
141
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_4

CHAPTER 4

Deploying Azure SQL
Deploying an Azure SQL Managed Instance or Database is a different but similar

experience than deploying SQL Server on Azure Virtual Machine. The experience is

the same because you can use the Azure portal and CLI. The difference is that Azure is

managing the virtual machine and infrastructure, so several of the options you pick for a

virtual machine you do not have to worry about.

In this chapter, you will learn the options and process to deploy and connect to an

Azure SQL Managed Instance and Database. You will also learn the options to migrate

existing databases into Azure SQL. In addition, you will learn some implementation

details of the architecture used to host Azure SQL Managed Instances and Databases.

You have the option to follow along the examples in this chapter. You will need the

following to complete these examples:

•	 An Azure subscription.

•	 A minimum of Contributor role access to the Azure subscription.

You can read more about Azure built-in roles at https://docs.

microsoft.com/en-us/azure/role-based-access-control/built-

in-roles.

•	 Access to the Azure Portal (web or Windows application).

•	 Installation of the az CLI (see https://docs.microsoft.com/en-us/

cli/azure/install-azure-cli?view=azure-cli-latest for more

details). You can also use the Azure Cloud Shell instead since az is

already installed. You can read more about the Azure Cloud Shell at

https://azure.microsoft.com/en-us/features/cloud-shell/.

https://doi.org/10.1007/978-1-4842-5931-3_4#DOI
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com/en-us/features/cloud-shell/

142

•	 You will run some T-SQL in this chapter, so install a tool like SQL

Server Management Studio (SSMS) at https://docs.microsoft.

com/en-us/sql/ssms/download-sql-server-management-studio-

ssms?view=sql-server-ver15. You can also use Azure Data Studio

at https://docs.microsoft.com/en-us/sql/azure-data-studio/

download-azure-data-studio?view=sql-server-ver15.

•	 For migration scenarios, you will need to download the Data Migration

Assistant (DMA) tool from https://docs.microsoft.com/en-us/sql/

dma/dma-overview and have access to a SQL Server instance.

�Pre-deployment Planning
Before you jump into deploying an Azure SQL Database or Managed Instance, I

recommend you spend some time doing some pre-deployment planning. Reviewing

your choices and making a few informed decisions will save you time and money.

�New Deployment or Migration
One of the first decisions to make which may be easy is whether you plan to migrate

an existing database or instance or deploy a new database or instance. The process

of deploying will be the same, but migrating implies you need to assess your current

SQL Server instance, database, or other database environment before you deploy. Your

assessment will give you guidance on what type of deployment choice you need to make

based on your current requirements. You must decide what possible changes must be

made to your application, schema, scripts, or other aspects to your current deployment

with SQL Server or other database platforms. You also must consider how to migrate

your actual data into the new deployment. This chapter will include sections specifically

geared around what consideration and tools you can use to migrate to Azure SQL

Managed Instance and Database. Here are two great resources for you to consider as you

think about migration:

•	 Azure Migration Program – https://azure.microsoft.com/en-us/

migration/migration-program/

•	 The Microsoft Data Migration Guide – https://datamigration.

microsoft.com/

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/dma/dma-overview
https://docs.microsoft.com/en-us/sql/dma/dma-overview
https://azure.microsoft.com/en-us/migration/migration-program/
https://azure.microsoft.com/en-us/migration/migration-program/
https://datamigration.microsoft.com/
https://datamigration.microsoft.com/

143

�Making Deployment Choices
Whether you are migrating or creating a new deployment, you have several choices to

make that is worth the time to plan out. Chapter 2 of this book is invaluable to go back

and read as it describes choices and differences between Azure SQL Managed Instance

and Azure SQL Database.

Having said that, let us quickly review some important choices at a high level that

can affect your decision-making:

•	 If you need SQL Server instance features like SQL Server Agent,

Database Mail, and cross-database queries, Managed Instance is the

choice you need to make.

•	 If your database size is > 8TB, your only choice as of the time of

writing this book is Azure SQL Database Hyperscale.

Past these two choices, either Azure SQL Managed Instance or Database likely meets

your needs. However, as I called out in Chapter 2 of the book, there can be advantages

in using Azure SQL Database because Microsoft will manage both the infrastructure

and the SQL Server instance to let you focus on the database. Furthermore, Azure SQL

Database can offer you more options such as Serverless compute and Automated Tuning

for indexes.

The options you will pick as you deploy a Managed Instance or Database will look

like the following as seen in Figure 4-1.

Figure 4-1.  Deployment choices for Azure SQL

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_2
https://doi.org/10.1007/978-1-4842-5931-3_2

144

�Deployment Method

You can deploy an Azure Managed Instance using the Azure Portal or through a CLI with

the az utility, PowerShell, or even REST APIs (az rest can be used if you do not want to

write code).

If you are just trying out Azure SQL or doing a proof of concept, you can easily use

the Azure Portal. However, for a repeatable process to deploy (imagine if you needed to

for some reason redeploy at any time), a script using a CLI is a better option. Remember

you also can use Azure templates to help automate deployments. You can read more

about using Azure templates for Azure SQL at https://docs.microsoft.com/en-us/

azure/azure-sql/database/arm-templates-content-guide?tabs=single-database.

Another option for developers to automate deployment is with Azure DevOps and

Pipelines. I really like this blog post by my colleague at Microsoft Arvind Shyamsundar

on DevOps and Azure SQL at https://devblogs.microsoft.com/azure-sql/devops-

for-azure-sql/.

�Deployment Option

I discussed earlier whether you will consider Azure SQL Managed Instance or Database.

Within each of these options are a choice of using a pool. Azure SQL Managed Instance

offers a Managed Instance Pool which could be a better fit for a smaller, cost-effective

Managed Instance. Deployment times are also much faster with pools. You can read

more about Managed Instance Pools at https://docs.microsoft.com/en-us/azure/

azure-sql/managed-instance/instance-pools-overview.

Azure SQL Database provides an option called an elastic pool. An elastic pool can

be a good choice if you plan to use Azure SQL Database to host many databases. ISVs

and Software as a Service (SaaS) developers often look at this choice to save costs and

manage databases more efficiently. You can read more about elastic pools at https://

docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview.

�Region

Choosing a specific Azure region can be important just as I described in Chapter 3 on

virtual machines. You need to make sure your deployment options are available in your

Azure region choice. A full list of Azure products by region can be found at https://

azure.microsoft.com/en-us/global-infrastructure/services/.

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/arm-templates-content-guide?tabs=single-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/arm-templates-content-guide?tabs=single-database
https://devblogs.microsoft.com/azure-sql/devops-for-azure-sql/
https://devblogs.microsoft.com/azure-sql/devops-for-azure-sql/
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://doi.org/10.1007/978-1-4842-5931-3_3
https://azure.microsoft.com/en-us/global-infrastructure/services/
https://azure.microsoft.com/en-us/global-infrastructure/services/

145

You may have certain compliance and security requirements which also dictate what

region you choose.

You may be implementing specific HADR options like Availability Zones, Geo-

replication, or Auto-Failover Groups and have specific regions in mind to make those

deployments successful.

If you need to move an Azure SQL Managed Instance or database to another region,

read a checklist in our documentation at https://docs.microsoft.com/en-us/azure/

azure-sql/database/move-resources-across-regions.

Azure SQL Database is a “Ring 0” service which means it gets deployed in every

region as a default service. Managed Instance is not exactly at that status yet, but it is

generally available in all regions.

In addition, you need to consider where your application will be hosted and latency

requirements between where the application will be hosted and your Azure SQL

deployment. Consider performance and proximity to other services. I was chatting with

my colleague Anna Thomas on this topic. She said, “…but I feel that it’s not just where the

application is – where are the users? Where should the application be? If you have geo-

replication or auto-failover groups, how do you build a globally available solution?”

�Purchasing Model

For Azure SQL Database only, you will need to choose a Purchasing model. The choices

are DTU or vCore. I explained these models and the history behind them in Chapters 1

and 2 of the book. While the DTU model may be a valid choice for you, I recommend the

vCore model.

If you select the DTU model and want to move to the vCore model at a later date,

consult the documentation at https://docs.microsoft.com/en-us/azure/azure-sql/

database/migrate-dtu-to-vcore.

�Service Tier (SLO)

If Azure SQL Managed Instance is your deployment option, then you will need to select

a Service Tier of General Purpose (GP) or Business Critical (BC). A SLO stands for Service

Level Objective and is the combination of choices of Purchasing Model, Service Tier, and

Hardware. I described these service tier options in Chapter 2 of the book. While resource

limits and performance may differ, one of the primary differences with these tiers is

how Availability works which you will learn more about in Chapter 8 of the book. One

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/move-resources-across-regions
https://docs.microsoft.com/en-us/azure/azure-sql/database/move-resources-across-regions
https://doi.org/10.1007/978-1-4842-5931-3_1
https://doi.org/10.1007/978-1-4842-5931-3_2
https://docs.microsoft.com/en-us/azure/azure-sql/database/migrate-dtu-to-vcore
https://docs.microsoft.com/en-us/azure/azure-sql/database/migrate-dtu-to-vcore
https://doi.org/10.1007/978-1-4842-5931-3_2
https://doi.org/10.1007/978-1-4842-5931-3_8

146

notable difference for Business Critical is that it supports In-Memory OLTP capabilities.

A comparison between GP and BC for Managed Instance can be found at https://docs.

microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-

business-critical.

Tip Y ou will see later in this chapter that the time it takes to deploy for Managed
Instance can be lengthy. Changing between GP and BC is possible but could result
in significant downtime.

If Azure SQL Database is your deployment option, then you also have the choice

of General Purpose (GP) vs. Business Critical (BC) service tiers. In addition, you have

the choice of Hyperscale. If you choose General Purpose, you also have the choice of

Provisioned vs. Serverless. This is also called a computer model or tier. I covered all these

options in Chapter 2 of the book.

GP vs. BC is a similar choice as with Azure SQL Managed Instance. Read the same

documentation page at https://docs.microsoft.com/en-us/azure/azure-sql/

database/service-tiers-general-purpose-business-critical for a comparison.

Hyperscale is your best choice for very large databases and has some attractive capabilities

for scaling, replicas, and restore performance. You can read more about Hyperscale at

https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-

hyperscale. Serverless is a unique option we have created for autoscale and scenarios

where your database may always not be utilized. It provides a new cost-effective way to

deploy and use an Azure SQL Database. Read more about Serverless at https://docs.

microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview.

Switching between GP and BC for Azure SQL Database is typically significantly faster

than with Managed Instance. You can also switch between Serverless and Provisioned

easily. However, Hyperscale is the one option you cannot switch back once you choose it

without completing migrating your database to the new deployment option.

�Hardware

Even though for Azure SQL we abstract you from the infrastructure and virtualization

used for the deployment, we provide options for a hardware generation.

We are constantly looking to take advantage of new hardware supplied within the

Azure infrastructure so these choices may be new by the time you are reading this book.

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://doi.org/10.1007/978-1-4842-5931-3_2
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview

147

As of summer of 2020, the only hardware generation choices aside from the default

Gen5 generation are with Azure SQL Database. The Fsv2-series is available in certain

regions for General Purpose. This hardware option provides more CPU performance

per vCore than Gen5. The M-series option for Business Critical offers more memory and

vCores. Keep track of the latest on hardware generations at https://docs.microsoft.

com/en-us/azure/azure-sql/database/service-tiers-vcore?tabs=azure-

portal#hardware-generations.

Note Y ou might see some evidence of Gen4 hardware as you use Azure
SQL. This hardware generation is being phased out, so focus on Gen5 or newer
hardware generations.

�Sizes

Once you have figured these options, you have choices on size. The DTU model for

Azure SQL Database has a DTU number you can choose (and a data size). For the vCore

purchasing you model, you have both number of vCores and database size to select.

There are a few differences on how these options work depending on your other choices.

I will describe these differences as I walk you through the deployment process in the rest

of this chapter.

�Price

Just like with Azure Virtual Machine, take advantage of the Azure Pricing Calculator

to plug in some of these choices to get an idea of your costs. This includes using Azure

Hybrid Benefit. You can find the pricing calculator for Azure SQL Managed Instance at

https://azure.microsoft.com/en-ca/pricing/details/azure-sql/sql-managed-

instance/single/ and Azure SQL Database at https://azure.microsoft.com/en-us/

pricing/calculator/?service=sql-database. Figure 4-2 shows an example of the

pricing calculator for Azure SQL Database.

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal#hardware-generations
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal#hardware-generations
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal#hardware-generations
https://azure.microsoft.com/en-ca/pricing/details/azure-sql/sql-managed-instance/single/
https://azure.microsoft.com/en-ca/pricing/details/azure-sql/sql-managed-instance/single/
https://azure.microsoft.com/en-us/pricing/calculator/?service=sql-database
https://azure.microsoft.com/en-us/pricing/calculator/?service=sql-database

148

�Consider Resource Limits
Your choices from deployment options, service tier, and sizes can affect your resource

limits. These are the following resource limits to consider as you make these choices. I

call these out because these may not be obvious as you deploy through the Azure Portal:

•	 Max Memory

•	 Max Log Size

•	 Log Rate Governance

•	 IOPS and I/O latency

•	 Max size of Tempdb

•	 Max concurrent workers

•	 Backup Retention

Figure 4-2.  The pricing calculator for Azure SQL Database

Chapter 4 Deploying Azure SQL

149

I will discuss more about Log Rate Governance and IOPS and I/O latency in Chapter 7

of this book. For now, keep these concepts in mind as they can affect performance of

applications such as those that are heavy transaction log users.

To see the specific limits for Azure SQL Managed Instance, please see these very

well-documented tables at https://docs.microsoft.com/en-us/azure/sql-database/

sql-database-managed-instance-resource-limits.

To see the specific limits for Azure SQL Database, please see the table at https://

docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-

limits-single-databases.

You should also know that you have overall Azure SQL limits per subscription per

region. You can view what these limits are at https://docs.microsoft.com/en-us/

azure/sql-database/sql-database-managed-instance-resource-limits#regional-

resource-limitations and https://docs.microsoft.com/en-us/azure/sql-database/

sql-database-resource-limits-database-server#maximum-resource-limits.

It is possible to make a request to Microsoft increase your subscription limits. This

is called a quota increase request. Read more at https://docs.microsoft.com/en-us/

azure/sql-database/quota-increase-request.

�Deploying Azure SQL Managed Instance
Similar to the process I documented in Chapter 3 for a virtual machine, deploying an

Azure SQL Managed Instance through the Azure Portal starts by using the Azure SQL

option from the Azure Marketplace (I showed you this view in Figure 3-1).

Using the three Azure SQL choices, you would select SQL Managed Instance and

single instance and then click Create.

Note A t the time of writing this book, an instance pool can only be created
through PowerShell. I will talk more about Instance Pools in the section titled
“Implementation Details.” You can read more about Instance Pools at https://
docs.microsoft.com/en-us/azure/azure-sql/managed-instance/
instance-pools-overview.

Like the experience of deploying a virtual machine, you will have options but not the same

options. You can see in Figure 4-3 you will have options for Basics, Networking, Additional

settings, and Tags. Basics is the only required set of fields, while the others are optional.

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_7
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits-database-server
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits-database-server
https://docs.microsoft.com/en-us/azure/sql-database/quota-increase-request
https://docs.microsoft.com/en-us/azure/sql-database/quota-increase-request
https://doi.org/10.1007/978-1-4842-5931-3_3
https://doi.org/10.1007/978-1-4842-5931-3_3#Fig1
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview

150

�Deployment and Options
Let us walk through each screen with deployment options of a Managed Instance and

then deploy it through the Azure Portal.

Figure 4-3.  The initial Azure SQL Managed Instance screen in the portal

Chapter 4 Deploying Azure SQL

151

�Basics

Figure 4-4 shows the fields you complete on the Basics screen, including choosing

Subscription, Resource group, Region, Managed Instance name (this becomes part of

the server name and @@SERVERNAME of the instance), and Administrator account and

password.

Figure 4-4.  Filling out the basics for an Azure SQL Managed Instance deployment

Chapter 4 Deploying Azure SQL

152

The Administrator account becomes a SQL Server login assigned to the sysadmin role.

Notice in the middle is an option called Compute + storage. This is where you will

choose Service Tier and Size (vCores + Storage). Notice for me the default is General

Purpose with 8 vCores and 256Gb max storage. Click Configure Managed Instance to

see what your options are which should look like Figure 4-5.

Figure 4-5.  Azure SQL Managed Instance Service Tier options

Chapter 4 Deploying Azure SQL

153

At the top of this screen, you can see that you can choose General Purpose (GP) or

Business Critical (BC), and some of the resource limits and performance expectations

are listed with each. From pre-deployment planning, remember there are other

significant reasons to choose BC including

•	 Access to the In-memory OLTP feature

•	 Higher availability because BC uses a local storage and replica

architecture

Below this are slider bars to choose the desired number of vCores and Maximum

Storage. As you use each slider, the expected costs are updated to the right. vCores are

only allowed in the increments shown on the screen. Managed Instance today supports

up to 80 vCores for both GP and BC. 4 vCores is the minimum choice (Instance Pools

support 2 vCore deployments).

The maximum storage value is called the maximum instance size and is the

maximum size allowed for all database and transaction log files associated with

databases for the managed instance. You should think of this like the maximum of a

storage drive for your databases. The maximum storage size is different depending on

your vCore choice and choice of GP and BC:

•	 4 vCores have a max storage limit of 2TB for GP and 1TB for BC.

•	 Any other vCore choice past this supports up to 8TB for GP and 4TB

for BC.

Note I discussed the architecture of Business Critical deployments in Chapter 2
of the book and will elaborate more on this architecture in Chapter 8. The reason
for the lower limit of storage for BC is the fact that databases are stored on local
SSD drives which have lower capacity than using Azure Storage.

Tempdb max sizes are dependent on vCore selections but are counted toward the

overall maximum storage limit. In fact, all databases including system databases count

toward the overall max instance storage size.

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_2
https://doi.org/10.1007/978-1-4842-5931-3_8

154

You can run the following query after you deploy your managed instance to see how

much space your databases are taking up in relation to the max storage for the instance:

select top 1 used_storage_gb = storage_space_used_mb/1024,

 max_storage_size_gb = reserved_storage_mb/1024

from sys.server_resource_stats order by start_time desc

You also have a choice to save money using your existing SQL Server licenses with

Azure Hybrid Benefit (AHB).

There is also a statement about backup storage and costs on this page. I will discuss

more about Backups and Managed Instance in Chapter 8 of the book. Click Apply after

you make any changes (Apply is only enabled if you change the defaults. You can click

the X to get back to the Basics screen). For my example, I will leave the choice at 8 vCores

and 256Gb of max storage.

Tip H itting Apply will not deploy the Managed Instance yet but take your time to
get your choices here as close to correct as possible. Why? You can change them
later, but Managed Instance changes to tiers and sizes can be a long operation.
Instance pools will not require as much time.

�Networking

Click Next: Networking > to review your networking choices. Your screen should look

like Figure 4-6.

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_8

155

Figure 4-6.  Azure SQL Managed Instance Networking options

Chapter 4 Deploying Azure SQL

156

Virtual Network
You can see at the top of the screen that a new virtual network will be created to

host the Azure SQL Managed Instance. One of the advantages of Managed Instance is

that it is deployed in a private virtual network. You could deploy your own Azure Virtual

Network first (you can use the Azure portal or CLI) and select that virtual network on this

deployment screen. If you choose to use your own virtual network, you must configure

it a specific way which you can read at https://docs.microsoft.com/en-us/azure/

azure-sql/managed-instance/vnet-existing-add-subnet.

Connection Type
Notice on my screen I have chosen a connection type of Redirect. The default is

proxy. A proxy connection requires that any connection to the Managed Instance by

a tool or application (a connection to the TDS port 1433) must always go through a

gateway. A redirect connection type uses the gateway to find the direct virtual private

IP address of the node containing the Managed Instance. All subsequent traffic flows

directly to the node. You can read more about these connection types at https://docs.

microsoft.com/en-us/azure/azure-sql/managed-instance/connection-types-

overview. Proxy can be more secure, but redirect can be faster. The virtual network

and included subnet will have all the appropriate Network Security Group (NSG)

rules applied for these types if you choose to create the virtual network as part of this

deployment step.

Public Endpoint
You have the option to enable TDS traffic on a public endpoint. The public endpoint

will be enabled on port 3342 (and get redirected in the virtual network to the node

instance port 1433). While I do not recommend using this option, it is one of the quickest

ways to get connected to a Managed Instance. There could be other scenarios where you

want to enable this. You can read more about the public endpoint for Managed Instance

at https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/public-

endpoint-overview.

Notice that Accelerated networking is automatically enabled for the Managed

Instance.

�Additional Settings

Click Next: Additional settings > to enable a few additional options for the deployment

as seen in Figure 4-7.

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/vnet-existing-add-subnet
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/vnet-existing-add-subnet
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connection-types-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connection-types-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connection-types-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/public-endpoint-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/public-endpoint-overview

157

The Collation here is like setting a collation for a SQL Server. It is important to know

that you cannot change the instance collation after it is supplied here.

Figure 4-7.  Additional settings for Managed Instance

Chapter 4 Deploying Azure SQL

158

Note Y ou can set and change database collations on Managed Instance after
deployment.

The Time zone is the recognized time zone by the SQL Server engine on the

Managed Instance node. I have changed this to my local time zone, but it can be UTC or

whatever time zone you want to choose. You cannot change this after deployment.

The Managed Instance can be part of a failover group which we will talk more about

in Chapter 8 of the book. You will use that option when you review those topics later. For

now, leave it to the default of No.

�Tags

Click Next: Tags > to define a tag like how I described in Chapter 3 with Azure Virtual

Machines. I will use a Name = Environment and Value = Development with a SQL

managed instance resource.

�Deploy!

Click Next: Review + create > to view the final screen before deploying as seen in Figure 4-8.

Figure 4-8.  The validation screen for Managed Instance before deploy

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_8
https://doi.org/10.1007/978-1-4842-5931-3_3

159

Like Figure 3-16 for Azure Virtual Machine, this screen shows estimated costs,

Terms of use, Privacy Policy, a review of all the options you have chosen, and the option

to download an Azure template that describes these deployment options. Notice the

important warning at the top of the screen on the time it takes to deploy. So, click Create

to deploy, leave this screen open to see the progress, and read on to the next section

about deploying with a CLI and then some architecture and implementation details you

might find interesting why the deployment runs. This section will explain a bit why the

deployment can take so long.

�Deploying with a CLI
An Azure Managed Instance can be deployed with command-line interfaces (CLI)

through the az sql mi (https://docs.microsoft.com/en-us/cli/azure/sql/
mi?view=azure-cli-latest) command interfaces or through New-AzSQLInstance

PowerShell cmdlet (https://docs.microsoft.com/en-us/powershell/module/az.sql/

New-AzSqlInstance).

I went down the path to build an example with az sql mi and found that I needed to

run several az CLI commands to create the virtual network, subnet, and all associated

settings. Therefore, I only recommend you use the az sql mi CLI with Azure templates. An

example template can be found at https://docs.microsoft.com/en-us/azure/azure-

sql/managed-instance/create-template-quickstart?tabs=azure-cli.

PowerShell requires you to set up the virtual network and other context before

executing New-AzSQLInstance. There is a good tutorial on using PowerShell at https://

docs.microsoft.com/en-us/azure/azure-sql/managed-instance/scripts/create-

configure-managed-instance-powershell.

�Implementation Details

Note T hese implementation details may change over time as we change and
improve the service. I offer up some of these details so you can understand how
we build, manage, and run the service.

Azure SQL Managed Instance is deployed on nodes (virtual machines) powered by

Azure Service Fabric in a concept called a ring or virtual cluster. A virtual cluster is a

dedicated set of isolated virtual machines that run in a virtual network subnet. Using a

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_3#Fig16
https://docs.microsoft.com/en-us/cli/azure/sql/mi?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/sql/mi?view=azure-cli-latest
https://docs.microsoft.com/en-us/powershell/module/az.sql/New-AzSqlInstance
https://docs.microsoft.com/en-us/powershell/module/az.sql/New-AzSqlInstance
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/create-template-quickstart?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/create-template-quickstart?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/scripts/create-configure-managed-instance-powershell
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/scripts/create-configure-managed-instance-powershell
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/scripts/create-configure-managed-instance-powershell

160

dedicated ring or cluster gives Managed Instance the isolation and private connection

that was lacking for years from Azure SQL Database (which you will see has also been

resolved).

When you deploy your first managed instance in a new virtual network (subnet)

as I did in my example, you are in fact deploying an entire virtual cluster. This explains

why the initial deployment can take so long to complete. You can deploy other managed

instances in the same virtual network subnet, and the deployment is much faster.

A managed instance is a full SQL Server engine database instance deployed in a

dedicated virtual machine in the virtual cluster. Microsoft will decide how to deploy

these virtual machines on various nodes of the cluster. It is possible that a node may have

one virtual machine with an instance or multiple virtual machines. As per the promise

of Platform as a Service (PaaS), Microsoft abstracts you from those details. Your interface

with the Managed Instance is through either standard SQL Server interfaces such as

T-SQL or Azure interfaces such as the portal, CLI, or REST API. You will never directly

access the underlying virtual machines.

This architecture explains also why certain management operations such as scaling

vCores can also take a long period of time as some of these operations can require a

deployment of a new virtual cluster with either attaching files from Azure Storage or

reseeding a replica.

I described some of the architecture of General Purpose (GP) vs. Business Critical

(BC) tiers in Chapter 2 of the book. I will describe them further in Chapter 8 of the book.

Either of these service tiers uses the same virtual cluster architecture just with different

storage and HA implementations.

Resource limits for a Managed Instance such as memory limits, max storage size,

and others are enforced through several mechanisms. For example, memory limits are

enforced with Windows Job Objects (and you cannot configure “max server memory”).

You can read more about Windows Job Objects at https://docs.microsoft.com/en-us/

windows/win32/procthread/job-objects. Storage capacity (or max size) is enforced by

The File Server Resource Manager (FSRM) which you can read more about at https://

docs.microsoft.com/en-us/windows-server/storage/fsrm/fsrm-overview.

A Managed Instance pool deployment can be far faster because an instance pool

can be a set of SQL Server instances running in the same virtual machine. Isolation and

resource limits are applied using Windows Job Objects. Figure 4-9 represents a visual

comparing managed instance and pools. This figure comes from the documentation at

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-

pools-overview#architecture.

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_2
https://doi.org/10.1007/978-1-4842-5931-3_8
https://docs.microsoft.com/en-us/windows/win32/procthread/job-objects
https://docs.microsoft.com/en-us/windows/win32/procthread/job-objects
https://docs.microsoft.com/en-us/windows-server/storage/fsrm/fsrm-overview
https://docs.microsoft.com/en-us/windows-server/storage/fsrm/fsrm-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview#architecture
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview#architecture

161

�Connecting and Verifying Deployment
Once your deployment is complete, you can view the details of the deployment using the

Activity Log like an Azure Virtual Machine as seen in Figure 4-10.

Figure 4-9.  The Managed Instance and pool architecture

Figure 4-10.  Deployment complete for Managed Instance

Chapter 4 Deploying Azure SQL

162

If you select More events in the activity log, you will see a screen like in Figure 4-11.

If you click Go to Resource, you will see a screen like in Figure 4-12.

One of the first steps you will want to do at this point is try and connect to the new

instance and verify the deployment. I like to verify my SQL Server installations with a set

of simple T-SQL queries, but I will show you other navigation details as well.

Figure 4-11.  The activity log for the deployment for Managed Instance

Figure 4-12.  The Overview screen for Azure SQL Managed Instance

Chapter 4 Deploying Azure SQL

163

�Connect to a Managed Instance

You can see at the top of Figure 4-12 guidance to get started for a Managed Instance. If

you click this message, you will see choices like the following in Figure 4-13.

The list on this screen points to guidance on how to perform various tasks for a newly

deployed Azure SQL Managed Instance. Since I did not enable the Public endpoint

for the deployed Managed Instance, I have expanded the option to connect through a

Virtual Machine.

I will follow these steps by first using the provided PowerShell script and executing

it from the Azure Cloud shell. I used the copy button , edited the script, to provide an

admin password, and then pasted the script into an Azure Cloud Shell.

This virtual machine is deployed in the same virtual network as the Azure SQL

Managed Instance. Therefore, you can RDP into this virtual machine and then use tools

like SSMS (which is already installed in this VM) to connect to the Managed Instance.

The screen shows you the DNS name to use to connect with SSMS (in my case, the server

name to connect to is bwazuresqlmi.ef276e8e4194.database.windows.net).

Figure 4-13.  Connecting to Azure SQL Managed Instance with a VM

Chapter 4 Deploying Azure SQL

164

Tip Y ou can navigate to the newly created virtual machine by finding the
Resource Group of the Managed Instance (which is bwazuresqlmirg in my
example). The new VM is called Jumpbox. Navigate to the overview screen for
this VM and select Connect and use the RDP file with a Remote Desktop Client.
Once you use RDP to log in to the Windows Server, use SSMS to connect to the
Managed Instance name with the SQL admin login and password you used during
deployment.

The concept of using a virtual machine to connect to SQL Server for a Managed

Instance is called a jumpbox. Jumpbox is the actual name of the VM created by the script

provided as an example by Microsoft (but can be any name).

Figure 4-14 shows an example of SSMS connected to an Azure SQL Managed

Instance.

If you want to connect from on-premises, you would need to either enable the public

endpoint or connect your network to the Azure virtual network created.

Figure 4-14.  SSMS connected to Azure SQL Managed Instance through a
jumpbox

Chapter 4 Deploying Azure SQL

165

�Verify the Deployment

Notice that Object Explorer in SSMS looks almost identical to a SQL Server except for the

Fully Qualified Domain Name (FQDN) for the server name.

To verify an installation of SQL Server, I often use a few techniques including running

queries against system catalog views and DMVs and look at the ERRORLOG.

Examining the ERRORLOG
You do not have access to the filesystem for the virtual machine hosting the Managed

Instance. To look at the ERRORLOG, we will need a tool like SSMS or T-SQL.

You can use Object Explorer in SSMS to view the ERRORLOG, but I prefer just T-SQL

so can I execute sp_readerrorlog to look at the current ERRORLOG file. I must warn you

that we dump all types of extra information in the ERRORLOG for a Managed Instance

(yes even more than a SQL Server). My colleague Dimitri Furman wrote a blog post with

some sample code to filter down the ERRORLOG for a Managed Instance. You can view

this at https://techcommunity.microsoft.com/t5/datacat/azure-sql-db-managed-

instance-sp-readmierrorlog/ba-p/305506.

There are a few key messages I look at startup in the ERRORLOG and found these in

my Managed Instance:

SQL Server detected 1 sockets with 4 cores per socket and 8 logical

processors per socket, 8 total logical processors; using 8 logical

processors based on SQL Server licensing. This is an informational message;

no user action is required.

SQL Server is starting at normal priority base (=7). This is an

informational message only. No user action is required.

Detected 44645 MB of RAM. This is an informational message; no user action

is required.

I can see that eight logical processors were detected which is what I expect given I

deployed an 8 vCore instance.

The memory detected is how much memory the SQL Server engine detects from the

host or VM. You will see in several places in the book how Azure will use Windows Job

Objects to limit the memory visible to SQL Server to enforce resource limits per service

tier and vCores. You will find for this Managed Instance the job object will not allow SQL

Server to access all the memory as shown here in the ERRORLOG. In fact, you should

never rely on what the ERRORLOG shows but instead on the DMV sys.dm_os_job_object

which I will show you how to use in the next section.

Chapter 4 Deploying Azure SQL

https://techcommunity.microsoft.com/t5/datacat/azure-sql-db-managed-instance-sp-readmierrorlog/ba-p/305506
https://techcommunity.microsoft.com/t5/datacat/azure-sql-db-managed-instance-sp-readmierrorlog/ba-p/305506

166

Verification Queries
Whenever I install a SQL Server, I typically use a few T-SQL queries as a sanity check.

Let us look these and the results from the Managed Instance compared to SQL Server (I

will not show the complete results of every query):

SELECT @@version

Microsoft SQL Azure (RTM) - 12.0.2000.8 May 15 2020 00:47:08 Copyright

(C) 2019 Microsoft Corporation

I explained in Chapter 1 of the book in describing the history of Azure SQL why v12

was a monumental moment for the service. Since that time, we have not changed the

major version of 12.

Basically, the major version of Azure SQL Managed Instance has no meaning. It does

not line up with any major version of SQL Server since Azure SQL Managed Instance is

versionless. I will discuss more the concept of versionless in Chapter 5 of the book. Just

know that Microsoft strives to keep instances and databases of Azure SQL up to date with

all the right changes and fixes, so you do not worry about applying updates:

SELECT database_id, name, compatibility_level FROM sys.databases

database_id name compatibility_level

1 master 150

2 tempdb 150

3 model 150

4 msdb 150

This looks normal (I have not created any user databases), except the

mssqlsystemresource database is not listed as with SQL Server (it does exist as you can

see it in the ERRORLOG). Notice the compatibility level is set to 150 which is the latest

dbcompat level of SQL Server 2019:

SELECT name, object_id, type_desc FROM sys.objects

The results from this query are what you would normally think from a master

database on a SQL Server with system tables at the top of the list. About 113 rows

returned from this query in master which is very close to a SQL Server:

SELECT * FROM sys.dm_os_schedulers

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_1
https://doi.org/10.1007/978-1-4842-5931-3_5

167

Since we have deployed an 8 vCore Managed Instance, I would expect eight VISIBLE

ONLINE schedulers which is the case. I also expect to see a few HIDDEN ONLINE

schedulers which are there in the result of this query:

SELECT * FROM sys.dm_os_sys_info

This is a DMV that provides system information about SQL Server. I can see from

the output of this DMV the number of CPUs detected, amount of memory detected, the

target (max server memory), and total memory used by the engine and the actual worker

thread max (1640 for 8 vCores), and that the conventional memory model is not used. I

will talk more about locked pages in Chapter 5 of the book:

SELECT * FROM sys.dm_os_process_memory

This DMV shows OS-related memory information including whether locked or large

pages are used (they are not for Azure SQL Managed Instance or Database). I normally just

use this as a sanity check that enough memory is available for SQL Server in a VM or server:

SELECT * FROM sys.dm_exec_requests

This is one of the most common DMVs in the world to check the state of what

is running on a SQL Server. I run this just to make sure all the normal background

processes are running including LAZ WRITER, RECOVERY WRITER, LOCK MONITOR,

and so on and that I can see active queries:

SELECT SERVERPROPERTY('EngineEdition')

Per the documentation at https://docs.microsoft.com/en-us/sql/t-sql/

functions/serverproperty-transact-sql, the value of 8 is for a Managed Instance.

There are also two new DMVs specific to Azure not found in SQL Server:

SELECT * FROM sys.dm_user_db_resource_governance

This DMV is really intended to show you resource limits for a specific Azure SQL

Database, but it also works for Managed Instance (you will see a row for all databases

including system databases except for tempdb). You can view limits like memory,

max storage, log rates, and so on. You can read the documentation for this DMV

at https://docs.microsoft.com/en-us/sql/relational-databases/system-

dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-

database?view=azuresqldb-current. Note that the docs say this is mostly for internal

use, which means it might change in the future:

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_5
https://docs.microsoft.com/en-us/sql/t-sql/functions/serverproperty-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/functions/serverproperty-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current

168

Note T here is an undocumented DMV called sys.dm_instance_resource_
governance which shows resource limits at the instance level.

SELECT * FROM sys.dm_os_job_object

This is a DMV specific to Azure (although I tested it and it works for a SQL Server, but

you can’t rely on the results there because it is not applicable) that shows resource limits

Azure applies to a Managed Instance using Windows Job Objects. The specific column I

look at is memory_limit_mb which shows me the true amount of memory the Managed

Instance has access to. I talked about Windows Job Objects in the preceding section

“Implementation Details.”

You may be asking at this point what is so special about Managed Instance, since

from the perspective of using a tool like SSMS, it feels like a SQL Server running in an

Azure Virtual Machine. This is the point of a Managed Instance. We want you to have the

feel of a SQL Server instance, but not worry about the details you might have to consider

with a virtual machine. And since Azure SQL Managed Instance (MI) is a PaaS service,

you will see the benefits of using MI, especially when it comes to a versionless SQL

Server, predictable performance, and built-in high availability and disaster recovery.

�Migrating to Azure SQL Managed Instance
As part of deploying an Azure SQL Managed Instance, you may be migrating existing

databases. The process to migrate should include assessment and planning, the actual

migration, application changes, and post-migration optimization.

Let us look at each of these aspects to the migration process.

�Assessment and Planning
An assessment for migration includes analyzing any problems that might occur for your

migration depending on what the source of your migration and your preferred Managed

Instance deployment option. This is when you use the details I described with pre-

deployment planning earlier in this chapter.

Chapter 4 Deploying Azure SQL

169

Most users migrating to Azure SQL Managed Instance are coming from an existing

SQL Server installation. However, it is possible to migrate from other data platforms

including Oracle. Check out this blog post on how to migrate from Oracle to Azure SQL

Managed Instance, https://techcommunity.microsoft.com/t5/microsoft-data-

migration/migrate-your-oracle-database-to-azure-sql-database-managed/ba-

p/368750.

The key to getting an entire migration project started is to use Azure Migrate at

https://azure.microsoft.com/en-us/services/azure-migrate/. From there, you

can start an Azure Migrate project and use the Data Migration Assistant (DMA) tool

(https://docs.microsoft.com/en-us/sql/dma/dma-overview) and Data Migration

Service (DMS) (https://azure.microsoft.com/en-us/services/database-

migration/).

I could show you a ton of details here and walk you through an example. But I have

something better. My colleague Anna Thomas developed an entire workshop complete

with slides and exercises at https://github.com/microsoft/sqlworkshops-sqlg2c/

tree/master/sqlgroundtocloud (Modules 4 and 5). Anna walks you through everything

to see how DMA and DMS work to perform an assessment and migration. You have

the choice to migrate all the databases for the instance or one or more databases

incrementally.

Note T wo important things you should consider as you migrate are in the
documentation, and I want to highlight them here.

When you are migrating a database protected by Transparent Data Encryption to a
managed instance using native restore option, the corresponding certificate from
the on-premises or Azure VM SQL Server needs to be migrated before database
restore.

Restore of system databases is not supported. To migrate instance-level objects
(stored in master or msdb databases), we recommend to script them out and run
T-SQL scripts on the destination instance.

One last important point: consider using a database compatibility level that matches

your current SQL Server installation and then move later to the latest compat level.

Learn more about dbcompat at https://aka.ms/dbcompat.

Chapter 4 Deploying Azure SQL

https://techcommunity.microsoft.com/t5/microsoft-data-migration/migrate-your-oracle-database-to-azure-sql-database-managed/ba-p/368750
https://techcommunity.microsoft.com/t5/microsoft-data-migration/migrate-your-oracle-database-to-azure-sql-database-managed/ba-p/368750
https://techcommunity.microsoft.com/t5/microsoft-data-migration/migrate-your-oracle-database-to-azure-sql-database-managed/ba-p/368750
https://azure.microsoft.com/en-us/services/azure-migrate/
https://docs.microsoft.com/en-us/sql/dma/dma-overview
https://azure.microsoft.com/en-us/services/database-migration/
https://azure.microsoft.com/en-us/services/database-migration/
https://github.com/microsoft/sqlworkshops-sqlg2c/tree/master/sqlgroundtocloud
https://github.com/microsoft/sqlworkshops-sqlg2c/tree/master/sqlgroundtocloud
https://aka.ms/dbcompat

170

�Migration
To perform an actual migration of an existing SQL Server instance (the entire instance or

just a database), Azure SQL Managed Instance provides a great capability to make this

faster and better: the ability to restore a database from a backup of SQL Server.

This allows you to perform an offline migration (restore a full database backup) while

the application is down and then connect back again to the Managed Instance when the

restore finishes.

The Database Migration Service (DMS) specifically allows for an online migration

using technology based on SQL Server Log Shipping to restore a full backup and then a

series of log backups until you are ready for the migration cutover. Anna’s workshop goes

through both options.

In addition, you can watch me on the Microsoft Mechanics channel at https://

youtu.be/P_4EaqVR5PI and go through the entire migration process including a demo

of migration to a Managed Instance. One of the aspects of using DMA I love is the

SKU recommendation PowerShell script. This script analyzes your current SQL Server

workload to guide you on Azure SQL Managed Instance deployment choices. Read

more at https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-

db?view=sql-server-ver15.

Note E ven though I am the person interviewed for this video and demo, the real
heroes behind the scenes are the migration team, including folks like Venkata Raj
Pochiraju and Sreraman Narasimhan.

�Application Changes
One of the best stories for migration is the minimal changes required by your application

after migrating to Managed Instance. The most basic change for you to make is the

connection string to use the new server name. You may also have to change the

authentication method (SQL Authentication or Azure Active Directory). But other than

that, provided you are using all the features supported by Managed Instance, these may

be the only changes you need to get your application up and running.

Chapter 4 Deploying Azure SQL

https://youtu.be/P_4EaqVR5PI
https://youtu.be/P_4EaqVR5PI
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-ver15

171

�Post Migration
After you have migrated your database(s) and made the necessary application changes,

you may want to make some configuration changes or adjustments for security,

performance, and availability.

Here is the good news. The rest of the book is devoted to these topics, so you have the

resources you need to make any changes to go bigger with Azure.

�Deploying an Azure SQL Database
Deploying an Azure SQL Database is both different and like Azure SQL Managed

Instance. The experience is similar as you will use the Azure Portal or CLI (or even

T-SQL) to deploy a database but different since you are…well deploying a database, not

an instance of SQL Server. Since you are deploying just a database, you get more options

as I have described in this book, including Serverless and Hyperscale.

The basic process to deploy Azure SQL Database is

•	 Decide to deploy a single database or elastic pool.

•	 Choose a Resource Group and Region.

•	 Choose an existing or new logical database server.

•	 Choose your purchasing model, compute model, service tier,

and size.

•	 Optionally supply other configuration choices.

•	 Deploy it!

�Deployment and Options
To get started, I will use the Azure SQL screen to deploy by searching for Azure SQL

in the marketplace. With a screen like in Figure 4-15, I can choose to deploy a Single

database, Elastic pool, or Database server. I will show you how to deploy a Single

database which will allow me to also deploy a Database server (and I will describe what

and why you need a Database server).

Chapter 4 Deploying Azure SQL

172

�Basics

If you choose Single database, you are presented with a Basics screen like Azure SQL

Managed Instance as seen in Figure 4-16.

Figure 4-15.  Using Azure SQL to choose to deploy an Azure SQL Database

Chapter 4 Deploying Azure SQL

173

You can see from my screen that I have already created a new Resource Group,

defined a Database name, and chose to create a new Database server. You may be

wondering why you need a Database server when the promise of Azure SQL Database is

“you own the database; Azure will manage everything else.”

A Database server, also known as a logical server, is a collection of metadata stored

in the Azure infrastructure used to organize one or more Azure SQL databases. It is not

a single SQL Server instance on a physical server. A Database server contains a logical
master database just like a true SQL Server instance. Notice the region is associated

with the logical server, not the database. Any database created for the logical server will

be hosted in the region of the server. All connectivity and networking will be associated

with the logical server. In fact, you could create a logical server first, connect to that

server, and use T-SQL CREATE DATABASE to create Azure SQL databases. The login

and password you supply for the logical server becomes a login in the logical master

database which is a server-level principal who is effectively a server admin for all

databases. In Modules 6 and 7, I will show you how to integrate Azure Active Directory

(AAD) for an admin login.

Figure 4-16.  Defining a Database server as part of Azure SQL deployment

Chapter 4 Deploying Azure SQL

174

Once you click OK for the logical server (it will be created as part of the deployment),

you can choose if you want to make this part of an elastic pool and select your options

for purchasing model, service tier, and size. I will not spend a lot of time in the book

discussing the details of how to create and manage an elastic pool. I recommend you

use this documentation to learn and go further with using elastic pools, https://docs.

microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview.

Figure 4-17 shows an example of selecting Configure database to see your

deployment options.

Let us look at the various options on this screen, what they mean, and how they

affect your deployment:

	 1.	 The default purchasing model is vCore. You can select on this

screen the ability to choose the DTU purchase model. While I will

not cover details about deploying the DTU model, you can read

about this option at https://docs.microsoft.com/en-us/azure/

azure-sql/database/service-tiers-dtu.

Figure 4-17.  Azure SQL purchasing, compute, service tier, and size options

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-dtu
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-dtu

175

	 2.	 The default hardware generation for the vCore model is Gen5.

As I described in pre-deployment planning, choosing Change

configuration allows you to pick other hardware generations such

as Fsv2- and M-series.

	 3.	 Just like a Managed Instance, you can choose to apply your

existing SQL Server license with Azure Hybrid Benefit (AHB).

	 4.	 Just like a Managed Instance, you have a slider bar to choose the

number of vCores for your deployment. You will notice that for

Azure SQL Database, you have more granular choices for vCores.

	 5.	 Just like a Managed Instance, you have a slider bar for Data max

size. The more vCores you choose, the larger the max size. This

max size is the maximum size of the single database file hosting

your database. Notice below the size is a number for LOG SPACE

ALLOCATED. You are given for free a maximum transaction log

size that is 30% over your data max size.

Note I f you are worried this may not be enough, we continuously back up the
transaction log and have Accelerated Database Recovery enabled by default (which
means a long active transaction does not hold up log truncation). As much as I
tried, I never ran out of log space in my testing with Azure SQL Database.

	 6.	 Provisioned is the default Compute model. For the General

Purpose service tier, you have the choice of the Serverless model.

I will show you Serverless options in the section titled “Deploying

Serverless” later in this chapter.

	 7.	 As you make choices, the portal will show you estimated costs per

month broken out by costs for vCores and storage.

	 8.	 Besides General Purpose, you also have the choice to deploy a

Hyperscale service tier. I will show you the process of deploying

Hyperscale in the following section titled “Deploying Hyperscale.”

	 9.	 You also have the choice to choose the Business Critical service tier.

I will show you the process of deploying a Business Critical database

in the following section titled “Deploying Business Critical.”

Chapter 4 Deploying Azure SQL

176

I know there are many choices which is one of the benefits of Azure SQL Database but

does require some thinking for your requirements. Thankfully, changing these options or

resizing your Azure SQL Database is flexible and fast (the exception is Hyperscale).

I will leave the default of General Purpose, 2 vCore, 32Gb max data size and click Apply.

�Networking

Click Next: Networking > to see your choices for connectivity and network security as

seen in Figure 4-18.

Figure 4-18.  Networking choices when deploying an Azure SQL Database

Chapter 4 Deploying Azure SQL

177

Unlike Azure SQL Managed Instance, Azure SQL Database is not part of a virtual

network. You have three choices during deployment:

No access – Deploy the database, but do not allow any connectivity until you are

ready to make your choice.

Public endpoint – Expose connectivity of the logical server and/or database to the

public within Azure or to the Internet (or both).

Private endpoint – This is a new addition to Azure SQL Database to make it very

secure. This allows you to deny public access to your server and/or database and only

allows private connectivity within defined virtual networks in and outside of Azure.

For now, I will select Public endpoint and set Allow Azure services and resources
access this server to Yes and Add current client IP address to Yes. This allows me to

deploy an Azure Virtual Machine and connect to this database or to connect with SQL

client tools on the client computer where I am currently deploying the browser. My client

IP address will be added to a firewall rule to connect to the logical server associated with

this database. I will show you how to tighten up the security of this model in Chapters 6

and 7 of the book.

�Additional Settings

Click Next: Additional settings > to see more options for the deployment. Figure 4-19

shows these additional options.

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_6
https://doi.org/10.1007/978-1-4842-5931-3_7

178

Figure 4-19.  Additional settings for the deployment of Azure SQL Database

Chapter 4 Deploying Azure SQL

179

Your first choice is to either create a blank database or create a database based on a

backup of a geo-replicated Azure SQL Database or from the sample AdventureWorksLT

(LT stands for light). You can learn more about how to restore from a geo-replicated

backup at https://docs.microsoft.com/en-us/azure/azure-sql/database/

recovery-using-backups#geo-restore. I will choose the sample AdventureWorksLT

database because I want to show some demonstrations of other capabilities using that

database later in the book.

Your next choice is Database collation. Since I chose a sample database, the collation

is already decided. For a new blank database, it is important to choose this during

deployment because you cannot change it later.

The final choice is to enable Advanced Data Security. I will not enable this for now

and show you more about this capability in Chapters 6 and 7 of the book.

�Tags

Click Next: Tags > to define a tag for the deployment. Just like with Azure Virtual

Machine and Managed Instance, I will use a Name = Environment and Value =

Development. In this case, I will leave the resources selected for both SQL Database and

SQL database server.

Note A fter you deploy, you can now search for Tags for your description and see
all your resources that are “for development purposes.”

�Deploy It!

Click Next: Review + create > to see the final validation screen as seen in Figure 4-20.

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#geo-restore
https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#geo-restore
https://doi.org/10.1007/978-1-4842-5931-3_6
https://doi.org/10.1007/978-1-4842-5931-3_7

180

Just like with Managed Instance, you can see estimated costs, Terms of Use, privacy

policy, a review of your choices, and the ability to download an Azure template.

Click Create to see the deployment take off. Just like with Managed Instance, if

you do not leave this screen, you will see a progress of your deployment in both the

Notifications area of the portal and on your main screen.

There is no warning of time to deploy like with Managed Instance, because in most

cases, the deployment should finish quickly. In my example, the deployment only took a

matter of minutes as shown in Figure 4-21.

Figure 4-20.  Final screen before deployment of Azure SQL Database

Chapter 4 Deploying Azure SQL

181

Tip I have found that I can connect to the logical server and use the database
being deployed even before I get signaled the deployment is complete.

Just like a Managed Instance deployment, you can click More events in the activity

log to see the sequence of deploying all resources.

Click Go to resource to see the Overview screen on the database like Figure 4-22.

Figure 4-21.  A completed deployment of Azure SQL Database

Chapter 4 Deploying Azure SQL

182

Just like with a Virtual Machine and Managed Instance, the portal shows a Resource

Menu, Command Bar, Working Pane, and Monitoring Pane. While this looks like other

Azure resources, most of this information is specific to Azure SQL Database. We will

use many of these options throughout the rest of the chapter as you explore security,

performance, availability, and other features.

Let us see the experience of deploying an Azure SQL Database Business Critical,

Hyperscale, and Serverless database on the same logical server. In the Working Pane,

click the Server Name.

This is the Overview screen for the Database Server as seen in Figure 4-23.

Figure 4-22.  The Overview screen of an Azure SQL Database

Chapter 4 Deploying Azure SQL

183

Notice at the bottom the database we just deployed. I also want to stop and point out

a key feature of the portal called breadcrumbs. You were brought to the overview screen

of the database server by selecting it from the overview screen of the database. The

breadcrumbs “show you where you came from” and allow you to navigate to a specific

resource in the portal.

Click Create database from the command bar.

Note T he following sections for Business Critical, Serverless, and Hyperscale
require costs if you leave these deployments active. You can choose to go through
and deploy these or just follow along.

�Deploying Business Critical
Notice now you are brought to a Basics screen to create a new database, but the resource

group and server are already selected. Click configure database and choose the Business

Critical service tier. Notice some new choices as seen in Figure 4-24.

Figure 4-23.  Overview of an Azure SQL Database Server

Chapter 4 Deploying Azure SQL

184

You still choose the number of vCores and Data max size. But you also choose

whether this database will enable read scale-out and zone redundancy. I will discuss

these high availability capabilities in Chapters 10 and 11 of the book. For now, I will leave

Read scale-out Enabled (you should; it is free) and select Yes for zone redundancy.

Click Apply and put in a database name. I will use a new name and call it

bwazuresqldbbc. Instead of making additional choices, I will choose Review + create

and then Create.

Note Y ou could make other choices here including setting up a Private endpoint
for your database different than the choice made for the first database on the
server.

Once this deployment is complete (it should be fast), you can click Go to resource

and see you now have a Business Critical database deployed. Click the Server name

again and repeat the process to create a new database.

Figure 4-24.  Azure SQL Business Critical service tier choices

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_10
https://doi.org/10.1007/978-1-4842-5931-3_11

185

�Deploying Serverless
Like the Business Critical Scenario, click configure database. Then select Serverless as

seen in Figure 4-25 with new choices.

Instead of a slider to choose vCores, I can choose a min and max vCore. Serverless

will autoscale based on the CPU needs of my workload. Notice the values for min and

max memory. This means that for my Serverless database I can use a maximum of 48Gb,

but when my usage is idle, my memory may be trimmed down to as low as 6Gb. Think of

this like max and min server memory configuration values for SQL Server. The difference

is that our Azure services will trim memory (almost like external memory pressure) if

usage is idle.

So, what defines idle? That is the choice for Auto-pause delay. If there is no usage for

1 hour, the compute for this database will be paused and memory resources reclaimed.

Drill more into Serverless at https://docs.microsoft.com/en-us/azure/azure-sql/

database/serverless-tier-overview.

Click Apply and put in a database name. I used bwazuresqldbserverless. Click

Review + create. Notice on the validation screen the costs is listed as per second which

is one of the great stories of saving costs with Serverless. Click Create and wait for the

Figure 4-25.  Serverless compute options

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview

186

deployment to finish. When the deployment is finished, click Go to resource. Notice in

the Monitoring Pane metrics for Compute utilization vs. App CPU billed. This helps you

track billing per second of compute usage for a Serverless database.

Click the Server name again so you can create a Hyperscale database.

�Deploying Hyperscale
Click Create Database from the command bar to see the screen again to create a new

database on the same logical server. Click configure database and select the Hyperscale

option as seen in Figure 4-26.

The first thing you may notice about this screen is that you must select the option

that you understand that by choosing Hyperscale you cannot change the service tier (to

General Purpose or Business Critical) once you deploy.

The slider for vCores looks just like General Purpose and Business Critical. But

notice there is no Data max size. Hyperscale is theoretically limitless (although today we

limit you to a 100TB database but a large transaction log). When you deploy a Hyperscale

database, we create an initial size of ~40Gb and then just grow as you need space.

Figure 4-26.  Hyperscale deployment options

Chapter 4 Deploying Azure SQL

187

Hyperscale offers a unique choice for number of replicas. You will learn in Chapter 8

of this book about how Hyperscale provides unique availability. Allowing you to specify

up to four replicas which can be used for read scale is one of them.

I will choose 8 vCores and four Secondary Replicas. Click Apply, put in a database

name (I will use bwazuresqldbhyper), and click Review + create. I will click Create to

start the deployment.

Once the deployment is complete, you can click Go to resource to bring up the

Overview page of the database. If you select Server name, you can see now you have four

databases spanning all the service and compute tiers as seen in Figure 4-27.

Notice that my Serverless database is already paused because quite frankly I

had paused for an hour before I deployed the Hyperscale database. Before we try to

connect to these databases, let us explore more how to deploy with CLI tools and some

implementation details of Azure SQL Database.

�Deploying with a CLI
An Azure SQL Database can be deployed with command-line interfaces (CLI) through

the az sql db (https://docs.microsoft.com/en-us/cli/azure/sql/db?view=azure-

cli-latest) command interfaces or through New-AzSQLDatabase PowerShell

cmdlet (https://docs.microsoft.com/en-us/powershell/module/az.sql/New-

AzSqlDatabase).

Unlike Managed Instance, it is easier to use the az CLI for Azure SQL Database

without an Azure template because I only have to create the logical server and then I

can create the database (I don’t have to create a virtual network and all the components

first).

Figure 4-27.  Available databases from an Azure logical server

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_8
https://docs.microsoft.com/en-us/cli/azure/sql/db?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/sql/db?view=azure-cli-latest
https://docs.microsoft.com/en-us/powershell/module/az.sql/New-AzSqlDatabase
https://docs.microsoft.com/en-us/powershell/module/az.sql/New-AzSqlDatabase

188

Here is an example of using az sql db to create a single database for a General

Purpose, 2 vCore database:

az group create –name bwazuresqlrg2 -l eastus

az sql server create --location eastus --resource-group bwazuresqlrg2

 --name bwazuresqlserver2 -u thewandog -p '<password>' --enable-public-

network true

az sql db create --resource-group bwazuresqlrg2 --server bwazuresqlserver2

 --name bwazuresqldb2 --edition GeneralPurpose --family Gen5 --capacity 2

 --sample-name AdventureWorksLT

Note T he only option that cannot be done with the az CLI for database that I
could in the portal is to set Allow Azure services to Yes and set the current Client
IP address for a firewall rule. You can easily configure this after the deployment or
use an Azure template.

PowerShell does give you all the options you need to deploy as with the portal. There

is a good tutorial on using PowerShell at https://docs.microsoft.com/en-us/azure/

azure-sql/database/scripts/create-and-configure-database-powershell?toc=/

powershell/module/toc.json.

An Azure template is still a great idea to use and in fact is the best option to automate

deployment of many databases. Read about how to use Azure templates and Azure

SQL Database at https://docs.microsoft.com/en-us/azure/azure-sql/database/

single-database-create-arm-template-quickstart.

�Implementation Details

Note T hese implementation details may change over time as we change and
improve the service. I offer up some of these details so you can understand how
we build, manage, and run the service.

In Chapter 1 of this book, I covered the incredible history of how we have built an

architecture to power millions of databases for Azure SQL Database. Let me give you a

few more details about how we implement Azure SQL Database behind the scenes.

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/scripts/create-and-configure-database-powershell?toc=/powershell/module/toc.json
https://docs.microsoft.com/en-us/azure/azure-sql/database/scripts/create-and-configure-database-powershell?toc=/powershell/module/toc.json
https://docs.microsoft.com/en-us/azure/azure-sql/database/scripts/create-and-configure-database-powershell?toc=/powershell/module/toc.json
https://docs.microsoft.com/en-us/azure/azure-sql/database/single-database-create-arm-template-quickstart
https://docs.microsoft.com/en-us/azure/azure-sql/database/single-database-create-arm-template-quickstart
https://doi.org/10.1007/978-1-4842-5931-3_1

189

Note A s I interviewed many people in the Microsoft engineering team behind
the scenes about Azure SQL Database even as I write this chapter, we are looking
into how to make our implementation more efficient. Therefore, it is possible even
some of these details could be a bit outdated by the time you read this chapter.
That is the speed of the cloud and an author’s nightmare!

�Dedicated Rings and Instances

Unlike Managed Instance, we pre-deploy rings dedicated to hosting Azure SQL Databases.

With only a few exceptions, each database is hosted by a dedicated SQL Server instance

(exceptions being “subcore” DTU options and elastic pools). This allows us to provide

better isolation for a customer and keep the “just worry about the database” model while

opening some instance-level surface area (e.g., DMVs and columnstore indexes). We may

provision these instances on the same VM or node, but those details are abstracted from

you, provided we keep to our SLA agreement and objectives for performance.

All the rings and instances are powered and managed using Azure Service Fabric.

This is the same service fabric software that you can build your own microservices. The

Azure Service Fabric architecture is well documented at https://docs.microsoft.com/

en-us/azure/service-fabric/service-fabric-architecture.

�The Logical Server

As I stated earlier in this chapter, a database or logical server is just a metadata concept.

We provide an interface to a server and a master database. But, when you query various

aspects of the master database, we may be pulling data from other stores or files within

the service to show you the information. There is a good description of why you need

a logical server for even one database at https://docs.microsoft.com/en-us/azure/

azure-sql/database/logical-servers.

�Storage, Compute, and Gateways

You will see in Chapter 8 for Availability more details on the architecture behind the

scenes on how we implement High Availability (HA) for General Purpose, Business

Critical, and Hyperscale service tiers. We achieve certain HA capabilities by either using

Azure Storage or local storage with technologies like Always On Availability Groups.

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture
https://docs.microsoft.com/en-us/azure/azure-sql/database/logical-servers
https://docs.microsoft.com/en-us/azure/azure-sql/database/logical-servers
https://doi.org/10.1007/978-1-4842-5931-3_8

190

In each of these cases, one of the key components for connectivity is a gateway.

Gateways are nodes that basically route traffic to nodes hosting SQL Server databases.

I mentioned the use of redirect vs. proxy connection types with a Managed Instance

earlier in the chapter. The same concept will apply with an Azure SQL Database.

Gateways are critical to connectivity in that they provide abstractions to an application

for connectivity no matter where the node for the database lives which you will learn

more about in Chapter 6 on Security and Chapter 8 on Availability.

�Serverless

Serverless compute models involve several interesting technologies we implement

within the standard deployment of a SQL Server. Many of these details are described

in our documentation at https://docs.microsoft.com/en-us/azure/azure-sql/

database/serverless-tier-overview.

Since storage and compute are separated for a Serverless deployment, pausing a

database is not that difficult since no application is connected. We just need to keep

around enough state information that when a new login is made, we can connect the

database to an instance and “warm up” the application.

Autoscaling is more interesting. We need to scale up or down the database CPU

resources without application disruption. And if we can scale on a node that can meet

the new scaling demand, there is no disruption. However, if we cannot meet that

demand, we may need to use an Azure Load Balance to keep the application connected

if possible until a new node is found to meet demand, but there can be a disconnection

when the new node is brought up.

Memory management is also different in that we must deploy memory policies

to reclaim memory for the SQL Server instance when CPU or cache utilization is low.

Think of this concept as though we are signaling SQL Server there is external memory

pressure and lowering the target for memory. Autoscaling and Memory Management

for Serverless is described more at https://docs.microsoft.com/en-us/azure/azure-

sql/database/serverless-tier-overview#autoscaling.

�Hyperscale

Hyperscale is a unique implementation for a database within the same architecture of

databases (dedicated rings and nodes) implemented much differently than General

Purpose or Business Critical service tiers.

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_6
https://doi.org/10.1007/978-1-4842-5931-3_8
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview#autoscaling
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview#autoscaling

191

A hyperscale deployment involves a series of nodes for compute, logging, and

caching combined with Azure Storage. I talked about this architecture in Chapter 1 of the

book, but it is worth showing you again as seen in Figure 4-28 (which is directly from the

documentation at https://docs.microsoft.com/en-us/azure/azure-sql/database/

service-tier-hyperscale#distributed-functions-architecture).

I will show you more of the working parts of this architecture in Chapter 8 of this

book, but let me stop and call out a few key components:

•	 Separate of compute and storage

Just like General Purpose, we store database files on Azure

storage. But notice here we use Azure Standard Storage. Speed

to access the database files is not as important because of the

caching system.

•	 The caching system

We use a combination of page servers (actual nodes that host

database pages) and buffer pool caches (think SSD drives that

extend the buffer pool) on page servers and compute nodes.

Figure 4-28.  The Hyperscale architecture

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_1
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale#distributed-functions-architecture
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale#distributed-functions-architecture
https://doi.org/10.1007/978-1-4842-5931-3_8

192

•	 Log Service

For Hyperscale, any logged changes are still in a log cache on

the primary compute node. However, when log changes must

be flushed to disk (a commit), these I/O requests are redirected

to another node where a component called the Log Service

runs (this is also called Xlog). The Log Service is responsible for

ensuring changes are stored locally (called the Landing Zone)

and are refreshed to the caching system, secondary replicas, and

eventually to Azure storage.

•	 Decoupled Replicas

In a way Hyperscale provides you the best of both the General

Purpose and Business Critical tiers. The actual database and

transaction log files are stored in Azure Storage (which has its own

redundancy), but we also have replicas for extremely fast high

availability.

However, the secondary replica system does not use Always On

Availability Groups. In fact, the primary and secondary replicas

are not aware of each other. Secondary replicas use a log change

methodology but are fed changes from the Log Service. Commits

on the primary replica can proceed once the Log Service has

hardened the changes not sending to a replica.

High availability is even allowed with no secondary replicas. How?

If the primary node has an issue, we can deploy a new primary

replica on a new node and use page servers or even the database

files on Azure Storage because it is decoupled. Having said this,

RTO is much faster with the presence of secondary replicas. The

secondary replica system (because you can have four of these)

provides the best read-scale option for Azure SQL Database.

•	 Hyperfast Backup and Restore

Because most of the data access comes from the caching system,

reading database pages from the database files is rare with a warm

system. This allows us to use snapshot backups for database files.

Chapter 4 Deploying Azure SQL

193

Snapshot backups are extremely fast since we just copy the files to

another storage location. And the other amazing story is Restore.

Restoring a database snapshot is crazy fast!

My colleague Kevin Farlee has an excellent video describing the

Hyperscale architecture including the great story of restore at

https://youtu.be/Z9AFnKI7sfI.

�Resource Governance

To meet the SLA requirements for Azure SQL Database, we must put some resource

limits on the usage of the database. I have described some of these limits in this chapter.

Behind the scenes, we use these technologies to enforce these limits:

SQL Server Resource Governor
Azure SQL Managed Instance allows for user-defined workload groups and pools.

Azure SQL Database uses Resource Governor behind the scenes to enforce certain

limits. Moving to a dedicated SQL Server instance was a key driver in allowing us to use

Resource Governor.

Engine enhancements
The engine has been enhanced in Azure to detect the generation of a certain

size and rate of transaction log records and govern the application if necessary. The

primary signal this governance is happening is seeing a wait type of LOG_RATE_

GOVERNOR. You can read more about log rate governance at https://docs.

microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-

server#transaction-log-rate-governance.

Windows Job Objects
I have mentioned this technology before in this chapter. Windows Job Objects allow

us to control resource usage on the SQL Server engine process to ensure we properly

enforce resource limits like memory.

File Source Resource Manager (FSRM)
FSRM provides a mechanism so we can properly enforce storage maximum sizes

outside of what we control through SQL Server file size limits.

We have created a great blog post talking about how we enforce resource limits using

these technologies and why we use them at https://azure.microsoft.com/en-us/

blog/resource-governance-in-azure-sql-database/.

Chapter 4 Deploying Azure SQL

https://youtu.be/Z9AFnKI7sfI
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance
https://azure.microsoft.com/en-us/blog/resource-governance-in-azure-sql-database/
https://azure.microsoft.com/en-us/blog/resource-governance-in-azure-sql-database/

194

�Connecting and Verifying Deployment
Once you deploy an Azure SQL Databases, you are likely going to want to quickly

connect and verify aspects of the deployment.

�Connecting to Azure SQL Database

Earlier in this chapter, I deployed my logical server and Azure SQL Database allowing

public endpoint access with options to access through Azure services and with a firewall

rule for the client IP address where I deployed through the portal. I will show you how to

connect using both techniques.

Because I used the option Allow Azure services and resources to access this server

when I deployed the logical server for the database, I can use an Azure Virtual Machine

or even sqlcmd from the Azure Cloud Shell to connect to this server and database.

To connect with Azure Cloud shell, you need to find the name of the logical server

for the deployment. There are many ways to do this through the portal. You can simply

look at your resource groups or resources from the home of the portal and find the server

bwazuresqlserver (or your name).

Figure 4-29 shows the Working pane of the server with the Server name to use when

connecting with a SQL Server tool or application.

Notice I clicked next to the server name to copy the Fully Qualified Domain Name

(FQDN) to the clipboard. You will find the FQDN is a combination of the logical server

name and .database.windows.net.

Figure 4-29.  Find the Server name to connect

Chapter 4 Deploying Azure SQL

195

Note A zure SQL Database also supports the concept of a DNS alias which you
can read about at https://docs.microsoft.com/en-us/azure/azure-
sql/database/dns-alias-overview.

I can now bring up the Azure Cloud Shell (you can use the home page of the portal,

but I like to use https://shell.azure.com).

Since sqlcmd is installed with the cloud shell, I can use a syntax like Figure 4-30.

I also configured the logical server for a firewall rule for the IP address of the

computer when I was using the Azure Portal. In the working pane of the logical server,

I can select Show firewall settings to see the following information. Figure 4-31 shows

this firewall setting along with other network options.

Figure 4-30.  Using sqlcmd from the Azure Cloud Shell

Figure 4-31.  Configure firewall rules for Azure SQL Database

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/dns-alias-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/dns-alias-overview
https://shell.azure.com

196

A firewall rule is very much like a firewall rule you would configure in Windows

Server or Linux. If you have used SQL Server before you know that by default, we do

not open the firewall rules in the OS for port 1433 by default. The firewall rule earlier is

opening access to the gateway for this logical server for this specific IP address. Firewall

rules can be specified at the logical server or database level. You can read more about

firewall rules for Azure SQL Database at https://docs.microsoft.com/en-us/azure/

azure-sql/database/firewall-configure.

Since my client IP address is in the firewall rule, I can use a tool like SQL Server

Management Studio to connect to the logical server as seen in Figure 4-32.

Once I hit Connect, I get the familiar Object Explorer, and expanding the list of

databases, I see all the databases I have deployed in this chapter. I can right-click the

server, select New Query, and try to switch database context to one of my databases as

seen in Figure 4-33.

Figure 4-32.  Connecting to Azure SQL Database with SSMS

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/firewall-configure
https://docs.microsoft.com/en-us/azure/azure-sql/database/firewall-configure

197

You can first see some differences for Object Explorer (OE) including the color of the

icon (Azure blue) for the server name. Notice also there are not as many choices in OE

as there are with SQL Server or Managed Instance (because this is not a full SQL Server

instance).

When I connected with SSMS specifying no options, I was put in the context of the

logical master for the logical server. I tried to change database context with the familiar

T-SQL USE statement, but if fails. Why?

If you think about T-SQL USE on a SQL Server, the engine switches context to a

database stored on the instance. For an Azure SQL Database logical server, the databases

are on separate SQL Server instances that can be spread across various rings in the Azure

region. The USE statement is not built to redirect connections to different server.

Therefore, for SSMS, you can either specify the database to connect to before you hit

the Connect button (use the Options button) or switch database context using the drop-

down box (which does change the connection context).

In Chapter 5 of the book, I will show you how to configure the connection type for

the Azure SQL Database to use redirect instead of proxy. In Chapter 6 of the book, I will

show you how to make the connection to the database more secure.

Figure 4-33.  Trying to switch database context for Azure SQL Database

Chapter 4 Deploying Azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_5
https://doi.org/10.1007/978-1-4842-5931-3_6

198

�Verifying Deployment

While you can use the Activity Log to verify the deployment of the database, there is no

method to see the ERRORLOG behind the SQL Server instance. Therefore, you can use

several T-SQL queries to examine the deployment:

Note E ven though there are some queries that make sense to run in the
context of the logical master, I ran these queries in the context of my database
bwazuresqldb.

SELECT @@version

Microsoft SQL Azure (RTM) - 12.0.2000.8 May 15 2020 00:47:08 Copyright

(C) 2019 Microsoft Corporation

This is the exact same result as with Azure SQL Managed Instance indicating a

versionless SQL Server:

SELECT database_id, name, compatibility_level FROM sys.databases

database_id name compatibility_level

1 master 150

5 bwazuresqldb 150

You will always see master and only your database from the context of a user

database. But note that this is still the logical master, not the physical master on the SQL

Server instance hosting the database:

SELECT name, object_id, type_desc FROM sys.objects

Since this database was built on the sample AdventureWorksLT, I have ~204 rows

from this catalog view including system tables:

SELECT * FROM sys.dm_os_schedulers

Chapter 4 Deploying Azure SQL

199

This is one of the DMVs we can expose since we are running on a dedicated SQL

Server instance. I deployed a 2 vCore General Purpose database so as I would expect I

get two ONLINE schedulers:

SELECT * FROM sys.dm_os_sys_info

Just like with a Managed Instance, I can use this to look at CPU and memory

information for the database deployment. Keep in mind though that true limits must be

observed with other DMVs as described as follows:

Note I used sys.dm_os_process_memory with Managed Instance, but that is
not supported with Azure SQL Database.

SELECT * FROM sys.dm_exec_requests

This is one of the most common DMVs in the world to check the state of what

is running on a SQL Server. I run this just to make sure all the normal background

processes are running, including LAZ WRITER, RECOVERY WRITER, LOCK MONITOR,

and so on.

Here is the interesting twist on this DMV for Azure SQL Database. This will show

you requests for the instance for your database, not requests for other databases on your

logical server (because they are deployed on other instances):

SELECT SERVERPROPERTY('EngineEdition')

Per the documentation at https://docs.microsoft.com/en-us/sql/t-sql/

functions/serverproperty-transact-sql, the value of 5 is a SQL Database.

There are also two new DMVs specific to Azure not found in SQL Server:

SELECT * FROM sys.dm_user_db_resource_governance

This DMV is really intended to show you resource limits for a specific Azure SQL

Database. You can view limits like memory, max storage, log rates, and so on. You

can read the documentation for this DMV at https://docs.microsoft.com/en-us/

sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-

resource-governor-azure-sql-database?view=azuresqldb-current. Note that the

docs say this is mostly for internal use, which means it might change in the future:

SELECT * FROM sys.dm_os_job_object

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/sql/t-sql/functions/serverproperty-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/functions/serverproperty-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current

200

This is a DMV specific to Azure (although I tested it and it works for a SQL Server, but

you can’t rely on the results there because it is not applicable) that shows resource limits

Azure applies to the Database using Windows Job Objects. The specific column I look

at is memory_limit_mb which shows me the true amount of memory the database has

access to. I talked about Windows Job Objects in the section “Implementation Details.”

Note I do not recommend you rely on any results of running these queries in the
context of the logical master. Even though you might see results, they do not mean
anything since the logical master is not a true physical master database. There are
a few queries that make sense to run in the logical master which you will see later
in the book.

�Migrating to Azure SQL Database
Migrating to Azure SQL Database involves the same process as with a Managed Instance

of assessment and planning, migration, application changes, and post migration.

While the steps are the same, you will find several differences that are important:

•	 Azure SQL Database has more restrictions on features, so you may find

your assessment is going to find more problems you need to take care

before migrating. An example is a feature like Service Broker which is

supported in Managed Instance but not in Azure SQL Database.

•	 Let me give you a simple example. When I first tried to migrate

the example WideWorldImporters (https://github.com/

Microsoft/sql-server-samples/releases/tag/wide-world-

importers-v1.0) to Azure SQL Database, I ran into a bunch of

problems because certain features used in the sample didn’t

work in Azure SQL Database. Therefore, I needed to use the

Standard WideWorldImporters found at https://github.com/

Microsoft/sql-server-samples/releases/download/wide-world-

importers-v1.0/WideWorldImporters-Standard.bacpac.

Chapter 4 Deploying Azure SQL

https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Standard.bacpac
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Standard.bacpac
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Standard.bacpac

201

•	 Migrating to Azure SQL Database involves migrating your schema

(all your definitions) first and then the data. You can use DMS and

DMA to do this. Read more about how to do this at https://docs.

microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-

sql. Like Managed Instance, consider using a database compatibility

level that matches your current SQL Server installation and then

move later to the latest compat level. Learn more about dbcompat at

https://aka.ms/dbcompat.

•	 You can also load your data into Azure SQL Database using SSIS

packages, Azure Data Factor, bcp, or a BACPAC file. Remember

that minimal logging for bulk import is not supported in Azure SQL

Database.

•	 Even though the Microsoft Mechanics video I did on migration

focuses demonstrations more on Azure Managed Instance, it is still

worth watching for tips on migration to Azure SQL Database. Watch

the video at https://youtu.be/P_4EaqVR5PI. One of the aspects

of using DMA I love is the SKU recommendation PowerShell script.

This script analyzes your current SQL Server workload to guide you

on Azure SQL Database deployment choices. Read more at https://

docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-

db?view=sql-server-ver15.

Like Managed Instance, the application needs to change the connection string and

possibly authentication method. Depending on what T-SQL features and language

constructs are used, further application changes may be needed. The DMA tool does a

good job of finding these based on database compatibility. To be more thorough, please

look over this documentation for T-SQL differences at https://docs.microsoft.com/

en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server.

Use the rest of the chapters in the book to guide you on any post-migration changes

you need to make to fully take advantage of security, performance, and availability in

Azure.

Chapter 4 Deploying Azure SQL

https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql
https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql
https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql
https://aka.ms/dbcompat
https://youtu.be/P_4EaqVR5PI
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server
https://docs.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server

202

�Summary
In this chapter, you learned how to go through a pre-deployment exercise to make the

best choices possible to deploy Azure SQL Managed Instance or Database. You learned

the details of deployment for both a Managed Instance and Database along with some

interesting implementation details.

You learned how to connect and run verification queries against a Managed Instance

and Database deployment. You also learn migration techniques and tools to migrate an

existing SQL Server to Azure SQL Managed Instance and Database.

Now that you have deployed, learn more in the next chapter about how to make

configuration choices and compare these choices to configuring a SQL Server instance

or database.

Chapter 4 Deploying Azure SQL

	Chapter 4: Deploying Azure SQL
	Pre-deployment Planning
	New Deployment or Migration
	Making Deployment Choices
	Deployment Method
	Deployment Option
	Region
	Purchasing Model
	Service Tier (SLO)
	Hardware
	Sizes
	Price

	Consider Resource Limits

	Deploying Azure SQL Managed Instance
	Deployment and Options
	Basics
	Networking
	Additional Settings
	Tags
	Deploy!

	Deploying with a CLI
	Implementation Details
	Connecting and Verifying Deployment
	Connect to a Managed Instance
	Verify the Deployment

	Migrating to Azure SQL Managed Instance
	Assessment and Planning
	Migration
	Application Changes
	Post Migration

	Deploying an Azure SQL Database
	Deployment and Options
	Basics
	Networking
	Additional Settings
	Tags
	Deploy It!

	Deploying Business Critical
	Deploying Serverless
	Deploying Hyperscale
	Deploying with a CLI
	Implementation Details
	Dedicated Rings and Instances
	The Logical Server
	Storage, Compute, and Gateways
	Serverless
	Hyperscale
	Resource Governance

	Connecting and Verifying Deployment
	Connecting to Azure SQL Database
	Verifying Deployment

	Migrating to Azure SQL Database
	Summary

