
305
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_7

CHAPTER 7

Monitoring and Tuning
Performance for Azure
SQL
You now have seen how to secure your Azure SQL deployment. Another aspect to

ensure you have the best possible database for your application is understanding how

to monitor and tune performance. If you know SQL Server, here is some good news. The

engine that powers Azure SQL is the same one for SQL Server! This means that just about

any performance capability you need exists for Azure SQL. It also means that many of

the same tasks and skills you use for SQL Server apply to Azure SQL. In this chapter,

we will explore all the capabilities and tasks you normally use to monitor and tune

performance for a SQL Server and compare it with Azure SQL.

This chapter will contain examples for you to try out and use as you read along. For

you to try out any of the techniques, commands, or examples I use in this chapter, you

will need

•	 An Azure subscription.

•	 A minimum of Contributor role access to the Azure subscription.

You can read more about Azure built-in roles at https://docs.

microsoft.com/en-us/azure/role-based-access-control/built-

in-roles.

•	 Access to the Azure Portal (web or Windows application).

•	 A deployment of an Azure SQL Managed Instance and/or an Azure

SQL Database as I did in Chapter 4. The Azure SQL Database I

deployed uses the AdventureWorks sample which will be required to

use some of the examples.

https://doi.org/10.1007/978-1-4842-5931-3_7#DOI
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://doi.org/10.1007/978-1-4842-5931-3_4

306

•	 To connect to Managed Instance, you will need a jumpbox or virtual

machine in Azure to connect. I showed you how to do this in Chapter 4

of the book. One simple way to do this is to create a new Azure Virtual

Machine and deploy it to the same virtual network as the Managed

Instance (you will use a different subnet than the Managed Instance).

•	 To connect to Azure SQL Database, I’m going to use the Azure VM I

deployed in Chapter 3, called bwsql2019, and configured for a private

endpoint in Chapter 6 (you could use another method as long as you

can connect to the Azure SQL Database).

•	 Installation of the az CLI (see https://docs.microsoft.com/en-us/

cli/azure/install-azure-cli?view=azure-cli-latest for more

details). You can also use the Azure Cloud Shell instead since az is

already installed. You can read more about the Azure Cloud Shell at

https://azure.microsoft.com/en-us/features/cloud-shell/.

•	 You will run some T-SQL in this chapter, so install a tool like SQL

Server Management Studio (SSMS) at https://docs.microsoft.

com/en-us/sql/ssms/download-sql-server-management-studio-

ssms?view=sql-server-ver15. You can also use Azure Data Studio

at https://docs.microsoft.com/en-us/sql/azure-data-studio/

download-azure-data-studio?view=sql-server-ver15. I installed

both SSMS and ADS in the bwsql2019 Azure Virtual Machine.

•	 For this chapter, I have script files you can use for several of the

examples. You can find these scripts in the ch7_performance folder

for the source files included for the book. I will also use the very

popular tool ostress.exe for exercises in this chapter which comes with

the RML Utilities. You can download RML from www.microsoft.com/

en-us/download/details.aspx?id=4511. Make sure to put the folder

where RML gets installed in your system path (which is by default C:\

Program Files\Microsoft Corporation\RMLUtils).

�Performance Capabilities
Since the engine that powers Azure SQL is the same as SQL Server, just about any

performance capability is available to you. Having said that, I feel it is important to

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_4
https://doi.org/10.1007/978-1-4842-5931-3_3
https://doi.org/10.1007/978-1-4842-5931-3_6
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com/en-us/features/cloud-shell/
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
http://www.microsoft.com/en-us/download/details.aspx?id=4511
http://www.microsoft.com/en-us/download/details.aspx?id=4511

307

cover a few important areas that are similar and different that can affect your ability to

ensure maximum performance for your Azure SQL deployment. This includes maximum

capacities, indexes, In-Memory OLTP, Partitions, SQL Server 2019 performance

enhancements, and new Azure SQL Intelligent performance capabilities.

�Max Capacities
When you choose a platform to install SQL Server, you typically size the resources you

need. In many cases, you plot out the maximum capacities you will need for resources

such as CPU, memory, and disk space. You may also ensure you have the correct

performance capabilities for I/O with regard to IOPS and latency.

In Chapters 4 and 5 of the book, I showed you all the options to choose, deploy, and

configure your Azure SQL Managed Instance and Azure SQL Database deployments. To

ensure you have the performance, you need keep these capacities in mind with Azure SQL:

•	 Azure SQL Managed Instance can support up to 80 vCores, ~400Gb of

memory, and a maximum storage of 8TB. The Business Critical tier is

limited to 4TB because that is the current maximum size we can store

on the local SSD drives of the nodes that host Managed Instance.

•	 Azure SQL Database can support up to 128 vCores, ~4TB Memory,

and a 4TB database using the M-Series.

•	 The Hyperscale deployment option for Azure SQL Database can

support up to 100TB database and unlimited transaction log space.

•	 Your decision on deployment options such as number of vCores

greatly affects other resource capacities whether it is a Managed

Instance or Database deployment. For example, the number of

vCores for a General Purpose Azure SQL Database affects the

maximum memory, maximum database size, maximum transaction

log size, and maximum log rate, among others.

Let’s stop here to help you get oriented. How can you see a chart or table to figure out

the limits for all these choices?

For a Managed Instance, go to this documentation page: https://docs.microsoft.

com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-

characteristics.

Figure 7-1 shows an example of the table that describes the resource limits (this may

be hard to read, but I wanted to squeeze as much as I could in a screenshot).

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_4
https://doi.org/10.1007/978-1-4842-5931-3_5
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-characteristics
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-characteristics
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-characteristics

308

Figure 7-1.  Resource capacities and limits for Azure SQL Managed Instance

Chapter 7 Monitoring and Tuning Performance for Azure SQL

309

What about Azure SQL Database? You can view a table for capacities and limits

based on vCores at https://docs.microsoft.com/en-us/azure/azure-sql/database/

resource-limits-vcore-single-databases like in Figure 7-2.

The default table is the first choice which is a Serverless compute tier. You can see

on the right-hand side of this figure you can choose different deployment options to see

what the capacity and limits for different options. Bookmark these documentation links.

I use them all the time. It is possible these limits will change over time as we evolve the

capabilities of Azure SQL services.

Keep in mind that some limits like memory are enforced by Windows Job Objects. I

mentioned this implementation in Chapter 4 of the book. Use the DMV sys.dm_os_job_
object to see the true limits for memory and other resources for your deployment.

Figure 7-2.  Resource capacities and limits for Azure SQL Database

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases
https://doi.org/10.1007/978-1-4842-5931-3_4

310

Tip I ’m a developer at heart, so I wanted a way to find out these capacities and
limits without looking at a table. The best method I could find is REST APIs. An
example is in our documentation at https://docs.microsoft.com/en-us/
rest/api/sql/capabilities/listbylocation. Once you deploy, you get to
see your resource limits with DMVs like sys.dm_user_db_resource_governance.

What if you make the wrong choice and need more capacity? The good news is that

you can make changes for Azure SQL Managed Instance and Database to get more (or

less) without any database migration required. You will see an example of this later in

this chapter. Just remember that a change for Managed Instance can take a significant

amount of time.

Note T here are two exceptions to this statement about migration. First, you
cannot switch between Azure SQL Database and Azure SQL Managed Instance.
Second, if you deploy or switch to the Hyperscale service tier, you cannot switch
back.

�Indexes
Anyone who works with SQL Server knows that without proper indexes, it is difficult to

obtain the query performance you need.

Every type of index option you can use in SQL Server is available to you with Azure

SQL, including clustered, non-clustered, online, and resumable indexes. You can read

an index primer at https://docs.microsoft.com/en-us/sql/relational-databases/

indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15

and details on online indexes at https://docs.microsoft.com/en-us/sql/relational-

databases/indexes/perform-index-operations-online. Resumable online indexes

are a recent capability. You can read more at https://azure.microsoft.com/en-us/

blog/modernize-index-maintenance-with-resumable-online-index-rebuild/.

Columnstore indexes are nothing short of amazing. I continue to see customers

who just don’t take advantage of this capability. Columnstore index can accelerate read

query performance by 100x for the right workload. Columnstore indexes are supported

in every deployment option you choose with Azure SQL. One myth about columnstore is

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/rest/api/sql/capabilities/listbylocation
https://docs.microsoft.com/en-us/rest/api/sql/capabilities/listbylocation
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/perform-index-operations-online
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/perform-index-operations-online
https://azure.microsoft.com/en-us/blog/modernize-index-maintenance-with-resumable-online-index-rebuild/
https://azure.microsoft.com/en-us/blog/modernize-index-maintenance-with-resumable-online-index-rebuild/

311

that it is only an in-memory technology. The truth is that columnstore indexes perform

best when they fit in memory and use compression so more will fit in your memory

limits. However, a columnstore index does not have to all fit in memory. To get a start on

columnstore indexes, see the documentation at https://docs.microsoft.com/en-us/

sql/relational-databases/indexes/columnstore-indexes-overview.

�In-Memory OLTP
In SQL Server 2014 (and greatly enhanced in SQL Server 2016), we introduced a

revolutionary capability for high-speed transactions called In-Memory OLTP (code

name Hekaton). In-Memory OLTP is available for Azure SQL Managed Instance and

Databases if you choose the Business Critical service tier.

Memory-optimized tables are the mechanism to use In-Memory OLTP. Memory-

optimized tables are truly in-memory as they must completely fit in memory. The

memory available for store memory-optimized tables is a subset of the memory limits

of your Business Critical service tier. The number of vCores for your deployment

determines what percentage of memory is available for memory-optimized tables.

Note  Memory-optimized tables require a memory-optimized filegroup. Azure
SQL creates this filegroup for any databases even if it is not a Business Critical
(BC) service tier. This way, if you move to BC, the filegroup is set up for memory-
optimized tables.

New to In-Memory OLTP? Start with our documentation at https://docs.

microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-

usage-scenarios.

�Partitions
Partitions are often used with SQL Server for tables with many rows to improve

performance by sub-dividing data by a column in the table. Consider these points for

partitions and Azure SQL:

•	 Partitions are supported for Azure SQL Database and Managed

Instance.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios

312

•	 You can only use filegroups with partitions with Azure SQL

Managed Instance (remember, Azure SQL Database only has a

primary partition, while Managed Instance supported user-defined

filegroups).

Need a primer for partitions? Start with this documentation page: https://docs.

microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-

and-indexes?view=sql-server-ver15.

Note T here are some interesting partitioning techniques with Azure SQL
Database not associated with SQL partitions you may want to look at as
a developer. Read more at https://docs.microsoft.com/en-us/
azure/architecture/best-practices/data-partitioning-
strategies#partitioning-azure-sql-database.

�SQL Server 2019 Enhancements
SQL Server 2019 was a monumental release including several new capabilities.

Performance was an area of major investment for SQL Server 2019. Because Azure SQL

is versionless, almost all the performance enhancements for SQL Server 2019 are part of

Azure SQL including built-in engine features like Intelligent Query Processing. The one

exception is Tempdb Metadata Optimization. We first built this feature in SQL Server

2019 and have yet to integrate this into Azure SQL. But rest assured, we are working on

either baking this into Azure SQL as a default or providing an option to enable it.

Note I t is important to know that some “hidden gem” capabilities like merry-go-
round scans and buffer pool ramp-up are all used behind the scenes for all editions
of Azure SQL.

�Intelligent Performance
Over the past few releases of SQL Server, we have been striving to provide built-in

capabilities to enhance performance without you making application changes. Our goal

is to use data and automation to make smart decision to make your queries run faster.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies#partitioning-azure-sql-database
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies#partitioning-azure-sql-database
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies#partitioning-azure-sql-database

313

We call this Intelligent Performance. These capabilities exist in Azure SQL, but we go

further in the cloud. We use the power of the cloud to offer even more. You learn more

details about Intelligent Performance for Azure SQL in the final section of this chapter.

�Configuring and Maintaining for Performance
In Chapter 5 of this book, I described many of the options to configure an Azure SQL

Managed Instance and Database. There are some configuration options that can affect

performance worth diving deeper into. This includes the Tempdb database, configuring

database options, files and filegroups, max degree of parallelism, and Resource

Governor. In addition, it is worth reviewing the various tasks you would go through to

maintain indexes and statistics for database for Azure SQL as compared to SQL Server.

�Tempdb
The Tempdb database is an important shared resource used by applications.

Ensuring the right configuration of tempdb can affect your ability to deliver consistent

performance. Tempdb is used the same with Azure SQL like SQL Server, but your ability

to configure tempdb is different, including placement of files, the number and size of

files, tempdb size, and tempdb configuration options.

In Azure SQL, Tempdb files are always automatically stored on local SSD drives, so

I/O performance shouldn’t be an issue.

SQL Server professionals often use more than one database file to partition

allocations for tempdb tables. For Azure SQL Database, the number of files is scaled with

the number of vCores (e.g., 2 vCores = 4 files, etc.) with a max of 16. The number of files is

not configurable through T-SQL against tempdb but by changing the deployment option.

The maximum size of the tempdb database is scaled per number of vCores.

You get 12 files with Azure SQL Managed Instance independent of vCores, and you

cannot change this number. We are looking in the future to allow configuration of the

number of files for Azure SQL Managed Instance.

Tempdb database option MIXED_PAGE_ALLOCATION is set to OFF and

AUTOGROW_ALL_FILES is set to ON. This cannot be configured, but they are the

recommended defaults as with SQL Server.

Currently, the Tempdb Metadata Optimization feature in SQL Server 2019, which can

alleviate heavy latch contention, is not available in Azure SQL but is planned for the future.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_5

314

�Database Configuration
As I described in Chapter 5, just about every database configuration option is available

to you with Azure SQL as it is with SQL Server through ALTER DATABASE and ALTER

DATABASE SCOPED configuration. Consult the documentation at https://docs.

microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql and

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-

scoped-configuration-transact-sql. You will see later in this chapter there are new

options specific to Azure SQL from ALTER DATABASE.

For performance, one database option that is not available to change is the recovery

model of the database. The default is full recovery and cannot be modified. This ensures

your database can meet Azure service-level agreements (SLAs). Therefore, minimal

logging for bulk operations is not supported. Minimal logging for bulk operations is

supported for tempdb.

�Files and Filegroups
SQL Server professionals often use files and filegroups to improve I/O performance

through physical file placement. Azure SQL does not allow users to place files on specific

disk systems. However, Azure SQL has resource commitments for I/O performance with

regard to rates, IOPS, and latencies, so abstracting the user from physical file placement

can be a benefit.

Azure SQL Database only has one database file (Hyperscale may have several),

and the size is configured through Azure interfaces. There is no functionality to create

additional files, but again you don’t need to worry about this given IOPS and I/O latency

commitments.

Note H yperscale has a unique architecture and may create one or more files
upon initial deployment depending on your vCore choice. For example, for an 8
vCore deployment, I’ve seen Hyperscale create multiple files totaling 40Gb. This
implementation may change, and you shouldn’t rely on it. Hyperscale simply
creates the files and size it needs to meet your requirements.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_5
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql

315

Azure SQL Managed Instance supports adding database files and configuring sizes

but not physical placement of files. The number of files and file sizes for Azure SQL

Managed Instance can be used to improve I/O performance. I will discuss more of the

details on how this works later in this chapter. In addition, user-defined filegroups are

supported for Azure SQL Managed Instance for manageability purposes such as use with

partitions and using commands like DBCC CHECKFILEGROUP.

�Max Degree of Parallelism
Max degree of parallelism (MAXDOP), which can affect the performance of individual

queries, works the same in the engine for Azure SQL as SQL Server. The ability to

configure MAXDOP may be important to delivering consistent performance in Azure

SQL. You can configure MAXDOP in Azure SQL like SQL Server using the following

techniques:

•	 ALTER DATABASE SCOPED CONFIGURATION to configure

MAXDOP is supported for Azure SQL.

•	 sp_configure for “max degree of parallelism” is supported for

Managed Instance.

•	 MAXDOP query hints are fully supported.

•	 Configuring MAXDOP with Resource Governor is supported for

Managed Instance.

Read more about MAXDOP at https://docs.microsoft.com/en-us/sql/database-

engine/configure-windows/configure-the-max-degree-of-parallelism-server-

configuration-option?view=sql-server-ver15.

�Resource Governor
Resource Governor is a feature in SQL Server that can be used to control resource usage

for workloads through I/O, CPU, and memory. While Resource Governor is used behind

the scenes for Azure SQL Database, it is only supported for Azure SQL Managed Instance

for user-defined workload groups and pools. If you would like to use Resource Governor

in Azure SQL Managed Instance, consult our documentation at https://docs.

microsoft.com/en-us/sql/relational-databases/resource-governor/resource-

governor.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor

316

�Maintaining Indexes
Unfortunately, indexes for SQL don’t just maintain themselves, and they do

occasionally need maintenance. In fairness, index maintenance (specifically rebuild or

reorganization) does not have a single answer. I’ve seen many customers perform too

often a rebuild or reorganization when it is not necessary. Likewise, there can be many

times where these operations can help performance. You might consider looking at our

documentation on index fragmentation as one reason why index maintenance can make

sense: https://docs.microsoft.com/en-us/sql/relational-databases/indexes/

reorganize-and-rebuild-indexes.

Note I ’m not telling the complete truth. For Azure SQL, there is a solution here
that can help with decisions on building or dropping indexes. But I won’t get too far
ahead. The tale of that story is at the end of the chapter.

Indexes for SQL Server occasionally need to be reorganized and sometimes rebuilt.

Azure SQL supports all the options you have for SQL Server to reorganize and rebuild

indexes including online and resumable indexes.

Online and resumable index operations can be extremely important to maintain

maximum application availability. Read all about these capabilities at https://docs.

microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-

index-operations.

�Maintaining Statistics
Correct statistics can be the lifeblood for query performance. SQL Server offers options

to automatically keep statistics up to date based on database modification, and Azure

SQL supports all those options. Our documentation has a very detailed explanation on

how statistics are used for query performance at https://docs.microsoft.com/en-us/

sql/relational-databases/statistics/statistics.

One interesting aspect to automatic statistics updates is a database scoped

configuration we specifically introduced for Azure SQL to help improve application

availability. You can read about this in great detail from a blog post by my colleague

Dimitri Furman at https://techcommunity.microsoft.com/t5/azure-sql-database/

improving-concurrency-of-asynchronous-statistics-update/ba-p/1441687.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics
https://techcommunity.microsoft.com/t5/azure-sql-database/improving-concurrency-of-asynchronous-statistics-update/ba-p/1441687
https://techcommunity.microsoft.com/t5/azure-sql-database/improving-concurrency-of-asynchronous-statistics-update/ba-p/1441687

317

�Monitoring and Troubleshooting Performance
If you want to ensure you have the best performance for a SQL application, you need to

learn how to monitor and troubleshoot performance scenarios. Azure SQL comes with

the performance tools and capabilities of SQL Server to help you with this task. This

includes tools from the Azure ecosystem as well as capabilities built into the SQL Server

engine that powers Azure SQL.

In this part of the chapter of the book, you will learn not just monitoring capabilities

but how to apply them to performance scenarios for Azure SQL including examples.

�Monitoring Tools and Capabilities
Are you used to using Dynamic Management Views (DMV) and Extended Events? Azure

SQL has what you need. Do you need to debug query plans? Azure SQL has all the

capabilities of SQL Server including Lightweight Query Profiling and showplan details.

Query Store has become the bedrock for performance tuning, and it is on by default

in Azure SQL. The Azure portal includes visualizations, such as Query Performance

Insight, to view Query Store data without needing tools like SSMS.

All this lines up to be a formidable set of tools and capabilities to help you monitor

and troubleshoot performance for Azure SQL.

We want to invest more to make Azure SQL monitoring the best experience as

possible. According to Alain Dormehl, Senior Program Manager for Azure SQL, “Our

continued investment into infrastructure and new features on the platform will continue

to drive the expectations from our customers for deep insights. On a daily basis we

gather a huge amount of telemetry data and our teams will continue to innovate in how

we present this data to customers, so that it adds value, but also to build smarter, more

innovative features for monitoring, alerting, and automating.”

�Azure Monitor

Azure Monitor is part of the Azure ecosystem, and Azure SQL is integrated to support

Azure Metrics, Alerts, and Logs. Azure Monitor data can be visualized in the Azure Portal

or accessed by applications through Azure Event Hub or APIs. An example of why Azure

Monitor is important is accessing resource usage metrics for Azure SQL outside of SQL

Server tools much like Windows Performance Monitor. Read more about how to use

Chapter 7 Monitoring and Tuning Performance for Azure SQL

318

Azure Monitor with Azure SQL in the Azure portal at https://docs.microsoft.com/

en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-

capabilities-in-the-azure-portal.

�Dynamic Management Views (DMV)

Azure SQL provides the same DMV infrastructure as with SQL Server with a few

differences. DMVs are a crucial aspect to performance monitoring since you can view

key SQL Server performance data using standard T-SQL queries. Information such as

active queries, resource usage, query plans, and resource wait types are available with

DMVs. Learn more details about DMVs with Azure SQL later in this chapter.

�Extended Events (XEvent)

Azure SQL provides the same Extended Events infrastructure as with SQL Server.

Extended Events is a method to trace key events of execution within SQL Server that

powers Azure SQL. For performance, extended events allow you to trace the execution

of individual queries. Learn more details about Extended Events with Azure SQL later in

this chapter.

�Lightweight Query Profiling

Lightweight Query Profiling is a capability to examine the query plan and running state

of an active query. This is a key feature to debug query performance for long-running

statements as they are running. This capability cuts down the time for you to solve

performance problems vs. using tools like Extended Events to trace query performance.

Lightweight Query Profiling is accessed through DMVs and is on by default for Azure

SQL just like SQL Server 2019. Read more about Lightweight Query Profiling at https://

docs.microsoft.com/en-us/sql/relational-databases/performance/query-

profiling-infrastructure?view=sql-server-ver15#lwp.

�Query Plan Debugging

In some situations, you may need additional details about query performance for

an individual T-SQL statement. T-SQL SET statements such as SHOWPLAN and

STATISTICS can provide these details and are fully supported for Azure SQL as they

are for SQL Server. A good example of using SET statements for query plan debugging

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-capabilities-in-the-azure-portal
https://docs.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-capabilities-in-the-azure-portal
https://docs.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-capabilities-in-the-azure-portal
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15#lwp
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15#lwp
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15#lwp

319

can be found at https://docs.microsoft.com/en-us/sql/t-sql/statements/set-

statistics-profile-transact-sql. In addition, looking at plans in a graphical or XML

format is always helpful and completely works for Azure SQL. Learn more at https://

docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-

estimated-execution-plan?view=sql-server-ver15.

�Query Store

Query Store is a historical record of performance execution for queries stored in the user

database. Query Store is on by default for Azure SQL and is used to provide capabilities

such as Automatic Plan Correction and Automatic Tuning. SQL Server Management

Studio (SSMS) reports for Query Store are available for Azure SQL. These reports can be

used to find top resource consuming queries including query plan differences and top

wait types to look at resource wait scenarios. I will show you an example of using the

Query Store in this chapter with Azure SQL. If you have never seen or used Query Store,

start reading at https://docs.microsoft.com/en-us/sql/relational-databases/

performance/monitoring-performance-by-using-the-query-store.

�Performance Visualization in Azure Portal

For Azure SQL Database, we have integrated Query Store performance information

into the Azure Portal through visualizations. This way, you can see some of the same

information for Query Store as you would with a client tool like SSMS by using the Azure

Portal with an option called Query Performance Insight. I’ll show you an example of

using these visuals in the portal later in the chapter. For now to get started using it, check

out our documentation at https://docs.microsoft.com/en-us/azure/azure-sql/

database/query-performance-insight-use.

�Dive into DMVs and Extended Events
Dynamic Management Views (DMV) and Extended Events (XEvent) have been the

bedrock of diagnostics including performance monitoring and troubleshooting for SQL

Server for many years. I can truthfully tell you that DMV and XEvent technology all

started with the brains of folks like Slava Oks and Conor Cunningham so many years ago.

Many on the engineering team have worked, molded, and shaped these technologies,

but I remember being there from the beginning with Slava and my colleague for many

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statistics-profile-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statistics-profile-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-estimated-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-estimated-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-estimated-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use
https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use

320

years Robert Dorr working on these technologies when we were in Microsoft support

together. DMVs and XEvent are very important technologies to support performance

monitoring and troubleshooting for Azure SQL because Azure SQL is powered by the

SQL Server engine and the SQL Server engine powers Azure SQL Managed Instance and

Database.

Let’s dive a bit deeper into what DMV and XEvent capabilities are the same and new

for Azure SQL vs. SQL Server.

�DMVs Deep Dive

Let’s dive deeper into DMV for Azure SQL vs. SQL Server across Azure SQL Managed

Instance and Database.

Azure SQL Managed Instance
All DMVs for SQL Server are available for Managed Instance. Key DMVs like sys.

dm_exec_requests and sys.dm_os_wait_stats are commonly used to examine query

performance.

One DMV is specific to Azure called sys.server_resource_stats and shows historical

resource usage for the Managed Instance. This is an important DMV to see resource

usage since you do not have direct access to OS tools like Performance Monitor. You can

learn more about sys.server_resource_stats at https://docs.microsoft.com/en-us/

sql/relational-databases/system-catalog-views/sys-server-resource-stats-

azure-sql-database?view=azuresqldb-current.

Azure SQL Database
Most of the common DMVs you need for performance including sys.dm_exec_

requests and sys.dm_os_wait_stats are available. It is important to know that these

DMVs only provide information specific to the database and not across all databases for

a logical server.

sys.dm_db_resource_stats is a DMV specific to Azure SQL Database and can

be used to view a history of resource usage for the database. Use this DMV similar

to how you would use sys.server_resource_stats for a Managed Instance. I will show

you how to use this DMV in an example later in this chapter. For now, you can

read more at https://docs.microsoft.com/en-us/sql/relational-databases/

system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-

database?view=azuresqldb-current.

sys.elastic_pool_resource_stats is similar to sys.dm_db_resource_stats but can be

used to view resource usage for elastic pool databases.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current

321

DMVs You Will Need
There are a few DMVs worth calling out you will need to solve certain performance

scenarios for Azure SQL:

sys.dm_io_virtual_file_stats is important for Azure SQL since you don’t have direct

access to operating system metrics for I/O performance per file.

sys.dm_os_performance_counters is available for both Azure SQL Database and

Managed Instance to see SQL Server common performance metrics. This can be used to

view SQL Server Performance Counter information that is typically available in Windows

Performance Monitor.

sys.dm_instance_resource_governance can be used to view resource limits for a

Managed Instance. You can view this information to see what your expected resource

limits should be without using the Azure portal.

sys.dm_user_db_resource_governance can be used to see common resource

limits per the deployment option, service tier, and size for your Azure SQL Database

deployment. You can view this information to see what your expected resource limits

should be without using the Azure portal. I’ll show you an example of looking at this

DMV in an example. For now, you can read more at https://docs.microsoft.com/en-

us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-

resource-governor-azure-sql-database?view=azuresqldb-current.

DMVs for Deep Troubleshooting
These DMVs provide deeper insight into resource limits and resource governance for

Azure SQL. They are not meant to be used for common scenarios but might be helpful

when looking deep into complex performance problems:

•	 sys.dm_user_db_resource_governance_internal (Managed
Instance only)

•	 sys.dm_resource_governor_resource_pools_history_ex

•	 sys.dm_resource_governor_workload_groups_history_ex

Geek out with these DMVs. The last two DMVs provide historical information across

time (right now about 30 minutes). Be warned when using these DMVs. We kind of

built these for our internal purposes to debug issues with Azure to look at problems like

background activity vs. user load. So don’t be surprised if we change these to suit our

needs to ensure we provide a great database service.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current

322

�XEvent at Your Service

Extended Events (XEvent) was introduced as the new tracing mechanism for SQL Server

in SQL Server 2005 to replace SQL Trace. XEvent today supports some 1800+ trace points

in the SQL Server engine. XEvent powers other capabilities including SQL Audit and

Advanced Threat Protection (ATP).

Extended Events for Azure SQL Managed Instance
Extended Events can be used for Azure SQL Managed Instance just like SQL Server

by creating sessions and using events, actions, and targets. Keep these important points

in mind when creating extended event sessions:

•	 All events, targets, and actions are supported.

•	 File targets are supported with Azure Blob Storage since you don’t

have access to the underlying operating system disks.

•	 Some specific events are added for Managed Instance to trace events

specific to the management and execution of the instance.

You can use SSMS or T-SQL to create and start sessions. You can use SSMS to

view extended event session target data or the system function sys.fn_xe_file_target_
read_file.

Let’s peek at how XEvent is used behind the scenes in Managed Instance to power

Advanced Threat Protection (ATP). I had disabled Advanced Data Security from my

Managed Instance and then enabled it again using the portal and techniques I described

in Chapter 6 of the book. I then used my jumpbox (my Azure VM I showed you how to

deploy in Chapter 4 of the book) to bring up SSMS and look at XEvent sessions in Object

Explorer. Figure 7-3 shows the definition of a new session that shows up when you

enable Advanced Data Security.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_6
https://doi.org/10.1007/978-1-4842-5931-3_4

323

Warning  You are the administrator of this SQL Server and have permissions to
delete that XEvent session. If you do this, you will effectively disable us from serving
you ATP needs. To get the XEvent session back, disable and enable Advanced Data
Security from the portal. This session for ATP is part of the solution we use internally.
Don’t rely on its definition or output as we may change this in the future.

There is another XEvent session defined which is used for availability purposes

called TPS_TdService_session_control. You can look at the event definition but don’t rely

on this. We use this internally and may change it in the future. You will also notice the

system_health session and AlwaysOn_health session which are normally with any SQL

Server. I’ll take more about system_health in Chapter 8 of the book. AlwaysOn_health is

not started and not used for a Managed Instance.

Extended Events for Azure SQL Database
Extended Events can be used for Azure SQL Database just like SQL Server by creating

sessions and using events, actions, and targets. Keep these important points in mind

when creating extended event sessions:

•	 Most commonly used Events and Actions are supported. For

example, the fundamental event sql_batch_completed is available

to you. Azure SQL Database offers ~400 events vs. SQL Server (and

Managed Instance) which has around 1800. Use the DMV sys.dm_
xe_objects to find out all objects available to you.

•	 File, ring_buffer, and counter targets are supported.

Figure 7-3.  XEvent session to help track queries for Advanced Threat Protection
(ATP)

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_8

324

•	 File targets are supported with Azure Blob Storage since you don’t

have access to the underlying operating system disks. Here is a

blog from the Azure Support team for a step-by-step process to set

up Azure Blob Storage as a file target: https://techcommunity.

microsoft.com/t5/azure-database-support-blog/extended-

events-capture-step-by-step-walkthrough/ba-p/369013.

You can use SSMS or T-SQL to create and start sessions. You can use SSMS to view

extended event session target data or the system function sys.fn_xe_file_target_read_file.

Note T he ability with SSMS to View Live Data is not available for Azure SQL
Database.

It is important to know that any extended events fired for your sessions are specific to

your database and not across the logical server. Therefore, we have a new set of catalog

views such as sys.database_event_sessions (definitions) and DMVs such as sys.dm_xe_
database_sessions (active sessions).

Take a look through our documentation for a complete list of differences for XEvent

between Azure SQL Database and SQL Server: https://docs.microsoft.com/en-us/

azure/azure-sql/database/xevent-db-diff-from-svr.

�Performance Scenarios
In a galaxy, far, far away when I was in Microsoft Support, my longtime friend Keith

Elmore was considered our expert on performance troubleshooting. As we trained other

support engineers, Keith came up with an idea that most SQL performance problems

could be categorized as either Running or Waiting.

Note  Keith’s work led to a report called the Performance Dashboard reports. That
report is now part of the Standard Reports for SQL Server Management Studio.
Unfortunately, the report relies on some DMVs which are not exposed for Azure
SQL Database. However, the reports will work for Managed Instance.

One way to look at this concept is with Figure 7-4.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://techcommunity.microsoft.com/t5/azure-database-support-blog/extended-events-capture-step-by-step-walkthrough/ba-p/369013
https://techcommunity.microsoft.com/t5/azure-database-support-blog/extended-events-capture-step-by-step-walkthrough/ba-p/369013
https://techcommunity.microsoft.com/t5/azure-database-support-blog/extended-events-capture-step-by-step-walkthrough/ba-p/369013
https://docs.microsoft.com/en-us/azure/azure-sql/database/xevent-db-diff-from-svr
https://docs.microsoft.com/en-us/azure/azure-sql/database/xevent-db-diff-from-svr

325

Let’s take a look at more of the details of this figure from the perspective of

performance scenarios.

Note A s you look at DMVs in this section, remember that for Azure SQL Database
you are only looking at results for a specific database not across all databases for
the logical server.

�Running vs. Waiting

Running or waiting scenarios can often be determined by looking at overall resource

usage. For a standard SQL Server deployment, you might use tools such as Performance

Monitor in Windows or top in Linux. For Azure SQL, you can use the following methods:

Azure Portal/PowerShell/Alerts
Azure Monitor has integrated metrics to view resource usage for Azure SQL. You

can also set up alerts to look for resource usage conditions such as high CPU percent.

Since we have integrated some Azure SQL performance data with Azure Monitor, having

alerts is a huge advantage to snapping into the ecosystem. Read more about how to set

up alerts with Azure Metrics at https://docs.microsoft.com/en-us/azure/azure-

monitor/platform/alerts-metric.

Figure 7-5 shows an example of an alert on high CPU for my database sent to my

phone from Azure Metrics.

Figure 7-4.  The Running vs. Waiting for SQL performance

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-metric
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-metric

326

sys.dm_db_resource_stats
For Azure SQL Database, you can look at this DMV to see CPU, memory, and I/O

resource usage for the database deployment. This DMV takes a snapshot of this data

every 15 seconds. The reference for all columns in this DMV can be found at https://

docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-

views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current.

I’ll use this DMV in an example later in this section.

Figure 7-5.  Azure Metric alerts sent via SMS text

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current

327

Note A DMV called sys.resource_stats works within the logical master to
review resource stats for up to 14 days across all Azure databases associated with
the logical server. Learn more at https://docs.microsoft.com/en-us/sql/
relational-databases/system-catalog-views/sys-resource-stats-
azure-sql-database?view=azuresqldb-current.

sys.server_resource_stats
This DMV behaves just like sys.dm_db_resource_stats, but it used to see resource

usage for the Managed Instance for CPU, memory, and I/O. This DMV also takes

a snapshot every 15 seconds. You can find the complete reference for this DMV at

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-

views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current.

�Running

If you have determined the problem is high CPU utilization, this is called a running

scenario. A running scenario can involve queries that consume resources through

compilation or execution. Further analysis to determine a solution can be done by using

these tools:

Query Store
Query Store was introduced with SQL Server 2016 and has been one of the most

game-hanging capabilities for performance analysis. Use the Top Consuming Resource

reports in SSMS, Query Store catalog views, or Query Performance Insight in the Azure

Portal (Azure SQL Database only) to find which queries are consuming the most CPU

resources. Need a primer for Query Store? Start with our documentation at https://

docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-

performance-by-using-the-query-store.

sys.dm_exec_requests
This DMV has become perhaps the most popular DMV to use for SQL Server in

history. This DMV displays a snapshot of all current active requests, which could be a

T-SQL query or background task. Use this DMV in Azure SQL to get a snapshot of the state

of active queries. Look for queries with a state of RUNNABLE and a wait type of SOS_

SCHEDULER_YIELD to see if you have enough CPU capacity. Get the complete reference

for this DMV at https://docs.microsoft.com/en-us/sql/relational-databases/

system-dynamic-management-views/sys-dm-exec-requests-transact-sql.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql

328

sys.dm_exec_query_stats
This DMV can be used much like Query Store to find top resource consuming

queries but only is available for query plans that are cached where Query Store provides

a persistent historical record of performance. This DMV also allows you to find the query

plan for a cached query. Get the complete reference at https://docs.microsoft.com/

en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-

query-stats-transact-sql.

Since Query Store is not yet available for readable secondaries, this DMV could be

useful for those scenarios.

sys.dm_exec_procedure_stats
This DMV provides information much like sys.dm_exec_query_stats, except the

performance information can be viewed at the stored procedure level. Get the complete

reference at https://docs.microsoft.com/en-us/sql/relational-databases/

system-dynamic-management-views/sys-dm-exec-procedure-stats-transact-sql.

Once you determine what query or queries are consuming the most resources, you

may have to examine whether you have enough CPU resources for your workload or

debug query plans with tools like Lightweight Query Profiling, SET statements, Query

Store, or Extended Events tracing.

Waiting
If your problem doesn’t appear to be a high CPU resource usage, it could be the

performance problem involves waiting on a resource. Scenarios involving waiting on

resources are as follows:

I/O Waits – This includes wait types such as PAGEIOLATCH latches (wait on

database I/O) and WRITELOG (wait on transaction log I/O).

Lock Waits – These waits show up as standard “blocking” problems.

Latch Waits – This includes PAGELATCH (“hot” page) or even just LATCH

(concurrency on an internal structure).

Buffer Pool limits – If you run out of Buffer Pool, you might run into unexpected

PAGEIOLATCH waits.

Memory Grants – A high number of concurrent queries that need memory grants or

large grants (could be from overestimation) could result in RESOURCE_SEMAPHORE

waits.

Plan Cache Eviction – If you don’t have enough plan cache and plans get evicted,

this could lead to higher compile times (which could result in higher CPU) or RUNNABLE

status with SOS_SCHEDULER_YIELD because there is not enough CPU capacity to

handle compiles. You also might see waiting on locks for schema to compile queries.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-procedure-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-procedure-stats-transact-sql

329

To perform analysis on waiting scenarios, you typically look at the following tools:

sys.dm_os_wait_stats
Use this DMV to see what the top wait types for the database or instance are. This can

guide you on what action to take next depending on the top wait types. Remember that

for Azure SQL Database these are just waits for the database, not across all databases on

the logical server. You can view the complete reference at https://docs.microsoft.

com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-

os-wait-stats-transact-sql.

Note T here is a DMV specific to Azure SQL Database called sys.dm_db_wait_
stats (it also works with Managed Instance, but I don’t recommend using it given
you are looking at the instance) which only shows waits specific for the database.
You might find this useful, but sys.dm_os_wait_stats will show all waits for the
dedicated instance hosting your Azure SQL Database.

sys.dm_exec_requests
Use this DMV to find specific wait types for active queries to see what resource they

are waiting on. This could be a standard blocking scenario waiting on locks from other

users.

sys.dm_os_waiting_tasks
Queries that use parallelism use multiple tasks for a given query so you may need to

use this DMV to find wait types for a given task for a specific query.

Query Store
Query Store provides reports and catalog views that show an aggregation of the top

waits for query plan execution. The catalog view to see waits in Query Store is called sys.
query_store_wait_stats which you can read more about at https://docs.microsoft.

com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-

wait-stats-transact-sql. It is important to know that a wait of CPU is equivalent to a

running problem.

Tip E xtended Events can be used for any running or waiting scenarios but
requires you to set up an extended events session to trace queries and can be
considered a heavier method to debug a performance problem.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-wait-stats-transact-sql

330

Let’s look at an example of a performance scenario to show how to use tools and

capabilities I’ve discussed in this section to identify a performance scenario. I’ll use the

following resources for this exercise:

•	 The logical server bwazuresqlserver as well as the database

bwazuresqldb. This database was deployed as a General Purpose 2

vCore database.

•	 The Azure VM called bwsql2019. I left my security settings from

Chapter 6 so this VM has access to the logical server and database.

•	 I’ll use SQL Server Management Studio (SSMS) to run some queries

and look at Query Store Reports.

Tip I f you connect with SSMS to an Azure SQL Database logical server and with
SSMS choose a specific database, Object Explorer will only show you the logical
master and your database. If you connect to the logical master with a server admin
account, Object Explorer will show you all databases.

•	 I’ll use the Azure portal to view Azure Metrics and look at logs.

•	 For this chapter, I have script files you can use for several of the

examples. You can find scripts for this example (and the next one) in

the ch7_performance\monitor_and_scale folder for the source files

included for the book. I will also use the very popular tool ostress.

exe for exercises in this chapter which comes with the RML Utilities.

You can download RML from www.microsoft.com/en-us/download/

details.aspx?id=4511. Make sure to put the folder where RML gets

installed in your system path (which is by default C:\Program Files\

Microsoft Corporation\RMLUtils).

Let’s go through an example in a step-by-step fashion:

Note I n some of these examples, you may see a different database name than
I deployed. I’ve run these exact examples with different database names so you
might see some different context in figures in this chapter.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_6
http://www.microsoft.com/en-us/download/details.aspx?id=4511
http://www.microsoft.com/en-us/download/details.aspx?id=4511

331

	 1.	 Set up to monitor Azure SQL Database with a DMV query.

Tip T o open a script file in the context of a database in SSMS, click the database
in Object Explorer and then use the File/Open menu in SSMS.

Launch SQL Server Management Studio (SSMS) and load a

query in the context of the database to monitor the Dynamic

Management View (DMV) sys.dm_exec_requests from the script

dmexecrequests.sql which looks like this:

SELECT er.session_id, er.status, er.command, er.wait_type,

er.last_wait_type, er.wait_resource, er.wait_time

FROM sys.dm_exec_requests er

INNER JOIN sys.dm_exec_sessions es

ON er.session_id = es.session_id

AND es.is_user_process = 1;

	 2.	 Load another query to observe resource usage.

In another session for SSMS in the context of the database, load

a query to monitor a Dynamic Management View (DMV) unique

to Azure SQL Database called sys.dm_db_resource_stats from a

script called dmdbresourcestats.sql:

SELECT * FROM sys.dm_db_resource_stats;

This DMV will track overall resource usage of your workload

against Azure SQL Database such as CPU, I/O, and memory.

	 3.	 Edit the workload script.

Edit the script sqlworkload.cmd (which will use the ostress.exe

program).

I’ll substitute my server, database, and password. The script will

look like this (without password substitution):

ostress.exe -Sbwazuresqlserver.database.windows.net

 -itopcustomersales.sql -Uthewandog -dbwazuresqldb -P<password>

 -n10 -r2 -q

Chapter 7 Monitoring and Tuning Performance for Azure SQL

332

	 4.	 Examine the T-SQL query we will use for the workload. You can

find this T-SQL batch in the script topcustomersales.sql:

DECLARE @x int

DECLARE @y float

SET @x = 0;

WHILE (@x < 10000)

BEGIN

SELECT @y = sum(cast((soh.SubTotal*soh.TaxAmt*soh.TotalDue)

as float))

FROM SalesLT.Customer c

INNER JOIN SalesLT.SalesOrderHeader soh

ON c.CustomerID = soh.CustomerID

INNER JOIN SalesLT.SalesOrderDetail sod

ON soh.SalesOrderID = sod.SalesOrderID

INNER JOIN SalesLT.Product p

ON p.ProductID = sod.ProductID

GROUP BY c.CompanyName

ORDER BY c.CompanyName;

SET @x = @x + 1;

END

GO

This database is not large, so the query to retrieve customer and

their associated sales information ordered by customers with

the most sales shouldn’t generate a large result set. It is possible

to tune this query by reducing the number of columns from the

result set, but these are needed for demonstration purposes of this

activity. You will note in this query I don’t return any results to the

client but assign values to a local variable. This will put all the CPU

resources to run the query to the server.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

333

	 5.	 Now let’s run the workload and observe its performance and results

from queries we loaded earlier. Run the workload by executing the

sqlworkload.cmd script from a command shell or PowerShell. The

script uses ostress to simulate ten concurrent users running the

T-SQL batch. You should see output that looks similar to this:

[datetime] [ostress PID] Max threads setting: 10000

[datetime] [ostress PID] Arguments:

[datetime] [ostress PID] -S[server].database.windows.net

[datetime] [ostress PID] -isqlquery.sql

[datetime] [ostress PID] -U[user]

[datetime] [ostress PID] -dbwazuresqldb

[datetime] [ostress PID] -P********

[datetime] [ostress PID] -n10

[datetime] [ostress PID] -r2

[datetime] [ostress PID] -q

[datetime] [ostress PID] Using language id (LCID): 1024 [English_

United States.1252] for character formatting with NLS: 0x0006020F

and Defined: 0x0006020F

[datetime] [ostress PID] Default driver: SQL Server Native

Client 11.0

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_1.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_2.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_3.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_4.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_5.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_6.out]

Chapter 7 Monitoring and Tuning Performance for Azure SQL

334

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_7.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_8.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_9.out]

[datetime] [ostress PID] Starting query execution...

[datetime] [ostress PID] BETA: Custom CLR Expression support

enabled.

[datetime] [ostress PID] Creating 10 thread(s) to process queries

[datetime] [ostress PID] Worker threads created, beginning

execution...

	 6.	 Now use the DMVs that you loaded to observe performance

while this runs. First, run the query from dmexecrequests.sql
five or six times in the query window from SSMS. You will see

several users have status = RUNNABLE and last_wait_type =

SOS_SCHEDULER_YIELD. This is a classic signature of not having

enough CPU resources for a workload.

	 7.	 Observe the results from the query dmdbresourcestats.sql. Run

this query a few times and observe the results. You will see several

rows with a value for avg_cpu_percent close to 100%. sys.dm_db_

resource_stats takes a snapshot every 15 seconds of resource usage.

	 8.	 Let the workload complete and take note of its duration. For me, it

measured around 1 minute and 30 seconds.

	 9.	 Let’s use the Query Store now to dive deeper into the performance

the queries in this workload. In SSMS in the Object Explorer, load

the Top Resource Consuming Queries as seen in Figure 7-6.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

335

	 10.	 Dive into the details of this report to see the performance of the

workload.

Select the report to find out what queries have consumed the most

average resources and execution details of those queries. Based on

the workload run to this point, your report should look something

like Figure 7-7.

Figure 7-6.  Finding the Top Consuming Queries report for Query Store

Chapter 7 Monitoring and Tuning Performance for Azure SQL

336

The query that is shown is the one from our workload. If you click

the bar chart, you will see details about the query including the

query_id which should look like Figure 7-8 (your query_id will

likely be different).

Figure 7-7.  The Top Consuming Queries Report in SSMS

Chapter 7 Monitoring and Tuning Performance for Azure SQL

337

If I hover over the dot on the right-hand side of this report, you

will see performance statistics about the query which will look like

Figure 7-9.

Figure 7-8.  query_id from the Top Resource Consuming Query report

Chapter 7 Monitoring and Tuning Performance for Azure SQL

338

Your times may vary some. You can see here the average duration

was around 5ms for each query. You can also look at the bottom

of this report to see the query plan. There are not many rows in

these tables, so there is not much to tune for the query plan. 5ms

doesn’t sound bad for performance for each execution, but let’s

keep analyzing to see if it could be faster.

	 11.	 Look at the Query Wait Statistics Report for the Query Store.

Based on the decision tree earlier in this chapter, this appears to

be a running scenario. If the query plan can’t be tuned, how can

we make the query run faster? The Query Wait Statistics report

could help give us a clue (along with the DMV results we have

already observed).

If you then select Query Wait Statistics report from the Object

Explorer and hover over the Bar Chart that says CPU, you will see

something like Figure 7-10.

Figure 7-9.  Query stats for a query plan

Chapter 7 Monitoring and Tuning Performance for Azure SQL

339

So the top wait category is CPU, and the average time waiting for

this wait type is almost 4ms. A wait category of CPU is equivalent

to a wait type = SOS_SCHEDULER_YIELD.

If you click the bar chart, you see the same query_id from our

workload. Notice the average wait time is just the same as the

average wait time for all CPU waits. And this average wait time is

almost the entire duration of the query as seen in Figure 7-11.

Figure 7-10.  Query Wait Statistic report from SSMS

Chapter 7 Monitoring and Tuning Performance for Azure SQL

340

Now consider the evidence. The workload consumes CPU

resources for the database at almost 100%. The status of many

requests is RUNNABLE, and the top wait type for the workload

is SOS_SCHEDULER_YIELD. If the query cannot be changed,

then the most likely scenario is that you don’t have enough CPU

resources for your workload. Later in this chapter, we will use

Azure interfaces to make this query run faster.

	 12.	 Use Azure Monitor and metrics.

Let’s look at this performance scenario through the lens of Azure

Monitor and metrics. I’ll navigate to my database using the

Azure portal. In the monitoring pane is an area called Compute

utilization. After my workload has run, my chart looks similar to

Figure 7-12.

Note I grabbed these numbers from a different test I had already done
using databases just like bwazuresqldb called AdventureWorks0406 and
AdventureWorksLT.

Figure 7-11.  Average wait time for CPU for a specific query

Chapter 7 Monitoring and Tuning Performance for Azure SQL

341

This view comes from Azure Metrics. You can get a different angle

on this if you select Metrics from the resource menu and choose

CPU percentage as seen in Figure 7-13.

Figure 7-12.  Viewing CPU utilization from the Azure portal

Figure 7-13.  Azure metrics for an Azure SQL Database

Chapter 7 Monitoring and Tuning Performance for Azure SQL

342

As you can see in the screenshot, there are several metrics you

can use to view with Metrics Explorer. The default view of Metrics

Explorer is for a 24-hour period showing a 5-minute granularity.

The Compute Utilization view is the last hour with a 1-minute

granularity (which you can change). To see the same view, select

CPU percentage and change the capture for 1 hour. The granularity

will change to 1 minute and should look like Figure 7-14.

	 13.	 Use Azure Monitor Logs.

I’ve mentioned Azure Monitor includes another capability called

Azure Monitor Log. Azure Monitor Logs can provide a longer

historical record than Metrics.

Note T here is a delay in seeing results in Logs, so it may take several minutes
for you to see results like this figure.

I can choose Logs from the Resource menu and run a Kusto Query

as seen in Figure 7-15 to see the same type of CPU utilization.

Figure 7-14.  Granular view of Azure Metrics

Chapter 7 Monitoring and Tuning Performance for Azure SQL

343

I’ve talked about Kusto in the book before, but here is a link for you

to learn more: https://docs.microsoft.com/en-us/azure/data-

explorer/kusto/concepts/. There is another tool you can use to

run Kusto queries is Kusto Explorer which you can read more about

at https://docs.microsoft.com/en-us/azure/data-explorer/

kusto/tools/kusto-explorer. At the time I was writing this chapter,

we plan to bring the Kusto query experience to Azure Data Studio!

�Azure SQL Specific Performance Scenarios
Based on the Running vs. Waiting scenario, there are some scenarios which are specific

to Azure SQL.

�Log Governance

Azure SQL can enforce resource limits on transaction log usage called log rate

governance. This enforcement is often needed to ensure resource limits and to meet

promised SLA. Log governance may be seen from the following wait types:

LOG_RATE_GOVERNOR – Waits for Azure SQL Database

Figure 7-15.  Using Kusto to view resource usage from Azure Monitor Logs

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/tools/kusto-explorer
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/tools/kusto-explorer

344

POOL_LOG_RATE_GOVERNOR – Waits for Elastic Pools

INSTANCE_LOG_GOVERNOR – Waits for Azure SQL Managed

Instance

HADR_THROTTLE_LOG_RATE* – Waits for Business Critical and

Geo-Replication latency

Log rate governance is enforced inside the SQL Server engine before transaction

log blocks are submitted for I/O. The documentation has a good description of how this

works at https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-

limits-logical-server#transaction-log-rate-governance. Scaling your deployment

to a different service tier or vCore choice can give you more log rate for your application.

�Worker Limits

SQL Server uses a worker pool of threads but has limits on the maximum number of

workers. Applications with a large number of concurrent users may need a certain

number of workers. Keep these points in mind on how worker limits are enforced for

Azure SQL Database and Managed Instance:

•	 Azure SQL Database has limits based on service tier and size. If you

exceed this limit, a new query will receive an error like

Msg 10928

The request limit for the database is <limit> and has been

reached.

•	 Azure SQL Managed Instance uses “max worker threads” so workers

past this limit may see THREADPOOL waits.

Note  Managed Instance in the future may enforce worker limits similar to Azure
SQL Database.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance

345

�Business Critical (BC) HADR Waits

Let’s say you deploy a Business Critical service tier for Azure SQL Managed Instance or

Azure SQL Database. Now you start running transactions that modify data and therefore

require logged changes.

You look at a DMV like sys.dm_exec_requests and see wait types like HADR_SYNC_

COMMIT. What? This wait type is only seen when you deploy a sync replica for an

Always On Availability Group (AG).

It turns out Business Critical service tiers uses an AG behind the scenes. Therefore,

it is not surprising to see these wait types normally, but it may surprise you if you are

monitoring wait types.

You can also see HADR_DATABASE_FLOW_CONTROL and HADR_THROTTLE_

LOG_RATE_SEND_RECV waits as part of Log Governance to ensure we can meet your

promised SLA.

�Hyperscale Scenarios

I’ve talked about the Hyperscale architecture briefly in Chapter 4 of the book. I’ll go even

deeper in Chapter 8. While Hyperscale has log rate limits just like other deployment

options, there are cases where we must govern transaction log generation due to a

page server or replica getting significantly behind (which would then affect our ability

to deliver our SLA). When this occurs, you may see wait types that start with the word

RBIO_.

Even though we don’t dive into the details of how to diagnose various aspects of the

Hyperscale architecture in this book, there are interesting capabilities for you to take

advantage of. For example, reads from page servers are now available in DMVs like sys.
dm_exec_query_stats, sys.dm_io_virtual_file_stats, and sys.query_store_runtime_
stats. In addition, the I/O statistics in sys.dm_io_virtual_file_stats apply to RBEX cache

and page servers since these are the I/O files that mostly affect Hyperscale performance.

Get all the details for Hyperscale performance diagnostics at https://docs.

microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-

diagnostics.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_4
https://doi.org/10.1007/978-1-4842-5931-3_8
https://docs.microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-diagnostics
https://docs.microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-diagnostics
https://docs.microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-diagnostics

346

�Accelerating and Tuning Performance
You have seen performance capabilities for Azure SQL including monitoring tools.

You have also seen an example of how to apply your knowledge of monitoring and a

performance scenario to recognize a possible performance bottleneck. Let’s apply that

knowledge to learn how to accelerate and tune performance in the areas of scaling CPU

capacity, I/O performance, memory, application latency, and SQL Server performance

tuning best practices.

�Scaling CPU Capacity
Let’s say you ran into the performance problem with high CPU as I showed you in the

previous exercise in your data center. What would you do? If you were running SQL

Server on a bare-metal server, you would have to potentially acquire more CPUs or even

move to another server. For a virtual machine, you may be able to reconfigure the VM to

get more vCPUs, but what if the host server didn’t support that? You are possibly facing a

scenario to migrate your database to another VM on another host. Ouch.

For Azure SQL, you have the ability to scale your CPU resources with very simple

operations from the Azure portal, az CLI, PowerShell, and even T-SQL. And you can do

all of this with no database migration required.

For Azure SQL Database, there will be some small downtime to scale up your CPU

resources. It is possible with larger database sizes this downtime could be longer,

especially if we need to move your deployment to another host with enough resources

for your request. We also have to ensure your replicas have the same new resources

for Business Critical service tiers. Hyperscale provides a more constant scaling motion

regardless of database size.

Azure SQL Managed Instance can be a concern for duration of scaling. We may need

to build a new virtual cluster, so scaling operations can be significantly longer. This is

something to keep in mind and is why deploying with the right resources for Managed

Instance can be important. Managed Instance pools are much faster but still significantly

longer than Azure SQL Database in most cases.

Azure SQL Database Serverless compute tier provides the concept of autoscaling as I

described its implementation in Chapter 4 of the book.

Let’s go back where we left off in our exercise where we determined it is likely we

didn’t have enough CPU resources for our workload. Let’s scale it up and see if workload

performance improves:

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_4

347

	 1.	 Look at scaling options in the Azure portal.

I’ll navigate to my database in the Azure portal and select Pricing

tier as seen in Figure 7-16.

You are now presented with a screen to make changes to your

deployment. I showed you a screen similar to this in Chapter 4 as

I described all the options after you deploy. My options look like

Figure 7-17 where I can use a slider bar to increase the number of

vCores for my General Purpose deployment.

Figure 7-16.  Choosing a pricing or service tier for a General Purpose database

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_4

348

	 2.	 Scale vCores using T-SQL.

Let’s use a more familiar method to make changes to SQL Server.

The T-SQL ALTER DATABASE statement has been enhanced for

Azure SQL Database to scale CPUs for the deployment.

To properly show a performance difference with Query Store

reports, I’m going to flush the current data in memory in the

Query store using the script flushquerystore.sql which executes

this T-SQL statement:

EXEC sp_query_store_flush_db;

Now let’s use other T-SQL queries to view the current service or

pricing tier for our deployment. Execute the T-SQL script get_
service_objective.sql which uses the following T-SQL statements

(you need to substitute in your database name):

Figure 7-17.  Using the Azure portal to increase vCores

Chapter 7 Monitoring and Tuning Performance for Azure SQL

349

SELECT database_name,slo_name,cpu_limit,max_db_memory,

max_db_max_size_in_mb, primary_max_log_rate,primary_group_max_io,

volume_local_iops,volume_pfs_iops

FROM sys.dm_user_db_resource_governance;

GO

SELECT DATABASEPROPERTYEX('<databasename>', 'ServiceObjective');

GO

The results from these queries look like this for my deployment:

database_name slo_name cpu_limit max_db_memory

max_db_max_size_in_mb primary_max_log_rate primary_group_max_io

volume_local_iops volume_pfs_iops

bwazuresqldb SQLDB_GP_GEN5_2_SQLG5 2 7836980

4194304 7864320 640

8000 1000

(No column name)

GP_Gen5_2

You are seeing the same information you saw in the Azure portal

regarding CPUs, but sys.dm_user_db_resource_governance

effectively gives us a way to programmatically look at resource

limits you would read in our tables in the documentation.

The system function DATABASEPROPERTYEX has also been

enhanced to show you the ServiceObjective for a database.

You can decode the information from the slo_name column (slo

= service-level objective) or the system function. For example,

SQLDB_GP_GEN5_2_SQLG5 is equivalent to General Purpose

Gen5 Hardware 2 vCores. SQLDB_OP… is used for Business

Critical.

We can use the T-SQL ALTER DATABASE documentation to see

all possible values for the service objective at https://docs.

microsoft.com/en-us/sql/t-sql/statements/alter-database-

transact-sql.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql

350

Using this documentation, let’s change the tier or objective to

8 vCores using the script modify_service_objective.sql or the

T-SQL statement:

ALTER DATABASE <databasename> MODIFY (SERVICE_OBJECTIVE =

'GP_Gen5_8');

This statement executes immediately because the modification to

scale to 8 vCores is an option that happens in the background.

If you navigate to the Azure portal, you will see a notification that

the operation is in progress as seen in Figure 7-18.

In addition, you can use the T-SQL statement in the context of the

master database of the logical server to see operations against

databases:

SELECT * FROM sys.dm_operation_status;

Figure 7-18.  Scaling of Azure SQL Database in progress

Chapter 7 Monitoring and Tuning Performance for Azure SQL

351

For my logical server, I got the following results:

session_activity_id resource_type

resource_type_desc major_resource_id minor_resource_id

operation state state_desc percent_complete

error_code error_desc error_severity

error_state start_time last_modify_time

D22C1CB5-C164-4BB5-BC18-EE593C1759AF 0

Database bwazuresqldb ALTER DATABASE

2 COMPLETED 100 0

0 0

 2020-07-19 15:21:40.670 2020-07-19 15:22:14.423

You can read more details about sys.dm_operation_status

at https://docs.microsoft.com/en-us/sql/relational-

databases/system-dynamic-management-views/sys-dm-

operation-status-azure-sql-database.

	 3.	 Run the workload again.

Let’s run the workload again to see if there is any performance

differences. I’ll use the same scripts, queries, and SSMS reports as

I did in the previous example in the chapter.

Run the script sqlworkload.cmd again from the command

prompt.

	 4.	 Observe resource usage with sys.dm_db_resource_stats.

Just as you did before running this query, several times should

show a lower overall CPU usage for the database.

	 5.	 Observe active queries with sys.dm_exec_requests.

You should see more RUNNING requests and less SOS_

SCHEDULER_YIELD waits.

	 6.	 Observe the overall workload duration.

Remember this ran in around 1 minute and 30 seconds before.

Now it should finish in around 25–30 seconds – clearly, a

significant performance improvement.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-operation-status-azure-sql-database
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-operation-status-azure-sql-database
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-operation-status-azure-sql-database

352

	 7.	 Observe performance with Query Store Top Consuming Reports.

Using the same report as before, you can see two queries in the

report with a new query_id as seen in Figure 7-19.

Even though there is a new query_id, it is the exact same query.

Because the SQL Server that hosts our database was restarted

for scaling (or a new SQL Server used), the query had to be

recompiled, hence a new query_id. This scenario is also where

the power of Query Store comes into play. Query performance is

stored in the user database, so even if we had to migrate your SQL

Server behind the scenes to a new node, no query performance

information is lost.

Note T he behavior of a different query_id is actually very interesting. The query
was recompiled, but in many cases, the same query_id would appear in the Query
Store. However, in this case, the first execution of the query was against a 2 vCore
deployment. In a 2 vCore deployment, maxdop is fixed at 1. When the back-end
server has a fixed maxdop of 1, queries will use a context setting with a bit that
is NOT set for Parallel Plan. With a deployment of 8 vCores, maxdop is fixed at 8.
In this case, the context_setting will include the bit set for Parallel Plan. Parallel
Plan is not an option set by the application but rather by a negotiation with the

Figure 7-19.  Top Consuming Query report with a faster query

Chapter 7 Monitoring and Tuning Performance for Azure SQL

353

server and indicates the query can use a parallel plan. In this case, the query_id is
different because the context_settings_id (see the catalog view sys.query_store_
query) is different for each execution. You can view context settings in the Query
Store using the catalog view sys.query_context_settings. You can see more
about context settings “bits” in the DMV sys.dm_exec_plan_attributes.

You can see from this figure a significantly faster average duration

for the query than before.

	 8.	 Look at Query Wait Statistics report.

If you use the Query Wait Statistics report, you can see a

significant less time waiting on CPU for the query as seen in

Figure 7-20.

	 9.	 Look at differences with Azure Metrics and Logs.

Let’s navigate to the Azure portal to see the difference in compute

utilization. Figure 7-21 shows the example.

Figure 7-20.  Faster query with less waiting on CPU

Chapter 7 Monitoring and Tuning Performance for Azure SQL

354

If you run the same Kusto query as before (there will be a lag in

seeing these results), you can see the performance difference as

well from Azure Logs like Figure 7-22.

Figure 7-21.  Azure compute after scaling CPUs

Figure 7-22.  Using Kusto with Azure logs after scaling CPUs

Chapter 7 Monitoring and Tuning Performance for Azure SQL

355

What happens if we were to use the Serverless compute tier option for our workload?

Remember Serverless offers the ability to autoscale workloads and also pause idle compute.

I deployed a new Serverless database with a min vCore = 2 and max vCore = 8.

Turns out in most cases (not guaranteed), a Serverless database is deployed with the

number of SQL Schedulers = max vCores. So provided the Serverless database is not

paused, running the same workload as in this example gives you approximately the

same performance as the scaled General Purpose 8 vCore deployment. Here is the big

advantage of Serverless over the General Purpose deployment. Let’s say over a period

of two hours, this workload only consumes compute for 15 minutes of the 120 minutes.

For a General Purpose deployment, you will pay for compute for the entire 120 minutes.

For a Serverless deployment, you would pay for the 15 minutes of compute usage for 8

vCores, and for the remaining 90 minutes, you would pay for the equivalent compute

usage for the min vCores. In addition, if you have AutoPause enabled, you will not pay

for any compute costs for the last 60 minutes of that two-hour period (this is because the

smallest time before a Serverless deployment is paused if idle is one hour).

Figure 7-23 shows an example of CPU utilization for a Serverless deployment and

below it a graph of actual compute billed. Notice the highest average CPU billed is

during high compute utilization. After the utilization, a lower static billing is for min

vCores. Then following this is no compute is billed as the deployment is paused.

Figure 7-23.  Serverless scale and compute billing

Chapter 7 Monitoring and Tuning Performance for Azure SQL

356

�I/O Performance
I/O performance can be critical to SQL Server applications and queries. Azure SQL

abstracts you from physical file placement, but there are methods to ensure you get the

I/O performance you need.

Input/Output Per Second (IOPS) may be important to your application. Be sure

you have chosen the right service tier and vCores for your IOPS needs. Understand how

to measure IOPS for your queries on-premises if you are migrating to Azure (Hint: Look

at Disk Transfers/sec in Performance Monitor). If you have restrictions on IOPS, you

may see long I/O waits. Scale up vCores or move to Business Critical or Hyperscale if you

don’t have enough IOPS.

I/O latency is another key component for I/O performance. For faster I/O latency for

Azure SQL Database, consider Business Critical or Hyperscale. For faster I/O latency for

Managed Instance, move to Business Critical or increase file size or number of files for

the database.

Let’s take a minute to examine this last statement a bit more closely for Managed

Instance and file size or number of files. I’ve pointed you to this blog post from Jovan

Popovic before on the topic at https://medium.com/azure-sqldb-managed-instance/

increasing-data-files-might-improve-performance-on-general-purpose-managed-

instance-tier-6e90bad2ae4b.

The concept is that for the General Purpose tier, we store database and log files on

Azure premium storage disks. Turns out that for premium disks, the larger the size of

disk we use, the better performance we can get. So as you increase the size of your files,

we will use a level of Premium storage to meet those needs, which can result in more

IOPS or better throughput. I love Jovan’s blog post because he backs up his statements

with data using the popular open source tool HammerDB.

Configuration isn’t your only choice. Improving transaction log latency may require

you to use multi-statement transactions. Learn more at https://docs.microsoft.com/

en-us/azure/azure-sql/performance-improve-use-batching.

�Increasing Memory or Workers
Memory is also an important resource for SQL Server performance and Azure SQL is no

different. The total memory available to you for buffer pool, plan cache, columnstore,

and In-Memory OLTP is all dependent on your deployment choice. As I described

earlier in this chapter, your highest memory capacity comes from an Azure SQL

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://docs.microsoft.com/en-us/azure/azure-sql/performance-improve-use-batching
https://docs.microsoft.com/en-us/azure/azure-sql/performance-improve-use-batching

357

Database Business Critical tier using the new M-Series hardware generation (around

4TB). For a Managed Instance, you can get around 400Gb of memory using the 80 vCore

deployment for Business Critical. Also keep in mind that In-Memory OLTP, which is only

available for Business Critical service tiers, has a maximum memory as a subset of the

overall maximum memory.

One key statement about memory that holds true for SQL Server or Azure SQL: If you

think you don’t have enough memory, be sure you have an optimal database and query

design. You may think you are running out of buffer pool after you scan a massive table.

Maybe indexes should be deployed to enhance performance of your query and use less

memory. Columnstore indexes are compressed, so use far less memory than traditional

indexes.

Note T he Hyperscale vCore choice not only affects the amount of memory
available to the compute nodes but also the size of the RBEX cache which can also
affect performance.

I’ve described worker limits in this chapter already which is set to a maximum value

for Azure SQL Database, but Managed Instance uses “max worker threads” (but this

is something we may limit less than this in the future). As with SQL Server, running

out of workers may be an application problem. A heavy blocking problem for all users

may result in an error running out of workers when the problem is fixing the blocking

problem.

�Improving Application Latency
Even if you configure your deployment for all your resource needs, applications may

introduce latency performance issues. Be sure to follow these best practices with Azure

SQL applications:

•	 Use a redirect connection type instead of proxy.

•	 Optimize “chatty” applications by using stored procedures or limiting

the number of query round trips through techniques like batches.

•	 Optimize transactions by grouping them vs. singleton transactions.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

358

Take a look at this documentation page for tuning applications for Azure SQL

Database: https://docs.microsoft.com/en-us/azure/azure-sql/database/

performance-guidance.

�Tune Like It Is SQL Server
Azure SQL is still SQL Server. Even though you will see capabilities to help you with

performance built into the engine, there is almost never a substitute for ensuring you

tune your SQL Server queries and look at the following:

•	 Proper index design.

•	 Using batches.

•	 Using stored procedures.

•	 Parameterize queries to avoid too many cached ad hoc queries.

•	 Process results in your application quickly and correctly (avoid the

dreaded ASYNC_NETWORK_IO waits).

Let’s use an exercise to demonstrate how in some cases, while it may seem natural

to try and change a service tier to improve performance, a change in your queries or

application can show benefits.

For this exercise, I’ll use all the same tools, the same Azure SQL database

deployment (which now has 8 vCores), and the same VM to look at a performance

scenario for I/O. The scripts for this exercise can be found in the ch7_performance\
tuning_applications folder for the source files included.

Let’s consider the following application scenario to set up how to see this problem.

Assume that to support a new extension to a website for AdventureWorks orders to

provide a rating system from customers, you need to add a new table for a heavy set of

concurrent INSERT activity. You have tested the SQL query workload on a development

computer with SQL Server 2019 that has a local SSD drive for the database and

transaction log. When you move your test to Azure SQL Database using the General

Purpose tier (8 vCores), the INSERT workload is slower. You need to discover whether

you need to change the service objective or tier to support the new workload or look at

the application.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/performance-guidance
https://docs.microsoft.com/en-us/azure/azure-sql/database/performance-guidance

359

Important I ran all of my tests for this exercise in an Azure VM which will use
the Redirect connection type by default. If you run this outside of Azure, the default
is Proxy. You will not see the same significant performance increase I observed if
you use Proxy, but you will see some gains. This is because the simulation of the
application requires enough round trips that Proxy can affect overall performance.

	 1.	 Create a new table in the database.

I’ll use SSMS in my Azure VM that is connected to Azure SQL

Database to add this table into the database based on the script

order_rating_ddl.sql:

DROP TABLE IF EXISTS SalesLT.OrderRating;

GO

CREATE TABLE SalesLT.OrderRating

(OrderRatingID int identity not null,

SalesOrderID int not null,

OrderRatingDT datetime not null,

OrderRating int not null,

OrderRatingComments char(500) not null);

GO

	 2.	 Load queries to monitor execution.

Using SSMS, load up queries in separate query windows to look

at DMVs using scripts in the context of the user database with

sqlrequests.sql, top_waits.sql, and tlog_io.sql. You will need to

modify tlog_io.sql to put in your database name.

These scripts use the following queries, respectively:

SELECT er.session_id, er.status, er.command, er.wait_type,

er.last_wait_type, er.wait_resource, er.wait_time

FROM sys.dm_exec_requests er

INNER JOIN sys.dm_exec_sessions es

ON er.session_id = es.session_id

AND es.is_user_process = 1;

Chapter 7 Monitoring and Tuning Performance for Azure SQL

360

SELECT * FROM sys.dm_os_wait_stats

ORDER BY waiting_tasks_count DESC;

SELECT io_stall_write_ms/num_of_writes as avg_tlog_io_write_ms, *

FROM sys.dm_io_virtual_file_stats

(db_id('<database name>'), 2);

The DMVs used in these queries are a great example of showing

you diagnostics in the context of a database based on instance-

level DMV diagnostics. It is one of the benefits when we moved to

the V12 architecture I mentioned in Chapter 1 of the book.

Tip  You can also find your session_id and use the DMV sys.dm_exec_session_
wait_stats to see only the waits for your session. Note that this DMV will not show
waits for any background tasks. Learn more at https://docs.microsoft.
com/en-us/sql/relational-databases/system-dynamic-management-
views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-
server-ver15.

	 3.	 Run the workload.

The workload to insert database can be found in the script order_
rating_insert_single.sql. The batch for this script looks like this:

DECLARE @x int;

SET @x = 0;

WHILE (@x < 500)

BEGIN

SET @x = @x + 1;

INSERT INTO SalesLT.OrderRating

(SalesOrderID, OrderRatingDT, OrderRating, OrderRatingComments)

VALUES (@x, getdate(), 5, 'This was a great order');

END

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_1
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15

361

We will use ostress.exe to run this query with a script as found in

order_rating_insert_single.cmd. For you to run this, you will

need to edit the script to put in your correct server, database,

login, and password.

Run this script from a command or PowerShell prompt.

	 4.	 Observe query performance and duration.

Using the DMV you loaded, you will likely observe the following:

•	 Many requests constantly have a wait_type of WRITELOG with a

value > 0.

•	 The WRITELOG wait type is one of the highest counts for

wait types.

•	 The avg time to write to the transaction log is somewhere

around 2ms.

The overall duration of running this workload on SQL Server 2019

on a computer with fairly normal SSD storage is around 10–12

seconds. The total duration of running thins using Azure SQL

Database with my deployed General Purpose 8 vCore database is

around 25 seconds. The latency of WRITELOG waits is affecting

the overall performance of the application.

Note T he documentation states that the expected latency for General Purpose is
5–7ms for writes. Our diagnostics showed better performance, but it won’t be the
same as using an SSD storage system.

	 5.	 Decide on a resolution.

You could look at changing your deployment to Business Critical

or Hyperscale to get better I/O latency. But is there a more cost-

effective way? If you looked at the batch for order_rating_insert_

single.sql, you will notice that each INSERT is its own commit

or singleton transactions. What if we grouped INSERTs into

transactions?

Chapter 7 Monitoring and Tuning Performance for Azure SQL

362

	 6.	 Change the application workload.

You can see a new workload method to group INSERTs into a

transaction with order_rating_insert.sql like the following:

DECLARE @x int;

SET @x = 0;

BEGIN TRAN;

WHILE (@x < 500)

BEGIN

SET @x = @x + 1;

INSERT INTO SalesLT.OrderRating

(SalesOrderID, OrderRatingDT, OrderRating, OrderRatingComments)

VALUES (@x, getdate(), 5, 'This was a great order');

END

COMMIT TRAN;

GO

Notice the use of BEGIN TRAN and COMMIT TRAN to wrap the

loop of INSERT statements.

You can now edit the order_rating_insert.cmd script with your

server, database, login, and password to run this workload change.

	 7.	 Run the new workload change.

When you run the new script (which is executing the same

number of INSERT statements), you will see

•	 Far less WRITELOG waits with lower average wait time

•	 A much faster overall duration

The workload runs even faster now (I’ve seen as fast as 3 seconds

overall).

This is a great example of ensuring you are looking at your application when running

it against Azure SQL vs. just assuming you need to make a deployment option change

and pay more in your subscription.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

363

�Intelligent Performance
I mentioned earlier in this chapter our intention to build into the database engine

intelligent capabilities based on data and your application workload to get you faster

with no code changes.

Let’s take a look in more detail to these areas of Intelligent Query Processing,

Automatic Plan Correction, and Automatic Tuning.

�Intelligent Query Processing
In SQL Server 2017, we enhanced the query processor to adapt to query workloads and

improve performance when you used the latest database compatibility level. We called

this Adaptive Query Processing (AQP). We went a step further in SQL Server 2019 and

rebranded it as Intelligent Query Processing (IQP).

IQP is a suite of new capabilities built into the Query Processor and enabled using

the latest database compatibility level. Applications can gain performance with no code

changes by simply using the latest database compatibility level. An example of IQP is

table variable deferred compilation to help make queries using table variables run faster

with no code changes. Azure SQL Database and Managed Instance support the same

database compatibility level required to use IQP (150) as SQL Server 2019. IQP is a great

example of a cloud-first capability since it was first adopted by customers in Azure before

it was released in SQL Server 2019.

I covered this topic extensively in the book SQL Server 2019 Revealed. You can go run

any of these examples from https://github.com/microsoft/bobsql/tree/master/

sql2019book/ch2_intelligent_performance against Azure SQL to see how this works

in action.

In addition, the documentation covers this topic extensively at https://docs.

microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-

processing.

At the time of the writing of this book, Scalar UDF inlining was not yet available in

Azure SQL Database, but probably by the time you are reading this, it will be available.

I asked Joe Sack who is not only the technical reviewer of this book but also the

program manager lead for IQP about the significance of IQP for Azure SQL. According

to Joe, “Over the last four years, the query processing team delivered two waves of

Intelligent QP features – all with the objective to improve workload performance

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://github.com/microsoft/bobsql/tree/master/sql2019book/ch2_intelligent_performance
https://github.com/microsoft/bobsql/tree/master/sql2019book/ch2_intelligent_performance
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing

364

automatically with minimal changes to application code. Today we’re already seeing

millions of databases and billions of queries using IQP features. Just as one example,

we already have millions of unique query execution plans being executed hundreds

of millions of times per day that use the memory grant feedback feature. In Azure

SQL on a daily basis, this ends up preventing terabytes of query spills and petabytes

worth of overestimations for user queries. The end result is improved query execution

performance and workload concurrency.”

This area of improving our query processor to help your application is significant

for Azure SQL. As Joe tells it for the future, “We have a long-term plan and active

engineering investments to keep alleviating the hardest query processing problems that

customers face at-scale. We look at a myriad of signals in order to prioritize features –

including telemetry, customer support case volume, customer engagements and SQL

community member feedback. We have eight separate Intelligent Database-related

efforts underway in “wave 3”, and our plan is to light these efforts up in Azure SQL

Database first over the next few years.”

�Automatic Plan Correction
In 2017, I stood on stage with Conor Cunningham at the PASS Summit and showed off

an amazing piece of technology for SQL Server 2017 to solve a performance problem

using automation with Query Store. Query Store has such rich data; why not use it with

automation?

What I showed on stage was a demonstration of a query plan regression problem

that can be automatically fixed.

Note  You can see the code I used for this demonstration at https://github.
com/microsoft/bobsql/tree/master/demos/sqlserver/autotune.

A query plan regression occurs when the same query is recompiled and a new

plan results in worse performance. A common scenario for query plan regression are

parameter-sensitive plans (PSP), also known as parameter sniffing.

SQL Server 2017 and Azure SQL Database introduced the concept of Automatic Plan
Correction (APC) by analyzing data in the Query Store. When the Query Store is enabled

with a database in SQL Server 2017 (or later) and in Azure SQL Database, the SQL Server

engine will look for query plan regressions and provide recommendations. You can see

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://github.com/microsoft/bobsql/tree/master/demos/sqlserver/autotune
https://github.com/microsoft/bobsql/tree/master/demos/sqlserver/autotune

365

these recommendations in the DMV sys.dm_db_tuning_recommendations. These

recommendations will include T-SQL statements to manually force a query plan when

performance was “in a good state.”

If you gain confidence in these recommendations, you can enable SQL Server to

force plans automatically when regressions are encountered. Automatic Plan Correction

can be enabled using ALTER DATABASE using the AUTOMATIC_TUNING argument.

For Azure SQL Database, you can also enable Automatic Plan Correction through

automatic tuning options in the Azure Portal or REST APIs. You can read more about

these techniques in the documentation. Automatic Plan Correction recommendations

are always enabled for any database where Query Store is enabled (which is the default

for Azure SQL Database and Managed Instance). Automatic Plan Correction (FORCE_

PLAN) is enabled by default for Azure SQL Database as of March 2020 for new databases.

You can read more about Automatic Plan Correction at https://docs.microsoft.

com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning.

�Automatic Tuning
Technically, Automatic Plan Correction is part of a suite of services to use automation to

improve query performance with no code changes called Automatic Tuning. Automatic

Plan Correction works in SQL Server, Azure SQL Managed Instance, and Azure SQL

Database.

In Chapter 1 of this book, I talked about the history of how Automatic Tuning was

created. Azure SQL Database offers a unique feature of Automatic Tuning to help

automate creating and dropping indexes called automatic indexing.

Note T oday automatic indexing is not available for Azure SQL Managed Instance.

This capability is known as Automatic Tuning for Azure SQL Database (also known

in some parts of the documentation as SQL Database Advisor). These services run as

background programs analyzing performance data from an Azure SQL Database and

are included in the price of any database subscription. Automatic Tuning will analyze

data from telemetry of a database including the Query Store and Dynamic Management

Views to recommend indexes to be created that can improve application performance.

Additionally, you can enable Automatic Tuning services to automatically create indexes

that it believes will improve query performance. Automatic Tuning will also monitor

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning
https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning
https://doi.org/10.1007/978-1-4842-5931-3_1

366

index changes and recommend or automatically drop indexes that do not improve

query performance. Automatic Tuning for Azure SQL Database takes a conservative

approach to recommend indexes. This means that recommendations that may show

up in a DMV like sys.dm_db_missing_index_details or a query show plan may not

show up immediately as recommendations for Automatic Tuning. Automatic Tuning

services monitor queries over time and use machine learning algorithms to make

recommendations to truly affect query performance.

One downside to Automatic Tuning for index recommendations is that it does not

account for any overhead performance an index could cause insert, update, or delete

operations.

Note  You can read an excellent paper for how automatic indexing is built by
our engineering team at www.microsoft.com/en-us/research/uploads/
prod/2019/02/autoindexing_azuredb.pdf.

One additional scenario in preview for Automatic Tuning for Azure SQL Database is

parameterized queries. Queries with non-parameterized values can lead to performance

overhead because the execution plan is recompiled each time the non-parameterized

values are different. In many cases, the same queries with different parameter values

generate the same execution plans. These plans, however, are still separately added to

the plan cache. The process of recompiling execution plans uses database resources,

increases the query duration time, and overflows the plan cache. These events, in turn,

cause plans to be evicted from the cache. This SQL Server behavior can be altered by

setting the forced parameterization option on the database (this is done by executing

the ALTER DATABASE T-SQL statement using the PARAMETERIZATION FORCED

option). Automatic tuning can analyze a query performance workload against a database

over time and recommend forced parameterization for the database. If over time

performance degradation has been observed, the option will be disabled.

Let’s see an example of automatic indexing in action. I’ll use a database I deployed

based on the AdventureWorks example to show this capability. You can try this out

yourself using the scripts found in the ch7_performance\tuning_recommendations.

You will need to edit the query_order_rating.cmd script to put in your server, database,

login, and password. These scripts assume you have completed the previous exercise for

concurrent INSERT execution as it uses the OrderRating table created in that exercise.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

http://www.microsoft.com/en-us/research/uploads/prod/2019/02/autoindexing_azuredb.pdf
http://www.microsoft.com/en-us/research/uploads/prod/2019/02/autoindexing_azuredb.pdf

367

Here is the main issue when using these scripts. It takes time and patience. Why? Our

algorithms don’t just recommend indexes based on a single query and single execution.

We look at query workloads over time and for frequent executions to decide if an index

makes sense. Therefore, when you try this yourself, you will need to let this script run to

completion (it runs thousands of iterations). When I did this within 24 hours, I saw the

information I’m about to show you from the Azure portal:

	 1.	 See recommendations in the Azure portal.

After running the workload and waiting for 24 hours, I saw

recommendations how up in the Azure portal similar to

Figure 7-24.

I can click Performance overview in the Resource menu of the

database to visually see information from the Query Store and a

look at Recommendations. This looks similar to Figure 7-25.

Figure 7-24.  Index recommendation notification in the Azure portal

Chapter 7 Monitoring and Tuning Performance for Azure SQL

368

The Azure portal offers another visualization for query

performance called Query Performance Insights from the

Resource Menu as seen in Figure 7-26.

You can see in this figure a list of top queries consuming resources

and a suggestion at the top of the screen to improve performance.

Figure 7-25.  Performance overview from the Azure portal

Figure 7-26.  Query performance insights from the Azure portal

Chapter 7 Monitoring and Tuning Performance for Azure SQL

369

The Azure portal can also take you directly to Performance

recommendation from the Resource menu as seen in Figure 7-27.

You can see here specific recommendations for indexes, possible

impact on performance, and history of any automatic tuning

actions. You can also see in the command bar an option to select

Automate.

To this point, everything is a recommendation. If you select

Automate, you will be presented options to enable automation

of automatic plan correction force plans, creating, and dropping

indexes. This screen will look like Figure 7-28.

Figure 7-27.  Performance recommendations from the Azure portal

Chapter 7 Monitoring and Tuning Performance for Azure SQL

370

You can configure Automatic Tuning options at the logical

server or database level. You can also view automatic tuning

options through the catalog view sys.database_automatic_
tuning_options. You can view all the columns for this catalog

view at https://docs.microsoft.com/en-us/sql/relational-

databases/system-catalog-views/sys-database-automatic-

tuning-options-transact-sql?view=sql-server-ver15.

If you would have had create index turned on for this database, an

index would have been automatically created.

If you go back and look at the recommended index, you can view

more details as seen in Figure 7-29.

Figure 7-28.  Setting automatic tuning options

Chapter 7 Monitoring and Tuning Performance for Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-automatic-tuning-options-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-automatic-tuning-options-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-automatic-tuning-options-transact-sql?view=sql-server-ver15

371

You can apply the index recommendation or even view the T-SQL

script behind the operation as seen in Figure 7-30.

Figure 7-30.  T-SQL script for index recommendations

Figure 7-29.  Details of a create index recommendation

Chapter 7 Monitoring and Tuning Performance for Azure SQL

372

You can see an online index is the default method used for

automatic indexing. One thing I love about automatic indexing

is that the service will run behind the scenes to monitor your

workload performance after the index is applied. If performance

degrades, a recommendation (or automation) can be provided to

remove the index.

�Summary
To deliver the best performance for you application, you need the capabilities and

monitor tools that are tried and proven from SQL Server. Azure SQL gives you that and

more, including capabilities and tools specific to Azure.

Azure SQL gives you the controls and options to accelerate and tune performance

including the ability to scale easily with no database migration required.

Finally, Azure SQL comes with Intelligent Performance capabilities built into the

query processor and services that leverage the power of Query Store from your database.

In the next chapter, we will explore and dive deep into the final core engine

capability of Azure SQL to ensure your deployment is highly available and ensure you

have the tools you need for disaster recovery.

Chapter 7 Monitoring and Tuning Performance for Azure SQL

	Chapter 7: Monitoring and Tuning Performance for Azure SQL
	Performance Capabilities
	Max Capacities
	Indexes
	In-Memory OLTP
	Partitions
	SQL Server 2019 Enhancements
	Intelligent Performance

	Configuring and Maintaining for Performance
	Tempdb
	Database Configuration
	Files and Filegroups
	Max Degree of Parallelism
	Resource Governor
	Maintaining Indexes
	Maintaining Statistics

	Monitoring and Troubleshooting Performance
	Monitoring Tools and Capabilities
	Azure Monitor
	Dynamic Management Views (DMV)
	Extended Events (XEvent)
	Lightweight Query Profiling
	Query Plan Debugging
	Query Store
	Performance Visualization in Azure Portal

	Dive into DMVs and Extended Events
	DMVs Deep Dive
	XEvent at Your Service

	Performance Scenarios
	Running vs. Waiting
	Running

	Azure SQL Specific Performance Scenarios
	Log Governance
	Worker Limits
	Business Critical (BC) HADR Waits
	Hyperscale Scenarios

	Accelerating and Tuning Performance
	Scaling CPU Capacity
	I/O Performance
	Increasing Memory or Workers
	Improving Application Latency
	Tune Like It Is SQL Server

	Intelligent Performance
	Intelligent Query Processing
	Automatic Plan Correction
	Automatic Tuning

	Summary

