
Machine Learning
Concepts with Python
and the Jupyter Notebook
Environment

Using Tensorflow 2.0
—
Nikita Silaparasetty

Machine Learning
Concepts with Python

and the Jupyter
Notebook

Environment
Using Tensorflow 2.0

Nikita Silaparasetty

Machine Learning Concepts with Python and the Jupyter Notebook
Environment: Using Tensorf low 2.0

ISBN-13 (pbk): 978-1-4842-5966-5		 ISBN-13 (electronic): 978-1-4842-5967-2
https://doi.org/10.1007/978-1-4842-5967-2

Copyright © 2020 by Nikita Silaparasetty

This work is subject to copyright. All rights are reserved by the publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science + Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5966-5. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Nikita Silaparasetty
Bangalore, India

https://doi.org/10.1007/978-1-4842-5967-2

iii

Table of Contents

Part I: Artificial Intelligence, Machine Learning, and
Deep Learning���1

Chapter 1: �An Overview of Artificial Intelligence����������������������������������3

Artificial Intelligence Primer��3

The Inception of Artificial Intelligence��4

1930s–1940s: Over the Years���4

1950s: Discoveries and Breakthroughs��5

1960s–1970s: Advanced AI���6

1970s–1980s: The First AI Winter���6

1980s–early 1990s: The Revival and the Second AI Winter������������������������������7

Late 1990s: AI Reborn���8

Pros and Cons of Artificial Intelligence��9

The Pros���9

The Cons���10

Challenges Faced by Artificial Intelligence���11

The AI Winter��11

The First AI Winter (1974–1980)���12

The Second AI Winter (1987–1993)��13

About the Author���xv

About the Technical Reviewer���xvii

Acknowledgments��xix

Introduction��xxi

iv

AI Ethics���14

Scenario 1: Deepfakes��14

Scenario 2: Making Decisions��15

Artificial Intelligence and IoT���16

Applications of IoT��17

How Does AI Relate to IoT?���18

Summary���19

Chapter 2: �An Overview of Machine Learning�������������������������������������21
What Is Machine Learning?���21

The Machine Learning Workflow��22

What Is Data Science?���23

Branches of Data Science��23

Big Data��24

Data Analytics���25

Collection of Data���26

Pre-processing Data���28

Types of Data��30

Supervised Learning Algorithms��31

Linear Regression���32

Logistic Regression��33

K-Nearest Neighbors��34

Applications of Supervised Learning Algorithms��34

Unsupervised Learning Algorithms��35

K-Means Clustering��35

Principal Component Analysis��36

Applications of Unsupervised Machine Learning Algorithms�������������������������37

Applications of Machine Learning��38

Summary���39

Table of Contents

v

Chapter 3: �Introduction to Deep Learning���41

Origins of Deep Learning���42

Neural Networks��43

Working of an Artificial Neuron (Perceptron)���45

Step 1: Accepting Inputs���45

Step 2: Setting the Weights and Bias���45

Step 3: Calculating the Net Input Function���45

Step 4: Passing the Values Through the Activation Function��������������������������46

Step 5: Producing the Output���49

Digging Deeper into Neural Networks��49

The Process��50

Additional Concepts��51

Types of Neural Networks��53

Summary���56

Chapter 4: �Machine Learning vs. Deep Learning���������������������������������57

Factors Used When Comparing Machine Learning and Deep Learning���������������58

Differentiating Between Regular Machine Learning and Deep Learning�������������60

Quantity of Data Required��60

Accuracy���61

Computational Power���61

Cognitive Ability��62

Hardware Requirements���63

Time Taken���63

Summary���64

Table of Contents

vi

Chapter 5: �Machine Learning With Python��67

Introduction to Python��68

Key Python Features���69

Python’s Competitors���70

Python as a Preferred Language for Machine Learning���������������������������������71

Python’s Machine Learning Libraries���72

Other Applications of Python��73

Installing Python��74

Installing Python with Anaconda��74

Python Interpreters��78

The Python Shell��81

Opening the Python Shell���81

Exiting the Python Shell��85

Summary���86

Quick Links��87

Part II: The Jupyter Notebook���89

Chapter 6: �Introduction to Jupyter Notebook��������������������������������������91

Understanding the Notebook Interface��92

A Brief History of the Notebook��92

Features of a Notebook��92

Commonly Used Notebooks��93

An Overview of Jupyter Notebook��93

Features of Jupyter Notebook��94

Advantages of Jupyter Notebook���95

Text Editors and IDEs���96

Getting Acquainted with Text Editors��96

Getting Acquainted with the IDE���97

Table of Contents

vii

Features of an IDE��97

Benefits of an IDE���98

Some Popular IDEs���98

IDE vs. Text Editor���99

Jupyter Notebook vs. Other Programming Applications�������������������������������100

Installing Jupyter Notebook��101

Launching Jupyter Notebook���102

Inside a Jupyter Notebook���107

Cell���109

Kernel���111

The Cell Drop-Down Menu��112

The Kernel Drop-Down Menu���113

Additional Information��114

JupyterHub���114

Jupyter nbviewer��115

Voila��115

Google Colaboratory���116

Keyboard Shortcuts��116

Summary���118

Quick Links��118

Chapter 7: �Python Programming in Jupyter Notebook����������������������119

Opening a New Notebook��120

Naming the Notebook��120

Adding a Heading Cell��121

Printing the Output of a Code Cell��121

Taking an Input from a User in a “Code” Cell���122

Calling a Variable���123

Table of Contents

viii

Arithmetic Operations��123

Creating a Function��124

Creating Lists���126

Creating Dictionaries��126

Creating Loops���127

While Loop��127

For Loop��128

Nested Loops��128

Adding Conditional Statements��130

If Statement��130

If-Else Statement��131

Elif Statement���131

Adding Notes Within the Program��132

Deleting a Cell��133

Adding a New Cell��133

Copying a Cell��134

Moving a Cell���135

Merging Cells���135

Splitting a Cell��137

Running All Cells��138

Clearing the Current Output���139

Clearing All Outputs���139

Restarting the Kernel���140

Restarting the Kernel and Clearing the Output��141

Interrupting the Kernel���142

The Help Menu���143

Summary���144

Table of Contents

ix

Part III: The TensorFlow Library��147

Chapter 8: �The Tensorflow Machine Learning Library�����������������������149

TensorFlow at a Glance��150

Tensors���151

Flow��153

Importance of TensorFlow��154

Applications of TensorFlow��154

TensorFlow’s Competitors��155

Advantages and Disadvantages of TensorFlow��156

Advantages���156

Disadvantages��157

Installing TensorFlow���158

Getting to Know “pip”���159

The “pip install” Method���159

Other Useful pip Commands���159

Using “pip install” to Install TensorFlow���160

TensorBoard���163

Exploring the TensorBoard Dashboards��164

TensorBoard.dev���166

Summary���167

Additional Information��168

TensorFlow Dev Summit���168

TensorFlow Blogs���169

The TensorFlow Developer Certificate��170

Quick Links���170

Table of Contents

x

Chapter 9: �Programming with Tensorflow���173

Importing the TensorFlow Library��174

Program 1: Hello World��175

Program 2: Constants, Variables, and Placeholders���176

Part A: Constants and Variables��178

Part B: Placeholders���181

Program 3: Operations in a Computational Graph��184

Program 4: Taking Inputs from a User for a Placeholder�����������������������������������187

Closing the Session��188

Summary���189

Chapter 10: �Introducing Tensorflow 2.0��191

Features of TensorFlow 2.0��192

Eager Execution��192

Introduction of Keras��192

API Cleanup��193

Removal of Global Variables���193

Better Deployment Capabilities��194

Powerful Experimentation Tools���194

Increase in Productivity��195

Code Comparison���196

The tf.print() Function���197

Lazy Execution vs. Eager Execution���198

Removal of tf.global_variables_initializer()��200

No Placeholders���202

@tf.function Decorator���203

Upgrading from TensorFlow 1.0 to 2.0���205

The tf_upgrade_v2 Upgrade Script��206

Using the Upgrade Script��207

Table of Contents

xi

Summary���210

Quick Links��211

Additional Information��211

Running TensorFlow 1.0 by Disabling TensorFlow 2.0����������������������������������211

Ragged Tensors��212

TensorFlow Addons��213

Chapter 11: Machine Learning Programming with
Tensorflow 2.0���215

Structure of a Machine Learning Model���217

Data Loading and Pre-Processing��219

Building the Model���222

Training the Model��222

Testing the Model���223

Keras��224

Features of Keras���225

Binary Classification���226

Multi-class Classification���227

Programming with TensorFlow 2.0��228

Image Classification: An Overview���228

Program 1: Image Classification Using a Pre-Trained Model�����������������������231

The Working��232

The Structure��232

The API��232

The Program���232

Program 2: Handwriting Recognition Using Keras in TensorFlow
(Single Layer, Multi-class)��237

The Working��238

The Structure��238

Table of Contents

xii

The Dataset��238

The API��239

The Activation Functions��239

The Optimizer���239

The Program���239

Program 3: Clothing Classification Using Keras in TensorFlow
(Multi-layer, Multi-class)���247

The Dataset��248

The Activation Functions��248

The Program���248

Program 4: Clothing Classification Using Convolutional Neural
Networks (Multi-layer, Multi-class)��255

The Structure��255

Dataset���256

API��256

The Activation Functions��256

The Optimizer���256

The Program���256

Program 5: Handwriting Recognition Using Convolutional Neural
Networks (Multi-layer, Multi-class)��260

Dataset���260

The Program���261

Program 6: Image Classification for CIFAR-10 Using Convolutional
Neural Networks (Multi-layer, Multi-class)���264

The Dataset��264

The Program���265

Table of Contents

xiii

Program 7: Dogs vs. Cats Classification Using Convolutional Neural
Networks (Multi-layer, Binary)��267

The Dataset��268

The Program���268

Summary���276

Quick Links��277

�Conclusion���279

�Index��283

Table of Contents

xv

About the Author

Nikita Silaparasetty is a data scientist and an

AI/deep-learning enthusiast specializing in

statistics and mathematics. She is currently

pursuing her Masters in Data Science at

Liverpool Hope University. She is the head

of the India-based “AI For Women” initiative,

which aims to empower women in the field

of artificial intelligence. She has strong

experience programming using Jupyter

Notebook and a deep enthusiasm for TensorFlow and the potential of

machine learning. Through the book, she hopes to help readers become

better at Python programming using TensorFlow 2.0 with the help of

Jupyter Notebook, which can benefit them immensely in their machine

learning journey.

xvii

About the Technical Reviewer

Mezgani Ali is a Ph.D. student in artificial

intelligence at Mohamed V University in

Rabat, Morocco, and researcher at Native

LABs, Inc. He likes technology, reading, and

his little daughter, Ghita. His first program was

a horoscope in Basic in 1993. He has done a

lot of work on the infrastructure side in system

engineering, software engineering, managed

networks, and security.

Mezgani has worked for NIC France, Capgemini, and HP, and was part

of the site reliability engineer’s team that was responsible for keeping data

center servers and customers’ applications up and running. He is fanatical

about Kubernetes, REST API, MySQL, and Scala, and is the creator of the

functional and imperative programming language PASP.

xix

Acknowledgments

“And whatever you do, in word or deed, do everything in the name of

the Lord Jesus, giving thanks to God the Father through him.”

—Colossians 3:17

First and foremost, I would like to thank God Almighty for giving me this

amazing opportunity, and for helping me to successfully complete

this book.

Next, I would like to thank my Dad, S. Mohan Kumar, my Mom, Agnes

Shanthi Mohan, and my elder sister, Vinita, for being my constant support,

help, and inspiration throughout this endeavour.

I’m also extremely grateful for the entire Apress team, who worked

tirelessly and patiently to review my chapters, put forward their

suggestions, and provide the necessary guidance that I needed, with the

aim to make the final product truly enriching to its readers. Working with

them has taught me so much.

Of course, I mustn’t forget my friends, acquaintances, peers,

well-wishers, and other people in my life who contributed in their own

way, by praying for me, motivating me, guiding me, and even tolerating me

when I seemed to be too busy for them.

Last, but not least, I’m grateful for the Internet, which played a major

role in this entire process.

xxi

I remember one day, when I was about 15, my little cousin had come over.

Being the good elder sister that I was, I spent time with her outside in the

garden, while all the adults were inside having a hearty conversation.

I soon found myself chasing after this active little 4 year old as she bustled

around, touching every little flower and inspecting every little creature.

At first, she carried this out as a silent activity, the only noise being her feet

as she ran across the grass. After a while, however, she could no longer contain

herself, and she began questioning me about each and every object and

phenomenon within her radius of sight. For a while, I felt thrilled that I was

old enough to answer these questions satisfactorily. This thrill was short-lived,

however, as she began delving deeper in her thirst to know more.

This lasted until my mom came outside and called us for dinner. As I

gratefully made my way back into the house, I came to two conclusions:

	 1.	 The human mind is brilliantly inquisitive

	 2.	 I’m not as smart as I thought I was

Now when we think about it, it’s quite interesting to note that all that

we know to do, from counting the number of toes we have, to singing the

national anthem on key, to naming the planets in the Solar System, are all

skills that we have developed over time.

Were we born with these abilities?

No, of course not.

But we do have the ability to learn how to do all these things, with the

help of our brain which continuously learns and processes information.

The more we learn, the greater our knowledge. The greater our knowledge,

the more intelligent we are.

Introduction

xxii

Not just human beings, but animals too. A dog can be trained to sit, roll

over, and play dead, by teaching it that when it does these tasks correctly,

it can earn a reward in the form of a tasty treat. By knowing how to perform

these tasks, it is deemed to be an ‘intelligent dog’.

So how do we learn new things?

One way of learning is through enquiring. When my cousin was asking

questions about everything she saw, she was trying to obtain answers from

what she saw as a reliable source. She knew that I already learned about all

these things, and so I could give her the answers she needed.

Another way of learning is by observation. Before my cousin began

asking me questions, she was observing everything. She noticed that the

sky is blue while the grass is green, and the grasshopper hops about while

the ant crawls alongs the ground. She was able to learn new things on her

own, without having to ask anyone for help.

The more questions she asked and the more she observed, the more

her knowledge increased.

It’s quite fascinating, really, to think that just by learning, a being can

become intelligent.

It is this intelligence that made the world what it is today. People grew

in knowledge and made new discoveries which made daily life quicker and

more efficient. This resulted in an increase in the number and variety of

jobs available and skills required.

Soon, people began to develop new ideas and methods to perform

various tasks. They managed to create objects that could automatically do

certain things, like hammer a nail, tighten a screw, and so on. In other words,

people created what we now call ‘machines’, which were made to simulate

the actions of a person. These machines reduced the amount of manual

labour needed, especially in the process of manufacturing. We now have

machines that have taken over a lot of our work - Leaving us with more time

and energy for the slightly more intellectual tasks, which these machines

could not do, because even though we could make the machines perform

specific actions, we could not get them to think in the way human beings do.

Introduction

xxiii

Now consider this… What if machines could think, and therefore,

perform these intellectual tasks as well?

A Simple Example of Artificial Intelligence
Consider an email inbox. Earlier, it was just a regular interface through

which we could carry out trivial tasks like reading, replying to, and deleting

emails. Nowadays, we have much more advanced inboxes, with folders

for ‘Spam’, ‘Important’, ‘Other’, etc. Our inboxes automatically detect if

something is spam, and send it to the respective folder. They even detect

if something is comparatively important, and send it to the ‘Important’

folder. All other emails go under the ‘Other’ folder.

Figure I-1.  Email Classification

Introduction

xxiv

But how does the inbox know the difference between these categories?

The answer is simple - It learned.

It learned how to detect if a message is spam, the same way we learned

to do so - By looking for certain characteristics in the message. These

characteristics include:

	 1.	 Irrelevant advertising

	 2.	 Request for sensitive information like an account

number, contact information, etc.

	 3.	 Use of a general term to address the recipient, rather

than using the actual name

	 4.	 Suspicious attachments

Once the inbox identifies such a message, it marks it as a possible

spam email. It then sends that message to the ‘Spam’ folder. Thus, it saves

us the trouble of dealing with numerous unnecessary emails everyday. All

we need to do is go to our ‘Spam’ folder, select all the messages, and delete

them. We don’t even need to open the messages and read through them.

The ability of a machine to think and perform tasks like this is known as

‘Artificial Intelligence’ (AI), and the process by which it gains this Artificial

Intelligence is known as ‘Machine Learning’ (ML).

This example of email segregation is just a simple application of

Artificial Intelligence and Machine Learning. In fact, there is room

for mistakes in this technology as well. However, these fields actually

have massive potential. Just think about it - With the help of Artificial

Intelligence and Machine Learning, we can create machines that think,

infer, and then perform tasks. This would result in a quicker, more

convenient lifestyle for people.

How?

Well, imagine a world where everything was automated, from picking

our outfit in the morning based on the weather and the occasion, to

driving to office through the busy traffic, to watering the garden at the

Introduction

xxv

right time. Our daily chores would no longer be ours to do. And, on a

broader level, there would be even more applications, in the areas of

business, medicine, education, and more. For example, there would be AI

Recruiters, AI Doctors, AI Teachers, and so on. Long story short - People

would be replaced by Robots that can do their work with greater efficiency.

Replacing Mankind with Machines
I think before we can consider replacing women and men with machines

that can perform their work, we need to seriously ask ourselves the

following question -

Would that be a good idea?

Well, at present, that’s an inconclusive topic for debate. But it’s

definitely an interesting area to have a look at.

Some of the first AI bots started out as unbeatable champions in

games like Checkers and Chess. These bots could replace a human

player in games that require technique and strategy. This was not just

an entertaining phenomenon to spectate, but also a measure of how

advanced the AI technologies were. Seems pretty harmless, right? All the

AI did was play a game really well.

Later, however, people realised that if AI bots could replace world class

champions in games, then they can definitely be used in more cardinal

situations. However, this did have its own drawbacks.

A very popular example of this is when amazon.com Inc. attempted

to replace their human recruiters with AI recruiters. The results were

not what was expected, as the machines became gender-biased and

began rejecting applicants that were female. This caused quite a stir, as is

expected, but also taught AI developers a valuable lesson when it comes to

building self-learning machines.

Let’s have a brief look at what happened.

Introduction

xxvi

The Gender-Biased AI Recruiter
In general, when a recruiter looks through a list of candidates for a job,

what would be the factors that are considered? Some of them may include,

in no particular order:

	 1.	 Relevant Experience

	 2.	 Area of Study

	 3.	 Qualification

	 4.	 Extra projects

	 5.	 Background

	 6.	 References

The recruiter would go through the resume, check their information

with regards to the job that they are applying for, and probably give them a

call to verify the information. Throw in a few extra tests and assessments as

well, depending on the company. And if the person ends up being a good

fit, they are given the job.

That’s pretty much how an ethical employment process works, right?

Now when it comes to AI bots, they do not have the mind of a human

being that enables them to understand the differences between relevant

and irrelevant factors. All they have is data that they go through, find

patterns in, and make decisions on.

The bots at this highly reputed company were trained with at least ten

years’ worth of job applications. And as we know, there are usually more

men in the work-place than women, right? So the machine, while learning

from its data, thought that a person’s gender was an important factor to be

considered when hiring. Its thought process was basically this:

Men = Good Fit,

Women = Bad Fit.

Introduction

xxvii

Thus, it began rejecting applications that had any sort of reference to

females on it. In this way, it was biased against the female applicants.

Of course, the company made efforts to fix this. They altered their

program so that it would remain neutral in such instances. However, many

people are still quite critical towards it, as they feel that the machine can

still come up with new ways to be discriminative.

This was a great learning experience for AI enthusiasts, because they

realised that while all AI machines don’t end up being prejudiced, it is still

a possible outcome that needs to be tackled in the right way. It also shows

that precaution must be taken while developing the AI machine itself. We

must especially be careful about what kind of data we are using, since it is

this data that the machine depends upon to learn.

It’s quite interesting, isn’t it? It’s like raising a child. The child learns from

all that she or he is taught. If she/he learns good things, and is given good

experiences, it is more likely that the child will manifest it outwardly. However,

if the child is raised with the wrong ideas, it will adversely affect her/him.

There have even been times when certain areas of Artificial

Intelligence proved to be disappointing to researchers, and people nearly

stopped showing enthusiasm towards the field. Such a period is known as

an ‘AI Winter’, which we will read about later on.

One thing that almost everyone can agree on, though, is this: Artificial

Intelligence and Machine Learning are progressing greatly, and are

extremely important. If done in the right way, we can create systems that

can truly revolutionise the world and the way we live.

This is why there is so much demand for jobs in these fields. This

is also why there is so much research going on, and several new ideas

being introduced with regards to it. Capturing data, storing it, and then

programming with it has become so much easier and faster.

So as we begin our Artificial Intelligence and Machine Learning

journey, let’s have a look at some of the important concepts that we will

need to know in order to really understand what we are getting into, and

how we can use it to create useful and efficient technology.

Introduction

PART I

Artificial Intelligence,
Machine Learning,
and Deep Learning
In Part I, you will be introduced to the fundamental concepts of artificial

intelligence, machine learning, and deep learning. If you are a beginner,

this will be a good way for you to get familiar with the terms and basics that

are commonly used and good to know while working in this field. If you

are a little more experienced, this will help you to recap all that you have

learned so far. You might even come across something new!

What to expect from this part:

•	 An introduction to artificial intelligence

•	 An introduction to machine learning

•	 An overview of machine learning concepts

•	 An introduction to deep learning

•	 An overview of deep learning concepts

•	 A comparison between machine learning and deep
learning

3© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_1

CHAPTER 1

An Overview of
Artificial Intelligence
In this chapter, we will take our first steps into the world of artificial

intelligence. Although it is a vast field, and we would probably require

a whole other book to really dive deeply into it, we will go through a

summary of important AI facts and concepts—what it is, how it came

about, its benefits and drawbacks, and how it is being implemented in our

present lives.

�Artificial Intelligence Primer
We have all heard about intelligence. From experience, we have found that

students who score higher grades supposedly have more intelligence than

those who score lower. This may not always be the case, but it is what we

tend to conclude.

We also know that Einstein had an IQ of about 160. What is astonishing

is that a twelve-year-old girl in England ended up scoring 162, thus beating

the world-renowned genius in this measure of intelligence.

So, what exactly is intelligence?

https://doi.org/10.1007/978-1-4842-5967-2_1#DOI

4

Intelligence can be defined as the ability to acquire and apply knowledge

and skills.

This is why we are given an education from childhood. Over the years,

we are fed with knowledge that is meant to help us become more intelligent.

Over the years, people worked hard and expanded their research and

scientific advancements. They used their “natural intelligence” to come up

with bigger and better innovations. Eventually, they were able to program

machines to work and think like them, which they soon began to refer to as

“artificial intelligence.”

Artificial intelligence can be defined as the ability of a machine to think

like a human being, in order to perform a particular task, without being

explicitly programmed.

It is also sometimes referred to as “machine intelligence” and can be

compared to “human intelligence.” It is, as a matter of fact, inspired by a

human being’s natural intelligence. It aims to replicate the cognitive abilities

of the human brain, like learning, understanding, and solving problems.

�The Inception of Artificial Intelligence
Artificial intelligence did not always exist. It was probably only something

that existed in people’s imaginations, and maybe just an exciting part of a

science fiction novel. However, around the late 1930s, people slowly began

considering the possibility of machines’ being able to think in the way that

human beings do, which is what inspired researchers to go about making

this a reality.

�1930s–1940s: Over the Years
A few scientists from different fields came together to discuss the

possibility and practicality of creating machines that could think and

respond and act like human beings.

Chapter 1 An Overview of Artificial Intelligence

5

One of the early works that inspired machine learning was the Bombe

machine made by Alan Turing and his team during World War II. This machine

could crack the Enigma code used by the Germans to send encrypted messages.

This was a major milestone in the field of machine learning.

�1950s: Discoveries and Breakthroughs
In 1950, Alan Turing published a paper, “Computing Machinery and

Intelligence,” while he worked at the University of Manchester. In this

paper, he introduced what is known as the Turing Test. In this test, he

proposed that if a person is allowed to talk to another person and a machine,

and if the first person is not able to differentiate between his two conversation

partners, then the machine exhibits intelligent behavior. The conversation

would be text-based only. This test proved to be a way to convince many

people that a thinking machine was at least possible.

In 1951, Christopher Strachey developed a checkers program with the

help of the Ferranti Mark 1 machine. Dietrich Prinz wrote one for chess as

well. These technologies come under the “Game AI” umbrella, which is

used even to this day to understand how far AI has come.

Around 1955, Allen Newell and Herbert A. Simon came up with the

“Logic Theorist.” It was the first program that was made for automated

reasoning, and is thus known as the first artificial intelligence program.

It ended up proving thirty-eight out of fifty-two theorems in Principia

Mathematica by Alfred North Whitehead and Bertrand Russell, and

thus opened the eyes of researchers to the possibilities of manipulating

symbols, which could help with human thought.

In 1956, Marvin Minsky, John McCarthy, Claude Shannon, and Nathan

Rochester organized the Dartmouth Conference. It was here that the term

artificial intelligence was first coined by John McCarthy and accepted

by researchers in the field. AI also gained a proper identity in the field of

science during this conference.

Chapter 1 An Overview of Artificial Intelligence

6

�1960s–1970s: Advanced AI
After this, interest in artificial intelligence began to grow rapidly. It was the

hot topic at the time, and people were coming up with newer ideas and

better techniques to help machines think. In the 1960s, researchers began

developing robots as well. The WABOT project began in Japan in 1967,

with an objective to create the first “intelligent” humanoid robot .

�1970s–1980s: The First AI Winter
The 1970s started out pretty well for AI. The WABOT-1 was finally completed

in 1972. It had limbs that could move either to move around or to grasp

onto objects. It had artificial eyes and ears that helped it measure depth and

direction. It also had an artificial mouth with which it could communicate

with people in Japanese.

However, AI had still not reached the extent that people had hoped it

would. Development seemed to go at a snail’s pace, and investors were not

satisfied with the situation. Eventually, they began to halt all funding for

undirected AI research.

Some of the reasons for the slow rate at which AI was moving forward

include the following:

	 1.	 Need for massive data and storage: Machines

did not have the capacity to gather and store

information about the world. This was a huge

obstacle because machines require immense

quantities of information in order to become

intelligent.

	 2.	 Need for greater computational power: Machines

still did not have the power to carry out any

substantial computations.

Chapter 1 An Overview of Artificial Intelligence

7

	 3.	 Need for more computational time: Many real-

world problems can only be solved with the

availability of time, which is what was missing then.

So, people felt that AI would perhaps not be able to

provide any solutions for realistic issues.

Many critics also began stepping up against the field. They pointed out

the lack of resources, unfulfilled objectives, and the unknown future of AI. By

1974, it had become extremely difficult to obtain funding for AI-related studies.

This resulted in many people feeling that artificial intelligence was not

only a futuristic fantasy, but also an unattainable goal. The overall coldness

in the attitude of people toward AI led to the first “AI winter,” which lasted

from 1974 to 1980.

�1980s–early 1990s: The Revival and the Second
AI Winter
In the 1980s, things started looking brighter for AI. People started implementing

expert systems in their businesses, which is a form of AI programming that

answers questions and solves problems within a particular area of knowledge.

This led to a shift in focus in AI research toward knowledge engineering and

knowledge-based research (KBR).

It was at this time that the Japanese Ministry of International Trade and

Industry made the decision to invest $850 million in the fifth-generation

computer project. Through this project, they wanted to create machines

that could reason, converse, translate languages, and comprehend images.

Connectionism made a comeback as a result of the Hopfield Net,

which is a type of neural network that worked differently but provided

appreciable results.

Chapter 1 An Overview of Artificial Intelligence

8

In 1987, however, all enthusiasm toward AI abruptly decreased because

of the introduction of desktop computers by Apple and IBM, which were

less expensive and much more powerful. This resulted in a collapse in the

demand for AI hardware. Expert systems were also found to be too expensive

to maintain and improve.

Funding was stopped, and research was dropped. This led to the

second AI winter, which went on from 1987 to 1993.

�Late 1990s: AI Reborn
In the late 1990s, artificial intelligence once again became a topic of interest.

Companies began to take up AI as their focus, and many AI technologies

were being implemented. Funding for AI began once again, enabling AI

researchers to move forward and develop newer and better inventions. A lot

of goals were finally met, which motivated researchers to move forward in

their work.

In 1997, IBM finished development of Deep Blue, which was the first

computer to defeat Garry Kasparov, the world famous chess champion, which

it did on May 11. The event was broadcast live over the internet, sparking the

interest of millions of people. This was a huge milestone in the AI realm, as it

demonstrated the vast potential that existed in training machines.

The reason for this was said to be the increase in the capacity and

speed of computer processing. In fact, Deep Blue was found to be 10

million times faster than the Ferranti Mark 1. Over the years, technology

improved, thus paving the way for better AI machines.

By 2000, there was still some skepticism toward AI. HAL 9000, a fictional

AI character created in 1968, was based on the hope that similar AI technology

would soon be possible by 2001. Unfortunately, this ended up being an

unachieved dream, much to the disappointment of many researchers.

This did not stop them, however, and they continued working hard

and investing time, money, and effort into the field. In 2005, a Stanford

Robot was developed that drove autonomously for close to 131 miles on

Chapter 1 An Overview of Artificial Intelligence

9

an unfamiliar desert route. Around 2007, a team from CMU created a

vehicle that autonomously navigated 55 miles while following all traffic

regulations. In February 2011, IBM debuted Watson, which defeated two

Jeopardy champions, thus winning the quiz game.

Artificial intelligence soon branched out into big data, Internet of Things

(IoT), data science, machine learning, and deep learning. People realized

the need to specialize in a particular sector so as to collectively contribute to

the advancement of AI.

As of 2020, artificial intelligence continues to be one of the most in-

demand areas of employment and research, with people encouraging

more and more innovative ideas to be developed and implemented, not

just on a professional or specialized level, but also in our day-to-day lives.

Quick Bite T here are five Founding Fathers of artificial intelligence:
John McCarthy, Alan Turing, Marvin Minsky, Allen Newell, and Herbert
A. Simon.

�Pros and Cons of Artificial Intelligence
Since its advent, artificial intelligence has been highly favored by some and

highly criticized by others. It has its benefits, and it also has its drawbacks.

Let’s go through some of them to get a better idea of how AI has affected

the world so far.

�The Pros
Artificial intelligence became vastly popular mainly for the following reasons:

	 1.	 It allowed machines to replace manpower in

performing certain tasks, especially mundane and

tiring ones.

Chapter 1 An Overview of Artificial Intelligence

10

	 2.	 It allowed machines to become much more efficient,

giving them the ability to solve problems on their own

and requiring less work on the part of developers.

	 3.	 It can be accessed and utilized at any time.

	 4.	 It can also perform tasks that would generally be

difficult or dangerous for human beings to do.

	 5.	 When developed well, there is less scope of errors

on their part.

�The Cons
Over the years, as artificial intelligence continued to garner people’s

interest, it also began to display certain drawbacks, including the

following:

	 1.	 It was expensive to develop and maintain.

	 2.	 It resulted in unemployment, since machines began

to take over tasks that people used to do.

	 3.	 Many people misused the technology for personal

benefit and unethical gain.

	 4.	 At times it was difficult to find people with enough

experience to develop the programs needed for the

problem.

	 5.	 It took a lot of time and computational power to

develop the various AI models.

Chapter 1 An Overview of Artificial Intelligence

11

�Challenges Faced by Artificial Intelligence
Keeping the pros and cons in mind, we can now understand that although
artificial intelligence has deeply interested many people, it also struggles in
many ways to reach its full potential. At present, the challenges faced by AI
include the following:

	 1.	 The scope of artificial intelligence is somewhat
limited. This is mainly because of the amount
of resources, technology, funds, and manpower
available for it.

	 2.	 Real-world implementation is still not easy. Many AI
machines exist only theoretically or as prototypes,
but have not yet been put into practical applications.

	 3.	 Security is a big issue when it comes to artificial
intelligence. This is because AI requires loads of data
in order to be trained, and this data can be taken either
ethically or unethically from people. As mentioned
before, AI ethics is a growing area of importance in the
field of AI, but it still has a long way to go before it can
really have any kind of significant impact.

Apart from the challenges listed here, artificial intelligence has also
undergone seasons of disinterest. This has happened twice so far, starting
in around 1974. It resulted in many AI developments’ being stalled, and
people’s heading into other fields of work and research.

�The AI Winter
As you have already read in an earlier section, there were times during
the history of artificial intelligence when people’s overall interest in
the area became cold. To a certain extent, people nearly gave up on the
field. They restricted the quantity of resources and funding given for its

research and growth. Such a period is known as an AI winter.

Chapter 1 An Overview of Artificial Intelligence

12

�The First AI Winter (1974–1980)
The first AI winter can be traced back to around 1974. It was not an abrupt

break in the progress of artificial intelligence. Rather, it was an inevitable

consequence of certain setbacks that occurred prior to it.

	 1.	 Around 1967, the “quiet decade of machine translation”

began, where researchers found it difficult to

correctly translate languages with the help of artificial

intelligence. After spending enormous amounts of

money in this area, the funding was finally stopped.

	 2.	 Approximately two years later, Minsky and Papert

published their book, Perceptrons. This book

explicitly critiqued perceptrons, which had a

negative impact on connectionism. People soon

abandoned the connectionism approach for years.

	 3.	 In 1969, the Mansfield Amendment was passed, as

a result of which the Defense Advanced Research

Projects Agency (DARPA) restricted their funding to

projects that focused on military benefits only.

	 4.	 In 1973, the “Lighthill Report” was published, which

evaluated the progress made and emphasized the

downfall of artificial intelligence. Although this report

faced plenty of public criticism, it eventually caused

a feeling of pessimism to sweep over researchers and

investors, who ultimately withdrew from the field.

	 5.	 In 1974, DARPA discontinued funding the Speech

Understanding Research (SUR) program at Carnegie

Mellon University, due to the latter’s production of

an inefficient speech-recognition AI machine that

did not fulfill their requirements.

Chapter 1 An Overview of Artificial Intelligence

13

	 6.	 Thus, by 1974, the first AI winter had begun, mainly

due to the lack of funding, which stalled any further

research. Thankfully, this period only lasted until

about 1980.

�The Second AI Winter (1987–1993)
The second AI winter can be traced back to around 1987.

	 1.	 In the 1980s, LISP machines were invented, which

were special hardware systems that were used for

AI programming in the LISP language. However, by

1987, better alternatives were introduced, which

reduced the demand for exclusive LISP machines.

Later, in the 1990s, expert systems such as the LISP

machine were found to be difficult to maintain. This

caused a fall in their production.

	 2.	 In 1981, a project was started by the Japanese

Ministry of International Trade and Industry to

develop a high-tech reasoning machine. It was

called the Fifth-Generation Project. In 1983, DARPA

once again began to fund AI research. However,

in 1987, the funding was again stopped. The team

involved in the project soon found that their list of

objectives for the project had not been achieved

even after ten years. Decades passed with no results.

	 3.	 By the end of 1993, more than 300 AI companies had

either been acquired, shut down, or gone bankrupt,

marking the occurrence of the second AI winter.

Chapter 1 An Overview of Artificial Intelligence

14

Quick Bite F ollowing the second AI winter, many researchers and
businesses avoided the term artificial intelligence, as they felt it had
a negative aura to it. They thus began to use other names instead,
including the now popular machine learning.

There is also plenty of research going on in the field of AI ethics, which

is another important sector within the realm of artificial intelligence.

�AI Ethics
The field of AI ethics is mainly concerned with the moral behavior and

intentions involved in the development and implementation of an AI

system. So, why are AI ethics important? To answer this question, let’s

consider the following two scenarios.

�Scenario 1: Deepfakes
With recent developments in AI technology, systems can now create exact

virtual replicas of actual people. These are known as deepfakes, where, for

example, a fake video of a person can be created with the help of AI.

Now, obviously, this kind of technology can have various

outcomes—some positive and some negative. This is where AI ethics

come in to play.

Suppose a group of AI developers want to design deepfake videos of

the president of their country. AI ethics make each of these developers ask

themselves the question: Why am I doing this?

If the developer’s answer is not selfish, harmful, or fatal, then they can

proceed with what they were doing. However, if their answer is any of the

above, then they may have to reconsider the motives behind their project.

Chapter 1 An Overview of Artificial Intelligence

15

Of course, in some cases, it is easy to decide whether an AI tool is alright

or not. The problem is, sometimes it is not exactly possible to figure that out.

�Scenario 2: Making Decisions
Most of us have already heard about self-driving cars, right? These cars are

trained, with AI, to accelerate, maneuver, and brake, all while taking a rider

to their destination.

There have also been videos online about these cars safely avoiding

animals on the road, thus saving the life of the animal as well as that of the

person inside.

But what if the car is in a situation where a crash is inevitable? And this

time, it doesn’t involve an animal, but another human being? What should

the car do?

To have a better idea of this, let’s take the following example:

A young father of four children is traveling in his self-driving car,

returning home after a long day of work. The car is moving at a constant high

velocity along a highway. Suddenly, out of nowhere, an old couple starts

crossing the road, right in front of the car. The car now has two options:

	 1.	 It can swerve away from the couple, crash into the

low cement wall on the side of the highway, and

thus likely result in the death of the passenger.

	 2.	 It can save the passenger’s life by crashing into the

old couple, thus likely taking their lives.

What should the car do in this situation?

Some may argue that the car should save the old couple because that

would be two lives saved, which is greater than the one life that would be

lost within the car. Others, however, may argue that the young man still

has so much to do in this world, and on top of that, he has his wife and

children depending on him, and so it would be better to save his life.

Chapter 1 An Overview of Artificial Intelligence

16

This is quite a dilemma, isn’t it?

Human beings themselves find it difficult to come up with a definite

answer for this. However, we do have something that machines do not have,

i.e., our natural instinct, which, in a way, helps us to make decisions in such

situations. Machines need some kind of factual information to be able to

differentiate between right and wrong. Thus, it would be difficult for the car

to know what to do in such a case.

That’s why AI ethics is a growing field in the world of artificial

intelligence. Through discussions, research, and trials, ethical problems

such as these can be tackled.

Once a solution is developed, however, new inventions and ideas

can be implemented into our daily lives. Self-driving cars will no longer

be a potential hazard. Deepfakes can be created for beneficial purposes.

More technologies will come up, and there will be less fear in the hearts

of people regarding what kind of developments are being made in the

artificial intelligence sector.

�Artificial Intelligence and IoT
The Internet of Things (IoT) is the connection of various objects in

order to form a network of devices that can interact with one another.

It was developed in order to enable non-living, unrelated objects to

work together, assess their surroundings, understand a situation, and

react accordingly, without the need for human intervention. IoT devices

are interconnected with the help of software, sensors, and other such

technologies. They send signals to each other, receive signals from one

another, and thus exchange data via the internet.

Many researchers have begun integrating it with artificial intelligence.

This has led to a variety of new technologies and devices that they soon

hope to integrate into an average person’s day-to-day life.

Chapter 1 An Overview of Artificial Intelligence

17

�Applications of IoT
IoT has been greatly accepted and highly demanded due to its great scope

in terms of usability. Some of its applications are discussed in the following

sections.

�Smart Homes

Smart homes refer to the phenomenon of home automation, where the

home does tasks on its own, without the need for anyone to control it. So

far, smart homes have been able to do the following:

	 1.	 Switch lights on or off.

	 2.	 Keep a check on the overall temperature of the

home.

	 3.	 Make sure all electronic devices are turned off when

not in use.

	 4.	 Monitor the health of the inhabitants of the home.

Smart homes aim to make life a little more convenient for people by

reducing the amount of time or effort they need to put into little everyday

tasks. They also aim to provide assistance to those who might be differently

abled, and even to the elderly.

�Wearables

Wearables, as the name suggests, are devices that can be worn and that

collect data about the wearer for further processing. Some common

wearables are as follows:

	 1.	 Heart-rate monitors

	 2.	 Fitness monitors

	 3.	 Glucose monitors

Chapter 1 An Overview of Artificial Intelligence

18

They also include smartwatches that can connect to a person’s phone

and interact with it.

�Smart Greenhouse

The greenhouse farming technique aims to enhance crop yield by

moderating temperature parameters. The problem is, this becomes

difficult when it is required to be done by people. Smart greenhouses,

therefore, can be used to fix this.

	 1.	 Its sensors can measure the various parameters.

	 2.	 It sends this data to the cloud, which processes this

information.

	 3.	 An appropriate action is taken with regards to the

plant/s involved.

This concept helps to reduce the costs of salaries and maintenance,

and to increase productivity.

�How Does AI Relate to IoT?
Artificial intelligence is a rapidly growing field of technology that has slowly

begun to be incorporated into our lives to increase productivity, efficiency,

and profits. IoT has also begun to be implemented in our daily lives with the

help of faster connectivity and greater computational ability.

When AI and IoT are combined, we can obtain some powerful

technologies that can be used to solve many worldwide problems and

improve the way we live. AI and IoT can be integrated together to achieve

greater outputs.

For example, in smart homes, artificial intelligence can be used to

gather the data, analyze it, and then make the most suitable decision based

on the information it has received.

Chapter 1 An Overview of Artificial Intelligence

19

Similarly, in wearables, AI can be used to collect, analyze, and process

the data taken from the wearer in order to help the device respond in the

right way.

Smart greenhouses can also use AI to monitor the conditions of the

environment, alter them, and thus ensure that the plants receive the most

optimal growing conditions.

Many researchers have agreed that artificial intelligence is the next

step in the IoT sphere. It is true that the quantity of time, work, resources,

and funds required for this will be a bit of a challenge, but considering

the incredible amount of benefits such an endeavor would have, the

investment would be worth it.

�Summary
We now know what artificial intelligence is and how it has progressed over

the years. We have studied its strengths and weaknesses, its challenges, and

how we can make it more ethical and secure. We have even seen how to

implement it with other useful technologies for maximum benefits. We can

thus move ahead to some of the specifics of artificial intelligence—mainly,

how to make a machine intelligent in order to use it in the real world.

Chapter 1 An Overview of Artificial Intelligence

21© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_2

CHAPTER 2

An Overview of
Machine Learning
Artificial intelligence sounds pretty interesting, doesn’t it? It’s exciting to

create a thinking machine that can do whatever you need it to do. And you

don’t need to worry about learning something new and extravagant—all you

need to do is learn to program.

How convenient is that?

So, what exactly do you need to program? The answer is pretty

straightforward: program the machine to learn! How else would it be able to

think? This concept comes under the umbrella of machine learning, which

is an extremely important part of artificial intelligence. Let’s dive into it and

see what it’s all about.

�What Is Machine Learning?
If the name isn’t already a pretty obvious giveaway, here is a simple

definition that should help you understand what exactly you are getting into.

Machine learning can be defined as the process of teaching a machine

to think like a human being in order to perform a particular task, without

being explicitly programmed.

Think about the first time you learned to read. You began by learning

the alphabet, then you formed words by joining these letters together.

https://doi.org/10.1007/978-1-4842-5967-2_2#DOI

22

Finally, you began to learn how to pronounce these different combinations

of letters. And as you kept practicing, you became better at reading.

Machine learning works in the same way. The machine learns,

understands, and thinks like a human being, and then uses this thought

process to do some work. With machine learning, machines can be

taught to perform higher-level tasks.

Just like human beings need to learn to increase their natural

intelligence, machines need to learn to increase their artificial intelligence.

This is why machine learning is so important when it comes to developing

artificially intelligent systems.

�The Machine Learning Workflow
A typical machine learning problem follows these steps:

	 1.	 Defining the problem: We first need to determine

what exactly our problem is before we can begin

solving it. We need to figure out what the problem

is, whether it is feasible to use machine learning to

solve it, and so on.

	 2.	 Collecting the data: We then need to gather our

data based on our problem definition. The data is

extremely important, and must thus be collected

with care. We need to make sure that we have data

corresponding to all the necessary factors required

for our analysis.

	 3.	 Pre-processing the data: We need to clean up the

data to make it more usable. This includes removing

outliers, handling missing information, and so on.

This is done to decrease the possibility of obtaining

errors from our analysis.

Chapter 2 An Overview of Machine Learning

23

	 4.	 Developing the model: We can now create our

machine learning model, which will be used in

solving the problem. This model takes the data as

input, performs computations on it, then produces

some output from it.

	 5.	 Evaluating the model: The model needs to be

evaluated to verify its accuracy and to make sure

that it can work on any new data that may be

provided to it.

As we have seen in this workflow, machine learning is done with the

help of data—loads and loads of data. Machines take this data, analyze

it, and develop conclusions from it. This is how the idea of data science

evolved to be an integral part of machine learning.

�What Is Data Science?
Data science allows us to obtain knowledge from data.

The entire process of collecting, manipulating, analyzing, and

developing inferences from data is known as data science.

Data science is, then, the combination of statistics, mathematics,

computer programming, complex problem solving, data capturing, and

working with data to cleanse it, prepare it, and use it.

The data that is obtained from the process of data science can, once it

is prepared, be fed into a machine in order to help it learn.

�Branches of Data Science
Data science consists of the following main areas:

•	 Data collection: Gathering the data

•	 Data storage: Keeping the data for later access

Chapter 2 An Overview of Machine Learning

24

•	 Data wrangling/munging: Cleaning up the raw data

for easier utilization

•	 Data visualization: Viewing the data graphically

There are two other areas, namely, big data and data analytics, that,

although treated as separate entities, also deal with data and thus come

under the data science umbrella.

�Big Data
Big data refers to the storage of huge volumes of data. This data is mainly

characterized in the following three ways:

•	 High volume: This refers to the quantity of data that

is generated and stored. The amount of this data is

immense as it finds its sources in images, videos,

audios, and text.

•	 High velocity: This refers to the speed at which the

data is generated and processed. Usually, this data is

available in real time, which means it is continuously

produced and handled.

•	 High veracity: This refers to the quality of the data. The

data produced here can greatly vary, and this can affect

the overall analysis.

Big data can be applied in the following areas:

•	 Communication

•	 Finance

•	 Retail

•	 Education

•	 Media

Chapter 2 An Overview of Machine Learning

25

Some of the challenges that big data faces include the following:

•	 Gathering data: Since the amount of data is so huge, it is

not an easy task to collect it.

•	 Storing data: Very powerful storage units are required

to store such massive amounts of data.

•	 Transferring and sharing data: In order to

successfully transfer and share large quantities of data,

advanced techniques and tools are required.

�Data Analytics
Raw data can be analyzed to observe trends and to come up with

conclusions based on these trends. Thus, data analytics refers to the

inspection of data in order to derive insights and develop inferences and

conclusions based on it.

It follows several steps and consists of various methods that help in

making the process more effective and in obtaining the desired results.

It makes use of a variety of statistical and mathematical techniques.

There are four main types of data analytics, as follows:

	 1.	 Descriptive analytics: This is used to explain

what has occurred. For example, it can be used to

describe the present performance of a company.

	 2.	 Prescriptive analytics: This is used to predict what

will occur in the future. For example, it can be used

to determine the profits of a company based on its

previous performance.

	 3.	 Diagnostic analytics: This is used to determine why

something has occurred. For example, it can be used

to understand why a company might be seeing losses.

Chapter 2 An Overview of Machine Learning

26

	 4.	 Prescriptive analytics: This is used to figure out

what needs to occur, i.e., what needs to be done.

For example, it can be used to come up with better

strategies and ideas to help a company get back on

track and make profits again.

Data analytics can be applied in the following areas:

•	 Healthcare

•	 Energy management

•	 Travel

•	 Finance

Big data and data analytics are each very intricate parts of data science,

and thus there is a huge demand for them, especially when it comes to

employment. The data obtained as a result of these methods can then be

used in machine learning and related fields.

There are various sources from which data can be obtained, depending

on the use case. In the next section, we will go through some of the

important methods that are used for data collection.

�Collection of Data
Data is nothing but facts and figures that, when gathered together, produce

some piece of information. This data can come from a number of sources,

including the following:

	 1.	 Surveys: These are used to gather data from several

respondents in order to develop a conclusion that

can be applied on a broader scale. For example,

studying the effect of social media on students in

a particular school to figure out how social media

affects school students in general.

Chapter 2 An Overview of Machine Learning

27

	 2.	 Polls: These are used to understand people’s

opinions or sentiments toward a particular topic.

For example, online shops can ask their customers

for their opinion on the product they have

purchased, and this information can be used to

strategize better sales tactics.

	 3.	 Interviews: These are structured conversations

in which one person (or group of persons) asks

questions, while the other person (or group of

persons) answers the questions. For example, news

reporters interview a group of people at a protest

to understand what they are protesting against and

how the situation can be improved.

	 4.	 Observation: As the name suggests, this is the

process of observing or watching the natural reaction,

response, or behavior of the objects of study in order

to come up with some useful inference. For example,

observing tigers in their natural habitat can help

wildlife researchers understand their needs so as to

figure out how to better preserve the species.

Another way to collect data is simply by observing people, actions, or

phenomenon. For example, we can use previous weather patterns to predict

future weather patterns, or we can predict the outcome of an election just by

observing the response that people have towards a particular candidate.

Data can also be collected from online sources, since there is so much

content available on the internet nowadays. Some examples include

gathering data from social media sites, scraping the web, or even just

downloading datasets from online. One thing to keep in mind, however,

is that before we use this data, we need to ensure that it is permissible and

ethical to use.

Chapter 2 An Overview of Machine Learning

28

Once the data is collected, it needs to be pre-processed before it can be

used for any further applications.

�Pre-processing Data
The data that we collect can have errors, missing values, extra information,

and so on. This can cause problems in our machine learning process.

Thus, the data needs to go through a type of cleansing, which is known as

pre-processing.

�Data Cleaning

The data is cleaned in the following ways:

•	 Removing data that is inaccurate, irrelevant, or

incomplete.

•	 Transforming data to ensure they are of the same type

or format.

•	 Checking if the data is acceptable for use.

�Filling in Missing Values

Values can be missing for reasons such as the following:

	 1.	 Random error

	 2.	 Systematic error

	 3.	 Human error

	 4.	 Incorrect sensor readings

These values are dealt with in the following ways:

Chapter 2 An Overview of Machine Learning

29

	 1.	 Removing the section that contains the missing

data, as long as there is enough data left for the

machine learning process.

	 2.	 Removing the attribute that consists of the

problematic data or data that is consistent or can

correlate with another attribute.

	 3.	 Assigning a special value like “N/A” for data that is

missing due to acceptable reasons (for example, if a

person fails to attend a match, their opinion of the

match is invalid).

	 4.	 Estimating the missing value by taking the average

value of the attribute.

	 5.	 Predicting the value from its predecessors.

�Removing Outliers

An outlier is an irregularity within a set of values that varies tremendously

from the rest. It can greatly affect the results of any kind of computation

done on the set of values. A very simple example is shown in Table 2-1.

Table 2-1.  Outlier Computation

a b c d e f g h i j

X 2 3 1 1 4 3 5 100 5 2

As we can see, the value for h is 100. This is much larger than the rest of

the values, which fall within the range of 1 to 5.

In the same way, such irregular values can occur in data that is

collected for data science purposes. These values need to be handled

carefully to prevent inaccuracies or mistakes in our results.

Chapter 2 An Overview of Machine Learning

30

The most commonly used method of handling outliers is to use data

visualization to plot the data on a graph, after which irregularities are

detected and then dealt with.

�Transforming and Reducing Data
Data transformation is also known as data wrangling or data munging.

It converts the data into a format that is readable to the machine learning

algorithm. The data also becomes easier to learn, and a more accurate

output can be achieved.

Data reduction removes certain attributes that are less likely to have a

positive effect on the machine learning algorithm’s outcome. For example,

some attributes may have random values, values with very low variance,

or a large number of missing values. In such cases, that attribute can be

entirely removed from the dataset.

�Types of Data
The data that is collected and used can be either of the following:

•	 Labeled: Each class/type is labeled based on certain

characteristics so that the machine can easily identify

and separate the data into its respective groups. For

example, if you have a collection of pictures that are

separated and tagged as “cat” or “fish” accordingly.

•	 Unlabeled: Each class/type is not labeled, and so the

machine needs to figure out how many classes are

there and which item belongs where, and then it must

separate the data on its own. For example, if you have

a set of pictures, but they are not separated and tagged

as “cat” or “fish” accordingly. In this case, the machine

would need to identify some particular features that

differentiate one animal from the other (like a cat’s

whiskers or a fish’s fins).

Chapter 2 An Overview of Machine Learning

31

Based on the kind of data being used, there are two main types of

machine learning methods:

•	 Supervised learning: This method uses labeled data.

•	 Unsupervised learning: This method uses unlabeled

data.

Table 2-2 lists how they differ from each other.

Table 2-2.  Supervised/Unsupervised Learning Differences

Supervised Learning Unsupervised Learning

It uses data that is labeled. It uses data that is unlabeled.

It does not require excess data for

accuracy.

It requires excess data for accuracy.

Computational complexity is less, i.e.,

it is simpler.

Computational complexity is greater, i.e.,

it is less simple.

It does not find patterns on its own

from a dataset.

It finds patterns on its own from a given

dataset.

Each type of learning method has various types of algorithms that can

be used to solve a machine learning problem. Let’s take a look at some

important ones.

�Supervised Learning Algorithms
The goal of every supervised learning algorithm is to map the input to the

output, as shown in the following equation:

y = f(x)

Chapter 2 An Overview of Machine Learning

32

There are several algorithms that can be used to solve a machine

learning problem with the help of supervised learning. These algorithms

can be segregated into the following categories:

	 1.	 Regression algorithms: These algorithms contain

outputs that are real or countable. For example,

height (4 feet, 5 feet, 6 feet), age (27, 31, 65), or price

(100 rupees, 20 pounds, 10 dollars)

	 2.	 Classification algorithms: These algorithms

contain outputs that are abstract or categorical.

For example, colors (orange, purple, turquoise),

emotions (happy, sad, angry), or gender (girl, boy).

To give you some idea of what these algorithms are, let’s go through

three common types of algorithms that are used:

•	 Linear regression

•	 Logistic regression

•	 K-Nearest neighbors

�Linear Regression
As the name suggests, linear regression is a type of regression algorithm.

It models the relationship between a dependent variable and an

independent variable. Graphically, it looks something like Figure 2-1.

Chapter 2 An Overview of Machine Learning

33

�Logistic Regression
Although the name says regression, this is generally used as a classification

algorithm. It is usually the first choice for programmers who wish to

conduct binary classification. It looks something like Figure 2-2.

Figure 2-1.  Linear regression algorithm

Figure 2-2.  Classification algorithm

Chapter 2 An Overview of Machine Learning

34

�K-Nearest Neighbors
This algorithm can be used for both regression and classification. It

assumes that similar units exist in close proximity to one another. It uses

this idea to come up with a solution. It looks something like Figure 2-3.

Figure 2-3.  K-nearest neighbor algorithm

�Applications of Supervised Learning Algorithms

	 1.	 Spam detection: Remember the very first email

segregation example that we read about? This is

done with the help of supervised learning.

	 2.	 Bioinformatics: This is the method of keeping a

record of a person’s biological information for later

use. One of the most common examples of this is the

security system on our cell phones, which can scan

our fingerprint and grant us access accordingly.

Chapter 2 An Overview of Machine Learning

35

�Unsupervised Learning Algorithms
The goal of unsupervised learning algorithms is to discover possible

patterns from the set of data that is provided. The algorithm has no prior

information about the patterns and labels present in the data.

There are several algorithms that can be used to solve a machine

learning problem with the help of unsupervised learning. These

algorithms can be segregated into the following categories:

•	 Cluster analysis: This approach finds similarities

among the data and then groups the common data

together in clusters.

•	 Dimensionality reduction: This approach attempts

to reduce the complexity of data while still keeping the

data relevant.

Let us now have a look at two common algorithms that are used for

unsupervised learning: K-means clustering and principal component analysis.

�K-Means Clustering
The K-means clustering method forms k clusters out of a total of n

observations. Each observation will be a part of the cluster with the closest

mean. It looks something like Figure 2-4.

Chapter 2 An Overview of Machine Learning

36

�Principal Component Analysis
Principal component analysis uses orthogonal transformation to

statistically transform a set of potentially correlated variables to a set of

linearly uncorrelated variables, known as principal components. It is used

to reduce the dimensionality of the data. It looks something like Figure 2-5.

Figure 2-5.  Principal component analysis algorithm

Figure 2-4.  K-means clustering algorithm

Chapter 2 An Overview of Machine Learning

37

�Applications of Unsupervised Machine
Learning Algorithms
Anomaly detection is the identification of certain anomalies or observations

that are different from the rest of the observations. These anomalies are also

called outliers. For example, credit card fraud can be discovered by detecting

unusual transactions made with the credit card.

Association is the process of identifying associations between different

observations with the help of provided data. For example, in e-commerce

it is easy to figure out the type of products a customer might be interested

in by analyzing previous purchases.

Task Time  Do a little more research on machine learning
algorithms. You can even compare them with each other, as this will
broaden your understanding of these algorithms to help you decide
which one to use for any future projects you might have.

Apart from supervised and unsupervised machine learning, there are

also two lesser-known methods of machine learning, as follows:

•	 Semi-supervised learning: This method uses some

labeled data and a larger proportion of unlabeled data

for training.

•	 Reinforcement learning: This method is similar to

training a pet. It sends positive signals to the machine

when it gives the desired output, to let it know that it

is right and to help it learn better. Similarly, it sends

negative signals to a machine if it provides an incorrect

output.

Chapter 2 An Overview of Machine Learning

38

�Applications of Machine Learning
Over the years, as machine learning began to grow in popularity,

enthusiasts began to do more research into different ways of solving

machine learning problems. They soon came up with different types of

algorithms that prove to be the most efficient, depending on the data and

parameters that you are using. Thus, these algorithms became available for

worldwide use. Developers can easily choose which method they want to

implement and follow the algorithm accordingly.

Machine learning models are structured differently, based on what

is required of them. We will go a little deeper into the architecture of a

machine learning model later on in this book.

Now that we have some basic idea of what exactly machine learning is,

let’s take a look at some of its present real-world uses, as follows:

•	 E-Commerce: Machine learning can help to boost

online sales with the help of recommendation systems

(that recommend relevant products to potential

customers), analytics and predictions (to learn from

past sales and improve future sales), etc.

•	 Autonomous cars: Cars that drive themselves will

no longer be a thing of the future. They already exist,

and in a few years will be available on the market for

anyone and everyone to access.

•	 Manufacturing: Many companies use robots to

develop their products in a quicker and more

convenient manner. This is because robots can be

programmed to work tirelessly, with more accuracy,

and at less cost.

Chapter 2 An Overview of Machine Learning

39

•	 Healthcare: AI technology has improved immensely,

and a major piece of evidence of that is the fact that

it is now being implemented in healthcare. One very

interesting application is robotic arm surgery, where,

as the name suggests, a robotic arm is used to conduct

surgery. Starting with the use of the Arthrobot in 1985,

this type of surgery has been conducted several times

to facilitate increased precision and decreased incision.

�Summary
We now know what machine learning is and how it makes use of data with

the help of data science techniques. We have gone through some types

of machine learning algorithms and have seen how they are applied in

the world so far. With the rate at which our technology is advancing, the

need for machine learning is growing immensely. This calls for better and

more advanced methods of machine learning. One such part of machine

learning is a widely used technique known as deep learning. We’ll cover

that in the next chapter.

Chapter 2 An Overview of Machine Learning

41© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_3

CHAPTER 3

Introduction to
Deep Learning
Machine learning for artificial intelligence sounds pretty interesting so far,

doesn’t it? When I first heard about it, I thought it was something out of a

science fiction movie. It’s so amazing how things used to be experienced

only in reel life, and now they can be experienced in real life too!

Oh, yes, that pun was definitely intended.

Once machine learning took off in the world of technology, there

was no stopping it. Every day, every minute, people began making new

discoveries and developing newer models that worked better than the ones

that came before. However, these machine learning models were still not

good enough. They worked, don’t get me wrong. They were quite effective

as well. But they just weren’t efficient enough.

That was until people succeeded in developing a technique under

machine learning that would help a machine to figure things out for

itself, and thus solve extremely intricate problems with great accuracy.

In fact, this technique became so popular it is now quite well known

as an individual area under artificial intelligence (even though it is not

separate from machine learning). It was soon given the name “deep

learning.”

https://doi.org/10.1007/978-1-4842-5967-2_3#DOI

42

In this chapter, we will see how this method of machine learning came

about and why it is needed. We will also dive into the process involved in

deep learning; that is, the working of neural networks. This will give us

an understanding of why libraries like TensorFlow are important within a

programming language, especially in the context of deep learning.

�Origins of Deep Learning
Deep learning is a branch of machine learning that uses artificial neural

networks to help the machine to think about and respond to a particular

problem.

The important thing to remember here is that, although it is very

tempting to think of deep learning as an independent area under

artificial intelligence, it is definitely not. It is very much a part of artificial

intelligence, and is a subset of machine learning (Figure 3-1).

Figure 3-1.  Deep learning is a subset of machine learning within the
artificial intelligence sphere

Chapter 3 Introduction to Deep Learning

43

Thus, we can say that deep learning is a subset of machine learning,

which is a subset of artificial intelligence. Data science is like a common

denominator here, as it is a necessary part of all three areas. The origins of

deep learning can be credited to Walter Pitts and Warren McCulloch.

Walter Pitts was a logician in computational neuroscience, while

Warren McCulloch was a neurophysiologist and cybernetician.

In the year 1943, they created a computer model that was inspired

by the neural networks present in the human brain. They developed

something called threshold logic, which was a combination of

mathematics and algorithms that compared the total input with a certain

threshold. This enabled them to recreate the process of thinking, just as it

happens in the brain. This was a breakthrough that led to many more deep

learning innovations.

Let us now learn about a very important aspect of it known as neural

networks.

�Neural Networks
The neural network, or artificial neural network, was inspired by and

modeled after the biological neural network. These networks, like the

human brain, learn to perform specific tasks without being explicitly

programmed.

A neural network is composed of a series of neurons that are

connected together to form a type of network, hence the name neural

network. A neuron, or an artificial neuron, is the fundamental unit of a

neural network. It is a mathematical function that replicates the neurons

in the human brain, as you can see in Figure 3-2. Table 3-1 provides a

comparison of biological and artificial neurons.

Chapter 3 Introduction to Deep Learning

44

Note A perceptron is nothing but an artificial neuron. In deep
learning, the terms perceptron and neuron are used interchangeably.

Figure 3-2.  A biological neuron and an artificial neuron

Table 3-1.  Comparison of a Biological Neuron and an Artificial Neuron

Biological Neuron Artificial Neuron

It receives information in the form of

electrical signals.

It receives information in the form of

numerical values.

Literally speaking, the brain consists

of about 86 billion biological

neurons.

A neural network can consist of a maximum

of about 1,000 artificial neurons.

The general composition is a cell

body, dendrites, and axon.

The general composition is the weights and

bias, the net input function, and the activation

function.

Chapter 3 Introduction to Deep Learning

45

�Working of an Artificial Neuron (Perceptron)
The perceptron follows a particular flow of steps in order to achieve its

desired output. Let’s go through these steps one by one to understand how

a perceptron works.

�Step 1: Accepting Inputs
The perceptron accepts inputs from the user in the form of digital signals

provided to it. These inputs are the “features” that will be used for training

the model. They are represented by x(n), where n is the number of the

feature. These inputs are then fed to the first layer of the neural network

through a process called forward propagation.

�Step 2: Setting the Weights and Bias
Weights: The weights are calculated and set while

training the model. They are represented by w(n),

where n is the number of the weight. For example,

the first weight will be w1, the second weight will be

w2, and so on.

Bias: The bias is used to train a model with higher

speed and accuracy. We generally represent it with w0.

�Step 3: Calculating the Net Input Function
The equation for the net input function is as follows:

I = Sum(x(n).w(n) + w0)

Thus, each input feature is multiplied by its corresponding weight, and

the sum of all these products is taken. Then, the bias is added to this result.

Chapter 3 Introduction to Deep Learning

46

The Perceptron Learning Rule: According to this

rule, the algorithm automatically determines the

optimum values for the weights. The input features

are then multiplied by these weights in order to

determine if the perceptron should forward the

signal or not. The perceptron is fed with several

signals, and if the resultant sum of these signals

exceeds a particular threshold, it either returns an

output signal or doesn’t.

�Step 4: Passing the Values Through
the Activation Function
The activation function helps with providing nonlinearity to the

perceptron. There are three types of activation functions that can be used:

ReLU, Sigmoid, and Softmax.

�ReLU

The Rectified Linear Unit is used to eliminate negative values from our

outputs.

If the output is positive, it will leave it as it is.

If the output is negative, it will display a zero.

Pros:

	 1.	 It is scalable.

	 2.	 It provides efficient computation.

	 3.	 It works well for neural networks with complex

datasets.

Chapter 3 Introduction to Deep Learning

47

Cons:

	 1.	 The output value is not restricted, which means

it can cause issues if large values are passed

through it.

	 2.	 The neurons can become inactive and “die” when

the learning rate is large.

	 3.	 There is asymmetric handling of data, and results

can end up inconsistent.

�Sigmoid

It is a special mathematical function that produces an output with a

probability of either 1 or 0.

Pros:

	 1.	 It is differentiable and monotonic.

	 2.	 It can be used for binary classification.

	 3.	 It is useful when we need to find only the

probability.

Cons:

	 1.	 It does not give precise values.

	 2.	 There is the issue of a vanishing gradient, which

prevents the sigmoid function from being used in

multi-layered networks.

	 3.	 The model can get stuck in a local minima during its

training.

Chapter 3 Introduction to Deep Learning

48

�Softmax

It is generally used in the final layer of a neural network. It is generally used

to convert the outputs to values that, when summed up, result in 1. Thus,

these values will lie between 0 and 1.

Pros:

	 1.	 It can be used for multi-class classification.

	 2.	 The range is only between 0 and 1, thus simplifying

our work.

Cons:

	 1.	 It does not support a null class.

	 2.	 It does not work for linearly separable data.

�One Hot Encoding

One Hot Encoding is a tweak that can be used while producing the

outputs. It is used to round off the highest value to 1, while making the

other values 0. This makes it easier to figure out which is the necessary

class, as it is easier to spot a 1 from a list of 0s, rather than finding the

highest value from a random list of numbers.

For example, say we have a set of inputs like 0.11, 0.71, 0.03, 0.15. Here,

it is obviously not too difficult to identify the highest value since there are

only four values.

Now imagine if the list had about 1,000 values. That would be difficult,

wouldn’t it?

But, with the help of One Hot Encoding, we can easily identify the

one from the zeroes. That is why it is a popular technique used in neural

networks.

Chapter 3 Introduction to Deep Learning

49

Pro Tip T he most common practice is to use a ReLU activation
function in all the hidden layers, and then to use either a Softmax
activation function (for multi-class classification) or Sigmoid
activation function (for binary classification).

�Step 5: Producing the Output
The final output is then passed from the last hidden layer to the output

layer, which is then displayed to the user.

Now that we know how a perceptron works, let’s go a little more in

depth as to how a neural network performs a deep learning task.

�Digging Deeper into Neural Networks
Deep learning goes a step further in machine learning. It allows the

machine to begin thinking on its own in order to make decisions and carry

out certain tasks. Neural networks are used to develop and train deep

learning models. For example, consider a very simple neural network,

which consists of an input layer, an output layer, and one layer of neurons,

known as the hidden layer (as shown in Figure 3-3). The basic function of

these three sections is as follows:

	 1.	 The input layer, as the name implies, is made of the

input signals that will be further transmitted into the

neural network.

	 2.	 The hidden layer is where all the important

computations occur. The input that is fed to it is

taken, calculations are performed on it, and then

this input is sent to the next layer, which is the

Chapter 3 Introduction to Deep Learning

50

output layer. The hidden layer can have any number

of neurons within it. There can also be more than

one hidden layer, depending on our requirements

and arrangement.

	 3.	 The output layer, as the name suggests, contains

the output signals. These are nothing but the final

results of all the calculations performed by the

hidden layer/s.

�The Process
There are four main steps to the neural network process that allow it to

come up with the most optimal solution for any problem that is given to it.

Figure 3-3.  Basic neural network

Chapter 3 Introduction to Deep Learning

51

Step 1: The numerical input signals are passed into

the neural network’s hidden layers.

Step 2: The net input function is calculated with the

weights and the bias that are generated during the

training.

Step 3: The activation function is applied to the net

input function.

Step 4: The result is then produced as the output of

the neural network.

Thus, deep learning, as a part of machine learning, stands out as an

extremely useful technique in the area of artificial intelligence.

�Additional Concepts
In the following sections, we will review some key concepts that are

important to know when it comes to neural networks.

�Gradient Descent

Gradient descent is a deep learning algorithm that is used for optimization.

It determines the values of the parameters of a function in order to ensure

that the value of the cost function is minimized.

It minimizes the function by iteratively moving in such a way that it

follows the path of steepest descent, depending on the negative of the

gradient.

The gradient of the error function with respect to the weights of the

neural network is calculated. Afterward, the output is compared with the

labels in order to calculate the error.

Chapter 3 Introduction to Deep Learning

52

�Forward Propagation

A perceptron accepts inputs or “features,” processes them, and then

predicts the output. This output is then compared with the labels to

measure the error. This is known as the forward propagation.

The data is fed into a layer of the neural network, passed through the

activation function, and then fed to the next layer. The data must move

forward to ensure that an output is achieved.

Thus, for any hidden layer in a neural network, after the first layer, the

input is nothing but the output that is generated from the previous layer.

�Back Propagation

Back propagation of the error is a deep learning algorithm that is used

in training a supervised learning model. It calculates the gradient of the

loss function corresponding to the weights generated by the network for a

single input and output pair. It modifies the values of the weights in order

to minimize the loss. It is an efficient method of calculation, and thus

makes it feasible to use gradient methods to train multi-layer networks.

The algorithm computes the gradient of the loss function with respect

to each weight by the chain rule, by proceeding one layer at a time. It

iterates backward from the final layer. This is done to avoid redundant

calculations during the process.

�Overfitting

Overfitting is a statistical concept. It occurs when an analysis is said to be

too accurate with respect to the data provided to it, and thus it can result in

an improperly trained model. When we train our model, we may get very

high accuracy. However, when testing the model, we may find a drastic

difference in the accuracy. This is the result of overfitting.

Chapter 3 Introduction to Deep Learning

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Gradient_method
https://en.wikipedia.org/wiki/Chain_rule

53

It can happen when we train a model too many times, or with too

little data. The model ends up getting very familiar with the training data

and can thus achieve a very high accuracy with it. However, it messes up

anyway when it comes to making predictions on new data, because it has

still not been trained in the right way.

�Types of Neural Networks
There are several types of neural networks, all based on their structure,

composition, and flow. Let’s go ahead and discuss a few of the common

and most important ones that are used by deep learning developers.

�Single-Layer Neural Networks: A Perceptron

The perceptron is the oldest single-layer neural network. As you have seen

before, it takes the input from the user, multiplies it by the corresponding

weight, adds that to the bias to get the net input function, and then passes

the result through the activation function to get the final output. Every

perceptron produces only a single output.

This type of neural network is not very efficient due to its extremely

limited complexity. Thus, researchers came up with a model that

contained more than one layer of perceptrons.

�Multi-Layer Neural Networks

This type of neural network is used mainly for natural language processing,

speech recognition, image recognition, etc. It consists of two or more

layers of perceptrons, as follows:

•	 Input layer: This is all the available numerical data that

is fed into the system and then transferred to the rest of

the neural network.

Chapter 3 Introduction to Deep Learning

54

•	 Hidden layers: This is where all the neurons are

located. Every layer can have any amount of neurons.

They are known as “hidden” layers because they

remain hidden within the neural network as they

perform the necessary computations.

•	 Output layer: This is the final result of all the

calculations that happened in the hidden layers.

�Convolutional Neural Networks

Convolutional neural networks follow the same principle as multi-layer

neural networks, the only difference being that they include “convolutional

layers,” which make use of filters.

A filter is a grid of size AxB that is moved across the image and

gets multiplied several times by it to produce a new value. Each value

represents a line or an edge in the image.

Once the filters have been used on the image, its important

characteristics can be extracted. This is done with the help of a pooling

layer. These layers pool or collect the main features of each image. One

popular technique of doing this is known as max pooling, which takes

the largest number of each image and stores it in a separate grid. It thus

compresses the main features into a single image and then passes it on to a

regular multi-layer neural network for further processing.

These neural networks are mainly used for image classification. They

can also be used in search engines and recommender systems.

�Recurrent Neural Networks

Recurrent neural networks (RNNs) are used for temporal data; i.e., data

that requires past experiences to predict future outcomes. State matrices

remember previous states of data by storing the last output, and then use

this data to calculate the new output.

Chapter 3 Introduction to Deep Learning

55

Long short-term memory (LSTM) networks save the state matrices in

two states: long term and short term. RNNs begin in the layers after the

first layer. Here, each node acts as a memory cell during the computation,

which allows it to compare previous values with new values during

back propagation. These neural networks can be used for stock market

predictions, natural language processing, and price determination.

�Sequence-to-Sequence Models

A sequence-to-sequence model is mainly used when the lengths of the

input data and output data are unequal.

It makes use of two recurrent neural networks, along with an encoder

and a decoder. The encoder processes the input data, while the decoder

processes the output data.

These models are usually used for chatbots and machine translation.

�Modular Neural Networks

Modular neural networks have several different networks that each work

independently to complete a part of the entire task. These networks are not

connected to each other, and so do not interact with each other during this

process.

This helps in reducing the amount of time taken to perform the

computation by distributing the work done by each network. Each sub-

task would require only a portion of the total time, power, and resources

needed to complete the work.

Task Time H ave a look at the other types of neural networks. How
do they differ from one another? How would a machine learning
developer choose between these models?

Chapter 3 Introduction to Deep Learning

56

�Summary
Deep learning is a vast topic, and it is not possible to cover everything

in detail within a single chapter. It suffices, however, to at least learn the

basics of it, which is what we have done.

We learned what a deep learning neural network is and how it works.

In addition, we discussed a few extra concepts that are important to know

with regard to the functioning of neural networks. Finally, we went through

several types of neural networks, which gave us a clearer understanding

of how they can be developed and used for various purposes. Despite the

fact that deep learning is a part of machine learning, these two terms are

often used as if they are completely different entities. This can be quite

confusing, especially for beginners. Thus, in the next chapter, we will see

how they can be compared to one another.

Chapter 3 Introduction to Deep Learning

57© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_4

CHAPTER 4

Machine Learning vs.
Deep Learning
In the previous chapters, we learned that artificial intelligence involves the

phenomenon of thinking machines. Machine learning is the technique

of helping a machine to think so it is able to perform actions on its own.

We also learned that deep learning is a type of machine learning that

uses neural networks to help a machine learn. These neural networks are

modeled after the human brain.

That said, you now may be wondering: Why would we compare

machine learning and deep learning when they are not independent, but

rather the latter is a subset of the former?

Well, as you’ve seen, traditional machine learning has several

methods. Deep learning is one such method that is much more advanced

in the way it works, and thus the procedure and results may vary. In this

short chapter, we will discuss the differences between traditional machine

learning and deep learning, which will help us understand when to use

each method, as per our requirements.

https://doi.org/10.1007/978-1-4842-5967-2_4#DOI

58

�Factors Used When Comparing Machine
Learning and Deep Learning
First of all, we need to understand that there are six characteristics based

on which we will be comparing machine learning and deep learning. Of

course, these aren’t necessarily the only factors, as there are several other

factors that differentiate one from the other. However, for the sake of

getting a clear idea of how the two differ from each other, we will take into

consideration these six aspects. Let’s go through them briefly and see what

they are.

•	 Quantity of data required: This refers to the amount of

data that is needed for the process of learning. In some

cases, we may have massive amounts of data that we

have collected from various sources, and that we desire

to use for our analysis. In other cases, we may have

slightly less data with which we will need to perform

our analysis.

•	 Accuracy: The main objective of every machine

learning and deep learning problem is to obtain the

highest accuracy, while ensuring that the model

has not reached a state of overfitting. That said, our

results can vary depending on the method, algorithm,

technique, and data that we use. One method may give

us higher accuracy, while another method may not.

•	 Computational power: The machines that are being

trained require plenty of computational power in

order to effectively perform their task. Earlier, when

machine learning had just been invented, machines

were slower and had less capacity. This resulted in

inefficient outcomes. Nowadays, however, machines

Chapter 4 Machine Learning vs. Deep Learning

59

have improved. It is thus possible to carry out our

computations with tremendous computational power.

•	 Cognitive ability: This refers to the ability of the

machine to understand its inaccuracies and sort out

the issue on its own. If a machine does not have this

ability, it will not be able to make corrections to its

parameters and/or structure, and a programmer will

have to step in and do it for the machine.

•	 Hardware requirements: This refers to the type of

hardware equipment needed by the algorithms to carry

out their respective operations. This mainly depends

on how advanced the program is, and on what the

outcome is expected to be.

•	 Time taken: This refers to the amount of time taken,

first to train the model, and then to validate it. This

can vary according to the different parameters and

algorithms used. By modifying them, we can either

increase or decrease the amount of time taken to train

and test the model.

Now that we are aware of the various factors that we will be

considering to compare our models and what exactly each factor refers to,

we can move on to exploring the differences between machine learning

and deep learning.

Chapter 4 Machine Learning vs. Deep Learning

60

�Differentiating Between Regular Machine
Learning and Deep Learning
Before we begin, we must remember that these are not necessarily the

only factors involved in differentiating between machine learning and

deep learning, especially considering that the entire process is a highly

advanced area of technology, which means that there are many intricacies

involved. However, we will keep our comparison simple but informative,

so as to easily comprehend the differences between the two processes.

Thus, taking into consideration the six factors mentioned earlier, we will

now see how machine learning and deep learning vary from each other.

�Quantity of Data Required
In general, machine learning requires plenty of data for the machine to

successfully train itself. However, in traditional machine learning, we

do not need to have too much data. We just need enough to enable the

machine to process, learn, and act. On the other hand, deep learning

needs larger amounts of data. This is to ensure that the machine has

enough information to develop inferences on its own, without any external

aid. See Figure 4-1.

Figure 4-1.  Comparison of data requirements

Chapter 4 Machine Learning vs. Deep Learning

61

�Accuracy
Accuracy, as you likely already understand, is the measure of how correct

or precise the machine is when coming up with a solution. Although both

methods give results that are quite precise, as you can see in Figure 4-2,

regular machine learning is relatively less accurate, since it uses a smaller

amount of data from which to learn and make inferences. Deep learning

is much more accurate due to the large amount of data that it uses to learn

and make inferences.

�Computational Power
Both machine learning and deep learning require a lot of computational

power in order to train their models with the data given to them. However,

the amount of power required by regular machine learning programs

is comparatively less, mainly due to the fact that it uses less data for its

computations. Deep learning requires more power to analyze its data and

train its model. See Figure 4-3.

Figure 4-2.  Comparison of accuracy

Chapter 4 Machine Learning vs. Deep Learning

62

�Cognitive Ability
One of the most important differences between machine learning and

deep learning is that their cognitive abilities vary. Machine learning

models have a lower cognitive ability because if they happen to make an

inaccurate prediction, external assistance (in this case, a programmer) is

required to make the necessary changes and then retrain the model. Deep

learning models, however, have a higher cognitive ability because they

can figure out inaccuracies and make the necessary changes on their own,

without the need of a programmer. See Figure 4-4.

Figure 4-3.  Comparison of computational power

Figure 4-4.  Comparison of cognitive ability

Chapter 4 Machine Learning vs. Deep Learning

63

�Hardware Requirements
Most traditional machine learning algorithms can run smoothly on low-

end systems. They do not depend too much on sophisticated machinery

to carry out their processes. Deep learning algorithms, on the other hand,

depend heavily on the hardware that is used because they need GPUs to

optimize their processes. Therefore, they would need high-end machines

for their operations. See Figure 4-5.

�Time Taken
Although this may not be true in all cases, it is a generally known fact

that machine learning models take less time to train, while deep learning

models take a longer time. This occurs mainly because deep learning

models consist of more parameters, which means that the machine has a

lot more work to do with regard to learning from its data. Machine learning

Figure 4-5.  Comparison of hardware requirements

Chapter 4 Machine Learning vs. Deep Learning

64

models, however, don’t have too many parameters, and so it is easier for

the algorithm to compute.

When it comes to validation of the models, deep learning tends to be

faster, whereas machine learning is slower. Once again, this differs from

case to case. See Figure 4-6.

�Summary
We have seen six ways in which deep learning differs from machine

learning. It is now easy to understand why many people consider both

areas to be extremely important in the field of artificial intelligence.

Depending on the kind of input and technology available, people can

choose the type of machine learning method they want to employ.

We can now move on to the process involved in setting up the system

to help it learn. This is where the programming part comes in. Machine

learning requires programmers to use data science techniques, followed

Figure 4-6.  Comparison of time taken

Chapter 4 Machine Learning vs. Deep Learning

65

by some specific machine learning algorithms, to enable the machine to

think on its own. All this can be done within one single program.

We can use several programming languages to carry out our machine

learning tasks, like Python, Java, C++, Julia, and R. However, since Python

has emerged as one of the most popular machine learning programming

languages so far, we shall be having a look at it over the next few chapters

in the context of machine learning and deep learning.

Chapter 4 Machine Learning vs. Deep Learning

67© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_5

CHAPTER 5

Machine Learning
With Python
In previous chapters, we saw what artificial intelligence is and how machine

learning and deep learning techniques are used to train machines to

become smart. In these next few chapters, we will learn how machines are

trained to take data, process it, analyze it, and develop inferences from it.

Machines need to be programmed to carry out particular actions.

There are about 700 major and minor programming languages in the

world to date. These languages have developed over the years according

to the needs of the time. Many of the languages are just new and improved

versions of older languages. As computers and computer-related

businesses grew, the need for programming languages increased as well.

As artificial intelligence evolved, the usefulness of a programming

language for machine training became an added criteria for its popularity.

As of 2019, the top three languages were Java, Python, and C/C++.

Excluding C, the other languages are object oriented.

Note  Object-oriented programming (OOP) is a type of programming
in which data is stored in objects as fields or attributes, and code is
stored as methods or procedures.

OOP is a common method of programming because it is scalable,
reusable, and efficient.

https://doi.org/10.1007/978-1-4842-5967-2_5#DOI

68

In this book, we will be learning how to program machines with the

help of Python, which is, at present, one of the most widely used languages

when it comes to machine learning. We will start by getting acquainted

with this programming language.

�Introduction to Python
Python was first developed and released in the year 1990 by Guido van

Rossum, a Dutch mathematician, at the Centrum Wiskunde & Informatica

in the Netherlands. One very interesting fact to note is that the name

Python was, surprisingly, not taken from the notorious reptile, but rather

from the equally notorious comedy group Monty Python that Guido was

fond of.

According to the official Python website, “Python is an interpreted,

object-oriented, high-level programming language with dynamic

semantics.”

In simpler terms,

•	 it is an interpreted language, which means it allows

instructions to be executed freely and directly, without

any prior compilation required;

•	 it uses objects that contain data and code;

•	 it follows a language style that is easy for human beings

to interpret; and

•	 it allows information to be updated according to time.

Python’s popularity first peaked around 2003, and ever since then it

has retained its position as a highly acclaimed programming language. Its

popularity can mainly be attributed to its features, which are listed in the

next section.

Chapter 5 Machine Learning With Python

69

�Key Python Features
Python was mainly developed to improve code readability and to reduce

the amount of coding required to program a machine. Apart from this,

it has a variety of unique features and provisions that make our overall

programming experience smooth and easy.

These features include the following:

•	 Open source license: This means it is free to

download, modify, and redistribute under an OSI-

approved license.

•	 Readability: It has a very easy-to-read syntax.

•	 Cross-platform working: It can run on any operating

system, including Linux, Windows, Mac OS, etc.

•	 Extensive standard library: It consists of many useful

libraries that can be used for a variety of applications.

•	 Easily integrated: It can easily be integrated with other

languages like C, C++, Java, etc.

•	 Supports object-oriented and procedure-oriented
programming: It primarily follows OOP, but it also

makes room for POP, which is one of the most unique

features of Python.

•	 Allows GUI programming: It has several libraries that

allow users to develop graphic user interfaces quickly

and easily.

•	 Large community: It has a huge community of coders,

making it easier to make improvements, get help, solve

issues, and develop new ideas.

Chapter 5 Machine Learning With Python

70

Fun Fact T he community of Python users who support the
language, and, more specifically, those who are experts in coding
with help of Python, are known as Pythonistas.

�Python’s Competitors
As mentioned earlier, there are multitudes of other programming

languages that are used in various fields and for various purposes. In

the area of machine learning for artificial intelligence, some common

programming languages that people use, other than Python, include the

following:

•	 R: It is mainly used for visual representations, as graphs

can be created very easily with just a few lines of code.

It thus allows for exploratory data analysis.

•	 Java: It is one of the oldest languages in the world of

computer programming. It is great in terms of speed,

reliability, and security.

•	 Scala: Its runtime is extremely fast, and it can be used

to develop complex pieces of code. It is moderately

easy for a beginner to pick up.

•	 Julia: It is high level, scalable, dynamic, and quick. It

also provides some powerful native tools that can be

implemented for machine learning.

•	 C++: It has a high speed, a sufficient set of libraries

and tools, and is most efficient when it comes to using

statistical techniques.

Chapter 5 Machine Learning With Python

71

�Python as a Preferred Language for Machine
Learning
Machine learning can become quite a complex process, especially

when the data is massive, the model is extensive, and the objective is

challenging. That said, it requires a language that simplifies its process and

makes it less tedious for the developer.

When compared to other programming languages, Python stands out

for the following reasons:

•	 It works seamlessly across different platforms. Thus,

developers need not worry about using only one

platform. They can easily distribute and use the Python

code. A lot of other languages don’t offer this feature, or

are limited in their cross-platform abilities, and hence

need to be used only on a single platform.

•	 It consists of a vast list of machine learning–specific

libraries, utilities, and frameworks, which can be used

by developers to make their programming faster and

easier. Other languages don’t have such an extensive

selection.

•	 Its code is simple, readable, and concise. It is, therefore,

easier for a developer to focus their attention on the

machine learning problem at hand, rather than having

to worry too much about writing the correct code and

following the correct syntax, which most of the other

languages require.

Chapter 5 Machine Learning With Python

72

•	 It has a large community of developers who frequently

use the language. This makes it less of a task for us

to ask questions about any issues that arise while

programming. It also allows Python developers to come

together to discuss tips and ideas with one another.

Other programming languages either have a smaller

community or no community at all.

�Python’s Machine Learning Libraries
First, we will understand what a library is.

A library in the programming world is a collection of methods and

functions that allow a user to perform various tasks without having to write

the necessary code for it.

We use libraries to save time while we program. Python has a huge

array of open source machine learning libraries, including, but not limited

to, the following:

•	 Pandas: The Pandas library provides users with the

ability to handle large datasets. It provides tools for

reading and writing data, cleaning and altering data,

and so on.

•	 Numpy: The Numpy, or Numerical Python, library

provides users with a powerful array of computing

abilities. It tackles the problem of slow mathematical

computations and allows users to perform huge

calculations with the help of multi-dimensional arrays.

•	 Scipy: The Scipy library is used for scientific and

technical computations. It works on Numpy’s multi-

dimensional arrays.

Chapter 5 Machine Learning With Python

73

•	 Scikit-Learn: The Scikit-Learn library consists of

various features and methods that have specially

been made to assist users in their machine learning

requirements. It makes use of the Numpy library,

specifically when it comes to array operations.

•	 TensorFlow: The TensorFlow library is an increasingly

popular library that provides users with a large set of

flexible and accessible tools for machine learning. You

will be learning more about TensorFlow later on in this

book.

With the help of these libraries, we can develop our machine learning

program quickly and easily.

�Other Applications of Python
Due to the diverse functionality of Python as a programming language, its

utility is not limited to artificial intelligence alone. It is used for a variety

of other applications as well. Some of these applications include the

following:

•	 Web development

•	 Data analysis

•	 Educational purposes

•	 Software testing

•	 Computer graphics

•	 Game development

•	 Scientific and numeric computing

•	 Desktop GUIs

Chapter 5 Machine Learning With Python

74

�Installing Python
As mentioned before, Python is free to download. There are several ways to

download and install Python onto your system, based on your OS and your

preference.

One method of installing Python is from the official Python website,

which provides an installer that users can download and run on their

computers.

Another method of installing Python is with the help of package

installers like Homebrew that make installation more convenient.

In this book, we will learn a very easy way to do it—with the help of an

application known as Anaconda.

Anaconda is an open source distribution of the Python and R

programming languages. It is free for us to download and use on our system.

It was created to make our machine learning process easier, mainly by

making package installation simpler. It has an easy-to-use interface and

comes with Python pre-installed on it. It also makes our task of installing

the Jupyter Notebook application much easier, as we will see in the next

chapter.

Let us now learn how Anaconda can be installed onto our systems.

�Installing Python with Anaconda
Before we begin, we must have a look at the system requirements given in

the Anaconda documentation, just to make sure that our system will be

able to support Anaconda without any trouble. To download Anaconda,

we need to follow these steps:

Chapter 5 Machine Learning With Python

75

	 1.	 Go to the Anaconda website (https://www.

anaconda.com/distribution/) and find the

download option for your OS, as shown in Figure 5-1.

	 2.	 Since Anaconda comes pre-installed with Python, it

gives you the option to select the version of Python

that you want to install when you download the

Anaconda application. Select the latest Python

version available and click on the Download button.

Here, I have selected Python 3.7 for my Mac OS.

	 3.	 Once Anaconda is downloaded, locate the file on

the computer and double-click on it to begin the

installation.

	 4.	 Once the installation is completed, you will be able

to see the Anaconda Navigator icon in your list of

applications. Click on it.

Figure 5-1.  Choosing the right version to download and install

Chapter 5 Machine Learning With Python

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/

76

	 5.	 You will see a screen showing you a couple of useful

programming-related applications. You will also see

that, by default, a base (root) environment has been

created that contains Python and its libraries.

	 6.	 It is always good to create a new working

environment, other than the base. To do so, click on

the Create button. In the dialog box that appears,

you can give your new environment a name, select

your Python version, and then click the Create

button, as shown in Figure 5-2.

	 7.	 Once your environment is created, you need to

select it as your working environment. Once you

do that, you will be able to see a list of installed and

uninstalled packages by clicking on “Environments,”

then choosing the “Installed” or “Not installed”

option accordingly from the drop-down menu at the

Figure 5-2.  Creating a new Python environment

Chapter 5 Machine Learning With Python

77

top, as shown in Figure 5-3 and Figure 5-4. You can

even search for a specific package by entering its

name.

Figure 5-3.  List of installed packages

Figure 5-4.  List of uninstalled packages

Chapter 5 Machine Learning With Python

78

	 8.	 You can now begin installing some of the necessary

libraries that you will need for machine learning,

including Pandas, NumPy, SciPy, Scikit-learn,

TensorFlow, Matplotlib, and Seaborn. Search for

these libraries, select them by clicking on the check

box to their left, then click the Apply button, as

shown in Figure 5-5.

There you have it! Your Python environment is now downloaded,

installed, and ready for use!

�Python Interpreters
One of the key features of Python is that it is an interpreted language,

while other programming languages like Java, C, and C++ are all compiled

languages.

Let’s understand the difference between the two.

Figure 5-5.  List of selected packages to be installed

Chapter 5 Machine Learning With Python

79

A compiled language takes the entire program and translates it from

machine code to source code in order to obtain the required output. These

languages therefore have a faster runtime, but are not cross-platform.

An interpreted language executes the code directly by reading each

line one by one and then running it to obtain the required output. These

languages therefore have a slightly slower runtime, but are cross-platform.

There are newer technologies being developed to tackle this issue

of slow runtime, like the “just-in-time” compiler, which compiles the

program during its execution instead of before it.

Now, when we say that Python is an interpreted language, it does not

mean that it is not compiled at all. Compilation happens for a Python

program, but it is not explicitly shown to the programmer. The code is

compiled into bytecode, which is a low-level form of the original code. This

bytecode is then executed by the Python virtual machine.

In this way, Python runs the code directly, is not restricted to a

particular platform, and is not too slow with regard to execution speed.

There are several types of interpreters that Python can use to run a

program. Let’s have a brief look some of the most common ones:

	 1.	 CPython: This is the default implementation of

Python. It is most popularly used as it is most

compatible with Python packages and with

extension modules that are written in C. It is

the reference implementation of Python, which

means that all the different versions of Python are

implemented in C.

	 2.	 Jython (formerly JPython): This is an

implementation of Python that is written in Java and

Python. It translates Python code into Java bytecode,

and then executes it on a Java virtual machine. This

allows Python code to run on Java platforms. It also

allows users to use a Java class like a Python module.

Chapter 5 Machine Learning With Python

80

	 3.	 IronPython: This is an implementation of Python that

was developed for Microsoft’s .NET framework. It uses

Python libraries as well as .NET framework libraries.

It also provides an interactive console and dynamic

compilation support for improved performance.

	 4.	 PyPy: This Python implementation was written

in RPython, which is a subset of the Python

programming language. It uses a just-in-time

compiler, which gives it a quick runtime speed. It

is meant to provide maximum compatibility with

CPython, while strengthening performance.

	 5.	 Stackless Python: This implementation was, like

CPython, written with Python and C. It gets its

name from the fact that it does not depend on

the C call for its stack. It uses the C stack between

function calls, and then clears it out. It makes use

of microthreads, and supports task serialization,

tasklets, communication channels, and more.

	 6.	 MicroPython: This is a small, open source Python

implementation that was written in C and is

compatible with Python 3. It allows us to write

simple Python code instead of complex low-level

language code, and it can be run on microcontroller

hardware. It has a range of modules from Python’s

standard library, as well as some extra libraries that

are specific to MicroPython, which can be used to

program the board.

Now that we know what interpreters are, we need to know how to

interact with them. One of the most generic ways to do so is by using

something known as a Python shell.

Chapter 5 Machine Learning With Python

81

�The Python Shell
In computing, a shell acts as a medium between the user and the interpreter.

With the help of the shell, the programmer can input some code and receive

the necessary output. The shell waits for the user to enter a command or a

line of code. It then executes this code and displays the obtained result.

It is called a shell because it is the outermost layer of the operating

system. It can provide users with either a command-line interface (CLI)

or a graphical user interface (GUI), depending on what is required for that

particular operation.

The Python shell, or the Python interactive shell, also called the Python

REPL shell, takes a Python command and executes it, displaying the

required outcome. The term REPL is an acronym for the systematic flow of

events that occurs during this process, as follows:

•	 Read: It reads or takes in an input from the user.

•	 Eval: It evaluates the input.

•	 Print: It prints or displays the output to the user.

•	 Loop: It loops or repeats the process.

This shell interface is meant to be simple, easy, and great for beginners

to get the hang of programming on a computer.

�Opening the Python Shell
This task is much easier than it sounds. It is basically a two-step process

that can be accomplished in a flash.

	 1.	 First, you need to open the command-line interface

of your operating system. For example, on Mac

OS and Linux, it would be the Terminal, while on

Windows, it would be the command prompt. See

Figure 5-6.

Chapter 5 Machine Learning With Python

82

	 2.	 Next, in this interface, type the following:

python

Hit the Enter key. This should give the output shown in Figure 5-7.

Figure 5-6.  The Mac OS Terminal

Chapter 5 Machine Learning With Python

83

We are now in the Python REPL shell! This is one of the simplest

interfaces that we can use to program with Python. This Python shell can

now accept input as a Python command and execute it to display the

necessary output. Some simple examples are shown in Figure 5-8, where

I have performed some single-digit arithmetic operations (addition and

subtraction).

Figure 5-7.  The Python shell

Chapter 5 Machine Learning With Python

84

We can use the help() command to explore different features within

Python. To exit the Help window and return to the Python shell, press q

and then Enter. See Figure 5-9.

Figure 5-8.  Arithmetic operations in the Python shell

Chapter 5 Machine Learning With Python

85

Figure 5-9.  The Help window in Python

�Exiting the Python Shell
Once we are done programming with Python, we will need to exit the

Python programming environment by closing the shell. We can do this by

typing in the following command:

exit()

This exits the Python interactive shell and returns back to the main

command-line interface of the OS. The reason we use the brackets at the

end of the command is because we are calling the exit function in order to

exit from the shell. See Figure 5-10.

Chapter 5 Machine Learning With Python

86

The keyboard shortcut for this step is ctrl+D on Mac OS and Linux,

and ctrl+Z+Enter on Windows.

�Summary
In this chapter, we covered the fundamentals of Python as a programming

language. We read about its origins, its characteristics, its importance in

the machine learning world, and its competitors. We skimmed through

some of its machine learning libraries, as well as its other non-ML

applications, just to get a better idea of what it can do. We then learned

how to install it onto our systems and set it up. We also had a look at some

common Python interpreters that are used for programming, and we had a

peek at the Python REPL shell.

Figure 5-10.  Exiting the Python shell

Chapter 5 Machine Learning With Python

87

We must realize, however, that in order to use Python effectively for

machine learning programming, the Python shell will not be of much use,

since it is mainly meant for short commands and simple coding.

We will thus need to set up a lucrative working environment in which

we can enter and execute our Python code. Some popular applications

that we can use for this are the Jupyter Notebook, PyCharm, Spyder,

and IDLE. In this book, we will be using Jupyter Notebook for all our

programming purposes.

Jupyter Notebook has begun to gain more and more popularity

due to its simplicity, ease of use, and accessibility. It makes large-scale

programming and code distribution so much easier and quicker. It is also

very easy to install, especially with the help of Anaconda.

That said, let’s take a look at what Jupyter Notebook is and how it

makes our coding experience better, especially when it comes to Python

programming for data science and machine learning.

�Quick Links
Learn more about Python: https://www.python.

org/about/

Python vs. Other Programming Languages:

https://www.python.org/doc/essays/

comparisons/

Python Documentation: https://www.python.org/doc/

Python Events: https://www.python.org/events/

python-events

Learn more about Anaconda: anaconda.com/why-

anaconda/

Chapter 5 Machine Learning With Python

https://www.python.org/about/
https://www.python.org/about/
https://www.python.org/doc/essays/comparisons/
https://www.python.org/doc/essays/comparisons/
https://www.python.org/doc/
https://www.python.org/events/python-events
https://www.python.org/events/python-events
http://anaconda.com/why-anaconda/
http://anaconda.com/why-anaconda/

PART II

The Jupyter Notebook
In Part II, we will get ourselves acquainted with the Jupyter Notebook

application. We will go through its setup, take a look at its features, and get

hands-on experience in using this interface for Python programming.

What to expect from this part:

•	 An introduction to the Jupyter Notebook application

•	 How to install and set up Jupyter Notebook

•	 Explore the features of Jupyter Notebook

•	 Learn how to use Jupyter Notebook

•	 Use Python programs with the help of Jupyter

Notebook

91© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_6

CHAPTER 6

Introduction to
Jupyter Notebook
In the previous chapter, we learned about Python. We also had a glance

at how we can use Python in its REPL shell to write our code. This Python

shell, however, is not the most recommended tool to use when it comes to

massive machine learning programming. This is why we have developed

applications like Jupyter Notebook, which aid in such programming

requirements.

Jupyter Notebook is the brainchild of Project Jupyter, which is a non-

profit organization founded by Fernando Pérez. It was created with the

objective of developing open source software and providing services

that allow multiple languages to interact with one another for effective

computing.

Jupyter Notebook is an open source web-based application that

allows users to create, edit, run, and share their code with ease. This

application gets its name from the main languages that it supports: Julia,

Python, and R.

To fully appreciate Jupyter Notebook, let us first take a look at what a

“notebook” is with regard to programming.

https://doi.org/10.1007/978-1-4842-5967-2_6#DOI

92

�Understanding the Notebook Interface
A computational notebook or a notebook interface, or quite simply

a notebook, is used for literate programming, where we add a

comprehensive explanation along with our program. It is a virtual

notebook; i.e., it has a notebook-style GUI that provides a word processing

software’s functionality, along with a kernel and a shell.

�A Brief History of the Notebook
The notebook interface was first introduced around 1988, when Wolfram

Mathematica 1.0 was released on the Macintosh. This system allowed

users to create and edit notebook interfaces through its front-end GUI.

Then came Maple, released for Macintosh with version 4.3. It provided

a GUI in the style of a notebook, which became a highly acclaimed

interface for programming.

As the notebook began to grow in demand, people soon began to adapt

notebook-styled kernels and backends for other programming languages,

such as Python, MATLAB, SQL, and so on. Thus, the computational

notebook became quite popular among coders.

�Features of a Notebook
The generic features of a notebook are as follows:

	 1.	 It allows us to add cells of code, which make

debugging and programming easier.

	 2.	 It can be used to display visual representations of

data.

	 3.	 It allows us to add text in between each cell, which

makes it easier for the coder to explain the function

of each line of code.

Chapter 6 Introduction to Jupyter Notebook

93

	 4.	 Items within a notebook can easily be rearranged for

narrative purposes and better readability.

	 5.	 It can be used as a tool for live presentations.

	 6.	 It can be used to create interactive reports on

collected data and analytical results.

�Commonly Used Notebooks
Some commonly used open-source notebooks include the following:

	 1.	 Jupyter Notebook

	 2.	 IPython

	 3.	 Apache Spark Notebook

	 4.	 Apache Zeppelin

	 5.	 JupyterLab

	 6.	 R Markdown

�An Overview of Jupyter Notebook
As mentioned before, Jupyter Notebook is a web-based application

developed by Project Jupyter. Its aim is to enable users to, as stated on

the official website, “create and share documents that contain live code,

equations, visualizations and narrative text.”

Jupyter Notebook was developed in 2014 as a spin-off of the original

IPython, which is a command shell used to carry out interactive coding.

With the release of Jupyter Notebook, IPython found itself competing with

it, to an extent. It still remained as a kernel for Jupyter and as a shell for

Python, but everything else came under Jupyter Notebook.

Chapter 6 Introduction to Jupyter Notebook

94

Fun Fact  Jupyter Notebook was originally known as IPython
Notebook, since it was conceived from IPython.

The official website of Project Jupyter states that Jupyter Notebook

can support over forty programming languages. Each project is stored as a

notebook consisting of several cells of code, graphs, texts, and equations,

which can be altered easily. These notebooks can also be conveniently

distributed to others.

�Features of Jupyter Notebook
Apart from the generic characteristics of a computational notebook,

Jupyter Notebook has the following key features:

	 1.	 Each Jupyter Notebook is a JSON document. JSON is a

language-independent data format that is derived from

JavaScript. It uses human-readable text to transmit data

containing arrays or attribute–value pairs.

	 2.	 Each Jupyter Notebook is usually saved with a

.ipynb extension.

	 3.	 Jupyter Notebook is similar in style to other

interfaces that originated years before it, including

Maple and Mathematica (from the 1980s) and

SageMath (from the 2000s).

	 4.	 Jupyter Notebook was released under the modified

BSD license, which provides users with minimum

limitations in the usage and distribution of the

software.

	 5.	 Jupyter Notebooks can easily be shared with others

through email, Dropbox, GitHub, and the Jupyter

Notebook Viewer.

Chapter 6 Introduction to Jupyter Notebook

95

	 6.	 Jupyter Notebook is, at present, completely free to

use, and it is intended to remain free for anyone to

use at any time.

�Advantages of Jupyter Notebook
Jupyter Notebook has, since its release, proved to be a powerful tool for

programming, especially for high-level programmers. It has a smooth

and easy-to-use interface, which is great for those who are new to

programming. It also allows users to create new files and folders directly

on their system for easy storage of their code.

Let’s take a better look at what makes Jupyter Notebook stand out as a

programming application. It has the following features:

•	 It makes the overall programming experience better.

•	 It is an interactive application.

•	 It is open source; i.e., it is free to download, install, and use.

•	 It allows users to add notes, comments, and headings

in between lines of code in a notebook in the markdown

format, which is especially useful when sharing code

with others.

•	 It is convenient to edit code as each line of code can be

added to a separate cell, and this cell can be deleted,

modified, replaced, and so on.

•	 It is very easy to share and distribute code with others.

•	 Each notebook can be converted into different file

formats, like HTML, markdown, PDF, and so on.

Jupyter Notebook is in great demand now, but it did arrive pretty late

into the programming world. Before its conception, there were other

applications such as text editors and IDEs that coders used, and that are

still in use even today.

Chapter 6 Introduction to Jupyter Notebook

96

�Text Editors and IDEs
Earlier, programmers would type all of their code into a text editor like

Windows Notepad. These text editors allowed them to type in their code

and then install extra plugins that added bonus features. After that, they

had to transfer all the code to the command prompt to run it.

Later, IDEs were created to give programmers an environment that

provided them with all the features they would need to develop their code.

They would not need to write and run their code in separate applications,

or install new plugins each time. They could easily create, edit, debug, and

run their code in a single workspace.

Let us first take a look at the classic text editors to see how they were

used to program.

�Getting Acquainted with Text Editors
Over the years, programmers have used all kinds of tools and

environments for their code, including the very basic text editor.

The text editor is a computer program that is used, as its name

suggests, to edit plain text.

They are usually provided by default with operating systems. They

allow users to edit files like documentations and source code. Some

examples of text editors are the TextEdit application on Mac OS, Vim on

Linux, and the widely known Notepad on Windows.

Text editors are great for developers who are new to the field and

who are still familiarizing themselves with coding. They are also readily

available on the system. This is why most people prefer to start out with

text editors.

However, with the increasing complexity of advanced programs, and

especially with the introduction of artificial intelligence and machine

learning, programmers felt the need to create workspaces that would make

the process much easier. Hence, they came up with something called an IDE.

Chapter 6 Introduction to Jupyter Notebook

97

�Getting Acquainted with the IDE
An IDE, or integrated development environment, allows us to write, edit,

test, and debug our code by providing us with the necessary tools and

services.

For example, with the help of an IDE, we can manage resources, debug

errors, and complete our code very easily. Most IDEs are limited to a

single programming language, but some allow users to work with multiple

languages.

�Features of an IDE
Most IDEs come with the following features:

	 1.	 Text editor: It allows users to write and edit code,

and also provides syntax highlighting according to

the language being used.

	 2.	 Auto-completion of code: It identifies the next

possible input provided by the coder, and inserts

that component accordingly. This reduces the

chance of errors, and also significantly decreases the

amount of time spent programming.

	 3.	 Debugging tools: They seek out any errors in the

code and proceed to rectify them, thus saving time

and making the programmer’s work easier.

	 4.	 Compilers: They are used to translate the code

into a format that the machine can understand and

process.

Chapter 6 Introduction to Jupyter Notebook

98

�Benefits of an IDE
Programming with an IDE is considered advantageous for the following

reasons:

	 1.	 It is a single environment in which the programmer

can access all the required tools and utilities.

	 2.	 It can auto-complete code and debug errors on

its own, reducing the effort and time spent by the

programmer.

	 3.	 It manages the syntax on its own as well, which is

especially useful when it comes to indentations.

	 4.	 The code can be reverted, if needed, without any

major inconvenience.

	 5.	 Project collaboration becomes easier.

�Some Popular IDEs
Three of the most commonly used IDEs are the following:

•	 IDLE: IDLE, or the Integrated Development and

Learning Environment, is automatically installed along

with Python. It is lightweight and simple, making it easy

to learn. It provides tools that are similar to those in

text editors. It allows cross-platform usage and multi-

window text editing. It is a good start for those who are

new to IDEs.

•	 Spyder: Spyder, or the Scientific Python Development

Environment, is an open source IDE. It is great for

anyone who is a beginner to IDEs. It has the features

of a text editor, but with a GUI, making it easy for

Chapter 6 Introduction to Jupyter Notebook

99

people to transition from the simple programming

application to this more advanced one. It even allows

the installation of extra plugins for added benefit. It

is also visually similar to RStudio, allowing people to

switch easily from R to Python.

•	 Pycharm: Pycharm is a professional Python IDE. It

was made by JetBrain. It provides code editors, error

highlighting, and a debugger, all with a GUI. It can also

be personalized by allowing the user to change its color,

theme, and so on. It integrates Numpy and Matplotlib,

making it easy to work with graphs and array viewers.

Note  Although IDEs have always been used to describe a working
environment that allows a programmer to write and edit code, debug
errors, and so on, the main definition of an IDE is slowly being altered
as a result of the introduction of other tools such as Jupyter Notebook
that also allow users to easily develop code.

�IDE vs. Text Editor
Text editors have always been very simple to use. Even beginners to the

programming world could easily use them to code, without having to

worry about learning to use a new application. They required less effort in

terms of understanding the programming interface.

IDEs, on the other hand, require a little bit of familiarization before

a programmer can feel comfortable enough to make full use of its

features. However, they have extra capabilities and tools that simplify the

programming experience.

Chapter 6 Introduction to Jupyter Notebook

100

The conclusion: It all depends on our need and preference. If we don’t

want to spend time learning how to use an application, and would rather

make use of a simple interface for our code, we can use a text editor. And, if

we want to invest a little time in learning how to use an application, which

will then help us later with the rest of our programming requirements, we

can use an IDE.

Now that we know what text editors and IDEs are, we can see how the

notebook interface, and specifically Jupyter Notebook, is more beneficial

to programmers compared to similar applications.

�Jupyter Notebook vs. Other Programming
Applications
Why would we want to choose Jupyter Notebook over other programming

applications? Well, let’s have a look at the following differences between

Jupyter Notebook and other such applications:

•	 Tools: Jupyter Notebook provides users with tools and

utilities that make the programming experience much

faster and easier. Compared to other IDEs, Jupyter

Notebook has more services available.

•	 Graphical User Interface: The GUI of Jupyter

Notebook varies because it is meant to look like a

notebook and not like a general IDE. This makes it

easier on the eye and quite simple to understand.

•	 Usability: It is easier to use Jupyter Notebook

compared to other IDEs because of its easily accessible

features.

Chapter 6 Introduction to Jupyter Notebook

101

•	 Learning: Compared to other IDEs, Jupyter Notebook

may take a little time to grasp, just because of how

different it is from what we are used to. However, once

we do learn it, it becomes extremely convenient to use.

•	 Web-based: Jupyter Notebook runs on the browser,

unlike other IDEs, which work on the local system.

•	 Visualization: Although some IDEs provide users

with a great platform for visualization, other IDEs

don’t. Jupyter Notebook does, though, thus making it

easier for a programmer to use plots and other such

visualization techniques.

In this way, Jupyter Notebook outdoes its competitors in the

programming world.

Jupyter Notebook sounds like a blast, doesn’t it? Well, it is! Once we

get the hang of it, we can thoroughly enjoy programming with it. Let’s now

learn how to set up our Jupyter Notebook environment on our machine.

�Installing Jupyter Notebook
As mentioned in the previous chapter, one advantage of using Anaconda

is that the installation of Jupyter Notebook becomes quite an easy task to

achieve. There is no hassle of navigating through various applications just

to download it. All we need to do is the following:

	 1.	 Open the Anaconda Navigator.

	 2.	 Select the working environment, as shown in

Figure 6-1.

Chapter 6 Introduction to Jupyter Notebook

102

	 3.	 Click on the option to install Jupyter Notebook.

Et voila! Jupyter Notebook is now ready for use. In the next few

sections, we will explore its interface so as to get ourselves comfortable

with the layout and working of the application.

Note  When installing, we must make sure that we install Jupyter
Notebook and not JupyterLab. There’s a difference!

�Launching Jupyter Notebook
The first thing we will need to do is select our working environment. Here,

I have chosen myenv.

Figure 6-1.  Installing Jupyter Notebook

Chapter 6 Introduction to Jupyter Notebook

103

Next, we need to open up the Jupyter Notebook window. We can do

this by opening the Anaconda application and then clicking on “Launch”

under the Jupyter Notebook icon.

Since Jupyter Notebook is a web-based application, it opens in our

browser. The first window that opens is a dashboard, which gives us a

glimpse of our work so far, including files, folders, and notebooks. It will

look like Figure 6-2.

The URL bar contains a link that represents the notebook server, and

indicates that it is running from our local machine. The link will appear

like this this - http://localhost:8888/tree.

The rest of the dashboard is quite self-explanatory, but we will run

through it anyway. Here’s a breakdown of some of the basic but most

important features of the Jupyter Notebook interface, as shown in Figure 6-3:

Figure 6-2.  The Jupyter Notebook Dashboard

Figure 6-3.  Some important features of the Jupyter Notebook
dashboard

Chapter 6 Introduction to Jupyter Notebook

104

	 1.	 The Logout button allows us to log out of our Jupyter

Notebook session.

	 2.	 The Upload button allows us to upload a readily

available Jupyter Notebook that we can use.

	 3.	 The New button allows us to create a new Python

notebook, file, folder, or terminal.

	 4.	 The File tab shows us an ordered list of all our files

and folders.

	 5.	 The Running tab shows us any terminals or

notebooks that are open and running.

	 6.	 The Name button allows us to toggle the way our list

of files and folders is displayed; i.e., in ascending or

descending alphabetical order.

	 7.	 We can even select the “Last Modified” option to

display our items based on the last time that they

were modified.

	 8.	 The little check-box option with a “0” beside it

allows us to select all folders, notebooks, files, and

items that are open and running. We can even select

all of the items at once.

	 9.	 In our list of items, the ones with a folder icon next

to them represent the folders that we have on our

computer, as shown in Figure 6-4.

Chapter 6 Introduction to Jupyter Notebook

105

	 10.	 Once we create Jupyter notebooks and text files,

they will begin to appear on the dashboard. The

items with a page icon next to them represent the

documents that have a .txt extension, and the ones

with a notebook icon next to them represent the

Jupyter notebooks, which have a .ipynb extension,

as shown in Figure 6-5.

Now that we are aware of the general features of the Jupyter Notebook

interface, let’s see what happens when we select an item from our list by

clicking on the check box next to it. When we select an item, we will have a

number of available options, as shown in Figure 6-6:

Figure 6-4.  List of folders

Figure 6-6.  Controls available for each item

Figure 6-5.  A notebook and a file

Chapter 6 Introduction to Jupyter Notebook

106

	 1.	 We can Rename the item.

	 2.	 We can Duplicate the item to make another copy of it.

	 3.	 We can Move the item to another location.

	 4.	 We can Download the item.

	 5.	 We can View the item, which will open in a new tab

in our browser window.

	 6.	 We can Edit the item.

	 7.	 We can Delete the item by clicking on the red trash

can symbol.

	 8.	 We can Shutdown a notebook that is open and

running, as shown in Figure 6-7.

	 9.	 We can even select several items at the same time

and perform any available action on them.

Let us now create a brand new Jupyter notebook and explore all the

features within it.

Figure 6-7.  Option to shut a notebook down

Chapter 6 Introduction to Jupyter Notebook

107

�Inside a Jupyter Notebook
To create a new Jupyter Notebook, all we have to do is click on ‘New’ on

the dashboard, and then select the kernel of our choice. Here, we select the

‘Python 3’ kernel, as shown in Figure 6-8.

We will get a new tab with a notebook user interface (UI) that looks like

Figure 6-9.

Figure 6-9.  A new notebook

Figure 6-8.  Opening a new Jupyter Notebook with a Python 3 Kernel

Chapter 6 Introduction to Jupyter Notebook

108

The notebook UI is quite self-explanatory as well. However, just like

before, we will have a quick run-through of all its main features.

	 1.	 At the top, the title of the notebook is displayed. It

starts out as “Untitled,” and when we click on it, we

can change the name based on our preference, as

shown in Figure 6-10.

	 2.	 Next to the title of our notebook, we will see “Last

Checkpoint,” with a timing. That indicates the last

time the notebook was auto-saved.

	 3.	 Below this is the menu bar, containing a series of

drop-down menus, as shown in Figure 6-11.

	 4.	 After this comes the tool bar, containing tools that

we will need as we use Jupyter Notebook, as shown

in Figure 6-12. We can hover over each tool icon to

know what it does.

Figure 6-10.  Renaming a notebook

Figure 6-11.  The Menu Bar

Chapter 6 Introduction to Jupyter Notebook

109

	 5.	 Finally, we have the area where we type in all of our

input and view our output, as shown in Figure 6-13.

You might have noticed that the menu bar contains the Cell menu

and the Kernel menu. These are two terms that are very important in the

Jupyter Notebook environment.

�Cell
A cell is nothing but the box in which we type all our input, which can either

be code, regular text, or headings.

When we first open our Jupyter notebook, we will see that the first

cell is a “Code” cell. This cell allows us to enter the commands, functions,

variables, constants, and all other inputs that are a part of our program.

When we execute this cell, the output, if any, is displayed beneath it.

Let’s try typing the following in the “Code” cell:

print("Hello World!")

Figure 6-12.  The Tool Bar

Figure 6-13.  This is where the different kinds of cells appear,
allowing us to enter our input

Chapter 6 Introduction to Jupyter Notebook

110

Now, we can execute the cell by clicking on the Run button from
the tool bar. We can also just use the keyboard shortcut, which is
Shift+Return. We will find that the code line is executed and the output is
printed out right below the cell, as shown in Figure 6-14.

The second type of cell is a “Markdown” cell. Markdown is a formatting
syntax that is used to style plain text. Thus, this cell is used to enter any text
that is not a part of the code. This could be explanations or notes that are
needed in between the code, either to make it easier for us as we program,
or to make it more comprehensive for someone else who is going through
it. Once we type in all the necessary text and execute the cell, it becomes a
regular text box that is visible in our program.

Let’s try this text in the “Markdown” cell:

Hello World!

Our Markdown cell will display an output as shown in Figure 6-15.

The third type of cell is the “Heading” cell. This cell is used to add
headings throughout our program. This allows us to make our entire
program look much more organized, especially if we have more than one

program running within the same notebook.

Figure 6-15.  Entering regular text

Figure 6-14.  Executing a code cell

Chapter 6 Introduction to Jupyter Notebook

111

Let’s try typing this in the “Heading” cell:

My Program

The heading will appear as shown in Figure 6-16.

We can also just open a regular Markdown cell and type the following in -

My Program

The ‘#’ symbol is used to convert the sentence into a heading. The

number of times we use the symbol indicates the level of the heading. For

example, a single hash is used to obtain a level one heading.

We can change the type of cell that we want to use by selecting it from

the list of options in the Tool Bar.

�Kernel
A kernel runs the code that is contained within the Jupyter notebook.

A kernel is not limited to a single cell, but rather to the entire notebook.

When we execute code in a selected cell, the code runs within the kernel

and sends any output back to the cell to be displayed.

There are kernels for more than a hundred languages, including

Python, C, R, and Java. When we create a new notebook from the Jupyter

Notebook dashboard, we are basically selecting our kernel by choosing the

Python version that we desire to use. In this case, when we select “Python 3,”

we are telling our system to open a Python 3 kernel.

Figure 6-16.  Entering a heading

Chapter 6 Introduction to Jupyter Notebook

112

Now that we have some idea of what a cell and a kernel are, let’s come

back to the menu bar and explore what the Cell and Kernel drop-down

menus allow us to do.

�The Cell Drop-Down Menu
Figure 6-17 shows the different options available within the Cell

drop-down menu.

	 1.	 Run Cells: This executes the code that is in the

selected cell or cells, and gives an output, if any.

	 2.	 Run Cells and Select Below: This executes the

selected cells and then selects the cell below them.

	 3.	 Run Cells and Insert Below: This executes the

selected cells and then inserts an extra cell just

below them.

	 4.	 Run All: This executes all the cells in the notebook.

	 5.	 Run All Above: This runs all the cells that are above

the selected cell.

Figure 6-17.  Cell drop-down menu

Chapter 6 Introduction to Jupyter Notebook

113

	 6.	 Run All Below: This runs all the cells that are below

the selected cell.

	 7.	 Cell Type: This allows us to select the type of cell

you require.

	 8.	 Current Outputs: This gives us the option to either

Toggle, Toggle Scrolling, or Clear the selected

output.

	 9.	 All Output: This gives us the option to either Toggle,

Toggle Scrolling, or Clear all the output in the

notebook.

�The Kernel Drop-Down Menu
Figure 6-18 shows the different options available within the Cell

drop-down menu.

	 1.	 Interrupt: This interrupts the running process as

the code is being executed.

	 2.	 Restart: This restarts the entire kernel, retaining the

previously obtained outputs.

	 3.	 Restart and Clear Output: This restarts the entire

kernel, clearing the previously obtained outputs.

Figure 6-18.  Kernel drop-down menu

Chapter 6 Introduction to Jupyter Notebook

114

	 4.	 Restart and Run All: This restarts the entire kernel

and once again proceeds to execute all the cells.

	 5.	 Reconnect: This allows the kernel to reconnect.

	 6.	 Shutdown: This shuts the active kernel down.

	 7.	 Change Kernel: This allows us to change our kernel

to any version or language that we want.

There you have it! This was an overview of some of the most basic but

important features of Jupyter Notebook.

Now that you are familiar with the working environment of Jupyter

Notebook, let’s go ahead and practice some Python programming with the

help of Jupyter Notebook.

�Additional Information
The Jupyter Project is a very interesting initiative, especially for data

scientists and machine learning enthusiasts who need a reliable and

convenient space to work on their projects. Let’s have a look at two more

very useful features that come under Project Jupyter, and that can be useful

to some of us in our machine learning journey.

�JupyterHub
JupyterHub allows multiple users to share resources in order to program.

Each user has their own workspace where they can code without worrying

about installations and maintenance.

Chapter 6 Introduction to Jupyter Notebook

115

It can run either on a user’s system or on the cloud. It is customizable,

flexible, portable, and scalable, making it a great interface for programmers.

It also has its own community for users to discuss and contribute.

�Jupyter nbviewer
Jupyter nbviewer is a free and publicly available instance of nbviewer,

which is a web-based application that allows us to view a notebook as a

static HTML web page. It also provides us with a link that we can use to

share the notebook with others.

Apart from viewing a single notebook, we can also view notebook

collections. These notebooks can even be converted into other formats.

�Voila
Voila is used to convert a Jupyter notebook into a stand-alone web

application that can be shared with others. It consists of an interactive

dashboard that is customizable and allows users to view the notebook in a

secure environment.

It can work in any Jupyter kernel, independent of the type of

programming language used. It is a great choice for non-technical users

who desire to view the results of the notebook without having to see the

code cells or execute the code.

Chapter 6 Introduction to Jupyter Notebook

116

�Google Colaboratory
Google’s Colaboratory or Colab is a free online Jupyter environment.

It runs in the cloud and stores its notebooks to the user’s Google Drive.

As of October 2019, Colab mainly supports Python 2 and Python 3

kernels.

However, it is also possible for Colab to support R, Swift, and Julia.

�Keyboard Shortcuts
First of all, you need to know that there are two modes of working with

Jupyter Notebook, as follows:

•	 Command Mode, which allows us to navigate around

the notebook with our arrow keys.

•	 Edit Mode, which allows us to edit the selected cell.

Table 6-1 lists some of the most useful keyboard shortcuts that we can

use while working with Jupyter Notebook.

Chapter 6 Introduction to Jupyter Notebook

117

Table 6-1.  Keyboard Shortcuts for Jupyter Notebook

Mac Windows and Linux Action

Cmd + Shift + P Ctrl + Shift + P Access keyboard shortcuts

Shift + Enter Shift + Enter Executes the code

Esc Esc Enters Command Mode when in Edit

Mode

Enter Enter Enters Edit Mode when in Command

Mode

A A Inserts a new cell above the selected

cell while in Command Mode

B B Inserts a new cell below the selected

cell while in Command Mode

D + D (Press D

twice)

D + D (Press D twice) Deletes the selected cell while in

Command Mode

Shift + Tab Shift + Tab Displays the available documentation

for the item entered into the cell

Ctrl + Shift + - Ctrl + Shift + - Splits the selected cell into two at the

point where the cursor rests while in

Edit Mode

F F Finds and replaces code while in

Command Mode

Shift + J / Shift +

Down

Shift + J / Shift + Down Selects the chosen cell as well the

cell below it

Shift + K / Shift

+ Up

Shift + K / Shift + Up Selects the chosen cell as well as the

one above it

Shift + M Shift + M Merges multiple cells

Chapter 6 Introduction to Jupyter Notebook

118

�Summary
In this chapter, we have gained an understanding of the importance of

the notebook interface, when compared to IDEs and text editors. We

then explored the Jupyter Notebook application, its features, and its user

interface.

The great thing about Jupyter Notebook is that it looks quite complex

and technical, but in reality it is not too difficult to use, once you get

the hang of it. Overall, it is a great tool to use for all your programming

purposes. Not just that, it can also be used to display your results and

present your output in a manner that is not too hard on the eyes.

In the next few chapters, we will begin some actual programming

with the help of Jupyter Notebook. We will get a feel of how we can use

the notebook interface effectively to enter, run, and debug our code. And,

finally, once we have gained some familiarity with Jupyter Notebook, we will

proceed with using the interface to develop our machine learning models.

�Quick Links
Learn more about Project Jupyter: https://

jupyter.org/about

Jupyter Documentation: https://jupyter.org/

documentation

Try Jupyter: https://jupyter.org/try

JupyterHub: https://jupyter.org/hub

Jupyter Notebook Viewer: https://nbviewer.

jupyter.org/

Google Colab: https://colab.research.google.

com/notebooks/intro.ipynb

Chapter 6 Introduction to Jupyter Notebook

https://jupyter.org/about
https://jupyter.org/about
https://jupyter.org/documentation
https://jupyter.org/documentation
https://jupyter.org/try
https://jupyter.org/hub
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb

119© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_7

CHAPTER 7

Python Programming
in Jupyter Notebook
In an earlier chapter, we learned all about the Python programming

language. We studied its advantages, compared it with some other

languages, and understood how its features make it stand out as a

dependable language for machine learning.

In the previous chapter, we got acquainted with Jupyter Notebook, and

we saw why it can be considered a suitable environment for building and

executing programs that can train our machines. We also had a look at the

layout of the Jupyter Notebook application.

In this chapter, we will get hands-on experience in combining Python

with the Jupyter Notebook interface to effectively create, check, and run

our machine learning models. Before we begin with the hardcore coding,

however, we will start with some small-scale programs, just to refresh our

generic programming knowledge and to understand the coding syntax of

Python.

https://doi.org/10.1007/978-1-4842-5967-2_7#DOI

120

�Opening a New Notebook
First things first, we need to open up a new Jupyter notebook with a Python

3 kernel, as shown in Figure 7-1.

�Naming the Notebook
We can give our notebook a name, like “My First Jupyter Notebook” or

“Python Programming with Jupyter Notebook” (Figure 7-2)

Figure 7-1.  A new Jupyter notebook

Figure 7-2.  Naming a new notebook

Chapter 7 Python Programming in Jupyter Notebook

121

�Adding a Heading Cell
Now, let’s give our first program a title. We will call it “Hello World.” Do you

remember how to convert a cell into a “Heading” cell?

That’s right. We select the option from the tool bar. After that, we click

on the cell and enter the title, as shown in Figure 7-3.

The hash symbol (#) indicates that it is a level-one title.

Let’s execute the cell. We can do this by clicking on the “Run” icon in

the tool bar. A faster way of doing this is by using the keyboard shortcut

Shift + Enter.

Now that our cell is executed, we will see the heading appear, as shown

in Figure 7-4.

�Printing the Output of a Code Cell
The next cell automatically appears as a “Code” cell. Let’s repeat the same

code we used in the previous chapter by typing in the following:

print("Hello World")

Now when we execute the cell, we will get an output like this:

Hello World

Figure 7-3.  Entering a program’s title within a “Heading” cell

Figure 7-4.  Executing the “Heading” cell to add the title to the
notebook

Chapter 7 Python Programming in Jupyter Notebook

122

�Taking an Input from a User in a “Code”
Cell
Let’s see what happens when we take an input from a user. Type in the

following code:

a = input("Enter your name: ")

Now when we execute the cell, we get the output shown in Figure 7-5.

As you can see, the text that we have entered is displayed, followed

by a text box where we can type in our input. This text box can accept any

character that is typed in from the keyboard. The asterisk (*) at the left of

the cell indicates that the program is still executing that cell. In this case,

it is waiting for a command from the user before it can proceed. Once the

user presses the Enter key, the program will continue executing.

After we finish typing and press the Enter key, the output will be

displayed, as shown in Figure 7-6.

Figure 7-5.  Waiting to accept an input from the user

Figure 7-6.  Displaying the accepted input

Chapter 7 Python Programming in Jupyter Notebook

123

�Calling a Variable
When we accepted an input from the user, we stored it under the variable

a. In the next cell, we will call this variable and display its output by typing

the following:

a

Now when we execute the cell, we will get the value of a displayed, as

shown in Figure 7-7.

�Arithmetic Operations
Let’s see what happens when we have some output to display, and also

some input to take. We can explore this with the help of some simple

arithmetic operations. Let’s try the following code:

b=2

c=int(input("Enter a number: "))

sum=b+c

print(sum)

We will get a text box for the input, first, as shown in Figure 7-8.

Figure 7-7.  Displaying the value of a variable

Chapter 7 Python Programming in Jupyter Notebook

124

Once we provide the required value, the code performs the necessary

calculation and displays the output, as shown in Figure 7-9.

We need to put int right before the input command to tell the

program that we are expecting an integer from the user, which must then

be used for the given arithmetic calculation. If we skip this step, there will

be an error, because Python always inputs values as strings (including

numbers and symbols), which prevents numbers from directly being used

for the calculation.

�Creating a Function
Now, let’s create a function and see how that works. Type in the following

code:

Figure 7-8.  Accepting a number from the user

Figure 7-9.  Displaying the input as well as the result of the calculation

Chapter 7 Python Programming in Jupyter Notebook

125

def prod(a):

 b=int(input("Enter a value: "))

 c=5

 p=a*b*c

 return(p)

When we execute this cell, we find that there is no output. There is,

however, something happening behind the scenes. In the next cell, type

this:

prod(6)

Remember, we can put any number that we want within the brackets.

When we execute this cell, we will get a text box asking for a value. We can

enter a value of our choice. When we press Enter, we will get the output

shown in Figure 7-10.

Figure 7-10.  Performing a calculation within a function, then calling
the function to display the result

Chapter 7 Python Programming in Jupyter Notebook

126

�Creating Lists
A list is an ordered set of items. We can create a list by entering all the

required values between a pair of square brackets, as follows:

list = [2, 4, 6, 8, 10]

list

When we execute this, we will get an output as shown in Figure 7-11.

�Creating Dictionaries
A dictionary is an unordered set of items. We can create a dictionary by

entering our values between a pair of curly brackets, as follows:

age = {"Henry":30, "Chiara":19, "Benedict":23, "Dominic":15,

"Gertrude":24}

age

When we execute this cell, we will get an output as shown in

Figure 7-12.

Figure 7-11.  Creating a list

Chapter 7 Python Programming in Jupyter Notebook

127

�Creating Loops
In programming, a loop is a set of instructions or steps that is continuously

repeated until a condition is satisfied.

�While Loop
Try typing in this code:

count=0

while count<=5:

 count=count+1

 print("Love your neighbour as yourself")

When we execute this cell, we will get an output as shown in Figure 7-13.

Figure 7-12.  Creating a dictionary

Figure 7-13.  Running a while loop

Chapter 7 Python Programming in Jupyter Notebook

128

�For Loop
Type this code into the code cell:

string=("Rejoice")

for i in string:

 print(i)

When we execute this cell, we will get an output as shown in Figure 7-14.

�Nested Loops
Nested loops consist of two or more loops used within a single code block.

Enter the following code into the “Code” cell:

i=0

s=("Have a beautiful day")

while i<=3:

 i=i+1

Figure 7-14.  Running a for loop

Chapter 7 Python Programming in Jupyter Notebook

129

 for a in s:

 print(a)

When we execute this code, we will get an output as shown in Figure 7-15.

Of course, for all practical purposes, I have not shown the full output.

But it is easy to understand how the output will look, since the same

sentence is printed out four times consecutively.

Figure 7-15.  Running nested loops

Chapter 7 Python Programming in Jupyter Notebook

130

�Adding Conditional Statements
In programming, a conditional statement is used to execute a particular

step based on whether a specified condition is true or false.

�If Statement
Type in this code:

x=3*2

if x%2 == 0:

 print("It is even")

When we run this code, we will get an output as shown in Figure 7-16.

The % symbol is used to find the remainder after division. So, on

dividing by 2, if the remainder is 0, it indicates that the number is an even

number.

Try changing the value of x to a number that is not divisible by 2, and

see what happens.

Figure 7-16.  Executing an if condition

Chapter 7 Python Programming in Jupyter Notebook

131

�If-Else Statement
We can use the same code as before, but with a minor addition to include

the else condition, as follows:

x=3*3

if x%2== 0:

 print("It is even")

else:

 print("It is odd")

When we run this code, we will get an output as shown in Figure 7-17.

In this case, we add an extra condition, where we tell the program what

to do if the first condition is not satisfied.

�Elif Statement
This time we will use a slightly different code, as follows:

x=7

if x%2==0:

 print("It divisible by 2")

Figure 7-17.  Executing an if-else condition

Chapter 7 Python Programming in Jupyter Notebook

132

elif x%3==0:

 print("It is divisible by 3")

else:

 print("It is neither divisible by 2 nor 3")

When we run this program, we will get an output as shown in Figure 7-18.

Thus, elif allows us to supply our code with more than one condition.

We can put elif several times throughout our code, depending on the

number of conditions we have.

�Adding Notes Within the Program
Sometimes, we may want to add some extra notes in between lines in our

program, either for our own reference or to make sure that people who

have access to it understand what they are going through. This is not the

same as adding a regular “Markdown” cell. This is different because we are

adding our notes within a “Code” cell. To do this, we need to add a hash (#)

symbol before the code line. Here is an example:

This is a comment line in between my code.

Figure 7-18.  Executing an elif condition

Chapter 7 Python Programming in Jupyter Notebook

133

This line will appear in green italics in the “Code” cell, as shown in

Figure 7-19.

�Deleting a Cell
Sometimes, we may have cells that are unnecessary. We can easily get rid

of them by clicking on the scissor icon.

We can also do so by selecting the “Delete Cells” option from the “Edit”

drop-down menu in the menu bar, as shown in Figure 7-20.

�Adding a New Cell
We can even add a new cell beneath another cell by selecting that cell and

then clicking on the “Insert Cell Below” icon or the plus sign.

Figure 7-20.  Deleting cells using the drop-down menu option

Figure 7-19.  Adding a comment line within the code

Chapter 7 Python Programming in Jupyter Notebook

134

The other way to do this is by selecting the “Insert Cell Below” option

from the “Insert” drop-down menu in the menu bar. If we want to add a

cell above the selected cell, we can either click on the “Insert Cell Below”

icon followed by the “Move Cell Up” icon, or directly click on the “Insert

Cell Above” option from the “Insert” drop-down menu, as shown in

Figure 7-21.

�Copying a Cell
We can also copy the contents of a cell and paste them in another cell with

the help of the “Copy Selected Cells” and “Paste Selected Cells” options in

the tool bar.

We can also do this by selecting the required options from the menu

bar, as shown in Figure 7-22.

Figure 7-21.  Adding a new cell using the drop-down menu option

Figure 7-22.  Copying a cell using the drop-down menu option

Chapter 7 Python Programming in Jupyter Notebook

135

�Moving a Cell
We may even want to switch the cells around, depending on our

preference. We can shift cells up or down accordingly, using the up and

down arrow icons in the tool bar.

We can also do this by going to the menu bar, clicking on “Edit,” and

then selecting either “Move Cell Up” or “Move Cell Down,” as shown in

Figure 7-23.

�Merging Cells
Let us now go back to the previous few pieces of code, where we define a

variable a as the input from a user, and then in the next “Code” cell print

out the value of this variable.

Figure 7-23.  Moving a cell using the drop-down menu option

Chapter 7 Python Programming in Jupyter Notebook

136

Instead of carrying this out in two separate cells, we can just put this

together in a single cell. The great thing is, we don’t even have to retype or

delete anything. All we need to do is go to the menu bar, select “Edit,” then

click on “Merge Cell Below,” as shown in Figure 7-24.

Let’s try this on one of our previous bits of code. Consider the code in

which we take an input from a user, store it as input a, and then display

the value of a. This was done in two separate cells of code. However, when

we merge the cells, it puts the code together into a single cell, as shown in

Figure 7-25.

Figure 7-24.  Merging cells using the drop-down menu option

Chapter 7 Python Programming in Jupyter Notebook

137

�Splitting a Cell
We can even split a cell into two parts using the “Split Cell” option from the

“Edit” drop-down menu in the menu bar, as shown in Figure 7-26.

First, click on the line from which point we want to split the code. Then

click on the “Split Cell” option. The code will split, as shown in Figure 7-27.

Figure 7-26.  Splitting a cell using the drop-down menu option

Figure 7-25.  Two cells merged into a single cell

Chapter 7 Python Programming in Jupyter Notebook

138

�Running All Cells
Instead of executing each cell one by one, we can run them all at once. To

do this, all we need to do is click on the “Run All” option from the “Cell”

drop-down menu in the menu bar, as shown in Figure 7-28. This executes

the entire notebook.

Figure 7-28.  Running all the cells in the notebook using the drop-
down menu option

Figure 7-27.  Splitting a cell using the drop-down menu option

Chapter 7 Python Programming in Jupyter Notebook

139

�Clearing the Current Output
To clear the output of the selected cell, click on the “Cell” option from the

menu bar. Then, hover your cursor over “Current Outputs” in the drop-down

menu, and in the sub-menu click on “Clear,” as shown in Figure 7-29.

�Clearing All Outputs
To clear all the outputs in the notebook, click on the “Cell” option from

the menu bar. Then, just like before, hover the cursor over the “All Output”

option from the drop-down menu, and in the sub-menu click on “Clear,” as

shown in Figure 7-30.

Figure 7-29.  Clearing the current output using the drop-down menu
option

Chapter 7 Python Programming in Jupyter Notebook

140

�Restarting the Kernel
Sometimes, our program requires us to restart the kernel in order to get the

desired output. It is similar to refreshing a page on our web browser. When

we restart a kernel, we lose all the data stored in the variables.

To do this, first click on “Kernel” from the menu bar, then click on

“Restart,” as shown in Figure 7-31.

Figure 7-30.  Clearing all outputs using the drop-down menu option

Chapter 7 Python Programming in Jupyter Notebook

141

Here, we find that the kernel restarts, but the previous outputs of each

cell execution are still displayed. If we don’t want the outputs to remain,

we will need to restart the kernel and also clear the outputs. We have the

option of doing this in a single step, rather than in two steps.

�Restarting the Kernel and Clearing
the Output
To simultaneously restart the kernel and clear the output, click on “Kernel”

from the menu bar, followed by “Restart & Clear Output,” as shown in

Figure 7-32.

Figure 7-31.  Restarting the kernel using the drop-down menu option

Chapter 7 Python Programming in Jupyter Notebook

142

�Interrupting the Kernel
I have found this feature to be extremely useful, mainly for machine

learning. Sometimes, while our machine learning program is running,

we may suddenly decide that we want to stop the process and start over.

This could be due to an error that we suddenly find in the code, a decision

to change certain variables, and so on. In such cases, all we need to do is

interrupt the kernel by clicking on the “Kernel” option in the menu bar,

followed by “Interrupt” in the drop-down menu, as shown in Figure 7-33.

Figure 7-32.  Restarting the kernel and clearing the output using the
drop-down menu option

Chapter 7 Python Programming in Jupyter Notebook

143

�The Help Menu
If we need any extra help regarding the general Jupyter Notebook UI, the
keyboard shortcuts that we can use, and some of the machine learning
libraries that are frequently used with Python, we can access the Help
menu from the menu bar. A drop-down menu will open, as shown in

Figure 7-34.

Figure 7-33.  Interrupting the kernel using the option from the
drop-down menu

Chapter 7 Python Programming in Jupyter Notebook

144

From this menu, we can select the option that we need help with.

As you can see, the help options include topics related to the Jupyter

Notebook application, as well as to Python libraries.

�Summary
Well, there we go! We are now a lot more familiar with the user interface

of Jupyter Notebook. We have also had a run-through of some important

concepts related to programming, and we have seen how to code basic

functions, like lists and loops, using Python.

Figure 7-34.  Accessing the Help menu

Chapter 7 Python Programming in Jupyter Notebook

145

With that under our belts, it’s finally time to get the ball rolling as

we step into Python’s machine learning libraries. We have already read

about how Python has a vast selection of libraries that can be called into

a program. Moving ahead, we will be focusing our attention on one such

library that has become increasingly sought after. Over the years, it has

gained the approval of several developers due to its unique features, which

make the process of machine learning much more effortless. This library

is none other than TensorFlow, which, in the coming chapters, we will be

using to program our deep learning models.

Chapter 7 Python Programming in Jupyter Notebook

PART III

The TensorFlow
Library
In Part III, we will dive into the TensorFlow library. Starting with an

introduction to this widely used deep learning package, we will make our

way towards its initial version that has been in use since its release. We will

then get into TensorFlow 2.0, its distinguishing features, and a quick guide

on how to migrate code from the previous version to the new version.

The final chapter will lead us through a couple of deep learning programs

with which we will use TensorFlow in Python and the Jupyter Notebook

interface. This will help us to put it into practice all that we have learned

throughout the book.

What to expect from this part:

•	 An introduction to the TensorFlow Library so far

•	 Program with the TensorFlow Library (version 1.0)

•	 An introduction to TensorFlow 2.0

•	 Migrating from TensorFlow 1.0 to TensorFlow 2.0

•	 Using TensorFlow to develop machine learning models

(focusing on deep learning neural networks)

149© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_8

CHAPTER 8

The Tensorflow
Machine Learning
Library
To recap what was stated in an earlier chapter, Python has a huge variety of

machine learning libraries that can be implemented in a program. These

libraries serve various purposes—mathematical, scientific, graphical,

and so on. Depending on the nature and the need of the program we are

developing, we can call these libraries into our program.

We know that machine learning involves data science techniques (like

cleaning, manipulating, and visualizing data), mathematical techniques,

and statistical techniques. Keeping this in mind, some of the most

commonly used Python libraries for machine learning include Matplotlib,

Seaborn, Pandas, Scikit-learn, Numpy, Scipy, and so on.

These libraries have been tried and tested and were found to be

easy to work with. They have thus gained popularity over the years, with

numerous applications in various machine learning programs.

With the growing enthusiasm toward deep learning, there arose a

need to create libraries that could assist with building multi-layered

neural networks. Thus, libraries like Theano, Pytorch, Caffe, Keras, and

TensorFlow were released. These libraries enable programmers to develop

large, multi-layered neural networks with less time and effort, and more

efficiency.

https://doi.org/10.1007/978-1-4842-5967-2_8#DOI

150

In this chapter, we will explore the TensorFlow library to get an

overview of what it is, why it was developed, and how it has proved useful

in the realm of artificial intelligence. We will then see how to install it on

our system.

�TensorFlow at a Glance
TensorFlow was developed by the Google Brain Team as a step up from

the original DistBelief system, which was a closed-sourced software used

for machine learning with deep neural networks. According to the official

website:

“TensorFlow is an end-to-end open source platform for
machine learning. It has a comprehensive, flexible ecosystem
of tools, libraries and community resources that lets research-
ers push the state-of-the-art in ML and developers easily build
and deploy ML-powered applications.”

In other words, TensorFlow is an open source library that employs

machine learning and deep learning techniques for large-scale

computations. It involves the use of “tensors,” which help in making our

calculations simpler. We will delve deeper into that in the next section.

Fun Fact  TensorFlow was not, in actuality, meant for public access.
It was only meant to be used by the Google Brain Team for their own
research. It was, however, finally released to the public on November
9, 2015.

TensorFlow was released under Apache License 2.0. This means that

people can use, modify, and distribute the software, as well as its modified

versions, without worrying about royalties. All it requires for redistributions

is an attribution notice. This is why the Apache License 2.0 is known as a

Chapter 8 The Tensorflow Machine Learning Library

151

copyleft license. It has minimum conditions for software redistribution

and allows the software to be accessed, modified, and distributed, all for a

common good.

TensorFlow consists of two main components, as follows:

	 1.	 Tensors, in which the data is held

	 2.	 Flow, referring to the computational graph

Let’s see how the two work together to create large-scale deep learning

models.

�Tensors
Tensors can be defined as multi-dimensional arrays.

We might remember learning about dimensions in school.

A dimension is roughly defined as the minimum number of coordinates

that are needed to describe a particular point. In simpler words, it is the

measure of the amount of space that an object occupies. For example,

a line has only one dimension (length), while a square has two dimensions

(length and width). In mathematics, we can have a number or a set of

numbers arranged in various dimensions.

In mathematics and physics, we have learned about scalars, vectors,

and matrices, which are three constructs that describe the arrangement of

some values.

A single number is known as a scalar. More than one number arranged

in a one-dimensional list (array) is known as a vector. More than one

number arranged in a two-dimensional manner is known as a matrix.

Visually, we can represent these three concepts as shown in Figure 8-1.

Chapter 8 The Tensorflow Machine Learning Library

152

Technically speaking, scalars, vectors, and matrices are all tensors.

•	 Scalars are zero-dimensional tensors.

•	 Vectors are one-dimensional tensors.

•	 Matrices are two-dimensional tensors.

However, it is a universally accepted practice that when we have more

than one number arranged in three or more dimensions, we refer to such

an arrangement as a tensor.

We can picture a tensor in the shape of a Rubik’s cube, as shown in

Figure 8-2.

Figure 8-1.  A scalar, vector, and matrix

Figure 8-2.  A tensor

Chapter 8 The Tensorflow Machine Learning Library

153

From the picture, we can see that tensors have a great capacity for data

storage, as they have n dimensions. The n here is used as a proxy for the

actual number of dimensions, where n>=3.

To better understand the relationship between scalars, vectors,

matrices, and tensors, we can depict them as shown in Figure 8-3.

Figure 8-3.  Notational representations of a scalar, vector, matrix,
and tensor

As you can see, the four data structures are quite similar to each other

notation-wise as well, differing with respect to their capacity.

Although tensors usually hold numbers, they can also hold text and

strings. Tensors are capable of containing large amounts of data in a

compact form. This makes it easier to handle the computation of our

program, even when we have enormous amounts of data that we need to

use to train our machine.

�Flow
The input of the program is taken in the form of tensors, which are then

executed in distributed mode with the help of computational graphs.

These graphs are used to set the flow of the entire program.

A computational graph is a flowchart of operations and functions that

are needed to be carried out on the input tensor. The tensor enters on one

side, goes through a list of operations, then comes out the other side as the

output of the code.

Chapter 8 The Tensorflow Machine Learning Library

154

This is how TensorFlow got its name—the input tensor follows a

systematic flow, thus producing the necessary output.

Now that we know what TensorFlow is, let’s examine how it is useful to

machine learning developers.

�Importance of TensorFlow
TensorFlow was mainly used for mathematical purposes. It was soon

implemented in machine learning due to its high-powered computational

capabilities. It made the construction of neural networks a less

cumbersome task to achieve.

As the earlier definition states, TensorFlow is extremely flexible in

operability and works well for machine learning algorithms across a range

of platforms, like Mac OS, Windows, Linux, and Android. It was written

in three languages, Python, C, and CUDA (Compute Unified Device

Architecture), and although it works best with Python, it supports other

languages like Java and C++.

It is also consistently revamped to keep it up to date with the

constantly changing needs of programmers. Its large community is a major

plus point, as this allows people who use TensorFlow to work together,

help each other, and use the library effectively.

�Applications of TensorFlow
Despite being relatively new, TensorFlow has already served its purpose in

several areas of artificial intelligence, and continues to do so. Some of its

applications include the following:

•	 Image recognition: Identifying objects or features from

a photo or a video

•	 Image classification: Identifying and segregating

objects from each other

Chapter 8 The Tensorflow Machine Learning Library

155

•	 Text summarization: Condensing content into a few

comprehensible words

•	 Sentiment analysis: Identifying whether a statement is

positive, negative, or neutral

•	 Speech recognition: Recognizing and translating the

spoken word into text

•	 Other deep learning projects

With TensorFlow, deep learning using neural networks becomes a

piece of cake. Hence, most of the library’s applications are focused on this

area of artificial intelligence.

�TensorFlow’s Competitors
TensorFlow, although quite unique in its structure and usage, does have

some competitors in the machine learning world. These are alternative

frameworks that people use to perform the same functions that

TensorFlow does. Some of these libraries include the following:

•	 Theano

•	 OpenCV

•	 PyTorch

•	 Apache Spark

•	 Keras

All these libraries, although varying in functionality and capability, have

similar uses in machine learning. The Keras library can be used on top of

TensorFlow to develop even more effective deep learning models. We will

have the opportunity to work with Keras and TensorFlow later on in this book.

Let’s now have a look at some of the advantages and disadvantages of

using TensorFlow.

Chapter 8 The Tensorflow Machine Learning Library

156

�Advantages and Disadvantages
of TensorFlow
Now that we are quite acquainted with this machine learning library, let

us have a look at some of its advantages, as well as its disadvantages, when

implementing it in our programs.

�Advantages
Considering the number of competitors that TensorFlow has, one might

wonder what the big deal is and why a lot of people regard it as their

preferred deep learning library. There’s a reason it stands out compared

to the other libraries. We will now have a look at some of its important

features in order to understand how it is advantageous for us to use it in

our code.

	 1.	 It is open source. This means that it is free to access,

download, use, and distribute, as per the Apache

2.0 License under which it was released. Users are

not charged for implementing this library in their

projects.

	 2.	 It is constantly modified. This makes room for

improvements in its source code and ensures

stability in its performance.

	 3.	 It can be used on multiple platforms, making it

easily accessible to developers.

	 4.	 It follows the manner of abstraction, which means

that all the developer needs to take care of is the

overall working of the program. TensorFlow handles

everything else on its own.

Chapter 8 The Tensorflow Machine Learning Library

157

	 5.	 It makes data visualization much easier by providing

programmers with something called a TensorBoard.

This is a web-based interactive dashboard that

allows us to view and observe our graphs.

	 6.	 It has several APIs in various programming

languages that enable a developer to create and

execute programs and graphs with ease. An example

of this is the Keras API, which, as mentioned earlier,

we will be using later on in this book.

	 7.	 It has a large community of enthusiastic developers,

which allows TensorFlow users to connect, learn,

share, and help one another.

Now, I know, this all sounds great. It almost sounds like TensorFlow

is one of the greatest inventions of all mankind, doesn’t it? Yet, it is

quite astonishing to know that while TensorFlow gained a worldwide

fan following, it also began to gain a considerable number of “haters”—

developers who were mildly or greatly disappointed with the library due to

some of its drawbacks.

�Disadvantages
Nothing is perfect, and no matter how flawless this library might seem, it

does have certain areas where it either fails or proves to be insufficient for

developers. Let’s take a look at some of the disadvantages of TensorFlow

that were discovered by its users over the years.

	 1.	 It followed “lazy” execution. This means that the

developer had to first initialize variables, and then

run separate sessions for the program. This proved

to be tedious for developers who had to keep

opening and running sessions for even the smallest

sections of their programs.

Chapter 8 The Tensorflow Machine Learning Library

158

	 2.	 The TensorFlow framework was such that codes

that had a very minimalistic structure still required

plenty of extra lines of code.

	 3.	 The error messages were not always accurate and

were sometimes faulty or incorrect, which made

debugging quite a task.

	 4.	 It was slightly more complex than necessary, which

made it confusing for beginners to learn, especially

if they were new to computer programming in

general.

Most programmers managed to work around these challenges in order

to accomplish their machine learning goals, which is why TensorFlow

retained a very large user base. However, the TensorFlow team soon

understood that there was a lot of room for improvement in the library,

in order to make it even more convenient for programmers to use.

Thus, they came up with a newer, better version—TensorFlow 2.0. It

was first released as a test version, which was available for users to install,

work with, and provide feedback about. Later, in 2019, TensorFlow 2.0 was

officially released for people to use.

That said, let us first get a little familiar with TensorFlow 1.0, and then

we’ll dive into its upgraded version. We’ll start by learning how to install

the TensorFlow 1.0 library onto our systems.

�Installing TensorFlow
One of the easiest methods of installing TensorFlow is by employing the

“pip install” method. It is usually recommended because of how quick and

simple it is.

Before getting into this method, let us first have a look at what “pip” is.

Chapter 8 The Tensorflow Machine Learning Library

159

�Getting to Know “pip”
In Python, “pip” is nothing but a standard package manager. It is used for

the installation and handling of packages and software in Python, from the

default source of Python packages—the Python Package Index (PyPI).

It was first released in 2008 under the name pyinstall, as an alternative

to easy_install. Later, it was shortened to pip, which is supposed to be an

acronym for “Pip Installs Packages.”

�The “pip install” Method
The general command to install a package using pip is as follows:

pip install <package name>

That’s it! Just a single line. Once a package is installed using pip,

it remains in the working environment until we uninstall it. This means

that we don’t have to keep reinstalling the package every time we want to

use it within our program.

�Other Useful pip Commands
Apart from installing packages, there are several commands under pip that

we can call and execute in order to manage our packages conveniently.

Some of these include the following:

	 1.	 pip list: This provides us with a list of all installed

packages.

	 2.	 pip show <package name>: This provides us with

information about the specified package.

	 3.	 pip list—outdates: This shows a list of all outdated

packages on our system.

Chapter 8 The Tensorflow Machine Learning Library

160

	 4.	 pip search <package name>: This searches for the

specified package.

	 5.	 pip uninstall <package name>: This uninstalls a

package from the environment.

�Using “pip install” to Install TensorFlow
The great thing about this method is that we don’t need to do much. All we

need to do is type in a single line of code, and everything else happens on

its own.

To install TensorFlow into our environment, follow these steps:

	 1.	 After opening Anaconda, make sure that you are in

the correct environment, and not in the base (root)

environment. For example, here I have chosen to

work in myenv, as shown in Figure 8-4.

Figure 8-4.  Entering the correct environment

Chapter 8 The Tensorflow Machine Learning Library

161

	 2.	 Open the Jupyter Notebook application by

launching it from within the working environment,

as shown in Figure 8-5.

Figure 8-5.  Launching Jupyter Notebook

Figure 8-6.  Opening a Python 3 Jupyter Notebook

	 3.	 From the dashboard, click on “New,” and then select

the option to open a new Python 3 Notebook, as

shown in Figure 8-6.

Chapter 8 The Tensorflow Machine Learning Library

162

	 4.	 In the code cell that appears, type in the following

line of code to instruct the computer to begin

installing TensorFlow using pip:

pip install tensorflow

The installation will begin. You will see a box appear

beneath the code cell, displaying a plethora of

content, representing all that is happening behind

the scenes of our single-line code. An asterisk will

appear at the left corner of the code cell, indicating

that the code is still running. It will disappear once

the process is completed, as shown in Figure 8-7.

	 5.	 When the installation is complete, we can check and

see if TensorFlow is properly installed or not. To do

this, first restart the kernel. Then, type in the following:

import tensorflow as tf

This small piece of code is used to call the TensorFlow library into

Jupyter Notebook. The tf is assigned as a type of nickname for the library

(we will see more of this in the next chapter when we practice coding with

TensorFlow).

Figure 8-7.  Installing TensorFlow

Chapter 8 The Tensorflow Machine Learning Library

163

The cell should be executed without any errors, as shown in Figure 8-8.

If your notebook doesn’t show any indication of an error when running

the command, then congratulations! You have successfully installed

TensorFlow in your Python environment.

TensorFlow also has a feature that provides users with all the necessary

tools required to visualize data easily. This is known as the TensorBoard.

�TensorBoard
The TensorBoard is, according to the official TensorFlow website,

“TensorFlow’s visualization toolkit.”

It is an interface that can be used to obtain a clearer understanding

of our data and our deep learning models with the help of visualization

techniques.

Some of its applications include the following:

	 1.	 Visualizing parameters and metrics

	 2.	 Visualizing the computational graph

	 3.	 Viewing plots and graphs

	 4.	 Displaying media items like pictures, text, or audio

When you run TensorBoard, it will look something like Figure 8-9.

Figure 8-8.  TensorFlow installed on the system

Chapter 8 The Tensorflow Machine Learning Library

164

Figure 8-9 shows the TensorBoard panel for a very simple graph.

The dashboard tabs at the top of the screen vary, depending on the

components of the model. Here, we have only a single dashboard; i.e.,

the Graph dashboard. Now, have a look at Figure 8-10.

Figure 8-9.  A sample of the TensorBoard

Figure 8-10.  TensorBoard’s various tabs

This navigation bar shows three other tabs: Scalars, Distributions, and

Histograms. Each of these leads to the corresponding dashboard view,

which can be used to study and improve the deep learning model.

�Exploring the TensorBoard Dashboards
There are several different types of dashboards that we can access and use

for their respective purposes. Let’s have a look at them.

Chapter 8 The Tensorflow Machine Learning Library

165

Scalars:

This shows us the changes occurring to metrics like

loss and accuracy during each epoch of the training.

It also allows us to keep track of the different scalar

values. Being able to compare these metrics allows

us to figure out any issues present within the model

in order to improve it.

Graphs:

This shows us the computational graph of our

model. By inspecting the graphical representation

of our model, we can easily check its accuracy and

reliability. This makes it easier to debug the code or

make changes in its structure, thus improving the

quality of the model.

Distributions:

This shows us how the inputs are distributed

throughout the training of a model. It helps us to keep

a visual check on the values of the weights and biases

as they change over time. These parameters are

extremely important when training a model, so being

able to get a clear understanding of them is necessary.

Histograms:

Just like the Distributions dashboard, this helps

us to keep a visual check on the values of weights

and biases, but from a three-dimensional point of

view, with the help of histograms. These histograms

represent the changing data corresponding to the

timeline of the training, enabling us to decide if any

alterations need to be made to the model.

Chapter 8 The Tensorflow Machine Learning Library

166

Projector:

This is used to visualize high-dimensional

word embeddings. Embedding consists of the

representation of words in numerical form in such a

way that similar words have similar encodings.

Text:

This is used to visualize text data. These strings can

be in the form of hyperlinks, tables, and so on.

Image:

This is used to visualize image data. These images

are saved as .png files.

Audio:

This is used to visualize audio data. It can embed

audio in the form of playable audio widgets.

Thus, with the help of the TensorBoard, we can easily inspect, modify,

and verify the working of our model.

TensorBoard has also added a new service that mainly aids

collaborative projects, allowing people to share their machine learning

projects for free. This service is called TensorBoard.dev.

�TensorBoard.dev
TensorBoard.dev allows users to host their projects online, keep track of

them, and share them with others. It is free, readily available, and great

for when different people from various parts of the world need to work

together online.

Chapter 8 The Tensorflow Machine Learning Library

167

Its benefits include the following:

	 1.	 It enables users to share their programs on a

large scale.

	 2.	 It allows users to ask for help in case of any bugs or

errors that they are unable to solve on their own.

	 3.	 It gives people the ability to share insights and

research with others.

	 4.	 It is interactive, which helps others to have a better

understanding of the model.

	 5.	 There is no requirement for any installation

procedures. All it needs is a sharable link.

	 6.	 Free storage is provided, with a current limit of 10

million data points per user.

TensorBoard.dev thus makes it a less tedious task to seek help from

others or contribute to other people’s machine learning projects.

Note A ll data that is uploaded to TensorBoard.dev is publicly
visible to anyone and everyone. Thus, we need to be cautious while
sharing information online. For example, personal information,
user-specific authentication codes, and so on must be avoided or
hidden before releasing the program.

�Summary
In this chapter, we have learned about TensorFlow, which is one of the top

machine learning libraries used in Python. We have seen what it is, how it

was developed, why it is important to a programmer, and how it works. We

have recognized its competitors in the machine learning world, its special

features that make it stand out, as well as its disadvantages so far.

Chapter 8 The Tensorflow Machine Learning Library

168

We then got introduced to pip, and we learned how to install

TensorFlow with the help of this package managing tool and then verify

that the installation was done without any errors.

We finally had a brief overview of the TensorBoard and its features,

which comes in handy while visualizing our models. We also had a look at

the TensorBoard.dev tool, which allows us to share our machine learning

projects easily and free of cost.

Now that we have some idea of what we are going to be working with,

we can begin exploring the various features of the TensorFlow library to

see how we can use it within Python, in Jupyter Notebook, for our machine

learning experiments.

�Additional Information
For more information on TensorFlow, check out the following information.

�TensorFlow Dev Summit
The TensorFlow Dev Summit is a huge event in which developers from

across the globe come together to discuss, learn, and share with one

another.

The developers spend time engaging in interactive demos, technical

talks, conversations with the TensorFlow team, and discussions with the

TensorFlow community.

It happens every year at a location specified on the official website.

Those who cannot attend the on-site summit can view it online as it is live-

streamed.

The registration is free of charge. The attendee will have to bear any

expenses (such as travel and stay) on their own.

Chapter 8 The Tensorflow Machine Learning Library

169

More details are available on the official TensorFlow website for

anyone who is interested.

�TensorFlow Blogs
The TensorFlow team maintains a blog that provides users with useful

updates, important changes, new additions, and so on. It also has a wide

range of tutorials on various kinds of programs that machine learning

enthusiasts can try on their own, or even use as a base reference to develop

something new.

The articles that are published fall under the following main topics:

•	 TensorFlow Core: It deals with Python coding using

Keras APIs. It is useful for beginners as well as experts.

•	 TensorFlow.js: It deals with coding using JavaScript.

•	 TensorFlow Lite: It deals with using machine learning

models on IoT devices and mobile phones.

•	 TFX (TensorFlow Extended): It deals with moving

models from the research phase to the production

phase.

•	 Swift: It deals with developments and tutorials in Swift,

which is a next-gen deep learning platform.

•	 Community: It deals with projects and experiments

done by the TensorFlow community on a global scale.

Apart from their blogs, they also have a monthly newsletter that brings

all the important announcements right to our inbox.

Chapter 8 The Tensorflow Machine Learning Library

170

�The TensorFlow Developer Certificate
The TensorFlow Developer Certificate is a great resume-boosting asset to

have. It indicates the level proficiency a person has in the area of machine

learning for artificial intelligence using TensorFlow.

When a person passes the assessment, they get an official certificate, as

well as badges, which they can add to their professional social networking

profiles. They are also added to TensorFlow’s Certificate Network. This

increases visibility within the TensorFlow community.

It is a great way to improve our knowledge of the library, develop

our machine learning skills, and establish ourselves as experts in the

field. Considering that TensorFlow is a product of Google, obtaining this

certificate can undoubtedly make a data scientist's resume stand out.

More information detailing the registration, cost, preparation, and so

on can be found on the main website.

�Quick Links
Learn more about the TensorFlow library: https://

www.TensorFlow.org/learn

Take a look the TensorFlow Guide: https://www.

TensorFlow.org/guide/

Explore the models and datasets developed by the

TensorFlow Community: https://www.TensorFlow.

org/resources/models-datasets

Check out the tools that are supported by

TensorFlow: https://www.TensorFlow.org/

resources/tools

Chapter 8 The Tensorflow Machine Learning Library

https://www.tensorflow.org/learn
https://www.tensorflow.org/learn
https://www.tensorflow.org/guide/
https://www.tensorflow.org/guide/
https://www.tensorflow.org/resources/models-datasets
https://www.tensorflow.org/resources/models-datasets
https://www.tensorflow.org/resources/tools
https://www.tensorflow.org/resources/tools

171

Learn more about the libraries and extensions used

in TensorFlow: https://www.TensorFlow.org/

resources/libraries-extensions

TensorBoard: https://www.TensorFlow.org/

tensorboard/get_started

TensorFlow Dev Summit: https://www.

TensorFlow.org/dev-summit

TensorFlow Developer Certificate: https://www.

tensorflow.org/certificate

Chapter 8 The Tensorflow Machine Learning Library

https://www.tensorflow.org/resources/libraries-extensions
https://www.tensorflow.org/resources/libraries-extensions
https://www.tensorflow.org/tensorboard/get_started
https://www.tensorflow.org/tensorboard/get_started
https://www.tensorflow.org/dev-summit
https://www.tensorflow.org/dev-summit
https://www.tensorflow.org/certificate
https://www.tensorflow.org/certificate

173© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_9

CHAPTER 9

Programming with
Tensorflow
So far, we’ve learned how Python can be used for lucrative machine

learning with the help of its numerous libraries, which were created for just

that purpose. We also know that Jupyter Notebook is a solid development

environment that can be used to build and run large programs.

In this chapter, we will take a look at how to program with the help

of the TensorFlow library. This chapter deals with the initial TensorFlow

release (TensorFlow 1.0), just to get us familiar with how the library used to

work before the major 2.0 evolution.

Now, don’t fret about having to try out these programs on your own.

If you are a beginner to TensorFlow, you can begin coding with the newer

version, which you will learn how to do later on. The main aim of this

chapter is to give you an idea of how the original TensorFlow differs from

its upgrade in terms of programming ease.

We will do this with the help of four different programs that handle

some important programming concepts. They are divided as follows:

Program 1: Hello World

This is the universally accepted introductory-type

program that is used in the programming world. It

will teach us how to program the machine to print a

statement.

https://doi.org/10.1007/978-1-4842-5967-2_9#DOI

174

Program 2: Constants, Variables, and
Placeholders

This will help us understand the significance of

constants, variables, and placeholders. It is further

divided into two sub-sections:

Part A: Constants and Variables

Part B: Placeholders

Program 3: Operations in a Computational Graph

This will give us a better understanding of how

the computational graph works in a TensorFlow

program.

Program 4: Taking Inputs from a User for a
Placeholder

This will show us how to take inputs from a user,

store it in a placeholder, and then use the entered

value to display some required result.

So, without further delay, let’s get right into it!

�Importing the TensorFlow Library
The first thing we need to do is import the TensorFlow library into Jupyter

Notebook. The command is as follows:

import tensorflow as tf

The tf is kind of like a nickname given to the library. This is because,

as we proceed further into the program, we will need to keep referring to

the library while calling its various utilities, and typing in the full name

again and again can be quite tedious. We can replace tf with any other

Chapter 9 Programming with Tensorflow

175

name as well, like joe or jane, but tf is the universally accepted name, so

it is advisable to use that. This also makes it easier for other people who are

going through the code to understand which library is being referred to.

Once we type this command into the “Code” cell and execute it,

TensorFlow will be imported into Jupyter Notebook. We can now begin

programming with it.

�Program 1: Hello World
We all know that the most basic program we can ever learn is the “Hello

World” program. We have done this before with regular Python. Let us now

do it using TensorFlow in Python.

The difference between using regular Python and using TensorFlow

with Python is that the code structure varies, as you will see. In regular

Python, the program would be as follows:

h = print("Hello World")

h

However, in TensorFlow it gets a little more complicated because of the

internal structure of the library. Here is how the program would look:

h = tf.constant("Hello World")

sess = tf.Session()

sess.run(h)

In this case, we first create a TensorFlow constant h and assign it the

value Hello World. The concept of constants will be touched upon in the

next program, as mentioned before.

Next, we need to create a session, which can execute an entire

graph or a part of the graph. Accordingly, it will allocate resources and

accommodate values and results.

Chapter 9 Programming with Tensorflow

176

We use sess as a shorter, easier version of the command tf.Session,

because in larger programs we will need to keep running and closing

several sessions, and it would be cumbersome to have to write the full

command every time.

Now, when we execute the program, our output will appear as follows:

Hello World

If we don’t create a session and try to call the variable h to print the

output, we will still obtain an output, but not quite in the way that we were

hoping. Instead of giving us the value of h, it will show us that h is a tensor,

and it will give us a quick summary of this tensor. And that’s about it. The

output will be displayed as follows:

<tf.Tensor 'Const:0' shape=() dtype=string>

Now, as you’ve seen, we have used the tf.constant() function in

our program, which defines h as a constant (rather than a variable or a

placeholder). To understand the difference between constants, variables,

and placeholders better, we will have a look at another program.

�Program 2: Constants, Variables,
and Placeholders
Many of us have heard the terms constants, variables, and placeholders

thrown around quite often, especially in the programming world. That

is because they play a huge role in the development of a considerable

number of programs.

Chapter 9 Programming with Tensorflow

177

Before we begin using them to code, we need to know what exactly

they are. They can generally be defined in the following ways:

Constants: These are values that never change.

Variables: These are values that can change

throughout the program.

Placeholders: These are empty variables that are

assigned values at a later stage in the program.

Table 9-1 lists a few ways in which they vary from one another.

Note W hen we say that the “type” of value does or does not need
to be specified, we mean that we need not tell the program if the
constant or variable is a string, a float, an integer, etc., while for a
placeholder, we need to specify this.

Table 9-1.  The Differences Between Constants, Variables, and

Placeholders

Constants Variables Placeholders

They have an initial value. They have an initial value. They do not have an

initial value.

These values never change. These values can change. These values can change.

The type of value does not

need to be specified.

The type of value does not

need to be specified.

The type of value needs

to be specified.

Example: a=tf.

constant(4)

Example: b=tf.

Variable(5)

Example: c=tf.

placeholder

(tf.float32)

Chapter 9 Programming with Tensorflow

178

Now that we know what constants, variables, and placeholders are,

let’s go ahead and use them to create a program.

�Part A: Constants and Variables
In this part, we will only be incorporating variables and constants into our

code. In Part B, we will learn how to use placeholders in our program. This

is because the latter requires a little more explanation than the former two.

To understand the working of variables and constants in a program,

we will do some simple arithmetic, as we’ve already seen, since it is

an easy way to demonstrate these two features. It will also give us the

opportunity to explore some of the arithmetic operations that are allowed

in TensorFlow.

Start by defining the constant a, as follows:

a = tf.constant(5)

Next, define the variable b:

b = tf.Variable(6)

One very important thing to note here is that the ‘tf.constant()’

function is spelled entirely in lowercase, while the ‘tf.Variable()’

function is spelled with a capitalised ‘V’. This is a minute detail which can

cause errors in our program if not followed correctly.

Now that we have defined the constant and the variable, let’s perform

some calculations on them! We will begin by finding the sum of the two

values. To do so, we will use the following command:

sum = tf.add(a,b)

This is the same as typing the following:

sum = a + b

When we execute both, we will get the same output.

Chapter 9 Programming with Tensorflow

179

Now, let’s say we want to change the value of our variable b. We can do

so as follows:

new = tf.assign(b,4)

The tf.assign() function allows us to assign a new value to a variable.

If we try to use this on a constant, it will give us an error. Here, within the

brackets, we first enter the variable that we would like to change, followed

by the value that we would like to change it to. We save this entire update

under the variable new.

The reason for saving it under the variable new is that it cannot just get

executed on its own. We need to run this code line within a session, and

only then will it be executed. Thus, we store it under a variable and then

call it within a session.

One very important point to be noted is that, when we are using

variables, we need to initialize them before we can begin using them in

sessions. This seems like an unnecessary step at first, but when we try to

work with our variables without initializing them, our program gives us an

error. We initialize the variables as follows:

init_op = tf.global_variables_initializer()

This init_op is a node, or an operation, that needs to be executed in

order to initialize the variables. We can give it any name, of course, but for

the sake of readability, we will use one of the conventional names for it.

Now that we have declared this, we will need to run this within a

session. Let’s create our session, like we did in the previous section:

sess = tf.Session()

Let’s now run our init_op within the session, like so:

sess.run(init_op)

Chapter 9 Programming with Tensorflow

180

Great! Our variables have been initialized. We can now proceed with

the rest of our program. Let’s first find out the result of adding a and b:

print(sess.run(sum))

We add print before sess.run(sum) so that the program directly

prints the result of the addition. This reduces the commands to find the

sum of the two numbers and then print it into a single line of code.

We will get the sum of a and b, like this:

11

Now, let’s assign the new value to b and see how our output varies:

sess.run(new)

print(sess.run(sum))

You see the difference in output? The program has changed the value

of b according to the instructions given to it, and has printed the new sum

of a and b. It was possible to assign a new value to b since it was a variable,

but it was not possible to do so for a, as it was a constant.

Constants and variables are of great use when we have plenty of data

that needs to be received, declared, stored, and called later on in the code.

As we get into hardcore machine learning, we will see how they are used in

a program to effectively develop and train models.

Placeholders, as mentioned earlier, require a little more explanation as

to how they are implemented into a piece of code. We will see this in the

next part.

Chapter 9 Programming with Tensorflow

181

�Part B: Placeholders
The main idea behind placeholders is to help programmers who need to

train huge models with massive amounts of data. The reason is, all this

data cannot be accessed at once (unless the programmer is willing to risk

having their computer crash). Thus, with the help of placeholders, this

data can be accessed little by little, until it is entirely processed.

Placeholders don’t need to be given an initial value, unlike constants

and variables. All we need to do is specify what type of value we want to

store in it.

Let’s try initializing our first placeholder:

p = tf.placeholder(tf.float32)

Here, we are specifying that the placeholder will be holding a value

that is of type float. This prepares the program so that at runtime it will

accept a floating point number into the placeholder.

Now, let’s enter our equation. This time, we will go for basic

multiplication. We will enter the code as follows:

prod = p*2

Now, if we try to execute this by running it in a session, we will not get any

output, because p has no value in it. We need to assign some value to p first.

Here, unlike for variables, we cannot just use tf.assign() to give the

placeholder a value. We need to follow a different method. This involves

the use of a dictionary, which we will be using to feed a value into our

placeholder p.

We will first assign a single value to p, like this:

sess.run(prod, feed_dict={p:4.0})

When we execute this line of code, we will get an output like this:

8

Chapter 9 Programming with Tensorflow

182

By running this code, two things happen:

	 1.	 First, the value that we have provided (in this case,

4.0) is assigned to the placeholder p.

	 2.	 Second, the operation prod is carried out, which

uses this placeholder p and its newly assigned value

to produce a result.

Let’s try feeding more values into our placeholder.

sess.run(prod, feed_dict={p:[6,7,8,9]})

This gives us an output for each value assigned.

We can even create a dictionary first and then feed that into our

placeholder. We will demonstrate this with the help of a multi-dimensional

array. First, let’s define our dictionary d with some values, like this:

d = {p:[[0,2,4,6,8], [1,3,5,7,9], [11,15,17,19,25]]}

Now, we can feed these values into the placeholder p, like this:

sess.run(prod,feed_dict=d)

When we execute this line of code, we will get the product of each

element of the dictionary when multiplied by 2.

Now, take a look at the next program:

g = tf.placeholder(tf.float32)

h = tf.placeholder(tf.float32)

sum = g+h

prod = sum*5

sess = tf.Session()

sess.run(prod, feed_dict={g:[2], h:[3]})

Chapter 9 Programming with Tensorflow

183

Interesting, right? Here’s what happened in this program:

	 1.	 We declared two placeholders, g and h.

	 2.	 We then declared a variable sum that adds the values

of g and h.

	 3.	 After that, we declared a variable prod that takes the

value of sum and multiplies it by 5.

	 4.	 Finally, we ran prod in a session and fed values

to g and h because sum, which is the only variable

declared under prod, requires values for g and h in

order to obtain a value of its own.

That’s about it for placeholders! In this way, placeholders can be used

to allocate an area of the graph to some value that will be fed into the

program later on. It is mainly useful for when certain characteristics of the

data are unknown to the programmer at the beginning of the program.

For example, the programmer may not know the quantity of data that she

or he will be using.

That was quite interesting, wasn’t it? You can play around with

variables, constants, and placeholders as well. Have a go at using them to

write some small pieces of code, and see what you come up with.

In the next program, we will have a look at the architecture of

computational graphs in TensorFlow.

Chapter 9 Programming with Tensorflow

184

�Program 3: Operations in a Computational
Graph
So far, we’ve learned that TensorFlow works with the help of a computational

graph. This graph consists of all the variables that we declare, all the

operations that we carry out, and so on. It basically works behind the

scenes of a program. In TensorFlow, every node of the graph is known as an

operation, even if it is just a command that initializes a variable.

We will begin by acquiring the “default graph,” like this:

graph = tf.get_default_graph()

Now, let’s try to retrieve the operations from within this graph:

graph.get_operations()

We will get an output like this:

[]

This is because we’ve not carried out any operations yet, so the graph

has nothing to display.

We will now begin adding some nodes to this graph. Let us use some of

the simple commands we have learned so far, like the following:

•	 Creating a constant a

•	 Creating another constant b

•	 Finding the sum of a and b as c

•	 Finding the product of c and a constant as d

Chapter 9 Programming with Tensorflow

185

We can do this as shown:

a = tf.constant(300, name = "a")

b = tf.constant(65, name = "b")

c = tf.add(a, b, name = "c")

d = tf.multiply(c, 10, name = "d")

In each line, name is used just for visualization to help us understand

the concept of the computational graph. We can give each node any other

name as well, but we have assigned our names to avoid confusion and to

facilitate better understanding.

Let us now see how our graph looks by entering the following two lines

to get the operations from it:

operations = graph.get_operations()

operations

Executing this gives us the result shown in Figure 9-1.

This shows us the number of nodes present in our graph. We had

entered four different nodes, which are displayed here along with their

names (a, b, c, and d) and their types (constant, constant, addition,

multiplication, respectively). Let’s add another node e to this:

e = tf.multiply(a, 8, name = "e")

operations = graph.get_operations()

operations

Figure 9-1.  Operations within a computational graph

Chapter 9 Programming with Tensorflow

186

If we execute operations, we find that the number of nodes has

increased by one, and this extra node is shown along with its name e, and its

type Mul, as shown in Figure 9-2.

We can now run any or all of these nodes in a session, as shown below.

As you can see, we have executed node a and node e:

sess = tf.Session()

with tf.Session() as sess:

 result = sess.run(a, e)

 print result

Here, we have run the session within a with block. This is a method

that is used quite often, especially when multiple sessions are required.

Instead of declaring the sess variable separately, and then typing the

sess.run() command several times, we can just complete the entire

process within a single loop.

Thus, we can see how the computational graph works. Of course,

we won’t necessarily need to develop this kind of program, especially in

machine learning. However, in order to grasp the concept of graphs in

TensorFlow, it is good to go through this.

Figure 9-2.  Added Operation within the computational graph

Chapter 9 Programming with Tensorflow

187

�Program 4: Taking Inputs from a User
for a Placeholder
This type of program is especially good to know when it comes to creating

a model to analyze data. This is because when we, as the developers, are

creating our program, we don’t really know what kind of data is going to be

submitted by the user. However, we need to make sure that our program

can take the user’s input, perform the necessary calculations on it, and

then produce the required output.

In this program, we first create two placeholders, a and b. We then

declare that c is equal to some value in the form of an equation that

requires a and b. After that, we say that A will be the variable name of the

input that is to be assigned to a, and B will be the variable name of the

input that is to be assigned to b. Finally, we create a dictionary d in which

a acquires its value from A and b acquires its value from B. We then run the

session to find the value of c.

This will all make a lot more sense once we actually type in and

execute the code. That said, let us begin with the program:

a = tf.placeholder(tf.float32)

b = tf.placeholder(tf.float32)

c = (a*2) + b + 10

A = input("Enter a value for a: ")

B = input("Enter a value for b: ")

d = {a:A, b:B}

with tf.Session() as sess:

 result = sess.run(c, feed_dict = d)

 print result

Chapter 9 Programming with Tensorflow

188

Now when we execute this entire program, we will get the option to

submit a value for A and B. These values are fed into the program and

computed, and then the result of the equation is displayed.

Task Time  Keep executing this program to change the values of a
and b, and see how the value of c changes accordingly. Try altering
the equation for c as well, and see what happens.

�Closing the Session
When I was new to using the TensorFlow library, I would practice

running different kinds of code, just to get more comfortable with it. This

meant that I would open several sessions in a day to execute the various

commands. It was only later, however, that I learned the importance of

closing a session.

We close sessions in TensorFlow mainly to free up resources and to

reduce the unnecessary use of computational power. We use the following

command to do so:

sess.close()

This tells the system that our session is over, so it no longer needs to

compute anything. If we run our session inside a with block, however, we

need not worry about having to add this extra line, as the session closes on

its own once it reaches the end of the block.

And with that, we have covered some of the basics of programming

with TensorFlow 1.0!

Chapter 9 Programming with Tensorflow

189

�Summary
As we programmed, we perhaps noticed that some parts of the code

seemed a little, well, unnecessary, right? For example, we need to

keep opening (and then closing) sessions. Or, we need to initialize our

variables before we can use them. Well, we can’t blame the developers of

TensorFlow—they did a pretty good job with creating the library in the first

place. But soon even they realized that the library can be improved a little

more to make the task of coding with TensorFlow even more simple for

programmers.

So, what did they do?

They came up with TensorFlow 2.0.

This new version consists of updates and changes that took all the

issues and inconveniences of the parent version into account. Let’s dive

a little deeper into this version of the library and see how TensorFlow 2.0

makes machine learning faster and easier.

Chapter 9 Programming with Tensorflow

191© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_10

CHAPTER 10

Introducing
Tensorflow 2.0
TensorFlow 2.0 came as a huge blessing to the machine learning world. It

was announced during the TensorFlow Dev Summit of 2019. At the time,

it was still in its alpha version. Despite its being an unofficial release, it

had already gathered quite a bit of attention from programmers, who soon

realized that it was definitely a significant improvement from what it used

to be.

This new version was developed so as to provide programmers with

a machine learning library that is powerful, easy to implement, and

convenient to use on any platform. It is meant to challenge its parent

version by making programming even easier than before. It is also

relatively less challenging for machine learning enthusiasts to pick up,

especially if they are new to the TensorFlow library.

The newest release of TensorFlow specifically kept the challenges of

the former release in mind. Some irksome features were removed, and

some useful features were added. Of course, TensorFlow 2.0 is not the

ultimate package—there is still plenty of room for improvement. But so far,

it seems to have garnered a good amount of approval from programmers

worldwide.

https://doi.org/10.1007/978-1-4842-5967-2_10#DOI

192

�Features of TensorFlow 2.0
Since TensorFlow 2.0 was developed as a finer version of the original and

not as a separate library of its own, many of its features are similar to those

of TensorFlow 1.0. The two differ mainly with regard to a few areas where

programmers noted certain avoidable attributes. That said, here are some

key features of TensorFlow 2.0.

�Eager Execution
According to the official website,

TensorFlow’s eager execution is an imperative programming
environment that evaluates operations immediately, without
building graphs: operations return concrete values instead of
constructing a computational graph to run later.

In other words, iteration occurs at once, and we need not create a

computational graph or run separate sessions for each command.

It has a natural and steady flow, and does not need to be controlled by

a graph. It is intuitive because it ensures that the code follows the correct

layout and structure. It also allows us to use regular Python debugging

tools to identify and rectify any errors that may exist within the code.

This is different from TensorFlow’s original “lazy” execution, where

the programmer had to build a graph and run their lines of code within a

session.

�Introduction of Keras
TensorFlow implemented the Keras API as a powerful tool that can be

used for model building. It supports eager execution and several other

functionalities of TensorFlow. It is versatile, reliable, and effective in its

working. It has been added to TensorFlow 2.0 for this very reason.

Chapter 10 Introducing Tensorflow 2.0

193

Keras used to be an independent package on its own, which users

would download separately and use within their models. Slowly,

TensorFlow added it to its framework, as tf.keras. This tf.keras sub-package

was different from the main Keras package, so as to ensure compatibility

and stability. Later, with the announcement of TensorFlow 2.0, the

TensorFlow team stated that Keras would be the main high-level API of

this version.

�API Cleanup
TensorFlow has a multitude of APIs (Application Program Interface) for

several different programming languages that can be used within a piece of

code. These APIs are sets of tools, utilities, and systematic procedures that

perform a particular action when called within a program.

Some of these APIs were considered to be deprecated—they did not

seem to be very useful to programmers. Other APIs seemed to have similar

functionalities and characteristics. Thus, while developing TensorFlow 2.0,

the team decided to do some spring cleaning in this section.

Many of the APIs have therefore either been removed, replaced, or

collected under a single sub-package.

�Removal of Global Variables
In the previous version of TensorFlow, variables needed to be initialized

before they could be used in a session. This was done with the help of the

tf.global_variables_initializer() function, which would set up an

operation to initialize all the variables declared in the code parallelly.

You might remember doing this in the previous chapter, where we

entered a line of code like this:

init_ops = tf.global_variables_initializer

Chapter 10 Introducing Tensorflow 2.0

194

After this, we opened a new session, ran init_ops, and then

proceeded to run the rest of our variables.

In TensorFlow 2.0, all the namespaces and mechanisms that were used

to keep track of variables have been removed. Variables no longer need to

be initialized before running them. They can be used directly as and when

required.

�Better Deployment Capabilities
TensorFlow has always provided users with the ability to work across

several platforms and languages in order to develop and train models

easily. TensorFlow 2.0 brings better compatibility and stability for this.

A fully trained and saved model can either be integrated directly into

the application that we are working on, or deployed with the help of some

important libraries, including the following:

•	 TensorFlow Serving, which enables us to implement

models over HTTP/REST or gRPC/Protocol buffers.

•	 TensorFlow Lite, which enables us to implement

models for mobile devices like Android or iOS, and

embedded systems like the Raspberry Pi.

•	 TensorFlow.js, which enables us to implement models

for JavaScript environments.

•	 Additionally, TensorFlow provides support for other

programming languages like C, Java, Julia, and so on.

�Powerful Experimentation Tools
Researchers can easily carry out their experiments with the help of

TensorFlow 2.0, which allows them to actualize their ideas without having

to compromise on speed and effectiveness.

Chapter 10 Introducing Tensorflow 2.0

195

We already learned that Keras has been added as a central high-level

API to TensorFlow. Keras and similar APIs have been added to make

the process of model building, improving, and training even faster and

better. In fact, low-level APIs and high-level APIs work together for extra

efficiency.

It is also easier to control gradient operations. Some extensions have

been added as well to boost the research capabilities of the library.

�Increase in Productivity
TensorFlow initially gained its fame because it effectively assisted machine

learning developers and escalated their productivity. Its features and

provisions greatly benefitted programmers. It saved them time and

reduced their effort, while simultaneously helping them to achieve more.

TensorFlow 2.0, having upgraded from that, further increases

productivity. It provides for intuitive debugging, immediate computation,

scalability, and simplicity. It is also relatively easier to learn, especially for

beginners.

TensorFlow 2.0 is most certainly a powerful, substantial, and robust

upgrade to its predecessor. However, considering the fact that experienced

artificial intelligence enthusiasts have been using TensorFlow 1.0 for a

long time now, transitioning over to the newer version does provide many

challenges.

Some have been debating whether TensorFlow 2.0 is really a boon

or a bane. While they agree that the upgrade has its benefits, they also

acknowledge that it will not be so easy for people to adapt to it, especially if

they have already built working machine learning models. Also, adjusting

to the new syntax can prove to be a slight obstacle, which people might feel

to be unnecessary.

Let’s have a look at Table 10-1, which lists some of the arguments

that have been put forward as the advantages and disadvantages of

TensorFlow 2.0.

Chapter 10 Introducing Tensorflow 2.0

196

Despite all this debate, we know that we need to make room for

change, especially if it is for the better. The cons, although present, are

not significantly disadvantageous to programmers. They are only minor

inconveniences that can be worked around easily.

�Code Comparison
So far, we have only read about the various characteristics of TensorFlow

2.0. It’s functionality will make more sense once we begin actually

programming with it. As mentioned already, the two versions vary with

respect to writing code. In this section, we will compare both versions and

see how the code differs.

Table 10-1.  TensorFlow 2.0 Pros and Cons

Pros Cons

It is much easier to learn compared to

TensorFlow 1.0, due to its easy flow and

simplified structure. Thus, people who are

absolutely new to the TensorFlow library

will find themselves learning it in no time.

Those who have already mastered

TensorFlow 1.0 will have to unlearn

it in order to understand and work

effectively with TensorFlow 2.0.

It is very similar to the regular Python

programming language. This means that

a Pythonist will not have to worry about

learning too many extra commands in

order to program with TensorFlow.

Any code written with TensorFlow 1.0

that contains sessions in it will not

work smoothly in TensorFlow 2.0. It

can only be run in the previous version.

Since many of the APIs have been

consolidated, a large part of the code that

used higher-level APIs, like Keras, can still

work, without having to change it.

If the code needs to be run in 2.0,

it will have to be either rewritten

manually or converted using the

upgrade tool provided by the library.

Chapter 10 Introducing Tensorflow 2.0

197

We will mainly discuss five areas in which we see a significant difference:

	 1.	 The tf.print() function

	 2.	 Lazy execution vs. eager execution

	 3.	 Removal of the tf.global_variables_initializer()

	 4.	 No placeholders

	 5.	 The @tf.function decorator

For each of these areas, we will take a look at some small examples

as well. In this way, we should be able to get a clear idea of how the

programming style varies with each version.

�The tf.print() Function
TensorFlow 2.0 has introduced a command that is very much similar to

the print command in regular Python. In TensorFlow 2.0, we can use the

tf.print() function in a single line of code to display any statement or

characters of our choice.

Its usage is as follows:

tf.print(<string or variable to be printed>)

�TensorFlow 1.0

In TensorFlow 1.0, it was not this easy to print anything. It required a few

extra steps, as shown here:

import tensorflow as tf

h = tf.constant("This is a TensorFlow 1.0 program")

sess = tf.Session()

print(sess.run(h))

sess.close()

Chapter 10 Introducing Tensorflow 2.0

198

See how that was done? We had to declare h, state that it is equal to the

given constant, which is the sentence we want to print out, open a session,

run h in that session, print it, and then close the session.

So what about TensorFlow 2.0?

�TensorFlow 2.0

import tensorflow as tf

h = tf.constant("This is a TensorFlow 2.0 program")

tf.print(h)

In fact, let’s go a step further and make this even easier:

import tensorflow as tf

tf.print("This is a TensorFlow 2.0 program")

See how quick that was?

Thus, in TensorFlow 1.0, the program would require us to declare our

string as a constant, create a session, and then execute it in the session in

order to print out the string. In TensorFlow 2.0, however, all we need to

do is define a variable for the string and then type in the command tf.

print(), which will display the output. We can even just directly print out

what we want without assigning it a variable name.

This is how TensorFlow 2.0’s eager execution differs from TensorFlow

1.0’s lazy execution. We can observe this in greater detail next.

�Lazy Execution vs. Eager Execution
TensorFlow 1.0 followed lazy execution. It would not execute code

immediately. Instead, it would wait for the particular node of the graph to

be executed within a session, and only then would it run.

Chapter 10 Introducing Tensorflow 2.0

199

An example is shown next, where we have a code to print “Hello

There,” to find the sum of 90 and 7, and to display the value of a variable

that is declared to be 300.

�TensorFlow 1.0

import tensorflow as tf

a = tf.constant("Hello There")

b = 9+70

c = tf.Variable(300)

init_op = tf.global_variables_initializer()

sess = tf.Session()

print(sess.run(init_op))

print(sess.run(a))

print(sess.run(b))

print(sess.run(c))

�TensorFlow 2.0

In TensorFlow 2.0, lazy execution was replaced with eager execution. This

means that the code is now executed directly. There is no need to first

build a computational graph and then run each node in a session. Each

line of code executes immediately.

Chapter 10 Introducing Tensorflow 2.0

200

We can see this here, where we write the same code as before, but

using TensorFlow 2.0:

import tensorflow as tf

a = tf.constant("Hello There")

b = 9+70

c = tf.Variable(300)

tf.print(a)

tf.print(b)

tf.print(c)

As you can see, the first set of code followed a lazy manner of

execution, using a distributed graph, while the second set of code did not.

It followed an eager manner of execution instead. The second code is also

shorter than the first code, as it doesn’t have so many steps.

�Removal of tf.global_variables_initializer()
Take a closer look at the program that we just saw. I mentioned that we

skipped a few steps, right? One such step is the addition of the function tf.

global_variables_initializer(), which we have not used at all.

The reason is that, as stated earlier, in TensorFlow 2.0 we don’t need to

initialize our variables. After defining the variables, we can directly begin

using them within our program.

Just to get a clearer picture, let’s take a look at some code to declare a

variable and then display it in TensorFlow 1.0.

Chapter 10 Introducing Tensorflow 2.0

201

�TensorFlow 1.0

import tensorflow as tf

v = tf.Variable(8)

init_op = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init_op)

print(sess.run(v))

Simple, right? Now, let’s have a look at the same code when written in

TensorFlow 2.0.

�TensorFlow 2.0

import tensorflow as tf

v = tf.Variable(8)

tf.print(v)

The output is the same, but the procedure is so much shorter. As a

matter of fact, the number of code lines is reduced by half. And, here, we

did not have to initialize the variable v. We were able to directly assign a

value to it.

Speaking of variables, remember that in a previous chapter, we learned

about another concept called placeholders? Well, the TensorFlow team

decided that they were not going to keep placeholders in the upgrade, and

thus they did away with them. We will read more about this in the next

section.

Chapter 10 Introducing Tensorflow 2.0

202

�No Placeholders
We already know that a placeholder is nothing but a variable to which we

can assign a value at a later stage of the program. This means that, unlike

variables, placeholders do not require an initial value. In TensorFlow 1.0,

placeholders were used as a result of the version’s lazy style of execution,

as we might remember from the program in the previous chapter.

However, with TensorFlow 2.0’s eager execution, placeholders are not

required. This is because operations are created and then evaluated

immediately.

As a quick recap of how placeholders were used in TensorFlow 1.0, we

will go through a small example. Let us consider a program in which we

declare a constant a, a placeholder b, and an equation c consisting of a and

b. We then assign the number 3 to the placeholder b using the feed_dict

command. Finally, the values of a and b are fed to c in order to obtain the

result of the equation.

�TensorFlow 1.0

import tensorflow as tf

a = tf.constant(5)

b = tf.placeholder(tf.float32)

c = a*b

sess = tf.Session()

sess.run(print(c, feed_dict = {b : 3})

sess.close()

Now, when we use TensorFlow 2.0, we don’t have to create any

placeholders. We can directly define the constant a, variable b, and

equation c, and then print the value of c. When we define c as the product

Chapter 10 Introducing Tensorflow 2.0

203

of a and b, the code automatically computes the values of a and b and

then stores it in c. Next, when we print c, it displays the result of the

computation. The execution of the program thus becomes much faster, as

we can see next.

�TensorFlow 2.0

import tensorflow as tf

a = tf.constant(6)

b = tf.Variable(2)

c = a*b

tf.print(c)

See how easy the program has become? It’s almost similar to a

regular Python program. And we need not worry about first setting up a

placeholder, then feeding data into it, and finally executing some code with

it. Everything is done quickly and instantly.

�@tf.function Decorator
We know that, since TensorFlow 2.0 follows eager execution, there is no

need to create a computational graph first, followed by a session to run

our program. Does this mean that we can no longer run a program in a

distributed manner?

Not at all. We can still carry out a distributed execution for our

program. All we need to do is write that piece of code in the form of a

function, and then use the @tf.function decorator as a prefix to the code.

TensorFlow will then understand that the code is meant to be executed in

a distributed manner, and it will proceed to do so.

Chapter 10 Introducing Tensorflow 2.0

204

Let’s see this in an example. Here, we first initialize values for x, y,

and z. We then create a function result in which we find a, which is the

sum of the three values, and we return the value of a as the output of the

function. After this, we declare b, which calls the function result, supplies

it with inputs as the given values of x, y, and z, and assigns the outcome of

this computation as the value of b to be displayed. Finally, we once again

declare b, but this time, when we call the function result, we supply it

with new values for x, y, and z, allow the function to compute this result,

and then feed it to b to be displayed.

Don’t worry if none of that made sense to you. The code is much easier

than it sounds, as you will see next.

�TensorFlow 2.0

import tensorflow as tf

x = 7

y = 8

z = 9

@tf.function

def result(x,y,z):

 a = x+y-z

 return a

b = result(x,y,x)

tf.print(b)

b = result(1,7,3)

tf.print(b)

As you may have already noticed, the function here is decorated with

tf.function, which allows it to be executed like a graph.

Chapter 10 Introducing Tensorflow 2.0

205

Note W e are not showing any TensorFlow 1.0 code here because
we do not need this decorator in it. It is only required in version 2.0.

So, from what we have just seen, it is easy to understand that there

has been quite an upgrade from what TensorFlow used to be. Although

it will take a little getting used to, once developers succeed in making

the transition from TensorFlow 1.0 to TensorFlow 2.0, they will be able to

achieve their machine learning requirements faster and more efficiently.

Now, for those who have been in the machine learning field for a

considerable amount of time, it is highly likely that they have been using

TensorFlow 1.0 over the past few years, which means that they might have

even painstakingly developed several codes with the help of this library.

Therefore, moving over to TensorFlow 2.0 may not sound very appealing,

because they would have to figure out how to recreate all their code in the

newer version.

Not to worry! The TensorFlow team has already thought about this and

developed a pretty feasible solution. They have provided a full migration

guide to help programmers make a smooth transition from 1.0 to 2.0.

They have also come up with the tf_upgrade_v2 upgrade script, which

helps in automatically making the necessary changes. This reduces the

amount of time and effort required by the programmer to convert their

code to TensorFlow 2.0.

In the next section, we will have a look at this upgrade tool to see how it

works and how it can be used in our code.

�Upgrading from TensorFlow 1.0 to 2.0
The Google Brain team that developed TensorFlow knew that many

machine learning programmers would have already developed several

programs using TensorFlow 1.0. It would be a huge pain to have to rewrite

Chapter 10 Introducing Tensorflow 2.0

206

these programs in TensorFlow 2.0, especially because the upgraded

version is immensely different from its parent version. There is also scope

for plenty of errors in such a process.

This is why they came up with a way to help developers migrate from

TensorFlow 1.0 to TensorFlow 2.0. It makes use of the tf_upgrade_v2

function.

Note  If you are a beginner in TensorFlow, you may not have any
code to upgrade, in which case you can skip this section and move
ahead to the next chapter, where you will learn how to program with
TensorFlow 2.0.

�The tf_upgrade_v2 Upgrade Script
This utility was created to help developers in their transition from

TensorFlow 1.0 to TensorFlow 2.0 by making it easier, potentially seamless,

and much more convenient than manually converting the code from one

version to another. It is automatically installed in TensorFlow 1.13 and

higher, allowing developers to easily begin their transition.

The upgrade script has the following benefits:

	 1.	 It is just one line of code.

	 2.	 It is less time consuming.

	 3.	 It does most of the work for us.

	 4.	 It saves the upgraded code in a separate file, instead

of overwriting the original file

	 5.	 It produces a report at the end of the upgrade

process that tells the user what was done and what

needs to be done.

Chapter 10 Introducing Tensorflow 2.0

207

Thus, although manually changing the code is not exactly prohibited,

the upgrade script just seems like a shorter and easier path to take to reach

the final goal, as we can see in Figure 10-1.

Let’s now have a look at how we can use this utility to transition our

code.

�Using the Upgrade Script
Although the name makes it sound like something very advanced that can

only be attempted by professionals, it really isn’t so. In fact, once we take a

look at what the script is, we will be able to sigh with relief at how simple it

is to follow and implement.

The structure of the script is basically like this:

tf_upgrade_v2 —infile < Old File Name > —outfile < New File

Name >

Figure 10-1.  Manual upgrade vs. the upgrade script

Chapter 10 Introducing Tensorflow 2.0

208

Yup! That’s all it is.

The double hyphen followed by infile is used to call the file that

contains the old TensorFlow code. In this case, it would be the name of the

Jupyter Notebook that contains the code.

The double hyphen followed by outfile is used to rename the file that

will be created when TensorFlow upgrades the code to its newer version.

Now, before we begin typing this in, we need to import TensorFlow

into our Jupyter notebook. After that, we can enter this code and add our

file names accordingly.

When we execute the cell, it will take a little time to perform its update,

after which it will display the output. It also creates two new files:

	 1.	 A report about what it has done, which we can

examine to check for any significant errors in the

update. It mentions any keywords that have been

added and arguments that have been renamed. It

also recommends places where manual inspection

would be preferable. All this is stored in the report.

txt file.

	 2.	 The new file containing the TensorFlow 2.0 updates

for which we had provided a name in the code line.

This new model can be tested to ensure that it still

produces the required result.

Now that we’ve got some idea about how this script works, let’s try

it out with the help of a small program. We will use the very basic “Hello

World” program for this. I’m sure, by now, we all remember the code,

which looks like this:

import tensorflow as tf

h = tf.constant("Hello World")

sess = tf.Session()

Chapter 10 Introducing Tensorflow 2.0

209

sess.run(h)

sess.close()

Let’s say this code is in a Jupyter notebook, and this notebook is saved

under the name “Hello World 1.0.” To upgrade, first open a new Jupyter

notebook. In the notebook, import TensorFlow 2.0, and then type in the

upgrade script. The code will look like this:

import tensorflow as tf

tf_upgrade_v2 —infile "Hello World 1.0.ipynb" —outfile "Hello

World 2.0.ipynb"

When we execute this cell, we will find the new Jupyter notebook titled

“Hello World 2.0.” We will also find a detailed report of the upgrade in the

form of a text document called report.txt.

Click on the newly created Jupyter notebook. We will see that a few

changes have been made. However, since this is not a very large program,

not many alterations are required. The only significant change would be

the modification that it makes to the tf.Session() line. It changes into the

following:

sess = tf.compat.v1.Session()

When we open the report, it will show us the changes that it has made.

For example, in this case, it will say the following:

INFO: Renamed 'tf.Session' to 'tf.compat.v1.Session'

Note T he tf.compat.v1 module is used to allow the program to
acquire TensorFlow 1.0–related functionalities, including sessions
and placeholders.

Chapter 10 Introducing Tensorflow 2.0

210

Of course, when we use the upgrade script for more advanced

programs, there will be many more modifications made by the script,

which will all be visible in the new notebook that will be generated, as well

as in the report that it creates. We would also need to make a few extra

changes ourselves, since the program will not be able to do so. Overall, the

upgrade script manages to do about 80 percent of the work; the rest needs

to be done by us.

When using the upgrade script, there are some important points that

we need to keep in mind, as follows:

	 1.	 Do not manually change the code in any way from

TensorFlow 1.0 to TensorFlow 2.0. This can cause

errors during the upgrade.

	 2.	 Arguments are not reordered by the upgrade script.

However, keyword arguments can be added to

functions in which arguments are reordered.

	 3.	 The script follows the conventional practice of

importing the TensorFlow library as tf, and thus

works accordingly.

	 4.	 The compatibility module (tf.compat.v1) replaces

certain TensorFlow 1.0 references with those of 2.0.

In any case, it is recommended that compatibility

modules be removed and replaced with new APIs.

�Summary
TensorFlow 2.0 seems pretty cool, doesn’t it? As we have read in this

chapter, it has some interesting new features that make it much more

powerful and capable compared to its parent version. It does have

its disadvantages, but those can easily be worked around to allow

programmers to easily adapt to it.

Chapter 10 Introducing Tensorflow 2.0

211

We even compared it to TensorFlow 1.0 based on code-related

differences, and we saw how much easier coding has become. Finally, we

learned how we can migrate our old TensorFlow code to the newer version

with the help of the upgrade script, which makes the process both smooth

and quick.

TensorFlow 2.0 was mainly built to make our deep learning experiments,

research, model building, and so on much more productive. In the next

chapter, we will see how we can implement this library with Python to create

some exciting (and fully functioning) deep learning models.

�Quick Links
Read more about TensorFlow 2.0 here: https://

www.tensorflow.org/guide/effective_tf2

Check out the Migration Guide here: https://www.

tensorflow.org/guide/migrate

Learn more about the upgrade script here: https://

www.tensorflow.org/guide/upgrade

�Additional Information
�Running TensorFlow 1.0 by Disabling
TensorFlow 2.0
Although TensorFlow 2.0 is currently the default version of the library, it is

still possible to access the features of TensorFlow 1.0. All we need to do is

disable TensorFlow 2.0 by calling the following function:

tf.compat.v1.disable_v2_behavior()

This needs to be done before programming; i.e., before creating

graphs, adding tensors, and so on.

Chapter 10 Introducing Tensorflow 2.0

https://www.tensorflow.org/guide/effective_tf2
https://www.tensorflow.org/guide/effective_tf2
https://www.tensorflow.org/guide/migrate
https://www.tensorflow.org/guide/migrate
https://www.tensorflow.org/guide/upgrade
https://www.tensorflow.org/guide/upgrade

212

�Ragged Tensors
TensorFlow introduced “ragged” tensors to solve the issue of non-

uniformly shaped arrays of data. For example, let’s consider a set of lists of

the number of letters in some words, such that each word’s length varies

immensely from the other, as shown here:

animals = tf.ragged.constant([['c', 'a', 't'],

 �['h', 'i', 'p', 'p', 'o', 'p', 'o', 't', 'a', 'm',

'u', 's'],

 ['b', 'u', 'f', 'f', 'a', 'l', 'o']])

This will then be displayed like this:

<tf.RaggedTensor [['c', 'a', 't'],

 �['h', 'i', 'p', 'p', 'o', 'p', 'o', 't', 'a', 'm',

'u', 's'],

 ['b', 'u', 'f', 'f', 'a', 'l', 'o']] >

Here, the first word has three letters, the second word has twelve

letters, and the third word has seven letters.

We can even slice ragged tensors, the same way we would slice data in

regular tensors. This is shown here:

print(animals [2])

The outcome of this line of code would be as follows:

tf.Tensor(['b', 'u', 'f', 'f', 'a', 'l', 'o'], shape=(7,),

dtype=string)

Ragged tensors can carry out a variety of TensorFlow operations,

including string operations, mathematical operations, array operations,

and so on. They are also supported by many of TensorFlow’s APIs, like

Keras, tf.function, etc.

Chapter 10 Introducing Tensorflow 2.0

213

Non-uniformly shaped data is a common challenge that many

programmers face while carrying out machine learning. Ragged tensors

assist us in such situations by making the storing and processing of such

data much easier.

�TensorFlow Addons
TensorFlow Addons is a special-interest group created to allow users to

contribute new extensions with functionalities that are not a part of the

core library. It has sub-packages and sub-modules that are maintained by

a dedicated team.

Some of these sub-packages include the following:

•	 tfa.text

•	 tfa.image

•	 tfa.optimizers

•	 tfa.metrics

•	 tfa.callbacks

•	 tfa.rnn

Chapter 10 Introducing Tensorflow 2.0

215© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2_11

CHAPTER 11

Machine Learning
Programming with
Tensorflow 2.0
So far, we have learned about artificial intelligence, under which we have

machine learning and its sub-set, deep learning. We have also learned

about the Python programming language, which is popularly used for

machine learning coding. We even got familiar with the Jupyter Notebook

interface, in which we can write, edit, and debug our programs. We then

saw how we can combine Python with Jupyter Notebook as an efficacious

way to write our code. After this, we were introduced to the TensorFlow

library as an important package within Python, and once we understood

how the library was useful, we proceeded to learn about its recent

upgrade—TensorFlow 2.0—which has additional features and abilities that

make our machine learning models easier to build.

Now, we have finally come to the most important topic in this book:

learning how to build and execute machine learning models with the

help of the TensorFlow library. As explained before, the main reason

TensorFlow was created was to aid developers, not just with basic machine

learning programming, but also with more advanced machine learning

procedures. In other words, TensorFlow was created predominantly for

deep learning that employs neural networks.

https://doi.org/10.1007/978-1-4842-5967-2_11#DOI

216

In this chapter, we will learn a little more about how machine learning

models are made, and we will also try out seven programs of our own.

Each of these programs is an image classification problem that requires

neural networks, all constructed using the Keras API, which we will go

through later on.

The seven programs are as follows:

	 1.	 Image Classification Using a Pre-Trained Model

	 2.	 Handwriting Recognition Using Keras in TensorFlow

(Single Layer, Multi-class)

	 3.	 Clothing Classification Using Keras in TensorFlow

(Multi-layer, Multi-class)

	 4.	 Clothing Classification Using Convolutional Neural

Networks (Multi-layer, Multi-class)

	 5.	 Handwriting Recognition Using Convolutional

Neural Networks (Multi-layer, Multi-class)

	 6.	 Image Classification for CIFAR-10 Using

Convolutional Networks (Multi-layer, Multi-class)

	 7.	 Dogs vs. Cats Classification Using Convolutional

Neural Networks (Multi-layer, Binary)

We will go through each of these programs step-by-step to get a

thorough idea of all the processes and components involved in developing

them, particularly the following:

•	 The structure

•	 The dataset

•	 The API

•	 The activation functions

Chapter 11 Machine Learning Programming with Tensorflow 2.0

217

•	 The optimizer

•	 The program

By fully understanding these seven programs, we will be well equipped

to create our own models for other similar problems.

Before we begin programming, there are two things that we need to do

to prep ourselves:

	 1.	 Understand the structure of a machine learning

model.

	 2.	 Get acquainted with Keras, which we will be using

under TensorFlow to build and train our deep

learning models.

In Chapter 2, we saw the steps that are to be followed when solving a

machine learning problem. Here, we will go through the general structure

of a machine learning model to obtain a clearer idea of how it is built.

�Structure of a Machine Learning Model
Machine learning, as mentioned earlier, requires part of the work to be

done by us. The rest of it is all done behind the scenes by the computer. In

other words, it all happens in the backend of the code. This, in all honesty,

saves us, as programmers, a lot of trouble. There are, however, still plenty

of tasks that we need to carry out while creating our model in order to

make sure that we get the output we desire.

A machine learning developer’s task is mainly to build the model and

then run it. There are several components to this model, depending on

what exactly we are trying to accomplish, but the general architecture

remains the same.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

218

Since we will be using neural networks to carry out our machine

learning processes, we will study the structure of a deep learning model

that uses a neural network. The overall idea for the structure of the model

is as shown in Figure 11-1.

As we can see in the flowchart, there are four main steps involved in

developing a working machine learning model, as follows:

	 1.	 Data loading and pre-processing: This part accepts

data, manipulates it, then prepares it for training

and testing.

	 2.	 Building the model: This is the part where the

developer specifies the various components of the

model.

	 3.	 Training the model: This part takes the training

data and begins performing calculations on it to get

an optimum result.

Figure 11-1.  Flowchart of a machine learning model

Chapter 11 Machine Learning Programming with Tensorflow 2.0

219

	 4.	 Testing the model: This part validates or checks the

accuracy of the model.

The first two steps require the time, effort, and skills of a programmer,

since they involve the handling of data and the creation of a working

model. For the last two steps, all the programmer has to do is set the model

running and then kick back and relax while the machine does all the hard

work.

Let’s go through this structure in a little more detail to get a better idea

of what it does, how it works, and what needs to be done.

�Data Loading and Pre-Processing
In Chapter 2, we had a look at the different methods of collecting data. We

also learned that this data requires some pre-processing before it can be

used for any kind of analysis in order to ensure optimal results. This means

that we might need to add, remove, or change some values.

Now remember, this does not mean that we are completely changing

our data, which can result in incorrect outputs. We are just making it more

readable for our system to take and work with.

Here are some examples of this:

	 1.	 Suppose we had data containing a list of 500

married women and the number of children each

of them have. From this list, almost everyone has at

least one child. Only five of them have no children.

Now the problem is that we need to predict the

number of hours of sleep these women get in a

day, based on the number of children they have.

Obviously, the details of these five women would

not be required for this study since they do not have

children. Thus, we would have to remove their data

from the list.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

220

	 2.	 Sometimes, apart from numerical values, our data

may also contain terms like None or No, which could

basically imply a zero, depending on the problem.

Thus, we would need to either change those values

to 0 or remove them from the dataset.

	 3.	 In some cases, we may want to round off our

numerical values to the nearest whole number. This

can be done either for the whole dataset or just for a

section of it.

Data can be altered manually. Applications like spreadsheets or

visualization software come in handy when working with structured

data. However, when the dataset is huge, it becomes quite tiring and

monotonous to work with. Thus, most developers use a Python library

called Pandas, which provides users with several tools and utilities to work

on their data. With the help of Pandas, users can import a .csv file (csv:

comma separated values) from their local system into a Jupyter notebook.

In this book, we will be using image datasets that are already integrated

within the TensorFlow library. They can easily be called with the help of a

TensorFlow function, as we will see later on.

The data that we use for training machine learning models is divided

into two categories: labels and features.

Labels: These are the components of the data that

are to be predicted; i.e., the dependent variable or

output. They are determined based on the features

provided to the system.

Features: These are the components of the data

that are used for prediction; i.e., the independent

variable or input. They determine the labels of the

outputs. When choosing features, it is important to

ensure that they are independent and distinct.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

221

When training a deep learning model, we can choose either of the

following methods based on how we intend to input our features and

labels:

•	 Supervised learning: We feed the model with the

features and the labels.

•	 Unsupervised learning: We feed the model with the

features only.

•	 Semi-supervised learning: We feed the model with

some labeled features and some unlabeled features.

Note  The quality of the labels is proportional to that of the features.
In other words, better features result in more accurate labels.

Once we have finished altering our data, we need to split it into two

parts: the training data and the test data.

Training data: Training data is what is fed into

the model to be used while it is training. This will

generally be a greater proportion of the data, since

the model requires a larger amount of data when

training to get more accurate results.

Test data: Test data is what is fed into the model

after it has finished training and settled on

optimal parameters. This will generally be a lesser

proportion because it is only meant to help the

model determine how accurate or inaccurate its

prediction is.

After we are done pre-processing the data, the next step is to build the

model.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

222

�Building the Model
We need to develop the architecture of our machine learning model. In

this case, we will be using a neural network. Thus, we need to arrange the

neural network by defining the following:

•	 The number of hidden layers

•	 The number of neurons in each layer

•	 The weights and biases

•	 The activation function

In Chapter 3, we learned how neural networks work, and we studied

their different types. For example, convolutional neural networks

(CNNs) are best used for image classification and recognition, and

recurrent neural networks (RNNs) are great for machine translation and

speech recognition. We can choose our preferred neural network after

careful consideration of our data, resources, and desired outcome, and

accordingly build the model that we require.

�Training the Model
Once the model is built, it is ready to be trained. This is where the

programmer steps aside and gives way to the machine, which proceeds to

do some intense work. All we need to do here is call the training data into

the model and then start the process.

During training, the model begins trying out different values and

replacing the parameters, i.e., the weights and the biases, in order to come

up with the most suitable equation that will give high accuracy and low

error. It follows a trial-and-error manner, and keeps changing the values of

the parameters until it gets a result that is satisfactory.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

223

We have already seen the following in Chapter 3:

•	 The values of the weights and biases are constantly

tweaked to make the output more suitable and to give

stronger predictions. This is called training the model.

•	 The output is predicted from the input data. This is

known as forward propagation.

•	 The weights and biases are modified in order to reduce

the loss. This is known as back propagation.

Although it seems like everything should end here, it’s not always a

good idea to do so.

Why?

Well, there is always a possibility that the result still may not be the

most optimal one. For example, overfitting can happen, resulting in

inaccuracy. This is why, after training, the model must also be tested.

�Testing the Model
Once we have our trained model, we need to feed the test data into it.

We then allow the model to run this data through to see how accurate its

predictions are. In this way, we validate the model.

Depending on this accuracy, we can decide if we want to change

certain aspects of the model and then retrain it, or leave it as it is. Of

course, there are several other factors that can affect this decision as

well, including time, computational power, and so on. For example, the

programmer may not have enough resources to redesign and retrain

the model. Or perhaps there isn’t enough time. So, before retraining the

model, the programmer must take all of these factors into consideration.

The machine continues to repeat this cycle of training and testing the

model until it produces an acceptable outcome.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

224

The structure of a machine learning model can vary greatly with

regard to more specific factors, depending on the type of problem that we

are solving. Hence, as mentioned earlier, we need to correctly define our

problem and the solution we hope to achieve, and then carefully plan out

our model to minimize error.

Now that we are aware of the general design of a machine learning

model, the next thing we need to do is get familiar with the Keras API,

which is integrated with the TensorFlow library and which we will be using

to develop our code.

�Keras
Before we learn about Keras as a TensorFlow API, let’s have a look at Keras

as an independent and popular machine learning library.

Keras is an open source deep learning library. It was written in Python

and can work on top of TensorFlow, as well as on Theano, R, PlaidML,

and the Microsoft Cognitive Toolkit. It was developed within the project

ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating

System).

It was initially released on March 27, 2015, under the MIT license.

According to the official website, Keras mainly focuses on “Deep

Learning for Humans.”

In other words, the developer is its priority, rather than the machine.

It was created to make the programming process less burdensome for

the user. It makes it easier for the user to write and debug code, and also

provides sufficient guides and documentation.

Keras was initially just an individual library that could be called and

deployed within a program. In fact, its original backend was Theano.

However, when Google introduced TensorFlow, programmers began to

implement both together, until it became such that one could not have

Keras without TensorFlow and vice versa. Seeing the growing popularity of

Chapter 11 Machine Learning Programming with Tensorflow 2.0

225

this deadly combination, Keras soon made TensorFlow its default backend,

which was a smart move on their part.

In 2017, TensorFlow added the tf.keras sub-module into its package,

which was separate from the Keras library that needed to be installed

(using the pip function). This was the first step to support Keras within its

package. Finally, with the release of TensorFlow 2.0 in 2019, Keras became

the official high-level API for machine learning. This gave an added boost

to both the libraries, as they could now be used together to develop and

train powerful neural networks.

�Features of Keras
Keras contains several features and tools that make deep learning much

easier. Some of these include the following:

	 1.	 It can function smoothly on CPU as well as on GPU.

	 2.	 Models can easily be exported onto servers,

browsers, embedded devices, and so on.

	 3.	 It is flexible and consistent, making research and

deployment less difficult for users.

	 4.	 It supports several types of neural networks, like

CNNs and RNNs.

	 5.	 It has extensive documentation for further study,

and a community for users to support one another.

Thus, Keras provides the user with reliable support and powerful

resources that can be implemented into a program to design, train, test,

and deploy deep learning models.

We now know how a machine learning model is structured. We also

learned about Keras, an important API under TensorFlow that makes

our coding experience much better. With this, we can go ahead and start

building our very first deep learning model with TensorFlow!

Chapter 11 Machine Learning Programming with Tensorflow 2.0

226

We will be developing deep learning programs to segregate our data

into several groups based on certain similarities. In other words, we will be

solving classification problems.

We have already heard about such problems. Under classification, we

have two main types: binary classification and multi-class classification.

�Binary Classification
This is a very simple type of classification problem. Here, the variable to be

predicted can take either one of two possible values. In other words, the

data needs to be split into two groups.

Let’s take a very simple example. Suppose we have a set of nine

random numbers available to us: 2, 5, 700, 75654, 8273, 9, 23, 563, and 0.

We can separate these numbers into two groups:

Odd Numbers (5, 8273, 9, 23, 563)

Even Numbers (2, 700, 75654, 0)

As you can see, we have two groups or “classes” here based on the type

of number. Five of the given numbers are odd, and four of them are even.

Let’s take another example. Suppose we have a set like this: “doe,”

“ram,” stag,” “ewe,” “rooster,” “chicken.”

This can be separated out into the following:

Male (“ram,” “stag,” “rooster”)

Female (“doe,” “ewe,” “chicken”)

Once again, here we have two categories based on their gender, male

and female, each having three variables. Each variable within the set of

data is divided accordingly.

Other more advanced applications of binary classification include

cancer detection (cancer present/cancer absent), spam detection (spam/

not spam), etc.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

227

�Multi-class Classification
This is also called multinomial classification. Here, the variable to be

predicted can take one of many possible values. In other words, the data

needs to be separated into more than two groups.

For example, suppose we have a set like this: “rose,” “cucumber,”

“tulip,” “lily,” “apple,” “carrot,” “potato,” “orange,” “sunflower.”

We can separate them into these groups:

Flowers (“rose,” “tulip,” “lily,” “sunflower”)

Fruits (“cucumber,” “apple,” “orange”)

Vegetables (“carrot,” “potato”)

As you can see, we have three groups into which the data is divided

based on type: four of the variables are flowers, three of them are fruits,

and two of them are vegetables.

Let’s consider another example. Take a look at this set of eleven

random numbers: 9, 55, 8, 22, 27, 16, 205, 93, 4, 49, 81.

Any guesses on how we can divide them?

Yes, that’s right! We can divide them into the following groups:

Multiples of 2 (8, 22, 16, 4)

Multiples of 3 (9, 27, 93, 81)

Multiples of 5 (55, 205)

Multiples of 7 (49)

We have four groups here based on the highest common factor (2,

3, 5, or 7): the multiples of 2 consisting of four variables, multiples of 3

consisting of four variables, multiples of 5 consisting of two variables, and

multiples of 7 consisting of one variable.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

228

Other more advanced applications of multi-class classification include

eye-color recognition (blue, green, light brown, dark brown, grey), cat-

breed identification (Persian, Munchkin, Bengal, Siamese, Sphynx), etc.

As we can see, in all these classification examples, the variables were

grouped together depending on the characteristics that they shared. In this

way, data can be classified or grouped based on similarities in particular

characteristics or features.

We will now get into the seven programs that we spoke about at

the beginning of this chapter. This will help illustrate all that we have

discussed till now, and will give you a clearer picture of the entire concept

of machine learning with the help of Python and TensorFlow, within

Jupyter Notebook.

�Programming with TensorFlow 2.0
The programs that we will be learning comprise image classification

problems. Before we get into them, let’s have a quick look at how such

problems need to be dealt with in order to solve them.

�Image Classification: An Overview
Image classification is one of the most popular areas of deep learning due

to its vast usability in practical purposes. It is the process of separating

images within a dataset into groups, based on their similar features.

For example, suppose we had images of a goldfish, a grasshopper,

a sparrow, a rabbit, a penguin, a cat, a vulture, and a shark, as shown in

Figure 11-2.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

229

We can separate them into different groups, based on which class they

belong to, as shown in Figure 11-3.

Figure 11-2.  Eight images of different creatures

Figure 11-3.  Classifying the images

Chapter 11 Machine Learning Programming with Tensorflow 2.0

230

We thus have the following four classes:

•	 Insect (grasshopper)

•	 Fish (goldfish, shark)

•	 Mammal (cat, rabbit)

•	 Bird (vulture, penguin, sparrow)

Having studied these subjects in school, we already know which

of these creatures falls under which category. We can use our natural

intelligence to distribute the images easily. But how would an artificially

intelligent computer figure this out?

We would have to train it to understand the ways in which some of the

creatures relate to each other, while others don’t.

The model can be trained by feeding it with labeled pictures of

different kinds of creatures. The labels would inform the machine if

the image is that of an animal, a bird, a fish, or an insect. The machine

would then begin to observe all the images under a single class to gather

information on any kind of common features among them.

For example:

•	 The insects have six legs and antennae.

•	 The fish have streamlined bodies and fins.

•	 The mammals have four legs and furry bodies.

•	 The birds have wings and two legs each.

Once it has gathered its observations and made predictions that are

verified to be accurate, it can be used for further problem solving.

Now, if we give it the eight images from Figure 11-2, it would solve

the problem effortlessly and classify the images according to their type by

studying each picture, finding its closest possible label match, and placing

it in that class. This is how image classification is done using a machine

learning model.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

231

In the programs that we will be going through, we will focus on

instructing the computer to train and test similar image classification

models with the help of neural networks.

Let’s start with our very first deep learning program.

�Program 1: Image Classification Using a
Pre-Trained Model
Before we begin building models and training them, we need to

understand what our main objective is. Many times, we focus more on

creating models that give us high accuracy during validation, but we

completely forget to carry out a final inference to see if the model has really

been trained well.

Inference is the process of using a trained machine learning model to

make a prediction.

During inference, we take a random element from the entire dataset

and pass it through the model to see if it can predict that element’s class

correctly. The result of this prediction helps us to infer or deduce whether

the model is accurate or not.

To make this clearer, let’s write a fun little image classification program,

in which we will take a pre-trained model and carry out inference to

validate its predictions.

Note  Don’t worry too much about understanding each and every
step of this program. As long as you get the basic idea of what is
happening, that should be enough.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

232

�The Working
Since this is a model that has already been trained, we need not worry

about that part. All we need to do is load an image from the file, prepare it,

feed it to the model, and retrieve its outcome.

�The Structure
The structure of this program is short and sweet:

	 1.	 It loads the pre-trained model into the Jupyter

notebook.

	 2.	 It loads an image into the notebook.

	 3.	 It prepares the image for the model.

	 4.	 It predicts the probability across all output classes.

	 5.	 It converts the probabilities into labels.

	 6.	 It identifies the highest probability.

	 7.	 It displays the result.

�The API
This program will be using the newly added high-level Keras API.

�The Program
Step 1: Open a new Jupyter notebook.

Start by launching the Anaconda application. Enter the required

virtual environment, and then launch Jupyter Notebook within it. From

the Jupyter Notebook dashboard, open up a new notebook for Python 3

Chapter 11 Machine Learning Programming with Tensorflow 2.0

233

programming. We can give this notebook a name, like “Inference for Pre-

Trained Models.”

Step 2: Import TensorFlow and Keras utilities into the notebook.
Import TensorFlow, the Keras API, and all the extra functions into the

Jupyter notebook, using the following code:

import tensorflow as tf

import tensorflow.keras

from tensorflow.keras.preprocessing.image import load_img,

img_to_array

from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.vgg16 import VGG16,

preprocess_input, decode_predictions

from tensorflow.keras.applications.resnet50 import ResNet50,

preprocess_input

Step 3: Load the model into the notebook.
We need to load the pre-trained model into the notebook. In this

program, we will be trying out both VGG16 and ResNet50. To start with,

let’s call VGG16 into our program. We can add it to our code like this:

model = VGG16()

This will load the pre-trained model into the Jupyter notebook.

Step 4: Load an image into the notebook.
We now need to load an image into the notebook. The great thing

about using this pre-trained model is that we can upload any picture that

we want and then test it to see if it works correctly.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

234

The image we will be using is that of a kitten. We can load it into our

notebook, like this:

image = load_img('Kitten1.jpg', target_size=(224, 224))

image

The image will be displayed as shown in Figure 11-4.

Note  Just remember that when you are saving an image onto your
computer, it’s always a good idea to save it in the same folder as
the Jupyter notebook that you are working in. For example, if your
notebook is saved under Desktop/My Programs, you can move the
image to Desktop/My Programs as well. This makes it easier for you
to access it later on in your code, without the need for typing in the
entire file path.

Step 5: Prepare the image for the model.
We first need to convert the image’s pixels into a Numpy array, like this:

image = img_to_array(image)

Figure 11-4.  Loading the image file

Chapter 11 Machine Learning Programming with Tensorflow 2.0

235

We then need to reshape the array, like this:

image = image.reshape((1, image.shape[0], image.shape[1],

image.shape[2]))

Finally, we will preprocess the input, like this:

image = preprocess_input(image)

Step 6: Make the prediction.
We can now predict the probability of the image’s belonging to each

class. After this, we convert these probabilities into the class labels, and

then retrieve the result that seems the most probable. The code for this is

shown here:

result = model.predict(image)

label = decode_predictions(result)

label = label[0][0]

Step 7: Display the classification.
The model’s prediction can be displayed along with its percentage

probability with the help of the following code:

print('%s (%.2f%%)' % (label[1], label[2]*100))

The output will come like this:

Egyptian_cat (87.00%)

We can see that the VGG16 model has not only predicted that the

image is that of a cat, but also predicted its species; i.e., an Egyptian cat.

Along with this, it has given the probability of its answer’s being correct as

87 percent.

Nice, right?

Let’s try this again, and this time, with a ResNet50 model.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

236

Just change the code in Step 3 to this:

model = ResNet50()

Now repeat the remaining steps, leaving the same image file, and run

the prediction. See what we get?

Egyptian_cat (71.94%)

The ResNet50 model also gives the same prediction, but it is only 71.94

percent sure of its answer.

So, can we say that these models are perfect, because they were able

to identify the image of a kitten correctly? Well, here’s another example,

in which I have changed my image to that of another kitten, as shown in

Figure 11-5.

Here is what the models predicted:

VGG16:

Chihuahua (21.55%)

ResNet50:

Pembroke (17.49%)

Figure 11-5.  Loading another image file

Chapter 11 Machine Learning Programming with Tensorflow 2.0

237

As we can see, one model identified my kitten as a Chihuahua, while

the other model identified him as a Pembroke (which, after a bit of

searching, I found out refers to the Pembroke Welsh Corgi). In short, both

the models thought that my kitten was a dog.

Thus, as we learn to create, train, and validate deep learning models,

we will also be required to carry out an inference on them to ensure that

they have actually been trained correctly. Since they are just machines, it is

not possible to get a model that is completely infallible. Our aim, however,

is to get the highest accuracy with the least number of errors. Once such

models are developed and approved, they can be implemented into real-

world applications.

It is now time to learn how to build our very own neural networks for

deep learning. In the next few programs, we will go through various types

of image classifiers, and we will see how we can set them up in different

ways to classify several images.

�Program 2: Handwriting Recognition Using Keras
in TensorFlow (Single Layer, Multi-class)
Handwriting is unique to a particular individual. You might have observed

that some people have extremely neat and aesthetic handwriting, whereas

others have handwriting that is almost illegible. There is also a clear

distinction when writing different characters. For example, some might

just put a dot over their i’s, while others prefer to draw a small circle. We

then have differences in slant, size, thickness, and so on.

It is this uniqueness that makes handwriting recognition quite a

challenge, especially for artificially intelligent machines. However, it is not

impossible to train a model to figure out similarities, and thus differentiate

between characters.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

238

�The Working
Images are basically grids made up of numbers. These numbers tell us the

pixel value or intensity. Thus, these numbers can be manipulated to obtain

the characteristics of the image. This enables us to find similar features in

different images.

�The Structure
The architecture of this model is as follows:

	 1.	 It loads the given dataset of images.

	 2.	 It divides the data into the training set and the

test set.

	 3.	 It creates the neural network with as many layers

as we specify, along with the activation function

provided by us.

	 4.	 It begins training with the training data to recognize

the similarities and differences between each image

and segregate them accordingly.

	 5.	 It then tests its accuracy with the test data to see how

well it has learned the difference between each image.

	 6.	 It carries out inference to make sure that its

prediction is correct.

�The Dataset
The dataset that we will be using in this program is the MNIST dataset. The

full name of MNIST is Modified National Institute of Standard Technology.

It is a set of handwritten digits (from 0 to 9). It is used to train models for

handwriting recognition.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

239

It is, as can be understood by the name, a modified version of the previous

NIST datasets. The great part about it is that it is pre-divided into training data

and test data. The training dataset consists of 60,000 images, while the test

dataset consists of 10,000 images. They are all of size 28x28 pixels.

It has become a standard database that is used to practice image

classification. It is tightly integrated with Keras and TensorFlow, making

it readily available and easy to call into the model. It is great for teaching

machine learning to beginners as the data is already manipulated and

divided, making the rest of the program easy to do.

�The API
We will be using the Keras API within TensorFlow, as it makes our work

easier by providing us with the necessary utilities for creating our neural

network.

�The Activation Functions
We will be using the Softmax activation function only, since we have just a

single layer.

�The Optimizer
We will be using the Adam optimizer in this neural network.

�The Program
Step 1: Open a new Python 3 Jupyter notebook.

We will start by opening a brand new Python 3 Jupyter notebook.

We need to make sure that it is in the correct environment. We can also

give it a name if we want to. Something like “My First Neural Network” or

“Programming with TensorFlow 2.0” would suffice.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

240

Step 2: Import TensorFlow into your kernel.
In the first “Code” cell that appears, we type in the following:

import tensorflow as tf

This will call the TensorFlow library into our kernel, allowing us to

use it.

Step 3: Load the MNIST dataset.
We now need to call the dataset into our Jupyter notebook. We do this

by typing the following:

data = tf.keras.datasets.mnist

(ip_train, op_train), (ip_test, op_test) = data.load_data()

This tells the program to call the dataset from within the library, and

to load it into the kernel. As you can see, we have begun making use of the

Keras API as well. ip_train and ip_test are nothing but the training and

test data for the inputs. Similarly, op_train and op_test are the training

and test data for the outputs.

Step 4: Prepare the data.
Now, as mentioned earlier, we need not manipulate our data too

much, since that has already been done for us. However, we do need to

normalize our data. This makes sure that the pixel values of the images

range between 0 and 1. We do this by dividing each element of the dataset

by 255, as shown here:

ip_train, ip_test = ip_train / 255.0, ip_test / 255.0

Step 5: Build the neural network.
We will now begin creating the architecture of our neural network.

We start by flattening the input images (making them one-dimensional),

Chapter 11 Machine Learning Programming with Tensorflow 2.0

241

after which we add one dense layer. This layer uses the Softmax activation

function. See the following:

model = tf.keras.models.Sequential([

 tf.keras.layers.Flatten(input_shape = (28,28)),

 tf.keras.layers.Dense(10, activation = 'softmax')

])

The number of neurons in the last dense layer depends on the number

of outputs (labels) that we are expecting. In this case, we expect ten

outputs (the number of digits ranging from 0 to 9), and hence, the number

of neurons is ten.

Step 6: Compile the model.
We compile our model by selecting the loss function, optimizer, and

the metrics.

Loss function:
This measures the accuracy of the model during training. We need to

minimize this function to ensure that the model is on the right path.

There are three main loss functions that we will be using:

	 1.	 binary_crossentropy: This is the default loss

function that is used for binary classification.

	 2.	 categorical_crossentropy: This is the default loss

function that is used for multi-class classification.

	 3.	 sparse_categorical_crossentropy: This is used

for multi-class classification, without the need of

using one hot encoding.

Optimizer:
Depending on the data and the loss function, the model makes

changes to itself to produce the most optimal results. The optimizer is used

to alter the value of the weights in order to minimize the loss function.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

242

Metrics:
This keeps a check on the steps that the model takes doing training and

testing. The “accuracy” option considers the number of images that are

correctly recognized and classified.

To compile the model, we type in the code as follows:

model.compile(optimizer = 'adam',

 loss = 'sparse_categorical_crossentropy',

 metrics = ['accuracy'])

Here, we use the adam optimizer, the sparse_categorical_cross_

entropy loss function, and accuracy metrics.

Step 7: View the model.
This is more of an optional step. We can use it to view a summary of the

model’s structure.

model.summary()

We will get a mini report, like in Figure 11-6.

This report shows us the type of layers, the output and shape, and

the number of parameters in each layer. We also get a count of the total

parameters, along with the number of trainable and non-trainable

parameters.

Figure 11-6.  A summary of the model

Chapter 11 Machine Learning Programming with Tensorflow 2.0

243

Step 8: Train the model.
We can now “fit” our model with the help of this line of code:

model.fit(ip_train, op_train, epochs = 6)

Fitting the model is the process of helping the model understand the

relationship between its inputs, parameters, and predicted outputs so that

it can make better predictions in the future.

This step begins the training. The model takes the input data and fits it

through its neural network for a total of six epochs, as specified.

An epoch is one full cycle of passing the entire data through the model.

While training, the code displays the loss, as well as the accuracy

(out of 1.0), as shown in Figure 11-7.

Step 9: Test the model.
To evaluate how good our model is, we need to test it. We use the test

data this time and run it through the newly obtained parameters, using the

following code:

model.evaluate(ip_test, op_test)

This runs the data through a single epoch and gives an output

displaying the loss, as well as the accuracy, as shown in Figure 11-8.

Figure 11-7.  Training the model through six epochs

Chapter 11 Machine Learning Programming with Tensorflow 2.0

244

As we can see, the accuracy here is above 90 percent, which is quite

good for a single-layer model, even if it’s not 100 percent accurate.

Let’s carry out inference now to see how well our model can recognize

handwritten digits that are fed to it.

Step 10: Carry out inference.
To do this, we will be using two extra libraries: Matplotlib and Numpy.

We won’t be getting into the details of these libraries, but will just utilize a

few of their functions.

Start by importing the Matplotlib library into the Jupyter notebook, like

this:

import matplotlib.pyplot as plt

%matplotlib inline

Next, call the image to be tested from the MNIST dataset and save it

under a variable, like this:

test_image=ip_test[9999]

The number within the square brackets can be any value from 0 to

9,999 (The total number of test images is 10,000, remember?).

Now plot the image of the selected element by entering the code,

like this:

plt.imshow(test_image.reshape(28,28))

This will display the output shown in Figure 11-9.

Figure 11-8.  Testing the model

Chapter 11 Machine Learning Programming with Tensorflow 2.0

245

When we look at the image, we can recognize it as the number 6.

However, we need to check if the computer is able to do that as well.

Import the Numpy library, followed by the image function under Keras:

import numpy as np

from tensorflow.keras.preprocessing import image

Convert the image into a Numpy array, like this:

test_image = image.img_to_array(test_image)

Reshape the test image like this:

test_image = test_image.reshape(1,28,28)

Store the result of the model’s prediction under a variable, and then

call that variable to display the prediction, like this:

result = model.predict(test_image)

result

Figure 11-9.  Plotting the image

Chapter 11 Machine Learning Programming with Tensorflow 2.0

246

We will get an output like this:

array([[8.8958717e-07, 4.1242576e-14, 6.5094580e-05,

3.4720744e-09,

 �4.7850153e-07, 7.9171368e-06, 9.9992573e-01,

7.4808004e-13,

 3.1107348e-08, 2.5647387e-11]], dtype=float32)

Round off the array elements using the following Numpy function:

np.around(result)

We will get the rounded off values of the array, as shown here:

array([[0., 0., 0., 0., 0., 0., 1., 0., 0., 0.]],

dtype=float32)

Now, to find the element that gives the maximum value among all the

elements of the array, we use the following code:

(np.around(result)).argmax()

This gives the output like this:

6

As we can see, the highest value of 1 is located in the sixth position

(arrays start from 0, not 1). Thus, we can verify that the model has

predicted the answer correctly.

Note  Just remember that sometimes, when you execute the “Code”
cell containing your model, you may not get any error. However, when
you try to run the code to train the model, an error might come up,
which means you will need to go back and check your model and the
parameters before you can train it.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

247

And there we have it! We have just created our first neural network with

the help of TensorFlow 2.0.

It’s quite tempting to just stop here and feel thrilled that we are done.

But a single-layer neural network is only the first step in deep learning. In

practical applications, most neural networks require more than a single

layer to get a really great result. Let’s see how to build such a model in the

next program.

�Program 3: Clothing Classification Using Keras
in TensorFlow (Multi-layer, Multi-class)
In this modern generation, clothing has become one of the top priorities

for most people. When it comes to business, fashion is one very important

industry, considering how much individuals are willing to invest on the

kind of clothes they wear. Now just imagine what would happen if we

integrated artificial intelligence with this already booming industry—the

entire sector would be transformed.

It’s definitely an interesting area to get into, since it has so much scope

for new innovations. For now, we will get a little taste of it by building a

neural network to classify images of clothing.

In this program, we will be doing pretty much the same things we did

previously, but with a different dataset and a few extra layers. We will also

add a few more lines of code, just to explore some new functions under

TensorFlow. The general structure, API, and optimizer all remain the same

or at least are similar here, so we will skip that part and go ahead to the rest

of the program.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

248

�The Dataset
The dataset that we will be using for this program is the Fashion MNIST

dataset.

This dataset is a part of Zalando’s research images and can be used

instead of the original MNIST dataset to train an image classification model.

It is a set of 60,000 training images and 10,000 test images. Each is a

28x28 greyscale image of an item of clothing. Altogether, there are ten

classes in the dataset.

�The Activation Functions
In this program, we will use two activation functions:

	 1.	 ReLU

	 2.	 Softmax

�The Program
Step 1: In a new Jupyter notebook, import the TensorFlow library and
Keras utilities.

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

By adding this extra import step, we now no longer have to keep typing

“tf.keras” before calling each function. We can just call it directly, as you

will see in the next step.

Step 2: Load the Fashion MNIST dataset.
We can load the Fashion MNIST dataset into our Jupyter notebook like

this:

data = datasets.fashion_mnist

(ip_train, op_train), (ip_test, op_test) = data.load_data()

Chapter 11 Machine Learning Programming with Tensorflow 2.0

249

Step 3: Check the shape of the images.
This displays the shape of the training and test input data.

print(ip_train.shape, ip_test.shape)

As we can see, it has three dimensions here: the number of images in

the set, the width, and the height.

Step 4: Reshape the input values.
Usually, we have datasets with images that are colored. This means

that all three RGB (Red Green Blue) channels are available. Now in

TensorFlow, an image that is fully colored has a depth of 3. However, the

Fashion MNIST dataset consists of greyscale images, which means it is just

black and white. Thus, it has a depth of 1.

In this step, we reshape the images from having a dimension of (n,

width, height) to having a new dimension of (n, width, height, depth),

where n is the number of images in the set.

The code will look like this:

ip_train = ip_train.reshape((60000, 28, 28, 1))

ip_test = ip_test.reshape((10000, 28, 28, 1))

print(ip_train.shape, ip_train.shape)

Now when we display the reshaped data, it will show four dimensions.

Step 5: Prepare the data.
Once again, we need to normalize the data, as shown here:

ip_train, ip_test = ip_train / 255.0, ip_test / 255.0

Step 6: Build the neural network.
This time, we will add two extra dense layers to our neural network,

with 128 and 1,000 neurons in them respectively, and each having the

activation function ReLu. We will also add an extra “dropout layer” before

the final layer, which helps to prevent overfitting.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

250

model = models.Sequential([

 layers.Flatten(input_shape=(28, 28, 1)),

 layers.Dense(128, activation='relu'),

 layers.Dense(1000, activation='relu'),

 layers.Dropout(0.5),

 layers.Dense(10, activation='softmax')

])

Step 7: Compile the model.
Before fitting the model, we compile the model, like this:

model.compile(optimizer = 'adam',

 �loss = 'sparse_categorical_

crossentropy',

 metrics = ['accuracy'])

Step 8: View the model.

model.summary()

We will get the summary of the model, like in Figure 11-10.

Figure 11-10.  Summary of the model

Chapter 11 Machine Learning Programming with Tensorflow 2.0

251

Step 9: Train the model.

model.fit(ip_train, op_train, epochs = 5)

The model will begin training through five epochs, as shown in

Figure 11-11.

Step 10: Test the model.
In this step, we will use something called verbose.

The verbose command is used to provide information about a

particular task.

We can alter the amount of information that we get by setting verbose

at either 1 or 2.

At 0, we get nothing.

At 1, we get a progress bar and the number of epochs, along with the

loss and accuracy.

At 2, we get only the number of epochs along with the loss and

accuracy, without the progress bar.

model.evaluate(ip_test, op_test, verbose = 2)

We will obtain an output as shown in Figure 11-12.

Figure 11-11.  Training the model through five epochs

Chapter 11 Machine Learning Programming with Tensorflow 2.0

252

Step 11: Carry out inference.
First, we need to define a list in which we mention the class names,

since these are not given in the dataset. The list can be found on the

TensorFlow website.

We create the list like this:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress',

'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

Following the same code as before, we can check the accuracy of our

model

:import matplotlib.pyplot as plt

%matplotlib inline

test_image=ip_test[5000]

plt.imshow(test_image.reshape(28,28))

This will give us the test image shown in Figure 11-13.

Figure 11-12.  Evaluating the model

Chapter 11 Machine Learning Programming with Tensorflow 2.0

253

We can now proceed to convert the image into a NumPy array, reshape

it, pass it through our model, and obtain a prediction.

import numpy as np

from tensorflow.keras.preprocessing import image

test_image = image.img_to_array(test_image)

test_image = test_image.reshape(1, 28, 28, 1)

result = model.predict(test_image)

result

np.around(result)

n=(np.around(result)).argmax()

print(n)

This gives us the following output:

2

Figure 11-13.  The test image

Chapter 11 Machine Learning Programming with Tensorflow 2.0

254

This output is very vague. All it tells us is the position of the predicted

class, but not what the actual item of clothing is. Thus, we add an extra line

of code:

print(class_names[n])

This will give us the following output:

Pullover

In this way, we print the value at the nth position of the list, which in

this case is “Pullover.”

So, there we have it! We have built our very first multi-layer neural

network that can classify images with an accuracy of close to 90 percent.

Task Time  We have just completed building two neural networks
that can carry out multi-class image classification. One of them is
a single-layer neural network, while the other is multi-layered. Can
you try interchanging the datasets to see how the model’s accuracy
changes based on the number of layers? And, once you have done
that, try changing the number of layers, as well as the number of
epochs. What’s the highest accuracy you are able to achieve?

We will now move forward to a very interesting concept that we

learned about in the beginning of the book, which is convolutional neural

networks.

As you might remember, CNNs use convolution layers and pooling

layers to process the given data. The great thing about them is that they can

process 2D images and detect important features very easily. This is why

they are frequently used with image classification problems.

Let’s have a look at some convolutional neural networks to see how

well they work for image classification.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

255

�Program 4: Clothing Classification Using
Convolutional Neural Networks (Multi-layer,
Multi-class)
The structure for this model is similar to the previous ones. The only major

difference is that the neural network will now have convolution layers and

pooling layers.

�The Structure
Here is how the CNN model works for image classification:

	 1.	 It loads the given dataset of images.

	 2.	 It divides the data into the training set and the test set.

	 3.	 It creates the convolutional neural network with as

many layers as we specify, along with the activation

function provided by us.

	 4.	 It also creates the last dense layer and the output

layer with the parameters provided by us.

	 5.	 It then begins training with the training data to

recognize the similarities and differences between

each image and segregate them accordingly.

	 6.	 Finally, it tests its accuracy with the test data to see

how well it has learned the differences between

each image.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

256

�Dataset
The dataset that we will be using for this program is the Fashion MNIST

dataset.

�API
We will be using the Keras API within TensorFlow.

�The Activation Functions
We will be using two activation functions here:

	 1.	 ReLU

	 2.	 Softmax

�The Optimizer
We will be using the Adam optimizer in this neural network.

�The Program
Step 1: Import the TensorFlow library and Keras utilities.

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

Step 2: Load the Fashion MNIST dataset.

data = datasets.fashion_mnist

(ip_train, op_train), (ip_test, op_test) = data.load_data()

Chapter 11 Machine Learning Programming with Tensorflow 2.0

257

Step 3: Check the shape of the images.

print(ip_train.shape, ip_test.shape)

Step 4: Reshape the input values.

ip_train = ip_train.reshape((60000, 28, 28, 1))

ip_test = ip_test.reshape((10000, 28, 28, 1))

print(ip_train.shape, ip_test.shape)

Now when we display the reshaped data, it will show four dimensions.

Step 5: Prepare the data.
Once again, we must normalize the data by dividing it by 255.

ip_train, ip_test = ip_train / 255.0, ip_test / 255.0

Step 6: Build the convolutional neural network.
Here is where the main difference comes in. Since we are making

a CNN model, the neural network will require convolution layers and

pooling layers.

model=models.Sequential()

model.add(layers.Conv2D(32,(3,3), activation="relu", input_shape=(28,28,1)))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(64,(3,3), activation="relu"))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(64,(3,3), activation="relu"))

As you can see, we have three convolution layers and two max pooling

layers. We use the ReLU activation function for all the convolution layers.

There is also no need to flatten the images before feeding them to the

model, as CNNs can process two-dimensional data. This is why we use

Conv2D instead of Conv1D.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

258

The first convolution layer consists of 32 filters or kernels, each of size

3x3. The output from this layer gets passed on to the pooling layer with a

filter of size 2x2. Likewise, the output gets transferred to each successive

layer, until it reaches the last convolution layer.

Step 7: Add the final dense layer and output layer.
We must now add the last fully connected layer, followed by the output

layer. Here, we need to flatten the input first before feeding it to the dense

layer.

The dense layer will have the ReLU activation function and 64 neurons.

The last layer here is called the classification layer. It uses a Softmax

activation function and will have ten neurons, corresponding to the

number of outputs or classes that we will obtain.

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))

Step 8: Compile the model.

model.compile(optimizer = 'adam',

 �loss = 'sparse_categorical_

crossentropy',

 metrics = ['accuracy'])

Step 9: View the model.

model.summary()

We will get the summary of the CNN model, as shown in Figure 11-14.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

259

Step 10: Train the model.

model.fit(ip_train, op_train, epochs = 5)

This will begin training the model through five epochs, as shown in

Figure 11-15.

Figure 11-14.  Summary of the CNN model

Figure 11-15.  Training the model

Chapter 11 Machine Learning Programming with Tensorflow 2.0

260

Step 11: Test the model.

model.evaluate(ip_test, op_test, verbose = 1)

This will test the model to show its accuracy, as shown in Figure 11-16.

There you have it! The image classification model using a

convolutional neural network is now complete. You can play around with

it to add or remove layers, and to change the parameters as well.

Let’s take a look at another example of a CNN model.

�Program 5: Handwriting Recognition Using
Convolutional Neural Networks (Multi-layer,
Multi-class)
The structure, API, activation functions, and optimizer will remain the

same. However, we will try this program with another dataset. This time,

we will also add the code for inference.

�Dataset
The dataset that we will be using for this program is the regular MNIST

dataset.

Figure 11-16.  Testing the CNN model

Chapter 11 Machine Learning Programming with Tensorflow 2.0

261

�The Program
Step 1: Import the TensorFlow library and Keras utilities.

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

Step 2: Load the MNIST dataset.

data = datasets.mnist

(ip_train, op_train), (ip_test, op_test) = data.load_data()

Step 3: Reshape the input values.

ip_train = ip_train.reshape((60000, 28, 28, 1))

ip_test = ip_test.reshape((10000, 28, 28, 1))

print(ip_train.shape, ip_test.shape)

Step 4: Prepare the data.

ip_train, ip_test = ip_train / 255.0, ip_test / 255.0

Step 6: Build the convolutional neural network.
Once again, we must add the convolution and max pooling layers.

model=models.Sequential()

model.add(layers.Conv2D(30,(3,3), activation="relu", input_shape=(28,28,1)))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(60,(3,3), activation="relu"))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(90,(3,3), activation="relu"))

Chapter 11 Machine Learning Programming with Tensorflow 2.0

262

Step 7: Add the final dense layer, dropout layer, and output layer.

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(10, activation='softmax'))

Step 8: Compile the model.

model.compile(optimizer = 'adam',

 loss = 'sparse_categorical_crossentropy',

 metrics = ['accuracy'])

Step 9: View the model.

model.summary()

Step 10: Train the model.

model.fit(ip_train, op_train, epochs = 5)

Step 11: Test the model.

model.evaluate(ip_test, op_test, verbose = 1)

Step 12: Carry out inference.
Import the Matplotlib library into the Jupyter notebook like this:

import matplotlib.pyplot as plt

%matplotlib inline

Select the test image:

test_image=ip_test[180]

Plot the image:

plt.imshow(test_image.reshape(28,28))

We will get the image shown in Figure 11-17.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

263

Import the Numpy library and the image function under Keras:

import numpy as np

from tensorflow.keras.preprocessing import image

Convert the test image into an array and reshape it:

test_image = image.img_to_array(test_image)

test_image = test_image.reshape(1,28,28,1)

Allow the model to predict the class of the image:

result = model.predict(test_image)

result

Round off the results and find the maximum value among them:

np.around(result)

(np.around(result)).argmax()

We will get the output as 1. This shows that the model has correctly

predicted the class of the image.

Figure 11-17.  Plotting the image

Chapter 11 Machine Learning Programming with Tensorflow 2.0

264

There we have it! Our second CNN model is now complete. By

changing the parameters, we can play around with it to see how high the

accuracy can get.

Now, let’s try one last program just to challenge ourselves. This time,

we will use a brand new dataset; i.e., CIFAR-10.

�Program 6: Image Classification for CIFAR-10
Using Convolutional Neural Networks
(Multi-layer, Multi-class)
Before we begin this program, let’s have a look at the dataset that we will

be working with.

�The Dataset
The dataset that we will be using in this program is CIFAR-10, which stands

for Canadian Institute For Advanced Research. It is a collection of 60,000

color images, each of size 32x32. There are ten different classes, with 6,000

images within each class. There are 50,000 training images and 10,000 test

images.

The ten different classes are airplanes, cars, birds, cats, deer, dogs,

frogs, horses, ships, and trucks. Researchers can quickly train machine

learning and computer vision models with the help of this dataset.

Everything else is similar to the previous CNN programs, so let’s just

go ahead with the program. Since by now the different steps involved in

creating the model should be clear, we need not go through this program

step-by-step. We will directly type in each line of code.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

265

�The Program
Let’s start by writing the code to build, train, and test the model, as follows:

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

from tensorflow.keras.datasets import cifar10

(ip_train, op_train), (ip_test, op_test) = cifar10.load_data()

print(ip_train.shape, ip_test.shape)

ip_train = ip_train.reshape(ip_train.shape[0], 32, 32, 3)

ip_test = ip_test.reshape(ip_test.shape[0], 32, 32, 3)

ip_train, ip_test = ip_train / 255.0, ip_test / 255.0

model=models.Sequential()

model.add(layers.Conv2D(32,(3,3), activation="relu", input_shape=(32,32,3)))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(64,(3,3), activation="relu"))

model.add(layers.MaxPooling2D((2,2)))

model.add(layers.Conv2D(64,(3,3), activation="relu"))

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer = 'adam',

 loss = 'sparse_categorical_crossentropy',

 metrics = ['accuracy'])

model.summary()

model.fit(ip_train, op_train, epochs = 10)

model.evaluate(ip_test, op_test, verbose = 2)

Chapter 11 Machine Learning Programming with Tensorflow 2.0

266

Now let’s write the code for inference:

import matplotlib.pyplot as plt

%matplotlib inline

test_image=ip_test[20]

Remember, the number within the square brackets can be changed

accordingly, to select different test images.

plt.imshow(test_image.reshape(32,32,3))

import numpy as np

from tensorflow.keras.preprocessing import image

classes = ["airplane", "automobile", "bird", "cat", "deer",

"dog", "frog", "horse", "ship", "truck"]

test_image = image.img_to_array(test_image)

test_image = test_image.reshape(1,32,32,3)

result = model.predict(test_image)

result

np.around(result)

n=(np.around(result)).argmax()

print(classes[n])

When I ran the inference, I got two different outcomes:

•	 The first test image was that of a horse, and the model

was able to correctly identify the image.

•	 The second image was that of a bird, but the model

classified it as an airplane instead.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

267

Try changing the test image and then carry out inference. Are you able

to get an accurate prediction?

Task Time  You can find some great open source datasets online
that you can easily download and use for non-commercial purposes.
Try getting some new datasets and load them into your Jupyter
notebook. Then, create a deep learning CNN model to classify the
images. Keep playing around with the parameters, add or remove
layers, and see how accurate you can make it!

Most deep learning models are used for multi-class classification.

However, what if there were a need for binary classification, in which there

are only two classes? Usually, these kinds of models are used for problems

where the answer is either “yes” or “no.” For example:

•	 Is the motorist wearing a helmet?

•	 Is the light bulb on?

•	 Is the email spam?

That said, let’s go through a program in which we will carry out binary

classification using convolutional neural networks. The dataset that we will

be using is the “Dogs vs. Cats” dataset from Kaggle.

�Program 7: Dogs vs. Cats Classification Using
Convolutional Neural Networks (Multi-layer,
Binary)
In this program, we will train the model to differentiate between a dog

and a cat. This seems like a trivial task for the human brain, but for the

machine, it may not be so easy. Remember in Program 1, where we used

two pre-trained models and carried out inference on the image of a kitten?

Chapter 11 Machine Learning Programming with Tensorflow 2.0

268

For the first image, they identified it correctly as an Egyptian Cat. For

the second image, however, one predicted that the image was that of a

Chihuahua, while the other said that it was a Pembroke Welsh Corgi.

The reason for this is probably because all three breeds have pointed

ears and small features. Although this doesn’t make much of a difference

to us, it does make a huge impact on an artificially intelligent machine,

because every little feature is important for a deep learning model’s

learning process.

Let’s have a look at our dataset.

�The Dataset
The “Dogs vs. Cats” dataset can be found on the Kaggle website. It consists

of a total of 25,000 images of dogs and cats. Although we do not know

how the images are separated out initially, we will find this out during the

program.

�The Program
Step 1: Import all the required libraries and functions into Jupyter
Notebook.

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D

from tensorflow.keras.layers import MaxPooling2D

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Dense

import os

The os module allows users to interact with the operating system.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

269

This time, we will create our model first, after which we will download

the dataset.

Step 2: Develop the CNN model and compile it.
Here, we refer to our model as classifier. We can put any name we

want, provided it is easily understood by anyone who reads it.

classifier = Sequential()

classifier.add(Conv2D(64,(3,3),input_shape = (64,64,3),

activation = 'relu'))

classifier.add(MaxPooling2D(pool_size = (2,2)))

classifier.add(Conv2D(64,(3,3), activation = 'relu'))

classifier.add(MaxPooling2D(pool_size = (2,2)))

classifier.add(Conv2D(64,(3,3), activation = 'relu'))

classifier.add(MaxPooling2D(pool_size = (2,2)))

classifier.add(Flatten())

classifier.add(Dense(units = 128, activation = 'relu'))

classifier.add(Dense(units = 1, activation = 'sigmoid'))

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics =

['accuracy'])

Step 3: Transform the imported data.

from tensorflow.keras.preprocessing.image import

ImageDataGenerator

train_datagen = ImageDataGenerator(

 rescale=1./255,

 shear_range=0.2,

 zoom_range=0.2,

 horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255)

Chapter 11 Machine Learning Programming with Tensorflow 2.0

270

Step 4: Download the dataset.
The dataset needs to be downloaded from a specific link. In this

section of code, we tell our program to download the data from the given

url, and then we store it on our system.

_URL = 'https://storage.googleapis.com/mledu-datasets/cats_and_

dogs_filtered.zip'

path_to_zip = tf.keras.utils.get_file('cats_and_dogs.zip',

origin=_URL, extract=True)

PATH = os.path.join(os.path.dirname(path_to_zip), 'cats_and_dogs_filtered')

Step 5: Set up the directories.
We need to set up different directories for the training and testing data,

and then separate out the cat and dog images accordingly.

trainingdir = os.path.join(data_path, 'train')

testingdir = os.path.join(data_path, 'validation')

directory with the training cat pictures

cats_train = os.path.join(trainingdir, 'cats')

directory with the training dog pictures

dogs_train = os.path.join(trainingdir, 'dogs')

directory with the testing cat pictures

cats_test = os.path.join(testingdir, 'cats')

directory with the testing dog pictures

dogs_test = os.path.join(testingdir, 'dogs')

Step 6: Find the number of elements in each directory.
We first find the number of elements directories in each directory, and

then we display the values.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

271

cats_train_num = len(os.listdir(cats_train))

dogs_train_num = len(os.listdir(dogs_train))

cats_test_num = len(os.listdir(cats_test))

dogs_test_num = len(os.listdir(dogs_test))

train_tot = cats_train_num + dogs_train_num

test_tot = cats_test_num + dogs_test_num

print(cats_train_num)

print(dogs_train_num)

print(cats_test_num)

print(dogs_test_num)

print(train_tot)

print(test_tot)

We should get output like this:

1000

1000

500

500

2000

1000

Step 7: Load the training data and testing data, and display the label
map.

We load the training and testing images directories, and add the batch

size, target size, and class mode as needed. Here, we set the batch size to

be 128, and the target size to be 64x64.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

272

For the training data:

train_data = train_datagen.flow_from_directory(batch_size=128,

 directory=trainingdir,

 target_size=(64, 64),

 class_mode='binary')

This will give an output like this:

Found 2000 images belonging to 2 classes.

For the testing data:

test_data = test_datagen.flow_from_directory(batch_size=128,

 directory=testingdir,

 target_size=(64, 64),

 class_mode='binary')

This will give an output like this:

Found 1000 images belonging to 2 classes.

We then display the numerical identities of the two classes, as shown

here:

label_map = (train_data.class_indices)

print(label_map)

This gives us an output like this:

{'cats': 0, 'dogs': 1}

Thus, 0 refers to the cats class, while 1 refers to the dogs class.

Step 8: Train the model.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

273

We can now start training our model. We will run it through thirty

epochs this time:

classifier.fit(

 train_data,

 epochs=30,

 validation_data=test_data)

After thirty epochs, I got a validation accuracy of 77 percent. You can

try changing the number of epochs to see if that has any significant effect

on your model.

Once the model is done training, we can carry out inference and see

how well the model works.

Step 9: Carry out inference.
For this process, we will use two pictures of our own: one of a cat and

one of a dog.

We will begin by importing the necessary packages, as follows:

import numpy as np

from tensorflow.keras.preprocessing import image

Now, let us load our images into our program. The images have already

been saved in the same folder as the program, so there is no need to add

the entire file path. Just the file’s name shall suffice.

test_image_1= image.load_img('Dog.jpeg', target_size = (64,64))

test_image_2= image.load_img('Cat.jpeg', target_size = (64,64))

We can then display the test images separately, as shown in Figure 11-18

and Figure 11-19.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

274

test_image_1

test_image_2

We now type in the rest of the code, as follows:

test_image_1 = image.img_to_array(test_image_1)

test_image_2 = image.img_to_array(test_image_2)

test_image_1 = test_image_1.reshape(1,64,64,3)

test_image_2 = test_image_2.reshape(1,64,64,3)

result1 = model.predict(test_image_1)

result2 = model.predict(test_image_2)

print(result1, result2)

Figure 11-18.  A dog image

Figure 11-19.  A cat image

Chapter 11 Machine Learning Programming with Tensorflow 2.0

275

Now, to print the predictions we type in the following code for the first

image:

if result1 == 1:

 prediction1 = 'dog'

else:

 prediction1 = 'cat'

print(prediction1)

This gives the following output:

'dog'

Now when we run the following code:

if result2 == 1:

 prediction2 = 'dog'

else:

 n2 = 'cat'

print(prediction2)

We get the following output:

'cat'

And that’s it! The binary neural network is ready. We can keep altering

different parts of the code to increase the accuracy until we reach a result

that is satisfactory.

Chapter 11 Machine Learning Programming with Tensorflow 2.0

276

Note  In some cases, you may also need to install the “pillow”
library (Python Imaging Library, abbreviated as “PIL”), as this provides
support to work with images of various formats. It’s easy to install it
using pip: pip install pillow

The great thing about these machine learning models is that the

structure pretty much remains the same for all types of data. What we need

to know is how to prepare and manipulate the data before feeding it to the

model. As we try out these programs on our own, with different datasets

and modified input layers and values, the entire process will become much

easier to do. Just don’t forget to consistently practice, as this will help you

to improve your skills and become proficient in what you do.

�Summary
In this chapter, we learned all about how we can build, train, and validate

our deep learning models using TensorFlow and the Keras API, all with

the help of Jupyter Notebook. We understood the general structure of

a working machine learning model, and we also got better acquainted

with Keras. We then differentiated between the types of classification

problems—binary and multi-class—and had a quick introduction to image

classification. Finally, we wrote seven different programs to enhance

what we have learned so far, of which one program involved a pre-trained

model, one program included binary classification, one program was

single layered, and the rest of the programs carried out multi-layer multi-

class classification.

These programs are a great start for anyone who is new to the world

of TensorFlow 2.0. Don’t worry if you aren’t able to understand them

immediately. As you keep playing around with them on your own, they

will make much more sense to you. You can use these models as a starting

Chapter 11 Machine Learning Programming with Tensorflow 2.0

277

point to develop your own neural networks for different datasets. And,

once you get more and more comfortable with programming, you can

begin adding your own changes to them to create even more professional

models.

�Quick Links
The MNIST dataset: http://yann.lecun.com/exdb/

mnist/

The Fashion MNIST dataset: https://github.com/

zalandoresearch/fashion-mnist

The CIFAR-10 dataset: https://www.cs.toronto.

edu/~kriz/cifar.html

The Dogs vs. Cats dataset: https://www.kaggle.

com/c/dogs-vs-cats/data

About Keras: https://keras.io/

Keras optimizers: https://keras.io/optimizers/

Chapter 11 Machine Learning Programming with Tensorflow 2.0

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://keras.io/
https://keras.io/optimizers/

279© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2

�Conclusion

In this book, we started by learning what Artificial Intelligence, Machine

Learning, and Deep Learning are. We saw their applications and went

through their important concepts. We also compared Machine Learning

with Deep Learning to find out exactly how they differ even though the

latter is a subset of the former.

We then came to know about the different platforms that we can use to

program, and had a look at their varying features. This led us to the Jupyter

Notebook application. We learned what it is, why it is recommended to be

used instead of a text editor or a regular IDE, and what its advantages and

disadvantages are. We also explored its features and practiced using it for

some basic Python programming techniques.

After this, we were introduced to TensorFlow, which is a very

important Machine Learning library in Python. We saw how it has worked

so far, and studied its pros and cons. We even went through its features as

we had a look at some simple Python programming using TensorFlow 1.0.

Finally, we learned about TensorFlow 2.0. We studied its updates and

changes, how it varies from its parent version, and how our old TensorFlow

1.0 code can be converted into TensorFlow 2.0 code. We compared

features, as well as coding syntax. We even developed some Machine

Learning models with the help of TensorFlow, which included regular

Neural Networks and Convolutional Neural Networks. These models were

trained with some data, validated, and then used for inference.

The overall aim of this book is to help AI enthusiasts, especially

beginners, to learn how to code in Python, using TensorFlow 2.0, with

the help of the Jupyter Notebook. It’s a three in one package, as you gain

the knowledge of a popular programming language, a powerful Machine

https://doi.org/10.1007/978-1-4842-5967-2#DOI

280

Learning library within that language, and a convenient interface that

allows you to write working code on it. The programs in the last chapter

are also intended to boost your understanding to a greater extent. By the

time you complete this book, you should feel confident enough to pursue

higher levels within the field of Artificial Intelligence. You can even go

ahead and share the knowledge that you have gained with others!

Since its conception, Artificial Intelligence has always been an area

that is looked at with great optimism and enthusiasm. Despite the few

minor hitches here and there, it has proven its worth through its many

successful applications. AI enthusiasts continue to remain motivated,

especially in these modern times, where technology has vastly improved,

allowing AI to be used to a greater extent.

The importance of Artificial Intelligence is rapidly spreading out

and reaching more and more people, and many are expanding their

knowledge of this area in order to jump on the bandwagon. This can have

both positive and negative consequences - Positive, because there is more

workforce available in the area; Negative, because there might be too

much competition but less expertise. With the right skilled labour, better

AI can be developed, and many more implementations can be introduced.

Artificial Intelligence is a never-ending topic of interest. Once we take

a step into it, we cannot just take a step out and walk away. The whole

concept of creating machines that can think and respond like human

beings has and will continue to intrigue the human mind. There doesn’t

seem to be any chance of putting an end to its research and development

in the near or distant future, making it one of the most highly-demanded

fields, in terms of study as well as employment.

There are still many questions that are yet to be answered -

Will it lead to a state of utopia or dystopia?

Will it ever completely replace manual labour with machine-delivered

work?

Will there ever be robots that can perfectly think, act, behave, and

express like human beings?

CONCLUSION

281

Will there ever be a point at which AI just cannot be improved further?

Can AI become powerful enough to take over the world?

Apart from making interesting plots for science-fiction stories,

questions like these can also provide us with interesting insights that can

help us to improve the integration of AI in the future. Ultimately, even

if Artificial Intelligence becomes powerful enough to simulate living

beings, nothing can truly replace the natural intelligence that only human

beings are blessed with. It is up to us, how we build and develop our

machines. Thus, by ensuring the proper use of our resources, efforts, and

of course, our natural intelligence, as well as by keeping good intentions

and objectives in mind, we can successfully produce groundbreaking

artificially intelligent technology that can improve our standard of living

and radically transform our everyday life.

CONCLUSION

283© Nikita Silaparasetty 2020
N. Silaparasetty, Machine Learning Concepts with Python
and the Jupyter Notebook Environment, https://doi.org/10.1007/978-1-4842-5967-2

Index

A
Addons, 213
AI ethics

deepfakes, 14
making decisions, 15, 16

AI winter
computational

power, 6
computational time, 7
data/storage, 6
definition, 11
first (1974-1980), 12, 13
second (1987-1993), 13

Anaconda, 74
Application Program

Interface (APIs), 193
Artificial intelligence

advantages, 9
challenges, 11
Deep Blue, 8
definition, 4
disadvantages, 10
Enigma code, 5
Ferranti Mark, 8
HAL 9000, 8
Hopfield Net, 7
KBR, 7

Logic Theorist, 5
Principia Mathematica, 5
Stanford Robot, 8
Turing Test, 5
WABOT, 6

Artificial neuron (perceptron)
activation function

ReLU, 46
sigmoid, 47
softmax, 48

inputs, 45
net input function, 45
One Hot Encoding, 48
output, 49
weights/bias, 45

B
Back propagation, 52
Bioinformatics, 34

C
CIFAR-10, image classification

dataset, 264
non-commercial

purposes, 267
program, 265, 266

https://doi.org/10.1007/978-1-4842-5967-2#DOI

284

Clothing classification,
TensorFlow 2.0

activation functions, 248
artificial intelligence, 247
CNNs, 254
compiling model, 250
image, 253
input values, 249
Jupyter notebook, 248
MNIST dataset, 248
multi-layer neural network, 254
ReLu, 249
training model, 251
verbose, 251

Command-line interface (CLI), 81
Conditional statements

elseif statement, 131, 132
if-else statement, 131
if statement, 130

Convolutional neural
networks, 54

clothing classification
activation functions, 256
Adam optimizer, 256
dataset, 256
dense/output layers, 258
image, 255
input values, 257
Keras API, 256
pooling layers, 257
TensorFlow library, 256
testing model, 260
training model, 259
view model, 259

dogs vs. cats classification (see
Dogs vs. cats classification)

CPython, 79

D, E
Data loading/pre-processing

features, 220
labels, 220
optimal results, 219
Panda, 220
semi-supervised learning, 221
spreadsheets/visualization

software, 220
supervised learning, 221
testing, 221
training, 221
unsupervised learning, 221

Data science
big data, 24
branches, 23
data analytics, 25, 26
definition, 23

Data wrangling/data munging, 30
Deep learning, 42, 43
Defense Advanced Research

Projects Agency
(DARPA), 12

Descriptive analytics, 25
Diagnostic analytics, 25
Dogs vs. cats classification

binary neural networks, 275
classifier, 269
dataset, 268

INDEX

285

directories, 270
downloading dataset, 270
Jupyter notebook, 268
packages, 273, 274
predictions, 275
training/testing data, 271, 273

F
Forward propagation, 45, 52

G
Google Colaboratory, 116
Gradient descent, 51
Graphical user interface (GUI), 81

H
Handwriting recognition

Adam optimizer, 239
artificially intelligent

machines, 237
CNN model, 264
dataset, 238, 260
Keras API, 239
loss function, 241
Matplotlib library, 244, 262
metrics, 242
MNIST dataset, 240
neural network, 240, 247
Numpy library, 245
pixel value/intensity, 238
Python 3 Jupyter notebook, 239

Softmax activation function, 239
structure, 238
TensorFlow library, 261
testing model, 243
training model, 243
view model, 262

I
Image classification, 154

classes, 230
deep learning, 228
features, 230
Keras API, 232
natural intelligence, 230
pre-trained model, 231
structure, 232
working, 232

Image recognition, 154
Integrated development

environment (IDE)
benefits, 98
features, 97
IDLE, 98
Pycharm, 99
Spyder, 98
vs. text editors, 99

Intelligence, 3
Internet of Things (IoT), 9

AI, 18, 19
definition, 16
Smart greenhouse, 18
Smart homes, 17
Wearables, 17

INDEX

286

IPython Notebook, 94
IronPython, 80

J
JupyterHub, 114
Jupyter nbviewer, 115
Jupyter notebook

adding new cell, 134
adding notes, 132
arithmetic operations, 123, 124
code cell, 121, 122
conditional (see Conditional

statements)
copy cell, 134
current output, 139
deleting cell, 133
dictionaries creation, 126
function creation, 124, 125
heading cell, 121
help menu, 143, 144
interrupt the kernel, 142, 143
lists creation, 126
loop creation

for loop, 128
nested loops, 128, 129
while loop, 127

merging cell, 135–137
move cell, 135
naming, 120
opening, 120
output, 139, 140
restart a kernel, 140–142
running cell, 138

splitting cell, 137, 138
variable, 123

Jupyter Notebook, 91, 161, 173
advantages, 95
cell, 109, 110, 112, 113
creation, 109
dashboard, 103
definition, 93
environment, 102
features, 94, 103, 104
IDE (see Integrated development

environment (IDE))
installation, 101, 102
kernel, 111–114
keyboard shortcuts, 116, 117
other programming

applications, 100, 101
text editors, 96
URL, 103

Jupyter Notebook interface, 215
Jython, 79

K
Keras

binary classification, 226
features, 225, 226
individual library, 224
multinomial

classification, 227, 228
TensorFlow API, 224
tf.keras sub-module, 225

Kernel, 111–114
K-means clustering method, 35, 36

INDEX

287

K-Nearest neighbors algorithm, 34
Knowledge-based research (KBR), 7

L
Lazy vs. Eager Execution, 198, 200
Linear regression algorithm, 32, 33
Logistic regression algorithm, 33
Long short-term memory (LSTM)

networks, 55

M
Machine learning

applications, 38, 39
building model, 218, 222
data collection, 27

interviews, 27
observation, 27
polls, 27
pre-processing data (see

Pre-processing data)
surveys, 26
types, 30, 31

data loading/pre-processing
(see Data loading/
pre-processing)

definition, 21
flowchart, 218
image classification

problem, 216
neural networks, 215
processes/components, 216
programming, 217

structure, 217
TensorFlow library, 215
testing, 219, 223, 224
training, 218, 222, 223
workflow, 22, 23

Machine learning vs. deep learning
accuracy, 61
cognitive abilities, 62
computational power, 61
factors, 58, 59
hardware requirements, 63
quantity of data, 60
time taken, 63, 64

Max pooling, 54
MicroPython, 80
Modular neural networks, 55
Multi-layer neural networks, 53, 54

N
Neural networks

back propagation, 52
biological neuron vs. artificial

neuron, 44
definition, 43
forward propagation, 52
gradient descent, 51
layers, 49, 50
neuron, 43, 44
overfitting, 52, 53
steps, 50, 51

Notebook
features, 92, 93
Macintosh, 92

INDEX

288

open-source notebooks, 93
uses, 92

Numpy, 72

O
One Hot Encoding, 48
Open-ended Neuro-Electronic

Intelligent Robot Operating
System (ONEIROS), 224

Overfitting, 52, 53

P, Q
Pandas, 72
Perceptron learning rule, 46
Placeholder, 202, 203
Pre-processing data

cleaning, 28
definition, 28
missing values, 28, 29
outliers, 29, 30
transforming/reducing, 30

Prescriptive analytics, 25, 26
Principal component analysis, 36
Pycharm, 99
PyPy, 80, 87
Python

advantages, 71
applications, 73
competitors, 70
definitions, 68
features, 69

installation
Anaconda, 74, 75
environment, 76
installed packages, 77
libraries, 78
uninstalled packages, 77

interpreters, 78–80
machine learning libraries, 72, 73

Pythonistas, 70
Python programming

language, 215
Python shell

arithmetic operations, 83, 84
exit () command, 85, 86
Help window, 84, 85
Mac OS terminal, 81, 82
output, 82, 83

R
Ragged tensors, 212, 213
Read Eval Print Loop (REPL), 81
Rectified Linear Unit (ReLU), 46
Recurrent neural networks (RNNs),

54, 222
Reinforcement learning, 37

S
Scikit-Learn, 73
Scipy, 72
Semi-supervised learning, 37
Sentiment analysis, 155
Sequence-to-sequence model, 55

Notebook (cont.)

INDEX

289

Sigmoid, 47
Single-layer neural networks, 53
Softmax, 48
Spam detection, 34
Speech recognition, 155
Speech Understanding Research

(SUR), 12
Spyder, 98
Stackless Python, 80
Supervised learning algorithms

applications, 34
classification algorithms, 32
K-Nearest neighbors, 34
linear regression, 32, 33
logistic regression, 33
regression algorithms, 32
vs.unsupervised learning

algorithms, 31

T
TensorBoard

applications, 163
dashboards, 164–166
sample, 164
tabs, 164
TensorBoard.dev, 166, 167

TensorFlow, 73
advantages, 156, 157
applications, 154
closing session, 188
competitors, 155
components, 151
disadvantages, 157, 158

importance, 154
install, pip commands, 159,

160, 162
libraries, 155

TensorFlow 2.0
advantages/disadvantages, 196
API cleanup, 193
deployment capabilities, 194
eager execution, 192
experimentation tools, 194
features, 191
global variables, 193, 194
Keras API, 192, 193
machine learning library, 191
productivity, 195

TensorFlow library
computational graph, 184–186
constants, 177–180
Hello world program, 175, 176
importing, 174, 175
placeholders, 177, 181–183
programming

concepts, 173, 174
taking inputs,

placeholders, 187, 188
variables, 177–180

Tensors, 151–153
Text summarization, 155
@tf.function decorator, 203–205
tf.global_variables_initializer(),

200, 201
tf.print() function

TensorFlow 1.0, 197
TensorFlow 2.0, 198

INDEX

290

tf.Session() line, 209
tf_upgrade_v2 Upgrade Script, 206

U
Unsupervised learning algorithms

applications, 37
cluster analysis, 35
dimensionality reduction, 35

K-means clustering, 35, 36
principal component analysis, 36

Upgrade script, 207, 208, 210
User interface (UI), 107

V, W, X, Y, Z
verbose command, 251
Voila, 115

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Artificial Intelligence, Machine Learning, and Deep Learning
	Chapter 1: An Overview of Artificial Intelligence
	Artificial Intelligence Primer
	The Inception of Artificial Intelligence
	1930s–1940s: Over the Years
	1950s: Discoveries and Breakthroughs
	1960s–1970s: Advanced AI
	1970s–1980s: The First AI Winter
	1980s–early 1990s: The Revival and the Second AI Winter
	Late 1990s: AI Reborn

	Pros and Cons of Artificial Intelligence
	The Pros
	The Cons
	Challenges Faced by Artificial Intelligence

	The AI Winter
	The First AI Winter (1974–1980)
	The Second AI Winter (1987–1993)

	AI Ethics
	Scenario 1: Deepfakes
	Scenario 2: Making Decisions

	Artificial Intelligence and IoT
	Applications of IoT
	Smart Homes
	Wearables
	Smart Greenhouse

	How Does AI Relate to IoT?

	Summary

	Chapter 2: An Overview of Machine Learning
	What Is Machine Learning?
	The Machine Learning Workflow

	What Is Data Science?
	Branches of Data Science
	Big Data
	Data Analytics

	Collection of Data
	Pre-processing Data
	Data Cleaning
	Filling in Missing Values
	Removing Outliers
	Transforming and Reducing Data

	Types of Data

	Supervised Learning Algorithms
	Linear Regression
	Logistic Regression
	K-Nearest Neighbors
	Applications of Supervised Learning Algorithms

	Unsupervised Learning Algorithms
	K-Means Clustering
	Principal Component Analysis
	Applications of Unsupervised Machine Learning Algorithms

	Applications of Machine Learning
	Summary

	Chapter 3: Introduction to Deep Learning
	Origins of Deep Learning
	Neural Networks
	Working of an Artificial Neuron (Perceptron)
	Step 1: Accepting Inputs
	Step 2: Setting the Weights and Bias
	Step 3: Calculating the Net Input Function
	Step 4: Passing the Values Through the Activation Function
	ReLU
	Sigmoid
	Softmax
	One Hot Encoding

	Step 5: Producing the Output

	Digging Deeper into Neural Networks
	The Process
	Additional Concepts
	Gradient Descent
	Forward Propagation
	Back Propagation
	Overfitting

	Types of Neural Networks
	Single-Layer Neural Networks: A Perceptron
	Multi-Layer Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Sequence-to-Sequence Models
	Modular Neural Networks

	Summary

	Chapter 4: Machine Learning vs. Deep Learning
	Factors Used When Comparing Machine Learning and Deep Learning
	Differentiating Between Regular Machine Learning and Deep Learning
	Quantity of Data Required
	Accuracy
	Computational Power
	Cognitive Ability
	Hardware Requirements
	Time Taken

	Summary

	Chapter 5: Machine Learning With Python
	Introduction to Python
	Key Python Features
	Python’s Competitors
	Python as a Preferred Language for Machine Learning
	Python’s Machine Learning Libraries
	Other Applications of Python

	Installing Python
	Installing Python with Anaconda

	Python Interpreters
	The Python Shell
	Opening the Python Shell
	Exiting the Python Shell

	Summary
	Quick Links

	Part II: The Jupyter Notebook
	Chapter 6: Introduction to Jupyter Notebook
	Understanding the Notebook Interface
	A Brief History of the Notebook
	Features of a Notebook
	Commonly Used Notebooks

	An Overview of Jupyter Notebook
	Features of Jupyter Notebook
	Advantages of Jupyter Notebook

	Text Editors and IDEs
	Getting Acquainted with Text Editors
	Getting Acquainted with the IDE
	Features of an IDE
	Benefits of an IDE
	Some Popular IDEs
	IDE vs. Text Editor
	Jupyter Notebook vs. Other Programming Applications
	Installing Jupyter Notebook

	Launching Jupyter Notebook
	Inside a Jupyter Notebook
	Cell
	Kernel
	The Cell Drop-Down Menu
	The Kernel Drop-Down Menu

	Additional Information
	JupyterHub
	Jupyter nbviewer
	Voila
	Google Colaboratory
	Keyboard Shortcuts

	Summary
	Quick Links

	Chapter 7: Python Programming in Jupyter Notebook
	Opening a New Notebook
	Naming the Notebook
	Adding a Heading Cell
	Printing the Output of a Code Cell
	Taking an Input from a User in a “Code” Cell
	Calling a Variable
	Arithmetic Operations
	Creating a Function
	Creating Lists
	Creating Dictionaries
	Creating Loops
	While Loop
	For Loop
	Nested Loops

	Adding Conditional Statements
	If Statement
	If-Else Statement
	Elif Statement

	Adding Notes Within the Program
	Deleting a Cell
	Adding a New Cell
	Copying a Cell
	Moving a Cell
	Merging Cells
	Splitting a Cell
	Running All Cells
	Clearing the Current Output
	Clearing All Outputs
	Restarting the Kernel
	Restarting the Kernel and Clearing the Output
	Interrupting the Kernel
	The Help Menu
	Summary

	PART III: The TensorFlow Library
	Chapter 8: The Tensorflow Machine Learning Library
	TensorFlow at a Glance
	Tensors
	Flow

	Importance of TensorFlow
	Applications of TensorFlow
	TensorFlow’s Competitors
	Advantages and Disadvantages of TensorFlow
	Advantages
	Disadvantages

	Installing TensorFlow
	Getting to Know “pip”
	The “pip install” Method
	Other Useful pip Commands
	Using “pip install” to Install TensorFlow

	TensorBoard
	Exploring the TensorBoard Dashboards
	TensorBoard.dev

	Summary
	Additional Information
	TensorFlow Dev Summit
	TensorFlow Blogs
	The TensorFlow Developer Certificate
	Quick Links

	Chapter 9: Programming with Tensorflow
	Importing the TensorFlow Library
	Program 1: Hello World
	Program 2: Constants, Variables, and Placeholders
	Part A: Constants and Variables
	Part B: Placeholders

	Program 3: Operations in a Computational Graph
	Program 4: Taking Inputs from a User for a Placeholder
	Closing the Session
	Summary

	Chapter 10: Introducing Tensorflow 2.0
	Features of TensorFlow 2.0
	Eager Execution
	Introduction of Keras
	API Cleanup
	Removal of Global Variables
	Better Deployment Capabilities
	Powerful Experimentation Tools
	Increase in Productivity

	Code Comparison
	The tf.print() Function
	TensorFlow 1.0
	TensorFlow 2.0

	Lazy Execution vs. Eager Execution
	TensorFlow 1.0
	TensorFlow 2.0

	Removal of tf.global_variables_initializer()
	TensorFlow 1.0
	TensorFlow 2.0

	No Placeholders
	TensorFlow 1.0
	TensorFlow 2.0

	@tf.function Decorator
	TensorFlow 2.0

	Upgrading from TensorFlow 1.0 to 2.0
	The tf_upgrade_v2 Upgrade Script
	Using the Upgrade Script

	Summary
	Quick Links
	Additional Information
	Running TensorFlow 1.0 by Disabling TensorFlow 2.0
	Ragged Tensors
	TensorFlow Addons

	Chapter 11: Machine Learning Programming with Tensorflow 2.0
	Structure of a Machine Learning Model
	Data Loading and Pre-Processing
	Building the Model
	Training the Model
	Testing the Model

	Keras
	Features of Keras
	Binary Classification
	Multi-class Classification

	Programming with TensorFlow 2.0
	Image Classification: An Overview
	Program 1: Image Classification Using a Pre-Trained Model
	The Working
	The Structure
	The API
	The Program
	Program 2: Handwriting Recognition Using Keras in TensorFlow (Single Layer, Multi-class)
	The Working
	The Structure
	The Dataset
	The API
	The Activation Functions
	The Optimizer
	The Program
	Program 3: Clothing Classification Using Keras in TensorFlow (Multi-layer, Multi-class)
	The Dataset
	The Activation Functions
	The Program
	Program 4: Clothing Classification Using Convolutional Neural Networks (Multi-layer, Multi-class)
	The Structure
	Dataset
	API
	The Activation Functions
	The Optimizer
	The Program
	Program 5: Handwriting Recognition Using Convolutional Neural Networks (Multi-layer, Multi-class)
	Dataset
	The Program
	Program 6: Image Classification for CIFAR-10 Using Convolutional Neural Networks (Multi-layer, Multi-class)
	The Dataset
	The Program
	Program 7: Dogs vs. Cats Classification Using Convolutional Neural Networks (Multi-layer, Binary)
	The Dataset
	The Program

	Summary
	Quick Links

	Conclusion
	Index

