
139© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_8

CHAPTER 8

Audio Processing
In Chapter 7, you learned about processing signals with GNU Octave.

Audio is a type of signal and its processing requires detailed knowledge

of signal processing. So, as a continuation of the previous chapter, in

this chapter you will learn how to process audio with GNU Octave. The

following is the list of topics that you will explore in this chapter:

•	 Reading an audio file

•	 Creating your own audio file

•	 Plotting the sound wave signal

By the end of this chapter, you will be able to work with audio files and

process audio signals.

�Reading an Audio File
Create a new Jupyter notebook for this chapter. We have recorded an audio

file named sample.wav. As you can see, it is in WAV (Waveform Audio File

Format). You can use other file formats like OGG or MP3 too. Create a

string for the filename as follows:

file = 'sample.wav'

https://doi.org/10.1007/978-1-4842-6086-9_8#DOI
https://doi.org/10.1007/978-1-4842-6086-9_7

140

You can retrieve information about the audio file with the function

audioinfo() as follows:

info = audioinfo (file)

The output is as follows:

info =

 scalar structure containing the fields:

 �Filename = C:\Users\Ashwin\OneDrive\GNU Octave Book\First_

Drafts\Chapter08\programs\sample.wav

 CompressionMethod =

 NumChannels = 2

 SampleRate = 44100

 TotalSamples = 70560

 Duration = 1.6000

 BitsPerSample = 16

 BitRate = -1

 Title =

 Artist =

 Comment =

You can read the data stored in the audio file into GNU Octave

numerical arrays with the function audioread() as follows:

[M, fs] = audioread(file);

It returns two values. Depending on the number of channels, M is a

one- or two-column array. We recorded a stereo audio clip so it has two

channels. You can also see the number of channels in the previous output.

fs is the sampling frequency (mentioned as sample rate in the previous

output). It is 44100 Hz in this case, which is one of the standard values

in the domain of audio. It is usually used by digital audio CDs. The other

standard frequency is 48 kHz (48000 Hz).

Chapter 8 Audio Processing

141

The function audioread() has many parameters. You can use it as

follows to read the file in the native datatype of the stored audio:

[M, Fs] = audioread(file, datatypes = 'native');

You can also specify the datatype in which you want to read the audio

file:

[M, Fs] = audioread(file, datatypes = 'uint8');

�Creating Your Own Audio File
You can create your own signals and write them as an audio file. You have

to use function audiowrite() for this. The following is an example:

filename='sine.wav';

fs=44100;

t=0:1/fs:10;

w=2*pi*440*t;

signal=sin(w);

audiowrite(filename, signal, fs);

The example creates a sine wave and you can even play it using an

audio player. The duration of the wave is 10 seconds. You can play it with

a built-in audio player in GNU Octave using the functions audioplayer()

and play(), as follows:

[M, fs]=audioread(filename);

player=audioplayer(M, fs, 8);

play(player)

Chapter 8 Audio Processing

142

�Plotting the Sound Wave Signal
Let’s see how to use the function plot() to plot the audio wave signal.

Create two small audio signals of 0.01 seconds for this, as follows:

signal1='signal1.ogg';

signal2='signal2.ogg';

fs=44100;

t=0:1/fs:0.01;

w1=2*pi*440*t;

w2=2*pi*660*t;

audiowrite(signal1,sin(w1),fs);

audiowrite(signal2,sin(w2),fs);

The signals have different frequencies. You visualize the first signal,

signal1, as follows:

%plot gnuplot

[M1, fs] = audioread(signal1);

plot(M1)

The output is shown in Figure 8-1.

Chapter 8 Audio Processing

143

You can add two signals and visualize as follows:

[M2, fs] = audioread(signal2);

plot(M1+M2)

The output is shown in Figure 8-2.

Figure 8-1.  Sine wave

Chapter 8 Audio Processing

144

You can multiply two sinusoidal functions as follows:

audiowrite('product.wav', M1.*M2, fs);

[M3, fs]=audioread('product.wav');

plot(M3);

The output is shown in Figure 8-3.

Figure 8-2.  Two added sine waves

Chapter 8 Audio Processing

145

You can divide two signals as follows:

audiowrite('div.wav', M1./M2, fs);

[M4, fs]=audioread('div.wav');

plot(M4);

The output is shown in Figure 8-4.

Figure 8-3.  Two sine waves multiplied

Chapter 8 Audio Processing

146

This is how you work with audio signals.

�Summary
In this chapter, you learned and demonstrated how to process audio

signals. You also saw how to read and write audio signals. You have seen

how to perform mathematical operations on audio signals. As discussed,

audio processing is a form of signal processing and these techniques are

very useful in the domain of audio processing.

The next chapter teaches you more complex applications of signal

processing with GNU Octave. You will learn about image and video

processing in detail in the next chapter.

Figure 8-4.  Division of sine waves

Chapter 8 Audio Processing

	Chapter 8: Audio Processing
	Reading an Audio File
	Creating Your Own Audio File
	Plotting the Sound Wave Signal
	Summary

