CHAPTER 7

Monitoring and Tuning
Performance for Azure

SQL

You now have seen how to secure your Azure SQL deployment. Another aspect to
ensure you have the best possible database for your application is understanding how
to monitor and tune performance. If you know SQL Server, here is some good news. The
engine that powers Azure SQL is the same one for SQL Server! This means that just about
any performance capability you need exists for Azure SQL. It also means that many of
the same tasks and skills you use for SQL Server apply to Azure SQL. In this chapter,
we will explore all the capabilities and tasks you normally use to monitor and tune
performance for a SQL Server and compare it with Azure SQL.

This chapter will contain examples for you to try out and use as you read along. For
you to try out any of the techniques, commands, or examples I use in this chapter, you
will need

e An Azure subscription.

e A minimum of Contributor role access to the Azure subscription.
You can read more about Azure built-in roles at https://docs.
microsoft.com/en-us/azure/role-based-access-control/built-
in-roles.

e Access to the Azure Portal (web or Windows application).

o Adeployment of an Azure SQL Managed Instance and/or an Azure
SQL Database as I did in Chapter 4. The Azure SQL Database I
deployed uses the AdventureWorks sample which will be required to
use some of the examples.

305
© Bob Ward 2021

B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_7

https://doi.org/10.1007/978-1-4842-5931-3_7#DOI
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://doi.org/10.1007/978-1-4842-5931-3_4

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

e To connect to Managed Instance, you will need a jumpbox or virtual
machine in Azure to connect. I showed you how to do this in Chapter 4
of the book. One simple way to do this is to create a new Azure Virtual
Machine and deploy it to the same virtual network as the Managed
Instance (you will use a different subnet than the Managed Instance).

e To connect to Azure SQL Database, I'm going to use the Azure VM [
deployed in Chapter 3, called bwsql2019, and configured for a private
endpoint in Chapter 6 (you could use another method as long as you
can connect to the Azure SQL Database).

o Installation of the az CLI (see https://docs.microsoft.com/en-us/
cli/azure/install-azure-cli?view=azure-cli-latest for more
details). You can also use the Azure Cloud Shell instead since az is
already installed. You can read more about the Azure Cloud Shell at
https://azure.microsoft.com/en-us/features/cloud-shell/.

¢ You will run some T-SQL in this chapter, so install a tool like SQL
Server Management Studio (SSMS) at https://docs.microsoft.
com/en-us/sql/ssms/download-sql-server-management-studio-
ssms?view=sql-server-ver1s. You can also use Azure Data Studio
athttps://docs.microsoft.com/en-us/sql/azure-data-studio/
download-azure-data-studio?view=sql-server-ver1s. Iinstalled
both SSMS and ADS in the bwsql2019 Azure Virtual Machine.

o For this chapter, I have script files you can use for several of the
examples. You can find these scripts in the ch7_performance folder
for the source files included for the book. I will also use the very
popular tool ostress.exe for exercises in this chapter which comes with
the RML Utilities. You can download RML from www.microsoft.com/
en-us/download/details.aspx?id=4511. Make sure to put the folder
where RML gets installed in your system path (which is by default C:\
Program Files\Microsoft Corporation\RMLUTils).

Performance Capabilities

Since the engine that powers Azure SQL is the same as SQL Server, just about any
performance capability is available to you. Having said that, I feel it is important to

306

https://doi.org/10.1007/978-1-4842-5931-3_4
https://doi.org/10.1007/978-1-4842-5931-3_3
https://doi.org/10.1007/978-1-4842-5931-3_6
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com/en-us/features/cloud-shell/
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
http://www.microsoft.com/en-us/download/details.aspx?id=4511
http://www.microsoft.com/en-us/download/details.aspx?id=4511

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

cover a few important areas that are similar and different that can affect your ability to
ensure maximum performance for your Azure SQL deployment. This includes maximum
capacities, indexes, In-Memory OLTP, Partitions, SQL Server 2019 performance
enhancements, and new Azure SQL Intelligent performance capabilities.

Max Capacities

When you choose a platform to install SQL Server, you typically size the resources you
need. In many cases, you plot out the maximum capacities you will need for resources
such as CPU, memory, and disk space. You may also ensure you have the correct
performance capabilities for I/O with regard to IOPS and latency.

In Chapters 4 and 5 of the book, I showed you all the options to choose, deploy, and
configure your Azure SQL Managed Instance and Azure SQL Database deployments. To
ensure you have the performance, you need keep these capacities in mind with Azure SQL:

o Azure SQL Managed Instance can support up to 80 vCores, ~400Gb of
memory, and a maximum storage of 8TB. The Business Critical tier is
limited to 4TB because that is the current maximum size we can store
on the local SSD drives of the nodes that host Managed Instance.

e Azure SQL Database can support up to 128 vCores, ~4TB Memory,
and a 4TB database using the M-Series.

o The Hyperscale deployment option for Azure SQL Database can
support up to 100TB database and unlimited transaction log space.

e Your decision on deployment options such as number of vCores
greatly affects other resource capacities whether it is a Managed
Instance or Database deployment. For example, the number of
vCores for a General Purpose Azure SQL Database affects the
maximum memory, maximum database size, maximum transaction
log size, and maximum log rate, among others.

Let’s stop here to help you get oriented. How can you see a chart or table to figure out
the limits for all these choices?

For a Managed Instance, go to this documentation page: https://docs.microsoft.
com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-
characteristics.

Figure 7-1 shows an example of the table that describes the resource limits (this may
be hard to read, but I wanted to squeeze as much as I could in a screenshot).

307

https://doi.org/10.1007/978-1-4842-5931-3_4
https://doi.org/10.1007/978-1-4842-5931-3_5
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-characteristics
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-characteristics
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-characteristics

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Feature General Purpose Business Critical
Number of vCores™ Gend: 8,16, 24 Gend: 8, 16, 24
Gen5: 4, 8, 16, 24, 32, 40, 64, 80 Gen5: 4, 8, 16, 24, 32, 40,64, 80
*Same number of vCores is dedicated for read-
only queries.
Max memory Gend: 56 GE - 168 GB (7GB/vCore) Gend: 56 GB - 168 GB (7GB/vCore)
Gen5: 20.4 GB - 408 GB (5.1GB/vCore) Gen5: 204 GB - 408 GB (5.1GB/vCore) for read-
Add more vCores to get more memory. write queries

+ additional 20.4 GB - 408 GB (5.1GB/vCore) for
read-only queries.
Add more vCores to get more memory.

Max instance storage - 2 TB for 4 vCores (Gen5 only) Gend: 1 T8

size (reserved) - 8 TE for other sizes Gen5:
-1TB for4, 8 16 vCores
- 2 TB for 24 vCores

-4 7B for 32, 40, 64, 80 vCores

Max database size Up to currently available instance size (max 2 TB - 8 TE Up to currently available instance size (max 1 TB -
depending on the number of vCores). 4 TE depending on the number of vCores).
Max tempDB size Limited to 24 GB/vCore (95 - 1,920 GB) and currently available Up to currently available instance storage size.

instance storage size.
Add more vCores to get more TempDB space.
Log file size is limited to 120 GB.

Max number of 100, unless the instance storage size limit has been reached. 100, unless the instance storage size limit has

databases per been reached.

instance

Max number of Up to 280, unless the instance storage size or Azure Premium 32,767 files per database, unless the instance

database files per Disk storage allocation space limit has been reached. storage size limit has been reached.

instance

Max data file size Limited to currently available instance storage size (max 2 TB - 8 Limited to currently available instance storage size
TB) and Azure Premium Disk storage allocation space. (upto 1TB - 4 TB).

Max log file size Limited to 2 TB and currently available instance storage size. Limited to 2 TB and currently available instance

storage size.

Data/Log IOPS Up to 30-40 K IOPS per instance®, 500 - 7500 per file 10K - 200 K (2500 IOPS/vCore)

(approximate) *Increase file size to get more IOPS Add more vCores to get better 10 performance.
Log write throughput 3 MB/s per vCore 4 MB/s per vCore

limit (per instance) Max 22 MB/s Max 48 MB/s

Data throughput 100 - 250 MB/s per file Not limited.

(approximate) *Increase the file size to get better |0 performance

Storage 10 latency 5-10ms 1-2 ms

(approximate)
In-memory OLTP Net supported Available, size depends on number of vCore

Max sessions 30000 30000

Figure 7-1. Resource capacities and limits for Azure SQL Managed Instance
308

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

What about Azure SQL Database? You can view a table for capacities and limits
based on vCores at https://docs.microsoft.com/en-us/azure/azure-sql/database/
resource-limits-vcore-single-databases like in Figure 7-2.

Is this page helpful?
General purpose - serverless compute - Gen5 PagRhee
& Yes 67 No
The serverless compute tier is currently available cn GenS hardware only.
In this article
Gen5 compute generation (part 1) General purpose - serverless
compute - Gen’
Compute size (service objective) GP5_Gen5_1 GP_5_Gens_2 GP5_Gen’ 4 GP_5_Gen5_6 GPS_Gen5 B Hyparscale - provisianed
S T o i =i B it b compute - Gend
Compute generstion Gens Gen§ Gens Gens Gens c"‘:m“"f:‘_“;__:g"“"’““
General purpose - provisioned
Min-max vCores 0541 05:2 054 0756 108 el g vl s
General - provisioned
Min-max memory (GE) 2023 2056 21012 22518 3200-24 b e
General purpese - provisioned
Min-max auto-pause delay (minutes) 60-10080 60-10080 60-10080 60-10080 60-10080 compute - Favd-saries
Business critical - provisioned
Columrstore support e Yes es Yes Yes compute - Gend
Business critical - provisioned
In-memary OLTP storage (GB) M Nfa LI N/A N/A compute - Gen3
Business critical - provisioned
Max clata size (GE} 512 1024 1024 1024 1536 compute - Meseries
Mext steps
Max log size {GB) 154 07 307 307 461
TempDB max data size (GB) 2 64 128 192 256
Storage type Rermote 550 Remaote 550 Rermote 550 Remacte 550 Remaote 550
1D latency {appresdmate) 5-7 s {write) 5-7 ms (write) 5-T s {write) 5-7 ms (write) 5-T ms (write)

5-10 ms fread) 5-10 ms (read) 5-10 ms fread) 5-10 ms (read) 5-10 ms (read)

Max data 1OPS ™ Ex.] B40 1280 1920 2560
Max bog rate (MBps) L 75 15 225 0
Max concument workers (requests) 75 150 300 450 600
Max concurment sessions 30,000 30,000 30,000 30,000 30,000
Nurriber of replicas 1 1 1 1 1
Multi-AZ N Nia NA LTCY A

Figure 7-2. Resource capacities and limits for Azure SQL Database

The default table is the first choice which is a Serverless compute tier. You can see
on the right-hand side of this figure you can choose different deployment options to see
what the capacity and limits for different options. Bookmark these documentation links.
I use them all the time. It is possible these limits will change over time as we evolve the
capabilities of Azure SQL services.

Keep in mind that some limits like memory are enforced by Windows Job Objects. I
mentioned this implementation in Chapter 4 of the book. Use the DMV sys.dm_os_job_
object to see the true limits for memory and other resources for your deployment.

309

https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases
https://doi.org/10.1007/978-1-4842-5931-3_4

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Tip I’'ma developer at heart, so | wanted a way to find out these capacities and
limits without looking at a table. The best method I could find is REST APIs. An
example is in our documentation at https://docs.microsoft.com/en-us/
rest/api/sql/capabilities/listbylocation. Once you deploy, you get to
see your resource limits with DMVs like sys.dm_user_db_resource_governance.

What if you make the wrong choice and need more capacity? The good news is that
you can make changes for Azure SQL Managed Instance and Database to get more (or
less) without any database migration required. You will see an example of this later in
this chapter. Just remember that a change for Managed Instance can take a significant
amount of time.

Note There are two exceptions to this statement about migration. First, you
cannot switch between Azure SQL Database and Azure SQL Managed Instance.
Second, if you deploy or switch to the Hyperscale service tier, you cannot switch
back.

Indexes

Anyone who works with SQL Server knows that without proper indexes, it is difficult to
obtain the query performance you need.

Every type of index option you can use in SQL Server is available to you with Azure
SQL, including clustered, non-clustered, online, and resumable indexes. You can read
an index primer at https://docs.microsoft.com/en-us/sql/relational-databases/
indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
and details on online indexes at https://docs.microsoft.com/en-us/sql/relational-
databases/indexes/perform-index-operations-online. Resumable online indexes
are a recent capability. You can read more at https://azure.microsoft.com/en-us/
blog/modernize-index-maintenance-with-resumable-online-index-rebuild/.

Columnstore indexes are nothing short of amazing. I continue to see customers
who just don’t take advantage of this capability. Columnstore index can accelerate read
query performance by 100x for the right workload. Columnstore indexes are supported
in every deployment option you choose with Azure SQL. One myth about columnstore is

310

https://docs.microsoft.com/en-us/rest/api/sql/capabilities/listbylocation
https://docs.microsoft.com/en-us/rest/api/sql/capabilities/listbylocation
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/perform-index-operations-online
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/perform-index-operations-online
https://azure.microsoft.com/en-us/blog/modernize-index-maintenance-with-resumable-online-index-rebuild/
https://azure.microsoft.com/en-us/blog/modernize-index-maintenance-with-resumable-online-index-rebuild/

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

that it is only an in-memory technology. The truth is that columnstore indexes perform
best when they fit in memory and use compression so more will fit in your memory
limits. However, a columnstore index does not have to all fit in memory. To get a start on
columnstore indexes, see the documentation at https://docs.microsoft.com/en-us/
sql/relational-databases/indexes/columnstore-indexes-overview.

In-Memory OLTP

In SQL Server 2014 (and greatly enhanced in SQL Server 2016), we introduced a
revolutionary capability for high-speed transactions called In-Memory OLTP (code
name Hekaton). In-Memory OLTP is available for Azure SQL Managed Instance and
Databases if you choose the Business Critical service tier.

Memory-optimized tables are the mechanism to use In-Memory OLTP. Memory-
optimized tables are truly in-memory as they must completely fit in memory. The
memory available for store memory-optimized tables is a subset of the memory limits
of your Business Critical service tier. The number of vCores for your deployment
determines what percentage of memory is available for memory-optimized tables.

Note Memory-optimized tables require a memory-optimized filegroup. Azure
SQL creates this filegroup for any databases even if it is not a Business Critical
(BC) service tier. This way, if you move to BC, the filegroup is set up for memory-
optimized tables.

New to In-Memory OLTP? Start with our documentation at https://docs.
microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-
usage-scenarios.

Partitions

Partitions are often used with SQL Server for tables with many rows to improve
performance by sub-dividing data by a column in the table. Consider these points for
partitions and Azure SQL:

o Partitions are supported for Azure SQL Database and Managed

Instance.

311

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

e You can only use filegroups with partitions with Azure SQL
Managed Instance (remember, Azure SQL Database only has a
primary partition, while Managed Instance supported user-defined
filegroups).

Need a primer for partitions? Start with this documentation page: https://docs.
microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-
and-indexes?view=sql-server-ver1s.

Note There are some interesting partitioning techniques with Azure SQL
Database not associated with SQL partitions you may want to look at as

a developer. Read more at https://docs.microsoft.com/en-us/
azure/architecture/best-practices/data-partitioning-
strategies#fpartitioning-azure-sql-database.

SQL Server 2019 Enhancements

SQL Server 2019 was a monumental release including several new capabilities.
Performance was an area of major investment for SQL Server 2019. Because Azure SQL
is versionless, almost all the performance enhancements for SQL Server 2019 are part of
Azure SQL including built-in engine features like Intelligent Query Processing. The one
exception is Tempdb Metadata Optimization. We first built this feature in SQL Server
2019 and have yet to integrate this into Azure SQL. But rest assured, we are working on
either baking this into Azure SQL as a default or providing an option to enable it.

Note It is important to know that some “hidden gem” capabilities like merry-go-
round scans and buffer pool ramp-up are all used behind the scenes for all editions
of Azure SQL.

Intelligent Performance

Over the past few releases of SQL Server, we have been striving to provide built-in
capabilities to enhance performance without you making application changes. Our goal
is to use data and automation to make smart decision to make your queries run faster.

312

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies#partitioning-azure-sql-database
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies#partitioning-azure-sql-database
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies#partitioning-azure-sql-database

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

We call this Intelligent Performance. These capabilities exist in Azure SQL, but we go
further in the cloud. We use the power of the cloud to offer even more. You learn more
details about Intelligent Performance for Azure SQL in the final section of this chapter.

Configuring and Maintaining for Performance

In Chapter 5 of this book, I described many of the options to configure an Azure SQL
Managed Instance and Database. There are some configuration options that can affect
performance worth diving deeper into. This includes the Tempdb database, configuring
database options, files and filegroups, max degree of parallelism, and Resource
Governor. In addition, it is worth reviewing the various tasks you would go through to
maintain indexes and statistics for database for Azure SQL as compared to SQL Server.

Tempdb

The Tempdb database is an important shared resource used by applications.

Ensuring the right configuration of tempdb can affect your ability to deliver consistent
performance. Tempdb is used the same with Azure SQL like SQL Server, but your ability
to configure tempdb is different, including placement of files, the number and size of
files, tempdb size, and tempdb configuration options.

In Azure SQL, Tempdb files are always automatically stored on local SSD drives, so
I/0 performance shouldn’t be an issue.

SQL Server professionals often use more than one database file to partition
allocations for tempdb tables. For Azure SQL Database, the number of files is scaled with
the number of vCores (e.g., 2 vCores = 4 files, etc.) with a max of 16. The number of files is
not configurable through T-SQL against tempdb but by changing the deployment option.
The maximum size of the tempdb database is scaled per number of vCores.

You get 12 files with Azure SQL Managed Instance independent of vCores, and you
cannot change this number. We are looking in the future to allow configuration of the
number of files for Azure SQL Managed Instance.

Tempdb database option MIXED_PAGE_ALLOCATION is set to OFF and
AUTOGROW_ALL_FILES is set to ON. This cannot be configured, but they are the
recommended defaults as with SQL Server.

Currently, the Tempdb Metadata Optimization feature in SQL Server 2019, which can
alleviate heavy latch contention, is not available in Azure SQL but is planned for the future.

313

https://doi.org/10.1007/978-1-4842-5931-3_5

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Database Configuration

AsIdescribed in Chapter 5, just about every database configuration option is available
to you with Azure SQL as it is with SQL Server through ALTER DATABASE and ALTER
DATABASE SCOPED configuration. Consult the documentation at https://docs.
microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql and
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-
scoped-configuration-transact-sql. You will see later in this chapter there are new
options specific to Azure SQL from ALTER DATABASE.

For performance, one database option that is not available to change is the recovery
model of the database. The default is full recovery and cannot be modified. This ensures
your database can meet Azure service-level agreements (SLAs). Therefore, minimal
logging for bulk operations is not supported. Minimal logging for bulk operations is
supported for tempdb.

Files and Filegroups

SQL Server professionals often use files and filegroups to improve I/0 performance
through physical file placement. Azure SQL does not allow users to place files on specific
disk systems. However, Azure SQL has resource commitments for I/O performance with
regard to rates, IOPS, and latencies, so abstracting the user from physical file placement
can be a benefit.

Azure SQL Database only has one database file (Hyperscale may have several),
and the size is configured through Azure interfaces. There is no functionality to create
additional files, but again you don’t need to worry about this given IOPS and I/0 latency
commitments.

Note Hyperscale has a unique architecture and may create one or more files
upon initial deployment depending on your vCore choice. For example, for an 8
vCore deployment, I've seen Hyperscale create multiple files totaling 40Gb. This
implementation may change, and you shouldn’t rely on it. Hyperscale simply
creates the files and size it needs to meet your requirements.

314

https://doi.org/10.1007/978-1-4842-5931-3_5
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Azure SQL Managed Instance supports adding database files and configuring sizes
but not physical placement of files. The number of files and file sizes for Azure SQL
Managed Instance can be used to improve I/0 performance. I will discuss more of the
details on how this works later in this chapter. In addition, user-defined filegroups are
supported for Azure SQL Managed Instance for manageability purposes such as use with
partitions and using commands like DBCC CHECKFILEGROUP.

Max Degree of Parallelism

Max degree of parallelism (MAXDOP), which can affect the performance of individual
queries, works the same in the engine for Azure SQL as SQL Server. The ability to
configure MAXDOP may be important to delivering consistent performance in Azure
SQL. You can configure MAXDOP in Azure SQL like SQL Server using the following
techniques:

o ALTER DATABASE SCOPED CONFIGURATION to configure
MAXDOP is supported for Azure SQL.

e sp_configure for “max degree of parallelism” is supported for
Managed Instance.

e MAXDOP query hints are fully supported.

e Configuring MAXDOP with Resource Governor is supported for
Managed Instance.

Read more about MAXDOP at https://docs.microsoft.com/en-us/sql/database-
engine/configure-windows/configure-the-max-degree-of-parallelism-server-
configuration-option?view=sql-server-ver1s.

Resource Governor

Resource Governor is a feature in SQL Server that can be used to control resource usage
for workloads through I/0, CPU, and memory. While Resource Governor is used behind
the scenes for Azure SQL Database, it is only supported for Azure SQL Managed Instance
for user-defined workload groups and pools. If you would like to use Resource Governor
in Azure SQL Managed Instance, consult our documentation at https://docs.
microsoft.com/en-us/sql/relational-databases/resource-governor/resource-
governor.

315

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Maintaining Indexes

Unfortunately, indexes for SQL don’t just maintain themselves, and they do

occasionally need maintenance. In fairness, index maintenance (specifically rebuild or
reorganization) does not have a single answer. I've seen many customers perform too
often a rebuild or reorganization when it is not necessary. Likewise, there can be many
times where these operations can help performance. You might consider looking at our
documentation on index fragmentation as one reason why index maintenance can make
sense: https://docs.microsoft.com/en-us/sql/relational-databases/indexes/
reorganize-and-rebuild-indexes.

Note I'm not telling the complete truth. For Azure SQL, there is a solution here
that can help with decisions on building or dropping indexes. But | won’t get too far
ahead. The tale of that story is at the end of the chapter.

Indexes for SQL Server occasionally need to be reorganized and sometimes rebuilt.
Azure SQL supports all the options you have for SQL Server to reorganize and rebuild
indexes including online and resumable indexes.

Online and resumable index operations can be extremely important to maintain
maximum application availability. Read all about these capabilities at https://docs.
microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-
index-operations.

Maintaining Statistics

Correct statistics can be the lifeblood for query performance. SQL Server offers options
to automatically keep statistics up to date based on database modification, and Azure
SQL supports all those options. Our documentation has a very detailed explanation on
how statistics are used for query performance at https://docs.microsoft.com/en-us/
sql/relational-databases/statistics/statistics.

One interesting aspect to automatic statistics updates is a database scoped
configuration we specifically introduced for Azure SQL to help improve application
availability. You can read about this in great detail from a blog post by my colleague
Dimitri Furman at https://techcommunity.microsoft.com/t5/azure-sql-database/
improving-concurrency-of-asynchronous-statistics-update/ba-p/1441687.

316

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics
https://techcommunity.microsoft.com/t5/azure-sql-database/improving-concurrency-of-asynchronous-statistics-update/ba-p/1441687
https://techcommunity.microsoft.com/t5/azure-sql-database/improving-concurrency-of-asynchronous-statistics-update/ba-p/1441687

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Monitoring and Troubleshooting Performance

If you want to ensure you have the best performance for a SQL application, you need to
learn how to monitor and troubleshoot performance scenarios. Azure SQL comes with
the performance tools and capabilities of SQL Server to help you with this task. This
includes tools from the Azure ecosystem as well as capabilities built into the SQL Server
engine that powers Azure SQL.

In this part of the chapter of the book, you will learn not just monitoring capabilities
but how to apply them to performance scenarios for Azure SQL including examples.

Monitoring Tools and Capabilities

Are you used to using Dynamic Management Views (DMV) and Extended Events? Azure
SQL has what you need. Do you need to debug query plans? Azure SQL has all the
capabilities of SQL Server including Lightweight Query Profiling and showplan details.

Query Store has become the bedrock for performance tuning, and it is on by default
in Azure SQL. The Azure portal includes visualizations, such as Query Performance
Insight, to view Query Store data without needing tools like SSMS.

All this lines up to be a formidable set of tools and capabilities to help you monitor
and troubleshoot performance for Azure SQL.

We want to invest more to make Azure SQL monitoring the best experience as
possible. According to Alain Dormehl, Senior Program Manager for Azure SQL, “Our
continued investment into infrastructure and new features on the platform will continue
to drive the expectations from our customers for deep insights. On a daily basis we
gather a huge amount of telemetry data and our teams will continue to innovate in how
we present this data to customers, so that it adds value, but also to build smarter, more
innovative features for monitoring, alerting, and automating.”

Azure Monitor

Azure Monitor is part of the Azure ecosystem, and Azure SQL is integrated to support
Azure Metrics, Alerts, and Logs. Azure Monitor data can be visualized in the Azure Portal
or accessed by applications through Azure Event Hub or APIs. An example of why Azure
Monitor is important is accessing resource usage metrics for Azure SQL outside of SQL
Server tools much like Windows Performance Monitor. Read more about how to use

317

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Azure Monitor with Azure SQL in the Azure portal at https://docs.microsoft.com/
en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-
capabilities-in-the-azure-portal.

Dynamic Management Views (DMV)

Azure SQL provides the same DMV infrastructure as with SQL Server with a few
differences. DMVs are a crucial aspect to performance monitoring since you can view
key SQL Server performance data using standard T-SQL queries. Information such as
active queries, resource usage, query plans, and resource wait types are available with
DMVs. Learn more details about DMVs with Azure SQL later in this chapter.

Extended Events (XEvent)

Azure SQL provides the same Extended Events infrastructure as with SQL Server.
Extended Events is a method to trace key events of execution within SQL Server that
powers Azure SQL. For performance, extended events allow you to trace the execution
of individual queries. Learn more details about Extended Events with Azure SQL later in
this chapter.

Lightweight Query Profiling

Lightweight Query Profiling is a capability to examine the query plan and running state
of an active query. This is a key feature to debug query performance for long-running
statements as they are running. This capability cuts down the time for you to solve
performance problems vs. using tools like Extended Events to trace query performance.
Lightweight Query Profiling is accessed through DMVs and is on by default for Azure
SQL just like SQL Server 2019. Read more about Lightweight Query Profiling at https://
docs.microsoft.com/en-us/sql/relational-databases/performance/query-
profiling-infrastructure?view=sql-server-ver1s#lwp.

Query Plan Debugging

In some situations, you may need additional details about query performance for

an individual T-SQL statement. T-SQL SET statements such as SHOWPLAN and
STATISTICS can provide these details and are fully supported for Azure SQL as they
are for SQL Server. A good example of using SET statements for query plan debugging

318

https://docs.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-capabilities-in-the-azure-portal
https://docs.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-capabilities-in-the-azure-portal
https://docs.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-capabilities-in-the-azure-portal
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15#lwp
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15#lwp
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15#lwp

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

can be found at https://docs.microsoft.com/en-us/sql/t-sql/statements/set-
statistics-profile-transact-sql. In addition, looking at plans in a graphical or XML
format is always helpful and completely works for Azure SQL. Learn more at https://
docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-
estimated-execution-plan?view=sql-server-ver1s.

Query Store

Query Store is a historical record of performance execution for queries stored in the user
database. Query Store is on by default for Azure SQL and is used to provide capabilities
such as Automatic Plan Correction and Automatic Tuning. SQL Server Management
Studio (SSMS) reports for Query Store are available for Azure SQL. These reports can be
used to find top resource consuming queries including query plan differences and top
wait types to look at resource wait scenarios. I will show you an example of using the
Query Store in this chapter with Azure SQL. If you have never seen or used Query Store,
start reading at https://docs.microsoft.com/en-us/sql/relational-databases/
performance/monitoring-performance-by-using-the-query-store.

Performance Visualization in Azure Portal

For Azure SQL Database, we have integrated Query Store performance information

into the Azure Portal through visualizations. This way, you can see some of the same
information for Query Store as you would with a client tool like SSMS by using the Azure
Portal with an option called Query Performance Insight. I'll show you an example of
using these visuals in the portal later in the chapter. For now to get started using it, check
out our documentation at https://docs.microsoft.com/en-us/azure/azure-sql/
database/query-performance-insight-use.

Dive into DMVs and Extended Events

Dynamic Management Views (DMV) and Extended Events (XEvent) have been the
bedrock of diagnostics including performance monitoring and troubleshooting for SQL
Server for many years. I can truthfully tell you that DMV and XEvent technology all
started with the brains of folks like Slava Oks and Conor Cunningham so many years ago.
Many on the engineering team have worked, molded, and shaped these technologies,
but I remember being there from the beginning with Slava and my colleague for many

319

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statistics-profile-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statistics-profile-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-estimated-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-estimated-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-estimated-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use
https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

years Robert Dorr working on these technologies when we were in Microsoft support
together. DMVs and XEvent are very important technologies to support performance
monitoring and troubleshooting for Azure SQL because Azure SQL is powered by the
SQL Server engine and the SQL Server engine powers Azure SQL Managed Instance and
Database.

Let’s dive a bit deeper into what DMV and XEvent capabilities are the same and new
for Azure SQL vs. SQL Server.

DMVs Deep Dive

Let’s dive deeper into DMV for Azure SQL vs. SQL Server across Azure SQL Managed
Instance and Database.

Azure SQL Managed Instance

All DMVs for SQL Server are available for Managed Instance. Key DMVs like sys.
dm_exec_requests and sys.dm_os_wait_stats are commonly used to examine query
performance.

One DMV is specific to Azure called sys.server_resource_stats and shows historical
resource usage for the Managed Instance. This is an important DMV to see resource
usage since you do not have direct access to OS tools like Performance Monitor. You can
learn more about sys.server_resource_stats at https://docs.microsoft.com/en-us/
sql/relational-databases/system-catalog-views/sys-server-resource-stats-
azure-sql-database?view=azuresqldb-current.

Azure SQL Database

Most of the common DMVs you need for performance including sys.dm_exec_
requests and sys.dm_os_wait_stats are available. It is important to know that these
DMVs only provide information specific to the database and not across all databases for
alogical server.

sys.dm_db_resource_stats is a DMV specific to Azure SQL Database and can
be used to view a history of resource usage for the database. Use this DMV similar
to how you would use sys.server_resource_stats for a Managed Instance. I will show
you how to use this DMV in an example later in this chapter. For now, you can
read more at https://docs.microsoft.com/en-us/sql/relational-databases/
system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-
database?view=azuresqldb-current.

sys.elastic_pool_resource_stats is similar to sys.dm_db_resource_stats but can be
used to view resource usage for elastic pool databases.

320

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

DMVs You Will Need

There are a few DMVs worth calling out you will need to solve certain performance
scenarios for Azure SQL:

sys.dm_io_virtual_file_stats is important for Azure SQL since you don’t have direct
access to operating system metrics for I/O performance per file.

sys.dm_os_performance_counters is available for both Azure SQL Database and
Managed Instance to see SQL Server common performance metrics. This can be used to
view SQL Server Performance Counter information that is typically available in Windows
Performance Monitor.

sys.dm_instance_resource_governance can be used to view resource limits for a
Managed Instance. You can view this information to see what your expected resource
limits should be without using the Azure portal.

sys.dm_user_db_resource_governance can be used to see common resource
limits per the deployment option, service tier, and size for your Azure SQL Database
deployment. You can view this information to see what your expected resource limits
should be without using the Azure portal. I'll show you an example of looking at this
DMV in an example. For now, you can read more at https://docs.microsoft.com/en-
us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-
Tresource-governor-azure-sql-database?view=azuresqldb-current.

DMVs for Deep Troubleshooting

These DMVs provide deeper insight into resource limits and resource governance for
Azure SQL. They are not meant to be used for common scenarios but might be helpful
when looking deep into complex performance problems:

e sys.dm_user_db_resource_governance_internal (Managed
Instance only)

o sys.dm_resource_governor_resource_pools_history_ex
e sys.dm_resource_governor_workload_groups_history_ex

Geek out with these DMVs. The last two DMVs provide historical information across
time (right now about 30 minutes). Be warned when using these DMVs. We kind of
built these for our internal purposes to debug issues with Azure to look at problems like
background activity vs. user load. So don’t be surprised if we change these to suit our
needs to ensure we provide a great database service.

321

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

XEvent at Your Service

Extended Events (XEvent) was introduced as the new tracing mechanism for SQL Server
in SQL Server 2005 to replace SQL Trace. XEvent today supports some 1800+ trace points
in the SQL Server engine. XEvent powers other capabilities including SQL Audit and
Advanced Threat Protection (ATP).

Extended Events for Azure SQL Managed Instance

Extended Events can be used for Azure SQL Managed Instance just like SQL Server
by creating sessions and using events, actions, and targets. Keep these important points

in mind when creating extended event sessions:
o All events, targets, and actions are supported.

o File targets are supported with Azure Blob Storage since you don’t
have access to the underlying operating system disks.

e Some specific events are added for Managed Instance to trace events
specific to the management and execution of the instance.

You can use SSMS or T-SQL to create and start sessions. You can use SSMS to
view extended event session target data or the system function sys.fn_xe_file_target_
read_file.

Let’s peek at how XEvent is used behind the scenes in Managed Instance to power
Advanced Threat Protection (ATP). I had disabled Advanced Data Security from my
Managed Instance and then enabled it again using the portal and techniques I described
in Chapter 6 of the book. I then used my jumpbox (my Azure VM I showed you how to
deploy in Chapter 4 of the book) to bring up SSMS and look at XEvent sessions in Object
Explorer. Figure 7-3 shows the definition of a new session that shows up when you
enable Advanced Data Security.

322

https://doi.org/10.1007/978-1-4842-5931-3_6
https://doi.org/10.1007/978-1-4842-5931-3_4

Connect~ § *F 8 T & +

ELT gl o2 T 5oRied 194, ltak

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

@ ® Databases
@ ™ Seeurity
@ = Server Objects
i # Replication
£ o Managernent
& & Resource Govemor
& Extended Events
™ Sesshons
% AbwaysOn_health
@t wystern_hualih

8 SO Server Logs
& Database Mail
@ ™ Integration Services Cataloge
& SOL Server Agent
& [Xevent Profiler

i TPS TdService session contral
tm TPS_TdService session traffic

R

MR S0 Cuenys sl hewandog (124)) = >

SCREATE EVENT SESSION [TPS_TdService_session_traffic] ON SERVER

ADD EVENT sqlazure.distinct_guery_completed(
ACTION(sqlserver.client_app_name,sqlserver.database_name,sqlserver.num_response_rows,sqlserver.username)
WHERE ([database_id]>=(5) AND [database_id]<=({32763) AND [peer_address]<:'<internal:" AND [peer_address]

WITH (MAX_MEMORY=1024 KB,EVENT_RETENTION_MODE=ALLOW_MULTIPLE_EVENT_LOSS,MAX_DISPATCH_LATENCY=18 SECONDS,MAX_

GO

Figure 7-3. XEvent session to help track queries for Advanced Threat Protection

(ATP)

Warning You are the administrator of this SQL Server and have permissions to
delete that XEvent session. If you do this, you will effectively disable us from serving
you ATP needs. To get the XEvent session back, disable and enable Advanced Data
Security from the portal. This session for ATP is part of the solution we use internally.
Don’t rely on its definition or output as we may change this in the future.

There is another XEvent session defined which is used for availability purposes

called TPS_TdService_session_control. You can look at the event definition but don'’t rely

on this. We use this internally and may change it in the future. You will also notice the

system_health session and AlwaysOn_health session which are normally with any SQL

Server. I'll take more about system_health in Chapter 8 of the book. AlwaysOn_health is

not started and not used for a Managed Instance.
Extended Events for Azure SQL Database
Extended Events can be used for Azure SQL Database just like SQL Server by creating

sessions and using events, actions, and targets. Keep these important points in mind

when creating extended event sessions:

e Most commonly used Events and Actions are supported. For

example, the fundamental event sql_batch_completed is available

to you. Azure SQL Database offers ~400 events vs. SQL Server (and
Managed Instance) which has around 1800. Use the DMV sys.dm_
xe_objects to find out all objects available to you.

o File, ring_buffer, and counter targets are supported.

323

https://doi.org/10.1007/978-1-4842-5931-3_8

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

o File targets are supported with Azure Blob Storage since you don’t
have access to the underlying operating system disks. Here is a
blog from the Azure Support team for a step-by-step process to set
up Azure Blob Storage as a file target: https://techcommunity.
microsoft.com/t5/azure-database-support-blog/extended-
events-capture-step-by-step-walkthrough/ba-p/369013.

You can use SSMS or T-SQL to create and start sessions. You can use SSMS to view
extended event session target data or the system function sys.fn_xe_file_target_read_file.

Note The ability with SSMS to View Live Data is not available for Azure SQL
Database.

It is important to know that any extended events fired for your sessions are specific to
your database and not across the logical server. Therefore, we have a new set of catalog
views such as sys.database_event_sessions (definitions) and DMVs such as sys.dm_xe_
database_sessions (active sessions).

Take a look through our documentation for a complete list of differences for XEvent
between Azure SQL Database and SQL Server: https://docs.microsoft.com/en-us/
azure/azure-sql/database/xevent-db-diff-from-svr.

Performance Scenarios

In a galaxy, far, far away when I was in Microsoft Support, my longtime friend Keith
Elmore was considered our expert on performance troubleshooting. As we trained other
support engineers, Keith came up with an idea that most SQL performance problems
could be categorized as either Running or Waiting.

Note Keith’s work led to a report called the Performance Dashboard reports. That
report is now part of the Standard Reports for SQL Server Management Studio.
Unfortunately, the report relies on some DMVs which are not exposed for Azure
SQL Database. However, the reports will work for Managed Instance.

One way to look at this concept is with Figure 7-4.

324

https://techcommunity.microsoft.com/t5/azure-database-support-blog/extended-events-capture-step-by-step-walkthrough/ba-p/369013
https://techcommunity.microsoft.com/t5/azure-database-support-blog/extended-events-capture-step-by-step-walkthrough/ba-p/369013
https://techcommunity.microsoft.com/t5/azure-database-support-blog/extended-events-capture-step-by-step-walkthrough/ba-p/369013
https://docs.microsoft.com/en-us/azure/azure-sql/database/xevent-db-diff-from-svr
https://docs.microsoft.com/en-us/azure/azure-sql/database/xevent-db-diff-from-svr

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

It is just SQL: Running or waiting

sys.dm_db_resource_stats,
Sys.SErver_resource_stats, Check resoyrce
Portal/Powershell /Alerts consumption

|

e €7 m
|
T e “
limits. eviction

Query Store, sys.dm_os_wait_stats,
dm_exec_requests, sys.dm_exec_requests,
SOS_SCHEDULER_YIELD waits, sys.dm_os_waiting_tasks,
dm_exec_query_stats, Query Store

dm_exec_procedure_stats

Figure 7-4. The Running vs. Waiting for SQL performance

Let’s take a look at more of the details of this figure from the perspective of
performance scenarios.

Note As you look at DMVs in this section, remember that for Azure SQL Database
you are only looking at results for a specific database not across all databases for
the logical server.

Running vs. Waiting

Running or waiting scenarios can often be determined by looking at overall resource
usage. For a standard SQL Server deployment, you might use tools such as Performance
Monitor in Windows or top in Linux. For Azure SQL, you can use the following methods:

Azure Portal/PowerShell/Alerts

Azure Monitor has integrated metrics to view resource usage for Azure SQL. You
can also set up alerts to look for resource usage conditions such as high CPU percent.
Since we have integrated some Azure SQL performance data with Azure Monitor, having
alerts is a huge advantage to snapping into the ecosystem. Read more about how to set
up alerts with Azure Metrics at https://docs.microsoft.com/en-us/azure/azure-
monitor/platform/alerts-metric.

Figure 7-5 shows an example of an alert on high CPU for my database sent to my
phone from Azure Metrics.

325

https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-metric
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-metric

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

4:03 ol LTE)

< e

298-73 >

Text Message
Today 4:03 PM

All done. You're in bwalerts
group. Reply 'STOP' to stop all,
'‘Disable bwalerts' to stop grp,
'HELP' for info. Msg&data
rates apply

bwalerts:Fired:Sev3 Azure
Monitor Alert Alert for very
high CPU on my
AdventureWorks0406
database on
bobazuresglserver

@)I Text Message 0
P Oe®O e OC

Figure 7-5. Azure Metric alerts sent via SMS text

sys.dm_db_resource_stats

For Azure SQL Database, you can look at this DMV to see CPU, memory, and I/O
resource usage for the database deployment. This DMV takes a snapshot of this data
every 15 seconds. The reference for all columns in this DMV can be found at https://
docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-
views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current.
I'll use this DMV in an example later in this section.

326

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Note A DMV called sys.resource_stats works within the logical master to
review resource stats for up to 14 days across all Azure databases associated with
the logical server. Learn more at https://docs.microsoft.com/en-us/sql/
relational-databases/system-catalog-views/sys-resource-stats-
azure-sql-database?view=azuresqldb-current.

sys.server_resource_stats

This DMV behaves just like sys.dm_db_resource_stats, but it used to see resource
usage for the Managed Instance for CPU, memory, and I/O. This DMV also takes
a snapshot every 15 seconds. You can find the complete reference for this DMV at
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-
views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current.

Running

If you have determined the problem is high CPU utilization, this is called a running
scenario. A running scenario can involve queries that consume resources through
compilation or execution. Further analysis to determine a solution can be done by using
these tools:

Query Store

Query Store was introduced with SQL Server 2016 and has been one of the most
game-hanging capabilities for performance analysis. Use the Top Consuming Resource
reports in SSMS, Query Store catalog views, or Query Performance Insight in the Azure
Portal (Azure SQL Database only) to find which queries are consuming the most CPU
resources. Need a primer for Query Store? Start with our documentation at https://
docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-
performance-by-using-the-query-store.

sys.dm_exec_requests

This DMV has become perhaps the most popular DMV to use for SQL Server in
history. This DMV displays a snapshot of all current active requests, which could be a
T-SQL query or background task. Use this DMV in Azure SQL to get a snapshot of the state
of active queries. Look for queries with a state of RUNNABLE and a wait type of SOS_
SCHEDULER_YIELD to see if you have enough CPU capacity. Get the complete reference
for this DMV at https://docs.microsoft.com/en-us/sql/relational-databases/
system-dynamic-management-views/sys-dm-exec-requests-transact-sql.

327

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

sys.dm_exec_query_stats

This DMV can be used much like Query Store to find top resource consuming
queries but only is available for query plans that are cached where Query Store provides
a persistent historical record of performance. This DMV also allows you to find the query
plan for a cached query. Get the complete reference at https://docs.microsoft.com/
en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-
query-stats-transact-sql.

Since Query Store is not yet available for readable secondaries, this DMV could be
useful for those scenarios.

sys.dm_exec_procedure_stats

This DMV provides information much like sys.dm_exec_query_stats, except the
performance information can be viewed at the stored procedure level. Get the complete
reference at https://docs.microsoft.com/en-us/sql/relational-databases/
system-dynamic-management-views/sys-dm-exec-procedure-stats-transact-sql.

Once you determine what query or queries are consuming the most resources, you
may have to examine whether you have enough CPU resources for your workload or
debug query plans with tools like Lightweight Query Profiling, SET statements, Query
Store, or Extended Events tracing.

Waiting

If your problem doesn’t appear to be a high CPU resource usage, it could be the
performance problem involves waiting on a resource. Scenarios involving waiting on
resources are as follows:

I/0 Waits - This includes wait types such as PAGEIOLATCH latches (wait on
database I/0) and WRITELOG (wait on transaction log I/0).

Lock Waits - These waits show up as standard “blocking” problems.

Latch Waits - This includes PAGELATCH (“hot” page) or even just LATCH
(concurrency on an internal structure).

Buffer Pool limits - If you run out of Buffer Pool, you might run into unexpected
PAGEIOLATCH waits.

Memory Grants - A high number of concurrent queries that need memory grants or
large grants (could be from overestimation) could result in RESOURCE_SEMAPHORE
waits.

Plan Cache Eviction - If you don’t have enough plan cache and plans get evicted,
this could lead to higher compile times (which could result in higher CPU) or RUNNABLE
status with SOS_SCHEDULER_YIELD because there is not enough CPU capacity to
handle compiles. You also might see waiting on locks for schema to compile queries.

328

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-procedure-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-procedure-stats-transact-sql

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

To perform analysis on waiting scenarios, you typically look at the following tools:

sys.dm_os_wait_stats

Use this DMV to see what the top wait types for the database or instance are. This can
guide you on what action to take next depending on the top wait types. Remember that
for Azure SQL Database these are just waits for the database, not across all databases on
the logical server. You can view the complete reference at https://docs.microsoft.
com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-
os-wait-stats-transact-sql.

Note There is a DMV specific to Azure SQL Database called sys.dm_db_wait_
stats (it also works with Managed Instance, but | don’t recommend using it given
you are looking at the instance) which only shows waits specific for the database.
You might find this useful, but sys.dm_os_wait_stats will show all waits for the
dedicated instance hosting your Azure SQL Database.

sys.dm_exec_requests

Use this DMV to find specific wait types for active queries to see what resource they
are waiting on. This could be a standard blocking scenario waiting on locks from other
users.

sys.dm_os_waiting tasks

Queries that use parallelism use multiple tasks for a given query so you may need to
use this DMV to find wait types for a given task for a specific query.

Query Store

Query Store provides reports and catalog views that show an aggregation of the top
waits for query plan execution. The catalog view to see waits in Query Store is called sys.
query_store_wait_stats which you can read more about at https://docs.microsoft.
com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-
wait-stats-transact-sql. Itis important to know that a wait of CPU is equivalent to a

running problem.

Tip Extended Events can be used for any running or waiting scenarios but
requires you to set up an extended events session to trace queries and can be
considered a heavier method to debug a performance problem.

329

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-wait-stats-transact-sql

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Let’s look at an example of a performance scenario to show how to use tools and
capabilities I've discussed in this section to identify a performance scenario. I'll use the
following resources for this exercise:

o Thelogical server bwazuresqlserver as well as the database
bwazuresqldb. This database was deployed as a General Purpose 2
vCore database.

e The Azure VM called bwsql2019. I left my security settings from
Chapter 6 so this VM has access to the logical server and database.

o T'lluse SQL Server Management Studio (SSMS) to run some queries
and look at Query Store Reports.

Tip If you connect with SSMS to an Azure SQL Database logical server and with
SSMS choose a specific database, Object Explorer will only show you the logical
master and your database. If you connect to the logical master with a server admin
account, Object Explorer will show you all databases.

o TI'll use the Azure portal to view Azure Metrics and look at logs.

o For this chapter, I have script files you can use for several of the
examples. You can find scripts for this example (and the next one) in
the ch7_performance\monitor_and_scale folder for the source files
included for the book. I will also use the very popular tool ostress.
exe for exercises in this chapter which comes with the RML Utilities.
You can download RML from www.microsoft.com/en-us/download/
details.aspx?id=4511. Make sure to put the folder where RML gets
installed in your system path (which is by default C:\Program Files\
Microsoft Corporation\RMLUTils).

Let’s go through an example in a step-by-step fashion:

Note In some of these examples, you may see a different database name than
| deployed. I've run these exact examples with different database names so you
might see some different context in figures in this chapter.

330

https://doi.org/10.1007/978-1-4842-5931-3_6
http://www.microsoft.com/en-us/download/details.aspx?id=4511
http://www.microsoft.com/en-us/download/details.aspx?id=4511

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

1. Setup to monitor Azure SQL Database with a DMV query.

Tip To open a script file in the context of a database in SSMS, click the database
in Object Explorer and then use the File/Open menu in SSMS.

Launch SQL Server Management Studio (SSMS) and load a
query in the context of the database to monitor the Dynamic
Management View (DMV) sys.dm_exec_requests from the script
dmexecrequests.sql which looks like this:

SELECT er.session_id, er.status, er.command, er.wait_ type,
er.last wait type, er.wait resource, er.wait time

FROM sys.dm exec_requests er

INNER JOIN sys.dm _exec_sessions es

ON er.session_id = es.session_id

AND es.is user process = 1;

2. Load another query to observe resource usage.

In another session for SSMS in the context of the database, load
a query to monitor a Dynamic Management View (DMV) unique
to Azure SQL Database called sys.dm_db_resource_stats from a
script called dmdbresourcestats.sql:

SELECT * FROM sys.dm db resource_ stats;

This DMV will track overall resource usage of your workload
against Azure SQL Database such as CPU, I/0, and memory.
3. Edit the workload script.

Edit the script sqlworkload.cmd (which will use the ostress.exe
program).
I'll substitute my server, database, and password. The script will

look like this (without password substitution):

ostress.exe -Sbwazuresqlserver.database.windows.net
-itopcustomersales.sql -Uthewandog -dbwazuresqldb -P<password>
-n10 -12 -q

331

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

332

4. Examine the T-SQL query we will use for the workload. You can

find this T-SQL batch in the script topcustomersales.sql:

DECLARE @x int

DECLARE @y float

SET @x = 0;

WHILE (@x < 10000)

BEGIN

SELECT @y = sum(cast((soh.SubTotal*soh.TaxAmt*soh.TotalDue)
as float))

FROM SalesLT.Customer c

INNER JOIN SaleslLT.SalesOrderHeader soh
ON c.CustomerID = soh.CustomerID

INNER JOIN SaleslLT.SalesOrderDetail sod
ON soh.SalesOrderID = sod.SalesOrderID
INNER JOIN SalesLT.Product p

ON p.ProductID = sod.ProductID

GROUP BY c.CompanyName

ORDER BY c.CompanyName;

SET @x = @x + 1;

END

GO

This database is not large, so the query to retrieve customer and
their associated sales information ordered by customers with

the most sales shouldn’t generate a large result set. It is possible
to tune this query by reducing the number of columns from the
result set, but these are needed for demonstration purposes of this
activity. You will note in this query I don’t return any results to the
client but assign values to a local variable. This will put all the CPU
resources to run the query to the server.

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

5. Now let’s run the workload and observe its performance and results
from queries we loaded earlier. Run the workload by executing the
sqlworkload.cmd script from a command shell or PowerShell. The
script uses ostress to simulate ten concurrent users running the
T-SQL batch. You should see output that looks similar to this:

[datetime] [ostress PID] Max threads setting: 10000
[datetime] [ostress PID] Arguments:

[datetime] [ostress PID] -S[server].database.windows.net
[datetime] [ostress PID] -isqlquery.sql

[datetime] [ostress PID] -U[user]

[datetime] [ostress PID] -dbwazuresqldb

[datetime] [ostress PID] -pix¥kikokk

[datetime] [ostress PID] -n10

[datetime] [ostress PID] -r2

[datetime] [ostress PID] -q

[

datetime] [ostress PID] Using language id (LCID): 1024 [English_
United States.1252] for character formatting with NLS: 0x0006020F
and Defined: 0x0006020F

[datetime] [ostress PID] Default driver: SQL Server Native
Client 11.0

[datetime] [ostress PID] Attempting DOD5015 removal of
[directory]\sqlquery.out]

[datetime] [ostress PID] Attempting DOD5015 removal of
[directory]\sqlquery 1.out]

[datetime] [ostress PID] Attempting DOD5015 removal of
[directory]\sqlquery 2.out]

[datetime] [ostress PID] Attempting DOD5015 removal of
[directory]\sqlquery 3.out]

[datetime] [ostress PID] Attempting DOD5015 removal of
[directory]\sqlquery 4.out]
[datetime] [ostress PID] Attempting DOD5015 removal of
[directory]\sqlquery 5.out]
[datetime] [ostress PID] Attempting DOD5015 removal of
[directory]\sqlquery 6.out]

333

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

[datetime] [ostress PID] Attempting DOD5015 removal of
[directory]\sqlquery 7.out]

[datetime] [ostress PID] Attempting DOD5015 removal of
[directory]\sqlquery 8.out]

[datetime] [ostress PID] Attempting DOD5015 removal of
[directory]\sqlquery 9.out]

[datetime] [ostress PID] Starting query execution...
[datetime] [ostress PID] BETA: Custom CLR Expression support
enabled.

[datetime] [ostress PID] Creating 10 thread(s) to process queries
[datetime] [ostress PID] Worker threads created, beginning
execution...

6. Now use the DMVs that you loaded to observe performance
while this runs. First, run the query from dmexecrequests.sql
five or six times in the query window from SSMS. You will see
several users have status = RUNNABLE and last_wait_type =
SOS_SCHEDULER_YIELD. This is a classic signature of not having
enough CPU resources for a workload.

7. Observe the results from the query dmdbresourcestats.sql. Run
this query a few times and observe the results. You will see several
rows with a value for avg _cpu_percent close to 100%. sys.dm_db_
resource_stats takes a snapshot every 15 seconds of resource usage.

8. Letthe workload complete and take note of its duration. For me, it
measured around 1 minute and 30 seconds.

9. Let’s use the Query Store now to dive deeper into the performance
the queries in this workload. In SSMS in the Object Explorer, load
the Top Resource Consuming Queries as seen in Figure 7-6.

334

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

__5; Microsoft SQL Server Manag... Quick Launch (Ctrl+Q) P = 0 X
File Edit View Project Tools Window Help
* Q|8 -a-% | BNewQuery B R & 89| 2

Execute : 2

Object Explorer
Connect~ ¥ ¥ = Y &

3 [.database.windows.net (SQL S
e
+ System Databases
= @ AdventureWorks0406

Database Diagrams
Tables
Views
External Resources
Synonyms
Programmability
Query Store
@, Regressed Queries
@, Overall Resource Consumption
&, Top Resource Consuming Queries
& Queries With Forced Plans
@, Queries With High Variation
&, Query Wait Statistics
& Tracked Queries

[£] Extended Events

I Storage

¥ Security

Security

Integration Services Catalogs

Figure 7-6. Finding the Top Consuming Queries report for Query Store

10. Dive into the details of this report to see the performance of the
workload.

Select the report to find out what queries have consumed the most
average resources and execution details of those queries. Based on
the workload run to this point, your report should look something
like Figure 7-7.

335

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Top Resource C_reWorksAzurelT] = = BB

947915+
13
g 4TI
5 @ Planid
3 3
g 2 947905

947900

600PM 610PM 620PM 630PM 640PM &S0PM 700 PM
¥ 2 605PM G15PM 625PM 635PM GASPM 655 PM
query id .

Plan 3 [not forced] 15 Force Plan | 17 U1 o i

Query 1: Query cost (relative to the batch): 100%
SELECT By = sum{cast((soh.SubTotal*sch.TaxAmt®*sch.TotalDue) as float)) FROM SalesLT.Customer ¢ INNER JOIN SalasLT.3alesOrdecHeader sch ON ¢.Cu_

Frrean bu = -l: o = u&“ o = seun iC
mgee eun hpgrequte wied Losse _ Loaps e lar ™ Compute Sosiay — CLEEAT e
oo trmas Jeial ... nnar 32 Omyris Sesiar ™ Cmpmes faad [falasbedacheadect . (P faia
et Soan: 0 Cossi 3 4 o Cowni 8 4 oy e Cosni 4%
oAy r
L Cimreres Insex Sast icinrne. Cinemarsd Index Seat (Cimeme
[SalasOrsectetasi], (FE_Salen Cantoms stomms_Cant.
Coun: 37 4 Soet: 84 4

Figure 7-7. The Top Consuming Queries Report in SSMS

The query that is shown is the one from our workload. If you click
the bar chart, you will see details about the query including the
query_id which should look like Figure 7-8 (your query_id will
likely be different).

336

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Top Resource C..reWorksAzurelT] = %

»ur ending at 4

Metric Duration (ms) * | Statistic ' Total |.d. | Plan summary for query 13 |_a Ii; Eﬁ- L5 E
1000000~
800000 47915+
c
5 600000 9479101
% b Q Plan 1d
i -
400000
i Query Id 13
200000~ Total Duration (ms) 94730857
Execution Count 199971 e
01 Plan Count - 615PM 625PM 635PM 6:45PM 6:55PM 7:05 PM

PM 6:20PM 630PM 640PM 650 PM 700 PM

(@y float)SELECT @y = sumicast{[soh.SubTotal*soh. TaxAmt*soh. TotalDue) as float])

FROM SalesLT.Customer ¢
Plan 3 [not forced] |15 Force Plan
ot INNER JOIN SalesLT SalesOrderHeader soh k

ON c.CustomeriD = soh.CustomerlD

Query 1: Query cost (re,

SELECT @y = sum{cast((s¢ INNER JOIN SalesLT SalesOrderDetail sod jer ¢ INMER JOIN SalesLT.SalesOrderHeader ach ON c.Cu..l
ON soh.SalesOrderlD = sod SalesOrderlD & B) !
| INNER JOIN SalesLT Product p Cempute Scalar Ceapete Scalar 'f;"f“;‘: ':"‘"
ON p.ProductiD = sod ProductiD Sk ¢ Sostr 44 P
GROUP BY c.CompanyName A

ORDER BY c.CompanyMame

§ § | Clustered Index Seek (Cluste
[SalesbrderDetatl]. [PK_Sales [Customer] . [PK_Customer_Cust
Cost: 37 % costt 34 %

Figure 7-8. query_id from the Top Resource Consuming Query report

If I hover over the dot on the right-hand side of this report, you
will see performance statistics about the query which will look like

Figure 7-9.

337

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

wn summary for query 13 Iﬂ|f3|ﬁ|ﬂ'|7 _
9479157
947910
fé . Plan Id
947905 Plan Id 3
Execution Type Completed
947900 Plan Forced No
6:3(3r PM : t‘;:doI PM I 6:50I PM I Interval Start 2020-04-15 18:58:00.000 +00:00
6:35 PM 6:45 PM 6:55 Interval End 2020-04-15 18:59:00.000 +00:00
Execution Count 199971

Total Duration (ms) 947908.57

Avg Duration (ms) 474 h
NER JOIN SalesLT.SalesOrderHeader sch ON

Min Duration (ms) 037
8) 8 clustes Max Duration (ms) 89.36
Compute Scalar Compute Scalar [Salesad
Cost: O & Cost: O § Std Dev Duration (ms) &11
At Variation Duration (ms) 171

red Index Seek (Cluste
mer] . [PE_Customer Cust
Cost: 54 %

Figure 7-9. Query stats for a query plan

Your times may vary some. You can see here the average duration
was around 5ms for each query. You can also look at the bottom
of this report to see the query plan. There are not many rows in
these tables, so there is not much to tune for the query plan. 5ms
doesn’t sound bad for performance for each execution, but let’s
keep analyzing to see if it could be faster.

11. Look at the Query Wait Statistics Report for the Query Store.

Based on the decision tree earlier in this chapter, this appears to
be a running scenario. If the query plan can’t be tuned, how can
we make the query run faster? The Query Wait Statistics report
could help give us a clue (along with the DMV results we have
already observed).

If you then select Query Wait Statistics report from the Object
Explorer and hover over the Bar Chart that says CPU, you will see
something like Figure 7-10.

338

Obj r
Connect~ ¥ *¥ G
8 bobazuresqlmi.171d25625174.database.wind|
i ® Databases
Security
Server Objects
Replication
Management
& ® Integration Services Catalogs
@ SQL Server Agent
[XEvent Profiler
i bobazuresqlserver.database windows.net (S0
Databases
System Databases
® AdventureWorksAzurelT
& @ Database Diagrams
Tables
Views
External Resources
Synoryms
Programmability
Query Store
& Regressed Queries
@ Owverall Resource Consumption
@ Top Resource Consuming Cueries
& Queries With Forced Plans
& Queries With High Variation

“

By Cluery Wait Statistics

& Tracked Queries
i Extended Events
Storage
& ™ Security
@ bwhyperscale
@ bwserverless

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

total wait time

Based on: total wait time -

G00000-

SO0000-

400000

300000~

200000~

100000~ |

Ly

ast hour ending at 4,

Wait Category Id 1 /
Wait Category cpy

Avg Wait Time (ms)

Guery i st onorisacure) > [

389
Min Wait Time (ms) 0 \
Max Wait Time (ms) 88 |

Std Dev Wait Time (ms) 806
778091
199971

Total Wait Time (ms)
Execution Count

Query ID Total Wait Time (ms)
3 77809

Figure 7-10. Query Wait Statistic report from SSMS

So the top wait category is CPU, and the average time waiting for

this wait type is almost 4ms. A wait category of CPU is equivalent
to a wait type = SOS_SCHEDULER_YIELD.

Ifyou click the bar chart, you see the same query_id from our

workload. Notice the average wait time is just the same as the

average wait time for all CPU waits. And this average wait time is

almost the entire duration of the query as seen in Figure 7-11.

339

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Based on: total wait time - Wait caegory: CPU [o|@le|® = [i]. punsummaryfor quay 13 il
700000 791804
918024
600000 Tiase
916901
500000 791888+
‘E- 400000~ 7918867 O
=
£ 5| 791834
3 300000 [s 2| ani0n
= 200000+ Query Id {E] “
Avg Wait Time (ms) 389 h
10000 Min Wait Time (ms) [
iy s Sl T S 4 GAOPM GSOPM T00PM 710
Std Dev Wait Time (ms) 206 6:35 PM EcdS PM 655 PM 5P
Total Wait Time (ms) 778091)
Execution Count 193971 i 3% Foce
mt*3oh . Totalous) | (@Y oatSELECT @y = sumicastisoh SubTotal*soh TaxAmt*soh TotalOue) a5 0at) paer sch oN c.CustomecID = soh.CustomerID IN

FROM SalestT Customer ¢
INNER JOIN SalesLT SalesOrderHeader soh

cenr ™} ON c.CustomenD = soh.CustomeriD

INNER JOIN SalestT SalesOrderDetadl sod

+| ON soh SalesOrderiD = s0d SalesOrderD

INNER JOIN SalestT Product p

<2t ON p.ProductiD = sod ProductiD

*' 1 GROUP BY cCompanyName

ORDER BY c.CompanyName

Figure 7-11. Average wait time for CPU for a specific query

Now consider the evidence. The workload consumes CPU
resources for the database at almost 100%. The status of many
requests is RUNNABLE, and the top wait type for the workload
is SOS_SCHEDULER_YIELD. If the query cannot be changed,
then the most likely scenario is that you don’t have enough CPU
resources for your workload. Later in this chapter, we will use
Azure interfaces to make this query run faster.

12. Use Azure Monitor and metrics.

Let’s look at this performance scenario through the lens of Azure
Monitor and metrics. I'll navigate to my database using the
Azure portal. In the monitoring pane is an area called Compute
utilization. After my workload has run, my chart looks similar to
Figure 7-12.

Note | grabbed these numbers from a different test | had already done
using databases just like bwazuresqldb called AdventureWorks0406 and
AdventureWorksLT.

340

E AdventureWorks0406 (

1

B acivitylog

* T
& Duagnose and sohve problems
& Quick stary
& Cuery editon (preview)
Pawer PMarfarm

Power Bl (preview]
L Powerfipos (previen]
D Paow (praview)
Settings
@ configure
¥ Geo-Replication
& Connection srings
) Sync to ather databases
4 Add Azure Search
1 Properties

B Lods

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

JAdventureWorks0406)

[y copy ™D Restore T Bxpert Set server firewall [i] Delate

Resource group (change)
Satuz + Onling
Location JEmstUSZ
Subscription [change)

Subsription 10

+ Click here t2 adkd tags

Tags {rhange)

Compute utilization

»

£® Conrwctwith

Earbest restore pont | 20200129 1532 UTC

Aggregation type:

|99.82-. IO.IZ\ |0.05~.

Figure 7-12. Viewing CPU utilization from the Azure portal

This view comes from Azure Metrics. You can get a different angle

on this if you select Metrics from the resource menu and choose

CPU percentage as seen in Figure 7-13.

ﬁii AdvepmfeWorIGI.T (

security
@ Advanced data security

B Auditing

® Dynamic Data Masking

@ Transparent data encryption
Intelligent Pesformance

H* Performance cverview

E5 Performance recommendati...
B Cuery Performance insight

Automatic tuning

o~

B Disgnastic settings

Menitaring
B aderts

fid Metrics

® Logs

Support + roubleshooting
P Resource health

B Mew suppent requast

Figure 7-13.

/AdventureWorksLT) - Metrics

+ Mewehanm () Refresn (e Share S

= Chart Title »*

() Feedback

Documentation o X

Local Time : Last 24 howrs (Automatic)

e Addmetric g oo |2 tne chart " [DrillintoLogs ' (1) Newalertnile 5% Pinto cashboard " -+
TR MANIIPACE tm aaozaanon
Sqi datsbase standa. . v | Select meteic w | Satect .| 8)
_—
BASKC
Eiocked by Firewall
AU limi
g \
CAU used
Diata 103 percentage
Sehect 3 mé & Delow:
Data space allocated
= [lata crace uced
T o
) e -l
Filter + Spit o Plot multiple metrics o Build custom dashboards o

Apply filters and sphts to identidy

uthang stgTints

Create charts with mutiple metrics

and resources

Azure metrics for an Azure SQL Database

Pin charts to your dashboards

San Ut 0400

341

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

As you can see in the screenshot, there are several metrics you

can use to view with Metrics Explorer. The default view of Metrics
Explorer is for a 24-hour period showing a 5-minute granularity.
The Compute Utilization view is the last hour with a 1-minute
granularity (which you can change). To see the same view, select
CPU percentage and change the capture for 1 hour. The granularity
will change to 1 minute and should look like Figure 7-14.

‘i'i AdventureWorksLT (SAdventureWorksLT) - Metrics
1l 5 cateba

{- Newchart [) Refresh (o8 Share S () Feedback v Lo<al Time : Last hour (Automatic - 1 minuse)
Security - Avg CPU percentage for AdventureWorksLT &
P Advanced data security = *, . ™ o o =

~ Add metric T |5= Line chart A [Orillinto Logs v U Newalertrule =2 Pinto dashboara v -+
B auditing Clic e

=

: z AdventureionlT, CPU percentage, ivg @
& Dynamic Data Masking B Aventmsporks i

|8 Area chart
© Transparent data encryption Wbl 8t chan
Intelligent Performance % L Seatter chart
Peri: B an

B Diagnostic settings

D ogs
#® Logs v
Support + troubleshooting ?ﬂ.m-.c-u;ﬂ'

79.71%

& Resource health

£ Mew support request

Figure 7-14. Granular view of Azure Metrics

13. Use Azure Monitor Logs.

I've mentioned Azure Monitor includes another capability called
Azure Monitor Log. Azure Monitor Logs can provide a longer
historical record than Metrics.

Note There is a delay in seeing results in Logs, so it may take several minutes
for you to see results like this figure.

I can choose Logs from the Resource menu and run a Kusto Query
as seen in Figure 7-15 to see the same type of CPU utilization.

342

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

:m AdventureWorksAzurelT | /AdventureWorksAzurelT) - Logs 7 X
B= Sample querics © M-
Saream analytics (preview) ~ bobazures xpon
Sexurity
@ Advanced data security h
B dusiting Group by: Resource Type Filters: not selected
& Dynamic Data Maski .
5 Faveorites
Q Transparent dits encryption 3 on
A
Intell torman s
nisiigent Performance. Completed. Showing partial results from the last hour. @ ooeo1424 [81 records
0 Table MIChat | Sticked Column ~ TurwGenerated > Average ' Disghay time (UTC-06:00)

Monitoring
L

i Metrics

B Dugnostic w.ry
#® Log

Support + troubleshooting
T Resounce health maCenerated [Local Time]
New support réquest

® Average

Figure 7-15. Using Kusto to view resource usage from Azure Monitor Logs

I've talked about Kusto in the book before, but here is a link for you
to learn more: https://docs.microsoft.com/en-us/azure/data-
explorer/kusto/concepts/. There is another tool you can use to
run Kusto queries is Kusto Explorer which you can read more about
athttps://docs.microsoft.com/en-us/azure/data-explorer/
kusto/tools/kusto-explorer. At the time I was writing this chapter,
we plan to bring the Kusto query experience to Azure Data Studio!

Azure SQL Specific Performance Scenarios

Based on the Running vs. Waiting scenario, there are some scenarios which are specific
to Azure SQL.

Log Governance

Azure SQL can enforce resource limits on transaction log usage called log rate
governance. This enforcement is often needed to ensure resource limits and to meet
promised SLA. Log governance may be seen from the following wait types:

LOG_RATE_GOVERNOR - Waits for Azure SQL Database

343

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/tools/kusto-explorer
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/tools/kusto-explorer

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

POOL_LOG_RATE_GOVERNOR - Waits for Elastic Pools

INSTANCE_LOG_GOVERNOR - Waits for Azure SQL Managed
Instance

HADR_THROTTLE_LOG_RATE* - Waits for Business Critical and
Geo-Replication latency

Log rate governance is enforced inside the SQL Server engine before transaction
log blocks are submitted for I/O. The documentation has a good description of how this
works at https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-
limits-logical-server#transaction-log-rate-governance. Scaling your deployment
to a different service tier or vCore choice can give you more log rate for your application.

Worker Limits

SQL Server uses a worker pool of threads but has limits on the maximum number of
workers. Applications with a large number of concurrent users may need a certain
number of workers. Keep these points in mind on how worker limits are enforced for
Azure SQL Database and Managed Instance:

e Azure SQL Database has limits based on service tier and size. If you
exceed this limit, a new query will receive an error like

Msg 10928
The request limit for the database is <limit> and has been
reached.

e Azure SQL Managed Instance uses “max worker threads” so workers
past this limit may see THREADPOOL waits.

Note Managed Instance in the future may enforce worker limits similar to Azure
SQL Database.

344

https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Business Critical (BC) HADR Waits

Let’s say you deploy a Business Critical service tier for Azure SQL Managed Instance or
Azure SQL Database. Now you start running transactions that modify data and therefore
require logged changes.

You look at a DMV like sys.dm_exec_requests and see wait types like HADR_SYNC_
COMMIT. What? This wait type is only seen when you deploy a sync replica for an
Always On Availability Group (AG).

It turns out Business Critical service tiers uses an AG behind the scenes. Therefore,
itis not surprising to see these wait types normally, but it may surprise you if you are
monitoring wait types.

You can also see HADR_DATABASE_FLOW_CONTROL and HADR_THROTTLE_
LOG_RATE_SEND_RECV waits as part of Log Governance to ensure we can meet your
promised SLA.

Hyperscale Scenarios

I've talked about the Hyperscale architecture briefly in Chapter 4 of the book. I'll go even
deeper in Chapter 8. While Hyperscale has log rate limits just like other deployment
options, there are cases where we must govern transaction log generation due to a

page server or replica getting significantly behind (which would then affect our ability

to deliver our SLA). When this occurs, you may see wait types that start with the word
RBIO._.

Even though we don’t dive into the details of how to diagnose various aspects of the
Hyperscale architecture in this book, there are interesting capabilities for you to take
advantage of. For example, reads from page servers are now available in DMVs like sys.
dm_exec_query_stats, sys.dm_io_virtual_file_stats, and sys.query_store_runtime_
stats. In addition, the I/0 statistics in sys.dm_io_virtual_file_stats apply to RBEX cache
and page servers since these are the I/0 files that mostly affect Hyperscale performance.

Get all the details for Hyperscale performance diagnostics at https://docs.
microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-
diagnostics.

345

https://doi.org/10.1007/978-1-4842-5931-3_4
https://doi.org/10.1007/978-1-4842-5931-3_8
https://docs.microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-diagnostics
https://docs.microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-diagnostics
https://docs.microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-diagnostics

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Accelerating and Tuning Performance

You have seen performance capabilities for Azure SQL including monitoring tools.

You have also seen an example of how to apply your knowledge of monitoring and a
performance scenario to recognize a possible performance bottleneck. Let’s apply that
knowledge to learn how to accelerate and tune performance in the areas of scaling CPU
capacity, I/0 performance, memory, application latency, and SQL Server performance
tuning best practices.

Scaling CPU Capacity

Let’s say you ran into the performance problem with high CPU as I showed you in the
previous exercise in your data center. What would you do? If you were running SQL
Server on a bare-metal server, you would have to potentially acquire more CPUs or even
move to another server. For a virtual machine, you may be able to reconfigure the VM to
get more vCPUs, but what if the host server didn’t support that? You are possibly facing a
scenario to migrate your database to another VM on another host. Ouch.

For Azure SQL, you have the ability to scale your CPU resources with very simple
operations from the Azure portal, az CLI, PowerShell, and even T-SQL. And you can do
all of this with no database migration required.

For Azure SQL Database, there will be some small downtime to scale up your CPU
resources. It is possible with larger database sizes this downtime could be longer,
especially if we need to move your deployment to another host with enough resources
for your request. We also have to ensure your replicas have the same new resources
for Business Critical service tiers. Hyperscale provides a more constant scaling motion
regardless of database size.

Azure SQL Managed Instance can be a concern for duration of scaling. We may need
to build a new virtual cluster, so scaling operations can be significantly longer. This is
something to keep in mind and is why deploying with the right resources for Managed
Instance can be important. Managed Instance pools are much faster but still significantly
longer than Azure SQL Database in most cases.

Azure SQL Database Serverless compute tier provides the concept of autoscaling as I
described its implementation in Chapter 4 of the book.

Let’s go back where we left off in our exercise where we determined it is likely we
didn’t have enough CPU resources for our workload. Let’s scale it up and see if workload
performance improves:

346

https://doi.org/10.1007/978-1-4842-5931-3_4

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

1. Lookatscaling options in the Azure portal.

I'll navigate to my database in the Azure portal and select Pricing

tier as seen in Figure 7-16.

Home >

) bwazuresqldb (bwazuresqlserver/bwazuresqldb) =

SO database
£ Search (Ctil+/) | «
B overview -
B Activity log
9 Tags

2 Diagnase and solve problems
& Quick start

A Query editor (preview)
Power Platform

Gl Power BI (preview)

el Pawer Apps (preview)

A Power Automate (preview)

Settings

o] Configure

@ Geo-Replication

& Connection strings

[Sync to other databases
B Add Arure Search

HE Properties

B Locks

EX Export template

|D Copy) Restore T Export Q) Set server firewall E[Delete ﬁ Connectwith.. <7 Feedback

Resource group Q:ha e} = bwazuresgirg
Seatus : Online
Location : EastUS
Subscription {change} : DS-S0LBox-BobWardDemos_bobward R&D_60...
Subscription 1D

Tags {change) ¢ Envirenment ; Development

R S T TYT———
Show data for last: (IERED 24hours 7 days

Compute utilization

b " datab indows.net

Server name

Elastic poal : No elastic poal

Connection strings : Show database connection strings

Pricing tier : General Purpose: GenS, 2 vCores

Earliest restare point : 2020-07-12 0000 UTC \

Aggregation type: | pMax v

104
0%
%
%
%
0%
0%
%
E
W
%
9aMm w15 AM #3230 AM 45 AM
I percentacy —-wI o I q 10 perceniag
0« 0= 0=

Figure 7-16. Choosing a pricing or service tier for a General Purpose database

You are now presented with a screen to make changes to your

deployment. I showed you a screen similar to this in Chapter 4 as

I described all the options after you deploy. My options look like

Figure 7-17 where I can use a slider bar to increase the number of

vCores for my General Purpose deployment.

347

https://doi.org/10.1007/978-1-4842-5931-3_4

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Home >

A bwazuresqldb (bwazuresqlserver/bwazuresqldb) | Configure

SOL databasa

&* Disgnose and saive problems

&b Quick start

A1 Cuery editor (previea)
Power Platfonr

i Power BI [preview)

G Power Apps (previen)
D2 Power Automate [preview)
Settings

© Configuee

@ Geo-Rephication

Connection strings

9 Syme to other datasases
A Add Azuee Search

! Properties

B Locks

B Export template
Integrations.

< Sweam anaytecs (preview]
Sacuriy

© Advanced data security

£ Looking for bask, standard, premium?

Compute tier

Provisioned
Compate resources are pre-allocated

Billad per hour based an vCores configured

General Purpose
Sealable compute ko 1nensgE spTERL

500 - 20,000 KPS
W0 batency

(] Serverless

Hyperscale
On-demand sealsble oage

300 - 204800105
1-10 s tency

Compute rescurces ane auto-scaled

Biled per second based on vCores used

Compule Hardware

Click "Change configuration” 1 see details for al hart

options

Hardware Configuration

Save money

Gens

Change carfiguration

Save p 1 S5 with & Branie pos already cwn. Alveacty he & SOL Server Beesas? ()

Cives (@ No
NCOTES How do vores compare wit BTUST i /

L b B0 vCoees, up 1o 408 GU memany

aptiized ard compd

o

4 [e » 2

Data max sive ©

" t u =

=

268

Figure 7-17. Using the Azure portal to increase vCores

2. Scale vCores using T-SQL.

Business Critical
Hagh Bansactien e and high resibeney

5,000 - 204 800 K0PS5
12 ms basency

Database utilization

1,
o
on
o
£
o
am
=,
=
1=
»

BAM 7AM BAM SAM UiCHs®
Crpenmnage pan | Dotaspace s per:
bt ey
O« 0«

Cost surnmary

Gony - Genevel Fupeds (GF Gens 2

Cont er weee (ir LISDY a6
taresscecied %2
oo e G (8 USDY a1
MEE SO BT [G 416
LSTIMATLD €0ST / MONTH 380.03 v

Let’s use a more familiar method to make changes to SQL Server.
The T-SQL ALTER DATABASE statement has been enhanced for

Azure SQL Database to scale CPUs for the deployment.

To properly show a performance difference with Query Store

reports, I'm going to flush the current data in memory in the

Query store using the script flushquerystore.sql which executes
this T-SQL statement:

EXEC sp_query store flush db;

Now let’s use other T-SQL queries to view the current service or
pricing tier for our deployment. Execute the T-SQL script get_

service_objective.sql which uses the following T-SQL statements

(you need to substitute in your database name):

348

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

SELECT database_name,slo_name,cpu_limit,max_db_memory,
max_db_max_size_in _mb, primary max_log rate,primary group max_io,
volume local iops,volume pfs iops

FROM sys.dm user_db_resource_governance;

GO

SELECT DATABASEPROPERTYEX('<databasename>', 'ServiceObjective');
GO

The results from these queries look like this for my deployment:

database_name slo_name cpu_limit max_db_memory
max_db_max_size in mb primary max_log rate primary group max_io
volume local iops volume pfs iops

bwazuresqldb ~ SQLDB_GP_GEN5 2 SQLG5 2 7836980
4194304 7864320 640
8000 1000

(No column name)
GP_Gen5_2

You are seeing the same information you saw in the Azure portal
regarding CPUs, but sys.dm_user_db_resource_governance
effectively gives us a way to programmatically look at resource
limits you would read in our tables in the documentation.

The system function DATABASEPROPERTYEX has also been
enhanced to show you the ServiceObjective for a database.

You can decode the information from the slo_name column (slo
= service-level objective) or the system function. For example,
SQLDB_GP_GEN5_2_SQLGS5 is equivalent to General Purpose
Gen5 Hardware 2 vCores. SQLDB_OP... is used for Business
Critical.

We can use the T-SQL ALTER DATABASE documentation to see
all possible values for the service objective at https://docs.
microsoft.com/en-us/sql/t-sql/statements/alter-database-
transact-sql.

349

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql

CHAPTER 7

Home 2

MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Using this documentation, let’s change the tier or objective to
8 vCores using the script modify_service_objective.sql or the
T-SQL statement:

ALTER DATABASE <databasename> MODIFY (SERVICE OBJECTIVE =
'GP_Gen5_8");

This statement executes immediately because the modification to
scale to 8 vCores is an option that happens in the background.

If you navigate to the Azure portal, you will see a notification that
the operation is in progress as seen in Figure 7-18.

bwazuresqldb (bwazuresqlserver/bwazuresqldb) =

5QL database

[9 Search (Ctrl+/) | « [Copy " Restore T Export © Setserverfirewall [i] Delete /2 Connectwith.. < Feedback

@ Overview m @ Online - Updating database pricing tier

& Adwitylg
Resource group (change) Server name

@ Tags bwazuresqlrg bwazuresqlserver.database.windows.net

&? Diagnose and solve problems Status Elastic pool
Online Mo elastic pool

& ick start

Quick st Location Connection strings

B Query editor (preview) East US Show database connection strings
Subscription (change) Pricing tier

Power Platform D5-SQLBox-BobWardDemos_bobward_R&D_60843 General Purpose: Gen5, 2 vCores

. Subscription ID Earliest restore point
Lu! Power BI
il Powier Bl (preview) 2020-07-12 00:00 UTC
e Power Apps (preview) L

Tags (change)

(3 Power Automate (preview) Environment : Development

Cattinne

Figure 7-18. Scaling of Azure SQL Database in progress

350

In addition, you can use the T-SQL statement in the context of the
master database of the logical server to see operations against
databases:

SELECT * FROM sys.dm operation_status;

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

For my logical server, I got the following results:

session_activity id resource_type
resource_type desc major resource_id minor_ resource_id
operation state state_desc percent complete
error_code error desc error severity

error_state start_time last_modify time

D22C1CB5-C164-4BB5-BC18-EE593C1759AF 0

Database bwazuresqldb ALTER DATABASE
2 COMPLETED 100 0
0 0

2020-07-19 15:21:40.670 2020-07-19 15:22:14.423

You can read more details about sys.dm_operation_status
athttps://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-
operation-status-azure-sql-database.

Run the workload again.

Let’s run the workload again to see if there is any performance
differences. I'll use the same scripts, queries, and SSMS reports as
I did in the previous example in the chapter.

Run the script sqlworkload.cmd again from the command
prompt.

Observe resource usage with sys.dm_db_resource_stats.

Just as you did before running this query, several times should
show a lower overall CPU usage for the database.

Observe active queries with sys.dm_exec_requests.

You should see more RUNNING requests and less SOS_
SCHEDULER_YIELD waits.

Observe the overall workload duration.

Remember this ran in around 1 minute and 30 seconds before.
Now it should finish in around 25-30 seconds - clearly, a
significant performance improvement.

351

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-operation-status-azure-sql-database
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-operation-status-azure-sql-database
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-operation-status-azure-sql-database

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

7. Observe performance with Query Store Top Consuming Reports.

Using the same report as before, you can see two queries in the

report with a new query_id as seen in Figure 7-19.

25 resourt i LE
ot Statistic Tots! 810 ® 317] en summay for query 16 @ls]: g]=]=]
000000~
SO0000" 2249367
BO0OO0r 224934
700000- 224332
BO0000 224530~

total duraton
Total

224520 [Planid
49267
400000 - e Plan id f]
24
240 Execution Type Completed

g
el Plan Forced No
224520

625 PM 635 PM 645 PM.
630 PM 640 PM 6 Execution Count 199971

' o (wna) 2243757
Avp Dustion () 112
Min Duration (ms) a7
H5 Max Duration (ms} 5156
ciuseares 5% Dev Duration (ms) 138
satasca Variation Duration (ms) 123

Figure 7-19. Top Consuming Query report with a faster query

Even though there is a new query_id, it is the exact same query.
Because the SQL Server that hosts our database was restarted

for scaling (or a new SQL Server used), the query had to be
recompiled, hence a new query_id. This scenario is also where
the power of Query Store comes into play. Query performance is
stored in the user database, so even if we had to migrate your SQL
Server behind the scenes to a new node, no query performance
information is lost.

Interval Start 2020-04-15 1919:00.000 +00:00
2240E ' " g Interval End 2020-04-15 19:20:00.000 +00:00

Note The behavior of a different query_id is actually very interesting. The query
was recompiled, but in many cases, the same query_id would appear in the Query
Store. However, in this case, the first execution of the query was against a 2 vCore
deployment. In a 2 vCore deployment, maxdop is fixed at 1. When the back-end
server has a fixed maxdop of 1, queries will use a context setting with a bit that

is NOT set for Parallel Plan. With a deployment of 8 vCores, maxdop is fixed at 8.
In this case, the context_setting will include the bit set for Parallel Plan. Parallel
Plan is not an option set by the application but rather by a negotiation with the

352

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

server and indicates the query can use a parallel plan. In this case, the query_id is
different because the context_settings_id (see the catalog view sys.query_store_
query) is different for each execution. You can view context settings in the Query
Store using the catalog view sys.query_context_settings. You can see more
about context settings “bits” in the DMV sys.dm_exec_plan_attributes.

You can see from this figure a significantly faster average duration

for the query than before.

8. Look at Query Wait Statistics report.

If you use the Query Wait Statistics report, you can see a

significant less time waiting on CPU for the query as seen in
Figure 7-20.

jofaje|a

rd

: ole]: = !" |'

as floatl) FROM SalesLT,

T Max Wait Time (ms) 51
Std Dev Wait Time (ms) 129 | = soh.c

!7’ |..L | Plan summary for query 13
91854
91802
791850
91888
7918867
791884 ® !
k] 74
z o3
91882
791860+
791878
| 1918761 - : o .
T ——— 705 PM 715 PM
Query id "% DO P T10PM T20 M
Avg Wait Time (ms) 0,41 h
Min Wait Time (ms) 0 |53 Force P [17 -0 110

Total Wait Time (ms) 81867
Execution Count 199971

[T@y=

FROM SalestT.Customes ¢

INNER JOIN Salest T SalesOrderHaader sob
ON cCustomenD = soh CustomernD
INNER AOIN SalestT SalesOuder Detadl sod
ON soh.SalesCudenD = sod SalesOvdenD
INMER JOIN SalestT Product p

ON pProductiD) = sod ProductiD

GROUP BV cCompanyfiame

ORDER BY c CompanyName

*soh TaxAmt*soh fotalDue) as floatl)

Figure 7-20. Faster query with less waiting on CPU

9. Look at differences with Azure Metrics and Logs.

astomerID INNER JOTN JalesLT.

Let’s navigate to the Azure portal to see the difference in compute

utilization. Figure 7-21 shows the example.

353

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

[AdventureWorks0a06 (1

W Owndew

B ity log

* Tupn

£ Diogrie and schoe robbems
& Quick st

B Quary editge iprevien)

Perveer Platbarm

Poswer Bl (preview)

JAdventureWarks0406)

Compute utlization

Eebdtemibe sl

99.82+

sttty

099

[t ettty

0.05-

Figure 7-21. Azure compute after scaling CPUs

Aggregation b | Max

If you run the same Kusto query as before (there will be a lag in

seeing these results), you can see the performance difference as

well from Azure Logs like Figure 7-22.

o AdventureWorksAzurelT (

3 Stream anatytics (preview)

Secuty

¥ Advanced cata security

B Auciting

€ Dynamic Cata Masking

@ Transparent data encryption

Intelligent Perfarmance

€ Performance overview

B Performance recommendati...

B Query Performance Insight
Automatic tuning

Manétaring

B Alerts

il Mencs

-] E-wgr-mn'_senV
® Logs

Suppart + troubleshoating
P Resource healin

2 New support request

& Mew Query 17 +
bobazuresglserver/Adventur... Select Scope
Tables Filter %

D Search r

Group by: Resousce

Favorites

5 AsgDaivery

B AsgPusinfailurelogs

B amitomputsCiustartvent
B amiComputelontvent

= [P TTR——- -

B apprutiormicgstorspn

B AppfuttormSystemiogs

Type Filters: not selected

/AdventureWorksAzurelT) - Logs

8= Sample quenes [Query mplerer | 5

Time range : Last hour B.- @ Copylink v
AzureHetrics
| where Metrichame == 'cpu_percent'
| where R - TURELT™
| project TimeGenerated, fverage

| render columnchart

Completed. Showing partial results from the last hour.

B Table WIChat | Stacked Column TimaGanerated * Awtrige ™

2

00

: “‘

GOSPM 610PM 6I5PM G20PM GI5PM GIOPM EI5PM
TimeCenerated [UTC)

Average

@ Average

Figure 7-22. Using Kusto with Azure logs after scaling CPUs

354

e = Bport v g Pint F P

=
& 000002285 [54 records

Duspilay tame (UTC +00:00) [} Copy request 1D

Less CPU and
faster afer scaling

GAOPM GASPM GIOPM GSEPM 7O

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

What happens if we were to use the Serverless compute tier option for our workload?
Remember Serverless offers the ability to autoscale workloads and also pause idle compute.

I deployed a new Serverless database with a min vCore = 2 and max vCore = 8.

Turns out in most cases (not guaranteed), a Serverless database is deployed with the
number of SQL Schedulers = max vCores. So provided the Serverless database is not
paused, running the same workload as in this example gives you approximately the
same performance as the scaled General Purpose 8 vCore deployment. Here is the big
advantage of Serverless over the General Purpose deployment. Let’s say over a period
of two hours, this workload only consumes compute for 15 minutes of the 120 minutes.
For a General Purpose deployment, you will pay for compute for the entire 120 minutes.
For a Serverless deployment, you would pay for the 15 minutes of compute usage for 8
vCores, and for the remaining 90 minutes, you would pay for the equivalent compute
usage for the min vCores. In addition, if you have AutoPause enabled, you will not pay
for any compute costs for the last 60 minutes of that two-hour period (this is because the
smallest time before a Serverless deployment is paused if idle is one hour).

Figure 7-23 shows an example of CPU utilization for a Serverless deployment and
below it a graph of actual compute billed. Notice the highest average CPU billed is
during high compute utilization. After the utilization, a lower static billing is for min
vCores. Then following this is no compute is billed as the deployment is paused.

] bwazuresgldbserverless (bwazuresqlserver/bwazuresqldbserverless) = B X

e - [copy "D Rmsmors T bpont @ Secsenefeowal & Dolte 2P Coneactwish 7 Faectak
LR : I e . R sggragincntype (2 v]
B aaviyig
. Compute utilization 2
v

I!l-.lu\mv\—

Figure 7-23. Serverless scale and compute billing

355

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

1/0 Performance

1/0 performance can be critical to SQL Server applications and queries. Azure SQL
abstracts you from physical file placement, but there are methods to ensure you get the
I/0 performance you need.

Input/Output Per Second (IOPS) may be important to your application. Be sure
you have chosen the right service tier and vCores for your IOPS needs. Understand how
to measure IOPS for your queries on-premises if you are migrating to Azure (Hint: Look
at Disk Transfers/sec in Performance Monitor). If you have restrictions on IOPS, you
may see long I/0 waits. Scale up vCores or move to Business Critical or Hyperscale if you
don’t have enough IOPS.

I/0 latency is another key component for I/O performance. For faster I/0 latency for
Azure SQL Database, consider Business Critical or Hyperscale. For faster I/0 latency for
Managed Instance, move to Business Critical or increase file size or number of files for
the database.

Let’s take a minute to examine this last statement a bit more closely for Managed
Instance and file size or number of files. I've pointed you to this blog post from Jovan
Popovic before on the topic at https://medium.com/azure-sqldb-managed-instance/
increasing-data-files-might-improve-performance-on-general-purpose-managed-
instance-tier-6e90bad2ae4b.

The concept is that for the General Purpose tier, we store database and log files on
Azure premium storage disks. Turns out that for premium disks, the larger the size of
disk we use, the better performance we can get. So as you increase the size of your files,
we will use a level of Premium storage to meet those needs, which can result in more
IOPS or better throughput. I love Jovan’s blog post because he backs up his statements
with data using the popular open source tool HammerDB.

Configuration isn’t your only choice. Improving transaction log latency may require
you to use multi-statement transactions. Learn more at https://docs.microsoft.com/
en-us/azure/azure-sql/performance-improve-use-batching.

Increasing Memory or Workers

Memory is also an important resource for SQL Server performance and Azure SQL is no
different. The total memory available to you for buffer pool, plan cache, columnstore,
and In-Memory OLTP is all dependent on your deployment choice. As I described
earlier in this chapter, your highest memory capacity comes from an Azure SQL

356

https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://docs.microsoft.com/en-us/azure/azure-sql/performance-improve-use-batching
https://docs.microsoft.com/en-us/azure/azure-sql/performance-improve-use-batching

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Database Business Critical tier using the new M-Series hardware generation (around
4TB). For a Managed Instance, you can get around 400Gb of memory using the 80 vCore
deployment for Business Critical. Also keep in mind that In-Memory OLTP, which is only
available for Business Critical service tiers, has a maximum memory as a subset of the
overall maximum memory.

One key statement about memory that holds true for SQL Server or Azure SQL: If you
think you don’t have enough memory, be sure you have an optimal database and query
design. You may think you are running out of buffer pool after you scan a massive table.
Maybe indexes should be deployed to enhance performance of your query and use less
memory. Columnstore indexes are compressed, so use far less memory than traditional

indexes.

Note The Hyperscale vCore choice not only affects the amount of memory
available to the compute nodes but also the size of the RBEX cache which can also
affect performance.

I've described worker limits in this chapter already which is set to a maximum value
for Azure SQL Database, but Managed Instance uses “max worker threads” (but this
is something we may limit less than this in the future). As with SQL Server, running
out of workers may be an application problem. A heavy blocking problem for all users
may result in an error running out of workers when the problem is fixing the blocking
problem.

Improving Application Latency

Even if you configure your deployment for all your resource needs, applications may
introduce latency performance issues. Be sure to follow these best practices with Azure
SQL applications:

e Use aredirect connection type instead of proxy.

e Optimize “chatty” applications by using stored procedures or limiting
the number of query round trips through techniques like batches.

o Optimize transactions by grouping them vs. singleton transactions.

357

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Take a look at this documentation page for tuning applications for Azure SQL
Database: https://docs.microsoft.com/en-us/azure/azure-sql/database/
performance-guidance.

Tune Like It Is SQL Server

Azure SQL is still SQL Server. Even though you will see capabilities to help you with
performance built into the engine, there is almost never a substitute for ensuring you
tune your SQL Server queries and look at the following:

o Proper index design.
e Using batches.
o Using stored procedures.

o Parameterize queries to avoid too many cached ad hoc queries.

Process results in your application quickly and correctly (avoid the
dreaded ASYNC_NETWORK_IO waits).

Let’s use an exercise to demonstrate how in some cases, while it may seem natural
to try and change a service tier to improve performance, a change in your queries or
application can show benefits.

For this exercise, I'll use all the same tools, the same Azure SQL database
deployment (which now has 8 vCores), and the same VM to look at a performance
scenario for I/0. The scripts for this exercise can be found in the ch7_performance\
tuning_applications folder for the source files included.

Let’s consider the following application scenario to set up how to see this problem.
Assume that to support a new extension to a website for AdventureWorks orders to
provide a rating system from customers, you need to add a new table for a heavy set of
concurrent INSERT activity. You have tested the SQL query workload on a development
computer with SQL Server 2019 that has a local SSD drive for the database and
transaction log. When you move your test to Azure SQL Database using the General
Purpose tier (8 vCores), the INSERT workload is slower. You need to discover whether
you need to change the service objective or tier to support the new workload or look at
the application.

358

https://docs.microsoft.com/en-us/azure/azure-sql/database/performance-guidance
https://docs.microsoft.com/en-us/azure/azure-sql/database/performance-guidance

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Important | ran all of my tests for this exercise in an Azure VM which will use
the Redirect connection type by default. If you run this outside of Azure, the default
is Proxy. You will not see the same significant performance increase | observed if
you use Proxy, but you will see some gains. This is because the simulation of the
application requires enough round trips that Proxy can affect overall performance.

1.

Create a new table in the database.

I'll use SSMS in my Azure VM that is connected to Azure SQL
Database to add this table into the database based on the script
order_rating ddl.sql:

DROP TABLE IF EXISTS SaleslLT.OrderRating;
GO

CREATE TABLE SalesLT.OrderRating
(OrderRatingID int identity not null,
SalesOrderID int not null,

OrderRatingDT datetime not null,
OrderRating int not null,
OrderRatingComments char(500) not null);
GO

Load queries to monitor execution.

Using SSMS, load up queries in separate query windows to look
at DMVs using scripts in the context of the user database with
sqlrequests.sql, top_waits.sql, and tlog_io.sql. You will need to
modify tlog_io.sql to put in your database name.

These scripts use the following queries, respectively:

SELECT er.session id, er.status, er.command, er.wait type,
er.last wait type, er.wait resource, er.wait time

FROM sys.dm_exec_requests er

INNER JOIN sys.dm exec_sessions es

ON er.session id = es.session_id

AND es.is user process = 1;

359

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

SELECT * FROM sys.dm_os wait stats
ORDER BY waiting_tasks_count DESC;

SELECT io_stall write _ms/num_of writes as avg tlog io write ms, *
FROM sys.dm io virtual file stats
(db_id('<database name>'), 2);

The DMVs used in these queries are a great example of showing
you diagnostics in the context of a database based on instance-
level DMV diagnostics. It is one of the benefits when we moved to
the V12 architecture I mentioned in Chapter 1 of the book.

Tip You can also find your session_id and use the DMV sys.dm_exec_session_
wait_stats to see only the waits for your session. Note that this DMV will not show
waits for any background tasks. Learn more at https://docs.microsoft.
com/en-us/sql/relational-databases/system-dynamic-management-
views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-
server-veris.

3. Run the workload.

The workload to insert database can be found in the script order_
rating_insert_single.sql. The batch for this script looks like this:

DECLARE @x int;

SET @x = 0;
WHILE (@x < 500)
BEGIN

SET @x = @x + 1;

INSERT INTO SalesLT.OrderRating

(SalesOrderID, OrderRatingDT, OrderRating, OrderRatingComments)
VALUES (@x, getdate(), 5, 'This was a great order');

END

360

https://doi.org/10.1007/978-1-4842-5931-3_1
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

We will use ostress.exe to run this query with a script as found in
order_rating insert_single.cmd. For you to run this, you will
need to edit the script to put in your correct server, database,
login, and password.

Run this script from a command or PowerShell prompt.
4. Observe query performance and duration.
Using the DMV you loaded, you will likely observe the following:

e Many requests constantly have a wait_type of WRITELOG with a

value > 0.

e The WRITELOG wait type is one of the highest counts for
wait types.

o The avg time to write to the transaction log is somewhere
around 2ms.

The overall duration of running this workload on SQL Server 2019
on a computer with fairly normal SSD storage is around 10-12
seconds. The total duration of running thins using Azure SQL
Database with my deployed General Purpose 8 vCore database is
around 25 seconds. The latency of WRITELOG waits is affecting
the overall performance of the application.

Note The documentation states that the expected latency for General Purpose is
5-7ms for writes. Our diagnostics showed better performance, but it won’t be the
same as using an SSD storage system.

5. Decide on a resolution.

You could look at changing your deployment to Business Critical
or Hyperscale to get better I/O latency. But is there a more cost-
effective way? If you looked at the batch for order_rating insert_
single.sql, you will notice that each INSERT is its own commit

or singleton transactions. What if we grouped INSERTS into
transactions?

361

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

6. Change the application workload.

You can see a new workload method to group INSERTs into a
transaction with order_rating_insert.sql like the following:

DECLARE @x int;

SET @x = 0;

BEGIN TRAN;

WHILE (@x < 500)

BEGIN

SET @x = @x + 1;

INSERT INTO SalesLT.OrderRating

(SalesOrderID, OrderRatingDT, OrderRating, OrderRatingComments)
VALUES (@x, getdate(), 5, 'This was a great order');
END

COMMIT TRAN;

GO

Notice the use of BEGIN TRAN and COMMIT TRAN to wrap the
loop of INSERT statements.

You can now edit the order_rating_insert.cmd script with your
server, database, login, and password to run this workload change.

7. Run the new workload change.

When you run the new script (which is executing the same
number of INSERT statements), you will see

o Farless WRITELOG waits with lower average wait time
¢ A much faster overall duration

The workload runs even faster now (I've seen as fast as 3 seconds
overall).

This is a great example of ensuring you are looking at your application when running
it against Azure SQL vs. just assuming you need to make a deployment option change
and pay more in your subscription.

362

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Intelligent Performance

I mentioned earlier in this chapter our intention to build into the database engine
intelligent capabilities based on data and your application workload to get you faster
with no code changes.

Let’s take a look in more detail to these areas of Intelligent Query Processing,
Automatic Plan Correction, and Automatic Tuning.

Intelligent Query Processing

In SQL Server 2017, we enhanced the query processor to adapt to query workloads and
improve performance when you used the latest database compatibility level. We called
this Adaptive Query Processing (AQP). We went a step further in SQL Server 2019 and
rebranded it as Intelligent Query Processing (IQP).

IQP is a suite of new capabilities built into the Query Processor and enabled using
the latest database compatibility level. Applications can gain performance with no code
changes by simply using the latest database compatibility level. An example of IQP is
table variable deferred compilation to help make queries using table variables run faster
with no code changes. Azure SQL Database and Managed Instance support the same
database compatibility level required to use IQP (150) as SQL Server 2019. IQP is a great
example of a cloud-first capability since it was first adopted by customers in Azure before
it was released in SQL Server 2019.

I covered this topic extensively in the book SQL Server 2019 Revealed. You can go run
any of these examples from https://github.com/microsoft/bobsql/tree/master/
sql2019book/ch2_intelligent performance against Azure SQL to see how this works
in action.

In addition, the documentation covers this topic extensively at https://docs.
microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-
processing.

At the time of the writing of this book, Scalar UDF inlining was not yet available in
Azure SQL Database, but probably by the time you are reading this, it will be available.

I asked Joe Sack who is not only the technical reviewer of this book but also the
program manager lead for IQP about the significance of IQP for Azure SQL. According
to Joe, “Over the last four years, the query processing team delivered two waves of
Intelligent QP features - all with the objective to improve workload performance

363

https://github.com/microsoft/bobsql/tree/master/sql2019book/ch2_intelligent_performance
https://github.com/microsoft/bobsql/tree/master/sql2019book/ch2_intelligent_performance
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

automatically with minimal changes to application code. Today we're already seeing
millions of databases and billions of queries using IQP features. Just as one example,
we already have millions of unique query execution plans being executed hundreds
of millions of times per day that use the memory grant feedback feature. In Azure

SQL on a daily basis, this ends up preventing terabytes of query spills and petabytes
worth of overestimations for user queries. The end result is improved query execution
performance and workload concurrency.”

This area of improving our query processor to help your application is significant
for Azure SQL. As Joe tells it for the future, “We have a long-term plan and active
engineering investments to keep alleviating the hardest query processing problems that
customers face at-scale. We look at a myriad of signals in order to prioritize features -
including telemetry, customer support case volume, customer engagements and SQL
community member feedback. We have eight separate Intelligent Database-related
efforts underway in “wave 3’ and our plan is to light these efforts up in Azure SQL
Database first over the next few years.”

Automatic Plan Correction

In 2017, I stood on stage with Conor Cunningham at the PASS Summit and showed off
an amazing piece of technology for SQL Server 2017 to solve a performance problem
using automation with Query Store. Query Store has such rich data; why not use it with
automation?

What I showed on stage was a demonstration of a query plan regression problem
that can be automatically fixed.

Note You can see the code | used for this demonstration at https://github.
com/microsoft/bobsql/tree/master/demos/sqlserver/autotune.

A query plan regression occurs when the same query is recompiled and a new
plan results in worse performance. A common scenario for query plan regression are
parameter-sensitive plans (PSP), also known as parameter sniffing.

SQL Server 2017 and Azure SQL Database introduced the concept of Automatic Plan
Correction (APC) by analyzing data in the Query Store. When the Query Store is enabled
with a database in SQL Server 2017 (or later) and in Azure SQL Database, the SQL Server
engine will look for query plan regressions and provide recommendations. You can see

364

https://github.com/microsoft/bobsql/tree/master/demos/sqlserver/autotune
https://github.com/microsoft/bobsql/tree/master/demos/sqlserver/autotune

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

these recommendations in the DMV sys.dm_db_tuning recommendations. These
recommendations will include T-SQL statements to manually force a query plan when
performance was “in a good state.”

If you gain confidence in these recommendations, you can enable SQL Server to
force plans automatically when regressions are encountered. Automatic Plan Correction
can be enabled using ALTER DATABASE using the AUTOMATIC_TUNING argument.

For Azure SQL Database, you can also enable Automatic Plan Correction through
automatic tuning options in the Azure Portal or REST APIs. You can read more about
these techniques in the documentation. Automatic Plan Correction recommendations
are always enabled for any database where Query Store is enabled (which is the default
for Azure SQL Database and Managed Instance). Automatic Plan Correction (FORCE_
PLAN) is enabled by default for Azure SQL Database as of March 2020 for new databases.

You can read more about Automatic Plan Correction at https://docs.microsoft.
com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning.

Automatic Tuning

Technically, Automatic Plan Correction is part of a suite of services to use automation to
improve query performance with no code changes called Automatic Tuning. Automatic
Plan Correction works in SQL Server, Azure SQL Managed Instance, and Azure SQL
Database.

In Chapter 1 of this book, I talked about the history of how Automatic Tuning was
created. Azure SQL Database offers a unique feature of Automatic Tuning to help
automate creating and dropping indexes called automatic indexing.

Note Today automatic indexing is not available for Azure SQL Managed Instance.

This capability is known as Automatic Tuning for Azure SQL Database (also known
in some parts of the documentation as SQL Database Advisor). These services run as
background programs analyzing performance data from an Azure SQL Database and
are included in the price of any database subscription. Automatic Tuning will analyze
data from telemetry of a database including the Query Store and Dynamic Management
Views to recommend indexes to be created that can improve application performance.
Additionally, you can enable Automatic Tuning services to automatically create indexes
that it believes will improve query performance. Automatic Tuning will also monitor

365

https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning
https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning
https://doi.org/10.1007/978-1-4842-5931-3_1

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

index changes and recommend or automatically drop indexes that do not improve
query performance. Automatic Tuning for Azure SQL Database takes a conservative
approach to recommend indexes. This means that recommendations that may show
up in a DMV like sys.dm_db_missing_index_details or a query show plan may not
show up immediately as recommendations for Automatic Tuning. Automatic Tuning
services monitor queries over time and use machine learning algorithms to make
recommendations to truly affect query performance.

One downside to Automatic Tuning for index recommendations is that it does not
account for any overhead performance an index could cause insert, update, or delete
operations.

Note You can read an excellent paper for how automatic indexing is built by
our engineering team at www.microsoft.com/en-us/research/uploads/
prod/2019/02/autoindexing_azuredb.pdf.

One additional scenario in preview for Automatic Tuning for Azure SQL Database is
parameterized queries. Queries with non-parameterized values can lead to performance
overhead because the execution plan is recompiled each time the non-parameterized
values are different. In many cases, the same queries with different parameter values
generate the same execution plans. These plans, however, are still separately added to
the plan cache. The process of recompiling execution plans uses database resources,
increases the query duration time, and overflows the plan cache. These events, in turn,
cause plans to be evicted from the cache. This SQL Server behavior can be altered by
setting the forced parameterization option on the database (this is done by executing
the ALTER DATABASE T-SQL statement using the PARAMETERIZATION FORCED
option). Automatic tuning can analyze a query performance workload against a database
over time and recommend forced parameterization for the database. If over time
performance degradation has been observed, the option will be disabled.

Let’s see an example of automatic indexing in action. I'll use a database I deployed
based on the AdventureWorks example to show this capability. You can try this out
yourself using the scripts found in the ch7_performance\tuning recommendations.
You will need to edit the query_order_rating.cmd script to put in your server, database,
login, and password. These scripts assume you have completed the previous exercise for
concurrent INSERT execution as it uses the OrderRating table created in that exercise.

366

http://www.microsoft.com/en-us/research/uploads/prod/2019/02/autoindexing_azuredb.pdf
http://www.microsoft.com/en-us/research/uploads/prod/2019/02/autoindexing_azuredb.pdf

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

Here is the main issue when using these scripts. It takes time and patience. Why? Our
algorithms don’t just recommend indexes based on a single query and single execution.
We look at query workloads over time and for frequent executions to decide if an index
makes sense. Therefore, when you try this yourself, you will need to let this script run to
completion (it runs thousands of iterations). When I did this within 24 hours, I saw the
information I'm about to show you from the Azure portal:

1. Seerecommendations in the Azure portal.

After running the workload and waiting for 24 hours, I saw
recommendations how up in the Azure portal similar to
Figure 7-24.

i) AdventureWorksAzurelT | /hdventureWorksAzurelT) &
[y Copy "D Reswore F Expont Setserver firewall [i] Delete 4® Connectwith. 7 Feedback
B Overview
E Activity log
* By
£ Dasgnose and solve probiems e -} R
& Quick start L) wiage I o
et | cmssonssrang. | soeasoms

& Cuery editcr (preview) 100- 0. O

Platf Notifications (2 Database features
Power Platform Distabise ot S10rgE Netifications (2) & (

A hrd wac
Power Bl (praviey

ower Bl (preview) 182 MB [Ao] Recommendations (2)

feol PowerApps (praview) Miccwed sasce
T Createl
T Flow (preview) 2—_\52} 192 MB = index /
Wuirmrr Bovage soe Create a missing index 10 improve database
Settingt 32 GB performance. Click here 1o review.
© Configure
® Geo-Repication o Data Discovery & Classification
recommendations

& Connection strings

There are 15 columns with dlassifi
recommendations. Cli

classify. Findings are based on
Assesament scan from Fri. 14
I Properties uTC.

Sync to other catabases

& Add Azure Search

} Lodks

Figure 7-24. Index recommendation notification in the Azure portal

I can click Performance overview in the Resource menu of the
database to visually see information from the Query Store and a
look at Recommendations. This looks similar to Figure 7-25.

367

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

$a AdventureWerksAzurelT (A T) - Per overview
2\ i

00 metresn 7 Feedback

B Expon tomplate. -

Integrations Retermendatisnt / Tuning actiity Autamatic tuning
Tt Factonse papems R,

Saream anahes [previen)

Seastty

B acdanced da secuity [y M0 ol stons in e st T deys

T susitng :

€ Dyramic Data Masking

© Transparet data emiryption R
TOP 5 quéres by CPU conpumption (Aggeegetion type: sur) Last 24 hes &

Intetigent Pesteemence

£ Partcamance cverew

B9 Perioamance secommendat /‘

B Query Performance Insght
ou
| 7s.8-
neng
0=

D Rescurce heakh / | nel

Autertic Ly

Mesiteaiig

L

fisl Metrics
B Duagnossic settings
@ Logs

SuppoIt » treubierhogting

Figure 7-25. Performance overview from the Azure portal

The Azure portal offers another visualization for query
performance called Query Performance Insights from the
Resource Menu as seen in Figure 7-26.

B AdventureWarksAzurel (7 T) - Query Insight

o | D Mt € Mebeih Mscommansagons) Suting ciarimd 2 Feuckiock
O e R e .
o xcs o
- FyEE————,
TOP & auerie by \ Cunboraize s »

LY nr—— — a a
kit =T = B
Strwin anayics (reroee »
Agprepation type:
secunty s "
L Jep—— Time period: pey
ast s v iy
|
B Dynamc Dt Maskng B
@ Tarspanet dats sncyplion £ A .
/ %
I 7553
/ o=
/ o=
r s IOM.
r'y
i pATaiocH oo *i DURADONMRrmas) t. ExECUTONS CEUNT Y s
waows xeow B
A0rI -}
A - sa00c0T8 =
et + bl
20000
Y — =] L
BT " - =

e tupport et

Figure 7-26. Query performance insights from the Azure portal

You can see in this figure a list of top queries consuming resources
and a suggestion at the top of the screen to improve performance.

368

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

The Azure portal can also take you directly to Performance
recommendation from the Resource menu as seen in Figure 7-27.

U AdventureWorksAzurelT (E /AdventureWorksAzurelT) - Performance recommendations ®
& Auternate view discarded [} Getting staned W Feedback
B Add Azure Search
Recommendations
Propertes
Action T4 Recommendation description T4 Impact 4
Locks
B Export template R owseince Tabpe [OrderRating] — O i

Ingexed columng:[CrderRating!D]

Integrations

Tuning histary
Stream analytics (preview) g

Aetion T4 Recommendation description *4 Status *i Time
Security
There are curmently no operations to display. Once you apply 8 recommendation, its status will be cisplayed here
@ Advanced data securiy

B2 auditing
& Dymamic Data Masking

@ Transparent dats encryption

Intelligent Performance

€* Performance overview I

7 Perlormance recommen rdati

B Cuery Perlormance Wnsight

Figure 7-27. Performance recommendations from the Azure portal

You can see here specific recommendations for indexes, possible
impact on performance, and history of any automatic tuning
actions. You can also see in the command bar an option to select
Automate.

To this point, everything is a recommendation. If you select
Automate, you will be presented options to enable automation
of automatic plan correction force plans, creating, and dropping
indexes. This screen will look like Figure 7-28.

369

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

(ol W -NE

< Y T e AdvensumeWarksAzurelT) - Performence recommendations » Automatic tuning

o Automatic tuning

o Azure SOL Datebase bulkt-in inteligence sutomatically tunes your databases to optimize performance. Click here to learn more sbout sutomatic tuning.

Inherit from:

@ e database i tic tuning configuratizn rom the server, You a0 set the configuratian 1o be inherited by going to: Server tuning settin

di The database is inheriting settings from the serve. but the serser is in the unpecified state, Please specify the autemaric Tuning state on the server.

Configure the sutomatic tuning optisns |

Option Desired state

FORCE PLAN on i
CREATE NDEX o (HETD
DROP INDEX ON

Figure 7-28. Seiting automatic tuning options

370

You can configure Automatic Tuning options at the logical
server or database level. You can also view automatic tuning
options through the catalog view sys.database_automatic_
tuning_options. You can view all the columns for this catalog
view at https://docs.microsoft.com/en-us/sql/relational-
databases/system-catalog-views/sys-database-automatic-
tuning-options-transact-sql?view=sql-server-ver1s.

If you would have had create index turned on for this database, an
index would have been automatically created.

If you go back and look at the recommended index, you can view

more details as seen in Figure 7-29.

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-automatic-tuning-options-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-automatic-tuning-options-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-automatic-tuning-options-transact-sql?view=sql-server-ver15

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

> Dashboard > AdventureWorksAzurelT (/AdventureWorksAzurelT) - Performance recommendations » Crez
- a = Create index O X
EF [SalesLT].[OrderRating] /

4+ Apply ® Discard <[> View script
[
— Recommended action Status Last update Initiated by
& Create index Active © 2/15/2020 N/A

Learn more 4:58:53 AM

—_
—

Estimated impact

® Impact @ High
® Disk space needed © 153.66 MB

B Details
L:_.J Index name © nci_wi_OrderRating_DED91E67127FBCBDCF60AT
- Index type @ NONCLUSTERED e
o Schema @ (SalesLT)

Table © [OrderRating]

L 3 Index key columns © [OrderRatinglD]

&) Included columns ©

Figure 7-29. Details of a create index recommendation

You can apply the index recommendation or even view the T-SQL
script behind the operation as seen in Figure 7-30.

Dashbosrd > AdvertureWorksAzurelT AdvertureWorksAzurell) - Performance recommendations > Create index > View script
+ i Create ¥ Wiew seript o x
~ T} 2

t appty (5 Discard U View seript [Py sebectan 5 save query
= -

1 CREATE NOWCLUSTERED INDEX [nci_wi_Orderfating DEDS1E57127FBCODCF60A7IBADCCCEAA] ON [SalesiT].

= e s e Lche o) [orderRating] ([orderRatinglD]) WITH (OWLINE - o)

Create index Active (@ 2572020 HiA

Leam more 4SR5 AN
:

Estimated impact
0B —
@© ¥mpact 0 High
-] Disk space needed () 15266 M8
B Dewmils
H ndex mame (0 nei_wi_Orderflating, DED31E67127FBCBOCTE0AT
— index type @ NONCLUSTIRED
@ Schetms (O [5elesLT]

Taile [DrderRating]

» Index key cobimes & [CrdesRatingiD)
@ Wncluded columes 0
Q
=B
a
L
©

Figure 7-30. T-SQL script for index recommendations
371

CHAPTER 7 MONITORING AND TUNING PERFORMANCE FOR AZURE SQL

You can see an online index is the default method used for
automatic indexing. One thing I love about automatic indexing
is that the service will run behind the scenes to monitor your
workload performance after the index is applied. If performance
degrades, a recommendation (or automation) can be provided to
remove the index.

Summary

To deliver the best performance for you application, you need the capabilities and
monitor tools that are tried and proven from SQL Server. Azure SQL gives you that and
more, including capabilities and tools specific to Azure.

Azure SQL gives you the controls and options to accelerate and tune performance
including the ability to scale easily with no database migration required.

Finally, Azure SQL comes with Intelligent Performance capabilities built into the
query processor and services that leverage the power of Query Store from your database.

In the next chapter, we will explore and dive deep into the final core engine
capability of Azure SQL to ensure your deployment is highly available and ensure you
have the tools you need for disaster recovery.

372

	Chapter 7: Monitoring and Tuning Performance for Azure SQL
	Performance Capabilities
	Max Capacities
	Indexes
	In-Memory OLTP
	Partitions
	SQL Server 2019 Enhancements
	Intelligent Performance

	Configuring and Maintaining for Performance
	Tempdb
	Database Configuration
	Files and Filegroups
	Max Degree of Parallelism
	Resource Governor
	Maintaining Indexes
	Maintaining Statistics

	Monitoring and Troubleshooting Performance
	Monitoring Tools and Capabilities
	Azure Monitor
	Dynamic Management Views (DMV)
	Extended Events (XEvent)
	Lightweight Query Profiling
	Query Plan Debugging
	Query Store
	Performance Visualization in Azure Portal

	Dive into DMVs and Extended Events
	DMVs Deep Dive
	XEvent at Your Service

	Performance Scenarios
	Running vs. Waiting
	Running

	Azure SQL Specific Performance Scenarios
	Log Governance
	Worker Limits
	Business Critical (BC) HADR Waits
	Hyperscale Scenarios

	Accelerating and Tuning Performance
	Scaling CPU Capacity
	I/O Performance
	Increasing Memory or Workers
	Improving Application Latency
	Tune Like It Is SQL Server

	Intelligent Performance
	Intelligent Query Processing
	Automatic Plan Correction
	Automatic Tuning

	Summary

