
33© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_2

CHAPTER 2

Getting Started
with GNU Octave
and Jupyter
In Chapter 1, you learned in detail how to get your Windows computer,

Linux, and Raspberry Pi ready for working with GNU Octave and

Jupyter Notebook. You also learned how to get started with GNU Octave

programming and Jupyter Notebook. In this chapter, you will delve deeper

into GNU Octave programming and you will mostly use Jupyter Notebook

for programming demonstrations in interactive mode. The following is the

list of topics you will learn and demonstrate in this chapter:

• Simple mathematical operations

• Built-in mathematical constants

• Getting help

• Variables in GNU Octave

• Global variables

• Conventions for naming variables

• Clearing the command prompt

https://doi.org/10.1007/978-1-4842-6086-9_2#DOI
https://doi.org/10.1007/978-1-4842-6086-9_1

34

 Simple Mathematical Operations
Let’s get started with some simple concepts. In this section, you will learn

how to perform simple mathematical operations on numerical operands. It is

recommended to create a new notebook for every chapter and save all of the

notebooks in the same directory on your computer. So create a new notebook

and create a markup cell with a heading that says Simple Mathematical
Operations. Then run the following statement in the next cell:

2 + 5

It will execute and show the following output:

ans = 7

Similarly, run the following statements and see the output:

2 – 5

5 / 2

2 / 5

5 % 2

5 * 2

2 ^ 5

After executing the statements above, you’ll get the output shown in

Figure 2-1.

Chapter 2 GettinG Started with GnU OCtave and JUpyter

35

When various operators are used in a single expression, the operator

precedence is similar to the behavior you find in mathematics or other

programming languages. In mathematics, it is commonly referred to as

BODMAS or PEDMAS, which is shown in Table 2-1.

Figure 2-1. Screenshot of the simple mathematical operations in
action

Chapter 2 GettinG Started with GnU OCtave and JUpyter

36

In Octave, the operator preference is parentheses over other operators,

and division and multiplication over addition and subtraction. When

operators with equal precedence occur, the operator precedence goes

from left to right.

For example, the answer to the expression

10 * 5 - (5 + 2)^2 + 10 / 5

10 * 5 – 7^2 + 10 / 5

expression inside the parentheses is computed

10 * 5 - 49 + 10 / 5

exponents are computed

50 – 49 + 2

division and multiplication (operators of equal precedence) are

computed

3

addition and subtraction (operators of equal precedence) are

computed

You can run this complex expression in a new cell. It will execute the

following output:

ans = 3

Table 2-1. BODMAS/PEDMAS

Operation Notation Operation

Brackets {[()]} Parentheses

Orders ^, ** Exponents

Division / Division

Multiplication * Multiplication

Addition + Addition

Subtraction - Subtraction

Chapter 2 GettinG Started with GnU OCtave and JUpyter

37

It is advisable to use parentheses when writing complex expressions

because they overrule any operator, make your code readable, and you can

avoid mistakes that are easy to overlook.

 Built-in Mathematical Constants
There are many built-in mathematical constants in GNU Octave. In a new

cell, create a markdown cell with a heading that says Built-in Mathematical
Constants. You can retrieve them in multiple formats. Run the following code:

e

This returns the value of the constant e that is the base of natural

logarithms:

ans = 2.7183

Run the following code:

e(3)

It returns a 3x3 matrix of es as follows:

ans =

 2.7183 2.7183 2.7183

 2.7183 2.7183 2.7183

 2.7183 2.7183 2.7183

You will learn about matrices in the next chapter. You can even have a

custom sized matrix of es as follows:

e(3, 2)

ans =

 2.7183 2.7183

 2.7183 2.7183

 2.7183 2.7183

Chapter 2 GettinG Started with GnU OCtave and JUpyter

38

You can also create a matrix of more than two dimensions:

e(2, 2, 3)

ans =

ans(:,:,1) =

 2.7183 2.7183

 2.7183 2.7183

ans(:,:,2) =

 2.7183 2.7183

 2.7183 2.7183

ans(:,:,3) =

 2.7183 2.7183

 2.7183 2.7183

You can have these constants in single (32-bit representation) or

double (64-bit representation) precision as follows:

e(3, 2, class="single")

e(3, 2, class="double")

Similarly, there are other constants that can return a single value or

matrices as demonstrated above. Let’s look at each of them one by one.

If you run pi, it returns the value of the constant pi. The constants i, j, I,

and J return the imaginary unit that is -1 . Inf returns infinity and NaN

returns Not a Number. The next three constants are system-dependent

(processor-dependent, to be precise). The first one is eps. It returns the

relative spacing between any two adjacent numbers in the machine's

floating-point system representation. realmax returns the largest floating-

point number, and realmin returns the smallest floating-point number

represented by the system. Check these constants and their respective

matrices yourself, like you did in the demonstration for the constant e.

Chapter 2 GettinG Started with GnU OCtave and JUpyter

39

 Getting Help
You can get help for built-in constants and functions (you will learn

about them later in the book). Suppose you want to get more information

about the built-in constant pi. You can run the following in the command

prompt of the GNU Octave GUI:

help pi

The output is shown in Figure 2-2.

Figure 2-2. The output of the command help

Chapter 2 GettinG Started with GnU OCtave and JUpyter

40

Similarly, you can execute the following command for documentation:

doc pi

It opens the relevant documentation in the documentation tab of the

GNU Octave GUI, as shown in Figure 2-3.

This way, you can find out more information about the built-in

functions and constants offered by GNU Octave.

Figure 2-3. GNU Octave documentation

Chapter 2 GettinG Started with GnU OCtave and JUpyter

41

 Variables in GNU Octave
A variable is an addressable memory (RAM) location where you can store

data temporarily as long as your program (in script mode) or session

(in interactive mode) is running. You can address the variable with a

name. Each variable in the same program or session has a unique name.

Let’s look at how you can create a variable. Type and run the following

statement:

a = 3.14

It will immediately show the value of variable a in the following line. =

assigns the value on the left to the variable on the right (in the above case,

a). You can suppress the display of output by adding ; to the statement as

follows:

a = 3.14;

If you type the variable again in a new cell and execute it, it shows the

value of the variable. You can also assign values to multiple variables as

follows:

a = 1, b = 2, c = 3

a = 1

b = 2

c = 3

As you can see, you use the comma (,) between assign statements

to do this.

We will discuss different types of variables later in this book.

Chapter 2 GettinG Started with GnU OCtave and JUpyter

42

 Global Variables
There is a special way of declaring some variables as global variables: you

use the keyword global before the variable name. The global variables may

only be initialized once. If you run the following two lines one after the other

global a = 1

global a = 2

the variable a still contains a value of 1.

Using global variables has other benefits which will be addressed in

later chapters.

 Conventions for Naming Variables
In order to avoid errors and confusion while programming, you should

adhere to the following conventions when naming variables:

• Names should not start with a number but you can use

numbers in the variable name anywhere after the first

character.

• Variable names are case sensitive.

• Names can include the underscore character.

• Keywords cannot be used as names of variables.

It is a good practice to use meaningful variable names because the

code will be easier to read and debug.

You can retrieve the list of the current keywords in the Octave version

by running the statement iskeyword(). The following is the list of reserved

keywords in the current version of Octave:

Chapter 2 GettinG Started with GnU OCtave and JUpyter

43

ans =

{

 [1,1] = __FILE__

 [2,1] = __LINE__

 [3,1] = break

 [4,1] = case

 [5,1] = catch

 [6,1] = classdef

 [7,1] = continue

 [8,1] = do

 [9,1] = else

 [10,1] = elseif

 [11,1] = end

 [12,1] = end_try_catch

 [13,1] = end_unwind_protect

 [14,1] = endclassdef

 [15,1] = endenumeration

 [16,1] = endevents

 [17,1] = endfor

 [18,1] = endfunction

 [19,1] = endif

 [20,1] = endmethods

 [21,1] = endparfor

 [22,1] = endproperties

 [23,1] = endswitch

 [24,1] = endwhile

 [25,1] = enumeration

 [26,1] = events

 [27,1] = for

 [28,1] = function

 [29,1] = global

 [30,1] = if

 [31,1] = methods

Chapter 2 GettinG Started with GnU OCtave and JUpyter

44

 [32,1] = otherwise

 [33,1] = parfor

 [34,1] = persistent

 [35,1] = properties

 [36,1] = return

 [37,1] = switch

 [38,1] = try

 [39,1] = until

 [40,1] = unwind_protect

 [41,1] = unwind_protect_cleanup

 [42,1] = while

}

The commands who and whos show the list of variables and details,

respectively. Create a few variables in Octave’s interactive prompt in the

GUI and run the command. First, create a few variables as follows:

>> a = 1;

>> b = 2;

>> c = 3;

The output of the who and whos commands and the workspace panel in

the Octave GUI is shown in Figure 2-4.

Figure 2-4. The output of the commands who and whos

Chapter 2 GettinG Started with GnU OCtave and JUpyter

45

Try running the commands who and whos in the Jupyter notebook too.

The output will be the same. Many times, it is recommended to purge

all the unused variables from memory. You are required to manage the

memory manually when you handle large datasets. You can purge all

the variables from memory with the command clear. If you run this

command in the Octave GUI’s command prompt, you can see all of the

variables disappear from the workspace. Use the doc and help commands

to obtain more information about the usage of clear.

 Clearing the Command Prompt
You can clear the command prompt of Octave (running in terminal or

the GUI, both) by running the clc command. You don’t need to use this

command in Jupyter Notebook. We discussed the methods to clear the

output in the cells of Jupyter Notebook in the last chapter.

 Summary
In this chapter, you learned about the basics of GNU Octave programming

and explored the GUI interface in a bit more detail. The concepts you use

in this book will be helpful to you in further chapters.

In the next chapter, you will explore different data types in GNU Octave

in detail. The next chapter will be more coding-extensive than this one.

Chapter 2 GettinG Started with GnU OCtave and JUpyter

	Chapter 2: Getting Started with GNU Octave and Jupyter
	Simple Mathematical Operations
	Built-in Mathematical Constants
	Getting Help
	Variables in GNU Octave
	Global Variables
	Conventions for Naming Variables
	Clearing the Command Prompt
	Summary

