
33© Andre Alves Garzia 2020
A. A. Garzia, Roguelike Development with JavaScript,
https://doi.org/10.1007/978-1-4842-6059-3_3

CHAPTER 3

Dungeoning
In the previous chapter, we learned how to draw things to the screen and

how to create a basic game loop. This chapter will build on that foundation

to assemble a basic dungeon for our roguelike, but before delving into

some more coding, it is important to understand a bit more about tilemaps

and how they are used to assemble a dungeon.

 What are tilemaps?
Tilemaps were initially used to save space and memory in games running

in older computers and video game consoles. Instead of having a gigantic

image with the whole level for a game, the level graphics could be

assembled by combining smaller chunks together. This way, the game

could only get and draw the chunks needed to display whatever the

player was seeing at the moment instead of loading a potentially much

larger file into memory. This had the side effect of making much easier

to create level editors as the components used by a game level were

separate and easy to place in new level designs. They also proved to be

a good match for procedural generation as a program could create an

algorithmically generated level and then find which tiles it needed to

assemble it for display.

For our purposes, we define tilemaps as a grid where we place

square- shaped bitmaps in each cell to assemble a dungeon and the

necessary game elements. If you ever played a pen and paper role-playing

https://doi.org/10.1007/978-1-4842-6059-3_3#DOI

34

game like Dungeons & Dragons, and had to draw a map using graph

paper, you’ll notice a lot of similarities between that and what our

software for this chapter will do.

The dungeon used for the book’s roguelike project will eventually have

multiple levels. Each level will be a tilemapped grid where walls, rooms,

corridors, and other elements are placed to assemble a recognizable RPG-

like dungeon. Let’s learn how to draw some tiles.

 Drawing a tilemap
The source code for this section is under the chapter-3/example-1-

simple-tilemap folder; you’ll need it to follow along. The HTML file is the

same as the other samples; it just loads Phaser and our game.js file which

is where all the interesting bits for this section are actually happening.

 Preloading a spritesheet
A spritesheet is an image file that combines many different graphics

into a single file. Web games tend to use them because they require

a single network transfer to land all the necessary images into the

player’s computer.

The kind of spritesheet our sample uses is a simple one where all

images have the same size and they are placed side by side much like a

very well-organized collection of stamps on a page. For example, suppose

each image is 10 pixels by 10 pixels and you have ten images in two rows in

the spritesheet, that means you have a single image file that is 20 pixels tall

by 50 pixels wide with all your images inside.

People often call these images contained in a spritesheet sprite, but

you’ll also see the same noun being applied to game elements which are

moving on the screen, which might be confusing if you’re new to game

development and are searching online for learning material. I’m going to

Chapter 3 Dungeoning

35

call them tiles unless they refer to game elements that represent stuff that

moves such as the player or monsters. They are all coming from the same

file though.

Our spritesheet is from a freely available game art pack by Kenney,1

and it looks gorgeous (Figure 3-1).

1 Kenney 1-bit art pack: www.kenney.nl/assets/bit-pack

Figure 3-1. Sample spritesheet

Chapter 3 Dungeoning

http://www.kenney.nl/assets/bit-pack

36

As can be seen, there are many different tiles in it, and we’ll be able

to combine them for a rich roguelike experience. Each image in this

spritesheet is a square with 16 pixels on each side. They are separated

by gaps of 1 pixel. The source code for preloading the spritesheet needs

all this information to be passed. From the game.js file, the preload()

function is

preload: function () {

 this.load.spritesheet(

 'tiles',

 'assets/colored.png',

 {

 frameWidth: 16,

 frameHeight: 16,

 spacing: 1

 });

}

Much like other preload() functions we’ve seen, we use a function

in the this.load.* namespace to load the spritesheet. The arguments

for that function are the key we’ll use to refer to that spritesheet later,

the path to the spritesheet image, and a configuration object. There are

many optional parameters that can be set in this configuration object;

we’re just setting the dimensions of each image in the sheet and the gap

between them.

With that in place, we’re ready to start drawing some tilemaps, which

are grids like graph paper you might have used in school, in which we

place tiles in each cell to form our dungeon image. The tiles will come from

the spritesheet we saw earlier.

Chapter 3 Dungeoning

37

 A basic tilemap
To represent the tilemap grid, we’ll use a bidimensional array where each

element is a number that matches a tile in our spritesheet. A 5x5 dungeon

with textured floor on each side and empty floor everywhere else would be

represented as

let dungeon = [

 [1,1,1,1,1],

 [1,0,0,0,1],

 [1,0,0,0,1],

 [1,0,0,0,1],

 [1,1,1,1,1]

]

And this would lead to a dungeon that looks like:

If you check the spritesheet, you’ll see that the floor areas are the first

image in the sheet and that textured floor on each side is the second image.

Since arrays in JavaScript are zero indexed, those become image 0 and

image 1 from the spritesheet.

Chapter 3 Dungeoning

38

There is an important caveat in building the map array. If you use

numbers matching the spritesheet indexes and later you change the

spritesheet, you’ll end up needing to change all the maps or creating some

routine to remap those numbers at runtime. It is better to craft a map

with numbers that make sense for you and your design and remap those

numbers to values that correspond to the desired tiles in the spritesheet

just before drawing the map to the screen. This way, if you ever change the

spritesheet you’re using, you’ll only need to change that mapping data.

The create() function is where we’ll assemble our tilemap. The map

used in the sample code for this section uses a 10x10 map.

let level = [

 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

]

We’re mapping 0 to mean floor and 1 to mean wall in our map. After it,

we need to remap them to the correct values for the tilemap we’re using.

The floor in the spritesheet is indeed the same value as the value we’re

using, but for the wall, we’re going to use image 554 which is a brick wall.

const wall = 554

const floor = 0

level = level.map(r => r.map(t => t == 1 ? wall : floor))

Chapter 3 Dungeoning

39

To draw that tilemap to the screen, we need to create a configuration

object holding the information about it to hold the level data and the

dimensions for each tile. Since our tiles are 16 pixels square, we store that

value in a constant because we are going to use it multiple times during

this sample.

const tileSize = 16

const config = {

 data: level,

 tileWidth: tileSize,

 tileHeight: tileSize,

}

Let’s use that configuration object to create a tilemap and attach a

tileset to it. The tileset is what will match our spritesheet to the tilemap.

const map = this.make.tilemap(config);

const tileset = map.addTilesetImage('tiles', 'tiles',

tileSize, tileSize, 0, 1);

A tilemap is created by passing the configuration object to this.

make.tilemap(), and then an inherited function attached to the new

map is used to add the tileset image to it. You can create all sorts of

game objects using functions from this.make.*; they are part of the

GameObjectCreator class.2

That addTilesetImage3 function is receiving a lot of arguments; most

of them are optional, but I’ve noticed that if I don’t pass them in this

sample, the map doesn’t work.

2 GameObjectCreator class documentation: https://photonstorm.github.io/
phaser3-docs/Phaser.GameObjects.GameObjectCreator.html

3 Documentation for addTilesetImage: https://photonstorm.github.io/
phaser3-docs/Phaser.Tilemaps.Tilemap.html#addTilesetImage__anchor

Chapter 3 Dungeoning

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectCreator.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectCreator.html
https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.Tilemap.html#addTilesetImage__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.Tilemap.html#addTilesetImage__anchor

40

Phaser supports many different map data formats beyond the arrays

we’re using. Many developers use map editors such as Tiled4 to build their

maps. These editors can export the map in rich formats which Phaser can

import. Since we’re not using such tools, we end up having to specify a lot

of data that would be present in the exported map data by hand.

The first argument to addTilesetImage is the tileset name as

exported in the map data. We don’t have a map data as we’re not using

a map editor. We’re passing tiles which is the same key we used in

the spritesheet loading. The second argument is the key of the cached

image from preload(), which is tiles. If we don’t pass this second

parameter, it uses the first one as the key to look for the image; it is a bit

confusing. We just pass them both to be clear about what we’re doing.

The rest of the arguments are all data that would be present in the export

from a map editor, all of which we need to explicitly pass since we’re

assembling everything by hand. The third and fourth arguments are the

tile dimensions, their width and height. The fifth and sixth arguments are

related to the margin around the spritesheet and the gap between images.

All values are in pixels.

Phaser’s tilemaps can have multiple layers in them, much like placing

acetate sheets on top of each other in classic old-school animation or

working with Adobe Photoshop layers. The layers can be used to separate

game elements into background and foreground layers so that they can

appear on top of each other.

There are two types of layers, dynamic and static; the former trades

some speed and performance to be able to apply powerful per tile effects.

For the tilemap we’ll be drawing in this sample, we’re going to use a static

tilemap since we’re not doing any kind of such effects at the moment.

const ground = map.createStaticLayer(0, tileset, 0, 0);

4 Tiled map editor: www.mapeditor.org/

Chapter 3 Dungeoning

http://www.mapeditor.org/

41

Even though we’re assigning our static layer to the ground variable,

we’re not doing anything with it later. It is just to document that that is

the ground layer, where the floor and walls are. The first argument to

createStaticLayer() is the layer ID; this can be either a number or a

string and is used by other functions to refer to the layer. We’re using 0

because naming it with a string is used only when you’re loading maps

exported from the Tiled map editor. The second argument is the tileset you

created previously.

If you load that sample in your browser, you’ll see a tilemap that looks

like Figure 3-2.

Figure 3-2. Basic tilemap

Chapter 3 Dungeoning

42

And that is how you draw a tilemap. There was a lot to digest in this

section, and it is very beneficial to check the linked documentation for

the Phaser functions. Another important exercise to do now is experiment

with that map array and different values. Can you place four pillars in that

room? A skeleton on the ground?

What about drawing a dungeon? Well, that is our next sample.

 A basic dungeon
It is important at this point to understand why I left the procedural

generation part of the book to future chapters. Many people think that the

foremost feature of a roguelike is procedural generation; to be honest, I’m

on that camp as well.

Still, if we leave it to later chapters in the book, we can nail down lots

of the basic mechanics of our game and have a better understanding

of Phaser and game development by the time we reach those chapters.

This way, we can play with procedural generation and appreciate how it

alters and enriches the whole game development experience instead of

learning both game development basics and procedural generation at

the same time.

The next sample is in the chapter-3/example-2-basic-dungeon folder,

and it is exactly the same code as the previous sample. The only change is

that we alter the level array to be a real dungeon-like map instead of a 10

by 10 simple grid. Another small change was to alter the game.js included

in the HTML to mark it as a JavaScript module so that we can use import

inside it to load the map data from a different file. The level data has been

placed outside the main source code because it is massive, which is also

the reason why I’m not pasting it in here.

Load it and you’ll see a dungeon like Figure 3-3.

Chapter 3 Dungeoning

43

 Adding a player character
This sample will be quite familiar as it combines techniques we learned

in this and the previous chapters. The folder for it is chapter-3/example-

3- playable-dungeon. As our sample code grows and reuses parts of the

previous samples, I’ll only show what changed or what is new. It is best to

read these chapters with the source code open in your computer or at least

refer to that code later before moving on to the next chapters.

Our player character image is coming from the same spritesheet as

the dungeon elements, so we don’t need to change the sample preload()

function to load any extra image file.

In Chapter 2, we built a simple game loop that allowed us to change the

position of the displayed text by reading the state of the arrow keys in the

update() function. A similar approach would suit an action RPG more than

the roguelike we’re building because those games tend to rely more on

quick real-time action than the tactical pondering that turn- based games

Figure 3-3. Basic dungeon

Chapter 3 Dungeoning

https://doi.org/10.1007/978-1-4842-6059-3_2

44

are usually known for. Phaser is genre agnostic, but it is a bit biased toward

real-time action and has many built-in features that support such use case.

Being turn based is one of the requirements we placed on our roguelike

which means that we need to build our own turn-based mechanics on top

of what Phaser offers.

This is the point in our source code where things start becoming more

complex in terms of organization and planning. Adding a player character

may sound like a simple task, but to accomplish that, we are going to have

to implement lots of features that are a part of the core game mechanics.

It is a lot of work, but by breaking it down into smaller pieces, we’ll be able

to handle it. A key step in making all this manageable is to stop throwing

everything inside preload(), create(), and update() and start building

little modules and classes to help. In this sample, we’re going to build

some new modules including a turn manager and a dungeon manager and

a player character class.

Much of the abstractions and workflows present in this book are

coming from pen and paper RPGs and wargames. If you’ve never played

one of those, I think it is beneficial to learn more about them as you read

this book. There are many YouTube channels and podcasts that record

play sessions, including play sessions with professional actors. Spending

some time checking those games out might flesh out the mechanics we’re

building here in this chapter.

 It begins with a dungeon manager
As mentioned earlier, Phaser has a ton of features, but it is not biased

toward roguelikes. To create a more ergonomic project, we’re going to

build auxiliary modules that abstract some of Phaser away so that we can

think more in terms of our roguelike than in terms of Phaser.

Chapter 3 Dungeoning

45

The main responsibility of our dungeon manager is to load the level

and connect the Phaser plumbing necessary to show it on the screen.

Some of the code that was in the create() function in the previous sample

will now be a part of the dungeon module. As our roguelike becomes more

complex, this module will accrue more and more functionality. For this

sample, we’ll use it to load our premade level and create the necessary

tilemap, tileset, and dynamic layer for our game. We need to switch to a

dynamic layer because the player will be moving on that layer, and in a

static layer, it is impossible to change tiles.

In the future, when we start doing procedural generation, this module

internals can be changed while the rest of the game remains the same. Part

of the refactoring of these routines into it is preparing the groundwork for

those future chapters.

These are the responsibilities of the dungeon manager:

• Loading the premade level

• Remapping the numbers used in that level to tiles from

our spritesheet

• Creating the tileset, tilemap, and dynamic layer used by

our map

The code for the dungeon manager is inside the dungeon.js; let’s go

over it. We’re using ES6 modules; if their usage and structure are not clear

to you, check out the documentation about them at MDN Web Docs.5

We begin by importing the level data:

 import level from "./level.js"

5 JavaScript modules documentation: https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Guide/Modules

Chapter 3 Dungeoning

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules/

46

All of the code for the dungeon manager is contained in an object

literal called dungeon which we export as the default export at the end of

the file. Inside the dungeon object, we create a sprites literal object to map

human-readable keys to the values used by our spritesheet.

sprites: {

 floor: 0,

 wall: 554,

}

We’ll use those values later in a mapping function much like the

chapter-3/example-1-simple-tilemap/ sample did.

An initialize() function is used to handle all the code that was

previously handled by the create() inside our previous samples. This

function receives the current scene that is calling it as an argument.

initialize: function (scene) {

 this.scene = scene

 scene.level = level.map(r => r.map(t => t == 1 ?

this.sprites.wall : this.sprites.floor))

 const tileSize = 16

 const config = {

 data: scene.level,

 tileWidth: tileSize,

 tileHeight: tileSize,

 }

 const map = scene.make.tilemap(config)

 const tileset = map.addTilesetImage('tiles', 'tiles', 16,

16, 0, 1)

 this.map = map.createDynamicLayer(0, tileset, 0, 0)

}

Chapter 3 Dungeoning

47

It first saves a reference to the scene because in the future our game

entities will import the dungeon manager and might need to do something

to the scene.

As can be seen, the code is a combination of the first and second

samples for this chapter as it uses a mapping call to replace the ones in

the map with the corresponding wall value from the spritesheet like the

first sample, but it is using an externally loaded level data like the second

sample.

The rest of the code is almost a copy and paste from the previous one

but with some important changes. The dynamic layer created is saved

to dungeon.map; this will be used by the player character class to inspect

the map and decide upon its movement. Before we implement the player

class, we must talk about turns and turn management.

 Creating a turn manager
There are many ways to code a turn manager. Game developers can

overengineer this as much as they want, and part of the charm of a

roguelike can actually be the nifty complex ways the turn mechanics

play out.

My favorite turn-based computer games all had the same mechanics

regarding turn management: each character would have an amount of

points to use in their turn, doing actions would cost points, and the turn

was over when you were out of points. Phaser will call update many times

per second so we can’t simply block the actions there and handle player

input in an imperative way. We’ll have to code our own turn manager

on top of the frequent calls to update to implement the mechanics I

outlined at the start of the paragraph. The code will resemble a state

machine; each game entity will change their state between having points

to spend, being out of points, and refreshing their points. A simple way of

implementing a turn manager is simply handling the player movement

as in an action game and, after each move, iterating over the other

Chapter 3 Dungeoning

48

game entities and their actions. Our sample will do something a bit

more involved than that without actually going toward a super complex

solution; our objective will be to implement mechanics that are similar to

the ones outlined earlier.

All our game entities, may they be the player, monsters, or something

else we invent in the future, will be new JS classes. These classes will

necessarily implement the following methods:

Method Explanation

turn() Called when it is their turn. Should perform all actions needed for

that turn.

over() returns a Boolean flagging if the turn for that entity is over or not.

refresh() Called before a new turn takes place.

At the beginning of a turn, our manager will call refresh() on each

entity. Then each entity will perform their turn(). If over() returns true

for all entities, a new turn begins. The reason behind having an over()

method is so that if you don’t return true in it, that entity will get another

call to turn(). This enables an entity to have many actions per turn in the

future, such as creating a monster that moves many tiles in a turn while the

player moves just one. This can instill fear in the player quite easily.

The turn manager is in its own module inside turnManager.js; it is a

singleton and is used by the update() code in game.js. The code is inside

a literal object called tm (short for turn manager, makes it easier to paste

code in the book because it is shorter). We’ll use a JavaScript Set6 to hold

6 MDN Web Docs documentation for Sets: https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

Chapter 3 Dungeoning

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

49

the entities present in the dungeon and provide functions to add and

remove entities from this set besides that it mimics the preceding workflow

by having turn(), over(), and refresh() functions that call the similarly

named functions for each entity present in the set.

Let’s go over the code used for managing entities.

entities: new Set(),

addEntity: (entity) => tm.entities.add(entity),

removeEntity: (entity) => tm.entities.remove(entity),

Using a Set() to hold an entity prevents us from adding the same

entity twice; these kinds of bugs are sometimes hard to track down so

using a data structure that doesn’t support adding the same entity more

than once makes our code safer. There are two functions, one for adding

an entity and another for removing it; we’re not using the remove function

in this sample, but we’ll use it in the future so it was easier to implement it

already.

Next, let’s implement the code for turn() which is responsible for

calling the turn() method of each entity. As written earlier, we could’ve

opted for a simpler turn manager, but I don’t think it would be as fun as

this one. What the turn() function does is to loop over the entities set,

checking if each entity turn is over(); if it is not, then it picks that entity

and calls its turn() method and then breaks the loop.

This breaking is important because it enables the turn() for that

entity to be called again before calling turn() on other entities as the

loop will run again from the start after the break during the next scene

update() call, thus allowing our entities to have multiple actions per

turn which will come in handy once we start building new character

classes and monsters.

Phaser runs the scene update() cycle very fast; that’s how the game

gets 60 fps. The problem with that is that if we simply call tm.turn() on

each update(), our game runs too fast. What I mean by that is that if our

player presses the down arrow key to move its character down a tile and

Chapter 3 Dungeoning

50

we’re running at 60 fps, then the key will register as pressed down for

multiple iterations of the update() cycle, causing the character to sprint

in that direction very fast. Our turn handling mechanics are not broken,

they’d just be running new turns very fast.

To cope with that, there is a simple debouncing code in the turn

manager. It keeps track of when turn() last run in milliseconds and

only allows it to be called again if 150 milliseconds passed since the

last call. It is like putting a break on a fast car so that you can move

a bit slower and enjoy the view. We store a property in the tm object

called lastCall and initialize it with the current date; there is also an

interval property that is set to the amount of milliseconds we want to

wait between turns.

 turn: () => {

 let now = Date.now()

 let limit = tm.lastCall + tm.interval

 if (now > limit) {

 for (let e of tm.entities) {

 if (!e.over()) {

 e.turn()

 break;

 }

 }

 tm.lastCall = Date.now()

 }

 }

The most interesting part is the breakable loop as mentioned earlier.

With that module done, it becomes much easier to implement and

understand the player class.

Chapter 3 Dungeoning

51

 The player class
The player character is a class not because we’re thinking about

implementing multiple players, but because this will be the pattern used by

other game entities, and once we implement other character types, they can

inherit from this base class. The code for the player class is inside player.js.

The player class, which is the default export of player.js, imports the

dungeon manager which is a singleton so it has access to the scene and the

level data to calculate its movement.

In this game entity, we’re using the concept of movement points which is

common in wargames and tactical RPG games. Basically, a game entity has a

quantity of movement points to use per turn. Each time they move, they spend

a movement point. Once the movement points of the entity reach zero, their

turn() is over(). Our player character will start with one movement point and

in each refresh() will get that point back. In the future, once we add more

complexity to the game, we’ll have other points as well, but for now that is all

we need since this sample is only concerned with movement.

The constructor for our player class receives as argument the coordinates

where the player character is placed on the map. In that function, we store

the coordinates, create and store the cursor keys used for movement, store a

reference to the sprite used for that character, and draw it in the map (which

the class has access because it imported the dungeon module).

constructor(x, y) {

 this.movementPoints = 1

 this.cursors = dungeon.scene.input.keyboard.createCursorKeys()

 this.x = x

 this.y = y

 this.sprite = 29

 dungeon.map.putTileAt(this.sprite, this.x, this.y)

}

Chapter 3 Dungeoning

52

Besides storing a bunch of references for future use, there is a function

which we haven’t seen before: putTileAt().7 This is from the dynamic

layer class and allows us to place a different tile at a given coordinate.

We’ll use that to simulate the player movement in the map by switching

the destination tile sprite with the player character sprite and the previous

location back to the floor sprite.

Implementing both refresh() and over() is easy now that we

understand the mechanics.

refresh() {

 this.movementPoints = 1

}

over() {

 return this.movementPoints == 0

}

Quite straightforward isn’t it? The turn() function is a bit more

involved, and it resembles the code used in Chapter 2 to move the text.

At the beginning of the turn() function, we store the current player’s

position and create a Boolean to store if the player moved or not.

let oldX = this.x

let oldY = this.y

let moved = false

7 Phaser 3 documentation for putTileAt: https://photonstorm.
github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.
html#putTileAt__anchor

Chapter 3 Dungeoning

https://doi.org/10.1007/978-1-4842-6059-3_2
https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#putTileAt__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#putTileAt__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#putTileAt__anchor

53

Then, check if the player has movement points left; check each cursor

key and update coordinates as needed.

if (this.movementPoints > 0) {

 if (this.cursors.left.isDown) {

 this.x -= 1

 moved = true

 }

 if (this.cursors.right.isDown) {

 this.x += 1

 moved = true

 }

 if (this.cursors.up.isDown) {

 this.y -= 1

 moved = true

 }

 if (this.cursors.down.isDown) {

 this.y += 1

 moved = true

 }

 if (moved) {

 this.movementPoints -= 1

 }

}

Chapter 3 Dungeoning

54

If moved is true, subtract a point from the movement points. This is

what will eventually cause over() to return true and end the player’s turn.

By the end of that part of the code, the coordinates for the player character

will be at the new position, but the screen is not updated yet, so we can

actually revert the movement if the player is actually moving into a wall.

let tileAtDestination = dungeon.map.getTileAt(this.x, this.y)

if (tileAtDestination.index == dungeon.sprites.wall) {

 this.x = oldX

 this.y = oldY

}

The getTileAt()8 function is the inverse function of putTileAt()

which we’ve seen before. Finally, it is just a matter of drawing the player

character in the new position and flipping the tile in the old position to a

floor tile.

if (this.x !== oldX || this.y !== oldY) {

 dungeon.map.putTileAt(this.sprite, this.x, this.y)

 dungeon.map.putTileAt(dungeon.sprites.floor, oldX, oldY)

}

The player class is now complete. It doesn’t do much except handling

movement, but that is our current project. It is time to integrate all of this

back into the scene.

8 Phaser 3 documentation for getTileAt(): https://photonstorm.github.io/
phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#getTileAt__anchor

Chapter 3 Dungeoning

https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#getTileAt__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#getTileAt__anchor

55

 Updating the scene
The game.js file for this sample is much simpler than the previous ones

since we extracted most of the logic contained in them into the modules

we just implemented. It is quite similar to the previous sample, but at the

top, we start by importing our new modules and the player class.

import dungeon from "./dungeon.js"

import tm from "./turnManager.js"

import PlayerCharacter from "./player.js"

Compared to the previous sample, the only changes are to the

create() and update() functions. The preload() remains the same and

just loads the spritesheet.

Look at how streamlined the new create() function is:

create: function () {

 dungeon.initialize(this)

 let player = new PlayerCharacter(15, 15)

 tm.addEntity(player)

}

It just initializes the dungeon manager passing the scene itself, and

then it creates a new player instance and adds it to the turn manager.

The update() function is also quite simple. It checks to see if the turns

are over(); if they are, then all entities are refresh() and then turn() is

called over and over again.

update: function () {

 if (tm.over()) {

 tm.refresh()

 }

 tm.turn()

}

Chapter 3 Dungeoning

56

When you load that sample in the browser, you’ll see a dungeon with a

player character in the room at the top-left corner, just like Figure 3- 4.

You can use the arrow keys to move the character around. Holding a

key pressed will slowly move the character in that direction, thanks to

our debouncing code. You’ll collide with walls, and you can save some

movement points by moving diagonally by pressing both arrow keys at

the same time as the turn() code checks for all of the inputs in a single

iteration.

 Exercise
Can you alter the player class so that it has more moves per turn? Can you

make the player dig through walls?

Figure 3-4. Playable dungeon

Chapter 3 Dungeoning

57

 Summary
This chapter finally started us in the journey of roguelike development.

You worked hard and now you have both a dungeon and a moving

character. Let us recap what we’ve learned:

• How to use Phaser scene lifecycle functions such

preload(), create(), and update() in a roguelike

development setting

• How to implement turn-based mechanics on top of a

genre-agnostic game development library

• What tilemaps are and how to use them

Study and get to know the final sample well; we’ll be using and

improving upon the dungeon and the turn manager modules and the

player class because in the next chapter, we’re adding monsters.

Chapter 3 Dungeoning

	Chapter 3: Dungeoning
	What are tilemaps?
	Drawing a tilemap
	Preloading a spritesheet
	A basic tilemap

	A basic dungeon
	Adding a player character
	It begins with a dungeon manager
	Creating a turn manager
	The player class
	Updating the scene

	Exercise
	Summary

