution

You can use the PLOTS tab in the MATLAB desktop to plot data directly by selecting variables
in the Workspace display as shown in Figure 3.1. You select from a variety of plot options, and
MATLAB automatically only shows you those which are applicable to the selected data set.

How It Works

Let’s create some sample data to demonstrate this interactive capability, which is a fairly new
feature in MATLAB. We’ll start with some trigonometric functions to create sample data that
oscillates.

theta = linspace(0,4*pi);
y = sin(theta).*cos(2*theta) + 0.05*theta;

We now have two vector variables available in the workspace. Select the PLOTS tab in
the desktop as shown in Figure 3.1, then select the y variable in the Workspace display. The
variable will appear on the far left of the PLOTS tab area, and various plot icons in the ribbon

Figure 3.1: PLOTS tab with plot icon ribbon.
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Figure 3.2: Linear plot of trigonometric data.

will become active: plot, bar, area, pie, and so on. Note the radio buttons on the far left for
either reusing the current figure for the plot or creating a new figure.

Close all open figures with a close all and click the plot icon to create a new figure
with a simple 2D plot of the data. Note that clicking the icon results in the plot command being
printed to the command line:

>> plot(y)

The data is printed with linear indices along the x axis, as shown in Figure 3.2.
You simply click another plot icon to replot the data using a different function, and again

the function call will be printed to the command line. The plot icons that are displayed are not
all the plots available, but simply the default favorites from among all the many options; to see
more icons, click the pop-up arrow at the right of the icon ribbon. The available plot types are
organized by category, and there is a Catalog button that you can press to bring up a dedicated
plot catalog window with the documentation for each function.

To plot our data y against our input theta, you need to select both variables in the
workspace view. They will both be displayed in the plot ribbon with a button shown to re-
verse their order. Now click an area plot to get a plot with the angle on the x axis as shown in
Figure 3.3.

>> area(theta,y)
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Figure 3.3: Parametric area plot of trigonometric data.

Note how this time the x-axis range is from 0 to 4π as expected.
You can annotate the plot interactively with arrows and text, add subplots, change line

properties, and more using the Plot Edit toolbar and Figure Palette window shown in Figure 3.4.
These are available from the View menu of the figure window and by clicking the “Show Plot
Tools” button in the standard Figure Toolbar. For example, using the plot tools, we can select
the axes, double-click it to open the property editor, type in an X Label, and turn on grid lines.
We can add another subplot, plot the values of theta against linear indices, and then change the
plot type to a stem plot, all from this window. See Figure 3.4.

The same changes can be made programmatically as will be shown in the following recipes.
In fact, you can generate code from the Figure Palette, and MATLAB will create a function
with all the commands necessary to replicate your figure from your data. The Generate Code
command is under the File menu of the window. This allows you to interactively create a
visualization that works with some example data and then programmatically adapt it to your
toolbox. MATLAB calls the new autogenerated function createfigure. You can see the
use of the following functions: figure, axes, box, hold, ylabel, xlabel, title,
area, stem, and annotation.
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Figure 3.4: Plot of trigonometric data in the Figure Palette.

createfigure.m

1 function createfigure(X1, yvector1)
2 %CREATEFIGURE(X1, YVECTOR1) Autogenerated figure code.
3 % X1: area x
4 % YVECTOR1: area yvector
5

6 % Auto-generated by MATLAB on 03-Jun-2015 14:32:43
7

8 % Create figure
9 figure1 = figure;

10

11 % Create axes
12 axes1 = axes('Parent',figure1,'XGrid','on','OuterPosition',[0 0.5 1

0.5]);
13 box(axes1,'on');
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14 hold(axes1,'on');
15

16 % Create ylabel
17 ylabel('Data');
18

19 % Create xlabel
20 xlabel('Angle (rad)');
21

22 % Create title
23 title('Area Plot');
24

25 % Create area
26 area(X1,yvector1,'DisplayName','Area','Parent',axes1);
27

28 % Create axes
29 axes2 = axes('Parent',figure1,'OuterPosition',[0 0 1 0.5]);
30 box(axes2,'on');
31 hold(axes2,'on');
32

33 % Create ylabel
34 ylabel('Theta');
35

36 % Create xlabel
37 xlabel('Increment');
38

39 % Create stem
40 stem(X1,'DisplayName','theta','Parent',axes2,'Marker','none',...
41 'Color',[0 0.447 0.741]);
42

43 % Create textarrow
44 annotation(figure1,'textarrow',[0.609822646657571

0.568894952251023],...
45 [0.827828828828829 0.717117117117118]);
46

47 % Create textbox
48 annotation(figure1,'textbox',...
49 [0.553888130968622 0.814895792699917 0.120787482806052

0.0489690721649485],...
50 'String',{'Point of interest'});

Note that this code did not in fact use the subplot function, but rather the option to specify
the exact axes location in the figure with the 'OuterPosition' property. Note also how the
units of the axes position and of the annotations are between 0 and 1, that is, normalized. This
is in fact an option for axes, as can be seen by the following call using gca to get the handle to
the current axes:

>> set(gca,'units')
'inches'
'centimeters'
'characters'
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'normalized'
'points'
'pixels'

Using other units may be helpful for certain applications, but normalized units are always
the default.

There are additional interactive buttons in the Figure Toolbar we should mention:

• Zoom in
• Zoom out
• Hand tool – Move an object in the plane of the figure
• Rotate tool – Rotate the view
• Data cursor
• Brush/select data
• Colorbar
• Legend

The hand and rotate tools are very helpful with 3D data. The data cursor displays the values
of a plot point right in the figure. The brush highlights a segment of data using a contrast color
of your choosing using the colors pop-up. The colorbar and legend buttons serve as on/off
switches.

3.2 Incrementally Annotate a Plot
Problem

You need to annotate a curve in a plot at a subset of points on the curve.

Solution

Use the text function to annotate the plot.

How It Works

We will call text within a for loop in AnnotatePlot. Use sprintf to create the text
for the annotations, which gives you control over the formatting of any numbers. In this case,
we will use %d for integer display. linspace creates an evenly spaced index array into the
data to give us the selected points to annotate, in this case, five points. linspace is used to
produce evenly spaced points.

AnnotatePlot.m

8 %% Parameters
9 nPoints = 5; % Number of plot points to have annotations

10

11 %% Create the line
12 v = [1;2;3];
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13 t = linspace(0,1000);
14 r = [v(1)*t;v(2)*t;v(3)*t];
15

16 %% Create the figure and plot
17 s = 'Annotated Plot';
18 h = figure('name',s);
19 plot3(r(1,:),r(2,:),r(3,:));
20 xlabel('X');
21 ylabel('Y');
22 zlabel('Z');
23 title(s)
24 grid
25

26 %% Add the annotations
27 n = length(t);
28 j = ceil(linspace(1,n,nPoints));
29

30 for k = j
31 text(r(1,k), r(2,k), r(3,k), sprintf('- Time %d',floor(t(k))));
32 end

Note that we passed the index array j directly to the loop index k. Figure 3.5 shows the
annotated plot. We create a three-dimensional straight line to annotate.

Figure 3.5: Annotated three-dimensional plot.
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3.3 Create a Custom Plot Page with Subplot
Problem

You need multiple plots of your data for a particular application, and as you rerun your script,
they are cluttering your screen and hogging memory. We often create many dozens of plots as
we work on our commercial toolboxes.

Solution

Create a single plot with several subplots on it so you only need one figure to see the results of
one run of your application.

How It Works

The subplot function allows you to create a symmetric array of plots in a figure in two dimen-
sions. You generate an m-by-n array of small axes which are spaced in the figure automatically.
A good example is a 3D trajectory with views from different angles. We can create a plot with a
2 x 2 array of axes, with the 3D plot in the lower left-hand corner and views from each direction
around it. The function is QuadPlot. It has a built-in demo creating the figure in Figure 3.6.

Note that you must use the size of your axes array, in this case (2,2), in each call to
subplot.

QuadPlot.m

1 %% QUADPLOT Create a quad plot page using subplot.
2 % This creates a 3D view and three 2D views of a trajectory in one

figure.
3 %% Form
4 % QuadPlot( x )
5 %% Input
6 % x (3,:) Trajectory data
7 %
8 %% Output
9 % None. But you may want to return the graphics handles for further

programmatic
10 % customization.
11 %
12

13 function QuadPlot(x)
14

15 if nargin == 0
16 disp('Demo of QuadPlot');
17 th = logspace(0,log10(4*pi),101);
18 in = logspace(-1,0,101);
19 x = [sin(th).*cos(in);cos(th).*cos(in);sin(in)];
20 QuadPlot(x);
21 return;
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Figure 3.6: QuadPlot using subplot for axes placement.

22 end
23

24 h = figure('Name','QuadPage');
25 set(h,'InvertHardcopy','off')
26

27 % Use subplot to create plots
28 subplot(2,2,3)
29 plot3(x(1,:),x(2,:),x(3,:));
30 xlabel('X')
31 ylabel('Y')
32 zlabel('Z')
33 grid on
34 title('Trajectory')
35 rotate3d on
36

37 subplot(2,2,1)
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38 plot(x(1,:),x(2,:));
39 xlabel('X')
40 ylabel('Y')
41 grid on
42 title('Along Z')
43

44 subplot(2,2,2)
45 plot(x(2,:),x(3,:));
46 xlabel('Y')
47 ylabel('Z')
48 grid on
49 title('Along X')
50

51 subplot(2,2,4)
52 plot(x(1,:),x(3,:));
53 xlabel('X')
54 ylabel('Z')
55 grid on
56 title('Along Y')

In the latest versions of MATLAB, you can easily access figure and axes properties using
field names. For instance, let’s get the figure generated by the demo using gcf, then look at the
children, which should include our four subplots.

>> h = gcf

h =

Figure (5: PlotPage) with properties:

Number: 5
Name: 'PlotPage'

Color: [0.94 0.94 0.94]
Position: [440 378 560 420]

Units: 'pixels'

Show all properties

>> h.Children

ans =

5x1 graphics array:

ContextMenu
Axes (Along Y)
Axes (Along X)
Axes (Along Z)
Axes (Trajectory)
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Note that the titles of our axes are helpfully displayed. If you wanted to add additional
objects or change the properties of the axes, you could access the handles this way. Or, you
might want to provide the handles as an output for your function. You can also make a subplot
in a figure the current axes just by calling subplot again with the array size and ID.

1 subplot(2,2,1)

3.4 Create a Heat Map
Problem

You would like to create a heat map from data. A heat map shows the variation of magnitude
using color in a two-dimensional image.

Solution

You can create a heat map using the heatmap function.

How It Works

We’ll create a random set of data and two cell arrays for the x and y names.

HeatMapDemo.m

1 %% Heat map
2 % Heat map plot from random data
3

4 cD = rand(4,3);
5 xV = {'1' '2' '3'};
6 yV = {'a' 'b' 'c' 'd'};
7

8 NewFigure('Heat Map')
9

10 heatmap(xV,yV,cD)

heatmap generates the map from the data shown in Figure 3.7.

>> HeatMapDemo

ans =

Figure (3: Heat Map) with properties:

Number: 3
Name: 'Heat Map'

Color: [0.9400 0.9400 0.9400]
Position: [616 598 560 420]

Units: 'pixels'

Show all properties
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Figure 3.7: A heat map from random data.

ans =

HeatmapChart with properties:

XData: {3x1 cell}
YData: {4x1 cell}

ColorData: [4x3 double]

Show all properties

3.5 Create a Plot Page with Custom-Sized Axes
Problem

You would like to group some plots together in one figure but not as evenly spaced subplots.

Solution

You can create custom-sized axes using the 'OuterPosition' property of the axes, placing
them anywhere in the figure you wish.
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How It Works

We’ll create a custom figure with two plots, one spanning the width of the figure and a second
smaller axes. This will leave room for a block of descriptive text, which might describe the
figure itself or display the results. In order to make the plots more interesting, we will add
markers and text annotations using num2str.

The function is PlotPage shown in Figure 3.8. Using 'OuterPosition' for the axes
instead of 'Position' means the limits will include the axes labels, so we can use the full
range of the figure from 0 to 1 (normalized units). Figure 3.8 shows the resulting figure.

PlotPage.m

18 function PlotPage(t, x)
19

20 if nargin == 0
21 disp('Demo of PlotPage');
22 t = linspace(0,100,101);
23 th = logspace(0,log10(4*pi),101);
24 in = logspace(-1,0,101);
25 x = [sin(th).*cos(in);cos(th).*cos(in);sin(in)];
26 PlotPage(t,x);
27 return
28 end
29

30 h = figure('Name','PlotPage');
31 set(h,'InvertHardcopy','off')
32

33 % Specify the axes position as [left, bottom, width, height]
34 axes('outerposition',[0.5 0 0.5 0.5]);
35 plot(t,x);
36 xlabel('Time')
37 grid on
38

39 % Specify an additional axes and make a 3D plot
40 axes('outerposition',[0 0.5 1 0.5]);
41 plot3(x(1,:),x(2,:),x(3,:));
42 xlabel('X')
43 ylabel('Y')
44 zlabel('Z')
45 grid on
46

47 % add markers evenly spaced with time
48 hold on
49 for k=1:10:length(t)
50 plot3(x(1,k),x(2,k),x(3,k),'x');
51 % add a text label
52 label = [' ' num2str(t(k)) ' s'];
53 text(x(1,k),x(2,k),x(3,k),label);
54 end
55 hold off
56
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57 uh = uicontrol('Style','text','String','Description of the plots',...
58 'units','normalized','position',[0.05 0.1 0.35 0.3]);
59 set(uh,'string',['You may wish to provide a detailed description '...
60 'of the visualization of your data or the results

right on the figure '...
61 'itself in a uicontrol text box such as this.']);
62 set(uh,'fontsize',14);
63 set(uh,'foregroundcolor',[1 0 0]);

Figure 3.8: PlotPage with custom-sized plots.

3.6 Plotting with Dates
Problem

You want to plot data as a function of time using dates on the x axis.
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Figure 3.9: Plotting with manual month labels.

Solution

Access the tick labels directly using handles for the axis, or use datetick with serial date
numbers.

How It Works

First, we will manually specify the tick labels. You plot the data as a function of index and then
replace the x labels with strings of your choice, in this case specific months. For example, we
will plot power consumption of a home in kilowatt hours (kWh). Note how we set the xlim,
xtick, and xticklabel properties using set after generating the plot. The limits are set to
[0 13] instead of [1 12] to accommodate the width of the bars. Figure 3.9 shows plotting with
month labels.

PlottingWithDates.m

1 %% Plot using months as the x label
2 % First we will set the labels manually. Then we will use MATLAB's

serial date
3 % numbers to set the labels automatically.
8

9 %% Specify specific months as labels
10 kWh = [ 2500 2600 2900 1500 1300 1500 1600 1000 1400 1100 1200

2300];
11 month = {'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul' 'Aug' 'Sep' 'Oct' '

Nov' 'Dec'};
12

13 figure('Name','Plotting With Manual Date Labels');
14 bar(1:12,kWh)
15 xlabel('Month');
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Power Consumption with datetick
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Figure 3.10: Plotting using datetick with serial dates.

16 ylabel('kWh')
17 title('Power Consumption');
18 grid on
19

20 set(gca,'xlim',[0 13],'xtick',1:12,'xticklabel',month);

If you are plotting data against complete dates, you can also use MATLAB’s serial date
numbers, which can be automatically displayed as tickmarks using datetick. You can con-
vert between calendar dates and serial numbers using datestr, datenum, and datevec. A
date vector is the six-component date as [year month day hour minute second]. So, for instance,
let’s assign our data in the preceding example to actual dates in the year 2014. The default date
tickmarks will show months just like in our manual example, but for demonstration purposes,
we specify a format including the year: 'mmmyy'. Figure 3.10 shows plotting with serial dates.

22 %% Specify full dates and use serial dates to automatically produce
labels

23 % Specifying only the month will use the current year by default. We
will set

24 % the year to 2014 by using datevec.
25 N = datenum(month,'mmm');
26 V = datevec(N);
27 V(:,1) = 2014;
28 N = datenum(V);
29

30 figure('Name','Plotting With Serial Dates');
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31 bar(N,kWh)
32 xlabel('Date');
33 title('Power Consumption with datetick');
34 datetick('x','mm/yy')
35 grid on

Note that the ticks themselves are no longer one per month; if you want to specify them
manually, you now need to use date numbers. We have printed out the properties using get to
show the XTicks used.

>> get(gca)
...

XLim: [735508 735965]
XLimMode: 'manual'

XMinorGrid: 'off'
XMinorTick: 'off'

XScale: 'linear'
XTick: [735508 735600 735690 735781 735873 735965]

XTickLabel: [6x5 char]

MATLAB’s serial date numbers do not correspond to other serial date formats like Julian
date. MATLAB simply counts days from Jan-1-0000, so the year 2000 starts at a serial number
of 2000*365 = 730,000. The following quick example demonstrates this as well as using now
to get the current date:

>> v = datevec(now)
v =

2015 7 31 11 37
0.6198

>> n = datenum(v)
n =

7.3618e+05
>> s = datestr(n,'local')
s =
31-Jul-2015 11:37:00

3.7 Generating a Color Distribution
Problem

You want to assign colors to markers or lines in your plot.
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Solution

Specify the HSV components algorithmically from around the color wheel and convert to RGB.

How It Works

ColorDistribution chooses n colors from around the color wheel. The colors are selected
using the hue component of HSV, with a full range from 0 to 1. Parameters allow the user to
separately specify the saturation and value for all the colors generated. You could alternatively
use these components to select a variety of colors of one hue.

Reducing the saturation (sat) lightens the colors while remaining on the same “spoke”
of the color wheel. A saturation of 0 produces all grays. The value (val) keeps the ratio
between RGB components remain the same, but lowering the magnitude makes colors darker,
for example, [1 0.85 0] and [0.684 0.581 0]. See Figure 3.11.

ColorDistribution.m

1 %% Demonstrate a color distribution for an array of lines.
2 % Colors are calculated around the color wheel using hsv2rgb.
3

4 val = 1;
5 sat = 1;
6 n = 100;
7 dTheta = 360/n;
8 thetaV = linspace(0,360-dTheta,n);
9

10 h = linspace(0,1-1/n,n);
11 s = sat*ones(1,n);
12 v = val*ones(1,n);
13 colors = hsv2rgb([h;s;v]');
14 y = sin(thetaV*pi/180);
15 hF = figure;
16 hold on;
17 set(hF,'name','Color Wheel')
18 l = gobjects(n);
19 for k = 1:n
20 l(k) = plot(thetaV,k*y);
21 end
22 set(gca,'xlim',[0 360]);
23 grid on
24 pause
25

26 for k = 1:n
27 set(l(k),'color',colors(k,:)*val);
28 end

Figure 3.11 plots a color distribution.
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Figure 3.11: Original lines and lines with a color distribution with values and saturation of 1.

3.8 Visualizing Data over 2D or 3D Grids
Problem

You need to perform a calculation over a grid of data and view the results.

Solution

The function meshgrid produces grids over x and y that can be used for calculations and
subsequently input to surf. This is also useful for contour and quiver plots.

How It Works

Our solution is in GridVisualization.m. First, you define the vectors in x and y that
define your grid. You can perform your calculations in a for loop or in a vectorized function.
The vectors do not have to be physical dimensions; indeed, in general, they are quite different
quantities involved in a parametric study. The classic example is an exponential function of two
variables, which is viewed as a surface in Figure 3.12.

GridVisualization.m

8 %% 2D example of meshgrid
9 figure('Name','2D Visualization');

10 xv = -1.5:0.1:1.5;
11 yv = -2:0.2:2;
12 [X,Y] = meshgrid(xv, yv);
13 Z = Y .* exp(-X.ˆ2 - Y.ˆ2);
14 surf(X,Y,Z,'edgecolor','none')
15 title('2D Grid Example')
16 zlabel('z = y exp( -xˆ2-yˆ2 )')
17 colormap hsv
18
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Figure 3.12: 3D surface generated over a 2D grid.

19 size(X)
20 size(Y)

The generated matrices are square and consist of the input vector replicated in the correct
dimension. You could achieve the same result by hand using repmat, but meshgrid elimi-
nates the need to remember the details.

>> size(X)
ans =

41 41
>> size(Y)
ans =

41 41
>> X(1:5,1:5)
ans =

-2 -1.9 -1.8 -1.7 -1.6
-2 -1.9 -1.8 -1.7 -1.6
-2 -1.9 -1.8 -1.7 -1.6
-2 -1.9 -1.8 -1.7 -1.6
-2 -1.9 -1.8 -1.7 -1.6

>> Y(1:5,1:5)
ans =

-2 -2 -2 -2 -2
-1.9 -1.9 -1.9 -1.9 -1.9
-1.8 -1.8 -1.8 -1.8 -1.8
-1.7 -1.7 -1.7 -1.7 -1.7
-1.6 -1.6 -1.6 -1.6 -1.6

121



CHAPTER 3 VISUALIZATION

Contour and Quiver Demo

-1.5 -1 -0.5 0 0.5 1 1.5

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

Figure 3.13: 3D surface visualized as contours.

For fun, we can plot contours of the data as well. We can use the gradient function to
calculate the slope and plot this using quiver. This uses meshgrid that returns a 2D mesh
from x and y vectors. Figure 3.13 shows a contour plot.

22 figure('Name','Contour and Quiver')
23 [px,py] = gradient(Z,0.1,0.2);
24 contour(X,Y,Z), hold on
25 quiver(X,Y,px,py)
26 title('Contour and Quiver Demo')
27 xlabel('x')
28 ylabel('y')
29 colormap hsv
30 axis equal

You can also generate a 3D grid and compute data over the volume, for a fourth dimension.
In order to view this extra data over the volume, you can use slice. This uses interpolation
to draw slices at any location along the axes you specify. If you want to see the exact planes in
your data, you can use pcolor, surf, or contour in individual figures. quiver3 can be
used to plot arrows in 3D space. We are going to generate five slices at three different x values
and at two different z values. The result is shown in Figure 3.14.
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Figure 3.14: 3D volume with slices.

34 %% 3D example of meshgrid
35 % meshgrid can be used to produce 3D matrices, and slice can display

selected
36 % planes using interpolation.
37 figure('Name','3D Visualization');
38 zv = -3:0.3:3;
39 [x,y,z] = meshgrid(xv, yv, zv);
40 v = x .* exp(-x.ˆ2 - y.ˆ2 - z.ˆ2);
41 slice(x,y,z,v,[-1.2 -0.5 0.8],[],[-0.25 1])
42 title('3D Grid Example')
43 zlabel('v = y exp( -xˆ2-yˆ2-zˆ2 )')
44 colormap hsv

3.9 Generate 3D Objects Using Patch
Problem

You would like to draw a 3D box.

Solution

You can create a 3D box using the patch function.
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How It Works

The patch function in MATLAB uses vertices and faces to define an area in two or three
dimensions. The vertex list is an n-by-3 array specifying the vertex locations. The faces array
is an n by m array where m is the number of vertices per polygon. The faces array contains the
row indices for the vertices. We usually set m to 3 since all graphics engines eventually reduce
polygons to triangles. We draw a box in BoxPatch shown in the following. Generally, when
drawing a physical object, we set axis to equal so that the aspect ratio is correct. patch
has many properties. In this case, we just set the color of the faces to gray using RGB. The edge
color, which can also be specified, is black by default. The view(3) call sets the camera to a
position with equal x, y, and z values. rotate3d on lets us move the camera around. This is
very handy for inspecting the model. Each line in face is the three vertex elements that form a
triangle face. Figure 3.15 show a box generated with patch.

BoxPatch.m

9 %% Box design
10 x = 3;
11 y = 2;
12 z = 1;
13

14 % Faces
15 f = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6

7;5 7 8];
16

17 % Vertices
18 v = [-x x x -x -x x x -x;...
19 -y -y y y -y -y y y;...
20 -z -z -z -z z z z z]'/2;
21

Figure 3.15: Box generated using patch.
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22 %% Draw the object
23 h = figure('name','Box');
24 patch('vertices',v,'faces',f,'facecolor',[0.5 0.5 0.5]);
25 axis equal
26 grid on
27 axis([-3 3 -3 3 -3 3])
28 xlabel('x')
29 ylabel('y')
30 zlabel('z')
31 view(3)
32 rotate3d on

3.10 Working with Light Objects

Problem

You would like to illuminate the 3D box drawn in the previous recipe.

Solution

You can create ambient or directed light objects using the light function. Light objects affect
both patch and surface objects, which are created by surf, mesh, pcolor, fill, fill3,
and patch.

How It Works

The main properties for working with light objects are color, style, position, and visible. The
style may be infinite, with the light shining in parallel rays from a specified direction, or local,
with a point source shining in all directions. The position property has a different meaning for
each of these styles. PatchWithLighting adds a local light to the box script. We modify
the box surface properties using material to get different effects.

PatchWithLighting.m

1 %% Add lighting to the cube patch
2 % We use findobj to locate the patch drawn in Patch, then change its

properties
3 % to be suitable for lighting. We add a local light.
8

9 %% Create the box patch object
10 BoxPatch;
11

12 %% Find and update the patch object
13 p = findobj(gcf,'type','patch');
14 c = [0.7 0.7 0.1];
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15 set(p,'facecolor',c,'edgecolor',c,...
16 'edgelighting','gouraud','facelighting','gouraud');
17 material('metal');
18

19 %% Lighting
20 l = light('style','local','position',[10 10 10]);

Figure 3.16 shows dull and metal material with the same lighting. The lighting produced
by MATLAB is limited by being an OpenGL lighting. Modern 3D graphics use textures and
shaders for photo-realistic scene lighting. You also cannot generate shadows in MATLAB. The
one on the right has a somewhat sharper color gradient at the corner.

Figure 3.16: Box illuminated with a local light object. The left box has “dull” material. The one on the
right has “metal.”
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The dull, shiny, and metal settings for material set the patch properties to produce these
effects. We can easily print the effects to the command line using get.

>> material dull
>> get(p)

DiffuseStrength: 0.8
...

SpecularColorReflectance: 1
SpecularExponent: 10
SpecularStrength: 0

>> material metal
>> get(p)

DiffuseStrength: 0.3
...

SpecularColorReflectance: 0.5
SpecularExponent: 25
SpecularStrength: 1

>> material shiny
>> get(p)

DiffuseStrength: 0.6
...

SpecularColorReflectance: 1
SpecularExponent: 20
SpecularStrength: 0.9

Note that the AmbientStrength is 0.3 for all the material settings listed earlier. If you
want to see the effect of only your light objects without ambient light, you have to manually
set this to zero. In Figure 3.17, we have set the ambient strength to zero and applied the shiny
material.

Figure 3.17: Shiny box with ambient lighting removed (AmbientStrength set to 0) and a different
camera viewpoint.
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Figure 3.18: Shiny box with flat lighting.

MATLAB has a lighting function to control the lighting model with four settings: none,
Gouraud, Phong, and flat. Gouraud interpolates the lighting across the faces and gives the most
realistic effect. Note that setting the lighting to Gouraud for our box sets the FaceLighting
property to gouraud but the EdgeLighting to none, which will give a different effect
than in our script earlier where the edge lighting was also set to Gouraud via its property. Flat
lighting gives each entire face a uniform lighting, as in Figure 3.18, where we set the view to
(-50,30) and the lighting to flat.

The MATLAB recommendations are to use flat lighting for faceted objects and Gouraud
lighting for curved objects. The easiest way to compare these is to create a sphere, which is
simple using the sphere function and generating a surface. This is done in the following
SphereLighting. The infinite light object shines from the x axis. See Figure 3.19 for the
resulting plots.

SphereLighting.m

1 %% Create and light a sphere
2

3 %% Make the sphere surface in a new figure
4 [X,Y,Z] = sphere(16);
5 figure('Name','Sphere Demo')
6 s = surf(X,Y,Z);
7 xlabel('x')
8 ylabel('y')
9 zlabel('z')

10 axis equal
11 view(70,15)
12

13 %% Add a lighting object and display the properties
14 light('position',[1 0 0])
15 disp(s)

128



CHAPTER 3 VISUALIZATION

Figure 3.19: Sphere illuminated with an infinite light object. The left sphere has flat lighting. The one
on the right has Gouraud.

16 title('Flat Lighting')
17 pause
18

19 %% Change to Gouraud lighting and display again
20 lighting gouraud
21 title('Gouraud Lighting')
22 disp(s)

In addition to a sphere function, MATLAB also provides cylinder and ellipsoid.

3.11 Programmatically Setting the Camera Properties
Problem

You would like to have a camera in your scene that can be pointed.

Solution

Use the MATLAB cam functions. These provide the same functionality as the buttons in the
camera toolbar, but with repeatability and the ability to pass in variables for the parameters. We
demonstrate this in the script PatchWithCamera.m.
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How It Works

We make two boxes in the scene. One is scaled and displayed from the other by 5 in x. We
use the MATLAB functions camdolly, camorbit, campan, camzoom, and camroll to
control the camera. We put all of these functions in the PatchWithCamera.m script and
provide examples of two sets of parameters. Note that without lighting, the edges disappear.

PatchWithCamera.m

1 %% Generate two cubes using patch and point a camera at the scene
2 % The camera parameters will be set programmatically using the cam

functions.
7

8 %% Camera parameters
9 % Orbit

10 thetaOrbit = 0;
11 phiOrbit = 0;
12

13 % Dolly
14 xDolly = 0;
15 yDolly = 0;
16 zDolly = 0;
17

18 % Zoom
19 zoom = 1;
20

21 % Roll
22 roll = 50;
23

24 % Pan
25 thetaPan = 1;
26 phiPan = 0;
27

28 %% Box design
29 x = 1;
30 y = 2;
31 z = 3;
32

33 % Faces
34 f = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6

7;5 7 8];
35

36 % Vertices
37 v = [-x x x -x -x x x -x;...
38 -y -y y y -y -y y y;...
39 -z -z -z -z z z z z]'/2;
40

41 %% Draw the object
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42 h = figure('name','Box');
43

44 c = [0.7 0.7 0.1];
45 patch('vertices',v,'faces',f,'facecolor',c,'edgecolor',c,...
46 'edgelighting','gouraud','facelighting','gouraud');
47

48 c = [0.2 0 0.9];
49 v = 0.5*v;
50 v(:,1) = v(:,1) + 5;
51 patch('vertices',v,'faces',f,'facecolor',c,'edgecolor',c,...
52 'edgelighting','gouraud','facelighting','gouraud');
53

54 material('metal');
55 lighting gouraud
56 axis equal
57 grid on
58 xlabel('x')
59 ylabel('y')
60 zlabel('z')
61 view(3)
62 rotate3d on
63

64 %% Camera commands
65 campan(thetaPan,phiPan)
66 camzoom(zoom)
67 camdolly(xDolly,yDolly,zDolly);
68 camorbit(thetaOrbit,phiOrbit);
69 camroll(roll);
70

71 s = sprintf('Pan %3.1f %3.1f\nZoom %3.1f\nDolly %3.1f %3.1f %3.1f\
nOrbit %3.1f %3.1f\nRoll %3.1f',...

72 thetaPan,phiPan,zoom,xDolly,yDolly,zDolly,thetaOrbit,phiOrbit,roll);
73

74 text(2,0,0,s);

Additional functions for interacting with the scene camera include campos and camtarget,
which can be used to set the camera position and target. This can be used to image one object
from the vantage point of another. camva sets the camera view angle, so you can model a real
camera’s field of view. camup specifies the camera “up” vector or the direction of the top of
the frame.
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Figure 3.20: Boxes with different camera parameters.

3.12 Display an Image
Problem

You would like to draw an image.

Solution

You can read in an image directly from an image file and draw it in a figure window. MATLAB
supports a variety of formats including GIF, JPG, TIFF, PNG, and BMP. Our solution is in the
script ReadImage.m.

How It Works

We read in a black and while image using imread and display it using imagesc. imagesc
scales the color data into the colormap. It is necessary to apply the grayscale colormap; other-
wise, you’ll get the colors in the default colormap. In parula, this is blue and yellow.

ReadImage.m

1 %% Draw a JPEG image in a figure multiple ways
2 % We will load and display an image of a mug.
3 %% See also
4 % imread, pcolor, imagesc, imshow, colormap
9

10 %% Read in the JPEG image
11 i = imread('Mug.jpg');
12

13 %% Draw the picture with imagesc
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14 % This preserves an axes. Each pixel center of the image lies at
integer

15 % coordinates ranging between 1 and M or N. Compare the result of
imagesc to

16 % that of pcolor. axis image sets the aspect ratio so that tick marks
on both

17 % axes are equal, and makes the plot box fit tightly around the data.
18 h = figure('name','Mug');
19 subplot(1,2,1)
20 pcolor(i)
21 shading('interp')
22 colorbar
23 axis image
24 title('pcolor with colorbar')
25 a = subplot(1,2,2);
26 % scale the image into the colormap
27 imagesc( i );
28 colormap(a,'gray')
29 axis image
30 grid on
31 title('imagesc with gray colormap')

Figure 3.21 shows the mug first using pcolor, which creates a pseudocolor plot of a
matrix, which is really a surf with the view looking down from above. To highlight this
fact, we added a colorbar. Then on the right, the image is drawn using imagesc with a gray

Figure 3.21: Mug displayed using pcolor and imagesc.
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Figure 3.22: Mug displayed using imshow, with color limits applied on the right.

colormap. Observe that imagesc has changed the direction of the axes so that the image
appears right-side up. Both plots have axes with tickmarks.

MATLAB has another image display function called imshow, which is considered the fun-
damental image display function. This optimizes the figure, axes, and image object properties
for displaying an image. If you have the Image Processing toolbox, imtool extends imshow
with additional features. Notice how the image is displayed without the axes box. This function
scales and selects the gray colormap automatically. Figure 3.22 shows the use of imshow

33 %% Draw with imshow
34 % The axes will be turned off. The image will be scaled to fit the

figure if it
35 % is too large.
36 f = figure('Name','Mug Image');
37 subplot(1,2,1)
38 imshow(i)
39 title('imshow')
40 subplot(1,2,2)
41 imshow(i,[30 200])
42 title('imshow with limits [30 200]')

Not all images use the full depth available; for instance, this mug image has a minimum
value of 30 and a maximum of 250. imshow allows you to set the color limits of the image
directly, and the pixels will be scaled accordingly. We can darken the image by increasing the
lower color limit and brighten the image by lowering the upper color limit.
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3.13 Graph and Digraph
Problem

We have a stochastic process for which we want a graphical representation.

Solution

Use graph and digraph in the script RandomWalk.m.

How It Works

Generate a transition matrix showing the probability of transition from one state to a second
state.

The code in RandomWalk.m creates a digraph, graph, and a random walk. The first part
creates a transition matrix.

RandomWalk.m

1 %% Demonstrate a digraph and graph
2

3 % Generate a transition matrix
4 % x ranges from -5 to 5
5 p = zeros(11,11);
6 for k = 2:10
7 p(k,k-1) = 0.5;
8 p(k,k+1) = 0.5;
9 end

10

11 p(1,2) = 1;
12 p(11,10) = 1;
13

14 fprintf('%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f%4.1f\n',p);

When we run RandomWalk at the command line we get the below output:

>> RandomWalk
0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0

The next part of RandomWalk creates a digraph shown in Figure 3.23 and a graph shown in
Figure 3.24.
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Figure 3.23: Digraph for the random walk.
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Figure 3.24: Graph for the random walk.
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Figure 3.25: The random walk. The lines show the connections between the nodes in the random walk.
All possible paths are shown.

16 g = digraph(p);
17

18 NewFigure('Digraph');
19 plot(g)
20 grid on

22 g = graph(p,'upper');
23

24 NewFigure('Graph');
25 plot(g)
26 grid on

The random walk based on the transition matrix is shown in Figure 3.25.

28 n = 100;
29 m = 50;
30

31 NewFigure('Random Walk');
32 for k = 1:m
33 x = zeros(1,n);
34 for j = 2:n
35 if(x(j-1) == -5)
36 x(j) = -4;
37 elseif( x(j-1) == 5 )
38 x(j) = 4;
39 else
40 x(j) = x(j-1) + sign(randn);

137



CHAPTER 3 VISUALIZATION

41 end
42 end
43 plot(x(1:n-1),x(2:n))
44 hold on
45 end
46 grid on

3.14 Adding a Watermark
Problem

You have a lot of great graphics in your toolbox, and you would like them to be marked as
having been created by your company. Alternatively, or additionally, you may want to mark
images with a version number or date of the software that generated them.

Solution

You can use low-level graphics functions to add a textual or image watermark to figures that
you generate in your toolbox. The tricky part is adding the items to the figure at the correct time
so they are not overridden.

How It Works

The best way to add watermarks is to make a special axis for each text or image item you want
to add. You turn the axis box off so all that you see is the text or image. In the first example, we
add an icon and text to the lower left-hand corner of the plot. We add a color for the edge around
the text so that it is nicely delineated. This is shown in Figure 3.26 using the Watermark.m
function. In the example, we set the hard copy inversion to off, so that when we print the figure,
we will get a gray background – this makes it easier to see in the book.

>> h = figure;
>> set(h,'InvertHardCopy','off')
>> axes
>> Watermark(h)

Watermark.m

1 %% WATERMARK Add a watermark to a figure.
2 % This function creates two axes, one for the image and one for the

text.
3 % Calling it BEFORE plotting can cause unexpected results. It will

reset
4 % the current axes after adding the watermark. The default position is
5 % the lower left corner, (2,2).
6 %% Form
7 % Watermark( fig, pos )
8 %% Inputs
9 % fig (1,1) Figure hangle
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Figure 3.26: Company watermark.

10 % pos (1,2) Coordinates, (left, bottom)
11 %% Outputs
12 % None.
13

14 function Watermark( fig, pos )
15

16 if (nargin<1 || isempty(fig))
17 fig = figure('Name','Watermark Demo');
18 set(fig,'color',[0.85 0.9 0.85]);
19 end
20

21 if (nargin<2 || isempty(pos))
22 pos = [2 2];
23 end
24

25 string = 'MATLAB Recipes';
26

27 % Save the current axes so we can restore it
28 aX = [];
29 if ˜isempty(get(fig,'CurrentAxes'))
30 aX = gca;
31 end
32

33 % Draw the icon
34 %--------------
35 [d,map] = imread('matlabicon','gif');
36 posIcon = [pos(1:2) 16 16];
37 a = axes( 'Parent', fig, 'box', 'off', 'units', 'pixels', 'position',

posIcon );
38 image( d );
39 colormap(a,map)
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40 axis off
41

42 % Draw the text
43 %--------------
44 posText = [pos(1)+18 pos(2)+1 100 15];
45 axes( 'Parent', fig, 'box', 'off', 'units', 'pixels', 'position',

posText );
46 t = text(0,0.5,string,'fontangle','italic');
47 set(t,'edgecolor',[0.87 0.5 0])
48 axis off
49

50 % Restore current axes in figure
51 if ˜isempty(aX)
52 set(fig,'CurrentAxes',aX);
53 end
54

55 set(fig,'tag','Watermarked')

As an additional example, we added text along the left- and right-hand sides of a figure
using text rotation in the function DraftMark.m. We gave the text a light color. This marks
the figure as a draft. We create a blank figure and axis before adding the draft mark, as shown
in Figure 3.27.

>> h = figure('Name','Draftmark Demo');
>> set(h,'color',[0.85 0.9 0.85]);
>> set(h,'InvertHardCopy','off')
>> axes;
>> Draftmark(h);

Figure 3.27: Draft watermark.
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Draftmark.m

1 %% DRAFTMARK Add a draft marking to a figure.
2 % This function creates two axes, one each block of text.
3 % Calling it BEFORE plotting can cause unexpected results. It will

reset
4 % the current axes after adding the watermark. The default position is
5 % the lower left corner, (2,2).
6 %% Form
7 % Draftmark( fig, pos )
8 %% Inputs
9 % fig (1,1) Figure hangle

10 % pos (1,2) Coordinates, (left, bottom)
11 %% Outputs
12 % None.
13

14 function Draftmark( fig, pos )
15

16 if (nargin<1 || isempty(fig))
17 fig = figure('Name','Draft Demo');
18 set(fig,'color',[0.85 0.9 0.85]);
19 end
20

21 if (nargin<2 || isempty(pos))
22 pos = [2 2];
23 end
24

25 string = 'DRAFT';
26

27 % Save the current axes so we can restore it
28 aX = [];
29 if ˜isempty(get(fig,'CurrentAxes'))
30 aX = gca;
31 end
32

33 % Draw the text
34 %--------------
35 pf = get(fig,'position');
36 posText = [pos(1)+5 pos(2)+0.5*pf(4)-40 20 80];
37 axes( 'Parent', fig, 'box', 'on', 'units', 'pixels', 'outerposition',

posText );
38 t1 = text(0,0,string,'fontsize',20,'color',[0.8 0.8 0.8]);
39 set(t1,'rotation',90,'edgecolor',[0.8 0.8 0.8],'linewidth',2)
40 axis off
41

42 posText = [pos(1)+pf(3)-25 pos(2)+0.5*pf(4)-40 20 80];
43 axes( 'Parent', fig, 'box', 'on', 'units', 'pixels', 'outerposition',

posText );
44 t2 = text(0,1,string,'fontsize',20,'color',[0.8 0.8 0.8]);
45 set(t2,'rotation',270,'edgecolor',[0.8 0.8 0.8],'linewidth',2)
46 axis off
48
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49 % Restore current axes in figure
50 if ˜isempty(aX)
51 set(fig,'CurrentAxes',aX);
52 end

If you want to get very fancy, you could draw objects across the front of the figure and give
them transparency, but it has to be fill or patch objects; text cannot be given transparency.

Summary
In this chapter, we reviewed key features of MATLAB visualization, from basic plotting to 3D
visualization including objects and lighting. We demonstrated accessing figure and axes han-
dles and setting properties programmatically, as well as using the interactive tools for figures.
Creating helpful visualization routines is a key part of any toolbox. MATLAB provides excel-
lent data management routines, including for large grids of data, and many options for coloriza-
tion. Table 3.1 lists the code developed in the chapter.

Table 3.1: Chapter Code Listing

File Description
AnnotatePlot Add text annotations evenly spaced along a curve
BoxPatch Generate a cube using patch
ColorDistribution Demonstrate a color distribution for an array of lines
DraftMark Add a draft marking to a figure
GridVisualization Visualize data over 2D and 3D grids
PatchWithCamera Generate two cubes using patch and point a camera at the scene
PatchWithLighting Add lighting to the cube patch
PlotPage Create a plot page with several custom plots in one figure
PlottingWithDates Plot using months as the x label
QuadPlot Create a quad plot page using subplot
ReadImage Draw a JPEG image in a figure multiple ways
SphereLighting Create and light a sphere
Watermark Add a watermark to a figure
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Interactive Graphics

The previous chapter addressed generating static graphics. In this chapter, we provide some
recipes for generating dynamic graphics. This includes animations of line and patch objects,
utilizing uicontrols in figures, designing GUIs using App Designer, and deploying your
GUI as a MATLAB app. Along the way, we present some tips for maximizing the performance
of your dynamic graphics functions.

4.1 Creating a Simple Animation
Problem

You want a visualization which changes over time without generating hundreds of different
figures.

Solution

You can create an animation by updating patch objects in a figure successively in a loop, as
shown in Figure 4.1 for a simple box. We will do this in the script PatchAnimation.m.

How It Works

First, we will create a graphic involving our 3D box from the previous chapter. Then we will
update it in a loop. This is most efficient if you can assign new data to the existing graphics
object. This could be changing the color, style, or physical location of the object. Alternatively,
you can delete and recreate the object in the current axes. In both cases, you need to store
the graphics handle for the updates. Deleting and recreating the object is often much slower
than just changing its properties. For example, to rotate and translate an object, you need only
change the vertices.

In this case, we update the vertices by multiplying by a rotation matrix b. We then pass the
vertices to the patch via the handle set(p,'vertices',vK).Note the use of the transposes
as the vertices are stored in an n-by-3 array. A light object makes the resulting animation more
interesting. We set 'linestyle' to 'none' for the patch object to eliminate the lines
between triangles.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 4
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Figure 4.1: One frame of an animation of a rotating box.

PatchAnimation.m

1 %% Animate a cube using patch
2 % Create a figure and draw a cube in it. The vertices and faces are

specified
3 % directly. We only update vertices to get a smooth animation.
8

9 %% Box design
10 x = 3;
11 y = 2;
12 z = 1;
13

14 % Faces
15 f = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6

7;5 7 8];
16

17 % Vertices
18 v = [-x x x -x -x x x -x;...
19 -y -y y y -y -y y y;...
20 -z -z -z -z z z z z]'/2;
21

22 %% Draw the object
23 h = figure('name','Box');
24 p = patch('vertices',v,'faces',f,'facecolor',[0.5 0.5 0.5],...
25 'linestyle','none','facelighting','gouraud');
26 ax = gca;
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27 set(ax,'DataAspectRatio',[1 1 1],'DataAspectRatioMode','manual')
28 axis([-3 3 -3 3 -3 3])
29 grid on
30 xlabel('x')
31 ylabel('y')
32 zlabel('z')
33 view(3)
34 rotate3d on
35 light('position',[0 0 1])
36

37 %% Animate
38 % We use tic and toc to time the animation. Pause is used with a

fraction of a
39 % second input to slow the animation down.
40 tic
41 n = 10000;
42 a = linspace(0,8*pi,n);
43

44 c = cos(a);
45 s = sin(a);
46

47 for k = 1:n
48 b = [c(k) 0 s(k);0 1 0;-s(k) 0 c(k)];
49 vK = (b*v')';
50 set(p,'vertices',vK);
51 pause(0.001);
52 end
53 toc

The full animation of four rotations takes about 16 seconds on a Mac Pro laptop. We expect
about 10 seconds of this to be from the pause command, that is, 10000 steps * 0.001 seconds.
Using pause allows you to slow down an animation that would otherwise be too fast to be
useful. Remember that pause commands can be temporarily disabled by using pause off;
this is useful when testing graphics functions that use pause.

TIP Use pause to slow down animations as needed, and remember to use pause
off to disable the pausing and run full speed during testing.

Check the execution time on your computer. Run the script twice, with pause turned off the
second time.

>> pause on
>> PatchAnimation;
Elapsed time is 15.641664 seconds.
>> pause off
>> PatchAnimation;
Elapsed time is 0.780012 seconds.
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Note that pause flushes the system graphics queue, drawing the updated patch to the screen.
When pause is off, the graphics don’t update, and you will see just the initial frame in the
window. Also note that the actual increase in time from the pause and the graphics updates
was almost 15 seconds. To force a graphics update without using pause, use drawnow.

This script uses cells to allow the individual sections to be run independently. This means
you can rerun the animation without recreating the figure, by reexecuting that cell. This can be
done from the Run Section toolbar button or by a keyboard command, for example, Command-
Enter on a Mac.

Suppose we want to add a text item to the animation that displays the angle of rotation. We
can do this using title easily enough:

title(sprintf('Angle: %f deg',a(k)*180/pi));

However, you will be surprised at the performance impact – the animation now takes over
90 seconds! Displaying text is much less efficient than updating the graphics vertices. First,
we can try using the handle to the axis title object directly and setting the string. However, this
makes little difference, still taking about 90 seconds. Another solution would be to add an inner
loop to update the title less often. Trial and error shows that an update every 50 steps, as shown
in the code snippet below, has little impact on the runtime. The figure with the title is shown in
Figure 4.2.

Figure 4.2: Animation of the box with a changing title.
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if rem(k,50)==0
set(ax.Title,'string',sprintf('Angle: %.5g deg',a(k)*180/pi));

end

Here is a summary of the execution times on the reference MacBook. We have given the
times as printed from toc, and they are from a single run, not an average. Expect a variation in
execution time of up to 10% across multiple runs. set is setting properties.

Table 4.1: Execution Times for PatchAnimation

No Title
pause off 0.780154 sec
pause on (0.001 sec) 17.254507 sec
With Title
title 90.761500 sec
set every step 90.213318 sec
set every 50 steps 20.218774 sec

4.2 Playing Back an Animation
Problem

We want to store and play back an animation.

Solution

Save each frame of the animation into an avi file using the VideoWriter class.

How It Works

In the following listing, we use VideoWriter to save the animation and read it into an avi
file. This line of code opens an avi file:

1 vObj = VideoWriter('RotatingBox.avi');

The script is PatchAnimationStorage.m. We don’t show the sections creating the
box and figure as they are the same as the previous recipe. In this case, we only use 100 points
for the four rotations; the execution time, including saving the movie, is about 4 seconds with
pause off. Running the script in the Profiler shows that almost 90% of the execution time is
spent in the writeVideo command.
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PatchAnimationStorage.m

1 %% Animate a cube using patch and store as an AVI file
2 % The figure and box are created as in PatchAnimation. This time we use

a
3 % VideoWriter to store the frames in a movie.

...

35 %% Animate
36 n = 100;
37 a = linspace(0,8*pi,n);
38 c = cos(a);
39 s = sin(a);
40

41 % Create a video file
42 vObj = VideoWriter('RotatingBox.avi');
43 open(vObj);
44

45 tic
46 for k = 1:n
47 pause(0.01);
48 b = [c(k) 0 s(k);0 1 0;-s(k) 0 c(k)];
49 vK = (b*v')';
50 set(p,'vertices',vK);
51 writeVideo(vObj,getframe(h));
52 end
53 toc
54

55 close(h)
56 close(vObj)

You can then play back your animation in any movie player shown in Figure 4.3.

4.3 Animate Line Objects
Problem

You would like to update a plot with line objects in a loop.

Solution

This is similar to Recipe 4.1, but we will update different properties of the graphics object.
We’ll use the quad plot from Chapter 3 and add animation of a marker along the trajectory. This
will also demonstrate adding a menu to a figure using uimenu.
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Figure 4.3: Movie file playing back in a video player.

How It Works

Start with the QuadPlot.m function. This creates four subplots to view a trajectory: one in
3D and three 2D views from different directions. We will do a few things to add a marker we
can animate:

• Add a time input
• Add a marker to each subplot and save the handles
• Add a text uicontrol to display the current time as the animation progresses
• Store the trajectory data and handles in the figure UserData
• Turn off the regular figure menu, and add an Animate menu with a Start function

We will use a nargin check to determine if we are creating the figure using t and x data
or entering a callback using the input ’update’. An alternative would be to place the callback
in a separate function; the figure executing the callback can be identified using a Tag property
or using gcbf, as done here. The new function is called QuadAnimator.m.

QuadAnimator.m

1 %% QUADANIMATOR Create a quad plot page with animation.
2 % This creates a 3D view and three 2D views of a trajectory in one

figure. A
3 % menu is provided to animate the trajectory over time.
4 %% Form
5 % QuadAnimator( t, x )

149



CHAPTER 4 INTERACTIVE GRAPHICS

Figure 4.4: Frame of an animation of the quad plot.

6 %% Input
7 % t (1,:) Time data
8 % x (3,:) Trajectory data
9 %

10 %% Output
11 % None.
17 function QuadAnimator(t,x)
18

19 if nargin == 0
20 disp('Demo of QuadAnimator');
21 t = linspace(0,4*pi,101);
22 th = logspace(0,log10(4*pi),101);
23 in = logspace(-1,0,101);
24 x = [sin(th).*cos(in);cos(th).*cos(in);sin(in)];
25 QuadAnimator(t,x);
26 return;
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27 end
28

29 if nargin==2
30 h = figure('Name','QuadAnimator');
31 set(h,'InvertHardcopy','off','menubar','none')
32 ma = uimenu(h,'Label','Animate');
33 ms = uimenu(ma,'Label','Start','Callback','QuadAnimator(''update'')')

;
34 m = Plot(x);
35 p = get(h,'position');
36 ut = uicontrol('Style','text','String','Time: 0.0 s',...
37 'Position',[0 0 p(3) 20]);
38 d.t = t;
39 d.x = x;
40 d.m = m;
41 d.ut = ut;
42 set(h,'UserData',d);
43 else
44 h = gcbf;
45 d = get(h,'UserData');
46 Animate(d);
47 end

As can be seen, two subfunctions segregate the plotting and animating functionality. The
animation sets the XData, YData, and ZData of the markers for the current time and updates
the text control. We use a drawnow to flush the events queue. The animation runs at a nice
speed without requiring a pause command, but this may be different on your computer, so be
prepared to experiment!

The function Plot sets up the four subplots and returns a handle to the plots. This handle
will be used by the set calls in Animate.

50 function m = Plot(x)
51 % Use subplot to create four plots of a trajectory
52

53 subplot(2,2,3)
54 plot3(x(1,:),x(2,:),x(3,:));
55 hold on
56 m(3) = plot3(x(1,1),x(2,1),x(3,1),'o');
57 hold off
58 xlabel('X')
59 ylabel('Y')
60 zlabel('Z')
61 grid on
62 title('Trajectory')
63

64 subplot(2,2,1)
65 plot(x(1,:),x(2,:));
66 hold on
67 m(1) = plot(x(1,1),x(2,1),'o');
68 hold off
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69 xlabel('X')
70 ylabel('Y')
71 grid on
72 title('Along Z')
73

74 subplot(2,2,2)
75 plot(x(2,:),x(3,:));
76 hold on
77 m(2) = plot(x(2,1),x(3,1),'o');
78 hold off
79 xlabel('Y')
80 ylabel('Z')
81 grid on
82 title('Along X')
83

84 subplot(2,2,4)
85 plot(x(1,:),x(3,:));
86 hold on
87 m(4) = plot(x(1,1),x(3,1),'o');
88 hold off
89 xlabel('X')
90 ylabel('Z')
91 grid on
92 title('Along Y')

The last function animates the plots using set.

95 function Animate( d )
96 % Animate the markers on the subplots over time
97

98 for k = 1:length(d.t)
99 x = d.x(:,k);

100 set(d.m(3),'XData',x(1),'YData',x(2),'ZData',x(3));
101 set(d.m(1),'XData',x(1),'YData',x(2));
102 set(d.m(2),'XData',x(2),'YData',x(3));
103 set(d.m(4),'XData',x(1),'YData',x(3));
104 set(d.ut,'string',sprintf('Time: %f s',d.t(k)));
105 drawnow;
106 end

4.4 Implementation of a uicontrol Button
Problem

We want to use a button in a dialog box to stop a script as it is running.
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Figure 4.5: UIControlDemo window.

Solution

Use uicontrol and figure to create a pop-up window with control, as shown in Figure 4.5.

How It Works

We use two uicontrol calls in the script, UIControlDemo.m. The first puts a text box
in the window. The second puts a button in the window. We don’t have to specify a style for
a button, as this is the default style, but you may choose to specify it for clarity. The button
control has a callback. A callback can be any MATLAB code or a function handle. In this case,
we just set the global stop to true to stop the loop. Note that we use true and false for the
global boolean for clarity, although 1 and 0 will work.

speed and step are handles to the uicontrols. Units are set to pixels. This means
that numbers, such as bottom, will be interpreted as pixels as opposed to mm or inches. Note
that menubar and figure are also graphics objects.

UIControlDemo.m

1 %% Demonstrate the use of a uicontrol button with a callback
2 % Create a window with a button that interacts with a global variable

in the
3 % script.
8

9 %% Build the GUI
10 % This is a global to communicate the button push from the GUI
11 global stop;
12 stop = false;
13

14 % Build the GUI
15 set(0,'units','pixels')
16 p = get(0,'screensize');
17 bottom = p(4) - 190;
18 fig = figure('name','UIControlDemo','position',[340 bottom 298

90],...
19 'NumberTitle','off','menubar','none',...
20 'resize','off');
21

22 % The display text
23 speed = uicontrol( 'Parent', fig, 'position', [ 20 40 280 15],...
24 'style', 'text','string','Waiting to start.');
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25

26 % This has a callback setting stop to 1
27 step = uicontrol( 'parent', fig, 'position',[ 40 40 40 20],...
28 'string','Stop', 'callback','stop = true;');
29

30 %% Run the GUI
31 for k = 1:1000
32 pause(0.01)
33 set( speed, 'String', k );
34 if( stop )
35 break; %#ok<UNRCH>
36 end
37 %drawnow % alternative to pause
38 end

The position input is defined as [left bottom width height]
We obtained the computer’s screen size to place the window near the top of the screen, by

assigning the bottom position parameter to the screen size minus the figure size (90 pixels tall),
plus a 100 pixel margin, that is, p(4)-190.

MATLAB’s code analyzer will place an alert on the line with the break saying that the line
is unreachable when stop is false. This is in fact the case, but we have our uicontrol to
change that parameter. MATLAB can’t ascertain that, so we add the %#ok<UNRCH> comment
to suppress the warning. This comment can be automatically added by MATLAB, that is,
Autofixed, if you right-click the line with the warning and select Suppress “This statement...”
from the pop-up menu.

TIP Suppress warnings on lines with code that is reachable only by changes in your
boolean logic.

Let’s check the execution time. Run the script with tic and toc twice, with pause turned
off the second time.

>> tic; UIControlDemo; toc
Elapsed time is 11.601678 seconds.
>> pause off
>> tic; UIControlDemo; toc
Elapsed time is 0.147663 seconds.

If you want the animation to last more or less than the 11 seconds we got, you can adjust
the pause time. We can see that the graphics loop alone takes only a small fraction of a
second, despite updating 1000 times! This is because with pause off, the graphics are not
forced to update every step of the loop. MATLAB will flush the graphics only when the script
ends, unless you have one of the commands that flushes the system queue, such as pause,
drawnow, or getframe. If you don’t want or need pause, use drawnow to force a graphics
update every step of the loop. The following table shows the execution times with pause on or
off and using drawnow instead. These are times from a single run on the reference MacBook,
not an average; expect a variation in runtimes of up to 10%.
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Table 4.2: Execution Times for PatchAnimation

pause off 0.147663 sec
pause on (0.01 sec) 11.601678 sec
drawnow 2.642504 sec
pause AND drawnow 13.785564 sec

4.5 Display Status of a Running Simulation or Loop
Problem

We want to display the time remaining for a time-consuming task done in a loop.

Solution

Create a window with a text uicontrol to display the time remaining, as in Figure 4.6.

How It Works

TimeDisplayGUI implements the time window. It uses three actions with varargin. A
persistent variable, hGUI, stores the steps and increments automatically for every update call.
Some things to notice in this function are

• The MATLAB function now is used to get the current date for timing purposes.
• The number of steps completed is stored in hGUI.stepsDone.
• The GUI only updates the text string every half second of real time.
• It calculates an estimated amount of real time until script completion, assuming all steps
take the same amount of time.

• The built-in demo uses pause.

TimeDisplayGUI.m

1 %% TIMEDISPLAYGUI Displays an estimate of time to go in a loop.
2 % Call TimeDisplayGUI('update') each step; the step counter is

incremented
3 % automatically using a persistent variable. Updates at 0.5 sec

intervals.

Figure 4.6: Time display window.
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4 %
5 % TimeDisplayGUI( 'initialize', nameOfGUI, totalSteps )
6 % TimeDisplayGUI( 'update' )
7 % TimeDisplayGUI( 'close' )
8 %
9 % You can only have one TimeDisplayGUI operating at once. The built-in

demo uses
10 % pause to run for about 5 seconds.
11 %% Form:
12 % TimeDisplayGUI( action, varargin )
13 %% Inputs
14 % action (1,:) 'initialize', 'update', or 'close'
15 % nameOfGUI (1,:) Name to display
16 % totalSteps (1,1) Total number of steps
17 %
18 %% Outputs
19 % None
25 function TimeDisplayGUI( action, varargin )
26

27 persistent hGUI
28

29 if nargin == 0
30 % Demo
31 disp('Initializing demo window with 100 steps.')
32 TimeDisplayGUI( 'initialize', 'TimeDisplay Demo', 100 );
33 for k = 1:100
34 pause(0.05)
35 TimeDisplayGUI( 'update' );
36 end
37 return;
38 end
39

40 switch action
41 case 'initialize'
42 hGUI = BuildGUI( varargin{1} );
43 hGUI.totalSteps = varargin{2};
44 hGUI.stepsDone = 0;
45 hGUI.date0 = now;
46 hGUI.lastDate = now;
47 case 'update'
48 if( isempty( hGUI ) )
49 return
50 end
51 hGUI.stepsDone = hGUI.stepsDone + 1;
52 hGUI = Update( hGUI );
53 case 'close'
54 if ˜isempty(hGUI) && ishandle(hGUI.fig)
55 delete( hGUI.fig );
56 else
57 delete(gcf)
58 end
59 hGUI = [];

156



CHAPTER 4 INTERACTIVE GRAPHICS

60 end
62

63 function hGUI = Update( hGUI )
64 % Update the display
65

66 thisDate = now;
67 dTReal = thisDate-hGUI.lastDate; % days
68 if (dTReal > 0.5/86400)
69 % Increment every 1/2 second
70 stepPer = hGUI.stepsDone/(thisDate - hGUI.date0);
71 stepsToGo = hGUI.totalSteps - hGUI.stepsDone;
72 tToGo = stepsToGo/stepPer;
73 datev = datevec(tToGo);
74 str = FormatString( hGUI.stepsDone/hGUI.totalSteps, datev );
75

76 set( hGUI.percent, 'String', str );
77 drawnow;
78 hGUI.lastDate = thisDate;
79 end
81

82 function h = BuildGUI( name )
83 % Initialize the GUIs
84

85 set(0,'units','pixels')
86 p = get(0,'screensize');
87 bottom = p(4) - 190;
88 h.fig = figure('name',name,'Position',[340 bottom 298 90],'

NumberTitle','off',...
89 'menubar','none','resize','off','closerequestfcn'

,...
90 'TimeDisplayGUI(''close'')');
91

92 v = {'Parent',h.fig,'Units','pixels','fontunits','pixels'};
93

94 str = FormatString( 0, [0 0 0 0 0 0] );
95 h.percent = uicontrol( v{:}, 'Position',[ 20 35 260 20], 'Style','

text',...
96 'fontsize',12,'string',str,'Tag','StaticText2'

);
97 drawnow;
99

100 function str = FormatString( fSteps, date )
101 % Format the time to go string
102

103 str = sprintf('%4.2f%% complete with %2.2i:%2.2i:%5.2f to go',...
104 100*fSteps,date(4),date(5),date(6));

The following script, TimeDisplayDemo, shows how the function is used. Figure 4.6
shows the resulting window.
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TimeDisplayDemo.m

10 n = 10000;
11 dT = 0.1;
12 a = rand(10,10);
13

14 %% Initialize the time display
15 TimeDisplayGUI( 'initialize', 'SVD', n )
16

17 %% Loop
18 for j = 1:n
19

20 % Do something time consuming
21 for k = 1:100
22 svd(a);
23 end
24

25 % Display the status message
26 TimeDisplayGUI( 'update' );
27

28 end
29

30 %% Finish
31 TimeDisplayGUI( 'close' );

4.6 Create a Custom GUI with App Designer
Problem

You have a repeating workflow and you would like to build a GUI to avoid changing parameters
in your script repeatedly. For example, let’s take our rotating cube animation from Recipe 4.1
and put it in a GUI, so we can easily see the effect of different pause lengths.

Solution

We will use appdesigner to create our GUI, starting from a blank figure. We will need an edit
box for the pause length plus buttons for operation.

How It Works

Click the “Design App” button in the APPS toolbar to open a new window, as shown in
Figure 4.7.

The App Designer interface is shown in Figure 4.8. The interface gives you several tem-
plates that you can use as starting points for your app. We will use the blank app to start. Recent
apps are on the left. In our case, there is the Detection Filter GUI, DFGUI, that we will write in
a later chapter. There is also the MATLAB “Mortgage” demonstration app.

A blank GUI is shown in Figure 4.9. The Component Library is on the left. You drag and
drop components onto the GUI from this list. Properties of a selected component are displayed
on the right. When you drag a component to the GUI, you can view the associated properties
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Figure 4.7: Click “Design App.”

Figure 4.8: App Designer interface.

on the right. Note the tabs in the center window for Design View and Code View, which you
use to switch between a view of the GUI layout and the code.

We will create the following items in the window by dragging and dropping icons from the
palette on the left.

• Edit box, numeric, for entering the pause time
• Text label for the box
• Edit box, numeric, for entering the number of steps
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Figure 4.9: Blank GUI in the appdesigner.

• Text label for the box
• Button to start the animation
• Button to stop the animation
• Plot axes for the animation

Once you add the preceding items to the app window, click each in the component browser
to change its name. In the inspector, type the new name in the Text or Label field and hit tab.
We used the names: PauseDuration, Seconds, Start, Stop, and NumberofSteps. As you edit
the GUI, if you change a component’s name, the associated callback functions will be renamed
automatically.

Your figure should now look something like Figure 4.10. You don’t have to finish the GUI
before starting the code. You can go between the code and design views whenever you want
and run the app anytime. The MATLAB debugger will bring you to any line of code with a bug.

We will implement a signal to stop the animation in the Stop button callback via a property.
First, switch to the Code View of the app. On the left, there is now a code browser where the
Component Library used to be, Figure 4.11. Click the Properties tab and click the plus sign
pop-up menu. There are two choices here: you may add a private or public property. Add a
public property; access needs to be public for other callbacks to see the property.
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Figure 4.10: Newly saved GUI. On the right, the Callbacks tab of the figure.

Figure 4.11: Properties are added in the Code View.

This will add a properties block in the code of the app and place the cursor there. Select
the default name, “Property,” and rename it stopAnimation. Set the initial value to false as
shown in Figure 4.12. Note that you do not preface the property name with app.

Return to the Design View to work on the plot axes. The axes component defaults to 2D.
We want a 3D animation, but there is not a way to make it 3D directly in the properties list. To
make the axes 3D, you need to add a startup function to add the 3D commands. First, make sure
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Figure 4.12: The properties code with our single property, stopAnimation.

Figure 4.13: Startup code which makes the axes three-dimensional.

Figure 4.14: Start button code section highlighted.

that the figure, app.UIFigure, is selected in the component browser. Click the “Callbacks” tab as
in the image on the right of Figure 4.10, click the pop-up next to StartupFcn, and add a startup
function. Select “Code View” and add the lines of code shown in Figure 4.13. Note that every
call to an axes or plot function in an app needs to have the axes handle, app.UIAxes, passed
in at the start of the function call. Just adding the view function call with a three-element
vector is enough to make the axes 3D. We also turn the grid on, label the Z axis, and initialize
the stopAnimation property (discussed later) to false.

The animation portion of the code needs to be added in the Start button callback. Click the
button in the component browser, click the Callbacks tab, and use the pop-up menu to add a
callback. The function StartButtonPushedwill be added, and the area for the start button
code will be highlighted as shown in Figure 4.14.
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Figure 4.15: The animation code in the Start button callback.

You enter all the animation code in this section as in Figure 4.15. The first part draws the
box and uses patch to create the box. The coloring and lighting are also set in the patch
call. We use Gouraud shading that gives somewhat natural lighting. We set the data aspect
ratio manually. The first argument to patch is the axis handle, app.UIAxes. We then get
the number of steps from the edit text box using its Value field. The loop updates the patch by
changing just the vertices. b is the single-axis rotation matrix. The pause function is passed
the value of the duration edit text box. The stopAnimation property is used to break the loop.
After the loop, we delete the patch so that we can rerun the animation.

Add a Stop button callback to set the property we created earlier, stopAnimation, to true
when pushed, as shown in Figure 4.16. The function is automatically named
StopButtonPushed.
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Figure 4.16: The StopButtonPushed callback.

Figure 4.17: App Designer with our completed code.

The complete code is shown in Figure 4.17. The places where we added code have white
backgrounds. When the animation starts, the app stays in the loop until the input number of
steps is complete. Any button push needs to be handled in the loop, as is shown.

Push the green run button to run the app. The app is shown in Figure 4.18. You need to hit
start to begin the animation. When it completes, it deletes the box.
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Figure 4.18: The box animation app in operation.

4.7 Build a Data Acquisition GUI
Problem

Build a data acquisition GUI to display the real-time data and output it into training sets without
using App Designer.

Solution

Use nested functions to create a GUI.
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How It Works

We aren’t going to use MATLAB’s appdesigner to build our GUI. Instead, we will write the
code out by hand. We will use nested functions for the GUI. The inner functions have access
to all variables in the outer functions. This also makes using callbacks easy as shown in the
following code snippet:

function DancerGUI( file )
function DrawGUI(h)
uicontrol( h.fig,'callback',@SetValue);

function SetValue(hObject, ˜, ˜ )
% do something

end
end
end

A callback is a function called by a uicontrol when the user interacts with the control.
When you first open the GUI, it will look for the Bluetooth device. This can take a while.

Everything in DrawGUI has access to variables in DancerGUI. The GUI is shown in
Figure 4.19. The 3D orientation display is in the upper-left corner. Real-time plots are on the
right. Buttons are on the lower left, and the movie window is on the right.

Figure 4.19: Data acquisition GUI.
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The upper-left picture shows the dancer’s orientation. The plots on the right show angular
rates and accelerations from the IMU. From top to bottom of the buttons

1. Turn the 3D on/off. The default model is big, so unless you add your own model with
fewer vertices, it should be set to off.

2. The text box to its right is the name of the file. The GUI will add a number to the right of
the name for each run.

3. Save saves the current data to a file.

4. Calibrate sets the default orientation and sets the gyro rates and accelerations to whatever
it is reading when you hit the button. The dancer should be still when you hit calibrate. It
will automatically compute the gravitational acceleration and subtract it during the test.

5. Quit closes the GUI.

6. Clear data clears out all the internal data storage.

7. Start/Stop starts and stops the GUI.

The remaining three lines display the time, the angular rate vector, and the acceleration vector
as numbers. This is the same data that is plotted.

The first part creates the figure and draws the GUI. It initializes all the fields for GUIPlots.
It reads in a default picture for the movie window as a placeholder.

DancerGUI.m

16 function DancerGUI( file )
17

18 % Demo
19 if( nargin < 1 )
20 DancerGUI('Ballerina.obj');
21 return
22 end
23

24 % Storage of data need by the deep learning system
25 kStore = 1;
26 accelStore = zeros(3,1000);
27 gyroStore = zeros(3,1000);
28 quatStore = zeros(4,1000);
29 timeStore = zeros(1,1000);
30 time = 0;
31 on3D = false;
32 quitNow = false;
33

34 sZ = get(0,'ScreenSize') + [99 99 -200 -200];
35

36 h.fig = figure('name','Dancer Data Acquisition','position',sZ,'units','
pixels',...
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37 'NumberTitle','off','tag','DancerGUI','color',[0.9 0.9 0.9]);
38

39 % Plot display
40 gPlot.yLabel = {'\omega_x' '\omega_y' '\omega_z' 'a_x' 'a_y' 'a_z'};
41 gPlot.tLabel = 'Time (sec)';
42 gPlot.tLim = [0 100];
43 gPlot.pos = [0.45 0.88 0.46 0.1];
44 gPlot.color = 'b';
45 gPlot.width = 1;
46

47 % Calibration
48 q0 = [1;0;0;0];
49 a0 = [0;0;0];
50

51 dIMU.accel = a0;
52 dIMU.quat = q0;
53

54 % Initialize the GUI
55 DrawGUI;

The notation

1 '\omega_x'

is a LaTeX format. This will generate ωx.
The next part tries to find Bluetooth. It first sees if Bluetooth is available at all. It then

enumerates all Bluetooth devices. It looks through the list to find our IMU.

57 % Get bluetooth information
58 instrreset; % Just in case the IMU wasn't close properly
59 btInfo = instrhwinfo('Bluetooth');
61

62 if( ˜isempty(btInfo.RemoteIDs) )
63 % Display the information about the first device discovered
64 btInfo.RemoteNames(1)
65 btInfo.RemoteIDs(1)
66 for iB = length(btInfo.RemoteIDs)
67 if( strcmp(btInfo.RemoteNames(iB),'LPMSB2-4B31D6') )
68 break;
69 end
70 end
71 b = Bluetooth(btInfo.RemoteIDs{iB}, 1);
72 fopen(b); % No output allowed for some reason
73 noIMU = false;
74 a = fread(b,91);
75 dIMU = DataFromIMU( a );
76 else
77 warndlg('The IMU is not available.', 'Hardware Configuration')
78 noIMU = true;
79 end
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The following is the run loop. If no IMU is present, it synthesizes data. If the IMU is found,
the GUI reads data from the IMU in 91 byte chunks. The uiwait is to wait until the user hits
the start button. When used for testing, the IMU should be on the dancer. The dancer should
remain still when the start button is pushed. It will then calibrate the IMU. Calibration fixes the
quaternion reference and removes the gravitational acceleration. You can also hit the calibration
button at any time.

81 % Wait for user input
82 uiwait;
83 % The run loop
84 time = 0;
85 tic
86 while(1)
87 if( noIMU )
88 omegaZ = 2*pi;
89 dT = toc;
90 time = time + dT;
91 tic
92 a = omegaZ*time;
93 q = [cos(a);0;0;sin(a)];
94 accel = [0;0;sin(a)];
95 omega = [0;0;omegaZ];
96 else
97 % Query the bluetooth device
98 a = fread(b,91);
99 pause(0.1); % needed so not to overload the bluetooth device

100

101 dT = toc;
102 time = time + dT;
103 tic
104

105 % Get a data structure
106 if( length(a) > 1 )
107 dIMU = DataFromIMU( a );
108 end
109 accel = dIMU.accel - a0;
110 omega = dIMU.gyro;
111 q = QuaternionMultiplication(q0,dIMU.quat);
112

113 timeStore(1,kStore) = time;
114 accelStore(:,kStore) = accel;
115 gyroStore(:,kStore) = omega;
116 quatStore(:,kStore) = q;
117 kStore = kStore + 1;
118 end

The following closes down the GUI. It uses a variable set in one of the callbacks.

120 if( quitNow )
121 close( h.fig )
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122 return
123 else
124 if( on3D )
125 QuaternionVisualization( 'update', q );
126 end
127 set(h.text(1),'string',sprintf('[%5.2f;%5.2f;%5.2f] m/sˆ2',accel));
128 set(h.text(2),'string',sprintf('[%5.2f;%5.2f;%5.2f] rad/s',omega));
129 set(h.text(3),'string',datestr(now));
130 gPlot = GUIPlots( 'update', [omega;accel], time, gPlot );
131 end

This code displays the IMU data accel and omega:

127 set(h.text(1),'string',sprintf('[%5.2f;%5.2f;%5.2f] m/sˆ2',accel));
128 set(h.text(2),'string',sprintf('[%5.2f;%5.2f;%5.2f] rad/s',omega));

The drawing code uses uicontrol to create all the buttons. GUIPlots and Quatern
ionVisualization are also initialized. A uicontrol that requires an action has call-
backs.

135 function DrawGUI
136

137 % Plots
138 gPlot = GUIPlots( 'initialize', [], [], gPlot );
139

140 % Quaternion display
141 subplot('position',[0.05 0.5 0.4 0.4],'DataAspectRatio',[1 1 1],'

PlotBoxAspectRatio',[1 1 1] );
142 QuaternionVisualization( 'initialize', file, h.fig );
143

144 % Buttons
145 f = {'Acceleration', 'Angular Rates' 'Time'};
146 n = length(f);
147 p = get(h.fig,'position');
148 dY = p(4)/20;
149 yH = p(4)/21;
150 y = 0.5;
151 x = 0.15;
152 wX = p(3)/6;
153

154 % Create pushbuttons and defaults
155 for k = 1:n
156 h.pushbutton(k) = uicontrol( h.fig,'style','text','string',f{k},'

position',[x y wX yH]);
157 h.text(k) = uicontrol( h.fig,'style','text','string','', '

position',[x+wX y 2*wX yH]);
158 y = y + dY;
159 end
160
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161 h.onButton = uicontrol( h.fig,'style','togglebutton','string',
'Start/Stop',...

162 'position',[x y wX yH],'
ForegroundColor','red','callback'
,@StartStop);

163 y = y + dY;
164 h.clrButton = uicontrol( h.fig,'style','pushbutton','string','

Clear Data','position',[x y wX yH],'callback',@Clear);
165 y = y + dY;
166 h.quitButton = uicontrol( h.fig,'style','pushbutton','string','

Quit','position',[x y wX yH],'callback',@Quit);
167 y = y + dY;
168 h.calibrateButton = uicontrol( h.fig,'style','pushbutton','string','

Calibrate','position',[x y wX yH],'callback',@Calibrate);
169 y = y + dY;
170 h.saveButton = uicontrol( h.fig,'style','pushbutton','string','

Save', 'position',[x y wX yH],'callback',@SaveFile); y =
y + dY;

171 h.on3D = uicontrol( h.fig,'style','togglebutton','
string','3D on/off',...

172 'position',[x y wX yH],'
ForegroundColor','red','callback'
,@On3D);

173

174 h.matFile = uicontrol( h.fig,'style','edit', 'string','
MyDancer','position',[x+wX y wX yH]);

uicontrol takes parameter pairs, except for the first argument that can be a figure handle.
There are a lot of parameter pairs. The easiest way to explore them is to type:

h = uicontrol;
get(h)

All types of uicontrol that handle user interaction have “callbacks” that are functions
that do something when the button is pushed or menu item is selected. We have five
uicontrol with callbacks. The first uses uiwait and uiresume to start and stop data
collection.

184 function StartStop(hObject, ˜, ˜ )
185 if( hObject.Value )
186 uiresume;
187 else
188 SaveFile;
189 uiwait
190 end
191 end

The second uses questdlg to ask if you want to save the data that has been stored in the
GUI. This produces the modal dialog shown in Figure 4.20.
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Figure 4.20: Modal dialog.

194 function Quit(˜, ˜, ˜ )
195 button = questdlg('Save Data?','Exit Dialog','Yes','No','No');
196 switch button
197 case 'Yes'
198 % Save data
199 case 'No'
200 end
201 quitNow = true;
202 uiresume
203 end

The third, Clear, clears the data storage arrays. It resets the quaternion to a unit quater-
nion.

206 function Clear(˜, ˜, ˜ )
207 kStore = 1;
208 accelStore = zeros(3,1000);
209 gyroStore = zeros(3,1000);
210 quatStore = zeros(4,1000);
211 timeStore = zeros(1,1000);
212 time = 0;
213 end

The fourth, calibrate, runs the calibration procedure.

216 function Calibrate(˜, ˜, ˜ )
217 a = fread(b,91);
218 dIMU = DataFromIMU( a );
219 a0 = dIMU.accel;
220 q0 = dIMU.quat;
221 QuaternionVisualization( 'update', q0 )
222 end
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The fifth, SaveFile, saves the recorded data into a mat file for use by the Deep Learning
algorithm.

225 function SaveFile(˜,˜,˜)
226 cd TestData
227 fileName = get(h.matFile,'string');
228 s = dir;
229 n = length(s);
230 fNames = cell(1,n-2);
231 for kF = 3:n
232 fNames{kF-2} = s(kF).name(1:end-4);
233 end
234 j = contains(fNames,fileName);
235 m = 0;
236 if( ˜isempty(j) )
237 for kF = 1:length(j)
238 if( j(kF))
239 f = fNames{kF};
240 i = strfind(f,'_');
241 m = str2double(f(i+1:end));
242 end
243 end
244 end

We make it easier for the user to save files by reading the directory and adding a number to
the end of the dancer filename that is one greater than the last filename number.

Summary
In this chapter, we introduced figure controls as well as updating graphics in a loop. MATLAB
provides a rich GUI building environment including buttons, sliders, listboxes, menus, and plot
axes. You can create uicontrols directly or use the App Designer tool to build a GUI-
based app. It is important to consider performance when designing graphics that update, as
some operations have widely disparate performance. Table 4.3 lists the code developed in the
chapter.

Table 4.3: Chapter Code Listing

File Description
DancerGUI.m A GUI for data acquisition
PatchAnimation Animate a 3D patch in a for loop
PatchAnimationStorage Animate a cube using patch and store as an avi file
QuadAnimator Create a quad plot page with animation
TimeDisplayDemo Demonstrate a GUI that shows the time to go in a process
UIControlDemo Demonstrate the use of a uicontrol button with a callback

173



CHAPTER 5

Testing and Debugging

The MATLAB unit test framework now allows you to incorporate testing into your MATLAB
software just as you would your C++ or Java packages. Since entire textbooks have been written
on testing methodologies, we will limit ourselves in this chapter to covering the mechanics of
using the test framework itself. We also present a couple of recipes that are useful for debugging.

We should, however, say a few words about the goal of software testing. Testing should
determine if your software functions as designed. The first step is to have a concrete design
against which you are coding. The functionality needs to be carefully described as a set of
requirements. The requirements need to specify what inputs the software expects and what
outputs it will generate. Testing needs to verify that for all valid inputs, it generates the expected
outputs. A second consideration is that the software should handle expected errors and warn
the user. For example, a simple function adds two MATLAB variables:

c = a + b;

You need to verify that it will work for any numeric a and b. You would not generally need
to have a warning to the user if a or b is not numeric; that would just fill your code up with
unneeded tests. A case where you might want a check is a function containing

b = acos(a);

If it is supposed to return a real number (perhaps as part of another function), you might
want to limit a to have a magnitude less than 1. If you have the code

if( abs(a) > 1 )
a = sign(a);

end
b = acos(a);
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in this case, your test code needs to pass in values of a that are greater than one. This is
also a case where you might want to add a custom warning to the user if the magnitude limiting
code is exercised, as shown in the following. If you have custom warnings and errors in your
code, you also need to test them.

if( abs(a) > 1 )
warning('MyToolbox:MyFunction:OutOfBounds','Input a is out of bounds');
a = sign(a);

end
b = acos(a);

For engineering software, your test code should include known outputs generated by known
inputs. In the preceding code, you might include inputs of 1.1, 1, 0.5, 0, -0.5, -1, and -1.1.
This would span the range of expected inputs. You might also be very thorough and input
linspace(-1.1,1.1) and test against another source of values for the inverse cosine. As
shown in the later chapters, we usually include a demo function that tests the function with an
interesting set of inputs. Your test code can use the code from the demo function as part of the
testing.

All test procedures should employ the MATLAB code coverage tools. The Coverage Re-
port, used in conjunction with the MATLAB Profiler, keeps track of what lines of code are
exercised during execution. For a given function or script, it is essential that all code be exer-
cised in its test. Studies have shown that testing done without coverage tools typically exercises
only 55% of the code. In reality, it is impossible to actually test every path in anything but the
simplest software, and this must be factored into the software development and quality assur-
ance processes. MATLAB does not currently support running the coverage tools on a suite of
tests, or during your regression testing, so you should exercise the coverage tools on a per-test
basis as you design them.

Once you start using your software, any bug you find should be used to add an additional
test case to your software.

5.1 Creating a Unit Test
Problem

Your functions require unit tests.

Solution

Use MATLAB’s built-in test capabilities (now available using Java classes) to write and execute
unit test functions. Test functions and scripts are identified by using the word “test” as a prefix
or suffix to the filename and are run via the runtests function.
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How It Works

The matlab.unittest package is an xUnit-style, unit testing framework for MATLAB.
You can write scripts with test cases separated using cell titles, or functions with test cases in
subfunctions, and execute them using the framework. We will show an example of each. There
is extensive documentation of the framework and examples in the MATLAB documentation;
these lists will get you started.

These are the relevant MATLAB packages implementing the framework:

• matlab.unittest
• matlab.unittest.constraints
• matlab.unittest.fixtures
• matlab.unittest.qualifications

The qualifications package provides all the methods for checking function results, including
numerical values, errors, and warnings. The fixtures package allows you to provide setup and
teardown code for individual or groups of tests.

Here are the relevant classes you will use when coding tests:

• matlab.unittest.TestCase
• matlab.unittest.TestResult
• matlab.unittest.TestSuite
• matlab.unittest.qualifications.Verifiable

TestCase is the superclass for writing test classes.
Here are the relevant functions:

• assert
• runtest
• functiontests
• localfunctions

The simplest way to implement some tests for a function is to write a script. Each test case
is identified with a cell title, using %%. Use the assert function to check the function output.
The script can then be run via runtest, which will run each test even if a prior test fails, and
collate the output into a useful report.

Let’s write tests for an example function, CompleteTriangle, that computes the re-
maining data for a triangle given two sides and the interior angle:

CompleteTriangle.m

22 function [A,B,c] = CompleteTriangle(a,b,C)
23

24 c = sqrt(aˆ2 + bˆ2 - 2*a*b*cosd(C));
25 sinA = sind(C)/c*a;
26 sinB = sind(C)/c*b;
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27 cosA = (cˆ2+bˆ2-aˆ2)/2/b/c;
28 cosB = (cˆ2+aˆ2-bˆ2)/2/a/c;
29 A = atan2(sinA,cosA)*180/pi;
30 B = atan2(sinB,cosB)*180/pi; % insert typo: change a B to A
31

32 end

This is similar to the right triangle function used as an example in the MATLAB documen-
tation, but we need the four quadrant inverse tangent as we are allowing obtuse triangles. Since
there are very similar lines of code for the two angles A and B, we’ve made a note that having
a typo in one of these lines would be likely, especially if you use copy/paste while writing the
function; we’ll demonstrate the effect of such a typo via our tests.

Now let’s look at a script that defines a few test cases for this function, TriangleTest.
We use assert with a logical statement for every check.

TriangleTest.m

11 %% Test 1: sum of angles
12 % Test that the angles add up to 180 degrees.
13 C = 30;
14 [A,B] = CompleteTriangle(1,2,C);
15 theSum = A+B+C;
16 assert(theSum == 180,'PSS:Book:triangle','Sum of angles: %f',theSum)
17

18 %% Test 2: isosceles right triangles
19 % Test that if sides a and b are equal, angles A and B are equal.
20 C = 90;
21 [A,B] = CompleteTriangle(2,2,C);
22 assert(A == B,'PSS:Book:triangle','Isoceles Triangle')
23

24 %% Test 3: 3-4-5 right triangle
25 % Test that if side a is 3 and side b is 4, side c (hypotenuse) is 5.
26 C = 90;
27 [˜,˜,c] = CompleteTriangle(3,4,C);
28 assert(c == 5,'PSS:Book:triangle','3-4-5 Triangle')
29

30 %% Test 4: equilateral triangle
31 % Test that if sides a and b are equal, all angles are 60.
32 [A,B,c] = CompleteTriangle(1,1,60);
33 assert(A == 60,'PSS:Book:triangle','Equilateral Triangle %d',1)
34 assert(B == 60,'PSS:Book:triangle','Equilateral Triangle %d',2)
35 assert(c == 1,'PSS:Book:triangle','Equilateral Triangle %d',3)
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Note how we have used the additional inputs available to assert to add a message ID
string and an error message. The error message can take formatted strings with any of the
specifiers supported by sprintf, such as %d and %f.

You can simply execute this script, in which case it will exit on the first assert that fails.
Even better, you can run it with runtests, which will automatically distinguish between the
test cases and run them independently should one fail.

>> runtests('TriangleTest');

Running TriangleTest
...
=========================================================================
Error occurred in TriangleTest/Test4_EquilateralTriangle and it did not

run to completion.

--------------
Error Details:
--------------
Equilateral Triangle 1

=========================================================================
.
Done TriangleTest
__________

Failure Summary:

Name Failed Incomplete Reason(s)
=====================================================================
TriangleTest/Test4_EquilateralTriangle X X Errored.

The equilateral triangle test failed, and we know it was the first assert in that case due to
the index we printed out, Equilateral Triangle 1. If you run the code for that test at the
command line, you will see that the output does in fact look correct:

>> [A,B,c] = CompleteTriangle(1,1,60)
A =

60
B =

60
c =

1
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If we actually subtract the expected value, 60, from A and B, we see why our test has failed.

>> A-60
ans =

7.1054e-15
>> B-60
ans =

7.1054e-15

We are within the tolerances of the trigonometric functions in MATLAB, but our assert did
not take that into account. You can add a tolerance like so:

1 assert(abs(A-60)<1e-10,'PSS:Book:triangle','Equilateral Triangle %d',1)
2 assert(abs(B-60)<1e-10,'PSS:Book:triangle','Equilateral Triangle %d',2)

And now our tests all pass:

>> runtests('TriangleTest')
Running TriangleTest
....
Done TriangleTest
__________

ans =
1x4 TestResult array with properties:

Name
Passed
Failed
Incomplete
Duration

Totals:
4 Passed, 0 Failed, 0 Incomplete.
0.012243 seconds testing time.

Note that we left off the terminating semicolon, so in addition to the brief report, we see that
runtests returns an array of TestResult objects and prints additional total information,
including the test duration.

Now let’s consider the case of a typo in the function that you have not yet debugged. We
will change a B to an A on the last line of the function, so that it reads

1 B = atan2(sinB,cosA)*180/pi; % insert typo: change a B to A

and run the tests again, using the tolerance check. We use the table class with the
TestResult output to get a nicely formatted version of the test results.

>> tr = runtests('TriangleTest');
>> table(tr)
ans =

Name Passed Failed Incomplete
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Duration
________________________________________ _____ _____ _______

______
'TriangleTest/Test1_SumOfAngles' false true true

0.0040209
'TriangleTest/Test2_IsoscelesRightTriangles' true false false

0.002971
'TriangleTest/Test3_3_4_5RightTriangle' true false false

0.0027831
'TriangleTest/Test4_EquilateralTriangle' true false false

0.0031556

Despite this being a major error in the code, only one test has failed: the sum of the angles
test. The isosceles and equilateral triangle tests still passed because A and B are equal in both
cases. You could introduce errors into each line of your code to see if your tests catch them!

Now let’s consider the other possibility for the unit tests: a test function, as opposed to the
script. In this case, each test case has to be in its own subfunction, and the main function has to
return an array of tests. This provides you the opportunity to write setup and teardown functions
for the tests. It also makes use of the TestCase class and the qualifications package. Here is
what our tests look like in this format:

TriangleFunctionTest.m

16 function tests = TriangleFunctionTest
17 % Create an array of local functions
18 tests = functiontests(localfunctions);
19 end
20

21 %%% Test Functions
22 function testAngleSum(testCase)
23 C = 30;
24 [A,B] = CompleteTriangle(1,2,C);
25 theSum = A+B+C;
26 testCase.verifyEqual(theSum,180)
27 end
28

29 function testIsosceles(testCase)
30 C = 90;
31 [A,B] = CompleteTriangle(2,2,C);
32 testCase.verifyEqual(A,B)
33 end
34

35 function test345(testCase)
36 C = 90;
37 [˜,˜,c] = CompleteTriangle(3,4,C);
38 testCase.verifyEqual(c,5)
39 end
40

41 function testEquilateral(testCase)
42 [A,B,c] = CompleteTriangle(1,1,60);
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43 assert(abs(A-60)<testCase.TestData.tol)
44 testCase.verifyEqual(B,60,'absTol',1e-10)
45 testCase.verifyEqual(c,1)
46 end
47

48 %%% Optional file fixtures
49 function setupOnce(testCase) % do not change function name
50 % set a tolerance that can be used by all tests
51 testCase.TestData.tol = 1e-10;
52 end
53

54 function teardownOnce(testCase) % do not change function name
55 % change back to original path, for example
56 end
57

58 %%% Optional fresh fixtures
59 function setup(testCase) % do not change function name
60 % open a figure, for example
61 end
62

63 function teardown(testCase) % do not change function name
64 % close figure, for example
65 end

If you just run this function, you will get an array of the four test methods.

>> TriangleFunctionTest
ans =

1x4 Test array with properties:

Name
Parameterization
SharedTestFixtures

We have showed two methods for setting a tolerance for the tests in testEquilateral;
in one case, we hard-coded a tolerance in using the absTol parameters, and in the other we
used a setup function to pass a tolerance in via TestData. There are two types of setup
and teardown functions to choose from: file fixtures, which will run just once for the entire
set of tests in the file, and fresh fixtures, which will run for each test case. The file fixtures
are identified with the Once suffix. In the case of this tolerance, the setupOnce function is
appropriate.

To run the tests, use runtests as for the script. Happily, our tests all pass!

>> runtests('TriangleFunctionTest')
Running TriangleFunctionTest
....
Done TriangleFunctionTest
__________
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...
Totals:

4 Passed, 0 Failed, 0 Incomplete.
0.043001 seconds testing time.

You can run either set of tests in the Profiler (i.e., Run and Time) to verify the coverage of
the function being tested. It is a bit easier to navigate to the results for CompleteTriangle
using the script version of the tests; the results from the test function list many functions from
the test framework. The result in the Profiler, showing 100% coverage of our function, is shown
in Figure 5.1.

After you have run the Profiler, you can run a Coverage Report. To run the report, you have
to use the Current Folder pane of the editor, and select Reports/Coverage Report from the
context menu. We show an example in Figure 5.2. Our example function runs too quickly to
take any measurable time, but generally this report will give you insight into the time taken by
your function as well as the coverage you achieved.

Figure 5.1: Triangle tests in the Profiler.
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Figure 5.2: Coverage Report for CompleteTriangle.

5.2 Running a Test Suite
Problem

Your toolbox has dozens or hundreds of functions, each with unit tests, and you need an efficient
way to run them all or, even better, run subsets.

Solution

MATLAB’s test framework includes the construction of test suites.
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How It Works

After you have generated tests for the functions in your toolbox, you can group them into suites
in several ways. The help for the TestSuite class lists the options:

1 TestSuite methods:
2 fromName - Create a suite from the name of the test element
3 fromFile - Create a suite from a TestCase class filename
4 fromFolder - Create a suite from all tests in a folder
5 fromPackage - Create a suite from all tests in a package
6 fromClass - Create a suite from a TestCase class
7 fromMethod - Create a suite from a single test method

You can also concatenate test suites made using these methods and pass the array to the test
runner. In this way, you can easily generate subsets of your tests to run.

In the previous recipe, we create two test files for CompleteTriangle: a test script
and a test function. We can create a test suite for the folder containing this code, and it will
automatically find both sets of test cases. We assume that the current folder contains the two
test files.

>> import matlab.unittest.TestSuite
>> testSuite = TestSuite.fromFolder(pwd);
>> result = run(testSuite)

Running TriangleFunctionTest
....
Done TriangleFunctionTest
__________

Running TriangleTest
.......
Done TriangleTest
__________
result =

1x8 TestResult array with properties:

Name
Passed
Failed
Incomplete
Duration

Totals:
8 Passed, 0 Failed, 0 Incomplete.
0.04218 seconds testing time.

As you can see, test suites are really quite simple. Some advanced features of suites include
the ability to apply selectors to a suite to obtain a subset of tests. To see the full documentation
of TestSuite at the command line, type either

>> help matlab.unittest.TestSuite
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or

>> import matlab.unittest.TestSuite
>> help TestSuite

The function for performing selections is selectIf. Here is an example that selects the
two tests of an equilateral triangle from the suite:

>> subSuite = testSuite.selectIf('Name', '*Equilateral*');
>> subSuite
subSuite =

1x2 Test array with properties:

Name
Parameterization
SharedTestFixtures

>> subSuite.Name
ans =
TriangleFunctionTest/testEquilateral
ans =
TriangleTest/Test4_EquilateralTriangle

You can run the tests in the resulting suite, or concatenate it with other suites, as before.

5.3 Setting Verbosity Levels in Tests
Problem

The printouts from your tests are getting out of control, but you don’t want to just delete or
comment out all the information you have needed as you are developing the tests. If a test fails
in the future, you may need those messages.

Solution

The test framework includes a logging feature that has four levels of verbosity. To utilize it, you
create a test runner using the logging plugin and add log calls in your test cases.

How It Works

The four verbosity levels supported are Terse, Concise, Detailed, and Verbose, and they are
enumerated as follows:

1 Terse Minimal amount of information
2 Concise Typical amount of information
3 Detailed Supplemental amount of information
4 Verbose Surplus of information
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The default test runner uses the lowest verbosity setting, Terse. The log function you use
in your test cases is a method of TestCase, so to access the help, you need to use the fully
qualified name:

>> help matlab.unittest.TestCase/log

The log method syntax from the help is as follows:

log(TESTCASE, LEVEL,DIAG) logs the diagnostic at the specified LEVEL. LEVEL
can be either a numeric value (1, 2, 3, or 4) or a value from the matlab.unittest.Verbosity
enumeration. When level is unspecified, the log method uses level Concise (2).

Logging requires a TestCase object. The diagnostic data for DIAG can be a string or an
instance of matlab.unittest.diagnostics.Diagnostic. Let’s write an example
test for eig that demonstrates verbosity.

VerboseEigTest.m

1 %% VERBOSEEIGTEST Demonstrate verbosity levels in tests
2 % Run a test of the eig function using log messages. Demonstrates
3 % all four levels of verbosity. To run the tests, at the command line

use
4 % a TestRunner configured with the LoggingPlugIn:
5 %
6 % import matlab.unittest.TestRunner;
7 % import matlab.unittest.plugins.LoggingPlugin;
8 % runner = TestRunner.withNoPlugins;
9 % runner.addPlugin(LoggingPlugin.withVerbosity(4));

10 % results = runner.run(VerboseEigTest);
11 %% Form
12 % tests = VerboseEigTest
13 %% Inputs
14 % None.
15 %% Outputs
16 % tests (:) Array of test functions
21

22 function tests = VerboseEigTest
23 % Create an array of local functions
24 tests = functiontests(localfunctions);
25 end
26

27 %% Test Functions
28 function eigTest(testCase)
29 log(testCase,'Generating test data'); % default is level 2
30 m = rand(2000);
31 A = m'*m;
32 log(testCase, 1, 'About to call eig.');
33 [V,D,W] = eig(A);
34 log(testCase, 4, 'Eig finished.');
35 assert(norm(W'*A-D*W')<1e-6)
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36 log(testCase, 3, 'Test of eig completed.');
37 end
38

39 % If you want to use the Verbose enumeration in your code instead of
numbers,

40 % import the class matlab.unittest.Verbosity
41 function eigWithEnumTest(testCase)
42 import matlab.unittest.Verbosity
43 m = rand(1000);
44 A = m'*m;
45 log(testCase, Verbosity.Detailed, 'About to call eig (with enum).');
46 [V,D,W] = eig(A);
47 assert(norm(W'*A-D*W')<1e-6)
48 log(testCase, Verbosity.Terse, 'Test of eig (with enum) completed.');
49 end

If you just run this test with runtests, you will get the Terse level of output. Note that
the system time is displayed along with your log message.

>> runtests('VerboseEigTest');
Running VerboseEigTest

[Terse] Diagnostic logged (2015-09-14T12:15:29): About to call eig.
. [Terse] Diagnostic logged (2015-09-14T12:15:40): Test of eig (with

enum) completed.
.
Done VerboseEigTest
__________

To get higher levels of verbosity requires a test runner with the logging plugin. This requires
a few imports at the command line (or in your script). You need to generate a “plain” runner,
with no plugins, then add the logging plugin with the desired level of verbosity. The verbosity
level of the message is displayed in the output.

>> import matlab.unittest.TestRunner;
>> import matlab.unittest.plugins.LoggingPlugin;
>> runner = TestRunner.withNoPlugins;
>> runner.addPlugin(LoggingPlugin.withVerbosity(4));
>> results = runner.run(VerboseEigTest);
[Concise] Diagnostic logged (2015-09-14T12:19:57): Generating test data

[Terse] Diagnostic logged (2015-09-14T12:19:57): About to call eig.
[Verbose] Diagnostic logged (2015-09-14T12:20:01): Eig finished.

[Detailed] Diagnostic logged (2015-09-14T12:20:07): Test of eig completed
.

[Detailed] Diagnostic logged (2015-09-14T12:20:07): About to call eig (
with enum).
[Terse] Diagnostic logged (2015-09-14T12:20:08): Test of eig (with

enum) completed.
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5.4 Create a Logging Function to Display Data
Problem

It is easy and convenient to print out variable values by removing the semicolons from state-
ments, but code left in this state can produce unwanted printouts that are very difficult to track
down. Even using disp and fprintf can make unwanted printouts hard to find as you prob-
ably use these functions elsewhere.

Solution

Create a custom logging function to display a variable with a helpful identifying message. You
can extend this to a logging mechanism with verbosity settings similar to that described in the
previous recipe, as used in the MATLAB testing framework and in most C++ and Java testing
frameworks.

How It Works

Our example logging function is implemented in DebugLog. DebugLog prints out a message,
which can be anything, and before that displays the path to where DebugLog is called. The
backtrace is obtained using dbstack.

DebugLog.m

1 %% DEBUGLOG Logging function for debugging
2 % Use this function instead of adding disp() statements or leaving out
3 % semicolons.
4 %% Form
5 % DebugLog( msg, fullPath )
6 %% Decription
7 % Prints out the data in in msg using disp() and shows the path to the

message.
8 % The full path option will print a complete backtrace.
9 %% Inputs

10 % msg (.) Any message
11 % fullPath (1,1) If entered, print the full backtrace
12 %% Outputs
13 % None
18

19 function DebugLog( msg, fullPath )
20

21 % Demo
22 if( nargin < 1 )
23 DebugLog(rand(2,2));
24 return;
25 end
26

27 % Get the function that calls this one
28 f = dbstack;
29

30 % The second path is only if called directly from the command line
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31 if( length(f) > 1 )
32 f1 = 2;
33 else
34 f1 = 1;
35 end
36

37 if( nargin > 1 && fullPath )
38 f2 = length(f);
39 else
40 f2 = f1;
41 end
42

43 for k = f1:f2
44 disp(['-> ' f(k).name]);
45 end
52 disp(msg);

DebugLog is demonstrated in DebugLogDemo. The function has a subfunction to demon-
strate the backtrace.

DebugLogDemo.m

1 %% Demonstrate DebugLog
2 % Log a variable to the command window using DebugLog.
7

8 function DebugLogDemo
9

10 y = linspace(0,10);
11 i = FindInY(y);
12

13 function i = FindInY(y)
14

15 i = find(y < 0.5);
16 DebugLog( i, true );

The output of the demo is shown as follows:

>> DebugLogDemo
-> FindInY
-> DebugLogDemo

1 2 3 4 5

One extension of this function is to add the name of the variable being logged, if msg is a
variable, using the function inputname. These additional lines of code look like this:

47 str = inputname(1);
48 if ˜isempty(str)
49 disp(['Variable: ' str]);
50 end
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The demo output now looks like this:

>> DebugLogDemo
-> FindInY
-> DebugLogDemo
Variable: i

1 2 3 4 5

Consistently using your own logging functions for displaying messages to the user and
printing debug data will make your code easier to maintain.

5.5 Generating and Tracing MATLAB Errors and Warnings
Problem

You would like to display errors and warnings to the user in an organized fashion.

Solution

Always use the additional inputs to warning and error to specify a message ID. This al-
lows your message to be traced back to the function in your code that generated it, as well as
controlling the display of certain warnings.

How It Works

The warning function has several helpful parameters for customizing and controlling warning
displays. When you are generating a warning, use the full syntax with a message identifier:

1 warning('MSGID', 'MESSAGE', A, B, ...)

The MSGID is a mnemonic in the form <component>[:<component>]:
<mnemonic>, such as PSS:FunctionName:IllegalInput. The ID is not normally
displayed when you give a warning, unless you have turned verbose display on, via warning
on verbose and warning off verbose. This is easy to demonstrate at the command
line:

>> warning('PSS:Example:DemoWarning', 'This is an example warning')
Warning: This is an example warning
>> warning verbose on
>> warning('PSS:Example:DemoWarning', 'This is an example warning')
Warning: This is an example warning
(Type "warning off PSS:Example:DemoWarning" to suppress this warning.)

As displayed, you can turn a given warning off using its message ID by using the command
form shown or the functional form, warning(’off’, ’msgid’).
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The lastwarn function also can return the message ID if passed an additional output, as
in

>> [lastmsg, lastid] = lastwarn
lastmsg =
This is an example warning
lastid =
PSS:Example:DemoWarning

The error and lasterr functions work the same way. An added benefit of using mes-
sage identifiers is that you can select them when debugging, as an option when stopping for
errors or warnings. The debugger is integrated into the editor window, and the debugger op-
tions are grouped under the Breakpoints toolbar button. The button and the “more options”
pop-up window are shown in Figure 5.3.

In this case, we entered an example PSS message identifier. Remember, you should always
mention any warnings and errors that may be generated by a function in its header!

5.6 Testing Custom Errors and Warnings
Problem

You have code that generates warnings or errors for problematic inputs, and you need to test it.

Solution

You have two possibilities for testing the generation of errors in your code: try/catch blocks
with assert and the verifyError method available to a TestCase. With warnings, you
can either use lastwarn or verifyWarning.

How It Works

A comprehensive set of tests for your code that includes all paths, or as close to all paths as
possible, must necessarily exercise all the warnings and errors that can be generated by your
code. You can do this manually, using try/catch blocks to catch errors and comparing the error
(MException object) to the expected error. For warnings, you can check lastwarn to see that
a warning was issued, like so:

>> lastwarn('');
>> warning('PSS:Book:id','Warning!')
Warning: Warning!
>> [anywarn,anyid] = lastwarn;
>> assert(strcmp(anyid,'PSS:Book:wrongid'))
Assertion failed.
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Figure 5.3: Option to stop on an error in the debugger.
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Here is an example of a try/catch block with assert to detect a specific error.

CatchErrorTest.m

1 %% Test that we get the expected error, and pass
2 errFun = @() error('PSS:Book:id','Error!');
3 try
4 feval(errFun);
5 catch ME
6 assert(strcmp(ME.identifier,'PSS:Book:id'));
7 end

This test will verify that the error thrown is the one expected; however, it will not detect if
no error is thrown at all. For this, we need to add a boolean variable to the try block.

9 %% This time we don't get any error at all
10 wrongFun = @() disp('Some error-free code.');
11 tf = false;
12 try
13 feval(wrongFun);
14 tf = true;
15 catch ME
16 assert(strcmp(ME.identifier,'PSS:Book:id'));
17 end
18 if (tf)
19 assert(false,'CatchErrorTest: No error thrown');
20 end

When you run this code segment, you get the following output:

1 Some error-free code.
2 CatchErrorTest: No error thrown

If you run the test as part of a test script with runtests, the test will fail.
A far better way to test for warnings and errors is to use the unit test framework’s qualifiers

to check that the desired warning or error is generated. Here is an example of verifying a
warning, with one test that will pass and one that will fail; note that you need to pass a function
handle to the verifyWarning function.

WarningsTest.m

1 %% WARNINGSTEST Test generation of warnings.
2 %% Form
3 % tests = WarningsTest
4 %% Output
5 % tests (:) Array of Tests.
6

7 function tests = WarningsTest
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8 % Create an array of local functions
9 tests = functiontests(localfunctions);

10 end
11

12 %% Test Functions
13 function passTest(testCase)
14 warnFun = @() warning('PSS:Book:id','Warning!');
15 testCase.verifyWarning(warnFun, 'PSS:Book:id');
16 end
17

18 function failTest(testCase)
19 warnFun = @() warning('Wrong:id','Warning!');
20 testCase.verifyWarning(warnFun, 'PSS:id', 'Wrong id');
21 end

When we run this test function with runtests, we can see that failTest did in fact
fail.

>> runtests('WarningsTest')
Running WarningsTest
.Warning: Warning!

=========================================================================
Verification failed in WarningsTest/failTest.

----------------
Test Diagnostic:
----------------
Wrong id

---------------------
Framework Diagnostic:
---------------------
verifyWarning failed.
--> The function handle did not issue the expected warning.

Actual Warnings:
Wrong:id

Expected Warning:
PSS:id

Evaluated Function:
@()warning('Wrong:id','Warning!')

------------------
Stack Information:
------------------
In /Users/Shared/svn/Manuals/MATLABCookbook/MATLAB/Ch05-Debugging/

WarningsTest.m (failTest) at 12
=========================================================================
.
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Done WarningsTest
__________

Failure Summary:

Name Failed Incomplete Reason(s)
====================================================================
WarningsTest/failTest X Failed by verification.

Totals:
1 Passed, 1 Failed, 0 Incomplete.
0.047691 seconds testing time.

verifyErrorworks the same way. In practice, you will need to make a function handle
that includes the inputs to your function that cause the error or warning to be generated.

For advanced programmers, there is a further mechanism for constructing tests using
verifyThat with the Constraint class. You can supply your own Diagnostic ob-
jects as well. For more information, see the reference pages for these classes along with the
Verifiable class.

5.7 Testing Generation of Figures
Problem

Your function generates a figure instead of an output variable. How do you test it?

Solution

While you may need a human to verify that the figure looks correct, you can at least verify that
the correct set of figures is generated by your function using findobj.

How It Works

Routinely assigning names to your figures makes it easy to test that they have been generated,
even if you don’t have access to the handles. You can also assign tags to figures, such as having
a single tag for your entire toolbox, which allows you to locate sets of figures.

>> figure('Name','Figure 1','Tag','PSS');
>> figure('Name','Figure 2','Tag','PSS')
>> h = findobj('Tag','PSS')
h =

2x1 Figure array:

Figure (PSS)
Figure (PSS)

>> h = findobj('Name','Figure 1')
h =

Figure (PSS) with properties:

Number: 1
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Name: 'Figure 1'
Color: [0.94 0.94 0.94]

Position: [440 378 560 420]
Units: 'pixels'

In your test, you can then check that you have the correct number of figures generated using
length(h) or that each specific named figure exists using strcmp. If you are storing any
data in your figures using UserData, you can test that as well.

If you are not using tags or need to check for figures that do not have names or tags, you
can find all figures currently open using the type input to findobj:

>> findobj('type','figure')
ans =

2x1 Figure array:

Figure (PSS)
Figure (PSS)

Note that figures will only be returned by findobj if they are visible to the command line
via their HandleVisibility property. This property can have the values 'on', 'off',
and 'callback'. GUIs generated by the App Designer are generally hidden to prevent users
from accidentally altering the GUI using plot or similar commands; these figures use the
value 'callback'. Regular figures will have the value 'on' and can be located as before.
A figure with HandleVisibility set to 'off' can only be accessed using its handle.

Summary
This chapter has demonstrated how to use MATLAB’s unit test framework and provided some
recipes to help you in debugging your functions. Table 5.1 lists the code developed in the
chapter.

Table 5.1: Chapter Code Listing

File Description
CatchErrorTest Script showing how to catch errors in a try block
CompleteTriangle Example function calculating angles in a triangle
DebugLog Custom data logging function
DebugLogDemo Demo of DebugLog showing a backtrace
TriangleFunctionTest A function with test cases for CompleteTriangle
TriangleTest A script with test cases for CompleteTriangle
VerboseEigTest A test function showing all levels of verbosity
WarningsTest A test function using verifyWarning
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Classes

MATLAB provides a framework for object-oriented programming. MATLAB created a new
framework in 2008a, although the old one is still available. The new framework will be familiar
to those of you who program in Python and C++.

Basically, objects contain both data and the operations that work on the data in one package.
Classes conceptually derive from the struct which only contains data. Combining data with
the code that operates on the data can lead to more reliable software. Once you create a class,
you can create new classes that inherit from the old class, without changing the old class adding
functionality. A new class can inherit from multiple classes. Subclasses get you out of the habit
of adding flags to change the functionality of a block of code and data. The subclass usually
adds features that are not available in the original class (i.e., the code/data conglomerate).

In this chapter, we will give an example of a class for state space systems. We will create
two subclasses, one that is for a continuous system and one that is for discrete systems. This is
in line with the many examples in this book.

6.1 Object-Oriented Programming
Object-oriented programming can be thought of as a method for the software designer to impose
restrictions on how the software is used by a programmer. In compiled software, the restrictions
are imposed at compile time rather than when the software is executed. This, hopefully, catches
many errors. In MATLAB, and other scripting languages, the restrictions are imposed whenever
you use the function.

Generally, software has moved from unfettered access to memory to more restrictions. In
FORTRAN (MATLAB was originally written in FORTRAN), all variables were pointers. You
could pass any variable of any size to a function, and the function only saw the first spot in
memory. The old linear algebra package, LAPACK, would have you pass the sizes of each
variable. Or you could do all sorts of interesting programming, taking advantage of that feature,
much to the detriment of anyone wanting to use your code. MATLAB was designed to solve
many of the problems of using LAPACK. A really fun thing you could use was the COMMON
block. This is perfectly good FORTRAN code.
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1 COMMON i1 i2
2

3 COMMON x

Everything starting with an i was an integer. Everything else was float. If you did this, you
were mapping i1 and i2 into x. Confusing?

Problems would arise in practice when multiple people used the same code base and
changed COMMON blocks without letting other programmers know. Languages like C required
all data to be type defined, but even that wasn’t enough as software became more complex.
Object-oriented programming was devised to catch as many problems as possible at the com-
pile stage.

An object is a conglomeration of data and operations on that data. Classes evolved from
structures. A MATLAB structure is

1 s = struct('controlInput',[],'state',[],'stateOutput','data',[])

This organizes your variables with names that indicate their purpose. Now your function can
take as an input s:

1 q = ControlFunction(s);

rather than

1 stateOutput = ControlFunction(controlInput,state,data);

However, even with the structure, we still have to know that ControlFunction takes s as an
argument. Object-oriented programming helps in this regard.

A class is a definition of the object. An object is an instantiation of the class. The operations
are often called methods. At the very least, we want to be able to add data to the object and read
data from the object. So the minimal class is

1. Data

2. Input methods

3. Output methods

The input and output methods control access to the data in the object. You might not want
the user of the object to be able to change all of the data, and you might not want a user to
have access to all of the data. For example, you might have constants in the object that are
fundamental to the functioning of the object that you don’t want users to ever change.

After this minimal object definition, you then can add methods that operate on the data in
the object. These methods are just functions. This leads to the concept of overloading when a
function can have one name but operate on different classes. For example, you could create a
member function Add for your double class.
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1 a = 1;
2 b = 2;
3 c = Add(a,b);

And then create a member function for your image class.

1 a = imread('a');
2 b = imread('b');
3 c = Add(a,b);

So you don’t need names like AddDouble and AddImage.

6.2 State Space Systems Base Class
Problem

We want to create a class for state space systems.

Solution

Create the base class for state space systems.

How It Works

A state space system consists of four matrices that connect the system inputs to the system
outputs. In between are the states of the systems. The states are dynamical quantities that can
change with time. The inputs are external inputs and the outputs are what we see outside. Two
versions of a state space system are the continuous and discrete. The continuous system is

ẋ(t) = ax(t) + bu(t) (6.1)

y = cx(t) + du(t) (6.2)

and the discrete system is

xk+1 = axk + buk (6.3)

yk = cxk + duk (6.4)

t is the time and k is the step. A step usually means a value taken at a fixed interval of time.
Define a time vector:

1 t = linspace(0,1000,101);

If you use this vector, your step is every 10 time units.
Both systems have the vectors x, y, and u and the matrices a, b, c, and d. Our base class

will just involve the vectors and matrices along with their names.
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If we were using functional programming, as opposed to object-oriented programming, we
would create the structure:

1 s = struct('a',[],'b',[],'c',[],'d',[],'x',[],'y',[],'u',[],'xName',{},
'yName',{},'uName';

We’d then create a set of functions to operate on this structure. There are a couple of
problems with this approach. The first is that the arrays have specific sizes. If we have n states,
m inputs, and p outputs, then a is n by n, b is n by m, c is p by n, and d is p by m. Another
problem is that the name fields don’t restrict the matrix dimensions which can lead to bugs.
Also, there is nothing that says 'xName' is a cell array. Another issue in MATLAB is that
anyone can change the structure on the fly, leading to more issues when sharing software, or
even using your old software!

To create a class, select “Class” from the New pull-down in the command window.

1 classdef untitled
2 %UNTITLED Summary of this class goes here
3 % Detailed explanation goes here
4

5 properties
6 Property1
7 end
8

9 methods
10 function obj = untitled(inputArg1,inputArg2)
11 %UNTITLED Construct an instance of this class
12 % Detailed explanation goes here
13 obj.Property1 = inputArg1 + inputArg2;
14 end
15

16 function outputArg = method1(obj,inputArg)
17 %METHOD1 Summary of this method goes here
18 % Detailed explanation goes here
19 outputArg = obj.Property1 + inputArg;
20 end
21 end
22 end

This provides a good starting framework for the class. There is a method to create an
instance of the class, the function that is untitled. Internally, you see that obj is a data
structure. properties are the data stored in the class. methods are operations that work on
the data stored in the class. We create the StateSpace class to have only data. It does input
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validation so that once you have created the class, all the matrices are the right sizes. The class
definition is

StateSpace.m

1 classdef StateSpace
2 % StateSpace Dynamical state space class
3 % This class contains the matrices and vectors for a state space
4 % system.

The properties, that is, the data, are in the next block of code.

6 properties (Access = public)
7 a(:,:) double
8 b(:,:) double
9 c(:,:) double

10 d(:,:) double
11 xN(1,:) cell
12 uN(1,:) cell
13 yN(1,:) cell
14 x(:,:) double
15 u(:,:) double
16 y(:,:) double
17 end
18

19 properties (Access = protected)
20 n(1,1) double
21 m(1,1) double
22 p(1,1) double
23 end

We made n,m,p private to restrict its visibility to subclasses. There are many possible
properties. Each set goes with its own block. If it were private, subclasses could not see it.
You would use private if you didn’t want people who are deriving subclasses to have access
to that property.

We use property validation by specifying

1 a(:,:) double
2 b(:,:) double
3 c(:,:) double
4 d(:,:) double
5 xN(1,:) cell

If we don’t set the property correctly, we will get

>> s.xN = 1
Error setting property 'xN' of class 'StateSpace':
Invalid data type. Value must be cell or be convertible to cell.
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However, if we do, we will get

>> s.a = 'mike'

s =

StateSpaceDiscrete with properties:

a: [109 105 107 101]
b: [2x1 double]
c: [1 0]
d: 0

xN: {'r' 'v'}
uN: {'u'}
yN: {'y'}
x: [2x1 double]
u: 0
y: 0

It happily makes a a 1-by-4 array. This is because char is numeric. For example, in the char
“Mike”, each character is an integer, which is of course numeric. A more sophisticated property
validation is possible. You should use as much property validation as you deem necessary for
your class.

The remaining code is the class constructor.

26 function obj = StateSpace(a,b,c,d,xN,uN,yN)
27 % StateSpace Construct an instance of this class
28 % Checks all of the sizes
29 obj.a = a;
30 obj.n = size(a,1);
31 obj.b = b;
32 [n,m] = size(b);
33 if(n ˜= obj.n)
34 error('b must have as many rows as a');
35 end
36 obj.m = m;
37

38 [p,n] = size(c);
39 if(n ˜= obj.n)
40 error('c must have as many columns as a');
41 end
42 obj.c = c;
43 obj.p = p;
44

45 [p,m] = size(d);
46 if(p ˜= obj.p)
47 error('d must have as many rows as c');
48 end
49 if(m ˜= obj.m)
50 error('d must have as many columns as b');
51 end
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52 obj.d = d;
53

54 if( nargin > 4 )
55 n = length(xN);
56 if( n ˜= obj.n )
57 error('xN must have as many strings as the rows of a');
58 end
59 obj.xN = xN;
60

61 m = length(uN);
62 if( m ˜= obj.m )
63 error('uN must have as many strings as the columns of b');
64 end
65 obj.uN = uN;
66

67 p = length(yN);
68 if( n ˜= obj.n )
69 error('yN must have as many strings as the rows of c');
70 end
71 obj.yN = yN;
72 else
73 for k = 1:obj.n
74 obj.xN{k} = sprintf('%d',k);
75 end
76 for k = 1:obj.p
77 obj.yN{k} = sprintf('%d',k);
78 end
79 for k = 1:obj.m
80 obj.uN{k} = sprintf('%d',k);
81 end
82 end
83

84 obj.x = zeros(n,1);
85 obj.u = zeros(m,1);
86 obj.y = zeros(p,1);

These methods are all fully implemented in the code. We add one to compute the eigenval-
ues since this is common to all state space systems.

89 function e = Eig(obj)
90 %Eig Get the eigenvalues
91 e = eig(obj.a);
92 end

We can then create a double integrator using our class.

>> s = StateSpace([0 1;0 0],[0;1],[1 0],1,{'r' 'v'},{'u'},{'y'})

s =

StateSpace with properties:
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a: [2x2 double]
b: [2x1 double]
c: [1 0]
d: 1

xN: {'r' 'v'}
uN: {'u'}
yN: {'y'}
x: [2x1 double]
u: 0
y: 0

n,m,p are not listed.
The first argument to every member class is obj. You don’t pass this as an argument; it is

implicit in the member function call.
The eigenvalues are

>> s.Eig

ans =

0
0

which is what we expect.

6.3 State Space Systems Discrete Class
Problem

We want to create a class to propagate discrete time state space systems.

Solution

Create a subclass of StateSpace and add a step propagator and a general propagator.

How It Works

We make StateSpaceDiscrete a subclass of StateSpace in the first line with the >
operator.

StateSpaceDiscrete.m

1 classdef StateSpaceDiscrete<StateSpace

If you have multiple super classes, list multiple superclasses superclass1 &
superclass2 & superclass3, for example:

1 classdef automobile>RigidBody>GroundVehicle>FourWheels
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The constructor just passes the inputs to the super class.

6 function obj = StateSpaceDiscrete(a,b,c,d,xN,uN,yN)
7 if( nargin == 0 )
8 a = [];
9 b = [];

10 c = [];
11 d = [];
12 xN = {};
13 yN = {};
14 uN = {};
15 end
16 obj@StateSpace(a,b,c,d,xN,uN,yN);
17 end

We add two methods to propagate the discrete time class.

19 function y = Propagate(obj)
20 %Propagate Propagates the state space system
21 % Propagates the state space system
22 n = size(obj.u,2);
23 y = zeros(size(obj.x,n));
24 y(1) = obj.c*obj.x;
25 for k = 2:n
26 y(k) = obj.c*obj.x + obj.d*obj.u(:,k-1);
27 obj.x = obj.a*obj.x + obj.b*obj.u(:,k-1);
28 end
29 end
30

31 function y = Step(obj,n)
32 %Step Applies a step to the state space system
33 % Generates the step response. Only the first value of u is

used.
34 y = zeros(obj.p,n);
35 y(1) = obj.c*obj.x + obj.d*obj.u(:,1);
36 for k = 2:n
37 y(k) = obj.c*obj.x + obj.d*obj.u(:,1);
38 obj.x = obj.a*obj.x + obj.b*obj.u(:,1);
39 end
40 end

6.4 Using the State Space Class
Problem

We want to create a script to use the state space class.
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Solution

Create a script to propagate the continuous subclass of StateSpace.

How It Works

We create a script to use both propagation methods. We assign values to u by using the dot
operator, just like any structure. We don’t need to write setter methods.

DiscretePropagate.m

1 %% Demonstrate using methods of a subclass.
2

3 a = [0 1;0 0];
4 b = [0;1];
5 dT = 0.03;
6

7 % Convert to discrete time
8 [a,b] = C2DZOH(a,b,dT);
9

10 % Step response
11 s = StateSpaceDiscrete(a,b,[1 0],0,{'r' 'v'},{'u'},{'y'});
12 s.u = 1;
13 y = s.Step(100);
14

15 PlotSet(1:length(y),y,'x label','Step','y label','y',...
16 'figure title','Sub Class Step');
17

18 % Pulse Response
19 s.u = [zeros(1,20) ones(1,30) zeros(1,50)];
20

21 y = s.Propagate;
22

23 PlotSet(1:length(y),y,'x label','Step','y label','y',...
24 'figure title','Sub Class Pulse');

method uses whatever u is in the object when you used Propagate. You can add help
using % just below the method names and at the top.

>> help StateSpace
StateSpace Dynamical state space class
This class contains the matrices and vectors for a state space
system.

Documentation for StateSpace

>> help StateSpace.Eig
Eig Get the eigenvalues
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Figure 6.1: Propagated states. The step response is on the left. The pulse response is on the right.

The resulting plots are shown in Figure 6.1.
You can see how compact the code is. StateSpaceDiscrete can handle any linear

time-invariant (i.e., the state space matrices are constant) discrete time state space system.

6.5 Using a Mocking Framework
Problem

We want to test an incomplete class for which other needed classes are unavailable.

Solution

Use a mocking framework which is a framework that allows us to interface to an incomplete
class, that is, a “mock” class.

How It Works

We create a class to test a function that calls a class that does not exist or is unavailable. In this
case, we have a function Drag:

Drag.m

1 function drag = Drag(DensityModel,h,v,s)
2 drag = 0.5*DensityModel.LookUpDensity(h)*s*vˆ2;
3 end

that uses the density class DensityModel. When you are testing Drag, the density table is
not yet available. Create the class for DensityModelwith an abstract method.
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DensityModel.m

1 classdef DensityModel
2

3 methods(Abstract,Static)
4

5 rho = LookUpDensity(altitude);
6

7 end
8

9 end

Now write the test class using the matlab.unittest.TestCase and matlab.
mock.TestCase superclasses. The mock framework allows us to fake the existence of the
density model. The unittest framework allows us to evaluate the results of the test.

DragTest.m

1 classdef DragTest < matlab.unittest.TestCase & matlab.mock.TestCase
2 methods(Test)
3 function NegativeDensity(testCase)
4 [stubDensity,densityModelBehavior]=createMock(testCase,?

DensityModel);
5 testCase.assignOutputsWhen(densityModelBehavior.LookUpDensity

(-1),-1);
6 d = Drag(stubDensity,-1,1,2);
7 testCase.verifyLessThan(d,0);
8 end
9 end

10 end

The question mark, ?, is used to get a metaclass of DensityModel. In this code snippet,
the Drag function is called with an altitude of h= -1, a velocity of v=1, and a surface area of
s=2. It is given a “stubDensity” class that is created just for the purpose of this test, using the
mock framework createMock.

We create a mock object, stubDensity. The method is implemented with density
ModelBehavior.LookUpDensity(0). When we pass a negative altitude, we get a neg-
ative density and negative drag.

Run the test.

>> results = runtests('DragTest');
Running DragTest
.
Done DragTest
__________

>> table(results)

ans =
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1x6 table

Name Passed Failed Incomplete Duration
Details

__________________ ______ _____ _________ ________
______

{'DragModelTest/NegativeDensity'} true false false 0.04766 {1x1
struct}

This verifies that we get the correct behavior from Drag.

Summary
This chapter has demonstrated how to use MATLAB classes and mocking frameworks in
classes. Table 6.1 lists the code developed in the chapter.

Table 6.1: Chapter Code Listing

File Description
StateSpace State space dynamical system class
StateSpaceDiscrete Subclass of StateSpace for discrete systems
DragTest A test class for Drag and DensityModel
Drag A test class for Drag
DensityModel A placeholder class for DensityModel
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Applications



In this part of the book, we will explore the use of MATLAB for dynamical systems and control
system design in a number of technologies. In each area, we will derive the equations of motion
for the system. A system is defined by its state equations, states, and parameters. The equations
of motion are the equations of the states of a system. The state variables are the set of variables
that evolve with time that completely define the current state of the system and allow for future
prediction of the state without any knowledge of the past. We also need parameters that are
independent of the states to fully define the system along with the inputs to the system. The
state vector will always be represented by an n-by-1 MATLAB array.

In the equations that we present, we will use the dot notation for derivatives, that is

ṙ =
dr

dt
(6.5)

State equations are of the form

ẋ = ax+ bu (6.6)

y = cx+ du

x is the state and is an n× 1 vector represented by an n-row by 1-column MATLAB array. u is
the input matrix and is n ×m. y is the measurement. a relates the state to the state derivative
and is an n× n array. b is the input array and is n×m where the number of inputs, u, is m.

We are not going to delve into control theory in detail. That would require a complete
textbook by itself, or many textbooks if you wanted to explore control system design in depth.
We will provide an intuitive approach to allow you to get control systems up and running quickly
without too much code!
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The Double Integrator

A double integrator is a dynamical model for a wide variety of physical systems. This includes,
for example, a mass moving in one dimension and an object rotating around a shaft. It repre-
sents a broad class of systems with two time-varying quantities that we will call states. In this
chapter, we will learn how to model a double integrator and how to control it. In the process, we
will create some very important functions for implementing control systems, plotting, and per-
forming numerical integration. This will provide a springboard to other more complex systems
in later chapters.

7.1 Writing the Equations for the Double Integrator Model
Problem

A double integrator is a second-order system with a second derivative. This model appears in
many engineering disciplines.

Solution

We will write the equations for the model dynamics and implement these in a function.

How It Works

One-dimensional linear motion can be modeled with the following differential equations:

ṙ = v (7.1)

mv̇ = F (7.2)

r and v are states; m, the mass, is a parameter; and F , the force, is an input. In this case, the
states are r, position, and v, velocity. The state vector is

x =

[
r
v

]
(7.3)

The variable x is represented in MATLAB with a 2-row by 1-column array. The first element
of the array is r and the second is v.
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TIP This equation works equally well for rotational motion. Just replace m with I for
inertia, r with θ for angle, v with ω for angular velocity, and F with T for torque.

To write a function for the derivatives, divide by m to isolate the derivatives on the left-
hand side of the equations. The terms on the right-hand side are what we will calculate in our
so-called RHS function. The state equations are of the form

ẋ = f(x, F ) (7.4)

f(x, F ) is our right-hand side.

ṙ = v (7.5)

v̇ =
F

m
≡ a (7.6)

Writing these equations in vector notation, we have

ẋ =

[
v
a

]
(7.7)

Now we can write the function, RHSDoubleIntegrator, for the derivative of the state
vector x. Note the prefix of RHS in the name, which we use to identify all functions that are
to be integrated. The velocity term is the second element of our state x and is the derivative of
the position state r. The derivative of the velocity state is the acceleration a. The RHS function
has a placeholder ˜ for the first argument where the integrator will pass the time t, which this
function doesn’t require.

RHSDoubleIntegrator.m

1 %% RHSDOUBLEINTEGRATOR Right hand side of a double integrator.
31 function xDot = RHSDoubleIntegrator( ˜, x, a )
32

33 xDot = [x(2);a];

7.2 Creating a Fixed-Step Numerical Integrator
Problem

We need to use numerical integration in our simulations to evolve the state of the systems.
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Solution

We will present the equations for a fourth-order Runge-Kutta integrator and develop a function
to perform a fixed-step integration.

How It Works

Mathematical Modeling
Let’s look at a simple model for linear motion. We need to put the equations in a state equation
form, which is a set of first-order differential equations with the derivatives on the left-hand side.
Take, for example, our one-dimensional motion model from Recipe 7.1, with the derivative
terms for r and v on the left-hand side of the equations.

dr

dt
= v (7.8)

dv

dt
=

F

m
(7.9)

Multiply both sides by dt.

dr = vdt (7.10)

dv =
F

m
dt (7.11)

Replace dt with the fixed time interval h. We can now write our simplest type of numerical
integrator for computing the state at step k + 1 from the state at step k.

rk+1 = rk + vkh (7.12)

vk+1 = vk +
Fk

m
h (7.13)

Step k is at time tk and step k + 1 is at time tk+1, where tk+1 = tk + h.
This simple integrator is called Euler integration. It assumes that the force Fk is constant

over the time interval h. Euler integration works fairly well for simple systems, like the one
given earlier. For example, for a spring system

r̈ + ω2r = a (7.14)

the natural frequency of oscillation is ω. If the time step is greater than half the period of the
oscillation 2π/ω, the numerical integration cannot capture the dynamics. In practice, the time
step, h, must be much lower than half of the period of the oscillation.
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Euler integration is rarely used for engineering due to its limited accuracy. One of the most
popular methods used for control system simulation is the fourth-order Runge-Kutta method.
The equations for Runge-Kutta integration are

k1 = f(x, u(t), t)

k2 = f(x+
h

2
k1, u(t) +

h

2
, t+

h

2
)

k3 = f(x+
h

2
k2, u(t) +

h

2
, t+

h

2
) (7.15)

k4 = (x+ hk3, u(t+ h− ε), t+ h)

x = x+
h

6
(k1 + 2(k2 + k3) + k4) +O(h4)

f(x, u, t) is the right-hand side of the differential equations. O(h4) means the truncation error
due to the order of the integration goes as the fourth power of the time step. This means that if
we halve our time step, the error drops to 0.0625 of the error with the bigger time step. For the
preceding system

f(x, F, t) =

[
v
F
m

]
(7.16)

The right-hand sides are computed at four different points, twice at h/2 and once at t and t+h.

NOTE There are other fourth-order Runge-Kutta methods with different coefficients.

MATLAB has many numerical integrators. They are designed to integrate over any interval.
Some, such as ode113, adjust the step size (this would be the time step in this example) and
the order of the integration (Euler is first order, the preceding Runge-Kutta is fourth order),
between the desired interval. For digital control, we need to integrate with a step size that
is, at a minimum, the sample time of the digital controller. You could use ode113 for this,
but usually the fourth-order Runge-Kutta is sufficient. We will use this method for all of our
examples.

MATLAB Code
We next want to look at the RungeKutta function that implements Equation 7.15. Note the
use of feval to evaluate the right-hand-side function in the following code:

RungeKutta.m

27 function x = RungeKutta( Fun, t, x, h, varargin )
28

29 hO2 = 0.5*h;
30 tPHO2 = t + hO2;
31

32 k1 = feval( Fun, t, x, varargin{:} );
33 k2 = feval( Fun, tPHO2, x + hO2*k1, varargin{:} );
34 k3 = feval( Fun, tPHO2, x + hO2*k2, varargin{:} );
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35 k4 = feval( Fun, t+h, x + h*k3, varargin{:} );
36

37 x = x + h*(k1 + 2*(k2+k3) + k4)/6;

Fun is a pointer to the right-hand-side function. varargin is passed to that function,
which enables the dynamics model to have any number of parameters. This RungeKutta
function will be used in all of the examples in this book. We precompute all values that are
used multiple times, such as t + h

2 . This is particularly important in functions that are called
repeatedly.

TIP Compute values, such as h/2, once and store in a variable.

We pass RungeKutta a handle to the right-hand-side function, RHSDoubleInteg
rator, that implements Equation 7.1.

TIP Replace unused variables in function calls with the tilde.

To integrate the model one step, we call

xNew = RungeKutta( @RHSDoubleIntegrator, ˜, x, h, a )

Our RungeKutta function and all MATLAB integrators have the dependent variable first,
which in this case is t. Since it isn’t used in this case, we replace it with the tilde. MATLAB’s
code analyzer will suggest this for efficiency for all unused function inputs and outputs in your
code.

7.3 Implement a Discrete Proportional-Derivative
Controller

Problem

We want digital control software that can control a double integrator system and other dynami-
cal systems.

Solution

We will derive the equations for a damped second-order system in the time domain and then
create a sampled data version and implement it in a MATLAB function.
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How It Works

If a constant force F is applied to the system, the mass m will accelerate and its position will
change with the square of time. The analytical solution for the two states, r and v, is

r(t) = r(0) + v(0) (t− t(0)) +
1

2

F

m
(t− t(0))2 (7.17)

v(t) = v(0) +
F

m
(t− t(0)) (7.18)

If we wish to have the mass stay close to zero, we can use a control system known as a regulator.
We will use a proportional-derivative regulator. This regulator measures the position and applies
a control force proportional to the position error and to the derivative of the position error. Let’s
look at a particularly simple form of this controller. Our control would be

Fc = −krr − kvv (7.19)

We don’t have to be able to measure the disturbance force, F , for this to work. Picking the
gains, kr and kv , is easy if we write the dynamical system as a second-order system.

mr̈ = Fc + F (7.20)

mr̈ = F − krr − kvv (7.21)

mr̈ + kv ṙ + krr = F (7.22)

Our controlled system is a damped second-order oscillator. We can write the desired differential
equation as

r̈ + 2ζσṙ + σ2r =
F

m
(7.23)

where the gains are

kr = mσ2 (7.24)

kv = 2mζσ (7.25)

σ is the undamped natural frequency, and ζ is the damping ratio. This system will always be
stable as long as ζ > 0. If F is constant, the position will settle to an offset. This will be

r =
F

mσ2
(7.26)

This method of control design is called “pole placement.”
Virtually, all control systems are implemented on digital computers so we must transform

this controller into a digital form. We assume that we only measure the position. The first step
is to assemble the control in a continuous time state space form. For this implementation, we
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will add a rate filter to our PD controller.

ω = ωr + 2ζωn (7.27)

k = ωrω
2
n ∗m/w (7.28)

τ = (
m

k
ωn(ωn + 2ζωr)− 1)/ω (7.29)

a = −ω (7.30)

b = ω (7.31)

c = −kωτ (7.32)

d = k ∗ (τω + 1) (7.33)

where ωr is the cutoff frequency for the first-order filter on the rate term, ωn is the undamped
natural frequency for the controller, and ζ is the controller damping ratio. m is the “mass”
or inertia. You can always set this to 1 and scale the control output. The undamped natural
frequency gives the bandwidth of the controller. The higher the bandwidth, the faster it responds
to errors. The higher the bandwidth, the smaller the offset error will be due to a constant input.
Higher bandwidth requires more control force. In addition, measurement noise will be passed
into the controller and “controlled.” Generally, you want the bandwidth to be no higher than the
frequency of the expected disturbances.

ẋ = ax+ bu (7.34)

y = −cx− du (7.35)

x is the controller state, and u is the position measurement. The state space form is convenient
for computation but still assumes that we are sampling continuously. There are many ways to
convert this to digital form. We will use a zero-order hold, meaning we will compute the control
of each sample and hold the value over that sample period. We convert this using the matrix
exponential function in MATLAB, expm. If T is the sample period, we assemble the matrix:

σ =

[
aT bT
0 0

]
(7.36)

The sampled time versions of a and b are
[
ad
bd

]
= eσ (7.37)

Our digital controller is now

xk+1 = adxk + bduk (7.38)

yk = −cxk − duk (7.39)

Let’s now look at PDControl. This function designs and implements the control system
derived in Equation 7.27. The name stands for “Proportional-Derivative Control.” It has several
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child functions. First, we review the header. It has a link to the help for one of the subfunctions
which will be active when the header is displayed at the command line. We list each data
structure field for the input and output. In the header, d is used as the feedthrough matrix but is
used as a data structure in the function.

PDControl.m

1 %% PDCONTROL Design and implement a PD Controller in sampled time.
2 %% Forms
3 % d = PDControl( 'struct' )
4 % d = PDControl( 'initialize', d )
5 % [y, d] = PDControl( 'update', u, d )
6 %
7 %% Description
8 % Designs a PD controller and implements it in discrete form.
9 %

10 % y = -c*x - d*u
11 % x = a*x + b*u
12 %
13 % where u is the input and y is the output. This controller has a first
14 % order rate filter on the derivative term.
15 %
16 % Set the mode to initialize to create the state space matrices for the
17 % controller. Set the mode to update to update the controller and get a
18 % new output.
19 %
20 % Utilizes the subfunction C2DZOH to discretize, see <a href="matlab:

help PDControl>CToDZOH">CToDZOH help</a>
21 %
22 %% Inputs
23 % mode (1,1) 'initialize' or 'update'
24 % u (1,1) Measurement
25 % d (.) Data structure
26 % .m (1,1) Mass
27 % .zeta (1,1) Damping ratio
28 % .wN (1,1) Undamped natural frequency
29 % .wD (1,1) Derivative term filter cutoff
30 % .tSamp (1,1) Sampling period*
31 % .x (1,1) Controller state
32 %
33 %% Outputs
34 % y (1,1) Control
35 % d (.) Data structure additions
36 % .a (1,1) State transition matrix
37 % .b (1,1) Input matrix
38 % .c (1,1) State output matrix
39 % .d (1,1) Feedthrough matrix
40 % .x (1,1) Updated controller state
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Next, let us look at the body of the function. Note the switch statement and the two child
functions, CToDZOH and DefaultStruct, at the bottom.

43 function [y, d] = PDControl( mode, u, d )
44

45 % Demo
46 if( nargin < 1 )
47 disp('Demo of PDControl using the default struct')
48 d = PDControl('struct');
49 d = PDControl('initialize',d);
50 disp(d)
51 return
52 end
53

54 switch lower(mode)
55 case 'initialize'
56 d = u;
57 w = d.wD + 2*d.zeta*d.wN;
58 k = d.wD*d.wNˆ2*d.m/w;
59 tau = ((d.m/k)*d.wN*(d.wN + 2*d.zeta*d.wD) - 1 )/w;
60 d.a = -w;
61 d.b = w;
62 d.c = -k*w*tau;
63 d.d = k*(tau*w + 1);
64

65 [d.a, d.b] = CToDZOH(d.a,d.b,d.tSamp);
66 y = d;
67

68 case 'update'
69 y = -d.c*d.x - d.d*u;
70 d.x = d.a*d.x + d.b*u;
71

72 case 'struct'
73 y = DefaultStruct;
74

75 otherwise
76 error('%s is not a valid mode',mode);
77 end
79

80 function [f, g] = CToDZOH( a, b, T )
81 %% PDControl>CToDZOH
82 % Continuous to discrete transformation using a zero order hold.

Discretize
83

84 q = expm([a*T b*T;zeros(1,2)]);
85

86 f = q(1,1);
87 g = q(1,2);
89

90 function d = DefaultStruct
91 %% PDControl> DefaultStruct
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92

93 d = struct('m',1,'zeta',0.7,'wN',0.1,'wD',0.5,'tSamp',1.0,'x',0,'a'
,[],...

94 'b',[],'c',[],'d',[]);

This is the standard format for an engineering function. Here are its important features:

• It combines design and implementation in one function.
• It returns the default data structure that it uses.
• It has modes.
• It has a built-in demo.
• It has nested functions.

The built-in demo uses the default values. The default values give the user an idea of rea-
sonable parameters for the function. This built-in demo just generates the state space matrices,
which are scalars in this case.

>> PDControl
Demo of PDControl using the default struct

m: 1
zeta: 0.7000

wN: 0.1000
wD: 0.5000

tSamp: 1
x: 0
a: 0.5273
b: 0.4727
c: -0.0722
d: 0.0800

A more elaborate demo, with a simulation, could have been added. The built-in demos are
very useful because they show the user a simple example of how to use the function. It also is
helpful in developing the function because you can test the function by just typing the function
name in the command line.

The first argument is the mode variable that indicates which case in the switch statement
the function should execute. The 'initialize'mode must always be run first. The initial-
ization modifies the data structure which is used as the function’s memory. You could also use
persistent variables for the function memory. Using an output makes it easier to programmat-
ically inspect the contents of the memory. The 'update' is used to update the controller as
new inputs arrive. The switch statement has an 'otherwise' case to warn the user of mode
errors. This throws an error stopping execution of the script. You may not always want to do
this and may just use a warning to warn the user.

The nested function CToDZOH converts the continuous control system to a sampled data
control systems using Equation 7.36. The name stands for “Continuous to Discrete Zero-Order
Hold.” A non-control expert wouldn’t immediately understand the acronym, but the expanded
name would be too long for a useful function name.
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TIP Make function names consistent in form and use terms that are standard for your
field. Remember that not all readers of your code will be English language native speakers!

If you were building a toolbox, the CToDZOH function would likely be a separate file. For
this book, it is only used by PDControl so we put it into that function file.

7.4 Simulate the Double Integrator with Digital Control
Problem

We want to simulate digital control of the double integrator model.

Solution

We will write a script that calls the control function and integrator sequentially in a loop and
plots the results.

How It Works

Here are the nominal values for the control parameters we will use for the double integrator
simulation.

Table 7.1: Control Parameters

zeta Damping ratio 1.0
wN Undamped natural frequency 0.1 rad/sec
wD Derivative term filter cutoff 1.0 rad/sec
dT Time step 0.1 sec

The simulation script is implemented in DoubleIntegratorSim.m. Note the use of
cell breaks to divide the script into sections that can be run independently. The See also section
lists the functions used, which will be links when the header is displayed via the command-line
help.

DoubleIntegratorSim.m

1 %% Double Integrator Demo
2 % Demonstrate control of a double integrator.
3 %% See also
4 % PDControl, RungeKutta, RHSDoubleIntegrator, TimeLabel
9

10 %% Initialize
11 tEnd = 100; % Simulation end time (sec)
12 dT = 0.1; % Time step (sec)
13 aD = 1.0; % Disturbance acceleration (m/sˆ2)
14 controlIsOn = false; % True if the controller is to be used
15 x = [0;0]; % [position;velocity]
16

17 % Controller parameters
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18 d = PDControl( 'struct' );
19 d.zeta = 1.0;
20 d.wN = 0.1;
21 d.wD = 1.0;
22 d.tSamp = dT;
23 d = PDControl( 'initialize', d );
24

25 %% Simulation
26 nSim = tEnd/dT+1;
27 xPlot = zeros(3,nSim);
28

29 for k = 1:nSim
30 if( controlIsOn )
31 [u, d] = PDControl('update',x(1),d);
32 else
33 u = 0;
34 end
35 xPlot(:,k) = [x;u];
36 x = RungeKutta( @RHSDoubleIntegrator, 0, x, dT, aD+u );
37 end
38

39 %% Plot the results
40 yL = {'r (m)' 'v (m/s)' 'u (m/sˆ2)'};
41 [t,tL] = TimeLabel(dT*(0:(nSim-1)));
42

43 PlotSet( t, xPlot, 'x label', tL, 'y label', yL );

The first code block sets up simulation parameters that the user can change. The control
IsOn variable is set to true if the controller is to be used. This makes it easy to test the script
without the controller. When the controller is disabled, you get the “open loop” response. It is
a good idea to make sure that the open loop response makes sense before testing the controller.

TIP Put all parameters that the user can change at the beginning of the script.

The second block sets up the controller. Recall that PDControl has three arguments,
'struct', 'initialize', and 'update'. The first returns the data structure required
by the function. We fill the structure fields with the values selected for our problem in the lines
that follow that statement. At the end of this block, we initialize the controller. This sets the
controller state to zero and creates the sampled time state space matrices, which in this case are
four scalars.

The third block is the simulation with the check to see if the controller is on. Note the
sequential use of the control function followed by the integrator. This is discrete control because
the control, u, is constant over the integration time step. The final block plots the results.

Figure 7.1 shows the open loop response obtained by setting the controlIsOn flag to
false and executing DoubleIntegratorSim. The velocity increases linearly, and the
position increases with the square of time as it should. The output agrees with the analytical
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Figure 7.1: The open loop response with a constant disturbance acceleration of 1 m/s2.

solution in Equation 7.17. Figure 7.2 shows the closed loop response, with controlIsOn set
to true. The velocity goes to zero, and the position reaches a constant, though not zero. The
control acceleration u exactly matches the disturbance acceleration a. We could have eliminated
the position offset by using a proportional-integral differential (PID) controller.

The two examples show that the simulation works without the control and that the control
performs as expected. This script is an integrated test of all of the functions listed in the script.
It does a good job of testing their functionality. However, one test isn’t sufficient to understand
the controller. Let’s make the controller underdamped by setting ζ , in the field d.zeta, to 0.2.
Now the response oscillates; see Figure 7.3. We set tEnd to 300 to show that it damps.

Another thing to try is setting the bandwidth really high. Set ωn, in field d.wN, to 8 and the
rate filter bandwidth d.wD to 50. The result is shown in Figure 7.4. The controller is unstable
because the bandwidth is much higher than that allowed by the sampling rate. Your bandwidth
has to be less than half the sampling bandwidth which is

ωs =
2π

T
(7.40)

All the results are expected behavior. The last case is a corner case that shows that the ex-
pected instability does happen. These four cases are a minimalist set of tests for this admittedly
simple control system example.

227



CHAPTER 7 THE DOUBLE INTEGRATOR

Time (sec)
0 10 20 30 40 50 60 70 80 90 100

r 
(m

)

0

50

100

150

Time (sec)
0 10 20 30 40 50 60 70 80 90 100

v 
(m

/s
)

0

2

4

6

Time (sec)
0 10 20 30 40 50 60 70 80 90 100

u 
(m

/s
2
)

-1.5

-1

-0.5

0

Figure 7.2: The closed loop response with a constant disturbance acceleration of 1 m/s2.
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Figure 7.3: The closed loop response with a constant disturbance acceleration of 1 m/s2 and ζ equal to
0.2.
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Figure 7.4: The closed loop response using a bandwidth too high for the sampling.

7.5 Create Time Axes with Reasonable Time Units
Problem

We want our time axes to have easy to read units, not just seconds.

Solution

We will create a function that checks the duration and converts from seconds to minutes, hours,
days, or years.

How It Works

We check the maximum time in the array of times and scale it to larger time units. The time
units implemented are seconds, minutes, hours, days, and years. We return the scaled time
vector, the label string, and the units string as it might be useful.

TimeLabel.m

21 function [t, c, s] = TimeLabel( t )
22

23 secInYear = 365.25*86400;
24 secInDay = 86400;
25 secInHour = 3600;
26 secInMinute = 60;
27

28 tMax = max(t);
29
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30 if( tMax > secInYear )
31 c = 'Time (years)';
32 s = 'years';
33 t = t/secInYear;
34 elseif( tMax > 3*secInDay )
35 c = 'Time (days)';
36 t = t/secInDay;
37 s = 'days';
38 elseif( tMax > 3*secInHour )
39 c = 'Time (hours)';
40 t = t/secInHour;
41 s = 'hours';
42 elseif( tMax > 3*secInMinute )
43 c = 'Time (min)';
44 t = t/secInMinute;
45 s = 'min';
46 else
47 c = 'Time (sec)';
48 s = 'sec';
49 end

The rules for changing the time scale are reasonable, but you could pick any breakpoints
you wished.

7.6 Create Figures with Multiple Subplots
Problem

We frequently generate figures with multiple subplots during control analysis, and this results
in large blocks of repetitive code at the bottom of every script.

Solution

We make a function that can easily generate subplots with a single line.

How It Works

We will write a function that uses parameter pairs to flexibly create subplot figures in a single
function call. The y input can have multiple rows, and the x input can have one row or the same
number of rows as y. We supply default labels so that the function can be called with just two
inputs.

The only parameters supported in this version are various labels and the plot type – standard
plot, semilogx, semilogy, and loglog – but you can easily imagine adding handling
for line thickness, plot markers, shading, and so on. We use a for loop to check every other
component of varargin in a switch statement. Remember that varargin provides a cell array
of arguments.
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Note the use of a built-in demo showing both main branches of the function, for one x series
and for two.

The plotting code creates subplots in the figure for each plot based on the number of rows
in x and y. This function assumes the subplots are in a single column, but you could extend
the logic to create multiple columns or any arrangement of subplots that suits your application.
The grid is turned on.

PlotSet.m

28 function PlotSet( x, y, varargin )
29

30 % Demo
31 %-----
32 if( nargin < 1 )
33 x = linspace(1,1000);
34 y = [sin(0.01*x);cos(0.01*x)];
35 disp('PlotSet: One x and two y rows')
36 PlotSet( x, y, 'figure title', 'PlotSet Demo' )
37 disp('PlotSet: Two x and two y rows')
38 PlotSet( [x;y(1,:)], y )
39

40 return;
41 end
42

43 % Defaults
44 nCol = 1;
45 n = size(x,1);
46 m = size(y,1);
47

48 yLabel = cell(1,m);
49 xLabel = cell(1,n);
50 plotTitle = cell(1,n);
51 for k = 1:m
52 yLabel{k} = 'y';
53 end
54 for k = 1:n
55 xLabel{k} = 'x';
56 plotTitle{k} = 'y vs. x';
57 end
58 figTitle = 'PlotSet';
59 plotType = 'plot';
60

61 % Handle input parameters
62 for k = 1:2:length(varargin)
63 switch lower(varargin{k} )
64 case 'x label'
65 for j = 1:n
66 xLabel{j} = varargin{k+1};
67 end
68 case 'y label'
69 temp = varargin{k+1};
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70 if( ischar(temp) )
71 yLabel{1} = temp;
72 else
73 yLabel = temp;
74 end
75 case 'plot title'
76 plotTitle{1} = varargin{k+1};
77 case 'figure title'
78 figTitle = varargin{k+1};
79 case 'plot type'
80 plotType = varargin{k+1};
81 otherwise
82 fprintf(1,'%s is not an allowable parameter\n',varargin{k});
83 end
84 end
85

86 h = figure;
87 set(h,'Name',figTitle);
88

89 % First path is for just one row in x
90 if( n == 1 )
91 for k = 1:m
92 subplot(m,nCol,k);
93 plotXY(x,y(k,:),plotType);
94 xlabel(xLabel{1});
95 ylabel(yLabel{k});
96 if( k == 1 )
97 title(plotTitle{1})
98 end
99 grid on

100 end
101 else
102 for k = 1:n
103 subplot(n,nCol,k);
104 plotXY(x(k,:),y(k,:),plotType);
105 xlabel(xLabel{k});
106 ylabel(yLabel{k});
107 title(plotTitle{k})
108 grid on
109 end
110 end
112

113 %%% PlotSet>plotXY Implement different plot types
114 % log and semilog types are supported.
115 %
116 % plotXY(x,y,type)
117 function plotXY(x,y,type)
118

119 switch type
120 case 'plot'
121 plot(x,y);
122 case {'log' 'loglog' 'log log'}
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123 loglog(x,y);
124 case {'xlog' 'semilogx' 'x log'}
125 semilogx(x,y);
126 case {'ylog' 'semilogy' 'y log'}
127 semilogy(x,y);
128 otherwise
129 error('%s is not an available plot type',type);
130 end

This fairly long function results in the plotting in DoubleIntegratorSim.m taking place
in one line.

Summary
The double integrator is a very useful model for developing control systems, as it represents an
ideal version of many systems, such as a spring. In this chapter, we developed the mathemati-
cal model for the double integrator and wrote the dynamics in a right-hand-side function. We
introduced numerical integration and wrote the Runge-Kutta integrator which will be used
throughout the remaining applications in this book. Our recipe for the control function com-
bines design and implementation, contains a built-in demo, and defines a data structure that is
used for memory between calls. Our first demo script showed how to initialize a controller for a
double integrator, simulate it, and plot the results. This is the basis for almost any mathematical
or control analysis you will do in MATLAB. Table 7.2 lists the code developed in the chapter.

Table 7.2: Chapter Code Listing

File Description
RHSDoubleIntegrator Dynamical model for the double integrator.
RungeKutta Fourth order Runge-Kutta integrator.
PDControl Proportional-derivative controller.
DoubleIntegratorSim Simulation of the double integrator with discrete control.
PlotSet Create two-dimensional plots from a data set.
TimeLabel Produce time labels and scaled time vectors.
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Robotics

The SCARA robot (Selective Compliance Articulated Robot Arm) is a simple industrial robot
that can be used for placing components in a two-dimensional space. We will derive the equa-
tions of motion for a SCARA robot arm. It has two rotational joints and one prismatic joint. A
prismatic joint allows only linear motion. Each joint has a single degree of freedom. A SCARA
robot is broadly applicable to work where a part needs to be inserted in a two-dimensional space
or where drilling needs to be done.

Our input to the robot system will be a new location for the arm effector. We have to solve
two control problems. One is to determine what joint angles we need to place the arm at a
particular xy coordinate. This is the inverse kinematics problem. The second is to control the
two joints so that we get a smooth response to commands to move the arm. We will also develop
a custom visualization function that can be used to create animations of the robot motion.

For more information on the dynamics used in this chapter, see Example 9.8.2 (p. 405) in
Lung-Wen Tsai’s book Robot Analysis: The Mechanics of Serial and Parallel Manipulators,
John Wiley & Sons, New York, 1999.

8.1 Creating a Dynamical Model of the SCARA Robot
Problem

The robot has two rotational joints and one prismatic or linear “joint.” We need to write the
dynamics that link the forces and torques applied to the arm to its motion so that we can simulate
the arm.

Solution

The equations of motion are derived using the Lagrangian formulation. We will need to solve a
set of coupled linear equations in MATLAB.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 8
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Figure 8.1: SCARA robot. The two arms move in a plane. The plunger moves perpendicular to the
plane.

How It Works

The SCARA robot is shown in Figure 8.1. It has two arms that move in the xy plane and a
plunger that moves in the z direction. The angles θ1 and θ2 are measured around the z0 and z1
axes.

The equations of motion for the SCARA robot are

I

⎡
⎣ θ̈1

θ̈2
d̈3

⎤
⎦+

⎡
⎣ −(m2 + 2m3)a1a2 sin θ2(θ̇1θ̇2 +

1
2 θ̇

2
2)(

1
2m2 +m3

)
a1a2 sin θ2θ̇

2
1

−m3g

⎤
⎦ =

⎡
⎣ T1

T2

F3

⎤
⎦ (8.1)

The first term is the product of the generalized inertia matrix and the acceleration vector. The
second array contains the rotational coupling terms. The final array is the control vector. The
generalized inertia matrix, I , is ⎡

⎣ I11 I21 0
I21 I22 0
0 0 I33

⎤
⎦ (8.2)
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where

I11 =

(
1

3
m1 +m2 +m3

)
a21 + (m2 + 2m3) a1a2 cos θ2 +

(
1

3
m2 +m3

)
a22 (8.3)

I21 =

(
1

2
m2 +m3

)
a1a2 cos θ2 +

(
1

3
m2 +m3

)
a22 (8.4)

I22 =

(
1

3
m2 +m3

)
a22 (8.5)

I33 = m3 (8.6)

Note that in developing this inertia matrix, the author is treating the links as point masses
and not solid bodies.

The inertia matrix is symmetric as it should be. There is coupling between the two rotational
degrees of freedom but no coupling between the plunger and the rotational hinges. The inertia
matrix is not constant, so it cannot be precomputed.

First, we will define a data structure for the robot, in SCARADataStructure.m, defining
the length and mass of the links, and with fields for the forces and torques that can be applied.
The function can supply a default structure to be filled in, or the fields can be specified a priori.

SCARADataStructure.m

11 %% Inputs
12 % a1 (1,1) Link 1 length
13 % a2 (1,1) Link 2 length
14 % d1 (1,1) Distance of link 1 from ground
15 % m1 (1,1) Link 1 mass
16 % m2 (1,1) Link 2 mass
17 % m3 (1,1) Link 3 mass
29 function d = SCARADataStructure( a1, a2, d1, m1, m2, m3 )
30

31 if( nargin < 1 )
32 d = struct('a1',0.1,'a2',0.1,'d1',0.05,'m1',1,'m2',1,'m3',1,'t1',0,'

t2',0,'f3',0);
33 else
34 d = struct('a1',a1,'a2',a2,'d1',d1,'m1',m1,'m2',m2,'m3',m3,'t1',0,'t2

',0,'f3',0);
35 end

Then we write the right-hand-side (RHS) function from our equations. We need to solve for
the state derivatives θ̈1, θ̈2, d̈3 which we will do with a left matrix divide. This is easily done in
MATLAB with a backslash, which uses a QR, triangular, LDL, Cholesky, Hessenberg, or LU
solver, as appropriate for the inputs. The function does not have a built-in demo as this impacts
performance in RHS functions, which are called repeatedly by integrators. Note the definition
of the constant for gravity at the top of the file. The inertia matrix is returned as an additional
output. This is handy for debugging.
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RHSSCARA.m

26 function [xDot, i] = RHSSCARA( ˜, x, d )
27

28 g = 9.806; % The acceleration of gravity (m/sˆ2)
29

30 c2 = cos(x(2));
31 s2 = sin(x(2));
32

33 theta1Dot = x(4);
34 theta2Dot = x(5);
35

36 % Inertia matrix
37 i = zeros(3,3);
38 a1Sq = d.a1ˆ2;
39 a2Sq = d.a2ˆ2;
40 a12 = d.a1*d.a2;
41 m23 = 0.5*d.m2 + d.m3;
42 i(1,1) = (d.m1/3 + d.m2 + d.m3)*a1Sq + 0.5*m23*a12*c2 + (d.m2/3 + d.

m3)*a2Sq;
43 i(2,2) = (d.m2/3 + d.m3)*a2Sq;
44 i(3,3) = d.m3;
45 i(1,2) = m23*a12*c2 + (d.m2/3 + d.m3);
46 i(2,1) = i(1,2);
47

48 % Right hand side
49 u = [d.t1;d.t2;d.f3];
50 f = [-(d.m2 + 2*d.m3)*a12*s2*(theta1Dot*theta2Dot + 0.5*theta2Dotˆ2)

;...
51 0.5*m23*a12*s2*theta1Dotˆ2;...
52 -d.m3*g];
53

54 xDot = [x(4:6);i\(f-u)];

8.2 Customize a Visualization Function for the Robot
Problem

We would like to be able to visualize the motion of the robot arm, without relying on simple
time histories or 3D lines.

Solution

We will write a function to draw a 3D SCARA robot arm. This will allow us to easily visualize
the movement of the robot arm.
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Figure 8.2: SCARA robot visualization using patch.

How It Works

This function demonstrates the use of the low-level plotting functions patch and light. We
will create box and cylinder shapes for the components of the robot arm. It also demonstrates
how to produce MATLABmovies of the robot motion using getframe. The resulting visual-
ization is shown in Figure 8.2.

This function’s first argument is an action. We define an initialization action to generate all
the patch objects, which are stored in a persistent variable. Then, during the update action, we
only need to update the patch vertices. The function has one output, which is movie frames
from the animation. Note that the input x is vectorized, meaning we can pass a set of states to
the function and not just one at a time. The header of the function is as follows.

TIP “patch” is a computer graphics term for a part of a surface. It consists of vertices
organized into faces.
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DrawSCARA.m

1 %% DRAWSCARA Draw a SCARA robot arm.
2 %
3 %% Forms
4 % DrawSCARA( 'initialize', d )
5 % m = DrawSCARA( 'update', x )
6 %
7 %% Description
8 % Draws a SCARA robot using patch objects. A persistent variable is

used to
9 % store the graphics handles in between update calls.

10 %
11 % The SCARA acronym stands for Selective Compliance Assembly Robot Arm
12 % or Selective Compliance Articulated Robot Arm.
13 %
14 % Type DrawSCARA for a demo.
15 %
16 %% Inputs
17 % action (1,:) Action string
18 % x (3,:) [theta1;theta2;d3]
19 % or
20 % d (.) Data structure for dimensions
21 % .a1 (1,1) Link arm 1 joint to joint
22 % .a2 (1,1) Link arm 2 joint to joint
23 % .d1 (1,1) Height of link 1 and link2
24 %
25 %% Outputs
26 % m (1,:) If there is an output it makes a movie using getframe

Next, we show the body of the main function. Note that the function has a built-in demo
demonstrating a vector input with 100 states. The function will initialize itself with default data
if the data structure d is omitted.

32 function m = DrawSCARA( action, x )
33

34 persistent p
35

36 % Demo
37 %-----
38 if( nargin < 1 )
39 disp('Demo of DrawSCARA using the default data:');
40 DrawSCARA( 'initialize' );
41 t = linspace(0,100);
42 omega1 = 0.1;
43 omega2 = 0.2;
44 omega3 = 0.3;
45 x = [sin(omega1*t);sin(omega2*t);0.01*sin(omega3*t)];
46 m = DrawSCARA( 'update', x );
47 snapnow; % publishing
48 if( nargout < 1 )
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49 clear m;
50 end
51 return
52 end
53

54 switch( lower(action) )
55 case 'initialize'
56 if( nargin < 2 )
57 d = SCARADataStructure;
58 else
59 d = x;
60 end
61

62 p = Initialize( d );
63

64 case 'update'
65 if( nargout == 1 )
66 m = Update( p, x );
67 else
68 Update( p, x );
69 end
70 end

Note that we used subfunctions for the Initialize and Update actions. This keeps the
switch statement clean and easy to read. In the Initialize function, we define additional
parameters for creating the box and cylinder objects we use to visualize the entire robot arm.
Then we use patch to create the graphics objects, using parameter pairs instead of the (x, y, z)
input. Specifying the unique vertices this way can reduce the size of the data needed to define
the patch and is simple conceptually. See the Introduction to Patch Objects and Specifying Patch
Object Shapes sections of the MATLAB help for more information. The handles are stored in
the persistent variable p. We only show the creation of the base. The patch function creates
the 3D object from vertices and faces. Phong lighting is defined.

87 function p = Initialize( d )
88

89 p.fig = figure( 'name','SCARA' );
90

91 % Create parts
92 c = [0.5 0.5 0.5]; % Color
93 r = [1.0 0.0 0.0];
94

95 % Store for use in updating
96 p.a1 = d.a1;
97 p.a2 = d.a2;
98

99 % Physical parameters for drawing
100 d.b = [1 1 1]*d.d1/2;
101 d.l1 = [0.12 0.02 0.02 0.005 0.03]*10*d.a1;
102 d.l2 = [0.12 0.02 0.01]*10*d.a2;
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103 d.c1 = [0.1 0.4]*d.a1;
104 d.c2 = [0.06 0.3]*d.a1;
105 d.c3 = [0.06 0.5]*d.a2;
106 d.c4 = [0.05 0.6]*d.a2;
107

108 % Base
109 [vB, fB] = Box( d.b(1), d.b(2), d.b(3) );
110 [vC, fC] = Cylinder( d.c1(1), d.c1(2) );
111 f = [fB;fC+size(vB,1)];
112 vB(:,3) = vB(:,3) + d.b(3)/2;
113 vC(:,3) = vC(:,3) + d.b(3);
114 v = [vB;vC];
115 p.base = patch('vertices', v, 'faces', f,...
116 'facecolor', c, 'edgecolor', c,...
117 'facelighting', 'phong' );

The Update function updates the vertices for each patch object. The nominal vertices
are stored in the persistent variable p and are rotated using a transformation matrix calculated
from the sine and cosine of the link angles. If there is an output argument, the function uses
getframe to grab the figure as a movie frame.

181 function m = Update( p, x )
182

183 if( nargout > 0 )
184 % Allocate movie frame array
185 n = getframe(p.fig);
186 m(1:size(x,2)) = n;
187 end
188

189 for k = 1:size(x,2)
190

191 % Link 1
192 c = cos(x(1,k));
193 s = sin(x(1,k));
194 b1 = [c -s 0;s c 0;0 0 1];
195 v = (b1*p.v1')';
196 set(p.link1,'vertices',v);
197

198 % Link 2
199 r2 = b1*[p.a1;0;0];
200 c = cos(x(2,k));
201 s = sin(x(2,k));
202 b2 = [c -s 0;s c 0;0 0 1];
203 v = (b2*b1*p.v2')';
204 v(:,1) = v(:,1) + r2(1);
205 v(:,2) = v(:,2) + r2(2);
206 set(p.link2,'vertices',v);
207

208 % Link 3
209 r3 = b2*b1*[p.r3;0;0] + r2;
210 v = p.v3;
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211 v(:,1) = v(:,1) + r3(1);
212 v(:,2) = v(:,2) + r3(2);
213 v(:,3) = v(:,3) + x(3,k);
214 set(p.link3,'vertices',v);
215

216 if( nargout > 0 )
217 m(k) = getframe(p.fig);
218 else
219 drawnow;
220 end
221

222 end

The subfunctions Box, Cylinder, and UChannel create the vertices and faces for each
type of 3D object. Faces are defined using indices of the vertices, in this case, triangles. We will
show the Box function here to demonstrate how the vertices and faces matrices are created.

240 function [v, f] = Box( x, y, z )
241

242 f = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6
7;5 7 8];

243 x = x/2;
244 y = y/2;
245 z = z/2;
246

247 v = [-x x x -x -x x x -x;...
248 -y -y y y -y -y y y;...
249 -z -z -z -z z z z z]';

8.3 Using Numerical Search for Robot Inverse Kinematics
Problem

The goal of the robot controller is to place the end effector at a desired position. We need to
know the link states corresponding to this position.

Solution

We will use a numerical solver to compute the robot states. The MATLAB solver is
fminsearch, which implements a Nelder-Mead minimizer.

TIP Nelder-Mead is also known as downhill simplex. This is not to be confused with
the simplex algorithm.
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How It Works

The goal of our control system is to position the end effector as close as possible to the desired
position [x; y; z]. z is determined by d1 − d3 from Figure 8.1 in Recipe 8.1. x and y are found
from the two angles a1 and a2. The position vector for the arm end effector is

⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ a1 sin θ1 + a2 sin(θ1 + θ2)

a1 cos θ1 + a2 cos(θ1 + θ2)
d1 − d3

⎤
⎦ (8.7)

While these equations don’t seem complicated, they can’t be used to solve for x and y directly.
First of all, if a2 is less than a1, there will be a region around the origin that cannot be reached.
In addition, there may be more than one solution for each x, y pair.

We will use this equation for the position to create a cost function that can be passed to
fminsearch. This will compute the state which results in the desired position. The resulting
function demonstrates a nested cost function, a built-in demo, and a default plot output. Note
that we use a data structure as returned by optimset to pass parameters to fminsearch.

SCARAIK.m

1 %% SCARAIK Generate SCARA states for desired end effector position and
angle.

2 %
3 %% Form
4 % x = SCARAIK( r, d )
5 %
6 %% Description
7 % SCARA inverse kinematics. Uses fminsearch to find the link states

given the
8 % effector location. The cost function is embedded. Type SCARAIK for a

demo
9 % which creates a plot and a video.

10 %
11 %% Inputs
12 % r (3,:) End effector position [x;y;z]
13 % d (.) Robot data structure
14 % .a1 (1,1) Link 1 length
15 % .a2 (1,1) Link 2 length
16 % .d1 (1,1) Distance of link 1 from ground
17 %
18 %% Outputs
19 % x (3,:) SCARA states [theta1;theta2;d3]
26

27 if( nargin < 1 )
28 disp('Demo of SCARAIK...');
29 r = [linspace(0,0.2);zeros(2,100)];
30 d = SCARADataStructure;
31

32 SCARAIK( r, d );
33 return;
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34 end
35

36 n = size(r,2);
37 xY = zeros(2,n);
38

39 TolX = 1e-5;
40 TolFun = 1e-9;
41 MaxFunEvals = 1500;
42 Options = optimset('TolX',TolX,'TolFun',TolFun,'MaxFunEvals',

MaxFunEvals);
43

44 x0 = [0;0];
45 for k = 1:n
46 d.xT = r(1:2,k);
47 xY(:,k) = fminsearch(@Cost, x0, Options, d );
48 x0 = xY(:,k);
49 end
50

51 x = [xY;d.d1-r(3,:)];
52

53 % Default output is to create a plot
54 %-----------------------------------
55 if( nargout == 0 )
56 DrawSCARA( 'initialize', d );
57 m = DrawSCARA( 'update', x );
58 disp('Saving movie...')
59 vidObj = VideoWriter('SCARAIK.avi');
60 open(vidObj);
61 writeVideo(vidObj,m);
62 end
63

64 end
65

66 %%% SCARAIK>Cost
67 % Cost function. The cost is the difference between the position as

computed from the
68 % states and the target position xT in d.
69 %
70 % y = Cost( x, d )
71 function y = Cost( x, d )
72

73 xE = d.a1*cos(x(1)) + d.a2*cos(x(1)+x(2));
74 yE = d.a1*sin(x(1)) + d.a2*sin(x(1)+x(2));
75 y = sqrt((xE-d.xT(1))ˆ2+(yE-d.xT(2))ˆ2);
76

77 end

The function creates a video using a VideoWriter object and the frame data returned by
DrawSCARA. Before VideoWriterwas introduced, this could be done with movie2avi.
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8.4 Developing a Control System for the Robot
Problem

Robot arm control is a critical technology in robotics. We need to be able to smoothly and
reliably change the location of the end effector. The speed of the control will determine how
many operations we can do in a given amount of time, thus determining the productivity of the
robot.

Solution

We will solve this problem using the inverse kinematics function discussed earlier and then
feeding the desired angles into two PD controllers as developed in the Chapter 7.

How It Works

We apply our PD controller described in the Chapter 7 using the c array as the desired angle
and position vector. We will compute control accelerations, not torques, and then multiply by
the inertia matrix to get control torques:

T = Ia (8.8)

where T is the control torque, I is the inertia matrix, and a is the computed control acceleration.
We need to do this because there are cross-coupling terms in the inertia matrix and I11 changes
as the position of the outer arm changes. We are neglecting the nonlinear terms in the equations
of motion. These terms are functions of the angles and the angular rates. If we move slowly,
this should not pose a problem. If we move quickly, we could feedforward the nonlinear torques
and cancel them.

The first step is to specify a desired position for the end effector and use the inverse kine-
matics function to compute the target states corresponding to this location.

SCARARobotSim.m

32 % Pick the location to place the end effector, [x;y;z]
33 r = [4;2;0];
34

35 % Find the two angles for the joints
36 setPoint = SCARAIK( r, d );

Next is the code that designs the controllers, one for each joint, using PDControl. Note
that we use identical parameters for both controllers. We set the damping ratio, zeta, to 1.0
to avoid overshoot. Recall that wN, the undamped natural frequency, is the bandwidth of the
controller; the higher this frequency, the faster the response. wD, the derivative term filter cutoff,
is set to 5–10 times wN so that the filter doesn’t cause lag below wN. The dT variable is the time
step of the simulation.

38 %% Control Design
39 % We will use two PD controllers, one for each rotational joint.
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40

41 % Controller parameters
42 dC1 = PDControl( 'struct' );
43 dC1.zeta = 1.0;
44 dC1.wN = 0.6;
45 dC1.wD = 60.0;
46 dC1.tSamp = dT;
47 dC2 = dC1;
48

49 % Create the two controllers
50 dC1 = PDControl( 'initialize', dC1 );
51 dC2 = PDControl( 'initialize', dC2 );

This is the portion that computes and applies the control. We eliminate the inertia coupling
by computing joint accelerations and multiplying by the inertia matrix, which is computed each
time step, to get the desired control torques. We use the feature of the RHS that computes the
inertia matrix from the current state.

69 [acc(1,1), dC1] = PDControl('update',thetaError(1),dC1);
70 [acc(2,1), dC2] = PDControl('update',thetaError(2),dC2);
71 torque = inertia(1:2,1:2)*acc;

We can run these lines at the command line to see what the acceleration and torque magni-
tude look like for an example robot. Assuming Meters-Kilogram-Second (MKS) units, we have
links of 1 meter in length and masses of 1 kg.

>> dC1 = PDControl( 'struct' );
>> dC1.zeta = 1.0;
>> dC1.wN = 0.6;
>> dC1.wD = 60.0;
>> dC1.tSamp = 0.025;
>> dC2 = dC1;
>> dC1 = PDControl( 'initialize', dC1 );
>> dC2 = PDControl( 'initialize', dC2 );
>> d = SCARADataStructure(1,1,1,1,1,1);
>> x = zeros(6,1);
>> [˜,inertia] = RHSSCARA( 0, x, d );
>> inertia
inertia =

4.4167 2.8333 0
2.8333 1.3333 0

0 0 1

>> thetaError = [0.1;0.1];
>> [acc(1,1), dC1] = PDControl('update',thetaError(1),dC1);
>> [acc(2,1), dC2] = PDControl('update',thetaError(2),dC2);
>> acc
acc =
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-7.236
-7.236

>> torque = inertia(1:2,1:2)*acc
torque =

-52.461
-30.15

8.5 Simulating the Controlled Robot
Problem

We want to test our robot arm under control. Our input will be the desired xy coordinates of
the end effector.

Solution

The solution is to build a MATLAB script in which we design the PD controller matrices as
before and then simulate the controller in a loop, applying the calculated torques until the states
match the desired angles. We will not control the vertical position of the end effector, leaving
this as an exercise for the reader.

How It Works

This is a discrete simulation, with a fixed time step and the control torque calculated separately
from the dynamics. The simulation runs in a loop calling first the controller code from
Recipe 8.4 and the right-hand side from the fourth-order Runge-Kutta function. When the
simulation ends, the angles and angle errors are plotted and a 3D animation is displayed. We
could plot more variables, but all the essential information is in the angles and errors.

With a very small time step of 0.025 seconds, we could have increased the bandwidth of the
controller to speed the response. Remember that the cutoff frequency of the filter must also be
below the Nyquist frequency.

Notice that we do not handle large angle errors, that is, errors greater than 2π. In addition,
if the desired angle is 2π − ε and the current position is 2π + ε, it will not necessarily go the
shortest way. This can be handled by adding code that computes the smallest error between two
points on the unit circle. The reader can add code for this to make the controller more robust.

The script is as follows, skipping the control design lines from Recipe 8.4. First, we initial-
ize the simulation data including the time parameters and the robot geometry. We initialize our
plotting arrays using zeros before entering the simulation loop. There is a control flag which
allows the simulation to be run open loop or closed loop. The integration occurs in the last line
of the loop.
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16 %% Initialize
17 % Specify the time, robot geometry and the control target.
18

19 % Simulation time settings
20 tEnd = 20.0; % sec
21 dT = 0.025;
22 nSim = tEnd/dT+1;
23 controlIsOn = true;
24

25 % Robot parameters
26 d = SCARADataStructure(3,2,1,4,6,1);
27

28 % Set the initial arm states
29 x0 = zeros(6,1);
30 %x0(5) = 0.05;
31

32 % Pick the location to place the end effector, [x;y;z]
33 r = [4;2;0];
34

35 % Find the two angles for the joints
36 setPoint = SCARAIK( r, d );
52

53 %% Simulation
54 % The simulation can be run with or without control, i.e. closed or

open
55 % loop.
56 x = x0;
57 xPlot = zeros(4,nSim);
58 tqPlot = zeros(2,nSim);
59 inrPlot = zeros(2,nSim);
60

61 for k = 1:nSim
62 % Control error
63 thetaError = setPoint(1:2) - x(1:2);
64 [˜,inertia] = RHSSCARA( 0, x, d );
65 acc = zeros(2,1);
66

67 % Apply the control
68 if( controlIsOn )
69 [acc(1,1), dC1] = PDControl('update',thetaError(1),dC1);
70 [acc(2,1), dC2] = PDControl('update',thetaError(2),dC2);
71 torque = inertia(1:2,1:2)*acc;
72 else
73 torque = zeros(2,1);
74 end
75 d.t1 = torque(1);
76 d.t2 = torque(2);
77

78 % Plotting array
79 xPlot(:,k) = [x(1:2);thetaError];
80 tqPlot(:,k) = torque;

249



CHAPTER 8 ROBOTICS

81 inrPlot(:,k) = [inertia(1,1);inertia(2,2)];
82

83 % Enter the motor torques into the dynamics model
84 x = RungeKutta( @RHSSCARA, 0, x, dT, d );
85 end
86

87 %% Plot the results
88 % Plot a time history and perform an animation.
89

90 % Plot labels
91 yL = {'\theta_1 (rad)' '\theta_2 (rad)' 'Error \theta_1 (rad)' 'Error \

theta_2 (rad)'};
92

93 % Time histories
94 [t,tL] = TimeLabel(dT*(0:(nSim-1)));
95 PlotSet( t, xPlot, 'y label', yL, 'x label', tL );
96 PlotSet( t, tqPlot, 'y label', {'T_x','T_y'}, 'x label', tL );
97 PlotSet( t, inrPlot, 'y label', {'I_{11}','I_{22}'}, 'x label', tL );
98

99 % Animation
100 DrawSCARA( 'initialize', d );

Figure 8.3 shows the transient response of the two joints. Both converge to their set points
but look different than the double integrator response that we saw in the previous chapter. This
system is nonlinear due to the coupling between the links. For instance, in a double integrator,
we would expect no overshoot of the target angle for a damping ratio of 1.0. However, we do
see some in the second subplot of θ2, and otherwise the shape is similar to a double integrator
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Figure 8.3: SCARA robot angles showing the transient response.
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Figure 8.4: SCARA robot inertia as the arm moves.

response. We see that θ1, in contrast, reverses direction as it reacts to the motion of the outer
joint; after about 2 seconds when the θ2 has peaked, θ1 also resembles a double integrator.
Keep in mind that the two controllers are independent and are, in some ways, working at cross-
purposes.

Figure 8.4 shows the resulting inertia components. We expected I11 to change and I22 to
remain constant, which is in fact the case.

After the simulation is done, the script runs an animation of the arm motion. Both 2D plots
and the 3D animation are needed to debug the controller and for production runs.

The same script could be extended to show a sequence of commands to the arm.

Summary
This chapter has demonstrated how to write the dynamics and implement a simple control law
for a two-link manipulator, the SCARA robot. We have implemented coupled nonlinear equa-
tions in the right-hand side with the simple controller developed in the previous chapter. The
format of the simulation is very similar to the double integrator. There are more sophisticated
ways of performing this control that would take into account the coupling between the links,
which can be added to this framework. We have not implemented any constraints on the motion
or the control torque.
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CHAPTER 8 ROBOTICS

We also demonstrated how to generate 3D graphics using the MATLAB graphics engine
and how to make a movie. A movie is a good way of transmitting your results to people and
debugging your program. Table 8.1 lists the code developed in the chapter.

Table 8.1: Chapter Code Listing

File Description
DrawSCARA Draw a SCARA robot arm
RHSSCARA Right-hand side of the SCARA robot arm equations
SCARADataStructure Initialize the data structure for all SCARA functions
SCARAIK Generate SCARA states for the desired end effector position

and angle
SCARARobotSim SCARA robot demo
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CHAPTER 9

Electric Motors

We will model a three-phase permanent magnet motor driven by a direct current (DC) power
source. This has three coils on the stator and permanent magnets on the rotor. This type of
motor is driven by a DC power source with six semiconductor switches that are connected to
the three coils, known as the A, B, and C coils. Two or more coils can be used to drive a
brushless DC motor, but three coils are particularly easy to implement. This type of motor is
used in many industrial applications today, including electric cars and robotics. It is sometimes
called a brushless DC motor (BLDC) or a permanent magnet synchronous motor (PMSM).

Pulsewidth modulation is used for the switching because it is efficient; the switches are off
when not needed. Coding the model for the motor and the pulsewidth modulation is relatively
straightforward. In the simulation, we will demonstrate using two time steps, one for the sim-
ulation to handle the pulsewidths and one for the outer control loop. The simulation script will
have multiple control flags to allow for debugging this complex system.

Figure 9.1 shows the big picture in this chapter. We will look at the motor model first (the
AC motor block), then at the pulsewidth modulation (the SVPWM and three-phase inverter
block). The controller is covered last. Each of these major functions is in a separated gray
block.

9.1 Modeling a Three-Phase Brushless Permanent Magnet
Motor

Problem

We want to model a three-phase permanent magnet synchronous motor in a form suitable for
control system design. A conceptual drawing is shown in Figure 9.2. The motor has three
stator windings and one permanent magnet on the rotor. The magnet has two poles or one pole
pair. The coordinate axes are the a, b, and c on the stator, one axis at the center of each coil
following the right-hand rule, and the (d,q) coordinates fixed to the magnet in the rotating frame.
In motor applications, the axes represent currents or voltages, not positions like in mechanical
engineering.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 9
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CHAPTER 9 ELECTRIC MOTORS

Figure 9.1: Motor controller. PI is the proportional-integral controller. PWM the is pulsewidth modu-
lation. There are two current sensors measuring ia and ib and one angle sensor measuring θ.

Figure 9.2: Motor diagram showing the three-phase coils a, b, and c on the stator and the two-pole
magnet (N,S) on the rotor. The × means the current is going into the paper; the dot means it is coming
out of the paper.
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Solution

The solution is to model a motor with three stator coils and permanent magnets on the rotor.
We have to model the coil currents and the physical state of the rotor.

How It Works

Permanent magnet synchronous motors use two or more windings in the stator and permanent
magnets in the rotor. The rotor can have any even number of magnet poles. The phasing of
the currents in the stator coils must be synchronized with the position of the rotor. Define the
inductance matrix L, which gives the coupling between currents in different loops1:

L =
1

d

⎡
⎣ 2Lss − Lm Lm Lm

Lm 2Lss − Lm Lm

Lm Lm 2Lss − Lm

⎤
⎦ (9.1)

where
d = 2L2

ss − LssLm − L2
m (9.2)

Lm is the mutual inductance of the phase windings and Lss is the self-inductance. Self-
inductance is the effect of a current in a loop on itself. Mutual inductance is the effect of
the current in one loop on another loop. The three-phase current array, i, is

i =

⎡
⎣ ia

ib
ic

⎤
⎦ (9.3)

where ia is the phase A stator winding current, ib is the phase B current, and ic is the phase C
current.

The phase voltage vector, u, is

u =

⎡
⎣ ua

ub
uc

⎤
⎦ (9.4)

where ua is the phase A stator winding voltage. The dynamical equations are a set of first-order
differential equations and are

⎡
⎣ i̇

ω̇e

θ̇e

⎤
⎦ =

⎡
⎣ −rsL 0 0

0 − b
J 0

0 1 0

⎤
⎦
⎡
⎣ i

ωe

θe

⎤
⎦+ ψ

⎡
⎣ −Lωe

p2iT

4J
0 0 0

⎤
⎦
⎡
⎣ cos θe

cos(θe +
2π
3 )

cos(θe − 2π
3 )

⎤
⎦+

⎡
⎣ L

0 0 0
0 0 0

⎤
⎦u

+

⎡
⎣ 0

p
2J
0

⎤
⎦TL (9.5)

1Lyshevski, S. E. “Electromechanical Systems, Electric Machines, and Applied Mechatronics,” CRC Press, 2000,
pp. 589-627.
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Figure 9.3: Motor three-phase driver circuitry. The semiconductor switches shown in the diagram are
IGBT (integrated gate bipolar transistors). The pulsewidth modulation block, SVPWM, is discussed in
Recipe 9.3.

where ω is the rotor angular rate, θ is the rotor angle, p is the number of rotor poles, b is the
viscous damping coefficient, rs is the stator resistance, ψ is the magnetic flux, TL is the load
torque, and J is the rotor inertia. i and u are the phase winding 3-vectors shown earlier, and
L is the 3-by-3 inductance matrix also shown earlier. Equation 9.5 is actually five equations in
matrix form. The first three equations, for the current array i, are the electrical dynamics. The
last two for ωe and θe are the mechanical dynamics represented in electrical coordinates.

The driver circuitry is shown in Figure 9.3. It has six semiconductor switches. In this
model, they are considered ideal, meaning they can switch instantaneously at any frequency we
desire. In practice, switches will have a maximum switching speed and will have some transient
response. Note that the motor is Y connected, meaning that the ends of the three-phase windings
are tied together.

The right-hand-side code is shown in the following. The first output is the state derivative,
as needed for integration. The second output is the electrical torque needed for the control. The
first block of code defines the motor model data structure with the parameters needed by our
dynamics equation. This structure can be retrieved by calling the function with no inputs. The
remaining code implements Equation 9.5. Note the suffix M used for ω and θ, to reinforce that
these are mechanical quantities; this distinguishes them from the electrical quantities which are
related by p/2, where p is the number of poles. The use of M and E subscripts is typical when
writing software for motors.

The function returns a default data structure if no input arguments are passed to it. This is a
convenient way for the designer of the code to give users a working starting point for the model.
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This way, the user only has to change parameters that are different from the default. It lets the
user get up and running quickly.

The electrical torque is a second output argument. It is not used during numerical integration
but is helpful when debugging the function. It is useful to output quantities that a user might
want to plot too. MATLAB is helpful in allowing multiple outputs for a function.

RHSPMMachine.m

1 %% RHSPMMACHINE Permanent magnet machine model in ABC coordinates.
2 % Assumes a 3 phase machine in a Y connection. The permanent magnet
3 % flux
4 % distribution is assumed sinusoidal.
5 %% Forms
6 % d = RHSPMMachine
7 % [xDot,tE] = RHSPMMachine( ˜, x, d )
8 %
9 %% Inputs

10 % t (1,1) Time, unused
11 % x (5,1) The state vector [iA;iB;iC;omegaE;thetaE]
12 % d (.) Data structure
13 % .lM (1,1) Mutual inductance
14 % .psiM (1,1) Permanent magnet flux
15 % .lSS (1,1) Stator self inductance
16 % .rS (1,1) Stator resistance
17 % .p (1,1) Number of poles (1/2 pole pairs)
18 % .u (3,1) [uA;uB;uC]
19 % .tL (1,1) Load torque
20 % .bM (1,1) Viscous damping (Nm/rad/s)
21 % .j (1,1) Inertia
22 % .u (3,1) Phase voltages [uA;uB;uC]
23 %
24 %% Outputs
25 % x (5,1) The state vector derivative
26 % tE (1,1) Electrical torque
27 %
28 %% Reference
29 % Lyshevski, S. E., "Electromechanical Systems, Electric Machines, and
30 % Applied Mechatronics," CRC Press, 2000.
35

36 function [xDot, tE] = RHSPMMachine( ˜, x, d )
37

38 if( nargin == 0 )
39 xDot = struct('lM',0.0009,'psiM',0.069, 'lSS',0.0011,'rS',0.5,'p'

,2,...
40 'bM',0.000015,'j',0.000017,'tL',0,'u',[0;0;0]);
41 return
42 end
43

44 % Pole pairs
45 pP = d.p/2;
46
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47 % States
48 i = x(1:3);
49 omegaE = x(4);
50 thetaE = x(5);
51

52 % Inductance matrix
53 denom = 2*d.lSSˆ2 - d.lSS*d.lM - d.lMˆ2;
54 l2 = d.lM;
55 l1 = 2*d.lSS - l2;
56 l = [l1 l2 l2;l2 l1 l2;l2 l2 l1]/denom;
57

58 % Right hand side
59 tP3 = 2*pi/3;
60 c = cos(thetaE + [0;-tP3;tP3]);
61 iDot = l*(d.u - d.psiM*omegaE*c - d.rS*i);
62 tE = pPˆ2*d.psiM*i'*c;
63 omegaDot = (tE - d.bM*omegaE - 0.5*pP*d.tL)/d.j;
64 xDot = [iDot;omegaDot;omegaE];

9.2 Controlling the Motor
Problem

We want to control the motor to produce a desired torque. Specifically, we need to compute the
voltages to apply to the stator coils.

Solution

We will use field-oriented control with a proportional-integral controller to control the motor.
Field-oriented control is a control method where the stator currents are transformed into two
orthogonal components. One component defines the magnetic flux of the motor and the other
defines the torque. The control voltages we calculate will be implemented using pulsewidth
modulation of the semiconductor switches as developed in the previous recipe. Torque control
is only one type of motor control. Speed control is often the goal. Robots often have position
control as the goal. One could use torque control as an inner loop for either a speed controller
or position controller.

How It Works

The motor controller is shown in Figure 9.1. This implements field-oriented control (FOC).
FOC effectively turns the brushless three-phase motor into a commutated DC motor.

There are three electrical frames of reference in this problem. The first is the (a,b,c) frame
which is the frame of the three-phase stator as in Figure 9.2. This is a time-varying frame. We
next want to transform into a two-axis time-varying frame, the (α,β) frame, and then into a
two-axis time-invariant frame, the (d, q) frame, which is also known as the direct-quadrature
axes and is fixed to the permanent magnet. In our frames, each axis is a current. Since with a
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Y-connected motor the sum of the currents is zero:

0 = ia + ib + ic (9.6)

we need only work with two currents, ia and ib.
The (d, q) to (α, β) transformation is known as the Forward Park transformation:[

uα
uβ

]
=

[
cos θe − sin θe
sin θe cos θe

] [
ud
uq

]
(9.7)

This transforms from the stationary d, q frame to the rotating (α, β) frame. θe is in electrical axes
and equals 1

2p θM where p is the number of magnet poles. The Forward Clarke transformation
for a Y-connected motor is [

uα
uβ

]
=

[
1 0
1√
3

2√
3

][
ua
ub

]
(9.8)

These two transformations are implemented in the functions ClarkeTransformation
Matrix and ParkTransformationMatrix. They allow us to go from the time-varying
(a,b,c) frame to the time-invariant, but rotating, (d,q) frame.

The equations for a general permanent magnet machine in the direct-quadrature frame are

uq = rsiq + ωe(Ldid + ψ) +
dLqiq
dt

(9.9)

ud = rsid − ωeLqiq +
d(Ldid + ψ)

dt
(9.10)

where u are the voltages, i are the currents, rs is the stator resistance, Lq and Ld are the d and
q phase inductances, ωe is the electrical angular rate, and ψ is the flux due to the permanent
magnets. The electrical torque produced is

Te =
3

2
p((Ldid + ψ)iq − Lqiqid) (9.11)

where p is the number of pole pairs.
The torque equation is

Te = TL + bωm + J
dωm

dt
(9.12)

where b is the mechanical damping coefficient, TL is the external load torque, and J is the
inertia, and the relationship between the mechanical and the electrical angular rate is

ωe = pωm (9.13)

The more pole pairs you have, the higher the electrical frequency. In a magnet surface mount
machine with coils in slots, Ld = Lq ≡ L, and ψ and the inductances are not functions of time.
The equations simplify to

uq = rsiq + ωeLid + ωeψ + L
diq
dt

(9.14)

ud = rsid − ωeLiq + L
did
dt

(9.15)
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We control direct current id to zero. If id is zero, control is linear in iq . The torque is now

Te =
3

2
pψiq (9.16)

Thus, the torque is a function of the quadrature current iq only. We can therefore control
the electrical torque by controlling the quadrature current. The quadrature current is in turn
controlled by the direct and quadrature phase voltages. The desired current isq can now be
computed from the torque set point T s

e .

isq =
2

3
T s
e /(pψ) (9.17)

We will use a proportional-integral controller to compute the (d,q) voltages. The propor-
tional part of the control drives errors to zero. However, if there is a steady disturbance, there
will be an offset. The integral part can drive an error due to such a steady disturbance to zero.
Without the integral term, a steady disturbance will result in a steady error. A proportional-
integral controller is of the form

u = K

(
1 +

1

τ

∫ )
y (9.18)

where u is the control, y is the measurement, τ is the integrator time constant, and K is the
forward (proportional) gain. Our control u will be the phase voltages, and our measurement y
is the current error in the (d,q) frame.

u(d,q) = −kF

(
ierr +

1

τ

∫
ierr

)
(9.19)

where [
id
iq

]
err

=

[
id
iq

]
−

[
0
isq

]
(9.20)

We now write a function, TorqueControl, that calculates the control voltages u(α,β)
given the current state x. The state vector is the same as Recipe 9.1, that is, current i in the (a,b,c)
frame plus the angle states θ and ω. We use the Park and Clarke transformations to compute
the current in the (d,q) frame. We can then implement the proportional-integral controller with
Euler integration. The function uses its data structure as memory – the updated structure d is
passed back as an output. TorqueControl is shown as follows. This function will return a
default data structure if no inputs are passed into the function.

TorqueControl.m

1 %% TORQUECONTROL Compute torque control of an AC machine
2 % Determines the quadrature current needed to produce a torque and uses

a
3 % proportional integral controller to control the motor. We control the
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4 % direct current to zero since we want to use just the magnet flux to
react

5 % with the quadrature current. We could control the direct current to
6 % another value to implement field-weakening control but this would

result
7 % in a nonlinear control system.
8 %% Forms
9 % d = TorqueControl

10 % [u, d, iAB] = TorqueControl( torqueSet, x, d )
11 %
12 %% Inputs
13 % torqueSet (1,1) Set point torque
14 % x (5,1) State [ia;ib;ic;omega;theta]
15 % d (.) Control data structure
16 % .kF (1,1) Forward gain
17 % .tauI (1,1) Integral time constant
18 % .iDQInt (2,1) Integral of current errors
19 % .dT (1,1) Time step
20 % .psiM (1,1) Magnetic flux
21 % .p (1,1) Number of magnet poles
22 %
23 %% Outputs
24 % u (2,1) Control voltage [alpha;beta]
25 % d (.) Control data structure
26 % iAB (2,1) Steady state currents [alpha;beta]
27 %
32

33 function [u, d, iAB] = TorqueControl( torqueSet, x, d )
34

35 % Default data structure
36 if( nargin == 0 )
37 u = struct('kF',0.003,'tauI',0.001, 'iDQInt',[0;0], 'dT', 0.01,...
38 'psiM',0.0690,'p',2);
39 if( nargout == 0 )
40 disp('TorqueControl struct:');
41 end
42 return
43 end
44

45 % Clarke and Park transforms
46 thetaE = 0.5*d.p*x(5);
47 park = ParkTransformationMatrix( thetaE );
48 iPark = park';
49 clarke = ClarkeTransformationMatrix;
50 iDQ = iPark*clarke*x(1:2);
51

52 % Set point to produce the desired torque [iD;iQ]
53 iDQSet = [0;(2/3)*torqueSet/(d.psiM*d.p)];
54

55 % Error
56 iDQErr = iDQ - iDQSet;
57
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58 % Integral term
59 d.iDQInt = d.iDQInt + d.dT*iDQErr;
60

61 % Control
62 uDQ = -d.kF*(iDQErr + d.iDQInt/d.tauI);
63 u = park*uDQ;
64

65 % Steady state currents
66 if( nargout > 2 )
67 iAB = park*iDQSet;
68 end

9.3 Pulsewidth Modulation of the Switches
Problem

In the previous recipe, we calculate the control voltages to apply to the stator. Now we want to
take those control voltages as an input and drive the switches via pulsewidth modulation.

Solution

We will use the Space Vector Modulation to go from a rotating two-dimensional (α,β) frame
to the rotating three-dimensional (a,b,c) stator frame, which is more computationally efficient
than modulating in (a,b,c) directly.

How It Works

We will use Space Vector Modulation to drive the switches for pulsewidth modulation.2 This
goes from (α,β) coordinates to switch states (a,b,c). Each node of each phase is either connected
to ground or to +u. These values are shown in Figure 9.4. The six spokes in the diagram, as
well as the origin, correspond to the eight discrete switch states.

Table 9.1 delineates each of these eight discrete switch states, the corresponding vector in
the (α,β) coordinates, and the resulting voltages. Note that the O vectors are at the origin of
the Space Vector Modulation, while the U vectors are at 60-degree increments. The states are
indexed from 0 to 7 with 0 being all open states and 7 being all closed.

In order to produce the desired torque, we must use a combination of the vectors or switch
states so that we achieve the desired voltage on average. We select the two vectors O or U
bracketing the desired angle in the (α,β) plane; these are designated k and k+1 where k refers
to the number of the vector in Table 9.1. We must then calculate the amount of time to spend
in each switch state, for each pulsewidth period. The durations of these two segments, Tk and
Tk+1, are found from this equation:

[
Tk

Tk+1

]
=

√
3

2

Ts

ud

[
sin kπ

3 − cos kπ
3

− sin (k−1)π
3 cos (k−1)π

3

] [
uα
uβ

]
(9.21)

2Analog Devices, “Implementing Space Vector Modulation with the ADMCF32X,” ANF32X-17, January 2000.
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Figure 9.4: Space Vector Modulation in (α,β) coordinates. We determine which sector (in Roman
numerals) we are in and then pick the appropriate vectors to apply so that they on average attain the
desired voltage. The numbers in brackets are the normalized [α, β] voltages.

Table 9.1: Space Vector Modulation. In the vector names, O means open and U means a voltage is
applied, while the subscripts denote the angle in the α-β plane. The switch states are a, b, c as shown in
Figure 9.3, where 1 means a switch is closed and 0 means it is open.

k abc Vector ua/u ub/u uc/u uab/u ubc/u uac/u

0 000 O000 0 0 0 0 0 0

1 110 U60 2/3 1/3 -1/3 1 0 -1

2 010 U120 1/3 1/3 -2/3 0 1 -1

3 011 U180 -1/3 2/3 -1/3 -1 1 0

4 001 U240 -2/3 1/3 1/3 -1 0 1

5 101 U300 -1/3 -1/3 2/3 0 -1 1

6 100 U360 1/3 -2/3 1/3 1 -1 0

7 111 O111 0 0 0 0 0 0
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Figure 9.5: Pulse period segments. Each pulse period Ts is divided into seven segments so that the two
switching patterns k and k + 1 are applied symmetrically.

The corresponding (a,b,c) switch patterns are each used for the calculated time, averaging to
the designated voltage.

The time spent in each pattern, Tk or Tk+1, is then split into two equal portions so that the
total pulse pattern is symmetric. The zero time T0, when no switching is required, is split evenly
between the endpoints and the middle of the pulse Ts – so that the time in the middle pattern
(O111) is twice the time in each end pattern (O000). This results in a total of seven segments
depicted in Figure 9.5. The total middle time is designated T7.

T0 =
1

4
(Ts − (Tk + Tk+1)) (9.22)

The implementation of the pulse segments is slightly different for the even and odd sectors
in Figure 9.4. Both are symmetric about the midpoint of the pulse as described, but we reverse
the implementation of patterns k and k + 1. This is shown for the resulting voltages u in the
following equations. We use the first in even sectors and the second in odd sectors.[

u0 uk uk+1 u7 uk+1 uk u0
]

(9.23)

and [
u0 uk+1 uk u7 uk uk+1 u0

]
(9.24)

Using the different patterns for odd and even vectors minimizes the number of commutations
per cycle.

We determine the sector from the angle Θ formed by the commanded voltages uα and uβ :

Θ = atan
uβ
uα

(9.25)

264



CHAPTER 9 ELECTRIC MOTORS

The pulsewidth modulation routine, SVPWM, does not actually perform an arctangent.
Rather, it looks at the unit uα and uβ vectors and determines first their quadrant and then their
sector without any need for trigonometric operations.

The first section of SVPWM implements the timing for the pulses. Just as in the previous
recipe for the controller, the function uses its data structure as memory – the updated structure
is passed back as an output. This is an alternative to persistent variables.

SVPWM.m

44 function [s, d] = SVPWM( t, d )
45

46 % Default data structure
47 if( nargin < 1 && nargout == 1 )
48 s = struct( 'dT',1e-6,'tLast',-0.0001,'tUpdate',0.001,'u',[0;0],...
49 'uM',10,'tP',zeros(1,7),'sP',zeros(3,7));
50 return;
51 end
52

53 % Run the demo
54 if( nargin < 1 )
55 disp('Demo of SVPWM:');
56 Demo;
57 return;
58 end
59

60 % Update the pulsewidths at update time
61 if( t >= d.tLast + d.tUpdate || t == 0 )
62 [d.sP, d.tP] = SVPW( d.u, d.tUpdate, d.uM );
63 d.tLast = t;
64 end
65

66 % Time since initialization of the pulse period
67 dT = t - d.tLast;
68 s = zeros(3,1);
69

70 for k = 1:7
71 if( dT < d.tP(k) )
72 s = d.sP(:,k);
73 break;
74 end
75 end

The pulsewidth vectors are computed in the subfunction SVPW. We first compute the quad-
rant and then the sector without using any trigonometric functions. This is done using simple
if/else statements and a switch statement. Note that the modulation index k is simply designated
k and k+1 is designated kP1. We then compute the times for the two space vectors that bound
the sector. We then assemble the seven subperiods.
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89 function [sP, tP] = SVPW( u, tS, uD )
90

91 % Make u easier to interpret
92 alpha = 1;
93 beta = 2;
94

95 % Determine the quadrant
96 if( u(alpha) >= 0 )
97 if( u(beta) > 0 )
98 q = 1;
99 else

100 q = 4;
101 end
102 else
103 if( u(beta) > 0 )
104 q = 2;
105 else
106 q = 3;
107 end
108 end
109

110 sqr3 = sqrt(3);
111

112 % Find the sector. k1 and k2 define the edge vectors
113 switch q
114 case 1 % [+,+]
115 if( u(beta) < sqr3*u(alpha) )
116 k = 1;
117 kP1 = 2;
118 oddS = 1;
119 else
120 k = 2;
121 kP1 = 3;
122 oddS = 0;
123 end
124 case 2 % [-,+]
125 if( u(beta) < -sqr3*u(alpha) )
126 k = 3;
127 kP1 = 4;
128 oddS = 1;
129 else
130 k = 2;
131 kP1 = 3;
132 oddS = 0;
133 end
134 case 3 % [-,-]
135 if( u(beta) < sqr3*u(alpha) )
136 k = 5;
137 kP1 = 6;
138 oddS = 1;
139 else
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140 k = 4;
141 kP1 = 5;
142 oddS = 0;
143 end
144 case 4 % [+,-]
145 if( u(beta) < -sqr3*u(alpha) )
146 k = 5;
147 kP1 = 6;
148 oddS = 1;
149 else
150 k = 6;
151 kP1 = 1;
152 oddS = 0;
153 end
154 end
155

156 % Switching sequence
157 piO3 = pi/3;
158 kPiO3 = k*pi/3;
159 kM1PiO3 = kPiO3-piO3;
160

161 % Space vector pulsewidths
162 t = 0.5*sqr3*(tS/uD)*[ sin(kPiO3) -cos(kPiO3);...
163 -sin(kM1PiO3) cos(kM1PiO3)]*u;
164

165 % Total zero vector time
166 t0 = tS - sum(t);
167

168 t = t/2;
169

170 % Different order for odd and even sectors
171 if( oddS )
172 sS = [0 k kP1 7 kP1 k 0];
173 tPW = [t0/4 t(1) t(2) t0/2 t(2) t(1) t0/4];
174 else
175 sS = [0 kP1 k 7 k kP1 0];
176 tPW = [t0/4 t(2) t(1) t0/2 t(1) t(2) t0/4];
177 end
178 tP = [tPW(1) zeros(1,6)];
179

180 for k = 2:7
181 tP(k) = tP(k-1) + tPW(k);
182 end
183

184 % The switches corresponding to each voltage vector
185 % From 0 to 7
186 % a b c
187 s = [ 0 0 0;...
188 1 0 0;...
189 1 1 0;...
190 0 1 0;...
191 0 1 1;...
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192 0 0 1;...
193 1 0 1;
194 1 1 1]';
195

196 sP = zeros(3,7);
197 for k = 1:7
198 sP(:,k) = s(:,sS(k)+1);
199 end

The built-in demo is fairly complex so it is in a separate subfunction. We simply specify an
example input u using trigonometric functions.

201 function Demo
202 %%% SVPWM>Demo Function demo
203 % Calls SVPWM with a sinusoidal input u.
204 % This demo will run through an array of times and create a plot of the
205 % resulting voltages.
206

207 d = SVPWM;
208 tEnd = 0.003;
209 n = tEnd/d.dT;
210 a = linspace(0,pi/4,n);
211 tP3 = 2*pi/3;
212 uABC = 0.5*[cos(a);cos(a-tP3);cos(a+tP3)];
213 uAB = ClarkeTransformationMatrix*uABC(1:2,:); % a-b to alpha-beta
214 tSamp = 0;
215 t = 0;
216 tPP = 1;
217 x = zeros(4,n);
218 for k = 1:n
219 if( t >= tSamp )
220 tSamp = tSamp + d.tUpdate;
221 tPP = ˜tPP;
222 end
223 d.u = uAB(:,k);
224 [s, d] = SVPWM( t, d );
225 t = t + d.dT;
226 x(:,k) = [SwitchToVoltage(s,d.uM);tPP];
227 end

Figure 9.6 shows the state vector pulsewidth modulation from the built-in demo. There are
three pulses in the plot, each 0.001 seconds long. Each pulse period has seven subperiods.

The function SwitchToVoltage converts switch states to voltages. It assumes instanta-
neous switching and no switch dynamics.

SwitchToVoltage.m

24

25 % Switch states [a;b;c]
26 sA = [1 1 0 0 0 1;...
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Figure 9.6: The desired voltage vector and the Space Vector Modulation pulses and pulsewidth. The
bottom plot shows the pulse periods. Note that the pulse sequences are symmetric within each pulse
period.

27 0 1 1 1 0 0;...
28 0 0 0 1 1 1];
29

30 % Array of voltages
31 uA = [ 2 1 -1 -2 -1 1;...
32 -1 1 2 1 -1 -2;...
33 -1 -2 -1 1 2 1];
34

35 % Find the correct switch state
36 u = [0;0;0];
37 for k = 1:6
38 if( sum(sA(:,k) - s) == 0 )
39 u = uA(:,k)*uDC/3;
40 break;
41 end
42 end
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9.4 Simulating the Controlled Motor
Problem

We want to simulate the motor with torque control using Space Vector Modulation.

Solution

Write a script to simulate the motor with the controller. We include options for closed loop
control and balanced three-phase voltage inputs.

How It Works

The header for the script, PMMachineDemo, is shown in the following listing. The control
flags bypassPWM and torqueControlOn are described as well as the two periods imple-
mented, one for the simulation and a longer period for the control.

PMMachineDemo.m

1 %% Simulation of a permanent magnet AC motor
2 % Simulates a permanent magnet AC motor with torque control. The

simulation has
3 % two options. The first is torqueControlOn. This turns torque control

on and
4 % off. If it is off the phase voltages are a balanced three phase

voltage set.
5 %
6 % bypassPWM allows you to feed the phase voltages directly to the motor
7 % bypassing the pulsewidth modulation switching function. This is

useful for
8 % debugging your control system and other testing.
9 %

10 % There are two time constants for this simulation. One is the control
period

11 % and the second is the simulation period. The latter is much shorter
because it

12 % needs to simulate the pulsewidth modulation.
13 %
14 % For control testing the load torque and setpoint torque should be the

same.

The body of the script follows. Three different data structures are initialized from their cor-
responding functions as described in the previous recipes, that is, from SVPWM,
TorqueControl, and RHSPMMachine. Note that we are only simulating the motor for
a small fraction of a second, 0.05 seconds, and the time step is just 1e-6 seconds. The controller
time step is set to 100 times the simulation time step.

20 %% Initialize all data structures
21 dS = SVPWM;
22 dC = TorqueControl;
23 d = RHSPMMachine;
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24 dC.psiM = d.psiM;
25 dC.p = d.p;
26 d.tL = 1.0; % Load torque (Nm)
27

28 %% User inputs
29 tEnd = 0.05; % sec
30 torqueControlOn = false;
31 bypassPWM = false;
32 torqueSet = 1.0; % Set point (Nm)
33 dC.dT = 100*dS.dT; % 100x larger than simulation dT
34 dS.uM = 1.0; % DC Voltage at the input to the switches
35 magUABC = 0.1; % Voltage for the balanced 3 phase

voltages
36

37 if (torqueControlOn && bypassPWM)
38 error('The control requires PWM to be on.');
39 end
40

41 %% Run the simulation
42 nSim = ceil(tEnd/dS.dT);
43 xP = zeros(10,nSim);
44 x = zeros(5,1);
45

46 % We require two timers as the control period is larger than the
simulation

47 % period
48 t = 0.0; % simulation timer
49 tC = 0.0; % control timer
50

51 for k = 1:nSim
52 % Electrical degrees
53 thetaE = x(5);
54 park = ParkTransformationMatrix( thetaE );
55 clarke = ClarkeTransformationMatrix;
56

57 % Compute the voltage control
58 if( torqueControlOn && t >= tC )
59 tC = tC + dC.dT;
60 [dS.u, dC] = TorqueControl( torqueSet, x, dC );
61 elseif( ˜torqueControlOn )
62 tP3 = 2*pi/3;
63 uABC = magUABC*dS.uM*[cos(thetaE);cos(thetaE-tP3);cos(thetaE+tP3)];
64 if( bypassPWM )
65 d.u = uABC;
66 elseif( t >= tC )
67 tC = tC + dC.dT;
68 dS.u = park*clarke*uABC(1:2,:);
69 end
70 end
71

72 % Space Vector Pulsewidth Modulation
73 if( ˜bypassPWM )
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74 dS.u = park'*dS.u;
75 [s,dS] = SVPWM( t, dS );
76 d.u = SwitchToVoltage(s,dS.uM);
77 end
78

79 % Get the torque output for plotting
80 [˜,tE] = RHSPMMachine( 0, x, d );
81 xP(:,k) = [x;d.u;torqueSet;tE];
82

83 % Propagate one simulation step
84 x = RungeKutta( @RHSPMMachine, 0, x, dS.dT, d );
85 t = t + dS.dT;
86 end
87

88 %% Generate the time history plots
89 [t, tL] = TimeLabel( (0:(nSim-1))*dS.dT );
90

91 figure('name','3 Phase Currents');
92 plot(t, xP(1:3,:));
93 grid on;
94 ylabel('Currents');
95 xlabel(tL);
96 legend('i_a','i_b','i_c')
97

98 PlotSet( t, xP([4 10],:), 'x label', tL, 'y label', {'\omega_e' 'T_e (
Nm)'}, ...

99 'plot title','Electrical', 'figure title','Electrical');
100

101 thisTitle = 'Phase Voltages';
102 if ˜bypassPWM
103 thisTitle = [thisTitle ' - PWM'];
104 end
105

106 PlotSet( t, xP(6:8,:), 'x label', tL, 'y label', {'u_a' 'u_b' 'u_c'},
...

107 'plot title',thisTitle, 'figure title',thisTitle);
108

109 thisTitle = 'Torque/Speed';
110 if ˜bypassPWM
111 thisTitle = [thisTitle ' - PWM'];
112 end

We turn off torque control to test the motor simulation with the results shown in Figure 9.7.
The two plots show the torque speed curves. The first is with direct three-phase excitation,
that is, bypassing the pulsewidth modulation, by setting bypassPWM to false. Directly
controlling the phase voltages this way, while creating the smoothest response, would require
linear amplifiers which are less efficient than switches. This would make the motor much less
efficient overall and would generate unwanted heat. The second plot is with Space Vector
Pulsewidth Modulation. The plots are nearly identical, indicating that the pulsewidth modula-
tion is working.
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Figure 9.7: Torque speed curves for a balanced three-phase voltage excitation and a load torque of 1.0
Nm. The left figure shows the curve for the direct three-phase input, and the right shows the curve for
the Space Vector Pulsewidth Modulation input. They are nearly identical.

Figure 9.8: PI torque control of the motor.

We now turn on torque control, via the torqueControlOnflag, and get the results shown
in Figure 9.8. The overshoot is typical for torque control. Note that the load torque is set equal
to the torque set point of 1 Nm. There is limit cycling near the end point.

The pulsewidths and resulting coil currents are shown in Figure 9.9. A zoomed view of the
end of the pulsewidth plot with shading added to alternate pulsewidths is in Figure 9.10. This
makes it easier to see the segments of the pulsewidths and verify that they are symmetric.

The code which adds the shading uses fill with transparency via the alpha parameter.
In this case, we hard-code the function to show the last five pulsewidths, but this could be
generalized to a time window, or to shade the entire plot. We did take the time to add an input
for the pulsewidth length, so that this could be changed in the main script and the function
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Figure 9.9: Voltage pulsewidths and resulting currents for PI torque control.

Figure 9.10: Pulsewidths with shading.
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would still work. Note that we reorder the axes children as the last step, to keep the shading
from obscuring the plot lines.

AddFillToPWM.m

17 function AddFillToPWM( dT )
18

19 if nargin == 0
20 dT = 0.001;
21 end
22

23 hAxes = get(gcf,'children');
24 nAxes = length(hAxes);
25

26 for j = 1:nAxes
27 if strcmp(hAxes(j).type,'axes')
28 axes(hAxes(j));
29 AddFillToAxes;
30 end
31 end
32

33 function AddFillToAxes
34

35 hold on;
36 y = axis;
37 xMin = y(2) - 5*dT;
38 xMax = y(2);
39 axis([xMin xMax y(3:4)])
40 x0 = xMin;
41 yMin = y(3) + 0.01*(y(4)-y(3));
42 yMax = y(4) - 0.01*(y(4)-y(3));
43 for k = [2 4]
44 xMinK = x0 + (k-1)*dT;
45 xMaxK = x0 + k*dT;
46

47 fill([xMinK xMaxK xMaxK xMinK],...
48 [yMin,yMin,yMax,yMax],...
49 [0.8 0.8 0.8],'edgecolor','none','facealpha',0.5);
50

51 end
52 babes = get(gca,'children');
53 set(gca,'children',[babes(end); babes(1:end-1)])
54 hold off;
55

56 end
57

58 end
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Summary
This chapter has demonstrated how to write the dynamics and implement a field-oriented con-
trol law for a three-phase motor. We use a proportional-integral controller with Space Vector
Pulsewidth Modulation to drive the six switches. This produces a low-cost controller for a
motor. Table 9.2 lists the code developed in the chapter.

Table 9.2: Chapter Code Listing

File Description
AddFillToPWM Add shading to the motor pulsewidth plot
ClarkeTransformationMatrix Clarke transformation matrix
ParkTransformationMatrix Park transformation matrix
PMMachineDemo Permanent magnet motor demonstration
RHSPMMachine Right-hand side of a permanent magnet brushless

three-phase electrical machine
SVPWM Implements Space Vector Pulsewidth Modulation
SwitchToVoltage Converts switch states to voltages
TorqueControl Proportional-integral torque controller
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Fault Detection

Introduction
Fault detection is the process of detecting failures, also known as faults, in a dynamical system.
It is an important area for systems that are supposed to operate without human supervision.
There are many ways of detecting failures. The simplest is using boolean logic to check against
fixed thresholds. For example, you might check an automobile’s speed against a speed limit.
Other methods include fuzzy logic, parameter estimation, expert systems, statistical analysis,
and parity space methods. In this section, we will implement one type of fault detection system,
a detection filter. This is based on linear filtering. The detection filter is a state estimator tuned
to detect specific failures. We will design a detection filter system for an air turbine. We will
also show how to build a graphical user interface (GUI) as a front end to the fault detection
simulation.

10.1 Modeling an Air Turbine
Problem

We need to make a numerical model of an air turbine to demonstrate detection filters.

Solution

Write the equations of motion for an air turbine. We will use a linear model of the air turbine
to simplify the detection filter design. This will allow us to model the system with a linear state
space model.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 10
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Figure 10.1: Air turbine. The arrows show the airflow. The air flows through the turbine blade tips
causing it to turn.

How It Works

Figure 10.1 shows an air turbine.1 It has a constant pressure air supply. We can control the
valve from the air supply, the pressure regulator, to control the speed of the turbine. The air
flows past the turbine blades causing it to turn. The control needs to adjust the air pressure to
handle variations in the load. We measure the air pressure p downstream from the valve, and
we also measure the rotational speed of the turbine ω with a tachometer.

The dynamical model for the air turbine is

[
ṗ
ω̇

]
=

[
− 1

τp
0

Kt
τt

− 1
τt

][
p
ω

]
+

[
Kp

τp

0

]
u (10.1)

This is a state space system:
ẋ = ax+ bu (10.2)

where

a =

[
− 1

τp
0

Kt
τt

− 1
τt

]
(10.3)

b =

[
Kp

τp

0

]
(10.4)

1PhD thesis of Jere Schenck Meserole, “Detection Filters for Fault-Tolerant Control of Turbofan Engines,” Mas-
sachusetts Institute of Technology, Department of Aeronautics and Astronautics, 1981.
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The state vector is [
p
ω

]
(10.5)

The pressure downstream from the regulator is equal toKpu when the system is in equilibrium.
τp is the regulator time constant, and τt is the turbine time constant. The turbine speed is
Ktp when the system is in equilibrium. The tachometer measures ω, and the pressure sensor
measures p. The load is folded into the time constant for the turbine.

The code for the right-hand side of the dynamical equations is shown in the following.
Only one line of code is needed. The rest returns the default data structure. The simplicity of
the model is due to its being a state space model. The number of states could be large, yet the
code would not change.

RHSAirTurbine.m

27 function xDot = RHSAirTurbine( ˜, x, d )
28

29 % Default data structure
30 if( nargin < 1 )
31 kP = 1;
32 kT = 2;
33 tauP = 10;
34 tauT = 40;
35 c = eye(2);
36 b = [kP/tauP;0];
37 a = [-1/tauP 0; kT/tauT -1/tauT];
38

39 xDot = struct('a',a,'b',b,'c',c,'u',0);
40 if( nargout == 0)
41 disp('RHSAirTurbine struct:');
42 end
43 return
44 end

The response to a step input for u is shown in Figure 10.2. The pressure settles faster than
the turbine speed. This is due to the turbine time constant and the lag in the pressure change.
The residuals are very small because there are no failures.
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Figure 10.2: Air turbine response to a step pressure regulator input. The residuals are zero as expected.

10.2 Building a Detection Filter
Problem

We want to build a system to detect failures in our air turbine using the linear model developed
in the previous recipe.

Solution

We will build a detection filter that detects pressure regulator failures and tachometer failures.
Our plant model (continuous a, b, and c state space matrices) will be an input to the filter
building function.
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How It Works

The detection filter is an estimator with a specific gain matrix that multiplies the residuals. The
residuals are the difference between the estimated outputs and the outputs:[

˙̂p
˙̂ω

]
=

[
− 1

τp
0

Kt
τt

− 1
τt

][
p̂
ω̂

]
+

[
Kp

τp

0

]
u+

[
d11 d12
d21 d22

] [
p− p̂
ω − ω̂

]
(10.6)

where p̂ is the estimated pressure and ω̂ is the estimated angular rate of the turbine. TheD ma-
trix is the matrix of detection filter gains. These feedback the residuals, the difference between
the measured and estimated states, into the detection filter. The residual vector is

r =

[
p− p̂
ω − ω̂

]
(10.7)

The residuals are the difference between the measured values and the estimated values. The D
matrix needs to be selected so that this vector tells us the nature of the failure. The gains should
be selected so that

1. The filter is stable.

2. If the pressure regulator fails, the first residual p − p̂ is nonzero, but the second remains
zero.

3. If the turbine fails, the second residual ω − ω̂ is nonzero, but the first remains zero.

A gain matrix is

D = a+

[ 1
τ1

0

0 1
τ2

]
(10.8)

The time constant τ1 is the pressure residual time constant. The time constant τ2 is the
tachometer residual time constant. In effect, we cancel out the dynamics of the plant and replace
them with decoupled detection filter dynamics. These time constants should be shorter than the
time constants in the dynamical model so that we detect failures quickly. However, they need
to be at least twice as long as the sampling period to prevent numerical instabilities.

We will write a function with three actions, an initialize case, an update case, and a reset
case. varargin is used to allow the three cases to have different input lists. The function
signature is

DetectionFilter.m

49 function d = DetectionFilter( action, varargin )

The header and syntax for DetectionFilter are shown as follows. We used LaTeX
equations to describe the function.
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1 %% DETECTIONFILTER Builds and updates a linear detection filter.
2 %% Forms
3 % d = DetectionFilter( 'initialize', d, tau, dT )
4 % d = DetectionFilter( 'update', u, y, d )
5 % d = DetectionFilter( 'reset', d )
6 %
7 %% Description
8 % The detection filter gain matrix d is designed during the initialize
9 % action. The continuous matrices are then discretized using the

internal
10 % function CToDZOH. The esimated state and residual vectors are

initialized
11 % to the size dictated by a. During the update action, the residuals

and
12 % new estimated state are calculated and stored in the data structure d

.
13 %
14 % The residuals calculation is
15 %
16 % $$r = y - c\hat{x}$$
17 %
18 % The estimated state calculated with the detection filter gains is
19 %
20 % $$\hat{x}_{k+1} = a*\hat{x} + +b*u + d*r$$
21 %
22 %% Inputs
23 % action (1,:) 'initialize' or 'update'
24 % d (.) Data structure
25 % .a (:,:) State space continuous a matrix
26 % .b (:,1) State space continuous b matrix
27 % .c (:,:) State space continuous c matrix
28 % tau (:,1) Vector of time constants
29 % dT (1,1) Time step
30 % u (:,1) Actuation input
31 % y (:,1) Measurement vector
32 %
33 %% Outputs
34 % d (.) Updated data structure
35 % .a (:,:) State space discrete a matrix
36 % .b (:,1) State space discrete b matrix
37 % .c (:,:) State space discrete c matrix
38 % .d (:,:) Detection filter gain matrix
39 % .x (:,1) Estimated states
40 % .r (:,1) Residual vector
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The filter is built and initialized in the following code in DetectionFilter. The con-
tinuous state space model of the plant, in this case, our linear air turbine model, is an input.
The selected time constants τ are also an input, and they are added to the plant model as in
Equation 10.8. The function discretizes the plant a and b matrices and the computed detection
filter gain matrix d.

48

49 function d = DetectionFilter( action, varargin )
50

51 switch lower(action)
52 case 'initialize'
53 d = varargin{1};
54 tau = varargin{2};
55 dT = varargin{3};
56

57 % Design the detection filter
58 d.d = d.a + diag(1./tau);
59

60 % Discretize both
61 d.d = CToDZOH( d.d, d.b, dT );
62 [d.a, d.b] = CToDZOH( d.a, d.b, dT );
63

64 % Initialize the state
66 d.x = zeros(m,1);
67 d.r = zeros(m,1);

The update for the detection filter is in the same function, as the next action in the switch
statement. Note the equations implemented as described in the header.

69 case 'update'
70 u = varargin{1};
71 y = varargin{2};
72 d = varargin{3};
73 r = y - d.c*d.x;
74 d.x = d.a*d.x + +d.b*u + d.d*r;
75 d.r = r;

Finally, we create a reset action to allow us to reset the residual and state values for the filter
in between simulations. After this action, we end the switch statement.

77 case 'reset'
78 d = varargin{1};
79 m = size(d.a,1);
80 d.x = zeros(m,1);
81 d.r = zeros(m,1);
82 end
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10.3 Simulating the Fault Detection System
Problem

We want to simulate a failure in the plant and demonstrate the performance of the failure detec-
tion.

Solution

We will build a MATLAB script that designs the detection filter using the function from the
previous recipe and then simulates it with a user selectable pressure regulator or tachometer
failure. The failure can be total or partial.

How It Works

The script designs a detection filter using DetectionFilter from the previous recipe and
implements it in a loop. Runge-Kutta integration propagates the continuous domain right-hand
side of the air turbine, RHSAirTurbine. The detection filter is discrete time.

The script has two scale factors uF and tachF that multiply the regulator input and the
tachometer output to simulate failures. Setting a scale factor to zero is a total failure, and setting
it to one indicates that the device is working perfectly. If we fail one, we expect the associated
residual to be nonzero and the other to stay at zero. Failures can be any number between zero
and one. Partial failures are not necessarily related to a specific mechanical failure but are useful
for testing the system.

DetectionFilterSim.m

1 %% Simulation of a detection filter
2 % Simulates detecting failures of an air turbine.
3 % An air turbine has a constant pressure air source that sends air
4 % through a duct that drives the turbine blades. The turbine is
5 % attached to a load.
6 %
7 % The air turbine model is linear. Failures are modeled by multiplying
8 % the regulator input and tachometer output by a constant. A constant
9 % of 0 is a total failure and 1 is perfect operation.

14

15 %% User inputs
16

17 % Failures. Set to any number betweem 0 and 1 is 0 is total failure. 1
is working perfectly.

18 % uF scales the actuation u. tachF scales the rate measurement.
19 uF = 0;
20 tachF = 1;
21

22 % Time constants for failure detection
23 tau1 = 0.3; % sec
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24 tau2 = 0.3; % sec
25

26 % End time
27 tEnd = 1000; % sec
28

29 % State space system
30 d = RHSAirTurbine;
31

32 %% Initialization
33 dT = 0.02; % sec
34 n = ceil(tEnd/dT);
35

36 % Initial state
37 x = [0;0];
38

39 %% Detection Filter design
40 dF = DetectionFilter('initialize',d,[tau1;tau2],dT);
41

42 %% Run the simulation
43

44 % Control. This is the regulator input.
45 u = 100;
46

47 % Plotting array
48 xP = zeros(4,n);
49 t = (0:n-1)*dT;
50

51 for k = 1:n
52 % Measurement vector including measurement failure
53 y = [x(1);tachF*x(2)]; % Sensor failure
54 xP(:,k) = [x;dF.r];
55

56 % Update the detection filter
57 dF = DetectionFilter('update',u,y,dF);
58

59 % Integrate one step
60 d.u = uF*u; % Actuator failure
61 x = RungeKutta( @RHSAirTurbine, t(k), x, dT, d );
62 end
63

64 %% Plot the states and residuals
65 [t,tL] = TimeLabel(t);
66 yL = {'p' '\omega' 'Residual P' 'Residual \omega' };
67 tTL = 'Detection Filter Simulation';
68 PlotSet( t, xP,'x label',tL,'y label',yL,'plot title',tTL,'figure title

',tTL)
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Figure 10.3: Air turbine response to a failed regulator.

In Figure 10.3, the regulator fails and its residual is nonzero. In Figure 10.4, the tachometer
fails and its residual is nonzero. The residuals show what has failed clearly. Simple boolean
logic (i.e., if end statements) are all that is needed.
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Figure 10.4: Air turbine response to a failed tachometer.

10.4 Building a GUI for the Detection Filter Simulation
Problem

We want a GUI to provide a graphical interface to the fault detection simulation that will allow
us to evaluate the filter’s performance.

Solution

We will use the MATLAB App Designer to build a GUI that will allow us to

1. Set the residual time constants

2. Set the end time for the simulation
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3. Set the pressure regulator input

4. Introduce a pressure regulator or tachometer fault at any time

5. Display the states and residuals in a plot

How It Works

The MATLABApp Designer is invoked by typing appdesigner at the command line. There
are several options for GUI templates, or a blank GUI; we will start from the GUI with
uicontrols. First, let’s make a list of the controls we will need from our desired features
list earlier:

• Edit boxes for the simulation duration, residual time constants τ1 and τ2, pressure regu-
lator setting u

• Edit boxes for the pressure regulator and tachometer fault parameters, with buttons for
sending the newly commanded values to the simulation

• Text box for displaying the calculated detection filter gains
• Run button for starting a simulation
• Two plot axes

In order to change the fault parameters while the simulation is running, we will need the
loop to be checking a variable that can be externally set by the GUI. We can do this using global
variables.

There are several templates that we can use. We will start with the basic blank template.
Type appdesigner in the command window. Figure 10.5 shows the interface.

Double-click the blank app template.
Add the app DFGUI. It will appear in your folder as DFGUI.mlapp.
Add the following to the blank template:

1. Parameter input boxes

(a) Duration

(b) Input

(c) Tau 1

(d) Tau 2

(e) Gains (2-by-2 matrix)
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Figure 10.5: The interface to appdesigner.

2. Failure input boxes

(a) Tachometer

(b) Input

(c) Send button for tachometer

(d) Send button for input
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Figure 10.6: Snapshot of the blank app.

3. Calculate button

4. Reset button

5. State plot

6. Residual plot

You add items by dragging and dropping them on the window from the items on the left-
hand side. We use numeric for the input text boxes. Figure 10.7 shows the completed interface.
There are four push buttons.
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Figure 10.7: Snapshot of the app after the interface is done.

You can add information about the app. Figure 10.8 shows the window for app information.
The app appears in the app menu as shown in Figure 10.9.
We select the callback for calculate. The App Designer highlights where the code should

go. We copy relevant code from the simulation script. We get the inputs from the text boxes.
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Figure 10.8: App Details let you add information about the app for users.

Figure 10.10 shows the code. You access parameters from the text boxes using
app.xxx.Value. For all plot-related functions, you need to add the axes handle using
app.UAxes. or app.UAxe2s.
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Figure 10.9: The app appears in the app menu. You get to this window by hitting the design app button.

Figure 10.11 shows a debugger breakpoint. You have full access to the debugger in App
Designer. You will also see MATLAB warnings on the right.

Figure 10.12 shows the app after a run.
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Figure 10.10: The light area is where the code goes. The code is from the simulation script.
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Figure 10.11: You can use the debugger in the App Designer.
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Figure 10.12: The app after a run.
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Summary
This chapter has demonstrated how to design a detection filter for detecting faults in a dynam-
ical system. The system is demonstrated with an air turbine that can experience a pressure
regulator failure and a tachometer failure. In addition, we used App Designer to design a GUI
to automate filter simulations. The GUI demonstrates real-time plotting and injecting failures
into an ongoing simulation loop. Table 10.1 lists the code developed in the chapter.

Table 10.1: Chapter Code Listing

File Description
RHSAirTurbine Air turbine dynamical model in continuous state space form
DetectionFilter Builds and updates a linear detection filter
DetectionFilterSim Simulation of a detection filter
DetectionFilterGUI Run the detection filter simulation from a GUI
DFGUI.m1App App Designer app
DFGUI.mlappinstall DFGUI app installer
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Chemical Processes

In chemical engineering, the production of chemicals needs to be modeled and the production
process controlled. Our example will be a simple process in which the pH of a mixed solution
needs to be controlled. This problem is interesting because the process is highly nonlinear and
the sensor model does not have an explicit solution for the pH output. Modeling the sensor will
require the use of the numerical solver fzero.

The specific chemical process we will study consists of an acid (HNO3) stream, a buffer
(NaHCO3) stream, and a base (NaOH) stream that are mixed in a stirred tank.1 This is based
on a bench-scale experiment developed at the University of California, Santa Barbara (UCSB),
to study chemical process control.2 Figure 11.1 shows a diagram of the system, with three
incoming streams q1, q2, and q3, and a valve to the output stream q4, where we will measure
the pH. The goal will be to achieve a neutral pH.

11.1 Modeling the Chemical Mixing Process
Problem

Wewant to model the chemical process consisting of an acid stream, a buffer stream, and a base
stream that are mixed in a stirred tank.

Solution

We model the chemical equilibria by adding two reaction invariants for each inlet stream and
write the dynamical equations using the invariants. These are coded in a right-hand-side func-
tion that also defines the model data structure.

1Henson, M. A. and D. E. Seborg, “Nonlinear Process Control,” Chapter 4: Feedback Linearizing Control, Prentice-
Hall, 1997.
2Henson, M. and Seborg, D. “Adaptive Nonlinear Control of a pH Neutralization Process,” IEEE Transactions on
Control Systems Technology, Vol. 2, No. 3, August 1994.

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 11
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Figure 11.1: Chemical mixing problem.

How It Works

Reaction invariants are quantities whose values do not change during a reaction. Each is a com-
bination of chemicals that do not vary. Our inputs are nitric acid (HNO3), sodium bicarbonate
or baking soda (NaHCO3), and sodium hydroxide or lye (NaOH). There is a pair of invariants
for each input stream i. The two reaction invariants Wa and Wb are

Wai = [H+]i − [OH−]i − [HCO−
3 ]i − 2[CO=

3 ]i (11.1)

Wbi = [H2CO3]i + [HCO−
3 ]i + [CO=

3 ]i (11.2)

i = 1 is for the acid stream, i = 2 for the buffer stream, i = 3 for the base stream, and i = 4
is for the mixed effluent. These combinations of chemicals do not change. The amounts of the
combinations may change. The dynamical equations for the effluent invariants are derived via
mass balances to be

Ẇa4 =
1

Ah
(Wa1 −Wa4)q1 +

1

Ah
(Wa2 −Wa4)q2 +

1

Ah
(Wa3 −Wa4)q3 (11.3)

Ẇb4 =
1

Ah
(Wb1 −Wb4)q1 +

1

Ah
(Wb2 −Wb4)q2 +

1

Ah
(Wb3 −Wb4)q3 (11.4)

where qi is the volumetric flow rates for the ith stream, A is the cross-sectional area of the
mixing tank, and h is the liquid level. The volumetric flow rates are inputs. The liquid level is
governed by a differential equation:

ḣ =
1

A
[q1 + q2 + q3 − Cv(h+ z)n] (11.5)

where Cv is the valve coefficient, n is the valve exponent, and z is the vertical distance be-
tween the bottom of the mixing tank and the outlet of the effluent stream. We can measure
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h. Normally, we need to estimate the reaction invariants, but for this problem, we will assume
they are measured. These equations are all first order and are therefore the state equations for
the system. The flow rates are all multiplied by the states, meaning that their influence on the
derivatives is a product of the states and the streams. The differential equations for the effluent
invariants are singular when h = 0. This is because if the tank is empty, the flows have to be
zero.

The resulting right-hand-side function, RHSpH, is shown in the following. This follows the
format needed by our RungeKutta integrator (see Recipe 6.2), that is, RHS(t,x,d), with a
tilde replacing the first input, as the dynamics are independent of time. Note the data structure
which is defined and returned if there are no inputs. This model has quite a few parameters
which are documented in the header.

RHSpH.m

1 %% RHSPH Dynamics of a chemical mixing process.
2 % The process consists of an acid (HNO3) stream, buffer (NaHCO3) stream

,
3 % and base (NaOH) stream that are mixed in a stirred tank. The mixed

effluent
4 % exits the tank through a valve. The chemical equilibria is modeled by
5 % introducing two reaction invariants for each inlet stream. i = 1 for

the
6 % acid, i = 2 for the buffer, i = 3 for the base, and i = 4 for the
7 % effluent.
8 %
9 % + - - =

10 % wAi = [H ]i - [OH ]i - [HCO3 ]i - 2[CO3 ]i
11 % - =
12 % wBi = [H2CO3]i + [HCO3 ]i + 2[CO3 ]i
13 %
14 %% Forms
15 % d = RHSpH
16 % xDot = RHSpH( t, x, d )
17 %
18 %% Inputs
19 % t (1,1) Time, unused
20 % x (3,1) State [wA4;wB4;h]
21 % d (.) Structure
22 % .wA1 (1,1) Acid invariant A, (M)
23 % .wA2 (1,1) Buffer invariant A, (M)
24 % .wA3 (1,1) Base invariant A, (M)
25 % .wB1 (1,1) Acid invariant B, (M)
26 % .wB2 (1,1) Buffer invariant B, (M)
27 % .wB3 (1,1) Base invariant B, (M)
28 % .a (1,1) Cross-sectional area of mixing

tank (cm2)
29 % .cV (1,1) Valve coefficient
30 % .n (1,1) Valve exponent
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31 % .z (1,1) Vertical distance between bottom
of

32 % tank and outlet of effluent (cm)
33 % .q1 (1,1) Volumetric flow of HNO3 (ml/s)
34 % .q2 (1,1) Volumetric flow of NaHCO3 (ml/s)
35 % .q3 (1,1) Volumetric flow of NaOH (ml/s)
36 %
37 %% Outputs
38 % xDot (3,1) State derivative
39 %
40 %% Reference
41 % Henson, M. A. and D. E. Seborg. (1997.) Nonlinear Process
46 % All rights reserved.
47

48 function xDot = RHSpH( ˜, x, d )
49

50 if( nargin < 1 )
51 % Note: Cv was omitted in the reference; we calculated it assuming a

constant
52 % liquid level in the tank of 14 cm.
53 d = struct('wA1',0.003,'wA2',-0.03,'wA3',-3.05e-3,...
54 'wB1',0.0, 'wB2', 0.03,'wB3', 5.0e-5,...
55 'a',207,'cV',4.5860777,'n',0.607,'z',11.5,...
56 'q1',16.6,'q2',0.55,'q3',15.6);
57 xDot = d;
58 if( nargout == 0 )
59 disp('RHSpH struct:');
60 end
61 return;
62 end
63

64 wA4 = x(1);
65 wB4 = x(2);
66 h = x(3);
67

68 hA = 1/(h*d.a);
69

70 xDot = [hA*( (d.wA1 - wA4)*d.q1 + (d.wA2 - wA4)*d.q2 + (d.wA3 - wA4)*d
.q3 );...

71 hA*( (d.wB1 - wB4)*d.q1 + (d.wB2 - wB4)*d.q2 + (d.wB3 - wB4)*d
.q3 );...

72 d.q1 + d.q2 + d.q3 - d.cV*(h + d.z)ˆd.n];

The default values in the data structure are drawn from the data in the reference, with the
exception of Cv; this was neglected by the reference so we calculated a value for an equilibrium
tank level.
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1 ans =
2

3 wA1: 0.003
4 wA2: -0.03
5 wA3: -0.00305
6 wB1: 0
7 wB2: 0.03
8 wB3: 5e-05
9 a: 207

10 cV: 4.5861
11 n: 0.607
12 z: 11.5
13 q1: 16.6
14 q2: 0.55
15 q3: 15.6

In this chapter, we are interested in control about an equilibrium point. We could rewrite
the equations as linear equations in which each state and input is replaced with, for example

q3 = q30 + δq3 (11.6)

h = h0 + δh (11.7)

where δq3 is small. We could then formally derive the linear control system. We will leave that
for the interested reader and just go ahead and implement a linear control system.

11.2 Sensing the pH of the Chemical Process
Problem

The pH sensor is modeled by a nonlinear equation that cannot be solved explicitly for pH.

Solution

Use the MATLAB fzero function to solve for pH.

How It Works

The equation for pH is1

0 = Wa4 + 10(pH−14) − 10−pH +Wb4
1 + 2× 10(pH−pK2)

1 + 10(pK1−pH) + 10(pH−pK2)
(11.8)

Recall that Wa4 and Wb4 are the reaction invariants for the mixed effluent as defined in
Recipe 11.1. pK1 and pK2 are the base-10 logarithms of the H2CO3 and HCO−

3 disassoci-
ation constants.

pKa = − log10 Ka
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The function that generates the measurement is PHSensor. Its inputs are two of the states
of the system, WA4 and WB4, and the dissociation constants.

PHSensor.m

1 %% PHSENSOR Model pH measurement of a mixing process
2 % Compute pH as a function of wA4 and wB4 and also the slope of pH with
3 % respect to those states. Requires the use of fzero.
4 %
5 %% Forms
6 % pH = PHSensor( x, d )
7 % d = PHSensor('struct')
8 %
9 %% Inputs

10 % x (2,:) State [wA4;wB4]
11 % d (.) Data structure
12 % .pK1 (1,1) Base 10 log of a disassociation constant

(H2CO3)
13 % .pK2 (1,1) Base 10 log of a disassociation constant

(HCO3-)
14 %
15 %% Outputs
16 % pH (:,:) pH of the solution
17 %
18 %% Reference
19 % Henson, M. A. and D. E. Seborg. Nonlinear Process control, Prentice-

Hall,
20 % 1997. pp. 207-210.

The body of PHSensor calls fzero to compute the pH. This requires an objective func-
tion that will be searched for a zero near the input point. We use a neutral pH of 7.0 as the initial
condition for the optimization. We could have warm started the function by using the last value
that was computed. This is a good approach if the inputs don’t change quickly. The function is
vectorized for multiple input states, computing a square matrix of pH with the combinations of
Wa4 and Wb4.

43

44 % Compute the pH starting from neutral
45 n = size(x,2);
46 pH = zeros(n,n);
47 pH0 = 7.0;
48 for k = 1:n
49 for j = 1:n
50 d.wA4 = x(1,k);
51 d.wB4 = x(2,j);
52 pH(k,j) = fzero( @Fun, pH0, [], d );
53 end
54 end
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TIP Use fzero to solve for the zero point for complex single equations. Use
fminzero for sets of equations with multiple values to be found that minimized the func-
tion.

Notice that as per our usual pattern, we have defined a data structure d for passing data to
the sensor model. Our two parameters are pK1 and pK2.

38 % Default data structure
39 if( ischar(x) )
40 pH = struct('pK1',-log10(4.47e-7),'pK2',-log10(5.62e-11));
41 return
42 end

Equation 11.8 is embodied in the subfunction Fun which is passed to fzero.

71 function y = Fun( pH, d )
72 %%% PHSensor>Fun Function to be zeroed via fzero
73 % y = Fun( pH, d )
74

75 y = d.wA4 + 10ˆ(pH-14) - 10ˆ(-pH) ...
76 + d.wB4*(1 + 2*10ˆ(pH-d.pK2))/(1 + 10ˆ(d.pK1-pH) + 10ˆ(pH-d.

pK2));

We include a demo in the function as suggested in the best practices described in the style
recipes. The demo specifies a range of values for the states – the invariants – based on the
numbers in the reference.

28 % Demo
29 if( nargin < 1 )
30 disp('Demo of PHSensor...');
31 x(1,:) = linspace(-9e-4,0);
32 x(2,:) = linspace(0,1e-3);
33 d = PHSensor('struct');
34 PHSensor( x, d );
35 return
36 end

The results are plotted at the end of the main function using mesh. The mesh is the default
plot.

56 % If no outputs, plot pH
57 if( nargout == 0 )
58 h = figure;
59 set(h,'Name','PH Sensor');
60 mesh(pH)
61 xlabel('WB4');
62 ylabel('WA4');
63 zlabel('pH')
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Figure 11.2: surf and mesh plots of the pH sensor output.

64 grid on
65 rotate3d on
66

67 clear pH
68 end

The plotting uses the mesh function. It is important to remember that the rows of p cor-
respond to Wa4 and the columns to Wb4. Columns are x and rows are y in the mesh plot.
Figure 11.2 shows the mesh plot and also the alternative surf plot (with 'edgecolor' set
to 'none'). Note the two MATLAB commands:

grid on
rotate3d on

Always use the on to be certain that the commands are executed rather than toggled. Other-
wise, you can get unexpected results if you have just run another script or function with those
commands.

Notice that the relationship between the pH and the reaction invariants is highly nonlinear.
We would ideally like a relationship

pH = c

[
Wa4

Wb4

]
(11.9)

where c is a 2-by-2 matrix with constant coefficients. This might be true in the flat regions but
is not true in the “waterfall” region.

When using this function in a simulation, we need it to run as fast as possible, without
any diagnostics installed for fzero. During debugging, however, you may need additional
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information. fzero can display information on each iteration by setting the Display option.
For instance, with the 'iter' setting, it will print out information for each iteration. The
updated fzero call is

1 pH(k,j) = fzero( @Fun, pH0, optimset('Display','iter'), d );

and the results for a single state are

>> d = PHSensor('struct')
d =

pK1: 6.3497
pK2: 10.25

>> pH = PHSensor( [-4.32e-4;5.28e-4], d )

Search for an interval around 7 containing a sign change:
Func-count a f(a) b f(b)

Procedure
1 7 -2.39821e-07 7 -2.39821e-07 initial

interval
3 6.80201 -4.16536e-05 7.19799 3.09792e-05 search

Search for a zero in the interval [6.80201, 7.19799]:
Func-count x f(x) Procedure

3 7.19799 3.09792e-05 initial
4 7.0291 4.96758e-06 interpolation
5 7.00028 -1.88684e-07 interpolation
6 7.00133 3.84365e-09 interpolation
7 7.00131 2.86799e-12 interpolation
8 7.00131 0 interpolation

Zero found in the interval [6.80201, 7.19799]

pH =

7.0013

This was a very rapid solution as it is very near the starting point of 7.0. Note that fzero
first found an interval containing a sign change, then searched for the zero. fzero can also out-
put diagnostic information when complete instead of printing it during operation. For instance,
if the call is

1 [pH(k,j),fval,exitflag,output] = fzero( @Fun, pH0, [], d );
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then the output structure will be available, such as

1 output =
2

3 intervaliterations: 1
4 iterations: 5
5 funcCount: 8
6 algorithm: 'bisection, interpolation'
7 message: 'Zero found in the interval [6.80201, 7.19799]'

Note that the algorithm used, that is, bisection, is listed along with the total number of
iterations and function evaluations. Consider a slight variation of the input state, lowering Wb4
to 4e−4 M. The number of iterations jumps significantly.

>> pH = PHSensor( [-4.32e-4;4e-4], d )
output =

intervaliterations: 8
iterations: 7
funcCount: 24
algorithm: 'bisection, interpolation'

message: 'Zero found in the interval [4.76, 9.24]'
pH =

9.022

Note in particular that viewing the diagnostic information for your problem can help confirm
if your tolerances are suitable. Consider the final iterations of the previous case:

Search for a zero in the interval [4.76, 9.24]:
Func-count x f(x) Procedure

17 9.24 2.04571e-05 initial
18 9.04068 1.42294e-06 interpolation
19 9.02583 2.87604e-07 interpolation
20 9.02207 5.59178e-09 interpolation
21 9.02199 2.25694e-11 interpolation
22 9.02199 1.7808e-15 interpolation
23 9.02199 5.42101e-20 interpolation
24 9.02199 5.42101e-20 interpolation

The search pushed the function value all the way down to 5.4e-20, which may be more
restrictive than needed. The default tolerances can be viewed by getting the default options
structure using optimset.

>> options = optimset('fzero')

options =

Display: 'notify'
MaxFunEvals: []
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Figure 11.3: Function evaluations for the PHSensor algorithm.

MaxIter: []
TolFun: []

TolX: 2.2204e-16
FunValCheck: 'off'

OutputFcn: []
PlotFcns: []

The default tolerance on the function value, TolX, is 2.2204e-16. Note that we passed in
the name of the selected optimization routine, fzero, to optimset. The same can be done
with fminbnd and fminsearch.

TIP Use optimset with the name of the optimization function to get the default
options structure.

Now consider that you want to evaluate how fzero is performing over a range of inputs.
Assume that we create a separate function for Fun and make a script to record extra data
from output during a run. Figure 11.3 shows a plot using pcolor of the resulting recorded

309



CHAPTER 11 CHEMICAL PROCESSES

function evaluations. We can see the rapid changes due to the nonlinearities of the model. The
maximum number of function evaluations does not exceed 35.

The augmented code creating the plot is shown as follows:

SensorTest.m

1 %% Script for debugging PHSensor algorithm
6

7 % Nominal operating conditions from the reference
8 x10 = -4.32e-4;
9 x20 = 5.28e-4;

10

11 x = [];
12 x(1,:) = linspace(2*x10,0);
13 x(2,:) = linspace(0,2*x20);
14 d = PHSensor('struct');
15

16 % Compute the pH starting from neutral
17 n = size(x,2);
18 pH = zeros(n,n);
19 fEvals = zeros(n,n);
20 pH0 = 7.0;
21 for k = 1:n
22 for j = 1:n
23 d.wA4 = x(1,k);
24 d.wB4 = x(2,j);
25 % Options: TolX, Display, FunValCheck
26 % ('TolX',1e-10);
27 % ('Display','iter')
28 % ('FunValCheck','on') % no errors found for demo
29 options = optimset('FunValCheck','on');
30 [pH(k,j),fval,exitflag,output] = fzero( @Fun, pH0, options, d );
31 fEvals(k,j) = output.funcCount;
32 end
33 end
34

35 figure('Name','PH Sensor');
36 surf(pH,'edgecolor','none')
37 xlabel('WB4');
38 ylabel('WA4');
39 zlabel('pH')
40 grid on
41 rotate3d on
42

43 figure('Name','Evaluations')
44 s = pcolor(x(2,:),x(1,:),fEvals);
45 set(s,'edgecolor','none')
46 xlabel('WB4');
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47 ylabel('WA4');
48 colormap jet
49 title('Function Evaluations by fzero')

11.3 Controlling the Effluent pH
Problem

We want to control the pH level in the mixing tank when the flow of acid or base varies.

Solution

We will vary the base stream, i = 3, to maintain the pH. This means changing the value of q3
using a proportional-integral controller. This will allow us to handle step disturbances.

How It Works

A proportional-integral controller is of the form

u = K

(
1 +

1

τ

∫ )
y (11.10)

where u is the control, y is the measurement, τ is the integrator time constant, and K is the
forward (proportional) gain. The control is u = q3 and the measurement is y = pH. This
makes this a single-input-single-output process. However, the connection between q3 and pH
involves three dynamical states h, Wa4, and Wb4, and the relationship between the states and
pH is nonlinear. Another issue is that q3 cannot be negative, that is, we cannot extract the base
from the tank. This should not pose a problem if the equilibrium q3 is high enough.

Despite these potential problems, this very simple controller will work for this problem for
a fairly wide range of disturbances. The equilibrium value is input with a perturbation that has
a proportional and integral term. The integral term uses a simpler Euler integration. The full
script is described in the next recipe; here, we will call attention to the lines implementing the
control.

The control variables are defined in the following. The pH set point is neutral, that is, a pH
of 7. kF is the forward gain and tau is the time constant from Equation 11.10, set to 2 and
60 seconds, respectively. q3Set is the nominal set point for the base flow rate, taken from the
reference.

PHProcessSim.m

41 %% Control design
42 pHSet = 7.0;
43 tau = 60.0; % (sec)
44 kF = 2.0; % forward gain
45 q3Set = 15.6; % (ml/s)
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The following code snippet shows the implementation that takes place in a loop. The error is
calculated as the difference between the modeled pH measurement and the pH set point. Note
the Euler integration, where intErr is updated using simply the time step times the error.
Note also that we have a flag, controlIsOn, which allows us to run the script in open loop,
without the control being applied.

68 % Proportional-integral Control
69 err = pH - pHSet;
70 if controlIsOn
71 d.q3 = q3Set - kF*(err + intErr/tau);
72 intErr = intErr + dT*err;
73 else
74 d.q3 = q3Set;
75 end

To rigorously determine the forward gain and time constant for this problem, we would
need to linearize the right-hand side for the simulation at the operating point and do a rigorous
single-input-single-output control design that would involve Bode plots, root locus, and other
techniques. This is beyond the scope of this book. For now, we simply select values which
produce a reasonable response.

11.4 Simulating the Controlled pH Process
Problem

We want to simulate the stirred tank – mixing three streams: acid, buffer, and base – to demon-
strate the control of the pH level. The base stream will be our control variable in response to
perturbations in the buffer and acid streams.

Solution

We will write a script PHProcessSimwith the controller starting at an equilibrium state. We
will use the proportional-integral controller as derived in the previous recipe. We will structure
the script to allow us to insert pulses in either or both the acid and buffer streams.

How It Works

Our disturbances d are deviations in q1 and q2:

d =

[
q1
q2

]
(11.11)
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which are the acid and buffer streams. The base stream is q3 and the reaction invariants for the
mixed effluent are Wa4 and Wb4. The system, as coded, is shown in Figure 11.4.

We specify the user inputs to the script first. We are putting it into an equilibrium state
and will investigate small disturbances from steady state. There is a flag, controlIsOn, for
turning the control system on or off. The time step and duration are determined by iterating
over a few values.

PHProcessSim.m

12 %% User inputs
13

14 % Time (sec)
15 tEnd = 60*60;
16 dT = 1.0;
17

18 % States
19 wA4 = -4.32e-4; % Reaction invariant A for effluent stream (M)
20 wB4 = 5.28e-4; % Reaction invariant B for effluent stream (M)
21 h = 14.0; % liquid level (cm)
22

23 % Closed or open loop
24 controlIsOn = true;

The disturbances are generated as pulses to d.q1 and d.q2. The user parameters are the
size and the start/stop times of the pulses. This setup will allow us to run cases similar to the
reference.

26 % Disturbances
27 % The pulses will be applied according to the start and end times of

tPulse:
28 % q1 = q10 + deltaQ1; and q2 = q20 + deltaQ2;
29 % Small pulse: 0.65 ml/s in q2
30 % Large pulses: 2.0 ml/s
31 % Very large pulses: 8.0 ml/s
32 deltaQ1 = 8.0; % +/- 1.5
33 deltaQ2 = 0.0; % 0.65 1.45 0.45 -0.55 % values from reference
34 tPulse1 = [5 15]*60;
35 tPulse2 = [5 35]*60;

In the remainder of the script, we obtain the data structures defined in the previous recipes,
specify the control parameters, and create the simulation loop. The measurements of the invari-
ants are assumed to be exact; in practice, they need to be estimated. However, we should always
test the controller under ideal conditions first, to understand its behavior without complications.
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RungeKutta

RHSpH

PHSensor

For Loop

PHProcessSim

Control

Figure 11.4: Block diagram of the mixing simulation representing the process in Figure 11.1.
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The pH measurement is modeled using PHSensor from Recipe 11.2. The right-hand side for
the process is defined in Recipe 11.1. Integration is performed using the RungeKutta defined
in Chapter 7.

37 %% Data format
38 dSensor = PHSensor('struct');
39 d = RHSpH;
40

41 %% Control design
42 pHSet = 7.0;
43 tau = 60.0; % (sec)
44 kF = 2.0; % forward gain
45 q3Set = 15.6; % (ml/s)
46 q10 = d.q1;
47 q20 = d.q2;
48

49 %% Run the simulation
50

51 % Number of sim steps
52 n = ceil(tEnd/dT);
53

54 % Plotting arrays
55 xP = zeros(7,n);
56 t = (0:n-1)*dT;
57

58 % Initial states
59 x = [wA4;wB4;h];
60 intErr = 0;
61

62 for k = 1:n
63 % Measurement
64 dSensor.wA4 = x(1);
65 dSensor.wB4 = x(2);
66 pH = PHSensor( x, dSensor );
67

68 % Proportional-integral Control
69 err = pH - pHSet;
70 if controlIsOn
71 d.q3 = q3Set - kF*(err + intErr/tau);
72 intErr = intErr + dT*err;
73 else
74 d.q3 = q3Set;
75 end
76

77 % Disturbance
78 if( t(k) > tPulse1(1) && t(k) < tPulse1(2) )
79 d.q1 = q10 + deltaQ1;
80 else
81 d.q1 = q10;
82 end
83
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84 if( t(k) > tPulse2(1) && t(k) < tPulse2(2) )
85 d.q2 = q20 + deltaQ2;
86 else
87 d.q2 = q20;
88 end
89

90 % Store data for plotting
91 xP(:,k) = [x;pH;d.q1;d.q2;d.q3];
92

93 % Integrate one step
94 x = RungeKutta( @RHSpH, 0, x, dT, d );
95 end
96

97 %% Plot
98 [t,tL] = TimeLabel(t);
99 yL = {'W_{a4}' 'W_{b4}' 'h' 'pH' 'q_1' 'q_2' 'q_3'};

100 tTL = 'PH Process Control';
101 if ˜controlIsOn
102 tTL = [tTL ' - Open Loop'];
103 end
104 PlotSet( t, xP,'x label',tL,'y label',yL,'plot title',tTL,'figure title

',tTL)
105 PlotSet( t, xP([4 7],:),'x label',tL,'y label',yL([4 7]),'plot title',

tTL,'figure title',tTL)

Now, we will give results for running this script with some different pulses. The nominal
plot gives all three states, the measured pH, and the flow rates for the acid, base, and buffer
streams. A more compact plot shows just the pH and the commanded value of q3. We added a
line in the plotting code to amend the plot title for an open loop response, so that if we run the
script repeatedly, we can more easily identify the plots.

TIP Use your control flags and string variables to customize the names of your plots.

Figure 11.5 shows the closed loop response with no disturbances at all, run for 30 simulated
minutes. We can see that the values from the reference have not produced an exact equilibrium,
but that the values achieved are quite close. The reaction invariant Wb4 changes by less than
0.005 ×10−4, the liquid level h by less than 0.1 cm, and the base flow rate q3 by about 0.05
ml/s. This is the equivalent to a very small step response. Note the settling time is about 5
minutes. These results give us confidence that we have coded the problem correctly. We will
see this initial response in the following simulations, before the perturbations are applied.
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Figure 11.5: Closed loop response with no perturbations.
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Figure 11.6: Open loop response with a 0.65 ml/s pulse in q2.

Next, Figure 11.6 shows the open loop response with a pulse of 0.65 ml/s in the buffer
stream starting at 20 minutes and ending at 40 minutes. Note that the pH rises to nearly 7.4,
and q3 does in fact stay constant at our set point. Figure 11.7 shows the closed loop transients
in the pH and base flow q3. The pH rise is limited to less than 7.2, and the pH and base flow
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Figure 11.7: Performance of the controller with a 0.65 ml/s pulse in q2.

rate reach equilibrium within about 10 minutes of the start and end of the pulse. This compares
favorably with the plots in the reference, which compare adaptive and nonadaptive nonlinear
control schemes.

Figure 11.8 shows the transients with larger offset perturbations of 2 ml/s in both q1 and
q2. The pulse in q1 is applied from 5 to 15 minutes and the pulse in q2 from 25 to 40 minutes.
Figure 11.9 has plots of just the pH and control flow q3.
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Figure 11.8: Performance of the controller with large perturbations of 2 ml/s in q1 and q2.
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Figure 11.9: Larger plots of the q1 /q2 perturbation results.

Figure 11.10 shows the transients with a very large perturbation in q2 of 8 ml/s from 5 to
35 minutes. The controller no longer works very well, with a much longer settling time than
the previous examples and the base flow rate q3 still dropping at the end of the pulse. A pulse
value of 10 ml/s causes the simulation to “blow up” or produce imaginary values. It is always
necessary to see the limits of the control performance in a nonlinear system.
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Figure 11.10: Performance of the controller with a very large perturbation (8 ml/s) in q2.
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Figure 11.11: Profiler summary from the simulation.

Finally, since we are using a numerical optimization routine, it is instructive to profile the
simulation to determine the proportion of the execution time spent on fzero. The Profiler
can be accessed from the command window button called “Run and Time.” The summary
from running our pH simulation is shown in Figure 11.11. Out of nearly 19 seconds spent
in the simulation, fully 12.6 seconds are spent inside fzero itself. Only 4.4 seconds were
spent integrating of which 3.4 seconds were spent in the right-hand side. The summary has
hyperlinks to the individual functions, which are timed line by line. Figure 11.12 shows the time
spent inside fzero, with percentages calculated in addition to absolute times. Our objective
function, PHSensor>Fun, was called 56,131 times, taking only 1.27 seconds (10% of the
execution time). Significant chunks of time were spent in sprintf and optimget.
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Figure 11.12: Profiler results for fzero.
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TIP Always do a run with the Profiler when you are implementing a numerical search
or optimization routine. This gives you insight into the number of iterations used and any
unsuspected bugs in your code.

In this case, there is not much optimization that can be done as most of the time is spent
in fzero itself and not in our objective function, but we wouldn’t have known that without
running the analysis. Whenever you are using numerical tools and have a script or function
taking more than a second or two to run, analysis with Profiler is merited.

Summary
This chapter has demonstrated how to write the dynamics and implement a simple control law
for a chemical process. The process is highly nonlinear, but we can control the process with a
simple proportional-integral controller. The pH sensor does not have a closed form solution, and
we use the MATLAB fzero function to find the pH from the invariants. We demonstrated the
use of MATLAB plotting functions mesh and surf for showing three-dimensional data. We
use our simulation script to evaluate the performance of the controller for a variety of conditions
and run the script in the Profiler to analyze the time spent on the numerical routines. Table 11.1
lists the code developed in the chapter.

Table 11.1: Chapter Code Listing

File Description
PHSensor Model pH measurement of a mixing process
PHProcessSim Simulation of a pH neutralization process
RHSpH Dynamics of a chemical mixing process
SensorTest Script to test the sensor algorithm
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Aircraft

Our aircraft model will be a three-dimensional point mass model. This models the translational
dynamics in three dimensions. Translation is motion in the x, y, and z directions. An aircraft
controls its motion by changing its orientation with respect to the wind (banking and angle of
attack) and by changing the thrust its engine produces. In our model, we assume that our air-
plane can instantaneously change its orientation and thrust for control purposes. This simplifies
our model but at the same time allows us to simulate most aircraft operations, such as takeoff,
level flight, and landing. We also assume that the mass of the aircraft does not vary with time.

12.1 Creating a Dynamical Model of an Aircraft
Problem

We need a numerical model to simulate the three-dimensional trajectory of an aircraft in the
atmosphere. The model should allow us to demonstrate control of the aircraft from takeoff to
landing.

Solution

We will build a six-state model using flight path coordinates. Our controls will be the roll
angle, angle of attack, and thrust. We will not simulate the attitude dynamics of the aircraft.
The attitude dynamics are necessary if we want to simulate how long it takes for the aircraft
to change the angle of attack and roll angle. In our model, we will assume the aircraft can
instantaneously change the angle of attack, roll angle, and thrust.

How It Works

Our aircraft will have six states, needed to simulate the velocity and position in three dimen-
sions, and three controls. Our controls will be the roll angle, φ; angle of attack, α; and thrust T .
We aren’t going to use Cartesian (x, y, z) coordinates and their time derivatives (i.e., velocities)
as states; instead, we will use flight path coordinates. Flight path coordinates are shown in two
dimensions in Figure 12.1. The roll, φ, is about the x axis, and the heading ψ is out of the page.
Drag D is opposite to the velocity vector. The angle of attack α is adjusted to change the lift

© Michael Paluszek and Stephanie Thomas 2020
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Figure 12.1: Flight path coordinates in two dimensions.

L and drag. The thrust vector T is aligned with the body x axis. The flight path angle γ is the
angle between the x axis and the velocity vector V . The state vector, s, is

s =

⎡
⎢⎢⎢⎢⎢⎢⎣

v
γ
ψ
x
y
h

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.1)

v is the velocity magnitude, γ is the flight path angle in the xz plane, ψ is the angle in the
xy plane, and x, y, h are the Cartesian coordinates. h is the altitude or the z coordinate. The
dynamical equations are

⎡
⎢⎢⎢⎢⎢⎢⎣

v̇
γ̇

ψ̇
ẋ
ẏ

ḣ

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T cosα−D
m − g cos γ

(L+T sinα) cosφ−mg cos γ
mv

(L+T sinα) sinφ
mv cos γ

v cos γ cosψ
v cos γ sinψ
v sin γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12.2)
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g is the gravitational acceleration, m is the mass, D is the drag force, and L is the lift force.
Define the dynamic pressure as

q =
1

2
ρv2 (12.3)

where ρ is the atmospheric density. Our simple lift and drag model is

D = q
(
CD0 + kC2

L

)
(12.4)

L = qCL (12.5)

CL = CLαα (12.6)

The first equation is called the drag polar. CD0 is the drag at zero lift. k is the drag from the
lift coupling coefficient. Polar comes from the C2

L term. This lift model is only valid for small
angles of attack α as it does not account for stall, which is when the airflow becomes detached
from the wing and the lift goes to zero rapidly.

Our RHS function that implements these equations is RHSAircraft. Notice that the
equations are singular when v = 0 in Equation 12.2. We warn about this in the header. If called
without arguments, the functions return the data structure. This is a handy way of making a
complex function easier to use. It also gives the user an idea of what the parameters should be.
All parameters must be in Meters-Kilogram-Second (MKS) units.

RHSAircraft.m

1 %% RHSAIRCRAFT Dynamics for a six DOF point mass aircraft model.
2 %% Form
3 % d = RHSAircraft;
4 % [sDot, D, LStar] = RHSAircraft( t, s, d )
5 %% Description
6 % Computes the right hand side for a point mass aircraft. If you call

it
7 % without any arguments, it will return the default data structure.
8 % sDot(2) and sDot(3) will be infinite when v = 0. The default

atmosphere
9 % model is AtmosphericDensity which uses an exponential atmosphere.

10 %
11 %% Inputs
12 % t (1,1) Time (unused)
13 % s (6,1) State vector [v;gamma;psi;x;y;h]
14 % d (.) Data structure
15 % .m (1,1) Aircraft mass
16 % .g (1,1) Gravitational acceleration
17 % .thrust (1,1) Thrust
18 % .alpha (1,1) Angle of attack
19 % .phi (1,1) Roll angle
20 % .s (1,1) Surface area
21 % .cD0 (1,1) Zero lift drag
22 % .k (1,1) Lift drag coupling term
23 % .cLAlpha (1,1) Lift coefficient
24 % .density (1,1) Pointer to the atmospheric
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25 % density function
26 %
27 %% Outputs
28 % sDot (6,1) State vector derivative d[v;gamma;psi;x;y;h]/dt
29 % D (1,1) Drag
30 % LStar (1,1) Lift/angle of attack

The function body is shown in the following. We assemble the state derivative, sDot, as
one array since the terms are simple. Each element is on a separate line for readability. We
return D and LStar as auxiliary outputs for use by the equilibrium calculation.

36 function [sDot, D, LStar] = RHSAircraft( ˜, s, d )
37

38 % Default data structure
39 if( nargin == 0 )
40 sDot = struct('m',5000, 'g', 9.806, 'thrust',0,'alpha',0, 'phi',0,...
41 'cLAlpha',2*pi,'cD0',0.006,'k',0.06,'s',20,'density',

@AtmosphericDensity);
42 if( nargout == 0 )
43 disp('RHSAircraft struct:')
44 end
45 return
46 end
47

48 % Save as local variables
49 v = s(1);
50 gamma = s(2);
51 psi = s(3);
52 h = s(6);
53

54 % Trig functions
55 cG = cos(gamma);
56 sG = sin(gamma);
57 cPsi = cos(psi);
58 sPsi = sin(psi);
59 cB = cos(d.phi);
60 sB = sin(d.phi);
61

62 % Exponential atmosphere
63 rho = feval(d.density,h);
64

65 % Lift and Drag
66 qS = 0.5*rho*d.s*vˆ2; % dynamic pressure
67 cL = d.cLAlpha*d.alpha;
68 cD = d.cD0 + d.k*cLˆ2;
69 LStar = qS*d.cLAlpha;
70 L = qS*cL;
71 D = qS*cD;
72

73 % Velocity derivative
74 % sDot is d[v;gamma;psi;x;y;h]/dt
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75 lT = L + d.thrust*sin(d.alpha);
76 sDot = [ (d.thrust*cos(d.alpha) - D)/d.m - d.g*sG;...
77 (lT*cB - d.m*d.g*cG)/(d.m*v);...
78 lT*sB/(d.m*v*cG);...
79 v*cPsi*cG;...
80 v*sPsi*cG;...
81 v*sG];

A more sophisticated right-hand side would pass function handles for the drag and lift
calculations so that the user could use their own model. We pass a function handle for the
atmospheric density calculation to allow the user to select their density function. We could have
done the same for the aerodynamics model. This would make RHSAircraftmore flexible.

Notice that we had to write an atmospheric density model, AtmosphericDensity, to
provide as a default for the RHS function. This model uses an exponential equation for the
density, which is the simplest possible representation. The function has a demo demonstrating
the model which uses a log scale for the plot. This function also plots the results if no outputs
are requested. This is also useful for helping users figure out what a function does.

AtmosphericDensity.m

1 %% ATMOSPHERICDENSITY Compute atmospheric density from an exponential
model.

2 % Computes the atmospheric density at the given altitude using an
3 % exponential model. Produces a demo plot up to an altitude of 100 km.
4 %% Form
5 % rho = AtmosphericDensity( h )
6 %
7 %% Inputs
8 % h (1,:) Altitude (m)
9 %

10 %% Outputs
11 % rho (1,:) Density (kg/mˆ3)
16

17 function rho = AtmosphericDensity( h )
18

19 % Demo
20 if( nargin < 1 )
21 disp('Demo of AtmosphericDensity');
22 h = linspace(0,100000);
23 AtmosphericDensity( h );
24 return
25 end
26

27 % Density
28 rho = 1.225*exp(-2.9e-05*h.ˆ1.15);
29

30 % Plot if no outputs are requested
31 if( nargout < 1 )
32 PlotSet(h,rho,'x label','h (m)','y label','Density (kg/mˆ3)',...
33 'figure title','Exponential Atmosphere',...
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34 'plot title','Exponential Atmosphere',...
35 'plot type','y log');
36 clear rho
37 end

12.2 Finding the Equilibrium Controls for an Aircraft Using
Numerical Search

Problem

We want to find roll angles, thrusts, and angles of attack that cause the velocity, flight path
angle, and bank angle state (roll angle) derivatives to be zero. This is a point of equilibrium.
This is commonly called the trim condition.

Solution

We will use the Downhill Simplex algorithm, via the MATLAB function fminsearch, to
find the equilibrium angles. fminsearch supports multivariable unconstrained optimization.
The optimization toolbox in MATLAB provides additional functions with more options, such
as handling constraints, that is, limits on the controls.

How It Works

The first step is to find the controls that produce a desired equilibrium state, known as the set
point. Define the set point as the vector:

⎡
⎣ vs

γs
ψs

⎤
⎦ (12.7)

with set values for the velocity vs, heading ψs, and flight path angle γs. We want to find
controls that will have the aircraft at an equilibrium state. That means that if the controls are
set just right, those quantities will not change. For example, a level flight in an aircraft is an
equilibrium state. The altitude, speed, and direction are close to constant. Substitute these into
the first three dynamical equations from Equation 12.2 and set the left-hand side to zero.

0 =

⎡
⎣ T cosα−D(vs, α)−mg cos γs

(L(vs, α) + T sinα) cos φ−mg cos γs
(L(vs, α) + T sinα) sin φ

⎤
⎦ (12.8)

The controls are the angle of attack, α; roll angle, φ; and thrust, T . Since we have three equa-
tions in three unknowns, we can get a single solution. An easy way to solve for the equilibrium
controls is to use fminsearch. fminsearch works pretty well for this kind of problem.
The result that it finds may not be the only possible solution. You might find other solutions
from starting with a different initial guess since fminsearch is not a global optimization
function. This routine will find the three controls that zero the three equations.
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The function, EquilibriumControl.m, uses fminsearch in a loop to handle mul-
tiple states. Within the loop, we compute an initial guess of the control. The thrust will need
to balance the drag so we compute this at zero angle of attack. The lift must balance gravity so
we compute the angle of attack from that relationship. Without a reasonable initial guess, the
algorithm will converge to a local minimum but not necessarily the global minimum. The cost
function is nested within the control function. The function can solve for multiple sets of states,
hence the n.

EquilibriumControl.m

26 function [u, c] = EquilibriumControl( x, d, tol )
43

44 n = size(x,2);
45 u = zeros(3,n);
46 c = zeros(1,n);
47 p = optimset('TolFun',tol);
48 % additional options during testing:
49 %'PlotFcns',{@optimplotfval,@PlotIteration},'Display','iter','MaxIter

',50);
50 for k = 1:n
51 [˜,D,LStar] = RHSAircraft(0,x(:,k),d);
52 alpha = d.m*d.g/LStar;
53 u0 = [D;alpha;0];
54 [umin,cval,exitflag,output] = fminsearch( @Cost, u0, p, x(:,k), d );
55 u(:,k) = umin;
56 c(k) = Cost( u(:,k), x(:,k), d );
57 end

The default output is to plot the results.

59 % Plot if no outputs are specified
60 if( nargout == 0 )
61 yL = {'T (N)', '\alpha (rad)', '\phi (rad)' 'Cost'};
62 s = 'Equilibrium Control:Controls';
63 PlotSet(1:n,[u;c],'x label','set','y label',yL, ...
64 'plot title',s, 'figure title',s);
65

66 yL = {'v' '\gamma' '\psi' 'h'};
67 s = 'Equilibrium Control:States';
68 PlotSet(1:n,x([1:3 6],:),'x label','set','y label',yL, ...
69 'plot title',s,'figure title',s);
70 clear u
71 end

The cost sub (subfunction) function is shown in the following. We use a quadratic cost
that is the unweighted sum of the squares of the state derivatives. The cost is the quantity that
fminsearch tries to make as small as possible.

74 %%% EquilibriumControl>Cost
75 % Find the cost of a given control u.
76 %
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77 % c = Cost( u, x, d )
78 function c = Cost( u, x, d )
79

80 d.thrust = u(1);
81 d.alpha = u(2);
82 d.phi = u(3);
83

84 xDot = RHSAircraft(0,x,d);
85 y = xDot(1:3);
86 c = sqrt(y'*y);

The function has a built-in demo that looks at the thrust and angle of attack at a constant
velocity but increasing altitude, from 0 to 10 km. Built-in demos are always good, even if you
are the only person who ever uses the function.

29 if( nargin < 1 )
30 disp('Demo of EquilibriumControl with variable altitude:');
31 x = [200*ones(1,101);...
32 zeros(4,101);...
33 linspace(0,10000,101)];
34 d = RHSAircraft;
35 EquilibriumControl( x, d )
36 return;
37 end

Figure 12.2 shows the states for which the controls are calculated in the built-in demo.
Figure 12.3 shows the resulting controls. As expected, the angle of attack goes up with altitude,
but the thrust goes down. The decreasing air density reduces the drag and lift, so we need to
decrease the thrust but increase the angle of attack to generate more lift. The roll angle is nearly
zero.

In Figure 12.3, we also plot the cost. The cost should be nearly zero if the function is
working as desired.

During debugging while writing a function requiring optimization, it may be helpful to have
additional insight into the numerical search process. While we only need umin, consider the
additional outputs available from fminsearch in this version of the function call.

[umin,cval,exitflag,output] = fminsearch( @Cost, u0, p, x(:,k), d )

The output structure will include the number of iterations, and the exit flag will indicate the
exit condition of the function: whether the tolerance was reached (1), the maximum number of
allowed iterations was exceeded (0), or if a user-supplied output function terminated the search
(-1). We put a breakpoint in the script to check these outputs. For a state of v = 200 and
h = 300 at k = 4, the output will be

>> u0
u0 =

2880.4
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Figure 12.2: States for the demo. Only the altitude (h) is changing, following the desired flight path.

0.016255
0

>> [umin,cval,exitflag,output] = fminsearch( @Cost, u0, p, x(:,k), d );
umin =

3180.7
0.016237

3.459e-08

cval =

3.2473e-09
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Figure 12.3: Controls for the demo. The thrust decreases with altitude and angle of attack increases.

exitflag =

1

output =

iterations: 141
funcCount: 260
algorithm: 'Nelder-Mead simplex direct search'

message: 'Optimization terminated:
the current x satisfies the termination criteria using...'

So we can see that the search required 141 iterations and that the thrust increased to 3180.7
N from our initial guess of 2880.4 N. The resulting cost is 3× 10−9. For more information, set
the Display option of fminsearch to iter or final, with the default being notify. In
this case, the options look like

p = optimset('TolFun',tol,'Display','iter');
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and the following type of output will be printed to the command window:

>> d = RHSAircraft;
>> x = [200;0;0.5;0;0;5000];
>> EquilibriumControl( x, d )

Iteration Func-count min f(x) Procedure
0 1 0.0991747
1 4 0.0817065 initial simplex
2 6 0.0630496 expand
3 7 0.0630496 reflect
4 9 0.0133862 expand
5 10 0.0133862 reflect
6 11 0.0133862 reflect
7 13 0.0133862 contract outside
8 15 0.0133862 contract inside
...

49 87 2.1869e-05 contract inside
50 89 2.1869e-05 contract outside

Exiting: Maximum number of iterations has been exceeded
- increase MaxIter option.
Current function value: 0.000022

For additional insight, we can add a plot function to be called at every iteration. MATLAB
provides some default plot functions, for example, optimplotfval plots the cost function
value at every iteration. You have to actually open optimplotfval in an editor to learn the
necessary syntax. We add the function to the optimization options like this:

1 p = optimset('TolFun',tol,'PlotFcns',@optimplotfval);

and Figure 12.4 is generated from the first iteration of the demo.
We can see that the cost value was nearly constant, on this plot, for the final 100 iterations.

You can add additional plots using a cell array for PlotFcns, and each plot will be given its
own subplot axis automatically by MATLAB. For tough numerical problems, you might want
to generate a surface and trace the iterations of the optimization. For our problem, we add our
custom plot function PlotIteration, and the results look like Figure 12.5.

1 p = optimset('TolFun',tol,'PlotFcns',{@optimplotfval,@PlotIteration});

We wrote two functions, one to generate the surface and a second to plot the iteration step.
MATLAB sets the iteration value to zero during initialization, so in that case we generate the
surface from the given initial state. For all other iteration values, we plot the cost on the surface
using an asterisk.

85 y = xDot(1:3);
86 c = sqrt(y'*y);
88
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Figure 12.4: Function value plot using optimplotfval.

89 %%% EquilibriumControl>PlotIteration
90 % Plot an iteration of the numerical search.
91 %
92 % stop = PlotIteration(u0,optimValues,state,varargin)
93 function stop = PlotIteration(u0,optimValues,state,varargin)
94

95 stop = false;
96 x0 = varargin{1};
97 d = varargin{2};
98 switch state
99 case 'iter'

100 if optimValues.iteration == 0
101 a = PlotSurf( x0, u0, d );
102 end
103 plot3(u0(1),u0(2),optimValues.fval,'k*');
104 end
106

107 %%% EquilibriumControl>PlotSurf
108 % Plot a surface using the given initial state for a range of controls.
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Figure 12.5: Custom optimization plot function using a surface.

109 % MATLAB will already have an empty axis available for plotting.
110 %
111 % a = PlotSurf( x0, u0, d )
112 function a = PlotSurf( x0, u0, d )
113

114 u1 = linspace(max(u0(1)-1000,0),u0(1)+1000);
115 u2 = linspace(0,max(2*u0(2),0.1));
116 u3 = u0(3);
117 cvals = zeros(100,100);
118

119 for m = 1:100
120 for l = 1:100
121 cvals(l,m) = Cost( [u1(m);u2(l);u3], x0, d );
122 end
123 end
124

125 s = surf(u1,u2,cvals);
126 set(s,'edgecolor','none');
127 a = gca;

339



CHAPTER 12 AIRCRAFT

128 set(a,'Tag','equilibriumcontrol');
129 hold on;
130 xlabel('Thrust')
131 ylabel('Angle of Attack')

Note, finally, that to see the default set of options MATLAB uses for fminsearch, call
optimset with the name of the optimization function.

>> options = optimset('fminsearch')

options =

Display: 'notify'
MaxFunEvals: '200*numberofvariables'

MaxIter: '200*numberofvariables'
TolFun: 0.0001

TolX: 0.0001
FunValCheck: 'off'

OutputFcn: []
PlotFcns: []

We see that the default tolerances are equal, at 0.0001, and the number of function evalua-
tions and iterations is dependent on the number of variables in the input state x.

12.3 Designing a Control System for an Aircraft
Problem

We want to design a control system for an aircraft that will control the trajectory and allow for
a three-dimensional motion.

Solution

We will use dynamic plant inversion to feedforward the desired controls for the aircraft. Pro-
portional controllers will be used for thrust, angle of attack, and roll angle to adjust the nominal
controls to account for disturbances such as wind gusts. We will not use feedback control of the
roll angle to control the heading, ψ. This is left as an exercise for the reader.

How It Works

Recall from the dynamical model in Recipe 12.6 that our aircraft state is[
v γ ψ x y h

]
(12.9)

where v is the velocity, γ is the flight path angle, ψ is the heading, x and y are the coordinates
in the flight plane, and h is the altitude. The states are the values of the system that change
with time. They can be dynamical quantities, such as v, γ, and psi, or kinematical quantities,
x, y, and h. The derivatives of the kinematical quantities are proportional to the dynamical
quantities. For example, ẋ is proportional to v. Our control variables are the roll angle φ, angle
of attack α, and thrust T .
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Our controller is of the form

T = Ts + kT (vs − v) (12.10)

α = αs + kα(γs − γ) (12.11)

If the state is at s, then the controls should be at the values Ts, αs, φs which are the equilibrium
controls. The gains push the states in the right direction. The gains are a function of the flight
condition. We need to expand the first two dynamical equations from Equation 12.2.

[
v̇
γ̇

]
=

[
T cosα−q(CD0

+k(CLαα)2)
m − g cos γ

(qCLαα+T sinα) cos φ−mg cos γ
mv

]
(12.12)

Linearize and drop the terms not involving the controls, which are thrust T and angle of attack
α. [

v̇
γ̇

]
=

[
T
m
q cosφCLαα

mv

]
(12.13)

We want the time constants τγ and τv so that our equations become

[
v̇
γ̇

]
=

[
− v

τv
− γ

τγ

]
(12.14)

Therefore

kT =
m

τv
(12.15)

kα =
mv

q cosφCLατγ
(12.16)

This is what happens when you perform a coordinated turn. Basically, this equation shows
that in order to maintain the same level of responsiveness in longitudinal control (effective time
constant of τγ) during a turn (when φ is nonzero), the control gain on α must be increased. The
bank angle during a turn causes a small reduction in the lift force for a given angle of attack.
The flight path angle control is achieved by modulating α to vary the lift force. To maintain
the same flight path angle response during a turn, we would have to maintain the same lift
force through a corresponding increase in the angle of attack. We put the control system in the
function AircraftControl.

AircraftControl.m

29 function [T, alpha] = AircraftControl( s, d, tauGamma, tauV, vSet,
gammaSet )

30

31 u = EquilibriumControl( s, d );
32 v = s(1);
33 gamma = s(2);
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34 h = s(6);
35

36 rho = feval(d.density,h);
37 qS = 0.5*d.s*rho*vˆ2;
38 kV = d.m/tauV;
39 kGamma = (d.m*v)/(qS*cos(d.phi)*d.cLAlpha*tauGamma);
40 T = u(1) + kV *(vSet - v);
41 alpha = u(2) + kGamma*(gammaSet - gamma);

The performance of the control system will be shown in the simulation recipe. The function
requires information about the flight conditions including the atmospheric density. It first uses
EquilibriumControl to find the controls that are needed when we are at the set point. The
aircraft data structure is required. Additional inputs are the time constants for the controllers
and the set points. We compute the atmospheric density in the function using feval and the
input function handle. This should be the same computation as is done in RHSAircraft.

12.4 Plotting a 3D Trajectory for an Aircraft
Problem

We want to plot the trajectory of the aircraft in three dimensions and show the aircraft axes and
times along the trajectory.

Solution

We use the MATLAB plot3 function with custom code to draw the aircraft axes and times at
select points on the trajectory. The resulting figure is shown in Figure 12.6.

How It Works

We use plot3 to draw the 3D display. Our function Plot3DTrajectory.m allows for
argument pairs via varargin.

Plot3DTrajectory.m

1 %% PLOT3DTRAJECTORY Plot the trajectory of an aircraft in 3D.
2 %% Form
3 % Plot3DTrajectory( x, varargin )
4 %% Decription
5 % Plot a 3D trajectory of an aircraft with times and local axes. Type
6 % Plot3DTrajectory for a demo.
7 %
8 %% Inputs
9 % x (6,:) State vector [v;gamma;phi;x;y;h]

10 % varargin {:} Parameters
11 %
12 %% Outputs
13 % None.
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Figure 12.6: Demo of the aircraft trajectory function.

We skip the demo code for now and show the drawing code next. There are similarities with
our 2D plotting function, PlotSet. We use text to insert time labels and a patch object to
draw the ground.

67 % Draw the figure
68 h = figure;
69 set(h,'Name',figTitle);
70 plot3(x(4,:),x(5,:),x(6,:));
71 xlabel(xLabel);
72 ylabel(yLabel);
73 zlabel(zLabel);
74

75 % Draw time and axes
76 if( ˜isempty(t) && ˜isempty(tIndex) )
77 [t,˜,tL] = TimeLabel(t);
78 for k = 1:length(t)
79 s = sprintf(' t = %3.0f (%s)',t(k), tL);
80 i = tIndex(k);
81 text(x(4,i),x(5,i),x(6,i),s);
82 DrawAxes(x(:,i),alpha(1,i),phi(1,i));
83 end
84 end
85

86 % Add the ground
87 xL = get(gca,'xlim');
88 yL = get(gca,'ylim');
89 v = [xL(1) yL(1) 0;...
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90 xL(2) yL(1) 0;...
91 xL(2) yL(2) 0;...
92 xL(1) yL(2) 0];
93

94 patch('vertices',v,'faces',[1 2 3 4],'facecolor',[0.65 0.5 0.0],'
edgecolor',[0.65 0.5 0.0]);

95 grid on
96 rotate3d on
97 axis image
98 zL = get(gca,'zlim');
99 set(gca,'zlim',[0 zL(2)],'ZLimMode','manual');

The plot commands are straightforward. If a time array is entered, it will draw the times
along the track using sprintf and text. We use TimeLabel to get reasonable units. It
will also draw the aircraft axes using the nested function DrawAxes.

101 %%% Plot3DTrajectory>DrawAxes subfunction
102 % DrawAxes( x, alpha, phi )
103 function DrawAxes( x, alpha, phi )
104

105 gamma = x(2);
106 psi = x(3);
107

108 % Aircraft frame is x forward, y out the right wing and z down
109 u0 = [1 0 0;0 1 0;0 0 -1];
110

111 cG = cos(gamma+alpha);
112 sG = sin(gamma+alpha);
113 cP = cos(psi);
114 sP = sin(psi);
115 cR = cos(phi);
116 sR = sin(phi);
117

118 u = [cP -sP 0;sP cP 0; 0 0 1]...
119 *[cG 0 -sG; 0 1 0;sG 0 cG]...
120 *[1 0 0;0 cR sR; 0 -sR cR]*u0;
121

122 % Find a length for scaling of the axes
123 xL = get(gca,'xlim');
124 yL = get(gca,'ylim');
125 zL = get(gca,'zlim');
126

127 l = sqrt((xL(2)-xL(1))ˆ2 + (yL(2)-yL(1))ˆ2 + (zL(2)-zL(1))ˆ2)/20;
128

129 x0 = x(4:6);
130 for k = 1:3
131 x1 = x0 + u(:,k)*l;
132 c = [0 0 0];
133 c(k) = 1;
134 line([x0(1);x1(1)],[x0(2);x1(2)],[x0(3);x1(3)],'color',c);
135 end
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This function draws an axis system for the aircraft, x out the nose, y out the right wing, and
z down. It uses the state vector so it needs to convert from γ and ψ to rotation matrices. The
axis system is in wind axes.

The function takes parameter pairs to allow the user to customize the plot. The parameter
pairs are processed here just after the defaults are set:

34 % Defaults
35 xLabel = 'x (m)';
36 yLabel = 'y (m)';
37 zLabel = 'z (m)';
38 figTitle = 'Trajectory';
39 t = [];
40 tIndex = [];
41 alpha = 0.02*ones(1,size(x,2));
42 phi = 0.25*pi*ones(1,size(x,2));
43

44 for k = 1:2:length(varargin)
45 switch lower(varargin{k})
46 case 'x label'
47 xLabel = varargin{k+1};
48 case 'y label'
49 yLabel = varargin{k+1};
50 case 'z label'
51 zLabel = varargin{k+1};
52 case 'figure title'
53 figTitle = varargin{k+1};
54 case 'time'
55 t = varargin{k+1};
56 case 'time index'
57 tIndex = varargin{k+1};
58 case 'alpha'
59 alpha = varargin{k+1};
60 case 'phi'
61 phi = varargin{k+1};
62 otherwise
63 error('%s is not a valid parameter',varargin{k});
64 end
65 end

We use lower in the switch statement to allow the user to input capital letters and not
have to worry about case issues. Most of the parameters are straightforward. The time input
could have been done in many ways. We chose to allow the user to enter specific times for the
time labels. As part of this, the user must enter the indices to the state vector.
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The function includes a demo. You can type Plot3DTrajectory and get the example
trajectory shown in Figure 12.6. In the case of a graphics function, the demo literally shows the
user what the graphics should look like and provides examples about how to use the function.

21 % Demo
22 if( nargin < 1 )
23 disp('Demo of Plot3DTrajectory:');
24 l = linspace(0,1e5);
25 x = [200*ones(1,100);...
26 (pi/4)*ones(1,100);...
27 (pi/4)*ones(1,100);l;l;l];
28 t = [200 300 400 500 600];
29 k = [20 40 60 80 100];
30 Plot3DTrajectory( x, 'time', t, 'time index', k, 'alpha',0.01*ones

(1,100) );
31 return;
32 end

12.5 Simulating the Controlled Aircraft
Problem

We want to simulate the motion of the aircraft with the trajectory controls.

Solution

We will create a script with the control system and flight dynamics. The dynamics will be
propagated by RungeKutta. This is a fourth-order method, meaning the truncation errors go
as the fourth power of the time step. Given the typical sample time for a flight control system,
the fourth order is sufficiently accurate for flight simulations. We will display the results using
our 3D plotting function Plot3DTrajectory described in the previous recipe.

How It Works

The simulation script reads the data structure from RHSAircraft and changes values to
match an F-35 fighter. The model only involves the thrust and drag, and even these are very
simple models. The initial flight path angle and velocity are set. We turn on the control and
establish the set points and time constants for the velocity and flight path angle states. For the
output, we plot the states, control, and a 3D trajectory.
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AircraftSim.m

1 %% A trajectory control simulation of an F-35 aircraft.
2 % The dynamics of a point mass aircraft is simulated.
3 %% See also
4 % RungeKutta, RHSAircraft, PDControl, EquilibriumControl

The script begins with obtaining our default data structure from the RHS function.

10 %% Data structure for the right hand side
11 d = RHSAircraft;
12

13 %% User initialization
14 d.m = 13300.00; % kg
15 d.s = 204.00; % mˆ2
16 v = 200; % m/sec
17 fPA = pi/6; % rad
18

19 % Initialize duration and delta time
20 tEnd = 40;
21 dT = 0.1;
22

23 % Controller
24 controlIsOn = true;
25 tauV = 1;
26 tauGamma = 1;
27 d.phi = 0;
28 vSet = 220;
29 gammaSet = pi/8;
30

31 %% Simulation
32 % State vector
33 x = [v;fPA;0;0;0;0];
34

35 % Plotting and number of steps
36 n = ceil(tEnd/dT);
37 xP = zeros(length(x)+2,n);
38

39 % Find non-feedback settings
40 [˜,D,LStar] = RHSAircraft(0,x,d);
41 thrust0 = D;
42 alpha0 = d.m*d.g/LStar;
43

44 % Run the simulation
45 for k = 1:n
46

47 if( controlIsOn )
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48 [d.thrust, d.alpha] = AircraftControl( x, d, tauGamma, tauV, vSet,
gammaSet );

49 else
50 d.thrust = thrust0;
51 d.alpha = alpha0;
52 end
53

54 % Plot storage
55 xP(:,k) = [x;d.thrust;d.alpha];
56

57 % Right hand side
58 x = RungeKutta(@RHSAircraft,0,x,dT,d);
59

60 end
61

62 %% Plotting
63 [t,tL] = TimeLabel((0:(n-1))*dT);
64

65 yL = {'T (N)', '\alpha (rad)'};
66 s = 'Aircraft Sim:Controls';
67 PlotSet(t,xP(7:8,:),'x label',tL,'y label',yL,'plot title',s, 'figure

title',s);
68

69 yL = {'v' '\gamma' '\psi' 'x' 'y' 'h'};
70 s = 'Aircraft Sim:States';
71 PlotSet(t,xP(1:6,:),'x label',tL,'y label',yL,'plot title',s,'figure

title',s);
72

73 k = floor(linspace(2,n,8));
74 t = t(k);
75 Plot3DTrajectory( xP, 'time', t, 'time index', k, 'alpha', xP(8,:) );

If the control is off, we set the thrust and angle of attack to constant values to balance the
drag and gravity. The set points for velocity and flight path angle are slightly different than the
initial conditions. This will allow us to demonstrate the transient response of the controller.

The states are shown in Figure 12.7. The velocity and flight path angle converge to their set
points.

The controls are shown in Figure 12.8. The controls reach their steady values. The thrust
and angle of attack change as the plane climbs. The thrust drops because the drag drops and the
angle of attack increases to maintain the lift/gravity balance.

The 3D trajectory is shown in Figure 12.9. As expected, it climbs at a nearly constant angle
at a constant velocity.
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Figure 12.7: Velocity and flight path angle converge to their desired values.
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Figure 12.8: The controls converge to the steady-state values and then change slowly to accommodate
the decrease in atmospheric density as the aircraft climbs.

This simulation assumes perfect state feedback, without noise. If there were noise or errors
in the model parameters, we would see more control activity. Noise filtering, and possibly more
complex controllers, might be required.
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Figure 12.9: The aircraft trajectory.

12.6 Draw an Aircraft
Problem

We want to visualize the orientation of an aircraft in three dimensions.

Solution

We will write a MATLAB visualization tool that will show an aircraft in three dimensions. The
model will be from a Wavefront OBJ file.

How It Works

There are many visualization formats. One of the easiest to use is the Wavefront OBJ format.
This is a text file with lines representing vertices, faces, surface normals, and texture coordi-
nates. We will only use the faces and vertices. Some lines from the Gulfstream.obj file
are shown in the following. v means vertex; f means face. There are only three vertices per
face. OBJ can handle faces with any number of vertices, but graphics engines are more efficient
when all of the polygons are triangles. mtllib gives the name of the material library that will
be used to get textures and colors for the surfaces. g and o break the file into components. No
hierarchy information is given in the file. If you want to articulate the object, you need to get
the information from another source. For example, for the vertices, give its absolute position
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in the aircraft. If you wanted to rotate it, you would need to know its axis of rotation and its
location in the body. You can see how this is done later in the code where we draw the meshes.

usemtl says use the particular material in the material library file. The slashes in the faces
denote the vertex number/texture number and normal number. The vertices are numbered from
1 to n in the file. We don’t use the material library in our code.

mtllib airgl3l2_mac.mtl
v -4.5265 11.0291 -0.9738
v -3.5165 8.4082 -1.1734
v -4.8148 11.0291 -1.0218
v -3.7923 8.3129 -1.0527
v -3.4301 8.4481 -0.9798
v -3.4212 8.4478 -1.1732
v -4.1644 8.1842 -1.1209
v -4.2112 11.0291 -0.9267
v -4.2016 11.0291 -1.0708
v -4.2836 11.0291 -1.0696
v -4.1638 11.0291 -0.9735
v -4.1637 11.0291 -1.0243
v -3.3853 8.4480 -1.0427
v -3.3852 8.4479 -1.1100
v -4.8148 11.0291 -1.0225
v -4.1644 8.1842 -1.1215

usemtl gulf351

o AileronL
g AileronL

s off
f 9/13/21 6/4/22 2/3/20
f 2/3/20 10/10/19 9/13/21
f 2/3/20 16/1/18 15/11/17

The function LoadOBJ loads an OBJ file and breaks it into components using the g lines.
From the preceding example, you can see that one component will be AileronL.

The function DrawAircraft creates a 3D view of the aircraft and animates it.
The main loop is a switch function. Actions are “initialize,” “update,” “movie,” and “close.”

The “initialize” action sets up the axes.

DrawAircraft.m

33 function [h,mV] = DrawAircraft( action, g, h, x, t, tU )
34

35 if( nargin < 1 )
36 Demo
37 return
38 end
39

40 switch( lower(action) )
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41 case 'initialize'
42

43 h.fig = NewFigure( g.name );
44 axes('DataAspectRatio',[1 1 1],'PlotBoxAspectRatio',[1 1 1] );
45

46 xlabel('X (m)')
47 ylabel('Y (m)')
48 zlabel('Z (m)')
49

50 grid on
51 view(3)
52 rotate3d on
53 hold off
54 drawnow
55

56 n = length(g.component);
57 h.h = zeros(1,n);
58

59 for k = 1:n
60 h.h(k) = DrawMesh(g.component(k));
61 end
62

63 case 'update'
64 UpdateMesh(h,g.component,x, t, tU);
65

66 case 'movie'
67 mV = UpdateMesh(h,g.component,x, t, tU, 1 );
68

69 case 'close'
70 close(h.fig);
71

72 otherwise
73 warning('%s not available',action);
74 end

The code in DrawMesh draws the vertices and faces for the component m. The only parts
of the components used are the vertices and faces. The Phong lighting is a type of OpenGL
lighting that approximates real lighting. Notice that the edge lighting can be different from the
face lighting.

76 %% DrawAircraft>DrawMesh
77 function h = DrawMesh( m )
79

80 h = patch( 'Vertices', m.v, 'Faces', m.f, 'FaceColor', [0.8 0.8
0.8],...

81 'EdgeColor','none','EdgeLighting', 'phong',...
82 'FaceLighting', 'phong');
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The following code updates the patches for the aircraft. It also updates the time
uicontrol. It gets the vertices for each component, rotates the vertices, and then translates
them. The GUI automatically changes the limits so that the plane remains centered. You will
see, when you run the demo, the axis numbers change as the aircraft moves. We also call the
function DrawAlphaBeta to draw axes and annotate them. getframe gets the information
in the frame for use in a movie.

85 %% DrawAircraft>UpdateMesh
86 function mV = UpdateMesh( h, c, x, t, tU, ˜ )
87

88 hL = [];
89 hAB = [];
90

91 if( nargin > 3 )
92 mV(1:size(x,2)) = getframe(h.fig);
93 else
94 mV = [];
95 end
96

97 s = sprintf('%6.2f %s',t(1),tU);
98 hT = uicontrol( h.fig,'style','edit','string',s,'position',[10 10 100

20]);
99

100 qY = Mat2Q([1 0 0;0 -1 0;0 0 -1]);
101

102 for j = 1:size(x,2)
103 m = Q2Mat(x(7:10,j));
104 r = x(1:3,j);
105 for k = 1:length(c)
106 v = (m*c(k).v')';
107 v(:,1) = v(:,1) + r(1);
108 v(:,2) = v(:,2) + r(2);
109 v(:,3) = v(:,3) + r(3);
110 set(h.h(k),'vertices',v);
111 end
112 xL = get(gca,'xlim');
113 yL = get(gca,'ylim');
114 zL = get(gca,'zlim');
115

116 if(˜isempty(hL) )
117 delete(hL);
118 end
119 hL = light('position',10*[xL(2) yL(2) zL(2)]);
120

121 r = x(1:3,j);
122 v = x(4:6,j);
123 q = QMult(qY,x(7:10,j));
124

125 if( ˜isempty(hAB) )
126 delete(hAB);
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127 end
128

129 set(hT,'string',sprintf('%6.2f %s',t(j),tU));
130 hAB = DrawAlphaBeta( r, q, Unit(v), 14 );
131 if( nargin > 3 )
132 mV(j) = getframe(h.fig);
133 end
134 pause(0.1);
135 drawnow
136 end

The following code runs the demo. We need to generate the position, velocity, and orienta-
tion. The orientation is defined by an attitude or orientation quaternion. Euler angles are another
possibility, but they are computationally slower than quaternions. A quaternion can be thought
of as an axis of rotation and an angle about that axis. The four elements are not independent
since the sum of the squares of the elements of a quaternion equals 1. Quaternions are used in
computer graphics and for spacecraft. A quaternion can be replaced by a transformation matrix.
However, the latter is harder to handle since it is 3-by-3, while the quaternion is a 4-by-1 array.
It is simpler to store a set of “n” 4-by-1 quaternions (e.g., as a 4-by-n matrix) than it is to store
a set of “n” 3-by-3 rotation matrices.

The demo loads the aircraft and then calls the movie action in DrawAircraft. This
returns a pointer to a movie frame that can later be saved. If you don’t want a movie, call
DrawAircraftwith “update.” The rotation of the aircraft is the product of two matrices. One
is a constant pitch (rotation about Y) matrix and the other a time-varying roll (rotate about X)
matrix. You can create arbitrary rotation matrices by multiplying multiple rotation matrices
together.

We create an array consisting of the column matrix [1;0;-0.2] by dot multiplication
with a row array of ones. This is a relatively new MATLAB feature. MATLAB figures out that
you want 100 copies of the column array.

139 function Demo
140

141 g = LoadOBJ('Gulfstream.obj');
142

143 h = DrawAircraft( 'initialize', g );
144

145 dToR = pi/180;
146 n = 100;
147 z = linspace(100,400,n);
148 x = linspace(0,40000,n);
149 a = linspace(0,pi/4,n);
150 c = cos(a);
151 s = sin(a);
152 q = zeros(4,n);

355



CHAPTER 12 AIRCRAFT

153 cY = cos(15*dToR);
154 sY = sin(15*dToR);
155 mY = [cY 0 -sY;0 1 0;sY 0 cY];
156

157 for k = 1:n
158 q(:,k) = Mat2Q([1 0 0;0 c(k) s(k);0 -s(k) c(k)]*mY);
159 end
160 v = 100*[1;0;-0.2].*ones(1,100);
161 s = [x;zeros(1,n);z;v;q];
162 t = linspace(0,1000,n);
163 [˜,mV] = DrawAircraft( 'movie', g, h, s, t, 'sec' );
164

165 SaveMovie( mV, 'Gulfstream' )

The image at the end of the demo is shown in Figure 12.10.

Figure 12.10: The aircraft at the end of the demo.
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Summary
This chapter has demonstrated how to write the dynamics for a point mass aircraft. We learned
how to find the equilibrium control state using a search algorithm. This includes utilizing
the debug output available from MATLAB for its optimization algorithms and adding custom
plotting for each search iteration. We learned how to design a control system to maintain a
desired velocity, bank angle, and flight path angle. We learned how to make 3D plots with
annotations of both text and other drawing objects. We also learned how to pass function
handles to other functions to make functions more versatile. Table 12.1 lists the code developed
in the chapter.

Table 12.1: Chapter Code Listing

File Description
DrawAircraft Draw a 3D model of an aircraft
RHSAircraft Six degrees of freedom RHS for a point mass aircraft
AtmosphericDensity Atmospheric density as a function of altitude from an expo-

nential model
EquilibriumControl Find the equilibrium control for a point mass aircraft
AircraftControl Compute the angle of attack and thrust for a 3D point mass

aircraft
Plot3DTrajectory Plot a 3D trajectory of an aircraft with times and local axes
AircraftSim A trajectory control simulation of an aircraft
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CHAPTER 13

Spacecraft Attitude Control

Spacecraft pointing control is an essential technology for all robotic and manned spacecraft. A
control system consists of sensing, actuation, and the dynamics of the spacecraft itself. Space-
craft control systems are of many types, but in this chapter, we will be concerned only with
three axis pointing. We will use reaction wheels for actuation.

Reaction wheels are used for control through the conservation of angular momentum. The
torque on the reaction wheel causes it to spin one way and the spacecraft to spin in the opposite
direction. Momentum removed from the spacecraft is absorbed in the wheel. Reaction wheels
are classified as momentum exchange devices because they exchange momentum with the rest
of the spacecraft. You can reorient the spacecraft using reaction wheels without any external
torques. Before reaction wheels were introduced, thrusters were often used for orientation
control. This would consume the propellant which is undesirable since when you run out of
propellant, the spacecraft can no longer be used.

The spacecraft is modeled as a rigid body except for the presence of three reaction wheels
that rotate about orthogonal (perpendicular) axes. One rotates about the x axis, one rotates
about the y axis, and the third about the z axis. The shaft of the motor is attached to the rotor
of the wheel which is attached to the spacecraft. The torque applied between the wheel and
spacecraft causes the wheel and spacecraft to move in opposite angular directions. We will
assume that we have attitude sensors that measure the orientation of the spacecraft. We will
also assume that our wheels are ideal with just viscous damping friction.

13.1 Creating a Dynamical Model of the Spacecraft
Problem

The spacecraft is a rigid body with three wheels. Each wheel is connected to the spacecraft as
shown in Figure 13.1.
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Figure 13.1: A reaction wheel. The reaction wheel platter spins in one direction, and the spacecraft
spins in the opposite direction.

Solution

The equations of motion are written using angular momentum conservation. This produces a
dynamical model known as the Euler equations with the addition of the spinning wheels. This
is sometimes known as a gyrostat model.

How It Works

The spacecraft model can be partitioned into dynamics, including the dynamics of the reaction
wheels, and the kinematics of the spacecraft. If we assume that the wheels are perfectly sym-
metric, are aligned with the three body axes, and have a diagonal inertia matrix, we can model
the spacecraft dynamics with the following coupled first-order differential equations:

Iω̇ + ω× (Iω + Iw(ωw + ω)) + Iw(ω̇w + ω̇) = T (13.1)

Iw (ω̇w + ω̇) = Tw (13.2)

I is the 3-by-3 inertia matrix of the spacecraft and does not include the inertia of the wheels.

I =

⎡
⎣ Ixx Ixy Ixz

Iyx Iyy Iyz
Izx Izy Izz

⎤
⎦ (13.3)

The inertia matrix is symmetric so Ixy = Iyx, Ixz = Izx, Izy = Iyz . ω is the angular rate vector
for the spacecraft seen in the spacecraft frame.

ω =

⎡
⎣ ωx

ωy

ωz

⎤
⎦ (13.4)
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ωw is the angular rate of the reaction wheels:

ωw =

⎡
⎣ ω1

ω2

ω3

⎤
⎦ (13.5)

for wheels 1, 2, and 3. 1 is aligned with x, 2 with y, and 3 with z. In this way, the reaction
wheels form an orthogonal set and can be used for three-axis control. T is the external torque
on the spacecraft which can include external disturbances such as solar pressure or aerodynamic
drag and thruster or magnetic torquer coil torques. Tw is the internal torque on the wheels; Iw
is the scalar polar inertia of the wheels (we assume that they all have the same polar inertia).
We can substitute the second equation into the first to simplify the equations.

Iω̇ + ω× (Iω + Iw(ωw + ω)) + Tw = T (13.6)

Iw (ω̇w + ω̇) = Tw (13.7)

This term
Te = ω× (Iω + Iw(ωw + ω)) ≡ ω × h (13.8)

is known as the Euler torque. If the angular rates are small, we can set this term to zero and the
equations simplify to

Iω̇ + Tw = T (13.9)

Iw (ω̇w + ω̇) = Tw (13.10)

For kinematics, we will use quaternions. A quaternion is a four-parameter representation of the
orientation of the spacecraft with respect to the inertial frame. We could use angles since we
really only need three states (dynamical quantities) to specify the orientation. The problem with
Euler angles is that they introduce singularities, that is, certain orientations where an angle is
undefined, and therefore they are not suitable for simulations. The derivative of the quaternion
from the inertial frame to the body frame is

q̇ =
1

2

[
0 ωT

−ω ω×

]
(13.11)

The term ω× is the skew symmetric matrix that is the equivalent of the cross product and is

ω× =

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ (13.12)

The skew matrix always has zeros on the diagonal, and the matrix is equal to the negative of its
transpose. The wheel torque is a combination of friction torque and control torque. Reaction
wheels are usually driven by brushless direct current (DC) motors that have the back electromo-
tive force canceled by current feedback within the motor electronics. The total reaction wheel
torque is therefore

Tw = Tc + Tf (13.13)
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where Tc is the commanded reaction wheel torque and Tf is the friction torque. A simple
friction model is

Tf = −kdωk (13.14)

kd is the damping coefficient. If kd is large, we can compensate for it proactively by feeding
the expected friction torque forward into the controller. This requires careful calibration of the
wheel to determine the damping coefficient.

First, we will define the data structure for the model that is returned by the dynamics right-
hand-side function if there are no inputs. The name of the function is RHSSpacecraftWith
RWA.m. We use RWA to mean “Reaction Wheel Assembly.” We say “assembly” because the
reaction wheel is assembled from bearings, wheel, shaft, support structure, and power electron-
ics. Spacecraft are built up of assemblies.

The default unit vectors for the wheel are along orthogonal axes, that is, x, y, and z. The
default inertia matrix is the identity matrix, making the spacecraft a sphere. The default reaction
wheel inertias are 0.001. All of the nonspinning parts of the wheels are lumped in with the
inertia matrix.

RHSSpacecraftWithRWA.m

1 %% RHSSPACECRAFTWITHRWA Compute the dynamics for a spacecraft with
reaction wheels.

33 function [xDot, hECI] = RHSSpacecraftWithRWA( ˜, x, d )
34

35 % Default data structure
36 if( nargin == 0 )
37 xDot = struct('inr',eye(3), 'torque',[0;0;0],'inrRWA',

0.001*[1;1;1],...
38 'torqueRWA',[0;0;0],'uRWA',eye(3), 'damping',[0;0;0]);
39 if( nargout == 0 )
40 disp('RHSSpacecraftWithRWA struct:')
41 end
42 return
43 end

The dynamical equations for the spacecraft are given in the following lines of code. We
need to compute the total wheel torque because it is applied both to the spacecraft and the
wheels. We use the backslash operator to multiply the equations by the inverse of the inertia
matrix. The inertia matrix is positive definite symmetric so specialized routines can be used to
speed computation of this inverse. It is a good idea to avoid computing inverses as they can be
ill-conditioned, meaning that small errors in the matrix can result in large errors in the inverse.

We save the elements of the state vector as local variables with meaningful names to make
reading the code easier. This also eliminates unnecessary multiple extraction of submatrices.

You will notice that the omegaRWA variable reads from element 8 to the end of the vector
using the end keyword. This allows the code to handle any number of reaction wheels. You
might just want to control one axis with a wheel or have more than three wheels for redundancy.
Be sure that the inputs in d match the number of wheels. We also input unit vectors for each
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wheel. The unit vector is the axis or rotation for each. As a consequence, the wheels do not
have to be aligned with x, y, and z, that is, do not have to be orthogonal.

45 % Save as local variables
46 q = x(1:4);
47 omega = x(5:7);
48 omegaRWA = x(8:end);
49

50 % Total body fixed angular momentum
51 h = d.inr*omega + d.uRWA*(d.inrRWA.*(omegaRWA + d.uRWA'*omega));
52

53 % Total wheel torque
54 tRWA = d.torqueRWA - d.damping.*omegaRWA;

Note that uRWA is an array of the reaction wheel unit vectors, that is, the spin vectors.
In computing h, we have to transform ω into the wheel frame using the transpose of uRWA
and then transform back before adding the wheel component to the core component, Iω. The
wheel dynamics are given next, note the use of the backslash operator to solve the set of linear
equations for ω̇, omegaDotCore:

56 % Core angular acceleration
57 omegaDotCore = d.inr\(d.torque - d.uRWA*tRWA - cross(omega,h));

The total state derivative is in these lines:

59 % Wheel angular acceleration
60 omegaDotWheel = tRWA./d.inrRWA - d.uRWA'*omegaDotCore;
61

62 % State derivative
63 sW = [ 0 -omega(3) omega(2);...
64 omega(3) 0 -omega(1);...
65 -omega(2) omega(1) 0]; % skew symmetric matrix
66 qD = 0.5*[0, omega';-omega,-sW];
67 xDot = [qD*q;omegaDotCore;omegaDotWheel];

The total inertial angular momentum is an auxiliary output. In the absence of external
torques, it should be conserved so it is a good test of the dynamics. A simple way to test
angular momentum conservation is to run a simulation with anger rates for all the states and
then rerun it with a smaller time step. The change in angular momentum should decrease as the
time step is decreased.

69 % Output the inertial angular momentum
70 if( nargout > 1 )
71 hECI = QTForm( q, h );
72 end
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13.2 Computing Angle Errors from Quaternions
Problem

We want to point the spacecraft to a new target attitude (orientation) with the three reaction
wheels or maintain the attitude given an external torque on the spacecraft.

Solution

We will make three proportional-derivative (PD) controllers, one for each axis. We need a
function to take two quaternions and compute the small angles between them as input to these
controllers.

How It Works

If we are pointing at an inertial target and wish to control about that orientation, we can simplify
the rate equations by approximating ω as θ̇ which is valid for small angles when the order of
rotation doesn’t matter and the Euler angles can be treated as a vector.

θ̇ = ω (13.15)

We will also multiply both sides of the Euler equation, Equation 13.9, by I−1, to solve for the
derivatives. Note that Tw, the torque from the wheels, is equivalent to Iaw, where a is the
acceleration. Our system equations now become

θ̈ + aw = a (13.16)

Iw (ω̇w + ω̇) = −Tw (13.17)

The first equation is now three decoupled second-order equations, just as in our Chapter 7. We
can stabilize this system with our standard PD controller.

We need attitude angles as input to the PD controllers to compute our control torques. Our
examples will only be for small angular displacements from the nominal attitude. We will pass
the control code a target quaternion, and it will compute Δ angles, or we will impose a small
disturbance torque.

In these cases, the attitude can be treated as a vector where the order of the rotations doesn’t
matter. A quaternion derived from small angles is

qΔ ≈

⎡
⎢⎢⎣

1
−θ1/2
−θ2/2
−θ3/2

⎤
⎥⎥⎦ (13.18)

We find the required error quaternion qΔ by multiplying the target quaternion, qT , with the
transpose of the current quaternion:

qΔ = qT qT (13.19)

This algorithm to compute the angles is implemented in the following code. The quaternion
multiplication is made a subfunction. This makes the code cleaner and easier to see how it
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relates to the algorithm. QMult is written to handle multiple quaternions at once so the function
is easy to vectorize. QPose finds the transpose of the quaternion. Both of these functions
would normally be separate functions, but in this chapter, they are only associated with the
error computation code so we put them in the same file.

ErrorFromQuaternion.m

1 %% ERRORFROMQUATERNION Compute small angle error between two
quaternions.

19 function deltaAngle = ErrorFromQuaternion( q, qTarget )
20

21 deltaQ = QMult( QPose(q), qTarget );
22 deltaAngle = -2.0*deltaQ(2:4);
24

25 %% ErrorFromQuaternion>QMult Multiply two quaternions
26 % Q2 transforms from A to B and Q1 transforms from B to C
27 % so Q3 transforms from A to C.
28 %
29 % Q3 = QMult( Q2 ,Q1 )
30 function Q3 = QMult( Q2 ,Q1 )
31

32 Q3 = [Q1(1,:).*Q2(1,:) - Q1(2,:).*Q2(2,:) - Q1(3,:).*Q2(3,:) - Q1(4,:)
.*Q2(4,:);...

33 Q1(2,:).*Q2(1,:) + Q1(1,:).*Q2(2,:) - Q1(4,:).*Q2(3,:) + Q1(3,:)
.*Q2(4,:);...

34 Q1(3,:).*Q2(1,:) + Q1(4,:).*Q2(2,:) + Q1(1,:).*Q2(3,:) - Q1(2,:)
.*Q2(4,:);...

35 Q1(4,:).*Q2(1,:) - Q1(3,:).*Q2(2,:) + Q1(2,:).*Q2(3,:) + Q1(1,:)
.*Q2(4,:)];

37

38 %% ErrorFromQuaternion>QPose Transpose of a quaternion
39 % The transpose requires changing the sign of the angle terms.
40 %
41 % q = QPose(q)
42 function q = QPose(q)
43

44 q(2:4,:) = -q(2:4,:);

The control system is implemented in the simulation loop (in the next recipe) with the
following code:

SpacecraftSim.m

57 % Find the angle error
58 angleError = ErrorFromQuaternion( x(1:4), qTarget );
59 if( controlIsOn )
60 u = [0;0;0];
61 for j = 1:3
62 [u(j), dC(j)] = PDControl('update',angleError(j),dC(j));
63 end
64 else
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65 u = [0;0;0];
66 end
67

68 % Wheel torque is on the left hand side
69 d.torqueRWA = d.inr*u;

13.3 Simulating the Controlled Spacecraft
Problem

We want to test our attitude controller and see how it performs.

Solution

The solution is to build a MATLAB script in which we design the PD controller matrices and
then simulate the controller in a loop, applying the calculated torques until the desired quater-
nion is attained or until the disturbance torque is canceled.

How It Works

We build a simulation script for the controller, SpacecraftSim. The first thing we do with
the script is to set parameters at the top of the file to check the angular momentum conservation
by running the simulation for 300 seconds at time steps of 0.1 and 1 second and comparing the
magnitude of the angular momentum in the two test cases. The control is turned off by setting
the controlIsOn flag to false. In the absence of external torques, if our equations are
programmed correctly, the momentum should be constant. We will however see the growth in
the momentum due to error in the numerical integration. The growth should be much lower in
the first case than the second case as the smaller time step makes the integration more exact.
Remember that for fourth-order Runge-Kutta, the error goes as the fourth power of the time
step. Note that we give the spacecraft random initial rates in both omega and omegaRWA and
a nonspherical inertia to help catch any bugs in the dynamics code.

1 tEnd = 300;
2 dT = 0.1;
3 controlIsOn = false;
4 qECIToBody = [1;0;0;0];
5 omega = [0.01;0.02;-0.03]; % rad/sec
6 omegaRWA = [5;-3;2]; % rad/sec
7 d.inr = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2

Figure 13.2 shows the results of the tests using the above initialization code. The momentum
growth is four orders of magnitude lower in the test with a 0.1 second time step indicating that
the dynamical equations conserve angular momentum as they should. The shape of the growth
does not change and will depend on the relative magnitudes of the various angular rates.

We initialize the script by using our data structure feature of the RHS function. This is
shown in the following with parameters for a run with the control system on. The rates are
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Figure 13.2: Angular momentum conservation for 1 second and 0.1 second time steps. The growth is
four orders of magnitude lower in the 0.1 second test, to 1e−13 from 1e−9.

now initialized to zero, and we use the time step of 1 second, which showed sufficiently small
momentum growth in our previous test.

1 %% Spacecraft reaction wheel simulation script
2 % An attitude control simulation using reaction wheels.

13 %% Data structure for the right hand side
14 d = RHSSpacecraftWithRWA;

The control system is designed here. Note the small value of wN and the unit damping ratio.
The frequency of the disturbances on a spacecraft is quite low, and the wheels have torque
limits, leading to a wNmuch smaller than the robotics recipe. All three controllers are identical.

28 %% Control design
29 % Design a PD controller. The same controller is used for all 3 axes.
30 dC = PDControl( 'struct' );
31 dC(1).zeta = 1;
32 dC(1).wN = 0.02;
33 dC(1).wD = 5*dC(1).wN;
34 dC(1).tSamp = dT;
35 dC(1) = PDControl( 'initialize', dC(1) );
36

37 % Make all 3 axis controllers identical
38 dC(2) = dC(1);
39 dC(3) = dC(1);

The simulation loop follows. As always, we initialize the plotting array with zeros. By
allocating memory for the array, we speed up the code as memory allocation is usually slow.
The first step in the loop is finding the angular error between the current state and the target
attitude. Next, the control acceleration is calculated or set to zero, depending on the value of
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the control flag. The control torque is calculated by multiplying the control acceleration by the
spacecraft inertia. We compute the momentum for plotting purposes and, finally, integrate one
time step.

41 %% Simulation
42 % Initialize the plotting arrays and perform a fixed timestep loop

using
43 % Runge-Kutta integration.
44

45 % State vector
46 x = [qECIToBody;omega;omegaRWA];
47

48 % Plotting and number of steps
49 n = ceil(tEnd/dT);
50 xP = zeros(length(x)+7,n);
51

52 % Find the initial angular momentum
53 [˜,hECI0] = RHSSpacecraftWithRWA(0,x,d);
54

55 % Run the simulation
56 for k = 1:n
57 % Find the angle error
58 angleError = ErrorFromQuaternion( x(1:4), qTarget );
59 if( controlIsOn )
60 u = [0;0;0];
61 for j = 1:3
62 [u(j), dC(j)] = PDControl('update',angleError(j),dC(j));
63 end
64 else
65 u = [0;0;0];
66 end
67

68 % Wheel torque is on the left hand side
69 d.torqueRWA = d.inr*u;
70

71 % Get the delta angular momentum
72 [˜,hECI] = RHSSpacecraftWithRWA(0,x,d);
73 dHECI = hECI - hECI0;
74 hMag = sqrt(dHECI'*dHECI);
75

76 % Plot storage
77 xP(:,k) = [x;d.torqueRWA;hMag;angleError];
78

79 % Right hand side
80 x = RungeKutta(@RHSSpacecraftWithRWA,0,x,dT,d);
81 end

Our output is entirely two-dimensional plots. We break them up into pages with one to three
plots per page. This makes them easily readable on most computer displays.
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83 %% Plotting
84 % Generate plots of the attitude, body and wheel rates, control torque,

angular
85 % momentum, and anglular error. If there is no external disturbance

torque than
86 % angular momentum should be conserved.
87 [t,tL] = TimeLabel((0:(n-1))*dT);
88

89 yL = {'q_s', 'q_x', 'q_y', 'q_z'};
90 PlotSet( t, xP(1:4,:), 'x label', tL, 'y label', yL,...
91 'plot title', 'Attitude', 'figure title', 'Attitude');
92

93 yL = {'\omega_x', '\omega_y', '\omega_z'};
94 PlotSet(t, xP(5:7,:), 'x label', tL, 'y label', yL,...
95 'plot title', 'Body Rates', 'figure title', 'Body Rates');
96

97 yL = {'\omega_1', '\omega_2', '\omega_3'};
98 PlotSet( t, xP(8:10,:), 'x label', tL, 'y label', yL,...
99 'plot title', 'RWA Rates', 'figure title', 'RWA Rates');

100

101 yL = {'T_x (Nm)', 'T_y (Nm)', 'T_z (Nm)'};
102 PlotSet( t, xP(11:13,:), 'x label', tL, 'y label', yL,...
103 'plot title', 'Control Torque', 'figure title', 'Control Torque');
104

105 yL = {'\Delta H (Nms)'};
106 PlotSet( t, xP(14,:), 'x label', tL, 'y label', yL,...
107 'plot title', 'Inertial Angular Momentum', 'figure title', 'Inertial

Angular Momentum');
108

109 yL = {'\theta_x (rad)', '\theta_y (rad)', '\theta_z (rad)'};
110 PlotSet( t, xP(15:17,:), 'x label', tL, 'y label', yL,...

Note how PlotSet makes plotting much easier to set up and read code than if we use
MATLAB’s built-in plot and supporting functions. You do lose some flexibility. The y axis
labels use LaTeX notation. LaTeX is a technical publications package. This provides limited
LaTeX syntax, such as Greek letters, subscripts, and superscripts. You can set the plotting to
full LaTeX mode to get access to all LaTeX commands and formatting.

Note that we compute the angle error directly from the target and true quaternion. This rep-
resents our attitude sensor. In real spacecraft, attitude estimation is quite complicated. Multiple
sensors, such as combinations of magnetometers, GPS, and earth and sun sensors, are used,
and often rate-integrating gyros are employed to smooth the measurements. Star cameras or
trackers are popular for three-axis sensing and require converting images in a camera to attitude
estimates. You can’t use gyros by themselves because they do not provide an initial orientation
with respect to the inertial frame.

We will run two tests. The first shows that our controllers can compensate for a body-fixed
disturbance torque. The second is to show that the controller can reorient the spacecraft.
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The following is the initialization code for the disturbance torque test. The initial and target
attitudes are the same, a unit quaternion, but there is a small disturbance torque.

1 % Initialize duration, delta time states and inertia
2 tEnd = 600;
3 dT = 1;
4 controlIsOn = true;
5 qECIToBody = [1;0;0;0];
6 omega = [0;0;0]; % rad/sec
7 omegaRWA = [0;0;0]; % rad/sec
8 d.inr = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2
9 qTarget = QUnit([1;0;0.0;0]);

10 d.torque = [0;0.0001;0]; % Disturbance torque (N)

We are running the simulations to 600 seconds to see the transients settle out. The distur-
bance torque is very small, which is typical for spacecraft. We make the torque single axis to
make the responses clearer. Figure 13.3 shows the complete set of output plots.

The disturbance causes a change in attitude around the y axis. This offset is expected with
a PD controller. The control torque eventually matches the disturbance, and the angular error
reaches its maximum. The PD control method will have steady-state error for constant (or more
generally, nonzero-mean) disturbances. The integral control would be required to compensate
for such disturbances.

The y wheel rate grows linearly as it has to absorb all the momentum produced by the
torque. We don’t limit the maximum wheel rate. In a real spacecraft, the wheel would soon
saturate, reaching its maximum allowed speed. Our control system would need to have other
actuators to desaturate the wheel. The inertial angular momentum also grows linearly as is
expected with a constant external torque.

We now do an attitude correction around the x axis. The following is the initialization code:

1 % Initialize duration, delta time states and inertia
2 tEnd = 600;
3 dT = 1;
4 controlIsOn = true;
5 qECIToBody = [1;0;0;0];
6 omega = [0;0;0]; % rad/sec
7 omegaRWA = [0;0;0]; % rad/sec
8 d.inr = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2
9 qTarget = QUnit([1;0.004;0.0;0]); % Normalize

10 d.torque = [0;0;0]; % Disturbance torque

We command a small attitude offset around the x axis, which is done by changing the second
element in the quaternion. We unitize the quaternion to prevent numerical issues. Figure 13.4
shows the output plots.

370



CHAPTER 13 SPACECRAFT ATTITUDE CONTROL

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0.9999

1

q s

Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1
0
1

q x

Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-0.02
-0.01

0

q y

Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1
0
1

q z

Attitude

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

x

Body Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

1

2

y

10-4 Body Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

z

Body Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

1

RWA Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

20

402

RWA Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

3

RWA Rates

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

T x (N
m

)

Control Torque

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

1

T y (N
m

)

10-4 Control Torque

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

T z (N
m

)

Control Torque

0 1 2 3 4 5 6 7 8 9 10
Time (min)

0

0.01

0.02

0.03

0.04

0.05

0.06

 H
 (N

m
s)

Inertial Angular Momentum

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

x (r
ad

)

Angular Errors

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-0.04

-0.02

0

y (r
ad

)

Angular Errors

0 1 2 3 4 5 6 7 8 9 10
Time (min)

-1

0

1

z (r
ad

)

Angular Errors

Figure 13.3: Controlling a suddenly applied external torque.
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Figure 13.4: Response to a small change in attitude.
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In this case, the angular error around the x axis is reduced to zero. The inertial angular
momentum remains “constant” although it jumps around a bit due to truncation error in the
numerical integration. This is expected and it is good to keep checking the angular momen-
tum with the control system running. If it doesn’t remain nearly constant, it means that the
simulation probably has an error in the dynamical equations. Internal torques do not change
the inertial angular momentum. This is why reaction wheels are called “momentum exchange
devices.” They exchange momentum with the spacecraft body but don’t change the total inertial
angular momentum.

The attitude rates remain small in both cases so that the Euler coupling torques are small.
This justifies our earlier decision to treat the spacecraft as three double integrators. It also
justifies our quaternion error to small angle approximation.

13.4 Performing Batch Runs of a Simulation
Problem

We’ve used our simulation script to verify momentum conservation and test our controller, but
note how we have to change lines at the top by hand for each case. This is fine for development
but can make it very difficult to reproduce results; we don’t know the initial conditions that
generated any particular plot. We may want to run our simulation for a whole set of inputs and
do a Monte Carlo analysis.

Solution

We’ll create a new function based on our script with inputs for our critical parameters. A new
data structure will store both our inputs and the outputs so we can save individual runs to mat-
files. This will make it possible to replot the results of any run in the future, or redo runs from
the stored inputs, for example, if you find and fix a bug in the controller.

How It Works

Start from the simulation script copied into a new file. Add a function signature. Replace the
initialization variables with an input structure. Perform the simulation, then save the input struc-
ture along with your generated output. The resulting function header is shown in the following
listing. The input structure includes our RHS data, controller data, and simulation timing
data.

SpacecraftSimFunction.m

1 %% SPACECRAFTSIMFUNCTION Spacecraft reaction wheel simulation function
2 % Perform a simulation of a spacecraft with reaction wheels given a
3 % particular initial state. If there are no inputs it will perform a

demo for an
4 % open loop system. If there are no outputs it will create plots via
5 % PlotSpacecraftSim.
6 %% Form
7 % d = SpacecraftSimFunction( x0, qTarget, input )
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8 %% Inputs
9 % x0 (7+n,1) Initial state

10 % qTarget (4,1) Target quaternion
11 % input (.) Data structure
12 % .rhs (.) RHS data
13 % .pd (:) Controllers
14 % .dT (1,1) Timestep
15 % .tEnd (1,1) Duration
16 % .controlIsOn Flag
17 %% Outputs
18 % d (.) Data structure
19 % .input (.) Input structure
20 % .x0 (7+n,1) Initial state
21 % .qTarget (4,1) Target quaternion
22 % .xPlot (7+n,:) State data
23 % .dPlot (4+n,:) Torque and angle error data
24 % .tPlot (1,:) Time data
25 % .yLabel {} State labels
26 % .dLabel {} Data labels
27 % .tLabel '' Time label string
28 %% See also
29 % RHSSpacecraftWithRWA, ErrorFromQuaternion, PDControl, RungeKutta,

TimeLabel,
30 % PlotSpacecraftSim

Now, we can write a script that calls our simulation function in a loop. The possibilities are
endless – you can test different targets, vary the initial conditions for a Monte Carlo simulation,
and apply different disturbance torques. You can perform statistical analysis on your results
or identify and plot individual runs based on some criteria. In this example, we will find the
maximum control torque applied in each run.

BatchSimRuns.m

1 %% Script performing multiple runs of spacecraft simulation
2 % Perform runs of SpacecraftSimFunction in a loop with varying initial
3 % conditions. Find the max control torque applied for each case.
4 %% See also
5 % SpacecraftSimFunction

10

11 %% Initialization
12 sim = struct;
13 % Initialize duration, delta time states and inertia
14 sim.tEnd = 600;
15 sim.dT = 1;
16 sim.controlIsOn = true;
17

18 % Spacecraft state
19 qECIToBody = [1;0;0;0];
20 omega = [0;0;0]; % rad/sec
21 omegaRWA = [0;0;0]; % rad/sec
22 x0 = [qECIToBody;omega;omegaRWA];
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23

24 % Target quaternions
25 qTarget = QUnit([1;0.004;0.0;0]); % Normalize
26

27 %% Control design
28 % Design a PD controller
29 dC = PDControl( 'struct' );
30 dC(1).zeta = 1;
31 dC(1).wN = 0.02;
32 dC(1).wD = 5*dC(1).wN;
33 dC(1).tSamp = sim.dT;
34 dC(1) = PDControl( 'initialize', dC(1) );
35

36 % Make all 3 axis controllers identical
37 dC(2) = dC(1);
38 dC(3) = dC(1);
39

40 sim.pd = dC;
41

42 %% Spacecraft model
43 % Make the spacecraft nonspherical; no disturbances
44 rhs = RHSSpacecraftWithRWA;
45 rhs.inr = [3 0 0;0 10 0;0 0 5]; % kg-mˆ2
46 rhs.torque = [0;0;0]; % Disturbance torque
47 sim.rhs = rhs;
49

50 %% Simulation loop
51 clear d;
52 for k = 1:10;
53 % change something in your initial conditions and simulate
54 x0(5) = 1e-3*k;
55 thisD = SpacecraftSimFunction( x0, qTarget, sim );
56

57 % save the run results as a mat-file
58 thisDir = fileparts(mfilename('fullpath'));
59 fileName = fullfile(thisDir,'Output',sprintf('Run%d',k));
60 save(fileName,'-struct','thisD');
61

62 % store the run output
63 d(k) = thisD;
64 end
65

66 %% Perform statistical analysis on results
67 % ... as you wish
68 for k = 1:length(d)
69 tMax(k) = max(max(d(k).dPlot(2:4,:)));
70 end
71 figure;
72 plot(1:length(d),tMax);
73 xlabel('Run')
74 ylabel('Torque (Nm)')
75 title('Maximum Control Torque');
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Figure 13.5: Maximum control torque over ten simulation runs.

76

77 % Plot a single case
78 kPlot = 4;
79 PlotSpacecraftSim( d(4) );

Figure 13.5 shows the maximum torque results. Each run has a larger initial angular veloc-
ity. We expect to see this trend, because the torque control is proportional to the angular rate.

An individual run’s output is shown as follows:

>> d(1)

ans =

input: [1x1 struct]
x0: [10x1 double]

qTarget: [4x1 double]
xPlot: [10x600 double]
dPlot: [7x600 double]
tPlot: [1x600 double]
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As another interesting example, we can give the spacecraft a higher initial rate and see how
the controller responds. From the command line, we change the initial rate around the x axis to
be 0.2 rad/sec and call the simulation function with no outputs, so that it will generate the full
suite of plots. We see that the response takes a long time, over 20 minutes, but the rate does
eventually damp out. Figure 13.6 shows the damping response.

The full simulation function is shown in the following. The built-in demo performs an
open loop simulation of the default spacecraft model with no control, as with the momentum
conservation test performed in the previous recipe (Figure 13.2).

36 function d = SpacecraftSimFunction( x0, qTarget, input )
37

38 % Handle inputs
39 if nargin == 0
40 % perform an open loop simulation
41 disp('SpacecraftSimFunction: Open loop simulation for 10 minutes.

Initial rates are random.')
42 input = struct;
43 input.rhs = RHSSpacecraftWithRWA;
44 input.pd = [];
45 input.dT = 1; % sec
46 input.tEnd = 600; % sec
47 input.controlIsOn = false;
48 x0 = [1;0;0;0;1e-3*randn(6,1)];
49 SpacecraftSimFunction( x0, [], input );
50 return;
51 end
52
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53 if isempty(x0)
54 qECIToBody = [1;0;0;0];
55 omega = [0;0;0]; % rad/sec
56 omegaRWA = [0;0;0]; % rad/sec
57 x0 = [qECIToBody;omega;omegaRWA];
58 end
59

60 if isempty(qTarget)
61 qTarget = x0(1:4);
62 end
63

64 % State vector
65 x = x0;
66 nWheels = length(x0)-7;
67

68 % Plotting and number of steps
69 n = ceil(input.tEnd/input.dT);
70 xP = zeros(length(x),n);
71 dP = zeros(7,n);
72

73 % Find the initial angular momentum
74 d = input.rhs;
75 [˜,hECI0] = RHSSpacecraftWithRWA(0,x,d);
76

77 % Run the simulation
78 for k = 1:n
79 % Control
80 u = [0;0;0];
81 angleError = [0;0;0];
82 if( input.controlIsOn )
83 % Find the angle error
84 angleError = ErrorFromQuaternion( x(1:4), qTarget );
85 % Update the controllers individually
86 for j = 1:nWheels
87 [u(j), input.pd(j)] = PDControl('update',angleError(j),input.pd(j

));
88 end
89 end
90

91 % Wheel torque
92 d.torqueRWA = d.inr*u;
93

94 % Get the delta angular momentum
95 [˜,hECI] = RHSSpacecraftWithRWA(0,x,d);
96 dHECI = hECI - hECI0;
97 hMag = sqrt(dHECI'*dHECI);
98

99 % Plot storage
100 xP(:,k) = x;
101 dP(:,k) = [hMag;d.torqueRWA;angleError];
102

103 % Right hand side
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104 x = RungeKutta(@RHSSpacecraftWithRWA,0,x,input.dT,d);
105 end
106

107 [t,tL] = TimeLabel((0:(n-1))*input.dT);
108

109 % Record initial conditions and results
110 d = struct;
111 d.input = input;
112 d.x0 = x0;
113 d.qTarget = qTarget;
114 d.xPlot = xP;
115 d.dPlot = dP;
116 d.tPlot = t;
117 d.tLabel = tL;
118

119 y = cell(1,nWheels);
120 for k = 1:nWheels
121 y{k} = sprintf('\\omega_%d',k);
122 end
123 d.yLabel = [{'q_s','q_x','q_y','q_z','\omega_x','\omega_y','\omega_z'}

y];
124 d.dLabel = {'\Delta H (Nms)','T_x (Nm)', 'T_y (Nm)', 'T_z (Nm)', ...
125 '\theta_x (rad)', '\theta_y (rad)', '\theta_z (rad)'};
126

127 if nargout == 0
128 PlotSpacecraftSim( d );
129 end

The plotting code is put into a separate function that accepts the output data structure. We
create and save the plot labels in the simulation function. This allows us to replot any saved
output. We add a statement to check for nonzero angle errors before creating the control and
angle error plots, since they are not needed for open loop simulations.

TIP Use the fields in your structure for plotting without renaming the variables locally,
so you can copy/paste individual plots to the command line after doing a run of your simulation.

PlotSpacecraftSim.m

1 %% PLOTSPACECRAFTSIM Plot the spacecraft simulation output
2 %% Form
3 % PlotSpacecraftSim( d )
4 %% Inputs
5 % d (.) Simulation data structure
6 %% Outputs
7 % None.

12
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13 function PlotSpacecraftSim( d )
14

15 t = d.tPlot;
16

17 yL = d.yLabel(1:4);
18 PlotSet( d.tPlot, d.xPlot(1:4,:), 'x label', d.tLabel, 'y label', yL

,...
19 'plot title', 'Attitude', 'figure title', 'Attitude');
20

21 yL = d.yLabel(5:7);
22 PlotSet(d.tPlot, d.xPlot(5:7,:), 'x label', d.tLabel, 'y label', yL,...
23 'plot title', 'Body Rates', 'figure title', 'Body Rates');
24

25 yL = d.yLabel(8:end);
26 PlotSet( t, d.xPlot(8:end,:), 'x label', d.tLabel, 'y label', yL,...
27 'plot title', 'RWA Rates', 'figure title', 'RWA Rates');
28

29 yL = d.dLabel(1);
30 PlotSet( d.tPlot, d.dPlot(1,:), 'x label', d.tLabel, 'y label', yL,...
31 'plot title', 'Inertial Angular Momentum',...
32 'figure title', 'Inertial Angular Momentum');
33

34 if any(d.dPlot(5:end,:)˜=0)
35 yL = d.dLabel(2:4);
36 PlotSet( d.tPlot, d.dPlot(2:4,:), 'x label', d.tLabel, 'y label', yL

,...
37 'plot title', 'Control Torque', 'figure title', 'Control Torque');
38 yL = d.dLabel(5:end);
39 PlotSet( d.tPlot, d.dPlot(5:end,:), 'x label', d.tLabel, 'y label',

yL,...
40 'plot title', 'Angular Errors', 'figure title', 'Angular Errors');
41 end

An interesting exercise for the reader would be to replace the fixed disturbance input,
d.torque, with a function handle that calls a disturbance function. This forms the basis of
spacecraft simulation in our Spacecraft Control Toolbox, where the disturbances are calculated
from the spacecraft geometry and space environment as it rotates and moves along its orbit.

Summary
This chapter has demonstrated how to write the dynamics and implement a simple control law
for a spacecraft with reaction wheels. Our control system is only valid for small angle changes
and will not work well if the angular rates on the spacecraft get large. In addition, we do
not consider the torque or momentum limits on the reaction wheels. We also learned about
quaternions and how to implement kinematics of rigid body with quaternions. We showed how
to get angle errors from two quaternions. Table 13.1 lists the code developed in the chapter.
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Table 13.1: Chapter Code Listing

File Description
RHSSpacecraftWithRWA RHS for spacecraft with reaction wheels
ErrorFromQuaternion Spacecraft simulation script
SpacecraftSim Spacecraft simulation script
SpacecraftSimBatch Spacecraft simulation function
BatchSimRuns Multiple runs of the spacecraft simulation
PlotSpacecraftSim Plot the simulation results
QTForm Transform a vector opposite the direction of the quaternion
QUnit Normalize a quaternion
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Automobiles

Automobile technology has gone from the mundane to the cutting edge over the past decade.
New technologies such as electric cars and autonomous driving are making automotive engi-
neering one of the most exciting areas for engineers.

In this chapter, we will give recipes covering a wide range of automotive topics, including
dynamics and autonomous driving.

14.1 Automobile Dynamics
Problem

We need to model the car dynamics. We will limit this to a planar model in two dimensions.
We are modeling the location of the car in x/y and the angle of the wheels which allows the car
to change direction.

Solution

Write a right-hand-side function that can be called by the RungeKutta integration function.

How It Works

We will need two functions for the dynamics of the automobile. RHSAutomobile is used
by the simulation. RHSAutomobile has the full dynamical model including the engine and
steering model. Aerodynamic drag, rolling resistance, and side force resistance (the car doesn’t
slide sideways without resistance) are modeled. RHSAutomobile handles multiple automo-
biles. An alternative would be to have one automobile function and call RungeKutta once
for each automobile. The latter approach works in all cases, except when you want to model
collisions. In many types of collisions, two cars collide and then stick, effectively becoming a
single car. Each vehicle has six states. They are

1. x position

2. y position

3. x velocity

© Michael Paluszek and Stephanie Thomas 2020
M. Paluszek and S. Thomas,MATLAB Recipes,
https://doi.org/10.1007/978-1-4842-6124-8 14
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Figure 14.1: Planar automobile dynamical model. The contact and rolling friction are included in Fk

where k is one of the four wheels.

4. y velocity

5. Heading

6. Angular rate about vertical

The velocity derivatives are driven by the forces and the angular rate derivative by the
torques. The planar dynamical model is illustrated in Figure 14.1 [2]. Unlike the reference, we
constrain the rear wheels to be fixed and the angles for the front wheels to be the same.
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The dynamical equations are written in the rotating frame:

m(v̇x − 2ωvy) =
4∑

k=1

Fkx − qCDxAxux (14.1)

m(v̇y + 2ωvx) =

4∑
k=1

Fky − qCDyAyuy (14.2)

Iω̇ =

4∑
k=1

r×k Fk (14.3)

where m is the total mass of the car, v is the translational velocity, ω is the angular rate about
vertical, I is the inertia about the vertical axis, and Fk is the kth component of force. CD is
the drag coefficient, and Ax and Ay are the areas in the x and y directions used to compute the
drag. This is treating the car as two flat plates normal to the flow. The dynamic aerodynamic
pressure is

q =
1

2
ρ
√

v2x + v2y (14.4)

and

v =

[
vx
vy

]
(14.5)

The unit vector is

u =

[
vx
vy

]
√
v2x + v2y

(14.6)

The gravitational force is mg where g is the acceleration of gravity. The force at the tire
contact point, where the tire touches the road, for tire k is

Ftk =

[
T/ρ− Fr

−Fc

]
(14.7)

where T is the torque and ρ is the radius of the tire. Fr is the rolling friction and is

Fr = f0 +K1v
2
tx (14.8)

where vtx is the velocity in the tire frame in the rolling direction. f0 is the velocity-independent
force, and K1 is the velocity coefficient. For front-wheel drive cars, the torque, T , is zero for
the rear wheels. The contact friction is

Fc =
1

4
μcmg

vty
|vt| (14.9)
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Figure 14.2: Wheel force and torque.

This is the force perpendicular to the normal rolling direction of the wheel that is into or out of
the paper in Figure 14.2. The velocity term ensures that the friction force does not cause limit
cycling. That is, when the y velocity is zero, the force is zero. μc is a constant for the tires. This
model assumes that lateral friction is only applied when slipping.

The transformation from the tire to body frame is

c =

[
cos δ − sin δ
sin δ cos δ

]
(14.10)

where δ is the steering angle so that
Fk = cFtk (14.11)

vt = cT
[
vx
vy

]
(14.12)

The kinematical equation that related the yaw angle and yaw angular rate is

θ̇ = ω (14.13)

and the inertial velocity V , the velocity needed to tell you where the car is going, is

V =

[
cos θ − sin θ
sin θ cos θ

]
v (14.14)

The dynamics simulation right-hand side computes the dynamics of the automobile.
RHSAutomobile can simulate multiple cars.

RHSAutomobile.m

1 %% RHSAUTOMOBILE Right hand side for a 2D automobile.
2 % Use AutomobileInitialize to set up d
3 %% Form
4 % xDot = RHSAutomobile( t, x, d )
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5 %
6 %% Inputs
7 % t Time, unused
8 % x (6*n,1) State, [x;y;vX;vY;theta;omega]
9 % d (1,1) Data structure

10 % .car (n,1) Car data structure
11 % .mass (1,1) Mass (kg)
12 % .delta (1,1) Steering angle (rad)
13 % .r (2,4) Position of wheels (m)
14 % .cDF (1,1) Frontal drag coefficient
15 % .cDS (1,1) Side drag coefficient
16 % .cF (1,1) Friction coefficient
17 % .fT (1,1) Traction force (N)
18 % .areaF (1,1) Frontal area for drag (mˆ2)
19 % .areaS (1,1) Side area for drag (mˆ2)
20 % .fRR (1,2) [f0 K]
21 %
22 %% Outputs
23 % x (6*n,1) d[x;y;vX;vY;theta;omega]/dt
24 %

This is a designer’s choice. It allows for it to simulate automobile interactions more easily.
If the cars are always separate, we could have one right-hand side per car.

The beginning just initializes the arrays and constants.

26 function xDot = RHSAutomobile( ˜, x, d )
27

28 % Constants
29 g = 9.806; % Acceleration of gravity (m/sˆ2)
30 n = length(x);
31 nS = 6; % Number of states
32 xDot = zeros(n,1);
33 nAuto = n/nS;

The for loop cycles through all of the cars. The first part is the kinematics.

35 j = 1;
36 % State [j j+1 j+2 j+3 j+4 j+5]
37 % x y vX vY theta omega
38 for k = 1:nAuto
39 vX = x(j+2,1);
40 vY = x(j+3,1);
41 theta = x(j+4,1);
42 omega = x(j+5,1);
43

44 % Car angle
45 c = cos(theta);
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46 s = sin(theta);
47

48 % Inertial frame
49 v = [c -s;s c]*[vX;vY];
50

51 delta = d.car(k).delta;
52 c = cos(delta);
53 s = sin(delta);
54 mCToT = [c s;-s c];

The next part computes forces and torques.

56 % Find the rolling resistance of the tires
57 vTire = mCToT*[vX;vY];
58 f0 = d.car(k).fRR(1);
59 K1 = d.car(k).fRR(2);
60

61 fRollingF = f0 + K1*vTire(1)ˆ2;
62 fRollingR = f0 + K1*vXˆ2;
63

64 % This is the side force friction
65 fFriction = d.car(k).cF*d.car(k).mass*g;
66 fT = d.car(k).radiusTire*d.car(k).torque;
67

68 fF = [fT - fRollingF;-vTire(2)*fFriction];
69 fR = [ - fRollingR;-vY *fFriction];
70

71 % Tire forces
72 f1 = mCToT'*fF;
73 f2 = f1;
74 f3 = fR;
75 f4 = f3;
76

77 % Aerodynamic drag
78 vSq = vXˆ2 + vYˆ2;
79 vMag = sqrt(vSq);
80 q = 0.5*1.225*vSq;
81 fDrag = q*[d.car(k).cDF*d.car(k).areaF*vX;...
82 d.car(k).cDS*d.car(k).areaS*vY]/vMag;
83

84 % Force summations
85 f = f1 + f2 + f3 + f4 - fDrag;
86

87 % Torque
88 T = Cross2D( d.car(k).r(:,1), f1 ) + Cross2D( d.car(k).r(:,2), f2 )

+ ...
89 Cross2D( d.car(k).r(:,3), f3 ) + Cross2D( d.car(k).r(:,4), f4 )

;
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Finally, we assemble the derivative array that is returned.

91 % Right hand side
92 xDot(j, 1) = v(1);
93 xDot(j+1,1) = v(2);
94 xDot(j+2,1) = f(1)/d.car(k).mass + omega*vY;
95 xDot(j+3,1) = f(2)/d.car(k).mass - omega*vX;
96 xDot(j+4,1) = omega;
97 xDot(j+5,1) = T/d.car(k).inr;
98

99 j = j + nS;
100 end

14.2 Modeling the Automobile Radar
Problem

The sensor utilized for this example will be the automobile radar. The radar measures azimuth,
range, and range rate.

Solution

Build a radar model in a MATLAB function. The function will use analytical derivations of
range and range rate.

How It Works

The radar model is extremely simple. It assumes the radar measures the line-of-site range, range
rate, and azimuth, the angle from the forward axis of the car. The model skips all the details of
radar signal processing and outputs those three quantities. This type of simple model is always
the best when you start a project. Later on, you will need to add a very detailed model that has
been verified against test data to demonstrate that your system works as expected.

The position and velocity of the radar are entered through the data structure. This does not
model the signal-to-noise ratio of a radar. The power received by a radar goes as 1

r4
. In this

model, the signal goes to zero at the maximum range that is specified in the function. The range
is found from the difference in position between the radar and the target. If δ is the difference,
we write

δ =

⎡
⎣ x− xr

y − yr
z − zr

⎤
⎦ (14.15)

389



CHAPTER 14 AUTOMOBILES

The range is then

ρ =
√

δ2x + δ2y + δ2z (14.16)

The delta velocity is

ν =

⎡
⎣ vx − vxr

vy − vyr
vz − vzr

⎤
⎦ (14.17)

In both equations, the subscript r denotes the radar. The range rate is

ρ̇ =
νT δ

ρ
(14.18)

The AutoRadar function handles multiple targets and can generate radar measurements for
an entire trajectory. This is really convenient because you can give it your trajectory and see
what it returns. This gives you a physical feel for the problem without running a simulation. It
also allows you to be sure the sensor model is doing what you expect. This is important because
all models have assumptions and limitations. It may be that the model really isn’t suitable for
your application. For example, this model is two-dimensional. If you are concerned about your
system getting confused about a car driving across a bridge above your automobile, this model
will not be useful in testing that scenario.

AutoRadar.m

57 function [y, v] = AutoRadar( x, d )
58

59 % Demo
60 if( nargin < 1 )
61 if( nargout == 0 )
62 Demo;
63 else
64 y = DataStructure;
65 end
66 return
67 end
68

69 m = size(d.kR,2);
70 n = size(x,2);
71 y = zeros(3*m,n);
72 v = ones(m,n);
73 cFOV = cos(d.fOV);
74

75 % Build an array of random numbers for speed
76 ran = randn(3*m,n);
77

78 % Loop through the time steps
79 for j = 1:n
80 i = 1;
81 s = sin(d.theta(j));
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82 c = cos(d.theta(j));
83 cIToC = [c s;-s c];
84

85 % Loop through the targets
86 for k = 1:m
87 xT = x(d.kR(:,k),j);
88 vT = x(d.kV(:,k),j);
89 th = x(d.kT(1,k),j);
90 s = sin(th);
91 c = cos(th);
92 cTToIT = [c -s;s c];
93 dR = cIToC*(xT - d.xR(:,j));
94 dV = cIToC*(cTToIT*vT - cIToC'*d.vR(:,j));
95 rng = sqrt(dR'*dR);
96 uD = dR/rng;
97

98 % Apply limits
99 if( d.noLimits || (uD(1) > cFOV && rng < d.maxRange) )

100 y(i ,j) = rng + d.noise(1)*ran(i ,j);
101 y(i+1,j) = dR'*dV/y(i,j) + d.noise(2)*ran(i+1,j);
102 y(i+2,j) = atan(dR(2)/dR(1)) + d.noise(3)*ran(i+2,j);
103 else
104 v(k,j) = 0;
105 end
106 i = i + 3;
107 end
108 end

Built-in plotting is provided. This makes it easier for a user to understand the function.

110 % Plot if no outputs are requested
111 if( nargout < 1 )
112 [t, tL] = TimeLabel( d.t );
113

114 % Every 3rd y is azimuth
115 i = 3:3:3*m;
116 y(i,:) = y(i,:)*180/pi;
117

118 yL = {'Range (m)' 'Range Rate (m/s)', 'Azimuth (deg)' 'Valid
Data'};

119 PlotSet(t,[y;v],'x label',tL','y label',yL,'figure title','Auto Radar
',...

120 'plot title','Auto Radar');
121

122 clear y
123 end
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The function returns a default data structure to get the user started.

125 %% AutoRadar>DataStructure
126 function d = DataStructure
127 %% Default data structure
128 d.kR = [1;2];
129 d.kV = [3;4];
130 d.kT = 5;
131 d.theta = [];
132 d.xR = [];
133 d.vR = [];
134 d.noise = [0.02;0.0002;0.01];
135 d.fOV = 0.95*pi/16;
136 d.maxRange = 60;
137 d.noLimits = 1;
138 d.t = [];

Notice that the function has a built-in demo and, if there are no outputs, will plot the results.

140 %% AutoRadar>Demo
141 function Demo
142 % Shows radar performance as range changes
143

144 omega = 0.02;
145 d = DataStructure;
146 n = 1000;
147 d.xR = [linspace( 0,1000,n);zeros(1,n)];
148 d.vR = [ones(1,n);zeros(1,n)];
149 t = linspace(0,1000,n);
150 a = omega*t;
151 x = [linspace(10,10+1.05*1000,n);2*sin(a);...
152 1.05*ones(1,n); 2*omega*cos(a);zeros(1,n)];
153 d.theta = zeros(1,n);
154 d.t = t;
155

156 AutoRadar( x, d );

The radar returns the range, the range rate, and the azimuth angle of the target. Even
though we are using radar as our sensor, there is no reason why you couldn’t use a camera,
laser rangefinder, or sonar instead. The limitation in the algorithms and software provided in
this book is that it will only handle one sensor. You can get software from Princeton Satellite
Systems that expands this to multiple sensors. For example, cars carry radar, cameras, and
LIDAR (laser or light radar). You might want to integrate all of their measurements together.
Figure 14.3 shows the internal radar demo. The target car is weaving in front of the radar. It is
receding at a steady velocity, but the weave introduces a time-varying range rate.
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Figure 14.3: Built-in radar demo. The target is weaving in front of the radar.

14.3 Automobile Autonomous Passing Control
Problem

To have something interesting for our radar to measure, we need our cars to perform some
maneuvers. We will develop an algorithm for a car to change lanes.

Solution

The cars are driven by steering controllers that execute basic automobile maneuvers. The throt-
tle (accelerator pedal) and steering angle can be controlled. Multiple maneuvers can be chained
together. The first function is for autonomous passing, and the second performs the lane change.
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How It Works

The AutomobilePassing implements passing control by pointing the wheels at the target.
It generates a steering angle demand and torque demand. Demand is what we want the steering
to do. In a real automobile, the hardware will attempt to meet the demand, but there will be
a time lag before the wheel angle or motor torque meets the wheel angle or torque demand
commanded by the controller. In many cases, you are passing the demand to another control
system that will try and meet the demand. The algorithms are quite simple. They don’t care
if anyone gets in the way. They also don’t have any control for avoiding another vehicle. The
code assumes that the lane is empty. Don’t try this with your car!

The state is defined by the passState variable. Prior to passing, the passState is 0.
During the passing, it is 1. When it returns to its original lane, the state is set to 0.

AutomobilePassing.m

1 %% AUTOMOBILEPASSING Automobile passing control
2 %% Form
3 % passer = AutomobilePassing( passer, passee, dY, dV, dX, gain )

43

44 % Lead the target unless the passing car is in front
45 if( passee.x(1) + dX > passer.x(1) )
46 xTarget = passee.x(1) + dX;
47 else
48 xTarget = passer.x(1) + dX;
49 end
50

51 % This causes the passing car to cut in front of the car being passed
52 if( passer(1).passState == 0 )
53 if( passer.x(1) > passee.x(1) + 2*dX )
54 dY = 0;
55 passer(1).passState = 1;
56 end
57 else
58 dY = 0;
59 end
60

61 % Control calculation
62 target = [xTarget;passee.x(2) + dY];
63 theta = passer.x(5);
64 dR = target - passer.x(1:2);
65 angle = atan2(dR(2),dR(1));
66 err = angle - theta;
67 passer.delta = gain(1)*(err + gain(3)*(err - passer.errOld));
68 passer.errOld = err;
69 passer.torque = gain(2)*(passee.x(3) + dV - passer.x(3));

The second function, AutomobileLaneChange, performs a lane change. It implements
lane change control by pointing the wheels at the target. The function generates a steering
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angle demand and a torque demand. The default gains work reasonably well. You should
always supply defaults that make sense.

AutomobileLaneChange.m

1 %% AUTOMOBILELANECHANGE Automobile lane change control
2 %% Form
3 % passer = AutomobileLaneChange( passer, dY, v, gain )

35 % Default gains
36 if( nargin < 5 )
37 gain = [0.05 80 120];
38 end
39

40 % Lead the target unless the passing car is in front
41 xTarget = passer.x(1) + dX;
42

43 % Control calculation
44 target = [xTarget;y];
45 theta = passer.x(5);
46 dR = target - passer.x(1:2);
47 angle = atan2(dR(2),dR(1));
48 err = angle - theta;
49 passer.delta = gain(1)*(err + gain(3)*(err - passer.errOld));
50 passer.errOld = err;
51 passer.torque = gain(2)*(v - passer.x(3));

14.4 Automobile Animation
Problem

We want to visualize the cars as they maneuver.

Solution

Read in a file in .obj format. Display it using MATLAB’s patch function. Pass the orienta-
tion and position of the automobile to the animation function and create a movie.

How It Works

We create a function to read in .obj files. We then write a function to draw and animate the
model.

The first step is to find an automobile model. A good resource is TurboSquid: www.
turbosquid.com. You will find thousands of models. We need the .obj format and prefer
a low polygon count. Ideally, we want models with triangles. In the case of the model found
for this chapter, it had rectangles so we converted them to triangles using a Macintosh applica-
tion, Cheetah3D: www.cheetah3d.com. An OBJ model comes with an .obj file, an .mtl file
(material file), and images for textures. We will only use the OBJ file.
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Figure 14.4: Automobile 3D model.

LoadOBJ loads the file and puts it into a data structure. The data structure uses the g field
of the OBJ file to break the file into components. In this case, the components are the four tires
and the rest of the car. The demo is just:

LoadOBJ( 'MyCar.obj' )

You do need the extension, .obj. The car is shown in Figure 14.4. The image is generated
with one call to patch per component.

The first part of DrawComponents initializes the model. We save, and return, pointers to
the patches so that we only have to update the vectors with each call.

DrawComponents.m

1 %% DRAWCOMPONENTS Draws a multi-component object
2 %% Form
3 % h = DrawComponents( 'initialize', g )
4 % DrawComponents( 'update', g, h, x )

25

26 function h = DrawComponents( action, g, h, x )
27

28 if( nargin < 1 )
29 Demo
30 return
31 end
32

33 switch( lower(action) )
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34 case 'initialize'
35

36 n = length(g.component);
37 h = zeros(1,n);
38

39 for k = 1:n
40 h(k) = DrawMesh(g.component(k) );
41 end
42

43 case 'update'
44 UpdateMesh(h,g.component,x);
45

46 otherwise
47 warning('%s not available',action);
48 end

The mesh is drawn with a call to patch. We use the minimal set of properties. We make
the edges black to make the model easier to see. The Phong reflection model is an empirical
lighting model. It includes diffuse and specular lighting.

51 function h = DrawMesh( m )
52

53 h = patch( 'Vertices', m.v, 'Faces', m.f, 'FaceColor', m.color,...
54 'EdgeColor',[0 0 0],'EdgeLighting', 'phong',...
55 'FaceLighting', 'phong');

Updating is done by rotating the vertices around the z axis and then adding the x and y
positional offsets. The input array is [x;y;yaw]. We then set the new vertices. The function can
handle an array of positions, velocities, and yaw angles.

59 function UpdateMesh( h, c, x )
60

61 for j = 1:size(x,2)
62 for k = 1:length(c)
63 cs = cos(x(3,j));
64 sn = sin(x(3,j));
65 b = [cs -sn 0 ;sn cs 0;0 0 1];
66 v = (b*c(k).v')';
67 v(:,1) = v(:,1) + x(1,j);
68 v(:,2) = v(:,2) + x(2,j);
69 set(h(k),'vertices',v);
70 end
71 end

The graphics demo AutomobileDemo implements passing control. Automobile
Initialize reads in the OBJ file. The following code sets up the graphics window:
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AutomobileDemo.m

33 % Set up the figure
34 NewFigure( 'Car Passing' )
35 axes('DataAspectRatio',[1 1 1],'PlotBoxAspectRatio',[1 1 1] );
36

37 h = [];
38 h(1,:) = DrawComponents( 'initialize', d.car(1).g );
39 h(2,:) = DrawComponents( 'initialize', d.car(2).g );
40

41 xlabel('X (m)')
42 ylabel('Y (m)')
43 zlabel('Z (m)')
44

45 set(gca,'ylim',[-4 4],'zlim',[0 2]);
46

47 grid on
48 view(3)
49 rotate3d on
50 hold off

During each pass through the simulation loop, we update the graphics. We call DrawCompo
nents once per car along with the stored patch handles for each car’s components. We adjust
the limits so that we maintain a tight focus on the two cars. We could have used the camera
fields in the axes data structure for this too. We call drawnow after setting the new xlim for
smooth animation. Animation is also discussed in Chapter 4.

69 for k = 1:n
70 % Draw the cars
71 pos1 = x([1 2]);
72 pos2 = x([7 8]);
73 DrawComponents( 'update', d.car(1).g, h(1,:), [pos1;pi/2 + x( 5)] );
74 DrawComponents( 'update', d.car(2).g, h(2,:), [pos2;pi/2 + x(11)] );
75

76 xlim = [min(x([1 7]))-10 max(x([1 7]))+10];
77 set(gca,'xlim',xlim);
78 drawnow
79

80 for i = 1:nAuto
81 p = 6*i-5;
82 d.car(i).x = x(p:p+5);
83 end
84

85 % Implement Control
86

87 % For all but the passing car control the velocity
88 d.car(1).torque = -10*(d.car(1).x(3) - vSet(1));
89

90 % The active car
91 if( t(k) < tEndPassing )
92 d.car(2) = AutomobilePassing( d.car(2), d.car(1), 3, 1.3, 10 );
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93 else
94 d.car(2).torque = -10*(d.car(2).x(3) - vSet(2));
95 end
96

97 % Integrate
98 x = RungeKutta(@RHSAutomobile, 0, x, dT, d );
99 end

Figure 14.5 shows four points in the passing sequence.

Figure 14.5: Automobile simulation snapshots showing passing.
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14.5 Modeling an Automobile Suspension
Problem

The dynamics of an automobile suspension are important to the performance of an automobile.

Solution

Build a dynamical model of a suspension.

How It Works

The solution has three files, a script which is AutoSuspensionSim, the function
DBump, and the functionRHSAutoSuspension. The script is the simulation. The first func-
tion models a bump as a simulation to the suspension, and the last, RHSAutoSuspension, is
the dynamical model for the suspension. The model is a quarter car model; it models one wheel
and its spring and damper.

The bump is the shape of a cosine curve. The bump frequency determines how often the
bump occurs.

DBump.m

1 %% Model of a quarter automobile model for the suspension with a
hydraulic actuator

2 %% Form:
3 % r = DBump( t, d )
4 %
5 %% Inputs
6 % t (1,1) Time
7 % d (.) data structure
8 % .aBump (1,1) Bump amplitude (m)
9 % .wBump (1,1) Bump frequency (rad/sec)

10 %% Outputs
11 % r (1,1) Bump
12 %
13 %% Reference:
14 % Lin, J. and I. Kanellakopoulos (1997.) Nonlinear Design of Active

Suspensions.
15 % IEEE Control Systems Magazine, June 1997. pp. 45-59.
16

17 function r = DBump( t, d )
18

19 if( d.wBump*t < 2*pi )
20 r = d.aBump*(1 - cos(d.wBump*t));
21 end

The suspension is shown in Figure 14.6.
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Figure 14.6: Quarter car suspension model.

The equations for the suspension are as follows:

ẋ1 = x2 (14.19)

ẋ2 = − 1

Mb
(Ka(x1 − x3) + Ca(x2 − x4)−AX5) (14.20)

ẋ3 = x4 (14.21)

ẋ4 = − 1

Mus
(Ka(x1 − x3) + Ca(x2 − x4)−AX5 −K(x3 − r)) (14.22)

ẋ5 = −βx5 − αA(x2 − x4) + γx6w3 (14.23)

ẋ6 =
1

τ
(u− x6) (14.24)

w3 = sgn(Ps − sgn(x6)x5)
√

|Ps − sgn(x6)x5| (14.25)

α =
4βe
V

(14.26)

β = αCtp (14.27)

γ = αCdw

√
1

ρ
(14.28)

Q = Cdwx6

√
1

ρ
(Ps − sgn(x6)x5)) (14.29)
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sgn is the sign function. It is +1 if the value is greater than or equal to zero and -1 if the value
is less than zero. The symbol are defined in Table 14.1 [1]. States are quantities that change
dynamically and are on the left-hand-side of the first 6 equations. Parameters are constants
that define the characteristics of the systems. Inputs are quantities you can change during the
simulation.

Masses and areas are exactly what they imply. Stiffness is the spring stiffness for that
part of the system. They multiply positions. Damping coefficients determine how quickly the
suspension movement goes to zero after a single bump. They multiply rates. Time constants
tell you how fast things will happen. For example, the valve time constant, τ , tells you how fast
the valve acts.

Table 14.1: Symbols. States Are Quantities That Change Dynamically

Parameter Description Units Type
x1 Body position m state
x2 Body rate m/s state
x3 Suspension position m state
x4 Suspension rate m/s state
x5 Pressure drop across the hydraulic piston Pa state
x6 Valve displacement m state
Mb Body mass kg constant
Ka Suspension stiffness N/m constant
Ca Suspension damping N/m/s constant
Kt Tire stiffness N/m constant
τ Valve time constant s constant
Mus Suspension mass kg constant
β Time constant s constant
A Piston area m2 constant
w Spool valve area m2 constant
Ps Supply pressure m2 constant
Q Hydraulic load flow m3/s constant
Ctp Total leakage coefficient N/m5/s constant
Vt Total actuator volume m3 constant
Cd Discharge coefficient kg constant
βs Effective bulk modulus N/m2 constant
u Control N/m2 input
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The right-hand side returns a default data structure if it is not given inputs. This is a conve-
nient way for the user to get a reasonable set of parameters for the model. The bump function
is called from within the function. If you wanted a different disturbance, you would change this
code:

RHSAutoSuspension.m

44 function xDot = RHSAutoSuspension( x, t, d )
45

46 if( nargin < 1 )
47 xDot = DefaultDataStructure;
48 return
49 end
50

51 f = d.pS - sign(x(6))*x(5);
52 w3 = sign(f)*sqrt(abs(f));
53 r = DBump( t, d );
54 mu = 1e7;
55

56 x24 = x(2) - x(4);
57 x13 = x(1) - x(3);
58 aX5 = d.a*mu*x(5);
59

60 xDot = [ x(2);...
61 -(d.kA*x13 + d.cA*x24 - aX5)/d.mB;...
62 x(4);...
63 (d.kA*x13 + d.cA*x24 - d.kT*(x(3) - r) - aX5)/d.mUS;...
64 -d.beta*x(5) - d.alpha*d.a*x24/mu + d.gamma*x(6)*w3/mu;...
65 (d.u - x(6))/d.tau];
66

67 function d = DefaultDataStructure
68

69 %% Automobile parameters
70 d.mB = 290; % Body mass (kg)
71 d.mUS = 59; % Wheel mass (kg)
72 d.kA = 16812; % Spring constant (N/m)
73 d.cA = 1000; % Damping constant (N/(m/sec))
74 d.kT = 190000; % Tire spring constant (N/m)
75

76 %% Hydraulic actuator parameters
77 d.alpha = 4.515e13; % N/mˆ5
78 d.beta = 1; % alpha times piston leakage coefficient (1/s)
79 d.gamma = 1.545e9; % N/(mˆ5/2 kgˆ1/2)
80 d.tau = 1/30; % Spool valve time constant (s)
81 d.pS = 10342500; % Supply pressure (Pa)
82 d.a = 3.35e-4; % Piston area (mˆ2)
83 d.u = 0;
84
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85 %% Bump disturbance
86 d.aBump = 0.025; % Bump amplitude (m)
87 d.wBump = 8*pi; % Bump frequency (rad/sec)
88

89 d.states = { 'body disp' 'body rate' 'wheel disp' 'wheel rate' ...
90 'pressure drop' 'spool valve'};

An alternative would be to add a function pointer to your disturbance function like d.fun
= @DBump. You would need to predefine the arguments. That is

r = feval{d.fun, t, d )

The simulation gets the default data structure and runs a simulation. It simulates a quarter
automobile model for the suspension with a hydraulic actuator. The automobile parameters and
actuator parameters are defined, and a bump disturbance is considered. The natural motion is
simulated for three seconds (no control), and the results for the autosuspension and hydraulic
states are displayed.

AutoSuspensionSim.m

1 %% Simulation of an automobile suspension
2 % Simulates a quarter automobile model for the suspension with a

hydraulic
3 % actuator. The automobile parameters and actuator parameters are

defined
4 % and a bump disturbance is considered. The natural motion is simulated
5 % for three seconds (no control) and the results for the auto

suspension
6 % and hydraulic states are displayed.
7 %% Reference
8 % Lin, J. and I. Kanellakopoulos (1997.) Nonlinear Design of
9 % Active Suspensions. IEEE Control Systems Magazine, June 1997.

pp. 45-59
10

11 %% Automobile parameters
12 d = RHSAutoSuspension;
13

14 %% State
15 % Form: [car body displacement; car body rate; wheel displacement;...
16 % wheel rate; pressure drop across the piston;...
17 % spool valve displacement]
18 x = [0;0;0;0;0;0];
19 t = 0;
20

21 %% Number of sim steps
22 tEnd = 3;
23 nSim = 2000;
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24 dT = tEnd/(nSim-1);
25

26 %% Plotting arrays
27 xP = zeros(7,nSim);
28

29 %% Run the simulation
30 for k = 1:nSim
31 x = RK4( 'RHSAutoSuspension', x, dT, t, d );
32 t = t + dT;
33 xP(:,k) = [x;DBump( t, d )];
34 end
35

36 %% Plot results
37 xP = xP(:,1:k);
38 [t,tL] = TimeLabel((0:k-1)*dT);
39 k1 = [1:4 7];
40 k2 = 5:6;
41 yL = [d.states(:)' {'bump'}];
42

43 PlotSet( t, xP(k1,:),'x label',tL,'y label',yL(k1),'figure title','
Suspension States');

44 PlotSet( t, xP(k2,:),'x label',tL,'y label',yL(k2),'figure title','
Hydraulic States');

Figure 14.7 shows the suspension response.

Figure 14.7: Automobile suspension response. The left plot is the states. The right is a plot of the
hydraulic states.
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Summary
This chapter has demonstrated how to use MATLAB to simulate automobile dynamics in 2D,
automobile maneuvers, and suspensions. We also show how to animate an automobile. Table
14.2 lists the code developed in the chapter.

Table 14.2: Chapter Code Listing

File Description
AutomobileDemo Script to demonstrate automobile control
AutomobilePassing Automobile passing controller
AutomobileLaneChange Automobile land changing controller
AutoRadar Automobile radar model
AutoSuspensionSim Simulation of an automobile suspension
DBump Bump model for the suspension simulation
RHSAutoSuspension Dynamical model of an automobile suspension
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stubDensity, 210
unittest framework, 210
using LAPACK, 199

Colon operator, 14–16
ColorDistribution, 118–120
CompleteTriangle, 177, 178
Custom GUI

App Designer interface, 159
blank GUI, 160
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SaveFile, 173
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DebugLog, 189–191
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DefaultStruct function, 223
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fourth-order Runge-Kutta integrator, 217–

218
numerical integration, 216–219
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PDControl design, 221–222, 226
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proportional-derivative control, 219–225
RHS function, 216
second-order system, 215–216
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Draftmark, 141
Drag test, 209

E
Euler equations, 360, 364
Explicit expansion, 55

F
Fast Fourier Transform (FFT), 31–33
Fault detection

air turbine model, 277–280
dynamical model, 278
failed regulator, 286

linear model, 277, 280
tachometer failure, 287

filter detection, 280–283
GUI
appdesigner interface, 287–289
app details, 292
blank template, 290
debugger, 295
DFGUI.mlapp, 288
execution, 296
failed regulator, 286
tachometer failure, 287

pressure regulator/tachometerfailure,
284–287

varargin function, 281
Field-oriented control (FOC), 258–261
Figures creation, multiple subplots, 230–233
FORTRAN, 4
Function handles, 17

G
getnext functions, 30
GNU Linear Programming Kit (GLPK),

47–50
Graphical user interface (GUI), fault detection

appdesigner interface, 287–289
app details, 292
blank template, 290
debugger, 295
DFGUI.mlapp, 288
execution, 296
failed regulator, 286
tachometer failure, 287

GUIPlots, 167–168

H
hasnext functions, 30
heatmap function, 112–113

I
if statements, 70–71
Images, 18–20
Integrating toolbox documentation
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MagneticControlDemo, 96–97
search database, 97
Supplemental Software, 93
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Interactive graphics
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uimenu, 148
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App Designer interface, 159
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box animation app, 160
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complete code, 164
“Design App” button, 158
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creating simple animation
PatchAnimation, 147
pause command, 145
rotating box, 144–145
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calibrate, 172
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callback, 166
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GUIPlots, 167–168
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questdlg, 171
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playing back, 147–148
uicontrol button, 152–155
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JSON-formatted strings, 39–40

L
Linear plot, 103
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M
Map containers, 25
MAT-file, 23–25
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MATLAB code coverage tools, 176
MATLAB Command-Line Help, 85–88
MATLAB debugger, 160
MATLAB errors and warnings, 191–192
MATLAB Language Primer

application development window, 4
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command-line file interaction, 45–47
Command Window, 4, 5
creating documents, 61–63
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Current Folder, 4
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42–43
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data types, 25
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MAT-file, 23–25
MATLAB Online, 64–67
memoize function, 58–59
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strings arrays, 37, 38
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table data processing, 33–36
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third-party toolboxes, 5
tool for timing code, 4
using Java, 59–60
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writing to text file, 51–54

MATLAB “Mortgage” demonstration app., 158
MATLAB Online, 64–67
MATLAB style

adding built-in inputs and outputs, 78–80
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“built-in” inputs and outputs, 69
guidelines
align blocks of code, 71
if statements, 70–71
MyFancyDataStructure, 70
naming conventions, 72–74
tab preferences, 72
tab sizes, 70, 72
variable value, 70

integrating toolbox documentation (see
Integrating toolbox documentation)

MATLAB Command-Line Help, 85–88
overloading functions, 77–78
publishing code, 88–92
smart structuring of scripts, 82–85
structuring toolbox, 98–99
writing function help, 74–76

MATLAB-style string, 43
matlab.unittest package, 177
MATLAB variables, 175
memoize function, 58–59
Mocking framework, 209–211
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P, Q
PatchAnimation, 147, 155
PatchAnimationStorage.m., 147
patch function, 123
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controller, 227
PUBLISH and VIEW tabs, 5
Publishing code, 88–92
Python, 4
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Radar model

AutoRadar function, 390
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box function, 243
controlled robot, 248–251
control system, 246–248
dynamical model creation, 235–238
equations of motion, 236
fminsearch function, 244
initalize function, 241
Nelder-Mead minimizer, 243
numerical search, 243–245
patch function, 239, 241
PD controller, 246
RHS function, 237, 238
torque control, 246
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update function, 242
VideoWriter object, 245
visualization function, 238–243

Script subfunction, 56–58
selectIf, 186
setupOnce function, 182–183
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Euler equations, 360
inertial angular momentum, 363
inertia matrix, 360
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omegaDotCore, 363
omegaRWA variable, 362
reaction wheel, 360
skew matrix, 361

quaternions, angle errors
control system, 365

Euler equation, 364
proportional-derivative controllers, 364
QMult, 365
QPose, 365

simulation script
control torque, 376
momentum conservation test, 377
Monte Carlo simulation, 373, 374
nonzero angle errors, 379

SpacecraftSim
angular momentum, 367
applied external torque, 371
control acceleration, 367
controlIsOn flag to false, 366
fourth-order Runge-Kutta, 366
momentum exchange, 373
PD control method, 370
PlotSet, 369
test results., 366

Space vector modulation, 270–275
Sparse matrices, 22, 23
StateSpace class, 206–207
String concatenation, 37
Strings arrays, 37–38
stubDensity class, 210
Substrings, 39–40

T
table class, 180–181
Tables, 23
tabularTextDatastore, 34, 35
Tall arrays, 22
TestCase, 177
TestCase class, 181–182
Testing

add custom warning, 176
custom errors and warnings, 192–196
generation of figures, 196–197
inverse cosine, 176
logging function, 189–191
running test suite, 184–186
setting verbosity levels, 186–188
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Coverage Report, 184
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matlab.unittest package, 177
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setupOnce function, 182–183
table class, 180–181
TestCase, 177
TestCase class, 181–182
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uicontrol button, 152–155
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