
147© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_9

CHAPTER 9

Image and Video
Processing
In Chapter 8, you learned about audio processing in GNU Octave in detail.

In this chapter, you will use some of the concepts you learned about in

Chapter 7 to understand image processing.

In this chapter, you will learn about the following list of topics:

• Image processing

• Video processing

 Image Processing
With the growing availability of good cameras in phones over the past few

years, and the outbreak of social media platforms like Instagram, YouTube,

etc. users all over the world can now upload visually pleasing images and

videos. All photo editing applications, like Photoshop or GIMP, used for

this purpose employ image processing. In this section, you will learn how

to process digital images with GNU Octave.

You will first look at the basic installation required to work with images

and then move on to writing your own code to work with them.

Similar to previous chapters, you must install the image package

available at https://octave.sourceforge.io/image/index.html.

https://doi.org/10.1007/978-1-4842-6086-9_9#DOI
https://doi.org/10.1007/978-1-4842-6086-9_8
https://doi.org/10.1007/978-1-4842-6086-9_7
https://octave.sourceforge.io/image/index.html

148

You will use a Jupyter notebook for all of the demonstrations in this

chapter. Create a new notebook for this chapter. In a new cell in the Jupyter

notebook, run the following command:

pkg install -forge image

Next, load the image package by running the following command:

pkg load image

Let’s first explore how to read and write images. For this, download

any image from the web or use any image on your computer, and save it in

the current folder of your Jupyter notebook with the name sample_color.
jpg. We will use the image in Figure 9-1 to demonstrate the results in this

chapter.

Figure 9-1. A sample image

Chapter 9 Image and VIdeo proCessIng

149

 Loading, Displaying, and Resizing Images
Now you’ll learn how to load the images into Octave. Type the following

command into a new cell in the notebook:

color_image = imread('sample_color.jpg');

imread loads the image and stores it to a variable, in this case color_

image. Now display the image:

%plot gnuplot

figure(1), imshow(color_image);

This will display the image in a new window. If you zoom into the image,

you will notice the image looks like small squares, as you can see in Figure 9-2.

Figure 9-2. Zooming into the flower image

Chapter 9 Image and VIdeo proCessIng

150

The reason you see the small squares in the image is because the

image is stored as three-dimensional matrix and each member is an 8-bit

unsigned integer (uint8).

Let’s get the size of the image:

size(color_image)

You will see something like this in the output:

ans = 3648 5472 3

In this case, the image is a matrix of dimensions 3648 X 5472 X 3.

You can resize the image using imresize:

resized_image = imresize(color_image, [512, 512]);

Here you resize the image to 512 X 512 X 3. Check this for yourself

using size. When using imresize(), you can either give a scale to which

you want to resize the dimensions or directly mention the size to which

you want to resize, as you have done here.

 Color Space
Now let’s explore how the data is stored and how the image obtains its

color. You have seen that the size of an image has three dimensions and

the third dimension has the value 3. This is true for all color images. Each

2D matrix of the third dimension is called a channel. The first is for red

(R), the second is for green (G), and the third is for blue (B). You must be

familiar with the acronym RGB; this comes from the channel names.

A color space is a specific way of organizing colors such that they

can be reproducible in digital representation. With a triplet of each value

corresponding to the intensity in R, G, and B colors, you can cover most of

the colors that the human eye can perceive.

Chapter 9 Image and VIdeo proCessIng

151

Now let’s explore the concept visually. In a new cell, type the following

code:

red_image = color_image;

red_image(:,:,2) = 0;

red_image(:,:,3) = 0;

%plot gnuplot

figure(2), imshow(red_image);

In this code, you copy the color_image to red_image and then set the

green and blue channel values to 0. The image is shown in Figure 9-3. Only

the red component of the image is visible in the image. You can try for

yourself for the other two channels or with a combination of two channels.

Figure 9-3. Red channel of the flower image

Chapter 9 Image and VIdeo proCessIng

152

You are all familiar with old pictures or movies that are

monochromatic. So, if having only one channel is displaying the image

in that color space, then how do you get monochromatic images? Before

we jump into that, let’s look at the data stored in the image. For that, let’s

display the values in a small portion of the image like this:

color_image(1:10, 1:10, 2)

You will see something like this in the Jupyter notebook (not the exact

same values, because they will depend on your image):

ans =130 125 125 125 124 124 126 126 124 123 121

127 126 125 124 121 123 125 124 123 126 124

126 126 125 126 123 123 124 124 124 124 123

126 127 127 128 126 125 123 124 125 123 122

126 127 126 127 126 126 123 123 123 122 121

125 123 123 124 126 126 124 122 121 122 121

125 124 123 123 125 125 123 121 121 123 121

125 125 125 125 124 123 122 122 121 125 122

125 127 126 126 123 122 121 124 122 124 122

123 129 127 125 124 122 123 124 122 120 120

124 124 124 125 125 123 124 124 124 124 123

Note that the values are between 0-255. This is because the image

is stored with an uint8 datatype and it has range of 0-255 (28=256), as

discussed.

To get a monochromatic image, the three channels are combined to

one. You usually do this using the following function:

gray_image = rgb2gray(color_image);

%plot gnuplot

figure(3), imshow(gray_image);

The output is shown in Figure 9-4.

Chapter 9 Image and VIdeo proCessIng

153

You can see the display of the monochromatic image. This is also

called a grayscale image.

Now let's see the size of the gray_image:

size(gray_image)

ans = 3648 5472

You will notice that the size of the gray_image is the same as the size of

the color_image, except for the three color channels.

There are other color spaces, which you can explore by yourself. Some

of the important ones are RGB and HSV (Hue-Saturation-Value).

Figure 9-4. Gray scale image of the flower

Chapter 9 Image and VIdeo proCessIng

154

 Cropping, Rotating, and Saving Images
You are all familiar with basic photo viewing or editing tools that lets us

crop or flip images. In this section, you will explore these cool features and

then learn how to save an image.

Let’s first look at cropping. In a new cell, run the following code:

crop_image = color_image(2000:3000, 2000:4000, :);

%plot gnuplot

figure(4), imshow(crop_image);

Make sure that you do not exceed the limits of the image size you are

using.

The output is shown in Figure 9-5.

In this way, you can crop out the portion you want in your own images

if you know the desired pixel location.

Figure 9-5. The cropped image

Chapter 9 Image and VIdeo proCessIng

155

Let’s now look at flipping and rotating images:

up_down_flip_image = flipud(color_image);

%plot gnuplot

figure(5), imshow(up_down_flip_image);

This code flips the image along the horizontal, as shown in Figure 9-6.

Similarly, you can also flip the image along the vertical axis, as shown

in Figure 9-7:

left_right_flip_image = fliplr(color_image);

%plot gnuplot

figure(6), imshow(left_right_flip_image);

Figure 9-6. Horizontally flipped image

Chapter 9 Image and VIdeo proCessIng

156

You can also do a flip both horizontally and vertically like this:

flip_image = fliplr(flipud(color_image));

%plot gnuplot

figure(7), imshow(flip_image);

You can do the same using imrotate(), like this:

rotated_image = imrotate(color_image, 180);

%plot gnuplot

figure(8), imshow(rotated_image);

Here, you rotated the image by 180 degrees to get the same image as

shown in Figure 9-8 as the previous code. You can try for yourself with

different angles in imrotate().

Figure 9-7. Vertically flipped image

Chapter 9 Image and VIdeo proCessIng

157

If you want to save any of the images you modified, you can do so using

imwrite:

imwrite(rotated_image, 'flipped_image.jpg');

The first parameter to the function is the image you want to save and

the second one is the string with the path to the image you want to save

along with the image name.

 FFT2
In Chapter 7, we discussed FFT (Fast Fourier Transform). In this section,

you will look at the Fourier transform for images. In images, frequency

corresponds to how fast the pixel intensity changes. When there are fast

Figure 9-8. Vertically and horizontally flipped image or image
rotated by 180 degrees

Chapter 9 Image and VIdeo proCessIng

https://doi.org/10.1007/978-1-4842-6086-9_7

158

changes, it is a high frequency region; if little changes, it is a low frequency

region. The applications of the concepts you study here form the basics

of low-pass filtering/smoothing and high-pass filtering/edge detection,

which are the fundamentals of many advanced image processing

techniques. You can explore more on your own once you are clear on the

fundamentals.

FFT2 computes a discrete Fourier transform on the 2D matrix. For this,

first create a 2D pulse image:

pulse_2d = zeros(500, 500, 3);

pulse_2d(246:255, 246:255, :) = 255;

pulse_2d = im2bw(pulse_2d);

This will generate a 2D pulse image as shown in Figure 9-9.

Let’s now compute the Fourier transform on this image:

pulse_freq = fft2(pulse_2d);

Figure 9-9. 2D pulse

Chapter 9 Image and VIdeo proCessIng

159

Before displaying the image, you need to first get the absolute value of

the frequency and then do any fftshit to align the center to the center of the

image. Recall that this is similar to the function sinc(), which you saw in

a previous chapter, extended to 2D, where the peaks of the sinc function

are white with a maximum value and the valleys of the sinc function are

black with a minimum value, as shown in Figure 9-10.

 Video Processing
In this section, you will explore the basic workings of video processing.

Normally, videos are conceptually visualized as a 4D object, the fourth

dimension being time. Imagine it to be something like Figure 9-11.

Figure 9-10. Fourier transform of 2D pulse

Chapter 9 Image and VIdeo proCessIng

160

First, to work with videos, you need to install the video package. Follow

the steps similar to what you did to install the image package:

pkg install -forge video

pkg load video

Now generate a video and write it to a video file:

w = VideoWriter("images.mp4");

open(w);

for i = 1:360

 img = imrotate(color_image, i);

 img = imresize(img, [512, 512]);

 writeVideo(w, img);

endfor

close(w);

In this code, you first create a video writer and then you open the file.

Figure 9-11. Visual interpretation of videos

Chapter 9 Image and VIdeo proCessIng

161

For your learning purposes, you are utilizing functions you learned in

the previous sections of this chapter.

You use a for loop to rotate the image and resize it. And then you write

each frame into the video file. Resizing images is important because all of

the image frames in a video should be of the same dimensions, as shown

in Figure 9-11. You can use any video format that is supported by Octave;

this demonstration uses the .mp4 format.

Here’s how to read the video file:

w = VideoReader ("images.mp4");

while (!isempty(img = readFrame(x)))

 imshow(img);

endwhile

This code reads each frame from the video file and then displays it

using imshow. You can explore more advanced techniques using what you

learned in this section.

 Summary
In this chapter, you learned how to read, save, and display images. You also

learned about color spaces of images, plus cropping, flipping, and rotating

images. You looked at a Fourier transform on images. You also learned

how to read and write videos.

The next part is the Appendix. It covers several small topics that could

not find place in the previous chapters.

Chapter 9 Image and VIdeo proCessIng

	Chapter 9: Image and Video Processing
	Image Processing
	Loading, Displaying, and Resizing Images
	Color Space
	Cropping, Rotating, and Saving Images

	FFT2
	Video Processing
	Summary

