
1
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_1

CHAPTER 1

SQL Server Rises
to the Clouds
In late 2005, Microsoft as a company was humming (I’m a little biased here) in the

enterprise space and so was the SQL Server product. In October of 2005, we were close

to releasing SQL Server 2005 (code name Yukon) which was unfortunately 5 years in

the making (that is a story for another book; just ask Paul Randal). I was in Microsoft

Support in those days, and despite the delay in getting SQL Server 2005 to market, I

was very proud of the release. Windows, Windows Server, Office, and Xbox 360 were all

popular products from Microsoft.

In October of 2005, an architect new to Microsoft named Ray Ozzie sent an internal

email to several executives at Microsoft (which eventually was sent to all employees

including a 12-year veteran named Bob Ward) called The Internet Services Disruption

(the email leaked to the Web fairly quickly which you can read at www.cnet.com/news/

ozzie-memo-internet-services-disruption/). I remember hearing about the email

leak and some of its contents as an employee but didn’t pay much attention. Wasn’t the

Internet just for email and web browsing? In that email, Ray Ozzie painted a picture of

Microsoft becoming a cloud provider vs. just a “traditional software company.” Microsoft

only really had a few “Internet services” offerings at the time which included the

legendary Hotmail email service (which had existed since 1997), the Bing Search Service,

and Xbox Live. The email from Ray Ozzie painted a picture for something far bigger.

One of the key statements from this email was “…All Business Groups have been

asked to develop their plans to embrace this mission and create new service offerings

that deliver value to customers and utilize the platform capabilities that we have today

and are building for the future.” Little did I know how much behind-the-scenes work

would kick in within the SQL Server team to develop plans for this statement.

https://doi.org/10.1007/978-1-4842-5931-3_1#DOI
http://www.cnet.com/news/ozzie-memo-internet-services-disruption/
http://www.cnet.com/news/ozzie-memo-internet-services-disruption/

2

Ray Ozzie became the Chief Software Architect of Microsoft in the summer of 2006

(taking the role held by Bill Gates), and this email would set the stage for what would

become known as Azure. SQL Server was destined to become a huge part of it.

�CloudDB
In early 2006, Paul Flessner, Vice President of the Data Storage and Platform division of

Microsoft, decided to step down as the leader of SQL Server and turn over the reins to

Ted Kummert. When Ted took over to lead SQL Server, a project was already underway

to look at cloud services led by Technical Fellow Peter Spiro, who was a chief architect

for several SQL Server releases, including SQL Servers 7.0, 2000, and 2005. Peter formed

a team which included several engineers. Among them were two architects still at

Microsoft today: Ajay Kalhan and Tomas Talius. The team embarked on a project to build

a cloud-based service to host databases. They called it CloudDB. As Ted tells it, “We

needed to build a cloud version of SQL. Our goal was to build a serverless or Platform as a

Service (PaaS) SQL. A customer wouldn’t worry about a server or VM, just a database.”

In order to build a cloud-based database service, the team needed to build out a

robust design to support the concept of hosting multiple customers or “databases”

isolated from each other using shared resources. This concept is called multi-tenant.

Note  The term tenant can mean many things in the cloud. For CloudDB, in the
beginning, a tenant referred to a database owned by a customer. You will see
throughout this book the word tenant, but I’ll be clear about the scope of what I
mean when using the term.

According to Ajay Kalhan, from the beginning the CloudDB team started working

out designs to incorporate concepts such as failure detection, logical master (think

of a “metadata” master, not physical), load balancing, and deployment. Early designs

even looked at the idea of a “key-value store” instead of traditional relational database

concepts. Not long after the team was building out the design for CloudDB, Ted assigned

David Campbell to also work on the project and lead the team toward a true mission of

“SQL Server in the Cloud.”

Chapter 1 SQL Server Rises to the Clouds

3

The team believe it needed an internal customer to help dogfood the project and

prove they could host customers. That internal customer would become a public-facing

cloud service called Exchange Hosted Archive (EHA) (an email archive solution in the

cloud predating Office 365). For this internal customer, early designs to support multi-

tenants (which in this case even though there was one internal customer, that customer

serviced the needs of multiple customers) used a concept called silos where a SQL

Server could host multiple databases, but tenants were partitioned within the database

itself. EHA became one of the first Software as a Service (SaaS) services at Microsoft

to use our cloud-based database service. Think of SaaS as purchasing software on a

subscription basis and using the software from a hosted solution, like in Azure. You just

focus on using an application hosted somewhere other than your computers. Since SQL

Server hosted the back-end databases, the team forked the codebase of SQL Server 2005

to use for the service.

While the CloudDB team was working on their project with a goal to support EHA

and other customers, another team at Microsoft was chartered by Ray Ozzie to look at

how to host compute services in the cloud.

�The Red Dog
In 2006, Ray Ozzie enlisted Microsoft veteran Amitabh Srivastava to lead a “Cloud

OS” project in the attempt to move forward the “Internet services disruption” he

had talked about a year ago. One of the first actions Amitabh took was to bring out of

retirement Dave Cutler, the “father” of DEC VMS and Windows NT operating systems.

As part of their initial project work, Srivastava and Cutler visited groups at Microsoft

that were providing “cloud services,” including Xbox Live, Hotmail, and Bing. On one

of the trips to visit Hotmail in San Jose, California, the team drove by a club called the

Pink Poodle. It was Dave Cutler who famously said, “Maybe we should name

our project the Pink Poodle?” The project team all agreed that would not go

over well so named the project instead “Red Dog.” The name stuck (you can read

more about the great history of the beginning of Red Dog at www.wired.com/2008/11/

ff-ozzie/?currentPage=7 and www.zdnet.com/article/how-the-red-dog-dream-

team-built-a-cloud-os-from-scratch/).

Chapter 1 SQL Server Rises to the Clouds

http://www.wired.com/2008/11/ff-ozzie/?currentPage=7
http://www.wired.com/2008/11/ff-ozzie/?currentPage=7
http://www.zdnet.com/article/how-the-red-dog-dream-team-built-a-cloud-os-from-scratch/
http://www.zdnet.com/article/how-the-red-dog-dream-team-built-a-cloud-os-from-scratch/

4

From the beginning, the Red Dog team did things differently at Microsoft to build

the “Cloud OS.” They built their own “data center” in the heart of the Microsoft campus,

even taking reserve power from neighboring buildings. Their goals were ambitious and

still resonate today. Their main overall goal was to build a cloud service for developers

to build scalable web applications. They also had a massive theme from the beginning:

reliability. As Dave Cutler said back in 2008, “One of the things you did not ask is why

aren’t we saying more about Azure and in the process filling the marketplace with

sterling promises for the future? The answer to this is simply that the RD group is very

conservative, and we are not anywhere close to being done. We believe that cloud

computing will be very important to Microsoft’s future and we certainly don’t want to

do anything that would compromise the future of the product. We are hypersensitive

about losing people’s data. We are hypersensitive about the OS or hypervisor crashing

and having properties experience service outages. So, we are taking each step slowly and

attempting to have features 100% operational and solidly debugged before talking about

them. The opposite is what Microsoft has been criticized for in the past and the RD dogs

hopefully have learned a new trick.”

The RedDog and CloudDB teams were marching together as separate projects

(ironically on the same campus only buildings apart) to support cloud services for web

applications and hosted databases in the cloud. These projects were on a path to come

together in 2007 and 2008 for a launch of a unified cloud service.

�The Azure Services Platform
In October of 2008 at the Microsoft Professional Developers Conference (PDC) in Los

Angeles, California, Ray Ozzie announced Windows Azure. The PDC was the pre-cursor

to today’s Microsoft //Build conference (https://en.wikipedia.org/wiki/Build_

(developer_conference). PDC was a huge event for Microsoft for developers.

Windows Azure was launched as part of the Azure Services Platform. Figure 1-1

shows a snapshot of the Azure Services Platform offerings.

Chapter 1 SQL Server Rises to the Clouds

https://en.wikipedia.org/wiki/Build_(developer_conference)
https://en.wikipedia.org/wiki/Build_(developer_conference)

5

The Red Dog team had been cranking away since 2006 with the goal of releasing a

cloud service for developers. Ray Ozzie called Windows Azure a “new Windows offering

at the web tier of computing” (watch the video for yourself at www.zdnet.com/article/

ray-ozzie-announces-windows-azure/). He also called Azure “Windows in the cloud.”

Microsoft now would offer customers Windows on your laptop (at that time, it was

Windows Vista), servers for your enterprise (Windows Server), and Windows in the

cloud (Azure).

Note  I sought out many folks at Microsoft on why our cloud service was named
Azure. As Buck Woody, who is my colleague now but worked on Azure in the early
days, tells the story, “Azure means clear blue sky with no clouds. The name just
seemed right without using the word cloud in our name.”

Like the goal of the CloudDB project, when Windows Azure first released, the

goal was all about scalability and availability targeting web applications in the form

of a Platform as a Service (PaaS). Think of PaaS as purchasing a platform to host your

application or database based on a subscription where the platform is managed by a

Figure 1-1.  The Azure Services Platform in 2008

Chapter 1 SQL Server Rises to the Clouds

http://www.zdnet.com/article/ray-ozzie-announces-windows-azure/
http://www.zdnet.com/article/ray-ozzie-announces-windows-azure/

6

provider, like Azure. With PaaS, you are typically abstracted from a host computer or

virtual machine. Therefore, Cloud Services was the first service in Windows Azure. This

type of service was known internally as PaaS V1.

Note  Cloud services is still offered today in Azure. You can read more about cloud
services at https://azure.microsoft.com/en-us/services/cloud-
services/. A new service for web applications has become popular today
called Azure App Service which you can read more about at https://azure.
microsoft.com/en-us/services/app-service/.

Even though a cloud service application ran in one or more Virtual Machines, the

idea was to support easy-to-scale web applications in the cloud where developers didn’t

focus on the details of the virtual machine but more on the application. Developers

at this time for Windows were used to the Internet Information Server (IIS) feature of

Windows Server. While developers didn’t have to worry as much about deploying and

configuring IIS, they typically had to have an administrator within their organization.

While developers had some access to the Virtual Machine native OS environment for

cloud services, that access was limited. It would be a few years later that Microsoft

would introduce the concept of Infrastructure as a Service (IaaS) through Azure Virtual

Machine. Think of IaaS as purchasing an infrastructure to host your virtual machine

based on a subscription. You worry about the guest VM and the provider manages the

host, hardware, networking, and storage.

One of the other promises of PaaS and cloud services is to create an easy-to-use

concept of application deployment, configuration, and updates. Furthermore, providing

capabilities for scalability, built-in high availability, and load balancing made the

concept of cloud services extremely appealing to web developers. These same concepts

you will see are a part of the appeal as well for Azure SQL and databases.

In order to host PaaS cloud services, an underlying hosting system had to be built.

The Windows Azure team took the designs from the RedDog project to build this hosting

system to support deployment, networking, high availability, scale, and security, as

cloud services abstracted all these details from the developer. This software hosting

system was known as the Windows Fabric. Providing the underlying hosting system for

services consumed by users is the power of the cloud. I found this interesting slide from

a talk at the PDC 2008 conference that talks about all the details required for someone to

run their own fabric in a data center as seen in Figure 1-2.

Chapter 1 SQL Server Rises to the Clouds

https://azure.microsoft.com/en-us/services/cloud-services/
https://azure.microsoft.com/en-us/services/cloud-services/
https://azure.microsoft.com/en-us/services/app-service/
https://azure.microsoft.com/en-us/services/app-service/

7

This slide speaks volumes for what a fabric must support for cloud services at scale.

A highly available fabric controller (FC) is key to the system. The FC maintains a graph

of the inventory of what it manages: computer, Virtual Machines, load balancers, and

switches with edges being objects like network cables. One key to the fabric system is

the use of a declarative model so the FC takes what you declare and implements it. Very

early on, the Windows Fabric in Azure had concepts of high availability such as fault and

update domains (I’ll describe the importance of these in Chapters 2 and 3 of the book).

Figure 1-2.  Building your own fabric in a data center

Chapter 1 SQL Server Rises to the Clouds

https://doi.org/10.1007/978-1-4842-5931-3_2
https://doi.org/10.1007/978-1-4842-5931-3_3

8

Tip  The slide from Figure 1-2 comes from an excellent presentation from the
PDC 2008 event which talks about Windows Fabric and the hosting environment of
the original Windows Azure service. You can watch this presentation at https://
channel9.msdn.com/blogs/pdc2008/es19. Another good resource I found on
some basics of hosting and Windows Fabric comes from an interview with Azure
CTO Mark Russinovich at https://searchcloudcomputing.techtarget.
com/blog/The-Troposphere/How-Azure-actually-works-courtesy-
of-Mark-Russinovich.

Windows Fabric is today known as Service Fabric. The usage of service fabric is

also exposed to applications to host their own services in a Service Fabric cluster. You

can read more about Azure Service Fabric at https://azure.microsoft.com/en-us/

services/service-fabric/.

Note A s you read more about service fabric in this chapter in the book, you
will likely see some similarity to another fabric system called Kubernetes. If you
want to read more about differences between these two systems, this blog post
is a good place to start: https://techcommunity.microsoft.com/t5/
azure-developer-community-blog/service-fabric-and-kubernetes-
community-comparison-part-1-8211/ba-p/337421.

To round out the set of Azure Services, Microsoft announced the data platform or

SQL Services, thus beginning the first public announcement of the journey that would

become Azure SQL.

�The Road to SQL Azure
A big part of the announcement for Windows Azure at PDC in 2008 involved data. Since

the CloudDB project in 2006, Peter Spiro, David, Campbell, Ajay Kalhan, Tomas Talius,

and the rest of the team had built out a set of cloud services for SQL Server to now host

multi-tenant databases (or multiple customers in a shared set of SQL Servers).

Chapter 1 SQL Server Rises to the Clouds

https://channel9.msdn.com/blogs/pdc2008/es19
https://channel9.msdn.com/blogs/pdc2008/es19
https://searchcloudcomputing.techtarget.com/blog/The-Troposphere/How-Azure-actually-works-courtesy-of-Mark-Russinovich
https://searchcloudcomputing.techtarget.com/blog/The-Troposphere/How-Azure-actually-works-courtesy-of-Mark-Russinovich
https://searchcloudcomputing.techtarget.com/blog/The-Troposphere/How-Azure-actually-works-courtesy-of-Mark-Russinovich
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/service-fabric-and-kubernetes-community-comparison-part-1-8211/ba-p/337421
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/service-fabric-and-kubernetes-community-comparison-part-1-8211/ba-p/337421
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/service-fabric-and-kubernetes-community-comparison-part-1-8211/ba-p/337421

9

The first name announced at PDC 2008 was SQL Data Services (SDS). While the

news of this service made buzz in the industry, so many customers were focused on

on-premises enterprise deployments and our team overall were heavily focused on

SQL Server (e.g., shipping SQL Server 2008 code-named Katmai). But internally, the

leadership of the company was making a major push for the cloud but not just because

they were “told to do this.” Ted Kummert said, “We were believers. We believed PaaS was

the future, but we were early in the industry for a service like this.”

�SQL Data Services
SQL Data Services was announced as part of a broader set of services called SQL
Services which would include DataSync, Reference Data, Reporting, Data Mining, and

ETL as seen in Figure 1-3.

This image came from a slide from a talk presented by David Campbell back at PDC

in 2008.

Note  It is interesting to see our intention was to also provide “data warehouse”
services which we do today with Azure Synapse and “ETL” which is now Azure
Data Factory. “Reporting” never really panned out in SQL Services (but there were
attempts), but Microsoft eventually created a very powerful Reporting service
called Power BI.

Figure 1-3.  SQL Services at PDC in 2008

Chapter 1 SQL Server Rises to the Clouds

10

SQL Data Services embodied the ability for developers to host databases for their

applications and be completely abstracted from the details of computers, virtual

machines, and SQL Server itself. Basically, you create a database; populate it with

tables, data, and indexes; and then just start using it. No machine, Operating System, or

machine installation required.

Note  The announcement of SQL Data Services can be seen in this blog post:
https://azure.microsoft.com/en-us/blog/microsoft-announces-
windows-azure-and-azure-services-platform/.

The other concept that SDS provided was “database as a utility” or “pay-as-you-go

service.” That was really the same concept across all of Windows Azure. It represented

a shift for customers to use a subscription service to pay for database usage (and the

compute and storage that went behind it) vs. a license for SQL Server.

The team learned a quick lesson when it introduced the programming interface as

REST API instead of T-SQL. REST stands for Representational State Transfer and is a

common protocol used for web services. Customer feedback quickly changed that model

(but REST API interfaces remain to this day for many aspects of Azure SQL which you

will see throughout the book). You can see from this blog post in March 2009 (https://

web.archive.org/web/20140411144147/http://blogs.msdn.com/b/sqlazure/

archive/2009/03/10/9469228.aspx) that the SDS team needed to provide developers

and users a “relational data experience” which includes programming interfaces through

Tabular Data Stream (TDS). Translation: T-SQL. Other basic features you expect from

a SQL Server database had to be there, including indexes, stored procedures, triggers,

views, and so on.

Since the SDS and Windows Azure teams were innovating at the same time, the SDS

team had to figure out a hosting system for databases and SQL Server. The Windows Fabric

was being built as the SDS team was innovating. The decision was made to use a hosting

system that already existed at Microsoft instead of using Windows Azure. That platform was

called AutoPilot (you can read more about the AutoPilot system at www.microsoft.com/

en-us/research/publication/autopilot-automatic-data-center-management/?from=

http%3A%2F%2Fresearch.microsoft.com%2Fapps%2Fpubs%2Fdefault.aspx%3Fid%3D64604)

built by the team running the Bing Search Service. AutoPilot was effectively a platform to

provision “bare metal” computers in a scaled fashion. SDS clusters would physically be

co-located with Windows Azure clusters, but SDS managed their own systems.

Chapter 1 SQL Server Rises to the Clouds

https://azure.microsoft.com/en-us/blog/microsoft-announces-windows-azure-and-azure-services-platform/
https://azure.microsoft.com/en-us/blog/microsoft-announces-windows-azure-and-azure-services-platform/
https://web.archive.org/web/20140411144147/http:/blogs.msdn.com/b/sqlazure/archive/2009/03/10/9469228.aspx
https://web.archive.org/web/20140411144147/http:/blogs.msdn.com/b/sqlazure/archive/2009/03/10/9469228.aspx
https://web.archive.org/web/20140411144147/http:/blogs.msdn.com/b/sqlazure/archive/2009/03/10/9469228.aspx
http://www.microsoft.com/en-us/research/publication/autopilot-automatic-data-center-management/?from=http://research.microsoft.com/apps/pubs/default.aspx?id=64604
http://www.microsoft.com/en-us/research/publication/autopilot-automatic-data-center-management/?from=http://research.microsoft.com/apps/pubs/default.aspx?id=64604
http://www.microsoft.com/en-us/research/publication/autopilot-automatic-data-center-management/?from=http://research.microsoft.com/apps/pubs/default.aspx?id=64604

11

AutoPilot just provided software services to deploy and maintain applications

on bare-metal servers at scale. The SDS team had to build their own set of services

for fault tolerance, high availability, and connectivity. The SDS team built their own

fabric to deploy, run, scale, and maintain SQL Server instances to host their customer

databases. The original design of silos was replaced by “database per tenant” model

called partitions (not the same as SQL Server partitions), but multiple databases could

be hosted on a single SQL Server. Each bare-metal server could also host multiple SQL

Server instances.

The other piece of this design to support the concept of a “database service” was to

abstract users from the SQL Server instance itself (even though SQL Server instances

were used to host databases). Thus, the concept of a “master node” was built into the

service to host metadata about the “data nodes.” These data nodes had the concept

of replicas and fabric controllers. In addition, a front-end service was built where

applications would connect instead of connecting to the back-end SQL Server. This

would be the early design of what is now known as Gateway Server for Azure SQL.

Figure 1-4 shows the original design of the SDS hosting system or cluster (this comes

from the PDC talk at https://channel9.msdn.com/Blogs/pdc2008/BB03 from Gopal

Kakivaya).

Figure 1-4.  Original SDS hosting design for SQL Services databases

Chapter 1 SQL Server Rises to the Clouds

https://channel9.msdn.com/Blogs/pdc2008/BB03

12

Fabric processes help coordinate with the overall cluster for failover purposes. So

early on, we needed to provide

•	 The ability to isolate customers with our partition concept but share

SQL Servers for density

•	 Failover logic within the fabric

•	 Replica sets of data. Sound familiar? (kind of like an Availability

Group)

•	 Access for our databases to underlying storage and networking across

the data center but abstracted from users

•	 A logical “master” database for application databases to support

logins and store other metadata

•	 The ability to collect metrics to gain insight into telemetry and health

•	 Watchdog processes for health detection

The team learned a lot in these early days. Ted Kummert described the challenges

of now not just enhancing and building the software but owning all aspects of a “live

service,” including hardening, quality, availability, development velocity, telemetry,

outages, security, and even things like Cost of Goods Sold (COGS) and capacity

planning. These early learnings would eventually allow Microsoft to scale to the levels

the original team had dreamed about. As Ted described it, “…we were now not just

evolving a codebase, but we were evolving as a team and our capabilities all at the same

time. It was both an exhilarating and humbling experience.”

Another important event in Microsoft’s company history happened in 2008. Steve

Ballmer then asked a leader within the company to re-invent another cloud service, the

Bing Search Service. That leader was a man named Satya Nadella. According to Satya

in his book Hit Refresh, “Ultimately, Bing would prove to be a great training ground for

building the hyper-scale, cloud-first services that permeate Microsoft today.”

Chapter 1 SQL Server Rises to the Clouds

13

�SQL Azure Is Born
It was a massive effort to move to a market release. Along the way, SQL Data Services just

didn’t have the right name to many. Therefore, in the summer of 2009, while the service

was still in Community Technology Preview (CTP), a branding name change was made

from SQL Data Services to SQL Azure. The SQL Azure name is still what many call Azure

SQL today (just ask Conor Cunningham). The programming and usage model were the

same as SDS (except T-SQL and the TDS protocol were adopted instead of REST), the

hosting was the same, but the name SQL Azure was the go-to market brand.

On February 1, 2010, it all became official. Windows Azure was officially launched

and, along with it, the first truly PaaS relational database service in the industry, SQL

Azure (you can read the official blog announcement at https://blogs.microsoft.

com/blog/2010/02/01/windows-azure-general-availability/). Along with the

announcement was a new logo (changing the current SQL Server 2008 logo from red to

blue) as seen in Figure 1-5.

In order to interact with Windows Azure, the team had to also snap into a user

interface experience called a portal. The first version of the Windows Azure portal used

HTML, but quickly after this, a new portal experience based on Microsoft Silverlight was

adopted. This also included a separate Silverlight “administration” experience for SQL

Azure.

Figure 1-6 shows an example SQL Azure management portal based on Silverlight.

Figure 1-5.  The original SQL Azure logo

Chapter 1 SQL Server Rises to the Clouds

https://blogs.microsoft.com/blog/2010/02/01/windows-azure-general-availability/
https://blogs.microsoft.com/blog/2010/02/01/windows-azure-general-availability/

14

When Windows Azure launched, the concept of an Azure datacenter was introduced

to our customers. A datacenter is a physical set of buildings in a specific geographic

location where Microsoft hosted Azure services. The names of the datacenters were

based on a geographical region (we have since shifted to a concept of regions and

datacenters which I’ll explain later in this chapter and in other places in the book). At

the original launch of SQL Azure, customers could deploy databases in datacenters with

names of North Central US, South Central US, East Asia, and North Europe.

The original SQL Azure had some interesting characteristics:

•	 We launched with a business model that had two editions: Web and

Business. The basic difference was the maximum database size: 1Gb

for Web and 10Gb for Business (as you will see in this book, you can

create sizes much larger than this now). We quickly bumped this up

to 50Gb by June 2010.

•	 In order to deploy a database, you would deploy first a logical

database server. Multiple databases could be associated with a logical

server. The logical server also contained other metadata such as

logins and firewall rules for security.

Figure 1-6.  The SQL Azure Management Portal

Chapter 1 SQL Server Rises to the Clouds

15

•	 Any table in a database was required to have a clustered index.

•	 We used our own internal “replica system” but ensured that we

always kept three replicas available. We also automated processes

like backups and kept multiple copies.

•	 We updated the software for SQL Server through a concept called a

Service Update (SU) and made announcement about these updates

in blog posts (an example blog post for a service update can be found

at https://web.archive.org/web/20140420195848/http://blogs.

msdn.com/b/sqlazure/archive/2010/02/17/9965464.aspx).

•	 We introduced the concept of a Service-Level Agreement (SLA) to

ensure a level of database availability.

•	 Early on we developed an integrated experience with the popular

tool SQL Server Management Studio (SSMS).

•	 Customers struggled with concepts like application retry logic, new

error messages, logical master, throttling, and inequality with the

T-SQL surface area of SQL Server.

Note  If you want to step back in time and see some older blogs about SQL Azure,
visit https://web.archive.org/web/20140410165353/http://blogs.
msdn.com/b/sqlazure/default.aspx?PageIndex=1 and traverse the links
at the bottom of the page.

In these early days for both Windows and SQL Azure, it was even a new world within

Microsoft. Buck Woody worked on the original Windows Azure teams. He told me that

working on Azure was in a group at Microsoft called “Incubation” – a startup-like culture.

“One of the most interesting parts of that,” he said, “was seeing everything getting built

in the technology, and in the business side. It was probably the best MBA I ever got.” In

Incubation, you were “walled off” from the rest of Microsoft, having your own engineers,

sales, marketing, and the like. When the product showed a profit and all the business

processes were established, it “graduated” to the rest of the field at Microsoft. Some

products graduated, and others didn’t – so there was a lot of pressure to succeed.

Chapter 1 SQL Server Rises to the Clouds

https://web.archive.org/web/20140420195848/http:/blogs.msdn.com/b/sqlazure/archive/2010/02/17/9965464.aspx
https://web.archive.org/web/20140420195848/http:/blogs.msdn.com/b/sqlazure/archive/2010/02/17/9965464.aspx
https://web.archive.org/web/20140410165353/http:/blogs.msdn.com/b/sqlazure/default.aspx?PageIndex=1
https://web.archive.org/web/20140410165353/http:/blogs.msdn.com/b/sqlazure/default.aspx?PageIndex=1

16

�The SAWA Project
To this point in time, SQL Azure still was deployed and ran using the AutoPilot cluster

system with SQL Server instances hosted on bare-metal servers (Brian Chamberlain, one

of the principal engineers for Azure SQL, calls this internally SQL Azure v1).

We knew as a team we needed to snap into the Windows Azure hosting system

which uses virtual machines to deploy services. We needed to take more advantage of

what Windows Azure offers for deployment, networking, and storage without making

wholesale changes to the SQL Azure architecture. Therefore, a project was born called

SAWA (SQL Azure on Windows Azure). Brian calls this SQL Azure v2. In order to help

abstract the team from having to deploy on both AutoPilot and SAWA systems, we built a

software layer code-named Blackbird.

The SAWA project was important because it would allow the team to eventually

become a full-fledged Azure service, taking advantage of everything internally that

Windows Azure provides to services. But for a few years, the team operated and

managed SQL Azure databases deployed on both AutoPilot and SAWA. Users didn’t see

the difference. The service still looked and behaved the same.

For the next few years, Windows Azure offered compute services through Cloud

Services and database services through SQL Azure. The SQL Azure team had also added

other engineering leaders to the team including Nigel Ellis and Peter Carlin. It was

the beginning of the journey, but Microsoft leadership was behind the scenes already

working on changes and bigger things to push Azure further in the public cloud.

�The Virtual Machine Initiative
When Windows Azure first released, among the primary target solutions were scalable

web applications in the cloud. Therefore, Cloud Services was the first compute service

in Windows Azure. As I described in the preceding section on Windows Azure, Cloud

Service applications ran in virtual machines and had the ability to store data in SQL

Azure or in Azure Blob Storage using APIs. But application developers did not have

access to any local storage or full virtual machine access. The concept of a virtual

machine in the cloud as a service, also called Infrastructure as a Service (IaaS), had

been introduced by Amazon in 2006 called Amazon Elastic Compute Cloud (EC2) as part

of their overall Amazon Web Services (AWS) suite. EC2 was literally a virtual machine

where you can deploy your choice of operating system and application.

Chapter 1 SQL Server Rises to the Clouds

17

For many, Cloud Services in Windows Azure was still thought of as Platform as a

Service (PAAS) since developers didn’t really have access to the entire guest VM or

concepts like local storage. Our Windows Azure team knew we needed something to

compete with EC2 and make IaaS a big part of Azure.

In 2011, Microsoft decided to make a bold move in leadership. Steve Ballmer wanted

to make big bets in the cloud including Azure. He asked Satya Nadella to move from

his current position leading the Bing team to run the division at Microsoft called Server

Tools and Business (STB). This was the chief enterprise software group at Microsoft that

ran Windows Server, SQL Server, and Windows Azure. As part of his role in taking over

STB, Satya did several key things. First, he hired Scott Guthrie to lead the engineering

efforts for Azure. Scott is now the leader of Cloud and Enterprises, also known as

C&E, which used to be STB. Second, he hired Jason Zander to lead the Azure core

infrastructure team. Jason is now the leader for all of Azure. And third, he empowered

Azure CTO Mark Russinovich to build the road map for the future. And one of the first

bold moves of this team was to launch into preview Azure Virtual Machine (VM) to

provide a true IaaS service offering for Windows Azure.

One of the first key workloads to showcase Azure Virtual Machine would be SQL

Server. I remember these early days of Azure VM as I was assigned in Microsoft support

to look at the supportability of SQL Server in this environment. It was at that point I met

the lead program manager for SQL Server on this effort, Guy Bowerman.

When Guy joined the SQL team around June of 2010, he found out about Cloud

Services with worker and web roles, but also saw we had announced the concept of a

VM role. A VM role allowed a user to upload a Virtual Machine image (VHD) and run

their VM. However, the VM role didn’t provide the richness of a true IaaS solution. The

VM role, for example, did not provide local persistent storage for the operating system or

attached persistent drives.

Throughout 2011 and 2012, the Windows Azure team worked with groups like SQL

Server to launch a new Azure Virtual Machine preview program (you can read more

about the preview launch at Preview of VM announced in June 2012, https://azure.

microsoft.com/en-us/blog/announcing-new-windows-azure-services-to-deliver-

hybrid-cloud/). Azure Virtual Machine was officially launched in April of 2013 (you can

read more about the launch at http://up2v.nl/2013/04/16/windows-azure-virtual-

machines-is-now-general-available/). Azure Virtual Machine was a significant

move for Microsoft. “Opening up” the Virtual Machine now allowed users to deploy the

operating system of their choice including Linux (this move would set the stage for a

little project you may have heard about called Helsinki or SQL Server on Linux).

Chapter 1 SQL Server Rises to the Clouds

https://azure.microsoft.com/en-us/blog/announcing-new-windows-azure-services-to-deliver-hybrid-cloud/
https://azure.microsoft.com/en-us/blog/announcing-new-windows-azure-services-to-deliver-hybrid-cloud/
https://azure.microsoft.com/en-us/blog/announcing-new-windows-azure-services-to-deliver-hybrid-cloud/
http://up2v.nl/2013/04/16/windows-azure-virtual-machines-is-now-general-available/
http://up2v.nl/2013/04/16/windows-azure-virtual-machines-is-now-general-available/

18

The new Azure Virtual Machine platform provided all types of benefits for running

SQL Server including a dedicated “OS disk,” a temporary disk for storing files like

tempdb, and persistent storage for SQL Server database and log files called data

disks. Even though the choices were limited, there were various Virtual Machine sizes

customers could choose to deploy SQL Server, including the number of CPUs, memory,

number of disks, and maximum capacity. In addition to providing these choices for the

virtual machine configuration, the Windows Azure team provided a system where teams

like SQL Server could provide customer choices for a fully deployed virtual machine

with SQL Server pre-installed through a concept called gallery images or a marketplace.

Now a user could choose a virtual machine configuration, a version of SQL Server, make

a few other choices, click a button, and within 10–15 minutes have access to a fully

deployed SQL Server in a virtual machine hosted in Azure. You could then use a program

like Remote Desktop, connect into the VM, and off you went. In addition, Azure Virtual

Machine services included SLAs and availability sets (update and fault domains).

The initial launch of Azure Virtual Machine used the same Windows Fabric that

hosted Cloud Services. The SQL Server team was effectively an “internal customer” of

Windows Azure to deploy virtual machines. The main interface and system in place

for the SQL team to deploy was called RDFE (Red Dog Front End). This system later

affectionally became known as classic Virtual Machines. Today, the classic system is

rarely longer used in favor of the Azure Resource Manager (ARM) system, which you will

learn more about in various places in the book.

While the initial Azure Virtual Machine classic system was popular with customers,

it presented issues for the SQL Server team. Disk performance stood out as an issue and

I remember in the early days of Azure VM as a Microsoft support engineer working with

customers on trying to solve these problems. In addition, using RDFE presented some

challenges to deploy virtual machine with SQL Server and provide robust programming

interfaces to deploy and manage virtual machines.

Still the service was popular and important to the success of SQL Server in Azure.

Now customers who didn’t feel that SQL Azure could meet their requirements had

another choice. They could still host a SQL Server in the public cloud in Azure with

Virtual Machines. As Guy told me, “The SQL Server on Azure VMs offering proved to be

one of the most popular and successful offerings after the announcement of Azure VM.”

Chapter 1 SQL Server Rises to the Clouds

19

�Becoming Azure SQL Database
By the summer of 2012, Microsoft started branding SQL Azure as Windows Azure SQL
Database. There was no official branding news that I could ever find. My research and

internal discussions on our teams were that we just decided to start calling the service

SQL Database to highlight the fact that the service is all about “Database as a Service”

abstracting the details of SQL Server instance from the user.

In 2014, Microsoft changed the branding of Windows Azure to Microsoft Azure, or

just Azure, so the current name of Azure SQL Database came to life.

Note  The branding of Microsoft Azure was significant to the future of Azure.
Windows was and still is a dominant force for operating systems. However, since
the launch of Azure Virtual Machine, we had seen an uptick in the number of
deployments for virtual machines running Linux. With the branding of Microsoft
Azure or just Azure, we were sending a signal to the industry that Azure is more
than just a Windows cloud.

As SQL Azure started to mature, other engineers from the “traditional” SQL Server

team started to come on board including Conor Cunningham. One of Conor’s goals was

to work directly with customers to make them successful with SQL Azure. This included

internal customers such as Team Foundation Services (TFS). Conor to this day still

works with TFS (which has morphed into Azure DevOps) and their success with Azure

SQL. According to Conor, “They are one of our best ISVs using the platform and they

help us make SQL Azure better every day.”

There were also important external customers who wanted to harness the power

of Azure. One of the largest and most notable customers Conor and many on the team

worked with was Pottermore. Around 2012, all the Harry Potter movies had been

released, but the popularity of the books and movies was massive. Therefore, the

Pottermore company decided to build a website experience for fans. And they chose

Windows Azure and SQL Azure to power the website experience (see the full story at

https://news.microsoft.com/2012/06/06/pottermore-new-website-based-on-the-

hugely-popular-harry-potter-books-uses-windows-azure-to-scale-up-to-1-

billion-page-views-in-first-two-weeks/).

Chapter 1 SQL Server Rises to the Clouds

https://news.microsoft.com/2012/06/06/pottermore-new-website-based-on-the-hugely-popular-harry-potter-books-uses-windows-azure-to-scale-up-to-1-billion-page-views-in-first-two-weeks/
https://news.microsoft.com/2012/06/06/pottermore-new-website-based-on-the-hugely-popular-harry-potter-books-uses-windows-azure-to-scale-up-to-1-billion-page-views-in-first-two-weeks/
https://news.microsoft.com/2012/06/06/pottermore-new-website-based-on-the-hugely-popular-harry-potter-books-uses-windows-azure-to-scale-up-to-1-billion-page-views-in-first-two-weeks/

20

Note P ottermore (see https://en.wikipedia.org/wiki/Pottermore)
is actually a company, and the previous Pottermore website is now officially
wizardingworld.com.

Pottermore was an interesting test for the SQL Azure team. This project involved

many databases and concurrent users. As Conor tells it, “We clearly didn’t want to

disappoint all the Harry Potter fans of the world, but we also learned a lot about how to

design things that scale.” As with any innovation, projects like these were ambitious but

also became a foundation of knowledge to improve the future.

Microsoft support also experienced big shifts to deal with the cloud. My longtime

colleague and friend Keith Elmore (the famous author of the popular ostress tool), now

a Principal Engineer for Microsoft CSS, was involved in Azure support from beginning.

He told me that supporting Azure had some interesting challenges but also opened new

possibilities. Keith said, “There was a major shift in how we could troubleshoot. We no

longer had to ask customers to capture a lot of troubleshooting data as we did in the

on-premises environment, but could immediately access a large set of Azure telemetry

to assess the general nature of their problem, and often narrow down the specific issue.”

Supporting the cloud though presented a new expectation from customers to deliver

a solution fast. Microsoft now owned the “back end” so data that customers normally

had completely control over obtaining was not possible for them in Azure. According to

Keith, “the expectation of resolving a large percentage of your support cases in a day or

less was radical. The team rallied around how we could organize ourselves and leverage

this Azure telemetry to resolve most issues in one day.” You will learn about some of the

resources Azure provides customers for support and troubleshooting later in this book.

�The Sterling (SAWAv2) Project
By 2013 and 2014 timeframe, Azure SQL Database had many different successful

customers, but the legacy architecture even running on SAWA was starting to show its

age through different problems and customer experiences like TFS and Pottermore:

•	 As much as we made changes in the infrastructure, one thorny

problem cropped up all the time, called the noisy neighbor problem.

A customer could consume resources for one database that could

Chapter 1 SQL Server Rises to the Clouds

https://en.wikipedia.org/wiki/Pottermore

21

adversely affect another. We needed a solution where each tenant

(database) had their own SQL Server instance. This would allow us to

use features like SQL Server Resource Governor.

•	 We also felt a lot of pressure to open more of the T-SQL surface area

for SQL Azure customers. Since multiple tenants shared a SQL Server

instance, this was a major problem. For example, how do we present

a Dynamic Management View (DMV) of just your database when

they by design show anything on the underlying instance?

•	 We also needed a model where customers would expect more

predicable performance since they had no way of choosing things

like the number of CPUs, memory, or I/O speed.

•	 Our codebase for Azure SQL Database was still forked from SQL

Server 2005 (yikes!). For the SQL team to become truly Cloud First,

we needed to merge the codebase of SQL Azure and SQL Server.

•	 We still used local disks for everything (including user databases,

telemetry, etc.) with our own custom replication system. Even with

SAWA we were using custom hardware to support large disk needs as

all our storage was local using spindles (non-SSD drives). We needed

to move toward hardware generations that were aligned with all of

Windows Azure. However, the generation of hardware at this time

only supported very small local SSD drives. Therefore, we needed a

strategy that allowed for “remote” databases using Azure storage.

•	 The Windows Fabric which hosts and powers most Azure services

internally has many built-in capabilities to support deployment,

scaling, networking, storage, high availability, and fault tolerance.

We knew to enable new models and options like Azure Storage

for databases, Azure SQL Database needed to become a WinFab

application (or Windows Fabric application).

As early as 2011, team members including Morgan Oslake were looking to solve the

noisy neighbor problem with concepts like resource reservations and node isolation.

Resource reservations were implemented with a concept called a Service-Level
Objective (SLO). Even today, you can see the term SLO in some of the diagnostics for

Azure SQL. This work led to several innovations which would shape the future.

Chapter 1 SQL Server Rises to the Clouds

22

As Morgan tells it, “The initial solution also set the stage for enabling true scaling

elasticity. Incidentally, this project is also where IO Resource Governor was born in

partnership with Microsoft Research and the solution was eventually integrated into the

SQL Server boxed product.”

As SQL Server 2014 was being developed and launched, the Azure SQL Database

team internally started working on a project called Sterling (also known as project

Dearborn or SAWAv2). At this time, SQL Azure was known as v11 (the @@VERSION

string had 11.x in it).

Note  The name of Sterling comes from an interesting source. As Peter Carlin
tells it, “The name of the project was supposed to be after Stirling, a well-known
efficient heat engine invented by Robert Stirling in the 1800s. Ironically, the project
name got misspelled to Sterling, but the name stuck.”

For the team, Sterling effectively became a rewrite of the architecture of the service

while still maintain the principles of a database service for customers. The next

generation of Azure SQL Database would also get a “version bump” to highlight this new

architecture called v12. v12 also included a merge of the SQL Server codebase. Code

fixes and new features could be done in a single branch that would be used for both SQL

Server and Azure SQL Database. The v12 name was confusing for customers because

it did not line up to a specific version of SQL Server. We named it v12 because with this

new architecture, we opened more SQL Server features like columnstore and instance-

level diagnostics. We didn’t want to break applications so changed the major version to

v12 (which corresponded to the SQL Server version number 12.x of SQL Server 2014).

Since this time, Azure SQL Database has become a versionless SQL Server, which I’ll

describe more in Chapter 5 of the book.

Rohan Kumar, the current Vice Present of Azure Data Engineering, was leading

engineering efforts in Azure SQL around this period. He says about the codebase merge,

“Probably the most important decision technically we made was to unify the codebase.”

In fact, Rohan was assigned to lead this project which took some 18 months while we

were maintaining and running the service and delivering releases of SQL Server at high

quality.

The Sterling architecture involved running the SQL Server instance (and other

needed programs) as a WinFab application or effectively as worker roles in the Windows

Azure nomenclature. One interesting aspect to the deployment of Azure SQL Database

Chapter 1 SQL Server Rises to the Clouds

https://doi.org/10.1007/978-1-4842-5931-3_5

23

for Sterling was that only a single virtual machine is used per host with one or more

SQL Server instances, each hosting a tenant database. The Sterling architecture is in use

today for Azure SQL Database.

Note  You will see later in Chapter 4 of the book that Azure Managed Instance can
combine more than one virtual machine per host.

Figure 1-7 comes from a diagram Peter Carlin built to show the primary difference

between the SAWA (and AutoPilot) and Sterling architectures from a SQL Server

instance, logical server, and database perspective.

In this diagram, a Node is a virtual machine or server. An Instance is a SQLSERVR.

EXE instance. The Cluster is a logical collection of machines hosting virtual machines. A

logical server is a really a set of metadata describing the collection of databases.

Notice in the “Old Service” (SAWA and AutoPilot) that databases from two different

logical servers could be deployed on a single SQL instance. With Sterling, each instance

was reserved for a single logical server, but multiple instances could (but don’t have to)

be deployed on a single virtual machine (or node).

Figure 1-7.  Sterling architecture database isolation

Chapter 1 SQL Server Rises to the Clouds

https://doi.org/10.1007/978-1-4842-5931-3_4

24

Note  Today almost every Azure SQL Database has its own dedicated SQL
instance with a few exceptions, which I’ll cover in Chapter 4.

Using the Windows Fabric also allowed us to provide better resource governance

closer to the operating system, provide direct connections to the back-end SQL Servers,

and leverage Azure Storage for databases and backups. The Windows Fabric also

provided architectures for fault tolerance and networking in the form of clusters, nodes,

and rings. You will learn more about these concepts as well as other aspects of the Azure

SQL Database architecture throughout the rest of this book. You will also learn in this

chapter and the rest of the book how we have created other deployment options based

on the Sterling architecture including Elastic Database, Managed Instance, Hyperscale,

and Serverless. After a long journey, Azure SQL Database V12 becomes generally

available in the spring of 2015.

In addition to work on Sterling, Microsoft Azure had pivoted to a new portal

experience based on HTML (moving away from Silverlight) for all Azure services

including Azure SQL Database. Figure 1-8 is a snapshot of Scott Guthrie showing off the

new portal in one of his blog posts’ archives.

Figure 1-8.  The Windows Azure admin portal

Chapter 1 SQL Server Rises to the Clouds

https://doi.org/10.1007/978-1-4842-5931-3_4

25

Tip  Given Scott Guthrie’s long role in Azure, the archives of his blog are
incredible to tour the history of Azure! You can find them at https://weblogs.
asp.net/scottgu/archive.

�New Editions, the DTU, and Previews
Independent of the new V12 architecture, we also had realized the current editions of

Azure SQL Database, Web and Business, were outdated both from a payment model and

a predictable performance and choice perspective.

The SLO work that had started before Sterling ultimately led to a preview of a new

edition called Premium. In some cases, Premium customers were isolated to a single

node to provide maximum performance. Along with the Sterling architecture, the

concept of resource reservations and node isolation pave the way for a new edition suite

and a self-service method to choose sizes.

In April of 2014, we announced a new pricing model based on new editions, Basic,
Standard, and Premium and concept to materialize sizes called performance tiers.

Performance tiers offered granularity within an edition for maximum database size

and a SLO. In order to support a SLO, we introduced a new concept called a Database
Transaction Unit (DTU). We started this new model with a preview of these editions

and tiers in April 2014. By this time, we allowed up to a 500 GB for Premium editions.

See the blog post and video of ScottGu talking about these new models at https://

weblogs.asp.net/scottgu/azure-99-95-sql-database-sla-500-gb-db-size-

improved-performance-self-service-restore-and-business-continuity.

A DTU was a logical concept of measurement for a combined resource usage of CPU,

I/O, and memory. The idea was to provide a metric to obtain more predictable performance

and pay for resource usage. You will learn more details about SLO, tiers, and DTU throughout

the rest of the book. By spring of 2015, we had also announced the retirement of Web and

Business editions and had fully rolled out Basic, Standard, and Premium editions.

With these new editions, we also introduced the concept of self-service database

restore (Point-In-Time restore or PITR) and active geo-replication (our way of

introducing Always On Availability Group replicas in the cloud). See more information

about this capability and the new tiers announcement with this Channel 9 video

featuring former Microsoft program managers Tobias Ternstrom and Tony Petrossian

(instrumental during these years for Azure SQL), https://channel9.msdn.com/Series/

Windows-Azure-Storage-SQL-Database-Tutorials/Scott-Klein-Video-01.

Chapter 1 SQL Server Rises to the Clouds

https://weblogs.asp.net/scottgu/archive
https://weblogs.asp.net/scottgu/archive
https://weblogs.asp.net/scottgu/azure-99-95-sql-database-sla-500-gb-db-size-improved-performance-self-service-restore-and-business-continuity
https://weblogs.asp.net/scottgu/azure-99-95-sql-database-sla-500-gb-db-size-improved-performance-self-service-restore-and-business-continuity
https://weblogs.asp.net/scottgu/azure-99-95-sql-database-sla-500-gb-db-size-improved-performance-self-service-restore-and-business-continuity
https://channel9.msdn.com/Series/Windows-Azure-Storage-SQL-Database-Tutorials/Scott-Klein-Video-01
https://channel9.msdn.com/Series/Windows-Azure-Storage-SQL-Database-Tutorials/Scott-Klein-Video-01

26

Another concept introduced during these years (and across all of Azure) was private

and public preview. The SQL Server team had already shifted to the term Community

Technology Preview (CTP) vs. “beta” builds before they released a version of SQL

Server. New Azure services and enhancements to existing services started rolling out in

previews. Since Microsoft hosted the software in the public cloud, they had the ability to

whitelist specific customer subscriptions to use specific services and even features for

services. A private preview required a customer to sign up to gain access to a new service

or enhancement. A private preview was often free, limited in availability, and involved

direct interaction between engineering and a customer (and the customer was in a

non-disclosure agreement with us). A public preview was often open to the public. For

a new service, it was sometimes free but most often involved a significantly discounted

price. In most cases, for a new feature for a service, public preview was free. Previews

allowed Azure teams to move agile and fast, gain customer adoption and feedback very

quickly, and eventually move to General Availability (GA). You will learn in this book as

a customer how to keep up with previews and announcements for Azure services and

enhancements.

Note  You will read terms in the book like “went GA” or “went public preview” to
note when a service or feature was released.

The preview system also was a great example of a new approach for the SQL team,

namely, a cloud first approach. Cloud first means that the SQL team could build out a

new service or feature first in the cloud and then eventually allow that feature to appear

in the next major release of SQL Server. Previews combined with a merged SQL codebase

allowed for these types of motions to happen.

As Peter Carlin tells it, with the cloud first approach, “…we use service telemetry to

learn what is wrong and needs to be improved, use that telemetry as we build and refine

it via iterative deployments and then when we know it works well for the scenarios.”

�Intelligent Performance and the MDCS
By the 2013 timeframe, the SQL Engineering team had hired resources outside of

Redmond. Microsoft had built a development center in Serbia called the Microsoft

Developer Center Serbia (MDCS). You can read more about MDCS at www.microsoft.

com/sr-latn-rs/mdcs. Our Azure SQL Database team assigned engineers from MDCS

Chapter 1 SQL Server Rises to the Clouds

http://www.microsoft.com/sr-latn-rs/mdcs
http://www.microsoft.com/sr-latn-rs/mdcs

27

to form a data science team. One of the first tasks for this team was to investigate how

to provide value-added services for Azure. Azure SQL Database was launched as a true

PaaS service. Abstracting the developer from the details of SQL Server was important,

and providing built-in HA and predictable performance were critical. However, our team

wanted to see what type of additional services we could offer customers as part of the

platform.

Performance is perhaps one of the toughest problems within SQL Server to solve

given how vague an issue can be (ever heard of “it is just slow”). Add to that the open

nature of T-SQL and databases (bad indexes + bad queries = poor performance).

Engineers Vladimir Ivanovic and Miroslav Grbic embarked on a project to see how

Machine Learning at scale could improve performance for Azure SQL Database. As

current team member Miodrag Radulovic tells it, “the original intention was to leverage

data science and ML at Azure scale to find a way to improve customer experience of

using Azure SQL Database. Performance optimization was identified as one of the

areas where the team could deliver pretty impactful improvements, especially for those

novice users who are not that skilled in perf optimizing SQL Server engine.” Vladimir

specifically said that index recommendation for performance was an area the team felt

important to tackle. SQL Server had technologies to assist with index recommendations,

namely, Dynamic Management Views and a tool called Database Tuning Advisor (DTA).

Vladimir says, “We picked index recommendations since the technology was already

partially available via missing indexes DMV and also DTA, and our initial analyses

showed that a significant number of SQL DB customers could benefit from this.”

The work for this project took some time to get it right. The work started in 2014 and

was released for public preview in July of 2015 known as Database Tuning Advisor. The

functionality would use Machine Learning combined with existing SQL Server resources

(including the Query Store) to recommend and even auto-create/drop indexes. In

January of 2016, the experience went GA and was named Automatic Tuning. You will

learn more about the details of Automatic Tuning in Chapter 7 of this book.

�Advanced Data Security and the ILDC Team
In addition to adding services for Azure SQL Database for performance, the team wanted

to create new experiences for security. Microsoft had formed the first Research and

Development Center outside the United States in 1991 in Israel called the Microsoft

Israel Development Center (ILDC). You can read more about the ILDC at www.

microsoftrnd.co.il/.

Chapter 1 SQL Server Rises to the Clouds

https://doi.org/10.1007/978-1-4842-5931-3_7
http://www.microsoftrnd.co.il/
http://www.microsoftrnd.co.il/

28

In 2014, the Azure SQL team turned to the ILDC to look more into security to form a

group called the Azure Security Center for SQL. When first formed, this group, according

to one of the original members Ron Matchoro, was chartered to look at security topics

like auditing, data masking, vulnerability assessments, and threat protection techniques.

This work led to several innovations for both Azure SQL and SQL Server. The team

first landed the concept of Dynamic Data Masking in Azure SQL in 2015 and in the SQL

Server 2016 release (read more about Dynamic Data Masking today at https://docs.

microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking).

The team then accelerated further by enhancing auditing (SQL Server already had

a concept called SQL Server Audit) for Azure SQL, delivering on a method to perform

vulnerability assessments (which would also land in SQL Server Management Studio).

The ILDC also invested in a concept for data classification which now exists in Azure

SQL and SQL Server 2019.

Perhaps the biggest area of investment was in threat protection. The concept was to

use the power of the cloud to detect possible threats to an Azure SQL deployment and

alert administrators. This included concepts like detecting SQL injection attacks. This

capability went GA with Azure SQL in 2017 as Advanced Threat Protection (ATP). In

2019, the team grouped together a series of capabilities including ATP, Vulnerability

Assessment, and Data Classification called Advanced Data Security (ADS). You will

learn more about ADS in Chapter 6 of this book. Today, the ILDC continues to work with

our teams in Redmond to deliver on new security capabilities for Azure SQL.

�A Pane for the Future Called Ibiza
Microsoft also decided around the 2014 timeframe the current Azure portal experience

needed a new look (yes again). Project Ibiza was a new Azure portal with a completely

new look and design. This was effectively the fourth generation of the Azure portal. The

Ibiza portal was also known early on as the “Preview Portal.” This new portal used a

concept called blades as a user interface experience. Users reported very early on this

portal was more reliable, faster, and an overall better user experience that included a

dashboard and pins and supported all the various Azure services.

Figure 1-9 shows the Ibiza portal at launch in 2015. Today it is simply known as the

Azure Portal (accessed by almost anyone from portal.azure.com).

Chapter 1 SQL Server Rises to the Clouds

https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking
https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking
https://doi.org/10.1007/978-1-4842-5931-3_6

29

You can read more about the launch of the Ibiza portal at https://azure.

microsoft.com/en-us/blog/announcing-azure-portal-general-availability/. This

portal serves as the foundation of the current Azure portal which you will see throughout

the chapters of this book.

�A New Engineering Model for Azure
Even since the launch of SQL Azure, a unique experience existed within Microsoft. For

SQL Server, the engineering team mostly focused on designing and building a new

release. They absolutely take in customer feedback as they build new features or resolve

problems, but their lenses mostly came from feedback forums or Microsoft Technical

Support.

With the launch of a service, the engineering team now owned the operation of SQL

Server in the cloud. They built the software but also managed the operation of a data

center. While other teams owned the overall operation of data centers, the SQL Azure

engineering team owned the health, cost, and operations of the Azure SQL Database

service. This involved all types of proactive monitoring for health and reliability. But it

also meant the team owned updating all the software behind the scenes that powered

the service.

Figure 1-9.  The original Ibiza portal

Chapter 1 SQL Server Rises to the Clouds

https://azure.microsoft.com/en-us/blog/announcing-azure-portal-general-availability/
https://azure.microsoft.com/en-us/blog/announcing-azure-portal-general-availability/

30

SQL Azure engineers were now involved in Live Site experiences (a good reference

to read more about Live Site can be found at https://docs.microsoft.com/en-us/

azure/devops/learn/devops-at-microsoft/live-site-culture-and-reliability). If

an outage occurred, the SQL Azure engineering team was directly involved in resolving

the problem. These experiences over time drove innovation and automation. Much of

the functionality behind the scenes that is part of the Azure SQL Database ecosystem

was built to avoid manual intervention of problems. Even new features introduced

both for Azure SQL Database and SQL Server came from Live Site experiences for the

team ensuring the service was healthy, applications were performant, and databases

were reliable and available. Peter Carlin describes the benefits of Live Site “…basically

everything we have built in the last 5 years are driven by learnings from live site. In many

ways, we didn’t know how to run our own product, and once we realized how hard we

had made it, could make the changes to make it much easier to operate - benefiting all

SQL DBAs.”

As Rohan Kumar tells it, “One of our biggest challenges was team culture. We needed

to create a team that could not only build great software but also operationally run it.”

By 2015, Azure SQL Database had a robust architecture for the future with v12

and innovation to add value for both performance and security. As new customers

built applications with the service, feedback and LiveSite experiences drove future

innovation, both for the architecture and new deployment models.

�Bending Azure SQL Database
As we announced the introduction of Basic, Standard, and Premium editions and

were phasing out Web and Business editions, we had some customers, mostly ISVs,

that brought us a dilemma. Web and Business editions charged only for storage,

not for compute, but there was no predictable performance. Basic, Standard, and

Premium editions were paid by DTU, not just storage. Some ISVs wanted to host many

databases, sometimes 1000s, to support their application, many of them Software as

a Service (SaaS) applications. The new edition model with DTUs would now become

cost prohibitive. Not all 1000 databases needed the same DTU capacity, but more

importantly, the needed DTU usage could vary widely across these databases. The only

way to support all these databases to provide required performance would be to pay for

the maximum DTU needed for any database.

Chapter 1 SQL Server Rises to the Clouds

https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/live-site-culture-and-reliability
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/live-site-culture-and-reliability

31

Around the 2014 timeframe, program managers Morgan Oslake and Tobias

Ternstrom were assigned to come up with a solution where, according to Morgan, “We

(SQL DB) needed a price-perf optimized solution for SaaS ISVs with apps containing

10s, 100s, 1000s, or more databases.” Tobias proposed the project named Malmo (as

Morgan recalls, “…the name was motivated by the observation that Malmo, the city in

Sweden, was growing rapidly and bursting in population size. In any case, a concept of

Malmo is to more efficiently accommodate bursting episodes of multi-database apps”).

The team moved fast to a private preview of the capability for databases to be grouped

together called an elastic pool. We moved to public preview in April of 2015 and General

Availability in 2016. Read the announcement at https://azure.microsoft.com/en-us/

updates/azure-sql-database-supports-large-numbers-of-databases-for-saas-

providers/.

Elastic pools allowed a developer to group databases together in a pool and consume

and pay for usage as an elastic DTU or eDTU. You will learn more about how elastic

pools work in Chapter 2 of the book. Having elastic pool as an offering also helped pave

the way to deprecate and remove the Web and Business edition model.

With new editions, the Sterling architecture, DTUs, and elastic pools, many of

what customers needed to adopt Azure SQL Database were in place. However, some

customers using the SQL Server “box” product were resistant. As we polled and talked

to these customers, we discovered the surface area of Azure SQL Database didn’t meet

their core requirements. By 2016, we determined we needed to develop another option

to enable more customers to adopt Azure SQL.

�Lifting Customers to the Cloud
With the success of the MDCS team working on Automatic Tuning, our team turned to

them to work on another project to help reduce the friction from migrating SQL Server

instances to Azure. One of the leaders in MDCS, Drazen Sumic, told me the origin of the

project. He said, “Lindsey Allen, one or our leaders in Azure SQL, was on a flight back

from Microsoft Ignite in 2016 after receiving tons of feedback on Azure SQL and came up

with an idea to lift customers to the cloud.” By December of 2016, the MDCS team was

working on project CloudLifter.

Chapter 1 SQL Server Rises to the Clouds

https://azure.microsoft.com/en-us/updates/azure-sql-database-supports-large-numbers-of-databases-for-saas-providers/
https://azure.microsoft.com/en-us/updates/azure-sql-database-supports-large-numbers-of-databases-for-saas-providers/
https://azure.microsoft.com/en-us/updates/azure-sql-database-supports-large-numbers-of-databases-for-saas-providers/
https://doi.org/10.1007/978-1-4842-5931-3_2

32

By 2016, Azure Virtual Machine offered many choices to deploy a full instance of SQL

Server. However, a user must still own the management and every aspect of the guest OS

and SQL Server. No Azure service existed to provide some of the benefits of PaaS but also

feel like a SQL Server instance. That is what Lindsey proposed to Drazen and the MDCS

team. The team had to find a way to deploy and expose a SQL Server instance within the

PaaS architecture of Azure including integration with Service Fabric. Users would then

connect to the SQL Server instance and use it just like a regular SQL Server on-premises

or in Azure Virtual Machine. In addition, the new service still needed to provide the

benefits of PaaS, such as built-in high availability and SLAs.

The team spent almost the entire 2017 year in a private preview program for a new

service called Azure SQL Database Managed Instance (or often called just Managed

Instance). Many folks in MDCS worked on this project, including Borko Novakovic,

Jovan Cukalovic, Branko Kokanovic, and Milan Novakovic. Public Preview of Managed

Instance landed in March of 2018, and General Availability for the first set of tiers was

announced at the Microsoft Ignite conference in September 2018 (you can read the

announcement at https://azure.microsoft.com/en-us/blog/azure-sql-database-

managed-instance-general-purpose-tier-general-availability/).

Even though many folks in Redmond were instrumental in this project, including

Lindsey Allen, Peter Carlin, and Alexander Vorobyov, this project was an important

milestone for the MDCS team for SQL. According to Drazen, “Yes, this was the largest

project to date to be driven from the Serbia team. We’re proud of it, and thankful for the

trust. Previous efforts were also important (e.g., Query Store for the SQL 2016 wave) but

were smaller features compared to this one.”

Managed Instance solved another aspect for increased cloud adoption, but the

ability to handle very large enterprise workloads was still an issue for the team.

�Project Socrates Goes Hyper
In the fall of 2015, Rohan Kumar, who effectively owned engineering teams for both

SQL Server and Azure SQL at the time, was holding a meeting with many in his senior

staff talking about a recent Live Site incident involving a customer when he asked the

question to the room “If we had to build an architecture for Azure SQL Database from

scratch what would that look like?” It was not like the current Sterling architecture was

not good. In fact, the Sterling architecture had allowed Azure SQL to grow significantly.

Chapter 1 SQL Server Rises to the Clouds

https://azure.microsoft.com/en-us/blog/azure-sql-database-managed-instance-general-purpose-tier-general-availability/
https://azure.microsoft.com/en-us/blog/azure-sql-database-managed-instance-general-purpose-tier-general-availability/

33

However, if we wanted to truly run very large sized mission critical workloads, the team

thought something different might be needed. Something we could build on top of the

existing Sterling architecture. “How can we provide no-limits scale to SQL in the cloud”

was the mission Rohan gave the team.

One of the people in that room was Cristian Diaconu, one of the principal engineers

who had been instrumental in the Hekaton project for SQL Server (In-Memory OLTP).

Cristian talks about those early meetings with Rohan, “So Rohan kept at it saying that he

wants us to think about building for the longer term, with more architectural durability

and something that we’d be hanging our name to because it was differentiated in the

industry.”

That meeting led to a series of discussions about a possible new architecture with

engineering leaders like Hanuma Kodavalla, Tomas Talius, Donald Kossman, Justin

Levandovski, Phil Bernstein, Peter Byrne, Peter Carlin, and eventual engineering leader

Naveen Prakash.

Note  You can see a more comprehensive list of team members and contributors
from the white paper written for this project at www.microsoft.com/en-us/
research/uploads/prod/2019/05/socrates.pdf.

By May of 2016, the team had funding to move forward with their designs into a

full-fledged project. They called it Socrates (Cristian says that “…as I was meeting a lot of

folks with a ton more experience doing this than I, so it dawned on me that all I had were

questions – hence Socrates”).

The Socrates concept was to build a very scalable architecture in Azure through

separation of services like logging and caching services (e.g., page servers). The original

Socrates architecture can be seen in Figure 1-10 (from the paper www.microsoft.com/

en-us/research/uploads/prod/2019/05/socrates.pdf).

Chapter 1 SQL Server Rises to the Clouds

http://www.microsoft.com/en-us/research/uploads/prod/2019/05/socrates.pdf
http://www.microsoft.com/en-us/research/uploads/prod/2019/05/socrates.pdf
http://www.microsoft.com/en-us/research/uploads/prod/2019/05/socrates.pdf
http://www.microsoft.com/en-us/research/uploads/prod/2019/05/socrates.pdf

34

The team moved quickly to turn their design into working code. By December of

2016, they had a working prototype. However, this architecture was not a trivial project

to get right, so it took until September of 2018 to launch a public preview. The name

of the new offering would be called SQL Database Hyperscale (we technically call

this Hyperscale Service Tier). By May of 2019, Hyperscale was a generally available

service (you can read the announcement at https://azure.microsoft.com/en-us/

updates/azure-sql-database-hyperscale-support-for-single-databases-is-now-

available/).

Figure 1-10.  The Socrates architecture

Chapter 1 SQL Server Rises to the Clouds

https://azure.microsoft.com/en-us/updates/azure-sql-database-hyperscale-support-for-single-databases-is-now-available/
https://azure.microsoft.com/en-us/updates/azure-sql-database-hyperscale-support-for-single-databases-is-now-available/
https://azure.microsoft.com/en-us/updates/azure-sql-database-hyperscale-support-for-single-databases-is-now-available/

35

Hyperscale literally put Azure SQL on the map at a new level even within Microsoft.

Watch Rohan Kumar demonstrate Hyperscale at the keynote with Satya Nadella at the

Microsoft Inspire 2019 conference, https://youtu.be/WtoU8gugP5g. You will learn more

about Hyperscale in other chapters in the book including Chapters 4, 7, and 8.

�Azure SQL Today
The evolution of Azure SQL from CloudDB to Hyperscale has been an amazing journey

for the SQL team and Microsoft. February 1, 2020, marked the official tenth year of

Windows and SQL Azure. However, as the story I’ve told in this chapter unveils, the

origins of Azure go back much farther. Figure 1-11 shows the timeline of significant

events in the history of Azure SQL.

What started as shared databases on bare-metal servers supporting only a maximum

of 10Gb is now a powerful force in the industry and the future of data services in the cloud

called Azure SQL. Azure SQL today even supports the concept of a serverless database

which you will learn about more in the next chapter. New purchasing models and tiers are

available in the form of vCores with new hardware generation options (you can read the

2006
• CloudDB

Project
• RedDog

Project

2008
• Windows

Azure and
SQL Data
Services
announced
at PDC

2010
• Windows

Azure and
SQL Azure
officially
launch.

2012
• SQL Azure

branded
Azure SQL
Database

2013
• Azure

Virtual
Machines
released

2014
• Windows

Azure
branded
Microsoft
Azure

2015
• Azure SQL

Database
V12
released

2016
• Azure SQL

Database
Elastic Pools
released

2018
• Azure SQL

Database
Managed
Instance
released

2019
• Azure SQL

Database
Hyperscale
Released

• Azure SQL
Database
Serverless
Released

Figure 1-11.  Significant events in Azure SQL history

Chapter 1 SQL Server Rises to the Clouds

https://youtu.be/WtoU8gugP5g
https://doi.org/10.1007/978-1-4842-5931-3_4
https://doi.org/10.1007/978-1-4842-5931-3_7
https://doi.org/10.1007/978-1-4842-5931-3_8

36

announcement of vCore purchasing models at https://azure.microsoft.com/en-us/

updates/general-availability-vcore-based-purchasing-model-for-azure-sql-

databases-and-elastic-pools/). New security models and monitoring options are now

available. You will learn throughout the rest of this book how to navigate all the flavors and

options of Azure SQL.

Azure itself has grown from a few datacenters in three countries to 58 regions

available in 140 countries worldwide (that number will likely be obsolete by the time you

are reading this book!). Figure 1-12 shows the incredible vastness of Azure across the

globe.

Tip  If you want to see an interactive visual map of Azure regions across the
globe, visit http://map.buildazure.com/.

Azure is chartering new territories including Project Natick for a self-sustaining

underwater datacenter (read more about Natick at https://news.microsoft.com/

features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-

could-provide-internet-connectivity-for-years/).

Figure 1-12.  Azure regions worldwide as of early 2020

Chapter 1 SQL Server Rises to the Clouds

https://azure.microsoft.com/en-us/updates/general-availability-vcore-based-purchasing-model-for-azure-sql-databases-and-elastic-pools/
https://azure.microsoft.com/en-us/updates/general-availability-vcore-based-purchasing-model-for-azure-sql-databases-and-elastic-pools/
https://azure.microsoft.com/en-us/updates/general-availability-vcore-based-purchasing-model-for-azure-sql-databases-and-elastic-pools/
http://map.buildazure.com/
https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/
https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/
https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/

37

Azure experiences include a robust cross-platform command-line interface called

az cli (you will see the usage of az cli throughout the rest of this book), enhancements to

the Azure portal, and new portal experiences as both a Windows and mobile application

(try out the Windows Azure Portal application from https://portal.azure.com/App/

Download).

Azure and Azure SQL are poised for the future for even bigger things. Azure SQL

can be a destination for SQL Server in the cloud. I believe it which is why I decided to

write this book. This book is intended to help you navigate how to make Azure SQL a

successful destination. The first step in that road to success is to further understand the

scope and options for Azure SQL. What do I mean when I say the word Azure SQL? What

are all the options for Azure SQL? When and why would I choose one over the other?

Read on to get answers to those fundamental questions and more.

Chapter 1 SQL Server Rises to the Clouds

https://portal.azure.com/App/Download
https://portal.azure.com/App/Download

	Chapter 1: SQL Server Rises to the Clouds
	CloudDB
	The Red Dog
	The Azure Services Platform
	The Road to SQL Azure
	SQL Data Services
	SQL Azure Is Born
	The SAWA Project

	The Virtual Machine Initiative
	Becoming Azure SQL Database
	The Sterling (SAWAv2) Project
	New Editions, the DTU, and Previews
	Intelligent Performance and the MDCS
	Advanced Data Security and the ILDC Team
	A Pane for the Future Called Ibiza
	A New Engineering Model for Azure

	Bending Azure SQL Database
	Lifting Customers to the Cloud
	Project Socrates Goes Hyper
	Azure SQL Today

