
125© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_7

CHAPTER 7

Signal Processing
In Chapter 6, you learned about data analysis in GNU Octave in detail. In

this chapter, you will learn about signals, different types of signals, Fourier

transform, and how to use signals in GNU Octave.

�Signals
A signal, by definition, refers to a function used to convey information

about a phenomenon. In electronics, you can think of signal as a voltage

or current or radiation value. A signal can be of many types. It can be an

audio, image, or video signal. Audio signals can be captured through a

microphone. Images and videos can be captured through a camera. In

the next two chapters, you will see in more detail how to work with audio,

images, and videos.

�Continuous and Discrete Signals
As defined above, a signal is a function. From mathematics, you know that

signals can be continuous and discrete. In case of continuous signals or

continuous-time signals, you can acquire the value at any arbitrary point

where the signal is defined. Discrete signals are also referred to as a time

series. As the name suggests, the values of the function are discrete. One of

the examples of a discrete signal is a histogram, which you saw in Chapter 6.

In discrete signals, you can only get the value at which the signal is defined.

https://doi.org/10.1007/978-1-4842-6086-9_7#DOI
https://doi.org/10.1007/978-1-4842-6086-9_6
https://doi.org/10.1007/978-1-4842-6086-9_6

126

Let’s first create a new Jupyter notebook for the exercises in this

chapter. In the first cell, type the following:

Signal Processing

Set it as markdown and then run it.

You need to install the signal processing toolbox. Do so by running the

following command:

pkg install -forge signal

Load the package by running the following command:

pkg load signal

Now, let’s see how to create continuous and discrete signals in GNU

Octave. First, here’s a continuous signal:

t = linspace(0, 2*pi);

x = @(t) sin(t);

In this code, you create a function or signal which computes values for

sine between 0 and 2π. Now plot it to see what the signal looks like:

%plot gnuplot

figure(1), plot(t, x(t)), grid on;

The output is shown in Figure 7-1.

Chapter 7 Signal Processing

127

You see a continuous sine signal plot.

Let’s create a discrete time-series function for a sin function as follows:

t = [0, pi/4, pi/2, 3*pi/4, pi, 5*pi/4, 3*pi/2, 7*pi/4, 2*pi];

x = sin(t);

You will now plot the discrete sine signal to see how it looks:

%plot gnuplot

figure(2), stem(t, x), grid on;

The output is shown in Figure 7-2.

Figure 7-1.  Continuous sine signal

Chapter 7 Signal Processing

128

You can see a sparse sine signal with a few selected points. Note that

for value between 0 and 2π, you can get the value of the signal at any point

in the continuous signal but for a discrete signal, you can obtain values

only at the discrete values where the signal is defined. For example, you

cannot get the value of x at t=2 in the discrete sine signal.

�Analog and Digital Signals
An analog signal is a continuous signal; an example of an analog signal

is an audio signal, which you will see in more detail in Chapter 8. These

signals are smooth and you can get values with great precision, whereas

a digital signal is a discrete signal that can take only a fixed number of

values. A good example is the bits in a computer data stream. They can

either be 0 or 1 and images, which you will see in more detail in Chapter 9.

While we live in an analog world, we rely on computers for computation

purposes, which is a digital world. Because of this, we tend to quantize our

signals for faster computation. Quantization is the process of mapping a

continuous set of values to a finite number of values.

Figure 7-2.  Discrete sine signal

Chapter 7 Signal Processing

https://doi.org/10.1007/978-1-4842-6086-9_8
https://doi.org/10.1007/978-1-4842-6086-9_9

129

�Even and Odd Signals
If you recall functions from mathematics, every function can be expressed

as a summation of even and odd signals. Even signals satisfy the following

property:

f(-x) = f(x)

An example of an even signal is a cos function:

f(x) = cos(x)

f(-x) = cos(-x)

 = cos(x)

 = f(x)

And odd signals satisfy the property

f(-x) = -f(x)

An example of an odd signal is a sin function:

f(x) = sin(x)

f(-x) = sin(-x)

 = -sin(x)

 = -f(x)

In the Fourier transform section later in this chapter, you will see that a

signal is a combination of sin and cos functions, which are even and odd

functions. Therefore, you can use the properties of even and odd functions

to form Fourier series properties. You can read more about the Fourier

series and its properties by yourself.

Chapter 7 Signal Processing

130

�Periodic and Non-Periodic Signals
Periodic signals are functions that repeat themselves after a fixed interval.

Periodic functions satisfy the property

f(t) = f(t + T)

where T is the time period after which the signal repeats the same values.

Periodic signals can be both continuous and discrete. In addition

to trigonometric functions, you can plot other period functions in GNU

Octave.

Let’s see how to plot a sawtooth signal:

t = 1:25;

sawtooth = sawtooth(t);

%plot gnuplot

figure(3), plot(t, sawtooth);

The sawtooth plot is shown in Figure 7-3.

Figure 7-3.  Sawtooth signal plot

Chapter 7 Signal Processing

131

Let’s look at how to generate and plot a square signal:

t = 0:1/10000:1;

square = square(2*pi*5*t);

%plot gnuplot

figure(4), plot(t, square);

The square plot is shown in Figure 7-4.

You will now look at a few standard non-periodic signals used in signal

processing. First, here’s a triangular pulse:

t = -1:1/10:1;

triangle = tripuls(t, 0.001);

%plot gnuplot

figure(5), plot(t, triangle);

The triangular pulse is shown in Figure 7-5.

Figure 7-4.  Square signal plot

Chapter 7 Signal Processing

132

You can do the same to create a rectangular pulse or a Gaussian pulse.

Note that this signal is not periodic in nature and does not satisfy the

condition for periodic signals.

These are the fundamentals of some basic properties of signals and

systems. You can learn more about the properties of signals by yourself.

Now let’s look into a special kind of signal, the function sinc(). The

mathematical equation for a sinc function is

sinc(t) = sin(t)/t

You can plot it in GNU Octave by calling the function sinc() as

follows:

t = linspace(-5,5);

sinc = sinc(t);

%plot gnuplot

figure(6), plot(t, sinc);

Figure 7-6 shows the plot of the function sinc().

Figure 7-5.  Triangular pulse plot

Chapter 7 Signal Processing

133

The Fourier transform of a unit pulse function is a sinc function. If you

notice carefully, the sinc function takes value 1 when x is 0 and takes the

value 0 for integer multiples of π.

In the next section, you will learn about the Fourier transform and how

to compute a Fourier transform using GNU Octave.

�Fourier Transform
In the previous section, you looked at functions that are a function of time.

If you recollect from physics, time and frequency are the inverse of each

other:

t = 1/f

A Fourier transform comes from the Fourier series. It is a way of

expressing the function as a summation of a bunch of sinusoidal functions.

The Fourier transform function is defined as follows:

	
f  x p x() = ()

-¥

¥
-ò f x e dxix2

	

Figure 7-6.  Sinc function

Chapter 7 Signal Processing

134

A Fourier transform has a lot of applications, not just differential

equations in mathematics but also in signal processing and Linear Time-

Invariant (LTI) systems. As discussed, computers work with discrete values

and the input signal is converted to discrete values. The Fourier transform

for discrete signal is called a Discrete Fourier Transform (DFT), which is

defined as follows:

	
X x ek

n

N

n

i
N

kn
= ×

=

- -

å
0

1 2p

	

As this forms the basic operation of many signal processing systems,

you want the transform operation to be fast. Hence, the Fast Fourier

Transform (FFT) is used and is available in the signal processing toolbox.

This is a fast way of computing DFT.

Here’s how to compute FFT on a 1D signal:

t = 0:1/1000:2-(1/1000);

sin_fn = 10*sin(2*pi*10*t);

t2 = length(sin_fn);

t2 = 2^nextpow2(t2);

sin_ft = fft(sin_fn, t2);

%plot gnuplot

figure(7),

subplot(2, 1, 1), plot(t, sin_fn);

subplot(2, 1, 2), plot(abs(sin_ft));

In this code, you compute a Fourier transform of a sine function using

FFT. The Fourier transform computed has real and complex values, hence

you will plot the absolute of the FFT. The result is shown in Figure 7-7.

Chapter 7 Signal Processing

135

Notice the prominent peak around 2000. This corresponds to the

frequency of the sine signal. Unlike the time domain signal, its Fourier

transform is very sparse, which makes certain computation in the

frequency domain (Fourier transform of the time signal) much faster.

Now, you will add two sin functions, one with higher frequency and

the other with lower frequency:

t = 0:1/1000:2-(1/1000);

sin_fn1 = 10*sin(2*pi*10*t);

sin_fn2 = 10*sin(2*pi*30*t);

sin_fn = sin_fn1+sin_fn2;

t2 = length(sin_fn);

t2 = 2^nextpow2(t2);

sin_ft = fft(sin_fn);

%plot gnuplot

figure(8),

subplot(2, 1, 1), plot(t, sin_fn);

subplot(2, 1, 2), plot(abs(sin_ft));

Figure 7-7.  A Fourier transform of a sine signal

Chapter 7 Signal Processing

136

The result is shown in Figure 7-8.

You see two peaks corresponding to the two different frequencies of

the two different sine signals.

Note I f you have heard of low-pass filtering, in the frequency
domain, the frequency peaks pertaining to the high frequency are
removed, which essentially smoothens the signal in the time domain.

You can construct the original signal from a Fourier transformed

signal. In other words, to convert the signal from the frequency domain to

the time domain, you can use ifft. You can explore the inverse Fourier

transform function in GNU Octave by yourself.

Note  We will discuss FFT in the 2D domain in Chapter 9.

Figure 7-8.  A Fourier transform of the summation of two sine signals

Chapter 7 Signal Processing

https://doi.org/10.1007/978-1-4842-6086-9_9

137

If you have heard about convolution operations, a Fourier transform

simplifies the computation of a convolution operation by a multiplication

of the Fourier transform of the functions. This is a very interesting

operation and with the growing demand for deep learning, these

fundamentals are important. You can learn more about this by yourself.

�Summary
In this chapter, you learned about signals, various types of signals, and the

Fourier transform.

In the next chapter, you will look at audio processing in GNU Octave.

Chapter 7 Signal Processing

	Chapter 7: Signal Processing
	Signals
	Continuous and Discrete Signals
	Analog and Digital Signals
	Even and Odd Signals
	Periodic and Non-Periodic Signals

	Fourier Transform
	Summary

