
Roguelike
Development
with JavaScript

Build and Publish Roguelike Genre
Games with JavaScript and Phaser
—
Andre Alves Garzia

Roguelike
Development with

JavaScript
Build and Publish Roguelike
Genre Games with JavaScript

and Phaser

Andre Alves Garzia

Roguelike Development with JavaScript: Build and Publish Roguelike

Genre Games with JavaScript and Phaser

ISBN-13 (pbk): 978-1-4842-6058-6		 ISBN-13 (electronic): 978-1-4842-6059-3
https://doi.org/10.1007/978-1-4842-6059-3

Copyright © 2020 by Andre Alves Garzia

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978-1-4842-6058-6. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Andre Alves Garzia
London, UK

https://doi.org/10.1007/978-1-4842-6059-3

To Lily, Cleo, and Alfafa, who I kept awake by typing
throughout the night.

v

Table of Contents

Chapter 1: ��Before We Begin���1

What are roguelikes?���1

The Berlin Interpretation���3

What are roguelites?��5

What are roguelikes for this book?��6

Why develop roguelikes?���7

Why use web technologies?��8

Why Phaser?��10

What we’re building���12

Chapter 2: ��Introduction to Phaser���13

Introducing Nano Dungeon��13

Setting up���14

Installing a web server���15

Choosing a code editor���16

Getting the source code���16

Running the examples��17

How games work���17

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

vi

Introducing Phaser���19

Phaser scenes��20

A simple scene���20

Exercise���30

Summary���31

Chapter 3: ��Dungeoning��33

What are tilemaps?��33

Drawing a tilemap��34

Preloading a spritesheet���34

A basic tilemap���37

A basic dungeon��42

Adding a player character��43

It begins with a dungeon manager���44

Creating a turn manager��47

The player class���51

Updating the scene���55

Exercise���56

Summary���57

Chapter 4: ��Enemies and Permadeath��59

Dungeon initialization��60

Movement support���61

Initializing entities��62

Moving entities���63

The player becomes a sprite��65

Our first monster��69

Creating the basic monster class���71

Adding the monster to the dungeon���73

Table of Contents

vii

Basic combat mechanics���75

From basic monster to dangerous monster���75

Refactoring the dungeon manager���78

The player class learns how to attack��85

Exercises��89

Summary���90

Chapter 5: ��Treasures and Equipment���91

Creating a user interface for our game��91

How it was implemented��93

Game.js refactoring��93

Implementing world.js��94

New dungeon.js feature���98

Creating the UI scene���98

Implementing the monster UI���102

The player user interface���104

Creating equipment and treasure��108

Adding item support to the player character��109

Reworking the dungeon module��118

Let’s create some items���120

Adding items to the dungeon���129

Adding monster loot���130

Exercises��133

Summary���133

Chapter 6: ��Character Classes��135

Yet another refactor���136

Support for defensive bonuses���137

Support for ranged attacks���137

Table of Contents

viii

Refactoring the dungeon module���138

Patching the generic item��142

Creating a basic hero class��143

Creating a warrior class���151

Creating a dwarf��154

Creating a cleric���157

Creating an elf��160

Creating a wizard���163

Exercises��170

Summary���171

Chapter 7: ��Procedurally Generated Monsters and Items�������������������173

Introducing tags���174

Aren’t you describing mixins?��175

Tags as pipelines��175

Making good tags���175

Tags and procedural generation���176

Adding support for tags���177

Making entities taggable��177

Making heroes taggable���188

Making items taggable���188

Making enemies���189

A basic enemy class���189

Revisiting the skeleton���197

Creating a bat���198

Making an orc���199

Making a troll���201

Implementing the enemies module��202

Creating the items module���203

Table of Contents

ix

Refactoring the dungeon module���205

Creating tags��208

Making monsters more aggressive��208

Making fast monsters���210

What about golden things?���210

We might as well have a silver tag���213

And an iron tag as well���214

Making enemies royal��215

Making a flexible burning tag���216

Making stuff poisonous��219

Things can be cursed too���219

Making enemies move���219

The hunter��220

Monsters that are going somewhere��221

Patrolling the dungeon���225

Creating the tags module���228

Refactoring the world scene��232

Procedural generation is not just throwing random things��������������������������������233

Exercises��235

Summary���235

Chapter 8: ��Procedurally Generated Dungeons�����������������������������������237

Dungeons, fun, and replayability��238

How to screw up dungeons���241

Using BSP to build dungeons���242

Using a BSP tree to generate room areas��244

Creating the DNode class���245

Creating the DArea class��246

Building a BSP tree���247

Table of Contents

x

Splitting areas��248

Creating the BSPDungeon generator class���251

Changing the world scene��252

Creating rooms��255

Iterating over leaves���256

Carving rectangles���257

Making rooms���258

Adding rooms to the constructor��258

Making corridors��260

Making a line in the level data���260

Making a corridor���261

A procedurally generated dungeon��262

A better dungeon���264

Exercises��269

Summary���269

Chapter 9: ��Finished Game��271

Adding multiple levels��271

Modifying BSPDungeon to support multiple levels���������������������������������������272

Letting the dungeon module create the dungeon��275

Changing the world scene��281

Changing the UI scene��283

Housekeeping functions���284

A hero that walks through stairs��286

Connecting the levels with stairs���289

Creating a game over scene��294

Building a game intro screen���299

Table of Contents

xi

Completing the quest���303

Quest complete scene��304

Creating a quest module��306

Refactoring the dungeon module���307

Creating the amulet item��307

The game is complete��309

Publishing��311

Publishing with Vercel��312

Publishing with Surge��312

Exercises��313

Where to go next?��314

�Index��317

Table of Contents

xiii

About the Author

Andre Alves Garzia is a developer who

loves web and game development. In recent

years, he has published books about building

games for Firefox OS and managed a web

literacy program in vulnerable neighborhoods

of Rio de Janeiro. He is a firm believer in

empowerment through technological

experimentation and thinks game

development should be on everyone’s bucket

list. He lives in London and wonders if the UK

procedural generator is biased toward raining.  

xv

About the Technical Reviewer

Cédric Stoquer has been in the video

game industry for more than 10 years, as

a JavaScript game and engine developer.

He worked on projects for Ankama, Square

Enix, and Bandai Namco. He is the creator of

Pixelbox, an all-in-one 2D game engine for

making retro-looking games with JavaScript.

Cédric can be found on Twitter at @cstoquer

or reached at https://cstoquer.itch.io/

pixelbox.  

https://urldefense.proofpoint.com/v2/url?u=https-3A__pixwlk.itch.io_pixelbox&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=KBdAFnYmDxoFKGFv3o8nz0lug9UIhLBSHbiZ2JANXOo&m=zR8XULV7OlbB7h2DXlMM5QRynhxwwKdOlQfmNW4h6zs&s=FnJVidch7RTPUk538GSTYgdmhZb71lgQm1DjBSug2FA&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__pixwlk.itch.io_pixelbox&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=KBdAFnYmDxoFKGFv3o8nz0lug9UIhLBSHbiZ2JANXOo&m=zR8XULV7OlbB7h2DXlMM5QRynhxwwKdOlQfmNW4h6zs&s=FnJVidch7RTPUk538GSTYgdmhZb71lgQm1DjBSug2FA&e=

xvii

Acknowledgments

This author holds a debt of gratitude to all the amazing people who, decade

after decade, keep producing amazing roguelike content and making it

freely available online. To the welcoming warmth of communities like

RogueBasin,1 Roguelike Celebration,2 and the roguelikedev3 subreddit,

without their content I wouldn’t know where to start.

To Kenney,4 who is an eternal fountain of generosity and makes a ton

of free game assets. Their 1-Bit Pack is used in this book and is responsible

for most of the charm you’ll see on screen.

To Jack Oatley,5 who made the Doomed font which we use in Chapter 9.

That font is sick!

To Xueqiao Xu,6 whose pathfinding library is at the heart of all that is

dangerous inside our dungeon.

To Richard Davies and the team behind Phaser,7 my dream library to

work web games.

To Andrzej Mazur,8 who keeps inspiring me to create gamedev content

since all the way back to the old Firefox OS days.

And finally to the editorial team at Apress, who were patient and

helpful amid an ever-changing world.

1�www.roguebasin.com/index.php?title=Main_Page
2�https://roguelike.club/
3�www.reddit.com/r/roguelikedev/
4�https://kenney.nl/
5�http://jack-oatley.com/
6�http://xueqiaoxu.me/
7�https://phaser.io/
8�https://end3r.com/

http://www.roguebasin.com/index.php?title=Main_Page
https://roguelike.club/
http://www.reddit.com/r/roguelikedev/
https://kenney.nl/
http://jack-oatley.com/
http://xueqiaoxu.me/
https://phaser.io/
https://end3r.com/

xix

Introduction

Before anything else, thank you for your purchase; without curious readers

like you, this book has no reason for existing. I am excited to be joining

you on a game development journey through the chapters of this book and

beyond. Together, we’ll develop a casual roguelike game based on web

technologies and learn more about this beloved and enduring genre.

By the end of the book, you’ll have a toolset and a game that can be

used to build more complex and rewarding roguelike experiences; you’ll

also have a collection of links and resources to investigate and learn more

about both general game development and specific roguelike techniques.

�Who this book is for
This book is intended for web developers and web game developers who

are curious about roguelikes. You don’t need to be a JavaScript ninja to

be able to handle the code in this book; I have kept the code simple and

flexible so that beginners and intermediate developers can feel confident

not only to understand what is on the source files but also to tweak them to

their hearts’ content.

If you are already a roguelike developer but have been working with

a different language and are curious about web technologies, this book

will be a rewarding experience for you. Some of the roguelike techniques

shown will feel basic for seasoned roguelike developers; just remember

that this is an introductory book, and the first steps in any journey are

usually the easiest ones, and that taking these initial steps is necessary for

newcomers to the genre.

xx

�How to approach this book
I’m a firm believer in technological experiments, so I have organized the

chapters and the code for this book to be approachable and inviting to

tinkerers and curious minds. The best way to approach each chapter is first

to read and understand the examples presented in it and then play, mold,

craft, tweak, and experiment a lot with it before moving to the next chapter.

The examples that we’ll build are a bit vanilla; they lack what makes a

game your game. By changing the code and taking ownership over it, you’ll

craft something that is uniquely yours, and that is always more rewarding

than whatever example I could build.

Our approach is one of working and reworking through the code as

we move through chapters and build more complex features. Like any

roguelike game, we’ll reach dead ends, backtrack, find and squash bugs.

This is not about presenting a pristine single sample from which you

could grasp the true nature of roguelike development; instead it is about

building incrementally, having fun as we learn, and iterating as our ideas

and knowledge evolve. No game is developed perfectly from the start; all

games go through iterations, and so do our samples.

Your journey starts when you turn the next page.

Introduction

1© Andre Alves Garzia 2020
A. A. Garzia, Roguelike Development with JavaScript,
https://doi.org/10.1007/978-1-4842-6059-3_1

CHAPTER 1

Before We Begin
�What are roguelikes?
Welcome to the beginning of your game development journey, dear

reader; together we’re going to work through many chapters as we build a

casual roguelike game. But before diving deep into that, we should spend

some time defining and contextualizing what are roguelike games, where

they come from, and what is the definition we are going to use to define

this genre in this book.

The one thing most people agree is that it all started with a game called

Rogue created in the early 1980s. This game combined early influences

from the 1970s such as Colossal Cave Adventure, which was a text-based

adventure game that made use of interactive fiction to present textual

descriptions of the scenes and collect text input about actions, and the

gameplay of a pen and paper role-playing game like Dungeons & Dragons,

in which players explore a dungeon filled with monsters and treasure.

What Rogue brought to the table was a spatial representation of the game

by drawing the game world onto the screen using ASCII characters (as can

be seen in Figure 1-1), instead of describing it using natural language, and

infinite replayability by using random generation to produce the mazes

and dungeons. A game of Rogue was always a unique experience; you

could play it over and over.

https://doi.org/10.1007/978-1-4842-6059-3_1#DOI

2

From that period onward, there were hundreds of roguelike games

released. Roguelike is one of the few gaming genres from the 1980s that

is still popular and seeing constant fresh releases and innovation. The

problem with long-lived genres is that they end up amassing such a large

corpus of content that it becomes really hard to define them. The roguelike

community still has its fair share of flame wars trying to decide if one

game is a roguelike or not. Be aware that many features we take as the

staples of the genre were not present in the early days and that those early

developers didn’t care if their game was a roguelike or not; all they wanted

to do was to ship good games. In due time, many of those games converged

toward a common set of features which became cornerstones of the genre.

Figure 1-1.  A representation of what a game of Rogue looked like
in an IBM PC1

1�Image by Michael Toy, Kenneth C.R.C. Arnold, Jo. Released in the public domain.

Chapter 1 Before We Begin

3

�The Berlin Interpretation
In 2008, people present at the International Roguelike Development

Conference coined what became known as The Berlin Interpretation2

which is an attempt at defining what a roguelike is. They decided upon

a canon of games, and the definition of what is a roguelike was extracted

from the common set of features present in those games. The games in

the canon were Rogue, NetHack, Angband, and ADOM. From that set of

features, they further divided them into high-value factors and low-value

factors, which can be viewed in Tables 1-1 and 1-2. A game doesn’t need

to have all those factors to be a roguelike, but this list helps us understand

what this community valued at that time and place.

2�www.roguebasin.com/index.php?title=Berlin_Interpretation

Table 1-1.  High-value factors in roguelikes according to The Berlin

Interpretation

Factor Explanation

Random generation The world is randomly generated so that each game is unique.

Permadeath Dying in the game causes it to start over from the beginning.

Turn based The game reacts after the user input. The player can wait and

plan their move without fear that things are happening behind

their back.

Grid based The game is represented in a grid; both the players and all the

other game entities (such as enemies) are placed on this grid.

(continued)

Chapter 1 Before We Begin

http://www.roguebasin.com/index.php?title=Berlin_Interpretation

4

Factor Explanation

Nonmodal All the actions that are possible in the game are possible

on the same screen. There is no need to switch to different

modes of play.

Complexity The game is complex and flexible enough to allow multiple

solutions for the challenges presented during gameplay.

Resource

management

In-game resources are limited, and managing them is part of

the fun.

Hack‘n’slash Killing lots of enemies is part of the game.

Exploration and

discovery

The game requires the player to explore through different levels

and discover mysterious objects and entities and their interplay.

Table 1-1.  (continued)

Even in the selected canon of games, those factors are not always

present. Both Angband and ADOM have different modes, for example.

Table 1-2.  Low-value factors in roguelikes according to The Berlin

Interpretation

Factor Explanation

Single player

character

The game is focused on the player controlling a single

character throughout the gameplay.

Enemies and players

are similar

The mechanisms and features that apply to players also

apply to enemies.

Tactical challenge It is crucial to learn tactics to complete the game. Due to the

procedural generation, you can’t simply memorize how

to win.

(continued)

Chapter 1 Before We Begin

5

There are many criticisms of The Berlin Interpretation. Many

people feel that the definition is dated and not representative of the

current state of roguelikes.3 I’ve included it in this book to help us

think about these factors and which of them are valuable to us. The

categorization of games into an ever-evolving genre is quite difficult,

and I don’t believe we should spend too much time worrying if we’re

roguelike enough to merit the moniker in the little game we’ll build

together through the course of this book.

�What are roguelites?
Diving deeper into the mud of categorization, there is another label we

need to learn about even if only to reject it later: roguelites. The usual

roguelike is a game that rewards investment of time and study. To ascend

in a game such as NetHack, you’ll need to invest a lot of time learning

tactics and features and be prepared to play it over and over again. A game

such as Dwarf Fortress, a fantastic game that by many dated categorization

Factor Explanation

ASCII display It is customary for roguelikes to use ASCII to build its

interface.

Dungeons Most roguelikes are dungeon based with multiple levels,

mazes, and rooms.

Numbers The values used to represent character characteristics and

traits are deliberately shown.

Table 1-2.  (continued)

3�“Screw the Berlin Interpretation!” article: www.gamesofgrey.com/blog/?p=403

Chapter 1 Before We Begin

http://www.gamesofgrey.com/blog/?p=403

6

schemes would barely qualify as a roguelike but that in my own opinion

is indeed a superb roguelike, is a game that is almost impossible to play

effectively without its wiki and the associated community articles about it.

As you might have guessed, there is a whole niche of casual gamers

that was not being served by the usual roguelikes. With the advent of

smartphones and other small mobile computing devices, there was a

surge in casual gaming. People want to game in their commutes. Pick

up and play games that are quick and don’t require a huge investment

before you’re having fun are the most common released games these days.

Roguelites are the answer to that need. They are games that are easy to

pick up and play without the need of learning complex mechanisms. They

often skew toward fully graphical interfaces with less possible actions than

the more traditional roguelikes and are very popular.

The problem with all the categorization is where you draw the line.

What extra feature do you add to a roguelite that makes it spill over and

become a roguelike? Is it even worth making such distinction? Those are

rhetorical questions that the community is still heavily invested in debating.

This kind of simpler roguelike has been known by other labels such as

roguelike-like, roguelike-ish, and so on. It doesn’t really matter. What is

important is that some people want to make it possible to distinguish when

a roguelike game is simpler and caters toward casual gaming.

�What are roguelikes for this book?
For this book, we’re defining a roguelike as a game that

•	 Uses procedural generation to produce its tile-based

world

•	 Has permadeath

•	 Uses a turn-based action system

•	 Has multiple levels for the player to explore

Chapter 1 Before We Begin

7

�Why develop roguelikes?
Game development in general is not only fun but it teaches you many

techniques and approaches to common programming challenges

that are applicable way beyond gaming. Roguelikes in particular will

appeal to those who enjoy computer science, for it allows them to

focus on algorithms, data structures, and their interactions. It will also

be a wonderful medium for those of us who enjoy storytelling and

worldbuilding, for a roguelike lives and dies by the sum of its mechanics,

themes, and gameplay. In essence, roguelikes will provide a rich and

engaging platform for both sides of your brain. There is a lot for your

analytical side to ponder upon and experiment with and even more for

your creative side to craft and give life.

Roguelikes are among the few gaming genres where solo developers

and small teams are not at a huge disadvantage against major studios. Your

roguelike can make a mark in the industry and be loved by its players and

other developers alike. The roguelike community is very welcoming and

fun to participate in. There is a lot of incentive to share knowledge and

grow together.

Many AAA games are using techniques championed by roguelike

development such as procedural generation to improve the replayability

of the games and decrease the amount of time used for content creation.

Recent indie bestsellers have been relying on procedural generation not

only for level design but also for story and enemies. Permadeath adds a

layer of difficulty to those games that appeal to a niche but loyal hardcore

user base. I can see a trend where more and more mainstays of roguelike

development are not only incorporated by major games but are put into

the spotlight as reasons why those games are good.

I believe that roguelikes will help you acquire technical skills that are

not only directly employable by the general gaming industry but also serve

you well in other development. Your creative skills will also improve as

you both refine your coding to match your worldbuilding and vice versa.

Chapter 1 Before We Begin

8

Storytelling is an important skill to have that will serve you for the rest of

your life. The reasons I’ve quoted so far will help you explain to all your

friends and family why you’re doing this and justify your investment

of time into this craft, but the main reason for developing roguelikes is

because you want to develop roguelikes. It is a fun activity and you have an

idea, a little gem of mechanics, or theme, or constraint, that you want to

explore. There is a little dungeon inside your mind, your ideas are hidden

in it, and you want to invite more people in. Yes, you can justify learning

roguelike development using many rational arguments regarding career

and knowledge, but the best argument is an emotional one: you’re doing it

because you want to do it.

�Why use web technologies?
It is very hard to get someone to actually install some application you’ve

developed, even if it is a wonderful game. Thousands of games appear

in the popular application marketplaces every week. It is very hard to get

noticed, and studios spend a huge amount of money in marketing just to

convince people to give their game a try. The less friction your potential

users have in trying out your game, the higher are the chances they will

actually do it.

Web technologies allow us to ship games that are playable in a wide

range of devices without needing installation. Your web-based game will

potentially work on smartphones, tablets, laptops, desktops, and more.

You can still prepare those web-based games for distribution in popular

gaming marketplaces while still retaining the option to distribute them

on your own on the Web. It is the widest reach possible with the least

amount of friction. All your users will need to do is open a web page and

play the game.

Chapter 1 Before We Begin

9

There is another important aspect of using web technologies which is

that they can reduce the amount of time between shipping new versions of

your game to your users. This is especially important if you’re developing

a game in the open by constantly updating beta versions while receiving

feedback from testers. You won’t need to ship new game installers and wait

for the testers to update; you’ll update a single online web page, and all

of them will get and test the latest version. This rapid iteration will prove

beneficial not only for the gamers but for you as well as anything that saves

you time and headaches will free time and brain space for you to focus on

what is really important: your game.

In this book, we’ll be focusing mostly on JavaScript and using very

little HTML and CSS. JavaScript is a very approachable language which is

very forgiving for new developers who are just learning it for the first time

and very powerful in the hands of seasoned developers. A novice learner

will be able to use it and produce something usable without too many

challenges. Not all languages make it easy for new developers to produce

something they can show around while they are in the beginner phase

and still being useful to actually ship top-of-the-line games in the future.

Improving your JavaScript skills through roguelike development is a neat

way to level up as a developer.

There are other languages that are faster and provide more control

over resource usage than JavaScript. If you want a job in the industry,

it will be good to learn them too, but don’t think even for a second

that JS is not a good investment of your time. As Brendan Eich said,

“Always bet on JS!”, today’s JavaScript engines are very powerful virtual

machines which will empower your roguelike designs to the fullest. In

this book, you won’t find a moment where language and runtime will

be a constraint to us. JS will always be an asset and never a limitation in

our roguelike journey.

Chapter 1 Before We Begin

10

�Why Phaser?
There are many wonderful web-based game development frameworks out

there. For this book, I’ve chosen to go with Phaser4 because it is probably

the most popular game development framework available for JavaScript.

Working up from Vanilla JavaScript would force us to reimplement lots

of low-level game programming patterns. Instead, we are going to use

a genre-agnostic general-purpose game development framework. The

roguelike part of our code will be implemented by us, but we will be

standing on the shoulders of giants and leveraging all the hard work that

has been put into that framework for the generic game programming

features we’ll need.

Phaser is easy to learn and battle tested by thousands of games and

gamers. It is a real framework that is used in the industry, and learning it

helps you to be closer to what the professionals in the field are using. This

framework is used by both hobbyists and professionals alike. It has a lot

of learning materials available online for you to study it further, and it is

also used by another book from Apress which is focused on multiplayer

game development, so by combining these two books, you might end up

developing a multiplayer roguelike, right?

Phaser makes it easier to develop games that work across different

form factors. This is important to increase the reach of our game as people

using both small devices like smartphones and larger devices such as

laptops will be able to play our roguelike.

The general lifecycle and workflow of a Phaser game are similar to

other frameworks both web based and native. Many of the concepts you’ll

learn will be transferable if you end up deciding to use something different

in the future.

4�https://phaser.io

Chapter 1 Before We Begin

https://phaser.io

11

It is important to notice that Phaser is a general game development

framework; it doesn’t force or constrain you to some genre or type of game.

It is very flexible in that way, and you’ll be able to use it in other future

projects. That being said, we could be using a library specific for roguelike

development, and that would have saved us a huge amount of work by

providing ready-made and tested features that are common and important

to most roguelikes. I decided against using one of those libraries due to

two reasons.

The first and most important is that I think learning Phaser is

important for anyone doing web-based games. This makes this book useful

beyond roguelikes and also approachable by those who already know

Phaser and want to learn more about roguelikes.

The second reason is that by forcing us to reimplement some of those

features, we end up getting to understand them in a deeper and more

meaningful way than by simply using ready-made packages. This has the

positive side effect of making us appreciate more those developers who go

through the trouble of making those ready-made roguelike libraries. If you

try them out in the future, you’ll be better equipped to understand their

internal plumbing.

Another important aspect of using Phaser for me is that it allows us to

start developing with just a minimal set of tools. We don’t need complex

boilerplates and tooling just to get started. There are other engines out

there that use complex tools, and yes, you could go as complex as you

want with your Phaser setup, but I think for this book, that would be too

distracting. I want to focus on building a roguelike with Phaser; we’ll only

add the minimal set of tools we need to get into doing that task. I’ll be laser

focused on simplicity in this book, but Phaser will serve you on your more

complex projects as well.

Chapter 1 Before We Begin

12

�What we’re building
Our project for this book is a small web-based roguelite. We’re building

just enough features for it to be recognized as a roguelike without this

book exploding into a thousand-page bible. This project is the initial level

of roguelike development; you can go deeper if you like.

One decision I’ve made regarding the content organization of this

book might be controversial so it is better that I explain it now before we

start. Most roguelike tutorials start with procedural generation and the

dungeons. I’m leaving procedural generation to a later chapter in the

book. By the time we reach it, we’ll already know how to draw a dungeon

and fill it with monsters and treasures and how the gameplay works.

This will allow us to play with procedural generation and perceive how

it affects gameplay because we’ll already have the static gameplay done.

It becomes much easier to see how different dungeons, or how stronger

more prevalent monsters with smarter behaviors, change the game if those

parts of the game are already working. So even if I personally believe that

procedural generation is the main cornerstone of roguelikes, I’ll only touch

this topic in the second half of the book.

First, we’ll get to meet the Phaser library and use it to draw a dungeon.

Then we’re adding a player into it and scripting the game loop. Once that

works, we’re adding monsters and treasures and multiple levels. Once all

those parts are in play, we’ll dive into procedural generation.

I hope you’re as excited as I am to start coding; in the next chapter,

we’ll go through the basics of Phaser and play with our first dungeon.

Chapter 1 Before We Begin

13© Andre Alves Garzia 2020
A. A. Garzia, Roguelike Development with JavaScript,
https://doi.org/10.1007/978-1-4842-6059-3_2

CHAPTER 2

Introduction to Phaser
This is going to be an introductory chapter that focuses on game

development concepts and how to use Phaser rather than actually building

a roguelike. We’ll start slowly by building upon concepts and jargon before

we get our coding hands busy and start learning how to build games out of

Phaser. After learning these concepts, it will become a lot easier to develop

our project for this book.

In this chapter, we’re going to go through

•	 Setting up our tools: Getting our computer ready for

development

•	 Game development concepts: Common jargon and

theory needed for developing games

•	 Phaser states: How to apply those concepts to Phaser

All the other chapters will build upon the foundations constructed in

this chapter, but what exactly are we building in this book?

�Introducing Nano Dungeon
The project for this book is a small roguelite game we’re calling Nano

Dungeon. This game is designed to be simple and serve as an easy to

expand project for your future roguelike explorations. One important

aspect of this game that should be clear in your mind is that we want to

https://doi.org/10.1007/978-1-4842-6059-3_2#DOI

14

create a simple archetypical roguelike. We’re not aiming for innovative

mechanics or gameplay; those will come to you later as you progress on

your own personal game development journey. Nano Dungeon is more of

an exercise to allow us to practice building roguelikes.

Our game will be a fantasy-themed dungeon crawler in which the

player will go through multiple procedurally generated levels fighting

monsters and acquiring items, until they find a magical item in the deepest

level of the dungeon. We’ll build this game slowly. We’ll begin without

using any procedural generation at all and then adding and experimenting

with procedural generation later.

The main roguelike characteristics the game will have are

•	 Procedurally generated content

•	 Permadeath

•	 Turn-based action

So, with that in our mind, let us begin with setting up our computer.

�Setting up
For Nano Dungeon, we’re going to use a very simple setup. This is

deliberate so that we can focus on the game and not on the infinite amount

of choices available for JS developers regarding tooling.

Our main objective with our setup is to have it get out of our way and

be invisible while we build the game.

Chapter 2 Introduction to Phaser

15

�Installing a web server
You’ll need to install Node.js1 to be able to install the web server used in this

book. The long-term support version is the one we’ll be using; you can find

out how to install it from the Node.js homepage at https://Node.js.org.

Phaser doesn’t really require Node.js, and the book samples won’t be using

it directly. You just need to install a tiny web server so that you are able to

run the examples.

Most web-based game projects will use Node.js to build and transpile

the game. Transpiling allows the developers to work with the bleeding-

edge features of JS while still being able to deploy to most of the browsers

out there. Node.js is commonly used to pack the final deliverable version

of the game into smaller files for more efficient deployment. In this book,

we’ll not be doing any of this as the choice of tools to execute these tasks

depends not only on each developer’s taste but also on the specific

requirements of each project.

By using Node.js just as a web server and writing JS that is deployed

and executed on the browser exactly as we wrote it, it will be easier to

debug and interact with our source code. Another advantage from this

approach is that you won’t need to learn new tools just to match whatever

arbitrary choice I could have made on the stack for this book. The example

code in this book is simple and invites experimentation. It’s my hope that

by having no other tools besides an editor, a browser, and a web server, I’ll

reduce the friction you’d experience in playing with the code and trying

new things. I hope that this simplicity invites you to tinker.

You can verify that Node.js was installed correctly by opening a

terminal and executing

$ node -v

1�Node.js LTS version available from https://Node.js.org

Chapter 2 Introduction to Phaser

https://nodejs.org
https://nodejs.org

16

It should return the version of the installed Node.js. After making sure

Node.js is installed, check if NPM, which is the Node.js Package Manager,

is installed as well:

$ npm -v

You’re ready to install a web server now. I’ve selected a very simple one

that has autoreload, which means that once you have your sample open,

if you alter any of the files and save, the page will reload automatically.

Install it with

$ npm i -g live-server

That will install the live-server command globally.

�Choosing a code editor
Any of the commonly used programming editors should be enough for the

project we’ll be building, so if you already have a favorite programmer’s

editor to use with your projects, you’re OK to keep using it. If you don’t

have a preferred choice, I recommend you use either Visual Studio Code2

or Atom.3 Both editors have fantastic support for JS workflows.

�Getting the source code
After installing Node.js and your editor of choice, you’ll need to grab the

Nano Dungeon source code. The source code for this book is available on

GitHub via the book’s product page, located at www.apress.com/ISBN.

2�Visual Studio Code available from https://code.visualstudio.com
3�Atom available from https://atom.io

Chapter 2 Introduction to Phaser

http://www.apress.com/ISBN
https://code.visualstudio.com
https://atom.io

17

There is a top-level folder for each chapter in this book, and in each

chapter folder, there are multiple example subfolders for the various

samples used in each chapter. Each sample is self-contained and doesn’t

require files from outside its folder.

�Running the examples
On your terminal, go to the folder of the example you want to run. There is

a top-level folder for each chapter, and inside each chapter’s folder, there

are multiple folders containing the various samples used in that chapter.

Execute the command live-server; the server will launch and open a

web page with the sample running.

�How games work
Before we dive deeper into Phaser and coding, it is good that we

understand some common game development concepts. The most

important one is what a game loop is. Most games have their gameplay

workflow tied to a game loop, and understanding how it works helps you

plan and develop all kinds of games.

The game loop is the beating heart of your game; it is what gives it

life and animates it. In most games, this heart beats at every frame that is

drawn to the screen, so if your game is running at 60 frames per second,

then your game loop is running 60 times per second as well.

In each beat of the game loop, it needs to do the same tasks. It needs to

figure out what the player is trying to do, then simulate the consequences

of those actions, and finally draw that to the screen. Basically, we can

summarize a game loop into three stages: acquire player input, simulate

world, and draw the result as can be seen in Figure 2-1.

Chapter 2 Introduction to Phaser

18

For example, in a (simplified) game of Pac-Man, the game loop picks

the user input from the arcade joystick and decides in which direction

the player is trying to move, and then it calculates the new position for

the player. After that, it calculates where each ghost is trying to move and

decides on their new position. Finally, it draws the player and the ghosts

after they moved a bit. This repeats every frame, giving the illusion of

continuous action and movement.

The game loop for a (simplified) Tetris game is easy to infer as well.

Find out which direction the player is trying to move the falling piece,

compute the new position of the piece, and collide this piece with the

other pieces, removing the necessary parts of them if they form a line.

Check if the accumulated jumble of pieces has reached the top, in which

case is game over.

In action games, the game loop usually runs as often as it can and

tends to match the frames per second value. In turn-based games, it used

to be common for the game loop to block waiting for player input and only

run a single interaction before blocking again waiting for future input.

Figure 2-1.  Game loop

Chapter 2 Introduction to Phaser

19

These days, even turn-based games are running game loops at the same

frequency as their frames per second rate and emulating the turn-based

mechanics on top of it. This simplifies animation and other parts of the

game and is usually a consequence of using ready-made game genre–

agnostic libraries such as Phaser which doesn’t offer any special turn-

based game feature in its core.

In Nano Dungeon, we’ll run the game loop as often as we can, but

we’ll only cause changes to the world if there has been an input from the

player. This way, the rest of the game world doesn’t act while the player is

pondering about their next move.

It is now time to learn how this concept applies to Phaser-based games.

�Introducing Phaser
We’ll use Phaser 34 for Nano Dungeon. There is a lot of material online

about Phaser, and it is very easy to find material regarding Phaser 2 instead

of 3 when searching the Web. Be aware that even though both libraries are

called Phaser, the API of Phaser 2 and 3 are not the same. You won’t be

able to use Phaser 2 code with our project.

Phaser is a very flexible framework, and you can use it to build simple

toys or complex fully featured games. This means that there are a lot of

features from Phaser that we’ll not be using in this book as they are not

applicable to our simple game. The documentation5 for Phaser is very

comprehensive; don’t hesitate to check it out if you want to learn more

about any of the APIs shown in this book.

The first concept we need to understand to start coding is Phaser

scenes.

4�Phaser 3 available from https://phaser.io
5�Phaser documentation: https://photonstorm.github.io/phaser3-docs/

Chapter 2 Introduction to Phaser

https://phaser.io
https://photonstorm.github.io/phaser3-docs/

20

�Phaser scenes
A Phaser game is organized in scenes. Each scene contains its own game

loop, and some games are simple enough to be composed of a single

scene. You can think of scenes as the states your game goes through. A

typical arcade game could have a scene for the title screen, another for

the options screen, a scene for gameplay, and two scenes for the end of

the game, one for winning and another for losing. As the player plays the

games, it flows through these scenes organically as needed. Most of our

examples will be a single scene.

Let’s create the most simple scene and work through the code line by

line together. The code for this sample is inside the chapter-2/example-1-

simple-scene/ folder.

�A simple scene
Our sample for this section contains an HTML file, a JS file, and some

auxiliary assets to load a bitmap font. The HTML used is quite simple; its

only function is to load the JS file.

chapter-2/example-1/index.html

<!DOCTYPE html>

<head>

 <title>Chapter 2 - Example 1 - Simple Scene</title>

 <script src="phaser.js"></script>

</head>

<body>

 <div id="game"></div>

 <script src="game.js"></script>

</body>

</html>

Chapter 2 Introduction to Phaser

21

The focus for this sample will be on the JS file which will insert our

Phaser scene in the div#game contained in that HTML. I’ll show the JS

source here and explain it afterward.

chapter-2/example-1/game.js

const scene = {

 preload: function () {

 �this.load.bitmapFont("arcade", "font/arcade.png", 

"font/arcade.xml");

 },

 create: function (){

 �this.add.bitmapText(400, 300, "arcade", 

"Hello Phaser").setOrigin(0.5);

 }

}

const config = {

 type: Phaser.AUTO,

 width: 800,

 height: 600,

 backgroundColor: "#000",

 parent: "game",

 pixelArt: true,

 scene: scene,

 physics: {

 default: "arcade",

 arcade: {

 gravity: { y: 0 }

 }

 }

};

const game = new Phaser.Game(config);

Chapter 2 Introduction to Phaser

22

�The game configuration object

To start a game in Phaser, there must be a configuration object describing

what are the parameters used to initialize the library. These parameters

are defined in the config object in our sample. There are some self-

explanatory properties such as width, height, and backgroundColor that

are easy to understand. Others require further explanation.

The type property tells Phaser which renderer to use. There are two

possible renderers; it’s either a canvas-based renderer or a WebGL-based

renderer. The WebGL is better, but it is not supported in all browser and

device combinations. Using Phaser.AUTO lets Phaser choose the best

option for the device it is running.

The parent property is used to point to which HTML element should

be used to hold the game. In our case, we’re pointing it to whatever

element has an id of game, which for our HTML is a <div>.

Usually, Phaser will use some smoothing and antialiasing routines in

the graphics you draw to the screen; we’re disabling these by setting the

pixelArt property to true which will make our roguelike feel more old-

school and pretty.

The physics property is a bit more complex. Phaser has different

physics engines bundled with it that are able to simulate how things

should behave in the real world. These engines vary in their complexity

and features so you are able to choose what is the best option for your

game. They are not the kind of engine used for scientific simulations; what

they provide is a set of features and mechanics that help you implement

your game world physics system in terms of gravity, speeding bullets,

collisions, and so on. This is especially useful for arcade games which

make use of moving and shooting entities. We’re not using this in this

sample, but it felt best to explain it anyway because we have to add it to

the game configuration object. What that property is doing in the sample

Chapter 2 Introduction to Phaser

23

is selecting the arcade engine which is the most simple physics engine

bundled with Phaser and setting the gravity on the y axis to zero because

we’re making a top view game, and we don’t want things falling south of

the game screen as if that was the bottom of the world.

The last entry in our game configuration points at the scene to be

loaded which is the topic for the next section.

�The scene object

That sample uses a very simple scene object compared to the future

samples used in this book; nevertheless, it is a good opportunity for us to

begin to understand more about such object as they will be the most used

Phaser concept throughout the whole book.

A Phaser scene can be built using either an object or a class; in this

sample, we’re using an object. The lifecycle of a scene passes through

different states, and the developer is free to implement only the states that

make sense for their scene. These states are JS functions that are called in

a synchronous flow so that each callback is only invoked after the previous

one completes as can be seen in Figure 2-2.

Chapter 2 Introduction to Phaser

24

Phaser first calls the preload function which gives you the opportunity

to preload any external asset you need. In our sample, we’re loading a

bitmap font. These fonts use an image and an XML file, so we pass them

both in the code:

this.load.bitmapFont("arcade", "font/arcade.png", "font/ 

arcade.xml");

Figure 2-2.  Scene lifecycle

Chapter 2 Introduction to Phaser

25

There is a loader plugin in Phaser which you normally interact using

this.load.*; in our case, we’re using the loader for bitmapFonts and

naming our font arcade. This name will be used in a later lifecycle callback.

After preload, Phaser will call create; this callback function is used to

set up your scene for display for the first time. Our code for this sample just

adds a text to the center of the screen.

this.add.bitmapText(400, 300, "arcade", "Hello Phaser") 

.setOrigin(0.5);

Similarly to the loaded plugin, there is another scene plugin which

is a GameObjectFactory. This is a fancy name that makes it sound more

complicated to understand than it actually is. What it does is facilitate

adding game objects to a scene; you’ll usually interact with it using

this.add.*. In our sample, we’re adding a bitmapText at the 400x300

coordinates to write Hello Phaser using the arcade font. An important

concept we should talk more about before moving to the final section of

the code is coordinate systems and what that .setOrigin(0.5) is doing at

the end of the create code.

Phaser is primarily a 2D game engine in which we draw things using a

two-axis system. The coordinates start on 0x0 which is the top-left corner

of the canvas and grows both downward and rightward. This might be

counterintuitive for the mathematically inclined among us, but it is how

most of the computer graphic engines work.

When we add a game object to the screen using this.add.*, the

coordinate we pass is anchored on the top-left corner of our game object.

This means that if we pass the coordinates for the middle of the screen,

the game object we’re adding will end up with its top-left corner in that

coordinate and its body a bit below that and to the right.

Chapter 2 Introduction to Phaser

26

The best way to position something that we want centered is by

altering how these coordinates are anchored in a given game object by

changing its origin. You can reposition the coordinate that is considered

the origin for any game object using setOrigin on them. You can learn

more about that routine by reading its documentation;6 here we’re passing

a single argument to it, 0.5, which causes the origin to be repositioned

halfway on the x and the y axis for that game object. In summary,

setOrigin(0.5) causes the origin coordinate for an object to change from

the top-left corner to the center of the object, making it a lot easier to place

it onto the screen in the position we want.

The final line of the code initializes the game object and causes the

sample to load

const game = new Phaser.Game(config);

To see the sample, you need to load the HTML with a web server. If you

followed the steps outlined in the beginning of this chapter and installed

live-server, you can use your terminal to go into chapter-2/example-1-

simple-scene/ folder and execute live-server. The server will start and

your browser will open. You should see the sample running like this:

Chapter 2, Example 1: Running in a web browser

6�setOrigin documentation: https://photonstorm.github.io/phaser3-docs/
Phaser.GameObjects.Components.Origin.html#setOrigin

Chapter 2 Introduction to Phaser

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Components.Origin.html#setOrigin
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Components.Origin.html#setOrigin

27

This sample doesn’t contain all the lifecycle methods displayed on

Figure 2-2; it only sports the first two callbacks: preload and create; there

is no update in it which means that scene is a static scene that once created

never changes.

Instead of adding more code to this sample, let’s switch to the second

sample for this chapter. Please open the content for the chapter-2/

example-2-scene-with-update/ folder in your favorite editor. The content

Chapter 2 Introduction to Phaser

28

for this new sample is the same as the previous one, but we’re changing the

code for the scene; more specifically, we’ll change the code for create and

add code for update. Let’s begin with the new code for create:

create: function () {

 �this.helloText = this.add.bitmapText(400, 300, "arcade", 

"Hello Phaser").setOrigin(0.5);

}

The change in this code is that instead of just adding the bitmapText to

the screen center, we’re assigning the resulting value from that operation

to the this.helloText property. Since both create and update will

belong to the same object, we can use this.* to pass game objects around

between the lifecycle functions.

As seen in Figure 2-2, the update function calls itself over and over

and is the beating heart of your game loop. Our objective for this sample

is to make our “Hello Phaser” text move toward the right of the screen

vanishing and then reappearing from the left side much like those ticker

tape screens you see in movies.

 update: function() {

 this.helloText.x += 10

 if (this.helloText.x > 1000) {

 this.helloText.x = -200

 }

 }

We can access the bitmapText added to the scene in create by using

this this.helloText reference. Game objects have lots of useful methods

and properties, which we’ll explain more as the book progresses, but for

this sample, we’re only interested in the x coordinate for the object. In each

update cycle, we’re incrementing the object position in the x axis by 10

pixels. If we don’t do anything else, the text will vanish to the right, never

Chapter 2 Introduction to Phaser

29

to come back. To avoid that and give that ticker tape effect, there is an if

clause check to see if the text is offscreen (remember that the canvas is

only 800 pixels wide, so if the text x position is 1000, the text is beyond the

right side of the canvas) and reposition it before the left side of the screen

by using a negative x coordinate.

Loading that demo by using the live-server web server on that folder

will launch the sample, and you’ll be able to see the ticker tape effect.

This sample contains all the lifecycle methods that we’re going to use

for most of the Nano Dungeon game implementation. Still, if we reason

about it using the processes outlined in Figure 2-1, you’ll notice that we’re

just doing two of the three steps shown there: we’re simulating the world

and then drawing the next frame; there is no user input in this sample or

the sample before it. Before this chapter ends, we need to add that so we

have a full interactive game loop.

Open chapter-2/example-3-interactive-gameloop/ in your editor.

Again there are changes to both create and update.

In create, we’re adding a property to the object to allow us to check

the state of the cursor keys from the update function. Our objective is to

allow the user to move the text around using the cursor keys. To do that,

we’ll use the createCursorKeys()7 function from the keyboard plugin, a

handy function that returns an object that will reflect the state of the four

arrow keys from the computer keyboard:

create: function () {

 �this.helloText = this.add.bitmapText(400, 300, "arcade", 

"Hello Phaser").setOrigin(0.5);

 this.cursors = this.input.keyboard.createCursorKeys();

}

7�createCursorKeys() documentation: https://photonstorm.github.
io/phaser3-docs/Phaser.Input.Keyboard.KeyboardPlugin.
html#createCursorKeys__anchor

Chapter 2 Introduction to Phaser

https://photonstorm.github.io/phaser3-docs/Phaser.Input.Keyboard.KeyboardPlugin.html#createCursorKeys__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Input.Keyboard.KeyboardPlugin.html#createCursorKeys__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Input.Keyboard.KeyboardPlugin.html#createCursorKeys__anchor

30

In update, we’re going to check each of the cursor keys in a sequence

and change the position of the text according to which key is pressed:

 update: function () {

 if (this.cursors.left.isDown) {

 this.helloText.x -= 10;

 }

 if (this.cursors.right.isDown) {

 this.helloText.x += 10;

 }

 if (this.cursors.up.isDown) {

 this.helloText.y -= 10;

 }

 if (this.cursors.down.isDown) {

 this.helloText.y += 10;

 }

 }

For each key pressed, we add or subtract 10 pixels from the position of

the text to move it in the direction being pressed. Launch that demo and

you’ll be able to control the position of the text using the arrow keys on

your computer keyboard.

�Exercise
Can you mix the ticker tape sample and the interactive game loop so that if

the player moves the text offscreen, it reappears from the other side?

Chapter 2 Introduction to Phaser

31

�Summary
We covered a lot of ground in this chapter. The key takeaways that you

need to make sure you’re comfortable with before we move on are

•	 The concept of game loops and how they are the

beating heart of the game

•	 The lifecycle of a Phaser scene with preload, create,

and update

On our next chapter, we’ll start coding a roguelike, and by the end of it,

instead of a simple “Hello Phaser” in the screen, we’ll have a dungeon and

a player character.

Chapter 2 Introduction to Phaser

33© Andre Alves Garzia 2020
A. A. Garzia, Roguelike Development with JavaScript,
https://doi.org/10.1007/978-1-4842-6059-3_3

CHAPTER 3

Dungeoning
In the previous chapter, we learned how to draw things to the screen and

how to create a basic game loop. This chapter will build on that foundation

to assemble a basic dungeon for our roguelike, but before delving into

some more coding, it is important to understand a bit more about tilemaps

and how they are used to assemble a dungeon.

�What are tilemaps?
Tilemaps were initially used to save space and memory in games running

in older computers and video game consoles. Instead of having a gigantic

image with the whole level for a game, the level graphics could be

assembled by combining smaller chunks together. This way, the game

could only get and draw the chunks needed to display whatever the

player was seeing at the moment instead of loading a potentially much

larger file into memory. This had the side effect of making much easier

to create level editors as the components used by a game level were

separate and easy to place in new level designs. They also proved to be

a good match for procedural generation as a program could create an

algorithmically generated level and then find which tiles it needed to

assemble it for display.

For our purposes, we define tilemaps as a grid where we place

square-shaped bitmaps in each cell to assemble a dungeon and the

necessary game elements. If you ever played a pen and paper role-playing

https://doi.org/10.1007/978-1-4842-6059-3_3#DOI

34

game like Dungeons & Dragons, and had to draw a map using graph

paper, you’ll notice a lot of similarities between that and what our

software for this chapter will do.

The dungeon used for the book’s roguelike project will eventually have

multiple levels. Each level will be a tilemapped grid where walls, rooms,

corridors, and other elements are placed to assemble a recognizable RPG-

like dungeon. Let’s learn how to draw some tiles.

�Drawing a tilemap
The source code for this section is under the chapter-3/example-1-

simple-tilemap folder; you’ll need it to follow along. The HTML file is the

same as the other samples; it just loads Phaser and our game.js file which

is where all the interesting bits for this section are actually happening.

�Preloading a spritesheet
A spritesheet is an image file that combines many different graphics

into a single file. Web games tend to use them because they require

a single network transfer to land all the necessary images into the

player’s computer.

The kind of spritesheet our sample uses is a simple one where all

images have the same size and they are placed side by side much like a

very well-organized collection of stamps on a page. For example, suppose

each image is 10 pixels by 10 pixels and you have ten images in two rows in

the spritesheet, that means you have a single image file that is 20 pixels tall

by 50 pixels wide with all your images inside.

People often call these images contained in a spritesheet sprite, but

you’ll also see the same noun being applied to game elements which are

moving on the screen, which might be confusing if you’re new to game

development and are searching online for learning material. I’m going to

Chapter 3 Dungeoning

35

call them tiles unless they refer to game elements that represent stuff that

moves such as the player or monsters. They are all coming from the same

file though.

Our spritesheet is from a freely available game art pack by Kenney,1

and it looks gorgeous (Figure 3-1).

1�Kenney 1-bit art pack: www.kenney.nl/assets/bit-pack

Figure 3-1.  Sample spritesheet

Chapter 3 Dungeoning

http://www.kenney.nl/assets/bit-pack

36

As can be seen, there are many different tiles in it, and we’ll be able

to combine them for a rich roguelike experience. Each image in this

spritesheet is a square with 16 pixels on each side. They are separated

by gaps of 1 pixel. The source code for preloading the spritesheet needs

all this information to be passed. From the game.js file, the preload()

function is

preload: function () {

 this.load.spritesheet(

 'tiles',

 'assets/colored.png',

 {

 frameWidth: 16,

 frameHeight: 16,

 spacing: 1

 });

}

Much like other preload() functions we’ve seen, we use a function

in the this.load.* namespace to load the spritesheet. The arguments

for that function are the key we’ll use to refer to that spritesheet later,

the path to the spritesheet image, and a configuration object. There are

many optional parameters that can be set in this configuration object;

we’re just setting the dimensions of each image in the sheet and the gap

between them.

With that in place, we’re ready to start drawing some tilemaps, which

are grids like graph paper you might have used in school, in which we

place tiles in each cell to form our dungeon image. The tiles will come from

the spritesheet we saw earlier.

Chapter 3 Dungeoning

37

�A basic tilemap
To represent the tilemap grid, we’ll use a bidimensional array where each

element is a number that matches a tile in our spritesheet. A 5x5 dungeon

with textured floor on each side and empty floor everywhere else would be

represented as

let dungeon = [

 [1,1,1,1,1],

 [1,0,0,0,1],

 [1,0,0,0,1],

 [1,0,0,0,1],

 [1,1,1,1,1]

]

And this would lead to a dungeon that looks like:

If you check the spritesheet, you’ll see that the floor areas are the first

image in the sheet and that textured floor on each side is the second image.

Since arrays in JavaScript are zero indexed, those become image 0 and

image 1 from the spritesheet.

Chapter 3 Dungeoning

38

There is an important caveat in building the map array. If you use

numbers matching the spritesheet indexes and later you change the

spritesheet, you’ll end up needing to change all the maps or creating some

routine to remap those numbers at runtime. It is better to craft a map

with numbers that make sense for you and your design and remap those

numbers to values that correspond to the desired tiles in the spritesheet

just before drawing the map to the screen. This way, if you ever change the

spritesheet you’re using, you’ll only need to change that mapping data.

The create() function is where we’ll assemble our tilemap. The map

used in the sample code for this section uses a 10x10 map.

let level = [

 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

]

We’re mapping 0 to mean floor and 1 to mean wall in our map. After it,

we need to remap them to the correct values for the tilemap we’re using.

The floor in the spritesheet is indeed the same value as the value we’re

using, but for the wall, we’re going to use image 554 which is a brick wall.

const wall = 554

const floor = 0

level = level.map(r => r.map(t => t == 1 ? wall : floor))

Chapter 3 Dungeoning

39

To draw that tilemap to the screen, we need to create a configuration

object holding the information about it to hold the level data and the

dimensions for each tile. Since our tiles are 16 pixels square, we store that

value in a constant because we are going to use it multiple times during

this sample.

const tileSize = 16

const config = {

 data: level,

 tileWidth: tileSize,

 tileHeight: tileSize,

}

Let’s use that configuration object to create a tilemap and attach a

tileset to it. The tileset is what will match our spritesheet to the tilemap.

const map = this.make.tilemap(config);

const tileset = map.addTilesetImage('tiles', 'tiles', 

tileSize, tileSize, 0, 1);

A tilemap is created by passing the configuration object to this.

make.tilemap(), and then an inherited function attached to the new

map is used to add the tileset image to it. You can create all sorts of

game objects using functions from this.make.*; they are part of the

GameObjectCreator class.2

That addTilesetImage3 function is receiving a lot of arguments; most

of them are optional, but I’ve noticed that if I don’t pass them in this

sample, the map doesn’t work.

2�GameObjectCreator class documentation: https://photonstorm.github.io/
phaser3-docs/Phaser.GameObjects.GameObjectCreator.html

3�Documentation for addTilesetImage: https://photonstorm.github.io/
phaser3-docs/Phaser.Tilemaps.Tilemap.html#addTilesetImage__anchor

Chapter 3 Dungeoning

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectCreator.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectCreator.html
https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.Tilemap.html#addTilesetImage__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.Tilemap.html#addTilesetImage__anchor

40

Phaser supports many different map data formats beyond the arrays

we’re using. Many developers use map editors such as Tiled4 to build their

maps. These editors can export the map in rich formats which Phaser can

import. Since we’re not using such tools, we end up having to specify a lot

of data that would be present in the exported map data by hand.

The first argument to addTilesetImage is the tileset name as

exported in the map data. We don’t have a map data as we’re not using

a map editor. We’re passing tiles which is the same key we used in

the spritesheet loading. The second argument is the key of the cached

image from preload(), which is tiles. If we don’t pass this second

parameter, it uses the first one as the key to look for the image; it is a bit

confusing. We just pass them both to be clear about what we’re doing.

The rest of the arguments are all data that would be present in the export

from a map editor, all of which we need to explicitly pass since we’re

assembling everything by hand. The third and fourth arguments are the

tile dimensions, their width and height. The fifth and sixth arguments are

related to the margin around the spritesheet and the gap between images.

All values are in pixels.

Phaser’s tilemaps can have multiple layers in them, much like placing

acetate sheets on top of each other in classic old-school animation or

working with Adobe Photoshop layers. The layers can be used to separate

game elements into background and foreground layers so that they can

appear on top of each other.

There are two types of layers, dynamic and static; the former trades

some speed and performance to be able to apply powerful per tile effects.

For the tilemap we’ll be drawing in this sample, we’re going to use a static

tilemap since we’re not doing any kind of such effects at the moment.

const ground = map.createStaticLayer(0, tileset, 0, 0);

4�Tiled map editor: www.mapeditor.org/

Chapter 3 Dungeoning

http://www.mapeditor.org/

41

Even though we’re assigning our static layer to the ground variable,

we’re not doing anything with it later. It is just to document that that is

the ground layer, where the floor and walls are. The first argument to

createStaticLayer() is the layer ID; this can be either a number or a

string and is used by other functions to refer to the layer. We’re using 0

because naming it with a string is used only when you’re loading maps

exported from the Tiled map editor. The second argument is the tileset you

created previously.

If you load that sample in your browser, you’ll see a tilemap that looks

like Figure 3-2.

Figure 3-2.  Basic tilemap

Chapter 3 Dungeoning

42

And that is how you draw a tilemap. There was a lot to digest in this

section, and it is very beneficial to check the linked documentation for

the Phaser functions. Another important exercise to do now is experiment

with that map array and different values. Can you place four pillars in that

room? A skeleton on the ground?

What about drawing a dungeon? Well, that is our next sample.

�A basic dungeon
It is important at this point to understand why I left the procedural

generation part of the book to future chapters. Many people think that the

foremost feature of a roguelike is procedural generation; to be honest, I’m

on that camp as well.

Still, if we leave it to later chapters in the book, we can nail down lots

of the basic mechanics of our game and have a better understanding

of Phaser and game development by the time we reach those chapters.

This way, we can play with procedural generation and appreciate how it

alters and enriches the whole game development experience instead of

learning both game development basics and procedural generation at

the same time.

The next sample is in the chapter-3/example-2-basic-dungeon folder,

and it is exactly the same code as the previous sample. The only change is

that we alter the level array to be a real dungeon-like map instead of a 10

by 10 simple grid. Another small change was to alter the game.js included

in the HTML to mark it as a JavaScript module so that we can use import

inside it to load the map data from a different file. The level data has been

placed outside the main source code because it is massive, which is also

the reason why I’m not pasting it in here.

Load it and you’ll see a dungeon like Figure 3-3.

Chapter 3 Dungeoning

43

�Adding a player character
This sample will be quite familiar as it combines techniques we learned

in this and the previous chapters. The folder for it is chapter-3/example-

3-playable-dungeon. As our sample code grows and reuses parts of the

previous samples, I’ll only show what changed or what is new. It is best to

read these chapters with the source code open in your computer or at least

refer to that code later before moving on to the next chapters.

Our player character image is coming from the same spritesheet as

the dungeon elements, so we don’t need to change the sample preload()

function to load any extra image file.

In Chapter 2, we built a simple game loop that allowed us to change the

position of the displayed text by reading the state of the arrow keys in the

update() function. A similar approach would suit an action RPG more than

the roguelike we’re building because those games tend to rely more on

quick real-time action than the tactical pondering that turn-based games

Figure 3-3.  Basic dungeon

Chapter 3 Dungeoning

44

are usually known for. Phaser is genre agnostic, but it is a bit biased toward

real-time action and has many built-in features that support such use case.

Being turn based is one of the requirements we placed on our roguelike

which means that we need to build our own turn-based mechanics on top

of what Phaser offers.

This is the point in our source code where things start becoming more

complex in terms of organization and planning. Adding a player character

may sound like a simple task, but to accomplish that, we are going to have

to implement lots of features that are a part of the core game mechanics.

It is a lot of work, but by breaking it down into smaller pieces, we’ll be able

to handle it. A key step in making all this manageable is to stop throwing

everything inside preload(), create(), and update() and start building

little modules and classes to help. In this sample, we’re going to build

some new modules including a turn manager and a dungeon manager and

a player character class.

Much of the abstractions and workflows present in this book are

coming from pen and paper RPGs and wargames. If you’ve never played

one of those, I think it is beneficial to learn more about them as you read

this book. There are many YouTube channels and podcasts that record

play sessions, including play sessions with professional actors. Spending

some time checking those games out might flesh out the mechanics we’re

building here in this chapter.

�It begins with a dungeon manager
As mentioned earlier, Phaser has a ton of features, but it is not biased

toward roguelikes. To create a more ergonomic project, we’re going to

build auxiliary modules that abstract some of Phaser away so that we can

think more in terms of our roguelike than in terms of Phaser.

Chapter 3 Dungeoning

45

The main responsibility of our dungeon manager is to load the level

and connect the Phaser plumbing necessary to show it on the screen.

Some of the code that was in the create() function in the previous sample

will now be a part of the dungeon module. As our roguelike becomes more

complex, this module will accrue more and more functionality. For this

sample, we’ll use it to load our premade level and create the necessary

tilemap, tileset, and dynamic layer for our game. We need to switch to a

dynamic layer because the player will be moving on that layer, and in a

static layer, it is impossible to change tiles.

In the future, when we start doing procedural generation, this module

internals can be changed while the rest of the game remains the same. Part

of the refactoring of these routines into it is preparing the groundwork for

those future chapters.

These are the responsibilities of the dungeon manager:

•	 Loading the premade level

•	 Remapping the numbers used in that level to tiles from

our spritesheet

•	 Creating the tileset, tilemap, and dynamic layer used by

our map

The code for the dungeon manager is inside the dungeon.js; let’s go

over it. We’re using ES6 modules; if their usage and structure are not clear

to you, check out the documentation about them at MDN Web Docs.5

We begin by importing the level data:

 import level from "./level.js"

5�JavaScript modules documentation: https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Guide/Modules

Chapter 3 Dungeoning

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules/

46

All of the code for the dungeon manager is contained in an object

literal called dungeon which we export as the default export at the end of

the file. Inside the dungeon object, we create a sprites literal object to map

human-readable keys to the values used by our spritesheet.

sprites: {

 floor: 0,

 wall: 554,

}

We’ll use those values later in a mapping function much like the

chapter-3/example-1-simple-tilemap/ sample did.

An initialize() function is used to handle all the code that was

previously handled by the create() inside our previous samples. This

function receives the current scene that is calling it as an argument.

initialize: function (scene) {

 this.scene = scene

 �scene.level = level.map(r => r.map(t => t == 1 ? 

this.sprites.wall : this.sprites.floor))

 const tileSize = 16

 const config = {

 data: scene.level,

 tileWidth: tileSize,

 tileHeight: tileSize,

 }

 const map = scene.make.tilemap(config)

 �const tileset = map.addTilesetImage('tiles', 'tiles', 16, 

16, 0, 1)

 this.map = map.createDynamicLayer(0, tileset, 0, 0)

}

Chapter 3 Dungeoning

47

It first saves a reference to the scene because in the future our game

entities will import the dungeon manager and might need to do something

to the scene.

As can be seen, the code is a combination of the first and second

samples for this chapter as it uses a mapping call to replace the ones in

the map with the corresponding wall value from the spritesheet like the

first sample, but it is using an externally loaded level data like the second

sample.

The rest of the code is almost a copy and paste from the previous one

but with some important changes. The dynamic layer created is saved

to dungeon.map; this will be used by the player character class to inspect

the map and decide upon its movement. Before we implement the player

class, we must talk about turns and turn management.

�Creating a turn manager
There are many ways to code a turn manager. Game developers can

overengineer this as much as they want, and part of the charm of a

roguelike can actually be the nifty complex ways the turn mechanics

play out.

My favorite turn-based computer games all had the same mechanics

regarding turn management: each character would have an amount of

points to use in their turn, doing actions would cost points, and the turn

was over when you were out of points. Phaser will call update many times

per second so we can’t simply block the actions there and handle player

input in an imperative way. We’ll have to code our own turn manager

on top of the frequent calls to update to implement the mechanics I

outlined at the start of the paragraph. The code will resemble a state

machine; each game entity will change their state between having points

to spend, being out of points, and refreshing their points. A simple way of

implementing a turn manager is simply handling the player movement

as in an action game and, after each move, iterating over the other

Chapter 3 Dungeoning

48

game entities and their actions. Our sample will do something a bit

more involved than that without actually going toward a super complex

solution; our objective will be to implement mechanics that are similar to

the ones outlined earlier.

All our game entities, may they be the player, monsters, or something

else we invent in the future, will be new JS classes. These classes will

necessarily implement the following methods:

Method Explanation

turn() Called when it is their turn. Should perform all actions needed for

that turn.

over() Returns a Boolean flagging if the turn for that entity is over or not.

refresh() Called before a new turn takes place.

At the beginning of a turn, our manager will call refresh() on each

entity. Then each entity will perform their turn(). If over() returns true

for all entities, a new turn begins. The reason behind having an over()

method is so that if you don’t return true in it, that entity will get another

call to turn(). This enables an entity to have many actions per turn in the

future, such as creating a monster that moves many tiles in a turn while the

player moves just one. This can instill fear in the player quite easily.

The turn manager is in its own module inside turnManager.js; it is a

singleton and is used by the update() code in game.js. The code is inside

a literal object called tm (short for turn manager, makes it easier to paste

code in the book because it is shorter). We’ll use a JavaScript Set6 to hold

6�MDN Web Docs documentation for Sets: https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

Chapter 3 Dungeoning

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

49

the entities present in the dungeon and provide functions to add and

remove entities from this set besides that it mimics the preceding workflow

by having turn(), over(), and refresh() functions that call the similarly

named functions for each entity present in the set.

Let’s go over the code used for managing entities.

entities: new Set(),

addEntity: (entity) => tm.entities.add(entity),

removeEntity: (entity) => tm.entities.remove(entity),

Using a Set() to hold an entity prevents us from adding the same

entity twice; these kinds of bugs are sometimes hard to track down so

using a data structure that doesn’t support adding the same entity more

than once makes our code safer. There are two functions, one for adding

an entity and another for removing it; we’re not using the remove function

in this sample, but we’ll use it in the future so it was easier to implement it

already.

Next, let’s implement the code for turn() which is responsible for

calling the turn() method of each entity. As written earlier, we could’ve

opted for a simpler turn manager, but I don’t think it would be as fun as

this one. What the turn() function does is to loop over the entities set,

checking if each entity turn is over(); if it is not, then it picks that entity

and calls its turn() method and then breaks the loop.

This breaking is important because it enables the turn() for that

entity to be called again before calling turn() on other entities as the

loop will run again from the start after the break during the next scene

update() call, thus allowing our entities to have multiple actions per

turn which will come in handy once we start building new character

classes and monsters.

Phaser runs the scene update() cycle very fast; that’s how the game

gets 60 fps. The problem with that is that if we simply call tm.turn() on

each update(), our game runs too fast. What I mean by that is that if our

player presses the down arrow key to move its character down a tile and

Chapter 3 Dungeoning

50

we’re running at 60 fps, then the key will register as pressed down for

multiple iterations of the update() cycle, causing the character to sprint

in that direction very fast. Our turn handling mechanics are not broken,

they’d just be running new turns very fast.

To cope with that, there is a simple debouncing code in the turn

manager. It keeps track of when turn() last run in milliseconds and

only allows it to be called again if 150 milliseconds passed since the

last call. It is like putting a break on a fast car so that you can move

a bit slower and enjoy the view. We store a property in the tm object

called lastCall and initialize it with the current date; there is also an

interval property that is set to the amount of milliseconds we want to

wait between turns.

 turn: () => {

 let now = Date.now()

 let limit = tm.lastCall + tm.interval

 if (now > limit) {

 for (let e of tm.entities) {

 if (!e.over()) {

 e.turn()

 break;

 }

 }

 tm.lastCall = Date.now()

 }

 }

The most interesting part is the breakable loop as mentioned earlier.

With that module done, it becomes much easier to implement and

understand the player class.

Chapter 3 Dungeoning

51

�The player class
The player character is a class not because we’re thinking about

implementing multiple players, but because this will be the pattern used by

other game entities, and once we implement other character types, they can

inherit from this base class. The code for the player class is inside player.js.

The player class, which is the default export of player.js, imports the

dungeon manager which is a singleton so it has access to the scene and the

level data to calculate its movement.

In this game entity, we’re using the concept of movement points which is

common in wargames and tactical RPG games. Basically, a game entity has a

quantity of movement points to use per turn. Each time they move, they spend

a movement point. Once the movement points of the entity reach zero, their

turn() is over(). Our player character will start with one movement point and

in each refresh() will get that point back. In the future, once we add more

complexity to the game, we’ll have other points as well, but for now that is all

we need since this sample is only concerned with movement.

The constructor for our player class receives as argument the coordinates

where the player character is placed on the map. In that function, we store

the coordinates, create and store the cursor keys used for movement, store a

reference to the sprite used for that character, and draw it in the map (which

the class has access because it imported the dungeon module).

constructor(x, y) {

 this.movementPoints = 1

 �this.cursors = dungeon.scene.input.keyboard.createCursorKeys()

 this.x = x

 this.y = y

 this.sprite = 29

 dungeon.map.putTileAt(this.sprite, this.x, this.y)

}

Chapter 3 Dungeoning

52

Besides storing a bunch of references for future use, there is a function

which we haven’t seen before: putTileAt().7 This is from the dynamic

layer class and allows us to place a different tile at a given coordinate.

We’ll use that to simulate the player movement in the map by switching

the destination tile sprite with the player character sprite and the previous

location back to the floor sprite.

Implementing both refresh() and over() is easy now that we

understand the mechanics.

refresh() {

 this.movementPoints = 1

}

over() {

 return this.movementPoints == 0

}

Quite straightforward isn’t it? The turn() function is a bit more

involved, and it resembles the code used in Chapter 2 to move the text.

At the beginning of the turn() function, we store the current player’s

position and create a Boolean to store if the player moved or not.

let oldX = this.x

let oldY = this.y

let moved = false

7�Phaser 3 documentation for putTileAt: https://photonstorm.
github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.
html#putTileAt__anchor

Chapter 3 Dungeoning

https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#putTileAt__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#putTileAt__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#putTileAt__anchor

53

Then, check if the player has movement points left; check each cursor

key and update coordinates as needed.

if (this.movementPoints > 0) {

 if (this.cursors.left.isDown) {

 this.x -= 1

 moved = true

 }

 if (this.cursors.right.isDown) {

 this.x += 1

 moved = true

 }

 if (this.cursors.up.isDown) {

 this.y -= 1

 moved = true

 }

 if (this.cursors.down.isDown) {

 this.y += 1

 moved = true

 }

 if (moved) {

 this.movementPoints -= 1

 }

}

Chapter 3 Dungeoning

54

If moved is true, subtract a point from the movement points. This is

what will eventually cause over() to return true and end the player’s turn.

By the end of that part of the code, the coordinates for the player character

will be at the new position, but the screen is not updated yet, so we can

actually revert the movement if the player is actually moving into a wall.

let tileAtDestination = dungeon.map.getTileAt(this.x, this.y)

if (tileAtDestination.index == dungeon.sprites.wall) {

 this.x = oldX

 this.y = oldY

}

The getTileAt()8 function is the inverse function of putTileAt()

which we’ve seen before. Finally, it is just a matter of drawing the player

character in the new position and flipping the tile in the old position to a

floor tile.

if (this.x !== oldX || this.y !== oldY) {

 dungeon.map.putTileAt(this.sprite, this.x, this.y)

 dungeon.map.putTileAt(dungeon.sprites.floor, oldX, oldY)

}

The player class is now complete. It doesn’t do much except handling

movement, but that is our current project. It is time to integrate all of this

back into the scene.

8�Phaser 3 documentation for getTileAt(): https://photonstorm.github.io/
phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#getTileAt__anchor

Chapter 3 Dungeoning

https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#getTileAt__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Tilemaps.DynamicTilemapLayer.html#getTileAt__anchor

55

�Updating the scene
The game.js file for this sample is much simpler than the previous ones

since we extracted most of the logic contained in them into the modules

we just implemented. It is quite similar to the previous sample, but at the

top, we start by importing our new modules and the player class.

import dungeon from "./dungeon.js"

import tm from "./turnManager.js"

import PlayerCharacter from "./player.js"

Compared to the previous sample, the only changes are to the

create() and update() functions. The preload() remains the same and

just loads the spritesheet.

Look at how streamlined the new create() function is:

create: function () {

 dungeon.initialize(this)

 let player = new PlayerCharacter(15, 15)

 tm.addEntity(player)

}

It just initializes the dungeon manager passing the scene itself, and

then it creates a new player instance and adds it to the turn manager.

The update() function is also quite simple. It checks to see if the turns

are over(); if they are, then all entities are refresh() and then turn() is

called over and over again.

update: function () {

 if (tm.over()) {

 tm.refresh()

 }

 tm.turn()

}

Chapter 3 Dungeoning

56

When you load that sample in the browser, you’ll see a dungeon with a

player character in the room at the top-left corner, just like Figure 3-4.

You can use the arrow keys to move the character around. Holding a

key pressed will slowly move the character in that direction, thanks to

our debouncing code. You’ll collide with walls, and you can save some

movement points by moving diagonally by pressing both arrow keys at

the same time as the turn() code checks for all of the inputs in a single

iteration.

�Exercise
Can you alter the player class so that it has more moves per turn? Can you

make the player dig through walls?

Figure 3-4.  Playable dungeon

Chapter 3 Dungeoning

57

�Summary
This chapter finally started us in the journey of roguelike development.

You worked hard and now you have both a dungeon and a moving

character. Let us recap what we’ve learned:

•	 How to use Phaser scene lifecycle functions such

preload(), create(), and update() in a roguelike

development setting

•	 How to implement turn-based mechanics on top of a

genre-agnostic game development library

•	 What tilemaps are and how to use them

Study and get to know the final sample well; we’ll be using and

improving upon the dungeon and the turn manager modules and the

player class because in the next chapter, we’re adding monsters.

Chapter 3 Dungeoning

59© Andre Alves Garzia 2020
A. A. Garzia, Roguelike Development with JavaScript,
https://doi.org/10.1007/978-1-4842-6059-3_4

CHAPTER 4

Enemies and
Permadeath
Before we start to work on enemies and combat mechanics, we’re going

to do a large refactor of our codebase. This will make it easier to work with

multiple game entities such as enemies and monsters and introduce some

new features from Phaser.

The new dungeon module will have more responsibilities than before

as it will be used to manage both the level rendering and the game entity

movements. Previously, our player class would change the dynamic layer

tilemap directly when it needed to move. After our refactor, that class will

call the functions provided by the dungeon module to move. The objective

is to make it easier to develop the monster classes afterward; if every game

entity class was probing and changing the tilemap directly, it would be

quite hard to maintain the game code as any alteration would probably

span multiple classes.

The source code for the first sample used in this chapter is at

chapter-4/example-1-tween-movement/.

https://doi.org/10.1007/978-1-4842-6059-3_4#DOI

60

�Dungeon initialization
The initialization function for the dungeon remains largely the same; we

just moved some variables around to make them easier to access by other

functions. The new initialize function looks like

initialize: function (scene) {

 this.scene = scene

 this.level = level

 let levelWithTiles = level.map(r => {

 return r.map(t => {

 �return t == 1 ? this.sprites.wall : 

this.sprites.floor

 })

 })

 const config = {

 data: levelWithTiles,

 tileWidth: this.tileSize,

 tileHeight: this.tileSize,

 }

 const map = scene.make.tilemap(config)

 �const tileset = map.addTilesetImage('tiles', 'tiles', 

this.tileSize, this.tileSize, 0, 1)

 this.map = map.createDynamicLayer(0, tileset, 0, 0)

}

It is largely unchanged; we just moved some variables to be a part of

the dungeon object. At the end of this function, we have the following

properties set:

Chapter 4 Enemies and Permadeath

61

•	 dungeon.scene: Which stores a reference to the

Phaser scene

•	 dungeon.map: Which stores a reference to the Phaser

dynamic layer used for the ground tiles

•	 dungeon.level: Which stores a reference to the original

array used for the level data

The major additions to the dungeon module are related to game entity

movement, and those are what we’re doing next.

�Movement support
In the previous chapter, the player was just a tile on the tilemap, and

movement happened by flipping the destination tile with the player and

the original position into a floor tile. We’ll refactor that as well and change

the player to use sprites.1 The reason for this refactor is that sprites can be

animated with tweens, and we’ll switch to using those for our movement.

Sprites are free-floating game objects that are placed in the game

world. Usually game entities like the player character, enemies, bullets,

and other objects that the player interact with or are moving in the scenery

are all usually done with sprites in 2D games.

As mentioned before, all of this is just to be able to use tweens. You

might have noticed that the player movement in the previous chapter was

a bit clunky. The player character basically teleported from their original

position to the final position. Normally, this doesn’t bother much because

that teleportation is on the player character and a consequence of player

input, so you’re usually looking at the character and interacting with it,

and so even if the movement is instantaneous and clunky, it is a movement

1�Phaser sprite documentation: https://photonstorm.github.io/phaser3-docs/
Phaser.GameObjects.Sprite.html

Chapter 4 Enemies and Permadeath

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Sprite.html
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Sprite.html

62

that you’re expecting. Once we start adding enemy game entities, this

kind of behavior becomes way less desirable. You don’t want your player

pondering which monsters moved because the movement didn’t contain

enough visual feedback to draw their attention to it.

Tweens allow us to manipulate properties of game objects over time.

We’ll use them to manipulate the position of the game entity from a tile to

the next over some milliseconds. Instead of instantly teleporting between

tiles, the player character will move from one tile to the other.

There is an important disconnection that we must take into account

though. Our mental model for the roguelike is a square grid that represents

a dungeon and in which monsters and the player are placed. The level

array stores this representation, but as explained earlier, we’ll have a

dynamic layer with sprites floating on top of it, which is a different way of

displaying what is actually happening inside the level array. Because of

that, the movement functions we’re about to implement will act on sprites

and tweens but take into account the data from level.

�Initializing entities
Just like there is an initialize function for the level, we’ll implement a

function called initializeEntity to set up the sprite for a given entity and

add it to the dungeon. This function will be called by the constructors of

our game entities.

initializeEntity: function(entity) {

 let x = this.map.tileToWorldX(entity.x)

 let y = this.map.tileToWorldY(entity.y)

 �entity.sprite = this.scene.add.sprite(x, y, "tiles", 

entity.tile)

 entity.sprite.setOrigin(0)

}

Chapter 4 Enemies and Permadeath

63

The function receives a game entity and uses tileToWorldX which is a

function from the dynamic layer to convert a coordinate from the tilemap

grid into an absolute pixel-based coordinate to be used by the sprites as

they float above the dynamic layer. For example, if the player was in the

2x1 position in the grid, that would actually be the 16x0 coordinate in

pixels. The dynamic map knows the size of each tile and uses that in the

conversion between tile coordinates and world coordinates.

Next, we add a new property to the entity; we call it sprite and it holds a

reference to the sprite being created. The code is very similar to the code used

in Chapter 2 to add text to the screen. Phaser is quite consistent with its scene.

add.* methods. The first two arguments are the position where the sprite

should be placed. The third and fourth arguments are the width and height

in pixels of the sprite. The fifth is the spritesheet, and the last is which tile you

want to use. You might have noticed that the tile is coming from entity.tile

and that in the previous chapter we called the reference to the tile entity.

sprite; we’ll change that once we refactor the player in the next section.

�Moving entities
To move an entity, we’ll need the entity and the final position where it

should go. A tween will be created to animate that change of coordinates

over time as can be seen in the following code:

moveEntityTo: function(entity, x, y) {

 entity.moving = true

 this.scene.tweens.add({

 targets: entity.sprite,

 onComplete: () => {

 entity.moving = false

 entity.x = x

 entity.y = y

Chapter 4 Enemies and Permadeath

64

 },

 x: this.map.tileToWorldX(x),

 y: this.map.tileToWorldY(y),

 ease: "Power2",

 duration: 200

 })

}

The moveEntityTo function stores a new property on the entity which

holds the information if it is moving or not. This will be used later in the

player class over function to decide if the turn is over or not.

All scenes come with a tween manager in scene.tweens.*2 making it

very convenient to use them. The function scene.tweens.add is used to

add the tween responsible for animating the entity movement. It receives

a single argument which is a configuration object describing the tween.3

Those configurations can be very flexible, allowing you very specific

control of what should happen. Our tween is very simple, just animate the

change of coordinates over time. The properties used in that configuration

object are

•	 target: A reference to which sprites are being tweened.

•	 onComplete: A function to be executed once the tween

finishes. It is used to change entity.moving to false

and to save the destination coordinates as the current

coordinates for the game entity. This way, the entity

position just changes once the tween ends as the entity

coordinates and the sprite coordinates are not bound

to each other.

2�Phaser scene tweens documentation: https://photonstorm.github.io/
phaser3-docs/Phaser.Tweens.TweenManager.html

3�Tween builder configuration object documentation: https://photonstorm.
github.io/phaser3-docs/Phaser.Types.Tweens.html#.TweenBuilderConfig

Chapter 4 Enemies and Permadeath

https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.TweenManager.html
https://photonstorm.github.io/phaser3-docs/Phaser.Tweens.TweenManager.html
https://photonstorm.github.io/phaser3-docs/Phaser.Types.Tweens.html#.TweenBuilderConfig
https://photonstorm.github.io/phaser3-docs/Phaser.Types.Tweens.html#.TweenBuilderConfig

65

•	 x and y: The final coordinates for the sprite.

•	 ease: The function used to animate that transition. The

function chosen is pleasing to the eye.

•	 duration: How long the tween should take in

milliseconds.

There are no checks in this function to verify if the game entity is

walking through walls or if the movement is illegal in any form. This is

intentional as each game entity class might have different ways of verifying

what constitutes a legal move. For example, you could create a ghost that

actually walks through walls.

Still, we need to provide an easy function for the game entity classes to

check if a coordinate is a walkable tile or not.

isWalkableTile: function (x, y) {

 return level[y][x] !== 1

}

It is a simple function that checks our original level array to see if the

tile is a wall. With those functions in place, we can refactor the player class.

�The player becomes a sprite
The changes to the player class are quite minimal but spread over most

of the methods in the class. The first change needed is to make sure the

constructor uses the new initializeEntity function.

constructor(x, y) {

 this.movementPoints = 1

 �this.cursors = dungeon.scene.input.keyboard. 

createCursorKeys()

 this.x = x

Chapter 4 Enemies and Permadeath

66

 this.y = y

 this.tile = 29

 this.hp = 10

 this.moving = false

 dungeon.initializeEntity(this)

}

There are only two changes; we renamed the property holding the

value for the tile to be used for the player character from sprite to tile,

as the sprite property will now be used to hold a reference to the sprite

created by initializeEntity, which is called at the end of the constructor.

In the previous version of this class, at the end, it manipulated the dynamic

layer directly, making it tightly coupled with the map implementation; the

new code is easier to maintain and provides the necessary separation of

concerns.

Tweens are going to be used for movement, and we know from the

previous section that they save a property called moving to flag if the game

entity is moving or not. The over method should take that into account; we

don’t want our game entity passing the turn before it stops moving.

over() {

 return this.movementPoints == 0 && !this.moving

}

Even though the sprite being used for the player will have its own

coordinates, they are not the same as the game entity’s own coordinates

which are expressed in terms of our grid system. As explained in the

onComplete callback used by the movement tween, the final position

for a movement is only set once the tween ends, and since the turn is

also only over once the player stops moving, that doesn’t cause a race

condition. This means that in the turn method, which is the one used to

handle movement, we shouldn’t go on setting the player’s coordinates

Chapter 4 Enemies and Permadeath

67

in response to the cursor keys being pressed. What we need to do is to

figure out where the player wants to go, check if it is a legal movement,

and use moveEntityTo to move the player character there and update the

coordinates.

turn() {

 let moved = false

 let newX = this.x

 let newY = this.y

 if (this.movementPoints > 0 && !this.moving) {

 if (this.cursors.left.isDown) {

 newX -= 1

 moved = true

 }

 if (this.cursors.right.isDown) {

 newX += 1

 moved = true

 }

 if (this.cursors.up.isDown) {

 newY -= 1

 moved = true

 }

 if (this.cursors.down.isDown) {

 newY += 1

 moved = true

 }

 if (moved) {

 this.movementPoints -= 1

Chapter 4 Enemies and Permadeath

68

 if (dungeon.isWalkableTile(newX, newY)) {

 dungeon.moveEntityTo(this, newX, newY)

 }

 }

 }

}

Most of this function remains the same, but instead of setting this.x

and this.y directly like the previous chapter sample, we’re setting two

new variables newX and newY which will be passed as arguments to the

moveEntityTo function later. Instead of inspecting the map data directly, the

isWalkableTile function is used to figure out if the movement is legal or not.

We could be done now and just run the sample, but there is a final refactor

needed. In the previous chapter, we introduced a naïve debounce function to

the turn manager to prevent the player from causing multiple turns to pass in a

blink of an eye as Phaser is running really fast. Since our entity will not pass the

turn until the tween is over, we can remove that debouncing code and adjust

the tween duration if we think the game is moving too fast.

Refactoring the turn manager is a good opportunity to go beyond just

removing the debounce code. We are also replacing that loop we had in the

previous sample with a better solution by holding the index of the current

active entity in tm.currentIndex and advancing that once that entity’s turn

is over.

const tm = {

 entities: new Set(),

 addEntity: (entity) => tm.entities.add(entity),

 removeEntity: (entity) => tm.entities.remove(entity),

 refresh: () => {

 tm.entities.forEach(e => e.refresh())

 tm.currentIndex = 0

 },

Chapter 4 Enemies and Permadeath

69

 currentIndex: 0,

 turn: () => {

 if (tm.entities.size > 0) {

 let entities = [...tm.entities]

 let e = entities[tm.currentIndex]

 if (!e.over()) {

 e.turn()

 } else {

 tm.currentIndex++

 }

 }

 },

 over: () => [...tm.entities].every(e => e.over()),

}

export default tm

Gone are the code for storing the last call and the math to figure

out if a given interval has passed. The turn manager code is much more

straightforward now, and the game speed becomes a byproduct of the

tweens used.

Now is the time to load that sample in your browser; it will look the

same as the previous chapter sample until you move the player character,

and then you’ll notice how smooth it moves from tile to tile, leading to a

much more pleasant experience.

In my opinion, that dungeon feels quite comfy, and it is time to

introduce some danger to it. It is time to add a monster.

�Our first monster
For this sample, we’ll create and add a monster to the dungeon. It will just

pursue the player character; we’ll add combat in the next sample. This

sample is located at chapter-4/example-2-first-monster/.

Chapter 4 Enemies and Permadeath

70

Instead of programming our own pathfinding algorithm, we’re going

to use the well-established A*4 search algorithm. This is a very common

algorithm that is used by many games to find a good path between two

game entities. To make our work easier, we’re going to use a freely available

A* implementation5 called PathFinding.js by Xueqiao Xu. That library is

bundled with our source code inside the assets/ folder and is linked by

the HTML for this sample.

<!DOCTYPE html>

<head>

 <title>Chapter 4 - Example 2 - First Monster</title>

 <script src="assets/phaser.js"></script>

 <script src="assets/pathfinding-browser.js"></script>

</head>

<body>

 <div id="game"></div>

 <script src="game.js" type="module"></script>

</body>

</html>

Since that library is included by the HTML, we don’t need to use

import to load it when building the monster. The PathFinding.js will be

available as a global variable called PF.

4�A* algorithm: https://en.wikipedia.org/wiki/A*_search_algorithm
5�PathFinding.js: https://github.com/qiao/PathFinding.js

Chapter 4 Enemies and Permadeath

https://en.wikipedia.org/wiki/A*_search_algorithm
https://github.com/qiao/PathFinding.js

71

�Creating the basic monster class
The code for the monster is the file monster.js, and it is very similar to the

player character class. Just like all the other game entity classes we’ll build,

they have the turn, over, and refresh methods that are called by the turn

manager.

import dungeon from "./dungeon.js"

export default class BasicMonster {

 constructor(x, y) {

 this.movementPoints = 1

 this.x = x

 this.y = y

 this.tile = 26

 dungeon.initializeEntity(this)

 }

}

Our basic monster uses the 26th tile in the spritesheet for its image and

walks at the same speed as the player. The refresh and over are exactly

the same as the player class.

refresh() {

 this.movementPoints = 1

}

over() {

 return this.movementPoints == 0 && !this.moving

}

This makes the monster walk one square per turn, which is a decent

pace. Once you have this sample running, try experimenting with different

values for refresh and the initial movement points. If you start with a large

value, the monster will do a sprint on its first turn, as the turn call will

Chapter 4 Enemies and Permadeath

72

repeat until the value reaches zero; if the points added during refresh are

larger, then the monster will walk faster than the player, an effect that will

add a lot of tension.

Moving the monster in the turn method requires a bit of explanation

of how the PathFinding.js library works. Before attempting to find a path

between two entities, you need a grid and a finder.

The grid is the library’s representation of the level data from our game.

Sometimes this grid doesn’t match the same data structure as the level

data, but fortunately for us, I’ve used the exact same data structure they

use, and we can simply pass our level data to the function that creates a

grid. The grid can use an array of arrays representing a square grid where 0

stands for a walkable area and 1 for a blocked area.

This library comes with many pathfinding algorithms; we’ll be using

A* but we could use something else. Maybe for the other monsters, we’ll

experiment with different pathfinding algorithms. When you create a

finder, you specify which algorithm it is supposed to use.

Once you have these two objects created, you can use the pathfinding

function to retrieve a path between the two entities. The returned value

is an array containing steps, square by square, that go from the monster

position to the player position.

turn() {

 let oldX = this.x

 let oldY = this.y

 if (this.movementPoints > 0) {

 let pX = dungeon.player.x

 let pY = dungeon.player.y

 let grid = new PF.Grid(dungeon.level)

 let finder = new PF.AStarFinder()

 let path = finder.findPath(oldX, oldY, pX, pY, grid)

Chapter 4 Enemies and Permadeath

73

 if (path.length > 2) {

 dungeon.moveEntityTo(this, path[1][0], path[1][1])

 }

 this.movementPoints -= 1

 }

}

The code is quite similar to the player class as is the rest of the methods

as well; the main change is that instead of inspecting the cursor keys and

deciding on a position, the monster uses the pathfinding library to create a

grid and a finder and attempt to find a path between itself and the player.

The check to see if the path array contains more than two elements is

because it will include both the monster and the player position, so if it has

two elements, it means the monster is next to the player and doesn’t need

to move.

�Adding the monster to the dungeon
To add the monster to the dungeon, we’ll alter the game.js file. The

changes needed are quite simple; in the create function, just after adding

the player to the turn manager, we’ll add the monster.

We must first import the new monster class at the top of the file.

import BasicMonster from "./monster.js"

And then alter the create function.

create: function () {

 dungeon.initialize(this)

 dungeon.player = new PlayerCharacter(15, 15)

 tm.addEntity(dungeon.player)

 tm.addEntity(new BasicMonster(70, 8))

}

Chapter 4 Enemies and Permadeath

74

There is a single change, which is the final line that adds a new

monster to the turn manager. You can experiment with duplicating that

line a couple times and changing the coordinates to add multiple monsters

to the dungeon.

You’re ready to run this sample. Once loaded, it should look like

Figure 4-1.

The little skeleton monster is on the top-right corner and will move

after the player moves. It will keep trying to reach the player position. You

can try escaping, but there is nowhere to run. Run around for a bit; try to

see how long you can evade the skeleton. Experiment with adding multiple

monsters or changing the amount of movement points they have.

In the next section, we’re adding combat features.

Figure 4-1.  Basic monster

Chapter 4 Enemies and Permadeath

75

�Basic combat mechanics
To do proper combat mechanics, we need to add much more to our little

sample as there is no way to know any of the stats of the player or enemies

at the moment. That step will come in the next chapter as we explore

treasures and upgrades, both of which also require a better user interface.

For this section, we’ll focus on attacking and causing damage only. The

sample for this section is inside chapter-4/example-3-basic-combat/.

Just like with movement, we’ll add action points to our game entities.

Every turn if they have action points left, they will be able to attack another

entity in range. By defining a range for the attack now, we’re laying the

groundwork necessary to add different weapons and magic later (and

terrifying monsters). We’ll also need to add some form of life meter to keep

track of how much damage an entity can take before being removed from

the game.

�From basic monster to dangerous monster
It is more fun if we do the monster first. We need to alter all its methods

so that we take into account the new properties that are used to keep

track of combat-related features. By altering the monster first, and then

doing the necessary refactor in the other files, we’re approaching this

with a top-down design method. We code for the API we want and then

implement it later.

Let’s begin by changing the monster constructor in monster.js.

constructor(x, y) {

 this.name = "A Dangerous Monster"

 this.movementPoints = 1

 this.actionPoints = 1

 this.healthPoints = 1

 this.x = x

Chapter 4 Enemies and Permadeath

76

 this.y = y

 this.tile = 26

 dungeon.initializeEntity(this)

}

Many new properties were added to the monster. Adding a

name makes it easier for when we change the UI later. The other two

properties – actionPoints and healthPoints – track how many actions,

or attacks, the entity can do in one turn and how much damage it can

take before it is destroyed.

Both refresh and over need to take the new properties into account so

that the monster will not pass its turn before its actions are done.

refresh() {

 this.movementPoints = 1

 this.actionPoints = 1

}

over() {

 �return this.movementPoints == 0 && this.actionPoints == 

0 && !this.moving

}

Altering the actionPoints value in the refresh method can make the

monster have more than one attack per turn; this can add a lot of tension

to the game. Instead of using a property for the damage dealt by a monster

attack, we’re going to use a function so that it becomes easier to code

different values and emulate a dice roll later. The value returned by that

function is the amount of damage inflicted by the monster attack on the

player.

attack() {

 return 1

}

Chapter 4 Enemies and Permadeath

77

It is important to add a little callback function for when the monster is

killed. We don’t have use for it yet, but we’ll use it to log information to the

browser console. That function will be called automatically (and so will

attack) by the dungeon manager once a combat is in play.

onDestroy() {

 console.log(`${this.name} was killed`)

}

As you might have guessed, the largest change is actually to the turn

function. Besides movement, it will need to keep track of how many

actionPoints there are left and attack the player if it is close enough. The

functions used there that are coming from the dungeon module will be

implemented in the next section; don’t worry, we’re coding for the API we

want, and later we’ll make that API a reality.

turn() {

 let oldX = this.x

 let oldY = this.y

 let pX = dungeon.player.x

 let pY = dungeon.player.y

 let grid = new PF.Grid(dungeon.level)

 let finder = new PF.AStarFinder()

 let path = finder.findPath(oldX, oldY, pX, pY, grid)

 if (this.movementPoints > 0) {

 if (path.length > 2) {

 dungeon.moveEntityTo(this, path[1][0], path[1][1])

 }

 this.movementPoints -= 1

 }

Chapter 4 Enemies and Permadeath

78

 if (this.actionPoints > 0) {

 �if (dungeon.distanceBetweenEntities(this, 

dungeon.player) <= 2) {

 dungeon.attackEntity(this, dungeon.player)

 }

 this.actionPoints -= 1

 }

}

The beginning of this code is the part that handles movement and is

already familiar to us. At the end, there is a final if clause that checks if

there are actionPoints left, then checks the distance between the monster

and the player (in square units) and, depending on how close they are,

attacks the player.

Since this attack code is after the movement code, it means that in a

single turn, the monster can walk closer to the player and then attack. If it

was the other way around, the player would have a chance to get away as the

movement would happen last. Switching those clauses around allows you to

create very different monsters. You could, for example, have a monster with a

very powerful attack, but attacking before moving. The player would be able to

avoid such attack by making sure the monster doesn’t start the turn near them.

Part of the fun of programming roguelikes is devising nice mechanics for the

player to discover and start thinking tactically around them.

Before we’re able to test this out, we must implement the missing

functions.

�Refactoring the dungeon manager
There are many changes needed to add support for combat in the dungeon

manager. One of the most important changes is that the dungeon manager

needs to be aware of which entities are on the scene, which means it

Chapter 4 Enemies and Permadeath

79

needs access to the turn manager. Up until now, those two modules have

been completely independent, and you could in theory replace them

with completely different mechanics, such as making an action roguelike

instead of a turn-based one, by simply altering the turn manager.

After this chapter, these two modules will remain quite independent

of each other, but the dungeon module will access the entities set from

the turn manager to get entities when it needs to compute the distance

between them and to calculate if a tile is walkable or not (gone are the days

of walking over monsters).

Because of that, we must import the turn manager at the beginning of

the dungeon module, which is in dungeon.js.

import level from "./level.js"

import tm from "./turnManager.js"

The function to calculate if a tile is walkable or not must be changed to

take into account all the entity positions. We don’t want monsters and the

player walking over each other.

isWalkableTile: function (x, y) {

 // check all entities.

 let allEntities = [...tm.entities]

 for (let e = 0; e < allEntities.length; e++) {

 let entity = allEntities[e]

 if (entity.x == x && entity.y == y) {

 return false

 }

 }

 // check level

 let tileAtDestination = dungeon.map.getTileAt(x, y)

 return tileAtDestination.index !== dungeon.sprites.wall

}

Chapter 4 Enemies and Permadeath

80

There are two checks in the function now. The first one loops all

the entities trying to match if the entity coordinate is the same as the

arguments used to call the function. If they are, then that tile is not

walkable. The second check is the one we had before which checks the

value of the tile at the location.

Be aware that monsters don’t use this function, so they are still able

to walk over each other. This function is only used by the player and

prevents the player from walking through the monsters. A side effect

from this change is that monsters can now corner the player, and unless

the player is able to kill any of the monsters, they will be trapped and

suffering damage every turn. If you don’t want that, you can remove that

first check and allow the player to pass through (and occupy) the same

tiles as the monsters.

An important aspect from that function is that it returns a Boolean,

which means that even though the player class will know that it can’t

walk into some position, it has no way of knowing if that position is

occupied by a wall or a game entity. To solve that, we’re implementing the

entityAtTile function which returns the entity at a given tile or false.

entityAtTile: function (x, y) {

 let allEntities = [...tm.entities]

 for (let e = 0; e < allEntities.length; e++) {

 let entity = allEntities[e]

 if (entity.x == x && entity.y == y) {

 return entity

 }

 }

 return false

}

Chapter 4 Enemies and Permadeath

81

It is a variation of the isWalkableTile, but instead of returning just a

Boolean, it returns the entity that occupies that tile. Both functions could

be combined into a function that worked backward, something like an

isBlockedTile that returned the entity or false, and then the player class

could use a Boolean negation operator to check if they can move into that

space or not. I decided against doing it that way because the code becomes

more opaque. This code may contain more duplication, but it is easier to

understand and refactor, two qualities that are very important in a game.

The monster class uses distanceBetweenEntities to find out if the

player is close enough; let’s implement that.

distanceBetweenEntities: function(e1, e2) {

 let grid = new PF.Grid(dungeon.level)

 let finder = new PF.AStarFinder({

 allowDiagonal: true

 })

 let path = finder.findPath(e1.x, e1.y, e2.x, e2.y, grid)

 if (path.length >= 2) {

 return path.length

 } else {

 return false

 }

}

This code is very similar to the movement code used in the monster

class. The main difference is that the finder is being initialized with support

for diagonal movement. Our monster can’t walk in a diagonal, but the

player can; this provides a tactical advantage for the player if they need to

get away from the monster as each square they move in a diagonal causes

the monster to waste two moves. If the distance calculation didn’t use

diagonal movement to compute the path, you end up with strange values

depending on the entity position; they’d appear to be two squares away,

but the function would report them being three squares away.

Chapter 4 Enemies and Permadeath

82

Playing with allowing diagonal movement, different refresh rates for

the points, and variadic damage results allows you to create monsters who

feel very different from one another. Imagine, for example, a vampire lord;

it would remain on its chamber until the player comes 15 squares from it,

and then it awakes; after that, it moves three squares per turn and does a

ton of attacks per turn. Can you implement that?

The logical function to implement next is the attackEntity. The

essence of that function is quite simple to understand; it needs to call the

attacker’s attack method and subtract that value from the healthPoints

of the entity being attacked.

Much like the movement function, the game becomes better if we add

some visual feedback to the attack action. Because of that, there will be a

tween in that function; it will move the attacker to the victim’s tile and back

to its original tile very quickly.

There is a chance that the attacker is moving already when

attackEntity is called; by moving I mean that there is a tween already

happening whose target is the attacker. This can happen if the attacker

just moved or if the attacker has multiple attacks per turn and is already

attacking. There will be some math in that function to keep track of what is

going on and add some delays to the tweens so they don’t overlap much.

Most of the actual combat-related part of the code will be handled in

the onComplete callback of the tween, so it happens after the animation.

The code out of it is just a complex way of calculating the delay for the

tween itself so that it doesn’t overlap with others.

Since this tween needs to move into the victim tile and back, we’re

using a property called yoyo; this is a Boolean that causes the tween to be

repeated in reverse once it completes.

The hold property is how many milliseconds the tween should remain

in position before repeating or yo-yoing back.

duration and delay are self-explanatory; they mean how quick should

it all happen and how long should the tween manager wait before starting

the tween.

Chapter 4 Enemies and Permadeath

83

attackEntity: function(attacker, victim) {

 attacker.moving = true

 attacker.tweens = attacker.tweens || 0

 attacker.tweens += 1

 this.scene.tweens.add({

 targets: attacker.sprite,

 onComplete: () => {

 �attacker.sprite.x = this.map.tileToWorldX(attacker.x)

 �attacker.sprite.y = this.map.tileToWorldX(attacker.y)

 attacker.moving = false

 attacker.tweens -= 1

 let damage = attacker.attack()

 victim.healthPoints -= damage

 �console.log(`${attacker.name} does ${damage} 

damage to ${victim.name} which now has 

${victim.healthPoints} life left`)

 if (victim.healthPoints <= 0) {

 this.removeEntity(victim)

 }

 },

 x: this.map.tileToWorldX(victim.x),

 y: this.map.tileToWorldY(victim.y),

 ease: "Power2",

 hold: 20,

 duration: 80,

 delay: attacker.tweens * 200,

 yoyo: true

 })

}

Chapter 4 Enemies and Permadeath

84

There is a lot going on inside onComplete. Let’s unpack it piece by

piece. The initial block manages the tween count and the moving flag, so

that the entity is marked as stationary, and its tween count is diminished

so that it eventually returns to zero once all the tweens complete.

Another important part of that block is that it sets the sprite

coordinates back to what they should be. That tween will move the sprite

to the victim’s tile location and back to the position the sprite was when

the tween started; so if by any reason the tweens end up overlapping each

other, the start position for the tween will not be the position where the

sprite should originally be located, causing that sprite to be at the wrong

position when the tween ends. Resetting that value is crucial to align the

sprite to the grid at the end of the animation.

The next block, which actually gets the damage and applies it to the

victim, is very straightforward. What comes after it is something we haven’t

used before, a simple console.log call to output some data about the

attack. We’re doing that because we don’t have a better UI yet, and we

want to know what’s going on.

At the end of the onComplete callback, there is a check to see if the

healthPoints for the victim are over and remove it from the game. There

is a chance that after an attack, the healthPoints for the victim will

reach negative values, so we need to be careful there. During some initial

tests here, I made an immortal skeleton, because I was checking for the

healthPoints to be exactly zero and my skeleton health reached negative

values, that even though quite appropriate for an undead monster, made

for a relentless and impossible-to-kill adversary.

If the entity is killed, then it must be removed; let’s implement the

removeEntity function next.

removeEntity: function(entity) {
 tm.entities.delete(entity)
 entity.sprite.destroy()
 entity.onDestroy()
}

Chapter 4 Enemies and Permadeath

85

To understand that function, we need to remember that there are two

representations of each game entity loaded in the game. There is the sprite

who is floating above the dynamic map and the game entity instance that

is added to the turn manager. Removing an entity from the game thus

means removing it from both places and calling the instance’s onDestroy

method (in case it needs to do any cleanup or output some message).

Once the entity is not tied to any live data structure, it will be collected by

the JS garbage collector.

If you’d start the sample with just these changes, it would be a very

challenging game as the player has no way to attack the monsters. It is time

to change that by refactoring the player class.

�The player class learns how to attack
The changes to the player class resemble the ones done for the monster

class. After all, our game entities are all cut from the same cloth. The new

constructor fills up the same properties that we set for the monster but

with different values to make the player a bit harder to kill.

constructor(x, y) {

 this.name = "The Player"

 this.movementPoints = 1

 this.actionPoints = 1

 this.healthPoints = 15

 �this.cursors = dungeon.scene.input.keyboard.createCursorKeys()

 this.x = x

 this.y = y

 this.tile = 29

 this.moving = false

 dungeon.initializeEntity(this)

}

Chapter 4 Enemies and Permadeath

86

The refresh function is the same as the monster class and just fills the

actionPoints and movementPoints back up.

 refresh() {

 this.movementPoints = 1

 this.actionPoints = 1

 }

An important difference between the player and the monster class is

that, if you notice closely, the monster spends their movementPoints and

actionPoints regardless if they moved or attacked; this is done so that

they pass their turn if they don’t have anyone to attack or no movement to

make. It is a simplistic way of solving it, but it works.

The player on the other hand doesn’t need such check; the over check

for the player remains the same as the previous sample, just checking to see

if the player is moving and that their movementPoints are spent. The player

attacks by moving, so if there is no movement attempt, there is no attack.

We’re adding an onDestroy callback that reloads the page if the player

is killed, a poor man’s way of restarting the game, and an attack function

just like the monster class.

Roguelikes often feature permadeath; this means that once the player

dies, the game restarts with a whole new experience. We’re not doing

procedural generation yet, so our restart once the player dies leads to the

exact same experience. Still, if the player dies and the game is restarted,

they will need to kill all the enemies again. When we start with procedural

generation, permadeath will have a totally different feel.

attack() {

 return 1

}

onDestroy() {

 alert("OMG! you died!")

 location.reload()

}

Chapter 4 Enemies and Permadeath

87

As expected, the largest change is to the turn function. The way attacks

work for the player is that if it attempts to move into a blocked tile, and that

tile happens to contain an entity, then the player attacks that entity.

turn() {

 let oldX = this.x

 let oldY = this.y

 let moved = false

 let newX = this.x

 let newY = this.y

 if (this.movementPoints > 0) {

 if (this.cursors.left.isDown) {

 newX -= 1

 moved = true

 }

 if (this.cursors.right.isDown) {

 newX += 1

 moved = true

 }

 if (this.cursors.up.isDown) {

 newY -= 1

 moved = true

 }

 if (this.cursors.down.isDown) {

 newY += 1

 moved = true

 }

 if (moved) {

 this.movementPoints -= 1

Chapter 4 Enemies and Permadeath

88

 if (!dungeon.isWalkableTile(newX, newY)) {

 let enemy = dungeon.entityAtTile(newX, newY)

 if (enemy && this.actionPoints > 0) {

 dungeon.attackEntity(this, enemy)

 this.actionPoints -= 1

 }

 newX = oldX

 newY = oldY

 }

 if (newX !== oldX || newY !== oldY) {

 dungeon.moveEntityTo(this, newX, newY)

 }

 }

 }

 if (this.healthPoints <= 5) {

 �this.sprite.tint = Phaser.Display.Color.GetColor(255,0,0)

 }

}

The movement code is not really changed from the last sample. It

still checks each cursor key and produces a pair of newX and newY that

represents where the player is attempting to go. What is different is that if it

is a blocked tile, we attempt to get which entity is occupying that tile with a

call entityAtTile. If the returned value is an entity (and thus not false),

the player uses attackEntity to attack it.

A little addition is the final if clause that checks how much

healthPoints the player has left; and if the amount is below a threshold, it

colors the player sprite red to show it is in danger.

You could, in the refresh callback, add some healthPoints back to the

player, so that they heal over time.

Chapter 4 Enemies and Permadeath

89

With those changes in place, you can load the sample and attempt to

kill the monster. It is more fun to go back to game.js and add some more

monsters to ramp up the difficulty. In Figure 4-2, you can see the result of

adding more monsters to the dungeon and trying to fight it out. I’ve added

the output from the console to this screenshot so that we get a better idea

of what is going on.

�Exercises
This chapter has great opportunities for experimentation. I’ve been

sprinkling the content with ideas, and I hope you tried some of them

out. If you didn’t, here are some experiments for you to implement:

•	 Create a new type of skeleton that moves faster but

does less damage.

•	 Create a monster that doesn’t move until the player is

at 15 squares from it. Then it pursues the player and

delivers a lot of damage.

•	 Instead of delivering always the same amount of

damage, try replacing that value with a random number.

Figure 4-2.  Basic combat

Chapter 4 Enemies and Permadeath

90

�Summary
This has been a very important chapter, and it is crucial that you

experiment with the code from the last sample and get a good feel about

how the player and monster classes interact.

The same lifecycle methods used in the player movement – turn,

over, and refresh – can be used to create monsters when paired with a

pathfinding library.

Sprites give us a lot of freedom and flexibility to animate our entities

using tweens and tints. We must be careful to keep the entity position in

sync with the sprite position though as our game entities are now more

complex than simple tiles.

Dying causes the game experience to restart, and the player loses all

the progress they’ve made so far. This is, in my opinion, an important

aspect of the roguelike experience. It makes for cautious players.

Concentrating the movement and combat handling routines in our

dungeon module allows us to quickly experiment with creating new game

entities and letting them loose in the dungeon. Go ahead, just release

some unkillable monster that walks fast there, and play with it.

In the next chapter, we’ll turn all this up to eleven with treasures, and

equipment.

Chapter 4 Enemies and Permadeath

91© Andre Alves Garzia 2020
A. A. Garzia, Roguelike Development with JavaScript,
https://doi.org/10.1007/978-1-4842-6059-3_5

CHAPTER 5

Treasures and
Equipment
In this chapter, we are going to learn how to add treasures and

equipment to our game. These items will be game entities like our player

character and the monsters and will be placed into random positions

inside the dungeon.

Adding support for such items is not just a matter of creating the

entities and throwing them onto the map. There needs to be some user

interface to handle inventory. Before working on the items themselves, we

need to work on the game UI.

�Creating a user interface for our game
We’ve reached the point in our game development in which we need a

better UI to be able to handle the features we want to add to it. To be able

to create this user interface, we’re going to refactor most of the files we’ve

used so far as our game loop and game entities all need to become aware

of the new UI. Once we’re done with these changes, our interface will look

like Figure 5-1.

https://doi.org/10.1007/978-1-4842-6059-3_5#DOI

92

The UI is based on a sidebar positioned at the right side of the screen

containing three distinct regions. At the top, there is information about the

player, listing the following items:

•	 The sprite image for the player along with its name

•	 Health points

•	 Movement points

•	 Action points

•	 Ten slots for inventory

Following that section is just a list of the monsters in the current level.

As the monsters are killed, their entry is dimmed. I’ve opted not to display

the monsters statistics at the moment to save space.

The last section is a text output about the recent actions in the game. It

lists the interactions between the player and the monsters.

Figure 5-1.  Dungeon user interface

Chapter 5 Treasures and Equipment

93

�How it was implemented
In Chapter 2, we’ve learned about Phaser scenes.1 To implement the UI,

we’ll use Phaser’s feature to overlay a scene on top of another. We’ll shrink

the dungeon scene to free up space on the right and then overlay a UI

scene on top of it, drawing only on the right side.

Each of our game entities – the monsters and the player – will receive

the UI scene on a special callback function they’ll all implement called

createUI, which will be responsible for drawing that entity UI in the

correct scene. By making each entity responsible for their own UI, we make

our life easier from a maintainability point of view because we reduce the

amount of files we need to touch when we decide to refactor the UI for a

given entity.

As mentioned earlier, all of this is a huge change to the codebase, but it

will open the doors for more complex mechanics and features. Let’s begin

by refactoring game.js.

The files for this first sample are in chapter-5/example-1-basic-ui.

�Game.js refactoring
Up till now, we’ve been mixing the game bootstrapping with the world

scene in the same game.js file. We’re going to extract the world scene

into its own file and minimize the amount of code inside the game.

js bootstrapping file. The UI scene will also be placed on its own file.

Both files will be imported by game.js and used in the Phaser game

configuration object.

import ui from "./ui.js"

import world from "./world.js"

1�Phaser scene documentation: https://photonstorm.github.io/phaser3-docs/
Phaser.Scene.html

Chapter 5 Treasures and Equipment

https://photonstorm.github.io/phaser3-docs/Phaser.Scene.html
https://photonstorm.github.io/phaser3-docs/Phaser.Scene.html

94

const config = {

 type: Phaser.AUTO,

 width: 80 * 16,

 height: 50 * 16,

 backgroundColor: "#472d3c",

 parent: "game",

 pixelArt: true,

 zoom: 1,

 scene: [world, ui],

 physics: {

 default: "arcade",

 arcade: {

 gravity: { y: 0 }

 }

 }

}

const game = new Phaser.Game(config)

The file became much simpler; all the extraneous code has been

removed. Besides deleting a ton of lines, the biggest change is importing

both scenes and loading them in the scene: [world, ui] line.

With that refactor done, it is time to work on world.js.

�Implementing world.js
A large part of the new world.js is just what we removed from the

previous incarnation of game.js, but there are some new parts which will

be explained later in this section.

Chapter 5 Treasures and Equipment

95

At the top of the file, let’s import all the modules that are needed:

import dungeon from "./dungeon.js"

import tm from "./turnManager.js"

import PlayerCharacter from "./player.js"

import BasicMonster from "./monster.js"

The world.js file is the scene that contains all the game we’ve

implemented so far in the book so it should be quite familiar.

const world = {

 key: "world-scene",

 active: true,

The first change is adding a key and an active flag to the scene. We

pass multiple scenes in the game configuration object inside game.js.

From those scenes, Phaser will only automatically load the ones which

have active set to true. The key is set so that one scene can refer to the

other by name.

 preload: function () {

 this.load.spritesheet('tiles', 'assets/colored.png',

 {

 frameWidth: 16,

 frameHeight: 16,

 spacing: 1

 })

 },

Chapter 5 Treasures and Equipment

96

The preload function remains exactly the same. The important

changes are in the next function which is create.

 create: function () {

 dungeon.initialize(this)

 // Load game entities

 dungeon.player = new PlayerCharacter(15, 15)

 tm.addEntity(dungeon.player)

 tm.addEntity(new BasicMonster(20, 20))

 tm.addEntity(new BasicMonster(20, 10))

 tm.addEntity(new BasicMonster(76, 10))

 tm.addEntity(new BasicMonster(29, 24))

 tm.addEntity(new BasicMonster(29, 20))

The beginning for the create function initialized the dungeon and

load the game entities – all very similar to what we’ve done before. The

next section of the create function is new. It uses a Phaser scene built-in

camera manager2 to change the scene viewport so that there is free space

on the right side for the UI scene to fill up.

 // Set camera, causes game viewport

 // to shrink on the right side freeing

 // space for the UI scene.

 let camera = this.cameras.main

 �camera.setViewport(0, 0, camera.worldView.width-200, 

camera.worldView.height)

 �camera.setBounds(0, 0, camera.worldView.width, 

camera.worldView.height)

 camera.startFollow(dungeon.player.sprite)

2�Scene camera manager docs: https://photonstorm.github.io/phaser3-docs/
Phaser.Cameras.Scene2D.CameraManager.html

Chapter 5 Treasures and Equipment

https://photonstorm.github.io/phaser3-docs/Phaser.Cameras.Scene2D.CameraManager.html
https://photonstorm.github.io/phaser3-docs/Phaser.Cameras.Scene2D.CameraManager.html

97

The setViewport function is used to shrink the viewport. The

setBounds limits the camera movement so that it doesn’t go over the

dungeon while moving. The camera moves because the startFollow

function is used to make it track the player position.

 // Trigger UI scene construction

 this.events.emit('createUI')

 },

Each scene comes with a built-in event manager. We’re going to use

events to send messages back and forth between the world and the UI

scenes. The reason behind emitting an event during create is because

the UI scene needs the game entities to be in place before it renders the

user interface. If we simply load the two scenes in the game configuration

object with active set to true, we end up with a race condition in which

they’re competing trying to render at the same time without having the

necessary elements loaded for it to work correctly.

 update: function () {

 if (tm.over()) {

 tm.refresh()

 }

 tm.turn()

 }

}

export default world

The update function remains the same as well. At the end, we export

the world object since the scene is now a JS module.

Before implementing the UI scene, let’s take a brief detour to make

some additions to dungeon.js.

Chapter 5 Treasures and Equipment

98

�New dungeon.js feature
In the dungeon module, there are some console.log() calls to output

useful information to the console. That kind of text actually belongs in the

game UI. To support that, we need to refactor those calls into something

that the UI scene can use later.

A msgs array was added to the dungeon module; it will hold that

textual data:

let dungeon = {

 msgs: [],

A new log function is used to populate that array:

 log: function(text) {

 this.msgs.unshift(text)

 this.msgs = this.msgs.slice(0,8)

 }

That function fixes the msgs array into holding a maximum of eight

elements. The new text is inserted to the front of the array so that the

player can read first what happened last.

After that, it is just a matter of tweaking the console.log in the attack

function to use the new log function:

this.log(`${attacker.name} does ${damage} damage to 

${victim.name}.`)

It is time to build the UI scene.

�Creating the UI scene
The UI scene source code is in the ui.js file. It is very similar to the world

scene we use. It has both create and update, but it doesn’t have a preload

because the world scene will preload the tilemap used by this scene as well.

Chapter 5 Treasures and Equipment

99

An important characteristic of this scene is that it depends on the

entities being loaded into the turn manager for it to work. Since we can’t

guarantee that they will all be loaded by the time create starts executing,

we’re wrapping the part of the code that relies on entities into a callback

function for a custom event which will be sent by the world scene once it

finishes loading the entities into the turn manager.

The UI scene will need access to the turn manager to get the entities

and to the dungeon module to get the msgs array:

import dungeon from "./dungeon.js"

import tm from "./turnManager.js"

const ui = {

 key: "ui-scene",

 active: true,

The scene has a custom key so that other parts of the source code are

able to get it and is set to load at the start of the game.

A createdUI Boolean is going to be used by both create and update to

figure out if the user interface has been added to the screen or not. This is

necessary because update might run before the custom event arrives from

the world scene; in that case, there is no UI to update yet, and it shouldn’t

attempt to access it.

create: function () {

 this.createdUI = false

 �this.scene.get('world-scene').events.on('createUI', 

() => {

 let iterator = tm.entities.values()

 let x = (80 * 16) - 190

 let y = 10

Chapter 5 Treasures and Equipment

100

 for (let entity of iterator) {

 if (typeof entity.createUI === "function") {

 let height = entity.createUI({

 scene: this,

 x,

 y,

 width: 198

 })

 y += height

 }

 }

 �this.add.line(x+5, y, 0, 10, 175, 10, 

0xcfc6b8).setOrigin(0)

 this.log = this.add.text(x+10, y+20, "", {

 font: '12px Arial',

 color: '#cfc6b8',

 wordWrap: {

 width: 180

 }

 })

 this.createdUI = true

 })

 },

The create function needs to add a callback for the custom event

sent by the world scene. Each scene gets its own event manager. We

must use the event manager from the world scene. If we simply register

a callback for that event name on the UI scene event manager, it would

Chapter 5 Treasures and Equipment

101

never trigger as the events will not cross between separate event

managers. To do that, we first get a reference to the scene itself – finally

using those keys we set – and then use that scene event manager to

register a callback. Let me repeat that line of code here so it is clearer:

this.scene.get('world-scene').events.on('createUI' ...

The content inside that callback is the user interface creation code.

It relies on fetching an iterator3 from the dungeon.entities set. A

function called createUI is called for each entity. This function received

a configuration object with coordinates and the width for the user

interface; each entity can then decide on how much height it should use

and return that amount. This value is used to compute the position for

the next entity.

This way, each entity can create their own custom UI or even no

interface at all and just return zero. From the point of view of the UI

scene, the player and the monsters are all the same. It calls createUI for

each of them and lets each entity manage its own interface. Even though

this adds more code to each entity, it is more flexible in the long run,

and it becomes easier to maintain as the code for each entity is self-

contained.

The iterator loop might look a bit strange. Reading the documentation

page referenced in the footnotes will make it a lot clearer. Basically, when

iterating through values(), the value returned by the iterator is the entity.

Once all that entity UI creation is done, we add a line to be a visual

separator between the entity user interfaces and the next section which is a

text object to display the data in the dungeon.msgs array. After that, the UI

is created, and we can set that createdUI flag to true.

3�Set entries() iterator documentation: https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global_Objects/Set/entries

Chapter 5 Treasures and Equipment

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/entries
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/entries

102

The next step in implementing the UI scene is the update function,

which is very simple, and exporting the scene.

update: function() {

 if (this.createdUI) {

 let text = dungeon.msgs.join(`\n\n`)

 this.log.setText(text)

 }

 }

}

export default ui

The dungeon.msgs array is joined with two carriage returns so that

there is some visual separation between messages. The code for handling

word wrapping is provided by Phaser itself. In the text object creation in

the create function, we set the width for word wrapping to be 180. This

will cause the text messages to fall into a nice column display on our

game UI.

All that is left is to implement createUI for each entity. The UI we’re

using for the monster is simpler than the one for the player; let’s start with

that one first.

�Implementing the monster UI
The monster user interface is very simple; it just shows the monster sprite

and its name. One thing it does that is not clear in the book screenshots

is that it changes the color of the monster name during its turn so that the

player knows which monster is moving. This causes a nice effect as each

monster name blinks in sequence as their turns progress until it’s the

player’s turn again.

Chapter 5 Treasures and Equipment

103

Let’s implement the createUI function.

createUI(config) {

 let scene = config.scene

 let x = config.x

 let y = config.y

 �this.UIsprite = scene.add.sprite(x, y, "tiles", 

this.tile).setOrigin(0)

 �this.UItext = scene.add.text(x+20, y, this.name, { font: 

'16px Arial', fill: '#cfc6b8' })

 return 30

}

The config object contains the position and a reference to the UI

scene – and the width but that is not used in this function – those values

are used to position a sprite and a text.

The value returned by this function is used by the UI scene to compute

the coordinates for the next entity. This allows entity user interfaces to

have a flexible height.

Blinking when it is the entity’s turn can be implemented by altering the

over since that is the function that actually knows if the turn is over or not.

Another visual effect that we’ll implement is dimming the monster name

when it is killed. That can be implemented in the onDestroy function.

 over() {

 �let isOver = this.movementPoints == 0 && 

this.actionPoints == 0 && !this.moving

 if (isOver && this.UItext) {

 this.UItext.setColor("#cfc6b8")

 } else {

 this.UItext.setColor("#fff")

 }

Chapter 5 Treasures and Equipment

104

 return isOver

 }

 onDestroy() {

 dungeon.log(`${this.name} was killed.`)

 this.UIsprite.setAlpha(0.2)

 this.UItext.setAlpha(0.2)

 }

It is important to check if the UItext has been created because that

over function might be called before the UI scene receives the custom

event from the world. Depending if the turn isOver or not, we change the

color of the text.

When the monster is killed, dungeon.log is used to add a message to the

text display of the game, and the entity UI is dimmed by altering its opacity.

The player UI is very similar to this one, but it has more elements; let’s

implement it.

�The player user interface
Besides a display similar to the monster UI with the sprite and name being

shown, the player user interface also contains the stats and inventory slots,

which are unused now but will be used by the next sample which is about

equipment.

To support the new UI, we’ll implement a createUI function and alter

the over function so that the player name also highlights when it’s their turn.

We’ll go over the createUI function in steps as it contains different sections.

 createUI(config) {

 let scene = config.scene

 let x = config.x

 let y = config.y

 let accumulatedHeight = 0

Chapter 5 Treasures and Equipment

105

To make it easier to calculate the height used by the interface, we’ve

added a variable called accumulatedHeight. As we build each section of

the player UI, we’ll add their heights to this variable.

 // Character sprite and name

 �this.UIsprite = scene.add.sprite(x, y, "tiles", 

this.tile).setOrigin(0)

 this.UIheader = scene.add.text(

 x + 20,

 y,

 this.name,

 {

 font: '16px Arial',

 color: '#cfc6b8'

 })

Adding the hero sprite and its name is done in the same way as the

monster user interface.

 // Character stats

 this.UIstatsText = scene.add.text(

 x + 20,

 y + 20,

 �Hp: ${this.healthPoints}\nMp: 

${this.movementPoints}\nAp: ${this.actionPoints}`,

 {

 font: '12px Arial',

 fill: '#cfc6b8'

 })

 �accumulatedHeight += this.HPtext.height + 

this.UIsprite.height

Chapter 5 Treasures and Equipment

106

The character stats is just a text with carriage returns in it. Variable

interpolation using template strings4 will add the correct values for the

data into the displayed text. This text uses a smaller font size than the

previous section, allowing us to display more information in less space.

Inventory display is done using empty squares. There are ten slots

arranged into two rows of five elements. This number is not arbitrary; later

we’ll use the numbers in the keyboard to activate equipment so each slot

will match a keyboard key.

 // Inventory screen

 let itemsPerRow = 5

 let rows = 2

 this.UIitems = []

 for (let row = 1; row <= rows; row++) {

 for (let cell = 1; cell <= itemsPerRow; cell++) {

 let rx = x + (25 * cell)

 let ry = y + 50 + (25 * row)

 this.UIitems.push(

 �scene.add.rectangle(rx, ry, 20, 20, 

0xcfc6b8, 0.3).setOrigin(0)

)

 }

 }

 accumulatedHeight += 90

4�Template strings documentation: https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Template_literals

Chapter 5 Treasures and Equipment

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

107

Using nested loops, a UIitems array is created containing the ten

rectangles.5 In the next sample, we’ll make use of this array to replace the

empty slots with equipment.

The last item in the createUI function is just a line to be used as a

divider between the player UI and the other entities.

 // Separator

 �scene.add.line(x+5, y+120, 0, 10, 175, 10, 0xcfc6b8). 

setOrigin(0)

 return accumulatedHeight

That takes care of all the player’s user interface creation, but we still

need to implement the highlight when it is their turn and also make sure

that the stats display is kept up to date. Lucky for us, we can do both in the

over function.

 over() {

 let isOver = this.movementPoints == 0 && !this.moving

 if (isOver && this.UIheader) {

 this.UIheader.setColor("#cfc6b8")

 } else {

 this.UIheader.setColor("#fff")

 }

 if (this.UIstatsText) {

 �this.UIstatsText.setText(`Hp: ${this.healthPoints} 

\nMp: ${this.movementPoints}\nAp: 

${this.actionPoints}`)

 }

 return isOver

 }

5�Rectangle factory documentation: https://photonstorm.github.io/phaser3-
docs/Phaser.GameObjects.GameObjectFactory.html#rectangle__anchor

Chapter 5 Treasures and Equipment

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectFactory.html#rectangle__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.GameObjectFactory.html#rectangle__anchor

108

It is similar to the monster version of over, but it contains an additional

section to update the UIStatsText with the current values.

That concludes all the changes needed for this first example. If you run

this example, you’ll be able to experience the new user interface. The next

sample is all about creating equipment.

�Creating equipment and treasure
Equipment and treasure will be implemented the same way in this book.

That might not be how a more complex roguelike does it, but it will

serve the purpose of this book well. More complex games will often have

specialized data structures and classes for each kind of game entity they’re

building. To make this book easier to understand and the code easier to

experiment with, we’re using a flexible class definition and making them

all conform to the same interface.

Both will be new forms of game entities – like the player and

monsters – but they won’t move or have user interfaces. By making them

game entities, they can influence the gaming experience beyond just

being acquired. They will have their own version of turn and over, which

means an equipment can have an effect on each turn. A good example of

such effect could be a cursed sword which is very powerful but saps health

points from the player every turn.

Before we can go crazy creating items, we need to work a bit more in

the files we already have. Currently, we have a UI to represent items in the

user possession, but we don’t have the other routines needed for it.

The code for this sample is in chapter-5/example-2-equipment/; once

you open it, you’ll notice some new folders inside it which we’re using to

better organize our code. There is a folder called items which holds all the

items available in the game and another one called enemies with all the

enemies.

Chapter 5 Treasures and Equipment

109

I’ve moved the old monster.js inside the enemies folder and

renamed it skeleton.js; the code in world.js has been updated to

reflect the name change.

All the game entities will now have a new property called type which

is a string that declares what kind of entity it is. Currently, there are three

types of entity – character, enemy, item – all the current game entities

have been updated to set this property in their constructor. The values for

healthPoints in all entities have been raised so that we can play more

with weapons and their effects.

With that bit of rework done, we can start making changes to the

player.js entity.

�Adding item support to the player character
Most of the work needed to support items is contained in the player.js

class. The other entities will not interact with items much, and if they do,

they’ll delegate that to the player. The player will collect items during the

game. Carrying an item and equipping an item are separate actions. That

allows us to create items like potions which upon being equipped would

trigger their effect and then self-destroy.

All items being carried by the player will appear in the inventory grid

we created in the previous sample; the equipped items will appear opaque

and with a white border, the others will be dimmed and without border.

To equip or unequip an item, the player will press the number on the

keyboard corresponding to the chosen slot. There are two rows of five slots,

so the numbers go from 0 to 9 with 0 meaning the tenth slot (so it matches

the sequence in the computer keyboard).

Because the player class is now much larger than before, I’ll go over it in

subsections so that all the code inside it becomes clearer. The next sections will

be out of order in comparison with how the code is laid out on the file itself.

The way I’m explaining it here is to help with understanding how it works, but

the organization in the file is better for readability and maintenance.

Chapter 5 Treasures and Equipment

110

�Equipping items

When the player equips an item, we set the item’s active property to true.

To support this feature, we’ve implemented a toggleItem function that

receives a number corresponding to a slot in the inventory and toggles that

item active or not depending on its previous state.

 toggleItem(itemNumber) {

 const item = this.items[itemNumber]

 if (item) {

 if (item.weapon) {

 �this.items.forEach(i => i.active = i.weapon ? 

false : i.active)

 }

 item.active = !item.active

 if (item.active) {

 �dungeon.log(`${this.name} equips ${item.name} 

: ${item.description}.`)

 item.equip(itemNumber)

 }

 }

 }

The first if clause in that function is there to make sure we’re trying to

toggle an item. If we attempt to pass a number that matches an empty slot,

the function just exits.

Chapter 5 Treasures and Equipment

111

We’re using that function to enforce a specific game mechanic for the

player. They can only equip one weapon at a time. Equipping a weapon

causes all the other weapons to unequip.

If the toggle is turning something active, we use that opportunity to

display some helpful text in the game UI.

Each item can also implement the equip function. This function will be

called if the user is setting the item to active.

�Removing an item from inventory

At the moment, we have two needs regarding removing items from

inventory. We want to enable things such as potions – which will cause an

effect and self-destruct – and items that are able to remove other items.

To support both use cases, we’re going to build two different

functions. The first one is removing an item by passing its slot position in

the player inventory.

 removeItem(itemNumber) {

 const item = this.items[itemNumber]

 if (item) {

 this.items.forEach(i => {

 i.UIsprite.destroy()

 delete i.UIsprite

 })

 this.items = this.items.filter(i => i !== item)

 this.refreshUI()

 }

 }

Chapter 5 Treasures and Equipment

112

To remove an item, we need to

•	 Delete the item UIsprite, which is the sprite we

place on top of the UIitem rectangles that represent the

inventory slots.

•	 Delete the UIsprite property of the item, so that the

function that refreshes the user interface creates it

again.

•	 Remove that item from the items array.

•	 Refresh the user interface to display the changes.

The other function we’re implementing is one that removes an item by

checking if some of its properties match a given value. With that function,

you can, for example, build an item that removes all items that are cursed

by calling it and passing cursed as the property and true as the value.

 removeItemByProperty(property, value) {

 this.items.forEach(i => {

 i.UIsprite.destroy()

 delete i.UIsprite

 })

 �this.items = this.items.filter(i => i[property] !== 

value)

 this.refreshUI()

 }

�Changing how attacks work

At first glance, this might not look like it is related to item handling, but it

is. Prior to this sample, the player’s attack has been a number returned by

the attack function. We’re still going to return a number from that function,

but now we’re going to compute it differently.

Chapter 5 Treasures and Equipment

113

A player’s attack will be determined by the equipped weapon, and to

make it easier to compute that, we’re going to implement a handy auxiliary

function to return the equipped items.

 equippedItems() {

 return this.items.filter(i => i.active)

 }

Now it is easy to compute the attack value for the player.

 attack() {

 const items = this.equippedItems()

 �const combineDamage = (total, item) => total + 

item.damage()

 const damage = items.reduce(combineDamage, 0)

 return damage

 }

You might be wondering what if the user has an equipped item that

doesn’t do any damage; well, in that case, the item damage function

returns zero.

Before this sample is over, we’re going to give the player an item by

prefilling the items array with a sword in the constructor and toggling it

active. Without that, the player would start the game without any weapon,

and it is not wise to walk into a dungeon without at least a pointy stick.

�Changing the constructor

There are two changes needed in the constructor to support items. We

need to add an items array property and the handler for pressing numbers

to equip or unequip items. The first one is quite easy.

 this.items = []

Chapter 5 Treasures and Equipment

114

The second one is a bit more involved. It is similar to the cursor key

handling. We use the scene built-in keyboard plugin6 to register a generic

keyup event handler. This event fires once the key is released; if we were

triggering things on keydown, we’d get repeated events if the user kept the

key pressed, which is undesirable for our use case.

Inside the event handler, we get the value of the key that was

pressed. This key property is passed into the Number constructor; if the

resulting value is a number, then it means that the player pressed a

numerical key; if it is NaN, then they pressed something else, and we can

simply ignore it.

If the pressed key was a number, then we toggle the corresponding

item that matches that value.

 dungeon.scene.input.keyboard.on("keyup", (event) => {

 let key = event.key

 if (!isNaN(Number(key))) {

 if (key == 0) {

 key = 10

 }

 this.toggleItem(key - 1)

 }

 });

Be aware that we need to treat 0 as 10 so that the disposition of the keys

on the keyboard visually matches the slots on the screen.

6�Scene built-in keyboard plugin documentation: https://photonstorm.github.
io/phaser3-docs/Phaser.Input.Keyboard.KeyboardPlugin.html

Chapter 5 Treasures and Equipment

https://photonstorm.github.io/phaser3-docs/Phaser.Input.Keyboard.KeyboardPlugin.html
https://photonstorm.github.io/phaser3-docs/Phaser.Input.Keyboard.KeyboardPlugin.html

115

�Refreshing the UI

With all this item manipulation going on, we need a function to

synchronize what is on screen with what we actually have inside the items

array. This function will be called at every turn so that the display is always

up to date.

The refreshUI function needs to double check if every item in the

items array has a corresponding UIsprite. This is a sprite that is placed

on top of the inventory slot to represent the item. When the player picks

an item, this function will find the item in the items array, notice it doesn’t

contain a UIsprite, and add one, thus causing the item to appear in the

inventory user interface.

Another responsibility of that function is to make sure the inventory

display reflects what items are equipped or not by drawing a white border

around the active items.

 refreshUI() {

 for (let i = 0; i < this.items.length; i++) {

 let item = this.items[i]

 if (!item.UIsprite) {

 let x = this.UIitems[i].x + 10

 let y = this.UIitems[i].y + 10

 �item.UIsprite = this.UIscene.add.sprite(x, y, 

"tiles", item.tile)

 }

 if (!item.active) {

 item.UIsprite.setAlpha(0.5)

 this.UIitems[i].setStrokeStyle()

 }

Chapter 5 Treasures and Equipment

116

 else {

 item.UIsprite.setAlpha(1)

 this.UIitems[i].setStrokeStyle(1, 0xffffff)

 }

 }

 }

The final piece in our player class additions is some changes to the

turn function. Tiles that contain items are not walkable, but they are

also not enemies; moving into a tile that has an item should pick the

item, not attack it.

�Patching turn

Instead of placing the whole content of the turn function, which is

very long and would span more than one book page, I’ll only place the

changed part here. At the end of the function, we make sure we update

the user interface.

 this.refreshUI()

The other change is inside the if block that handled the movement. If the

user moved, we need to check if they hit an item and then grab it.

if (moved) {

 this.movementPoints -= 1

 if (!dungeon.isWalkableTile(newX, newY)) {

 let entity = dungeon.entityAtTile(newX, newY)

 �if (entity && entity.type == "enemy" && 

this.actionPoints > 0) {

 dungeon.attackEntity(this, entity)

 this.actionPoints -= 1

 }

Chapter 5 Treasures and Equipment

117

 �if (entity && entity.type == "item" && 

this.actionPoints > 0) {

 this.items.push(entity)

 dungeon.itemPicked(entity)

 �dungeon.log(`${this.name} picked ${entity.name}: 

${entity.description}`)

 this.actionPoints -= 1

 } else {

 newX = oldX

 newY = oldY

 }

 }

 if (newX !== oldX || newY !== oldY) {

 dungeon.moveEntityTo(this, newX, newY)

 }

}

It may look complicated, but it is simpler than it looks. The first if

clause inside it double checks to see if the entity at the destination tile is

an enemy by checking its type property. If it is and the player has enough

actionPoints, an attack is made.

The second check is to see if the entity is an item; this is also done

by checking its type property. If it is, then the item is pushed into the

inventory by placing it in the items array. A new function has been added

to the dungeon module (more about it in a bit) that is used to remove the

item from the dungeon map picked items should vanish from the map but

still be present in the turn manager.

It is important to notice that picking an item and attacking an enemy

affect the movement differently. You can’t walk into an enemy, so doing an

attack also reverts the player’s position back to its original coordinates, but

you can walk into an item, which causes the player to pick it up and occupy

its map position.

Chapter 5 Treasures and Equipment

118

�Reworking the dungeon module
The dungeon module also needs some fixes because up until now, all the

entities in the turn manager would have a representation on the map. That

is no longer true as items that are picked leave the map but are still present

in the turn manager (so that they may have effects every turn).

Even though this is a small detail, this causes changes on how to

compute which tiles are walkable. We can’t simply loop the turn manager

entities, checking if the coordinates match. We must check if the entity

actually has a sprite.

isWalkableTile: function (x, y) {

 // check all entities.

 let allEntities = [...tm.entities]

 for (let e = 0; e < allEntities.length; e++) {

 let entity = allEntities[e]

 if (entity.sprite && entity.x == x && entity.y == y) {

 return false

 }

 }

 // check level

 let tileAtDestination = dungeon.map.getTileAt(x, y)

 return tileAtDestination.index !== dungeon.sprites.wall

},

When an item is picked, we delete its entity sprite property. This

makes it vanish from the map and also marks the tile as walkable.

A similar change is needed for the entityAtTile function.

entityAtTile: function (x, y) {

 let allEntities = [...tm.entities]

 for (let e = 0; e < allEntities.length; e++) {

 let entity = allEntities[e]

Chapter 5 Treasures and Equipment

119

 if (entity.sprite && entity.x == x && entity.y == y) {

 return entity

 }

 }

 return false

},

Removing an entity and picking an item are two separate functions but

with very similar implementations.

 removeEntity: function(entity) {

 tm.entities.delete(entity)

 entity.sprite.destroy()

 delete entity.sprite

 entity.onDestroy()

 },

 itemPicked: function(entity) {

 entity.sprite.destroy()

 delete entity.sprite

 },

The difference is that removeEntity also removes it from the turn

manager and calls the entity.onDestroy function.

Initializing entities needs changing as well because we may add

entities to the turn manager that will not be present in the map, such as

when we start the player with some weapons already. The way to do that

is just to double check if the entity has its coordinates set. Entities without

coordinates are not placed on the map.

 initializeEntity: function(entity) {

 if (entity.x && entity.y) {

 let x = this.map.tileToWorldX(entity.x)

 let y = this.map.tileToWorldY(entity.y)

Chapter 5 Treasures and Equipment

120

 �entity.sprite = this.scene.add.sprite(x, y, 

"tiles", entity.tile)

 entity.sprite.setOrigin(0)

 }

 },

�Let’s create some items
We’re finally ready to start pouring our creative minds into crafting some

cool items for the game. All the items discussed in this section will be

inside the items folder, and each item has its own file.

Items are game entities so they’ll implement all the functions

needed for the normal entity lifecycle such as turn, over, and refresh,

but not only that, they all need to implement createUI and damage.

Most items will have nothing to do inside those functions, but they

need to be present because the rest of our source code assumes they’re

there. We could patch all the other source code to double check if those

functions are present before calling them, but that would make the

rest of the game harder to maintain; it is better to simply make sure the

functions are present.

Still it would be quite tedious to fill every item with empty stubs for

those functions. To solve that, we’re creating a generic item class that

implements all those functions with no-ops (aka empty functions). Our

items can simply extend the generic item, and then they will just need to

implement the functions they want to change.

This will make our real items more compact, and easy to understand

and maintain. Let’s implement the generic item class.

Chapter 5 Treasures and Equipment

121

�Implementing the generic item class

The code for this generic item class is inside the genericItem.js file inside

the items folder. Even though it is an uninspiring class, it serves its purpose

well, which is to save us from having to type all that boilerplate code for

every single item we want to create.

export default class GenericItem {

 constructor(x,y) {

 this.active = false

 this.type = "item"

 this.weapon = false

 this.name = "Nameless Item"

 this.description = "it is nothing special"

 if (x && y) {

 this.x = x

 this.y = y

 }

 }

 damage() {

 return 0

 }

 turn() {

 }

 equip() {

 }

 unequip() {

 }

Chapter 5 Treasures and Equipment

122

 refresh() {

 }

 over() {

 return true

 }

 createUI() {

 return 0

 }

}

Inside the constructor, there is an if clause checking to see if we’re

instantiating the item by passing coordinates or not. This is because

we might want to instantiate an item not on the map but directly in the

possession of the player. These items wouldn’t have a coordinate as they

were never in the map.

Some functions need to return values that make them have no effect in

the game instead of simply not returning anything.

The over function needs to return true or the turn manager will be

stuck waiting for the item to pass the turn forever.

Since items don’t add their own UI to the game, the createUI should

return zero height.

The same reasoning applies for the damage function which should

return zero by default. If that function didn’t return anything, an

equipped item that causes no damage would cause the attack function

to compute NaN.

By default, items are not weapons and are not equipped. Let’s create a

sword; the player is in a dangerous position without it.

Chapter 5 Treasures and Equipment

123

�Creating a sword

The code for the basic sword that the player will start the game with is

inside sword.js.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class Sword extends GenericItem {

 constructor(x, y) {

 super(x,y)

 this.tile = 994

 this.name = "A Sword"

 �this.description = "A basic sword. Causes between 

1 and 5 damage."

 this.weapon = true

 dungeon.initializeEntity(this)

 }

 damage() {

 return Phaser.Math.Between(1, 5)

 }

}

The sword is very simple. It extends the generic item class, changing

some of its properties such as the tile it uses for visual representation, its

name, and description, and makes sure to mark it as a weapon.

The only function it implements is the damage function. To spice things

up, we’re making the sword cause a random damage between 1 and 5.

Now, we need to give the player this sword at the game start by

hooking it up to the player.js constructor. Import the item with

import Sword from "./items/sword.js"

Chapter 5 Treasures and Equipment

124

And in the constructor just above the dungeon.initialize(this)

function call, add

 this.items.push(new Sword())

 this.toggleItem(0)

That’s it! The player starts the game with an equipped sword. It is not a

good sword though; let’s make a better one.

�Creating a long sword

The code for the long sword is inside longSword.js, and it is almost the

same as the sword code. It just changes how much damage it does and the

associated metadata such as name, description, and tile image.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class LongSword extends GenericItem {

 constructor(x, y) {

 super(x,y)

 this.tile = 992

 this.name = "A Long Sword"

 �this.description = "A long sword that causes 

between 1 and 8 damage."

 this.weapon = true

 dungeon.initializeEntity(this)

 }

 damage() {

 return Phaser.Math.Between(4, 8)

 }

}

Chapter 5 Treasures and Equipment

125

We’ll add this sword somewhere in the dungeon later. I bet the player

will run toward it as it makes much more damage than the little knife they

are given at the start.

�Creating a gem

Collecting treasure as the player crawls through the dungeon is part of

the game. Our gem implementation is dead simple since gems don’t do

anything but exist to be collected. The gem code is inside gem.js.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class Gem extends GenericItem {

 constructor(x,y) {

 super(x,y)

 this.tile = 720

 this.name = "Gem"

 dungeon.initializeEntity(this)

 }

}

That gem is so useless that it doesn’t even get a description. Having

items that are useless by themselves can be a good part of your game

design. You can have another item that has in its equip function a check to

see how many useless gems the player has collected and refuses to work

until a certain number is match, thus making gems some sort of fuel or

lock for that item. You can also make a greedy monster that only attacks

the player if they have gems in their possession. It is not because an item

Chapter 5 Treasures and Equipment

126

doesn’t have any use by itself that it can’t be paired with something else to

provide a more memorable playing experience, so try not to think of gems,

and treasure in general, as simply a game alternative to money; there are

other uses for them that are more rewarding in my opinion.

In our game, we’re not implementing shops or any form of game

economy, so gems will only be used for pairing with some other stuff.

Players might still want to collect them; they are shiny after all. So to drive

a subtle argument against greediness home, let’s make a cursed gem.

�What about a cursed gem?

Cursed items and traps are all staples of roguelikes. In more mature games,

the developers usually provide the player with some form of way to detect

those items, thus rewarding the tactical player who thinks before grabbing

all the shiny stuff that appears before them. We’re keeping this game very

minimal and are not providing any form for the player to figure out if a gem

is cursed before grabbing it. Life is thought in the nano dungeon.

The code for the cursed gem is inside cursedGem.js. That item is a

more complex item than the ones we’ve seen so far. The cursed gem is a

full game entity with actionPoints and turn actions.

In each turn, it figures if the player picked it up. If it did, it activates

itself, making it appear as equipped in the user interface – this is for

theatrical purposes, as in equipped by itself against the player’s will –

and causes one point of damage every turn for the player. If the player

unequips it, it will equip itself back in the next turn. It is cursed after all.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class CursedGem extends GenericItem {

 constructor(x,y) {

 super(x,y)

 this.tile = 720

Chapter 5 Treasures and Equipment

127

 this.name = "Cursed Gem"

 �this.description = "A cursed gem that is now stuck 

to your hand. You can only remove it by finding a potion."

 this.actionPoints = 1

 this.cursed = true

 dungeon.initializeEntity(this)

 }

 turn() {

 if (dungeon.player.items.includes(this)) {

 this.active = true

 �dungeon.log(`Cursed gem gives 1 damage to 

player. Find potion to cure.`)

 dungeon.player.healthPoints -= 1

 }

 this.actionPoints = 0

 }

 refresh() {

 this.actionPoints = 1

 }

 over() {

 return this.actionPoints == 0

 }

}

Much like our skeleton, the cursed gem gets one action point per turn

and spends it regardless of what happens. This is a pattern that makes it act

once every turn.

In each turn, it inspects the player items array looking for itself. This

kind of direct inspection would be dangerous in a larger game, but our

codebase is small and we can get away with it. You’d be surprised with the

Chapter 5 Treasures and Equipment

128

hacks that some larger games get away with though. It is more important

that you pay attention to your game design and make your game fun to

play; if you need to do some hack along the way, I’m not going to judge; it

is your game, and it is marvelous.

If it finds itself in the player’s possession, it damages the player and

sends a message to the UI. This is necessary because without it the player

might not notice they are being hit every turn. The constant text every turn

also adds to the urgency in finding a cure in the form of the potion we’re

going to implement next.

�Creating a potion

The code for the potion is inside potion.js. The potion is the cure for the

cursed gem. When equipped, it will remove all the cursed items in the

player possession and remove itself.

It is our first item to make use of the equip function. This function is

only triggered when an item is set to active. It received the slot number in

the player inventory where the item is located to make it easier to create

self-destruct items by calling player.removeItem(index).

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class Potion extends GenericItem {

 constructor(x,y) {

 super(x,y)

 this.tile = 761

 this.name = "Holy Potion"

 �this.description = "A potion that removes cursed 

items when equipped."

 dungeon.initializeEntity(this)

 }

Chapter 5 Treasures and Equipment

129

 equip(itemNumber) {

 �dungeon.log(`A blessing passes through your body and 

removes all cursed items.`)

 dungeon.player.removeItemByProperty("cursed", true)

 dungeon.player.removeItem(itemNumber)

 }

}

As you can see, by tapping into the equip function, it is very easy

to create potions. Other potions can be easily created to add more

healthPoints to the player or increase the player’s attack for some rounds.

Now that we have some items to play with, it is time to add them to the

dungeon. We’re going to do that by altering the world scene.

�Adding items to the dungeon
To start using the items we just created, we must first import them at the

top of the world.js file.

import CursedGem from "./items/cursedGem.js"

import Gem from "./items/gem.js"

import LongSword from "./items/longSword.js"

import Potion from "./items/potion.js"

At the same location in the create function where we add the skeleton

entities, we’re also going to add some items. Let me show the source code

with the player and skeletons, so that it is easier to locate on the file.

 tm.addEntity(dungeon.player)

 tm.addEntity(new Skeleton(20, 20))

 tm.addEntity(new Skeleton(20, 10))

 tm.addEntity(new CursedGem(15, 20))

 tm.addEntity(new Potion(18, 18))

 tm.addEntity(new LongSword(18, 22))

Chapter 5 Treasures and Equipment

130

 tm.addEntity(new Gem(21, 21))

 tm.addEntity(new Skeleton(76, 10))

 tm.addEntity(new Skeleton(29, 24))

 tm.addEntity(new Skeleton(29, 20))

You’re ready to start playing with items. Once you load that sample

code in your browser, you’ll see a much richer map and have a more

complete gaming experience as seen in Figure 5-2.

�Adding monster loot
A common mechanic in roguelikes and RPGs is monsters dropping some

items or treasure when killed. As you might have guessed already, we have

all the functions we need to implement this just by adding new entities to

the turn manager in the onDestroy function of a monster. The source code

for this next sample is in chapter-5/example-3-loot/ folder.

Figure 5-2.  Dungeon with items

Chapter 5 Treasures and Equipment

131

The only file we’re changing between the previous sample and this one

is the skeleton.js source code. We want the skeleton to, maybe, drop some

item when it is killed. This way the player doesn’t really know if an item

will be dropped and which item is going to drop.

First, let’s import the items we want to have available for dropping at

the top of the file. We’ll also need to import the turn manager because we’ll

need to use it to add the dropped item to the map.

import Gem from "../items/gem.js"

import LongSword from "../items/longSword.js"

import Potion from "../items/potion.js"

import tm from "../turnManager.js"

After importing the items, we need to patch the onDestroy function.

 onDestroy() {

 dungeon.log(`${this.name} was killed.`)

 this.UIsprite.setAlpha(0.2)

 this.UItext.setAlpha(0.2)

 // loot

 let x = this.x

 let y = this.y

 let possibleLoot = [

 false,

 false,

 Gem,

 LongSword,

 Potion

]

Chapter 5 Treasures and Equipment

132

 �let lootIndex = Phaser.Math.Between(0,possibleLoot. 

length-1)

 if (possibleLoot[lootIndex]) {

 let item = possibleLoot[lootIndex]

 tm.addEntity(new item(x, y))

 dungeon.log(`${this.name} drops ${item.name}.`)

 }

 }

The way loot works there is that we assemble a five-element array

containing the items we want to drop and some false entries. A position

in that array is randomized, and if it is an item instead of false, that item

is instantiated and dropped on the map in the position that was previously

occupied by the skeleton.

The reason behind having those false entries is so that not all kills

end up turning up some loot. By adding more false items, we increase the

probability of it not dropping anything.

In a test play here, I pressed the wrong number trying to equip a long

sword and ended up using the potion before picking the cursed gem. I

didn’t notice that at the time and went on to pick the cursed gem just to

use the potion. Then I realized what happened, and I had no potion to

cure me; my only hope was to kill enough skeletons before I run out of

healthPoints and hope one of them dropped a potion.

Chapter 5 Treasures and Equipment

133

�Exercises
There are so many tempting things to play with in this chapter that I could

spend another five pages just giving you ideas to try out; instead, let me

just give you three challenges:

•	 Can you create a health potion?

•	 Can you create a potion that boosts the player attacks

for three rounds and then self-destructs?

•	 Can you create a pair of new monster and gem and

make the monster only start chasing you after you pick

the gem? Can you make the monster terrifying?

�Summary
Our game is starting to look more like a game now. Having items and

monsters allow us to start shaping the gameplay experience in more

creative ways.

Before moving on to the next chapter, make sure that you

•	 Understand how items work inside the player class

•	 Understand how each of our items work

•	 Create some items of your own

There were a lot of complex parts involved in making the game user

interface on the right side of the screen. Understanding how the scenes are

overlaid on top of each other is important as well.

In the next chapter, we’re going to work on new character classes for

the player to use; let’s keep moving.

Chapter 5 Treasures and Equipment

135© Andre Alves Garzia 2020
A. A. Garzia, Roguelike Development with JavaScript,
https://doi.org/10.1007/978-1-4842-6059-3_6

CHAPTER 6

Character Classes
An important part of the gaming experience for many roguelikes is having

multiple choices of player character archetypes available. This, I believe,

comes from many of the games being inspired by tabletop role-playing

games, most of which offer character classes as templates that can be used

to build unique characters for each player.

In this chapter, we’ll be creating character classes. This is a concept

borrowed from tabletop role-playing games (TTRPGs) which you may be

already familiar with through being previously exposed to these awesome

games or by playing other games that featured the same concept. For

the purposes of our sample game, we’re treating character classes and

character races as the same thing. We don’t want to make this sample

game too complex by offering too many combinations.

Think of classes really like archetypes. They are the common

aspects that come to embody what one expects a given fictional

fantasy job to be. In TTRPGs, people will often go to great lengths to

customize their character and create a unique, believable, and fleshed

out character. That is not what we’re doing here; we’re going for the

archetypes, just enough aspects for it to be recognized as the archetype

we want it to represent.

Before we are able to implement our classes, we’ll need to refactor

some of our code.

https://doi.org/10.1007/978-1-4842-6059-3_6#DOI

136

�Yet another refactor
It may appear that we start every single chapter with a refactor; that is

true and also by design. We go from easy to understand code to more

flexible and powerful constructs as the chapters fly by. In this chapter,

we’ll have to do yet another refactor, but before going over what needs

patching, it is important to understand why we’re changing the code at

this point in the book.

Our hero classes will be the classical ones such as warrior, elf, dwarf,

and so on. We need to make them differ more from each other in terms of

gameplay experience so that the game feels richer. At the moment, we can

change the image used, their movement, health, and action points, but

that is it. I feel that we need more than that to flesh out the classes.

If we start to think about what primarily identifies such classes, at

an initial and shallow glance, we’ll probably arrive at the conclusion

that their equipment and weapons are an integral part of how we expect

those classes to be present in a game or story – dwarves with their shields,

armors, and axes; elves so quick and shooting lots of arrows with their

bows; wizards full of spells and wonder.

It is to support different classes, their equipment and gameplay,

that we’ll refactor many parts of our source code. Instead of going piece

by piece and adding the feature we need for a given class when we’re

implementing that class, I think it is better to go ahead and add all the

features first and then finish the chapter by creating each class section by

section. That is actually more fun as well since all the features are in place,

and you can simply be creative with your class creation.

Since there is a bit of tight coupling between some parts of our game, it

is best that I explain what are the features we’re adding to the game before

going over the source code, as for some features to work, multiple changes

need to be done across multiple files.

Chapter 6 Character Classes

137

�Support for defensive bonuses
Dwarves are famous for carrying shields; paladins are often in full armor.

Being able to add support for equipment that helps with defending the

player is something that we could have hacked by patching the turn and

refresh function in every item to add values to the player health points,

but that would be a hell to maintain and very hackish.

What we will do instead is make sure that all the items have a new

function called protection that returns a number. Items that don’t offer

any protection should return zero. This way, to make a shield, we create an

item and make it return a number larger than zero.

Then we patch the attack routines in the dungeon module to take

this into account. The damage needs to be the attack value minus the

protection offered by the equipped items from the victim.

�Support for ranged attacks
Wizards and elves are famous for attacking from a distance. They are not

usually very good when their enemies are too close, but from a distance,

they are terrifying. Our current source code treats attacks as trying to

move into a tile occupied by an enemy. We need to add support for ranged

attacks for those classes to be able to be used in the game.

Adding such support requires many changes all around the place.

First, we need to change the weapons to have a range value. Much like

we’re doing with attack and protection, we’ll use a new function called

range. Equipment that is supposed to be used only for melee combat will

have a range of zero.

Now that we know the range of a given weapon, we need to have

a way to input that we want to attack some specific tile with it. Right

now, our player moves with the cursor keys or passes the turn with the

spacebar, but there is no way to select a tile. To solve that, we’re going to

Chapter 6 Character Classes

138

change the player character class to have a mouse input handler. We’re

just going to use it for ranged attacks. If the player has enough action

points and clicks some tile with an enemy who is in range, then we’ll

make a ranged attack.

That requires changes to the dungeon module to support the ranged

attacks. One crucial change is the animation; our current animation is

the player tile going over to the enemy tile and back. We can’t do that to

ranged attacks; we need to animate some sort of projectile. We’re going to

do that by giving another tile, called an attackTile, to the weapons that

are used for ranged attacks.

With those changes in place, we can finally begin to implement the

classes. To start our refactor, let’s patch the dungeon module to support

those two features.

�Refactoring the dungeon module
This initial sample combines the refactoring and the first class we’re going

to implement. The files are located in chapter-6/example-1-warrior/.

One important alteration that was made to this sample is that the skeletons

now walk three tiles per turn. This was done so that they’ll become a

challenge to some hero classes and just normal foes to others. If they kept

walking just a single tile per turn, then a fast elf and a slow dwarf would

face them the same way. With these changes, we alter the balance of peril

in the dungeon. Talking about dungeons, let’s continue the refactor by

patching the dungeon module in dungeon.js.

We need to change attackEntity to support both bonuses and ranged

attacks. First thing we’ll do is change the function signature to contain an

extra argument.

attackEntity: function (attacker, victim, rangedAttack = 

false) {

Chapter 6 Character Classes

139

This rangedAttack argument is either in its default value, which is

false, or a number that corresponds to the tile to be used for the ranged

attack. This argument is also how the attackEntity will arbitrate between

a melee and a ranged attack. We don’t want that function to go poking into

the player’s equipped items to find the current weapon and then check the

value returned by the range function of that item. That is too invasive and

coupled; we’ll delegate the responsibility of telling which kind of attack it is

to the entity calling attackEntity. Be aware that this opens ranged attacks

to monsters as well, which is fun.

attacker.moving = true

attacker.tweens = attacker.tweens || 0

attacker.tweens += 1

if (!rangedAttack) {

The function starts much like it already did, setting some tween

counters for the attacker, and then it branches depending if it is a ranged

attack or not.

 this.scene.tweens.add({

 targets: attacker.sprite,

 onComplete: () => {

 �attacker.sprite.x = this.map.tileToWorldX(attacker.x)

 �attacker.sprite.y = this.map.tileToWorldX(attacker.y)

 attacker.moving = false

 attacker.tweens -= 1

 let attack = attacker.attack()

 let protection = victim.protection()

 let damage = attack - protection

Chapter 6 Character Classes

140

 if (damage > 0) {

 victim.healthPoints -= damage

 �this.log(`${attacker.name} does ${damage} 

damage to ${victim.name}.`)

 if (victim.healthPoints <= 0) {

 this.removeEntity(victim)

 }

 }

 },

 x: this.map.tileToWorldX(victim.x),

 y: this.map.tileToWorldY(victim.y),

 ease: "Power2",

 hold: 20,

 duration: 80,

 delay: attacker.tweens * 200,

 yoyo: true

 })

} else {

The tween remains basically the same, but notice that we have a new

variable called protection that holds how much defensive bonus the

victim has, and that that value is deducted from the damage applied to

the victim.

The ranged attack is basically the same; we’re only changing the

parameters of the tween. We don’t need it to yo-yo back and forth; when

you shoot an arrow, you don’t expect it to come back (unless you’re

implementing a boomerang). The timing for the animation needs to

be increased because we’re talking about larger distances between the

starting and ending coordinates. If we keep those values the same, the

animation becomes too fast to be seen.

Chapter 6 Character Classes

141

const x = this.map.tileToWorldX(attacker.x)

const y = this.map.tileToWorldX(attacker.y)

const sprite = dungeon.scene.add.sprite(x, y, "tiles", 

rangedAttack).setOrigin(0)

this.scene.tweens.add({

 targets: sprite,

 onComplete: () => {

 attacker.moving = false

 attacker.tweens -= 1

 let attack = attacker.attack()

 let protection = victim.protection()

 let damage = attack - protection

 if (damage > 0) {

 victim.healthPoints -= damage

 �this.log(`${attacker.name} does ${damage} damage 

to ${victim.name}.`)

 if (victim.healthPoints <= 0) {

 this.removeEntity(victim)

 }

 }

 sprite.destroy()

 },

 x: this.map.tileToWorldX(victim.x),

 y: this.map.tileToWorldY(victim.y),

 ease: "Power2",

 hold: 20,

 duration: 180,

 delay: attacker.tweens * 200

})

Chapter 6 Character Classes

142

The ranged attack uses a different tile than the player tile. That tile

is used in a direct tween going from the player coordinates to the victim

coordinates. To do that, we create a brand-new sprite, add it to the scene,

and tween it. When the tween completes, we destroy that sprite as it is no

longer useful. Besides that, all the rest of the code is the same as the melee

one; we also take into account potential defensive bonuses there.

These changes assume that certain functions are present in all items;

to make this real, we need to patch our generic item class.

�Patching the generic item
The code for the generic item class is inside items/genericItem.js; we

need to add two functions to it.

protection() {

 return 0

}

range() {

 return 0

}

Now we can be sure that the dungeon module will not barf when we

use the items we already have built in an attack. With these code changes

in place, the game should play exactly the same as it had in Chapter 5.

The weapons will work the same, and since no item is offering any kind of

protection or range, all the experience remains the same, which means it is

time to change that.

To make it easier to implement multiple items, we created a generic

item class and made all the items extend it, overriding what needed to

change to make them unique. We’ll take the same approach with the

character classes. We’ll create a basic hero class that feels pretty much like

our current player character and then make the other class expand on it.

Chapter 6 Character Classes

143

�Creating a basic hero class
We’ll create a classes folder to hold all the character classes and place

basicHero.js there as our base class for all the future classes we’ll

implement. It is tricky that I’m calling this feature character classes,

borrowing a concept from RPGs, and also implementing this as JS classes.

It makes it a bit cumbersome to talk about two things that use the same

word and are being implemented at the same time. So, we’ll implement

character classes using JavaScript classes.

Refactoring our previous player.js (that is gone from this sample)

into the basicHero.js is also a good opportunity to change how some

aspects of that class work.

I’m not happy with how we handle input events in it, and since we

must also implement handling mouse input, we’ll refactor input handling

out of the turn function. We’ll use that function for stuff that needs to

happen every turn, but that is not related to player input. For example, if

the player’s health points are too low, we’ll tint the player sprite red.

We’re going to refactor that input handler; we have to toggle

equipment into something that also handles movement. To do that is

basically to copy and paste the code from turn into a new function to

be called from that handler. A mouse input handler will also be added

to handle ranged attacks. There is a need to be careful as both handlers

are also active when it is not the player’s turn, so they will need to

double check if the player has action and movement points before they

do anything.

Up to Chapter 5, when the player’s movement point reached zero,

the turn was over. That meant that we could end up with unspent action

points. That was not a problem because attacking was tied to moving,

so without movement points, the player couldn’t attack and spend their

action point.

Chapter 6 Character Classes

144

Now, with the ranged attack option, we need to make sure that the

player’s action points are changed to zero when the turn is over or they will

be able to shoot arrows out of their turn. The easiest way to do that would

be to check if both movement and action points are zero before passing

the turn. The problem with that approach is that sometimes the user has

nothing to do with their action points and no way to spend them. That

would force them to use the spacebar to pass the turn at every turn that they

don’t fully spend both point pools and lead to a lot of friction for gameplay.

To solve that, we’ll keep passing the turn when the movement is over,

but we’ll make sure that when the player’s movement points reach zero,

their action points will also be reduced to zero at the moment. This way,

the player can keep walking without spending their action points, and the

game loop remains the same.

This leads to an important aspect of the gameplay of our Nano

Dungeon; it is a “move last” kind of game where you need to attack and

take action before spending all your movement points. This is a design

decision, and your own game project might have a different way of working

this out. It needed to be acknowledged though because this is part of how

the game feels and will influence tactics, which should feedback into all of

the game design.

So let’s go ahead and implement the basic hero class.

import dungeon from "../dungeon.js"

export default class BasicHero {

 constructor(x, y) {

 this.name = "The Hero"

 this.movementPoints = 1

 this.actionPoints = 1

 this.healthPoints = 30

 this.x = x

 this.y = y

 this.tile = 29

Chapter 6 Character Classes

145

 this.moving = false

 this.type = "character"

 this.items = []

 dungeon.scene.input.keyboard.on("keyup", (event) => {

 if (!this.over()) {

 this.processInput(event)

 }

 });

 dungeon.scene.input.on("pointerup", (event) => {

 if (!this.over()) {

 this.processTouchInput(event)

 }

 });

 }

That code is quite familiar to us, except for the removal of the cursor

property that handled the cursor keys and the addition of two event

handlers, one for when a key is released and another for when a mouse

button is released (or a finger is lifted from the screen).

Acting when the key, mouse, or finger is up is for a very specific

reason. If you keep them down, the event repeats, and the frequency is

very fast. Handling keydown and pointerdown would cause our handler to

fire multiple times while the key or finger is down; that would make the

game buggy. If you try replacing that keyup with keydown and try to have

the player’s character walk, you’ll see that it is basically impossible to

walk a single tile; the event will fire multiple times even for the quickest

keypress.

In both functions, we use the result of over to figure out if it is the

player’s turn or not before trying to handle any potential input.

Chapter 6 Character Classes

146

Let’s implement the processInput first. This function receives as an

argument an event object from the keyup event.

processInput(event) {

 let oldX = this.x

 let oldY = this.y

 let moved = false

 let newX = this.x

 let newY = this.y

 let key = event.key

So far so good, the code is quite similar to our previous code used

inside the turn function. The main difference is that we’re setting a key

variable to hold the value of the key that was pressed.

 // Equip items

 if (!isNaN(Number(key))) {

 if (key == 0) {

 key = 10

 }

 this.toggleItem(key - 1)

 }

The first check is to see if the key was one of the number keys that toggle

equipment.

 // Pass the turn

 if (event.keyCode == 32) {

 this.movementPoints = 0

 this.actionPoints = 0

 }

Chapter 6 Character Classes

147

In this sample, we added a handler for the spacebar key. Pressing it

causes the player to pass their turn. This is useful as a tactical resource for

the player in such occasions like they want a monster to draw near or a

potion to make effect, without changing their position on the map or even

simply not using all their movement points.

 // Movement decision

 if (event.key == "ArrowLeft") {

 newX -= 1

 moved = true

 }

 if (event.key == "ArrowRight") {

 newX += 1

 moved = true

 }

 if (event.key == "ArrowUp") {

 newY -= 1

 moved = true

 }

 if (event.key == "ArrowDown") {

 newY += 1

 moved = true

 }

Instead of using this.cursor as in the previous samples, we’re now

using the value of event.key to check if any cursor key was pressed. It is

quite similar to the previous code, but since all that keyboard input handling

logic is now contained in its own function, it becomes easier to maintain.

 // Execute movement

 if (moved) {

 this.movementPoints -= 1

Chapter 6 Character Classes

148

 if (!dungeon.isWalkableTile(newX, newY)) {

 let entity = dungeon.entityAtTile(newX, newY)

 // Check if entity at destination is an enemy

 �if (entity && entity.type == "enemy" && this. 

actionPoints > 0) {

 const currentWeapon = this.currentWeapon()

 �const rangedAttack = currentWeapon.range() > 

0 ? currentWeapon.attackTile || currentWeapon. 

tile : false

 �dungeon.attackEntity(this, entity, rangedAttack)

 this.actionPoints -= 1

 this.movementPoints += 1

 }

The combat handling code needed adjustments. The game has been

coded in a way that the player can only equip one weapon at a time. If they

equipped a ranged weapon, then attacking with it requires checking to see

if the enemy is in range and passing the attack weapon’s attackTile to the

dungeon.attackEntity function (and thus making it a ranged attack). This

means that even in close combat, the player with a ranged weapon will

still use that to attack. It is up to the player to equip another weapon if the

monsters are drawing near. Since equipping a weapon is a free action (it

doesn’t cost any action point), the player can switch weapons during their

turn to best fit their situation.

 // Check if entity at destination is an item

 �if (entity && entity.type == "item" && 

this.actionPoints > 0) {

 this.items.push(entity)

 dungeon.itemPicked(entity)

Chapter 6 Character Classes

149

 �dungeon.log(`${this.name} picked ${entity. 

name}: ${entity.description}`)

 this.actionPoints -= 1

 } else {

 newX = oldX

 newY = oldY

 }

 }

Picking an item remains the same as previously. If there is an entity on

the destination tile and it is an item, then the player picks it up and moves

into its tile.

 if (newX !== oldX || newY !== oldY) {

 dungeon.moveEntityTo(this, newX, newY)

 }

 }

}

Lastly, it is just a matter of actually moving the player’s character.

Mouse and touch input are a bit different. Selecting a tile to be the target

of a ranged attack is the only action we’re doing with mouse input, so its

handler is much simpler. It is very convenient that Phaser includes the

input plugin1 by default in a scene. It makes handling input much easier.

processTouchInput(event) {

 let x = dungeon.map.worldToTileX(event.worldX)

 let y = dungeon.map.worldToTileY(event.worldY)

 let entity = dungeon.entityAtTile(x, y)

1�Input plugin documentation: https://photonstorm.github.io/phaser3-docs/
Phaser.Input.InputPlugin.html

Chapter 6 Character Classes

https://photonstorm.github.io/phaser3-docs/Phaser.Input.InputPlugin.html
https://photonstorm.github.io/phaser3-docs/Phaser.Input.InputPlugin.html

150

The coordinates where the mouse or touch input happened are

exposed in many ways in the event handler. The values are mapped to our

world and camera settings when accessed using worldX and worldY and

thus easily convertible to tile coordinates to use to obtain the potential

entity at that location with the aid of the dungeon module.

 �if (entity && entity.type == "enemy" && this.

actionPoints > 0) {

 const currentWeapon = this.currentWeapon()

 �const rangedAttack = currentWeapon.range() > 0 ? 

currentWeapon.attackTile || currentWeapon.tile : false

 �const distance = dungeon.distanceBetweenEntities 

(this, entity)

 �if (rangedAttack && distance <= currentWeapon. 

range()) {

 dungeon.attackEntity(this, entity, rangedAttack) 

 this.actionPoints -= 1

 }

 }

}

Executing a ranged attack requires the player to have action points

available and clicking an enemy tile that is in range. If all those checks are OK,

then the attack can proceed.

Without further changes, we’d introduce a very serious bug in our

game: the player would be able to attack enemies when it is not their turn.

If they ended their turn with leftover action points, and the enemies moved

in range, they’d be able to click and attack them. To solve that, we must

patch the over function to make sure that when we exhaust the movement

points, we also set the action points to zero and pass the turn.

Chapter 6 Character Classes

151

over() {

 let isOver = this.movementPoints <= 0 && !this.moving

 if (isOver && this.UIheader) {

 this.UIheader.setColor("#cfc6b8")

 this.actionPoints = 0

 } else {

 this.UIheader.setColor("#fff")

 }

 return isOver

}

Adding this.actionPoints = 0 in the case that the turn is over will

prevent that bug.

It is now time to implement our first character class, the warrior.

�Creating a warrior class
If we’re being honest, our basic hero class is kind of the warrior class; the

changes will be basically cosmetic and in regard to movement. Also, we

changed the basic hero constructor not to give the player any equipment

and removed the initialization call to the dungeon module. All the

character classes will use the constructor to customize the class and then

call dungeon.initializeEntity on their own.

Next to basicHero.js is the file for the warrior class; it is called warrior.

js. In it we’ll customize the constructor to give the warrior more movement

points and more action points than the basic hero. We’ll also give it a basic

sword. There is no need to customize the sprite tile because the basic hero

sprite is the warrior sprite; that’ll change the other classes though.

import BasicHero from "./basicHero.js"

import Sword from "../items/sword.js"

import dungeon from "../dungeon.js"

Chapter 6 Character Classes

152

All character classes will import the basic hero class (so it can be

extended), any items we want to give to the player at the start of the

game, and the dungeon module (so it can initialize the entity at the end

of the constructor).

export default class Warrior extends BasicHero {

 constructor(x, y) {

 super(x, y)

 this.name = "Warrior"

 this.movementPoints = 3

 this.actionPoints = 2

 this.items.push(new Sword())

 this.toggleItem(0)

 dungeon.initializeEntity(this)

 }

It is very good to benefit from the new class keyword in JS; extending

the basic hero class removes the need to write a ton of repetitive

boilerplate when creating new hero archetypes. Maintaining and

improving code that is shared between all archetypes becomes much

easier as well since it is all self-contained in the basic hero class.

 refresh() {

 this.movementPoints = 3

 this.actionPoints = 2

 }

}

Chapter 6 Character Classes

153

While the basic hero would walk one tile and be able to attack only

once per turn, the warrior can walk more and execute more attacks.

Playing with that hero has a totally different feel than the previous basic

hero we used. With extra movement and attacks, the player is not as fearful

of being mobbed and can be more bold in their movement and tactics.

To make it easier to experiment with multiple character classes,

we’re going to create a classes.js file that is just a new object to hold

reference to all the character classes. This file will be imported by the

world scene, thus making all archetypes available there. Changing what

hero we’re using will be just a matter of changing what class is initialized

in the world scene.

import Warrior from "./classes/warrior.js"

const classes = {

 Warrior

}

export default classes

Importing that file in the world scene is straightforward.

import classes from "./classes.js"

And so is initializing a warrior inside the create function in the

world scene.

dungeon.player = new classes.Warrior(15, 15)

All the changes needed to further explore hero archetypes are in place,

and our first class, the warrior, although very similar to our old basic hero,

plays in a much bolder style. Let’s implement another class now; it is time

to create our first dwarf.

Chapter 6 Character Classes

154

�Creating a dwarf
Dwarves are a staple of the fantasy genre. They’ve evolved a lot in recent

fiction beyond what we normally associate with the archetype, and it

would be cool to see more games benefit from more flexible dwarves. Our

sample will be quite old-school though and focus on the oldest features

we associate with that archetype. Our dwarves will be protected, walk less

than a warrior, and pack a strong melee attack.

From this section onward, each hero archetype will be contained in its

own sample. The code for the dwarf is in chapter-6/example-2-dwarf/.

As mentioned earlier in the chapter, giving distinctive items to a class

makes it feel more fleshed out and fun to play. For the dwarf, we’re going

to create a weapon suitable for a dwarf, then work on the class. The dwarf

basic weapon will be an axe, and the code for it is in items/axe.js.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class Axe extends GenericItem {

 constructor(x, y) {

 super(x,y)

 this.tile = 934

 this.name = "An Axe"

 �this.description = "A basic axe. Causes between 2 

and 7 damage."

 this.weapon = true

 dungeon.initializeEntity(this)

 }

Chapter 6 Character Classes

155

 damage() {

 return Phaser.Math.Between(2, 7)

 }

}

The item is implemented much like the sword we created in previous

chapters but with a distinctive tile, description, and damage. Any prudent

dwarf wouldn’t walk into a dungeon without a shield. Let’s create another

item, this one inside items/shield.js.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class Sword extends GenericItem {

 constructor(x, y) {

 super(x,y)

 this.tile = 776

 this.name = "A Shield"

 �this.description = "A basic shield. Gives +1 

protection."

 dungeon.initializeEntity(this)

 }

 protection() {

 return 1

 }

}

The shield is a simple item. Besides metadata such as tile and

description, all it does is add a defensive bonus to the player by returning a

positive value from the protection function. Remember that cursed gem

we created some time ago? You could have a cursed shield that returned

Chapter 6 Character Classes

156

a negative number from protection and thus caused extra damage to the

player at every attack or a cursed hammer that did that but also inflicted

a ton of damage on enemies. So the player would be constantly torn

between using the strong weapon and also receiving extra damage, and

using something weaker but being better protected.

Implementing the dwarf is also easy; the code is in classes/dwarf.js.

import dungeon from "../dungeon.js"

import BasicHero from "./basicHero.js"

import Axe from "../items/axe.js"

import Shield from "../items/shield.js"

export default class Dwarf extends BasicHero {

 constructor(x, y) {

 super(x, y)

 this.name = "Dwarf"

 this.movementPoints = 2

 this.actionPoints = 2

 this.healthPoints = 35

 this.tile = 61

 this.items.push(new Axe())

 this.toggleItem(0)

 this.items.push(new Shield())

 this.toggleItem(1)

 dungeon.initializeEntity(this)

 }

 refresh() {

 this.movementPoints = 2

 this.actionPoints = 2

 }

}

Chapter 6 Character Classes

157

At the constructor, you can see that the dwarf moves less tiles than the

warrior but has more health points. They are also equipped with both an

axe and a shield, which will provide an extra layer of protection to the hero.

Playing such character is different than playing the warrior. The warrior

favors bold movement tactics and attacking multiple times; the dwarf is

more like a tank, slow moving but relentless.

Don’t forget to add the new class to classes.js.

import Warrior from "./classes/warrior.js"

import Dwarf from "./classes/dwarf.js"

const classes = {

 Warrior,

 Dwarf

}

export default classes

And change the world scene to use it.

dungeon.player = new classes.Dwarf(15, 15)

A more complex archetype to implement is the one we’ll be seeing

next, the cleric.

�Creating a cleric
The cleric is a class that is constantly shifting in the fantasy genre. What

people appear to agree with it is that the cleric is like a warrior that has

access to healing powers through some holy or divine entity they’re linked

with. There is a spectrum of cleric-ness going on in the game and fantasy

worlds, from warriors with healing powers to basically medieval fantasy

medic monks that don’t fight; there is a lot of room for interpretation and

creative design.

Chapter 6 Character Classes

158

Keeping our laser focus on building a simple game, our cleric will have

one unique ability that other classes don’t have. The cleric will heal a bit

every turn. It is simple but quite effective. Every turn, the cleric will heal

one health point during refresh. In a multiplayer game, the cleric would

possess the ability to heal others, but in this game, there are no other hero

characters, so healing themselves is good enough.

In many older TTRPG games, the cleric was prevented from using

edged weapons. We can’t really implement that in our dungeon, unless we

start adding new properties to the generic item class to tell us what kind of

weapon a given item is. Instead, we’ll give the cleric a non-edged weapon

upon its creation on the constructor and let the player decide if they want

to switch it to an edged weapon as they play the game and collect loot.

The default weapon for the cleric will be a hammer; the code for the

cleric sample is in chapter-6/example-3-cleric, and the hammer is in

items/hammer.js.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class Hammer extends GenericItem {

 constructor(x, y) {

 super(x,y)

 this.tile = 933

 this.name = "A warhammer"

 �this.description = "A basic warhammer. Causes 

between 3 and 8 damage."

 this.weapon = true

 dungeon.initializeEntity(this)

 }

Chapter 6 Character Classes

159

 damage() {

 return Phaser.Math.Between(3, 8)

 }

}

It’s the same kind of weapon template as the sword and the axe; it

causes more damage though.

import dungeon from "../dungeon.js"

import BasicHero from "./basicHero.js"

import Hammer from "../items/hammer.js"

export default class Cleric extends BasicHero {

 constructor(x, y) {

 super(x, y)

 this.name = "Cleric"

 this.movementPoints = 3

 this.actionPoints = 2

 this.healthPoints = 40

 this.tile = 30

 this.items.push(new Hammer())

 this.toggleItem(0)

 dungeon.initializeEntity(this)

 }

As we can see there, the cleric walks and attacks like the warrior, but

they have more health points, making them a bit better than warriors to

play to be honest.

The healing action will happen inside the refresh function. If the health

points of the player drop below 40 points, they start healing at a rate of one

point per turn. If the player’s health is too low, it pays to go to an isolated place

in the dungeon and keep pressing the space bar to pass the turns and heal.

Chapter 6 Character Classes

160

 refresh() {

 this.movementPoints = 3

 this.actionPoints = 2

 // Clerics heal a bit every turn

 if (this.healthPoints < 40) {

 this.healthPoints += 1

 dungeon.log("Cleric heals 1 hp")

 }

 }

}

Clerics should play differently than a warrior. Even though they possess

all the characteristics of the warrior class plus healing, playing a cleric is

a game of moving forward and retreating for a bit to heal before moving

more. The cleric class is better suited for more dangerous dungeons, but

clearing the dungeon with the warrior with all its limitations is a challenge

that many players will enjoy.

To try it out, you need to add it to the classes.js and switch which

class is used in the world scene, just like we did with the dwarf.

Finally, we’re about to implement a class with a ranged weapon; here

comes the elf.

�Creating an elf
Elves are such a versatile archetype that is a bit hard to pinpoint what

would be their defining characteristic in terms of gameplay. Just like the

previous archetypes mentioned, elves have seen an explosion in terms of

different ways on how they are perceived in works of fantasy. What we’ll

focus on is a nimble character that shoots a lot of arrows.

Chapter 6 Character Classes

161

They will be weaker than the other character classes we have; this way,

the player will prioritize ranged combat and be quite wary of enemies

drawing too close. Their default weapon will be a bow. Since this is just a

sample, we’re giving them infinite arrows, but if you want a better design,

you could use an internal property on the item to count how many arrows

the player has left.

The code for this sample is in chapter-6/example-4-elf/, and our

new bow in items/bow.js.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class Bow extends GenericItem {

 constructor(x, y) {

 super(x,y)

 this.tile = 901

 this.attackTile = 872

 this.name = "A Bow"

 �this.description = "A bow and arrows. Causes 

between 1 and 3 damage. Range is four tiles."

 this.weapon = true

 dungeon.initializeEntity(this)

 }

 damage() {

 return Phaser.Math.Between(1, 3)

 }

 range() {

 return 5

 }

}

Chapter 6 Character Classes

162

This is our first ranged weapon. Its range is five tiles; that counts the

tiles the player is in and the tile the enemy is in. So by having a range of

five, it means that you can fire at an enemy as long as there are up to three

empty tiles between you both.

The elf class is in classes/elf.js.

import dungeon from "../dungeon.js"

import BasicHero from "./basicHero.js"

import Bow from "../items/bow.js"

export default class Elf extends BasicHero {

 constructor(x, y) {

 super(x, y)

 this.name = "Elf"

 this.movementPoints = 4

 this.actionPoints = 3

 this.healthPoints = 20

 this.tile = 56

 this.items.push(new Bow())

 this.toggleItem(0)

 dungeon.initializeEntity(this)

 }

 refresh() {

 this.movementPoints = 4

 this.actionPoints = 3

 }

}

Chapter 6 Character Classes

163

Nimbler than the other classes, the elf can move four tiles per turn.

This allows the player to move closer to the enemies, attack, and then

move away, basically leading a sort of guerilla approach to dungeoneering.

With three action points per turn, the elf can shoot three times per turn,

allowing it to attack (and if lucky kill) multiple targets before they have a

chance to move.

Our final character class for the chapter will be the wizard.

�Creating a wizard
Wizards come in many kinds, so many that we have different names to

refer to them – sorcerers, conjurers, and so on – but in our game, we’re

going back to basics. Inspired by RPGs, our wizard will be an old-school

savvy hero who uses scrolls to memorize spells and cast them.

In essence, these scrolls will be ranged weapons. They will appear as

scrolls in the player’s user interface, and their attack tile will look like a

spell, but internally they’ll behave just like the bow from the elf. The code

for the wizard is in chapter-6/example-5-wizard/.

We need to do just a bit of housekeeping before implementing our first

scroll. In our spritesheet graphics, we don’t have many images for scrolls.

They are all the same color, and that would make it difficult for the player

to figure out which one to equip as they’d look all the same. To solve this

problem, we’ll introduce sprite tinting to the game. This allows us to paint

over a sprite with any color of our choosing. It requires us to patch the

dungeon module and the basic hero.

Let’s start with the basic hero patching. What we need to do is double

check if the item being added to the interface has a tint property, and if it

does, use that in the sprite. Inside the refreshUI function, we’re changing

the first if clause to be

Chapter 6 Character Classes

164

if (!item.UIsprite) {

 let x = this.UIitems[i].x + 10

 let y = this.UIitems[i].y + 10

 �item.UIsprite = this.UIscene.add.sprite(x, y, "tiles", 

item.tile)

 if (item.tint) {

 item.UIsprite.tint = item.tint

 item.UIsprite.tintFill = true

 }

}

The interesting addition is the internal if clause that checks for a tint

value and applies it.2

A similar change is needed in the initializeEntity function of the

dungeon module so that tinted sprites appear with the same tint in the

dungeon and in the player’s user interface.

initializeEntity: function (entity) {

 if (entity.x && entity.y) {

 let x = this.map.tileToWorldX(entity.x)

 let y = this.map.tileToWorldY(entity.y)

 �entity.sprite = this.scene.add.sprite(x, y, "tiles", 

entity.tile)

 entity.sprite.setOrigin(0)

 if (entity.tint) {

 entity.sprite.tint = entity.tint

 entity.sprite.tintFill = true

 }

 }

},

2�Sprite tint documentation: https://photonstorm.github.io/phaser3-docs/
Phaser.GameObjects.Sprite.html#tint__anchor

Chapter 6 Character Classes

https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Sprite.html#tint__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.GameObjects.Sprite.html#tint__anchor

165

We should also tint the attack sprite used for ranged attacks. To do that,

we’ll patch the attackEntity function in the dungeon module. Since that

function is not aware of what item is being used in the attack, we need to

pass another argument to its call with the tint color to use. Like the ranged

attack argument, this tint is optional and set to false by default.

attackEntity: function (attacker, victim, rangedAttack = 

false, tint = false) {

The optional tint is going to be used only for ranged attacks, so we add

the following lines after the sprite creation for such attacks:

const sprite = dungeon.scene.add.sprite(x, y, "tiles", 

rangedAttack).setOrigin(0)

if (tint) {

 sprite.tint = tint

 sprite.tintFill = true

}

Having that argument declared there is not enough; we must use it

from the attack handling routines of our basic hero class. So all the calls to

attackEntity in both processInput and processTouchInput need to be

patched to carry the tint.

processTouchInput(event) {

 let x = dungeon.map.worldToTileX(event.worldX)

 let y = dungeon.map.worldToTileY(event.worldY)

 let entity = dungeon.entityAtTile(x, y)

 �if (entity && entity.type == "enemy" && this. 

actionPoints > 0) {

 const currentWeapon = this.currentWeapon()

Chapter 6 Character Classes

166

 �const rangedAttack = currentWeapon.range() > 0 ? 

currentWeapon.attackTile || currentWeapon.tile : 

false

 const tint = currentWeapon.tint || false

 �const distance = dungeon. 

distanceBetweenEntities(this, entity)

 �if (rangedAttack && distance <= currentWeapon. 

range()) {

 �dungeon.attackEntity(this, entity, 

rangedAttack, tint)

 this.actionPoints -= 1

 }

 }

 }

And in processInput, we used the exact same change, creating a tint

constant and passing it to attackEntity.

These changes will open many opportunities for entity creation,

especially once we start with procedural generation in the next chapters.

Let’s proceed to implement our first spell, the fireball, whose code is at

items/scrolloffireball.js.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class ScrollOfFireball extends GenericItem {

 constructor(x, y) {

 super(x,y)

 this.tile = 881

 this.tint = 0xdd0000

 this.attackTile = 335

 this.name = "A Scroll of Fireball"

Chapter 6 Character Classes

167

 �this.description = "A scroll of fireball. Causes 

between 1 and 4 damage. Range is four tiles."

 this.weapon = true

 dungeon.initializeEntity(this)

 }

 damage() {

 return Phaser.Math.Between(1, 4)

 }

 range() {

 return 4

 }

}

The fireball is similar to the bow in its implementation; it is in essence

a simple ranged weapon. We added a red tint to it using the tint property

in the constructor so that it appears differently than the other spell scrolls

we’re going to build. Fireballs are powerful, but their range is not that long.

A spell with a longer range is lightning, which is implemented in items/

scrolloflightning.js.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class ScrollOfLightning extends GenericItem {

 constructor(x, y) {

 super(x,y)

 this.tile = 881

 this.tint = 0x0022ff

 this.attackTile = 413

 this.name = "A Scroll of Lightning"

Chapter 6 Character Classes

168

 �this.description = "A scroll of Lightning. Causes 

between 1 and 2 damage. Range is seven tiles."

 this.weapon = true

 dungeon.initializeEntity(this)

 }

 damage() {

 return Phaser.Math.Between(1, 2)

 }

 range() {

 return 7

 }

}

The code is almost the same as the fireball, but it is a weaker spell with

a longer range. The player controlling the wizard needs to switch them as

the monsters draw near. Let’s implement a final potion, a health potion, in

items/healthPotion.js.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class HealthPotion extends GenericItem {

 constructor(x,y) {

 super(x,y)

 this.tile = 761

 this.name = "Health Potion"

 �this.description = "A potion that cures between 3 

and 5 health points when."

 dungeon.initializeEntity(this)

 }

Chapter 6 Character Classes

169

 equip(itemNumber) {

 const points = Phaser.Math.Between(3, 5)

 �dungeon.log(`A warm feeling is felt when drinking the 

potion as it restores ${points} health points.`)

 dungeon.player.healthPoints += points

 dungeon.player.removeItem(itemNumber)

 }

}

We’re going to give a couple of health potions to the wizard. Dungeons

are dangerous places, and wizards should go in with all the equipment

possible. Talking about wizards, let’s implement classes/wizard.js.

import dungeon from "../dungeon.js"

import BasicHero from "./basicHero.js"

import ScrollOfFireball from "../items/scrolloffireball.js"

import ScrollOfLightning from "../items/scrolloflightning.js"

import HealthPotion from "../items/healthPotion.js"

export default class Wizard extends BasicHero {

 constructor(x, y) {

 super(x, y)

 this.name = "Wizard"

 this.movementPoints = 3

 this.actionPoints = 1

 this.healthPoints = 20

 this.tile = 88

 this.items.push(new ScrollOfFireball())

 this.items.push(new ScrollOfLightning())

 this.items.push(new HealthPotion())

Chapter 6 Character Classes

170

 this.items.push(new HealthPotion())

 this.toggleItem(1)

 dungeon.initializeEntity(this)

 }

 refresh() {

 this.movementPoints = 3

 this.actionPoints = 1

 }

}

Wizards are weak beings, easy to kill if the monster can actually attack

them. They don’t have a lot of movement points so the player needs to

be clever (and a bit lucky) with their moves. To improve the odds of the

wizard surviving, we have given them two health potions. Equipping them

should restore a bunch of health points, but like the holy potion, they are

single-use items.

Adding the wizard to classes.js and changing the class that is

initialized in the world scene will let you play with that class.

�Exercises
Can you create more character classes? How would a cat be used as

a hero? Maybe it can’t attack, and all the play is based on avoidance

and stealth, with the cat having nine lives before permadeath actually

strikes them down. What about a magical cat? You can give some

scrolls to the cat and make it quite dangerous. There is a cat tile on the

spritesheet, just saying.

Chapter 6 Character Classes

171

�Summary
This completes all the basic archetypes we set out to create at the

beginning of the chapter. To implement the character classes, we had to

patch a bit of our game code, but we now have a very flexible framework to

let our creativity roam wild while we create items, monsters, and heroes.

It is important to understand how each of the character archetypes

builds upon both genericItem.js and basicHero.js, overriding their

properties and functions to create fleshed out experiences of various

heroes that play differently from one another.

So far, all we implemented has been basic gameplay features needed

to use as a base to build our roguelike. At the moment, the game doesn’t

feel roguelike; we’re missing the most important ingredient which is the

always fresh gameplay you get when you add procedural generation to the

game. In the next chapter, we’ll start on that path by adding procedurally

generated entities to our dungeon.

Chapter 6 Character Classes

173© Andre Alves Garzia 2020
A. A. Garzia, Roguelike Development with JavaScript,
https://doi.org/10.1007/978-1-4842-6059-3_7

CHAPTER 7

Procedurally
Generated Monsters
and Items
Finally, we have arrived at one of the cornerstones of roguelikes:

procedural generation is probably one of the first things that comes to

the mind of a player when they think about the genre, probably alongside

thinking about permadeath and maybe ASCII graphics. Before we dive

deeper into the code, it’s best if we explain a bit about what procedural

generation is and what it is good for and most importantly what role it

plays in the scope of this book.

Procedural generation is a deep topic, and we cannot do it justice

with the two chapters we have devoted to it in this book. This book is

an introduction to roguelike development, an initial blueprint for you

to experiment with and get a taste for the genre from a development

point of view. We cannot explore all the potential algorithms, libraries,

and techniques that have been so cleverly used by the mainstays of the

genre, but we can take you on a tour of how it works and implement some

procedural techniques in our game while giving you pointers on where to

find more information about the various topics we’re exploring.

https://doi.org/10.1007/978-1-4842-6059-3_7#DOI

174

On this chapter, we are going to limit procedural generation to just

two types of entities – items and enemies – we will leave the dungeon

generation to the next chapter. As an author, I have struggled for a long

time about how to approach the topic for this chapter. I wanted it to be

fresh for those who have already interacted with procedural generation

before, as I am sure some of you already did, while keeping it approachable

and understandable for the developers who are seeing this for the first

time. My solution was to create a system that was based on a common

concept that should be known for all the readers of this book: tags.

�Introducing tags
Tags are a pervasive concept in our networked life. They permeate all

corners of most of the social networks we interact with and are a very

recognizable jargon to build upon. We can think of tags as labels that we

attribute to collections of characteristics and behaviors. They encompass

an aspect of whatever is being represented in an easy to understand and

fast to communicate way. As an example, picture a car in your mind. If you

saw a picture of this car with a tag #electric, you’d instantly realize you’re

looking at an electric vehicle.

Another good property of tags is that they are composable. You can

apply many tags to the same thing and have it be the sum of all of them.

That car that was mentioned earlier could also have the tags #fourbyfour,

#manualshift, and #red applied to it, giving you much more context about

the vehicle.

This is what we are going to do in this book, create a system of tags

that can be applied to entities to define their behavior or augment their

characteristics. By the end of the chapter, we will have tags such as #cursed

and #golden that we can apply to a sword to make it an attractive but

dangerous weapon.

Chapter 7 Procedurally Generated Monsters and Items

175

�Aren’t you describing mixins?
Mixins are a common pattern used in object-oriented programming for

composition and code reuse. It is usually the answer for when you have a

car class and a flying class and want to make a flying car class by mixing

both classes. This is not exactly what our tag system will do. It will compose

between different collections of features, but it will not do it in the shallow

way that mixins work. By shallow I mean that usually developers opt for using

mixins when they want an object to be the sum of the methods and properties

of two or more classes. Our tag system will be different and work as pipelines.

�Tags as pipelines
If tags were implemented as mixins, then the entities they are attached to

would be the sum of the methods and properties of each tag. This does

not match the way our entity system works. Our game entities have a

lifecycle of methods – turn, over, refresh, and so on – which is well defined;

attaching more functions to them will not work.

What works is attaching multiple versions of the lifecycle methods and

making the code behave so that executing a method executes a pipeline of

versions of that method. This way, every time some method is called, that

method will be called for the entity and for each tag that is attached to that

entity. Suppose there is a #cursed tag that subtracts 1 healthPoint from the

entity every turn. For that to work, the tag would implement a turn function

much like our entities do, and when the turn function for the entity is called,

then the turn functions for all the tags attached to that entity are also called.

�Making good tags
Tags work best when they are flexible. It is very tempting to just decompose

the behaviors we already have into discrete units and call it a day, but that

would be selling tags short.

Chapter 7 Procedurally Generated Monsters and Items

176

In my opinion, tags work best when they have different meanings

depending on the context. A boat with a tag #sinking is a bad thing; a

submarine with the same tag is business as usual. The idea is to make tags

be an advantage or a disadvantage depending on how they are applied. A

#burning entity can lose healthPoints at every turn, but a #burning sword

will give an attack bonus to the player and add the #burning tag to entities

it damages. The tag is the same, #burning, but how it works depends on

whether it is applied to the player, enemies, or to an item.

It will not be possible to make all tags be flexible like that; some will

just be discrete units of reusable boring characteristics, but the more

flexible tags we have, the more interesting our game (and our creative

process) becomes.

�Tags and procedural generation
Procedural generation can be summarized as the act of making code

that generates fresh content and behavior for every game. That’s the

tweet length definition and is incomplete. You can think of procedural

generation as a factory that pumps new fresh content on demand. Some of

that content will be recognizable, but the overall experience will be fresh.

Procedurally generating tags make them lose their appeal in the first

place as they will not be the instantly recognizable labels we have grown

to love and understand. What we will do is use procedural generation to

select and apply tags to items and enemies, thus creating fresh content for

our levels.

You’ve met our skeleton; they are the only enemy we’ve implemented

so far. Now imagine that procedural generation applied #royal to it, making

it Count Skeletah, then applied #going-somewhere which meant that Count

Skeletah doesn’t actually care for the player’s position and is instead busy

going to a different destination, and finally applied #vegan which causes

Count Skeletah to never harm the player. Underneath it all, it is still a

skeleton, but the tags made it fresh and memorable.

Chapter 7 Procedurally Generated Monsters and Items

177

As you are probably realizing, implementing all this will require a

major refactoring of our code.

�Adding support for tags
There is more work needed for this chapter’s sample than just adding

the tags and the necessary plumbing around that feature. For tags to be

effective, there need to be entities for them to be attached to. So, in this

chapter, we are going to do an overhaul of our enemies and items, adding

more variety and customizing the ones we already have.

Because of that, we will build just a single example in this chapter.

After we add all the code that is necessary to support tags and add more

enemies, the chapter will go over implementing all the tags.

The code for this chapter is in chapter-7/example-1-tags/.

�Making entities taggable
Our entities all have similar shapes, but they inherit from different classes.

All hero classes inherit from BasicHero and the items from GenericItem.

In this initial step of our refactor, we’re going to make a new class called

Taggable and make both classes mentioned inherit from it, so each hero

class will be an instance of BasicHero which is an instance of Taggable,

and the same is true for the items but with GenericItem instead of

BasicHero of course.

Before diving into the code of the Taggable class, it might be better to

explain how it will work. The main driving force is to minimize changes

to the existing entities. Even though we’ll end up touching most of the

entities, it won’t be because they need changes to support tags but because

we need to tweak something there so that tags make sense with them and

the experience of developing the game is more enjoyable.

Chapter 7 Procedurally Generated Monsters and Items

178

Tags will be JavaScript objects, not classes, because we want the

functions attached to them to be in the objects themselves and not their

prototypes. When a tag is applied to an entity, its functions will be copied

over to some special properties in the entity, and the entity’s original

function of the same name will be wrapped into a function that calls the

original code plus all the functions that were inserted into that special

property, like a pipeline.

Instead of making the tag system into a library, we’re making

the Taggable class so that it becomes easier to work with the entities

themselves by leveraging this reference inside each tag code.

The code for the Taggable class is inside the taggable.js file. There

will also be another file called tags.js, which we will create after this one

to hold a reference to each available tag. The declaration for the new class

and the import for the tags object are straightforward.

import tags from "./tags.js"

export default class Taggable {

}

Each function that is going to be implemented in this class should go

inside that block defined by the class keyword. I am breaking them all into

discrete functions here so that I can explain them, but in the code, they are

all inside the class. Let us begin by the most important function, addTag,

which is the one that will be called to attach a tag to an entity. To be able to

fully grasp what that function is doing, let me first show you a simple tag. It

will be easier to explain addTag if you have seen a tag before. The tag I am

going to show is #iron.

const iron = {

 name: "Iron",

 initialize: function () {

 this.name = `Iron ${this.name}`

 this.tint = 0xccbc00

Chapter 7 Procedurally Generated Monsters and Items

179

 if (this.sprite) {

 this.sprite.tint = this.tint

 this.sprite.tintFill = true

 }

 },

 attack(acc = 0) {

 if (acc > 0) {

 acc += 1

 }

 return acc

 },

 protection(acc = 0) {

 if (acc > 0) {

 acc += 1

 }

 return acc

 }

}

export default iron

A tag is an object. It contains a name that describes it; an initialize

function that is called when it is added to an entity, much like a

constructor in a class; and one or more functions with the same name as

the lifecycle functions our entities have.

Each of these functions that are shared between the tags and the

entities always receives a first argument that is the resulting value from

passing the function through the pipeline. In this iron tag sample, there

is an attack function. This function will be called if the tag is applied to a

weapon when the weapon is used to attack another entity. First, the entity’s

own attack function is going to be called; the resulting value will then be

Chapter 7 Procedurally Generated Monsters and Items

180

passed to the first attack function in the pipeline of tags. Each function in

this pipeline will receive the returned value from the previous function

called. This way, they all have an opportunity to alter that value before it is

returned to whoever called it in the first place.

These functions need to be made with care because tags can be

attached to different entities and thus end up affecting them in undesirable

ways if you are not attentive to how the game works. For example, we know

that any item returning a positive number from the protection function will

be counted as defensive bonus when an entity is attacked. If you do not

take that into account when creating a protection function for a tag, you

might make your tag offer protective bonus for items that were not actually

contributing to protection in the first place. That might be what you want, or

might not; in any case, it is better to see if the previous value was a number

and not change it if it was zero. This way attaching the iron tag to a sword

will not add to the player’s defensive bonus, but attaching it to a shield will.

This iron tag adds +1 to an attack value if applied to a weapon and

+1 to a defensive bonus if applied to another item, and it has no effect

whatsoever if applied to the player or the enemies since they don’t make

use of attack or protection functions.

It will become clearer as we go over the code together. Don’t worry if

you don’t understand everything about that iron tag now; I’ve placed it

there so that you have a real tag to refer to while reading the code for the

addTag function.

addTag(template) {

 let tag = {}

 Object.assign(tag, template)

 let name = tag.name

 delete tag.name

 tag.initialize.apply(this)

 delete tag.initialize

Chapter 7 Procedurally Generated Monsters and Items

181

 let keys = Object.keys(tag)

 keys.forEach(handlerName => {

 this.wrapFunction(handlerName)

 this.addTagHandler(handlerName, tag[handlerName])

 })

 if (!this._tags) {

 this._tags = [name]

 } else {

 this._tags.push(name)

 }

 return this

 }

The addTag function receives a template object as its argument; that

object is a tag blueprint like the iron tag mentioned earlier. The first step in

that function is to create a new object and copy the blueprint over. That is

done so that each applied tag has its own object; if that was not the case,

then applying the same tag to two or more different entities would end up

all pointing to the same object, and that might lead to some quite complex

debugging sessions.

As mentioned before, we are going to copy functions from the tag into

the entity. But we are not going to copy all of them. The name is a property,

and we will use it to reference the tag in other parts of the code, so we

save a variable with it and remove it from the tag object. The initialize

function is called once and then deleted from the object. If it was copied

over, then when applying a second tag to an object, you would end up

calling the initialize function from the first tag again. This has happened

to me while developing this example; it took me a while to understand

what was happening. What saved me was that during the execution of the

Chapter 7 Procedurally Generated Monsters and Items

182

initialize function, I took care to rename the entity, so multiple calls to

the same initialize function caused the final name of the entity to be

iron iron iron sword, thus pointing me to where the problem was.

Returning this at the end of the addTag handler ensures that we can

pass the resulting value into the functions that expect an entity such as

the addEntity function of the turn manager module. Calling addTag on an

entity results into having another entity.

Remember that since the code is using apply, the references to this

are pointing at the entity the tag is being applied to and not to the tag

itself. After initializing the tag, it is time to copy the functions over, making

sure we wrap them into a pipeline. For each function in the tag, we add it

to a tag handler attached to the entity with the addTagHandler function.

Tag handlers are objects in which the key is the function name and the

value is an array of functions. So in our sample iron tag, we have an attack

function; that means that in the tag handler object, there will be a property

called attack that will hold an array which will contain that attack function

from the tag.

If we were simply populating that tag handler object, then calling a

lifecycle method such as attack on the entity wouldn’t cause the pipeline

to run; to do that, we need to replace the entity function of the same

name with a wrapper that calls itself and the pipeline; that is what the

wrapFunction function will do.

After the copying is done, we add the tag name to an array of applied

tags for the entity. This is done so that we can later inspect and figure

out which tags were applied since the copying and manipulation of the

properties of the entity don’t leave a paper trail of where the new functions

came from.

addTagHandler(handlerName , handler) {

 if (!this._tagHandlers) {

 this._tagHandlers = {}

 }

Chapter 7 Procedurally Generated Monsters and Items

183

 if (!this._tagHandlers[handlerName]) {

 this._tagHandlers[handlerName] = []

 }

 this._tagHandlers[handlerName].push(handler)

}

The addTagHandler function is a bit bureaucratic but easy to

understand. The first two if clauses are just checking to see if there is a tag

handler object attached to the entity and initializing it with a property for

the function being overwritten if it is not present. In the case of the attack

function for the iron tag, after executing the addTagHandler, the entity

would be like

Entity = {

 _tagHandlers: {

 Attack: [function() …]

 }

}

The secret sauce for the tag system is in the wrapFunction function.

 wrapFunction(handlerName) {

 �if (!this._tagHandlers || !this._tagHandlers 

[handlerName]) {

 let originalFunction = this[handlerName]

 this[handlerName] = (...args) => {

 let ret = originalFunction.apply(this, args)

 �return this.executeTag(handlerName, ret, 

...args)

 }

 }

 }

Chapter 7 Procedurally Generated Monsters and Items

184

Saving a reference to the original function in a closure allows us to

overwrite the property value with a new function that when executed

calls the original function and then also execute every single function

in the tag handlers for that named function with the executeTag

function.

If a dagger entity had an original attack function like

attack() {

 return 1

}

then after calling wrapFunction on attack, the new attack function would

be like this pseudo code:

attack() {

 let originalFunction = <original attack function>

 let ret = originalFunction.apply(this, args)

 return this.executeTag(name, ret, ...args)

}

It is important to understand how wrapFunction works, how it

captures the value of a function in a closure before overwriting the value

of the property that originally pointed to it with a new function. That is

what allows us to apply tags to unchanged entities and have it all work;

we are overwriting their properties while holding references to the

original code.

executeTag(handlerName, ret, ...args) {

 �if (this._tagHandlers && this._tagHandlers [handlerName]) {

 �this._tagHandlers[handlerName].forEach(handler => {

 args = [ret, ...args]

Chapter 7 Procedurally Generated Monsters and Items

185

 ret = handler.apply(this, args)

 })

 }

 return ret

}

Executing a pipeline is a matter of iterating over the function that

is present in an array while passing the resulting value of a preceding

function into the next function, until all is done, and the final value

is returned. If that code looks a bit difficult to understand, it might be

because of its usage of the spread syntax1 and of the apply method2 which

allows us to call functions while explicitly setting the value of this to

match the entity.

Adding multiple tags to an entity would, at this point, necessitate that

we chain calls to addTag like entity.addTag(iron).addTag(rusty); that

kind of code is hard to generate with procedural generation. It is better that

we have a function that accepts an array of tag names and then proceeds to

add each of them to an entity. For that to work, there needs to be an object

that holds references to each available tag; that is what the tags module will

do. We are only going to create that module in the end, but we can use it

now knowing that it has the references to the tags in an object where each

property is the same name as a tag, like

tags = {

 iron: iron,

 rusty: rusty

}

1�Spread syntax documentation: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Operators/Spread_syntax

2�Apply method documentation: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/Function/apply

Chapter 7 Procedurally Generated Monsters and Items

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply

186

With such module available, we can implement addTags in terms of a

loop around addTag.

addTags(templateNames) {

 templateNames.forEach(t => {

 if (tags[t]) {

 this.addTag(tags[t])

 }

 })

 return this

}

Always make sure that we return the entity, so that calls to addTag and

addTags can be chained together and passed over to other modules.

Having a way to add a tag is just half of the game; we need to have

a way to remove it as well. Imagine that a poison tag is applied to the

player, and then after drinking a health potion, the poison is removed.

There must be a way to go into the tag handlers and remove the functions

that came from the poison tag. This is trickier than it seems at first glance

because we are creating a new object every time we add a tag to an

entity. That means that holding a tag in an object, and having an entity

that had that tag applied, does not mean that the tag handlers in the

entity are pointing at the functions in the tag object. They were copied

into a new tag object in the addTag handler, and from that brand-new

object, they were placed in the tag handlers from the entity. Reconciling

that information is tricky because of the way Boolean operators work in

JavaScript. Comparing two functions using == or === will only return true

if they are actually pointing at the same function, not if they are copies of

the same function.

Chapter 7 Procedurally Generated Monsters and Items

187

To solve that, we are going to use the toString3 method of functions

that serializes a function back into a string, basically back into the source

code, and then compare if they are the same. Since there is no change

between the function held in the tag object and the ones in tag handlers,

they should generate the same string and thus be able to be compared to

one another once in string form.

We need to be able to do this comparison so that we can find inside the

tag handlers which functions belong to each tag and remove them.

removeTag(template) {

 let tag = {}

 Object.assign(tag, template)

 let name = tag.name

 delete tag.name

 delete tag.initialize

 let keys = Object.keys(tag)

 keys.forEach(handlerName => {

 let functionAsString = tag[handlerName].toString()

 �let handlersAsString = this._tagHandlers 

[handlerName].map(handler => handler.toString())

 �let index = handlersAsString.findIndex(handlerAsString

=> handlerAsString == functionAsString) 

 this._tagHandlers[handlerName].splice(index, 1)

 })

 �let tagPosition = this._tags.findIndex(tag => tag == name)

 this._tags.splice(tagPosition, 1)

}

3�Documentation for the toString method for functions: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Function/toString

Chapter 7 Procedurally Generated Monsters and Items

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/toString
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/toString
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/toString

188

Removing a tag is a matter of going over all the properties of a tag

object, checking to see if there is a matching function in the tag handlers

for that entity and, if there is, removing that from the array, and removing

the tag name from the list of applied tags.

Our Taggable class is now ready to be used. The easiest class to refactor

and add support for being taggable is the basic hero class.

�Making heroes taggable
There needs to be a remarkably simple alteration to the Basic Hero class

to make it support tags. In the classes/basicHero.js, we need to change the

imports at the top and the class declaration to

import dungeon from "../dungeon.js"

import Taggable from "../taggable.js"

export default class BasicHero extends Taggable {

 constructor(x, y) {

 super(x,y)

The rest remains basically the same. All that is needed is to import the

Taggable class and make sure that the BasicHero is inheriting from it and

make sure we call the superclass constructor.

Now, we can apply tags to heroes! Let us add support for doing the

same on items.

�Making items taggable
It is almost a copy and paste of the changses done to the basic hero class.

Import the Taggable class, make sure GenericItem inherits from it,

and remember to call its constructor. While keeping the rest of the class

Chapter 7 Procedurally Generated Monsters and Items

189

without any alteration. Even though the exact same changes are needed to

support taggable enemies, in that specific case, we need to do more work.

import Taggable from "../taggable.js"

export default class GenericItem extends Taggable{

 constructor(x,y) {

 super(x, y)

�Making enemies
Up until now, we had a single enemy entity, the skeleton, and that is not

sufficient anymore. Like it was done with items and heroes, we are going

to create a basic enemy class and make all enemies inherit from it. This

basic class will contain generic behavior and stub functions, like how the

generic item class is implemented. After implementing that, we are going

to rework the skeleton to be built on top of the new class and then add

some more enemy classes.

All enemy classes will be placed inside an enemies/ folder that exists

next to classes/ and items/.

�A basic enemy class
Usually, a roguelike has more variation of enemies than it does of available

hero archetypes. Of course, there are roguelikes that use procedural

generation to generate both of them and thus have basically infinite

combinations, but that is not the case I am making here; what I want to

focus is that if we design the basic enemy class well, it becomes easier to

create and maintain various monsters, easier than maintaining different

hero classes.

Chapter 7 Procedurally Generated Monsters and Items

190

For the purposes of our sample game, all monsters work the same.

They are placed in the dungeon and walk around. Sometimes, if the

conditions are right, they attack the player. When they die, they might drop

some loot.

To implement the hero archetypes, we relied a lot on functions;

almost everything is a class method, and we seldom use properties. That

was done so that we could have more variation regarding what happens

when a method is called. In the monster’s case, we will do different. In

the basic enemy constructor, we will set a lot of instance properties. The

lifecycle methods such as over and refresh will work in a generic manner,

but considering such properties, this way enemy variation is more about

altering those values than crafting new functions. This means that tags that

act on enemies will do most of their work in the initialize function so that

they alter the enemy stats.

In the source for the basic enemy class, I will make use of some

functions that we have not created yet. I will explain what they do, and

later in the chapter, they will be created.

A lot of work will be done in this basic class; then the monsters will

become easier to create afterward.

The source for this class is in enemies/basicEnemy.js.

import dungeon from "../dungeon.js"

import tm from "../turnManager.js"

import Taggable from "../taggable.js"

import { getRandomItem } from "../items.js"

import GenericItem from "../items/genericItem.js"

Chapter 7 Procedurally Generated Monsters and Items

191

The basic enemy class needs access to the dungeon module to be able

to display text information on the UI. The turn manager is used to be able

to add loot to the dungeon when the enemy is killed. As with the other

entity types, basic enemy will inherit from the Taggable class. The last two

imports are from things we have not implemented yet. Like tags.js will

be a module that holds references to all the available tags, the items.js

will be a module with references and auxiliary functions for dealing with

the available items. Access to those functions is needed to be able to figure

out which item to drop when the enemy is killed. As for the generic item

import, I will explain that in just a second.

export default class BasicEnemy extends Taggable {

 constructor(x, y) {

 super(x, y)

 this.name = "Basic Enemy"

 this.movementPoints = 1

 this.actionPoints = 1

 this.healthPoints = 1

 this.maxHealthPoints = this.healthPoints

 this.moving = false

 this.weapon = new GenericItem()

Like our previous entities, the basic entity extends the Taggable class

and initializes some properties that all entities need. A surprising line is

the last one in this snippet of source code; we’re creating a weapon property

with a dummy item. That is because later in the chapter, there will be

alterations to the dungeon module attackEntity function. In the previous

chapter, that function signature was

attackEntity: function (attacker, victim, rangedAttack = 

false, tint = false) {

Chapter 7 Procedurally Generated Monsters and Items

192

That meant that it was up to the entity to figure out the values for

rangedAttack and tint. In this chapter, that signature will be altered to

something that is easier to maintain and more flexible:

attackEntity: function (attacker, victim, weapon) {

The intention behind changing that is to help with weapons

containing tags, but that will be better explained in the section about the

dungeon module refactor. For now, it suffices to say that since to call the

attackEntity, the entity must pass a weapon as an argument, and that is

why a dummy weapon item is created.

this.refreshRates = {

 movementPoints: 1,

 actionPoints: 1,

 healthPoints: 0

}

Instead of hardcoding values in the refresh function, we’re adding

values to the constructor which can be manipulated by tags during

their initialize call. These values will be used by the basic enemy

implementation of refresh.

this.damage = {

 max: 4,

 min: 1

}

this.defense = {

 max: 0,

 min: 0

}

Chapter 7 Procedurally Generated Monsters and Items

193

Both attack and protection will use values set by the constructor.

This will enable us to create new monsters by simply creating new classes

and just implementing a new constructor or to radically alter a monster by

applying a tag.

 this.loot = []

 this.x = x

 this.y = y

 this.tile = 26

 this.type = "enemy"

}

The final lines of the constructor are known to us; they just set the final

properties needed by the enemy.

refresh() {

 this.movementPoints = this.refreshRates.movementPoints

 this.actionPoints = this.refreshRates.actionPoints

 �if (this.refreshRates.healthPoints > 0 && 

this.healthPoints <= this.maxHealthPoints) {

 this.healthPoints += this.refreshRates.healthPoints

 }

}

Because we set all those properties in the constructor, the refresh

function becomes a generic function that just works for all enemies.

The presence of this.maxHealthPoints and this.refreshRates.

healthPoints allows for the creation of monsters that heal some

healthPoints at every turn. Setting that refresh rate to zero on the

basic monster makes sure that we don’t start healing all the monsters

we create.

Chapter 7 Procedurally Generated Monsters and Items

194

attack() {

 �return Phaser.Math.Between(this.damage.min, 

this.damage.max)

}

protection() {

 �return Phaser.Math.Between(this.defense.min, 

this.defense.max)

}

Generic implementations of attack and protection based on

minimum and maximum values set on the constructor are enough for

all our monsters. Remember that the idea behind these is to be able to

alter the value returned by these functions with tags as the tags pipeline is

processed after these functions are called and passed the resulting values

from them into the pipeline.

turn() {

}

Did I surprise you there? Turn is left blank because it will be

determined by tags. Imagine that we have tags which contain the turn

logic; one tag could make the monster chase the player regardless of

where they are in the dungeon. That is how the skeleton behaved. That

tag could be called #hunter. Another tag can make the enemy choose

a place to go and just move there; that tag could be called #going-

somewhere. Both these tags determine how the enemy will behave each

turn; more specifically, they will execute the entity movement and

attack. If the entity has a turn implementation that moves it, and a tag

also has a move implementation, which move is the successful one?

How will the movementPoints accounting work between multiple calls

to turn?

Chapter 7 Procedurally Generated Monsters and Items

195

To solve all these cases, we will group some tags into monster behavior

tags and make sure that each enemy has one and only one of those tags

attached to it. How the monster will behave on the dungeon will depend

on that tag.

over() {

 �let isOver = this.movementPoints == 0 && 

this.actionPoints == 0 && !this.moving

 if (isOver && this.UItext) {

 this.UItext.setColor("#cfc6b8")

 } else {

 this.UItext.setColor("#fff")

 }

 return isOver

}

Nothing to see in the over function; it is the exact same function we

used for the skeleton in all the previous samples.

The next function is a bit different. It is the onDestroy function that is

called when the monster is killed, and it is ready to drop some loot. In that

function, we will make use of the yet to be implemented getRandomItem

function. This function will return a random item with tags applied to

it. The first two arguments are the coordinates for the item; the last two

are how many tags to apply from the modifier tag set and the effects tag

set; these sets are just arrays with tag names that fall into some common

characteristics. The modifier set changes some characteristics of the item.

The effects set causes some effect each turn.

Keeping track of entities and tags is a bit hard; that is why changes were

made to the createUI function. Each enemy has a UI displayed on the user

interface sidebar. The new createUI function will mark the sprite and text

Chapter 7 Procedurally Generated Monsters and Items

196

used by each enemy user interface as clickable. Clicking them will output a

description of the entity into the text output on the sidebar. A new function

is provided by the dungeon module called describeEntity that receives

an entity and outputs its name, tags, and description.

createUI(config) {

 let scene = config.scene

 let x = config.x

 let y = config.y

 this.UIsprite = scene.add.sprite(x, y, "tiles", this.tile)

 .setOrigin(0)

 .setInteractive({ useHandCursor: true })

 if (this.tint) {

 this.UIsprite.tint = this.tint

 }

 this.UIsprite.on("pointerup", pointer => {

 if (pointer.leftButtonReleased()) {

 dungeon.describeEntity(this)

 }

 })

 �this.UItext = scene.add.text(x + 20, y, this.name, { 

font: '12px Arial', fill: '#cfc6b8' })

 .setInteractive({ useHandCursor: true })

 this.UItext.on("pointerup", pointer => {

 if (pointer.leftButtonReleased()) {

 dungeon.describeEntity(this)

 }

 })

 return 30

}

Chapter 7 Procedurally Generated Monsters and Items

197

That is done by using setInteractive on the text and sprite. The

useHandCursor makes the mouse pointer change to a hand when it is

over those game elements, thus helping the player discover that they are

clickable.

A handler on("pointerup", ...) is used to create a callback that

calls dungeon.describeEntity. The same change was made in the basic

hero class so that clicking items on the player’s inventory displays their

description as well.

The basic enemy class is ready; we’re ready to rework our skeleton.

�Revisiting the skeleton
The code for the new skeleton entity will be inside enemies/skeleton.js;

it is very simple since most of the work is actually done by the basic enemy

class.

import dungeon from "../dungeon.js"

import BasicEnemy from "./basicEnemy.js"

export default class Skeleton extends BasicEnemy {

 constructor(x, y) {

 super(x, y)

 this.name = `Skeleton`

 this.movementPoints = 3

 this.actionPoints = 1

 this.healthPoints = 4

 this.refreshRates = {

 movementPoints: 3,

 actionPoints: 1,

 healthPoints: 0

 }

Chapter 7 Procedurally Generated Monsters and Items

198

 this.damage = {

 max: 4,

 min: 1

 }

 this.x = x

 this.y = y

 this.tile = 26

 this.type = "enemy"

 this.weapon.name = "pike"

 dungeon.initializeEntity(this)

 }

}

The whole skeleton is just a customization of the properties set by

the basic enemy constructor. A weapon name is set because the new

attackEntity will display it in the sidebar when an attack happens.

�Creating a bat
The code for the bat is in enemies/bat.js; it is just a custom constructor

as well.

import dungeon from "../dungeon.js"

import BasicEnemy from "./basicEnemy.js"

export default class Bat extends BasicEnemy {

 constructor(x, y) {

 super(x, y)

 this.name = `Bat`

 this.movementPoints = 5

 this.actionPoints = 1

Chapter 7 Procedurally Generated Monsters and Items

199

 this.healthPoints = 2

 this.refreshRates = {

 movementPoints: 5,

 actionPoints: 1,

 healthPoints: 0

 }

 this.damage = {

 max: 3,

 min: 1

 }

 this.x = x

 this.y = y

 this.tile = 282

 this.type = "enemy"

 this.weapon.name = "bite"

 dungeon.initializeEntity(this)

 }

}

The bat is weak both in terms of healthPoints and damage it can do,

but it moves quite a lot, and depending on the tag applied to it, it will get

close to the player pretty fast.

�Making an orc
The orc source is at enemies/orc.js.

import dungeon from "../dungeon.js"

import BasicEnemy from "./basicEnemy.js"

export default class Orc extends BasicEnemy {

Chapter 7 Procedurally Generated Monsters and Items

200

 constructor(x, y) {

 super(x, y)

 this.name = `Orc`

 this.movementPoints = 2

 this.actionPoints = 1

 this.healthPoints = 4

 this.refreshRates = {

 movementPoints: 2,

 actionPoints: 1,

 healthPoints: 0

 }

 this.damage = {

 max: 5,

 min: 2

 }

 this.x = x

 this.y = y

 this.tile = 57

 this.type = "enemy"

 this.weapon.name = "club"

 dungeon.initializeEntity(this)

 }

}

The orc is slower than the bat and skeleton, but it packs a punch.

Depending on which tag ends up being applied to them, they can get

pretty powerful.

Chapter 7 Procedurally Generated Monsters and Items

201

�Making a troll
It might be obvious by now but the code for the troll is at enemies/troll.js.

import dungeon from "../dungeon.js"

import BasicEnemy from "./basicEnemy.js"

export default class Troll extends BasicEnemy {

 constructor(x, y) {

 super(x, y)

 this.name = `Troll`

 this.movementPoints = 2

 this.actionPoints = 1

 this.healthPoints = 8

 this.refreshRates = {

 movementPoints: 2,

 actionPoints: 1,

 healthPoints: 0

 }

 this.damage = {

 max: 6,

 min: 3

 }

 this.x = x

 this.y = y

 this.tile = 286

 this.type = "enemy"

 this.weapon.name = "club"

 dungeon.initializeEntity(this)

 }

}

Chapter 7 Procedurally Generated Monsters and Items

202

Trolls are the strongest enemy we implemented. They are harder to kill

and cause a lot of damage.

With the enemies in place, we are ready to create an enemies module

holding reference to all of them. This way we don’t need to import

individual enemy files in the source when we need them; we can just

import this module. In this module, we’ll also implement functions to get a

random monster.

�Implementing the enemies module
The enemies module is in the root folder for the sample, named enemies.js;

this is a convention for all the entity modules. The hero classes are in the

classes/ folder, but the module is in classes.js at the top level. The items

and the enemies modules will all live in the top folder.

import Skeleton from "./enemies/skeleton.js"

import Orc from "./enemies/orc.js"

import Bat from "./enemies/bat.js"

import Troll from "./enemies/troll.js"

import { getRandomTagsForEnemy } from "./tags.js"

const enemies = {

 Skeleton,

 Orc,

 Bat,

 Troll

}

export default enemies

export function getRandomEnemy(x, y, modifierCount = 1, 

effectCount = 1) {

 �let key = Phaser.Utils.Array.GetRandom(Object.keys(enemies))

Chapter 7 Procedurally Generated Monsters and Items

203

 �let tags = getRandomTagsForEnemy(modifierCount, effectCount)

 return new enemies[key](x, y).addTags(tags)

}

The module imports all the enemies we created and sets a default

export that is an object holding references to them. The interesting part of

the module is the getRandomEnemy function though that picks a random

element from that object and applies random tags to it before returning.

Once we implement the tags module, that function will become clearer,

but I can forward to you that it is basically the same as this one; there are

objects holding all the keys, and we pull tags from it and return them as an

array of names to be used with addTags from the Taggable class.

I know that it is tricky to describe and understand how these heavily

interlocked modules work with one another by seeing each one at a time.

Seeing the source code in an editor makes it much easier as you can jump

from one file to another more easily than in a book. By talking about the

tags module in the final sections of this chapter, I can make sure you know

how they are supposed to work by the time we reach the conversation

about their implementation. Also, by leaving the tag creation to the end

of the chapter, I hope to entice you to create more tags during the exercise

section since it will all be fresh in your memory.

�Creating the items module
Just like we implemented the enemies module, we must create an items

module. Their shape is the same: a default export that is an object containing

all the items and a named export that allows you to fetch a random item.

import Axe from "./items/axe.js"

import Bow from "./items/bow.js"

Chapter 7 Procedurally Generated Monsters and Items

204

import CursedGem from "./items/cursedGem.js"

import Gem from "./items/gem.js"

import Hammer from "./items/hammer.js"

import HealthPotion from "./items/healthPotion.js"

import LongSword from "./items/longSword.js"

import Potion from "./items/potion.js"

import ScrollOfFireball from "./items/scrolloffireball.js"

import ScrollOfLightning from "./items/scrolloflightning.js"

import Shield from "./items/shield.js"

import Sword from "./items/sword.js"

import { getRandomTagsForItem } from "./tags.js"

const items = {

 Axe,

 Bow,

 CursedGem,

 Gem,

 Hammer,

 HealthPotion,

 LongSword,

 Potion,

 ScrollOfFireball,

 ScrollOfLightning,

 Shield,

 Sword

}

Chapter 7 Procedurally Generated Monsters and Items

205

export default items

export function getRandomItem(x, y, modifierCount = 1, 

effectCount = 1) {

 let key = Phaser.Utils.Array.GetRandom(Object.keys(items))

 let tags = getRandomTagsForItem(modifierCount, effectCount)

 return new items[key](x, y).addTags(tags)

}

The source for this module is in items.js. Unlike the enemies, there

were no alterations to the items themselves in this chapter, so all that is

needed was the creation of this module.

�Refactoring the dungeon module
Some changes are needed in the dungeon module to better support tags

and make our life easier. The enemy user interface displayed in the sidebar

is clickable now, and so are the items on the player’s inventory. Both call

describeEntity that needs to be implemented.

describeEntity: function (entity) {

 if (entity) {

 let name = entity.name

 let description = entity.description || ""

 �let tags = entity._tags ? entity._tags.map(t => 

`#${t}`).join(", ") : ""

 dungeon.log(`${name}\n${tags}\n${description}`)

 }

}

Chapter 7 Procedurally Generated Monsters and Items

206

Assembling a nice string and displaying it in the user interface are all

that this function needs to do; in Figure 7-1, you can see how it looks when

the sample is running.

Since in this chapter we’re going to start positioning enemies in

random places in the dungeon, we need a function to find ourselves a

random walkable tile.

randomWalkableTile: function () {

 let x = Phaser.Math.Between(0, dungeon.level[0].length - 1)

 let y = Phaser.Math.Between(0, dungeon.level.length - 1)

 let tileAtDestination = dungeon.map.getTileAt(x, y)

 �while (typeof tileAtDestination == "undefined" || 

tileAtDestination.index == dungeon.sprites.wall) {

 x = Phaser.Math.Between(0, dungeon.level[0].length - 1)

Figure 7-1.  Enemy descriptions

Chapter 7 Procedurally Generated Monsters and Items

207

 y = Phaser.Math.Between(0, dungeon.level.length - 1)

 tileAtDestination = dungeon.map.getTileAt(x, y)

 }

 return { x, y }

}

The function works by picking a random location and then checking

if it is a wall or not; if it is, then it loops picking a different location. The

resulting value is an object with coordinates.

Attacking an entity changed as well. The main objective of the change

is to be able to execute a tag from the attack routine if it is successful. Those

are small changes to the function.

attackEntity: function (attacker, victim, weapon) {

 attacker.moving = true

 attacker.tweens = attacker.tweens || 0

 attacker.tweens += 1

 �let rangedAttack = weapon.range() ? weapon.attackTile : 

false

 �let tint = weapon.range() && weapon.tint ? weapon.tint : 

false

The signature for the function changed. Now the weapon is part of the

function call. Both the basic enemy and the basic hero were patched to

pass the weapon when they call attackEntity. Once the function starts,

we create the same variables we had before rangedAttack and tint, and the

body of the function remains basically the same with just two small tweaks.

The dungeon.log call that displays information about the attack has

been changed both in the melee attack and the ranged attack to contain

the weapon name. In both cases, the new code is

this.log(`${attacker.name} does ${damage} damage to 

${victim.name} with ${weapon.name}.`)

Chapter 7 Procedurally Generated Monsters and Items

208

An addition was made in both cases on the immediate line after that

log call.

weapon.executeTag("damagedEntity", victim)

The reason for that change is so that we can have tags such as #burning

that when applied to a sword would cause addTag(burning) to the victim

of a successful attack. Prior to this example, the entities had no way to

figure out if their call to attackEntity succeeded or not. This made

hard for tags to cause effects upon being used during attacks. This new

damageEntity handler will be called for tags that implement it, allowing

tags a chance to cause some side effect to the victim of an attack.

�Creating tags
Finally, we are able to start working on the tags themselves. Some of our

tags will be flexible and provide a different behavior depending on whether

they are applied to an item, weapon, enemy, or the player. Others will have

a single focus and serve as pluggable behavior or characteristics to give the

game flavor or behavior to monsters. A folder called tags/ will host all the

tags, and each tag will be their own file.

�Making monsters more aggressive
The aggro tag is inside tags/aggro.js; it only causes an effect on enemies

and makes them more aggressive by giving them more actions per turn.

So if an enemy would attack the player once per turn, an aggressive enemy

will attack three times.

const aggro = {

 name: "Aggro",

 initialize: function () {

 if (this.type === "enemy") {

Chapter 7 Procedurally Generated Monsters and Items

209

 this.tint = 0x00bc00

 this.refreshRates.actionPoints += 2

 if (this.sprite) {

 this.sprite.tint = this.tint

 this.sprite.tintFill = true

 }

 }

 }

}

export default aggro

This is a good example of a tag that just alters those values set by the

monster constructors. As we know, when a tag is applied to an entity, its

initialize function is executed. In the aggro tag, we check to see if the tag is

being applied to an enemy, and if it is, we do some cosmetic changes and

then increase the amount of action points that entity has.

The idea about doing different tints depending on the tag is twofold: on

one side, the game gets more interesting; on another, it becomes easier to

debug because you can see the same tint on the map and on the sidebar,

making it easier to match the user interface in the sidebar with the entities

on the map.

Previously, we initialized a skeleton like

tm.addEntity(new Skeleton(x,y))

Now, we could do

tm.addEntity(new enemies.Skeleton(x,y).addTags(["aggro"]))

And initialize an aggressive skeleton.

Chapter 7 Procedurally Generated Monsters and Items

210

�Making fast monsters
Inside tags/fast.js, you will find the code for this tag.

const fast = {

 name: "Fast",

 initialize: function () {

 if (this.type === "enemy") {

 this.tint = 0x00bb00

 this.refreshRates.movementPoints += 2

 if (this.sprite) {

 this.sprite.tint = this.tint

 this.sprite.tintFill = true

 }

 }

 }

}

export default fast

It is quite similar to the aggro tag, but instead of increasing the

actionPoints, it increases the movementPoints.

�What about golden things?
Roguelikes are full of golden stuff, right? The tags/golden.js is our first

flexible tag.

import dungeon from "../dungeon.js"

const golden = {

 name: "Golden",

 initialize: function () {

 this.name = `Golden ${this.name}`

 this.tint = 0xccbc00

Chapter 7 Procedurally Generated Monsters and Items

211

 if (this.sprite) {

 this.sprite.tint = this.tint

 this.sprite.tintFill = true

 }

 if (this.type == "item") {

 this.equipHPBonus = 1

 }

 },

The golden tag is flexible only when taken into account that it has

different effects depending on the item it is applied to. If that tag is applied

to an entity that is not an item, then all the changes are purely cosmetic.

If the tag is added to an item, we set a special equipHPBonus variable

whose use will become clear in the next part of the code.

equip(acc, itemNumber, entity) {

 if (this.equipHPBonus > 0) {

 �dungeon.log(`+${this.equipHPBonus} health bonus 

for equipping golden item.`)

 entity.healthPoints += this.equipHPBonus

 this.equipHPBonus = 0

 }

},

The tag overrides the equip function. Equipping a golden item will

cause the item’s default equip function to run and then this equip function

to run afterward. In the equip function, we check to see if that property we

set in the initialize function is larger than zero. If it is, then we increase

the entity (aka the player) healthPoints by the same amount we set in that

property during the tag initialization.

Chapter 7 Procedurally Generated Monsters and Items

212

You may be wondering if equip always passed the entity as an

argument. It didn’t; I added that in this chapter. It is a single word change

to the basic hero so that toggleItem now uses equip(itemNumber, this)

instead of the previous version that used equip(itemNumber).

attack(acc = 0) {

 if (acc > 0) {

 acc += 1

 }

 return acc

},

Changes made to attack affect only weapons because attack will

be called with the value returned by the item’s own attack function as

a parameter. Nonweapons always return zero from that function, so our

golden tag only increases the attack for weapons.

 protection(acc = 0) {

 if (acc > 0) {

 acc += 1

 }

 return acc

 }

}

export default golden

Exactly the same with protection, normal items and weapons return

zero when protection is called. Some defensive items such as shields

return a positive value. In that case, the value is increased.

Chapter 7 Procedurally Generated Monsters and Items

213

�We might as well have a silver tag
Inside tags/silver.js, you’ll find the code for the silver tag. Like in most

games, silver is less valuable than gold, so this tag does less.

import dungeon from "../dungeon.js"

const silver = {

 name: "Silver",

 initialize: function () {

 this.name = `Silver ${this.name}`

 this.tint = 0xccbc00

 if (this.sprite) {

 this.sprite.tint = this.tint

 this.sprite.tintFill = true

 }

 if (this.type == "item") {

 this.equipHPBonus = 2

 }

 },

 equip(acc, itemNumber, entity) {

 if (this.equipHPBonus > 0) {

 �dungeon.log(`+${this.equipHPBonus} health bonus 

for equipping silver item.`)

 entity.healthPoints += this.equipHPBonus

 this.equipHPBonus = false

 }

 }

}

export default silver

Chapter 7 Procedurally Generated Monsters and Items

214

It doesn’t provide either attack or protection bonuses, but it gives the

entity a larger healthPoints bonus than the golden tag.

�And an iron tag as well
The iron tag is in tags/iron.js, and it is the opposite of the silver tag when

compared to the golden tag. Silver is just healthPoints bonus, and iron is

just attack and protection bonuses.

const iron = {

 name: "Iron",

 initialize: function () {

 this.name = `Iron ${this.name}`

 this.tint = 0xccbc00

 if (this.sprite) {

 this.sprite.tint = this.tint

 this.sprite.tintFill = true

 }

 },

 attack(acc = 0) {

 if (acc > 0) {

 acc += 1

 }

 return acc

 },

Chapter 7 Procedurally Generated Monsters and Items

215

 protection(acc = 0) {

 if (acc > 0) {

 acc += 1

 }

 return acc

 }

}

export default iron

�Making enemies royal
I had this silly dream of applying a tag to a skeleton and making it Lord

Skeletah which would be terrifying. Making an enemy royal gives it a lot

of bonuses and changes its name to something whimsical. Inside tags/

royal.js is the source for this tag.

const royal = {

 name: "Royal",

 initialize: function () {

 if (this.type === "enemy") {

 this.tint = 0xccbc00

 this.refreshRates.actionPoints += 2

 this.refreshRates.movementPoints += 2

 this.refreshRates.healthPoints += 1

 if (this.sprite) {

 this.sprite.tint = this.tint

 this.sprite.tintFill = true

 }

Chapter 7 Procedurally Generated Monsters and Items

216

 �let title = Phaser.Utils.Array.GetRandom([

"Count", "Duke", "Lord", "Duchess", "Baron",

"Baroness", "Countess"])

 let suffix = Phaser.Utils.Array.GetRandom([

 "ah", "oz", "von", "zits", "gres"])

 �this.name = `${title} ${this.name.slice(0,this. 

name.length-2)}${suffix}`

 }

 }

}

export default royal

Most of the source is just playing with strings to come up with funny

royal names for the enemies, but among all that random array picking and

string manipulation, the enemy is having all its refresh rates increased. Oh,

and royal enemies heal over time.

Entering a dungeon and finding an enemy that is at the same time

royal and hunting for you is quite dangerous.

�Making a flexible burning tag
Like the others, the burning tag is in tags/burning.js. This tag exemplifies

the idea of a flexible tag for me. There is a huge difference between

yielding a flaming sword and actually being in flames, as any fan of Game

of Thrones will be able to tell.

A burning tag on an item will cause it to spread into entities every time

an attack with that item is successful.

If the burning tag is on a monster or the player, then they suffer

damage every turn for a couple number of turns or until the tag is removed

by removeTag.

Chapter 7 Procedurally Generated Monsters and Items

217

import dungeon from "../dungeon.js"

const burning = {

 name: "Burning",

 initialize: function (damage = 2, howManyTurns = 3) {

 this._burnDamage = damage

 this._howManyTurns = howManyTurns

 if (this.type === "item") {

 this.tint = 0x002300

 if (this.sprite) {

 this.sprite.tint = this.tint

 this.sprite.tintFill = true

 }

 }

 },

This is our first tag to have potential arguments in the initialize

function. We’re not going to use them at the moment and will rely on their

default value, but by having them there, we’re setting up the opportunity to

have devastating fire on the game.

The damage caused by burning will last howManyTurns and will cause

damage amount of damage to the entity.

Since it causes an effect every turn, it has its own implementation of

the turn function.

turn() {

 if (this.type !== "item") {

 �if (this._howManyTurns > 0 && !this._burningActivated) {

 this._burningActivated = true

 this.healthPoints -= this._burnDamage

 this._howManyTurns -= 1

Chapter 7 Procedurally Generated Monsters and Items

218

 �dungeon.log(`${this.name} suffers 

${this._burnDamage} hits from burning.`)

 }

 if (this._howManyTurns == 0) {

 this.removeTag(burning)

 }

 }

},

When implementing this type of side effect, we need to remember

that the turn function is called multiple times in a given turn. It is like the

Phaser update function being called in a cycle until the player’s turn is

over. If this tag simply caused damage on each turn invocation, the player

would die even before their first turn was over as Phaser might call the

turn function multiple times per second.

The solution to that is to have a flag that is checked during the turn

before applying damage. This flag is only reverted during refresh, which

is a function that is called only once per turn, thus making sure that we

only cause damage once per turn. After howManyTurns have passed, the

tag is removed.

refresh() {

 this._burningActivated = false

},

Refresh just flips that tag so that the next invocation of turn causes

damage. Talking about damage, the next function is damageEntity.

This function is called when a successful attack is made and the entity

argument it receives is the victim of the attack.

Chapter 7 Procedurally Generated Monsters and Items

219

 damagedEntity(entity) {

 entity.addTag(burning)

 return entity

 }

}

export default burning

When damageEntity is called, the fire spreads to the other entity (the

victim) and will cause it harm for howManyTurns.

�Making stuff poisonous
The poison tag, which is in tags/poison.js, has the same implementation as

the burning tag. The only differences are in the name and cosmetics and the

values for damage and howManyTurns. Burning causes two points of damage

for three turns, while poison causes one point of damage for ten turns.

�Things can be cursed too
Another variation on the same tag implementation is cursed, which is

in tags/cursed.js; it causes one damage for five turns but besides that

remains the same as the others.

�Making enemies move
It is time to create the tags that will govern the enemies’ behaviors. Unlike

the previous tags we’ve implemented so far, these tags can’t be applied

multiple times to a given enemy. Each enemy is supposed to have one

and only one monster behavior tag. What these tags will do is provide the

monster with a turn implementation.

Chapter 7 Procedurally Generated Monsters and Items

220

�The hunter
Our previous skeleton implementation acted like this. It figured out where

the player was anywhere in the dungeon, plotted a path toward them, and

hunted the player until it was dead. For the hunter tag, tags/hunter.js,

we will abstract that behavior into a self-contained tag.

import dungeon from "../dungeon.js"

const hunter = {

 name: "Hunter",

 initialize: function () {

 if (this.type === "enemy") {

 this.tint = 0xe3e3e3

 if (this.sprite) {

 this.sprite.tint = this.tint

 }

 }

 },

Nothing really interesting is happening in the initialization. It is more

about color-coding the sprite so that we can find them on the map than

anything else.

 turn() {

 let oldX = this.x

 let oldY = this.y

 let pX = dungeon.player.x

 let pY = dungeon.player.y

 let grid = new PF.Grid(dungeon.level)

 let finder = new PF.AStarFinder()

 let path = finder.findPath(oldX, oldY, pX, pY, grid)

Chapter 7 Procedurally Generated Monsters and Items

221

 if (this.movementPoints > 0) {

 if (path.length > 2) {

 �dungeon.moveEntityTo(this, path[1][0], 

path[1][1])

 }

 this.movementPoints -= 1

 }

 if (this.actionPoints > 0) {

 �if (dungeon.distanceBetweenEntities(this, 

dungeon.player) <= 2) {

 �dungeon.attackEntity(this, dungeon.player, 

this.weapon)

 }

 this.actionPoints -= 1

 }

 }

}

export default hunter

The turn implementation is a copy and paste from the previous

skeleton. It finds the player, plots a path to them, and, if near enough, will

attack them. The attackEntity call has been amended to pass the weapon

being used.

�Monsters that are going somewhere
If every enemy in the dungeon is a hunter, then the game can quickly

become a mob. This tag, located in tags/goingSomewhere.js, allows

us to create a monster that, at first glance, doesn’t actually care for the

player at all.

Chapter 7 Procedurally Generated Monsters and Items

222

When a monster is going somewhere, they select a random location in

the map and start moving toward each every turn. Once they reach their

destination, they select another random tile and the process repeats. Only

if the player passes near them that they notice them and change their

destination to be the player.

import dungeon from "../dungeon.js"

const goingSomewhere = {

 name: "Going Somewhere",

 initialize: function () {

 if (this.type === "enemy") {

 this.tint = 0xdd0000

 if (this.sprite) {

 this.sprite.tint = this.tint

 this.sprite.tintFill = true

 }

 }

 },

It’s another uninspiring initialization, just some tint to help us figure

out which enemies are doing what.

turn() {

 let oldX = this.x

 let oldY = this.y

 let dX = this._destinationX

 let dY = this._destinationY

 if (!dX || !dY) {

 let randomCoords = dungeon.randomWalkableTile()

 this._destinationX = randomCoords.x

 this._destinationY = randomCoords.y

Chapter 7 Procedurally Generated Monsters and Items

223

 dX = this._destinationX

 dY = this._destinationY

 }

Primarily, the entity needs to select a destination tile. That is what is

done by the first if clause earlier.

if (oldX == dX && oldY == dY) {

 // arrived at destination, find new target.

 let randomCoords = dungeon.randomWalkableTile()

 this._destinationX = randomCoords.x

 this._destinationY = randomCoords.y

 dX = this._destinationX

 dY = this._destinationY

}

If the entity arrived at their destination, then they select a new

destination and start moving again.

console.log(`${this.name} going to ${dX},${dY}`)

let grid = new PF.Grid(dungeon.level)

let finder = new PF.AStarFinder()

let path = finder.findPath(oldX, oldY, dX, dY, grid)

if (this.movementPoints > 0) {

 if (path.length > 1) {

 �dungeon.moveEntityTo(this, path[1][0],

path[1][1])

 }

 this.movementPoints -= 1

}

Chapter 7 Procedurally Generated Monsters and Items

224

I’ve added a console.log call to help find out where each enemy with

this tag is going. I was tired of chasing them while trying out these tags, and

it became easier to plot a path to them if I knew where they were going.

// If the player is near, go after them.

�if (dungeon.distanceBetweenEntities(this, dungeon.player) <= 5) {

 this._destinationX = dungeon.player.x

 this._destinationY = dungeon.player.y

}

If the player is close enough, then move closer. Be aware that this

doesn’t necessarily make the enemy attack the player or pursue the player

like a hunter. If the player moves away, then the enemy will move toward

that tile that was previously occupied by the player and then select another

destination.

 // Attack player if you can

 if (this.actionPoints > 0) {

 �if (dungeon.distanceBetweenEntities(this, 

dungeon.player) <= 2) {

 �dungeon.attackEntity(this, dungeon.player, 

this.weapon)

 }

 this.actionPoints -= 1

 }

},

Only if the player is really close to that enemy that it attacks.

Chapter 7 Procedurally Generated Monsters and Items

225

 refresh() {

 �if (dungeon.distanceBetweenEntities(this, 

dungeon.player) <= 5) {

 dungeon.log(`${this.name} grrrr!!!`)

 }

 }

}

export default goingSomewhere

This call to dungeon.log during refresh is just so that the player learns

that the entity spotted them and is angry.

�Patrolling the dungeon
Inside tags/patrolling.js, you’ll find a variation of the going somewhere

tag. While that tag selects a tile at random, moves to it, and, upon reaching

its destination, selects a new random tile, the patrolling tag moves a

monster from its starting position in the dungeon to a random selected tile

back and forth. When it reaches the destination tile, it goes back toward its

starting tile, rinse, repeat.

It does that by keeping track of its initial position and its destination

position.

import dungeon from "../dungeon.js"

const patrolling = {

 name: "Patrolling",

 initialize: function () {

 if (this.type === "enemy") {

 this.tint = 0xdd00cd

Chapter 7 Procedurally Generated Monsters and Items

226

 if (this.sprite) {

 this.sprite.tint = this.tin

 this.sprite.tintFill = true

 }

 this._initialX = this.x

 this._initialY = this.y

 let randomCoords = dungeon.randomWalkableTile()

 this._destinationX = randomCoords.x

 this._destinationY = randomCoords.y

 this._targetX = this._destinationX

 this._targetY = this._destinationY

 }

 },

The initial position is kept in this._initialX and this._initialY;

the destination tile coordinates are kept in this._destinationX and

this._destinationY. One of those two sets of coordinates will be copied

to this._targetX and this._targetY which is the goal for the entity

movement.

The implementation of turn is remarkably similar to the going

somewhere implementation, but instead of selecting a new random

spot, it just flips between the starting position and a preselected random

destination.

turn() {

 let oldX = this.x

 let oldY = this.y

 �if (oldX == this._initialX && oldY == this._initialY) {

 // arrived at destination, find new target.

 this._targetX = this._destinationX

Chapter 7 Procedurally Generated Monsters and Items

227

 this._targetY = this._destinationY

 }

 �if (oldX == this._destinationX && oldY == 

this._destinationY) {

 this._targetX = this._initialX

 this._targetY = this._initialY

 }

 �console.log(`${this.name} patrolling to 

${this._targetX},${this._targetY}`)

 let grid = new PF.Grid(dungeon.level)

 let finder = new PF.AStarFinder()

 �let path = finder.findPath(oldX, oldY, this._targetX, 

this._targetY, grid)

 if (this.movementPoints > 0) {

 if (path.length > 1) {

 �dungeon.moveEntityTo(this, path[1][0], 

path[1][1])

 }

 this.movementPoints -= 1

 }

 // If the player is near, go after them.

 �if (dungeon.distanceBetweenEntities(this, 

dungeon.player) <= 5) {

 this._targetX = dungeon.player.x

 this._targetX = dungeon.player.y

 }

Chapter 7 Procedurally Generated Monsters and Items

228

 // Attack player if you can

 if (this.actionPoints > 0) {

 �if (dungeon.distanceBetweenEntities(this, 

dungeon.player) <= 2) {

 �dungeon.attackEntity(this, dungeon.player, 

this.weapon)

 }

 this.actionPoints -= 1

 }

 },

Depending on how long the path selected during the tag initialization,

the player might learn the movements of the monster and avoid it. If a

strong monster is patrolling, then the player can avoid combat by being

stealthy and walking around it.

 refresh() {

 �if (dungeon.distanceBetweenEntities(this, 

dungeon.player) <= 5) {

 dungeon.log(`${this.name} raaawwrr!!!`)

 }

 }

}

export default patrolling

�Creating the tags module
All the parts are done, and we can implement the tags module, whose

source code is inside tags.js. This module is made in the same image as

the enemies and items modules.

Chapter 7 Procedurally Generated Monsters and Items

229

Besides exporting all the available tags, this module exports functions

to retrieve a random monster and to retrieve a random item.

import aggro from "./tags/aggro.js"

import fast from "./tags/fast.js"

import goingSomewhere from "./tags/goingsomewhere.js"

import patrolling from "./tags/patrolling.js"

import golden from "./tags/golden.js"

import iron from "./tags/iron.js"

import silver from "./tags/silver.js"

import hunter from "./tags/hunter.js"

import poison from "./tags/poison.js"

import burning from "./tags/burning.js"

import royal from "./tags/royal.js"

import cursed from "./tags/cursed.js"

It begins by importing every single tag.

const tags = {

 aggro,

 fast,

 goingSomewhere,

 golden,

 silver,

 iron,

 hunter,

 poison,

 burning,

 royal,

 patrolling,

 cursed

}

Chapter 7 Procedurally Generated Monsters and Items

230

It assembles an object to be exported with all the tags. After that, we

create specialized arrays containing tags that cover a specific domain.

export const materials= [

 "golden",

 "silver",

 "iron"

]

Materials are tags that modify the nature of the item.

export const enemyModifiers = [

 "aggro",

 "fast",

 "royal"

]

Enemy modifiers are bonuses that are applied to a monster.

export const behaviors = [

 "goingSomewhere",

 "hunter",

 "patrolling"

]

Behaviors are only applicable to enemies; they will provide the turn

function implementation.

export const effects = [

 "poison",

 "burning",

 "cursed"

]

Chapter 7 Procedurally Generated Monsters and Items

231

Effects are tags that cause a side effect at every turn.

export function getRandomTagsForItem(modifierCount = 1, 

effectCount = 0) {

 let res = new Set()

 while (modifierCount > 0) {

 res.add(Phaser.Utils.Array.GetRandom(materials))

 modifierCount--

 }

 while (effectCount > 0) {

 res.add(Phaser.Utils.Array.GetRandom(effects))

 effectCount--

 }

 return [...res]

}

That function returns an array to be used with addTags on an item. It

does so by selecting a number of tags from the materials and the effects.

A set is used so that the same tag is not applied more than once.

export function getRandomTagsForEnemy(modifierCount = 1) {

 let res = new Set()

 while (modifierCount > 0) {

 res.add(Phaser.Utils.Array.GetRandom(enemyModifiers))

 modifierCount--

 }

 res.add(Phaser.Utils.Array.GetRandom(behaviors))

 return [...res]

}

export default tags

Chapter 7 Procedurally Generated Monsters and Items

232

The corresponding function for getting an array of tags that are

applicable to an enemy is very similar except that we’re not applying

materials or effects. Monsters get enemyModifiers and one behavior.

With a final refactor to the world scene, we’re ready to test all

these additions.

�Refactoring the world scene
Instead of hardcoding the monsters and their positions in the world scene

(which lives in world.js), we’re going to refactor it to use random items

and monsters in random locations.

First, we need to change the imports to pick the new modules.

import dungeon from "./dungeon.js"

import tm from "./turnManager.js"

import classes from "./classes.js"

import { getRandomItem } from "./items.js"

import { getRandomEnemy } from "./enemies.js"

The next required change is simple; just remove all that block of code

that adds the skeletons and items from the create function. After the player

is created, add the following:

dungeon.player = new classes.Elf(15, 15)

tm.addEntity(dungeon.player)

let monsterCount= 10

while(monsterCount> 0) {

 let tile = dungeon.randomWalkableTile()

 tm.addEntity(getRandomEnemy(tile.x, tile.y))

 monsterCount--

}

Chapter 7 Procedurally Generated Monsters and Items

233

let itemCount = 10

while(itemCount > 0) {

 let tile = dungeon.randomWalkableTile()

 tm.addEntity(getRandomItem(tile.x, tile.y))

 itemCount--

}

That will create ten monsters and ten items in random positions on the

dungeon. Try playing a couple times in it.

�Procedural generation is not just throwing
random things
If I may use an analogy here, what we’ve done so far in this chapter is like

wanting to go on a boat tour, climbing into the boat, and then without sail,

motor, or oars, just letting it randomly take you anywhere. It might be fun,

but you’re not really in control of what is going on.

Procedural generation is about using randomness to steer the game

into the direction you want while keeping the content fresh and increasing

the game replayability. At this point in the source, we are like those

thousand monkeys with typewriters and infinite time. There might be a

Shakespeare play in the end, but during the middle of the process, it is all

quite chaotic.

Phaser has functions to retrieve random items with a bias toward

the beginning of the array – that function is called weightedPick4 – this

allows you a simple but effective way of biasing the results. If you use that

function with an array like

["skeleton", "skeleton", "skeleton", "bat", "bat", "orc"]

4�WeightedPick documentation: https://photonstorm.github.io/phaser3-docs/
Phaser.Math.RandomDataGenerator.html#weightedPick__anchor

Chapter 7 Procedurally Generated Monsters and Items

https://photonstorm.github.io/phaser3-docs/Phaser.Math.RandomDataGenerator.html#weightedPick__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Math.RandomDataGenerator.html#weightedPick__anchor

234

the dungeon will be biased toward spawning skeletons and bats. The same

can be used to make most monsters into patrolling and going somewhere

instead of hunters (that are more dangerous).

Applying this function to tag selection is also a good idea. The royal

tag should be rare, and most items don’t actually need a tag. Having an

array like

[false, false, false, "iron", "iron", "silver", "golden"]

would make most of the items untagged. With the default values for the

arguments of getRandomTagsForItem, it is impossible to get an effect in the

array. A biased approach could make the effects rare by default.

And that is just by exploring a single function – the weightedPick –

Phaser offers other useful functions in its Phaser.Utils.Array5

namespace that can be used to craft bespoke algorithms for making

decisions upon procedural generation. You could change the bias of the

game depending on how powerful the player is; you can factor the time of

the day, making your game harder during the evening. It is your call.

Just remember that the code we’ve been building here is not biased; I

mean it is under a bias that we control, it is just random, and that doesn’t

make for a good game. The values for the entity properties such as

damage, points, and all the rest have not been playtested and through a

real quality assurance process. At this moment in the source, we’re having

fun, but unless you take control over the source and direct the procedural

generation and the play experience toward the game you desire, you won’t

make a good or memorable game.

5�Phaser.Utils.Array documentation: https://photonstorm.github.io/phaser3-
docs/Phaser.Utils.Array.html

Chapter 7 Procedurally Generated Monsters and Items

https://photonstorm.github.io/phaser3-docs/Phaser.Utils.Array.html
https://photonstorm.github.io/phaser3-docs/Phaser.Utils.Array.html

235

�Exercises
This has been a huge chapter. There is a lot of potential for being creative

with tags, so before moving on, can you

•	 Create a vegan behavior tag?

•	 Add bias to the functions that return random items and

monsters, and make the game easier or harder based

on the player class?

•	 Can you create a necromancer (a monster that

depending on what happens can spawn undead

skeletons to help them)?

�Summary
In this chapter, we’ve explored a tagging system that enables us to create

composable units of code that can be combined and recombined to

generate all sorts of items and enemies.

Before moving to the next chapter, make sure you

•	 Understand how the Taggable class work

•	 Have a clear grasp about how each tag behaves and

how useful they are

•	 Have experimented with different biases by fiddling

with the code and the random generation routines

In the next chapter, we will dive deep into generating new dungeons

and add a bit of bias to the game.

Chapter 7 Procedurally Generated Monsters and Items

237© Andre Alves Garzia 2020
A. A. Garzia, Roguelike Development with JavaScript,
https://doi.org/10.1007/978-1-4842-6059-3_8

CHAPTER 8

Procedurally
Generated Dungeons
For many people, procedurally generated dungeons are one of the main

defining characteristics of the roguelike genre, if not the most important

one. Because of that, there is a lot of work, lore, and techniques developed

in the last decades covering this topic, and it would be impractical for

an introductory book such as this one to cover a significant part of the

techniques available to roguelike developers. Instead, we’re going to

focus on one type of dungeon generation that is easy to understand and

experiment with while just describing others without implementing them.

It is important to understand that even though the algorithm behind the

dungeon generation explained in this chapter is easy, it is a battle-tested

way of generating dungeons with many games using it.

Learning how to do dungeon generation in this chapter is an initial

step to think about dungeon generation in general and how to implement

novel ways of doing it or tweaking some existing algorithm toward some

intention you have. As your game development path progresses, you’ll

learn more complex ways of doing it and experiment with advanced

techniques that are beyond what I can include here, but even when you

reach those more refined steps in your journey, you’ll always be able to

come back to what was learned here and still use it.

https://doi.org/10.1007/978-1-4842-6059-3_8#DOI

238

�Dungeons, fun, and replayability
Dungeon generation, and procedural generation in general, is not

about chaos and randomness. If all you do is throw random parameters

into some set of functions waiting for something beautiful to exit

through the other end, you’re no different than someone just throwing

mud on a wall until, maybe, it forms a recognizable figure. To be

honest, throwing mud at a wall might actually be what you want to do;

that is OK. I’m not against doing it; I’m just saying it needs to be your

intention and not something that happens because you have no control

over the process.

The keyword to reason about dungeon generation is intention. You

are going to craft an algorithm that with the aid of some input generates a

dungeon for your game. You want these dungeons to have some feel to it,

may it be in the way they are designed or the challenges they will provide;

whatever it is that makes those dungeons your dungeons, there must be

an intention behind it. At this learning stage, it is OK to just pick a generic

algorithm and use it much like a market-bought, bulk made ready-made

meal. Many people in time develop their own custom additions to ready-

made meals; if you just check the Internet for ways to improve ready-

made instant ramen, you’ll find a whole subculture of recipes out there.

The same happens with game development algorithms; you have the

ready-made stuff that you can just plug into your game and use. We did

that with our pathfinding algorithm, but it pays off to fiddle with those

ready-made packages and try to come up with something that has your

mark on them.

Fiddling with algorithms is not only a way to imprint your own

personal creativity into the process but a way to understand that algorithm

better. Especially when you accidently break everything, put on your

computer forensic hat, and go on to debug it.

Chapter 8 Procedurally Generated Dungeons

239

The end game can be summarized as trying to come up with fun-

to-play dungeons. What that means to you and your players might be

different than what other players and developers mean when they say

that a given dungeon is fun. Some people are attracted to fiendishly

levels of difficulty and dungeons that challenge them in every step of

the way; others want interesting visuals and are more attracted to the

immersive quality of the game and the world that unfolds before them. A

good practice for this chapter is to play some runs of the dungeons we’ll

generate and try to figure out what you find fun and rewarding and then

tweak the code to be more like that.

Another key aspect is replayability; procedurally generated

dungeons and content provide a maximum of replayability, allowing

gamers to have eternal fun with the game. But procedural generation

has limits, and maybe whatever you are doing can only generate

dungeons with a certain feel, and after a while even though the

corridors and rooms are different, they are all recognizable, and the

game no longer feels as fun as it did. That is OK because the fun of a

game doesn’t rely only on its dungeon generation but on the sum of

its gaming experience, and maybe the dungeon doesn’t actually play

a large role in your game. Dungeons generated with the technique

described in this chapter will be like that; they will all be quite similar

to one another, so to keep the game fresh, we’ll need to figure out what

to do with it. It’s not unlike having a fixed set of ingredients and trying

to come up with new recipes; it can work.

Being fun and replayable is probably one of the favorite feedback that

a roguelike developer can receive from a player. In my opinion, the key

factor for replayability is to have procedural generation that is stable and

well understood by the developers. Unless that is in place, the game can

end up generating broken dungeons, thus spoiling that run of the game.

I was playing a popular console roguelike, and it generated a beautiful

dungeon but placed my character in a position it couldn’t move. I was

locked in place wondering how that edge case has not been taken care of.

Chapter 8 Procedurally Generated Dungeons

240

Bugs happen in any codebase, and when dealing with procedural

generation, we need to be aware not only of bugs in our code but bugs

generated by the runtime output of our code; it is a tricky business and

we can forgive and understand edge cases. I just rebooted the game,

and the next run was fine except for the fact that I died rather quickly

for something that looked like a toad, very shameful. Replayability is a

side effect of being in control of your algorithms. There is no replayable

game, which I am aware of, where the developers are not on top of their

procedural generation.

Fun is harder to measure and reason about, but I believe it comes

down to the balancing act between realizing and subverting expectations.

If all you do is subvert the player expectation, your game soon becomes the

equivalent of bland jump-scare movies. You’ll definitely surprise people,

but they might not find it enjoyable. If all you do is fulfill expectation, then

it becomes just bland, not memorable, not fun. You can still do it because

sometimes all you need is to go through the motions of the game while

thinking about something else, but you probably won’t recommend that

game to someone else.

The little game we’ve been building is more of an exercise, so it has

a lot of this bland fulfillment I just spoke about. To create the kind of

experience we love in roguelikes requires time, QA, and playtest, beyond

what we can do in book sample code. Still, we can point out where the

code could be made more fun and where good understanding might

improve replayability.

Among all procedurally generated content you have in your roguelike,

dungeon generation is probably what your gamers will first notice. It is the

greeting card of your game, the invitation to explore. Instead of shooting

for the moon in this chapter, we’re going to play it safe and do it in a very

classical way. Our dungeon generation will be understandable, easy to

tinker with, and most importantly hard to screw up.

Chapter 8 Procedurally Generated Dungeons

241

�How to screw up dungeons
Let’s begin not by going deep into algorithms but by pondering a bit on

what we don’t want in our dungeons. Assuming our game is a classical

roguelike where a hero descends into many levels of challenges and

mayhem trying to fulfill some quest objective, how could we have bad

dungeons? By bad dungeons, I’m talking solely about the layout of the

dungeon, not about what goes inside it once the layout is set.

A bad dungeon contains nontraversable areas, meaning there are

places in which there is no way for the player to get into. I’m not saying that

there are places in which the player needs to solve a puzzle, or go through

some challenge to get into, or even places that are placed in the game just

for aesthetical pleasure and in which the player is not supposed to go. I’m

talking about having rooms in the dungeon layout that the player should

be able to go but can’t because the layout of wherever the player is located

doesn’t have any possible path connection to that room; the stuff that

happens when you plug that A* algorithm into it disregarding any blockers

such as doors, monsters, and so on, and it still replies with a null path. We

must make sure our level is traversable.

Another screw up, one that might just be a screw up in my own

personal opinion and not be significant to other people, is when the

entrance and the exit of a level are just too close, basically allowing an

express way down for the player. This is less of a problem, as anyone who

played through dungeons that were generated this way can quickly attest

that going down fast makes you arrive at more dangerous monsters with

a less powerful character. Still, for me, it saps a bit of the fun part of it,

especially the suspense. Whenever I go down a set of stairs as a player,

I’m always wondering, how far is the next exit and what lies between me

and it? In our algorithm, we’re going to aim to place the entrance and exit

points at some decent distance from one another. It will not be infallible,

but it will not simply be random.

Chapter 8 Procedurally Generated Dungeons

242

That is our mantra for the chapter: traversable dungeons in which

the player needs to traverse a number of rooms before moving on. The

tool we’ll use to build our dungeons is called binary space partitioning

(BSP).

�Using BSP to build dungeons
Binary space partitioning is a technique for dividing spaces into smaller

spaces using recursion. The spaces generated by this technique are all

convex, which means that given two points in this space, you can’t plot a

line from one to the other that steps outside of the designated space. The

mathematical and computer science research and applications behind it

are all very interesting, and if you’re inclined toward this kind of subject,

you should definitely check it out. For our purposes, we’re not going to

delve too much into the theory and science of it, but instead use it in a very

simple way to build dungeons.

What we’ll do is assemble a tree structure known as BSP tree. It is a binary

tree in which the nodes either have two children, or are at the leaves of the

tree. It is a complete tree so all the parents of the leaves have two children.

To assemble such tree, we’ll pick the grid we use for the level,

decide a random spot on the map, and use it to split the level into two

areas, with some constraints so that the areas are not too small. For the

second iteration, we’ll pick these two areas and split each of them in

two at random coordinates inside them, and so on for each iteration. In

Figure 8-1, we can see the tree and map after two iterations.

Chapter 8 Procedurally Generated Dungeons

243

There is a more thorough description of this process at the

RogueBasin1 website. The algorithm we’re going to implement is based on

that article and this reference implementation2 in JS (that implementation

uses canvas instead of Phaser).

1�RogueBasin article about BSP Dungeons: www.roguebasin.com/index.
php?title=Basic_BSP_Dungeon_generation

2�BSP Dungeon in JS by Lluis Esquerda: https://eskerda.com/bsp-dungeon-
generation/

Figure 8-1.  Visualizing a BSP tree

Chapter 8 Procedurally Generated Dungeons

http://www.roguebasin.com/index.php?title=Basic_BSP_Dungeon_generation
http://www.roguebasin.com/index.php?title=Basic_BSP_Dungeon_generation
https://eskerda.com/bsp-dungeon-generation/
https://eskerda.com/bsp-dungeon-generation/

244

Once we divide the map into the desired number of areas, we end up

with a collection of nonoverlapping rectangles. That is very good because

we know we can place a dungeon room inside each of these areas, and

they will not intersect with one another. As long as the room being placed

in an area is smaller than the area itself, all rooms should fit.

Connecting the rooms is just a matter of walking the BSP tree and

connecting siblings with a corridor. So for Figure 8-1, we’d connect D and

E, and F and G, then we would connect B and C. Once that was done, you

can be sure that regardless of the location of the D, E, F, or G rooms or the

associated corridors, you can always find a path to another location in the

dungeon.

�Using a BSP tree to generate room areas
I have broken the dungeon generation in this chapter into multiple

samples, so that we can focus on each step separately. For this example,

please look into chapter-8/example-1-areas. Our objective for this first

sample is to use a BSP tree to generate enough areas to place our rooms.

Instead of working from the final sample from the previous chapter,

I’ve removed most of the code from that folder and left it with only the

minimum necessary to load the world scene and still be recognizable

as our game. That was a decision made to make the code easier to

understand while we’re sorting the dungeon generation steps. Once that

is done, the final sample for the chapter contains all the code from the

previous chapter plus the dungeon generating code.

The parts that have been removed are all the game entity stuff and

the user interface sidebar. We don’t need to deal with those while sorting

how to layout a dungeon map. I’ve kept other code such as the dungeon

module and turn manager because they import one another, and I didn’t

want to start changing the remaining modules too much just to suit the

demo code.

Chapter 8 Procedurally Generated Dungeons

245

The workflow of the sample remains the same. The game.js file

sets the config object for Phaser and loads the world.js scene. The

scene loads the dungeon module from dungeon.js and asks dungeon.

initialize() to initialize the tilemap. We’ll make some alterations to that

initialization later in this sample, but first we need to build the necessary

code to do all the BSP stuff, so let’s start by creating a bspdungeon.js

file which will host our dungeon generation code. That code is all self-

contained and doesn’t need to import anything.

�Creating the DNode class
A BSP tree is composed of nodes. To host those nodes, we’re creating

a new class called DNode (it stands for Dungeon Node). A node needs

to keep track of its right and left children nodes (if any) and the area it

contains.

class DNode {

 constructor(area) {

 this.left = false

 this.right = false

 this.area = area

 }

It is wise to decouple the node management from the area handling,

and that is why we’re bundling the area properties inside the node

structure. Each node just knows about its potential children and that it

contains an area, whatever that may be.

Chapter 8 Procedurally Generated Dungeons

246

It is safe to assume that we’ll need a way to iterate over those areas in

the near future, and to do that, we’ll need to walk the nodes on this tree.

A function called forEachArea was added to this class to help solve that

need. That function is an analog of the forEach functions from iterables

like array3 and will execute a callback for each area on the tree.

 forEachArea(f) {

 f(this.area)

 if (this.left) {

 this.left.forEachArea(f)

 }

 if (this.right) {

 this.right.forEachArea(f)

 }

 }

}

�Creating the DArea class
Each DNode will contain a DArea (for Dungeon Area, I was not very

inspired when naming these things). The area needs to keep track of its

position (its x and y coordinates) and its dimensions (its height and width

values).

class DArea {

 constructor(x, y, w, h) {

 this.x = x

 this.y = y

3�MDN documentation for Array.prototype.forEach: https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach

Chapter 8 Procedurally Generated Dungeons

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach

247

 this.w = w

 this.h = h

 }

}

Instead of going full matryoshka4 on this class architecture and placing

a room inside every area, we’re going to place them dynamically in the

next sample. It is important to understand why we’re not doing that; it is

because only the tree leaves will have rooms, the tree branches won’t, so

there is no need to place a room property into the DArea class. Due to the

nature of our recursive algorithm, the ratio between nodes that have rooms

and nodes that shouldn’t have rooms doesn’t favor placing that property

on the class. This is a different situation than the left and right children

nodes in a node. Most nodes will have children; only the final nodes (the

leaves) won’t have children, and that is why those properties were added

to the DNode class.

�Building a BSP tree
Using the preceding classes, let’s add a function called makeTree that,

given an initial area and a number of iterations, will recursively split the

area using the BSP algorithm. This initial area should be the equivalent of

the whole map.

function makeTree(area, iterations) {

 let root = new DNode(area)

4�More info about Matryoshka dolls: https://en.wikipedia.org/wiki/
Matryoshka_doll

Chapter 8 Procedurally Generated Dungeons

https://en.wikipedia.org/wiki/Matryoshka_doll
https://en.wikipedia.org/wiki/Matryoshka_doll

248

 if (iterations != 0) {

 let [a1, a2] = splitArea(root.area)

 root.left = makeTree(a1, iterations - 1)

 root.right = makeTree(a2, iterations - 1)

 }

 return root

}

At the start, the function creates the root node of the tree, and then it

loops calling itself for a number of iterations, splitting the given area and

placing each side of the split into the left and right children of the node.

The way this recursive function is built, the final iteration naturally

produces the leaves, which are the nodes without children and where our

future rooms will be located.

If that let statement looks funny to you, it is because it is using

destructuring assignment5 to create a1 and a2 variables with the areas to

be placed into the left DNode and right DNode. The nodes don’t need to

know how those areas are computed, they just need to host them and keep

splitting.

The key to this whole project is the function that splits the enclosing

area into subareas.

�Splitting areas
To split an area, the function will toss a coin and decide if it should split

horizontally or vertically. Then it will find either a random X or Y position

inside that given area and calculate two subareas based on that coordinate.

5�MDN documentation for destructuring assignments: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/
Destructuring_assignment

Chapter 8 Procedurally Generated Dungeons

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

249

If we left this algorithm to run as described, it could end up generating

areas that are too narrow to contain a room due to the usage of random

numbers to pick a coordinate. Instead of constraining the random

number generator to values that look OK (but might still be bad), we will

calculate either a width-to-height ratio or height-to-width ratio based on

the orientation we are splitting the area, and depending on the ratio, we’ll

discard those values and ask for a new split using recursion.

function splitArea(area) {

 let x1, y1, w1, h1 = 0

 let x2, y2, w2, h2 = 0

 if (Phaser.Math.Between(0, 1) == 0) {

 // vertical

 let divider = Phaser.Math.Between(1, area.w)

 x1 = area.x

 y1 = area.y

 w1 = divider

 h1 = area.h

 x2 = area.x + w1

 y2 = area.y

 w2 = area.w - w1

 h2 = area.h

 if (w1 / h1 < 0.45 || w2 / h2 < 0.45) {

 return splitArea(area)

 }

The x1, y1, w1, and h1 represent one area, and the x2, y2, w2, and h2

the other area. If the ratio is less than 0.45, then the areas are discarded.

Changing that value will change the feel of your areas and is something

you can play with. Values between 0.45 and 1.05 appear to yield nice

dungeons; below that or above that leads to confusing stuff that is

sometimes unusable.

Chapter 8 Procedurally Generated Dungeons

250

The code for the horizontal split is basically the same, but the

calculation for the coordinates is adjusted as needed.

 } else {

 // horizontal

 let divider = Phaser.Math.Between(1, area.h)

 x1 = area.x

 y1 = area.y

 w1 = area.w

 h1 = divider

 x2 = area.x

 y2 = area.y + h1

 w2 = area.w

 h2 = area.h - h1

 if (h1 / w1 < 0.45 || h2 / w2 < 0.45) {

 return splitArea(area)

 }

 }

 let a1 = new DArea(x1, y1, w1, h1)

 let a2 = new DArea(x2, y2, w2, h2)

 return [a1, a2]

}

By returning an array with the two areas from this function, we can use

the destructing assignment in makeTree to cherry-pick those values and

assign them to the correct place in the tree.

We now have all the code to do BSP dungeons; we’re just missing a

dungeon class.

Chapter 8 Procedurally Generated Dungeons

251

�Creating the BSPDungeon generator class
At the end of the multiple iterations of makeTree, the leaves of our tree will

contain enough areas to host our rooms. The job of the BSPDungeon class

is to pick those areas and output a usable level array to be used by the

dungeon module.

If you remember how the level array worked, it was a matrix of Y and

X coordinates that contained either a 0 or a 1 depending if the cell was a

wall or a walkable tile. We had a hardcoded level stored in a JS file that

we have been reusing all throughout the chapters in this book. From

this point onward, that level array will be generated at runtime by the

BSPDungeon class.

export default class BSPDungeon {

 constructor(width, height, iterations) {

 this.rootArea = new DArea(0, 0, width , height)

 this.tree = makeTree(this.rootArea, iterations)

 this.initializeLevelData()

 }

A BSPDungeon needs the map dimensions to compute the root area of

the BSP tree and how many iterations the BSP process should run for. Once

the makeTree function is done, a level data array can be initialized.

 initializeLevelData() {

 let lvl = []

 for (let y = 0; y <= this.rootArea.h; y++) {

 lvl[y] = lvl[y] || []

Chapter 8 Procedurally Generated Dungeons

252

 for (let x = 0; x <= this.rootArea.w; x++) {

 lvl[y][x] = 0 // empty

 }

 }

 this.levelData = lvl

 }

The initializeLevelData function makes sure we have a valid level

data array with enough cells to host our dungeon map. In this sample, I’m

initializing them all to empty so that they don’t distract us when rendered

to the screen, but once we head back to building an actual game, those

tiles will be initialized as walls.

Finally, we add an accessor method to return the level data. This is

technically not needed since the code could pluck that data directly from

the instance object, but I thought it’s better to use such method in case we

need to do any extra computation in the future before returning it.

toLevelData() {

 return this.levelData

 }

}

�Changing the world scene
The world scene has been streamlined to contain only the necessary code

to render itself without dealing with game entities and the user interface.

It begins by importing the new BSPDungeon class, and then it loads the

spritesheet data even though we’re just setting the tiles to the empty tile at

the first position. The update function has been made into a stub that does

nothing because we will just render the areas to the screen and not interact

with them.

Chapter 8 Procedurally Generated Dungeons

253

import dungeon from "./dungeon.js"

import BSPDungeon from "./bspdungeon.js"

const world = {

 key: "world-scene",

 active: true,

 preload: function () {

 �this.load.spritesheet('tiles', 

'./assets/colored_transparent.png',

 {

 frameWidth: 16,

 frameHeight: 16,

 spacing: 1

 })

 },

The interesting part of that code is the changes made to the create

function.

 create: function () {

 let dg = new BSPDungeon(80, 50, 4)

 let level = dg.toLevelData()

 dungeon.initialize(this, level)

 let camera = this.cameras.main

 �camera.setViewport(0, 0, camera.worldView.width, 

camera.worldView.height)

 �camera.setBounds(0, 0, camera.worldView.width, 

camera.worldView.height)

We initialize a new BSPDungeon instance with an 80x50 grid and tell the

algorithm to iterate over it four times. The resulting level data is passed to

the dungeon.initialize() that has been patched to load the level from

Chapter 8 Procedurally Generated Dungeons

254

an argument instead of from a file, a minor tweak. Strictly speaking, the

camera setting is not needed by this demo, but we’re used to it so I left it

there.

The next chunk of that function is the neat one; it will use that

forEachArea code to iterate over the areas in the BSPDungeon instance tree

and add rectangles to the scene to make them visible.

 dg.tree.forEachArea(a => {

 let x = dungeon.map.tileToWorldX(a.x)

 let y = dungeon.map.tileToWorldY(a.y)

 let w = a.w * 16

 let h = a.h * 16

 �this.add.rectangle(x, y, w, h).setStrokeStyle(4, 

0xff0000, 1, 0.7).setOrigin(0)

 })

Besides some math to convert between map units to actual pixels,

the code is almost a direct correspondence between the area properties

and the arguments to create the rectangles. The rectangles are set to

transparent, and just their stroke is being set with the setStrokeStyle

function call. Don’t forget to change the origin point for the graphic to be

the top-left corner; the default is the center coordinate, and our math is

not really based on that.

Finishing the file is easy:

 },

 update: function () {

 }

}

export default world

Chapter 8 Procedurally Generated Dungeons

255

Loading that sample should let you visualize the areas generated by

our BSP tree algorithm. Try reloading the page a couple times to see it

generating different spaces, and imagine that inside each area, there will

be a room.

The image you see will be similar to Figure 8-2, but with different areas

since they are procedurally generated.

It’s about time we add some rooms to those areas; let’s move to the

next sample.

�Creating rooms
Our starting point for this sample is the BSPDungeon class. The sample code

is inside chapter-8/example-2-rooms/. We need a new class to represent

a room; let’s call it DRoom.

Figure 8-2.  Areas in a dungeon

Chapter 8 Procedurally Generated Dungeons

256

That class will receive an area in its constructor method; this area

represents its constraints. We’ll use random number generation to decide

the position and dimensions of the room, taking care to make them fit

inside the given area.

class DRoom {

 constructor(area) {

 �this.x = Math.floor(area.x + (Phaser.Math.Between(1, 

area.w) / 3))

 �this.y = Math.floor(area.y + (Phaser.Math.Between(1, 

area.h) / 3))

 this.w = area.w - (this.x - area.x)

 this.h = area.h - (this.y - area.y)

 �this.w -= Math.floor(Phaser.Math.Between(1, this.w / 3))

 �this.h -= Math.floor(Phaser.Math.Between(1, this.h / 3))

 }

}

�Iterating over leaves
Rooms will only be located at the leaves of our BSP tree, so it makes sense

that we have a way to iterate over them. Just like we iterated over areas with

forEachArea, we’ll implement a new method inside the DNode class called

forEachLeaf.

 forEachLeaf(f) {

 if (!this.left && !this.right) {

 f(this.area)

 }

 if (this.left) {

 this.left.forEachLeaf(f)

 }

Chapter 8 Procedurally Generated Dungeons

257

 if (this.right) {

 this.right.forEachLeaf(f)

 }

 }

It is just a variation on forEachArea, one that only executes the calling

function for leaves. You could make do with just forEachArea and check

to see if the node is a leaf in your callback, but why not make things easier

and just add the method you need.

�Carving rectangles
Once we iterate over each area in a leaf, we need to have a function to be

able to carve rectangles in the shape of our rooms. All this function needs

to do is flip the cells in the level data that corresponds to our rooms to

walkable empty tiles.

Instead of passing a room to this function, we’re going to work directly

with coordinates and dimensions mostly because it is what the loops

inside it will use.

 fillRect(x, y, w, h, tile) {

 for (let y1 = y; y1 < y + h; y1++) {

 for (let x1 = x; x1 < x + w; x1++) {

 this.levelData[y1][x1] = tile

 }

 }

 }

Chapter 8 Procedurally Generated Dungeons

258

�Making rooms
By now, we have all the pieces needed to assemble a room. The makeRooms

is a method of the BSPDungeon class that iterates over the leaves in the tree,

making a room in each of them. To make this more readable, I made it use

an auxiliary function inside it instead of coding the callback directly inside

the forEachLeaf call.

 makeRooms() {

 const makeRoom = (area) => {

 area.room = new DRoom(area)

 �this.fillRect(area.room.x, area.room.y, 

area.room.w, area.room.h, 0)

 }

 this.tree.forEachLeaf(makeRoom)

 }

Be aware that we’re filling the room rectangles in the level data with

zero; that means that we need to flip the initializeLevelData value to

one so that the initial array is set to all walls. If we keep it with zero like the

previous demo, then our rooms will be invisible because there will be no

wall tiles around them.

�Adding rooms to the constructor
Patching the constructor for the BSPDungeon is a single line change; just

call the makeRooms method after initializing the level data.

 constructor(width, height, iterations) {

 this.rootArea = new DArea(0, 0, width , height)

Chapter 8 Procedurally Generated Dungeons

259

 this.tree = makeTree(this.rootArea, iterations)

 this.initializeLevelData()

 this.makeRooms()

 }

Loading this sample in your browser should allow you to see both the

areas like the previous sample and the rooms in them. It should be similar

to Figure 8-3.

Try reloading the page a couple times and see the variation in the

procedural generation. Try playing with those ratios in the splitArea

function and see how they affect the dungeon layout.

Our next sample is about connecting those rooms.

Figure 8-3.  Rooms in a dungeon

Chapter 8 Procedurally Generated Dungeons

260

�Making corridors
Inside chapter-8/example-3-corridors/, you’ll find the files for this sample.

As you probably thought, all the changes we need for this new sample will

be made to the BSPDungeon class.

Making corridors will be a matter of selecting two siblings in the BSP

tree, then picking the areas inside them and computing the center of

each area. A line of empty walkable tiles is then placed between these two

coordinates.

This is an easy to understand approach but a naïve one for it will only

work if you’re sure your rooms intersect with the center of their areas. The

DRoom constructor can be patched to make sure this is the case; this is left

as an exercise to the reader.

�Making a line in the level data
This function is a method in the BSPDungeon; it is similar to the fillRect

method, but it is intended to make a line and not a square so it has a

slightly different set of values for its loop.

 line(x1, y1, x2, y2, tile) {

 for (let y = y1; y <= y2; y++) {

 for (let x = x1; x <= x2; x++) {

 this.levelData[y][x] = tile

 }

 }

 }

Chapter 8 Procedurally Generated Dungeons

261

�Making a corridor
The new function is quite similar to the makeRooms function; the new

method to make corridors will iterate over the BSP tree, making lines

between the various sibling areas.

 makeCorridors() {

 const makePath = (node) => {

 if (node.left && node.right) {

 �let x1 = Math.floor(node.left.area.x + 

(node.left.area.w/2))

 �let y1 = Math.floor(node.left.area.y + 

(node.left.area.h/2))

 �let x2 = Math.floor(node.right.area.x + 

(node.right.area.w/2))

 �let y2 = Math.floor(node.right.area.y + 

(node.right.area.h/2))

 this.line(x1, y1, x2, y2, 0)

 makePath(node.left)

 makePath(node.right)

 }

 }

 makePath(this.tree)

 }

Chapter 8 Procedurally Generated Dungeons

262

A connected dungeon like Figure 8-4 can be seen when you run

this sample.

It took a while but we got procedural dungeon layout done. Our

dungeons have a blocky feel; all the rooms are square and our corridors

straight. It is like our dungeon overlords purchased prefab modules

because they were in a hurry, but who am I to judge? That looks good

enough for me, and it is time to bring all that back into our game.

�A procedurally generated dungeon
Merging the tag sample from the previous chapter and the current work

we’ve done in this chapter is the focus of the new sample located inside

chapter-8/example-4-pcg-dungeon/.

Figure 8-4.  Corridors in a dungeon

Chapter 8 Procedurally Generated Dungeons

263

The code is the same as the tag sample, but we’ve added the

BSPDungeon class to the folder, patched the dungeon module to receive the

level data as an argument, and added an import to the BSPDungeon class at

the top of the world scene.

After that, we need to patch the world scene constructor to use the

new procedurally generated level data. Be aware that in this sample, we’re

not adding the colored rectangles, so it is just a matter of initializing the

BSPDungeon instance and passing the level data to the dungeon module.

create: function () {

 let dg = new BSPDungeon(80, 50, 4)

 let level = dg.toLevelData()

 dungeon.initialize(this, level)

 // Load game entities

 let p = dungeon.randomWalkableTile()

 dungeon.player = new classes.Elf(p.x, p.y)

 tm.addEntity(dungeon.player)

Beyond adding the player, all the rest of the code remains the same.

Up until building this sample, the player position was hardcoded to be

15x15; now we use a variable p to select a random walkable tile in the

dungeon.

In Figure 8-5, you can see how it might look. Were you tired of always

using the same map? Those days are over.

Chapter 8 Procedurally Generated Dungeons

264

One cool side effect of making the camera follow the player is that we

don’t need to worry about the hero character appearing offscreen because

the camera will move to make sure they are in view.

It is possible to make this dungeon a little bit better though. I’ve added

an extra sample to this chapter in chapter-8/example-5-better-dungeon/

that changes how items and enemies are placed in the map.

�A better dungeon
This is a small variation on the previous sample but an important one.

In the previous sample, we just selected random walkable tiles in the

dungeon and placed X number of monsters in the level. I don’t think that

is the best way to do it.

Figure 8-5.  Procedurally generated dungeon

Chapter 8 Procedurally Generated Dungeons

265

Instead, I’ve changed the world scene create function to loop over

rooms and decide what to do for each room. To make this work, first I

added a new function to the dungeon module that allowed me to select

a random walkable tile inside a room. I’ve considered just patching

the original randomWalkableTile function to receive arguments to set

constraints, but that would require me to change how some behavior tags

work, and I decided to create a new function.

 randomWalkableTileInRoom: function (x, y, w, h) {

 let rx = Phaser.Math.Between(x, (x + w) - 1)

 let ry = Phaser.Math.Between(y, (y + h) - 1)

 let tileAtDestination = dungeon.map.getTileAt(rx, ry)

 �while (typeof tileAtDestination == "undefined" || 

tileAtDestination.index == dungeon.sprites.wall) {

 rx = Phaser.Math.Between(x, (x + w) - 1)

 ry = Phaser.Math.Between(y, (y + h) - 1)

 tileAtDestination = dungeon.map.getTileAt(rx, ry)

 }

 return { x: rx, y: ry }

 }

The changes to the create code in the world scene will not only loop

through each room but decide what kind of room it should be. There are

empty rooms, rooms with just one monster, rooms with two monsters and

one item, and treasure rooms. By relying on weightedPick,6 I can skew the

random generation toward empty rooms and rooms with a single monster

and make treasure rooms super rare.

6�weightedPick documentation: https://photonstorm.github.io/phaser3-docs/
Phaser.Math.RandomDataGenerator.html#weightedPick

Chapter 8 Procedurally Generated Dungeons

https://photonstorm.github.io/phaser3-docs/Phaser.Math.RandomDataGenerator.html#weightedPick
https://photonstorm.github.io/phaser3-docs/Phaser.Math.RandomDataGenerator.html#weightedPick

266

A new method getRooms was added to the BSPDungeon class.

 getRooms() {

 let rooms = []

 this.tree.forEachLeaf(area => {

 rooms.push(area.room)

 })

 return rooms

 }

This function returns an array that is easy to iterate in the world scene.

Another change we’re making to that scene is the player’s starting position;

we’re making them start at the leftmost room in the BSP tree. That doesn’t

mean the leftmost room in the screen but the room contained in the

leftmost leaf that was used to generate the dungeon.

create: function () {

 let dg = new BSPDungeon(80, 50, 4)

 let level = dg.toLevelData()

 dungeon.initialize(this, level)

 // get rooms

 let rooms = dg.getRooms()

 // Place player in the room at the

 // left-most tree node.

 let node = dg.tree.left

 while (node.left !== false) {

 node = node.left

 }

 let r = node.area.room

 �let p = dungeon.randomWalkableTileInRoom(r.x, r.y, 

r.w, r.h)

 dungeon.player = new classes.Elf(p.x, p.y)

 tm.addEntity(dungeon.player)

Chapter 8 Procedurally Generated Dungeons

267

The next step is looping the rooms.

 rooms.forEach(room => {

 let area = room.w * room.h

 let monsterCount = 0

 let itemCount = 0

 �let roomType = Phaser.Math.RND.weightedPick 

([0,0,0,0,1,1,1,1,1,1,2,2,2,2,3])

The weightedPick function returns a random element from the array

biased toward the initial elements. By repeating elements, we increase

the chances of them happening, especially when adding elements to the

beginning of the array.

A switch statement is used to alter how many items and monsters are

in each room depending on the value of the roomType variable. Each case

in the switch statement will set how many monsters are in the room by

setting a value to the mc variable and how many items are there by setting a

value to the ic variable.

 switch (roomType) {

 case 0:

 // empty room.

 monsterCount = 0

 itemCount = 0

 break

 case 1:

 // a monster.

 monsterCount = 1

 itemCount = 0

 break

Chapter 8 Procedurally Generated Dungeons

268

 case 2:

 // monster and items.

 monsterCount = 2

 itemCount = 1

 break

 case 3:

 // treasure room.

 monsterCount = 0

 itemCount = 5

 break

 }

Once the values are set, we use the same code we had before, a while

loop adding entities to the dungeon and turn manager, but instead of using

randomWalkableTile, this time we use randomWalkableTileInRoom to

place the entities in the correct location.

 while(mc > 0) {

 �let tile = dungeon.randomWalkableTileInRoom 

(room.x, room.y, room.w, room.h)

 tm.addEntity(getRandomEnemy(tile.x, tile.y))

 mc--

 }

 while(ic > 0) {

 �let tile = dungeon.randomWalkableTileInRoom 

(room.x, room.y, room.w, room.h)

 tm.addEntity(getRandomItem(tile.x, tile.y))

 ic--

 }

 })

These changes lead to entity placement that looks more organic.

Chapter 8 Procedurally Generated Dungeons

269

�Exercises
•	 Try altering the BSPDungeon class using different

ratios and see what happens to the dungeon layout.

•	 Can you make the corridors be in an L or a Z shape

instead of straight?

•	 Come up with different strategies to place monsters

and items on the map.

�Summary
In this chapter, we worked out how to use procedural generation to

generate a dungeon layout. We learned about a common basic technique

used by many roguelikes called binary space partitioning and how to

apply it.

Make sure you understand how the BSPDungeon class works before

moving on, and experiment with radically changing it, making sure you

start to understand what makes a level fun for you.

In the next chapter, we’re going to finish working this sample into a

casual roguelike with multiple levels and a winning condition.

Chapter 8 Procedurally Generated Dungeons

271© Andre Alves Garzia 2020
A. A. Garzia, Roguelike Development with JavaScript,
https://doi.org/10.1007/978-1-4842-6059-3_9

CHAPTER 9

Finished Game
Any self-respecting dungeon has more than one level in it. There is no

point in digging an underground lair and reusing some eldritch cave

structure if you’re not going to make it deep. Up to this point in our game,

we treated dungeons as a single-level structure because it was easier to

code and reason about it. In this chapter, we’re going to add multiple

levels to the dungeon and create the other scenes necessary for the game

introduction, game over, and winning the game. The most complex part

is the multiple-level support because it requires refactoring some of our

game files.

�Adding multiple levels
An easy way to fake our way into multiple levels would be to place stairs

into the level and, once the player reaches them, restart the scene which

would cause the level to be generated again and appear as a fresh set of

rooms and corridors. Even though this approach would look good, it has

a problem because it prevents the player from going back to levels they

visited before, as reaching the stairs leading up would cause the upward

level to be randomized and not be the same as before. Unless your

dungeon crawler has a backstory of a dungeon with ever shifting levels,

rooms, and corridors that appear to move when you look away, I don’t

think you’ll be able to get away with it.

https://doi.org/10.1007/978-1-4842-6059-3_9#DOI

272

Instead, we’ll modify our BSP dungeon generator to generate multiple

levels at once. We’ll shift the dungeon generation and initialization

from the world scene and into the dungeon module because we will be

restarting both that scene and the UI scene when the player descends or

ascends the stairs. The dungeon module is a singleton that can maintain

state during these restarts, thus keeping track of the levels, player stats,

and location. Other small refactors are needed to the generic game entity

classes so that they are able to cope with scene restarts.

The source files for this sample are in chapter-9/example-1-

multiple-levels/.

�Modifying BSPDungeon to support multiple
levels
The essence of the change is that we’ll rename our old BSPDungeon class to

BSPLevel and then create a new BSPDungeon class that, when initialized,

creates multiple BSPLevels and keep track of them while providing some

features to go up and down and retrieving information about the current

level data.

There is an overlap between what we’re doing in the dungeon module

and what the BSPDungeon class does. They both deal with dungeons and

have features to support them; the conceptual difference is that you can

replace BSPDungeon with another dungeon generation class and keep

using the dungeon module with it. That is why they are separate, so that

you can replace one of them without throwing away everything. There

are some spots where there is a tight coupling between them; they are not

completely independent. This was so the code was easier to understand,

but even with that coupling, it is still easier to add new dungeon generation

methods than if everything was bundled together on the same file.

Chapter 9 Finished Game

273

Our first step in this refactor is just to rename class BSPDungeon to

BSPLevel. With that done, we’re ready to code the new BSPDungeon class.

export default class BSPDungeon {

 constructor(config) {

 let levels = []

 for (let c = 0; c < config.levels; c++) {

 �levels.push(new BSPLevel(config.width, 

config.height, config.iterations))

 }

 this.levels = levels

 this.currentLevel = 0

 }

The new BSPDungeon class will receive a dungeon configuration

object as a parameter. An object as a parameter makes it easier for us to

augment the dungeon generation for the next samples in this chapter

instead of adding more arguments to the function. The configuration

object has the width and height of the dungeon, how many BSP iterations

each level should have, and how many levels there are in the dungeon.

Most of those parameters are used to initialize the new BSPLevel

instances, and the number of levels dictates how many times the level

generation loop should go for. A small but important line there is the

last one which sets the current level to be the first level of the dungeon.

This is where the player will start. Changing that to a higher number

will make the player start the game deep into the dungeon, which might

be a storytelling feature of your game, for example, you might be doing

a game in which the player has been captured and imprisoned in a

dungeon and their mission is to escape.

Chapter 9 Finished Game

274

If you remember from the previous samples, the world scene would

do direct access to level data from the BSPDungeon instance. This will not

work anymore because the class properties changed. What we’ll do instead

is offer an API to present the same set of data we used before but take into

account the currentLevel value.

 getCurrentLevel() {

 return this.levels[this.currentLevel].toLevelData()

 }

 getRooms() {

 return this.levels[this.currentLevel].getRooms()

 }

 getTree() {

 return this.levels[this.currentLevel].tree

 }

These three methods are analogous to the direct access we used in

Chapter 8. The first function, getCurrentLevel, is used to return the level

data array to initialize the tilemap. The second function, getRooms, is used

to place items and monsters into the level. And the third function, getTree,

is used to compute the player position.

All those functions are based on the value of currentLevel. We need

to increment or decrement this property when the player goes up or down

the stairs.

 goDown() {

 if (this.currentLevel < this.levels.length - 1) {

 this.currentLevel++

 } else {

 �console.error("can't go down, already at the 

bottom of the dungeon.")

 }

 }

Chapter 9 Finished Game

275

 goUp() {

 if (this.currentLevel > 0) {

 this.currentLevel--

 } else {

 �console.error("can't go up, already at top of the 

dungeon.")

 }

 }

Both functions are very simple; they just needed some error checking

to make sure we don’t set the value of currentLevel to numbers that don’t

make sense.

�Letting the dungeon module create the dungeon
As mentioned earlier, we need to shift some of the dungeon creation code

out of the world scene and into the dungeon module. When we restart the

scene, a procedure needed to move between levels, the create function

will run again. We can’t have the dungeon generation code there because

that would cause the whole set of multiple levels to be regenerated every

time the player moves between levels.

Additional code to enable support for multiple levels needs to be

implemented as well. The dungeon module will be responsible for starting

the process of moving through the stairs, just like it is responsible for

movement and combat.

Since we use scene restarts to move through the stairs, it is easier

for us to keep track if the dungeon has been initialized or not in the

dungeon module than in the world scene. To enable that, we’ve added an

initialized property to the dungeon module object that has a default

false value.

Chapter 9 Finished Game

276

let dungeon = {

 msgs: [],

 sprites: {

 floor: 0,

 wall: 554,

 },

 initialized: false,

Scene restarts will cause dungeon.initialize to be called more than

once for a given game session. That function will be called every time the

player moves through the stairs and the world scene create function runs.

That function will double check the value of the initialized property and

only instantiate a new BSPDungeon if it is false. Most of that code has been

lifted from the world scene.

 initialize: function (scene) {

 // create the dungeon only once.

 if (!this.initialized) {

 console.log("dungeon not initialized")

 let dungeonConfig = {

 width: 80,

 height: 50,

 iterations: 4,

 levels: 5

 }

 this.dungeon = new BSPDungeon(dungeonConfig)

 this.initialized = true

 }

This first block takes care of initializing a BSPDungeon and saving a

reference to it.

Chapter 9 Finished Game

277

 �console.log(`dungeon module: current dungeon level`, 

this.dungeon.currentLevel)

 this.level = this.dungeon.getCurrentLevel()

 this.rooms = this.dungeon.getRooms()

 this.tree = this.dungeon.getTree()

 this.scene = scene

 �this.levelWithTiles = this.level.map(r => r.map(t => 

t == 1 ? this.sprites.wall : this.sprites.floor))

 const config = {

 data: this.levelWithTiles,

 tileWidth: 16,

 tileHeight: 16,

 }

In previous samples, this code was split between the scene and this

module; now it is all in one place. We still save references to all the various

properties such as rooms and tree because we’re leaving the world scene

to deal with game entity placement. It will need access to that data there.

 const map = scene.make.tilemap(config)

 �const tileset = map.addTilesetImage('tiles', 'tiles', 

16, 16, 0, 1)

 this.map = map.createDynamicLayer(0, tileset, 0, 0)

 },

One especially messy characteristic of this codebase is that sprite

creation is spread all over the place. Each game entity creates, and saves

references to, their own sprites both for placement on the map and on

the UI. Moving between levels will require these sprites and references to

be disposed of. For most entities, this will just be a side effect of garbage

collection and the scene restart not caring about them anymore, but there

is one special entity that we’re keeping track of and making sure it survives

these restarts; that entity is the player.

Chapter 9 Finished Game

278

For the player to survive these restarts, we need it to reset to a state that

is similar to its original instantiation but without reinitializing its properties

such as healthPoints and actionPoints. We’ll deal with that once we start

working on the refactor for the basicHero class; what we need to focus on

now is the dungeon module. We’ll create a cleanup function that calls into

these housekeeping functions we’ll implement later.

Another important aspect of cleaning up before resetting the scene is

making sure the turn manager is empty. We don’t want all the entities from

the previous level to be littering the next one.

 cleanup: function () {

 this.msgs = []

 dungeon.player.cleanup()

 tm.cleanup()

 },

Moving through the stairs will be accompanied by a visual effect

to fade the screen to black and then render the new level. When I was

implementing this, I’ve encountered a bug in my code that was due to a

misunderstanding on my part about how such functions should work. The

camera has a fadeOut function that receives some numerical parameters,

telling it how long the fade operation should take and to which color it

should fade to, and a callback. I expected this callback to be called at the

end of the whole process, but it is actually called for every frame during

the fading process, as explained in the fadeOut documentation.1 That is

just a cautionary tale about how sometimes the coding practices that may

be familiar to you are not actually how something works in the library you

are using. Phaser documentation is very comprehensive and should be

explored beyond the links I’m sharing on this book.

1�Camera fadeOut documentation: https://photonstorm.github.io/phaser3-
docs/Phaser.Cameras.Scene2D.Camera.html#fadeOut__anchor

Chapter 9 Finished Game

https://photonstorm.github.io/phaser3-docs/Phaser.Cameras.Scene2D.Camera.html#fadeOut__anchor
https://photonstorm.github.io/phaser3-docs/Phaser.Cameras.Scene2D.Camera.html#fadeOut__anchor

279

The solution is to use an event listener that subscribes to the

camerafadeoutcomplete event.

 goDown: function () {

 �this.scene.cameras.main.once('camerafadeoutcomplete', 

() => {

 this.cleanup()

 this.dungeon.goDown()

 this.scene.events.emit('dungeon-changed')

 }, this);

 this.scene.cameras.main.fadeOut(1000, 0, 0, 0);

 },

It is a bit confusing to have this.dungeon inside the dungeon

module. That dungeon property is actually pointing at the instance of the

BSPDungeon. I couldn’t find another noun to use for that property name.

What is happening there is that when the fade is complete, the dungeon

module cleans up itself, tells the BSPDungeon to move the currentLevel

downward, and emits a custom event.

According to the Phaser documentation, there is more than one way

to restart a scene, and searching for this topic on the Internet will yield

results with very different ways of doing it (some of which are actually from

Phaser 2 and don’t work anymore). I’ve found that the most reliable way

of restarting a scene is from inside the scene itself. I couldn’t get it to work

reliably when I tried doing it from inside the dungeon module. Apparently,

the best way to do it is exactly that – send a custom event and let each

scene take care of itself. Both the world and the ui scenes will listen for

that custom dungeon-changed event. Once it happens, they’ll just call their

prototype’s restart method.

Chapter 9 Finished Game

280

Since we are still reworking the dungeon module, there is something

else that will need patching here and in some other files, and that is input

handling. The only class that deals with input is the basicHero class.

Unfortunately, it does that by attaching input listeners to the scene. Due to

using scene restarts to move through the levels, those input listeners will be

discarded when the player goes up or down the dungeon. The player is the

only entity that will survive restarts; this means that its constructor will be

called only once, at the beginning of the game, and a reference to that entity

will be kept and reused after some rinsing for each scene change. Currently,

we attach the input listeners from inside the constructors that will change so

that we refactor that piece of code into their own separate method; this way,

when the player moves between levels, the dungeon module can call that

function to set up the listeners again without calling the players constructor.

All that will be explained further once we refactor the player class; right

now, what we need to do is change the initializeEntity function in the

dungeon module to call the function that will be used to set up those input

handlers.

 initializeEntity: function (entity) {

 if (entity.x && entity.y) {

 let x = this.map.tileToWorldX(entity.x)

 let y = this.map.tileToWorldY(entity.y)

 �entity.sprite = this.scene.add.sprite(x, y, 

"tiles", entity.tile)

 entity.sprite.setOrigin(0)

 if (entity.tint) {

 entity.sprite.tint = entity.tint

 entity.sprite.tintFill = true

 }

 entity.setEvents()

 }

 },

Chapter 9 Finished Game

281

The change was just the final line in which we call entity.set

Events(). This function will be added to the basicHero class, and also to

the genericItem and basicEnemy classes, but in their case, they’ll just be

empty stubs.

Our new dungeon module is ready and handling some code that was

formerly from the world scene, which will be the next file we will focus.

�Changing the world scene
Some minimal changes are needed to support multiple levels from this

scene; that is because from the point of view of the scene itself, it is always

dealing with just a single dungeon level. Some housekeeping is needed to

remove code that has been copied into the dungeon module, and a listener

for that dungeon-changed needs to be implemented, but besides that, all

the rest remains the same.

Changes to the create function are concentrated at the top; a large part

of it remains the same.

 create: function () {

 this.events.once('dungeon-changed', () => {

 this.scene.restart()

 })

First, before anything else, in the create function, we’re registering an

event listener for the custom dungeon-changed event. There isn’t much to

do inside besides calling restart; all the rest of the housekeeping needs

were handled by the dungeon module.

 dungeon.initialize(this)

The signature of the initialize method has changed since the world

scene doesn’t handle the dungeon generation anymore. Those features are

now handled by the dungeon module.

Chapter 9 Finished Game

282

In the following, we use the new properties we’ve set up so that we

don’t need to change much of the code we used to place the player in

the dungeon.

 // get rooms

 let rooms = dungeon.rooms

 // Place player in the room at the

 // left-most tree node.

 let node = dungeon.tree.left

 while (node.left !== false) {

 node = node.left

 }

 let r = node.area.room

 �let p = dungeon.randomWalkableTileInRoom(r.x, r.y, 

r.w, r.h)

 if (!dungeon.player) {

 dungeon.player = new classes.Elf(p.x, p.y)

 } else {

 dungeon.player.x = p.x

 dungeon.player.y = p.y

 dungeon.player.refresh()

 dungeon.initializeEntity(dungeon.player)

 }

 tm.addEntity(dungeon.player)

It is important to notice the final if clause though. It double checks to

see if the player has been initialized or not. In the case of a scene restart,

the dungeon.player value will already be set with an instance of one of

our hero classes. If that is the case, instead of instantiating a new hero,

we just position the hero we already have and add them to the level with

Chapter 9 Finished Game

283

initializeEntity. Calling refresh before the create function ends is

important so that at the new level the player starts with all their movement

and action points.

During scene restarts, the camera.worldView values are set to zero

because the scene is not yet rendered. Because of that, our camera.

setBounds code needs refactoring or we’ll break the camera when the

player moves through the levels.

 �camera.setBounds(0, 0, this.game.config.width, 

this.game.config.height)

We must add a dungeon-changed listener to the UI scene as well.

�Changing the UI scene
Only one change is needed at this file, and it is the aforementioned custom

event handler. Let’s add it to the top of the create function just like we did

for the world scene.

 create: function () {

 console.log("create ui")

 this.createdUI = false

 �this.scene.get('world-scene').events.once(

'dungeon-changed', () => {

 this.scene.restart()

 })

So far, we’ve been calling and assuming the existence of many

housekeeping functions which we haven’t implemented yet. Let’s go over

them in the next section.

Chapter 9 Finished Game

284

�Housekeeping functions
I’ve been calling them housekeeping functions because they’re supposed

to tidy up our game state before we do scene restarts. They must be added

to many different files, and some are more complex than others, but in this

section, we’re going to tackle the simpler ones as a single long section so

that we can quickly get over them and be back into doing fun stuff.

First, let’s make the changes we need to the turn manager. We need

a way to empty it before restarting the scene so that we don’t carry game

entities from one level to the other. In turnManager.js, add the following

function:

 cleanup: () => {

 tm.entities.forEach(e => {

 if (e.sprite) {

 e.sprite.destroy()

 }

 if (e.UIsprite) {

 e.UIsprite.destroy()

 }

 })

 tm.removeAllEntities()

 }

Before using removeAllEntities to reset the entities set back to an

empty collection, we need to dispose all the entity sprites. To be honest,

I thought originally that this was not needed and that the scene restart

would dispose of the sprites, but while implementing the sample for this

chapter, I was ending with duplicate sprites on the screen. That bug might

have been somewhere else; as I’ve mentioned before, I assumed the

fadeout callback was executed only once, so the duplicated sprites might

have been a side effect of multiple callbacks executing there with a slightly

different codebase that was my first experiment.

Chapter 9 Finished Game

285

Anyway, I’m being explicit about the challenges and bugs I faced (most

of which are my own creation) because we often read books where all

the code is perfect and works the first time, and we have this feeling that

authors know exactly what is going on all the time and implement perfect

code from the start. If any reader devotes more time to think about it,

they’ll notice that this is actually not only improbable but also impossible;

if authors had such command of programming that they could sprout

dozens of complex samples per book all perfect and bug-free from their

very first lines, then why would we experience bugs in our day-to-day life

both as users and as developers? Authors are developers just like the rest of

us; they just have the luxury of being able to edit over and over until things

look tidy and perfect enough for sharing.

This leads to a potential fantasy mindset in which authors do not err,

and in reality, we all do. I had week-long blocks trying to fix stuff on some

of these demos because of bugs and misunderstandings; this happens to

everyone. As your career in gamedev progresses, or if you’re a seasoned

game developer, you might agree you’ll end up with some code that feels

like superstition, doing things in a certain way because it feels or behaves

better.

That is why I’m manually disposing of sprites here; doing it the other

way caused trouble that I couldn’t pinpoint with enough accuracy to

work on a fix. Doing it this way feels unnecessary (because the scene

restart would dispose them anyway) and wasteful, but it worked, so I’ve

kept it. Probably, if you start studying codebases for popular open source

roguelikes, you’ll see similar things with comments like run this routine

twice because it works better. There is no perfect developer, no perfect

codebase, no straight path from empty file into award-winning game of the

year entry. Being honest about where I, as an author writing samples for

a book, experienced challenges will shatter any potential ivory tower wise

developer wizard semblance I might have had, but is what is correct to do.

Chapter 9 Finished Game

286

The method behind this book is one of technological experimentation,

building a game by working and reworking our source code. Dead ends,

challenges, and dealing with bugs are a part of the process.

After that brief detour into a real-world talk about being a developer, it is

time to move back into housekeeping routines. The new initializeEntity

method of the dungeon module calls entity.setEvents; we must implement

empty functions for it in both genericItem.js and basicEnemy.js.

 setEvents() {

 }

The version of that for the basicHero class is a bit more involved,

especially since that class needs more work than just adding that function.

�A hero that walks through stairs
Two changes are needed in the basicHero.js class. We need to externalize

the handling of input into its own setEvents function; that is easy, but we

also need to work out how the player will interact with stairs.

The constructor has been changed to just set some basic default values

for some properties.

 constructor(x, y) {

 super(x,y)

 this.name = "The Hero"

 this.movementPoints = 1

 this.actionPoints = 1

 this.healthPoints = 30

 this.x = x

 this.y = y

 this.tile = 29

 this.moving = false

Chapter 9 Finished Game

287

 this.type = "character"

 this.items = []

 }

Input handling is now grouped inside the setEvents function.

 setEvents() {

 �dungeon.scene.input.keyboard.addCapture(["SPACE", 

"UP","DOWN","LEFT","RIGHT"])

 dungeon.scene.input.keyboard.on("keyup", (event) => {

 if (!this.over()) {

 this.processInput(event)

 }

 event.stopPropagation()

 });

 dungeon.scene.input.on("pointerup", (event) => {

 if (!this.over()) {

 this.processTouchInput(event)

 }

 });

 }

Talking about input, let’s add two new keyboard shortcuts to process

Input. These new commands are not something that you would ship in a

finished game; we’re adding them to help during development. They’ll be

keyboard shortcuts to move down or up the dungeon; this way we don’t

need to play the whole game to figure out if moving between levels is working.

 // go down the dungeon

 if (event.key == "d") {

 dungeon.goDown()

 return

 }

Chapter 9 Finished Game

288

 // go up the dungeon

 if (event.key == "u") {

 dungeon.goUp()

 return

 }

Keeping with the game entity paradigm, stairs will just be a new kind of

game entity. They’ll be placed in the map by the world scene (more on that

later), and the player will walk into them much like they do with the other

entities. Once they do, we’ll move up or down the dungeon depending on

the type of stairs. To implement that, we’ll need to add one extra if block

to the turn function, just after the one that checks to see if the entity is of

type item.

 // Check if entity at destination is a stair

 if (entity && entity.type == "stairs") {

 if (entity.direction == "down") {

 dungeon.goDown()

 } else {

 dungeon.goUp()

 }

 }

The dungeon module in its own cleanup function calls a housekeeping

function from the basicHero class with the same name. This function will

need to loop many properties of the running hero instance and delete

all the sprites it finds. This is needed because we’re retaining the player

between scene restarts, and if we don’t delete them, we end up with

duplicate sprites on the scene.

 cleanup() {

 delete this.UIheader

 delete this.UIstatsText

 delete this.UIsprite

Chapter 9 Finished Game

289

 delete this.UIitems

 delete this.UIscene

 delete this.sprite

 this.items.forEach(i => {

 if (i.UIsprite) {

 delete i.UIsprite

 }

 })

 }

All those properties will be reinitialized when dungeon.

initializeEntity is called, passing dungeon.player during the world

scene create function.

With just those changes, you could launch the sample and be able to

navigate between levels by pressing the u and d keys, but it wouldn’t be

much fun. To complete this first demo, we need to place some stairs in the

dungeon.

�Connecting the levels with stairs
Stairs are game entities but are one of a kind, so instead of giving them

their own folder like it happened with the others, we’re just going to create

stairs.js inside the items/ folder because there is nowhere better to

place it. Be aware that we’re not adding them to the items.js module; we

don’t want the getRandomItem function returning stairs all of a sudden.

The main function of the stairs game entity is to occupy a tile on

the map and have both a specific stairs type and a direction, which is

down or up.

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

Chapter 9 Finished Game

290

export default class Stairs extends GenericItem {

 constructor(x, y, direction = "down") {

 super(x,y)

 if (direction == "down") {

 this.tile = 195

 } else {

 this.tile = 194

 }

 this.name = "Stairs"

 this.type = "stairs"

 this.direction = direction

 dungeon.initializeEntity(this)

 }

}

As you probably noticed, the constructor is a bit different than the ones

used for most of the other game entities. This is just to save us the trouble

of creating two different stairs files – one going up and one going down –

with this version, we can change the direction of the stairs by passing a

different argument in the class initialization.

�Computing the stairs positions

The best place to figure out what is the best location for the stairs is in the

BSPLevel class. Using the different branches in the BSP tree, it becomes

easier to position the downstairs and the upstairs far away from each other.

Let’s add another line to the BSPLevel constructor.

 this.addStairs()

Chapter 9 Finished Game

291

Levels don’t have any notion about where in the dungeon they’re

placed, so it is better we compute both the location for up and down

staircases. When we patch BSPDungeon to expose the stairs for the current

level, we’ll make sure it hides one or the other depending if the player is at

the top of the dungeon or the bottom.

 addStairs() {

 // Place stairs down in the room at the

 // right-most tree node.

 let node = this.tree.right

 while (node.right !== false) {

 node = node.right

 }

 let r = node.area.room

 let dx = Phaser.Math.Between(r.x+1, r.x+r.w-1)

 let dy = Phaser.Math.Between(r.y+1, r.y+r.h-1)

 this.down = {

 x: dx,

 y: dy

 }

 // Place stairs up in the room at the

 // left-most tree node.

 node = this.tree.left

 while (node.left !== false) {

 node = node.left

 }

 r = node.area.room

 let ux = Phaser.Math.Between(r.x+1, r.x+r.w-1)

 let uy = Phaser.Math.Between(r.y+1, r.y+r.h-1)

Chapter 9 Finished Game

292

 this.up = {

 x: ux,

 y: uy

 }

 }

The code for placing them is very similar to the code we use to

position the player in the level. This way, the player will end up in the

same room as the staircase leading up as they move downward into the

dungeon.

�Exposing the stairs in the BSPDungeon class

Adding a getStairs function that returns what staircases are available for

the level the player is currently in is enough for our needs.

 getStairs() {

 let stairs = {}

 if (this.currentLevel < this.levels.length - 1) {

 stairs.down = this.levels[this.currentLevel].down

 }

 if (this.currentLevel > 0) {

 stairs.up = this.levels[this.currentLevel].up

 }

 return stairs

 }

It is quite crucial to double check if the player is at the top of the

dungeon or at its bottom and hide stairs that would lead currentLevel to

be set to invalid values.

Chapter 9 Finished Game

293

�Exposing stairs in the dungeon module

Avoiding unnecessary direct access to the BSPDungeon instance makes

it easier to replace in the future. It is better to add a new property to the

dungeon module to expose the stairs instead.

 this.level = this.dungeon.getCurrentLevel()

 this.rooms = this.dungeon.getRooms()

 this.tree = this.dungeon.getTree()

 this.stairs = this.dungeon.getStairs()

�Adding stairs to the map

Staircases should be the first entities to be added to the dungeon. To do

that, we’re going to alter the create function of the world scene. They can

be added to the turn manager just after we set the rooms variable.

 // Add stairs

 let stairs = dungeon.stairs

 if (stairs.down) {

 �tm.addEntity(new Stairs(stairs.down.x, 

stairs.down.y, "down"))

 }

 if (stairs.up) {

 �tm.addEntity(new Stairs(stairs.up.x, 

 stairs.up.y, "up"))

 }

Now you have a multilevel dungeon and can try going up and down

either using the keyboard shortcuts we set or, the hard way, by fighting

your way toward the stairs.

Chapter 9 Finished Game

294

This concludes the first demo. We now have a traversable dungeon

instead of a single level. As you try to reach the fifth floor, you’ll notice that

this game is completely unbalanced, and it is very easy to die. Because of

that, we should change how we handle player death and present them with

a nice game over screen.

�Creating a game over scene
This new sample is located in chapter-9/example-2-game-over/. So far, we

have been simply reloading the page to restart the game after displaying a

boring alert message; it is time we add a proper game over screen.

The new scene will just display Game Over on the center of the screen,

with a smaller text below telling the player to press any key to restart the

game. Instead of using the boring fonts we have been using, for that scene,

we’ll use a gorgeous new font called Doomed2 by Jack Oatley. To load the

font, we just need a little style added to the index.html.

 <style>

 @font-face {

 font-family: "doomed";

 src: url(assets/doomed.ttf);

 font-weight: bold;

 font-style: normal;

 }

 body {

 font-family: "doomed";

 }

 </style>

2�Doomed font by Jack Oatley: www.dafont.com/doomed.font?l[]=10&l[]=1

Chapter 9 Finished Game

http://www.dafont.com/doomed.font?l[]=10&l[]=1

295

The font file has been placed in the assets/ folder. Phaser has features

to load bitmap fonts, and they work better for the kind of games we’re

building, but creating such fonts is beyond the scope of this book, so I have

opted to use a freely available TrueType font instead.

Browsers only load fonts declared with font-face at the time they are

needed to display something. Unfortunately, if we try to use the font with

Phaser, we’ll end up with a race condition as Phaser is trying to display

the text at the same time that the browser is loading the font. To solve that,

we’ll alter the game initialization in game.js to force the font loading before

the game starts.

document.fonts.load('10pt "Doomed"').then(() => {

 const game = new Phaser.Game(config)

})

A new file is needed to implement the scene; let’s call it gameOver.js.

const gameOver = {

 key: "game-over-scene",

 active: false,

 preload: function () {

 },

There is no need to preload anything on that scene or to add anything

to update because there is no animation. Only create has code in it.

 create: function () {

 �const x = this.cameras.main.worldView.x + 

this.cameras.main.width / 2;

 �const y = this.cameras.main.worldView.y + t 

his.cameras.main.height / 2;

 this.add.text(

 x,

Chapter 9 Finished Game

296

 y,

 "Game Over",

 {

 font: "120px 'Doomed'",

 color: "#cfc6b8"

 }).setOrigin(0.5)

 this.add.text(

 x,

 y+100,

 "Press any key to go into the dungeon again",

 {

 font: "24px 'Doomed'",

 color: "#cfc6b8"

 }).setOrigin(0.5)

Using the new Doomed font, we’re adding two large text entries to the

screen positioned at the center and above each other. To handle pressing

any key, we’ll use a simple input event handler that reloads the page.

 this.input.keyboard.on("keyup", (event) => {

 location.reload()

 })

The rest of the file is just boilerplate generic code to finish the

JavaScript module and a stub update function.

 },

 update: function () {

 }

}

export default gameOver

Chapter 9 Finished Game

297

Simply having the scene is not enough though because the game

initialization inside game.js doesn’t know about it. We need to import it.

 import gameOver from "./gameover.js"

Then add it to the scenes array:

 scene: [world, ui, gameOver],

You might have not noticed but in the game over scene object, the

active property is set to false. If it was set to true, and present in this array,

it would end up on the screen overlapping with the world and UI scenes.

Previously, the game over routine was self-contained and handled

inside the basicHero class. Now, we’re going to call a function from the

dungeon module there.

 onDestroy() {

 dungeon.gameOver()

 }

And implement that function in the dungeon module.

 gameOver: function () {

 this.ui.scene.stop()

 this.scene.scene.start("game-over-scene");

 },

The way scene management works in Phaser is described in the Scene

and Scene Manager3 documentation. In our game over function, we’re

stopping the UI scene that will cause it to shut itself down and be removed

from the screen, but we’re not doing the same with the world scene

3�Scene Manager documentation: https://photonstorm.github.io/phaser3-
docs/Phaser.Scenes.SceneManager.html

Chapter 9 Finished Game

https://photonstorm.github.io/phaser3-docs/Phaser.Scenes.SceneManager.html
https://photonstorm.github.io/phaser3-docs/Phaser.Scenes.SceneManager.html

298

because calling scene.start from that scene will cause it to stop and be

replaced with the game-over-scene. We had to shut down the UI scene

manually because we don’t want it overlapping with the game over screen

after the world scene is replaced.

If you play the game now, and get your character killed, you’ll see a

really nice game over screen like Figure 9-1.

Much better looking than that silly alert, right? To complement this

gorgeous game over screen, we’ll build an intro screen in the same style in

the next section.

Figure 9-1.  Game over

Chapter 9 Finished Game

299

�Building a game intro screen
The purpose of the game intro screen is to offer the player the opportunity

to choose which class of hero they want to play with; when it is ready, it

will look like Figure 9-2.

This new scene will be the first to load when the game starts, and it will

be its responsibility to launch both the world and the UI scene after the

player makes their choice.

Inside chapter-9/example-3-game-intro/, you’ll find the files for this

new sample. Even though this new scene may look more complex than the

game over scene, it requires changing fewer files than our previous sample.

A new file called intro.js will host our game intro scene.

import classes from "./classes.js"

import dungeon from "./dungeon.js"

Figure 9-2.  Game intro

Chapter 9 Finished Game

300

const intro = {

 key: "intro-scene",

 active: true,

 preload: function () {

 },

It is necessary to import both classes and dungeon because this scene

needs a way to figure out which hero archetypes are available to the player

and a way to pass their choice to the dungeon initialization code.

 create: function () {

 �const x = this.cameras.main.worldView.x + 

this.cameras.main.width / 2;

 �const y = this.cameras.main.worldView.y + 

this.cameras.main.height / 2;

 this.add.text(

 x,

 y - 100,

 "Nano Dungeon",

 {

 font: "160px 'Doomed'",

 color: "#cfc6b8"

 }).setOrigin(0.5)

 this.add.text(

 x,

 y + 30,

 "Choose your hero",

 {

 font: "28px 'Doomed'",

 color: "#cfc6b8"

 }).setOrigin(0.5)

Chapter 9 Finished Game

301

So far, it is almost a carbon copy of the game over scene with large text

centered on the screen. The next part of the code is where we dynamically

compute which classes are available and display them on the screen.

This is done by examining the keys in the classes object and creating the

choices using a loop.

 let classNames = Object.keys(classes)

 for (let h = 0; h < classNames.length; h++) {

 let inc = 50 * h

 this.add.text(

 x,

 y + 80 + inc,

 `${h + 1} - ${classNames[h]}`,

 {

 font: "24px 'Doomed'",

 color: "#cfc6b8"

 }).setOrigin(0.5)

 }

Handling the player’s choice uses code that is similar to the one used

in the basicHero class to toggle equipped items, a simple keyup event

handler that checks to see if the pressed key was a number. If it was, we

try to access the corresponding hero class and set dungeon.hero to be a

reference to it. This way, all we need to do in the world scene is pick the

class reference from that property when initializing the player for the first

time.

 this.input.keyboard.on("keyup", (event) => {

 let classNames = Object.keys(classes)

 let key = event.key

Chapter 9 Finished Game

302

 if (!isNaN(Number(key))) {

 let hero = classNames[key - 1]

 if (hero) {

 dungeon.hero = hero

 this.scene.stop()

 this.scene.run("ui-scene")

 this.scene.run("world-scene")

 }

 }

After saving a reference to the player’s choice, all that is left is stopping

the intro scene and starting the game.

 })

 },

 update: function () {

 }

}

export default intro

And add the rest of the code needed to finish the scene module

properly. To complete this example, we need to do a small tweak to

the player initialization in the world scene. Up until now, we’ve been

hardcoding which class the player would play; now we’re going to pick it

from the dungeon.hero property.

 if (!dungeon.player) {

 �dungeon.player = new classes[dungeon.hero](p.x, 

p.y)

Chapter 9 Finished Game

303

 } else {

 dungeon.player.x = p.x

 dungeon.player.y = p.y

 dungeon.player.refresh()

 dungeon.initializeEntity(dungeon.player)

 }

 tm.addEntity(dungeon.player)

Nano Dungeon feels like a much more complete game sample now,

but we’re still missing a way to win the game. This is the subject of the next

section and sample.

�Completing the quest
Instead of hardcoding the winning scenario in our current modules, for this

example, we are going to work on a new module just for quest management.

It will be simple but easy to experiment with so that you feel encouraged to

tweak and create new quests and scenarios yourself. This is the final sample

for our game, and the code for it is in chapter-9/example-4-quest/.

The idea behind it is a collection of functions that are executed every

time the dungeon.initialize function runs. These functions can inspect

basically anything in the game by probing the dungeon module itself

and add or remove entities to the game. In essence, this is not really a

quest module; it is actually more similar to our tag system, a collection of

functions that are executed for every dungeon level.

For Nano Dungeon, the objective will be to pick the Amulet of Nano

Dungeon that is located in the deepest level of the dungeon. Picking

that item will instantly complete the game. That is a bit lame I know,

but it is a winning scenario and is easy to understand, implement, and

tinker with.

Chapter 9 Finished Game

304

�Quest complete scene
Since we have been implementing new screens for the past two samples,

let’s begin this new one by implementing the quest completed scene. It is

just a variation of the game over scene, same code but different text. The

code for it is in questComplete.js.

const questComplete = {

 key: "quest-complete-scene",

 active: false,

 preload: function () {

 },

 create: function () {

 �const x = this.cameras.main.worldView.x + 

this.cameras.main.width / 2;

 �const y = this.cameras.main.worldView.y + 

this.cameras.main.height / 2;

 this.add.text(

 x,

 y,

 "Quest Completed",

 {

 font: "120px 'Doomed'",

 color: "#cfc6b8"

 }).setOrigin(0.5)

 this.add.text(

 x,

 y+100,

 "Press any key to go into the dungeon again",

Chapter 9 Finished Game

305

 {

 font: "24px 'Doomed'",

 color: "#cfc6b8"

 }).setOrigin(0.5)

 this.input.keyboard.on("keyup", (event) => {

 location.reload()

 })

 },

 update: function () {

 }

}

export default questComplete

As with the other ending scene, this one needs to be added to the game

initialization by importing it in game.js:

 import questComplete from "./questComplete.js"

and adding it to the scenes array:

 scene: [intro, world, ui, gameOver, questComplete],

That takes care of our winning scenario ending screen. Inside the

dungeon module, there is a gameOver function that is used when the player

character is killed. A new function called questComplete needs to be

created there for when the player wins the game.

 questComplete: function() {

 this.ui.scene.stop()

 this.scene.scene.start("quest-complete-scene");

 },

Chapter 9 Finished Game

306

All those changes are analogous to the game over example we’ve seen

earlier. The new stuff comes now that we start implementing the new quest

module inside quest.js.

�Creating a quest module
Our default quest is to pick the amulet at the bottom of the dungeon, so to

effectively implement this, we need to import the amulet item (which we

will implement shortly), the dungeon module, and the turn manager.

import Amulet from "./items/amulet.js"

import dungeon from "./dungeon.js"

import tm from "./turnManager.js"

Quests are just a series of functions that execute for every dungeon

level; they can alter the game to insert the necessary items and conditions

for a quest to be present. In the scenario we are implementing here, we

need a function to add the amulet to the bottom of the dungeon. We know

that these quest functions will be executed inside dungeon.initialize for

every level, so inside our addAmulet function, we need to figure out if the

currentLevel is the deepest level in this dungeon, and if it is, we need to

find a place to add the prized amulet.

function addAmulet() {

 �if (dungeon.dungeon.currentLevel == dungeon.dungeon. 

levels.length - 1) {

 let room = Phaser.Math.RND.weightedPick(dungeon.rooms)

 �let pos = dungeon.randomWalkableTileInRoom(room.x, 

room.y, room.w, room.h)

 tm.addEntity(new Amulet(pos.x, pos.y))

 console.log(`amulet added to`, pos)

 }

}

Chapter 9 Finished Game

307

To make it easier to interact with our quest functions, let’s export

an array.

const quest = [

 addAmulet

]

export default quest

�Refactoring the dungeon module
Inside the dungeon.js module, import the new quest module:

import quest from "./quest.js"

Calling the quest functions is just a simple addition to the bottom of

the initialize function.

quest.forEach(f => f())

This will cause all the functions to run for each level that is initialized.

This approach is flexible enough to allow you to implement multiple game

ending scenarios; I’ll give some suggestions later, but for now, let’s create

the amulet.

�Creating the amulet item
The code for the amulet will be in items/amulet.js, but the amulet will

not be added to items.js because, like the stairs, we don’t want them

randomly appearing in the dungeon while we’re placing random loot.

Internally, the amulet will work similarly to the cursedGem.js. It will

have an actionPoint and a turn implementation; this is so that in every

turn that it is in the game, it checks to see if the player got it, and if they do,

the amulet will call dungeon.questComplete.

Chapter 9 Finished Game

308

import GenericItem from "./genericItem.js"

import dungeon from "../dungeon.js"

export default class Amulet extends GenericItem {

 constructor(x,y) {

 super(x,y)

 this.tile = 942

 this.name = "Amulet"

 this.description = "The Amulet of Nano Dungeon."

 this.actionPoints = 1

 dungeon.initializeEntity(this)

 }

The amulet is a pretty blue necklace with pendant item. Using the

keyboard shortcuts to go down into the dungeon makes it easier to find it

while you are developing the game.

The important code inside it is in the turn function that checks to see if

the player has it in the inventory and completes the game if they do.

 turn() {

 if (dungeon.player.items.includes(this)) {

 dungeon.questComplete()

 }

 this.actionPoints = 0

 }

The remaining code is just boilerplate so that the actionPoints refresh

every turn.

 refresh() {

 this.actionPoints = 1

 }

Chapter 9 Finished Game

309

 over() {

 return this.actionPoints == 0

 }

}

�The game is complete
We did it! We have implemented a simple casual roguelike from scratch

using a non-genre-specific game development library. If you manage to

survive the descent into the fifth level, and get the amulet, you’ll see a

screen like Figure 9-3.

Our game is flexible enough so that it can be extended into a proper

roguelike instead of a book sample. There is a working game entity system

that allows for the creation of items supporting mechanics that can be as

advanced as you want to make them. The tag system permits enemies and

items to be assembled from minimal reusable components; extending

these with more base monster types and more tags can lead to a very

fulfilling experience. Closing up with this new quest module, new winning

or losing scenarios can be added to the game simply by creating new items

and functions there.

Chapter 9 Finished Game

310

We must be aware though that Nano Dungeon is not a good game;

it is a showcase of techniques and experiments on how to create a base,

vanilla, casual roguelike. There has been no effort whatsoever into

producing a good game design with a story, atmosphere, and cohesive

elements. Because this is a book sample, there has been no playtesting to

double check for entertainment value and balancing difficulties. Doing

games is more than just coding them. There is a lot more involved,4 and

some may say that coding them is the easy part.

4�My favorite game design book is The Art of Game Design by Jesse Schell:
www.schellgames.com/art-of-game-design/

Figure 9-3.  Quest completed

Chapter 9 Finished Game

http://www.schellgames.com/art-of-game-design/

311

I’m saying that not to discourage you or to dismiss what has been done

in the book. Every learner, in every art form, does a lot of exercises before

creating their masterpieces. Nano Dungeon is at the same time an exercise

and a toolset for doing more exercises. Experimenting with source code is

a very rewarding way of learning, and I have tried to make these samples

in a way that they are easy to tamper with. Nano Dungeon is not the end

game, it is the beginning of the journey.

�Publishing
Since our game is made of static files, any web server will be able to host it.

You can use whatever VPS or shared hosting account you already have to

publish it to the Web and make it available to your friends and testers. The

steps to do that will vary depending on the hosting. Usually, it is as easy as

opening a popular SFTP client and dragging and dropping the files to the

server account.

My preferred platform for publishing games is itch.io.5 They provide

free hosting, analytics, forums, and a lot of features for game developers.

Once you start making your own roguelikes, I think you really should

publish there. Their site has instructions on how to publish HTML5 games

to their platform.6 It can be as easy as uploading a zip with your game files

to their website.

If you’re already using Node.js for your day-to-day development,

there are two companies that are offering solutions for hosting static

files that are very popular among people doing small web apps and

prototypes. Vercel7 and Surge8 are names spoken in many of the

5�Itch.io site: https://itch.io
6�Publishing HTML5 games to itch.io: https://itch.io/docs/creators/html5
7�Vercel site: https://vercel.com/home
8�Surge site: https://surge.sh/

Chapter 9 Finished Game

https://itch.io
https://itch.io/docs/creators/html5
https://vercel.com/home
https://surge.sh/

312

trendy web development communities, and many web development

boilerplates will come with instructions to deploy apps using those

tools. Be aware that both tools offer many more features than what I will

outline here, and you should check their websites for more information,

to learn their legal terms and service limitations. I think they are a great

way to share your games with the world.

�Publishing with Vercel
You can install the Vercel npm module globally with

npm install --global vercel

Then it is just a matter of navigating to the folder where the game is and

executing the vercel command from it; vercel will upload everything to

their server and give you a URL to access it. Be aware that you need to sign

up for a free account with them at their page before you’re able to use the

tool as it will ask you for a login and password before uploading your assets.

�Publishing with Surge
The workflow with Surge is very similar to the one we’ve seen earlier; you

install the Surge npm module globally:

npm install --global surge

Then using your terminal, navigate to the folder containing the game

you want to share and execute the surge command. It will upload all

your game files and give you a URL to access it. Like Vercel, you’ll need an

account at Surge to use their app, but unlike Vercel, you’ll be able to sign

up for the service from the command-line surge application when you use

it for the first time.

Chapter 9 Finished Game

313

�Exercises
Now that the game is complete, I’m going to suggest some exercises and

changes that require a lot more fiddling in the codebase than simply

tweaking some values inside an item. You should have a clear idea how

to implement them though as I have been hinting about most of these

approaches throughout the book.

•	 Create a dungeon boss monster and place it near the

amulet.

•	 Alter the quest so that after getting the amulet, the

player needs to climb back to the first level and exit the

dungeon to win.

•	 Implement a level progression system that allows the

player stats to improve over time.

•	 Make the enemies more dangerous in deeper levels.

•	 Create secondary quests that yield powerful magical

items at the middle of the dungeon so that the player is

better equipped to continue on the main quest.

•	 Implement a way to drop items from the inventory.

•	 Add a new scene after the intro that tells a bit of a story

leading to the game.

•	 Enable enemies to use items.

•	 When the player is going up, the hero character is

initialized in the wrong position. They should be placed

near the downward stairs. Refactor the code to make

the starting position take into account where the player

is coming from.

Chapter 9 Finished Game

314

�Where to go next?
The next step in your journey is to learn more about roguelikes. There has

been much that couldn’t be covered here; what we have done is a kick

scooter, and there are airplanes out there for you to study and learn from.

Roguelikes are a work of love, and many development teams have devoted

years and sometimes decades into perfecting and refining their games. It is

also a very fun and approachable community. I urge you to

•	 Check all the amazing articles and games mentioned

in RogueBasin,9 a wonderful treasure trove of roguelike

information.

•	 Watch the amazing videos from Roguelike

Celebration,10 an international conference for people

who love the genre, and maybe even attend or present

in the future.

•	 Drop by in the roguelike development subreddit11 and

get involved with the community there.

•	 Get more books about roguelike development

and procedural generation, especially Procedural

Generation in Game Design12 which is wonderful.

•	 Participate and cheer other developers during the

7DRL13 – seven-day roguelike challenge – an online

game jam to create small roguelikes. I might enter a

beefied version of Nano Dungeon in the next one…

9�RogueBasin site: www.roguebasin.com/index.php?title=Main_Page
10�Roguelike Celebration: https://roguelike.club/
11�Roguelike development subreddit: www.reddit.com/r/roguelikedev/
12�Procedural Generation in Game Design book: www.routledge.com/Procedural-
Generation-in-Game-Design/Short-Adams/p/book/9781498799195

13�7DRL challenge site: https://7drl.com/

Chapter 9 Finished Game

http://www.roguebasin.com/index.php?title=Main_Page
https://roguelike.club/
http://www.reddit.com/r/roguelikedev/
http://www.routledge.com/Procedural-Generation-in-Game-Design/Short-Adams/p/book/9781498799195
http://www.routledge.com/Procedural-Generation-in-Game-Design/Short-Adams/p/book/9781498799195
https://7drl.com/

315

If your favorite language for game development is JavaScript, check out

the roguelike-specific libraries available for it at the RogueBasin site.

If you’re more interested in the genre than the language, there are libraries

for other languages – Rust, Python, Lua, C, C++; there are many options out

there – and the techniques you have learned in this book are transferable

to other languages and libraries even if the code is not.

This is the start of your journey; you have been given a simple toolset,

but even with simple tools, we can build amazing things. I can’t wait to see

what you’ll create with it. Don’t be a stranger, and reach out to me with

feedback and your own roguelike creations; I’m looking forward to playing

your roguelikes.

Chapter 9 Finished Game

317© Andre Alves Garzia 2020
A. A. Garzia, Roguelike Development with JavaScript,
https://doi.org/10.1007/978-1-4842-6059-3

Index
A
actionPoints value, 76
addTag function, 181
aggro tag, 208
attackEntity function, 82, 88,

138–140, 165, 221
attackTile, 138, 148

B
The Berlin Interpretation, 3

criticisms, 5
high-value factors, 3
low-value factors, 4

Binary space partitioning (BSP), 242
BSPDungeon class, 251, 252, 254
building Tree, 247, 248
DArea class, 246, 247
DNode class, 245, 246
forEachArea code, 254, 255
splitting areas, 248–250
update function, 252

bitmapText, 28

C
Cleric, 157–160, 162
Colossal Cave Adventure, 1

Combat mechanics
attack players, 85
Boolean, 81
browser console, 77
diagonal movement, 81, 82
dungeon manager, 78–80
entity, 85
healthPoints, 84, 88
monster, 75
movement code, 78
output, 89
properties, 76
sprite, 85
tween, 82
yoyo, 82

console.log call, 84
create() function, 38, 55
createUI, 101

D
damage function, 122
DNode, 245
Doomed, 294
dungeon.msgs array, 102
Dungeons, 43

BSP, 242, 243
BSPDungeon class, 266
characteristics, 237

https://doi.org/10.1007/978-1-4842-6059-3#DOI

318

create function, 265
exercises, 269
fun, 240
generation, 237
initialization, 60, 61
making corridors, 260–262
manager, 45
module, 263
monster, 69

adding player, 73, 74
player class, 71, 72

movement functions
configuration object, 64
initializeEntity, 62, 63
moving entities, 63, 64
moving entities, 65

nontraversable areas, 241
playable, 56
procedural generation, 264
random parameters, 238, 239
randomWalkableTileInRoom, 268
replayability, 240
rooms, creating

adding rooms, to
constructor, 258, 259

carve rectangles, 257
leaves, 256, 257
makeRooms, 258
sample code, 255, 256

switch statement, 267
Dwarf Fortress, 5
Dwarves, 137, 154, 155, 157

E
Elves, 137
entityAtTile function, 80, 88, 118
entity.onDestroy

function, 119
entity.setEvents(), 281
equip function, 111
Equipment and treasure

creation, 108, 120
add items, 109
constructor, 113, 114
cursed items, 126, 127
equip, item, 110
equip/unequip, 109
gems, 125
generic item

class, 121, 122
long sword, 124, 125
monster loot, 130, 132
player’s attack, 112, 113
potion, 128, 129
remove from

inventory, 111, 112
sword creation, 123
turn function, 116, 117
UI, 115, 116

dungeon module, 118, 119

F
fillRect method, 260
forEachArea, 246
forEachLeaf, 256

Dungeons (cont.)

INDEX

319

G
Game entities, 109
Game, generate multiple levels

BSPDungeon
class, 272–274

building screen, 299–301, 303
changing scenes, 281–283
constructor, 286–289
creating over scene, 294–298
dungeon module, 275–279, 293
exercises, 313
housekeeping

functions, 284, 285
map, 293, 294
publishing

Surge, 312
Vercel, 312

quest
amulet item, 307, 308
complete scene, 304, 305
creating module, 306
game, complete, 309–311
refactoring dungeon

module, 307
stairs

game entity, 289
position, 290, 292

Game loop, 17, 18

H
Housekeeping functions, 284

I
Initialization function, 60
initializeEntity function, 62, 65,

151, 164, 280
initialize() function, 46
Inventory display, 106
Iron tag, 214
isWalkableTile function, 68

J, K
JavaScript, 9

L
Level array, 62
Live-server web server, 29
logical function, 82

M
makeRooms method, 258, 261
makeTree, 247, 251
Mixins, 175
Monster class, 81
Monster class vs. players, 86
moveEntityTo function, 68

N
naïve debounce function, 68
Nano Dungeon, 13

phaser (see Phaser)s

INDEX

320

set up
code editor, 16
samples, 17
source code, 16
web server, 15, 16

NetHack, 5

O
onComplete callback, 82, 84
onDestroy function, 86, 103, 131

P, Q
PathFinding.js, 70
Phaser, 10

configuration object, 22, 23
documentation, 19
HTML, 21
JS file, 20
scene object, 20, 23, 25–28
setup, 11

Player character, 61
class, 51
dungeon manager, 45
human-readable keys, 46
JS classes, 48, 49
lastCall, 50
mechanics, 52
moveEntityTo, 67
movement, 47
player class, 51
play sessions, 44

source code, 44
turn manager, 47, 48
updating scene, 55

Player class, 51
Poison tag, 219
preload() functions, 36, 96
Properties set, 60
putTileAt() function, 54

R
randomWalkableTile function, 265
rangedAttack argument, 139
Refactor, 136

character classes, 153
cleric, 157–160, 162
defensive bonuses, 137
dungeon module, 138
dwarf, 154, 155, 157
fireballs, 167
generic item, 142
hero class, 143–145, 147–150
ranged attack, 138
sprite creation, 165
treats attacks, 137
tween, 140
warrior class, 151, 152
wizards, 163, 165, 169, 170

Roguelike
The Berlin Interpretation, 3
defining, 6
development, 7
features, 2
labels, 6

Nano Dungeon (cont.)

INDEX

321

permadeath, 86
Phaser, 10
technical skills, 7
technologies, 8, 9

Roguelites, 5

S
setViewport function, 97
Sprites, 61
startFollow function, 97
Storytelling, 8

T
Tabletop role-playing games

(TTRPGs), 135
Tags

aggro tag, 208, 209
#burning, 176
burning, making flexible,

216–218
definition, 174
enemies move

creating modules, 228–232
dungeon, 225–228
hunter, 220, 221
monsters, 221, 223–225
procedural generation,

233, 234
refracting scene, 232, 233

enemy royal, making, 215, 216
entities, 177–182, 184–188
example, 174

exercise, 235
fast monsters, making, 210
heroes taggable, 188
iron, 214
items taggable, 188
making enemies

bat, creating, 198, 199
class, 189–197
dungeon module, 205–208
item module, 203, 205
making troll, 201, 202
module, 202, 203
orc source, 199
skeleton entity, 197, 198

mixins, 175
pipelines, 175
poison, 219
procedural generation, 176
property, 174
silver, 213
#sinking, 176
tags/golden.js, 210–212

Tilemaps, 33
drawing, 34

addTilesetImage, 40
cached image, 40
configuration object, 39
dynamic and static layers, 40
grid, 37, 38
margin, 40
spritesheet, 34
tile dimensions, 40

procedural generation, 42
tileToWorldX, 63

INDEX

322

tmGone, 69
turn() method, 49, 52, 66
Turn manager, 71
Tweens, 62, 66

U, V
UIitems array, 107
UIStatsText, 108
update() function, 55, 97
User interface(UI), 92

create function, 100, 102
dungeon module, 98
game.js file, 93, 94
implement, 93

log function, 98
monster, 102–104
player, 104, 105
scene creation, 98, 99
world.js, 94–96

W, X
Web technologies, 8
weightedPick function, 233, 267
Wizards, 137, 163, 165

Y, Z
yoyo, 82

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Before We Begin
	What are roguelikes?
	The Berlin Interpretation
	What are roguelites?
	What are roguelikes for this book?

	Why develop roguelikes?
	Why use web technologies?
	Why Phaser?
	What we’re building

	Chapter 2: Introduction to Phaser
	Introducing Nano Dungeon
	Setting up
	Installing a web server
	Choosing a code editor
	Getting the source code
	Running the examples

	How games work
	Introducing Phaser
	Phaser scenes
	A simple scene
	The game configuration object
	The scene object

	Exercise
	Summary

	Chapter 3: Dungeoning
	What are tilemaps?
	Drawing a tilemap
	Preloading a spritesheet
	A basic tilemap

	A basic dungeon
	Adding a player character
	It begins with a dungeon manager
	Creating a turn manager
	The player class
	Updating the scene

	Exercise
	Summary

	Chapter 4: Enemies and Permadeath
	Dungeon initialization
	Movement support
	Initializing entities
	Moving entities

	The player becomes a sprite
	Our first monster
	Creating the basic monster class
	Adding the monster to the dungeon

	Basic combat mechanics
	From basic monster to dangerous monster
	Refactoring the dungeon manager
	The player class learns how to attack

	Exercises
	Summary

	Chapter 5: Treasures and Equipment
	Creating a user interface for our game
	How it was implemented
	Game.js refactoring
	Implementing world.js
	New dungeon.js feature
	Creating the UI scene
	Implementing the monster UI
	The player user interface

	Creating equipment and treasure
	Adding item support to the player character
	Equipping items
	Removing an item from inventory
	Changing how attacks work
	Changing the constructor
	Refreshing the UI
	Patching turn

	Reworking the dungeon module
	Let’s create some items
	Implementing the generic item class
	Creating a sword
	Creating a long sword
	Creating a gem
	What about a cursed gem?
	Creating a potion

	Adding items to the dungeon
	Adding monster loot

	Exercises
	Summary

	Chapter 6: Character Classes
	Yet another refactor
	Support for defensive bonuses
	Support for ranged attacks
	Refactoring the dungeon module
	Patching the generic item

	Creating a basic hero class
	Creating a warrior class
	Creating a dwarf
	Creating a cleric
	Creating an elf
	Creating a wizard
	Exercises
	Summary

	Chapter 7: Procedurally Generated Monsters and Items
	Introducing tags
	Aren’t you describing mixins?
	Tags as pipelines
	Making good tags
	Tags and procedural generation

	Adding support for tags
	Making entities taggable
	Making heroes taggable
	Making items taggable

	Making enemies
	A basic enemy class
	Revisiting the skeleton
	Creating a bat
	Making an orc
	Making a troll
	Implementing the enemies module

	Creating the items module
	Refactoring the dungeon module
	Creating tags
	Making monsters more aggressive
	Making fast monsters
	What about golden things?
	We might as well have a silver tag
	And an iron tag as well
	Making enemies royal
	Making a flexible burning tag
	Making stuff poisonous
	Things can be cursed too

	Making enemies move
	The hunter
	Monsters that are going somewhere
	Patrolling the dungeon

	Creating the tags module
	Refactoring the world scene
	Procedural generation is not just throwing random things
	Exercises
	Summary

	Chapter 8: Procedurally Generated Dungeons
	Dungeons, fun, and replayability
	How to screw up dungeons
	Using BSP to build dungeons
	Using a BSP tree to generate room areas
	Creating the DNode class
	Creating the DArea class
	Building a BSP tree
	Splitting areas
	Creating the BSPDungeon generator class
	Changing the world scene

	Creating rooms
	Iterating over leaves
	Carving rectangles
	Making rooms
	Adding rooms to the constructor

	Making corridors
	Making a line in the level data
	Making a corridor

	A procedurally generated dungeon
	A better dungeon
	Exercises
	Summary

	Chapter 9: Finished Game
	Adding multiple levels
	Modifying BSPDungeon to support multiple levels
	Letting the dungeon module create the dungeon
	Changing the world scene
	Changing the UI scene
	Housekeeping functions
	A hero that walks through stairs
	Connecting the levels with stairs
	Computing the stairs positions
	Exposing the stairs in the BSPDungeon class
	Exposing stairs in the dungeon module
	Adding stairs to the map

	Creating a game over scene
	Building a game intro screen
	Completing the quest
	Quest complete scene
	Creating a quest module
	Refactoring the dungeon module
	Creating the amulet item
	The game is complete

	Publishing
	Publishing with Vercel
	Publishing with Surge

	Exercises
	Where to go next?

	Index

