CHAPTER 2

Getting Started
with GNU Octave
and Jupyter

In Chapter 1, you learned in detail how to get your Windows computer,
Linux, and Raspberry Pi ready for working with GNU Octave and

Jupyter Notebook. You also learned how to get started with GNU Octave
programming and Jupyter Notebook. In this chapter, you will delve deeper
into GNU Octave programming and you will mostly use Jupyter Notebook
for programming demonstrations in interactive mode. The following is the
list of topics you will learn and demonstrate in this chapter:

o Simple mathematical operations
e Built-in mathematical constants

e Getting help

e Variables in GNU Octave

e Global variables

o Conventions for naming variables

e C(learing the command prompt

© Ashwin Pajankar and Sharvani Chandu 2020 33
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_2

https://doi.org/10.1007/978-1-4842-6086-9_2#DOI
https://doi.org/10.1007/978-1-4842-6086-9_1

CHAPTER 2 GETTING STARTED WITH GNU OCTAVE AND JUPYTER

Simple Mathematical Operations

Let’s get started with some simple concepts. In this section, you will learn
how to perform simple mathematical operations on numerical operands. It is
recommended to create a new notebook for every chapter and save all of the
notebooks in the same directory on your computer. So create a new notebook
and create a markup cell with a heading that says Simple Mathematical
Operations. Then run the following statement in the next cell:

2 +5
It will execute and show the following output:
ans = 7

Similarly, run the following statements and see the output:

* ~ O~ |
Ul NN UT NU

>

N UL N U N
I

After executing the statements above, you'll get the output shown in
Figure 2-1.

34

CHAPTER 2 GETTING STARTED WITH GNU OCTAVE AND JUPYTER

: Jupyter Notebook_2 Last Checkpoint: Last Tuesday at 12:10 PM {unsaved changes) (_; Logout
File Edit View Insent Cel Kemel Widgsts Help Tsted | # | Octave O
B+ % & B 4 % MR B C W coe v |

Simple Mathematical Operations

In [1]: |2 +

In [5]: 5 - 2
In [6): 2=°5
In [7): 5 /2
In [8]): 2045
In [9]): |5 %2
In [18]: |5 %2

In [11]): | SEEEE

Figure 2-1. Screenshot of the simple mathematical operations in
action

When various operators are used in a single expression, the operator
precedence is similar to the behavior you find in mathematics or other
programming languages. In mathematics, it is commonly referred to as
BODMAS or PEDMAS, which is shown in Table 2-1.

35

CHAPTER 2 GETTING STARTED WITH GNU OCTAVE AND JUPYTER

Table 2-1. BODMAS/PEDMAS

Operation Notation Operation

Brackets {101 Parentheses

Orders N Exponents
Division / Division
Multiplication * Multiplication
Addition + Addition
Subtraction - Subtraction

In Octave, the operator preference is parentheses over other operators,
and division and multiplication over addition and subtraction. When
operators with equal precedence occur, the operator precedence goes
from left to right.

For example, the answer to the expression

10 *5 - (5+2)*2+10/ 5

10 *5-7"2+10/ 5

expression inside the parentheses is computed

10 *5-49 +10 /5

exponents are computed

50 - 49 + 2

division and multiplication (operators of equal precedence) are
computed

3
addition and subtraction (operators of equal precedence) are
computed

You can run this complex expression in a new cell. It will execute the
following output:

ans = 3

36

CHAPTER 2 GETTING STARTED WITH GNU OCTAVE AND JUPYTER

Itis advisable to use parentheses when writing complex expressions
because they overrule any operator, make your code readable, and you can
avoid mistakes that are easy to overlook.

Built-in Mathematical Constants

There are many built-in mathematical constants in GNU Octave. In a new
cell, create a markdown cell with a heading that says Built-in Mathematical
Constants. You can retrieve them in multiple formats. Run the following code:

e

This returns the value of the constant e that is the base of natural
logarithms:

ans = 2.7183

Run the following code:

e(3)
It returns a 3x3 matrix of es as follows:
ans =

2.7183 2.7183 2.7183
2.7183 2.7183 2.7183
2.7183 2.7183 2.7183

You will learn about matrices in the next chapter. You can even have a
custom sized matrix of es as follows:

e(3, 2)

ans =
2.7183 2.7183
2.7183 2.7183
2.7183 2.7183

37

CHAPTER 2 GETTING STARTED WITH GNU OCTAVE AND JUPYTER

You can also create a matrix of more than two dimensions:

e(2, 2, 3)
ans =
ans(:,:,1) =

2.7183 2.7183
2.7183 2.7183
ans(:,:,2) =
2.7183 2.7183
2.7183 2.7183
ans(:,:,3) =
2.7183 2.7183
2.7183 2.7183

You can have these constants in single (32-bit representation) or
double (64-bit representation) precision as follows:

e(3, 2, class="single")
e(3, 2, class="double")

Similarly, there are other constants that can return a single value or
matrices as demonstrated above. Let’s look at each of them one by one.
If you run pi, it returns the value of the constant pi. The constants i, j, I,
and J return the imaginary unit that is J-1.Infreturns infinity and NaN
returns Not a Number. The next three constants are system-dependent
(processor-dependent, to be precise). The first one is eps. It returns the
relative spacing between any two adjacent numbers in the machine's
floating-point system representation. realmax returns the largest floating-
point number, and realmin returns the smallest floating-point number
represented by the system. Check these constants and their respective
matrices yourself, like you did in the demonstration for the constant e.

38

CHAPTER 2 GETTING STARTED WITH GNU OCTAVE AND JUPYTER

Getting Help

You can get help for built-in constants and functions (you will learn
about them later in the book). Suppose you want to get more information
about the built-in constant pi. You can run the following in the command
prompt of the GNU Octave GUI:

help pi
The output is shown in Figure 2-2.

>> help pi
'pi' is a built-in function from the file libinterp/corefcn/data.cc

- pi
-- pi (N)

-- pi (N, M)

— pi (N, M, K, ...)
-- pi (..., CLASS)

Return a scalar, matrix, or N-dimensional array whose elements are
all equal to the ratio of the circumference of a circle to its
diameter.

Internally, 'pi' is computed as '4.0 * atan (1.0)"'.

When called with no arguments, return a scalar with the value of
pi.
When called with a single argument, return a square matrix with the

dimension specified.

When called with more than one scalar argument the first two
arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions.

The optiocnal argument CLASS specifies the return type and may be
either "double" or "single".

See also: e, I.

Rdditional help for built-in functions and operators is
available in the online version of the manual. Use the command
'doc <topic>' to search the manual index.

Help and information about Octave is also available on the WWW
at https://www.octave.org and via the help@octave.org

mailing list.

>>

Figure 2-2. The output of the command help
39

CHAPTER 2 GETTING STARTED WITH GNU OCTAVE AND JUPYTER

Similarly, you can execute the following command for documentation:

doc pi

It opens the relevant documentation in the documentation tab of the

GNU Octave GUI, as

Dacumentation
Comtents ~ Fumction Indax Search

Seuml \-I

empirical_cdf
empirical_inv
empirical_pdf
empirical_rmd
expint

getpid
gelppid

pi

pie

pied

|pinik

piny

pipe

ppint

regexpl
spinmap
strempi
stncmpi
waitpid

shown in Figure 2-3.

® x
Ae.-%. 4 + -1
pi tn
pi i)
pi i m)
pigrm kA
pi {f cfess)
FBuwturn 2 scalar, mak, 20 Nedimensicnal anay whose slements ane all equal b the rabio of the crcumterence of a crcle b its
diametor,
Intemally, s computed ag * 20 “atas 7.0,
‘Wiheen called with no arguemnents, rétum a scalarwith the value of pi
When called with & single argument retum & squase matriowith the dimansion s pecified
‘Whan called with th the first twe e taken as th ot rowes. and columng and any

turther arguments specify addtional maix dimensions.
Thi optional argument classspeciivs the retum bpe ard may by sither Thotde b gl ®
See alse: = |
|
1
| f.m}
| g m kg
| s

[Return & scalar, matix, o Nedimensional amey whose elements ane all equal 1 the pure imaginary unil, defined as sl

1 and it equivalents i, | and). are fencions so any of the names may be reused lor other purposes (such as i for a counter
waniabie).

‘Whan called with no arguments. ratum a scalarwith tha value ¢
Whn callod with & gingle Srgumint retum & $quan malmdwith the dimension specified

‘Whian called with th sCalar ang g g lmkign ag the numoer of rows and columng and any
turther arguments specity addonal mah: imensions.

The opticnal argument oiessspecies the retum type ard may be either “Duehieor gl
See also: & pl oo s
Int
Int !
Ink 2
Ink & s & 4
Ink 7 cisss)
[Return a scolar. motri: or N-dimensional armay whose elemants one oll equal to the IEEE rapresantation for posithva infindy.
ity & sus &

b lsnge © be i
examples which produce infny are division by 1810 and overfiow

fioatng poi numibers, Two comeman

‘Comemnand Windew Editar Documentation

Figure 2-3. GNU Octave documentation

This way, you can find out more information about the built-in

functions and constants offered by GNU Octave.

40

CHAPTER 2 GETTING STARTED WITH GNU OCTAVE AND JUPYTER

Variables in GNU Octave

A variable is an addressable memory (RAM) location where you can store
data temporarily as long as your program (in script mode) or session

(in interactive mode) is running. You can address the variable with a
name. Each variable in the same program or session has a unique name.
Let’s look at how you can create a variable. Type and run the following
statement:

a=3.14

It will immediately show the value of variable a in the following line. =
assigns the value on the left to the variable on the right (in the above case,
a). You can suppress the display of output by adding ; to the statement as
follows:

a = 3.14;

If you type the variable again in a new cell and execute it, it shows the
value of the variable. You can also assign values to multiple variables as

follows:
a=1,b =2, c=3
a= 1
b =
c= 3

As you can see, you use the comma (,) between assign statements
to do this.
We will discuss different types of variables later in this book.

41

CHAPTER 2 GETTING STARTED WITH GNU OCTAVE AND JUPYTER

Global Variables

There is a special way of declaring some variables as global variables: you
use the keyword global before the variable name. The global variables may
only be initialized once. If you run the following two lines one after the other

global a = 1

global a

the variable a still contains a value of 1.
Using global variables has other benefits which will be addressed in
later chapters.

Conventions for Naming Variables

In order to avoid errors and confusion while programming, you should
adhere to the following conventions when naming variables:

e Names should not start with a number but you can use
numbers in the variable name anywhere after the first
character.

e Variable names are case sensitive.
¢ Names can include the underscore character.
o Keywords cannot be used as names of variables.

It is a good practice to use meaningful variable names because the
code will be easier to read and debug.

You can retrieve the list of the current keywords in the Octave version
by running the statement iskeyword(). The following is the list of reserved
keywords in the current version of Octave:

42

ans

L T s T s T e T s TR e I T s T e T s T s T s Y s T s Y s T s T s T s B s Y s B s T s Y s B e e T s B s T s B s B s B e |

[N

-

N

O 00 N O U1 B W
-

=
O -

=
=

-

=
N

N P PR R R R R
-

N
=

-

N
N

w NN N NN NN NN
-

w
=

-

- - - - -

-

S W 0N O U1 B~ W

O W 0N O U1 B~ W

O O e e S
HI—II—II—II—II—II—II—II—II—I

-

- - - - - - -

-

- - - - - - -

-

R PR P R P R P R P R P B B B B B RpoRBoR

T T T T T T T L T L T T N TR TN S S |

[EEN

CHAPTER 2

__FILE

_LINE__

break

case

catch

classdef
continue

do

else

elseif

end

end_try catch
end _unwind protect
endclassdef
endenumeration
endevents
endfor
endfunction
endif
endmethods
endparfor
endproperties
endswitch
endwhile
enumeration
events

for

function
global
if

methods

GETTING STARTED WITH GNU OCTAVE AND JUPYTER

43

CHAPTER 2 GETTING STARTED WITH GNU OCTAVE AND JUPYTER

[32,1] = otherwise
[33,1] = parfor

[34,1] = persistent
[35,1] = properties
[36,1] = return

[37,1] = switch

[38,1] = try

[39,1] = until

[40,1] = unwind_protect
[41,1] = unwind protect cleanup
[42,1] = while

The commands who and whos show the list of variables and details,
respectively. Create a few variables in Octave’s interactive prompt in the
GUI and run the command. First, create a few variables as follows:

> a = 1;
>> b = 2;
>> € = 3;

The output of the who and whos commands and the workspace panel in
the Octave GUI is shown in Figure 2-4.

File Browser F % Command Window &
[c: 0> a= 1:
Cifusers/Ashwin ___ | %t Mgy
Name Ale> c = 3;
.anaconda (o '-‘J'hO .
Variables in the current scope:
.android v
Workspace & xa b c
Filter [_]
her [- »> whos
Name Class Dimension Value |Variables in the current scope:
a double 1 1 Attr Name Size Bytes Class
b double 1x1 3 ==== ==== ==== mmmm= ===
a 1x1 8§ double
[4 double 11 3 ;
b 1x1 § double
c 1x1 8 double
< >|rotal is 3 elements using 24 bytes
Command History & x
Firer (] > |

Figure 2-4. The output of the commands who and whos

44

CHAPTER 2 GETTING STARTED WITH GNU OCTAVE AND JUPYTER

Try running the commands who and whos in the Jupyter notebook too.
The output will be the same. Many times, it is recommended to purge
all the unused variables from memory. You are required to manage the
memory manually when you handle large datasets. You can purge all
the variables from memory with the command clear. If you run this
command in the Octave GUI's command prompt, you can see all of the
variables disappear from the workspace. Use the doc and help commands
to obtain more information about the usage of clear.

Clearing the Command Prompt

You can clear the command prompt of Octave (running in terminal or
the GUI, both) by running the c1lc command. You don’t need to use this
command in Jupyter Notebook. We discussed the methods to clear the
output in the cells of Jupyter Notebook in the last chapter.

Summary

In this chapter, you learned about the basics of GNU Octave programming
and explored the GUI interface in a bit more detail. The concepts you use
in this book will be helpful to you in further chapters.

In the next chapter, you will explore different data types in GNU Octave
in detail. The next chapter will be more coding-extensive than this one.

45

	Chapter 2: Getting Started with GNU Octave and Jupyter
	Simple Mathematical Operations
	Built-in Mathematical Constants
	Getting Help
	Variables in GNU Octave
	Global Variables
	Conventions for Naming Variables
	Clearing the Command Prompt
	Summary

