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I remember one day, when I was about 15, my little cousin had come over. 

Being the good elder sister that I was, I spent time with her outside in the 

garden, while all the adults were inside having a hearty conversation.  

I soon found myself chasing after this active little 4 year old as she bustled 

around, touching every little flower and inspecting every little creature.

At first, she carried this out as a silent activity, the only noise being her feet 

as she ran across the grass. After a while, however, she could no longer contain 

herself, and she began questioning me about each and every object and 

phenomenon within her radius of sight. For a while, I felt thrilled that I was 

old enough to answer these questions satisfactorily. This thrill was short-lived, 

however, as she began delving deeper in her thirst to know more.

This lasted until my mom came outside and called us for dinner. As I 

gratefully made my way back into the house, I came to two conclusions:

	 1.	 The human mind is brilliantly inquisitive

	 2.	 I’m not as smart as I thought I was

Now when we think about it, it’s quite interesting to note that all that 

we know to do, from counting the number of toes we have, to singing the 

national anthem on key, to naming the planets in the Solar System, are all 

skills that we have developed over time.

Were we born with these abilities?

No, of course not.

But we do have the ability to learn how to do all these things, with the 

help of our brain which continuously learns and processes information. 

The more we learn, the greater our knowledge. The greater our knowledge, 

the more intelligent we are.
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Not just human beings, but animals too. A dog can be trained to sit, roll 

over, and play dead, by teaching it that when it does these tasks correctly, 

it can earn a reward in the form of a tasty treat. By knowing how to perform 

these tasks, it is deemed to be an ‘intelligent dog’.

So how do we learn new things?

One way of learning is through enquiring. When my cousin was asking 

questions about everything she saw, she was trying to obtain answers from 

what she saw as a reliable source. She knew that I already learned about all 

these things, and so I could give her the answers she needed.

Another way of learning is by observation. Before my cousin began 

asking me questions, she was observing everything. She noticed that the 

sky is blue while the grass is green, and the grasshopper hops about while 

the ant crawls alongs the ground. She was able to learn new things on her 

own, without having to ask anyone for help.

The more questions she asked and the more she observed, the more 

her knowledge increased.

It’s quite fascinating, really, to think that just by learning, a being can 

become intelligent.

It is this intelligence that made the world what it is today. People grew 

in knowledge and made new discoveries which made daily life quicker and 

more efficient. This resulted in an increase in the number and variety of 

jobs available and skills required.

Soon, people began to develop new ideas and methods to perform 

various tasks. They managed to create objects that could automatically do 

certain things, like hammer a nail, tighten a screw, and so on. In other words, 

people created what we now call ‘machines’, which were made to simulate 

the actions of a person. These machines reduced the amount of manual 

labour needed, especially in the process of manufacturing. We now have 

machines that have taken over a lot of our work - Leaving us with more time 

and energy for the slightly more intellectual tasks, which these machines 

could not do, because even though we could make the machines perform 

specific actions, we could not get them to think in the way human beings do.
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Now consider this… What if machines could think, and therefore, 

perform these intellectual tasks as well?

A Simple Example of Artificial Intelligence
Consider an email inbox. Earlier, it was just a regular interface through 

which we could carry out trivial tasks like reading, replying to, and deleting 

emails. Nowadays, we have much more advanced inboxes, with folders 

for ‘Spam’, ‘Important’, ‘Other’, etc. Our inboxes automatically detect if 

something is spam, and send it to the respective folder. They even detect 

if something is comparatively important, and send it to the ‘Important’ 

folder. All other emails go under the ‘Other’ folder.

Figure I-1.  Email Classification
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But how does the inbox know the difference between these categories?

The answer is simple - It learned.

It learned how to detect if a message is spam, the same way we learned 

to do so - By looking for certain characteristics in the message. These 

characteristics include:

	 1.	 Irrelevant advertising

	 2.	 Request for sensitive information like an account 

number, contact information, etc.

	 3.	 Use of a general term to address the recipient, rather 

than using the actual name

	 4.	 Suspicious attachments

Once the inbox identifies such a message, it marks it as a possible 

spam email. It then sends that message to the ‘Spam’ folder. Thus, it saves 

us the trouble of dealing with numerous unnecessary emails everyday. All 

we need to do is go to our ‘Spam’ folder, select all the messages, and delete 

them. We don’t even need to open the messages and read through them.

The ability of a machine to think and perform tasks like this is known as 

‘Artificial Intelligence’ (AI), and the process by which it gains this Artificial 

Intelligence is known as ‘Machine Learning’ (ML).

This example of email segregation is just a simple application of 

Artificial Intelligence and Machine Learning. In fact, there is room 

for mistakes in this technology as well. However, these fields actually 

have massive potential. Just think about it - With the help of Artificial 

Intelligence and Machine Learning, we can create machines that think, 

infer, and then perform tasks. This would result in a quicker, more 

convenient lifestyle for people.

How?

Well, imagine a world where everything was automated, from picking 

our outfit in the morning based on the weather and the occasion, to 

driving to office through the busy traffic, to watering the garden at the 
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right time. Our daily chores would no longer be ours to do. And, on a 

broader level, there would be even more applications, in the areas of 

business, medicine, education, and more. For example, there would be AI 

Recruiters, AI Doctors, AI Teachers, and so on. Long story short - People 

would be replaced by Robots that can do their work with greater efficiency.

Replacing Mankind with Machines
I think before we can consider replacing women and men with machines 

that can perform their work, we need to seriously ask ourselves the 

following question -

Would that be a good idea?

Well, at present, that’s an inconclusive topic for debate. But it’s 

definitely an interesting area to have a look at.

Some of the first AI bots started out as unbeatable champions in 

games like Checkers and Chess. These bots could replace a human 

player in games that require technique and strategy. This was not just 

an entertaining phenomenon to spectate, but also a measure of how 

advanced the AI technologies were. Seems pretty harmless, right? All the 

AI did was play a game really well.

Later, however, people realised that if AI bots could replace world class 

champions in games, then they can definitely be used in more cardinal 

situations. However, this did have its own drawbacks.

A very popular example of this is when amazon.com Inc. attempted 

to replace their human recruiters with AI recruiters. The results were 

not what was expected, as the machines became gender-biased and 

began rejecting applicants that were female. This caused quite a stir, as is 

expected, but also taught AI developers a valuable lesson when it comes to 

building self-learning machines.

Let’s have a brief look at what happened.
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The Gender-Biased AI Recruiter
In general, when a recruiter looks through a list of candidates for a job, 

what would be the factors that are considered? Some of them may include, 

in no particular order:

	 1.	 Relevant Experience

	 2.	 Area of Study

	 3.	 Qualification

	 4.	 Extra projects

	 5.	 Background

	 6.	 References

The recruiter would go through the resume, check their information 

with regards to the job that they are applying for, and probably give them a 

call to verify the information. Throw in a few extra tests and assessments as 

well, depending on the company. And if the person ends up being a good 

fit, they are given the job.

That’s pretty much how an ethical employment process works, right?

Now when it comes to AI bots, they do not have the mind of a human 

being that enables them to understand the differences between relevant 

and irrelevant factors. All they have is data that they go through, find 

patterns in, and make decisions on.

The bots at this highly reputed company were trained with at least ten 

years’ worth of job applications. And as we know, there are usually more 

men in the work-place than women, right? So the machine, while learning 

from its data, thought that a person’s gender was an important factor to be 

considered when hiring. Its thought process was basically this:

Men = Good Fit,

Women = Bad Fit.
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Thus, it began rejecting applications that had any sort of reference to 

females on it. In this way, it was biased against the female applicants.

Of course, the company made efforts to fix this. They altered their 

program so that it would remain neutral in such instances. However, many 

people are still quite critical towards it, as they feel that the machine can 

still come up with new ways to be discriminative.

This was a great learning experience for AI enthusiasts, because they 

realised that while all AI machines don’t end up being prejudiced, it is still 

a possible outcome that needs to be tackled in the right way. It also shows 

that precaution must be taken while developing the AI machine itself. We 

must especially be careful about what kind of data we are using, since it is 

this data that the machine depends upon to learn.

It’s quite interesting, isn’t it? It’s like raising a child. The child learns from 

all that she or he is taught. If she/he learns good things, and is given good 

experiences, it is more likely that the child will manifest it outwardly. However, 

if the child is raised with the wrong ideas, it will adversely affect her/him.

There have even been times when certain areas of Artificial 

Intelligence proved to be disappointing to researchers, and people nearly 

stopped showing enthusiasm towards the field. Such a period is known as 

an ‘AI Winter’, which we will read about later on.

One thing that almost everyone can agree on, though, is this: Artificial 

Intelligence and Machine Learning are progressing greatly, and are 

extremely important. If done in the right way, we can create systems that 

can truly revolutionise the world and the way we live.

This is why there is so much demand for jobs in these fields. This 

is also why there is so much research going on, and several new ideas 

being introduced with regards to it. Capturing data, storing it, and then 

programming with it has become so much easier and faster.

So as we begin our Artificial Intelligence and Machine Learning 

journey, let’s have a look at some of the important concepts that we will 

need to know in order to really understand what we are getting into, and 

how we can use it to create useful and efficient technology.
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PART I

Artificial Intelligence, 
Machine Learning, 
and Deep Learning
In Part I, you will be introduced to the fundamental concepts of artificial 

intelligence, machine learning, and deep learning. If you are a beginner, 

this will be a good way for you to get familiar with the terms and basics that 

are commonly used and good to know while working in this field. If you 

are a little more experienced, this will help you to recap all that you have 

learned so far. You might even come across something new!

What to expect from this part:

•	 An introduction to artificial intelligence

•	 An introduction to machine learning

•	 An overview of machine learning concepts

•	 An introduction to deep learning

•	 An overview of deep learning concepts

•	 A comparison between machine learning and deep 
learning
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CHAPTER 1

An Overview of 
Artificial Intelligence
In this chapter, we will take our first steps into the world of artificial 

intelligence. Although it is a vast field, and we would probably require 

a whole other book to really dive deeply into it, we will go through a 

summary of important AI facts and concepts—what it is, how it came 

about, its benefits and drawbacks, and how it is being implemented in our 

present lives.

�Artificial Intelligence Primer
We have all heard about intelligence. From experience, we have found that 

students who score higher grades supposedly have more intelligence than 

those who score lower. This may not always be the case, but it is what we 

tend to conclude.

We also know that Einstein had an IQ of about 160. What is astonishing 

is that a twelve-year-old girl in England ended up scoring 162, thus beating 

the world-renowned genius in this measure of intelligence.

So, what exactly is intelligence?

https://doi.org/10.1007/978-1-4842-5967-2_1#DOI
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Intelligence can be defined as the ability to acquire and apply knowledge 

and skills.

This is why we are given an education from childhood. Over the years, 

we are fed with knowledge that is meant to help us become more intelligent.

Over the years, people worked hard and expanded their research and 

scientific advancements. They used their “natural intelligence” to come up 

with bigger and better innovations. Eventually, they were able to program 

machines to work and think like them, which they soon began to refer to as 

“artificial intelligence.”

Artificial intelligence can be defined as the ability of a machine to think 

like a human being, in order to perform a particular task, without being 

explicitly programmed.

It is also sometimes referred to as “machine intelligence” and can be 

compared to “human intelligence.” It is, as a matter of fact, inspired by a 

human being’s natural intelligence. It aims to replicate the cognitive abilities 

of the human brain, like learning, understanding, and solving problems.

�The Inception of Artificial Intelligence
Artificial intelligence did not always exist. It was probably only something 

that existed in people’s imaginations, and maybe just an exciting part of a 

science fiction novel. However, around the late 1930s, people slowly began 

considering the possibility of machines’ being able to think in the way that 

human beings do, which is what inspired researchers to go about making 

this a reality.

�1930s–1940s: Over the Years
A few scientists from different fields came together to discuss the 

possibility and practicality of creating machines that could think and 

respond and act like human beings.

Chapter 1  An Overview of Artificial Intelligence
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One of the early works that inspired machine learning was the Bombe 

machine made by Alan Turing and his team during World War II. This machine 

could crack the Enigma code used by the Germans to send encrypted messages. 

This was a major milestone in the field of machine learning.

�1950s: Discoveries and Breakthroughs
In 1950, Alan Turing published a paper, “Computing Machinery and 

Intelligence,” while he worked at the University of Manchester. In this 

paper, he introduced what is known as the Turing Test. In this test, he 

proposed that if a person is allowed to talk to another person and a machine, 

and if the first person is not able to differentiate between his two conversation 

partners, then the machine exhibits intelligent behavior. The conversation 

would be text-based only. This test proved to be a way to convince many 

people that a thinking machine was at least possible.

In 1951, Christopher Strachey developed a checkers program with the 

help of the Ferranti Mark 1 machine. Dietrich Prinz wrote one for chess as 

well. These technologies come under the “Game AI” umbrella, which is 

used even to this day to understand how far AI has come.

Around 1955, Allen Newell and Herbert A. Simon came up with the  

“Logic Theorist.” It was the first program that was made for automated 

reasoning, and is thus known as the first artificial intelligence program. 

It ended up proving thirty-eight out of fifty-two theorems in Principia 

Mathematica by Alfred North Whitehead and Bertrand Russell, and 

thus opened the eyes of researchers to the possibilities of manipulating 

symbols, which could help with human thought.

In 1956, Marvin Minsky, John McCarthy, Claude Shannon, and Nathan 

Rochester organized the Dartmouth Conference. It was here that the term 

artificial intelligence was first coined by John McCarthy and accepted 

by researchers in the field. AI also gained a proper identity in the field of 

science during this conference.

Chapter 1  An Overview of Artificial Intelligence
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�1960s–1970s: Advanced AI
After this, interest in artificial intelligence began to grow rapidly. It was the 

hot topic at the time, and people were coming up with newer ideas and 

better techniques to help machines think. In the 1960s, researchers began 

developing robots as well. The WABOT project began in Japan in 1967, 

with an objective to create the first “intelligent” humanoid robot .

�1970s–1980s: The First AI Winter
The 1970s started out pretty well for AI. The WABOT-1 was finally completed 

in 1972. It had limbs that could move either to move around or to grasp 

onto objects. It had artificial eyes and ears that helped it measure depth and 

direction. It also had an artificial mouth with which it could communicate 

with people in Japanese.

However, AI had still not reached the extent that people had hoped it 

would. Development seemed to go at a snail’s pace, and investors were not 

satisfied with the situation. Eventually, they began to halt all funding for 

undirected AI research.

Some of the reasons for the slow rate at which AI was moving forward 

include the following:

	 1.	 Need for massive data and storage: Machines 

did not have the capacity to gather and store 

information about the world. This was a huge 

obstacle because machines require immense 

quantities of information in order to become 

intelligent.

	 2.	 Need for greater computational power: Machines 

still did not have the power to carry out any 

substantial computations.

Chapter 1  An Overview of Artificial Intelligence
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	 3.	 Need for more computational time: Many real-

world problems can only be solved with the 

availability of time, which is what was missing then. 

So, people felt that AI would perhaps not be able to 

provide any solutions for realistic issues.

Many critics also began stepping up against the field. They pointed out 

the lack of resources, unfulfilled objectives, and the unknown future of AI. By 

1974, it had become extremely difficult to obtain funding for AI-related studies.

This resulted in many people feeling that artificial intelligence was not 

only a futuristic fantasy, but also an unattainable goal. The overall coldness 

in the attitude of people toward AI led to the first “AI winter,” which lasted 

from 1974 to 1980.

�1980s–early 1990s: The Revival and the Second 
AI Winter
In the 1980s, things started looking brighter for AI. People started implementing 

expert systems in their businesses, which is a form of AI programming that 

answers questions and solves problems within a particular area of knowledge. 

This led to a shift in focus in AI research toward knowledge engineering and 

knowledge-based research (KBR).

It was at this time that the Japanese Ministry of International Trade and 

Industry made the decision to invest $850 million in the fifth-generation 

computer project. Through this project, they wanted to create machines 

that could reason, converse, translate languages, and comprehend images.

Connectionism made a comeback as a result of the Hopfield Net, 

which is a type of neural network that worked differently but provided 

appreciable results.

Chapter 1  An Overview of Artificial Intelligence
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In 1987, however, all enthusiasm toward AI abruptly decreased because 

of the introduction of desktop computers by Apple and IBM, which were 

less expensive and much more powerful. This resulted in a collapse in the 

demand for AI hardware. Expert systems were also found to be too expensive 

to maintain and improve.

Funding was stopped, and research was dropped. This led to the 

second AI winter, which went on from 1987 to 1993.

�Late 1990s: AI Reborn
In the late 1990s, artificial intelligence once again became a topic of interest. 

Companies began to take up AI as their focus, and many AI technologies 

were being implemented. Funding for AI began once again, enabling AI 

researchers to move forward and develop newer and better inventions. A lot 

of goals were finally met, which motivated researchers to move forward in 

their work.

In 1997, IBM finished development of Deep Blue, which was the first 

computer to defeat Garry Kasparov, the world famous chess champion, which 

it did on May 11. The event was broadcast live over the internet, sparking the 

interest of millions of people. This was a huge milestone in the AI realm, as it 

demonstrated the vast potential that existed in training machines.

The reason for this was said to be the increase in the capacity and 

speed of computer processing. In fact, Deep Blue was found to be 10 

million times faster than the Ferranti Mark 1. Over the years, technology 

improved, thus paving the way for better AI machines.

By 2000, there was still some skepticism toward AI. HAL 9000, a fictional 

AI character created in 1968, was based on the hope that similar AI technology 

would soon be possible by 2001. Unfortunately, this ended up being an 

unachieved dream, much to the disappointment of many researchers.

This did not stop them, however, and they continued working hard 

and investing time, money, and effort into the field. In 2005, a Stanford 

Robot was developed that drove autonomously for close to 131 miles on 

Chapter 1  An Overview of Artificial Intelligence
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an unfamiliar desert route. Around 2007, a team from CMU created a 

vehicle that autonomously navigated 55 miles while following all traffic 

regulations. In February 2011, IBM debuted Watson, which defeated two 

Jeopardy champions, thus winning the quiz game.

Artificial intelligence soon branched out into big data, Internet of Things 

(IoT), data science, machine learning, and deep learning. People realized 

the need to specialize in a particular sector so as to collectively contribute to 

the advancement of AI.

As of 2020, artificial intelligence continues to be one of the most in-

demand areas of employment and research, with people encouraging 

more and more innovative ideas to be developed and implemented, not 

just on a professional or specialized level, but also in our day-to-day lives.

Quick Bite T here are five Founding Fathers of artificial intelligence: 
John McCarthy, Alan Turing, Marvin Minsky, Allen Newell, and Herbert 
A. Simon.

�Pros and Cons of Artificial Intelligence
Since its advent, artificial intelligence has been highly favored by some and 

highly criticized by others. It has its benefits, and it also has its drawbacks. 

Let’s go through some of them to get a better idea of how AI has affected 

the world so far.

�The Pros
Artificial intelligence became vastly popular mainly for the following reasons:

	 1.	 It allowed machines to replace manpower in 

performing certain tasks, especially mundane and 

tiring ones.
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	 2.	 It allowed machines to become much more efficient, 

giving them the ability to solve problems on their own 

and requiring less work on the part of developers.

	 3.	 It can be accessed and utilized at any time.

	 4.	 It can also perform tasks that would generally be 

difficult or dangerous for human beings to do.

	 5.	 When developed well, there is less scope of errors 

on their part.

�The Cons
Over the years, as artificial intelligence continued to garner people’s 

interest, it also began to display certain drawbacks, including the 

following:

	 1.	 It was expensive to develop and maintain.

	 2.	 It resulted in unemployment, since machines began 

to take over tasks that people used to do.

	 3.	 Many people misused the technology for personal 

benefit and unethical gain.

	 4.	 At times it was difficult to find people with enough 

experience to develop the programs needed for the 

problem.

	 5.	 It took a lot of time and computational power to 

develop the various AI models.
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�Challenges Faced by Artificial Intelligence
Keeping the pros and cons in mind, we can now understand that although 
artificial intelligence has deeply interested many people, it also struggles in 
many ways to reach its full potential. At present, the challenges faced by AI 
include the following:

	 1.	 The scope of artificial intelligence is somewhat 
limited. This is mainly because of the amount 
of resources, technology, funds, and manpower 
available for it.

	 2.	 Real-world implementation is still not easy. Many AI 
machines exist only theoretically or as prototypes, 
but have not yet been put into practical applications.

	 3.	 Security is a big issue when it comes to artificial 
intelligence. This is because AI requires loads of data 
in order to be trained, and this data can be taken either 
ethically or unethically from people. As mentioned 
before, AI ethics is a growing area of importance in the 
field of AI, but it still has a long way to go before it can 
really have any kind of significant impact.

Apart from the challenges listed here, artificial intelligence has also 
undergone seasons of disinterest. This has happened twice so far, starting 
in around 1974. It resulted in many AI developments’ being stalled, and 
people’s heading into other fields of work and research.

�The AI Winter
As you have already read in an earlier section, there were times during 
the history of artificial intelligence when people’s overall interest in 
the area became cold. To a certain extent, people nearly gave up on the 
field. They restricted the quantity of resources and funding given for its 

research and growth. Such a period is known as an AI winter.
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�The First AI Winter (1974–1980)
The first AI winter can be traced back to around 1974. It was not an abrupt 

break in the progress of artificial intelligence. Rather, it was an inevitable 

consequence of certain setbacks that occurred prior to it.

	 1.	 Around 1967, the “quiet decade of machine translation” 

began, where researchers found it difficult to 

correctly translate languages with the help of artificial 

intelligence. After spending enormous amounts of 

money in this area, the funding was finally stopped.

	 2.	 Approximately two years later, Minsky and Papert 

published their book, Perceptrons. This book 

explicitly critiqued perceptrons, which had a 

negative impact on connectionism. People soon 

abandoned the connectionism approach for years.

	 3.	 In 1969, the Mansfield Amendment was passed, as 

a result of which the Defense Advanced Research 

Projects Agency (DARPA) restricted their funding to 

projects that focused on military benefits only.

	 4.	 In 1973, the “Lighthill Report” was published, which 

evaluated the progress made and emphasized the 

downfall of artificial intelligence. Although this report 

faced plenty of public criticism, it eventually caused 

a feeling of pessimism to sweep over researchers and 

investors, who ultimately withdrew from the field.

	 5.	 In 1974, DARPA discontinued funding the Speech 

Understanding Research (SUR) program at Carnegie 

Mellon University, due to the latter’s production of 

an inefficient speech-recognition AI machine that 

did not fulfill their requirements.
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	 6.	 Thus, by 1974, the first AI winter had begun, mainly 

due to the lack of funding, which stalled any further 

research. Thankfully, this period only lasted until 

about 1980.

�The Second AI Winter (1987–1993)
The second AI winter can be traced back to around 1987.

	 1.	 In the 1980s, LISP machines were invented, which 

were special hardware systems that were used for 

AI programming in the LISP language. However, by 

1987, better alternatives were introduced, which 

reduced the demand for exclusive LISP machines. 

Later, in the 1990s, expert systems such as the LISP 

machine were found to be difficult to maintain. This 

caused a fall in their production.

	 2.	 In 1981, a project was started by the Japanese 

Ministry of International Trade and Industry to 

develop a high-tech reasoning machine. It was 

called the Fifth-Generation Project. In 1983, DARPA 

once again began to fund AI research. However, 

in 1987, the funding was again stopped. The team 

involved in the project soon found that their list of 

objectives for the project had not been achieved 

even after ten years. Decades passed with no results.

	 3.	 By the end of 1993, more than 300 AI companies had 

either been acquired, shut down, or gone bankrupt, 

marking the occurrence of the second AI winter.
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Quick Bite F ollowing the second AI winter, many researchers and 
businesses avoided the term artificial intelligence, as they felt it had 
a negative aura to it. They thus began to use other names instead, 
including the now popular machine learning.

There is also plenty of research going on in the field of AI ethics, which 

is another important sector within the realm of artificial intelligence.

�AI Ethics
The field of AI ethics is mainly concerned with the moral behavior and 

intentions involved in the development and implementation of an AI 

system. So, why are AI ethics important? To answer this question, let’s 

consider the following two scenarios.

�Scenario 1: Deepfakes
With recent developments in AI technology, systems can now create exact 

virtual replicas of actual people. These are known as deepfakes, where, for 

example, a fake video of a person can be created with the help of AI.

Now, obviously, this kind of technology can have various 

outcomes—some positive and some negative. This is where AI ethics 

come in to play.

Suppose a group of AI developers want to design deepfake videos of 

the president of their country. AI ethics make each of these developers ask 

themselves the question: Why am I doing this?

If the developer’s answer is not selfish, harmful, or fatal, then they can 

proceed with what they were doing. However, if their answer is any of the 

above, then they may have to reconsider the motives behind their project.
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Of course, in some cases, it is easy to decide whether an AI tool is alright 

or not. The problem is, sometimes it is not exactly possible to figure that out.

�Scenario 2: Making Decisions
Most of us have already heard about self-driving cars, right? These cars are 

trained, with AI, to accelerate, maneuver, and brake, all while taking a rider 

to their destination.

There have also been videos online about these cars safely avoiding 

animals on the road, thus saving the life of the animal as well as that of the 

person inside.

But what if the car is in a situation where a crash is inevitable? And this 

time, it doesn’t involve an animal, but another human being? What should 

the car do?

To have a better idea of this, let’s take the following example:

A young father of four children is traveling in his self-driving car, 

returning home after a long day of work. The car is moving at a constant high 

velocity along a highway. Suddenly, out of nowhere, an old couple starts 

crossing the road, right in front of the car. The car now has two options:

	 1.	 It can swerve away from the couple, crash into the 

low cement wall on the side of the highway, and 

thus likely result in the death of the passenger.

	 2.	 It can save the passenger’s life by crashing into the 

old couple, thus likely taking their lives.

What should the car do in this situation?

Some may argue that the car should save the old couple because that 

would be two lives saved, which is greater than the one life that would be 

lost within the car. Others, however, may argue that the young man still 

has so much to do in this world, and on top of that, he has his wife and 

children depending on him, and so it would be better to save his life.
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This is quite a dilemma, isn’t it?

Human beings themselves find it difficult to come up with a definite 

answer for this. However, we do have something that machines do not have, 

i.e., our natural instinct, which, in a way, helps us to make decisions in such 

situations. Machines need some kind of factual information to be able to 

differentiate between right and wrong. Thus, it would be difficult for the car 

to know what to do in such a case.

That’s why AI ethics is a growing field in the world of artificial 

intelligence. Through discussions, research, and trials, ethical problems 

such as these can be tackled.

Once a solution is developed, however, new inventions and ideas 

can be implemented into our daily lives. Self-driving cars will no longer 

be a potential hazard. Deepfakes can be created for beneficial purposes. 

More technologies will come up, and there will be less fear in the hearts 

of people regarding what kind of developments are being made in the 

artificial intelligence sector.

�Artificial Intelligence and IoT
The Internet of Things (IoT) is the connection of various objects in 

order to form a network of devices that can interact with one another. 

It was developed in order to enable non-living, unrelated objects to 

work together, assess their surroundings, understand a situation, and 

react accordingly, without the need for human intervention. IoT devices 

are interconnected with the help of software, sensors, and other such 

technologies. They send signals to each other, receive signals from one 

another, and thus exchange data via the internet.

Many researchers have begun integrating it with artificial intelligence. 

This has led to a variety of new technologies and devices that they soon 

hope to integrate into an average person’s day-to-day life.
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�Applications of IoT
IoT has been greatly accepted and highly demanded due to its great scope 

in terms of usability. Some of its applications are discussed in the following 

sections.

�Smart Homes

Smart homes refer to the phenomenon of home automation, where the 

home does tasks on its own, without the need for anyone to control it. So 

far, smart homes have been able to do the following:

	 1.	 Switch lights on or off.

	 2.	 Keep a check on the overall temperature of the 

home.

	 3.	 Make sure all electronic devices are turned off when 

not in use.

	 4.	 Monitor the health of the inhabitants of the home.

Smart homes aim to make life a little more convenient for people by 

reducing the amount of time or effort they need to put into little everyday 

tasks. They also aim to provide assistance to those who might be differently 

abled, and even to the elderly.

�Wearables

Wearables, as the name suggests, are devices that can be worn and that 

collect data about the wearer for further processing. Some common 

wearables are as follows:

	 1.	 Heart-rate monitors

	 2.	 Fitness monitors

	 3.	 Glucose monitors
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They also include smartwatches that can connect to a person’s phone 

and interact with it.

�Smart Greenhouse

The greenhouse farming technique aims to enhance crop yield by 

moderating temperature parameters. The problem is, this becomes 

difficult when it is required to be done by people. Smart greenhouses, 

therefore, can be used to fix this.

	 1.	 Its sensors can measure the various parameters.

	 2.	 It sends this data to the cloud, which processes this 

information.

	 3.	 An appropriate action is taken with regards to the 

plant/s involved.

This concept helps to reduce the costs of salaries and maintenance, 

and to increase productivity.

�How Does AI Relate to IoT?
Artificial intelligence is a rapidly growing field of technology that has slowly 

begun to be incorporated into our lives to increase productivity, efficiency, 

and profits. IoT has also begun to be implemented in our daily lives with the 

help of faster connectivity and greater computational ability.

When AI and IoT are combined, we can obtain some powerful 

technologies that can be used to solve many worldwide problems and 

improve the way we live. AI and IoT can be integrated together to achieve 

greater outputs.

For example, in smart homes, artificial intelligence can be used to 

gather the data, analyze it, and then make the most suitable decision based 

on the information it has received.
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Similarly, in wearables, AI can be used to collect, analyze, and process 

the data taken from the wearer in order to help the device respond in the 

right way.

Smart greenhouses can also use AI to monitor the conditions of the 

environment, alter them, and thus ensure that the plants receive the most 

optimal growing conditions.

Many researchers have agreed that artificial intelligence is the next 

step in the IoT sphere. It is true that the quantity of time, work, resources, 

and funds required for this will be a bit of a challenge, but considering 

the incredible amount of benefits such an endeavor would have, the 

investment would be worth it.

�Summary
We now know what artificial intelligence is and how it has progressed over 

the years. We have studied its strengths and weaknesses, its challenges, and 

how we can make it more ethical and secure. We have even seen how to 

implement it with other useful technologies for maximum benefits. We can 

thus move ahead to some of the specifics of artificial intelligence—mainly, 

how to make a machine intelligent in order to use it in the real world.
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CHAPTER 2

An Overview of 
Machine Learning
Artificial intelligence sounds pretty interesting, doesn’t it? It’s exciting to 

create a thinking machine that can do whatever you need it to do. And you 

don’t need to worry about learning something new and extravagant—all you 

need to do is learn to program.

How convenient is that?

So, what exactly do you need to program? The answer is pretty 

straightforward: program the machine to learn! How else would it be able to 

think? This concept comes under the umbrella of machine learning, which 

is an extremely important part of artificial intelligence. Let’s dive into it and 

see what it’s all about.

�What Is Machine Learning?
If the name isn’t already a pretty obvious giveaway, here is a simple 

definition that should help you understand what exactly you are getting into.

Machine learning can be defined as the process of teaching a machine 

to think like a human being in order to perform a particular task, without 

being explicitly programmed.

Think about the first time you learned to read. You began by learning 

the alphabet, then you formed words by joining these letters together. 

https://doi.org/10.1007/978-1-4842-5967-2_2#DOI
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Finally, you began to learn how to pronounce these different combinations 

of letters. And as you kept practicing, you became better at reading.

Machine learning works in the same way. The machine learns, 

understands, and thinks like a human being, and then uses this thought 

process to do some work. With machine learning, machines can be 

taught to perform higher-level tasks.

Just like human beings need to learn to increase their natural 

intelligence, machines need to learn to increase their artificial intelligence. 

This is why machine learning is so important when it comes to developing 

artificially intelligent systems.

�The Machine Learning Workflow
A typical machine learning problem follows these steps:

	 1.	 Defining the problem: We first need to determine 

what exactly our problem is before we can begin 

solving it. We need to figure out what the problem 

is, whether it is feasible to use machine learning to 

solve it, and so on.

	 2.	 Collecting the data: We then need to gather our 

data based on our problem definition. The data is 

extremely important, and must thus be collected 

with care. We need to make sure that we have data 

corresponding to all the necessary factors required 

for our analysis.

	 3.	 Pre-processing the data: We need to clean up the 

data to make it more usable. This includes removing 

outliers, handling missing information, and so on. 

This is done to decrease the possibility of obtaining 

errors from our analysis.
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	 4.	 Developing the model: We can now create our 

machine learning model, which will be used in 

solving the problem. This model takes the data as 

input, performs computations on it, then produces 

some output from it.

	 5.	 Evaluating the model: The model needs to be 

evaluated to verify its accuracy and to make sure 

that it can work on any new data that may be 

provided to it.

As we have seen in this workflow, machine learning is done with the 

help of data—loads and loads of data. Machines take this data, analyze 

it, and develop conclusions from it. This is how the idea of data science 

evolved to be an integral part of machine learning.

�What Is Data Science?
Data science allows us to obtain knowledge from data.

The entire process of collecting, manipulating, analyzing, and 

developing inferences from data is known as data science.

Data science is, then, the combination of statistics, mathematics, 

computer programming, complex problem solving, data capturing, and 

working with data to cleanse it, prepare it, and use it.

The data that is obtained from the process of data science can, once it 

is prepared, be fed into a machine in order to help it learn.

�Branches of Data Science
Data science consists of the following main areas:

•	 Data collection: Gathering the data

•	 Data storage: Keeping the data for later access
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•	 Data wrangling/munging: Cleaning up the raw data 

for easier utilization

•	 Data visualization: Viewing the data graphically

There are two other areas, namely, big data and data analytics, that, 

although treated as separate entities, also deal with data and thus come 

under the data science umbrella.

�Big Data
Big data refers to the storage of huge volumes of data. This data is mainly 

characterized in the following three ways:

•	 High volume: This refers to the quantity of data that 

is generated and stored. The amount of this data is 

immense as it finds its sources in images, videos, 

audios, and text.

•	 High velocity: This refers to the speed at which the 

data is generated and processed. Usually, this data is 

available in real time, which means it is continuously 

produced and handled.

•	 High veracity: This refers to the quality of the data. The 

data produced here can greatly vary, and this can affect 

the overall analysis.

Big data can be applied in the following areas:

•	 Communication

•	 Finance

•	 Retail

•	 Education

•	 Media
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Some of the challenges that big data faces include the following:

•	 Gathering data: Since the amount of data is so huge, it is 

not an easy task to collect it.

•	 Storing data: Very powerful storage units are required 

to store such massive amounts of data.

•	 Transferring and sharing data: In order to 

successfully transfer and share large quantities of data, 

advanced techniques and tools are required.

�Data Analytics
Raw data can be analyzed to observe trends and to come up with 

conclusions based on these trends. Thus, data analytics refers to the 

inspection of data in order to derive insights and develop inferences and 

conclusions based on it.

It follows several steps and consists of various methods that help in 

making the process more effective and in obtaining the desired results.  

It makes use of a variety of statistical and mathematical techniques.

There are four main types of data analytics, as follows:

	 1.	 Descriptive analytics: This is used to explain 

what has occurred. For example, it can be used to 

describe the present performance of a company.

	 2.	 Prescriptive analytics: This is used to predict what 

will occur in the future. For example, it can be used 

to determine the profits of a company based on its 

previous performance.

	 3.	 Diagnostic analytics: This is used to determine why 

something has occurred. For example, it can be used 

to understand why a company might be seeing losses.
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	 4.	 Prescriptive analytics: This is used to figure out 

what needs to occur, i.e., what needs to be done. 

For example, it can be used to come up with better 

strategies and ideas to help a company get back on 

track and make profits again.

Data analytics can be applied in the following areas:

•	 Healthcare

•	 Energy management

•	 Travel

•	 Finance

Big data and data analytics are each very intricate parts of data science, 

and thus there is a huge demand for them, especially when it comes to 

employment. The data obtained as a result of these methods can then be 

used in machine learning and related fields.

There are various sources from which data can be obtained, depending 

on the use case. In the next section, we will go through some of the 

important methods that are used for data collection.

�Collection of Data
Data is nothing but facts and figures that, when gathered together, produce 

some piece of information. This data can come from a number of sources, 

including the following:

	 1.	 Surveys: These are used to gather data from several 

respondents in order to develop a conclusion that 

can be applied on a broader scale. For example, 

studying the effect of social media on students in 

a particular school to figure out how social media 

affects school students in general.
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	 2.	 Polls: These are used to understand people’s 

opinions or sentiments toward a particular topic. 

For example, online shops can ask their customers 

for their opinion on the product they have 

purchased, and this information can be used to 

strategize better sales tactics.

	 3.	 Interviews: These are structured conversations 

in which one person (or group of persons) asks 

questions, while the other person (or group of 

persons) answers the questions. For example, news 

reporters interview a group of people at a protest 

to understand what they are protesting against and 

how the situation can be improved.

	 4.	 Observation: As the name suggests, this is the 

process of observing or watching the natural reaction, 

response, or behavior of the objects of study in order 

to come up with some useful inference. For example, 

observing tigers in their natural habitat can help 

wildlife researchers understand their needs so as to 

figure out how to better preserve the species.

Another way to collect data is simply by observing people, actions, or 

phenomenon. For example, we can use previous weather patterns to predict 

future weather patterns, or we can predict the outcome of an election just by 

observing the response that people have towards a particular candidate.

Data can also be collected from online sources, since there is so much 

content available on the internet nowadays. Some examples include 

gathering data from social media sites, scraping the web, or even just 

downloading datasets from online. One thing to keep in mind, however, 

is that before we use this data, we need to ensure that it is permissible and 

ethical to use.
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Once the data is collected, it needs to be pre-processed before it can be 

used for any further applications.

�Pre-processing Data
The data that we collect can have errors, missing values, extra information, 

and so on. This can cause problems in our machine learning process. 

Thus, the data needs to go through a type of cleansing, which is known as 

pre-processing.

�Data Cleaning

The data is cleaned in the following ways:

•	 Removing data that is inaccurate, irrelevant, or 

incomplete.

•	 Transforming data to ensure they are of the same type 

or format.

•	 Checking if the data is acceptable for use.

�Filling in Missing Values

Values can be missing for reasons such as the following:

	 1.	 Random error

	 2.	 Systematic error

	 3.	 Human error

	 4.	 Incorrect sensor readings

These values are dealt with in the following ways:
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	 1.	 Removing the section that contains the missing 

data, as long as there is enough data left for the 

machine learning process.

	 2.	 Removing the attribute that consists of the 

problematic data or data that is consistent or can 

correlate with another attribute.

	 3.	 Assigning a special value like “N/A” for data that is 

missing due to acceptable reasons (for example, if a 

person fails to attend a match, their opinion of the 

match is invalid).

	 4.	 Estimating the missing value by taking the average 

value of the attribute.

	 5.	 Predicting the value from its predecessors.

�Removing Outliers

An outlier is an irregularity within a set of values that varies tremendously 

from the rest. It can greatly affect the results of any kind of computation 

done on the set of values. A very simple example is shown in Table 2-1.

Table 2-1.  Outlier Computation

a b c d e f g h i j

X 2 3 1 1 4 3 5 100 5 2

As we can see, the value for h is 100. This is much larger than the rest of 

the values, which fall within the range of 1 to 5.

In the same way, such irregular values can occur in data that is 

collected for data science purposes. These values need to be handled 

carefully to prevent inaccuracies or mistakes in our results.
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The most commonly used method of handling outliers is to use data 

visualization to plot the data on a graph, after which irregularities are 

detected and then dealt with.

�Transforming and Reducing Data
Data transformation is also known as data wrangling or data munging.  

It converts the data into a format that is readable to the machine learning 

algorithm. The data also becomes easier to learn, and a more accurate 

output can be achieved.

Data reduction removes certain attributes that are less likely to have a 

positive effect on the machine learning algorithm’s outcome. For example, 

some attributes may have random values, values with very low variance, 

or a large number of missing values. In such cases, that attribute can be 

entirely removed from the dataset.

�Types of Data
The data that is collected and used can be either of the following:

•	 Labeled: Each class/type is labeled based on certain 

characteristics so that the machine can easily identify 

and separate the data into its respective groups. For 

example, if you have a collection of pictures that are 

separated and tagged as “cat” or “fish” accordingly.

•	 Unlabeled: Each class/type is not labeled, and so the 

machine needs to figure out how many classes are 

there and which item belongs where, and then it must 

separate the data on its own. For example, if you have 

a set of pictures, but they are not separated and tagged 

as “cat” or “fish” accordingly. In this case, the machine 

would need to identify some particular features that 

differentiate one animal from the other (like a cat’s 

whiskers or a fish’s fins).
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Based on the kind of data being used, there are two main types of 

machine learning methods:

•	 Supervised learning: This method uses labeled data.

•	 Unsupervised learning: This method uses unlabeled 

data.

Table 2-2 lists how they differ from each other.

Table 2-2.  Supervised/Unsupervised Learning Differences

Supervised Learning Unsupervised Learning

It uses data that is labeled. It uses data that is unlabeled.

It does not require excess data for 

accuracy.

It requires excess data for accuracy.

Computational complexity is less, i.e., 

it is simpler.

Computational complexity is greater, i.e.,  

it is less simple.

It does not find patterns on its own 

from a dataset.

It finds patterns on its own from a given 

dataset.

Each type of learning method has various types of algorithms that can 

be used to solve a machine learning problem. Let’s take a look at some 

important ones.

�Supervised Learning Algorithms
The goal of every supervised learning algorithm is to map the input to the 

output, as shown in the following equation:

y = f(x)
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There are several algorithms that can be used to solve a machine 

learning problem with the help of supervised learning. These algorithms 

can be segregated into the following categories:

	 1.	 Regression algorithms: These algorithms contain 

outputs that are real or countable. For example, 

height (4 feet, 5 feet, 6 feet), age (27, 31, 65), or price 

(100 rupees, 20 pounds, 10 dollars)

	 2.	 Classification algorithms: These algorithms 

contain outputs that are abstract or categorical. 

For example, colors (orange, purple, turquoise), 

emotions (happy, sad, angry), or gender (girl, boy).

To give you some idea of what these algorithms are, let’s go through 

three common types of algorithms that are used:

•	 Linear regression

•	 Logistic regression

•	 K-Nearest neighbors

�Linear Regression
As the name suggests, linear regression is a type of regression algorithm. 

It models the relationship between a dependent variable and an 

independent variable. Graphically, it looks something like Figure 2-1.
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�Logistic Regression
Although the name says regression, this is generally used as a classification 

algorithm. It is usually the first choice for programmers who wish to 

conduct binary classification. It looks something like Figure 2-2.

Figure 2-1.  Linear regression algorithm

Figure 2-2.  Classification algorithm
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�K-Nearest Neighbors
This algorithm can be used for both regression and classification. It 

assumes that similar units exist in close proximity to one another. It uses 

this idea to come up with a solution. It looks something like Figure 2-3.

Figure 2-3.  K-nearest neighbor algorithm

�Applications of Supervised Learning Algorithms

	 1.	 Spam detection: Remember the very first email 

segregation example that we read about? This is 

done with the help of supervised learning.

	 2.	 Bioinformatics: This is the method of keeping a 

record of a person’s biological information for later 

use. One of the most common examples of this is the 

security system on our cell phones, which can scan 

our fingerprint and grant us access accordingly.
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�Unsupervised Learning Algorithms
The goal of unsupervised learning algorithms is to discover possible 

patterns from the set of data that is provided. The algorithm has no prior 

information about the patterns and labels present in the data.

There are several algorithms that can be used to solve a machine 

learning problem with the help of unsupervised learning. These 

algorithms can be segregated into the following categories:

•	 Cluster analysis: This approach finds similarities 

among the data and then groups the common data 

together in clusters.

•	 Dimensionality reduction: This approach attempts 

to reduce the complexity of data while still keeping the 

data relevant.

Let us now have a look at two common algorithms that are used for 

unsupervised learning: K-means clustering and principal component analysis.

�K-Means Clustering
The K-means clustering method forms k clusters out of a total of n 

observations. Each observation will be a part of the cluster with the closest 

mean. It looks something like Figure 2-4.
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�Principal Component Analysis
Principal component analysis uses orthogonal transformation to 

statistically transform a set of potentially correlated variables to a set of 

linearly uncorrelated variables, known as principal components. It is used 

to reduce the dimensionality of the data. It looks something like Figure 2-5.

Figure 2-5.  Principal component analysis algorithm

Figure 2-4.  K-means clustering algorithm

Chapter 2  An Overview of Machine Learning



37

�Applications of Unsupervised Machine  
Learning Algorithms
Anomaly detection is the identification of certain anomalies or observations 

that are different from the rest of the observations. These anomalies are also 

called outliers. For example, credit card fraud can be discovered by detecting 

unusual transactions made with the credit card.

Association is the process of identifying associations between different 

observations with the help of provided data. For example, in e-commerce 

it is easy to figure out the type of products a customer might be interested 

in by analyzing previous purchases.

Task Time  Do a little more research on machine learning 
algorithms. You can even compare them with each other, as this will 
broaden your understanding of these algorithms to help you decide 
which one to use for any future projects you might have.

Apart from supervised and unsupervised machine learning, there are 

also two lesser-known methods of machine learning, as follows:

•	 Semi-supervised learning: This method uses some 

labeled data and a larger proportion of unlabeled data 

for training.

•	 Reinforcement learning: This method is similar to 

training a pet. It sends positive signals to the machine 

when it gives the desired output, to let it know that it 

is right and to help it learn better. Similarly, it sends 

negative signals to a machine if it provides an incorrect 

output.
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�Applications of Machine Learning
Over the years, as machine learning began to grow in popularity, 

enthusiasts began to do more research into different ways of solving 

machine learning problems. They soon came up with different types of 

algorithms that prove to be the most efficient, depending on the data and 

parameters that you are using. Thus, these algorithms became available for 

worldwide use. Developers can easily choose which method they want to 

implement and follow the algorithm accordingly.

Machine learning models are structured differently, based on what 

is required of them. We will go a little deeper into the architecture of a 

machine learning model later on in this book.

Now that we have some basic idea of what exactly machine learning is, 

let’s take a look at some of its present real-world uses, as follows:

•	 E-Commerce: Machine learning can help to boost 

online sales with the help of recommendation systems 

(that recommend relevant products to potential 

customers), analytics and predictions (to learn from 

past sales and improve future sales), etc.

•	 Autonomous cars: Cars that drive themselves will 

no longer be a thing of the future. They already exist, 

and in a few years will be available on the market for 

anyone and everyone to access.

•	 Manufacturing: Many companies use robots to 

develop their products in a quicker and more 

convenient manner. This is because robots can be 

programmed to work tirelessly, with more accuracy, 

and at less cost.
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•	 Healthcare: AI technology has improved immensely, 

and a major piece of evidence of that is the fact that 

it is now being implemented in healthcare. One very 

interesting application is robotic arm surgery, where, 

as the name suggests, a robotic arm is used to conduct 

surgery. Starting with the use of the Arthrobot in 1985, 

this type of surgery has been conducted several times 

to facilitate increased precision and decreased incision.

�Summary
We now know what machine learning is and how it makes use of data with 

the help of data science techniques. We have gone through some types 

of machine learning algorithms and have seen how they are applied in 

the world so far. With the rate at which our technology is advancing, the 

need for machine learning is growing immensely. This calls for better and 

more advanced methods of machine learning. One such part of machine 

learning is a widely used technique known as deep learning. We’ll cover 

that in the next chapter.
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CHAPTER 3

Introduction to  
Deep Learning
Machine learning for artificial intelligence sounds pretty interesting so far, 

doesn’t it? When I first heard about it, I thought it was something out of a 

science fiction movie. It’s so amazing how things used to be experienced 

only in reel life, and now they can be experienced in real life too!

Oh, yes, that pun was definitely intended.

Once machine learning took off in the world of technology, there 

was no stopping it. Every day, every minute, people began making new 

discoveries and developing newer models that worked better than the ones 

that came before. However, these machine learning models were still not 

good enough. They worked, don’t get me wrong. They were quite effective 

as well. But they just weren’t efficient enough.

That was until people succeeded in developing a technique under 

machine learning that would help a machine to figure things out for 

itself, and thus solve extremely intricate problems with great accuracy. 

In fact, this technique became so popular it is now quite well known 

as an individual area under artificial intelligence (even though it is not 

separate from machine learning). It was soon given the name “deep 

learning.”

https://doi.org/10.1007/978-1-4842-5967-2_3#DOI
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In this chapter, we will see how this method of machine learning came 

about and why it is needed. We will also dive into the process involved in 

deep learning; that is, the working of neural networks. This will give us 

an understanding of why libraries like TensorFlow are important within a 

programming language, especially in the context of deep learning.

�Origins of Deep Learning
Deep learning is a branch of machine learning that uses artificial neural 

networks to help the machine to think about and respond to a particular 

problem.

The important thing to remember here is that, although it is very 

tempting to think of deep learning as an independent area under 

artificial intelligence, it is definitely not. It is very much a part of artificial 

intelligence, and is a subset of machine learning (Figure 3-1).

Figure 3-1.  Deep learning is a subset of machine learning within the 
artificial intelligence sphere
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Thus, we can say that deep learning is a subset of machine learning, 

which is a subset of artificial intelligence. Data science is like a common 

denominator here, as it is a necessary part of all three areas. The origins of 

deep learning can be credited to Walter Pitts and Warren McCulloch.

Walter Pitts was a logician in computational neuroscience, while 

Warren McCulloch was a neurophysiologist and cybernetician.

In the year 1943, they created a computer model that was inspired 

by the neural networks present in the human brain. They developed 

something called threshold logic, which was a combination of 

mathematics and algorithms that compared the total input with a certain 

threshold. This enabled them to recreate the process of thinking, just as it 

happens in the brain. This was a breakthrough that led to many more deep 

learning innovations.

Let us now learn about a very important aspect of it known as neural 

networks.

�Neural Networks
The neural network, or artificial neural network, was inspired by and 

modeled after the biological neural network. These networks, like the 

human brain, learn to perform specific tasks without being explicitly 

programmed.

A neural network is composed of a series of neurons that are 

connected together to form a type of network, hence the name neural 

network. A neuron, or an artificial neuron, is the fundamental unit of a 

neural network. It is a mathematical function that replicates the neurons 

in the human brain, as you can see in Figure 3-2. Table 3-1 provides a 

comparison of biological and artificial neurons.
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Note A  perceptron is nothing but an artificial neuron. In deep 
learning, the terms perceptron and neuron are used interchangeably.

Figure 3-2.  A biological neuron and an artificial neuron

Table 3-1.  Comparison of a Biological Neuron and an Artificial Neuron

Biological Neuron Artificial Neuron

It receives information in the form of 

electrical signals.

It receives information in the form of 

numerical values.

Literally speaking, the brain consists 

of about 86 billion biological 

neurons.

A neural network can consist of a maximum 

of about 1,000 artificial neurons.

The general composition is a cell 

body, dendrites, and axon.

The general composition is the weights and 

bias, the net input function, and the activation 

function.
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�Working of an Artificial Neuron (Perceptron)
The perceptron follows a particular flow of steps in order to achieve its 

desired output. Let’s go through these steps one by one to understand how 

a perceptron works.

�Step 1: Accepting Inputs
The perceptron accepts inputs from the user in the form of digital signals 

provided to it. These inputs are the “features” that will be used for training 

the model. They are represented by x(n), where n is the number of the 

feature. These inputs are then fed to the first layer of the neural network 

through a process called forward propagation.

�Step 2: Setting the Weights and Bias
Weights: The weights are calculated and set while 

training the model. They are represented by w(n), 

where n is the number of the weight. For example, 

the first weight will be w1, the second weight will be 

w2, and so on.

Bias: The bias is used to train a model with higher 

speed and accuracy. We generally represent it with w0.

�Step 3: Calculating the Net Input Function
The equation for the net input function is as follows:

I = Sum(x(n).w(n) + w0)

Thus, each input feature is multiplied by its corresponding weight, and 

the sum of all these products is taken. Then, the bias is added to this result.
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The Perceptron Learning Rule: According to this 

rule, the algorithm automatically determines the 

optimum values for the weights. The input features 

are then multiplied by these weights in order to 

determine if the perceptron should forward the 

signal or not. The perceptron is fed with several 

signals, and if the resultant sum of these signals 

exceeds a particular threshold, it either returns an 

output signal or doesn’t.

�Step 4: Passing the Values Through 
the Activation Function
The activation function helps with providing nonlinearity to the 

perceptron. There are three types of activation functions that can be used: 

ReLU, Sigmoid, and Softmax.

�ReLU

The Rectified Linear Unit is used to eliminate negative values from our 

outputs.

If the output is positive, it will leave it as it is.

If the output is negative, it will display a zero.

Pros:

	 1.	 It is scalable.

	 2.	 It provides efficient computation.

	 3.	 It works well for neural networks with complex 

datasets.
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Cons:

	 1.	 The output value is not restricted, which means  

it can cause issues if large values are passed 

through it.

	 2.	 The neurons can become inactive and “die” when 

the learning rate is large.

	 3.	 There is asymmetric handling of data, and results 

can end up inconsistent.

�Sigmoid

It is a special mathematical function that produces an output with a 

probability of either 1 or 0.

Pros:

	 1.	 It is differentiable and monotonic.

	 2.	 It can be used for binary classification.

	 3.	 It is useful when we need to find only the 

probability.

Cons:

	 1.	 It does not give precise values.

	 2.	 There is the issue of a vanishing gradient, which 

prevents the sigmoid function from being used in 

multi-layered networks.

	 3.	 The model can get stuck in a local minima during its 

training.
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�Softmax

It is generally used in the final layer of a neural network. It is generally used 

to convert the outputs to values that, when summed up, result in 1. Thus, 

these values will lie between 0 and 1.

Pros:

	 1.	 It can be used for multi-class classification.

	 2.	 The range is only between 0 and 1, thus simplifying 

our work.

Cons:

	 1.	 It does not support a null class.

	 2.	 It does not work for linearly separable data.

�One Hot Encoding

One Hot Encoding is a tweak that can be used while producing the 

outputs. It is used to round off the highest value to 1, while making the 

other values 0. This makes it easier to figure out which is the necessary 

class, as it is easier to spot a 1 from a list of 0s, rather than finding the 

highest value from a random list of numbers.

For example, say we have a set of inputs like 0.11, 0.71, 0.03, 0.15. Here, 

it is obviously not too difficult to identify the highest value since there are 

only four values.

Now imagine if the list had about 1,000 values. That would be difficult, 

wouldn’t it?

But, with the help of One Hot Encoding, we can easily identify the 

one from the zeroes. That is why it is a popular technique used in neural 

networks.
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Pro Tip T he most common practice is to use a ReLU activation 
function in all the hidden layers, and then to use either a Softmax 
activation function (for multi-class classification) or Sigmoid 
activation function (for binary classification).

�Step 5: Producing the Output
The final output is then passed from the last hidden layer to the output 

layer, which is then displayed to the user.

Now that we know how a perceptron works, let’s go a little more in 

depth as to how a neural network performs a deep learning task.

�Digging Deeper into Neural Networks
Deep learning goes a step further in machine learning. It allows the 

machine to begin thinking on its own in order to make decisions and carry 

out certain tasks. Neural networks are used to develop and train deep 

learning models. For example, consider a very simple neural network, 

which consists of an input layer, an output layer, and one layer of neurons, 

known as the hidden layer (as shown in Figure 3-3). The basic function of 

these three sections is as follows:

	 1.	 The input layer, as the name implies, is made of the 

input signals that will be further transmitted into the 

neural network.

	 2.	 The hidden layer is where all the important 

computations occur. The input that is fed to it is 

taken, calculations are performed on it, and then 

this input is sent to the next layer, which is the 
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output layer. The hidden layer can have any number 

of neurons within it. There can also be more than 

one hidden layer, depending on our requirements 

and arrangement.

	 3.	 The output layer, as the name suggests, contains 

the output signals. These are nothing but the final 

results of all the calculations performed by the 

hidden layer/s.

�The Process
There are four main steps to the neural network process that allow it to 

come up with the most optimal solution for any problem that is given to it.

Figure 3-3.  Basic neural network
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Step 1: The numerical input signals are passed into 

the neural network’s hidden layers.

Step 2: The net input function is calculated with the 

weights and the bias that are generated during the 

training.

Step 3: The activation function is applied to the net 

input function.

Step 4: The result is then produced as the output of 

the neural network.

Thus, deep learning, as a part of machine learning, stands out as an 

extremely useful technique in the area of artificial intelligence.

�Additional Concepts
In the following sections, we will review some key concepts that are 

important to know when it comes to neural networks.

�Gradient Descent

Gradient descent is a deep learning algorithm that is used for optimization. 

It determines the values of the parameters of a function in order to ensure 

that the value of the cost function is minimized.

It minimizes the function by iteratively moving in such a way that it 

follows the path of steepest descent, depending on the negative of the 

gradient.

The gradient of the error function with respect to the weights of the 

neural network is calculated. Afterward, the output is compared with the 

labels in order to calculate the error.
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�Forward Propagation

A perceptron accepts inputs or “features,” processes them, and then 

predicts the output. This output is then compared with the labels to 

measure the error. This is known as the forward propagation.

The data is fed into a layer of the neural network, passed through the 

activation function, and then fed to the next layer. The data must move 

forward to ensure that an output is achieved.

Thus, for any hidden layer in a neural network, after the first layer, the 

input is nothing but the output that is generated from the previous layer.

�Back Propagation

Back propagation of the error is a deep learning algorithm that is used 

in training a supervised learning model. It calculates the gradient of the 

loss function corresponding to the weights generated by the network for a 

single input and output pair. It modifies the values of the weights in order 

to minimize the loss. It is an efficient method of calculation, and thus 

makes it feasible to use gradient methods to train multi-layer networks.

The algorithm computes the gradient of the loss function with respect 

to each weight by the chain rule, by proceeding one layer at a time. It 

iterates backward from the final layer. This is done to avoid redundant 

calculations during the process.

�Overfitting

Overfitting is a statistical concept. It occurs when an analysis is said to be 

too accurate with respect to the data provided to it, and thus it can result in 

an improperly trained model. When we train our model, we may get very 

high accuracy. However, when testing the model, we may find a drastic 

difference in the accuracy. This is the result of overfitting.
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It can happen when we train a model too many times, or with too 

little data. The model ends up getting very familiar with the training data 

and can thus achieve a very high accuracy with it. However, it messes up 

anyway when it comes to making predictions on new data, because it has 

still not been trained in the right way.

�Types of Neural Networks
There are several types of neural networks, all based on their structure, 

composition, and flow. Let’s go ahead and discuss a few of the common 

and most important ones that are used by deep learning developers.

�Single-Layer Neural Networks: A Perceptron

The perceptron is the oldest single-layer neural network. As you have seen 

before, it takes the input from the user, multiplies it by the corresponding 

weight, adds that to the bias to get the net input function, and then passes 

the result through the activation function to get the final output. Every 

perceptron produces only a single output.

This type of neural network is not very efficient due to its extremely 

limited complexity. Thus, researchers came up with a model that 

contained more than one layer of perceptrons.

�Multi-Layer Neural Networks

This type of neural network is used mainly for natural language processing, 

speech recognition, image recognition, etc. It consists of two or more 

layers of perceptrons, as follows:

•	 Input layer: This is all the available numerical data that 

is fed into the system and then transferred to the rest of 

the neural network.
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•	 Hidden layers: This is where all the neurons are 

located. Every layer can have any amount of neurons. 

They are known as “hidden” layers because they 

remain hidden within the neural network as they 

perform the necessary computations.

•	 Output layer: This is the final result of all the 

calculations that happened in the hidden layers.

�Convolutional Neural Networks

Convolutional neural networks follow the same principle as multi-layer 

neural networks, the only difference being that they include “convolutional 

layers,” which make use of filters.

A filter is a grid of size AxB that is moved across the image and 

gets multiplied several times by it to produce a new value. Each value 

represents a line or an edge in the image.

Once the filters have been used on the image, its important 

characteristics can be extracted. This is done with the help of a pooling 

layer. These layers pool or collect the main features of each image. One 

popular technique of doing this is known as max pooling, which takes 

the largest number of each image and stores it in a separate grid. It thus 

compresses the main features into a single image and then passes it on to a 

regular multi-layer neural network for further processing.

These neural networks are mainly used for image classification. They 

can also be used in search engines and recommender systems.

�Recurrent Neural Networks

Recurrent neural networks (RNNs) are used for temporal data; i.e., data 

that requires past experiences to predict future outcomes. State matrices 

remember previous states of data by storing the last output, and then use 

this data to calculate the new output.
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Long short-term memory (LSTM) networks save the state matrices in 

two states: long term and short term. RNNs begin in the layers after the 

first layer. Here, each node acts as a memory cell during the computation, 

which allows it to compare previous values with new values during 

back propagation. These neural networks can be used for stock market 

predictions, natural language processing, and price determination.

�Sequence-to-Sequence Models

A sequence-to-sequence model is mainly used when the lengths of the 

input data and output data are unequal.

It makes use of two recurrent neural networks, along with an encoder 

and a decoder. The encoder processes the input data, while the decoder 

processes the output data.

These models are usually used for chatbots and machine translation.

�Modular Neural Networks

Modular neural networks have several different networks that each work 

independently to complete a part of the entire task. These networks are not 

connected to each other, and so do not interact with each other during this 

process.

This helps in reducing the amount of time taken to perform the 

computation by distributing the work done by each network. Each sub-

task would require only a portion of the total time, power, and resources 

needed to complete the work.

Task Time H ave a look at the other types of neural networks. How 
do they differ from one another? How would a machine learning 
developer choose between these models?
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�Summary
Deep learning is a vast topic, and it is not possible to cover everything 

in detail within a single chapter. It suffices, however, to at least learn the 

basics of it, which is what we have done.

We learned what a deep learning neural network is and how it works. 

In addition, we discussed a few extra concepts that are important to know 

with regard to the functioning of neural networks. Finally, we went through 

several types of neural networks, which gave us a clearer understanding 

of how they can be developed and used for various purposes. Despite the 

fact that deep learning is a part of machine learning, these two terms are 

often used as if they are completely different entities. This can be quite 

confusing, especially for beginners. Thus, in the next chapter, we will see 

how they can be compared to one another.
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CHAPTER 4

Machine Learning vs. 
Deep Learning
In the previous chapters, we learned that artificial intelligence involves the 

phenomenon of thinking machines. Machine learning is the technique 

of helping a machine to think so it is able to perform actions on its own. 

We also learned that deep learning is a type of machine learning that 

uses neural networks to help a machine learn. These neural networks are 

modeled after the human brain.

That said, you now may be wondering: Why would we compare 

machine learning and deep learning when they are not independent, but 

rather the latter is a subset of the former?

Well, as you’ve seen, traditional machine learning has several 

methods. Deep learning is one such method that is much more advanced 

in the way it works, and thus the procedure and results may vary. In this 

short chapter, we will discuss the differences between traditional machine 

learning and deep learning, which will help us understand when to use 

each method, as per our requirements.
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�Factors Used When Comparing Machine 
Learning and Deep Learning
First of all, we need to understand that there are six characteristics based 

on which we will be comparing machine learning and deep learning. Of 

course, these aren’t necessarily the only factors, as there are several other 

factors that differentiate one from the other. However, for the sake of 

getting a clear idea of how the two differ from each other, we will take into 

consideration these six aspects. Let’s go through them briefly and see what 

they are.

•	 Quantity of data required: This refers to the amount of 

data that is needed for the process of learning. In some 

cases, we may have massive amounts of data that we 

have collected from various sources, and that we desire 

to use for our analysis. In other cases, we may have 

slightly less data with which we will need to perform 

our analysis.

•	 Accuracy: The main objective of every machine 

learning and deep learning problem is to obtain the 

highest accuracy, while ensuring that the model 

has not reached a state of overfitting. That said, our 

results can vary depending on the method, algorithm, 

technique, and data that we use. One method may give 

us higher accuracy, while another method may not.

•	 Computational power: The machines that are being 

trained require plenty of computational power in 

order to effectively perform their task. Earlier, when 

machine learning had just been invented, machines 

were slower and had less capacity. This resulted in 

inefficient outcomes. Nowadays, however, machines 
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have improved. It is thus possible to carry out our 

computations with tremendous computational power.

•	 Cognitive ability: This refers to the ability of the 

machine to understand its inaccuracies and sort out 

the issue on its own. If a machine does not have this 

ability, it will not be able to make corrections to its 

parameters and/or structure, and a programmer will 

have to step in and do it for the machine.

•	 Hardware requirements: This refers to the type of 

hardware equipment needed by the algorithms to carry 

out their respective operations. This mainly depends 

on how advanced the program is, and on what the 

outcome is expected to be.

•	 Time taken: This refers to the amount of time taken, 

first to train the model, and then to validate it. This 

can vary according to the different parameters and 

algorithms used. By modifying them, we can either 

increase or decrease the amount of time taken to train 

and test the model.

Now that we are aware of the various factors that we will be 

considering to compare our models and what exactly each factor refers to, 

we can move on to exploring the differences between machine learning 

and deep learning.
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�Differentiating Between Regular Machine 
Learning and Deep Learning
Before we begin, we must remember that these are not necessarily the 

only factors involved in differentiating between machine learning and 

deep learning, especially considering that the entire process is a highly 

advanced area of technology, which means that there are many intricacies 

involved. However, we will keep our comparison simple but informative, 

so as to easily comprehend the differences between the two processes. 

Thus, taking into consideration the six factors mentioned earlier, we will 

now see how machine learning and deep learning vary from each other.

�Quantity of Data Required
In general, machine learning requires plenty of data for the machine to 

successfully train itself. However, in traditional machine learning, we 

do not need to have too much data. We just need enough to enable the 

machine to process, learn, and act. On the other hand, deep learning 

needs larger amounts of data. This is to ensure that the machine has 

enough information to develop inferences on its own, without any external 

aid. See Figure 4-1.

Figure 4-1.  Comparison of data requirements
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�Accuracy
Accuracy, as you likely already understand, is the measure of how correct 

or precise the machine is when coming up with a solution. Although both 

methods give results that are quite precise, as you can see in Figure 4-2, 

regular machine learning is relatively less accurate, since it uses a smaller 

amount of data from which to learn and make inferences. Deep learning 

is much more accurate due to the large amount of data that it uses to learn 

and make inferences.

�Computational Power
Both machine learning and deep learning require a lot of computational 

power in order to train their models with the data given to them. However, 

the amount of power required by regular machine learning programs 

is comparatively less, mainly due to the fact that it uses less data for its 

computations. Deep learning requires more power to analyze its data and 

train its model. See Figure 4-3.

Figure 4-2.  Comparison of accuracy
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�Cognitive Ability
One of the most important differences between machine learning and 

deep learning is that their cognitive abilities vary. Machine learning 

models have a lower cognitive ability because if they happen to make an 

inaccurate prediction, external assistance (in this case, a programmer) is 

required to make the necessary changes and then retrain the model. Deep 

learning models, however, have a higher cognitive ability because they 

can figure out inaccuracies and make the necessary changes on their own, 

without the need of a programmer. See Figure 4-4.

Figure 4-3.  Comparison of computational power

Figure 4-4.  Comparison of cognitive ability
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�Hardware Requirements
Most traditional machine learning algorithms can run smoothly on low-

end systems. They do not depend too much on sophisticated machinery 

to carry out their processes. Deep learning algorithms, on the other hand, 

depend heavily on the hardware that is used because they need GPUs to 

optimize their processes. Therefore, they would need high-end machines 

for their operations. See Figure 4-5.

�Time Taken
Although this may not be true in all cases, it is a generally known fact 

that machine learning models take less time to train, while deep learning 

models take a longer time. This occurs mainly because deep learning 

models consist of more parameters, which means that the machine has a 

lot more work to do with regard to learning from its data. Machine learning 

Figure 4-5.  Comparison of hardware requirements
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models, however, don’t have too many parameters, and so it is easier for 

the algorithm to compute.

When it comes to validation of the models, deep learning tends to be 

faster, whereas machine learning is slower. Once again, this differs from 

case to case. See Figure 4-6.

�Summary
We have seen six ways in which deep learning differs from machine 

learning. It is now easy to understand why many people consider both 

areas to be extremely important in the field of artificial intelligence. 

Depending on the kind of input and technology available, people can 

choose the type of machine learning method they want to employ.

We can now move on to the process involved in setting up the system 

to help it learn. This is where the programming part comes in. Machine 

learning requires programmers to use data science techniques, followed 

Figure 4-6.  Comparison of time taken
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by some specific machine learning algorithms, to enable the machine to 

think on its own. All this can be done within one single program.

We can use several programming languages to carry out our machine 

learning tasks, like Python, Java, C++, Julia, and R. However, since Python 

has emerged as one of the most popular machine learning programming 

languages so far, we shall be having a look at it over the next few chapters 

in the context of machine learning and deep learning.
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CHAPTER 5

Machine Learning 
With Python
In previous chapters, we saw what artificial intelligence is and how machine 

learning and deep learning techniques are used to train machines to 

become smart. In these next few chapters, we will learn how machines are 

trained to take data, process it, analyze it, and develop inferences from it.

Machines need to be programmed to carry out particular actions. 

There are about 700 major and minor programming languages in the 

world to date. These languages have developed over the years according 

to the needs of the time. Many of the languages are just new and improved 

versions of older languages. As computers and computer-related 

businesses grew, the need for programming languages increased as well.

As artificial intelligence evolved, the usefulness of a programming 

language for machine training became an added criteria for its popularity. 

As of 2019, the top three languages were Java, Python, and C/C++. 

Excluding C, the other languages are object oriented.

Note  Object-oriented programming (OOP) is a type of programming 
in which data is stored in objects as fields or attributes, and code is 
stored as methods or procedures.

OOP is a common method of programming because it is scalable, 
reusable, and efficient.
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In this book, we will be learning how to program machines with the 

help of Python, which is, at present, one of the most widely used languages 

when it comes to machine learning. We will start by getting acquainted 

with this programming language.

�Introduction to Python
Python was first developed and released in the year 1990 by Guido van 

Rossum, a Dutch mathematician, at the Centrum Wiskunde & Informatica 

in the Netherlands. One very interesting fact to note is that the name 

Python was, surprisingly, not taken from the notorious reptile, but rather 

from the equally notorious comedy group Monty Python that Guido was 

fond of.

According to the official Python website, “Python is an interpreted, 

object-oriented, high-level programming language with dynamic 

semantics.”

In simpler terms,

•	 it is an interpreted language, which means it allows 

instructions to be executed freely and directly, without 

any prior compilation required;

•	 it uses objects that contain data and code;

•	 it follows a language style that is easy for human beings 

to interpret; and

•	 it allows information to be updated according to time.

Python’s popularity first peaked around 2003, and ever since then it 

has retained its position as a highly acclaimed programming language. Its 

popularity can mainly be attributed to its features, which are listed in the 

next section.
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�Key Python Features
Python was mainly developed to improve code readability and to reduce 

the amount of coding required to program a machine. Apart from this, 

it has a variety of unique features and provisions that make our overall 

programming experience smooth and easy.

These features include the following:

•	 Open source license: This means it is free to 

download, modify, and redistribute under an OSI-

approved license.

•	 Readability: It has a very easy-to-read syntax.

•	 Cross-platform working: It can run on any operating 

system, including Linux, Windows, Mac OS, etc.

•	 Extensive standard library: It consists of many useful 

libraries that can be used for a variety of applications.

•	 Easily integrated: It can easily be integrated with other 

languages like C, C++, Java, etc.

•	 Supports object-oriented and procedure-oriented 
programming: It primarily follows OOP, but it also 

makes room for POP, which is one of the most unique 

features of Python.

•	 Allows GUI programming: It has several libraries that 

allow users to develop graphic user interfaces quickly 

and easily.

•	 Large community: It has a huge community of coders, 

making it easier to make improvements, get help, solve 

issues, and develop new ideas.
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Fun Fact T he community of Python users who support the 
language, and, more specifically, those who are experts in coding 
with help of Python, are known as Pythonistas.

�Python’s Competitors
As mentioned earlier, there are multitudes of other programming 

languages that are used in various fields and for various purposes. In 

the area of machine learning for artificial intelligence, some common 

programming languages that people use, other than Python, include the 

following:

•	 R: It is mainly used for visual representations, as graphs 

can be created very easily with just a few lines of code. 

It thus allows for exploratory data analysis.

•	 Java: It is one of the oldest languages in the world of 

computer programming. It is great in terms of speed, 

reliability, and security.

•	 Scala: Its runtime is extremely fast, and it can be used 

to develop complex pieces of code. It is moderately 

easy for a beginner to pick up.

•	 Julia: It is high level, scalable, dynamic, and quick. It 

also provides some powerful native tools that can be 

implemented for machine learning.

•	 C++: It has a high speed, a sufficient set of libraries 

and tools, and is most efficient when it comes to using 

statistical techniques.
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�Python as a Preferred Language for Machine 
Learning
Machine learning can become quite a complex process, especially 

when the data is massive, the model is extensive, and the objective is 

challenging. That said, it requires a language that simplifies its process and 

makes it less tedious for the developer.

When compared to other programming languages, Python stands out 

for the following reasons:

•	 It works seamlessly across different platforms. Thus, 

developers need not worry about using only one 

platform. They can easily distribute and use the Python 

code. A lot of other languages don’t offer this feature, or 

are limited in their cross-platform abilities, and hence 

need to be used only on a single platform.

•	 It consists of a vast list of machine learning–specific 

libraries, utilities, and frameworks, which can be used 

by developers to make their programming faster and 

easier. Other languages don’t have such an extensive 

selection.

•	 Its code is simple, readable, and concise. It is, therefore, 

easier for a developer to focus their attention on the 

machine learning problem at hand, rather than having 

to worry too much about writing the correct code and 

following the correct syntax, which most of the other 

languages require.
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•	 It has a large community of developers who frequently 

use the language. This makes it less of a task for us 

to ask questions about any issues that arise while 

programming. It also allows Python developers to come 

together to discuss tips and ideas with one another. 

Other programming languages either have a smaller 

community or no community at all.

�Python’s Machine Learning Libraries
First, we will understand what a library is.

A library in the programming world is a collection of methods and 

functions that allow a user to perform various tasks without having to write 

the necessary code for it.

We use libraries to save time while we program. Python has a huge 

array of open source machine learning libraries, including, but not limited 

to, the following:

•	 Pandas: The Pandas library provides users with the 

ability to handle large datasets. It provides tools for 

reading and writing data, cleaning and altering data, 

and so on.

•	 Numpy: The Numpy, or Numerical Python, library 

provides users with a powerful array of computing 

abilities. It tackles the problem of slow mathematical 

computations and allows users to perform huge 

calculations with the help of multi-dimensional arrays.

•	 Scipy: The Scipy library is used for scientific and 

technical computations. It works on Numpy’s multi-

dimensional arrays.
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•	 Scikit-Learn: The Scikit-Learn library consists of 

various features and methods that have specially 

been made to assist users in their machine learning 

requirements. It makes use of the Numpy library, 

specifically when it comes to array operations.

•	 TensorFlow: The TensorFlow library is an increasingly 

popular library that provides users with a large set of 

flexible and accessible tools for machine learning. You 

will be learning more about TensorFlow later on in this 

book.

With the help of these libraries, we can develop our machine learning 

program quickly and easily.

�Other Applications of Python
Due to the diverse functionality of Python as a programming language, its 

utility is not limited to artificial intelligence alone. It is used for a variety 

of other applications as well. Some of these applications include the 

following:

•	 Web development

•	 Data analysis

•	 Educational purposes

•	 Software testing

•	 Computer graphics

•	 Game development

•	 Scientific and numeric computing

•	 Desktop GUIs
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�Installing Python
As mentioned before, Python is free to download. There are several ways to 

download and install Python onto your system, based on your OS and your 

preference.

One method of installing Python is from the official Python website, 

which provides an installer that users can download and run on their 

computers.

Another method of installing Python is with the help of package 

installers like Homebrew that make installation more convenient.

In this book, we will learn a very easy way to do it—with the help of an 

application known as Anaconda.

Anaconda is an open source distribution of the Python and R 

programming languages. It is free for us to download and use on our system.

It was created to make our machine learning process easier, mainly by 

making package installation simpler. It has an easy-to-use interface and 

comes with Python pre-installed on it. It also makes our task of installing 

the Jupyter Notebook application much easier, as we will see in the next 

chapter.

Let us now learn how Anaconda can be installed onto our systems. 

�Installing Python with Anaconda
Before we begin, we must have a look at the system requirements given in 

the Anaconda documentation, just to make sure that our system will be 

able to support Anaconda without any trouble. To download Anaconda, 

we need to follow these steps:
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	 1.	 Go to the Anaconda website (https://www.

anaconda.com/distribution/) and find the 

download option for your OS, as shown in Figure 5-1.

	 2.	 Since Anaconda comes pre-installed with Python, it 

gives you the option to select the version of Python 

that you want to install when you download the 

Anaconda application. Select the latest Python 

version available and click on the Download button. 

Here, I have selected Python 3.7 for my Mac OS.

	 3.	 Once Anaconda is downloaded, locate the file on 

the computer and double-click on it to begin the 

installation.

	 4.	 Once the installation is completed, you will be able 

to see the Anaconda Navigator icon in your list of 

applications. Click on it.

Figure 5-1.  Choosing the right version to download and install
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	 5.	 You will see a screen showing you a couple of useful 

programming-related applications. You will also see 

that, by default, a base (root) environment has been 

created that contains Python and its libraries.

	 6.	 It is always good to create a new working 

environment, other than the base. To do so, click on 

the Create button. In the dialog box that appears, 

you can give your new environment a name, select 

your Python version, and then click the Create 

button, as shown in Figure 5-2.

	 7.	 Once your environment is created, you need to 

select it as your working environment. Once you 

do that, you will be able to see a list of installed and 

uninstalled packages by clicking on “Environments,” 

then choosing the “Installed” or “Not installed” 

option accordingly from the drop-down menu at the 

Figure 5-2.  Creating a new Python environment
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top, as shown in Figure 5-3 and Figure 5-4. You can 

even search for a specific package by entering its 

name.

Figure 5-3.  List of installed packages

Figure 5-4.  List of uninstalled packages
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	 8.	 You can now begin installing some of the necessary 

libraries that you will need for machine learning, 

including Pandas, NumPy, SciPy, Scikit-learn, 

TensorFlow, Matplotlib, and Seaborn. Search for 

these libraries, select them by clicking on the check 

box to their left, then click the Apply button, as 

shown in Figure 5-5.

There you have it! Your Python environment is now downloaded, 

installed, and ready for use!

�Python Interpreters
One of the key features of Python is that it is an interpreted language, 

while other programming languages like Java, C, and C++ are all compiled 

languages.

Let’s understand the difference between the two.

Figure 5-5.  List of selected packages to be installed
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A compiled language takes the entire program and translates it from 

machine code to source code in order to obtain the required output. These 

languages therefore have a faster runtime, but are not cross-platform.

An interpreted language executes the code directly by reading each 

line one by one and then running it to obtain the required output. These 

languages therefore have a slightly slower runtime, but are cross-platform.

There are newer technologies being developed to tackle this issue 

of slow runtime, like the “just-in-time” compiler, which compiles the 

program during its execution instead of before it.

Now, when we say that Python is an interpreted language, it does not 

mean that it is not compiled at all. Compilation happens for a Python 

program, but it is not explicitly shown to the programmer. The code is 

compiled into bytecode, which is a low-level form of the original code. This 

bytecode is then executed by the Python virtual machine.

In this way, Python runs the code directly, is not restricted to a 

particular platform, and is not too slow with regard to execution speed.

There are several types of interpreters that Python can use to run a 

program. Let’s have a brief look some of the most common ones:

	 1.	 CPython: This is the default implementation of 

Python. It is most popularly used as it is most 

compatible with Python packages and with 

extension modules that are written in C. It is 

the reference implementation of Python, which 

means that all the different versions of Python are 

implemented in C.

	 2.	 Jython (formerly JPython): This is an 

implementation of Python that is written in Java and 

Python. It translates Python code into Java bytecode, 

and then executes it on a Java virtual machine. This 

allows Python code to run on Java platforms. It also 

allows users to use a Java class like a Python module.
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	 3.	 IronPython: This is an implementation of Python that 

was developed for Microsoft’s .NET framework. It uses 

Python libraries as well as .NET framework libraries. 

It also provides an interactive console and dynamic 

compilation support for improved performance.

	 4.	 PyPy: This Python implementation was written 

in RPython, which is a subset of the Python 

programming language. It uses a just-in-time 

compiler, which gives it a quick runtime speed. It 

is meant to provide maximum compatibility with 

CPython, while strengthening performance.

	 5.	 Stackless Python: This implementation was, like 

CPython, written with Python and C. It gets its 

name from the fact that it does not depend on 

the C call for its stack. It uses the C stack between 

function calls, and then clears it out. It makes use 

of microthreads, and supports task serialization, 

tasklets, communication channels, and more.

	 6.	 MicroPython: This is a small, open source Python 

implementation that was written in C and is 

compatible with Python 3. It allows us to write 

simple Python code instead of complex low-level 

language code, and it can be run on microcontroller 

hardware. It has a range of modules from Python’s 

standard library, as well as some extra libraries that 

are specific to MicroPython, which can be used to 

program the board.

Now that we know what interpreters are, we need to know how to 

interact with them. One of the most generic ways to do so is by using 

something known as a Python shell.
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�The Python Shell
In computing, a shell acts as a medium between the user and the interpreter. 

With the help of the shell, the programmer can input some code and receive 

the necessary output. The shell waits for the user to enter a command or a 

line of code. It then executes this code and displays the obtained result.

It is called a shell because it is the outermost layer of the operating 

system. It can provide users with either a command-line interface (CLI) 

or a graphical user interface (GUI), depending on what is required for that 

particular operation.

The Python shell, or the Python interactive shell, also called the Python 

REPL shell, takes a Python command and executes it, displaying the 

required outcome. The term REPL is an acronym for the systematic flow of 

events that occurs during this process, as follows:

•	 Read: It reads or takes in an input from the user.

•	 Eval: It evaluates the input.

•	 Print: It prints or displays the output to the user.

•	 Loop: It loops or repeats the process.

This shell interface is meant to be simple, easy, and great for beginners 

to get the hang of programming on a computer.

�Opening the Python Shell
This task is much easier than it sounds. It is basically a two-step process 

that can be accomplished in a flash.

	 1.	 First, you need to open the command-line interface 

of your operating system. For example, on Mac 

OS and Linux, it would be the Terminal, while on 

Windows, it would be the command prompt. See 

Figure 5-6.
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	 2.	 Next, in this interface, type the following:

python

Hit the Enter key. This should give the output shown in Figure 5-7.

Figure 5-6.  The Mac OS Terminal
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We are now in the Python REPL shell! This is one of the simplest 

interfaces that we can use to program with Python. This Python shell can 

now accept input as a Python command and execute it to display the 

necessary output. Some simple examples are shown in Figure 5-8, where 

I have performed some single-digit arithmetic operations (addition and 

subtraction).

Figure 5-7.  The Python shell
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We can use the help() command to explore different features within 

Python. To exit the Help window and return to the Python shell, press q 

and then Enter. See Figure 5-9.

Figure 5-8.  Arithmetic operations in the Python shell
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Figure 5-9.  The Help window in Python

�Exiting the Python Shell
Once we are done programming with Python, we will need to exit the 

Python programming environment by closing the shell. We can do this by 

typing in the following command:

exit()

This exits the Python interactive shell and returns back to the main 

command-line interface of the OS. The reason we use the brackets at the 

end of the command is because we are calling the exit function in order to 

exit from the shell. See Figure 5-10.
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The keyboard shortcut for this step is ctrl+D on Mac OS and Linux, 

and ctrl+Z+Enter on Windows.

�Summary
In this chapter, we covered the fundamentals of Python as a programming 

language. We read about its origins, its characteristics, its importance in 

the machine learning world, and its competitors. We skimmed through 

some of its machine learning libraries, as well as its other non-ML 

applications, just to get a better idea of what it can do. We then learned 

how to install it onto our systems and set it up. We also had a look at some 

common Python interpreters that are used for programming, and we had a 

peek at the Python REPL shell.

Figure 5-10.  Exiting the Python shell
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We must realize, however, that in order to use Python effectively for 

machine learning programming, the Python shell will not be of much use, 

since it is mainly meant for short commands and simple coding.

We will thus need to set up a lucrative working environment in which 

we can enter and execute our Python code. Some popular applications 

that we can use for this are the Jupyter Notebook, PyCharm, Spyder, 

and IDLE. In this book, we will be using Jupyter Notebook for all our 

programming purposes.

Jupyter Notebook has begun to gain more and more popularity 

due to its simplicity, ease of use, and accessibility. It makes large-scale 

programming and code distribution so much easier and quicker. It is also 

very easy to install, especially with the help of Anaconda.

That said, let’s take a look at what Jupyter Notebook is and how it 

makes our coding experience better, especially when it comes to Python 

programming for data science and machine learning.

�Quick Links
Learn more about Python: https://www.python.

org/about/

Python vs. Other Programming Languages: 

https://www.python.org/doc/essays/

comparisons/

Python Documentation: https://www.python.org/doc/

Python Events: https://www.python.org/events/

python-events

Learn more about Anaconda: anaconda.com/why-

anaconda/
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PART II

The Jupyter Notebook
In Part II, we will get ourselves acquainted with the Jupyter Notebook 

application. We will go through its setup, take a look at its features, and get 

hands-on experience in using this interface for Python programming.

What to expect from this part:

•	 An introduction to the Jupyter Notebook application

•	 How to install and set up Jupyter Notebook

•	 Explore the features of Jupyter Notebook

•	 Learn how to use Jupyter Notebook

•	 Use Python programs with the help of Jupyter 

Notebook
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CHAPTER 6

Introduction to 
Jupyter Notebook
In the previous chapter, we learned about Python. We also had a glance 

at how we can use Python in its REPL shell to write our code. This Python 

shell, however, is not the most recommended tool to use when it comes to 

massive machine learning programming. This is why we have developed 

applications like Jupyter Notebook, which aid in such programming 

requirements.

Jupyter Notebook is the brainchild of Project Jupyter, which is a non-

profit organization founded by Fernando Pérez. It was created with the 

objective of developing open source software and providing services 

that allow multiple languages to interact with one another for effective 

computing.

Jupyter Notebook is an open source web-based application that 

allows users to create, edit, run, and share their code with ease. This 

application gets its name from the main languages that it supports: Julia, 

Python, and R.

To fully appreciate Jupyter Notebook, let us first take a look at what a 

“notebook” is with regard to programming.

https://doi.org/10.1007/978-1-4842-5967-2_6#DOI


92

�Understanding the Notebook Interface
A computational notebook or a notebook interface, or quite simply 

a notebook, is used for literate programming, where we add a 

comprehensive explanation along with our program. It is a virtual 

notebook; i.e., it has a notebook-style GUI that provides a word processing 

software’s functionality, along with a kernel and a shell.

�A Brief History of the Notebook
The notebook interface was first introduced around 1988, when Wolfram 

Mathematica 1.0 was released on the Macintosh. This system allowed 

users to create and edit notebook interfaces through its front-end GUI.

Then came Maple, released for Macintosh with version 4.3. It provided 

a GUI in the style of a notebook, which became a highly acclaimed 

interface for programming.

As the notebook began to grow in demand, people soon began to adapt 

notebook-styled kernels and backends for other programming languages, 

such as Python, MATLAB, SQL, and so on. Thus, the computational 

notebook became quite popular among coders.

�Features of a Notebook
The generic features of a notebook are as follows:

	 1.	 It allows us to add cells of code, which make 

debugging and programming easier.

	 2.	 It can be used to display visual representations of 

data.

	 3.	 It allows us to add text in between each cell, which 

makes it easier for the coder to explain the function 

of each line of code.
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	 4.	 Items within a notebook can easily be rearranged for 

narrative purposes and better readability.

	 5.	 It can be used as a tool for live presentations.

	 6.	 It can be used to create interactive reports on 

collected data and analytical results.

�Commonly Used Notebooks
Some commonly used open-source notebooks include the following:

	 1.	 Jupyter Notebook

	 2.	 IPython

	 3.	 Apache Spark Notebook

	 4.	 Apache Zeppelin

	 5.	 JupyterLab

	 6.	 R Markdown

�An Overview of Jupyter Notebook
As mentioned before, Jupyter Notebook is a web-based application 

developed by Project Jupyter. Its aim is to enable users to, as stated on 

the official website, “create and share documents that contain live code, 

equations, visualizations and narrative text.”

Jupyter Notebook was developed in 2014 as a spin-off of the original 

IPython, which is a command shell used to carry out interactive coding. 

With the release of Jupyter Notebook, IPython found itself competing with 

it, to an extent. It still remained as a kernel for Jupyter and as a shell for 

Python, but everything else came under Jupyter Notebook.
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Fun Fact  Jupyter Notebook was originally known as IPython 
Notebook, since it was conceived from IPython.

The official website of Project Jupyter states that Jupyter Notebook 

can support over forty programming languages. Each project is stored as a 

notebook consisting of several cells of code, graphs, texts, and equations, 

which can be altered easily. These notebooks can also be conveniently 

distributed to others.

�Features of Jupyter Notebook
Apart from the generic characteristics of a computational notebook, 

Jupyter Notebook has the following key features:

	 1.	 Each Jupyter Notebook is a JSON document. JSON is a 

language-independent data format that is derived from 

JavaScript. It uses human-readable text to transmit data 

containing arrays or attribute–value pairs.

	 2.	 Each Jupyter Notebook is usually saved with a 

.ipynb extension.

	 3.	 Jupyter Notebook is similar in style to other 

interfaces that originated years before it, including 

Maple and Mathematica (from the 1980s) and 

SageMath (from the 2000s).

	 4.	 Jupyter Notebook was released under the modified 

BSD license, which provides users with minimum 

limitations in the usage and distribution of the 

software. 

	 5.	 Jupyter Notebooks can easily be shared with others 

through email, Dropbox, GitHub, and the Jupyter 

Notebook Viewer.
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	 6.	 Jupyter Notebook is, at present, completely free to 

use, and it is intended to remain free for anyone to 

use at any time.

�Advantages of Jupyter Notebook
Jupyter Notebook has, since its release, proved to be a powerful tool for 

programming, especially for high-level programmers. It has a smooth 

and easy-to-use interface, which is great for those who are new to 

programming. It also allows users to create new files and folders directly 

on their system for easy storage of their code.

Let’s take a better look at what makes Jupyter Notebook stand out as a 

programming application. It has the following features:

•	 It makes the overall programming experience better.

•	 It is an interactive application.

•	 It is open source; i.e., it is free to download, install, and use.

•	 It allows users to add notes, comments, and headings 

in between lines of code in a notebook in the markdown 

format, which is especially useful when sharing code 

with others.

•	 It is convenient to edit code as each line of code can be 

added to a separate cell, and this cell can be deleted, 

modified, replaced, and so on.

•	 It is very easy to share and distribute code with others.

•	 Each notebook can be converted into different file 

formats, like HTML, markdown, PDF, and so on.

Jupyter Notebook is in great demand now, but it did arrive pretty late 

into the programming world. Before its conception, there were other 

applications such as text editors and IDEs that coders used, and that are 

still in use even today.

Chapter 6  Introduction to Jupyter Notebook



96

�Text Editors and IDEs
Earlier, programmers would type all of their code into a text editor like 

Windows Notepad. These text editors allowed them to type in their code 

and then install extra plugins that added bonus features. After that, they 

had to transfer all the code to the command prompt to run it.

Later, IDEs were created to give programmers an environment that 

provided them with all the features they would need to develop their code. 

They would not need to write and run their code in separate applications, 

or install new plugins each time. They could easily create, edit, debug, and 

run their code in a single workspace.

Let us first take a look at the classic text editors to see how they were 

used to program.

�Getting Acquainted with Text Editors
Over the years, programmers have used all kinds of tools and 

environments for their code, including the very basic text editor.

The text editor is a computer program that is used, as its name 

suggests, to edit plain text.

They are usually provided by default with operating systems. They 

allow users to edit files like documentations and source code. Some 

examples of text editors are the TextEdit application on Mac OS, Vim on 

Linux, and the widely known Notepad on Windows.

Text editors are great for developers who are new to the field and 

who are still familiarizing themselves with coding. They are also readily 

available on the system. This is why most people prefer to start out with 

text editors.

However, with the increasing complexity of advanced programs, and 

especially with the introduction of artificial intelligence and machine 

learning, programmers felt the need to create workspaces that would make 

the process much easier. Hence, they came up with something called an IDE.
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�Getting Acquainted with the IDE
An IDE, or integrated development environment, allows us to write, edit, 

test, and debug our code by providing us with the necessary tools and 

services.

For example, with the help of an IDE, we can manage resources, debug 

errors, and complete our code very easily. Most IDEs are limited to a 

single programming language, but some allow users to work with multiple 

languages.

�Features of an IDE
Most IDEs come with the following features:

	 1.	 Text editor: It allows users to write and edit code, 

and also provides syntax highlighting according to 

the language being used.

	 2.	 Auto-completion of code: It identifies the next 

possible input provided by the coder, and inserts 

that component accordingly. This reduces the 

chance of errors, and also significantly decreases the 

amount of time spent programming.

	 3.	 Debugging tools: They seek out any errors in the 

code and proceed to rectify them, thus saving time 

and making the programmer’s work easier.

	 4.	 Compilers: They are used to translate the code 

into a format that the machine can understand and 

process.
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�Benefits of an IDE
Programming with an IDE is considered advantageous for the following 

reasons:

	 1.	 It is a single environment in which the programmer 

can access all the required tools and utilities.

	 2.	 It can auto-complete code and debug errors on 

its own, reducing the effort and time spent by the 

programmer.

	 3.	 It manages the syntax on its own as well, which is 

especially useful when it comes to indentations.

	 4.	 The code can be reverted, if needed, without any 

major inconvenience.

	 5.	 Project collaboration becomes easier.

�Some Popular IDEs
Three of the most commonly used IDEs are the following:

•	 IDLE: IDLE, or the Integrated Development and 

Learning Environment, is automatically installed along 

with Python. It is lightweight and simple, making it easy 

to learn. It provides tools that are similar to those in 

text editors. It allows cross-platform usage and multi-

window text editing. It is a good start for those who are 

new to IDEs.

•	 Spyder: Spyder, or the Scientific Python Development 

Environment, is an open source IDE. It is great for 

anyone who is a beginner to IDEs. It has the features 

of a text editor, but with a GUI, making it easy for 
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people to transition from the simple programming 

application to this more advanced one. It even allows 

the installation of extra plugins for added benefit. It 

is also visually similar to RStudio, allowing people to 

switch easily from R to Python.

•	 Pycharm: Pycharm is a professional Python IDE. It 

was made by JetBrain. It provides code editors, error 

highlighting, and a debugger, all with a GUI. It can also 

be personalized by allowing the user to change its color, 

theme, and so on. It integrates Numpy and Matplotlib, 

making it easy to work with graphs and array viewers.

Note  Although IDEs have always been used to describe a working 
environment that allows a programmer to write and edit code, debug 
errors, and so on, the main definition of an IDE is slowly being altered 
as a result of the introduction of other tools such as Jupyter Notebook 
that also allow users to easily develop code.

�IDE vs. Text Editor
Text editors have always been very simple to use. Even beginners to the 

programming world could easily use them to code, without having to 

worry about learning to use a new application. They required less effort in 

terms of understanding the programming interface.

IDEs, on the other hand, require a little bit of familiarization before 

a programmer can feel comfortable enough to make full use of its 

features. However, they have extra capabilities and tools that simplify the 

programming experience.
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The conclusion: It all depends on our need and preference. If we don’t 

want to spend time learning how to use an application, and would rather 

make use of a simple interface for our code, we can use a text editor. And, if 

we want to invest a little time in learning how to use an application, which 

will then help us later with the rest of our programming requirements, we 

can use an IDE.

Now that we know what text editors and IDEs are, we can see how the 

notebook interface, and specifically Jupyter Notebook, is more beneficial 

to programmers compared to similar applications.

�Jupyter Notebook vs. Other Programming 
Applications
Why would we want to choose Jupyter Notebook over other programming 

applications? Well, let’s have a look at the following differences between 

Jupyter Notebook and other such applications:

•	 Tools: Jupyter Notebook provides users with tools and 

utilities that make the programming experience much 

faster and easier. Compared to other IDEs, Jupyter 

Notebook has more services available.

•	 Graphical User Interface: The GUI of Jupyter 

Notebook varies because it is meant to look like a 

notebook and not like a general IDE. This makes it 

easier on the eye and quite simple to understand.

•	 Usability: It is easier to use Jupyter Notebook 

compared to other IDEs because of its easily accessible 

features.
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•	 Learning: Compared to other IDEs, Jupyter Notebook 

may take a little time to grasp, just because of how 

different it is from what we are used to. However, once 

we do learn it, it becomes extremely convenient to use.

•	 Web-based: Jupyter Notebook runs on the browser, 

unlike other IDEs, which work on the local system.

•	 Visualization: Although some IDEs provide users 

with a great platform for visualization, other IDEs 

don’t. Jupyter Notebook does, though, thus making it 

easier for a programmer to use plots and other such 

visualization techniques.

In this way, Jupyter Notebook outdoes its competitors in the 

programming world.

Jupyter Notebook sounds like a blast, doesn’t it? Well, it is! Once we 

get the hang of it, we can thoroughly enjoy programming with it. Let’s now 

learn how to set up our Jupyter Notebook environment on our machine.

�Installing Jupyter Notebook
As mentioned in the previous chapter, one advantage of using Anaconda 

is that the installation of Jupyter Notebook becomes quite an easy task to 

achieve. There is no hassle of navigating through various applications just 

to download it. All we need to do is the following:

	 1.	 Open the Anaconda Navigator.

	 2.	 Select the working environment, as shown in 

Figure 6-1.

Chapter 6  Introduction to Jupyter Notebook



102

	 3.	 Click on the option to install Jupyter Notebook.

Et voila! Jupyter Notebook is now ready for use. In the next few 

sections, we will explore its interface so as to get ourselves comfortable 

with the layout and working of the application.

Note  When installing, we must make sure that we install Jupyter 
Notebook and not JupyterLab. There’s a difference!

�Launching Jupyter Notebook
The first thing we will need to do is select our working environment. Here, 

I have chosen myenv.

Figure 6-1.  Installing Jupyter Notebook
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Next, we need to open up the Jupyter Notebook window. We can do 

this by opening the Anaconda application and then clicking on “Launch” 

under the Jupyter Notebook icon.

Since Jupyter Notebook is a web-based application, it opens in our 

browser. The first window that opens is a dashboard, which gives us a 

glimpse of our work so far, including files, folders, and notebooks. It will 

look like Figure 6-2.

The URL bar contains a link that represents the notebook server, and 

indicates that it is running from our local machine. The link will appear 

like this this - http://localhost:8888/tree.

The rest of the dashboard is quite self-explanatory, but we will run 

through it anyway. Here’s a breakdown of some of the basic but most 

important features of the Jupyter Notebook interface, as shown in Figure 6-3:

Figure 6-2.   The Jupyter Notebook Dashboard

Figure 6-3.  Some important features of the Jupyter Notebook 
dashboard
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	 1.	 The Logout button allows us to log out of our Jupyter 

Notebook session.

	 2.	 The Upload button allows us to upload a readily 

available Jupyter Notebook that we can use.

	 3.	 The New button allows us to create a new Python 

notebook, file, folder, or terminal.

	 4.	 The File tab shows us an ordered list of all our files 

and folders.

	 5.	 The Running tab shows us any terminals or 

notebooks that are open and running.

	 6.	 The Name button allows us to toggle the way our list 

of files and folders is displayed; i.e., in ascending or 

descending alphabetical order.

	 7.	 We can even select the “Last Modified” option to 

display our items based on the last time that they 

were modified.

	 8.	 The little check-box option with a “0” beside it 

allows us to select all folders, notebooks, files, and 

items that are open and running. We can even select 

all of the items at once.

	 9.	 In our list of items, the ones with a folder icon next 

to them represent the folders that we have on our 

computer, as shown in Figure 6-4.

Chapter 6  Introduction to Jupyter Notebook



105

	 10.	 Once we create Jupyter notebooks and text files, 

they will begin to appear on the dashboard. The 

items with a page icon next to them represent the 

documents that have a .txt extension, and the ones 

with a notebook icon next to them represent the 

Jupyter notebooks, which have a .ipynb extension, 

as shown in Figure 6-5.

Now that we are aware of the general features of the Jupyter Notebook 

interface, let’s see what happens when we select an item from our list by 

clicking on the check box next to it. When we select an item, we will have a 

number of available options, as shown in Figure 6-6:

Figure 6-4.  List of folders

Figure 6-6.  Controls available for each item

Figure 6-5.  A notebook and a file
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	 1.	 We can Rename the item.

	 2.	 We can Duplicate the item to make another copy of it.

	 3.	 We can Move the item to another location.

	 4.	 We can Download the item.

	 5.	 We can View the item, which will open in a new tab 

in our browser window.

	 6.	 We can Edit the item.

	 7.	 We can Delete the item by clicking on the red trash 

can symbol.

	 8.	 We can Shutdown a notebook that is open and 

running, as shown in Figure 6-7.

	 9.	 We can even select several items at the same time 

and perform any available action on them.

Let us now create a brand new Jupyter notebook and explore all the 

features within it.

Figure 6-7.  Option to shut a notebook down
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�Inside a Jupyter Notebook
To create a new Jupyter Notebook, all we have to do is click on ‘New’ on 

the dashboard, and then select the kernel of our choice. Here, we select the 

‘Python 3’ kernel, as shown in Figure 6-8.

We will get a new tab with a notebook user interface (UI) that looks like 

Figure 6-9.

Figure 6-9.  A new notebook

Figure 6-8.  Opening a new Jupyter Notebook with a Python 3 Kernel
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The notebook UI is quite self-explanatory as well. However, just like 

before, we will have a quick run-through of all its main features.

	 1.	 At the top, the title of the notebook is displayed. It 

starts out as “Untitled,” and when we click on it, we 

can change the name based on our preference, as 

shown in Figure 6-10.

	 2.	 Next to the title of our notebook, we will see “Last 

Checkpoint,” with a timing. That indicates the last 

time the notebook was auto-saved.

	 3.	 Below this is the menu bar, containing a series of 

drop-down menus, as shown in Figure 6-11.

	 4.	 After this comes the tool bar, containing tools that 

we will need as we use Jupyter Notebook, as shown 

in Figure 6-12. We can hover over each tool icon to 

know what it does.

Figure 6-10.  Renaming a notebook

Figure 6-11.  The Menu Bar
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	 5.	 Finally, we have the area where we type in all of our 

input and view our output, as shown in Figure 6-13.

You might have noticed that the menu bar contains the Cell menu 

and the Kernel menu. These are two terms that are very important in the 

Jupyter Notebook environment.

�Cell
A cell is nothing but the box in which we type all our input, which can either 

be code, regular text, or headings.

When we first open our Jupyter notebook, we will see that the first 

cell is a “Code” cell. This cell allows us to enter the commands, functions, 

variables, constants, and all other inputs that are a part of our program. 

When we execute this cell, the output, if any, is displayed beneath it.

Let’s try typing the following in the “Code” cell:

print("Hello World!")

Figure 6-12.  The Tool Bar

Figure 6-13.  This is where the different kinds of cells appear, 
allowing us to enter our input
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Now, we can execute the cell by clicking on the Run button from 
the tool bar. We can also just use the keyboard shortcut, which is 
Shift+Return. We will find that the code line is executed and the output is 
printed out right below the cell, as shown in Figure 6-14.

The second type of cell is a “Markdown” cell. Markdown is a formatting 
syntax that is used to style plain text. Thus, this cell is used to enter any text 
that is not a part of the code. This could be explanations or notes that are 
needed in between the code, either to make it easier for us as we program, 
or to make it more comprehensive for someone else who is going through 
it. Once we type in all the necessary text and execute the cell, it becomes a 
regular text box that is visible in our program.

Let’s try this text in the “Markdown” cell:

Hello World!

Our Markdown cell will display an output as shown in Figure 6-15.

The third type of cell is the “Heading” cell. This cell is used to add 
headings throughout our program. This allows us to make our entire 
program look much more organized, especially if we have more than one 

program running within the same notebook.

Figure 6-15.  Entering regular text

Figure 6-14.  Executing a code cell
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Let’s try typing this in the “Heading” cell:

My Program

The heading will appear as shown in Figure 6-16.

We can also just open a regular Markdown cell and type the following in - 

# My Program

The ‘#’ symbol is used to convert the sentence into a heading. The 

number of times we use the symbol indicates the level of the heading. For 

example, a single hash is used to obtain a level one heading.

We can change the type of cell that we want to use by selecting it from 

the list of options in the Tool Bar. 

�Kernel
A kernel runs the code that is contained within the Jupyter notebook.

A kernel is not limited to a single cell, but rather to the entire notebook. 

When we execute code in a selected cell, the code runs within the kernel 

and sends any output back to the cell to be displayed.

There are kernels for more than a hundred languages, including 

Python, C, R, and Java. When we create a new notebook from the Jupyter 

Notebook dashboard, we are basically selecting our kernel by choosing the 

Python version that we desire to use. In this case, when we select “Python 3,”  

we are telling our system to open a Python 3 kernel.

Figure 6-16.  Entering a heading
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Now that we have some idea of what a cell and a kernel are, let’s come 

back to the menu bar and explore what the Cell and Kernel drop-down 

menus allow us to do.

�The Cell Drop-Down Menu
Figure 6-17 shows the different options available within the Cell  

drop-down menu.

	 1.	 Run Cells: This executes the code that is in the 

selected cell or cells, and gives an output, if any.

	 2.	 Run Cells and Select Below: This executes the 

selected cells and then selects the cell below them.

	 3.	 Run Cells and Insert Below: This executes the 

selected cells and then inserts an extra cell just 

below them.

	 4.	 Run All: This executes all the cells in the notebook.

	 5.	 Run All Above: This runs all the cells that are above 

the selected cell.

Figure 6-17.  Cell drop-down menu
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	 6.	 Run All Below: This runs all the cells that are below 

the selected cell.

	 7.	 Cell Type: This allows us to select the type of cell 

you require.

	 8.	 Current Outputs: This gives us the option to either 

Toggle, Toggle Scrolling, or Clear the selected 

output.

	 9.	 All Output: This gives us the option to either Toggle, 

Toggle Scrolling, or Clear all the output in the 

notebook.

�The Kernel Drop-Down Menu
Figure 6-18 shows the different options available within the Cell  

drop-down menu.

	 1.	 Interrupt: This interrupts the running process as 

the code is being executed.

	 2.	 Restart: This restarts the entire kernel, retaining the 

previously obtained outputs.

	 3.	 Restart and Clear Output: This restarts the entire 

kernel, clearing the previously obtained outputs.

Figure 6-18.  Kernel drop-down menu
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	 4.	 Restart and Run All: This restarts the entire kernel 

and once again proceeds to execute all the cells.

	 5.	 Reconnect: This allows the kernel to reconnect.

	 6.	 Shutdown: This shuts the active kernel down.

	 7.	 Change Kernel: This allows us to change our kernel 

to any version or language that we want.

There you have it! This was an overview of some of the most basic but 

important features of Jupyter Notebook.

Now that you are familiar with the working environment of Jupyter 

Notebook, let’s go ahead and practice some Python programming with the 

help of Jupyter Notebook.

�Additional Information
The Jupyter Project is a very interesting initiative, especially for data 

scientists and machine learning enthusiasts who need a reliable and 

convenient space to work on their projects. Let’s have a look at two more 

very useful features that come under Project Jupyter, and that can be useful 

to some of us in our machine learning journey.

�JupyterHub
JupyterHub allows multiple users to share resources in order to program. 

Each user has their own workspace where they can code without worrying 

about installations and maintenance.
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It can run either on a user’s system or on the cloud. It is customizable, 

flexible, portable, and scalable, making it a great interface for programmers. 

It also has its own community for users to discuss and contribute.

�Jupyter nbviewer
Jupyter nbviewer is a free and publicly available instance of nbviewer, 

which is a web-based application that allows us to view a notebook as a 

static HTML web page. It also provides us with a link that we can use to 

share the notebook with others.

Apart from viewing a single notebook, we can also view notebook 

collections. These notebooks can even be converted into other formats.

�Voila
Voila is used to convert a Jupyter notebook into a stand-alone web 

application that can be shared with others. It consists of an interactive 

dashboard that is customizable and allows users to view the notebook in a 

secure environment.

It can work in any Jupyter kernel, independent of the type of 

programming language used. It is a great choice for non-technical users 

who desire to view the results of the notebook without having to see the 

code cells or execute the code.
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�Google Colaboratory
Google’s Colaboratory or Colab is a free online Jupyter environment.  

It runs in the cloud and stores its notebooks to the user’s Google Drive.

As of October 2019, Colab mainly supports Python 2 and Python 3 

kernels.

However, it is also possible for Colab to support R, Swift, and Julia.

�Keyboard Shortcuts
First of all, you need to know that there are two modes of working with 

Jupyter Notebook, as follows:

•	 Command Mode, which allows us to navigate around 

the notebook with our arrow keys.

•	 Edit Mode, which allows us to edit the selected cell.

Table 6-1 lists some of the most useful keyboard shortcuts that we can 

use while working with Jupyter Notebook.
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Table 6-1.  Keyboard Shortcuts for Jupyter Notebook

Mac Windows and Linux Action

Cmd + Shift + P Ctrl + Shift + P Access keyboard shortcuts

Shift + Enter Shift + Enter Executes the code

Esc Esc Enters Command Mode when in Edit 

Mode

Enter Enter Enters Edit Mode when in Command 

Mode

A A Inserts a new cell above the selected 

cell while in Command Mode

B B Inserts a new cell below the selected 

cell while in Command Mode

D + D (Press D 

twice)

D + D (Press D twice) Deletes the selected cell while in 

Command Mode

Shift + Tab Shift + Tab Displays the available documentation 

for the item entered into the cell

Ctrl + Shift + - Ctrl + Shift + - Splits the selected cell into two at the 

point where the cursor rests while in 

Edit Mode

F F Finds and replaces code while in 

Command Mode

Shift + J / Shift + 

Down

Shift + J / Shift + Down Selects the chosen cell as well the 

cell below it

Shift + K / Shift 

+ Up

Shift + K / Shift + Up Selects the chosen cell as well as the 

one above it

Shift + M Shift + M Merges multiple cells
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�Summary
In this chapter, we have gained an understanding of the importance of 

the notebook interface, when compared to IDEs and text editors. We 

then explored the Jupyter Notebook application, its features, and its user 

interface.

The great thing about Jupyter Notebook is that it looks quite complex 

and technical, but in reality it is not too difficult to use, once you get 

the hang of it. Overall, it is a great tool to use for all your programming 

purposes. Not just that, it can also be used to display your results and 

present your output in a manner that is not too hard on the eyes.

In the next few chapters, we will begin some actual programming 

with the help of Jupyter Notebook. We will get a feel of how we can use 

the notebook interface effectively to enter, run, and debug our code. And, 

finally, once we have gained some familiarity with Jupyter Notebook, we will 

proceed with using the interface to develop our machine learning models.

�Quick Links
Learn more about Project Jupyter: https://

jupyter.org/about

Jupyter Documentation: https://jupyter.org/

documentation

Try Jupyter: https://jupyter.org/try

JupyterHub: https://jupyter.org/hub

Jupyter Notebook Viewer: https://nbviewer.

jupyter.org/

Google Colab: https://colab.research.google.

com/notebooks/intro.ipynb
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CHAPTER 7

Python Programming 
in Jupyter Notebook
In an earlier chapter, we learned all about the Python programming 

language. We studied its advantages, compared it with some other 

languages, and understood how its features make it stand out as a 

dependable language for machine learning.

In the previous chapter, we got acquainted with Jupyter Notebook, and 

we saw why it can be considered a suitable environment for building and 

executing programs that can train our machines. We also had a look at the 

layout of the Jupyter Notebook application.

In this chapter, we will get hands-on experience in combining Python 

with the Jupyter Notebook interface to effectively create, check, and run 

our machine learning models. Before we begin with the hardcore coding, 

however, we will start with some small-scale programs, just to refresh our 

generic programming knowledge and to understand the coding syntax of 

Python.

https://doi.org/10.1007/978-1-4842-5967-2_7#DOI
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�Opening a New Notebook
First things first, we need to open up a new Jupyter notebook with a Python 

3 kernel, as shown in Figure 7-1.

�Naming the Notebook
We can give our notebook a name, like “My First Jupyter Notebook” or 

“Python Programming with Jupyter Notebook” (Figure 7-2)

Figure 7-1.  A new Jupyter notebook

Figure 7-2.  Naming a new notebook
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�Adding a Heading Cell
Now, let’s give our first program a title. We will call it “Hello World.” Do you 

remember how to convert a cell into a “Heading” cell?

That’s right. We select the option from the tool bar. After that, we click 

on the cell and enter the title, as shown in Figure 7-3.

The hash symbol (#) indicates that it is a level-one title.

Let’s execute the cell. We can do this by clicking on the “Run” icon in 

the tool bar. A faster way of doing this is by using the keyboard shortcut 

Shift + Enter.

Now that our cell is executed, we will see the heading appear, as shown 

in Figure 7-4.

�Printing the Output of a Code Cell
The next cell automatically appears as a “Code” cell. Let’s repeat the same 

code we used in the previous chapter by typing in the following:

print("Hello World")

Now when we execute the cell, we will get an output like this:

Hello World

Figure 7-3.  Entering a program’s title within a “Heading” cell

Figure 7-4.  Executing the “Heading” cell to add the title to the 
notebook
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�Taking an Input from a User in a “Code” 
Cell
Let’s see what happens when we take an input from a user. Type in the 

following code:

a = input("Enter your name: ")

Now when we execute the cell, we get the output shown in Figure 7-5.

As you can see, the text that we have entered is displayed, followed 

by a text box where we can type in our input. This text box can accept any 

character that is typed in from the keyboard. The asterisk (*) at the left of 

the cell indicates that the program is still executing that cell. In this case, 

it is waiting for a command from the user before it can proceed. Once the 

user presses the Enter key, the program will continue executing.

After we finish typing and press the Enter key, the output will be 

displayed, as shown in Figure 7-6.

Figure 7-5.  Waiting to accept an input from the user

Figure 7-6.  Displaying the accepted input
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�Calling a Variable
When we accepted an input from the user, we stored it under the variable 

a. In the next cell, we will call this variable and display its output by typing 

the following:

a

Now when we execute the cell, we will get the value of a displayed, as 

shown in Figure 7-7.

�Arithmetic Operations
Let’s see what happens when we have some output to display, and also 

some input to take. We can explore this with the help of some simple 

arithmetic operations. Let’s try the following code:

b=2

c=int(input("Enter a number: "))

sum=b+c

print(sum)

We will get a text box for the input, first, as shown in Figure 7-8.

Figure 7-7.  Displaying the value of a variable
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Once we provide the required value, the code performs the necessary 

calculation and displays the output, as shown in Figure 7-9.

We need to put int right before the input command to tell the 

program that we are expecting an integer from the user, which must then 

be used for the given arithmetic calculation. If we skip this step, there will 

be an error, because Python always inputs values as strings (including 

numbers and symbols), which prevents numbers from directly being used 

for the calculation.

�Creating a Function
Now, let’s create a function and see how that works. Type in the following 

code:

Figure 7-8.  Accepting a number from the user

Figure 7-9.  Displaying the input as well as the result of the calculation
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def prod(a):

    b=int(input("Enter a value: "))

    c=5

    p=a*b*c

    return(p)

When we execute this cell, we find that there is no output. There is, 

however, something happening behind the scenes. In the next cell, type 

this:

prod(6)

Remember, we can put any number that we want within the brackets. 

When we execute this cell, we will get a text box asking for a value. We can 

enter a value of our choice. When we press Enter, we will get the output 

shown in Figure 7-10.

Figure 7-10.  Performing a calculation within a function, then calling 
the function to display the result
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�Creating Lists
A list is an ordered set of items. We can create a list by entering all the 

required values between a pair of square brackets, as follows:

list = [2, 4, 6, 8, 10]

list

When we execute this, we will get an output as shown in Figure 7-11.

�Creating Dictionaries
A dictionary is an unordered set of items. We can create a dictionary by 

entering our values between a pair of curly brackets, as follows:

age = {"Henry":30, "Chiara":19, "Benedict":23, "Dominic":15, 

"Gertrude":24}

age

When we execute this cell, we will get an output as shown in 

Figure 7-12.

Figure 7-11.  Creating a list
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�Creating Loops
In programming, a loop is a set of instructions or steps that is continuously 

repeated until a condition is satisfied.

�While Loop
Try typing in this code:

count=0

while count<=5:

    count=count+1

    print("Love your neighbour as yourself")

When we execute this cell, we will get an output as shown in Figure 7-13.

Figure 7-12.  Creating a dictionary

Figure 7-13.  Running a while loop
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�For Loop
Type this code into the code cell:

string=("Rejoice")

for i in string:

    print(i)

When we execute this cell, we will get an output as shown in Figure 7-14.

�Nested Loops
Nested loops consist of two or more loops used within a single code block.

Enter the following code into the “Code” cell:

i=0

s=("Have a beautiful day")

while i<=3:

    i=i+1

Figure 7-14.  Running a for loop
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    for a in s:

        print(a)

When we execute this code, we will get an output as shown in Figure 7-15.

Of course, for all practical purposes, I have not shown the full output. 

But it is easy to understand how the output will look, since the same 

sentence is printed out four times consecutively.

Figure 7-15.  Running nested loops
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�Adding Conditional Statements
In programming, a conditional statement is used to execute a particular 

step based on whether a specified condition is true or false.

�If Statement
Type in this code:

x=3*2

if x%2 == 0:

    print("It is even")

When we run this code, we will get an output as shown in Figure 7-16.

The % symbol is used to find the remainder after division. So, on 

dividing by 2, if the remainder is 0, it indicates that the number is an even 

number.

Try changing the value of x to a number that is not divisible by 2, and 

see what happens.

Figure 7-16.  Executing an if condition
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�If-Else Statement
We can use the same code as before, but with a minor addition to include 

the else condition, as follows:

x=3*3

if x%2== 0:

    print("It is even")

else:

    print("It is odd")

When we run this code, we will get an output as shown in Figure 7-17.

In this case, we add an extra condition, where we tell the program what 

to do if the first condition is not satisfied.

�Elif Statement
This time we will use a slightly different code, as follows:

x=7

if x%2==0:

    print("It divisible by 2")

Figure 7-17.  Executing an if-else condition
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elif x%3==0:

    print("It is divisible by 3")

else:

    print("It is neither divisible by 2 nor 3")

When we run this program, we will get an output as shown in Figure 7-18.

Thus, elif allows us to supply our code with more than one condition. 

We can put elif several times throughout our code, depending on the 

number of conditions we have.

�Adding Notes Within the Program
Sometimes, we may want to add some extra notes in between lines in our 

program, either for our own reference or to make sure that people who 

have access to it understand what they are going through. This is not the 

same as adding a regular “Markdown” cell. This is different because we are 

adding our notes within a “Code” cell. To do this, we need to add a hash (#) 

symbol before the code line. Here is an example:

# This is a comment line in between my code.

Figure 7-18.  Executing an elif condition
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This line will appear in green italics in the “Code” cell, as shown in 

Figure 7-19.

�Deleting a Cell
Sometimes, we may have cells that are unnecessary. We can easily get rid 

of them by clicking on the scissor icon.

We can also do so by selecting the “Delete Cells” option from the “Edit” 

drop-down menu in the menu bar, as shown in Figure 7-20.

�Adding a New Cell
We can even add a new cell beneath another cell by selecting that cell and 

then clicking on the “Insert Cell Below” icon or the plus sign.

Figure 7-20.  Deleting cells using the drop-down menu option

Figure 7-19.  Adding a comment line within the code
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The other way to do this is by selecting the “Insert Cell Below” option 

from the “Insert” drop-down menu in the menu bar. If we want to add a 

cell above the selected cell, we can either click on the “Insert Cell Below” 

icon followed by the “Move Cell Up” icon, or directly click on the “Insert 

Cell Above” option from the “Insert” drop-down menu, as shown in 

Figure 7-21.

�Copying a Cell
We can also copy the contents of a cell and paste them in another cell with 

the help of the “Copy Selected Cells” and “Paste Selected Cells” options in 

the tool bar.

We can also do this by selecting the required options from the menu 

bar, as shown in Figure 7-22.

Figure 7-21.  Adding a new cell using the drop-down menu option

Figure 7-22.  Copying a cell using the drop-down menu option
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�Moving a Cell
We may even want to switch the cells around, depending on our 

preference. We can shift cells up or down accordingly, using the up and 

down arrow icons in the tool bar.

We can also do this by going to the menu bar, clicking on “Edit,” and 

then selecting either “Move Cell Up” or “Move Cell Down,” as shown in 

Figure 7-23.

�Merging Cells
Let us now go back to the previous few pieces of code, where we define a 

variable a as the input from a user, and then in the next “Code” cell print 

out the value of this variable.

Figure 7-23.  Moving a cell using the drop-down menu option
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Instead of carrying this out in two separate cells, we can just put this 

together in a single cell. The great thing is, we don’t even have to retype or 

delete anything. All we need to do is go to the menu bar, select “Edit,” then 

click on “Merge Cell Below,” as shown in Figure 7-24.

Let’s try this on one of our previous bits of code. Consider the code in 

which we take an input from a user, store it as input a, and then display 

the value of a. This was done in two separate cells of code. However, when 

we merge the cells, it puts the code together into a single cell, as shown in 

Figure 7-25.

Figure 7-24.  Merging cells using the drop-down menu option
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�Splitting a Cell
We can even split a cell into two parts using the “Split Cell” option from the 

“Edit” drop-down menu in the menu bar, as shown in Figure 7-26.

First, click on the line from which point we want to split the code. Then 

click on the “Split Cell” option. The code will split, as shown in Figure 7-27.

Figure 7-26.  Splitting a cell using the drop-down menu option

Figure 7-25.  Two cells merged into a single cell
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�Running All Cells
Instead of executing each cell one by one, we can run them all at once. To 

do this, all we need to do is click on the “Run All” option from the “Cell” 

drop-down menu in the menu bar, as shown in Figure 7-28. This executes 

the entire notebook.

Figure 7-28.  Running all the cells in the notebook using the drop-
down menu option

Figure 7-27.  Splitting a cell using the drop-down menu option
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�Clearing the Current Output
To clear the output of the selected cell, click on the “Cell” option from the 

menu bar. Then, hover your cursor over “Current Outputs” in the drop-down 

menu, and in the sub-menu click on “Clear,” as shown in Figure 7-29.

�Clearing All Outputs
To clear all the outputs in the notebook, click on the “Cell” option from 

the menu bar. Then, just like before, hover the cursor over the “All Output” 

option from the drop-down menu, and in the sub-menu click on “Clear,” as 

shown in Figure 7-30.

Figure 7-29.  Clearing the current output using the drop-down menu 
option
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�Restarting the Kernel
Sometimes, our program requires us to restart the kernel in order to get the 

desired output. It is similar to refreshing a page on our web browser. When 

we restart a kernel, we lose all the data stored in the variables.

To do this, first click on “Kernel” from the menu bar, then click on 

“Restart,” as shown in Figure 7-31.

Figure 7-30.  Clearing all outputs using the drop-down menu option
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Here, we find that the kernel restarts, but the previous outputs of each 

cell execution are still displayed. If we don’t want the outputs to remain, 

we will need to restart the kernel and also clear the outputs. We have the 

option of doing this in a single step, rather than in two steps.

�Restarting the Kernel and Clearing 
the Output
To simultaneously restart the kernel and clear the output, click on “Kernel” 

from the menu bar, followed by “Restart & Clear Output,” as shown in 

Figure 7-32.

Figure 7-31.  Restarting the kernel using the drop-down menu option
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�Interrupting the Kernel
I have found this feature to be extremely useful, mainly for machine 

learning. Sometimes, while our machine learning program is running, 

we may suddenly decide that we want to stop the process and start over. 

This could be due to an error that we suddenly find in the code, a decision 

to change certain variables, and so on. In such cases, all we need to do is 

interrupt the kernel by clicking on the “Kernel” option in the menu bar, 

followed by “Interrupt” in the drop-down menu, as shown in Figure 7-33.

Figure 7-32.  Restarting the kernel and clearing the output using the 
drop-down menu option
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�The Help Menu
If we need any extra help regarding the general Jupyter Notebook UI, the 
keyboard shortcuts that we can use, and some of the machine learning 
libraries that are frequently used with Python, we can access the Help 
menu from the menu bar. A drop-down menu will open, as shown in 

Figure 7-34.

Figure 7-33.  Interrupting the kernel using the option from the  
drop-down menu
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From this menu, we can select the option that we need help with. 

As you can see, the help options include topics related to the Jupyter 

Notebook application, as well as to Python libraries.

�Summary
Well, there we go! We are now a lot more familiar with the user interface 

of Jupyter Notebook. We have also had a run-through of some important 

concepts related to programming, and we have seen how to code basic 

functions, like lists and loops, using Python.

Figure 7-34.  Accessing the Help menu
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With that under our belts, it’s finally time to get the ball rolling as 

we step into Python’s machine learning libraries. We have already read 

about how Python has a vast selection of libraries that can be called into 

a program. Moving ahead, we will be focusing our attention on one such 

library that has become increasingly sought after. Over the years, it has 

gained the approval of several developers due to its unique features, which 

make the process of machine learning much more effortless. This library 

is none other than TensorFlow, which, in the coming chapters, we will be 

using to program our deep learning models.
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PART III

The TensorFlow 
Library
In Part III, we will dive into the TensorFlow library. Starting with an 

introduction to this widely used deep learning package, we will make our 

way towards its initial version that has been in use since its release. We will 

then get into TensorFlow 2.0, its distinguishing features, and a quick guide 

on how to migrate code from the previous version to the new version. 

The final chapter will lead us through a couple of deep learning programs 

with which we will use TensorFlow in Python and the Jupyter Notebook 

interface. This will help us to put it into practice all that we have learned 

throughout the book.

What to expect from this part:

•	 An introduction to the TensorFlow Library so far

•	 Program with the TensorFlow Library (version 1.0)

•	 An introduction to TensorFlow 2.0

•	 Migrating from TensorFlow 1.0 to TensorFlow 2.0

•	 Using TensorFlow to develop machine learning models 

(focusing on deep learning neural networks)
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CHAPTER 8

The Tensorflow 
Machine Learning 
Library
To recap what was stated in an earlier chapter, Python has a huge variety of 

machine learning libraries that can be implemented in a program. These 

libraries serve various purposes—mathematical, scientific, graphical, 

and so on. Depending on the nature and the need of the program we are 

developing, we can call these libraries into our program.

We know that machine learning involves data science techniques (like 

cleaning, manipulating, and visualizing data), mathematical techniques, 

and statistical techniques. Keeping this in mind, some of the most 

commonly used Python libraries for machine learning include Matplotlib, 

Seaborn, Pandas, Scikit-learn, Numpy, Scipy, and so on.

These libraries have been tried and tested and were found to be 

easy to work with. They have thus gained popularity over the years, with 

numerous applications in various machine learning programs.

With the growing enthusiasm toward deep learning, there arose a 

need to create libraries that could assist with building multi-layered 

neural networks. Thus, libraries like Theano, Pytorch, Caffe, Keras, and 

TensorFlow were released. These libraries enable programmers to develop 

large, multi-layered neural networks with less time and effort, and more 

efficiency.

https://doi.org/10.1007/978-1-4842-5967-2_8#DOI


150

In this chapter, we will explore the TensorFlow library to get an 

overview of what it is, why it was developed, and how it has proved useful 

in the realm of artificial intelligence. We will then see how to install it on 

our system.

�TensorFlow at a Glance
TensorFlow was developed by the Google Brain Team as a step up from 

the original DistBelief system, which was a closed-sourced software used 

for machine learning with deep neural networks. According to the official 

website:

“TensorFlow is an end-to-end open source platform for 
machine learning. It has a comprehensive, flexible ecosystem 
of tools, libraries and community resources that lets research-
ers push the state-of-the-art in ML and developers easily build 
and deploy ML-powered applications.”

In other words, TensorFlow is an open source library that employs 

machine learning and deep learning techniques for large-scale 

computations. It involves the use of “tensors,” which help in making our 

calculations simpler. We will delve deeper into that in the next section.

Fun Fact  TensorFlow was not, in actuality, meant for public access. 
It was only meant to be used by the Google Brain Team for their own 
research. It was, however, finally released to the public on November 
9, 2015.

TensorFlow was released under Apache License 2.0. This means that 

people can use, modify, and distribute the software, as well as its modified 

versions, without worrying about royalties. All it requires for redistributions 

is an attribution notice. This is why the Apache License 2.0 is known as a 
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copyleft license. It has minimum conditions for software redistribution 

and allows the software to be accessed, modified, and distributed, all for a 

common good.

TensorFlow consists of two main components, as follows:

	 1.	 Tensors, in which the data is held

	 2.	 Flow, referring to the computational graph

Let’s see how the two work together to create large-scale deep learning 

models.

�Tensors
Tensors can be defined as multi-dimensional arrays.

We might remember learning about dimensions in school.  

A dimension is roughly defined as the minimum number of coordinates 

that are needed to describe a particular point. In simpler words, it is the 

measure of the amount of space that an object occupies. For example,  

a line has only one dimension (length), while a square has two dimensions 

(length and width). In mathematics, we can have a number or a set of 

numbers arranged in various dimensions.

In mathematics and physics, we have learned about scalars, vectors, 

and matrices, which are three constructs that describe the arrangement of 

some values.

A single number is known as a scalar. More than one number arranged 

in a one-dimensional list (array) is known as a vector. More than one 

number arranged in a two-dimensional manner is known as a matrix. 

Visually, we can represent these three concepts as shown in Figure 8-1.
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Technically speaking, scalars, vectors, and matrices are all tensors.

•	 Scalars are zero-dimensional tensors.

•	 Vectors are one-dimensional tensors.

•	 Matrices are two-dimensional tensors.

However, it is a universally accepted practice that when we have more 

than one number arranged in three or more dimensions, we refer to such 

an arrangement as a tensor.

We can picture a tensor in the shape of a Rubik’s cube, as shown in 

Figure 8-2.

Figure 8-1.  A scalar, vector, and matrix

Figure 8-2.  A tensor
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From the picture, we can see that tensors have a great capacity for data 

storage, as they have n dimensions. The n here is used as a proxy for the 

actual number of dimensions, where n>=3.

To better understand the relationship between scalars, vectors, 

matrices, and tensors, we can depict them as shown in Figure 8-3.

Figure 8-3.  Notational representations of a scalar, vector, matrix, 
and tensor

As you can see, the four data structures are quite similar to each other 

notation-wise as well, differing with respect to their capacity.

Although tensors usually hold numbers, they can also hold text and 

strings. Tensors are capable of containing large amounts of data in a 

compact form. This makes it easier to handle the computation of our 

program, even when we have enormous amounts of data that we need to 

use to train our machine.

�Flow
The input of the program is taken in the form of tensors, which are then 

executed in distributed mode with the help of computational graphs. 

These graphs are used to set the flow of the entire program.

A computational graph is a flowchart of operations and functions that 

are needed to be carried out on the input tensor. The tensor enters on one 

side, goes through a list of operations, then comes out the other side as the 

output of the code.
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This is how TensorFlow got its name—the input tensor follows a 

systematic flow, thus producing the necessary output.

Now that we know what TensorFlow is, let’s examine how it is useful to 

machine learning developers.

�Importance of TensorFlow
TensorFlow was mainly used for mathematical purposes. It was soon 

implemented in machine learning due to its high-powered computational 

capabilities. It made the construction of neural networks a less 

cumbersome task to achieve.

As the earlier definition states, TensorFlow is extremely flexible in 

operability and works well for machine learning algorithms across a range 

of platforms, like Mac OS, Windows, Linux, and Android. It was written 

in three languages, Python, C, and CUDA (Compute Unified Device 

Architecture), and although it works best with Python, it supports other 

languages like Java and C++.

It is also consistently revamped to keep it up to date with the 

constantly changing needs of programmers. Its large community is a major 

plus point, as this allows people who use TensorFlow to work together, 

help each other, and use the library effectively.

�Applications of TensorFlow
Despite being relatively new, TensorFlow has already served its purpose in 

several areas of artificial intelligence, and continues to do so. Some of its 

applications include the following:

•	 Image recognition: Identifying objects or features from 

a photo or a video

•	 Image classification: Identifying and segregating 

objects from each other
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•	 Text summarization: Condensing content into a few 

comprehensible words

•	 Sentiment analysis: Identifying whether a statement is 

positive, negative, or neutral

•	 Speech recognition: Recognizing and translating the 

spoken word into text

•	 Other deep learning projects

With TensorFlow, deep learning using neural networks becomes a 

piece of cake. Hence, most of the library’s applications are focused on this 

area of artificial intelligence.

�TensorFlow’s Competitors
TensorFlow, although quite unique in its structure and usage, does have 

some competitors in the machine learning world. These are alternative 

frameworks that people use to perform the same functions that 

TensorFlow does. Some of these libraries include the following:

•	 Theano

•	 OpenCV

•	 PyTorch

•	 Apache Spark

•	 Keras

All these libraries, although varying in functionality and capability, have 

similar uses in machine learning. The Keras library can be used on top of 

TensorFlow to develop even more effective deep learning models. We will 

have the opportunity to work with Keras and TensorFlow later on in this book.

Let’s now have a look at some of the advantages and disadvantages of 

using TensorFlow.
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�Advantages and Disadvantages 
of TensorFlow
Now that we are quite acquainted with this machine learning library, let 

us have a look at some of its advantages, as well as its disadvantages, when 

implementing it in our programs.

�Advantages
Considering the number of competitors that TensorFlow has, one might 

wonder what the big deal is and why a lot of people regard it as their 

preferred deep learning library. There’s a reason it stands out compared 

to the other libraries. We will now have a look at some of its important 

features in order to understand how it is advantageous for us to use it in 

our code.

	 1.	 It is open source. This means that it is free to access, 

download, use, and distribute, as per the Apache 

2.0 License under which it was released. Users are 

not charged for implementing this library in their 

projects.

	 2.	 It is constantly modified. This makes room for 

improvements in its source code and ensures 

stability in its performance.

	 3.	 It can be used on multiple platforms, making it 

easily accessible to developers.

	 4.	 It follows the manner of abstraction, which means 

that all the developer needs to take care of is the 

overall working of the program. TensorFlow handles 

everything else on its own.
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	 5.	 It makes data visualization much easier by providing 

programmers with something called a TensorBoard. 

This is a web-based interactive dashboard that 

allows us to view and observe our graphs.

	 6.	 It has several APIs in various programming 

languages that enable a developer to create and 

execute programs and graphs with ease. An example 

of this is the Keras API, which, as mentioned earlier, 

we will be using later on in this book.

	 7.	 It has a large community of enthusiastic developers, 

which allows TensorFlow users to connect, learn, 

share, and help one another.

Now, I know, this all sounds great. It almost sounds like TensorFlow 

is one of the greatest inventions of all mankind, doesn’t it? Yet, it is 

quite astonishing to know that while TensorFlow gained a worldwide 

fan following, it also began to gain a considerable number of “haters”—

developers who were mildly or greatly disappointed with the library due to 

some of its drawbacks.

�Disadvantages
Nothing is perfect, and no matter how flawless this library might seem, it 

does have certain areas where it either fails or proves to be insufficient for 

developers. Let’s take a look at some of the disadvantages of TensorFlow 

that were discovered by its users over the years.

	 1.	 It followed “lazy” execution. This means that the 

developer had to first initialize variables, and then 

run separate sessions for the program. This proved 

to be tedious for developers who had to keep 

opening and running sessions for even the smallest 

sections of their programs.
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	 2.	 The TensorFlow framework was such that codes 

that had a very minimalistic structure still required 

plenty of extra lines of code.

	 3.	 The error messages were not always accurate and 

were sometimes faulty or incorrect, which made 

debugging quite a task.

	 4.	 It was slightly more complex than necessary, which 

made it confusing for beginners to learn, especially 

if they were new to computer programming in 

general.

Most programmers managed to work around these challenges in order 

to accomplish their machine learning goals, which is why TensorFlow 

retained a very large user base. However, the TensorFlow team soon 

understood that there was a lot of room for improvement in the library,  

in order to make it even more convenient for programmers to use.

Thus, they came up with a newer, better version—TensorFlow 2.0. It 

was first released as a test version, which was available for users to install, 

work with, and provide feedback about. Later, in 2019, TensorFlow 2.0 was 

officially released for people to use.

That said, let us first get a little familiar with TensorFlow 1.0, and then 

we’ll dive into its upgraded version. We’ll start by learning how to install 

the TensorFlow 1.0 library onto our systems.

�Installing TensorFlow
One of the easiest methods of installing TensorFlow is by employing the 

“pip install” method. It is usually recommended because of how quick and 

simple it is.

Before getting into this method, let us first have a look at what “pip” is.
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�Getting to Know “pip”
In Python, “pip” is nothing but a standard package manager. It is used for 

the installation and handling of packages and software in Python, from the 

default source of Python packages—the Python Package Index (PyPI).

It was first released in 2008 under the name pyinstall, as an alternative 

to easy_install. Later, it was shortened to pip, which is supposed to be an 

acronym for “Pip Installs Packages.”

�The “pip install” Method
The general command to install a package using pip is as follows:

pip install <package name>

That’s it! Just a single line. Once a package is installed using pip,  

it remains in the working environment until we uninstall it. This means 

that we don’t have to keep reinstalling the package every time we want to 

use it within our program.

�Other Useful pip Commands
Apart from installing packages, there are several commands under pip that 

we can call and execute in order to manage our packages conveniently. 

Some of these include the following:

	 1.	 pip list: This provides us with a list of all installed 

packages.

	 2.	 pip show <package name>: This provides us with 

information about the specified package.

	 3.	 pip list—outdates: This shows a list of all outdated 

packages on our system.
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	 4.	 pip search <package name>: This searches for the 

specified package.

	 5.	 pip uninstall <package name>: This uninstalls a 

package from the environment.

�Using “pip install” to Install TensorFlow
The great thing about this method is that we don’t need to do much. All we 

need to do is type in a single line of code, and everything else happens on 

its own.

To install TensorFlow into our environment, follow these steps:

	 1.	 After opening Anaconda, make sure that you are in 

the correct environment, and not in the base (root) 

environment. For example, here I have chosen to 

work in myenv, as shown in Figure 8-4.

Figure 8-4.  Entering the correct environment
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	 2.	 Open the Jupyter Notebook application by 

launching it from within the working environment, 

as shown in Figure 8-5.

Figure 8-5.  Launching Jupyter Notebook

Figure 8-6.  Opening a Python 3 Jupyter Notebook

	 3.	 From the dashboard, click on “New,” and then select 

the option to open a new Python 3 Notebook, as 

shown in Figure 8-6.
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	 4.	 In the code cell that appears, type in the following 

line of code to instruct the computer to begin 

installing TensorFlow using pip:

pip install tensorflow

The installation will begin. You will see a box appear 

beneath the code cell, displaying a plethora of 

content, representing all that is happening behind 

the scenes of our single-line code. An asterisk will 

appear at the left corner of the code cell, indicating 

that the code is still running. It will disappear once 

the process is completed, as shown in Figure 8-7.

	 5.	 When the installation is complete, we can check and 

see if TensorFlow is properly installed or not. To do 

this, first restart the kernel. Then, type in the following:

import tensorflow as tf

This small piece of code is used to call the TensorFlow library into 

Jupyter Notebook. The tf is assigned as a type of nickname for the library 

(we will see more of this in the next chapter when we practice coding with 

TensorFlow).

Figure 8-7.  Installing TensorFlow
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The cell should be executed without any errors, as shown in Figure 8-8.

If your notebook doesn’t show any indication of an error when running 

the command, then congratulations! You have successfully installed 

TensorFlow in your Python environment.

TensorFlow also has a feature that provides users with all the necessary 

tools required to visualize data easily. This is known as the TensorBoard.

�TensorBoard
The TensorBoard is, according to the official TensorFlow website, 

“TensorFlow’s visualization toolkit.”

It is an interface that can be used to obtain a clearer understanding 

of our data and our deep learning models with the help of visualization 

techniques.

Some of its applications include the following:

	 1.	 Visualizing parameters and metrics

	 2.	 Visualizing the computational graph

	 3.	 Viewing plots and graphs

	 4.	 Displaying media items like pictures, text, or audio

When you run TensorBoard, it will look something like Figure 8-9.

Figure 8-8.  TensorFlow installed on the system
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Figure 8-9 shows the TensorBoard panel for a very simple graph. 

The dashboard tabs at the top of the screen vary, depending on the 

components of the model. Here, we have only a single dashboard; i.e.,  

the Graph dashboard. Now, have a look at Figure 8-10.

Figure 8-9.  A sample of the TensorBoard

Figure 8-10.  TensorBoard’s various tabs

This navigation bar shows three other tabs: Scalars, Distributions, and 

Histograms. Each of these leads to the corresponding dashboard view, 

which can be used to study and improve the deep learning model.

�Exploring the TensorBoard Dashboards
There are several different types of dashboards that we can access and use 

for their respective purposes. Let’s have a look at them.
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Scalars:

This shows us the changes occurring to metrics like 

loss and accuracy during each epoch of the training. 

It also allows us to keep track of the different scalar 

values. Being able to compare these metrics allows 

us to figure out any issues present within the model 

in order to improve it.

Graphs:

This shows us the computational graph of our 

model. By inspecting the graphical representation 

of our model, we can easily check its accuracy and 

reliability. This makes it easier to debug the code or 

make changes in its structure, thus improving the 

quality of the model.

Distributions:

This shows us how the inputs are distributed 

throughout the training of a model. It helps us to keep 

a visual check on the values of the weights and biases 

as they change over time. These parameters are 

extremely important when training a model, so being 

able to get a clear understanding of them is necessary.

Histograms:

Just like the Distributions dashboard, this helps 

us to keep a visual check on the values of weights 

and biases, but from a three-dimensional point of 

view, with the help of histograms. These histograms 

represent the changing data corresponding to the 

timeline of the training, enabling us to decide if any 

alterations need to be made to the model.
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Projector:

This is used to visualize high-dimensional 

word embeddings. Embedding consists of the 

representation of words in numerical form in such a 

way that similar words have similar encodings.

Text:

This is used to visualize text data. These strings can 

be in the form of hyperlinks, tables, and so on.

Image:

This is used to visualize image data. These images 

are saved as .png files.

Audio:

This is used to visualize audio data. It can embed 

audio in the form of playable audio widgets.

Thus, with the help of the TensorBoard, we can easily inspect, modify, 

and verify the working of our model.

TensorBoard has also added a new service that mainly aids 

collaborative projects, allowing people to share their machine learning 

projects for free. This service is called TensorBoard.dev.

�TensorBoard.dev
TensorBoard.dev allows users to host their projects online, keep track of 

them, and share them with others. It is free, readily available, and great 

for when different people from various parts of the world need to work 

together online.
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Its benefits include the following:

	 1.	 It enables users to share their programs on a  

large scale.

	 2.	 It allows users to ask for help in case of any bugs or 

errors that they are unable to solve on their own.

	 3.	 It gives people the ability to share insights and 

research with others.

	 4.	 It is interactive, which helps others to have a better 

understanding of the model.

	 5.	 There is no requirement for any installation 

procedures. All it needs is a sharable link.

	 6.	 Free storage is provided, with a current limit of 10 

million data points per user.

TensorBoard.dev thus makes it a less tedious task to seek help from 

others or contribute to other people’s machine learning projects.

Note A ll data that is uploaded to TensorBoard.dev is publicly 
visible to anyone and everyone. Thus, we need to be cautious while 
sharing information online. For example, personal information, 
user-specific authentication codes, and so on must be avoided or 
hidden before releasing the program.

�Summary
In this chapter, we have learned about TensorFlow, which is one of the top 

machine learning libraries used in Python. We have seen what it is, how it 

was developed, why it is important to a programmer, and how it works. We 

have recognized its competitors in the machine learning world, its special 

features that make it stand out, as well as its disadvantages so far.
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We then got introduced to pip, and we learned how to install 

TensorFlow with the help of this package managing tool and then verify 

that the installation was done without any errors.

We finally had a brief overview of the TensorBoard and its features, 

which comes in handy while visualizing our models. We also had a look at 

the TensorBoard.dev tool, which allows us to share our machine learning 

projects easily and free of cost.

Now that we have some idea of what we are going to be working with, 

we can begin exploring the various features of the TensorFlow library to 

see how we can use it within Python, in Jupyter Notebook, for our machine 

learning experiments.

�Additional Information
For more information on TensorFlow, check out the following information.

�TensorFlow Dev Summit
The TensorFlow Dev Summit is a huge event in which developers from 

across the globe come together to discuss, learn, and share with one 

another.

The developers spend time engaging in interactive demos, technical 

talks, conversations with the TensorFlow team, and discussions with the 

TensorFlow community.

It happens every year at a location specified on the official website. 

Those who cannot attend the on-site summit can view it online as it is live-

streamed.

The registration is free of charge. The attendee will have to bear any 

expenses (such as travel and stay) on their own.
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More details are available on the official TensorFlow website for 

anyone who is interested.

�TensorFlow Blogs
The TensorFlow team maintains a blog that provides users with useful 

updates, important changes, new additions, and so on. It also has a wide 

range of tutorials on various kinds of programs that machine learning 

enthusiasts can try on their own, or even use as a base reference to develop 

something new.

The articles that are published fall under the following main topics:

•	 TensorFlow Core: It deals with Python coding using 

Keras APIs. It is useful for beginners as well as experts.

•	 TensorFlow.js: It deals with coding using JavaScript.

•	 TensorFlow Lite: It deals with using machine learning 

models on IoT devices and mobile phones.

•	 TFX (TensorFlow Extended): It deals with moving 

models from the research phase to the production 

phase.

•	 Swift: It deals with developments and tutorials in Swift, 

which is a next-gen deep learning platform.

•	 Community: It deals with projects and experiments 

done by the TensorFlow community on a global scale.

Apart from their blogs, they also have a monthly newsletter that brings 

all the important announcements right to our inbox.
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�The TensorFlow Developer Certificate
The TensorFlow Developer Certificate is a great resume-boosting asset to 

have. It indicates the level proficiency a person has in the area of machine 

learning for artificial intelligence using TensorFlow.

When a person passes the assessment, they get an official certificate, as 

well as badges, which they can add to their professional social networking 

profiles. They are also added to TensorFlow’s Certificate Network. This 

increases visibility within the TensorFlow community.

It is a great way to improve our knowledge of the library, develop 

our machine learning skills, and establish ourselves as experts in the 

field. Considering that TensorFlow is a product of Google, obtaining this 

certificate can undoubtedly make a data scientist's resume stand out.

More information detailing the registration, cost, preparation, and so 

on can be found on the main website.

�Quick Links
Learn more about the TensorFlow library: https://

www.TensorFlow.org/learn

Take a look the TensorFlow Guide: https://www.

TensorFlow.org/guide/

Explore the models and datasets developed by the 

TensorFlow Community: https://www.TensorFlow.

org/resources/models-datasets

Check out the tools that are supported by 

TensorFlow: https://www.TensorFlow.org/

resources/tools
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Learn more about the libraries and extensions used 

in TensorFlow: https://www.TensorFlow.org/

resources/libraries-extensions

TensorBoard: https://www.TensorFlow.org/

tensorboard/get_started

TensorFlow Dev Summit: https://www.

TensorFlow.org/dev-summit

TensorFlow Developer Certificate: https://www.

tensorflow.org/certificate
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CHAPTER 9

Programming with 
Tensorflow
So far, we’ve learned how Python can be used for lucrative machine 

learning with the help of its numerous libraries, which were created for just 

that purpose. We also know that Jupyter Notebook is a solid development 

environment that can be used to build and run large programs.

In this chapter, we will take a look at how to program with the help 

of the TensorFlow library. This chapter deals with the initial TensorFlow 

release (TensorFlow 1.0), just to get us familiar with how the library used to 

work before the major 2.0 evolution.

Now, don’t fret about having to try out these programs on your own. 

If you are a beginner to TensorFlow, you can begin coding with the newer 

version, which you will learn how to do later on. The main aim of this 

chapter is to give you an idea of how the original TensorFlow differs from 

its upgrade in terms of programming ease.

We will do this with the help of four different programs that handle 

some important programming concepts. They are divided as follows:

Program 1: Hello World

This is the universally accepted introductory-type 

program that is used in the programming world. It 

will teach us how to program the machine to print a 

statement.

https://doi.org/10.1007/978-1-4842-5967-2_9#DOI
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Program 2: Constants, Variables, and 
Placeholders

This will help us understand the significance of 

constants, variables, and placeholders. It is further 

divided into two sub-sections:

Part A: Constants and Variables

Part B: Placeholders

Program 3: Operations in a Computational Graph

This will give us a better understanding of how 

the computational graph works in a TensorFlow 

program.

Program 4: Taking Inputs from a User for a 
Placeholder

This will show us how to take inputs from a user, 

store it in a placeholder, and then use the entered 

value to display some required result.

So, without further delay, let’s get right into it!

�Importing the TensorFlow Library
The first thing we need to do is import the TensorFlow library into Jupyter 

Notebook. The command is as follows:

import tensorflow as tf

The tf is kind of like a nickname given to the library. This is because, 

as we proceed further into the program, we will need to keep referring to 

the library while calling its various utilities, and typing in the full name 

again and again can be quite tedious. We can replace tf with any other 
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name as well, like joe or jane, but tf is the universally accepted name, so 

it is advisable to use that. This also makes it easier for other people who are 

going through the code to understand which library is being referred to.

Once we type this command into the “Code” cell and execute it, 

TensorFlow will be imported into Jupyter Notebook. We can now begin 

programming with it.

�Program 1: Hello World
We all know that the most basic program we can ever learn is the “Hello 

World” program. We have done this before with regular Python. Let us now 

do it using TensorFlow in Python.

The difference between using regular Python and using TensorFlow 

with Python is that the code structure varies, as you will see. In regular 

Python, the program would be as follows:

h = print("Hello World")

h

However, in TensorFlow it gets a little more complicated because of the 

internal structure of the library. Here is how the program would look:

h = tf.constant("Hello World")

sess = tf.Session()

sess.run(h)

In this case, we first create a TensorFlow constant h and assign it the 

value Hello World. The concept of constants will be touched upon in the 

next program, as mentioned before.

Next, we need to create a session, which can execute an entire 

graph or a part of the graph. Accordingly, it will allocate resources and 

accommodate values and results.
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We use sess as a shorter, easier version of the command tf.Session, 

because in larger programs we will need to keep running and closing 

several sessions, and it would be cumbersome to have to write the full 

command every time.

Now, when we execute the program, our output will appear as follows:

Hello World

If we don’t create a session and try to call the variable h to print the 

output, we will still obtain an output, but not quite in the way that we were 

hoping. Instead of giving us the value of h, it will show us that h is a tensor, 

and it will give us a quick summary of this tensor. And that’s about it. The 

output will be displayed as follows:

<tf.Tensor 'Const:0' shape=() dtype=string>

Now, as you’ve seen, we have used the tf.constant() function in 

our program, which defines h as a constant (rather than a variable or a 

placeholder). To understand the difference between constants, variables, 

and placeholders better, we will have a look at another program.

�Program 2: Constants, Variables, 
and Placeholders
Many of us have heard the terms constants, variables, and placeholders 

thrown around quite often, especially in the programming world. That 

is because they play a huge role in the development of a considerable 

number of programs.
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Before we begin using them to code, we need to know what exactly 

they are. They can generally be defined in the following ways:

Constants: These are values that never change.

Variables: These are values that can change 

throughout the program.

Placeholders: These are empty variables that are 

assigned values at a later stage in the program.

Table 9-1 lists a few ways in which they vary from one another.

Note W hen we say that the “type” of value does or does not need 
to be specified, we mean that we need not tell the program if the 
constant or variable is a string, a float, an integer, etc., while for a 
placeholder, we need to specify this.

Table 9-1.  The Differences Between Constants, Variables, and 

Placeholders

Constants Variables Placeholders

They have an initial value. They have an initial value. They do not have an 

initial value.

These values never change. These values can change. These values can change.

The type of value does not 

need to be specified.

The type of value does not 

need to be specified.

The type of value needs 

to be specified.

Example: a=tf.

constant(4)

Example: b=tf.

Variable(5)

Example: c=tf.

placeholder 

(tf.float32)
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Now that we know what constants, variables, and placeholders are, 

let’s go ahead and use them to create a program.

�Part A: Constants and Variables
In this part, we will only be incorporating variables and constants into our 

code. In Part B, we will learn how to use placeholders in our program. This 

is because the latter requires a little more explanation than the former two.

To understand the working of variables and constants in a program, 

we will do some simple arithmetic, as we’ve already seen, since it is 

an easy way to demonstrate these two features. It will also give us the 

opportunity to explore some of the arithmetic operations that are allowed 

in TensorFlow.

Start by defining the constant a, as follows:

a = tf.constant(5)

Next, define the variable b:

b = tf.Variable(6)

One very important thing to note here is that the ‘tf.constant()’ 

function is spelled entirely in lowercase, while the ‘tf.Variable()’ 

function is spelled with a capitalised ‘V’. This is a minute detail which can 

cause errors in our program if not followed correctly. 

Now that we have defined the constant and the variable, let’s perform 

some calculations on them! We will begin by finding the sum of the two 

values. To do so, we will use the following command:

sum = tf.add(a,b)

This is the same as typing the following:

sum = a + b

When we execute both, we will get the same output.
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Now, let’s say we want to change the value of our variable b. We can do 

so as follows:

new = tf.assign(b,4)

The tf.assign() function allows us to assign a new value to a variable. 

If we try to use this on a constant, it will give us an error. Here, within the 

brackets, we first enter the variable that we would like to change, followed 

by the value that we would like to change it to. We save this entire update 

under the variable new.

The reason for saving it under the variable new is that it cannot just get 

executed on its own. We need to run this code line within a session, and 

only then will it be executed. Thus, we store it under a variable and then 

call it within a session.

One very important point to be noted is that, when we are using 

variables, we need to initialize them before we can begin using them in 

sessions. This seems like an unnecessary step at first, but when we try to 

work with our variables without initializing them, our program gives us an 

error. We initialize the variables as follows:

init_op = tf.global_variables_initializer()

This init_op is a node, or an operation, that needs to be executed in 

order to initialize the variables. We can give it any name, of course, but for 

the sake of readability, we will use one of the conventional names for it.

Now that we have declared this, we will need to run this within a 

session. Let’s create our session, like we did in the previous section:

sess = tf.Session()

Let’s now run our init_op within the session, like so:

sess.run(init_op)
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Great! Our variables have been initialized. We can now proceed with 

the rest of our program. Let’s first find out the result of adding a and b:

print(sess.run(sum))

We add print before sess.run(sum) so that the program directly 

prints the result of the addition. This reduces the commands to find the 

sum of the two numbers and then print it into a single line of code.

We will get the sum of a and b, like this:

11

Now, let’s assign the new value to b and see how our output varies:

sess.run(new)

print(sess.run(sum))

You see the difference in output? The program has changed the value 

of b according to the instructions given to it, and has printed the new sum 

of a and b. It was possible to assign a new value to b since it was a variable, 

but it was not possible to do so for a, as it was a constant.

Constants and variables are of great use when we have plenty of data 

that needs to be received, declared, stored, and called later on in the code. 

As we get into hardcore machine learning, we will see how they are used in 

a program to effectively develop and train models.

Placeholders, as mentioned earlier, require a little more explanation as 

to how they are implemented into a piece of code. We will see this in the 

next part.
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�Part B: Placeholders
The main idea behind placeholders is to help programmers who need to 

train huge models with massive amounts of data. The reason is, all this 

data cannot be accessed at once (unless the programmer is willing to risk 

having their computer crash). Thus, with the help of placeholders, this 

data can be accessed little by little, until it is entirely processed.

Placeholders don’t need to be given an initial value, unlike constants 

and variables. All we need to do is specify what type of value we want to 

store in it.

Let’s try initializing our first placeholder:

p = tf.placeholder(tf.float32)

Here, we are specifying that the placeholder will be holding a value 

that is of type float. This prepares the program so that at runtime it will 

accept a floating point number into the placeholder.

Now, let’s enter our equation. This time, we will go for basic 

multiplication. We will enter the code as follows:

prod = p*2

Now, if we try to execute this by running it in a session, we will not get any 

output, because p has no value in it. We need to assign some value to p first.

Here, unlike for variables, we cannot just use tf.assign() to give the 

placeholder a value. We need to follow a different method. This involves 

the use of a dictionary, which we will be using to feed a value into our 

placeholder p.

We will first assign a single value to p, like this:

sess.run(prod, feed_dict={p:4.0})

When we execute this line of code, we will get an output like this:

8
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By running this code, two things happen:

	 1.	 First, the value that we have provided (in this case, 

4.0) is assigned to the placeholder p.

	 2.	 Second, the operation prod is carried out, which 

uses this placeholder p and its newly assigned value 

to produce a result.

Let’s try feeding more values into our placeholder.

sess.run(prod, feed_dict={p:[6,7,8,9]})

This gives us an output for each value assigned.

We can even create a dictionary first and then feed that into our 

placeholder. We will demonstrate this with the help of a multi-dimensional 

array. First, let’s define our dictionary d with some values, like this:

d = {p:[[0,2,4,6,8], [1,3,5,7,9], [11,15,17,19,25]]}

Now, we can feed these values into the placeholder p, like this:

sess.run(prod,feed_dict=d)

When we execute this line of code, we will get the product of each 

element of the dictionary when multiplied by 2.

Now, take a look at the next program:

g = tf.placeholder(tf.float32)

h = tf.placeholder(tf.float32)

sum = g+h

prod = sum*5

sess = tf.Session()

sess.run(prod, feed_dict={g:[2], h:[3]})
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Interesting, right? Here’s what happened in this program:

	 1.	 We declared two placeholders, g and h.

	 2.	 We then declared a variable sum that adds the values 

of g and h.

	 3.	 After that, we declared a variable prod that takes the 

value of sum and multiplies it by 5.

	 4.	 Finally, we ran prod in a session and fed values 

to g and h because sum, which is the only variable 

declared under prod, requires values for g and h in 

order to obtain a value of its own.

That’s about it for placeholders! In this way, placeholders can be used 

to allocate an area of the graph to some value that will be fed into the 

program later on. It is mainly useful for when certain characteristics of the 

data are unknown to the programmer at the beginning of the program.  

For example, the programmer may not know the quantity of data that she 

or he will be using.

That was quite interesting, wasn’t it? You can play around with 

variables, constants, and placeholders as well. Have a go at using them to 

write some small pieces of code, and see what you come up with.

In the next program, we will have a look at the architecture of 

computational graphs in TensorFlow.
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�Program 3: Operations in a Computational 
Graph
So far, we’ve learned that TensorFlow works with the help of a computational 

graph. This graph consists of all the variables that we declare, all the 

operations that we carry out, and so on. It basically works behind the 

scenes of a program. In TensorFlow, every node of the graph is known as an 

operation, even if it is just a command that initializes a variable.

We will begin by acquiring the “default graph,” like this:

graph = tf.get_default_graph()

Now, let’s try to retrieve the operations from within this graph:

graph.get_operations()

We will get an output like this:

[ ]

This is because we’ve not carried out any operations yet, so the graph 

has nothing to display.

We will now begin adding some nodes to this graph. Let us use some of 

the simple commands we have learned so far, like the following:

•	 Creating a constant a

•	 Creating another constant b

•	 Finding the sum of a and b as c

•	 Finding the product of c and a constant as d
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We can do this as shown:

a = tf.constant(300, name = "a")

b = tf.constant(65, name = "b")

c = tf.add(a, b, name = "c")

d = tf.multiply(c, 10, name = "d")

In each line, name is used just for visualization to help us understand 

the concept of the computational graph. We can give each node any other 

name as well, but we have assigned our names to avoid confusion and to 

facilitate better understanding.

Let us now see how our graph looks by entering the following two lines 

to get the operations from it:

operations = graph.get_operations()

operations

Executing this gives us the result shown in Figure 9-1.

This shows us the number of nodes present in our graph. We had 

entered four different nodes, which are displayed here along with their 

names (a, b, c, and d) and their types (constant, constant, addition, 

multiplication, respectively). Let’s add another node e to this:

e = tf.multiply(a, 8, name = "e")

operations = graph.get_operations()

operations

Figure 9-1.  Operations within a computational graph
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If we execute operations, we find that the number of nodes has 

increased by one, and this extra node is shown along with its name e, and its 

type Mul, as shown in Figure 9-2.

We can now run any or all of these nodes in a session, as shown below. 

As you can see, we have executed node a and node e:

sess = tf.Session()

with tf.Session() as sess:

     result = sess.run(a, e)

     print result

Here, we have run the session within a with block. This is a method 

that is used quite often, especially when multiple sessions are required. 

Instead of declaring the sess variable separately, and then typing the 

sess.run() command several times, we can just complete the entire 

process within a single loop.

Thus, we can see how the computational graph works. Of course, 

we won’t necessarily need to develop this kind of program, especially in 

machine learning. However, in order to grasp the concept of graphs in 

TensorFlow, it is good to go through this.

Figure 9-2.  Added Operation within the computational graph
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�Program 4: Taking Inputs from a User 
for a Placeholder
This type of program is especially good to know when it comes to creating 

a model to analyze data. This is because when we, as the developers, are 

creating our program, we don’t really know what kind of data is going to be 

submitted by the user. However, we need to make sure that our program 

can take the user’s input, perform the necessary calculations on it, and 

then produce the required output.

In this program, we first create two placeholders, a and b. We then 

declare that c is equal to some value in the form of an equation that 

requires a and b. After that, we say that A will be the variable name of the 

input that is to be assigned to a, and B will be the variable name of the 

input that is to be assigned to b. Finally, we create a dictionary d in which 

a acquires its value from A and b acquires its value from B. We then run the 

session to find the value of c.

This will all make a lot more sense once we actually type in and 

execute the code. That said, let us begin with the program:

a = tf.placeholder(tf.float32)

b = tf.placeholder(tf.float32)

c = (a*2) + b + 10

A = input("Enter a value for a: ")

B = input("Enter a value for b: ")

d = {a:A, b:B}

with tf.Session() as sess:

     result = sess.run(c, feed_dict = d)

     print result
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Now when we execute this entire program, we will get the option to 

submit a value for A and B. These values are fed into the program and 

computed, and then the result of the equation is displayed.

Task Time  Keep executing this program to change the values of a 
and b, and see how the value of c changes accordingly. Try altering 
the equation for c as well, and see what happens.

�Closing the Session
When I was new to using the TensorFlow library, I would practice 

running different kinds of code, just to get more comfortable with it. This 

meant that I would open several sessions in a day to execute the various 

commands. It was only later, however, that I learned the importance of 

closing a session.

We close sessions in TensorFlow mainly to free up resources and to 

reduce the unnecessary use of computational power. We use the following 

command to do so:

sess.close()

This tells the system that our session is over, so it no longer needs to 

compute anything. If we run our session inside a with block, however, we 

need not worry about having to add this extra line, as the session closes on 

its own once it reaches the end of the block.

And with that, we have covered some of the basics of programming 

with TensorFlow 1.0!
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�Summary
As we programmed, we perhaps noticed that some parts of the code 

seemed a little, well, unnecessary, right? For example, we need to 

keep opening (and then closing) sessions. Or, we need to initialize our 

variables before we can use them. Well, we can’t blame the developers of 

TensorFlow—they did a pretty good job with creating the library in the first 

place. But soon even they realized that the library can be improved a little 

more to make the task of coding with TensorFlow even more simple for 

programmers.

So, what did they do?

They came up with TensorFlow 2.0.

This new version consists of updates and changes that took all the 

issues and inconveniences of the parent version into account. Let’s dive 

a little deeper into this version of the library and see how TensorFlow 2.0 

makes machine learning faster and easier.
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CHAPTER 10

Introducing 
Tensorflow 2.0
TensorFlow 2.0 came as a huge blessing to the machine learning world. It 

was announced during the TensorFlow Dev Summit of 2019. At the time, 

it was still in its alpha version. Despite its being an unofficial release, it 

had already gathered quite a bit of attention from programmers, who soon 

realized that it was definitely a significant improvement from what it used 

to be.

This new version was developed so as to provide programmers with 

a machine learning library that is powerful, easy to implement, and 

convenient to use on any platform. It is meant to challenge its parent 

version by making programming even easier than before. It is also 

relatively less challenging for machine learning enthusiasts to pick up, 

especially if they are new to the TensorFlow library.

The newest release of TensorFlow specifically kept the challenges of 

the former release in mind. Some irksome features were removed, and 

some useful features were added. Of course, TensorFlow 2.0 is not the 

ultimate package—there is still plenty of room for improvement. But so far, 

it seems to have garnered a good amount of approval from programmers 

worldwide.

https://doi.org/10.1007/978-1-4842-5967-2_10#DOI
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�Features of TensorFlow 2.0
Since TensorFlow 2.0 was developed as a finer version of the original and 

not as a separate library of its own, many of its features are similar to those 

of TensorFlow 1.0. The two differ mainly with regard to a few areas where 

programmers noted certain avoidable attributes. That said, here are some 

key features of TensorFlow 2.0.

�Eager Execution
According to the official website,

TensorFlow’s eager execution is an imperative programming 
environment that evaluates operations immediately, without 
building graphs: operations return concrete values instead of 
constructing a computational graph to run later.

In other words, iteration occurs at once, and we need not create a 

computational graph or run separate sessions for each command.

It has a natural and steady flow, and does not need to be controlled by 

a graph. It is intuitive because it ensures that the code follows the correct 

layout and structure. It also allows us to use regular Python debugging 

tools to identify and rectify any errors that may exist within the code.

This is different from TensorFlow’s original “lazy” execution, where 

the programmer had to build a graph and run their lines of code within a 

session.

�Introduction of Keras
TensorFlow implemented the Keras API as a powerful tool that can be 

used for model building. It supports eager execution and several other 

functionalities of TensorFlow. It is versatile, reliable, and effective in its 

working. It has been added to TensorFlow 2.0 for this very reason.
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Keras used to be an independent package on its own, which users 

would download separately and use within their models. Slowly, 

TensorFlow added it to its framework, as tf.keras. This tf.keras sub-package 

was different from the main Keras package, so as to ensure compatibility 

and stability. Later, with the announcement of TensorFlow 2.0, the 

TensorFlow team stated that Keras would be the main high-level API of 

this version.

�API Cleanup
TensorFlow has a multitude of APIs (Application Program Interface) for 

several different programming languages that can be used within a piece of 

code. These APIs are sets of tools, utilities, and systematic procedures that 

perform a particular action when called within a program.

Some of these APIs were considered to be deprecated—they did not 

seem to be very useful to programmers. Other APIs seemed to have similar 

functionalities and characteristics. Thus, while developing TensorFlow 2.0, 

the team decided to do some spring cleaning in this section.

Many of the APIs have therefore either been removed, replaced, or 

collected under a single sub-package.

�Removal of Global Variables
In the previous version of TensorFlow, variables needed to be initialized 

before they could be used in a session. This was done with the help of the 

tf.global_variables_initializer() function, which would set up an 

operation to initialize all the variables declared in the code parallelly.

You might remember doing this in the previous chapter, where we 

entered a line of code like this:

init_ops = tf.global_variables_initializer
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After this, we opened a new session, ran init_ops, and then 

proceeded to run the rest of our variables.

In TensorFlow 2.0, all the namespaces and mechanisms that were used 

to keep track of variables have been removed. Variables no longer need to 

be initialized before running them. They can be used directly as and when 

required.

�Better Deployment Capabilities
TensorFlow has always provided users with the ability to work across 

several platforms and languages in order to develop and train models 

easily. TensorFlow 2.0 brings better compatibility and stability for this.

A fully trained and saved model can either be integrated directly into 

the application that we are working on, or deployed with the help of some 

important libraries, including the following:

•	 TensorFlow Serving, which enables us to implement 

models over HTTP/REST or gRPC/Protocol buffers.

•	 TensorFlow Lite, which enables us to implement 

models for mobile devices like Android or iOS, and 

embedded systems like the Raspberry Pi.

•	 TensorFlow.js, which enables us to implement models 

for JavaScript environments.

•	 Additionally, TensorFlow provides support for other 

programming languages like C, Java, Julia, and so on.

�Powerful Experimentation Tools
Researchers can easily carry out their experiments with the help of 

TensorFlow 2.0, which allows them to actualize their ideas without having 

to compromise on speed and effectiveness.
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We already learned that Keras has been added as a central high-level 

API to TensorFlow. Keras and similar APIs have been added to make 

the process of model building, improving, and training even faster and 

better. In fact, low-level APIs and high-level APIs work together for extra 

efficiency.

It is also easier to control gradient operations. Some extensions have 

been added as well to boost the research capabilities of the library.

�Increase in Productivity
TensorFlow initially gained its fame because it effectively assisted machine 

learning developers and escalated their productivity. Its features and 

provisions greatly benefitted programmers. It saved them time and 

reduced their effort, while simultaneously helping them to achieve more.

TensorFlow 2.0, having upgraded from that, further increases 

productivity. It provides for intuitive debugging, immediate computation, 

scalability, and simplicity. It is also relatively easier to learn, especially for 

beginners.

TensorFlow 2.0 is most certainly a powerful, substantial, and robust 

upgrade to its predecessor. However, considering the fact that experienced 

artificial intelligence enthusiasts have been using TensorFlow 1.0 for a 

long time now, transitioning over to the newer version does provide many 

challenges.

Some have been debating whether TensorFlow 2.0 is really a boon 

or a bane. While they agree that the upgrade has its benefits, they also 

acknowledge that it will not be so easy for people to adapt to it, especially if 

they have already built working machine learning models. Also, adjusting 

to the new syntax can prove to be a slight obstacle, which people might feel 

to be unnecessary.

Let’s have a look at Table 10-1, which lists some of the arguments 

that have been put forward as the advantages and disadvantages of 

TensorFlow 2.0.
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Despite all this debate, we know that we need to make room for 

change, especially if it is for the better. The cons, although present, are 

not significantly disadvantageous to programmers. They are only minor 

inconveniences that can be worked around easily.

�Code Comparison
So far, we have only read about the various characteristics of TensorFlow 

2.0. It’s functionality will make more sense once we begin actually 

programming with it. As mentioned already, the two versions vary with 

respect to writing code. In this section, we will compare both versions and 

see how the code differs.

Table 10-1.  TensorFlow 2.0 Pros and Cons

Pros Cons

It is much easier to learn compared to 

TensorFlow 1.0, due to its easy flow and 

simplified structure. Thus, people who are 

absolutely new to the TensorFlow library 

will find themselves learning it in no time.

Those who have already mastered 

TensorFlow 1.0 will have to unlearn 

it in order to understand and work 

effectively with TensorFlow 2.0.

It is very similar to the regular Python 

programming language. This means that 

a Pythonist will not have to worry about 

learning too many extra commands in  

order to program with TensorFlow.

Any code written with TensorFlow 1.0 

that contains sessions in it will not 

work smoothly in TensorFlow 2.0. It 

can only be run in the previous version.

Since many of the APIs have been 

consolidated, a large part of the code that 

used higher-level APIs, like Keras, can still 

work, without having to change it.

If the code needs to be run in 2.0, 

it will have to be either rewritten 

manually or converted using the 

upgrade tool provided by the library.
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We will mainly discuss five areas in which we see a significant difference:

	 1.	 The tf.print() function

	 2.	 Lazy execution vs. eager execution

	 3.	 Removal of the tf.global_variables_initializer()

	 4.	 No placeholders

	 5.	 The @tf.function decorator

For each of these areas, we will take a look at some small examples 

as well. In this way, we should be able to get a clear idea of how the 

programming style varies with each version.

�The tf.print( ) Function
TensorFlow 2.0 has introduced a command that is very much similar to 

the print command in regular Python. In TensorFlow 2.0, we can use the 

tf.print() function in a single line of code to display any statement or 

characters of our choice.

Its usage is as follows:

tf.print( <string or variable to be printed> )

�TensorFlow 1.0

In TensorFlow 1.0, it was not this easy to print anything. It required a few 

extra steps, as shown here:

import tensorflow as tf

h = tf.constant("This is a TensorFlow 1.0 program")

sess = tf.Session()

print(sess.run(h))

sess.close()
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See how that was done? We had to declare h, state that it is equal to the 

given constant, which is the sentence we want to print out, open a session, 

run h in that session, print it, and then close the session.

So what about TensorFlow 2.0?

�TensorFlow 2.0

import tensorflow as tf

h = tf.constant("This is a TensorFlow 2.0 program")

tf.print(h)

In fact, let’s go a step further and make this even easier:

import tensorflow as tf

tf.print("This is a TensorFlow 2.0 program")

See how quick that was?

Thus, in TensorFlow 1.0, the program would require us to declare our 

string as a constant, create a session, and then execute it in the session in 

order to print out the string. In TensorFlow 2.0, however, all we need to 

do is define a variable for the string and then type in the command tf.

print(), which will display the output. We can even just directly print out 

what we want without assigning it a variable name.

This is how TensorFlow 2.0’s eager execution differs from TensorFlow 

1.0’s lazy execution. We can observe this in greater detail next.

�Lazy Execution vs. Eager Execution
TensorFlow 1.0 followed lazy execution. It would not execute code 

immediately. Instead, it would wait for the particular node of the graph to 

be executed within a session, and only then would it run.

Chapter 10  Introducing Tensorflow 2.0



199

An example is shown next, where we have a code to print “Hello 

There,” to find the sum of 90 and 7, and to display the value of a variable 

that is declared to be 300.

�TensorFlow 1.0

import tensorflow as tf

a = tf.constant("Hello There")

b = 9+70

c = tf.Variable(300)

init_op = tf.global_variables_initializer()

sess = tf.Session()

print(sess.run(init_op))

print(sess.run(a))

print(sess.run(b))

print(sess.run(c))

�TensorFlow 2.0

In TensorFlow 2.0, lazy execution was replaced with eager execution. This 

means that the code is now executed directly. There is no need to first 

build a computational graph and then run each node in a session. Each 

line of code executes immediately.
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We can see this here, where we write the same code as before, but 

using TensorFlow 2.0:

import tensorflow as tf

a = tf.constant("Hello There")

b = 9+70

c = tf.Variable(300)

tf.print(a)

tf.print(b)

tf.print(c)

As you can see, the first set of code followed a lazy manner of 

execution, using a distributed graph, while the second set of code did not. 

It followed an eager manner of execution instead. The second code is also 

shorter than the first code, as it doesn’t have so many steps.

�Removal of tf.global_variables_initializer( )
Take a closer look at the program that we just saw. I mentioned that we 

skipped a few steps, right? One such step is the addition of the function tf.

global_variables_initializer(), which we have not used at all.

The reason is that, as stated earlier, in TensorFlow 2.0 we don’t need to 

initialize our variables. After defining the variables, we can directly begin 

using them within our program.

Just to get a clearer picture, let’s take a look at some code to declare a 

variable and then display it in TensorFlow 1.0.
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�TensorFlow 1.0

import tensorflow as tf

v = tf.Variable(8)

init_op = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init_op)

print(sess.run(v))

Simple, right? Now, let’s have a look at the same code when written in 

TensorFlow 2.0.

�TensorFlow 2.0

import tensorflow as tf

v = tf.Variable(8)

tf.print(v)

The output is the same, but the procedure is so much shorter. As a 

matter of fact, the number of code lines is reduced by half. And, here, we 

did not have to initialize the variable v. We were able to directly assign a 

value to it.

Speaking of variables, remember that in a previous chapter, we learned 

about another concept called placeholders? Well, the TensorFlow team 

decided that they were not going to keep placeholders in the upgrade, and 

thus they did away with them. We will read more about this in the next 

section.
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�No Placeholders
We already know that a placeholder is nothing but a variable to which we 

can assign a value at a later stage of the program. This means that, unlike 

variables, placeholders do not require an initial value. In TensorFlow 1.0, 

placeholders were used as a result of the version’s lazy style of execution, 

as we might remember from the program in the previous chapter. 

However, with TensorFlow 2.0’s eager execution, placeholders are not 

required. This is because operations are created and then evaluated 

immediately.

As a quick recap of how placeholders were used in TensorFlow 1.0, we 

will go through a small example. Let us consider a program in which we 

declare a constant a, a placeholder b, and an equation c consisting of a and 

b. We then assign the number 3 to the placeholder b using the feed_dict 

command. Finally, the values of a and b are fed to c in order to obtain the 

result of the equation.

�TensorFlow 1.0

import tensorflow as tf

a = tf.constant(5)

b = tf.placeholder(tf.float32)

c = a*b

sess = tf.Session()

sess.run(print(c, feed_dict = {b : 3})

sess.close()

Now, when we use TensorFlow 2.0, we don’t have to create any 

placeholders. We can directly define the constant a, variable b, and 

equation c, and then print the value of c. When we define c as the product 
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of a and b, the code automatically computes the values of a and b and 

then stores it in c. Next, when we print c, it displays the result of the 

computation. The execution of the program thus becomes much faster, as 

we can see next.

�TensorFlow 2.0

import tensorflow as tf

a = tf.constant(6)

b = tf.Variable(2)

c = a*b

tf.print(c)

See how easy the program has become? It’s almost similar to a 

regular Python program. And we need not worry about first setting up a 

placeholder, then feeding data into it, and finally executing some code with 

it. Everything is done quickly and instantly.

�@tf.function Decorator
We know that, since TensorFlow 2.0 follows eager execution, there is no 

need to create a computational graph first, followed by a session to run 

our program. Does this mean that we can no longer run a program in a 

distributed manner?

Not at all. We can still carry out a distributed execution for our 

program. All we need to do is write that piece of code in the form of a 

function, and then use the @tf.function decorator as a prefix to the code. 

TensorFlow will then understand that the code is meant to be executed in 

a distributed manner, and it will proceed to do so.
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Let’s see this in an example. Here, we first initialize values for x, y, 

and z. We then create a function result in which we find a, which is the 

sum of the three values, and we return the value of a as the output of the 

function. After this, we declare b, which calls the function result, supplies 

it with inputs as the given values of x, y, and z, and assigns the outcome of 

this computation as the value of b to be displayed. Finally, we once again 

declare b, but this time, when we call the function result, we supply it 

with new values for x, y, and z, allow the function to compute this result, 

and then feed it to b to be displayed.

Don’t worry if none of that made sense to you. The code is much easier 

than it sounds, as you will see next.

�TensorFlow 2.0

import tensorflow as tf

x = 7

y = 8

z = 9

@tf.function

def result(x,y,z):

      a = x+y-z

      return a

b = result(x,y,x)

tf.print(b)

b = result(1,7,3)

tf.print(b)

As you may have already noticed, the function here is decorated with 

tf.function, which allows it to be executed like a graph.
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Note W e are not showing any TensorFlow 1.0 code here because 
we do not need this decorator in it. It is only required in version 2.0.

So, from what we have just seen, it is easy to understand that there 

has been quite an upgrade from what TensorFlow used to be. Although 

it will take a little getting used to, once developers succeed in making 

the transition from TensorFlow 1.0 to TensorFlow 2.0, they will be able to 

achieve their machine learning requirements faster and more efficiently.

Now, for those who have been in the machine learning field for a 

considerable amount of time, it is highly likely that they have been using 

TensorFlow 1.0 over the past few years, which means that they might have 

even painstakingly developed several codes with the help of this library. 

Therefore, moving over to TensorFlow 2.0 may not sound very appealing, 

because they would have to figure out how to recreate all their code in the 

newer version.

Not to worry! The TensorFlow team has already thought about this and 

developed a pretty feasible solution. They have provided a full migration 

guide to help programmers make a smooth transition from 1.0 to 2.0.

They have also come up with the tf_upgrade_v2 upgrade script, which 

helps in automatically making the necessary changes. This reduces the 

amount of time and effort required by the programmer to convert their 

code to TensorFlow 2.0.

In the next section, we will have a look at this upgrade tool to see how it 

works and how it can be used in our code.

�Upgrading from TensorFlow 1.0 to 2.0
The Google Brain team that developed TensorFlow knew that many 

machine learning programmers would have already developed several 

programs using TensorFlow 1.0. It would be a huge pain to have to rewrite 
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these programs in TensorFlow 2.0, especially because the upgraded 

version is immensely different from its parent version. There is also scope 

for plenty of errors in such a process.

This is why they came up with a way to help developers migrate from 

TensorFlow 1.0 to TensorFlow 2.0. It makes use of the tf_upgrade_v2 

function.

Note  If you are a beginner in TensorFlow, you may not have any 
code to upgrade, in which case you can skip this section and move 
ahead to the next chapter, where you will learn how to program with 
TensorFlow 2.0.

�The tf_upgrade_v2 Upgrade Script
This utility was created to help developers in their transition from 

TensorFlow 1.0 to TensorFlow 2.0 by making it easier, potentially seamless, 

and much more convenient than manually converting the code from one 

version to another. It is automatically installed in TensorFlow 1.13 and 

higher, allowing developers to easily begin their transition.

The upgrade script has the following benefits:

	 1.	 It is just one line of code.

	 2.	 It is less time consuming.

	 3.	 It does most of the work for us.

	 4.	 It saves the upgraded code in a separate file, instead 

of overwriting the original file

	 5.	 It produces a report at the end of the upgrade 

process that tells the user what was done and what 

needs to be done.
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Thus, although manually changing the code is not exactly prohibited, 

the upgrade script just seems like a shorter and easier path to take to reach 

the final goal, as we can see in Figure 10-1.

Let’s now have a look at how we can use this utility to transition our 

code.

�Using the Upgrade Script
Although the name makes it sound like something very advanced that can 

only be attempted by professionals, it really isn’t so. In fact, once we take a 

look at what the script is, we will be able to sigh with relief at how simple it 

is to follow and implement.

The structure of the script is basically like this:

tf_upgrade_v2 —infile < Old File Name > —outfile < New File 

Name >

Figure 10-1.  Manual upgrade vs. the upgrade script
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Yup! That’s all it is.

The double hyphen followed by infile is used to call the file that 

contains the old TensorFlow code. In this case, it would be the name of the 

Jupyter Notebook that contains the code.

The double hyphen followed by outfile is used to rename the file that 

will be created when TensorFlow upgrades the code to its newer version.

Now, before we begin typing this in, we need to import TensorFlow 

into our Jupyter notebook. After that, we can enter this code and add our 

file names accordingly.

When we execute the cell, it will take a little time to perform its update, 

after which it will display the output. It also creates two new files:

	 1.	 A report about what it has done, which we can 

examine to check for any significant errors in the 

update. It mentions any keywords that have been 

added and arguments that have been renamed. It 

also recommends places where manual inspection 

would be preferable. All this is stored in the report.

txt file.

	 2.	 The new file containing the TensorFlow 2.0 updates 

for which we had provided a name in the code line. 

This new model can be tested to ensure that it still 

produces the required result.

Now that we’ve got some idea about how this script works, let’s try 

it out with the help of a small program. We will use the very basic “Hello 

World” program for this. I’m sure, by now, we all remember the code, 

which looks like this:

import tensorflow as tf

h = tf.constant("Hello World")

sess = tf.Session()
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sess.run(h)

sess.close()

Let’s say this code is in a Jupyter notebook, and this notebook is saved 

under the name “Hello World 1.0.” To upgrade, first open a new Jupyter 

notebook. In the notebook, import TensorFlow 2.0, and then type in the 

upgrade script. The code will look like this:

import tensorflow as tf

tf_upgrade_v2 —infile "Hello World 1.0.ipynb"  —outfile "Hello 

World 2.0.ipynb"

When we execute this cell, we will find the new Jupyter notebook titled 

“Hello World 2.0.” We will also find a detailed report of the upgrade in the 

form of a text document called report.txt.

Click on the newly created Jupyter notebook. We will see that a few 

changes have been made. However, since this is not a very large program, 

not many alterations are required. The only significant change would be 

the modification that it makes to the tf.Session() line. It changes into the 

following:

sess = tf.compat.v1.Session()

When we open the report, it will show us the changes that it has made. 

For example, in this case, it will say the following:

INFO: Renamed 'tf.Session' to 'tf.compat.v1.Session'

Note T he tf.compat.v1 module is used to allow the program to 
acquire TensorFlow 1.0–related functionalities, including sessions 
and placeholders.
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Of course, when we use the upgrade script for more advanced 

programs, there will be many more modifications made by the script, 

which will all be visible in the new notebook that will be generated, as well 

as in the report that it creates. We would also need to make a few extra 

changes ourselves, since the program will not be able to do so. Overall, the 

upgrade script manages to do about 80 percent of the work; the rest needs 

to be done by us.

When using the upgrade script, there are some important points that 

we need to keep in mind, as follows:

	 1.	 Do not manually change the code in any way from 

TensorFlow 1.0 to TensorFlow 2.0. This can cause 

errors during the upgrade.

	 2.	 Arguments are not reordered by the upgrade script. 

However, keyword arguments can be added to 

functions in which arguments are reordered.

	 3.	 The script follows the conventional practice of 

importing the TensorFlow library as tf, and thus 

works accordingly.

	 4.	 The compatibility module (tf.compat.v1) replaces 

certain TensorFlow 1.0 references with those of 2.0. 

In any case, it is recommended that compatibility 

modules be removed and replaced with new APIs.

�Summary
TensorFlow 2.0 seems pretty cool, doesn’t it? As we have read in this 

chapter, it has some interesting new features that make it much more 

powerful and capable compared to its parent version. It does have 

its disadvantages, but those can easily be worked around to allow 

programmers to easily adapt to it.
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We even compared it to TensorFlow 1.0 based on code-related 

differences, and we saw how much easier coding has become. Finally, we 

learned how we can migrate our old TensorFlow code to the newer version 

with the help of the upgrade script, which makes the process both smooth 

and quick.

TensorFlow 2.0 was mainly built to make our deep learning experiments, 

research, model building, and so on much more productive. In the next 

chapter, we will see how we can implement this library with Python to create 

some exciting (and fully functioning) deep learning models.

�Quick Links
Read more about TensorFlow 2.0 here: https://

www.tensorflow.org/guide/effective_tf2

Check out the Migration Guide here: https://www.

tensorflow.org/guide/migrate

Learn more about the upgrade script here: https://

www.tensorflow.org/guide/upgrade

�Additional Information
�Running TensorFlow 1.0 by Disabling  
TensorFlow 2.0
Although TensorFlow 2.0 is currently the default version of the library, it is 

still possible to access the features of TensorFlow 1.0. All we need to do is 

disable TensorFlow 2.0 by calling the following function:

tf.compat.v1.disable_v2_behavior()

This needs to be done before programming; i.e., before creating 

graphs, adding tensors, and so on.
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�Ragged Tensors
TensorFlow introduced “ragged” tensors to solve the issue of non-

uniformly shaped arrays of data. For example, let’s consider a set of lists of 

the number of letters in some words, such that each word’s length varies 

immensely from the other, as shown here:

animals = tf.ragged.constant( [ ['c', 'a', 't'],

      �['h', 'i', 'p', 'p', 'o', 'p', 'o', 't', 'a', 'm',  

'u', 's'],

      ['b', 'u', 'f', 'f', 'a', 'l', 'o'] ] )

This will then be displayed like this:

<tf.RaggedTensor [ ['c', 'a', 't'],

      �['h', 'i', 'p', 'p', 'o', 'p', 'o', 't', 'a', 'm',  

'u', 's'],

      ['b', 'u', 'f', 'f', 'a', 'l', 'o'] ] >

Here, the first word has three letters, the second word has twelve 

letters, and the third word has seven letters.

We can even slice ragged tensors, the same way we would slice data in 

regular tensors. This is shown here:

print( animals [ 2 ] )

The outcome of this line of code would be as follows:

tf.Tensor(['b', 'u', 'f', 'f', 'a', 'l', 'o'], shape=(7,), 

dtype=string)

Ragged tensors can carry out a variety of TensorFlow operations, 

including string operations, mathematical operations, array operations, 

and so on. They are also supported by many of TensorFlow’s APIs, like 

Keras, tf.function, etc.
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Non-uniformly shaped data is a common challenge that many 

programmers face while carrying out machine learning. Ragged tensors 

assist us in such situations by making the storing and processing of such 

data much easier.

�TensorFlow Addons
TensorFlow Addons is a special-interest group created to allow users to 

contribute new extensions with functionalities that are not a part of the 

core library. It has sub-packages and sub-modules that are maintained by 

a dedicated team.

Some of these sub-packages include the following:

•	 tfa.text

•	 tfa.image

•	 tfa.optimizers

•	 tfa.metrics

•	 tfa.callbacks

•	 tfa.rnn
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CHAPTER 11

Machine Learning 
Programming with 
Tensorflow 2.0
So far, we have learned about artificial intelligence, under which we have 

machine learning and its sub-set, deep learning. We have also learned 

about the Python programming language, which is popularly used for 

machine learning coding. We even got familiar with the Jupyter Notebook 

interface, in which we can write, edit, and debug our programs. We then 

saw how we can combine Python with Jupyter Notebook as an efficacious 

way to write our code. After this, we were introduced to the TensorFlow 

library as an important package within Python, and once we understood 

how the library was useful, we proceeded to learn about its recent 

upgrade—TensorFlow 2.0—which has additional features and abilities that 

make our machine learning models easier to build.

Now, we have finally come to the most important topic in this book: 

learning how to build and execute machine learning models with the 

help of the TensorFlow library. As explained before, the main reason 

TensorFlow was created was to aid developers, not just with basic machine 

learning programming, but also with more advanced machine learning 

procedures. In other words, TensorFlow was created predominantly for 

deep learning that employs neural networks.

https://doi.org/10.1007/978-1-4842-5967-2_11#DOI
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In this chapter, we will learn a little more about how machine learning 

models are made, and we will also try out seven programs of our own. 

Each of these programs is an image classification problem that requires 

neural networks, all constructed using the Keras API, which we will go 

through later on.

The seven programs are as follows:

	 1.	 Image Classification Using a Pre-Trained Model

	 2.	 Handwriting Recognition Using Keras in TensorFlow 

(Single Layer, Multi-class)

	 3.	 Clothing Classification Using Keras in TensorFlow 

(Multi-layer, Multi-class)

	 4.	 Clothing Classification Using Convolutional Neural 

Networks (Multi-layer, Multi-class)

	 5.	 Handwriting Recognition Using Convolutional 

Neural Networks (Multi-layer, Multi-class)

	 6.	 Image Classification for CIFAR-10 Using 

Convolutional Networks (Multi-layer, Multi-class)

	 7.	 Dogs vs. Cats Classification Using Convolutional 

Neural Networks (Multi-layer, Binary)

We will go through each of these programs step-by-step to get a 

thorough idea of all the processes and components involved in developing 

them, particularly the following:

•	 The structure

•	 The dataset

•	 The API

•	 The activation functions
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•	 The optimizer

•	 The program

By fully understanding these seven programs, we will be well equipped 

to create our own models for other similar problems.

Before we begin programming, there are two things that we need to do 

to prep ourselves:

	 1.	 Understand the structure of a machine learning 

model.

	 2.	 Get acquainted with Keras, which we will be using 

under TensorFlow to build and train our deep 

learning models.

In Chapter 2, we saw the steps that are to be followed when solving a 

machine learning problem. Here, we will go through the general structure 

of a machine learning model to obtain a clearer idea of how it is built.

�Structure of a Machine Learning Model
Machine learning, as mentioned earlier, requires part of the work to be 

done by us. The rest of it is all done behind the scenes by the computer. In 

other words, it all happens in the backend of the code. This, in all honesty, 

saves us, as programmers, a lot of trouble. There are, however, still plenty 

of tasks that we need to carry out while creating our model in order to 

make sure that we get the output we desire.

A machine learning developer’s task is mainly to build the model and 

then run it. There are several components to this model, depending on 

what exactly we are trying to accomplish, but the general architecture 

remains the same.
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Since we will be using neural networks to carry out our machine 

learning processes, we will study the structure of a deep learning model 

that uses a neural network. The overall idea for the structure of the model 

is as shown in Figure 11-1.

As we can see in the flowchart, there are four main steps involved in 

developing a working machine learning model, as follows:

	 1.	 Data loading and pre-processing: This part accepts 

data, manipulates it, then prepares it for training 

and testing.

	 2.	 Building the model: This is the part where the 

developer specifies the various components of the 

model.

	 3.	 Training the model: This part takes the training 

data and begins performing calculations on it to get 

an optimum result.

Figure 11-1.  Flowchart of a machine learning model

Chapter 11  Machine Learning Programming with Tensorflow 2.0



219

	 4.	 Testing the model: This part validates or checks the 

accuracy of the model.

The first two steps require the time, effort, and skills of a programmer, 

since they involve the handling of data and the creation of a working 

model. For the last two steps, all the programmer has to do is set the model 

running and then kick back and relax while the machine does all the hard 

work.

Let’s go through this structure in a little more detail to get a better idea 

of what it does, how it works, and what needs to be done.

�Data Loading and Pre-Processing
In Chapter 2, we had a look at the different methods of collecting data. We 

also learned that this data requires some pre-processing before it can be 

used for any kind of analysis in order to ensure optimal results. This means 

that we might need to add, remove, or change some values.

Now remember, this does not mean that we are completely changing 

our data, which can result in incorrect outputs. We are just making it more 

readable for our system to take and work with.

Here are some examples of this:

	 1.	 Suppose we had data containing a list of 500 

married women and the number of children each 

of them have. From this list, almost everyone has at 

least one child. Only five of them have no children. 

Now the problem is that we need to predict the 

number of hours of sleep these women get in a 

day, based on the number of children they have. 

Obviously, the details of these five women would 

not be required for this study since they do not have 

children. Thus, we would have to remove their data 

from the list.

Chapter 11  Machine Learning Programming with Tensorflow 2.0



220

	 2.	 Sometimes, apart from numerical values, our data 

may also contain terms like None or No, which could 

basically imply a zero, depending on the problem. 

Thus, we would need to either change those values 

to 0 or remove them from the dataset.

	 3.	 In some cases, we may want to round off our 

numerical values to the nearest whole number. This 

can be done either for the whole dataset or just for a 

section of it.

Data can be altered manually. Applications like spreadsheets or 

visualization software come in handy when working with structured 

data. However, when the dataset is huge, it becomes quite tiring and 

monotonous to work with. Thus, most developers use a Python library 

called Pandas, which provides users with several tools and utilities to work 

on their data. With the help of Pandas, users can import a .csv file (csv: 

comma separated values) from their local system into a Jupyter notebook.

In this book, we will be using image datasets that are already integrated 

within the TensorFlow library. They can easily be called with the help of a 

TensorFlow function, as we will see later on.

The data that we use for training machine learning models is divided 

into two categories: labels and features.

Labels: These are the components of the data that 

are to be predicted; i.e., the dependent variable or 

output. They are determined based on the features 

provided to the system.

Features: These are the components of the data 

that are used for prediction; i.e., the independent 

variable or input. They determine the labels of the 

outputs. When choosing features, it is important to 

ensure that they are independent and distinct.
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When training a deep learning model, we can choose either of the 

following methods based on how we intend to input our features and 

labels:

•	 Supervised learning: We feed the model with the 

features and the labels.

•	 Unsupervised learning: We feed the model with the 

features only.

•	 Semi-supervised learning: We feed the model with 

some labeled features and some unlabeled features.

Note  The quality of the labels is proportional to that of the features. 
In other words, better features result in more accurate labels.

Once we have finished altering our data, we need to split it into two 

parts: the training data and the test data.

Training data: Training data is what is fed into 

the model to be used while it is training. This will 

generally be a greater proportion of the data, since 

the model requires a larger amount of data when 

training to get more accurate results.

Test data: Test data is what is fed into the model 

after it has finished training and settled on 

optimal parameters. This will generally be a lesser 

proportion because it is only meant to help the 

model determine how accurate or inaccurate its 

prediction is.

After we are done pre-processing the data, the next step is to build the 

model.
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�Building the Model
We need to develop the architecture of our machine learning model. In 

this case, we will be using a neural network. Thus, we need to arrange the 

neural network by defining the following:

•	 The number of hidden layers

•	 The number of neurons in each layer

•	 The weights and biases

•	 The activation function

In Chapter 3, we learned how neural networks work, and we studied 

their different types. For example, convolutional neural networks 

(CNNs) are best used for image classification and recognition, and 

recurrent neural networks (RNNs) are great for machine translation and 

speech recognition. We can choose our preferred neural network after 

careful consideration of our data, resources, and desired outcome, and 

accordingly build the model that we require.

�Training the Model
Once the model is built, it is ready to be trained. This is where the 

programmer steps aside and gives way to the machine, which proceeds to 

do some intense work. All we need to do here is call the training data into 

the model and then start the process.

During training, the model begins trying out different values and 

replacing the parameters, i.e., the weights and the biases, in order to come 

up with the most suitable equation that will give high accuracy and low 

error. It follows a trial-and-error manner, and keeps changing the values of 

the parameters until it gets a result that is satisfactory.
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We have already seen the following in Chapter 3:

•	 The values of the weights and biases are constantly 

tweaked to make the output more suitable and to give 

stronger predictions. This is called training the model.

•	 The output is predicted from the input data. This is 

known as forward propagation.

•	 The weights and biases are modified in order to reduce 

the loss. This is known as back propagation.

Although it seems like everything should end here, it’s not always a 

good idea to do so.

Why?

Well, there is always a possibility that the result still may not be the 

most optimal one. For example, overfitting can happen, resulting in 

inaccuracy. This is why, after training, the model must also be tested.

�Testing the Model
Once we have our trained model, we need to feed the test data into it. 

We then allow the model to run this data through to see how accurate its 

predictions are. In this way, we validate the model.

Depending on this accuracy, we can decide if we want to change 

certain aspects of the model and then retrain it, or leave it as it is. Of 

course, there are several other factors that can affect this decision as 

well, including time, computational power, and so on. For example, the 

programmer may not have enough resources to redesign and retrain 

the model. Or perhaps there isn’t enough time. So, before retraining the 

model, the programmer must take all of these factors into consideration.

The machine continues to repeat this cycle of training and testing the 

model until it produces an acceptable outcome.
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The structure of a machine learning model can vary greatly with 

regard to more specific factors, depending on the type of problem that we 

are solving. Hence, as mentioned earlier, we need to correctly define our 

problem and the solution we hope to achieve, and then carefully plan out 

our model to minimize error.

Now that we are aware of the general design of a machine learning 

model, the next thing we need to do is get familiar with the Keras API, 

which is integrated with the TensorFlow library and which we will be using 

to develop our code.

�Keras
Before we learn about Keras as a TensorFlow API, let’s have a look at Keras 

as an independent and popular machine learning library.

Keras is an open source deep learning library. It was written in Python 

and can work on top of TensorFlow, as well as on Theano, R, PlaidML, 

and the Microsoft Cognitive Toolkit. It was developed within the project 

ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating 

System).

It was initially released on March 27, 2015, under the MIT license.

According to the official website, Keras mainly focuses on “Deep 

Learning for Humans.”

In other words, the developer is its priority, rather than the machine. 

It was created to make the programming process less burdensome for 

the user. It makes it easier for the user to write and debug code, and also 

provides sufficient guides and documentation.

Keras was initially just an individual library that could be called and 

deployed within a program. In fact, its original backend was Theano. 

However, when Google introduced TensorFlow, programmers began to 

implement both together, until it became such that one could not have 

Keras without TensorFlow and vice versa. Seeing the growing popularity of 
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this deadly combination, Keras soon made TensorFlow its default backend, 

which was a smart move on their part.

In 2017, TensorFlow added the tf.keras sub-module into its package, 

which was separate from the Keras library that needed to be installed 

(using the pip function). This was the first step to support Keras within its 

package. Finally, with the release of TensorFlow 2.0 in 2019, Keras became 

the official high-level API for machine learning. This gave an added boost 

to both the libraries, as they could now be used together to develop and 

train powerful neural networks.

�Features of Keras
Keras contains several features and tools that make deep learning much 

easier. Some of these include the following:

	 1.	 It can function smoothly on CPU as well as on GPU.

	 2.	 Models can easily be exported onto servers, 

browsers, embedded devices, and so on.

	 3.	 It is flexible and consistent, making research and 

deployment less difficult for users.

	 4.	 It supports several types of neural networks, like 

CNNs and RNNs.

	 5.	 It has extensive documentation for further study, 

and a community for users to support one another.

Thus, Keras provides the user with reliable support and powerful 

resources that can be implemented into a program to design, train, test, 

and deploy deep learning models.

We now know how a machine learning model is structured. We also 

learned about Keras, an important API under TensorFlow that makes 

our coding experience much better. With this, we can go ahead and start 

building our very first deep learning model with TensorFlow!
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We will be developing deep learning programs to segregate our data 

into several groups based on certain similarities. In other words, we will be 

solving classification problems.

We have already heard about such problems. Under classification, we 

have two main types: binary classification and multi-class classification.

�Binary Classification
This is a very simple type of classification problem. Here, the variable to be 

predicted can take either one of two possible values. In other words, the 

data needs to be split into two groups.

Let’s take a very simple example. Suppose we have a set of nine 

random numbers available to us: 2, 5, 700, 75654, 8273, 9, 23, 563, and 0.

We can separate these numbers into two groups:

Odd Numbers (5, 8273, 9, 23, 563)

Even Numbers (2, 700, 75654, 0)

As you can see, we have two groups or “classes” here based on the type 

of number. Five of the given numbers are odd, and four of them are even.

Let’s take another example. Suppose we have a set like this: “doe,” 

“ram,” stag,” “ewe,” “rooster,” “chicken.”

This can be separated out into the following:

Male (“ram,” “stag,” “rooster”)

Female (“doe,” “ewe,” “chicken”)

Once again, here we have two categories based on their gender, male 

and female, each having three variables. Each variable within the set of 

data is divided accordingly.

Other more advanced applications of binary classification include 

cancer detection (cancer present/cancer absent), spam detection (spam/

not spam), etc.
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�Multi-class Classification
This is also called multinomial classification. Here, the variable to be 

predicted can take one of many possible values. In other words, the data 

needs to be separated into more than two groups.

For example, suppose we have a set like this: “rose,” “cucumber,” 

“tulip,” “lily,” “apple,” “carrot,” “potato,” “orange,” “sunflower.”

We can separate them into these groups:

Flowers (“rose,” “tulip,” “lily,” “sunflower”)

Fruits (“cucumber,” “apple,” “orange”)

Vegetables (“carrot,” “potato”)

As you can see, we have three groups into which the data is divided 

based on type: four of the variables are flowers, three of them are fruits, 

and two of them are vegetables.

Let’s consider another example. Take a look at this set of eleven 

random numbers: 9, 55, 8, 22, 27, 16, 205, 93, 4, 49, 81.

Any guesses on how we can divide them?

Yes, that’s right! We can divide them into the following groups:

Multiples of 2 (8, 22, 16, 4)

Multiples of 3 (9, 27, 93, 81)

Multiples of 5 (55, 205)

Multiples of 7 (49)

We have four groups here based on the highest common factor (2, 

3, 5, or 7): the multiples of 2 consisting of four variables, multiples of 3 

consisting of four variables, multiples of 5 consisting of two variables, and 

multiples of 7 consisting of one variable.
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Other more advanced applications of multi-class classification include 

eye-color recognition (blue, green, light brown, dark brown, grey), cat-

breed identification (Persian, Munchkin, Bengal, Siamese, Sphynx), etc.

As we can see, in all these classification examples, the variables were 

grouped together depending on the characteristics that they shared. In this 

way, data can be classified or grouped based on similarities in particular 

characteristics or features.

We will now get into the seven programs that we spoke about at 

the beginning of this chapter. This will help illustrate all that we have 

discussed till now, and will give you a clearer picture of the entire concept 

of machine learning with the help of Python and TensorFlow, within 

Jupyter Notebook.

�Programming with TensorFlow 2.0
The programs that we will be learning comprise image classification 

problems. Before we get into them, let’s have a quick look at how such 

problems need to be dealt with in order to solve them.

�Image Classification: An Overview
Image classification is one of the most popular areas of deep learning due 

to its vast usability in practical purposes. It is the process of separating 

images within a dataset into groups, based on their similar features.

For example, suppose we had images of a goldfish, a grasshopper, 

a sparrow, a rabbit, a penguin, a cat, a vulture, and a shark, as shown in 

Figure 11-2.
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We can separate them into different groups, based on which class they 

belong to, as shown in Figure 11-3.

Figure 11-2.  Eight images of different creatures

Figure 11-3.  Classifying the images
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We thus have the following four classes:

•	 Insect (grasshopper)

•	 Fish (goldfish, shark)

•	 Mammal (cat, rabbit)

•	 Bird (vulture, penguin, sparrow)

Having studied these subjects in school, we already know which 

of these creatures falls under which category. We can use our natural 

intelligence to distribute the images easily. But how would an artificially 

intelligent computer figure this out?

We would have to train it to understand the ways in which some of the 

creatures relate to each other, while others don’t.

The model can be trained by feeding it with labeled pictures of 

different kinds of creatures. The labels would inform the machine if 

the image is that of an animal, a bird, a fish, or an insect. The machine 

would then begin to observe all the images under a single class to gather 

information on any kind of common features among them.

For example:

•	 The insects have six legs and antennae.

•	 The fish have streamlined bodies and fins.

•	 The mammals have four legs and furry bodies.

•	 The birds have wings and two legs each.

Once it has gathered its observations and made predictions that are 

verified to be accurate, it can be used for further problem solving.

Now, if we give it the eight images from Figure 11-2, it would solve 

the problem effortlessly and classify the images according to their type by 

studying each picture, finding its closest possible label match, and placing 

it in that class. This is how image classification is done using a machine 

learning model.
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In the programs that we will be going through, we will focus on 

instructing the computer to train and test similar image classification 

models with the help of neural networks.

Let’s start with our very first deep learning program.

�Program 1: Image Classification Using a  
Pre-Trained Model
Before we begin building models and training them, we need to 

understand what our main objective is. Many times, we focus more on 

creating models that give us high accuracy during validation, but we 

completely forget to carry out a final inference to see if the model has really 

been trained well.

Inference is the process of using a trained machine learning model to 

make a prediction.

During inference, we take a random element from the entire dataset 

and pass it through the model to see if it can predict that element’s class 

correctly. The result of this prediction helps us to infer or deduce whether 

the model is accurate or not.

To make this clearer, let’s write a fun little image classification program, 

in which we will take a pre-trained model and carry out inference to 

validate its predictions.

Note  Don’t worry too much about understanding each and every 
step of this program. As long as you get the basic idea of what is 
happening, that should be enough.
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�The Working
Since this is a model that has already been trained, we need not worry 

about that part. All we need to do is load an image from the file, prepare it, 

feed it to the model, and retrieve its outcome.

�The Structure
The structure of this program is short and sweet:

	 1.	 It loads the pre-trained model into the Jupyter 

notebook.

	 2.	 It loads an image into the notebook.

	 3.	 It prepares the image for the model.

	 4.	 It predicts the probability across all output classes.

	 5.	 It converts the probabilities into labels.

	 6.	 It identifies the highest probability.

	 7.	 It displays the result.

�The API
This program will be using the newly added high-level Keras API.

�The Program
Step 1: Open a new Jupyter notebook.

Start by launching the Anaconda application. Enter the required 

virtual environment, and then launch Jupyter Notebook within it. From 

the Jupyter Notebook dashboard, open up a new notebook for Python 3 
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programming. We can give this notebook a name, like “Inference for Pre-

Trained Models.”

Step 2: Import TensorFlow and Keras utilities into the notebook.
Import TensorFlow, the Keras API, and all the extra functions into the 

Jupyter notebook, using the following code:

import tensorflow as tf

import tensorflow.keras

from tensorflow.keras.preprocessing.image import load_img,  

img_to_array

from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.vgg16 import VGG16, 

preprocess_input, decode_predictions

from tensorflow.keras.applications.resnet50 import ResNet50, 

preprocess_input

Step 3: Load the model into the notebook.
We need to load the pre-trained model into the notebook. In this 

program, we will be trying out both VGG16 and ResNet50. To start with, 

let’s call VGG16 into our program. We can add it to our code like this:

model = VGG16()

This will load the pre-trained model into the Jupyter notebook.

Step 4: Load an image into the notebook.
We now need to load an image into the notebook. The great thing 

about using this pre-trained model is that we can upload any picture that 

we want and then test it to see if it works correctly.
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The image we will be using is that of a kitten. We can load it into our 

notebook, like this:

image = load_img('Kitten1.jpg', target_size=(224, 224))

image

The image will be displayed as shown in Figure 11-4.

Note  Just remember that when you are saving an image onto your 
computer, it’s always a good idea to save it in the same folder as 
the Jupyter notebook that you are working in. For example, if your 
notebook is saved under Desktop/My Programs, you can move the 
image to Desktop/My Programs as well. This makes it easier for you 
to access it later on in your code, without the need for typing in the 
entire file path.

Step 5: Prepare the image for the model.
We first need to convert the image’s pixels into a Numpy array, like this:

image = img_to_array(image)

Figure 11-4.  Loading the image file
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We then need to reshape the array, like this:

image = image.reshape((1, image.shape[0], image.shape[1],  

image.shape[2]))

Finally, we will preprocess the input, like this:

image = preprocess_input(image)

Step 6: Make the prediction.
We can now predict the probability of the image’s belonging to each 

class. After this, we convert these probabilities into the class labels, and 

then retrieve the result that seems the most probable. The code for this is 

shown here:

result = model.predict(image)

label = decode_predictions(result)

label = label[0][0]

Step 7: Display the classification.
The model’s prediction can be displayed along with its percentage 

probability with the help of the following code:

print('%s (%.2f%%)' % (label[1], label[2]*100))

The output will come like this:

Egyptian_cat (87.00%)

We can see that the VGG16 model has not only predicted that the 

image is that of a cat, but also predicted its species; i.e., an Egyptian cat. 

Along with this, it has given the probability of its answer’s being correct as 

87 percent.

Nice, right?

Let’s try this again, and this time, with a ResNet50 model.
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Just change the code in Step 3 to this:

model = ResNet50()

Now repeat the remaining steps, leaving the same image file, and run 

the prediction. See what we get?

Egyptian_cat (71.94%)

The ResNet50 model also gives the same prediction, but it is only 71.94 

percent sure of its answer.

So, can we say that these models are perfect, because they were able 

to identify the image of a kitten correctly? Well, here’s another example, 

in which I have changed my image to that of another kitten, as shown in 

Figure 11-5.

Here is what the models predicted:

VGG16:

Chihuahua (21.55%)

ResNet50:

Pembroke (17.49%)

Figure 11-5.  Loading another image file
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As we can see, one model identified my kitten as a Chihuahua, while 

the other model identified him as a Pembroke (which, after a bit of 

searching, I found out refers to the Pembroke Welsh Corgi). In short, both 

the models thought that my kitten was a dog.

Thus, as we learn to create, train, and validate deep learning models, 

we will also be required to carry out an inference on them to ensure that 

they have actually been trained correctly. Since they are just machines, it is 

not possible to get a model that is completely infallible. Our aim, however, 

is to get the highest accuracy with the least number of errors. Once such 

models are developed and approved, they can be implemented into real-

world applications.

It is now time to learn how to build our very own neural networks for 

deep learning. In the next few programs, we will go through various types 

of image classifiers, and we will see how we can set them up in different 

ways to classify several images.

�Program 2: Handwriting Recognition Using Keras 
in TensorFlow (Single Layer, Multi-class)
Handwriting is unique to a particular individual. You might have observed 

that some people have extremely neat and aesthetic handwriting, whereas 

others have handwriting that is almost illegible. There is also a clear 

distinction when writing different characters. For example, some might 

just put a dot over their i’s, while others prefer to draw a small circle. We 

then have differences in slant, size, thickness, and so on.

It is this uniqueness that makes handwriting recognition quite a 

challenge, especially for artificially intelligent machines. However, it is not 

impossible to train a model to figure out similarities, and thus differentiate 

between characters.
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�The Working
Images are basically grids made up of numbers. These numbers tell us the 

pixel value or intensity. Thus, these numbers can be manipulated to obtain 

the characteristics of the image. This enables us to find similar features in 

different images.

�The Structure
The architecture of this model is as follows:

	 1.	 It loads the given dataset of images.

	 2.	 It divides the data into the training set and the  

test set.

	 3.	 It creates the neural network with as many layers 

as we specify, along with the activation function 

provided by us.

	 4.	 It begins training with the training data to recognize 

the similarities and differences between each image 

and segregate them accordingly.

	 5.	 It then tests its accuracy with the test data to see how 

well it has learned the difference between each image.

	 6.	 It carries out inference to make sure that its 

prediction is correct.

�The Dataset
The dataset that we will be using in this program is the MNIST dataset. The 

full name of MNIST is Modified National Institute of Standard Technology. 

It is a set of handwritten digits (from 0 to 9). It is used to train models for 

handwriting recognition.
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It is, as can be understood by the name, a modified version of the previous 

NIST datasets. The great part about it is that it is pre-divided into training data 

and test data. The training dataset consists of 60,000 images, while the test 

dataset consists of 10,000 images. They are all of size 28x28 pixels.

It has become a standard database that is used to practice image 

classification. It is tightly integrated with Keras and TensorFlow, making 

it readily available and easy to call into the model. It is great for teaching 

machine learning to beginners as the data is already manipulated and 

divided, making the rest of the program easy to do.

�The API
We will be using the Keras API within TensorFlow, as it makes our work 

easier by providing us with the necessary utilities for creating our neural 

network.

�The Activation Functions
We will be using the Softmax activation function only, since we have just a 

single layer.

�The Optimizer
We will be using the Adam optimizer in this neural network.

�The Program
Step 1: Open a new Python 3 Jupyter notebook.

We will start by opening a brand new Python 3 Jupyter notebook. 

We need to make sure that it is in the correct environment. We can also 

give it a name if we want to. Something like “My First Neural Network” or 

“Programming with TensorFlow 2.0” would suffice.
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Step 2: Import TensorFlow into your kernel.
In the first “Code” cell that appears, we type in the following:

import tensorflow as tf

This will call the TensorFlow library into our kernel, allowing us to  

use it.

Step 3: Load the MNIST dataset.
We now need to call the dataset into our Jupyter notebook. We do this 

by typing the following:

data = tf.keras.datasets.mnist

(ip_train, op_train), (ip_test, op_test) = data.load_data()

This tells the program to call the dataset from within the library, and 

to load it into the kernel. As you can see, we have begun making use of the 

Keras API as well. ip_train and ip_test are nothing but the training and 

test data for the inputs. Similarly, op_train and op_test are the training 

and test data for the outputs.

Step 4: Prepare the data.
Now, as mentioned earlier, we need not manipulate our data too 

much, since that has already been done for us. However, we do need to 

normalize our data. This makes sure that the pixel values of the images 

range between 0 and 1. We do this by dividing each element of the dataset 

by 255, as shown here:

ip_train, ip_test = ip_train / 255.0, ip_test / 255.0

Step 5: Build the neural network.
We will now begin creating the architecture of our neural network. 

We start by flattening the input images (making them one-dimensional), 
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after which we add one dense layer. This layer uses the Softmax activation 

function. See the following:

model = tf.keras.models.Sequential([

     tf.keras.layers.Flatten(input_shape = (28,28)),

     tf.keras.layers.Dense(10, activation = 'softmax')

])

The number of neurons in the last dense layer depends on the number 

of outputs (labels) that we are expecting. In this case, we expect ten 

outputs (the number of digits ranging from 0 to 9), and hence, the number 

of neurons is ten.

Step 6: Compile the model.
We compile our model by selecting the loss function, optimizer, and 

the metrics.

Loss function:
This measures the accuracy of the model during training. We need to 

minimize this function to ensure that the model is on the right path.

There are three main loss functions that we will be using:

	 1.	 binary_crossentropy: This is the default loss 

function that is used for binary classification.

	 2.	 categorical_crossentropy: This is the default loss 

function that is used for multi-class classification.

	 3.	 sparse_categorical_crossentropy: This is used 

for multi-class classification, without the need of 

using one hot encoding.

Optimizer:
Depending on the data and the loss function, the model makes 

changes to itself to produce the most optimal results. The optimizer is used 

to alter the value of the weights in order to minimize the loss function.
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Metrics:
This keeps a check on the steps that the model takes doing training and 

testing. The “accuracy” option considers the number of images that are 

correctly recognized and classified.

To compile the model, we type in the code as follows:

model.compile(optimizer = 'adam',

                         loss = 'sparse_categorical_crossentropy',

                         metrics = ['accuracy'])

Here, we use the adam optimizer, the sparse_categorical_cross_

entropy loss function, and accuracy metrics.

Step 7: View the model.
This is more of an optional step. We can use it to view a summary of the 

model’s structure.

model.summary()

We will get a mini report, like in Figure 11-6.

This report shows us the type of layers, the output and shape, and 

the number of parameters in each layer. We also get a count of the total 

parameters, along with the number of trainable and non-trainable 

parameters.

Figure 11-6.  A summary of the model
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Step 8: Train the model.
We can now “fit” our model with the help of this line of code:

model.fit(ip_train, op_train, epochs = 6)

Fitting the model is the process of helping the model understand the 

relationship between its inputs, parameters, and predicted outputs so that 

it can make better predictions in the future.

This step begins the training. The model takes the input data and fits it 

through its neural network for a total of six epochs, as specified.

An epoch is one full cycle of passing the entire data through the model.

While training, the code displays the loss, as well as the accuracy  

(out of 1.0), as shown in Figure 11-7.

Step 9: Test the model.
To evaluate how good our model is, we need to test it. We use the test 

data this time and run it through the newly obtained parameters, using the 

following code:

model.evaluate(ip_test, op_test)

This runs the data through a single epoch and gives an output 

displaying the loss, as well as the accuracy, as shown in Figure 11-8.

Figure 11-7.  Training the model through six epochs
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As we can see, the accuracy here is above 90 percent, which is quite 

good for a single-layer model, even if it’s not 100 percent accurate.

Let’s carry out inference now to see how well our model can recognize 

handwritten digits that are fed to it.

Step 10: Carry out inference.
To do this, we will be using two extra libraries: Matplotlib and Numpy. 

We won’t be getting into the details of these libraries, but will just utilize a 

few of their functions.

Start by importing the Matplotlib library into the Jupyter notebook, like 

this:

import matplotlib.pyplot as plt

%matplotlib inline

Next, call the image to be tested from the MNIST dataset and save it 

under a variable, like this:

test_image=ip_test[9999]

The number within the square brackets can be any value from 0 to 

9,999 (The total number of test images is 10,000, remember?).

Now plot the image of the selected element by entering the code,  

like this:

plt.imshow(test_image.reshape(28,28))

This will display the output shown in Figure 11-9.

Figure 11-8.  Testing the model
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When we look at the image, we can recognize it as the number 6. 

However, we need to check if the computer is able to do that as well.

Import the Numpy library, followed by the image function under Keras:

import numpy as np

from tensorflow.keras.preprocessing import image

Convert the image into a Numpy array, like this:

test_image = image.img_to_array(test_image)

Reshape the test image like this:

test_image = test_image.reshape(1,28,28)

Store the result of the model’s prediction under a variable, and then 

call that variable to display the prediction, like this:

result = model.predict(test_image)

result

Figure 11-9.  Plotting the image
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We will get an output like this:

array([[8.8958717e-07, 4.1242576e-14, 6.5094580e-05, 

3.4720744e-09,

        �4.7850153e-07, 7.9171368e-06, 9.9992573e-01, 

7.4808004e-13,

        3.1107348e-08, 2.5647387e-11]], dtype=float32)

Round off the array elements using the following Numpy function:

np.around(result)

We will get the rounded off values of the array, as shown here:

array([[0., 0., 0., 0., 0., 0., 1., 0., 0., 0.]], 

dtype=float32)

Now, to find the element that gives the maximum value among all the 

elements of the array, we use the following code:

(np.around(result)).argmax()

This gives the output like this:

6

As we can see, the highest value of 1 is located in the sixth position 

(arrays start from 0, not 1). Thus, we can verify that the model has 

predicted the answer correctly.

Note  Just remember that sometimes, when you execute the “Code” 
cell containing your model, you may not get any error. However, when 
you try to run the code to train the model, an error might come up, 
which means you will need to go back and check your model and the 
parameters before you can train it.
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And there we have it! We have just created our first neural network with 

the help of TensorFlow 2.0.

It’s quite tempting to just stop here and feel thrilled that we are done. 

But a single-layer neural network is only the first step in deep learning. In 

practical applications, most neural networks require more than a single 

layer to get a really great result. Let’s see how to build such a model in the 

next program.

�Program 3: Clothing Classification Using Keras 
in TensorFlow (Multi-layer, Multi-class)
In this modern generation, clothing has become one of the top priorities 

for most people. When it comes to business, fashion is one very important 

industry, considering how much individuals are willing to invest on the 

kind of clothes they wear. Now just imagine what would happen if we 

integrated artificial intelligence with this already booming industry—the 

entire sector would be transformed.

It’s definitely an interesting area to get into, since it has so much scope 

for new innovations. For now, we will get a little taste of it by building a 

neural network to classify images of clothing.

In this program, we will be doing pretty much the same things we did 

previously, but with a different dataset and a few extra layers. We will also 

add a few more lines of code, just to explore some new functions under 

TensorFlow. The general structure, API, and optimizer all remain the same 

or at least are similar here, so we will skip that part and go ahead to the rest 

of the program.
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�The Dataset
The dataset that we will be using for this program is the Fashion MNIST 

dataset.

This dataset is a part of Zalando’s research images and can be used 

instead of the original MNIST dataset to train an image classification model.

It is a set of 60,000 training images and 10,000 test images. Each is a 

28x28 greyscale image of an item of clothing. Altogether, there are ten 

classes in the dataset.

�The Activation Functions
In this program, we will use two activation functions:

	 1.	 ReLU

	 2.	 Softmax

�The Program
Step 1: In a new Jupyter notebook, import the TensorFlow library and 
Keras utilities.

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

By adding this extra import step, we now no longer have to keep typing 

“tf.keras” before calling each function. We can just call it directly, as you 

will see in the next step.

Step 2: Load the Fashion MNIST dataset.
We can load the Fashion MNIST dataset into our Jupyter notebook like 

this:

data = datasets.fashion_mnist

(ip_train, op_train), (ip_test, op_test) = data.load_data()
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Step 3: Check the shape of the images.
This displays the shape of the training and test input data.

print(ip_train.shape, ip_test.shape)

As we can see, it has three dimensions here: the number of images in 

the set, the width, and the height.

Step 4: Reshape the input values.
Usually, we have datasets with images that are colored. This means 

that all three RGB (Red Green Blue) channels are available. Now in 

TensorFlow, an image that is fully colored has a depth of 3. However, the 

Fashion MNIST dataset consists of greyscale images, which means it is just 

black and white. Thus, it has a depth of 1.

In this step, we reshape the images from having a dimension of (n, 

width, height) to having a new dimension of (n, width, height, depth), 

where n is the number of images in the set.

The code will look like this:

ip_train = ip_train.reshape((60000, 28, 28, 1))

ip_test = ip_test.reshape((10000, 28, 28, 1))

print(ip_train.shape, ip_train.shape)

Now when we display the reshaped data, it will show four dimensions.

Step 5: Prepare the data.
Once again, we need to normalize the data, as shown here:

ip_train, ip_test = ip_train / 255.0, ip_test / 255.0

Step 6: Build the neural network.
This time, we will add two extra dense layers to our neural network, 

with 128 and 1,000 neurons in them respectively, and each having the 

activation function ReLu. We will also add an extra “dropout layer” before 

the final layer, which helps to prevent overfitting.
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model = models.Sequential([

    layers.Flatten(input_shape=(28, 28, 1)),

    layers.Dense(128, activation='relu'),

    layers.Dense(1000, activation='relu'),

    layers.Dropout(0.5),

    layers.Dense(10, activation='softmax')

])

Step 7: Compile the model.
Before fitting the model, we compile the model, like this:

model.compile(optimizer = 'adam',

                         �loss = 'sparse_categorical_

crossentropy',

                         metrics = ['accuracy'])

Step 8: View the model.

model.summary()

We will get the summary of the model, like in Figure 11-10.

Figure 11-10.  Summary of the model
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Step 9: Train the model.

model.fit(ip_train, op_train, epochs = 5)

The model will begin training through five epochs, as shown in 

Figure 11-11.

Step 10: Test the model.
In this step, we will use something called verbose.

The verbose command is used to provide information about a 

particular task.

We can alter the amount of information that we get by setting verbose 

at either 1 or 2.

At 0, we get nothing.

At 1, we get a progress bar and the number of epochs, along with the 

loss and accuracy.

At 2, we get only the number of epochs along with the loss and 

accuracy, without the progress bar.

model.evaluate(ip_test, op_test, verbose = 2)

We will obtain an output as shown in Figure 11-12.

Figure 11-11.  Training the model through five epochs
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Step 11: Carry out inference.
First, we need to define a list in which we mention the class names, 

since these are not given in the dataset. The list can be found on the 

TensorFlow website.

We create the list like this:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 

'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

Following the same code as before, we can check the accuracy of our 

model

:import matplotlib.pyplot as plt

%matplotlib inline

test_image=ip_test[5000]

plt.imshow(test_image.reshape(28,28))

This will give us the test image shown in Figure 11-13.

Figure 11-12.  Evaluating the model
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We can now proceed to convert the image into a NumPy array, reshape 

it, pass it through our model, and obtain a prediction.

import numpy as np

from tensorflow.keras.preprocessing import image

test_image = image.img_to_array(test_image)

test_image = test_image.reshape(1, 28, 28, 1)

result = model.predict(test_image)

result

np.around(result)

n=(np.around(result)).argmax()

print(n)

This gives us the following output:

2

Figure 11-13.  The test image

Chapter 11  Machine Learning Programming with Tensorflow 2.0



254

This output is very vague. All it tells us is the position of the predicted 

class, but not what the actual item of clothing is. Thus, we add an extra line 

of code:

print(class_names[n])

This will give us the following output:

Pullover

In this way, we print the value at the nth position of the list, which in 

this case is “Pullover.”

So, there we have it! We have built our very first multi-layer neural 

network that can classify images with an accuracy of close to 90 percent.

Task Time  We have just completed building two neural networks 
that can carry out multi-class image classification. One of them is 
a single-layer neural network, while the other is multi-layered. Can 
you try interchanging the datasets to see how the model’s accuracy 
changes based on the number of layers? And, once you have done 
that, try changing the number of layers, as well as the number of 
epochs. What’s the highest accuracy you are able to achieve?

We will now move forward to a very interesting concept that we 

learned about in the beginning of the book, which is convolutional neural 

networks.

As you might remember, CNNs use convolution layers and pooling 

layers to process the given data. The great thing about them is that they can 

process 2D images and detect important features very easily. This is why 

they are frequently used with image classification problems.

Let’s have a look at some convolutional neural networks to see how 

well they work for image classification.
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�Program 4: Clothing Classification Using 
Convolutional Neural Networks (Multi-layer, 
Multi-class)
The structure for this model is similar to the previous ones. The only major 

difference is that the neural network will now have convolution layers and 

pooling layers.

�The Structure
Here is how the CNN model works for image classification:

	 1.	 It loads the given dataset of images.

	 2.	 It divides the data into the training set and the test set.

	 3.	 It creates the convolutional neural network with as 

many layers as we specify, along with the activation 

function provided by us.

	 4.	 It also creates the last dense layer and the output 

layer with the parameters provided by us.

	 5.	 It then begins training with the training data to 

recognize the similarities and differences between 

each image and segregate them accordingly.

	 6.	 Finally, it tests its accuracy with the test data to see 

how well it has learned the differences between 

each image.
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�Dataset
The dataset that we will be using for this program is the Fashion MNIST 

dataset.

�API
We will be using the Keras API within TensorFlow.

�The Activation Functions
We will be using two activation functions here:

	 1.	 ReLU

	 2.	 Softmax

�The Optimizer
We will be using the Adam optimizer in this neural network.

�The Program
Step 1: Import the TensorFlow library and Keras utilities.

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

Step 2: Load the Fashion MNIST dataset.

data = datasets.fashion_mnist

(ip_train, op_train), (ip_test, op_test) = data.load_data()
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Step 3: Check the shape of the images.

print(ip_train.shape, ip_test.shape)

Step 4: Reshape the input values.

ip_train = ip_train.reshape((60000, 28, 28, 1))

ip_test = ip_test.reshape((10000, 28, 28, 1))

print(ip_train.shape, ip_test.shape)

Now when we display the reshaped data, it will show four dimensions.

Step 5: Prepare the data.
Once again, we must normalize the data by dividing it by 255.

ip_train, ip_test = ip_train / 255.0, ip_test / 255.0

Step 6: Build the convolutional neural network.
Here is where the main difference comes in. Since we are making 

a CNN model, the neural network will require convolution layers and 

pooling layers.

model=models.Sequential()

model.add(layers.Conv2D(32,(3,3), activation="relu", input_shape=(28,28,1)))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(64,(3,3), activation="relu"))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(64,(3,3), activation="relu"))

As you can see, we have three convolution layers and two max pooling 

layers. We use the ReLU activation function for all the convolution layers. 

There is also no need to flatten the images before feeding them to the 

model, as CNNs can process two-dimensional data. This is why we use 

Conv2D instead of Conv1D.
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The first convolution layer consists of 32 filters or kernels, each of size 

3x3. The output from this layer gets passed on to the pooling layer with a 

filter of size 2x2. Likewise, the output gets transferred to each successive 

layer, until it reaches the last convolution layer.

Step 7: Add the final dense layer and output layer.
We must now add the last fully connected layer, followed by the output 

layer. Here, we need to flatten the input first before feeding it to the dense 

layer.

The dense layer will have the ReLU activation function and 64 neurons.

The last layer here is called the classification layer. It uses a Softmax 

activation function and will have ten neurons, corresponding to the 

number of outputs or classes that we will obtain.

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))

Step 8: Compile the model.

model.compile(optimizer = 'adam',

                         �loss = 'sparse_categorical_

crossentropy',

                         metrics = ['accuracy'])

Step 9: View the model.

model.summary()

We will get the summary of the CNN model, as shown in Figure 11-14.
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Step 10: Train the model.

model.fit(ip_train, op_train, epochs = 5)

This will begin training the model through five epochs, as shown in 

Figure 11-15.

Figure 11-14.  Summary of the CNN model

Figure 11-15.  Training the model
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Step 11: Test the model.

model.evaluate(ip_test, op_test, verbose = 1)

This will test the model to show its accuracy, as shown in Figure 11-16.

There you have it! The image classification model using a 

convolutional neural network is now complete. You can play around with 

it to add or remove layers, and to change the parameters as well.

Let’s take a look at another example of a CNN model.

�Program 5: Handwriting Recognition Using 
Convolutional Neural Networks (Multi-layer, 
Multi-class)
The structure, API, activation functions, and optimizer will remain the 

same. However, we will try this program with another dataset. This time, 

we will also add the code for inference.

�Dataset
The dataset that we will be using for this program is the regular MNIST 

dataset.

Figure 11-16.  Testing the CNN model
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�The Program
Step 1: Import the TensorFlow library and Keras utilities.

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

Step 2: Load the MNIST dataset.

data = datasets.mnist

(ip_train, op_train), (ip_test, op_test) = data.load_data()

Step 3: Reshape the input values.

ip_train = ip_train.reshape((60000, 28, 28, 1))

ip_test = ip_test.reshape((10000, 28, 28, 1))

print(ip_train.shape, ip_test.shape)

Step 4: Prepare the data.

ip_train, ip_test = ip_train / 255.0, ip_test / 255.0

Step 6: Build the convolutional neural network.
Once again, we must add the convolution and max pooling layers.

model=models.Sequential()

model.add(layers.Conv2D(30,(3,3), activation="relu", input_shape=(28,28,1)))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(60,(3,3), activation="relu"))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(90,(3,3), activation="relu"))
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Step 7: Add the final dense layer, dropout layer, and output layer.

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(10, activation='softmax'))

Step 8: Compile the model.

model.compile(optimizer = 'adam',

                         loss = 'sparse_categorical_crossentropy',

                         metrics = ['accuracy'])

Step 9: View the model.

model.summary()

Step 10: Train the model.

model.fit(ip_train, op_train, epochs = 5)

Step 11: Test the model.

model.evaluate(ip_test, op_test, verbose = 1)

Step 12: Carry out inference.
Import the Matplotlib library into the Jupyter notebook like this:

import matplotlib.pyplot as plt

%matplotlib inline

Select the test image:

test_image=ip_test[180]

Plot the image:

plt.imshow(test_image.reshape(28,28))

We will get the image shown in Figure 11-17.
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Import the Numpy library and the image function under Keras:

import numpy as np

from tensorflow.keras.preprocessing import image

Convert the test image into an array and reshape it:

test_image = image.img_to_array(test_image)

test_image = test_image.reshape(1,28,28,1)

Allow the model to predict the class of the image:

result = model.predict(test_image)

result

Round off the results and find the maximum value among them:

np.around(result)

(np.around(result)).argmax()

We will get the output as 1. This shows that the model has correctly 

predicted the class of the image.

Figure 11-17.  Plotting the image
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There we have it! Our second CNN model is now complete. By 

changing the parameters, we can play around with it to see how high the 

accuracy can get.

Now, let’s try one last program just to challenge ourselves. This time, 

we will use a brand new dataset; i.e., CIFAR-10.

�Program 6: Image Classification for CIFAR-10 
Using Convolutional Neural Networks  
(Multi-layer, Multi-class)
Before we begin this program, let’s have a look at the dataset that we will 

be working with.

�The Dataset
The dataset that we will be using in this program is CIFAR-10, which stands 

for Canadian Institute For Advanced Research. It is a collection of 60,000 

color images, each of size 32x32. There are ten different classes, with 6,000 

images within each class. There are 50,000 training images and 10,000 test 

images.

The ten different classes are airplanes, cars, birds, cats, deer, dogs, 

frogs, horses, ships, and trucks. Researchers can quickly train machine 

learning and computer vision models with the help of this dataset.

Everything else is similar to the previous CNN programs, so let’s just 

go ahead with the program. Since by now the different steps involved in 

creating the model should be clear, we need not go through this program 

step-by-step. We will directly type in each line of code.
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�The Program
Let’s start by writing the code to build, train, and test the model, as follows:

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

from tensorflow.keras.datasets import cifar10

(ip_train, op_train), (ip_test, op_test) = cifar10.load_data()

print(ip_train.shape, ip_test.shape)

ip_train = ip_train.reshape(ip_train.shape[0], 32, 32, 3)

ip_test = ip_test.reshape(ip_test.shape[0], 32, 32, 3)

ip_train, ip_test = ip_train / 255.0, ip_test / 255.0

model=models.Sequential()

model.add(layers.Conv2D(32,(3,3), activation="relu", input_shape=(32,32,3)))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(64,(3,3), activation="relu"))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(64,(3,3), activation="relu"))

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer = 'adam',

                         loss = 'sparse_categorical_crossentropy',

                         metrics = ['accuracy'])

model.summary()

model.fit(ip_train, op_train, epochs = 10)

model.evaluate(ip_test, op_test, verbose = 2)
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Now let’s write the code for inference:

import matplotlib.pyplot as plt

%matplotlib inline

test_image=ip_test[20]

Remember, the number within the square brackets can be changed 

accordingly, to select different test images.

plt.imshow(test_image.reshape(32,32,3))

import numpy as np

from tensorflow.keras.preprocessing import image

classes = ["airplane", "automobile", "bird", "cat", "deer", 

"dog", "frog", "horse", "ship", "truck"]

test_image = image.img_to_array(test_image)

test_image = test_image.reshape(1,32,32,3)

result = model.predict(test_image)

result

np.around(result)

n=(np.around(result)).argmax()

print(classes[n])

When I ran the inference, I got two different outcomes:

•	 The first test image was that of a horse, and the model 

was able to correctly identify the image.

•	 The second image was that of a bird, but the model 

classified it as an airplane instead.
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Try changing the test image and then carry out inference. Are you able 

to get an accurate prediction?

Task Time  You can find some great open source datasets online 
that you can easily download and use for non-commercial purposes. 
Try getting some new datasets and load them into your Jupyter 
notebook. Then, create a deep learning CNN model to classify the 
images. Keep playing around with the parameters, add or remove 
layers, and see how accurate you can make it!

Most deep learning models are used for multi-class classification. 

However, what if there were a need for binary classification, in which there 

are only two classes? Usually, these kinds of models are used for problems 

where the answer is either “yes” or “no.” For example:

•	 Is the motorist wearing a helmet?

•	 Is the light bulb on?

•	 Is the email spam?

That said, let’s go through a program in which we will carry out binary 

classification using convolutional neural networks. The dataset that we will 

be using is the “Dogs vs. Cats” dataset from Kaggle.

�Program 7: Dogs vs. Cats Classification Using 
Convolutional Neural Networks (Multi-layer, 
Binary)
In this program, we will train the model to differentiate between a dog 

and a cat. This seems like a trivial task for the human brain, but for the 

machine, it may not be so easy. Remember in Program 1, where we used 

two pre-trained models and carried out inference on the image of a kitten? 
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For the first image, they identified it correctly as an Egyptian Cat. For 

the second image, however, one predicted that the image was that of a 

Chihuahua, while the other said that it was a Pembroke Welsh Corgi.

The reason for this is probably because all three breeds have pointed 

ears and small features. Although this doesn’t make much of a difference 

to us, it does make a huge impact on an artificially intelligent machine, 

because every little feature is important for a deep learning model’s 

learning process.

Let’s have a look at our dataset.

�The Dataset
The “Dogs vs. Cats” dataset can be found on the Kaggle website. It consists 

of a total of 25,000 images of dogs and cats. Although we do not know 

how the images are separated out initially, we will find this out during the 

program.

�The Program
Step 1: Import all the required libraries and functions into Jupyter 
Notebook.

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D

from tensorflow.keras.layers import MaxPooling2D

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Dense

import os

The os module allows users to interact with the operating system.
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This time, we will create our model first, after which we will download 

the dataset.

Step 2: Develop the CNN model and compile it.
Here, we refer to our model as classifier. We can put any name we 

want, provided it is easily understood by anyone who reads it.

classifier = Sequential()

classifier.add(Conv2D(64,(3,3),input_shape = (64,64,3), 

activation = 'relu'))

classifier.add(MaxPooling2D(pool_size = (2,2)))

classifier.add(Conv2D(64,(3,3), activation = 'relu'))

classifier.add(MaxPooling2D(pool_size = (2,2)))

classifier.add(Conv2D(64,(3,3), activation = 'relu'))

classifier.add(MaxPooling2D(pool_size = (2,2)))

classifier.add(Flatten())

classifier.add(Dense(units = 128, activation = 'relu'))

classifier.add(Dense(units = 1, activation = 'sigmoid'))

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = 

['accuracy'])

Step 3: Transform the imported data.

from tensorflow.keras.preprocessing.image import 

ImageDataGenerator

train_datagen = ImageDataGenerator(

        rescale=1./255,

        shear_range=0.2,

        zoom_range=0.2,

        horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255)
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Step 4: Download the dataset.
The dataset needs to be downloaded from a specific link. In this 

section of code, we tell our program to download the data from the given 

url, and then we store it on our system.

_URL = 'https://storage.googleapis.com/mledu-datasets/cats_and_

dogs_filtered.zip'

path_to_zip = tf.keras.utils.get_file('cats_and_dogs.zip', 

origin=_URL, extract=True)

PATH = os.path.join(os.path.dirname(path_to_zip), 'cats_and_dogs_filtered')

Step 5: Set up the directories.
We need to set up different directories for the training and testing data, 

and then separate out the cat and dog images accordingly.

trainingdir = os.path.join(data_path, 'train')

testingdir = os.path.join(data_path, 'validation')

# directory with the training cat pictures

cats_train = os.path.join(trainingdir, 'cats')

# directory with the training dog pictures

dogs_train = os.path.join(trainingdir, 'dogs')

# directory with the testing cat pictures

cats_test = os.path.join(testingdir, 'cats')

# directory with the testing dog pictures

dogs_test = os.path.join(testingdir, 'dogs')

Step 6: Find the number of elements in each directory.
We first find the number of elements directories in each directory, and 

then we display the values.
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cats_train_num = len(os.listdir(cats_train))

dogs_train_num = len(os.listdir(dogs_train))

cats_test_num = len(os.listdir(cats_test))

dogs_test_num = len(os.listdir(dogs_test))

train_tot = cats_train_num + dogs_train_num

test_tot = cats_test_num + dogs_test_num

print(cats_train_num)

print(dogs_train_num)

print(cats_test_num)

print(dogs_test_num)

print(train_tot)

print(test_tot)

We should get output like this:

1000

1000

500

500

2000

1000

Step 7: Load the training data and testing data, and display the label 
map.

We load the training and testing images directories, and add the batch 

size, target size, and class mode as needed. Here, we set the batch size to 

be 128, and the target size to be 64x64.
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For the training data:

train_data = train_datagen.flow_from_directory(batch_size=128,

                                                           directory=trainingdir,

                                                           target_size=(64, 64),

                                                           class_mode='binary')

This will give an output like this:

Found 2000 images belonging to 2 classes.

For the testing data:

test_data = test_datagen.flow_from_directory(batch_size=128,

                                                              directory=testingdir,

                                                              target_size=(64, 64),

                                                              class_mode='binary')

This will give an output like this:

Found 1000 images belonging to 2 classes.

We then display the numerical identities of the two classes, as shown 

here:

label_map = (train_data.class_indices)

print(label_map)

This gives us an output like this:

{'cats': 0, 'dogs': 1}

Thus, 0 refers to the cats class, while 1 refers to the dogs class.

Step 8: Train the model.
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We can now start training our model. We will run it through thirty 

epochs this time:

classifier.fit(

        train_data,

        epochs=30,

        validation_data=test_data)

After thirty epochs, I got a validation accuracy of 77 percent. You can 

try changing the number of epochs to see if that has any significant effect 

on your model.

Once the model is done training, we can carry out inference and see 

how well the model works.

Step 9: Carry out inference.
For this process, we will use two pictures of our own: one of a cat and 

one of a dog.

We will begin by importing the necessary packages, as follows:

import numpy as np

from tensorflow.keras.preprocessing import image

Now, let us load our images into our program. The images have already 

been saved in the same folder as the program, so there is no need to add 

the entire file path. Just the file’s name shall suffice.

test_image_1= image.load_img('Dog.jpeg', target_size = (64,64))

test_image_2= image.load_img('Cat.jpeg', target_size = (64,64))

We can then display the test images separately, as shown in Figure 11-18 

and Figure 11-19.
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test_image_1

test_image_2

We now type in the rest of the code, as follows:

test_image_1 = image.img_to_array(test_image_1)

test_image_2 = image.img_to_array(test_image_2)

test_image_1 = test_image_1.reshape(1,64,64,3)

test_image_2 = test_image_2.reshape(1,64,64,3)

result1 = model.predict(test_image_1)

result2 = model.predict(test_image_2)

print(result1, result2)

Figure 11-18.  A dog image

Figure 11-19.  A cat image
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Now, to print the predictions we type in the following code for the first 

image:

if result1 == 1:

    prediction1 = 'dog'

else:

   prediction1 = 'cat'

print(prediction1)

This gives the following output:

'dog'

Now when we run the following code:

if result2 == 1:

    prediction2 = 'dog'

else:

   n2 = 'cat'

print(prediction2)

We get the following output:

'cat'

And that’s it! The binary neural network is ready. We can keep altering 

different parts of the code to increase the accuracy until we reach a result 

that is satisfactory.
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Note  In some cases, you may also need to install the “pillow” 
library (Python Imaging Library, abbreviated as “PIL”), as this provides 
support to work with images of various formats. It’s easy to install it 
using pip: pip install pillow

The great thing about these machine learning models is that the 

structure pretty much remains the same for all types of data. What we need 

to know is how to prepare and manipulate the data before feeding it to the 

model. As we try out these programs on our own, with different datasets 

and modified input layers and values, the entire process will become much 

easier to do. Just don’t forget to consistently practice, as this will help you 

to improve your skills and become proficient in what you do.

�Summary
In this chapter, we learned all about how we can build, train, and validate 

our deep learning models using TensorFlow and the Keras API, all with 

the help of Jupyter Notebook. We understood the general structure of 

a working machine learning model, and we also got better acquainted 

with Keras. We then differentiated between the types of classification 

problems—binary and multi-class—and had a quick introduction to image 

classification. Finally, we wrote seven different programs to enhance 

what we have learned so far, of which one program involved a pre-trained 

model, one program included binary classification, one program was 

single layered, and the rest of the programs carried out multi-layer multi-

class classification.

These programs are a great start for anyone who is new to the world 

of TensorFlow 2.0. Don’t worry if you aren’t able to understand them 

immediately. As you keep playing around with them on your own, they 

will make much more sense to you. You can use these models as a starting 
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point to develop your own neural networks for different datasets. And, 

once you get more and more comfortable with programming, you can 

begin adding your own changes to them to create even more professional 

models.

�Quick Links
The MNIST dataset: http://yann.lecun.com/exdb/

mnist/

The Fashion MNIST dataset: https://github.com/

zalandoresearch/fashion-mnist

The CIFAR-10 dataset: https://www.cs.toronto.

edu/~kriz/cifar.html

The Dogs vs. Cats dataset: https://www.kaggle.

com/c/dogs-vs-cats/data

About Keras: https://keras.io/

Keras optimizers: https://keras.io/optimizers/
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�Conclusion

In this book, we started by learning what Artificial Intelligence, Machine 

Learning, and Deep Learning are. We saw their applications and went 

through their important concepts. We also compared Machine Learning 

with Deep Learning to find out exactly how they differ even though the 

latter is a subset of the former.

We then came to know about the different platforms that we can use to 

program, and had a look at their varying features. This led us to the Jupyter 

Notebook application. We learned what it is, why it is recommended to be 

used instead of a text editor or a regular IDE, and what its advantages and 

disadvantages are. We also explored its features and practiced using it for 

some basic Python programming techniques.

After this, we were introduced to TensorFlow, which is a very 

important Machine Learning library in Python. We saw how it has worked 

so far, and studied its pros and cons. We even went through its features as 

we had a look at some simple Python programming using TensorFlow 1.0.

Finally, we learned about TensorFlow 2.0. We studied its updates and 

changes, how it varies from its parent version, and how our old TensorFlow 

1.0 code can be converted into TensorFlow 2.0 code. We compared 

features, as well as coding syntax. We even developed some Machine 

Learning models with the help of TensorFlow, which included regular 

Neural Networks and Convolutional Neural Networks. These models were 

trained with some data, validated, and then used for inference.

The overall aim of this book is to help AI enthusiasts, especially 

beginners, to learn how to code in Python, using TensorFlow 2.0, with 

the help of the Jupyter Notebook. It’s a three in one package, as you gain 

the knowledge of a popular programming language, a powerful Machine 
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Learning library within that language, and a convenient interface that 

allows you to write working code on it. The programs in the last chapter 

are also intended to boost your understanding to a greater extent. By the 

time you complete this book, you should feel confident enough to pursue 

higher levels within the field of Artificial Intelligence. You can even go 

ahead and share the knowledge that you have gained with others!

Since its conception, Artificial Intelligence has always been an area 

that is looked at with great optimism and enthusiasm. Despite the few 

minor hitches here and there, it has proven its worth through its many 

successful applications. AI enthusiasts continue to remain motivated, 

especially in these modern times, where technology has vastly improved, 

allowing AI to be used to a greater extent.

The importance of Artificial Intelligence is rapidly spreading out 

and reaching more and more people, and many are expanding their 

knowledge of this area in order to jump on the bandwagon. This can have 

both positive and negative consequences - Positive, because there is more 

workforce available in the area; Negative, because there might be too 

much competition but less expertise. With the right skilled labour, better 

AI can be developed, and many more implementations can be introduced.

Artificial Intelligence is a never-ending topic of interest. Once we take 

a step into it, we cannot just take a step out and walk away. The whole 

concept of creating machines that can think and respond like human 

beings has and will continue to intrigue the human mind. There doesn’t 

seem to be any chance of putting an end to its research and development 

in the near or distant future, making it one of the most highly-demanded 

fields, in terms of study as well as employment.

There are still many questions that are yet to be answered -

Will it lead to a state of utopia or dystopia?

Will it ever completely replace manual labour with machine-delivered 

work?

Will there ever be robots that can perfectly think, act, behave, and 

express like human beings?
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Will there ever be a point at which AI just cannot be improved further?

Can AI become powerful enough to take over the world?

Apart from making interesting plots for science-fiction stories, 

questions like these can also provide us with interesting insights that can 

help us to improve the integration of AI in the future. Ultimately, even 

if Artificial Intelligence becomes powerful enough to simulate living 

beings, nothing can truly replace the natural intelligence that only human 

beings are blessed with. It is up to us, how we build and develop our 

machines. Thus, by ensuring the proper use of our resources, efforts, and 

of course, our natural intelligence, as well as by keeping good intentions 

and objectives in mind, we can successfully produce groundbreaking 

artificially intelligent technology that can improve our standard of living 

and radically transform our everyday life.
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