
73© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_5

CHAPTER 5

Data Visualization
In Chapter 4, you learned about important programming constructs like

decision making, loops, and user-defined functions. These programming

constructs are very useful when you need to include the logic of decision

making in your program. You also learned how to work with files of various

formats and data from the Internet.

In this chapter, you will learn about data plotting and visualization

in detail. In scientific and business applications, visualization is a

very important application/step and it is often consumed by business

end-users. The following is the list of the topics that you will learn and

demonstrate in this chapter:

•	 Simple plots

•	 Plotting options

•	 Errorbars

•	 More visualizations

•	 3D visualizations

After reading this chapter, you will be able to create visualizations with

GNU Octave for scientific and business applications.

https://doi.org/10.1007/978-1-4842-6086-9_5#DOI
https://doi.org/10.1007/978-1-4842-6086-9_4

74

�Simple Plots
You will use a Jupyter notebook for this chapter. It’s best to create a

separate, new Jupyter notebook for this chapter, as you did for earlier

chapters. Now let’s see how to draw simple plots. Create data points for the

X and Y axes as follows:

x = linspace(1, 100, 1000);

y = x + 3;

You use the function linspace() in this code to create a matrix of

values in x from 1 to 1000 with a step of 100 and corresponding values

for y with the equation. This will be your data, which has pairs (x, y) for

points. You can draw a simple line graph as follows:

plot(x, y)

The output can be seen in the notebook itself. The output is shown in

Figure 5-1.

Chapter 5 Data Visualization

75

You can use the functionality of gnuplot to show the visualizations in

different windows. Gnuplot is a command-line-driven graphics utility that

works with many OSes like Windows, Linux, and Mac.

You will use the same data for the demonstration with gnuplot:

%plot gnuplot

plot(x, y)

In this code, the first line enables the gnuplot for the current session.

All of the output from now on will be shown in separate windows. The

output is displayed in a separate gnuplot window, as shown in Figure 5-2.

Figure 5-1.  A simple liner plot

Chapter 5 Data Visualization

76

You can save your output in popular image formats as follows:

print("image1.png", "-dpng");

print("image2.jpg", "-djpg");

print("image3.pdf", "-dpdf");

You will find these images in the respective formats in the directory

where you launched the Jupyter notebook server using the command

prompt.

This was an example of a linear graph. Now let’s plot the graph of a

square function:

x = linspace(1, 10, 10);

y = x.^2;

plot(x, y)

Figure 5-2.  A simple liner plot in a separate gnuplot window

Chapter 5 Data Visualization

77

The output is shown in Figure 5-3.

You can also visualize a logarithmic graph:

y = log(x);

plot(x, y)

The output is shown in Figure 5-4.

Figure 5-3.  Plot of y = x2

Chapter 5 Data Visualization

78

The following is the example when data for both axes is logarithmic:

x = logspace(1, 10, 10);

y = x;

plot(x, y)

Like linspace, logspace creates a matrix of values but with a

logarithm step between the beginning and end values. The output is

shown in Figure 5-5, and it is a line since both axes are logarithmic.

Figure 5-4.  Plot of y = log(x)

Chapter 5 Data Visualization

79

Let’s see an example of a sinusoidal:

x = -pi:0.01:pi;

n = 3;

y = sin(n*x);

plot(x, y)

In this code, you assign values from -pi to pi to the x axis with a step

value of 0.01. The variable n is the number of repetitions of the sine wave.

The output is shown in Figure 5-6.

Figure 5-5.  Plot of logarithmic data

Chapter 5 Data Visualization

80

Similarly, you can plot other trigonometric functions. As an exercise,

try plotting other trigonometric functions or combinations like sin(x) +

cos(x).

�Plotting Options
Let’s see how to label axes and how to add legends. You will also add a title

to the figure. Create the data first:

t = [0:0.01:1.0];

n = 5;

y1 = sin(2*n*pi*t);

Figure 5-6.  Plot of a sine wave

Chapter 5 Data Visualization

81

Now add labels, legends, and titles as follows:

plot(t, y1)

xlabel('Time')

ylabel('Value')

legend('Sin')

title('Sine Plot')

The output has a title, a legend, and labels for the axes, as shown in

Figure 5-7.

You can plot multiple graphs as follows:

y2 = cos(2*n*pi*t);

plot(t, y1, 'r-', t, y2, 'b-.')

xlabel('Time')

Figure 5-7.  Adding a title, legend, and labels

Chapter 5 Data Visualization

82

ylabel('Value')

legend('Sin', 'Cos')

grid on

title('Sine and Cosine Plot')

As seen in the code, in plot(), you assign different styles to the graphs:

one uses a red color with a - and the other a blue color with - . -, as you

can see in Figure 5-8. You use plot() to draw multiple graphs in the same

output. Also, you turn the grid on and add a title and a legend. You use the

functions xlabel() and ylabel() to add labels to the image. You also use

legend() to identify the data in the output.

Figure 5-8.  Multiple plots in the output

Chapter 5 Data Visualization

83

Now let’s see how to use colors and styles for drawing graphs in detail.

There are seven colors and seven marker styles you can use. In the plot()

function call, after mentioning x and y, you must mention the color and

the style. For example, k+ refers to the color black and style +. Let’s see how

to use all of the colors and styles. The following is the data:

x = [0:1:10];

y1 = x;

y2 = x + 2;

y3 = x + 4;

y4 = x + 6;

y5 = x + 8;

y6 = x + 10;

y7 = x + 12;

You can use marker styles and colors as follows:

grid on

plot(x, y1, 'k+', x, y2, 'ro', x, y3, 'g*', x, y4,

'b.', x, y5, 'mx', x, y6, 'cs', x, y7, 'wd')

The output is shown in Figure 5-9.

Chapter 5 Data Visualization

84

You also have different line styles as follows:

grid on

plot(x, y1, 'k-', x, y2, 'k--', x, y3, 'k-.', x, y4, 'k:')

The output is shown in Figure 5-10.

Figure 5-9.  Marker styles and colors

Chapter 5 Data Visualization

85

You can explore the different combinations of styles, markers, and

colors yourself by changing the code snippets above.

You can also use subplots to plot multiple graphs separately in the

same output window. You must use the subplot() function for this. It

accepts three arguments. The first two are the dimensions of the output

grid where plots are to be displayed. The last argument is the position of

the plot in that grid. The following is the data:

x = linspace(1, 100, 100);

y1 = x.^ 2.0;

y2 = sin(x);

y3 = log(x);

Figure 5-10.  Different line styles

Chapter 5 Data Visualization

86

Now use the function subplot() as follows:

subplot(3, 1, 1), plot(x, y1)

subplot(3, 1, 2), plot(x, y2)

subplot(3, 1, 3), plot(x, y3)

This code creates a grid of three rows and a column. In every row of

the grid, one plot is displayed (as defined by the final argument of each

subplot() call). The output is shown in Figure 5-11.

You can even show these plots in different gnuplot windows as follows:

close all

figure(1), plot(x, y1)

figure(2), plot(x, y2)

figure(3), plot(x, y3)

Figure 5-11.  Showing different plots with the function subplot()

Chapter 5 Data Visualization

87

In this code, the statement close all closes and clears all of the

previous visualization windows. You use the function figure() to create a

separate window for visualization. Run the code and see the output.

�Errorbars
You can even include the visualization of errors in the output. The

following is a simple example:

close all

t = -1:0.1:1;

y = sin (pi*t);

lerr = 0.1 .* rand (size (t));

uerr = 0.1 .* rand (size (t));

errorbar (t, y, lerr, uerr);

In this example, you use the function errorbar() to visualize an error

in the y-axis. The variables lerr and uerr are used to show the lower and

upper value of the error for a data point. The output is shown in Figure 5-12.

Chapter 5 Data Visualization

88

Similarly, you can create errorbars for the data of the x-axis as follows:

errorbar (t, y, lerr, uerr, ">");

Note that in this code you pass an extra argument, ">", that denotes

error values are for the data on the x-axis. See Figure 5-13.

Figure 5-12.  Errorbars for the y-axis data

Chapter 5 Data Visualization

89

Similarly, you can use "~" for error values on the y-axis. Let’s see an

example of how you can plot the errorbars for data for both the axes in a

single visualization:

close all

x = 0:0.05:1;

n = 2;

err = rand (size(x))/10;

y1 = sin (n*x*pi);

y2 = cos (n*x*pi);

errorbar (x, y1, err, "~", x, y2, err, ">");

The output is shown in Figure 5-14.

Figure 5-13.  Errorbars for the x-axis data

Chapter 5 Data Visualization

90

You can even create boxes in place of the errorbars with the following

code:

errorbar (x, y1, err, err, "#r", x, y2, err, err, "#~");

In this function call, err stands for the error vector and r stands for the

red color. You pass the same error vector for both axes. As you must have

guessed, # is used to create errorboxes. It produces the output shown in

Figure 5-15.

Figure 5-14.  Errorbars for the data of both the axes

Chapter 5 Data Visualization

91

This is how you can show the data related to the error. In all of

the examples above, the data for error was simulated. But in real-life

projects, you will have data from real devices as input. You can store the

error margin in arrays and visualize them, as you have seen in previous

examples.

�More Visualizations
The graphs we have demonstrated until now use lines and curves for

plotting functions. In this section, you will see how to use other types of

visualizations to represent the data.

Figure 5-15.  Errorboxes

Chapter 5 Data Visualization

92

�Scatter Graphs
Scatter graphs use discrete points rather than continuous curves to

represent data. The following is an example of the use of function

scatter():

close all

x = linspace(1, 100, 100);

y1 = x.^ 2.0;

grid on

scatter(x, y1)

The output is shown in Figure 5-16.

Figure 5-16.  A simple scatter plot

Chapter 5 Data Visualization

93

You can customize the size of circles and the color as follows:

close all

scatter(x, y1, s = 10, filled='r')

The output is shown in Figure 5-17.

�Histograms
A histogram is a visual reorientation of the distribution of frequency of

occurrence of elements in a dataset. In mathematics and statistics, you

study frequency distribution tables. A histogram is the visualization of

those tables. Write some simple code for a histogram as follows:

Figure 5-17.  A customized scatter plot

Chapter 5 Data Visualization

94

clear all

close all

a = randn(1000, 1);

hist(a)

In this code, you create a matrix of dimensions 1000 X 1 filled with

random values from a normal distribution using the function randn(). The

function hist() creates a histogram with 10 bins by default, as shown in

Figure 5-18.

You can adjust the number of bins in the histogram as follows:

hist(a, nbins=100)

This code creates a histogram with 100 bins, as shown in Figure 5-19.

Figure 5-18.  Histogram with default 10 bins

Chapter 5 Data Visualization

95

�Contours
You can represent data in the form of contours. A contour is a closed shape

joining all of the points in an image that have the same value. The most

prominent example of the usage of a contour is a topographic map with

contour lines.

Here’s an example of a contour:

x = [1 2 3 4 5 4 3 2 1];

y = x;

z = x' * y;

contour(z)

axis([1 9 1 9])

Figure 5-19.  Histogram with 100 bins

Chapter 5 Data Visualization

96

The function contour() draws contour visualizations. The function

axis() is used to set the limits of the values of the axes. In the example, the

limits of the x-axis are 1 to 9 and they are the same for the y-axis, as shown

in Figure 5-20.

You will revisit the concept of contour while demonstrating 3D

visualizations, when you will learn and demonstrate 3D versions of

contours. You will also demonstrate them with 2D contours.

Figure 5-20.  Representation of contours

Chapter 5 Data Visualization

97

�Polar Graph
The polar coordinate system uses the distance from origin (r) and the

angle from a fixed line (θ) to determine the position of a point in the plane.

The following formula converts polar coordinates into XY coordinates:

x = r × cos(θ)

y = r × sin(θ)

You can draw a simple polar graph as follows:

theta = 0:0.1:2*pi;

rho = linspace(0.1, 0.1, 63);

polar(theta, rho)

The function polar() accepts values of theta and r as arguments and

draws a polar graph, as shown in Figure 5-21.

Figure 5-21.  A simple polar graph

Chapter 5 Data Visualization

98

You can combine multiple graphs as follows:

theta = 0:0.02:2*pi;

rho1 = 0.4 + 1.1.^theta ;

rho2 = 3 * sin (theta) ;

rho3 = 5 * (1 - cos(theta)) ;

rho4 = 4 * cos (8 * theta) ;

r = [rho1 ; rho2 ; rho3 ; rho4] ;

polar (theta , r , '.') ;

The output is shown in Figure 5-22.

Figure 5-22.  Multiple polar graphs

Chapter 5 Data Visualization

99

�Pie Charts
You can create pie charts with Octave. These charts are mostly used in

business-related visualizations. Here’s how to create a simple pie chart:

a = [2, 3 ,5];

pie(a)

The function pie() divides the pie shape according to the proportion

of the weight of the members of the arguments you pass to it. The output is

shown in Figure 5-23.

Figure 5-23.  A simple pie chart

Chapter 5 Data Visualization

100

You can also have an exploded pie chart. You need to pass the

explosion vector as the second argument to the function pie():

e = [1, 0, 1];

pie(a, e)

In the explosion vector e in this code, 1 stand for enabling an explosion

and 0 stands for not enabling it. The output is shown in Figure 5-24.

�Visualizing Data as Images
You can visualize your data as images using Octave. Images are

represented as numbers in Octave. You will study image processing in

detail in a dedicated chapter. For now, you will learn how to visualize

Figure 5-24.  An exploded pie chart

Chapter 5 Data Visualization

101

arrays as images. You can use the function imagesc() to visualize arrays as

images. Let’s demonstrate this with the following code:

a = randn(50, 50);

imagesc(a)

The output is shown in Figure 5-25.

This output is rendered with the default colormap with a jet map of

64 values. A colormap is a set of colors used to represent data. There are

many colormaps supported by GNU Octave and you can find the list at

https://octave.sourceforge.io/octave/function/colormap.html.

Figure 5-25.  Visualizing an array as an image

Chapter 5 Data Visualization

https://octave.sourceforge.io/octave/function/colormap.html

102

The following code visualizes the same data with another colormap:

imagesc(a), colorbar, colormap cool;

The function magic(n) returns a n×n magic square. Let’s visualize it

with the viridis colormap:

imagesc(magic(6)), colormap viridis;

Run both of the lines in separate cells in the Jupyter notebook or the

Octave interactive prompt and see the output for yourself.

�3D Visualizations
Until now, all the visualizations we demonstrated were 2D visualizations.

Now you will learn and demonstrate 3D visualization. Let’s use the

function meshgrid(). You will use this function to create data points for a

3D visualization. Its usage is as follows:

y = x = [-3:1:3];

[x1, y1] = meshgrid(x, y)

In this code, you define the range of the variables x and y. Then you

pass them to the function meshgrid(), which returns a grid of points as

follows:

x1 =

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

Chapter 5 Data Visualization

103

y1 =

 -3 -3 -3 -3 -3 -3 -3

 -2 -2 -2 -2 -2 -2 -2

 -1 -1 -1 -1 -1 -1 -1

 0 0 0 0 0 0 0

 1 1 1 1 1 1 1

 2 2 2 2 2 2 2

 3 3 3 3 3 3 3

For our demonstration, you’ll need a bigger grid, as follows:

y = x = [-10:1:10];

[x1, y1] = meshgrid(x, y)

Let’s compute another variable, z, and then use the function mesh() to

visualize (x1, y1, z) as follows:

z = x1.^2 + y1.^2;

mesh(x1, y1, z)

The output is shown in Figure 5-26.

Chapter 5 Data Visualization

104

As you can see, the function mesh() plots a 3D wireframe. You can

change the orientation of the image by dragging it with a mouse pointer.

Similarly, the function meshc() plots mesh with underlying contour

lines. Run the following function call in a new cell and see the output:

clf;

meshc(x1, y1, z)

In this code, you use the command clf to clear the earlier figure. The

output of the code is shown in Figure 5-27.

Figure 5-26.  Visualizing mesh

Chapter 5 Data Visualization

105

The function meshz() draws a 3D mesh with the surrounding curtain

as follows:

clf

meshz(x1, y1, z)

The output is shown in Figure 5-28.

Figure 5-27.  Visualizing mesh with underlying contours

Chapter 5 Data Visualization

106

Similar to wireframe mesh, there are functions to draw surfaces. The

functions surf() and surface() draw surfaces using given data points.

The following are examples of calls for these functions:

surf(x1, y1, z)

surface(x1, y1, z)

The output is shown in Figure 5-29.

Figure 5-28.  Visualizing mesh with surrounding curtain

Chapter 5 Data Visualization

107

The function surfc() draws a surface with associated contours and

surfl() draws a surface with lighting:

surfc(x1, y1, z)

surfl(x1, y1, z)

Run the above code in separate cells after the clf command and see

the output.

You can even visualize 3D plots with the function plot3() as follows:

clf;

z = [0:0.01:3];

n = 3;

theta = n * pi * z;

plot3 (cos (theta), sin (theta), z);

Figure 5-29.  Visualizing surface

Chapter 5 Data Visualization

108

The output is a spring-shaped figure, as shown in Figure 5-30.

You already saw how to visualize a 2D contour, but let’s revisit it before

demonstrating a 3D version of a contour. The following is the data:

y = x = [-3:0.1:3];

[X, Y] = meshgrid(x, y);

Z = X.^3 - Y.^3;

A regular 2D contour looks as follows:

clf

contour(X, Y, Z);

The output is shown in Figure 5-31.

Figure 5-30.  A spring shape

Chapter 5 Data Visualization

109

You can draw a 3D contour as follows:

clf

contour3(X, Y, Z);

The output is shown in Figure 5-32.

Figure 5-31.  2D contour

Chapter 5 Data Visualization

110

As an exercise, explore the functions contourc() and contourf() with

the same data.

�Summary
In this chapter, you learned and demonstrated the ways to visualize

multidimensional data with 2D and 3D visualizations in Octave in detail.

Now you should be comfortable with the graphical representation of data

for scientific and business applications, where data visualization is an

important part of the data processing pipeline or architecture.

The next chapter will focus on the topic of data analytics. You will learn

and demonstrate various concepts in that area in detail with GNU Octave.

Figure 5-32.  3D contour

Chapter 5 Data Visualization

	Chapter 5: Data Visualization
	Simple Plots
	Plotting Options
	Errorbars
	More Visualizations
	Scatter Graphs
	Histograms
	Contours
	Polar Graph
	Pie Charts
	Visualizing Data as Images

	3D Visualizations
	Summary

