
59© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_4

CHAPTER 4

Loops, Functions,
and Files
In Chapter 3, you learned about arrays, matrices, and vectors in GNU

Octave in detail. You will use these concepts in the remaining chapters to

demonstrate the functionality offered by GNU Octave.

In this chapter, you will learn concepts such as if statements, loops,

functions, and file operations in detail. The following is the list of the topics

you will learn and demonstrate:

• Decision making with if statements

• Loops in GNU Octave

• User-defined functions

• Global variables

• Working with files

 Decision Making with If Statements
If you have worked with any programming language before, you will find

this section and the next couple sections easy to comprehend. However,

we don’t recommend skipping anything because you must familiarize

yourself with the GNU Octave syntax for the decision-making operations.

https://doi.org/10.1007/978-1-4842-6086-9_4#DOI
https://doi.org/10.1007/978-1-4842-6086-9_3

60

The if statement is the simplest and the most basic decision-making

statement. It has been around since the days of machine-language and

assembly-language programming, way before modern programming

languages like C and BASIC came into existence.

It’s time to learn how to use the if statement for decision making. You

will use a Jupyter notebook for the demonstrations in this chapter.

The following statement creates a variable named as x and assigns the

value 34 to it:

x = 34

Here’s the syntax of the if statement:

if (rem(x, 2) == 0)

 printf("Even Number!\n")

endif

In this statement, you are comparing the remainder of x / 2 with the

number 0. If they are equal, the expression returns true and the lines in

the if – endif block are executed. Otherwise, GNU Octave just skips those

lines. Run this code block and see the output.

Now let’s add the else block. When the condition in the if statement

is not satisfied, GNU Octave runs the else block. The following is an

example:

if (rem(x, 2) == 0)

 printf("Even Number!\n")

else

 printf("Odd Number!\n")

endif

The function rem() in the code snippet above computes the remainder.

Note that the endif statement comes after the else block and not after the

if conditions alone.

Chapter 4 Loops, FunCtions, and FiLes

61

Run this code and see the output. Try assigning different values for x

and run the code to see both code blocks (if and else) in action.

If you want to evaluate multiple conditions, you can use an elseif

clause in the if code block as follows:

x=25

if (rem(x, 2) == 0)

 printf("Divisible by 2!\n")

elseif(rem(x, 3) == 0)

 printf("Divisible by 3!\n")

else

 printf("Not Divisible by 2 or 3!\n")

endif

First, the if statement is checked. If it returns true, then the code

under the if block is executed and the rest is skipped. If the statement in

the if clause returns false, then the statement in the elseif is checked. If it

returns true, then it runs the code block for the elseif and rest of the code

is skipped. If the statement in the elseif returns false, then the code block

in the else clause is executed. Run this code. The output is as follows:

Not Divisible by 2 or 3!

You can have multiple elseif clauses in the decision-making code.

GNU Octave also has a switch statement for this kind of situation, and

you can find out more about it at https://octave.org/doc/v4.2.1/The-

switch- Statement.html.

 Loops in GNU Octave
Let’s see how to create loops in GNU Octave. Before modern programming

languages, loops in assembly and machine languages were written using

GOTO and IF statements. However, modern programming languages like

Chapter 4 Loops, FunCtions, and FiLes

https://octave.org/doc/v4.2.1/The-switch-Statement.html
https://octave.org/doc/v4.2.1/The-switch-Statement.html

62

GNU Octave provide far more sophisticated and cleaner constructs for

loops. Let’s see the many ways of writing loops one by one.

Let’s start with the while loop in Octave. The following is an example

of the while loop:

x = 1;

while x <= 5

 printf("x ^ 2 is %d:\n", x**2)

 x = x + 1;

endwhile

The while statement always checks for the condition mentioned in

it at the beginning of every iteration. If the condition is true, it runs all of

the following statements in order until the statement endwhile, so this

code prints the squares of the integer numbers from 1 to 5 as follows:

x ^ 2 is 1:

x ^ 2 is 4:

x ^ 2 is 9:

x ^ 2 is 16:

x ^ 2 is 25:

You must make sure that the code block in the while block has

statements that will render the condition false at some time if you do not

want the loop to run indefinitely. You can manually terminate the loop

with a break statement. Here is the same code in a slightly different style:

x = 1;

while 1

 printf("x ^ 2 is %d:\n", x**2)

 x = x + 1;

 if x == 6

 break

 endif

endwhile

Chapter 4 Loops, FunCtions, and FiLes

63

We mentioned the number 1 as the condition of the while loop.

It always returns true. So, the while loop runs perpetually unless you

explicitly break in the code block. In the code block, an if condition that

checks equality of x with 6. When it is true, the break statement is executed

and the while loop ends. We programmed it in this way to demonstrate the

functionality of break; it is not usually done this way.

You can write the same program with the do-until construct. The

following is an example:

x = 1;

do

 printf("x ^ 2 is %d:\n", x**2)

 x = x + 1;

until x > 5

In this code, the statements between do and until are executed in

each iteration until the condition in the until statement is false. As soon

as the condition is true, the loop is terminated. This loop also prints the

squares of the integer numbers from 1 to 5. As an exercise, try adding the

break statement in the loop above.

You can also write a for loop for the same output as follows:

for i = 1:5

 printf("i ^ 2 is %d:\n", i**2)

endfor

The statements between for and endfor are executed if the loop counter

denoted by variable i is between 1 to 5. In the beginning of the for loop, i

is set to 1, and in every iteration, it is incremented by 1 automatically until

it is 5 and then the loop is terminated. Run the program and see the output

yourself. The loop by default increments by 1. If you want to increment by

any other value, say 2, you modify the for statement as follows:

for i = 1:2:10

Chapter 4 Loops, FunCtions, and FiLes

64

The i in this case will be 1, 3, 5, 7, 9.

This is wraps up loops in GNU Octave. In the next section, you will see

how to create user-defined functions in detail.

 User-Defined Functions
Functions are nothing but subroutines. If you want to use a piece of code

frequently in your program, you write it as subroutine. GNU Octave offers

many built-in functions and packages to perform operations. You have

seen quite a lot of built-in functions already, such as rem() and printf().

Now you will learn how to write custom functions. This is very handy when

you want to write your own reusable code.

The input to any function is known an argument, and the output of a

function is known as a return value. Here’s an example a simple function

that does not accept any input (arguments) and does not return any

output:

function []= f0 ()

 printf("Test") ;

end

In this code example, the words function and end are keywords.

This function prints the string Test when called. f0() is the name of the

function. You can call it as follows:

f0()

This will run the function and print the string. You can create a

function that returns value(s) too. When the function returns only a single

value, the square brackets around the return value are not needed. The

following is a function that returns the value of the pi with two decimal

precision:

Chapter 4 Loops, FunCtions, and FiLes

65

function y = f1 ()

 y = 3.14;

end

You can call it as follows:

f1()

You can also call it as follows by assigning the returned value to a

variable:

a = f1()

Now, let’s see an example of a function that accepts a couple of

arguments and returns a single value. We added the square brackets

around the return value to demonstrate how it is written this way. As

mentioned, you can write it both ways (with or without square brackets) if

the function returns single value.

function [y] = f2 (a, b)

 y = a + b;

end

The function f2() accepts two arguments and returns the addition of

both. You can call this as follows:

f2(1, 2)

The other way to call this is

m = f2(1, 2)

You can have a function that returns multiple values as follows:

function [y1, y2] = f3 (a, b)

 y1 = a + b;

 y2 = a - b;

end

Chapter 4 Loops, FunCtions, and FiLes

66

You can call this as follows:

[m, n] = f3(2, 4)

Then you can use the values of the variable a and b separately

hereafter.

Another type of function is known as an inline function. An inline

function has the keyword inline. The interpreter replaces the function call

with the function code directly in an inline function. Here’s an example of

an inline function:

f0 = inline ("sqrt(x^2+y^2)") ;

You can call this function as follows:

f0(4, 3)

Inline functions are good for relatively simple functions that will

not be used often in the program and that can be written in a single-line

expression. Inline functions can only have one expression and can only

return a single variable. The returned variable can be a multidimensional

matrix.

Note inline functions cannot access variables (including global
variables) in the current session at any time.

 Global Variables
Now that you have learned about functions, you can revisit the global

variables from Chapter 2 to better understand their behavior.

A global variable may be accessed inside a function without passing

it as a parameter. Passing a global variable to a function will make a local

copy of the variable and not modify the global value.

Chapter 4 Loops, FunCtions, and FiLes

https://doi.org/10.1007/978-1-4842-6086-9_2

67

global x = 0

function f(x)

 x = 1;

end

Notice that when you call

f(x)

it is

x = 1

But, when you print the value of x,

x

x = 0

As explained above, the local copy of the variable x is modified in the

function f(x) but the global value remains the same.

 Working with Files
Let’s see how to work with files. You can read the data from files on the disk

and store the data in files. Before you start with file-related programming

demonstrations, you will learn how to run a few OS commands with a

Jupyter notebook for Octave. You can even run Linux commands on the

Jupyter notebook for Octave or the Octave Interactive console. This is

because the GNU Octave interpreter can also interpret Linux commands.

Let’s see a few examples. You can see the present working directory with

the following command:

pwd

Chapter 4 Loops, FunCtions, and FiLes

68

The output is as follows:

ans = C:\Users\Ashwin\OneDrive\GNU Octave Book\First_Drafts\

Chapter04\programs

You can see the list of files in the current directory as follows:

dir

The output is as follows:

. .ipynb_checkpoints test.xlsx

.. Chapter04.ipynb

The files or folders that start with a . are hidden and not usually visible

in the file explorer.

You can even use the Linux command ls to get the detailed output as

follows:

Volume in drive C has no label.

Volume Serial Number is 9C4B-9156

Directory of C:\Users\Ashwin\OneDrive\GNU Octave Book\First_

Drafts\Chapter04\programs

[.] [.ipynb_checkpoints]

[..] Chapter04.ipynb

 1 File(s) 6,570 bytes

 3 Dir(s) 120,328,843,264 bytes free

Let’s see a few file operations. First, create a matrix of size 5x5 as

follows:

mat01 = rand (5, 5);

You can save this to a file as follows:

save file1.mat mat01

Chapter 4 Loops, FunCtions, and FiLes

69

This command creates a file named file1.mat and saves it to that file.

The .mat file extension is short for matrix, a data container format that is

compatible with MATLAB and Octave. mat01 has values as follows:

 0.81598396769278381 0.92855422110525021 0.75365606653988848

0.50191794722525962 0.49488955306890497

 0.13756053717337141 0.91373377756306917 0.21944809091873169

0.86626249762210572 0.49854345466053068

 0.48677848511935479 0.90558318580210329 0.73794364985973382

0.37583995095818151 0.39386225963682803

 0.21045562411897317 0.32938941997464716 0.64352812535181725

0.69685526187959523 0.15707829430546633

 0.49126417869029831 0.21355975998368698 0.20118076472616681

0.047443232382045439 0.31718894583130069

Note that you are assigning random values to the matrix while creating

it, so the contents of this file will be different for you. You can load this file

as follows:

load file1.mat

This will load the data from the file in the variable name mentioned in

the file. Since you have saved a matrix with mat01 as the variable name, you

can see the same variable name after loading. You can use this statement

to load and use the data in a different notebook and program too. This is

one of the best ways to save your working data like matrices, arrays, and

vectors. Also, you can write custom programming APIs in other high-level

languages to work with this data because it is formatted data.

You can store the values of the multiple variables to a file as follows:

m1 = rand(2, 2); m2 = rand(3, 3); m3 = rand(4, 4);

save ("file2.mat" , "m1", "m2", "m3")

Note that this is the plaintext format and you can assign any extension

of your choice to these files.

Chapter 4 Loops, FunCtions, and FiLes

70

You can load the variables into memory with the usual command:

load file2.mat

You will be able to access variables m1, m2, and m3 after this command.

They will have the values stored in the file for the respective variables. You

can save an array into a file in binary format with the following command:

save -binary binfile.bin m1

The contents of the file are binary, so opening this file in a text editor

will show you incomprehensible ASCII characters. The best way to use it is

to load it into memory as follows:

load binfile.bin

You can even save the data into a CSV (comma-separated value) file

format. This format is a universal file format for saving tabular data. Here’s

how to save it in a CSV file:

a = [0 1 2; 3 4 5; 6 7 8]

csvwrite('test.csv', a)

This will create a CSV file and save the array there. The following are

the contents of the file on the disc:

0,1,2

3,4,5

6,7,8

You can load it into a variable with the following statement:

a1 = csvread('test.csv')

You can even read a CSV file hosted online into a matrix with the

following command:

a = urlread('http://samplecsvs.s3.amazonaws.com/

Sacramentorealestatetransactions.csv')

Chapter 4 Loops, FunCtions, and FiLes

71

If you wish to store this online file in a local file on the disc, it can be

done with the following command:

urlwrite('http://samplecsvs.s3.amazonaws.com/

Sacramentorealestatetransactions.csv', 'local_copy.csv')

You can also load and save Excel files (.xlsx). For this to work, you

need to download the io package from https://octave.sourceforge.io/

packages.php.

Before you proceed, make sure you have the paths set correctly. In

Windows, add the following two paths to your Path variable:

Path_to_Octave_Installation\usr\bin

Path_to_Octave_Installation\mingw64\bin

In Ubuntu, in the terminal before launching the Jupyter notebook, run

the following command:

sudo apt-get install liboctave-dev

Now, you must install and load the io package via the following

commands:

pkg install io.tar.gz

Ignore any warnings after this step.

pkg load io

Continuing with a similar example as when you experimented with

CSV files, type the following commands to see for yourself how working

with Excel works in Octave:

a = [0 1 2; 3 4 5; 6 7 8]

xlswrite('test.xlsx', a)

Chapter 4 Loops, FunCtions, and FiLes

https://octave.sourceforge.io/packages.php
https://octave.sourceforge.io/packages.php

72

This will create an Excel file and save the array there. The following are

the contents of the file on the disc:

0,1,2

3,4,5

6,7,8

You can load it into a variable with the following statement:

a1 = xlsread('test.xlsx')

This is how to work with Excel.

 Summary
In this chapter, you learned how to write decision-making programs with

if statements. You also learned how to write loops. You learned how to

write user-defined functions and briefly explored global variables. At

the end, you learned the important concept of working with various file

formats like CSV and Excel.

In the next chapter, you will see how to visualize data with GNU

Octave.

Chapter 4 Loops, FunCtions, and FiLes

	Chapter 4: Loops, Functions, and Files
	Decision Making with If Statements
	Loops in GNU Octave
	User-Defined Functions
	Global Variables
	Working with Files
	Summary

