
GNU Octave
by Example

A Fast and Practical Approach to
Learning GNU Octave
—
Ashwin Pajankar
Sharvani Chandu

GNU Octave by
Example

A Fast and Practical Approach
to Learning GNU Octave

Ashwin Pajankar
Sharvani Chandu

GNU Octave by Example: A Fast and Practical Approach to

Learning GNU Octave

ISBN-13 (pbk): 978-1-4842-6085-2 ISBN-13 (electronic): 978-1-4842-6086-9
https://doi.org/10.1007/978-1-4842-6086-9

Copyright © 2020 by Ashwin Pajankar and Sharvani Chandu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aditee Mirashi
Development Editor: Matthew Moodie
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6085-2.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Ashwin Pajankar
Nashik, Maharashtra, India

Sharvani Chandu
Pittsburgh, PA, USA

https://doi.org/10.1007/978-1-4842-6086-9

I dedicate this book to

Srinivasa Ramanujan,

the great Indian Mathematician

—Ashwin Pajankar

My parents and my sisters who have been
my constant support

—Sharvani Chandu

v

About the Authors ��ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

Chapter 1: Introduction to GNU Octave ���1

The GNU Octave Project ��2

History of the GNU Octave Project ���2

Applications of Octave ���3

Limitations and Drawbacks of Octave ���3

Comparison of Octave with Alternatives ��4

The Online Octave Community ��5

Installing GNU Octave ��5

Installing on Windows��6

Installation on Ubuntu Linux ��9

Installation on Raspberry Pi with Raspbian OS ���10

Exploring GNU Octave ���10

Octave GUI ���10

Octave CLI ��19

Octave Programming with Jupyter Notebook ���19

Octave Code and Richtext in Notebook ���26

Summary���31

Table of Contents

vi

Chapter 2: Getting Started with GNU Octave and Jupyter ������������������33

Simple Mathematical Operations ��34

Built-in Mathematical Constants ���37

Getting Help ��39

Variables in GNU Octave ��41

Global Variables ��42

Conventions for Naming Variables ��42

Clearing the Command Prompt ���45

Summary���45

Chapter 3: Data Types and Variables in Detail ������������������������������������47

Data Types in GNU Octave ���47

Arrays, Vectors, and Matrices ���50

Indexing in Arrays ��54

Operations on Arrays ���54

Array Creation Routines ���55

Matrix Manipulation Function ���57

Summary���58

Chapter 4: Loops, Functions, and Files ���59

Decision Making with If Statements ���59

Loops in GNU Octave ���61

User-Defined Functions ���64

Global Variables ��66

Working with Files ��67

Summary���72

Table of ConTenTs

vii

Chapter 5: Data Visualization ���73

Simple Plots ��74

Plotting Options ���80

Errorbars ���87

More Visualizations ���91

Scatter Graphs ���92

Histograms ��93

Contours ��95

Polar Graph ��97

Pie Charts ��99

Visualizing Data as Images ��100

3 D Visualizations ���102

Summary���110

Chapter 6: Data Analysis ��111

Simple Statistics ���112

Histogram��113

Interpolation ��115

1 -D Interpolation��115

2 -D Interpolation��117

Polynomial Fitting ��120

Summary���123

Chapter 7: Signal Processing ���125

Signals ��125

Continuous and Discrete Signals ���125

Analog and Digital Signals ���128

Even and Odd Signals ��129

Table of ConTenTs

viii

Periodic and Non-Periodic Signals ��130

Fourier Transform ��133

Summary���137

Chapter 8: Audio Processing ��139

Reading an Audio File ���139

Creating Your Own Audio File ��141

Plotting the Sound Wave Signal ��142

Summary���146

Chapter 9: Image and Video Processing ���147

Image Processing ���147

Loading, Displaying, and Resizing Images ���149

Color Space ���150

Cropping, Rotating, and Saving Images ���154

FFT2 ��157

Video Processing ���159

Summary���161

 Appendix ���163

 Structures ���163

 Cell Arrays ���164

 Operations for Structures and Cell Arrays ���165

 Polynomials in Octave ���166

 Convex Hull ���166

 Index ���169

Table of ConTenTs

ix

About the Authors

Ashwin Pajankar holds a Master of Technology from IIIT Hyderabad. He

started programming and tinkering with electronics at the tender age of

seven, beginning with the BASIC programming language. He was gradually

exposed to C programming, 8085, and x86 assembly programming during

his higher secondary schooling. He is proficient in x86 assembly, C, Java,

Python, and shell programming. He is also proficient with Raspberry Pi,

Arduino, and other single-board computers and microcontrollers. Ashwin

is passionate about training and mentoring. He has trained more than

60,000 students and professionals in live and online training courses. He

has published more than a dozen books with many international and

Indian publishers. He has also reviewed numerous books and educational

video courses. This is his fourth book with Apress and he is working on

more books. He regularly conducts programming bootcamps and

hands-on training for software companies. He is also an avid YouTuber with

more than 10,000 subscribers to his channel. You can find him on LinkedIn.

Sharvani Chandu holds an MS in Computer Vision from CMU and a BTech

in Electronics and Communication Engineering from IIIT Hyderabad.

She has research experience in the areas of computer vision and machine

learning. She currently works for Amazon; she also worked in Bangalore

as a software engineer for a couple of years, focusing on machine learning

and natural language processing. During her undergraduate and graduate

studies, she worked as a research intern, teaching assistant, and research

assistant. She has also published research papers related to her work. She is

enthusiastic about working in the areas of mathematics, computer vision,

and programming. You can find her on LinkedIn.

xi

About the Technical Reviewer

Lentin Joseph is an author, roboticist, and

robotics entrepreneur from India. He runs

a robotics software company called Qbotics

Labs in Kochi/Kerala. He has 10 years of

experience in the robotics domain primarily

in Robot Operating System (ROS), OpenCV,

and PCL. He has authored eight books on ROS,

including Learning Robotics Using Python,

first and second editions, Mastering ROS for

Robotics Programming, first and second editions; ROS Robotics Projects,

first and second editions; and Robot Operating System for Absolute

Beginners. He pursued his Masters in Robotics and Automation from India

and has worked at the Robotics Institute, CMU, USA. He is also a TEDx

speaker.

xiii

Acknowledgments

We want to express our gratitude to the technical reviewer and long-time

acquaintance, Lentin Joseph, for helping us make this book better. We

would also like to express our gratitude to the team from Apress. Aditee

Mirashi helped us coordinate the entire book process and Shrikant

Vishwakarma guided us through the editorial process. We are thankful to

Celestin Suresh for giving us the opportunity to write this book.

xv

Introduction

During my days studying as an undergraduate student, I used MATLAB for

demonstrations in the areas of image and signal processing. MATLAB is

indeed a good tool and a very convenient programming interface for people

who want to focus on subject matters like image and signal processing

because it provides excellent support in these areas for demonstrations.

However, MATLAB is a paid and non-open source product.

GNU Octave is an open source alternative to MATLAB. It has a very

high degree of compatibility with MATLAB in terms of programming.

One of the most desired features of GNU Octave is that it can be used with

Jupyter Notebook. This makes it easier for everyone to write interactive

scripts and share them.

The GNU Octave project has an online repository called the

Octaveforge that hosts many useful libraries for tasks in the areas of signal

and image processing. You can create publication-quality visualizations

for scientific datasets using GNU Octave.

We wrote this book in such a way that novices and beginners will find it

easy to learn the important concepts. The step-by-step approach gradually

increases in rigor and difficulty of concepts and demonstrations. People

working in the areas of data science, signal and image processing, and

scientific domains will find this book extremely useful to get introduced to

GNU Octave and Jupyter Notebook.

While this book has been written for novices and beginners, it

is recommended that you have had some exposure to computer

programming and mathematics since a lot of the concepts in this book are

related to mathematics.

We hope that this book serves you, the reader, well and that you will

enjoy this book as much as we enjoyed writing it.

1© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_1

CHAPTER 1

Introduction to GNU
Octave
We hope you have gone through the table of contents and the preface. If

not, we highly recommend you do so. This is the very first chapter of this

book and we welcome you to the exciting journey of learning GNU Octave.

In this chapter, you will learn the details of GNU Octave such as

its history, applications, limitations, and a comparison with other

contemporary and similar tools. This chapter is mostly dedicated to

general information about GNU Octave and its installation on various

popular OS platforms such as Windows, Ubuntu, and Raspberry Pi

Raspbian. You will not be writing any programs or learning about the

functionality of GNU Octave here. The following is the list of topics you will

learn about in this chapter:

• The GNU Octave Project

• Applications

• Limitations

• The community

• Comparison with other tools

• Installation of GNU Octave on various platforms

• Working with GNU Octave in different modes

https://doi.org/10.1007/978-1-4842-6086-9_1#DOI

2

 The GNU Octave Project
GNU Octave is a high-level programming language. It is used for numerical

and scientific computing. It is part of the GNU Project so it is free and

open-source. In fact, anyone with the necessary skill set and will to so can

contribute to its development. The homepage of GNU Octave is located

at www.gnu.org/software/octave. It is basically a mathematics-oriented

programming language with convenient and easy-to-learn visualization

tools for scientific researchers.

The Octave interpreter is written in the C++ programming language.

Octave is an interpreted programming language because it uses the Octave

interpreter to run the Octave scripting language statements and scripts.

Octave has a lot of dynamically loadable modules. Octave uses OpenGL or

gnuplot for plotting. Octave has both a GUI (graphical user interface) and a

CLI (command line interface). If any of you have experience with working

with an OS shell interpreter or the Python programming language, consider

Octave as almost the same as working with shell or Python programming.

 History of the GNU Octave Project
The GNU Octave Project started in 1988 as a companion for a textbook

that was under development for chemical engineering undergraduate

students. This was done after the faculty members observed that chemical

engineering students were spending a lot of time debugging FORTRAN

issues, which was used for their programming exercises. Full-time

development began in 1992. Gradually it became a part of the GNU

Project. The following is a timeline that shows the major milestones in the

development of GNU Octave:

• 1988: Conception of idea

• 1992: Beginning of full-time development

• 1994: Version 1.x.x

Chapter 1 IntroduCtIon to Gnu oCtave

http://www.gnu.org/software/octave

3

• 1996: Version 2.0.x and Windows port

• 2007: Version 4.0

• 2015: Version 4.0.0 with stable GUI

• 2019: Octave 5.1.0

 Applications of Octave
Octave is used to solve different scientific and numerical computational

problems. It can be used for linear programming and optimization. Octave

is also deployed on many supercomputers because it supports parallel

programming. You can find GNU Octave deployed at supercomputers in

the Ohio Supercomputer Center (www.osc.edu/resources/available_

software/software_list/octave), the Oak Ridge National Laboratory

(www.olcf.ornl.gov/software_package/octave), the and University of

Minnesota (www.msi.umn.edu/sw/octave). In the research community,

Octave is actively used for data analytics, image processing, computer

vision, economic research, data mining, statistical analysis, machine

learning, signal processing, and many more scientific applications. You

will learn how to demonstrate programs pertaining to a lot of the above-

mentioned scientific computing areas with GNU Octave.

 Limitations and Drawbacks of Octave
The Octave programming language was primarily developed to perform

numerical and scientific computations. It is not supposed to be used as

a general purpose programming language like C and C++. Also, it is our

opinion that you should always choose a programming language suitable

for your own programming or computational needs. If you are looking to

do some system-level programming, then C and assembly languages are

your friend. However, if you are a subject matter expert (for example, a

Chapter 1 IntroduCtIon to Gnu oCtave

http://www.osc.edu/resources/available_software/software_list/octave
http://www.osc.edu/resources/available_software/software_list/octave
http://www.olcf.ornl.gov/software_package/octave
http://www.msi.umn.edu/sw/octave

4

chemical engineer or a signal processing professional) who cannot spare

enough time to learn the intricacies of a programming language like C,

then you should use GNU Octave or the Python programming language

because you can quickly write code snippets to prototype your ideas.

We mentioned that GNU Octave is an interpreted programming

language. This means that it first converts the code or statements into a

machine-readable code format before the computer executes them. The

main drawback is that the program executes slowly compared to programs

written in compiled languages such as C or Fortran. And it is certainly

slower than assembly. The main advantage of this approach is that the

statements are easy to write and change, and the programmer does not

have to compile the code before executing it. It gives a very high degree

of control to the programmers. This is why Octave is not the first choice

when it comes to system programming or fast or parallel programs on a

supercomputer. The C programming language is more suitable for such

applications. However, as you will experience later in the book, Octave lets

you solve very advanced and computationally demanding problems with

only a few instructions or commands and with satisfactory speed.

 Comparison of Octave with Alternatives
Octave is a part of GNU, thus it is a free and open-source package and

programming environment for numerical and scientific computations.

Many times it is promoted as a free alternative for MATLAB. MATLAB is

a short form of Matrix Laboratory. It is also a programming environment

and language for numerical and scientific computing. MATLAB is

developed and maintained by Mathworks. It is a proprietary and

commercial software. Octave tries to maintain a very high degree of syntax

compatibility with MATLAB. Many of the programs we will demonstrate

can be directly run as they are with MATLAB. Keep in mind that this

applies to many, but not all, of the programs.

Chapter 1 IntroduCtIon to Gnu oCtave

5

The other free alternatives of MATLAB are Scilab and FreeMat.

The Scilab project does not attempt much to maintain syntax-level

compatibility with MATLAB and Octave. The FreeMat project has not been

updated since 2013.

 The Online Octave Community
You can find all of the information and downloadable setup files for Octave

at the project website at www.octave.org. Here you’ll find the official

manual, a Wiki page with tricks and tips (https://wiki.octave.org/

GNU_Octave_Wiki), latest news, a more detailed history, and other relevant

information. You can also get involved in the development; visit www.

gnu.org/software/octave/get-involved.html for more information.

StackOverflow is a good source of information and help. You can find

questions related to Octave at https://stackoverflow.com/questions/

tagged/octave.

There many additional packages that do not come preinstalled with

the standard Octave distribution. Many of them can be downloaded

from Octave Forge at https://octave.sourceforge.io. Octave Forge

is a community project for collaborative development of GNU Octave

extensions, called Octave packages. Here you can find specially designed

packages for scientific and numerical applications such as image

processing, signal processing, economics, information theory, analytical

mathematics, and so on.

 Installing GNU Octave
In this section, you will learn how to install GNU Octave on multiple

platforms such as Windows, Ubuntu, and Raspberry Pi. All of the code

examples and interactive sessions we demonstrate in this book have been

tested on these platforms by the authors. So, let’s begin.

Chapter 1 IntroduCtIon to Gnu oCtave

http://www.octave.org
https://wiki.octave.org/GNU_Octave_Wiki
https://wiki.octave.org/GNU_Octave_Wiki
http://www.gnu.org/software/octave/get-involved.html
http://www.gnu.org/software/octave/get-involved.html
https://stackoverflow.com/questions/tagged/octave
https://stackoverflow.com/questions/tagged/octave
https://octave.sourceforge.io

6

 Installing on Windows
You can install GNU Octave on Windows by downloading and executing

the installable file from the Octave download page at www.gnu.org/

software/octave/download.html. This page has options for 32-bit and

64-bit computers. There is an option for linear algebra for large data but

you will not need it for this book. So, choose the .exe file for installing to

32-bit or 64-bit Windows computers. Other formats, 7z and .zip, are also

available. But you should go for the .exe file. Download the file and execute

it to install GNU Octave. Once the setup has completed successfully,

add the directory location of the Octave executable to the Windows PATH

variable. In my case, it is C:\Octave\Octave-5.2.0\mingw64\bin. It could

be different for you based on the GNU Octave version and your computer

architecture (32-bit or 64-bit).

Once you are done installing it, you need to install Python 3 because

you will need the pip3 utility of Python 3 to install Jupyter Notebook

and Octave Kernel for it. Also, in the end, you will learn how to connect

Python 3 with GNU. You will use the Python 3 interpreter at that time.

Visit the Python 3 download page located at www.python.org/downloads/

and download the setup file of Python 3 for your computer, as shown in

Figure 1-1.

Chapter 1 IntroduCtIon to Gnu oCtave

http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
https://www.python.org/downloads/

7

Run the setup file to install Python 3. During installation, check the

checkbox related to adding Python 3 to the PATH variable, as shown in

Figure 1-2.

Figure 1-1. Python project homepage

Figure 1-2. Python Installation Wizard

Chapter 1 IntroduCtIon to Gnu oCtave

8

Also, choose the Customize installation option. This will show you

more options, as shown in Figure 1-3.

Check all the boxes and click the Next button to continue the setup.

Complete the setup. Once done, run the following command at the

Windows command prompt cmd:

python -V

It will return the version of Python 3 as follows:

Python 3.8.1

You can also check the version of pip3 as follows:

pip3 -V

Figure 1-3. Python installation options

Chapter 1 IntroduCtIon to Gnu oCtave

9

pip stands for Pip installs Python or Pip installs Packages. Its

name is a recursive acronym. It is a package manager for the Python

programming language. You can install the other needed components

for our demonstrations with pip. To install Jupyter, run the following

command at the command prompt:

pip3 install jupyter

Jupyter is an interactive environment for various programming

language. You will see the details of Jupyter at the end of this chapter.

To install the Octave Kernel for Jupyter, run the following command:

pip3 install octave_kernel

The Octave Kernel for Jupyter allows us to run the Octave programs

in a Jupyter notebook. As mentioned, you will see how to work with GNU

Octave and Jupyter in the end of this chapter.

 Installation on Ubuntu Linux
Ubuntu Linux is a distribution based on Debian Linux. Both are popular

Linux distributions. Python 3 and pip3 come preinstalled in Ubuntu so

you do not have to install them separately. First, update the package list for

upgrades by running the following command in the terminal program:

sudo apt-get update

Then install GNU Octave with the following command:

sudo apt install octave -y

Then using pip3, install Jupyter and the Octave Kernel as follows:

pip3 install jupyter

pip3 install octave_kernel

Run the above commands and complete the setup.

Chapter 1 IntroduCtIon to Gnu oCtave

10

 Installation on Raspberry Pi with Raspbian OS
Raspberry Pi is a popular single board computer. If a desktop computer

or a laptop is out of your budget, you can opt for a Raspberry Pi. The

recommended operating system for Raspberry Pi is Raspbian OS, which is

a Debian derivative for the ARM processor architecture that Raspberry Pi

boards use. The setup of Raspberry Pi is outside of the scope of this book,

but you can find detailed instructions at www.raspberrypi.org. Once you

get your Raspberry Pi ready, you can run the following commands on the

lxterminal, which is the terminal emulator for Raspbian OS, so to install

Octave, Jupyter Notebook, and Jupyter Kernel, type these commands:

sudo apt-get update

sudo apt-get install octave -y

sudo pip3 uninstall ipykernel

sudo pip3 install ipykernel==4.8.0

sudo pip3 install jupyter

sudo pip3 install prompt-toolkit==2.0.5

sudo pip3 install octave_kernel

Running the above commands in sequence will install all of the required

packages for this demonstration on the Raspbian OS of Raspberry Pi.

 Exploring GNU Octave
Let’s start exploring various aspects of GNU Octave. We will start with GUI.

 Octave GUI
When you install Octave on Windows, you also get a shortcut to the Octave

GUI on your desktop. There is another way to launch it. You can search for

it in the search box of Windows by typing Octave. Two options will appear:

Chapter 1 IntroduCtIon to Gnu oCtave

http://www.raspberrypi.org

11

Octave GUI and Octave CLI. Choose the GUI option. On Ubuntu, you can

launch it by searching for it in the search box and clicking the Octave icon

displayed in the search output, as shown in Figure 1-4.

Figure 1-4. GNU Octave on Ubuntu

In the Raspberry Pi Raspbian OS menu (the raspberry fruit icon

located at the top left corner on the Raspbian OS desktop), you can find it

under Education, as shown in Figure 1-5.

Chapter 1 IntroduCtIon to Gnu oCtave

12

When you launch GNU Octave the very first time on the Raspberry Pi

with Raspbian OS, it shows the welcome message window, as shown in

Figure 1-6.

Figure 1-5. GNU Octave on Raspbian

Chapter 1 IntroduCtIon to Gnu oCtave

13

Figure 1-6. GNU Octave welcome screen

Chapter 1 IntroduCtIon to Gnu oCtave

14

Click the Next button and you will see the window shown in Figure 1-7.

It is recommended to check the checkbox (to receive latest news and

information about the Octave community). Click the Next button and

you’ll see the window shown in Figure 1-8.

Figure 1-7. Community news

Chapter 1 IntroduCtIon to Gnu oCtave

15

Click the Finish button and the Octave GUI will be launched.

The GUI Window looks the same on all platforms. Figure 1-9 shows the

Octave GUI window running on a Windows computer.

Figure 1-8. Help information

Chapter 1 IntroduCtIon to Gnu oCtave

16

Let’s look at the details of the components in this window one by

one. In Figure 1-9, you can clearly see that the GUI is divided into three

vertical sections. The middle section is the Octave interpreter prompt.

You can interact with it like the command prompt of an OS. It runs the

Octave statements, which you will see soon. The vertical section on the

right is the variable editor. The vertical section on the left is divided into

three sub-sections: a file browser, a workspace, and a command history

window. You can rearrange these spaces anytime you want by dragging

and dropping them within the GUI window.

The top offers a menubar with the usual file operations and

their shortcuts. And if you pay close attention, in the bottom of the

window, you’ll see three tabs that read Command Window, Editor,

and Documentation. The command window is the interactive mode

command prompt that you can see in the screenshot. The Editor tab opens

a code editor window, and Documentation will bring up an index of the

browsable documentation. You will explore all of these things one by one.

Figure 1-9. GNU Octave GUI on Windows

Chapter 1 IntroduCtIon to Gnu oCtave

17

But first, let’s get started with the customary Hello World! program. Go

to the interactive window and type in printf("Hello, World!\n"); and

then press Enter. It prints the string enclosed in the double quotes in the

interactive window, as shown in Figure 1-10.

Figure 1-10. The command window of the GNU Octave GUI

You can even create a single-line program of this code and save it.

Go to the editor by choosing the Editor tab at the bottom. Type the same

line as above in the editor and save it. Octave automatically assigns the

.m extension to the file. MATLAB uses the same extension. The simple

program is shown in Figure 1-11.

Figure 1-11. A simple program

Chapter 1 IntroduCtIon to Gnu oCtave

18

Here, we saved the program on the disk in the computer. Under

the Editor section, you can see all the options any IDE (integrated

development environment) has. You can change the font in the editor by

pressing the Ctrl key on the keyboard and moving the scroll wheel of the

mouse at the same time. After saving, click the Run symbol (the gear and

yellow triangle; in Linux, it is a paper plane). After that, it shows the dialog

box, as shown in Figure 1-12.

Figure 1-13. Output of the simple program

Figure 1-12. Dialog box to load path

Click the Add Directory to the Load Path button. The program is

executed by the Octave interpreter and you can see the output in the

interactive tab, as shown in Figure 1-13.

Chapter 1 IntroduCtIon to Gnu oCtave

19

As you can see, it prints the program name without the extension and

then shows the output.

Congratulations! You have just run your first GNU Octave program.

 Octave CLI
You can also launch the command line independently. In Windows, you

can either search for Octave and choose Octave CLI from the results or you

can run the command octave in the command prompt to launch the CLI.

In the Linux flavors like Ubuntu and Raspbian OS, you can run the same

command, octave, in the command prompt to launch the Octave CLI. In

order to exit the CLI, you must run the exit command. You can also run

the .m octave files from the command prompt using the Octave interpreter.

Suppose, on Windows, that the absolute path of your Octave program file

is C:\Book\Chapter01\programs\prog00.m. You can execute the program

using the Octave interpreter by running the following command at the

command prompt:

octave "C:\Book\Chapter01\programs\prog00.m"

Similarly, on Raspberry Pi, suppose the absolute path of the Octave

program file is /home/pi/prog00.m. You can run it from the command

prompt with the following command:

octave "/home/pi/prog00.m"

 Octave Programming with Jupyter
Notebook
Jupyter Notebook is web-based notebook that is used for interactive

programming of various programming languages like Python, Octave,

Julia, and R. It is very popular with people who work in research domains.

A Jupyter notebook can have code, visualizations, output, and rich text.

Chapter 1 IntroduCtIon to Gnu oCtave

20

The advantage of a Jupyter notebook over Octave’s own interactive prompt

is that you can edit the code and see the new output instantly, which is not

possible in the Octave command prompt. Another advantage is that you

have the code and output in the same document. You can even share it on

the cloud. There are many services online that help you store and execute

your Jupyter notebook scripts on cloud servers.

Let’s see how to use Jupyter Notebook for writing and executing Octave

code. Open the command prompt of your OS (cmd in Windows, terminal

in Ubuntu, and lxterminal in Raspbian OS). Run the following command

there:

jupyter notebook

The Jupyter Notebook server process will be launched and the

command prompt window will show a server log, as shown in Figure 1-14.

Figure 1-14. Launching a new Jupyter Notebook process

Chapter 1 IntroduCtIon to Gnu oCtave

21

Also, it launches a webpage in the default browser in the OS. If

the browser window is already open, it launches the page in a new

tab of the same browser window. Another way to open the page (in

case you accidentally close this browser window) is to visit http://

localhost:8888/ in your browser. Figure 1-15 shows the page you’ll see.

Figure 1-15. Logging in with a token

The token can be found in the server logs. The following is a sample

server log with tokens. To access the notebook, open this file in a browser:

 file:///C:/Users/Ashwin/AppData/Roaming/jupyter/

runtime/nbserver-8420-open.html

 Alternatively, you can copy and paste one of these URLs:

 http://localhost:8888/?token=e4a4fab0d8c22cd01b6530d5da

ced19d32d7e0c3a56f925c

 or http://127.0.0.1:8888/?token=e4a4fab0d8c22cd01b6530d5da

ced19d32d7e0c3a56f925c

Chapter 1 IntroduCtIon to Gnu oCtave

22

In the log above, you can see a couple of URLs. They refer to the same

page (localhost and 127.0.0.1 are the same hosts). You can either directly

copy and paste any of these URLs into the address bar of the browser

tab and open the Jupyter Notebook homepage or you can visit http://

localhost:8888/ as discussed and then paste the token in the server log

(in this case, it is e4a4fab0d8c22cd01b6530d5daced19d32d7e0c3a56f925c)

and log in. It will take you to the same homepage.

Note that every instance of the Jupyter Notebook server will have its

own token, and the token here will not work with your Jupyter Notebook.

The token is only valid for that server process.

So, if you follow any one of the routes explained above, you will see a

homepage tab in the browser window, as shown in Figure 1-16.

Figure 1-16. A new homepage tab of Jupyter Notebook

As you can see, there are three tabs in the webpage itself: Files,

Running, and Clusters. The Files tab shows the directories and files in

the directory from where you launched the notebook server from the

command prompt. In the above example, we executed the command

jupyter notebook from lxterminal of our Raspberry Pi. And the present

Chapter 1 IntroduCtIon to Gnu oCtave

23

working directory is the home directory of the pi user /home/pi. This is

why we can see all the files and directories in the home directory of our RPi

computer in Figure 1-16.

In the top right corner are the Quit and Logout buttons. If you click the

Logout button, it logs out from the current session; in order to log in, you

need the token or URL with the embedded token from the notebook server

log, as discussed. If you click the Quit button, it stops the notebook server

process running in the command prompt and shows the modal message

box, as shown in Figure 1-17.

Figure 1-17. The message shown after clicking the Quit button

In order to work with it again, you need to execute the command

jupyter notebook again in the command prompt.

On the top right side, just below the Quit and Logout buttons is a

small button with the refresh symbol. It is the refresh button. It refreshes

the homepage. You can also see the New button. Once clicked, it shows a

dropdown menu, as shown in Figure 1-18.

Chapter 1 IntroduCtIon to Gnu oCtave

24

As you can see, the dropdown is divided into two sections: Notebook

and Other. You can create Octave and Python 3 notebooks. If your

computer has other languages installed that are supported by Jupyter

notebook, those languages will show up here. You can also create text files

and folders. You can open the command prompt in the web browser by

clicking Terminal. The output of lxterminal running in a separate web

browser tab is shown in Figure 1-19.

Figure 1-18. Options for a new notebook

Chapter 1 IntroduCtIon to Gnu oCtave

25

Clicking Octave in the dropdown creates a new Octave notebook, as

shown in Figure 1-20.

Figure 1-19. A new lxterminal window within the browser

Figure 1-20. A new GNU Octave notebook

Chapter 1 IntroduCtIon to Gnu oCtave

26

If you go to the homepage again by clicking the homepage tab in the

browser and then opening the Running tab in the homepage, you can see

the entries corresponding to the terminal and the Octave notebook, as

shown in Figure 1-21.

Figure 1-21. Summary of current Jupyter Notebook subprocesses

 Octave Code and Richtext in Notebook
Go to the Octave Untitled1 tab again and type in the following statement

in the text area (also known as a cell):

printf("Hello, World!\n");

Click the Execute button. Jupyter will execute the code as an Octave

statement and show the result immediately below the cell, as shown in

Figure 1-22.

Chapter 1 IntroduCtIon to Gnu oCtave

27

As you can see, after execution, it automatically creates a new cell

below the result and sets the cursor there. Let’s discuss the menu bar and

the icons above the programming cells. You can save the file by clicking

the floppy disc icon. You can add a new empty cell after the current cell

by clicking the + icon. The next three icons are for cutting, copying, and

pasting. The up and down arrows can shift the position of the current cell

up and down, respectively. The next option is to run the cell, which you

already saw in action. The next three icons are to interrupt the kernel,

restart the kernel, and restart the kernel and rerun all the cells in the

notebook. Next is a dropdown menu that tells you what type of cell it

should be. Figure 1-23 shows the options when the dropdown menu is

clicked.

Figure 1-22. Code output in Jupyter Notebook

Chapter 1 IntroduCtIon to Gnu oCtave

28

The cell is treated as an Octave code cell when you choose the Code

option. It is treated as a Markdown cell when you choose the Markdown

option. Markdown is a markup language that can create rich text output.

For example, anything followed by # creates a heading, anything followed

by ## creates a sub-heading, and so on. Just type the following lines in a

markdown cell and execute them:

Heading 1

Heading 2

During our Octave demonstrations, we will mostly use markdown

for headings. However, you can further explore markdown on your own.

You can find more information about it at https://jupyter-notebook.

readthedocs.io/en/stable/examples/Notebook/Working%20With%20

Markdown%20Cells.html. The output of the demonstration above is shown

in Figure 1-24.

Figure 1-23. Types of cells in a Jupyter notebook

Chapter 1 IntroduCtIon to Gnu oCtave

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working With Markdown Cells.html
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working With Markdown Cells.html
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working With Markdown Cells.html

29

You can even change the name of the notebook file by clicking its name

in the top part of the notebook. You’ll see a modal box for renaming it, as

shown in Figure 1-25.

Figure 1-24. Headings in Markdown mode

Chapter 1 IntroduCtIon to Gnu oCtave

30

Rename it if you wish to do so. If you browse the location on disc from

where you launched the Jupyter notebook from the command prompt, you

will find the file with an .ipynb extension. It stands for IPython Notebook.

In the same way, you can use the Jupyter notebook for doing

interactive programming with the other programming languages that

support Jupyter. You will mostly use this notebook format to store your

code snippets for interactive sessions. This is because everything is saved

in a single file, which can be shared easily, as discussed. You will also see

how to add code to .m files and execute it to see the visual output as you

proceed further in this book.

You can clear the output of a cell or the entire notebook. In the menu

bar, click the Cell menu. In the dropdown, Current Outputs and All
Output have a Clear option, which clears the output of the cells. The

options are shown in Figure 1-26.

Figure 1-25. Renaming a notebook in Jupyter

Chapter 1 IntroduCtIon to Gnu oCtave

31

Figure 1-26. Clearing output in Jupyter

 Summary
In this chapter, you got started with Octave installation on various

platforms. You then explored how to run a simple statement in various

ways. You also studied Jupyter Notebook and its use in scientific and

numerical programming with Octave. This chapter was a bit light on the

programming part. However, from the next chapter onwards, you will dive

deeper into programming with GNU Octave.

Chapter 1 IntroduCtIon to Gnu oCtave

33© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_2

CHAPTER 2

Getting Started
with GNU Octave
and Jupyter
In Chapter 1, you learned in detail how to get your Windows computer,

Linux, and Raspberry Pi ready for working with GNU Octave and

Jupyter Notebook. You also learned how to get started with GNU Octave

programming and Jupyter Notebook. In this chapter, you will delve deeper

into GNU Octave programming and you will mostly use Jupyter Notebook

for programming demonstrations in interactive mode. The following is the

list of topics you will learn and demonstrate in this chapter:

• Simple mathematical operations

• Built-in mathematical constants

• Getting help

• Variables in GNU Octave

• Global variables

• Conventions for naming variables

• Clearing the command prompt

https://doi.org/10.1007/978-1-4842-6086-9_2#DOI

34

 Simple Mathematical Operations
Let’s get started with some simple concepts. In this section, you will learn

how to perform simple mathematical operations on numerical operands. It is

recommended to create a new notebook for every chapter and save all of the

notebooks in the same directory on your computer. So create a new notebook

and create a markup cell with a heading that says Simple Mathematical
Operations. Then run the following statement in the next cell:

2 + 5

It will execute and show the following output:

ans = 7

Similarly, run the following statements and see the output:

2 – 5

5 / 2

2 / 5

5 % 2

5 * 2

2 ^ 5

After executing the statements above, you’ll get the output shown in

Figure 2-1.

Chapter 2 GettinG Started with GnU OCtave and JUpyter

35

When various operators are used in a single expression, the operator

precedence is similar to the behavior you find in mathematics or other

programming languages. In mathematics, it is commonly referred to as

BODMAS or PEDMAS, which is shown in Table 2-1.

Figure 2-1. Screenshot of the simple mathematical operations in
action

Chapter 2 GettinG Started with GnU OCtave and JUpyter

36

In Octave, the operator preference is parentheses over other operators,

and division and multiplication over addition and subtraction. When

operators with equal precedence occur, the operator precedence goes

from left to right.

For example, the answer to the expression

10 * 5 - (5 + 2)^2 + 10 / 5

10 * 5 – 7^2 + 10 / 5

expression inside the parentheses is computed

10 * 5 - 49 + 10 / 5

exponents are computed

50 – 49 + 2

division and multiplication (operators of equal precedence) are

computed

3

addition and subtraction (operators of equal precedence) are

computed

You can run this complex expression in a new cell. It will execute the

following output:

ans = 3

Table 2-1. BODMAS/PEDMAS

Operation Notation Operation

Brackets {[()]} Parentheses

Orders ^, ** Exponents

Division / Division

Multiplication * Multiplication

Addition + Addition

Subtraction - Subtraction

Chapter 2 GettinG Started with GnU OCtave and JUpyter

37

It is advisable to use parentheses when writing complex expressions

because they overrule any operator, make your code readable, and you can

avoid mistakes that are easy to overlook.

 Built-in Mathematical Constants
There are many built-in mathematical constants in GNU Octave. In a new

cell, create a markdown cell with a heading that says Built-in Mathematical
Constants. You can retrieve them in multiple formats. Run the following code:

e

This returns the value of the constant e that is the base of natural

logarithms:

ans = 2.7183

Run the following code:

e(3)

It returns a 3x3 matrix of es as follows:

ans =

 2.7183 2.7183 2.7183

 2.7183 2.7183 2.7183

 2.7183 2.7183 2.7183

You will learn about matrices in the next chapter. You can even have a

custom sized matrix of es as follows:

e(3, 2)

ans =

 2.7183 2.7183

 2.7183 2.7183

 2.7183 2.7183

Chapter 2 GettinG Started with GnU OCtave and JUpyter

38

You can also create a matrix of more than two dimensions:

e(2, 2, 3)

ans =

ans(:,:,1) =

 2.7183 2.7183

 2.7183 2.7183

ans(:,:,2) =

 2.7183 2.7183

 2.7183 2.7183

ans(:,:,3) =

 2.7183 2.7183

 2.7183 2.7183

You can have these constants in single (32-bit representation) or

double (64-bit representation) precision as follows:

e(3, 2, class="single")

e(3, 2, class="double")

Similarly, there are other constants that can return a single value or

matrices as demonstrated above. Let’s look at each of them one by one.

If you run pi, it returns the value of the constant pi. The constants i, j, I,

and J return the imaginary unit that is -1 . Inf returns infinity and NaN

returns Not a Number. The next three constants are system-dependent

(processor-dependent, to be precise). The first one is eps. It returns the

relative spacing between any two adjacent numbers in the machine's

floating-point system representation. realmax returns the largest floating-

point number, and realmin returns the smallest floating-point number

represented by the system. Check these constants and their respective

matrices yourself, like you did in the demonstration for the constant e.

Chapter 2 GettinG Started with GnU OCtave and JUpyter

39

 Getting Help
You can get help for built-in constants and functions (you will learn

about them later in the book). Suppose you want to get more information

about the built-in constant pi. You can run the following in the command

prompt of the GNU Octave GUI:

help pi

The output is shown in Figure 2-2.

Figure 2-2. The output of the command help

Chapter 2 GettinG Started with GnU OCtave and JUpyter

40

Similarly, you can execute the following command for documentation:

doc pi

It opens the relevant documentation in the documentation tab of the

GNU Octave GUI, as shown in Figure 2-3.

This way, you can find out more information about the built-in

functions and constants offered by GNU Octave.

Figure 2-3. GNU Octave documentation

Chapter 2 GettinG Started with GnU OCtave and JUpyter

41

 Variables in GNU Octave
A variable is an addressable memory (RAM) location where you can store

data temporarily as long as your program (in script mode) or session

(in interactive mode) is running. You can address the variable with a

name. Each variable in the same program or session has a unique name.

Let’s look at how you can create a variable. Type and run the following

statement:

a = 3.14

It will immediately show the value of variable a in the following line. =

assigns the value on the left to the variable on the right (in the above case,

a). You can suppress the display of output by adding ; to the statement as

follows:

a = 3.14;

If you type the variable again in a new cell and execute it, it shows the

value of the variable. You can also assign values to multiple variables as

follows:

a = 1, b = 2, c = 3

a = 1

b = 2

c = 3

As you can see, you use the comma (,) between assign statements

to do this.

We will discuss different types of variables later in this book.

Chapter 2 GettinG Started with GnU OCtave and JUpyter

42

 Global Variables
There is a special way of declaring some variables as global variables: you

use the keyword global before the variable name. The global variables may

only be initialized once. If you run the following two lines one after the other

global a = 1

global a = 2

the variable a still contains a value of 1.

Using global variables has other benefits which will be addressed in

later chapters.

 Conventions for Naming Variables
In order to avoid errors and confusion while programming, you should

adhere to the following conventions when naming variables:

• Names should not start with a number but you can use

numbers in the variable name anywhere after the first

character.

• Variable names are case sensitive.

• Names can include the underscore character.

• Keywords cannot be used as names of variables.

It is a good practice to use meaningful variable names because the

code will be easier to read and debug.

You can retrieve the list of the current keywords in the Octave version

by running the statement iskeyword(). The following is the list of reserved

keywords in the current version of Octave:

Chapter 2 GettinG Started with GnU OCtave and JUpyter

43

ans =

{

 [1,1] = __FILE__

 [2,1] = __LINE__

 [3,1] = break

 [4,1] = case

 [5,1] = catch

 [6,1] = classdef

 [7,1] = continue

 [8,1] = do

 [9,1] = else

 [10,1] = elseif

 [11,1] = end

 [12,1] = end_try_catch

 [13,1] = end_unwind_protect

 [14,1] = endclassdef

 [15,1] = endenumeration

 [16,1] = endevents

 [17,1] = endfor

 [18,1] = endfunction

 [19,1] = endif

 [20,1] = endmethods

 [21,1] = endparfor

 [22,1] = endproperties

 [23,1] = endswitch

 [24,1] = endwhile

 [25,1] = enumeration

 [26,1] = events

 [27,1] = for

 [28,1] = function

 [29,1] = global

 [30,1] = if

 [31,1] = methods

Chapter 2 GettinG Started with GnU OCtave and JUpyter

44

 [32,1] = otherwise

 [33,1] = parfor

 [34,1] = persistent

 [35,1] = properties

 [36,1] = return

 [37,1] = switch

 [38,1] = try

 [39,1] = until

 [40,1] = unwind_protect

 [41,1] = unwind_protect_cleanup

 [42,1] = while

}

The commands who and whos show the list of variables and details,

respectively. Create a few variables in Octave’s interactive prompt in the

GUI and run the command. First, create a few variables as follows:

>> a = 1;

>> b = 2;

>> c = 3;

The output of the who and whos commands and the workspace panel in

the Octave GUI is shown in Figure 2-4.

Figure 2-4. The output of the commands who and whos

Chapter 2 GettinG Started with GnU OCtave and JUpyter

45

Try running the commands who and whos in the Jupyter notebook too.

The output will be the same. Many times, it is recommended to purge

all the unused variables from memory. You are required to manage the

memory manually when you handle large datasets. You can purge all

the variables from memory with the command clear. If you run this

command in the Octave GUI’s command prompt, you can see all of the

variables disappear from the workspace. Use the doc and help commands

to obtain more information about the usage of clear.

 Clearing the Command Prompt
You can clear the command prompt of Octave (running in terminal or

the GUI, both) by running the clc command. You don’t need to use this

command in Jupyter Notebook. We discussed the methods to clear the

output in the cells of Jupyter Notebook in the last chapter.

 Summary
In this chapter, you learned about the basics of GNU Octave programming

and explored the GUI interface in a bit more detail. The concepts you use

in this book will be helpful to you in further chapters.

In the next chapter, you will explore different data types in GNU Octave

in detail. The next chapter will be more coding-extensive than this one.

Chapter 2 GettinG Started with GnU OCtave and JUpyter

47© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_3

CHAPTER 3

Data Types
and Variables in Detail
In Chapter 2, you learned basic concepts like naming conventions

for variables, mathematical operations, getting help, and clearing the

command prompt. You also saw an overview of global variables.

In this chapter, you will explore the concepts of data types and

variables in detail. The following is the list of the topics you will learn and

demonstrate:

 Data Types in GNU Octave
Let’s create a new Jupyter notebook file for GNU Octave. You will save all

the demonstrations for this chapter in this notebook.

Convert the first cell to markdown, as you did in Chapter 2, and type in

and run the following code to create a heading and a sub-heading:

Data Types

Basics

After this, create a simple variable as follows:

x = 10

https://doi.org/10.1007/978-1-4842-6086-9_3#DOI

48

You know that all variables in the current scope can be seen by the

command who and you can learn the details of the variables with the

command whos, as shown in Figure 3-1.

Figure 3-1. Output of the commands who and whos

If you notice in Figure 3-1, all of the variables are matrices by default

and all of the numeric variables are double by default (you’ll look at

doubles a little later in this section). However, the type double requires

a lot of memory. There are four signed integer types of data: int8, int16,

int32, and int64. They require 1, 2, 4, and 8 bytes, respectively. Similarly,

uint8, uint16, uint32, and uint64 are unsigned integer data types and they

also require 1, 2, 4, and 8 bytes, respectively. You can create a variable with

the desired data type as follows:

Create a variable with the desired data type

y = uint8(23)

In this code, the code comment starts with #. Whenever the GNU

Octave interpreter encounters #, it treats it as a code comment and ignores

the text after it on that line. The output after running the code above and

the command whos is shown in Figure 3-2.

Chapter 3 Data types anD Variables in Detail

49

As an exercise, create variables of the other integer data types

discussed above.

Floating numbers are represented by double and single precision

formats. The single precision occupies 4 bytes. Out of these 4 bytes (32

bits), 23 bits are used to store the fraction, 8 bits are used for the exponent,

and 1 bit is used for the sign. The double precision occupies 8 bytes. Out of

these eight bytes (64 bits), 52 bits are used for the fraction, 11 bits are used

for the exponent, and 1 bit is used for the sign. The following is an example

of the same:

Single and double precision floats

a = single(3.14)

b = double(3.14)

Run this code and then the command whos to see the details of the

variables you created.

Figure 3-2. A variable of the type uint8

Chapter 3 Data types anD Variables in Detail

50

In the last chapter, you learned that the letters i, j, I, and J are used to

represent √(-1), which is an imaginary number. Using this number, you

can define complex numbers. Run the following code:

defining and understanding complex numbers

z = 2 + 3I

real(z)

imag(z)

The first line defines a complex number. The next two lines return

the real and the imaginary part of the complex number. By default, the

complex number is a double. You can explicitly define a single or a double

precision complex number as follows:

z1 = single(2 + 3I)

z2 = double(2 + 3I)

Run the command whos after this to see the datatype of these complex

numbers.

You can also create character strings as follows:

s1 = "Hello World!"

These are the basic data types in GNU Octave. In the next section, you

will learn how to work with the multidimensional data structures known as

arrays.

 Arrays, Vectors, and Matrices
Just like in the programming languages C and C++, you can create and

use arrays in GNU Octave. An array is collection of variables of the same

datatype that are stored in continuous memory locations. Arrays can have

one or more dimensions. Multi-dimensional arrays are usually called

Chapter 3 Data types anD Variables in Detail

51

matrices. Let’s see examples of arrays. Convert a cell to markdown and

type the following code to create a heading:

Arrays and Vectors

Then type and execute the following code in two different cells:

a = [1, 2, 3, 4, 5]

size(a)

The output is shown in Figure 3-3. The

ans = 1 5

means that the matrix a has one row and five columns.

Figure 3-3. A simple array

You can also declare the above array as

a = [1 2 3 4 5]

Chapter 3 Data types anD Variables in Detail

52

The above array has only one row. You can similarly create an array

with a single column as follows:

b = [1; 2; 3; 4; 5]

size(b)

The semicolon (;) is the delimiter for rows. The output is shown in

Figure 3-4.

Figure 3-4. A simple array with a single column

In GNU Octave, a vector is a matrix with either one row or one column.

The above are examples of vectors.

You can even create 2D matrices as follows:

a = [1, 2; 3, 4]

size(a)

The output is shown in Figure 3-5.

Chapter 3 Data types anD Variables in Detail

53

In the case of 2D or multi-dimensional matrices, the number of

elements in every row must be equal. Otherwise the GNU Octave

interpreter throws an error as follows:

a = [1, 2; 3, 4, 5]

error: vertical dimensions mismatch (1x2 vs 1x3)

If you run the command whos, you can see that the default datatype of

all the arrays is double. You can create the arrays, vectors, and matrices of

any custom datatype as follows:

a = int16([1, 2, 3])

b = int8([1; 2; 3])

c = int32([1, 2; 3, 4])

Figure 3-5. A 2x2 2D matrix

Chapter 3 Data types anD Variables in Detail

54

 Indexing in Arrays
Let’s use the above examples to understand indexing. Indexing starts from

1 in Octave. In C and C++, it starts from 0. So, if you have a lot of experience

with C and C++ programming, be careful. You can retrieve the first element

in the array a in the following ways:

a(1)

a(1, 1)

The second element can be retrieved in the following ways:

a(2)

a(2, 1)

You can retrieve the elements of a column vector as follows:

b(1)

b(1, 1)

b(2)

b(2, 1)

For the 2D matrix c, you can retrieve the elements as follows:

c(1, 1)

c(1, 2)

c(2, 1)

c(2, 2)

 Operations on Arrays
You can perform mathematical operations on numerical arrays. Let’s see a

few operations. Create two arrays as follows:

a = [0, 1; 2, 3]

b = [4, 5; 6, 7]

Chapter 3 Data types anD Variables in Detail

55

Let’s perform a few operations with an array as one operand and a

numerical constant as the other operand:

a + 5

a – 3

7 – a

a * 2

a ** 2

a ^ 2

a / 2

a % 2

Let’s perform a few operations with arrays as both operands:

a + b

a - b

b - a

a * b

a / b

a % b

 Array Creation Routines
There are many array creation routines in GNU Octave. The function

ones() creates a matrix of ones. The following is an example:

ones (3, 3)

The function zeros() creates a matrix of zeros. The following is an

example:

zeros (3, 3)

Chapter 3 Data types anD Variables in Detail

56

The function eye() creates an identity matrix (a matrix with all of the

diagonal elements as 1s and the rest as 0s). The following is an example:

eye (3, 3)

The function rand() creates a matrix of random numbers. The

following is an example:

rand (5, 5)

Run the above examples and see the output.

Let’s see two more functions and their respective output. The function

linspace(base, limit, n) accepts the lower and upper limits, and

creates an array with n linearly spaced elements. The following is an

example:

linspace(1, 10, 4)

The output is as follows:

ans = 1 4 7 10

The function logspace (base, limit, n) accepts the lower and

upper limits and creates an array with n logarithmically spaced elements.

The following is an example:

logspace(1, 5, 5)

The output is as follows:

ans = 10 100 1000 10000 100000

You can assign them to variables or you can directly display their

values.

As an exercise, try passing different values to these array creation

functions.

Chapter 3 Data types anD Variables in Detail

57

 Matrix Manipulation Function
Let’s see a few matrix manipulation functions. Create a 2D matrix as

follows:

a = [1 2 3; 4 5 6; 7 8 9]

You will use this matrix for the demonstrations of all of the matrix

manipulation functions that we are going to discuss in this section. Using

' after a variable name computes the transpose of the matrix:

a'

The output is as follows:

 1 4 7

 2 5 8

 3 6 9

You can compute the determinant of the matrix with det(a).

You can flip matrices in the various ways with the following functions:

flip(a)

fliplr(a)

flipud(a)

The function fliplr() flips the matrix left to right and the function

flipud() flips up to down. You can convert a matrix into an upper and

lower triangular matrix with the following functions:

triu(a)

tril(a)

Run these function calls and see the output.

Chapter 3 Data types anD Variables in Detail

58

 Summary
In this chapter, you examined the data types in GNU Octave. You studied

and demonstrated arrays and operations on them. You learned about

operations on arrays and matrices. You will use many of these operations

on matrices when working with images. Images are represented as multi-

dimensional arrays or matrices in GNU Octave. You will also use these

concepts when you study data visualization.

In the next chapter, you will explore loops, conditional statements, and

functions in GNU Octave in detail.

Chapter 3 Data types anD Variables in Detail

59© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_4

CHAPTER 4

Loops, Functions,
and Files
In Chapter 3, you learned about arrays, matrices, and vectors in GNU

Octave in detail. You will use these concepts in the remaining chapters to

demonstrate the functionality offered by GNU Octave.

In this chapter, you will learn concepts such as if statements, loops,

functions, and file operations in detail. The following is the list of the topics

you will learn and demonstrate:

• Decision making with if statements

• Loops in GNU Octave

• User-defined functions

• Global variables

• Working with files

 Decision Making with If Statements
If you have worked with any programming language before, you will find

this section and the next couple sections easy to comprehend. However,

we don’t recommend skipping anything because you must familiarize

yourself with the GNU Octave syntax for the decision-making operations.

https://doi.org/10.1007/978-1-4842-6086-9_4#DOI

60

The if statement is the simplest and the most basic decision-making

statement. It has been around since the days of machine-language and

assembly-language programming, way before modern programming

languages like C and BASIC came into existence.

It’s time to learn how to use the if statement for decision making. You

will use a Jupyter notebook for the demonstrations in this chapter.

The following statement creates a variable named as x and assigns the

value 34 to it:

x = 34

Here’s the syntax of the if statement:

if (rem(x, 2) == 0)

 printf("Even Number!\n")

endif

In this statement, you are comparing the remainder of x / 2 with the

number 0. If they are equal, the expression returns true and the lines in

the if – endif block are executed. Otherwise, GNU Octave just skips those

lines. Run this code block and see the output.

Now let’s add the else block. When the condition in the if statement

is not satisfied, GNU Octave runs the else block. The following is an

example:

if (rem(x, 2) == 0)

 printf("Even Number!\n")

else

 printf("Odd Number!\n")

endif

The function rem() in the code snippet above computes the remainder.

Note that the endif statement comes after the else block and not after the

if conditions alone.

Chapter 4 Loops, FunCtions, and FiLes

61

Run this code and see the output. Try assigning different values for x

and run the code to see both code blocks (if and else) in action.

If you want to evaluate multiple conditions, you can use an elseif

clause in the if code block as follows:

x=25

if (rem(x, 2) == 0)

 printf("Divisible by 2!\n")

elseif(rem(x, 3) == 0)

 printf("Divisible by 3!\n")

else

 printf("Not Divisible by 2 or 3!\n")

endif

First, the if statement is checked. If it returns true, then the code

under the if block is executed and the rest is skipped. If the statement in

the if clause returns false, then the statement in the elseif is checked. If it

returns true, then it runs the code block for the elseif and rest of the code

is skipped. If the statement in the elseif returns false, then the code block

in the else clause is executed. Run this code. The output is as follows:

Not Divisible by 2 or 3!

You can have multiple elseif clauses in the decision-making code.

GNU Octave also has a switch statement for this kind of situation, and

you can find out more about it at https://octave.org/doc/v4.2.1/The-

switch- Statement.html.

 Loops in GNU Octave
Let’s see how to create loops in GNU Octave. Before modern programming

languages, loops in assembly and machine languages were written using

GOTO and IF statements. However, modern programming languages like

Chapter 4 Loops, FunCtions, and FiLes

https://octave.org/doc/v4.2.1/The-switch-Statement.html
https://octave.org/doc/v4.2.1/The-switch-Statement.html

62

GNU Octave provide far more sophisticated and cleaner constructs for

loops. Let’s see the many ways of writing loops one by one.

Let’s start with the while loop in Octave. The following is an example

of the while loop:

x = 1;

while x <= 5

 printf("x ^ 2 is %d:\n", x**2)

 x = x + 1;

endwhile

The while statement always checks for the condition mentioned in

it at the beginning of every iteration. If the condition is true, it runs all of

the following statements in order until the statement endwhile, so this

code prints the squares of the integer numbers from 1 to 5 as follows:

x ^ 2 is 1:

x ^ 2 is 4:

x ^ 2 is 9:

x ^ 2 is 16:

x ^ 2 is 25:

You must make sure that the code block in the while block has

statements that will render the condition false at some time if you do not

want the loop to run indefinitely. You can manually terminate the loop

with a break statement. Here is the same code in a slightly different style:

x = 1;

while 1

 printf("x ^ 2 is %d:\n", x**2)

 x = x + 1;

 if x == 6

 break

 endif

endwhile

Chapter 4 Loops, FunCtions, and FiLes

63

We mentioned the number 1 as the condition of the while loop.

It always returns true. So, the while loop runs perpetually unless you

explicitly break in the code block. In the code block, an if condition that

checks equality of x with 6. When it is true, the break statement is executed

and the while loop ends. We programmed it in this way to demonstrate the

functionality of break; it is not usually done this way.

You can write the same program with the do-until construct. The

following is an example:

x = 1;

do

 printf("x ^ 2 is %d:\n", x**2)

 x = x + 1;

until x > 5

In this code, the statements between do and until are executed in

each iteration until the condition in the until statement is false. As soon

as the condition is true, the loop is terminated. This loop also prints the

squares of the integer numbers from 1 to 5. As an exercise, try adding the

break statement in the loop above.

You can also write a for loop for the same output as follows:

for i = 1:5

 printf("i ^ 2 is %d:\n", i**2)

endfor

The statements between for and endfor are executed if the loop counter

denoted by variable i is between 1 to 5. In the beginning of the for loop, i

is set to 1, and in every iteration, it is incremented by 1 automatically until

it is 5 and then the loop is terminated. Run the program and see the output

yourself. The loop by default increments by 1. If you want to increment by

any other value, say 2, you modify the for statement as follows:

for i = 1:2:10

Chapter 4 Loops, FunCtions, and FiLes

64

The i in this case will be 1, 3, 5, 7, 9.

This is wraps up loops in GNU Octave. In the next section, you will see

how to create user-defined functions in detail.

 User-Defined Functions
Functions are nothing but subroutines. If you want to use a piece of code

frequently in your program, you write it as subroutine. GNU Octave offers

many built-in functions and packages to perform operations. You have

seen quite a lot of built-in functions already, such as rem() and printf().

Now you will learn how to write custom functions. This is very handy when

you want to write your own reusable code.

The input to any function is known an argument, and the output of a

function is known as a return value. Here’s an example a simple function

that does not accept any input (arguments) and does not return any

output:

function []= f0 ()

 printf("Test") ;

end

In this code example, the words function and end are keywords.

This function prints the string Test when called. f0() is the name of the

function. You can call it as follows:

f0()

This will run the function and print the string. You can create a

function that returns value(s) too. When the function returns only a single

value, the square brackets around the return value are not needed. The

following is a function that returns the value of the pi with two decimal

precision:

Chapter 4 Loops, FunCtions, and FiLes

65

function y = f1 ()

 y = 3.14;

end

You can call it as follows:

f1()

You can also call it as follows by assigning the returned value to a

variable:

a = f1()

Now, let’s see an example of a function that accepts a couple of

arguments and returns a single value. We added the square brackets

around the return value to demonstrate how it is written this way. As

mentioned, you can write it both ways (with or without square brackets) if

the function returns single value.

function [y] = f2 (a, b)

 y = a + b;

end

The function f2() accepts two arguments and returns the addition of

both. You can call this as follows:

f2(1, 2)

The other way to call this is

m = f2(1, 2)

You can have a function that returns multiple values as follows:

function [y1, y2] = f3 (a, b)

 y1 = a + b;

 y2 = a - b;

end

Chapter 4 Loops, FunCtions, and FiLes

66

You can call this as follows:

[m, n] = f3(2, 4)

Then you can use the values of the variable a and b separately

hereafter.

Another type of function is known as an inline function. An inline

function has the keyword inline. The interpreter replaces the function call

with the function code directly in an inline function. Here’s an example of

an inline function:

f0 = inline ("sqrt(x^2+y^2)") ;

You can call this function as follows:

f0(4, 3)

Inline functions are good for relatively simple functions that will

not be used often in the program and that can be written in a single-line

expression. Inline functions can only have one expression and can only

return a single variable. The returned variable can be a multidimensional

matrix.

Note inline functions cannot access variables (including global
variables) in the current session at any time.

 Global Variables
Now that you have learned about functions, you can revisit the global

variables from Chapter 2 to better understand their behavior.

A global variable may be accessed inside a function without passing

it as a parameter. Passing a global variable to a function will make a local

copy of the variable and not modify the global value.

Chapter 4 Loops, FunCtions, and FiLes

67

global x = 0

function f(x)

 x = 1;

end

Notice that when you call

f(x)

it is

x = 1

But, when you print the value of x,

x

x = 0

As explained above, the local copy of the variable x is modified in the

function f(x) but the global value remains the same.

 Working with Files
Let’s see how to work with files. You can read the data from files on the disk

and store the data in files. Before you start with file-related programming

demonstrations, you will learn how to run a few OS commands with a

Jupyter notebook for Octave. You can even run Linux commands on the

Jupyter notebook for Octave or the Octave Interactive console. This is

because the GNU Octave interpreter can also interpret Linux commands.

Let’s see a few examples. You can see the present working directory with

the following command:

pwd

Chapter 4 Loops, FunCtions, and FiLes

68

The output is as follows:

ans = C:\Users\Ashwin\OneDrive\GNU Octave Book\First_Drafts\

Chapter04\programs

You can see the list of files in the current directory as follows:

dir

The output is as follows:

. .ipynb_checkpoints test.xlsx

.. Chapter04.ipynb

The files or folders that start with a . are hidden and not usually visible

in the file explorer.

You can even use the Linux command ls to get the detailed output as

follows:

Volume in drive C has no label.

Volume Serial Number is 9C4B-9156

Directory of C:\Users\Ashwin\OneDrive\GNU Octave Book\First_

Drafts\Chapter04\programs

[.] [.ipynb_checkpoints]

[..] Chapter04.ipynb

 1 File(s) 6,570 bytes

 3 Dir(s) 120,328,843,264 bytes free

Let’s see a few file operations. First, create a matrix of size 5x5 as

follows:

mat01 = rand (5, 5);

You can save this to a file as follows:

save file1.mat mat01

Chapter 4 Loops, FunCtions, and FiLes

69

This command creates a file named file1.mat and saves it to that file.

The .mat file extension is short for matrix, a data container format that is

compatible with MATLAB and Octave. mat01 has values as follows:

 0.81598396769278381 0.92855422110525021 0.75365606653988848

0.50191794722525962 0.49488955306890497

 0.13756053717337141 0.91373377756306917 0.21944809091873169

0.86626249762210572 0.49854345466053068

 0.48677848511935479 0.90558318580210329 0.73794364985973382

0.37583995095818151 0.39386225963682803

 0.21045562411897317 0.32938941997464716 0.64352812535181725

0.69685526187959523 0.15707829430546633

 0.49126417869029831 0.21355975998368698 0.20118076472616681

0.047443232382045439 0.31718894583130069

Note that you are assigning random values to the matrix while creating

it, so the contents of this file will be different for you. You can load this file

as follows:

load file1.mat

This will load the data from the file in the variable name mentioned in

the file. Since you have saved a matrix with mat01 as the variable name, you

can see the same variable name after loading. You can use this statement

to load and use the data in a different notebook and program too. This is

one of the best ways to save your working data like matrices, arrays, and

vectors. Also, you can write custom programming APIs in other high-level

languages to work with this data because it is formatted data.

You can store the values of the multiple variables to a file as follows:

m1 = rand(2, 2); m2 = rand(3, 3); m3 = rand(4, 4);

save ("file2.mat" , "m1", "m2", "m3")

Note that this is the plaintext format and you can assign any extension

of your choice to these files.

Chapter 4 Loops, FunCtions, and FiLes

70

You can load the variables into memory with the usual command:

load file2.mat

You will be able to access variables m1, m2, and m3 after this command.

They will have the values stored in the file for the respective variables. You

can save an array into a file in binary format with the following command:

save -binary binfile.bin m1

The contents of the file are binary, so opening this file in a text editor

will show you incomprehensible ASCII characters. The best way to use it is

to load it into memory as follows:

load binfile.bin

You can even save the data into a CSV (comma-separated value) file

format. This format is a universal file format for saving tabular data. Here’s

how to save it in a CSV file:

a = [0 1 2; 3 4 5; 6 7 8]

csvwrite('test.csv', a)

This will create a CSV file and save the array there. The following are

the contents of the file on the disc:

0,1,2

3,4,5

6,7,8

You can load it into a variable with the following statement:

a1 = csvread('test.csv')

You can even read a CSV file hosted online into a matrix with the

following command:

a = urlread('http://samplecsvs.s3.amazonaws.com/

Sacramentorealestatetransactions.csv')

Chapter 4 Loops, FunCtions, and FiLes

71

If you wish to store this online file in a local file on the disc, it can be

done with the following command:

urlwrite('http://samplecsvs.s3.amazonaws.com/

Sacramentorealestatetransactions.csv', 'local_copy.csv')

You can also load and save Excel files (.xlsx). For this to work, you

need to download the io package from https://octave.sourceforge.io/

packages.php.

Before you proceed, make sure you have the paths set correctly. In

Windows, add the following two paths to your Path variable:

Path_to_Octave_Installation\usr\bin

Path_to_Octave_Installation\mingw64\bin

In Ubuntu, in the terminal before launching the Jupyter notebook, run

the following command:

sudo apt-get install liboctave-dev

Now, you must install and load the io package via the following

commands:

pkg install io.tar.gz

Ignore any warnings after this step.

pkg load io

Continuing with a similar example as when you experimented with

CSV files, type the following commands to see for yourself how working

with Excel works in Octave:

a = [0 1 2; 3 4 5; 6 7 8]

xlswrite('test.xlsx', a)

Chapter 4 Loops, FunCtions, and FiLes

https://octave.sourceforge.io/packages.php
https://octave.sourceforge.io/packages.php

72

This will create an Excel file and save the array there. The following are

the contents of the file on the disc:

0,1,2

3,4,5

6,7,8

You can load it into a variable with the following statement:

a1 = xlsread('test.xlsx')

This is how to work with Excel.

 Summary
In this chapter, you learned how to write decision-making programs with

if statements. You also learned how to write loops. You learned how to

write user-defined functions and briefly explored global variables. At

the end, you learned the important concept of working with various file

formats like CSV and Excel.

In the next chapter, you will see how to visualize data with GNU

Octave.

Chapter 4 Loops, FunCtions, and FiLes

73© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_5

CHAPTER 5

Data Visualization
In Chapter 4, you learned about important programming constructs like

decision making, loops, and user-defined functions. These programming

constructs are very useful when you need to include the logic of decision

making in your program. You also learned how to work with files of various

formats and data from the Internet.

In this chapter, you will learn about data plotting and visualization

in detail. In scientific and business applications, visualization is a

very important application/step and it is often consumed by business

end-users. The following is the list of the topics that you will learn and

demonstrate in this chapter:

• Simple plots

• Plotting options

• Errorbars

• More visualizations

• 3D visualizations

After reading this chapter, you will be able to create visualizations with

GNU Octave for scientific and business applications.

https://doi.org/10.1007/978-1-4842-6086-9_5#DOI

74

 Simple Plots
You will use a Jupyter notebook for this chapter. It’s best to create a

separate, new Jupyter notebook for this chapter, as you did for earlier

chapters. Now let’s see how to draw simple plots. Create data points for the

X and Y axes as follows:

x = linspace(1, 100, 1000);

y = x + 3;

You use the function linspace() in this code to create a matrix of

values in x from 1 to 1000 with a step of 100 and corresponding values

for y with the equation. This will be your data, which has pairs (x, y) for

points. You can draw a simple line graph as follows:

plot(x, y)

The output can be seen in the notebook itself. The output is shown in

Figure 5-1.

Chapter 5 Data Visualization

75

You can use the functionality of gnuplot to show the visualizations in

different windows. Gnuplot is a command-line-driven graphics utility that

works with many OSes like Windows, Linux, and Mac.

You will use the same data for the demonstration with gnuplot:

%plot gnuplot

plot(x, y)

In this code, the first line enables the gnuplot for the current session.

All of the output from now on will be shown in separate windows. The

output is displayed in a separate gnuplot window, as shown in Figure 5-2.

Figure 5-1. A simple liner plot

Chapter 5 Data Visualization

76

You can save your output in popular image formats as follows:

print("image1.png", "-dpng");

print("image2.jpg", "-djpg");

print("image3.pdf", "-dpdf");

You will find these images in the respective formats in the directory

where you launched the Jupyter notebook server using the command

prompt.

This was an example of a linear graph. Now let’s plot the graph of a

square function:

x = linspace(1, 10, 10);

y = x.^2;

plot(x, y)

Figure 5-2. A simple liner plot in a separate gnuplot window

Chapter 5 Data Visualization

77

The output is shown in Figure 5-3.

You can also visualize a logarithmic graph:

y = log(x);

plot(x, y)

The output is shown in Figure 5-4.

Figure 5-3. Plot of y = x2

Chapter 5 Data Visualization

78

The following is the example when data for both axes is logarithmic:

x = logspace(1, 10, 10);

y = x;

plot(x, y)

Like linspace, logspace creates a matrix of values but with a

logarithm step between the beginning and end values. The output is

shown in Figure 5-5, and it is a line since both axes are logarithmic.

Figure 5-4. Plot of y = log(x)

Chapter 5 Data Visualization

79

Let’s see an example of a sinusoidal:

x = -pi:0.01:pi;

n = 3;

y = sin(n*x);

plot(x, y)

In this code, you assign values from -pi to pi to the x axis with a step

value of 0.01. The variable n is the number of repetitions of the sine wave.

The output is shown in Figure 5-6.

Figure 5-5. Plot of logarithmic data

Chapter 5 Data Visualization

80

Similarly, you can plot other trigonometric functions. As an exercise,

try plotting other trigonometric functions or combinations like sin(x) +

cos(x).

 Plotting Options
Let’s see how to label axes and how to add legends. You will also add a title

to the figure. Create the data first:

t = [0:0.01:1.0];

n = 5;

y1 = sin(2*n*pi*t);

Figure 5-6. Plot of a sine wave

Chapter 5 Data Visualization

81

Now add labels, legends, and titles as follows:

plot(t, y1)

xlabel('Time')

ylabel('Value')

legend('Sin')

title('Sine Plot')

The output has a title, a legend, and labels for the axes, as shown in

Figure 5-7.

You can plot multiple graphs as follows:

y2 = cos(2*n*pi*t);

plot(t, y1, 'r-', t, y2, 'b-.')

xlabel('Time')

Figure 5-7. Adding a title, legend, and labels

Chapter 5 Data Visualization

82

ylabel('Value')

legend('Sin', 'Cos')

grid on

title('Sine and Cosine Plot')

As seen in the code, in plot(), you assign different styles to the graphs:

one uses a red color with a - and the other a blue color with - . -, as you

can see in Figure 5-8. You use plot() to draw multiple graphs in the same

output. Also, you turn the grid on and add a title and a legend. You use the

functions xlabel() and ylabel() to add labels to the image. You also use

legend() to identify the data in the output.

Figure 5-8. Multiple plots in the output

Chapter 5 Data Visualization

83

Now let’s see how to use colors and styles for drawing graphs in detail.

There are seven colors and seven marker styles you can use. In the plot()

function call, after mentioning x and y, you must mention the color and

the style. For example, k+ refers to the color black and style +. Let’s see how

to use all of the colors and styles. The following is the data:

x = [0:1:10];

y1 = x;

y2 = x + 2;

y3 = x + 4;

y4 = x + 6;

y5 = x + 8;

y6 = x + 10;

y7 = x + 12;

You can use marker styles and colors as follows:

grid on

plot(x, y1, 'k+', x, y2, 'ro', x, y3, 'g*', x, y4,

'b.', x, y5, 'mx', x, y6, 'cs', x, y7, 'wd')

The output is shown in Figure 5-9.

Chapter 5 Data Visualization

84

You also have different line styles as follows:

grid on

plot(x, y1, 'k-', x, y2, 'k--', x, y3, 'k-.', x, y4, 'k:')

The output is shown in Figure 5-10.

Figure 5-9. Marker styles and colors

Chapter 5 Data Visualization

85

You can explore the different combinations of styles, markers, and

colors yourself by changing the code snippets above.

You can also use subplots to plot multiple graphs separately in the

same output window. You must use the subplot() function for this. It

accepts three arguments. The first two are the dimensions of the output

grid where plots are to be displayed. The last argument is the position of

the plot in that grid. The following is the data:

x = linspace(1, 100, 100);

y1 = x.^ 2.0;

y2 = sin(x);

y3 = log(x);

Figure 5-10. Different line styles

Chapter 5 Data Visualization

86

Now use the function subplot() as follows:

subplot(3, 1, 1), plot(x, y1)

subplot(3, 1, 2), plot(x, y2)

subplot(3, 1, 3), plot(x, y3)

This code creates a grid of three rows and a column. In every row of

the grid, one plot is displayed (as defined by the final argument of each

subplot() call). The output is shown in Figure 5-11.

You can even show these plots in different gnuplot windows as follows:

close all

figure(1), plot(x, y1)

figure(2), plot(x, y2)

figure(3), plot(x, y3)

Figure 5-11. Showing different plots with the function subplot()

Chapter 5 Data Visualization

87

In this code, the statement close all closes and clears all of the

previous visualization windows. You use the function figure() to create a

separate window for visualization. Run the code and see the output.

 Errorbars
You can even include the visualization of errors in the output. The

following is a simple example:

close all

t = -1:0.1:1;

y = sin (pi*t);

lerr = 0.1 .* rand (size (t));

uerr = 0.1 .* rand (size (t));

errorbar (t, y, lerr, uerr);

In this example, you use the function errorbar() to visualize an error

in the y-axis. The variables lerr and uerr are used to show the lower and

upper value of the error for a data point. The output is shown in Figure 5- 12.

Chapter 5 Data Visualization

88

Similarly, you can create errorbars for the data of the x-axis as follows:

errorbar (t, y, lerr, uerr, ">");

Note that in this code you pass an extra argument, ">", that denotes

error values are for the data on the x-axis. See Figure 5-13.

Figure 5-12. Errorbars for the y-axis data

Chapter 5 Data Visualization

89

Similarly, you can use "~" for error values on the y-axis. Let’s see an

example of how you can plot the errorbars for data for both the axes in a

single visualization:

close all

x = 0:0.05:1;

n = 2;

err = rand (size(x))/10;

y1 = sin (n*x*pi);

y2 = cos (n*x*pi);

errorbar (x, y1, err, "~", x, y2, err, ">");

The output is shown in Figure 5-14.

Figure 5-13. Errorbars for the x-axis data

Chapter 5 Data Visualization

90

You can even create boxes in place of the errorbars with the following

code:

errorbar (x, y1, err, err, "#r", x, y2, err, err, "#~");

In this function call, err stands for the error vector and r stands for the

red color. You pass the same error vector for both axes. As you must have

guessed, # is used to create errorboxes. It produces the output shown in

Figure 5-15.

Figure 5-14. Errorbars for the data of both the axes

Chapter 5 Data Visualization

91

This is how you can show the data related to the error. In all of

the examples above, the data for error was simulated. But in real-life

projects, you will have data from real devices as input. You can store the

error margin in arrays and visualize them, as you have seen in previous

examples.

 More Visualizations
The graphs we have demonstrated until now use lines and curves for

plotting functions. In this section, you will see how to use other types of

visualizations to represent the data.

Figure 5-15. Errorboxes

Chapter 5 Data Visualization

92

 Scatter Graphs
Scatter graphs use discrete points rather than continuous curves to

represent data. The following is an example of the use of function

scatter():

close all

x = linspace(1, 100, 100);

y1 = x.^ 2.0;

grid on

scatter(x, y1)

The output is shown in Figure 5-16.

Figure 5-16. A simple scatter plot

Chapter 5 Data Visualization

93

You can customize the size of circles and the color as follows:

close all

scatter(x, y1, s = 10, filled='r')

The output is shown in Figure 5-17.

 Histograms
A histogram is a visual reorientation of the distribution of frequency of

occurrence of elements in a dataset. In mathematics and statistics, you

study frequency distribution tables. A histogram is the visualization of

those tables. Write some simple code for a histogram as follows:

Figure 5-17. A customized scatter plot

Chapter 5 Data Visualization

94

clear all

close all

a = randn(1000, 1);

hist(a)

In this code, you create a matrix of dimensions 1000 X 1 filled with

random values from a normal distribution using the function randn(). The

function hist() creates a histogram with 10 bins by default, as shown in

Figure 5-18.

You can adjust the number of bins in the histogram as follows:

hist(a, nbins=100)

This code creates a histogram with 100 bins, as shown in Figure 5-19.

Figure 5-18. Histogram with default 10 bins

Chapter 5 Data Visualization

95

 Contours
You can represent data in the form of contours. A contour is a closed shape

joining all of the points in an image that have the same value. The most

prominent example of the usage of a contour is a topographic map with

contour lines.

Here’s an example of a contour:

x = [1 2 3 4 5 4 3 2 1];

y = x;

z = x' * y;

contour(z)

axis([1 9 1 9])

Figure 5-19. Histogram with 100 bins

Chapter 5 Data Visualization

96

The function contour() draws contour visualizations. The function

axis() is used to set the limits of the values of the axes. In the example, the

limits of the x-axis are 1 to 9 and they are the same for the y-axis, as shown

in Figure 5-20.

You will revisit the concept of contour while demonstrating 3D

visualizations, when you will learn and demonstrate 3D versions of

contours. You will also demonstrate them with 2D contours.

Figure 5-20. Representation of contours

Chapter 5 Data Visualization

97

 Polar Graph
The polar coordinate system uses the distance from origin (r) and the

angle from a fixed line (θ) to determine the position of a point in the plane.

The following formula converts polar coordinates into XY coordinates:

x = r × cos(θ)

y = r × sin(θ)

You can draw a simple polar graph as follows:

theta = 0:0.1:2*pi;

rho = linspace(0.1, 0.1, 63);

polar(theta, rho)

The function polar() accepts values of theta and r as arguments and

draws a polar graph, as shown in Figure 5-21.

Figure 5-21. A simple polar graph

Chapter 5 Data Visualization

98

You can combine multiple graphs as follows:

theta = 0:0.02:2*pi;

rho1 = 0.4 + 1.1.^theta ;

rho2 = 3 * sin (theta) ;

rho3 = 5 * (1 - cos(theta)) ;

rho4 = 4 * cos (8 * theta) ;

r = [rho1 ; rho2 ; rho3 ; rho4] ;

polar (theta , r , '.') ;

The output is shown in Figure 5-22.

Figure 5-22. Multiple polar graphs

Chapter 5 Data Visualization

99

 Pie Charts
You can create pie charts with Octave. These charts are mostly used in

business-related visualizations. Here’s how to create a simple pie chart:

a = [2, 3 ,5];

pie(a)

The function pie() divides the pie shape according to the proportion

of the weight of the members of the arguments you pass to it. The output is

shown in Figure 5-23.

Figure 5-23. A simple pie chart

Chapter 5 Data Visualization

100

You can also have an exploded pie chart. You need to pass the

explosion vector as the second argument to the function pie():

e = [1, 0, 1];

pie(a, e)

In the explosion vector e in this code, 1 stand for enabling an explosion

and 0 stands for not enabling it. The output is shown in Figure 5-24.

 Visualizing Data as Images
You can visualize your data as images using Octave. Images are

represented as numbers in Octave. You will study image processing in

detail in a dedicated chapter. For now, you will learn how to visualize

Figure 5-24. An exploded pie chart

Chapter 5 Data Visualization

101

arrays as images. You can use the function imagesc() to visualize arrays as

images. Let’s demonstrate this with the following code:

a = randn(50, 50);

imagesc(a)

The output is shown in Figure 5-25.

This output is rendered with the default colormap with a jet map of

64 values. A colormap is a set of colors used to represent data. There are

many colormaps supported by GNU Octave and you can find the list at

https://octave.sourceforge.io/octave/function/colormap.html.

Figure 5-25. Visualizing an array as an image

Chapter 5 Data Visualization

https://octave.sourceforge.io/octave/function/colormap.html

102

The following code visualizes the same data with another colormap:

imagesc(a), colorbar, colormap cool;

The function magic(n) returns a n×n magic square. Let’s visualize it

with the viridis colormap:

imagesc(magic(6)), colormap viridis;

Run both of the lines in separate cells in the Jupyter notebook or the

Octave interactive prompt and see the output for yourself.

 3D Visualizations
Until now, all the visualizations we demonstrated were 2D visualizations.

Now you will learn and demonstrate 3D visualization. Let’s use the

function meshgrid(). You will use this function to create data points for a

3D visualization. Its usage is as follows:

y = x = [-3:1:3];

[x1, y1] = meshgrid(x, y)

In this code, you define the range of the variables x and y. Then you

pass them to the function meshgrid(), which returns a grid of points as

follows:

x1 =

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

 -3 -2 -1 0 1 2 3

Chapter 5 Data Visualization

103

y1 =

 -3 -3 -3 -3 -3 -3 -3

 -2 -2 -2 -2 -2 -2 -2

 -1 -1 -1 -1 -1 -1 -1

 0 0 0 0 0 0 0

 1 1 1 1 1 1 1

 2 2 2 2 2 2 2

 3 3 3 3 3 3 3

For our demonstration, you’ll need a bigger grid, as follows:

y = x = [-10:1:10];

[x1, y1] = meshgrid(x, y)

Let’s compute another variable, z, and then use the function mesh() to

visualize (x1, y1, z) as follows:

z = x1.^2 + y1.^2;

mesh(x1, y1, z)

The output is shown in Figure 5-26.

Chapter 5 Data Visualization

104

As you can see, the function mesh() plots a 3D wireframe. You can

change the orientation of the image by dragging it with a mouse pointer.

Similarly, the function meshc() plots mesh with underlying contour

lines. Run the following function call in a new cell and see the output:

clf;

meshc(x1, y1, z)

In this code, you use the command clf to clear the earlier figure. The

output of the code is shown in Figure 5-27.

Figure 5-26. Visualizing mesh

Chapter 5 Data Visualization

105

The function meshz() draws a 3D mesh with the surrounding curtain

as follows:

clf

meshz(x1, y1, z)

The output is shown in Figure 5-28.

Figure 5-27. Visualizing mesh with underlying contours

Chapter 5 Data Visualization

106

Similar to wireframe mesh, there are functions to draw surfaces. The

functions surf() and surface() draw surfaces using given data points.

The following are examples of calls for these functions:

surf(x1, y1, z)

surface(x1, y1, z)

The output is shown in Figure 5-29.

Figure 5-28. Visualizing mesh with surrounding curtain

Chapter 5 Data Visualization

107

The function surfc() draws a surface with associated contours and

surfl() draws a surface with lighting:

surfc(x1, y1, z)

surfl(x1, y1, z)

Run the above code in separate cells after the clf command and see

the output.

You can even visualize 3D plots with the function plot3() as follows:

clf;

z = [0:0.01:3];

n = 3;

theta = n * pi * z;

plot3 (cos (theta), sin (theta), z);

Figure 5-29. Visualizing surface

Chapter 5 Data Visualization

108

The output is a spring-shaped figure, as shown in Figure 5-30.

You already saw how to visualize a 2D contour, but let’s revisit it before

demonstrating a 3D version of a contour. The following is the data:

y = x = [-3:0.1:3];

[X, Y] = meshgrid(x, y);

Z = X.^3 - Y.^3;

A regular 2D contour looks as follows:

clf

contour(X, Y, Z);

The output is shown in Figure 5-31.

Figure 5-30. A spring shape

Chapter 5 Data Visualization

109

You can draw a 3D contour as follows:

clf

contour3(X, Y, Z);

The output is shown in Figure 5-32.

Figure 5-31. 2D contour

Chapter 5 Data Visualization

110

As an exercise, explore the functions contourc() and contourf() with

the same data.

 Summary
In this chapter, you learned and demonstrated the ways to visualize

multidimensional data with 2D and 3D visualizations in Octave in detail.

Now you should be comfortable with the graphical representation of data

for scientific and business applications, where data visualization is an

important part of the data processing pipeline or architecture.

The next chapter will focus on the topic of data analytics. You will learn

and demonstrate various concepts in that area in detail with GNU Octave.

Figure 5-32. 3D contour

Chapter 5 Data Visualization

111© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_6

CHAPTER 6

Data Analysis
In Chapter 5, you learned how to visualize data with GNU Octave. You

learned how to create various types of visualizations of the data you have,

such as simple plots, error bars, and 3D visualizations. Data visualization

techniques are very useful in business and scientific domains.

In this chapter, you will explore assorted topics in the area of data

analytics. The following is the list of topics you will learn and demonstrate

in this chapter:

• Simple statistics

• Histogram

• 1-D interpolation

• 2-D interpolation

• Polynomial fitting

• Linear regression

After reading this chapter, you will be able to work in the area of data

analysis using GNU Octave effectively.

https://doi.org/10.1007/978-1-4842-6086-9_6#DOI

112

 Simple Statistics
Create a new Jupyter notebook for this chapter, and then create a new cell

as a markdown and add a heading with the following code:

Simple Statistics

This will create a level 1 heading. Now enable GNU plotting and create

a sample array as follows:

%plot gnuplot

x = linspace(1, 100, 1000);

You can find the mean with the following code:

mean(x)

You can find the median as follows:

median(x)

You can find the mode as follows:

mode(x)

These are a few familiar statistical methods. Let’s have a look at a few

more methods.

You can find out the range (the difference between the maximum and

minimum values in the data set) as follows:

range(x)

The interquartile range is the difference between the upper and lower

quartiles of the input dataset:

iqr(x)

Chapter 6 Data analysis

113

You can compute the mean square as follows:

meansq(x)

You can compute the standard deviation and variance as follows:

std(x)

var(x)

You can compute the skewness and kurtosis as follows:

skewness(x)

kurtosis(x)

 Histogram
You can visually represent the distribution of frequency of data items. This

is known as a histogram. You can use the function hist() to represent data

in the form of a histogram.

The following code creates a simple histogram of data with the default

number of bins (10):

x = rand(100, 1);

hist(x)

The output is shown in Figure 6-1.

Chapter 6 Data analysis

114

You can plot a histogram of randomly distributed normal data with 30

bins as follows:

hist (randn (10000, 1), 30), xlabel('Bins'), ylabel('Count');

The output is shown in Figure 6-2.

Figure 6-1. Histogram with default number of bins

Chapter 6 Data analysis

115

 Interpolation
Interpolation is a type of estimation technique. It is used to estimate new

data points from the available data points. Suppose for function f(x), you

have values for the data points x=1, 2, 3, 4, and so on. Using interpolation,

you can determine the values for intermediate points like x=2.5 or x=3.7.

There are various types of interpolation techniques, and you will have a

look at some of them in this section.

 1-D Interpolation
The function interp1() returns interpolated values of a 1-dimensional

function at specific points. It interpolates input data to determine the

value of yi at the points xi. It accepts x, y, xi, and the interpolation method

Figure 6-2. Normally distributed random data with 30 bins

Chapter 6 Data analysis

116

as arguments. The following example demonstrates the 1-D interpolation

with various methods. First, you define the points to be interpolated:

x0 = [0:10];

y0 = cos (2*pi*x0/3);

You also define x1 and y1 as follows:

x1 = [0:0.05:10];

y1 = cos (2*pi*x1/3);

There are different methods to interpolate data. By default, GNU

Octave does linear interpolation, where it tries to fit lines between all

known data values. So "nearest" assigns the value closest to the datapoint,

"pchip" is the Piecewise Cubic Hermite Interpolating Polynomial method,

and "spline" interpolates by fitting a cubic spline equation. You might be

familiar with these interpolation techniques from mathematics. You can

read more about them for yourself.

The various interpolation methods are as follows:

near = interp1 (x0, y0, x1, "nearest");

lin = interp1 (x0, y0, x1);

pch = interp1 (x0, y0, x1, "pchip");

spl = interp1 (x0, y0, x1, "spline");

Finally, you plot everything:

plot (x1, y1, "r",

 x1, near, "g",

 x1, lin, "b",

 x1, pch, "c",

 x1, spl, "m",

 x0, y0, "r*"),

legend ("original", "nearest",

 "linear", "pchip",

 "spline");

Chapter 6 Data analysis

117

The output is shown in Figure 6-3.

As you can see in Figure 6-3, the spline interpolation (represented by

the dark pink color) is the one that closely resembles the expected result.

 2-D Interpolation
Let’s see 2-D interpolation. You will plot it with the function peak(), which

is used to visualize local maxima and local minima. Let’s create a surface

first:

[X, Y] = meshgrid(-4:4);

Z = peaks(X, Y);

surf(X, Y, Z), title('Original Data');

Figure 6-3. 1-D interpolation

Chapter 6 Data analysis

118

In this code, you create a meshgrid to compute the peaks and then

visualize the meshgrid with peaks, as shown in Figure 6-4.

You can get a more detailed surface with linear interpolation. You use

the function interp2() that accepts x, y, z, xp, yp, and then it computes the

new value of zp. The following is the code:

[Xp, Yp] = meshgrid(-4:0.2:4);

Zp = interp2(X, Y, Z, Xp, Yp);

surf(Xp, Yp, Zp), title('Linear Interpolation');

It produces the output shown in Figure 6-5.

Figure 6-4. The original data

Chapter 6 Data analysis

119

You can use the spline interpolation by adding an extra argument as

follows:

Vp = interp2(X, Y, Z, Xp, Yp, "spline");

surf(Xp, Yp, Zp), title('Spline Interpolation');

The output is shown in Figure 6-6.

Figure 6-5. Detailed graph with linear interpolation

Chapter 6 Data analysis

120

You can try the other types of methods for interpolation by passing the

strings "nearest" and "pchip" as arguments.

 Polynomial Fitting
You can fit a given set of points with a polynomial using the function

polyfit(). You have to pass x, y, and the degree of the polynomial, and

the function returns the list of coefficients for the polynomial that is the

best fit for the points. Then, you use the function polyval() to evaluate the

polynomial at each point. Here is the code:

x = linspace(0, 4*pi, 12);

y = cos(x);

Figure 6-6. Detailed graph with spline interpolation

Chapter 6 Data analysis

121

Now, compute the list of coefficients for a ninth-degree polynomial:

p = polyfit(x, y, 9);

x1 = linspace(0, 4*pi);

Evaluate the y1 and plot it:

y1 = polyval(p,x1);

plot(x,y,'r*',x1,y1, 'b');

The output is shown in Figure 6-7.

Figure 6-7. Polynomal fitting with a curve of the ninth degree

Chapter 6 Data analysis

122

You can have linear regression with the degree of fitted polynomials as 1.

Create the data points first:

x = 1:100;

y = -0.2*x + 2*randn(1, 100);

Now, fit the points with the polynomial of degree 1 (which is a line):

p = polyfit(x, y, 1);

f = polyval(p, x);

Now, plot it:

plot(x, y, 'b.', x, f, 'r-')

The output is shown in Figure 6-8.

Figure 6-8. Linear regression

Chapter 6 Data analysis

123

You can see from the output that this clearly is a case of linear

regression; that is, you are trying to represent all the given data points with

a line.

 Summary
In this chapter, you learned and demonstrated simple statistical functions

and histograms to represent datasets. You also explored ways to interpolate

data points in one and two dimensions. You also learned polynomial

interpolation and its application for linear regression. These statistical

functions, histograms, and interpolation techniques are very useful in data

analysis.

In the next chapter, you will explore more complex concepts and their

demonstrations with GNU Octave. You will learn about signal processing

in the next chapter.

Chapter 6 Data analysis

125© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_7

CHAPTER 7

Signal Processing
In Chapter 6, you learned about data analysis in GNU Octave in detail. In

this chapter, you will learn about signals, different types of signals, Fourier

transform, and how to use signals in GNU Octave.

 Signals
A signal, by definition, refers to a function used to convey information

about a phenomenon. In electronics, you can think of signal as a voltage

or current or radiation value. A signal can be of many types. It can be an

audio, image, or video signal. Audio signals can be captured through a

microphone. Images and videos can be captured through a camera. In

the next two chapters, you will see in more detail how to work with audio,

images, and videos.

 Continuous and Discrete Signals
As defined above, a signal is a function. From mathematics, you know that

signals can be continuous and discrete. In case of continuous signals or

continuous-time signals, you can acquire the value at any arbitrary point

where the signal is defined. Discrete signals are also referred to as a time

series. As the name suggests, the values of the function are discrete. One of

the examples of a discrete signal is a histogram, which you saw in Chapter 6.

In discrete signals, you can only get the value at which the signal is defined.

https://doi.org/10.1007/978-1-4842-6086-9_7#DOI

126

Let’s first create a new Jupyter notebook for the exercises in this

chapter. In the first cell, type the following:

Signal Processing

Set it as markdown and then run it.

You need to install the signal processing toolbox. Do so by running the

following command:

pkg install -forge signal

Load the package by running the following command:

pkg load signal

Now, let’s see how to create continuous and discrete signals in GNU

Octave. First, here’s a continuous signal:

t = linspace(0, 2*pi);

x = @(t) sin(t);

In this code, you create a function or signal which computes values for

sine between 0 and 2π. Now plot it to see what the signal looks like:

%plot gnuplot

figure(1), plot(t, x(t)), grid on;

The output is shown in Figure 7-1.

Chapter 7 Signal proCeSSing

127

You see a continuous sine signal plot.

Let’s create a discrete time-series function for a sin function as follows:

t = [0, pi/4, pi/2, 3*pi/4, pi, 5*pi/4, 3*pi/2, 7*pi/4, 2*pi];

x = sin(t);

You will now plot the discrete sine signal to see how it looks:

%plot gnuplot

figure(2), stem(t, x), grid on;

The output is shown in Figure 7-2.

Figure 7-1. Continuous sine signal

Chapter 7 Signal proCeSSing

128

You can see a sparse sine signal with a few selected points. Note that

for value between 0 and 2π, you can get the value of the signal at any point

in the continuous signal but for a discrete signal, you can obtain values

only at the discrete values where the signal is defined. For example, you

cannot get the value of x at t=2 in the discrete sine signal.

 Analog and Digital Signals
An analog signal is a continuous signal; an example of an analog signal

is an audio signal, which you will see in more detail in Chapter 8. These

signals are smooth and you can get values with great precision, whereas

a digital signal is a discrete signal that can take only a fixed number of

values. A good example is the bits in a computer data stream. They can

either be 0 or 1 and images, which you will see in more detail in Chapter 9.

While we live in an analog world, we rely on computers for computation

purposes, which is a digital world. Because of this, we tend to quantize our

signals for faster computation. Quantization is the process of mapping a

continuous set of values to a finite number of values.

Figure 7-2. Discrete sine signal

Chapter 7 Signal proCeSSing

129

 Even and Odd Signals
If you recall functions from mathematics, every function can be expressed

as a summation of even and odd signals. Even signals satisfy the following

property:

f(-x) = f(x)

An example of an even signal is a cos function:

f(x) = cos(x)

f(-x) = cos(-x)

 = cos(x)

 = f(x)

And odd signals satisfy the property

f(-x) = -f(x)

An example of an odd signal is a sin function:

f(x) = sin(x)

f(-x) = sin(-x)

 = -sin(x)

 = -f(x)

In the Fourier transform section later in this chapter, you will see that a

signal is a combination of sin and cos functions, which are even and odd

functions. Therefore, you can use the properties of even and odd functions

to form Fourier series properties. You can read more about the Fourier

series and its properties by yourself.

Chapter 7 Signal proCeSSing

130

 Periodic and Non-Periodic Signals
Periodic signals are functions that repeat themselves after a fixed interval.

Periodic functions satisfy the property

f(t) = f(t + T)

where T is the time period after which the signal repeats the same values.

Periodic signals can be both continuous and discrete. In addition

to trigonometric functions, you can plot other period functions in GNU

Octave.

Let’s see how to plot a sawtooth signal:

t = 1:25;

sawtooth = sawtooth(t);

%plot gnuplot

figure(3), plot(t, sawtooth);

The sawtooth plot is shown in Figure 7-3.

Figure 7-3. Sawtooth signal plot

Chapter 7 Signal proCeSSing

131

Let’s look at how to generate and plot a square signal:

t = 0:1/10000:1;

square = square(2*pi*5*t);

%plot gnuplot

figure(4), plot(t, square);

The square plot is shown in Figure 7-4.

You will now look at a few standard non-periodic signals used in signal

processing. First, here’s a triangular pulse:

t = -1:1/10:1;

triangle = tripuls(t, 0.001);

%plot gnuplot

figure(5), plot(t, triangle);

The triangular pulse is shown in Figure 7-5.

Figure 7-4. Square signal plot

Chapter 7 Signal proCeSSing

132

You can do the same to create a rectangular pulse or a Gaussian pulse.

Note that this signal is not periodic in nature and does not satisfy the

condition for periodic signals.

These are the fundamentals of some basic properties of signals and

systems. You can learn more about the properties of signals by yourself.

Now let’s look into a special kind of signal, the function sinc(). The

mathematical equation for a sinc function is

sinc(t) = sin(t)/t

You can plot it in GNU Octave by calling the function sinc() as

follows:

t = linspace(-5,5);

sinc = sinc(t);

%plot gnuplot

figure(6), plot(t, sinc);

Figure 7-6 shows the plot of the function sinc().

Figure 7-5. Triangular pulse plot

Chapter 7 Signal proCeSSing

133

The Fourier transform of a unit pulse function is a sinc function. If you

notice carefully, the sinc function takes value 1 when x is 0 and takes the

value 0 for integer multiples of π.

In the next section, you will learn about the Fourier transform and how

to compute a Fourier transform using GNU Octave.

 Fourier Transform
In the previous section, you looked at functions that are a function of time.

If you recollect from physics, time and frequency are the inverse of each

other:

t = 1/f

A Fourier transform comes from the Fourier series. It is a way of

expressing the function as a summation of a bunch of sinusoidal functions.

The Fourier transform function is defined as follows:

f x p x() = ()

-¥

¥
-ò f x e dxix2

Figure 7-6. Sinc function

Chapter 7 Signal proCeSSing

134

A Fourier transform has a lot of applications, not just differential

equations in mathematics but also in signal processing and Linear Time-

Invariant (LTI) systems. As discussed, computers work with discrete values

and the input signal is converted to discrete values. The Fourier transform

for discrete signal is called a Discrete Fourier Transform (DFT), which is

defined as follows:

X x ek

n

N

n

i
N

kn
= ×

=

- -

å
0

1 2p

As this forms the basic operation of many signal processing systems,

you want the transform operation to be fast. Hence, the Fast Fourier

Transform (FFT) is used and is available in the signal processing toolbox.

This is a fast way of computing DFT.

Here’s how to compute FFT on a 1D signal:

t = 0:1/1000:2-(1/1000);

sin_fn = 10*sin(2*pi*10*t);

t2 = length(sin_fn);

t2 = 2^nextpow2(t2);

sin_ft = fft(sin_fn, t2);

%plot gnuplot

figure(7),

subplot(2, 1, 1), plot(t, sin_fn);

subplot(2, 1, 2), plot(abs(sin_ft));

In this code, you compute a Fourier transform of a sine function using

FFT. The Fourier transform computed has real and complex values, hence

you will plot the absolute of the FFT. The result is shown in Figure 7-7.

Chapter 7 Signal proCeSSing

135

Notice the prominent peak around 2000. This corresponds to the

frequency of the sine signal. Unlike the time domain signal, its Fourier

transform is very sparse, which makes certain computation in the

frequency domain (Fourier transform of the time signal) much faster.

Now, you will add two sin functions, one with higher frequency and

the other with lower frequency:

t = 0:1/1000:2-(1/1000);

sin_fn1 = 10*sin(2*pi*10*t);

sin_fn2 = 10*sin(2*pi*30*t);

sin_fn = sin_fn1+sin_fn2;

t2 = length(sin_fn);

t2 = 2^nextpow2(t2);

sin_ft = fft(sin_fn);

%plot gnuplot

figure(8),

subplot(2, 1, 1), plot(t, sin_fn);

subplot(2, 1, 2), plot(abs(sin_ft));

Figure 7-7. A Fourier transform of a sine signal

Chapter 7 Signal proCeSSing

136

The result is shown in Figure 7-8.

You see two peaks corresponding to the two different frequencies of

the two different sine signals.

Note if you have heard of low-pass filtering, in the frequency
domain, the frequency peaks pertaining to the high frequency are
removed, which essentially smoothens the signal in the time domain.

You can construct the original signal from a Fourier transformed

signal. In other words, to convert the signal from the frequency domain to

the time domain, you can use ifft. You can explore the inverse Fourier

transform function in GNU Octave by yourself.

Note We will discuss FFt in the 2D domain in Chapter 9.

Figure 7-8. A Fourier transform of the summation of two sine signals

Chapter 7 Signal proCeSSing

137

If you have heard about convolution operations, a Fourier transform

simplifies the computation of a convolution operation by a multiplication

of the Fourier transform of the functions. This is a very interesting

operation and with the growing demand for deep learning, these

fundamentals are important. You can learn more about this by yourself.

 Summary
In this chapter, you learned about signals, various types of signals, and the

Fourier transform.

In the next chapter, you will look at audio processing in GNU Octave.

Chapter 7 Signal proCeSSing

139© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_8

CHAPTER 8

Audio Processing
In Chapter 7, you learned about processing signals with GNU Octave.

Audio is a type of signal and its processing requires detailed knowledge

of signal processing. So, as a continuation of the previous chapter, in

this chapter you will learn how to process audio with GNU Octave. The

following is the list of topics that you will explore in this chapter:

• Reading an audio file

• Creating your own audio file

• Plotting the sound wave signal

By the end of this chapter, you will be able to work with audio files and

process audio signals.

 Reading an Audio File
Create a new Jupyter notebook for this chapter. We have recorded an audio

file named sample.wav. As you can see, it is in WAV (Waveform Audio File

Format). You can use other file formats like OGG or MP3 too. Create a

string for the filename as follows:

file = 'sample.wav'

https://doi.org/10.1007/978-1-4842-6086-9_8#DOI

140

You can retrieve information about the audio file with the function

audioinfo() as follows:

info = audioinfo (file)

The output is as follows:

info =

 scalar structure containing the fields:

 Filename = C:\Users\Ashwin\OneDrive\GNU Octave Book\First_

Drafts\Chapter08\programs\sample.wav

 CompressionMethod =

 NumChannels = 2

 SampleRate = 44100

 TotalSamples = 70560

 Duration = 1.6000

 BitsPerSample = 16

 BitRate = -1

 Title =

 Artist =

 Comment =

You can read the data stored in the audio file into GNU Octave

numerical arrays with the function audioread() as follows:

[M, fs] = audioread(file);

It returns two values. Depending on the number of channels, M is a

one- or two-column array. We recorded a stereo audio clip so it has two

channels. You can also see the number of channels in the previous output.

fs is the sampling frequency (mentioned as sample rate in the previous

output). It is 44100 Hz in this case, which is one of the standard values

in the domain of audio. It is usually used by digital audio CDs. The other

standard frequency is 48 kHz (48000 Hz).

Chapter 8 audio proCessing

141

The function audioread() has many parameters. You can use it as

follows to read the file in the native datatype of the stored audio:

[M, Fs] = audioread(file, datatypes = 'native');

You can also specify the datatype in which you want to read the audio

file:

[M, Fs] = audioread(file, datatypes = 'uint8');

 Creating Your Own Audio File
You can create your own signals and write them as an audio file. You have

to use function audiowrite() for this. The following is an example:

filename='sine.wav';

fs=44100;

t=0:1/fs:10;

w=2*pi*440*t;

signal=sin(w);

audiowrite(filename, signal, fs);

The example creates a sine wave and you can even play it using an

audio player. The duration of the wave is 10 seconds. You can play it with

a built-in audio player in GNU Octave using the functions audioplayer()

and play(), as follows:

[M, fs]=audioread(filename);

player=audioplayer(M, fs, 8);

play(player)

Chapter 8 audio proCessing

142

 Plotting the Sound Wave Signal
Let’s see how to use the function plot() to plot the audio wave signal.

Create two small audio signals of 0.01 seconds for this, as follows:

signal1='signal1.ogg';

signal2='signal2.ogg';

fs=44100;

t=0:1/fs:0.01;

w1=2*pi*440*t;

w2=2*pi*660*t;

audiowrite(signal1,sin(w1),fs);

audiowrite(signal2,sin(w2),fs);

The signals have different frequencies. You visualize the first signal,

signal1, as follows:

%plot gnuplot

[M1, fs] = audioread(signal1);

plot(M1)

The output is shown in Figure 8-1.

Chapter 8 audio proCessing

143

You can add two signals and visualize as follows:

[M2, fs] = audioread(signal2);

plot(M1+M2)

The output is shown in Figure 8-2.

Figure 8-1. Sine wave

Chapter 8 audio proCessing

144

You can multiply two sinusoidal functions as follows:

audiowrite('product.wav', M1.*M2, fs);

[M3, fs]=audioread('product.wav');

plot(M3);

The output is shown in Figure 8-3.

Figure 8-2. Two added sine waves

Chapter 8 audio proCessing

145

You can divide two signals as follows:

audiowrite('div.wav', M1./M2, fs);

[M4, fs]=audioread('div.wav');

plot(M4);

The output is shown in Figure 8-4.

Figure 8-3. Two sine waves multiplied

Chapter 8 audio proCessing

146

This is how you work with audio signals.

 Summary
In this chapter, you learned and demonstrated how to process audio

signals. You also saw how to read and write audio signals. You have seen

how to perform mathematical operations on audio signals. As discussed,

audio processing is a form of signal processing and these techniques are

very useful in the domain of audio processing.

The next chapter teaches you more complex applications of signal

processing with GNU Octave. You will learn about image and video

processing in detail in the next chapter.

Figure 8-4. Division of sine waves

Chapter 8 audio proCessing

147© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9_9

CHAPTER 9

Image and Video
Processing
In Chapter 8, you learned about audio processing in GNU Octave in detail.

In this chapter, you will use some of the concepts you learned about in

Chapter 7 to understand image processing.

In this chapter, you will learn about the following list of topics:

• Image processing

• Video processing

 Image Processing
With the growing availability of good cameras in phones over the past few

years, and the outbreak of social media platforms like Instagram, YouTube,

etc. users all over the world can now upload visually pleasing images and

videos. All photo editing applications, like Photoshop or GIMP, used for

this purpose employ image processing. In this section, you will learn how

to process digital images with GNU Octave.

You will first look at the basic installation required to work with images

and then move on to writing your own code to work with them.

Similar to previous chapters, you must install the image package

available at https://octave.sourceforge.io/image/index.html.

https://doi.org/10.1007/978-1-4842-6086-9_9#DOI
https://octave.sourceforge.io/image/index.html

148

You will use a Jupyter notebook for all of the demonstrations in this

chapter. Create a new notebook for this chapter. In a new cell in the Jupyter

notebook, run the following command:

pkg install -forge image

Next, load the image package by running the following command:

pkg load image

Let’s first explore how to read and write images. For this, download

any image from the web or use any image on your computer, and save it in

the current folder of your Jupyter notebook with the name sample_color.
jpg. We will use the image in Figure 9-1 to demonstrate the results in this

chapter.

Figure 9-1. A sample image

Chapter 9 Image and VIdeo proCessIng

149

 Loading, Displaying, and Resizing Images
Now you’ll learn how to load the images into Octave. Type the following

command into a new cell in the notebook:

color_image = imread('sample_color.jpg');

imread loads the image and stores it to a variable, in this case color_

image. Now display the image:

%plot gnuplot

figure(1), imshow(color_image);

This will display the image in a new window. If you zoom into the image,

you will notice the image looks like small squares, as you can see in Figure 9-2.

Figure 9-2. Zooming into the flower image

Chapter 9 Image and VIdeo proCessIng

150

The reason you see the small squares in the image is because the

image is stored as three-dimensional matrix and each member is an 8-bit

unsigned integer (uint8).

Let’s get the size of the image:

size(color_image)

You will see something like this in the output:

ans = 3648 5472 3

In this case, the image is a matrix of dimensions 3648 X 5472 X 3.

You can resize the image using imresize:

resized_image = imresize(color_image, [512, 512]);

Here you resize the image to 512 X 512 X 3. Check this for yourself

using size. When using imresize(), you can either give a scale to which

you want to resize the dimensions or directly mention the size to which

you want to resize, as you have done here.

 Color Space
Now let’s explore how the data is stored and how the image obtains its

color. You have seen that the size of an image has three dimensions and

the third dimension has the value 3. This is true for all color images. Each

2D matrix of the third dimension is called a channel. The first is for red

(R), the second is for green (G), and the third is for blue (B). You must be

familiar with the acronym RGB; this comes from the channel names.

A color space is a specific way of organizing colors such that they

can be reproducible in digital representation. With a triplet of each value

corresponding to the intensity in R, G, and B colors, you can cover most of

the colors that the human eye can perceive.

Chapter 9 Image and VIdeo proCessIng

151

Now let’s explore the concept visually. In a new cell, type the following

code:

red_image = color_image;

red_image(:,:,2) = 0;

red_image(:,:,3) = 0;

%plot gnuplot

figure(2), imshow(red_image);

In this code, you copy the color_image to red_image and then set the

green and blue channel values to 0. The image is shown in Figure 9-3. Only

the red component of the image is visible in the image. You can try for

yourself for the other two channels or with a combination of two channels.

Figure 9-3. Red channel of the flower image

Chapter 9 Image and VIdeo proCessIng

152

You are all familiar with old pictures or movies that are

monochromatic. So, if having only one channel is displaying the image

in that color space, then how do you get monochromatic images? Before

we jump into that, let’s look at the data stored in the image. For that, let’s

display the values in a small portion of the image like this:

color_image(1:10, 1:10, 2)

You will see something like this in the Jupyter notebook (not the exact

same values, because they will depend on your image):

ans =130 125 125 125 124 124 126 126 124 123 121

127 126 125 124 121 123 125 124 123 126 124

126 126 125 126 123 123 124 124 124 124 123

126 127 127 128 126 125 123 124 125 123 122

126 127 126 127 126 126 123 123 123 122 121

125 123 123 124 126 126 124 122 121 122 121

125 124 123 123 125 125 123 121 121 123 121

125 125 125 125 124 123 122 122 121 125 122

125 127 126 126 123 122 121 124 122 124 122

123 129 127 125 124 122 123 124 122 120 120

124 124 124 125 125 123 124 124 124 124 123

Note that the values are between 0-255. This is because the image

is stored with an uint8 datatype and it has range of 0-255 (28=256), as

discussed.

To get a monochromatic image, the three channels are combined to

one. You usually do this using the following function:

gray_image = rgb2gray(color_image);

%plot gnuplot

figure(3), imshow(gray_image);

The output is shown in Figure 9-4.

Chapter 9 Image and VIdeo proCessIng

153

You can see the display of the monochromatic image. This is also

called a grayscale image.

Now let's see the size of the gray_image:

size(gray_image)

ans = 3648 5472

You will notice that the size of the gray_image is the same as the size of

the color_image, except for the three color channels.

There are other color spaces, which you can explore by yourself. Some

of the important ones are RGB and HSV (Hue-Saturation-Value).

Figure 9-4. Gray scale image of the flower

Chapter 9 Image and VIdeo proCessIng

154

 Cropping, Rotating, and Saving Images
You are all familiar with basic photo viewing or editing tools that lets us

crop or flip images. In this section, you will explore these cool features and

then learn how to save an image.

Let’s first look at cropping. In a new cell, run the following code:

crop_image = color_image(2000:3000, 2000:4000, :);

%plot gnuplot

figure(4), imshow(crop_image);

Make sure that you do not exceed the limits of the image size you are

using.

The output is shown in Figure 9-5.

In this way, you can crop out the portion you want in your own images

if you know the desired pixel location.

Figure 9-5. The cropped image

Chapter 9 Image and VIdeo proCessIng

155

Let’s now look at flipping and rotating images:

up_down_flip_image = flipud(color_image);

%plot gnuplot

figure(5), imshow(up_down_flip_image);

This code flips the image along the horizontal, as shown in Figure 9-6.

Similarly, you can also flip the image along the vertical axis, as shown

in Figure 9-7:

left_right_flip_image = fliplr(color_image);

%plot gnuplot

figure(6), imshow(left_right_flip_image);

Figure 9-6. Horizontally flipped image

Chapter 9 Image and VIdeo proCessIng

156

You can also do a flip both horizontally and vertically like this:

flip_image = fliplr(flipud(color_image));

%plot gnuplot

figure(7), imshow(flip_image);

You can do the same using imrotate(), like this:

rotated_image = imrotate(color_image, 180);

%plot gnuplot

figure(8), imshow(rotated_image);

Here, you rotated the image by 180 degrees to get the same image as

shown in Figure 9-8 as the previous code. You can try for yourself with

different angles in imrotate().

Figure 9-7. Vertically flipped image

Chapter 9 Image and VIdeo proCessIng

157

If you want to save any of the images you modified, you can do so using

imwrite:

imwrite(rotated_image, 'flipped_image.jpg');

The first parameter to the function is the image you want to save and

the second one is the string with the path to the image you want to save

along with the image name.

 FFT2
In Chapter 7, we discussed FFT (Fast Fourier Transform). In this section,

you will look at the Fourier transform for images. In images, frequency

corresponds to how fast the pixel intensity changes. When there are fast

Figure 9-8. Vertically and horizontally flipped image or image
rotated by 180 degrees

Chapter 9 Image and VIdeo proCessIng

158

changes, it is a high frequency region; if little changes, it is a low frequency

region. The applications of the concepts you study here form the basics

of low-pass filtering/smoothing and high-pass filtering/edge detection,

which are the fundamentals of many advanced image processing

techniques. You can explore more on your own once you are clear on the

fundamentals.

FFT2 computes a discrete Fourier transform on the 2D matrix. For this,

first create a 2D pulse image:

pulse_2d = zeros(500, 500, 3);

pulse_2d(246:255, 246:255, :) = 255;

pulse_2d = im2bw(pulse_2d);

This will generate a 2D pulse image as shown in Figure 9-9.

Let’s now compute the Fourier transform on this image:

pulse_freq = fft2(pulse_2d);

Figure 9-9. 2D pulse

Chapter 9 Image and VIdeo proCessIng

159

Before displaying the image, you need to first get the absolute value of

the frequency and then do any fftshit to align the center to the center of the

image. Recall that this is similar to the function sinc(), which you saw in

a previous chapter, extended to 2D, where the peaks of the sinc function

are white with a maximum value and the valleys of the sinc function are

black with a minimum value, as shown in Figure 9-10.

 Video Processing
In this section, you will explore the basic workings of video processing.

Normally, videos are conceptually visualized as a 4D object, the fourth

dimension being time. Imagine it to be something like Figure 9-11.

Figure 9-10. Fourier transform of 2D pulse

Chapter 9 Image and VIdeo proCessIng

160

First, to work with videos, you need to install the video package. Follow

the steps similar to what you did to install the image package:

pkg install -forge video

pkg load video

Now generate a video and write it to a video file:

w = VideoWriter("images.mp4");

open(w);

for i = 1:360

 img = imrotate(color_image, i);

 img = imresize(img, [512, 512]);

 writeVideo(w, img);

endfor

close(w);

In this code, you first create a video writer and then you open the file.

Figure 9-11. Visual interpretation of videos

Chapter 9 Image and VIdeo proCessIng

161

For your learning purposes, you are utilizing functions you learned in

the previous sections of this chapter.

You use a for loop to rotate the image and resize it. And then you write

each frame into the video file. Resizing images is important because all of

the image frames in a video should be of the same dimensions, as shown

in Figure 9-11. You can use any video format that is supported by Octave;

this demonstration uses the .mp4 format.

Here’s how to read the video file:

w = VideoReader ("images.mp4");

while (!isempty(img = readFrame(x)))

 imshow(img);

endwhile

This code reads each frame from the video file and then displays it

using imshow. You can explore more advanced techniques using what you

learned in this section.

 Summary
In this chapter, you learned how to read, save, and display images. You also

learned about color spaces of images, plus cropping, flipping, and rotating

images. You looked at a Fourier transform on images. You also learned

how to read and write videos.

The next part is the Appendix. It covers several small topics that could

not find place in the previous chapters.

Chapter 9 Image and VIdeo proCessIng

163© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9

 Appendix

You have explored the functionalities offered by GNU Octave in detail. In

this Appendix, you will explore assorted topics that are not covered in the

earlier chapters because they do not fit in the overall narratives of those

chapters. However, these functionalities are extremely useful for beginners

as well as experienced programmers.

 Structures
A structure is a data type that can be used to group items of the same

and/or different types. If you have worked with the C programming

language, you must have programmed with structures. A structure is a very

versatile data type that can be used in scientific programming. Let’s create

a structure for such calculations. Create a new Jupyter notebook for Octave

and type in the following code in the first cell to create a heading:

Structures

Convert the cell to a markdown type and run it to create a nice H1

heading.

You can create a structure for storing information about planets as

follows:

planet.name = 'Earth'

https://doi.org/10.1007/978-1-4842-6086-9#DOI

164

Run the above code in a new cell and it will create a new structure with

an attribute. The name of the structure is planet and the attribute is name.

Now add more attributes to this structure:

planet.mass = 5.972 * 10^24

planet.type = 'Rocky'

This will add two more attributes to the structure. You can see the

attributes individually by running the following code:

planet.name

planet.mass

planet.type

You can check all of the attributes with a single line of code as follows:

planet

You can define the structure with all of the attributes in a single line of

code as follows:

planet1 = struct("mass", 1.898 * 10^27,

"name", 'Jupiter',

"type", 'Gas Giant');

 Cell Arrays
You can store different data types under a single variable with another type

of variable known as a cell array. A cell array is a container-like structure

that stores strings and numerical values. Here’s how you create a cell array

for the example you saw earlier:

planet1 = {1.898 * 10^27, 'Jupiter', 'Gas Giant'}

APPENDIX

165

This creates a cell array. You can see all of the members with the

following line:

planet1

You can also access the members individually with indices as follows:

planet1{1}

planet1{2}

planet1{3}

 Operations for Structures and Cell Arrays
Let’s see a few operations on attributes of structures and members of cell

arrays. You will demonstrate this with matrix multiplications. So define a

structure with two matrices:

mat1 = struct("a", [1 2; 3 4], "b", [1; 2]);

You can perform operations on the attributes of the structure as

follows:

mat1.a * mat1.b

The output is as follows:

ans =

 5

 11

You can define an equivalent cell structure:

mat2 = {[1 2; 3 4], [1;2]};

APPENDIX

166

The same operation will be as follows:

mat2{1} * mat2{2}

The output will be exactly the same.

 Polynomials in Octave
GNU Octave can handle polynomials in a special way. Suppose you have a

polynomial as follows:

f(x) = 5x2 +s+ 2

You can represent this polynomial with a vector of coefficients as

follows:

p1 = [5 3 2]

It can be evaluated for a certain value for x (in this example x=0) as

follows:

polyval(p1, 0)

The output is as follows:

ans = 2

This is how you work with polynomials in GNU Octave.

 Convex Hull
The convex hull, or convex closure or convex envelope, for a set of points is

defined as the smallest convex polygon such that all of the points are in or

on it. GNU Octave has the function convhull() to compute the convex hull

for a set of points. Create a pair of x and y coordinates for a set of points as

follows:

APPENDIX

167

%plot gnuplot

clf

x = [-5 : 0.02 : 5];

y = cos(x);

The convex hull for the pair of x and y coordinates can be computed as

follows:

k = convhull (x, y);

Let’s plot it now. The points in the set are represented by green dots

and the hull is represented by the red line:

plot (x, y, 'g.', x(k), y(k), 'r-');

axis ([-5.5, 5.2, -1.2, 1.2]);

The output is shown in Figure A-1.

Figure A-1. Demonstration of the convex set

APPENDIX

169© Ashwin Pajankar and Sharvani Chandu 2020
A. Pajankar and S. Chandu, GNU Octave by Example,
https://doi.org/10.1007/978-1-4842-6086-9

Index
A
Analog signal, see Continuous/

continuous-time signals
Analytics

histogram, 113–115
interpolation (see Interpolation

method)
learning goals, 111
statistics, 112–113

Arrays
command creation, 53
indexing, 54
matrix, 51
multi-dimensional array, 50–51
operations, 54–55
routines creation, 55–56
single column, 52
2D matrix, 52–53

audioinfo() function, 140
Audio processing

audioplayer()/play()
functions, 141

learning goals, 139
reading audio file, 139–141
sound wave signal

divide signals, 145–146

plot()function, 142
sine waves, 143–144
sinusoidal functions, 144–145

audiowrite() function, 141

B
BODMAS/PEDMAS, 35, 36

C
Cell array, 164–165
Command line interface (CLI), 19
Continuous/continuous-time

signals, 125–128
Contours, 95–96
Convex hull/closure/envelope,

166–167

D
Data types

command results, 48
complex numbers, 50
floating numbers, 49
heading and sub-heading, 47
numeric variables, 48–49

https://doi.org/10.1007/978-1-4842-6086-9#DOI

170

Decision-making statement
code block option, 61
endif/if block, 60
if code block, 61
operations, 59
rem() function, 60
syntax, 60

Digital signals, 128
Discrete Fourier Transform

(DFT), 134
Discrete signals, 125–128

E
Errorbars

data point result, 87–88
errorbar()function, 87
errorboxes creation, 90–91
output results, 87
x-axis data, 88–90

Even and odd signals, 129

F
Fast Fourier Transform (FFT), 134,

157–159
File working process, 67–72
Fourier transform

definition, 133
DFT/FFT signals, 134
frequency domain, 136
LTI systems, 134
physics/time/frequency, 133

sin functions, 135
sine signal, 134–135
summation, 136
2D pulse, 159

G
Global variables, 66–67
GNU Octave project

applications, 3
command line interface, 19
comparison, 4
functionality, 1
graphical user interface, 10–19
history, 2
installation

Raspberry Pi, 10
Ubuntu Linux, 9
Windows, 6–9

interpreter, 2
Jupyter (see Jupyter notebook)
limitations, 3–4
lxterminal, 10
online community, 5

Graphical user interface (GUI)
command window, 17
community news, 14
dialog box, 18
help information, 15
output result, 18
program execution, 17
Raspbian OS menu, 11–12
search box option, 11

INDEX

171

variable editor, 16
welcome screen, 13
Windows computer, 15–16

H
Histogram, 93–95, 113–115

I
If statement, see Decision- making

statement
Image processing

color space, 150
cropping/rotating/saving,

154–157
fast Fourier transform, 157–159
gray scale image, 153
installation, 147
Jupyter notebook, 148
learing goals, 147
loading/display/resizing

images, 149–150
results, 148
2D pulse image, 158

imrotate() function, 156
Integrated development

environment (IDE), 18
Interpolation method

estimation technique, 115
linear graph, 119
1-dimensional function,

115–117

polynomial function, 120–123
spline graph, 120
2-D plot function, 117–120

J, K
Jupyter notebook, 33

advantage of, 20
built-in mathematical

constants, 37–38
command prompt, 45
documentation, 40
dropdown menu, 23
global variables, 42
help command, 39–40
homepage tab, 22
lxterminal window, 25
mathematical

operations, 34–37
message box, 23
naming variables, 42–45
notebook creation, 25
richtext

cell types, 27–28
code output, 27
Markdown option, 28–29
modal box, 29–30
output result, 31
Untitled1 tab, 26

server process, 20
subprocesses, 26
token, 21
variables, 41

INDEX

172

L
Linear Time-Invariant (LTI)

systems, 134
Loops

break statement, 62
condition, 62
do-until construct, 63
for loop statement, 63–64
GOTO/IF statements, 61–62
output result, 63
while loop, 62

M
Mathematical operations, 34–37
MATLAB, 4–5
Matrix manipulation functions, 57
mesh()function, 103
meshgrid()function, 102

N
Non-periodic signals, see Periodic

functions

O
Octave, see GNU Octave project

P, Q
Periodic functions

sawtooth plot, 130
square signal plot, 131
trigonometric functions, 130

triangular pulse, 131–132
Pie charts, 99–100
Plotting function

data creation, 80
data points, 74
gnuplot window, 75–76, 86
image formats, 76
labels/legends/titles, 81
learning goals, 73
liner plot, 74–75
line styles, 84–85
linspace() function, 74
logarithmic graph, 77–79
marker styles and colors, 83–84
multiple graphs, 81–82
sine wave, 80
sinusoidal, 79
subplot() function, 86
visualization (see

Visualizations)
Polar graph, 97–98
Polynomials, 166

R
Raspberry Pi/Raspbian OS, 10

S
Scatter graphs, 92–93
Signal processing

analog/digital signals, 128
continuous and discrete,

125–128

INDEX

173

definition, 125
even/odd, 129
Fourier transform (see Fourier

transform)
periodic/non-periodic signals,

130–133
sinc() function, 132–133
Statistics, 112–113
Structures, 163–165
surf()/surface()functions, 106–107

T
3D visualization

code output, 104
output screen, 103–104
plot()functions, 107
spring shape, 108
2D/3D contour, 108–109

U
Ubuntu Linux, 9
User-defined functions

argument/return values, 64
decimal values, 64
inline functions, 66
returns single value, 65
subroutine, 64

V
Video processing

image package, 160
resizing images, 161
video format, 161
visual interpretation, 159–160

Visualizations
contours, 95–96
errorbars (see Errorbars)
histograms, 93–95
images, 100–102
pie charts, 99–100
polar graph, 97–98
scatter graphs, 92–93
3D visualization (see 3D

visualization)

W, X, Y, Z
Waveform Audio File Format

(WAV), 139
Windows installation (Python)

installation wizard, 7
Jupyter, 9
linear algebra, 6
option, 8
pip, 9
project homepage, 6–7

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to GNU Octave
	The GNU Octave Project
	History of the GNU Octave Project
	Applications of Octave
	Limitations and Drawbacks of Octave
	Comparison of Octave with Alternatives
	The Online Octave Community

	Installing GNU Octave
	Installing on Windows
	Installation on Ubuntu Linux
	Installation on Raspberry Pi with Raspbian OS

	Exploring GNU Octave
	Octave GUI
	Octave CLI

	Octave Programming with Jupyter Notebook
	Octave Code and Richtext in Notebook
	Summary

	Chapter 2: Getting Started with GNU Octave and Jupyter
	Simple Mathematical Operations
	Built-in Mathematical Constants
	Getting Help
	Variables in GNU Octave
	Global Variables
	Conventions for Naming Variables
	Clearing the Command Prompt
	Summary

	Chapter 3: Data Types and Variables in Detail
	Data Types in GNU Octave
	Arrays, Vectors, and Matrices
	Indexing in Arrays
	Operations on Arrays
	Array Creation Routines

	Matrix Manipulation Function
	Summary

	Chapter 4: Loops, Functions, and Files
	Decision Making with If Statements
	Loops in GNU Octave
	User-Defined Functions
	Global Variables
	Working with Files
	Summary

	Chapter 5: Data Visualization
	Simple Plots
	Plotting Options
	Errorbars
	More Visualizations
	Scatter Graphs
	Histograms
	Contours
	Polar Graph
	Pie Charts
	Visualizing Data as Images

	3D Visualizations
	Summary

	Chapter 6: Data Analysis
	Simple Statistics
	Histogram
	Interpolation
	1-D Interpolation
	2-D Interpolation
	Polynomial Fitting

	Summary

	Chapter 7: Signal Processing
	Signals
	Continuous and Discrete Signals
	Analog and Digital Signals
	Even and Odd Signals
	Periodic and Non-Periodic Signals

	Fourier Transform
	Summary

	Chapter 8: Audio Processing
	Reading an Audio File
	Creating Your Own Audio File
	Plotting the Sound Wave Signal
	Summary

	Chapter 9: Image and Video Processing
	Image Processing
	Loading, Displaying, and Resizing Images
	Color Space
	Cropping, Rotating, and Saving Images

	FFT2
	Video Processing
	Summary

	Appendix
	Structures
	Cell Arrays
	Operations for Structures and Cell Arrays

	Polynomials in Octave
	Convex Hull

	Index

