
47© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_3

CHAPTER 3

Data Types
and Variables in Detail
In Chapter 2, you learned basic concepts like naming conventions

for variables, mathematical operations, getting help, and clearing the

command prompt. You also saw an overview of global variables.

In this chapter, you will explore the concepts of data types and

variables in detail. The following is the list of the topics you will learn and

demonstrate:

�Data Types in GNU Octave
Let’s create a new Jupyter notebook file for GNU Octave. You will save all

the demonstrations for this chapter in this notebook.

Convert the first cell to markdown, as you did in Chapter 2, and type in

and run the following code to create a heading and a sub-heading:

Data Types

Basics

After this, create a simple variable as follows:

x = 10

https://doi.org/10.1007/978-1-4842-6086-9_3#DOI
https://doi.org/10.1007/978-1-4842-6086-9_2
https://doi.org/10.1007/978-1-4842-6086-9_2

48

You know that all variables in the current scope can be seen by the

command who and you can learn the details of the variables with the

command whos, as shown in Figure 3-1.

Figure 3-1.  Output of the commands who and whos

If you notice in Figure 3-1, all of the variables are matrices by default

and all of the numeric variables are double by default (you’ll look at

doubles a little later in this section). However, the type double requires

a lot of memory. There are four signed integer types of data: int8, int16,

int32, and int64. They require 1, 2, 4, and 8 bytes, respectively. Similarly,

uint8, uint16, uint32, and uint64 are unsigned integer data types and they

also require 1, 2, 4, and 8 bytes, respectively. You can create a variable with

the desired data type as follows:

Create a variable with the desired data type

y = uint8(23)

In this code, the code comment starts with #. Whenever the GNU

Octave interpreter encounters #, it treats it as a code comment and ignores

the text after it on that line. The output after running the code above and

the command whos is shown in Figure 3-2.

Chapter 3 Data Types and Variables in Detail

49

As an exercise, create variables of the other integer data types

discussed above.

Floating numbers are represented by double and single precision

formats. The single precision occupies 4 bytes. Out of these 4 bytes (32

bits), 23 bits are used to store the fraction, 8 bits are used for the exponent,

and 1 bit is used for the sign. The double precision occupies 8 bytes. Out of

these eight bytes (64 bits), 52 bits are used for the fraction, 11 bits are used

for the exponent, and 1 bit is used for the sign. The following is an example

of the same:

Single and double precision floats

a = single(3.14)

b = double(3.14)

Run this code and then the command whos to see the details of the

variables you created.

Figure 3-2.  A variable of the type uint8

Chapter 3 Data Types and Variables in Detail

50

In the last chapter, you learned that the letters i, j, I, and J are used to

represent √(-1), which is an imaginary number. Using this number, you

can define complex numbers. Run the following code:

defining and understanding complex numbers

z = 2 + 3I

real(z)

imag(z)

The first line defines a complex number. The next two lines return

the real and the imaginary part of the complex number. By default, the

complex number is a double. You can explicitly define a single or a double

precision complex number as follows:

z1 = single(2 + 3I)

z2 = double(2 + 3I)

Run the command whos after this to see the datatype of these complex

numbers.

You can also create character strings as follows:

s1 = "Hello World!"

These are the basic data types in GNU Octave. In the next section, you

will learn how to work with the multidimensional data structures known as

arrays.

�Arrays, Vectors, and Matrices
Just like in the programming languages C and C++, you can create and

use arrays in GNU Octave. An array is collection of variables of the same

datatype that are stored in continuous memory locations. Arrays can have

one or more dimensions. Multi-dimensional arrays are usually called

Chapter 3 Data Types and Variables in Detail

51

matrices. Let’s see examples of arrays. Convert a cell to markdown and

type the following code to create a heading:

Arrays and Vectors

Then type and execute the following code in two different cells:

a = [1, 2, 3, 4, 5]

size(a)

The output is shown in Figure 3-3. The

ans = 1 5

means that the matrix a has one row and five columns.

Figure 3-3.  A simple array

You can also declare the above array as

a = [1 2 3 4 5]

Chapter 3 Data Types and Variables in Detail

52

The above array has only one row. You can similarly create an array

with a single column as follows:

b = [1; 2; 3; 4; 5]

size(b)

The semicolon (;) is the delimiter for rows. The output is shown in

Figure 3-4.

Figure 3-4.  A simple array with a single column

In GNU Octave, a vector is a matrix with either one row or one column.

The above are examples of vectors.

You can even create 2D matrices as follows:

a = [1, 2; 3, 4]

size(a)

The output is shown in Figure 3-5.

Chapter 3 Data Types and Variables in Detail

53

In the case of 2D or multi-dimensional matrices, the number of

elements in every row must be equal. Otherwise the GNU Octave

interpreter throws an error as follows:

a = [1, 2; 3, 4, 5]

error: vertical dimensions mismatch (1x2 vs 1x3)

If you run the command whos, you can see that the default datatype of

all the arrays is double. You can create the arrays, vectors, and matrices of

any custom datatype as follows:

a = int16([1, 2, 3])

b = int8([1; 2; 3])

c = int32([1, 2; 3, 4])

Figure 3-5.  A 2x2 2D matrix

Chapter 3 Data Types and Variables in Detail

54

�Indexing in Arrays
Let’s use the above examples to understand indexing. Indexing starts from

1 in Octave. In C and C++, it starts from 0. So, if you have a lot of experience

with C and C++ programming, be careful. You can retrieve the first element

in the array a in the following ways:

a(1)

a(1, 1)

The second element can be retrieved in the following ways:

a(2)

a(2, 1)

You can retrieve the elements of a column vector as follows:

b(1)

b(1, 1)

b(2)

b(2, 1)

For the 2D matrix c, you can retrieve the elements as follows:

c(1, 1)

c(1, 2)

c(2, 1)

c(2, 2)

�Operations on Arrays
You can perform mathematical operations on numerical arrays. Let’s see a

few operations. Create two arrays as follows:

a = [0, 1; 2, 3]

b = [4, 5; 6, 7]

Chapter 3 Data Types and Variables in Detail

55

Let’s perform a few operations with an array as one operand and a

numerical constant as the other operand:

a + 5

a – 3

7 – a

a * 2

a ** 2

a ^ 2

a / 2

a % 2

Let’s perform a few operations with arrays as both operands:

a + b

a - b

b - a

a * b

a / b

a % b

�Array Creation Routines
There are many array creation routines in GNU Octave. The function

ones() creates a matrix of ones. The following is an example:

ones (3, 3)

The function zeros() creates a matrix of zeros. The following is an

example:

zeros (3, 3)

Chapter 3 Data Types and Variables in Detail

56

The function eye() creates an identity matrix (a matrix with all of the

diagonal elements as 1s and the rest as 0s). The following is an example:

eye (3, 3)

The function rand() creates a matrix of random numbers. The

following is an example:

rand (5, 5)

Run the above examples and see the output.

Let’s see two more functions and their respective output. The function

linspace(base, limit, n) accepts the lower and upper limits, and

creates an array with n linearly spaced elements. The following is an

example:

linspace(1, 10, 4)

The output is as follows:

ans = 1 4 7 10

The function logspace (base, limit, n) accepts the lower and

upper limits and creates an array with n logarithmically spaced elements.

The following is an example:

logspace(1, 5, 5)

The output is as follows:

ans = 10 100 1000 10000 100000

You can assign them to variables or you can directly display their

values.

As an exercise, try passing different values to these array creation

functions.

Chapter 3 Data Types and Variables in Detail

57

�Matrix Manipulation Function
Let’s see a few matrix manipulation functions. Create a 2D matrix as

follows:

a = [1 2 3; 4 5 6; 7 8 9]

You will use this matrix for the demonstrations of all of the matrix

manipulation functions that we are going to discuss in this section. Using

' after a variable name computes the transpose of the matrix:

a'

The output is as follows:

 1 4 7

 2 5 8

 3 6 9

You can compute the determinant of the matrix with det(a).

You can flip matrices in the various ways with the following functions:

flip(a)

fliplr(a)

flipud(a)

The function fliplr() flips the matrix left to right and the function

flipud() flips up to down. You can convert a matrix into an upper and

lower triangular matrix with the following functions:

triu(a)

tril(a)

Run these function calls and see the output.

Chapter 3 Data Types and Variables in Detail

58

�Summary
In this chapter, you examined the data types in GNU Octave. You studied

and demonstrated arrays and operations on them. You learned about

operations on arrays and matrices. You will use many of these operations

on matrices when working with images. Images are represented as multi-

dimensional arrays or matrices in GNU Octave. You will also use these

concepts when you study data visualization.

In the next chapter, you will explore loops, conditional statements, and

functions in GNU Octave in detail.

Chapter 3 Data Types and Variables in Detail

	Chapter 3: Data Types and Variables in Detail
	Data Types in GNU Octave
	Arrays, Vectors, and Matrices
	Indexing in Arrays
	Operations on Arrays
	Array Creation Routines

	Matrix Manipulation Function
	Summary

