
Azure SQL
Revealed

A Guide to the Cloud for SQL Server
Professionals
—
Bob Ward
Foreword by Scott Guthrie

Azure SQL Revealed
A Guide to the Cloud for SQL Server

Professionals

Bob Ward
Foreword by Scott Guthrie

Azure SQL Revealed: A Guide to the Cloud for SQL Server Professionals

ISBN-13 (pbk): 978-1-4842-5930-6 ISBN-13 (electronic): 978-1-4842-5931-3
https://doi.org/10.1007/978-1-4842-5931-3

Copyright © 2021 by Bob Ward

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484259306. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Bob Ward
North Richland Hills, TX, USA

https://doi.org/10.1007/978-1-4842-5931-3

This book is dedicated to all at Microsoft who have worked tirelessly
over the last decade to make Azure the world’s computer.

v

Table of Contents

Chapter 1: SQL Server Rises to the Clouds ��� 1

CloudDB �� 2

The Red Dog �� 3

The Azure Services Platform ��� 4

The Road to SQL Azure �� 8

SQL Data Services ��� 9

SQL Azure Is Born �� 13

The SAWA Project �� 16

The Virtual Machine Initiative �� 16

Becoming Azure SQL Database ��� 19

The Sterling (SAWAv2) Project ��� 20

New Editions, the DTU, and Previews �� 25

Intelligent Performance and the MDCS ��� 26

Advanced Data Security and the ILDC Team �� 27

A Pane for the Future Called Ibiza ��� 28

A New Engineering Model for Azure �� 29

Bending Azure SQL Database �� 30

Lifting Customers to the Cloud �� 31

About the Author ���xv

About the Technical Reviewer ���xvii

Foreword ��xix

Acknowledgments ��xxi

Introduction ��xxiii

vi

Project Socrates Goes Hyper��� 32

Azure SQL Today ��� 35

Chapter 2: What Is Azure SQL? ��� 39

The Azure Ecosystem �� 40

Azure Accounts and Subscriptions �� 40

The Azure Portal �� 42

The Azure Marketplace �� 45

Azure API and CLI �� 46

Azure Resource Manager (ARM) �� 47

Azure Monitor �� 50

Azure Regions and Datacenters �� 50

Azure Service-Level Agreement (SLA) ��� 51

What Is the Azure SQL? ��� 52

IaaS vs� PaaS ��� 52

The Azure SQL Lineup �� 53

Azure SQL Managed Instance ��� 55

Managed Instance Capabilities ��� 56

Managed Instance Options and Limits �� 57

Managed Instance Pools ��� 59

Managed Instance vs� SQL Server on Azure Virtual Machine �� 60

Customers Using Managed Instance ��� 61

Azure SQL Database �� 62

Azure SQL Database Capabilities �� 62

Azure SQL Database Options and Limits ��� 63

Azure SQL Database vs� Azure SQL Managed Instance ��� 70

Customers Using Azure SQL Database �� 71

Interfaces for Azure SQL ��� 72

Azure Portal ��� 72

az CLI ��� 74

PowerShell �� 75

REST API �� 75

Table of ConTenTs

vii

TDS and T-SQL ��� 76

SQL CLI �� 77

SQL Server Management Studio (SSMS) ��� 77

Azure Data Studio (ADS) �� 78

Visual Studio Tools ��� 79

Summary��� 80

Chapter 3: SQL Server on Azure Virtual Machine ��� 81

Deploying �� 82

Pricing ��� 82

SQL Server Gallery Images �� 83

Resource Group, Region, and Availability �� 86

Virtual Machine Sizes �� 89

Account, Port, and OS Licensing �� 93

Making Configuration Choices As Part of Deploy �� 94

Deploy! �� 108

Navigating in the Portal ��� 111

Connecting to Your VM ��� 113

Exploring the SQL Server Installation �� 115

Deploy on Your Own ��� 117

Using a CLI and ARM Template �� 118

Reserved Instances and Dedicated Hosts ��� 120

Migrate Using Azure Migrate ��� 121

Deploying SQL Server on Linux with Azure Virtual Machine �� 122

Deploying SQL Server Containers �� 123

SQL Virtual Machine Resource Provider �� 124

Configuration��� 126

Stopping vs� Deallocating �� 126

Resizing ��� 127

Security ��� 127

Other Config Options ��� 128

Maximizing Storage Performance ��� 128

Table of ConTenTs

viii

Performance Monitoring ��� 130

Azure Metrics �� 130

Logs ��� 132

Insights �� 133

Networking�� 134

HADR ��� 135

Azure Storage �� 136

Backups ��� 136

Always On Failover Cluster Instance ��� 137

Always On Availability Groups ��� 137

Go Further with Azure Availability �� 138

SQL Server and Linux Availability �� 138

Summary��� 139

Chapter 4: Deploying Azure SQL ��� 141

Pre-deployment Planning �� 142

New Deployment or Migration ��� 142

Making Deployment Choices ��� 143

Consider Resource Limits �� 148

Deploying Azure SQL Managed Instance��� 149

Deployment and Options ��� 150

Deploying with a CLI �� 159

Implementation Details ��� 159

Connecting and Verifying Deployment ��� 161

Migrating to Azure SQL Managed Instance ��� 168

Assessment and Planning ��� 168

Migration ��� 170

Application Changes �� 170

Post Migration ��� 171

Deploying an Azure SQL Database �� 171

Deployment and Options ��� 171

Deploying Business Critical ��� 183

Table of ConTenTs

ix

Deploying Serverless ��� 185

Deploying Hyperscale �� 186

Deploying with a CLI �� 187

Implementation Details ��� 188

Connecting and Verifying Deployment ��� 194

Migrating to Azure SQL Database ��� 200

Summary��� 202

Chapter 5: Configuring Azure SQL �� 203

Configuring Azure SQL Managed Instance �� 204

sp_configure ��� 204

Trace Flags �� 205

Tempdb �� 205

Master and Model �� 206

Configuring Edition �� 206

Networking Configuration �� 206

Configuring Databases �� 208

Configuring Azure SQL Database �� 210

Creating New Databases ��� 210

Altering Databases �� 212

Network Configuration ��� 213

Configuration Restrictions ��� 214

Azure SQL Managed Instance Restrictions �� 214

Azure SQL Database Restrictions �� 218

Azure SQL Space Management ��� 219

Azure SQL Managed Instance Space Management ��� 219

Azure SQL Database Space Management ��� 220

Loading Data ��� 221

Keep These in Mind ��� 221

bcp ��� 222

BULK INSERT and OPENROWSET ��� 223

SQL Server Integration Services (SSIS) ��� 224

Table of ConTenTs

x

BACPAC �� 226

Database Copy ��� 227

RESTORE to Managed Instance ��� 228

Spark Connector �� 229

Azure Data Factory (ADF)��� 229

SQL Data Sync ��� 230

Replication Subscriber �� 230

Updating Azure SQL �� 231

Maintenance of Azure SQL �� 231

New Features and Capabilities in Azure SQL ��� 233

Summary��� 234

Chapter 6: Securing Azure SQL ��� 235

Security Capabilities and Tasks �� 237

Security Capabilities �� 237

Security Tasks ��� 238

Network Security �� 239

Azure SQL Managed Instance Network Security ��� 240

Azure SQL Database Network Security ��� 243

Authentication and Access �� 256

Azure Role-Based Access Control (RBAC) ��� 256

Authentication for Azure SQL Managed Instance �� 257

Authentication for Azure SQL Database ��� 259

Set Up and Configure Access �� 266

Protecting Your Data ��� 266

Encrypting Connections ��� 266

Transparent Data Encryption (TDE) �� 267

Always Encrypted �� 272

Dynamic Data Masking (DDM) ��� 272

Monitoring Security ��� 274

Monitoring the Azure Ecosystem ��� 274

Auditing Azure SQL Managed Instance �� 276

Table of ConTenTs

xi

Auditing Azure SQL Database �� 277

Advanced Data Security �� 286

Data Classification ��� 288

Vulnerability Assessment��� 295

Advanced Threat Protection (ATP) ��� 299

Azure Security Center �� 301

Summary��� 303

Chapter 7: Monitoring and Tuning Performance for Azure SQL ���������������������������� 305

Performance Capabilities �� 306

Max Capacities �� 307

Indexes �� 310

In-Memory OLTP �� 311

Partitions ��� 311

SQL Server 2019 Enhancements ��� 312

Intelligent Performance ��� 312

Configuring and Maintaining for Performance �� 313

Tempdb �� 313

Database Configuration ��� 314

Files and Filegroups �� 314

Max Degree of Parallelism��� 315

Resource Governor �� 315

Maintaining Indexes �� 316

Maintaining Statistics �� 316

Monitoring and Troubleshooting Performance �� 317

Monitoring Tools and Capabilities �� 317

Dive into DMVs and Extended Events �� 319

Performance Scenarios ��� 324

Azure SQL Specific Performance Scenarios �� 343

Accelerating and Tuning Performance �� 346

Scaling CPU Capacity �� 346

I/O Performance �� 356

Table of ConTenTs

xii

Increasing Memory or Workers ��� 356

Improving Application Latency �� 357

Tune Like It Is SQL Server �� 358

Intelligent Performance �� 363

Intelligent Query Processing �� 363

Automatic Plan Correction ��� 364

Automatic Tuning ��� 365

Summary��� 372

Chapter 8: Availability for Azure SQL ��� 373

HADR Capabilities ��� 375

Automatic Backups and Point-In-Time restore �� 375

Built-In High Availability �� 375

Azure Redundancy ��� 376

Geo-replication and Auto-failover Groups ��� 376

Database Availability and Consistency �� 376

SQL Server Replication �� 377

Backup and Restore �� 377

Automatic Backups �� 378

Point-In-Time restore �� 381

Long-Term Retention Backups �� 388

Geo-restore of Databases �� 391

Restore Backups from Deleted Databases �� 392

Restore in Azure SQL Managed Instance ��� 393

Built-In High Availability �� 394

General Purpose High Availability �� 395

Business Critical High Availability�� 398

Hyperscale High Availability �� 404

Go Further with Azure ��� 410

Zone Redundancy �� 410

Geo-replication �� 413

Table of ConTenTs

xiii

Auto-failover Group ��� 419

Azure SQL SLA ��� 428

Database Availability and Consistency �� 430

Database Availability ��� 430

Accelerated Database Recovery (ADR) �� 431

Database Consistency ��� 431

Monitoring Availability ��� 432

Instance, Server, and Database Availability ��� 432

Backup and Restore History �� 433

Region, Data Center, and Service Availability �� 434

Replica Status ��� 436

Failover Reasons ��� 438

System Center Management Pack for Azure SQL �� 439

Summary��� 439

Chapter 9: Completing Your Knowledge of Azure SQL �� 441

Surface Area of Azure SQL �� 442

Linked Servers and Cross-Database Queries �� 443

External Tables �� 444

Database Mail �� 444

Service Broker ��� 445

Full-Text Search ��� 446

Machine Learning Services ��� 446

What Is Missing? ��� 447

Job Management �� 447

SQL Server Agent��� 448

Elastic Jobs ��� 449

Azure Automation �� 457

Supporting Azure SQL ��� 458

Handling Errors �� 458

Stack Dumps ��� 460

Table of ConTenTs

xiv

Troubleshooting Resources in the Azure Portal ��� 460

UserVoice ��� 465

Azure SQL Best Practices �� 465

Security Playbook �� 465

Best Practices for Performance ��� 467

Azure Advisor ��� 467

Stay in Touch with Our Team ��� 469

Summary��� 470

Chapter 10: Go Big with the Cloud �� 471

Integration with Azure Services �� 471

Power Platform �� 472

Azure Search ��� 476

Stream Analytics �� 481

Azure Architectures and Solutions �� 481

Azure Synapse �� 483

Azure Arc ��� 483

Summary��� 484

Index ��� 487

Table of ConTenTs

xv

About the Author

Bob Ward is a Principal Architect for the Microsoft Azure

Data team, which owns the development for all SQL Server

versions. He has worked for Microsoft for more than 27 years

on every version of SQL Server shipped from OS/2 1.1 to

SQL Server 2019, including Azure SQL. Bob is a well-known

speaker on SQL Server and Azure SQL, often presenting

talks on new releases, internals, performance, and Azure

SQL fundamentals at events such as PASS Summit, Red

Hat Summit, Microsoft //build, SQLBits, SQLIntersection,

Microsoft Inspire, and Microsoft Ignite. You can follow him

at @bobwardms and linkedin.com/in/bobwardms. Bob created and produced training

for Azure SQL including Azure SQL Fundamentals, Azure SQL for Beginners, and the

Azure SQL Bootcamp. Bob is the author of the Apress books Pro SQL Server on Linux and

SQL Server 2019 Revealed.

xvii

About the Technical Reviewer

Joe Sack is a Principal Program Manager at Microsoft,

focusing for the last four years on the Intelligent Query

Processing feature family for Azure SQL Database and

SQL Server. He has worked as a SQL Server professional

since 1997 and has supported and developed for SQL

Server environments in financial services, IT consulting,

manufacturing, retail, and the real estate industry.

Over the years, Joe has published and edited several SQL

Server books and white papers. His first book SQL Server

2000 Fast Answers for DBAs and Developers was published

in 2003. He also started the T-SQL Recipe series, including SQL Server 2005 T-SQL

Recipes and SQL Server 2008 Transact-SQL Recipes. He recorded 13 Pluralsight courses,

including “SQL Server: Troubleshooting Query Plan Quality Issues,” “SQL Server:

Transact-SQL Basic Data Retrieval,” and “SQL Server: Common Query Tuning Problems

and Solutions.”

His Twitter handle is @JoeSackMSFT, and you can find Joe speaking at most major

SQL Server conferences.

https://www.amazon.com/Server-2000-Fast-Answers-Developers/dp/1590591615/ref=sr_1_1?ie=UTF8&qid=1523917092&sr=8-1&keywords=sql+server+2000+fast+answers&dpID=51JD5RBF33L&preST=_SX218_BO1,204,203,200_QL40_&dpSrc=srch
https://www.amazon.com/Server-2000-Fast-Answers-Developers/dp/1590591615/ref=sr_1_1?ie=UTF8&qid=1523917092&sr=8-1&keywords=sql+server+2000+fast+answers&dpID=51JD5RBF33L&preST=_SX218_BO1,204,203,200_QL40_&dpSrc=srch
https://www.amazon.com/Server-2005-T-SQL-Recipes-Problem-Solution/dp/159059570X/ref=la_B001K8IFO4_1_3?s=books&ie=UTF8&qid=1523917193&sr=1-3
https://www.amazon.com/Server-2005-T-SQL-Recipes-Problem-Solution/dp/159059570X/ref=la_B001K8IFO4_1_3?s=books&ie=UTF8&qid=1523917193&sr=1-3
https://www.amazon.com/Server-2008-Transact-SQL-Recipes-Problem-Solution/dp/1590599802/ref=la_B001K8IFO4_1_2?s=books&ie=UTF8&qid=1523917193&sr=1-2
https://app.pluralsight.com/library/courses/sqlserver-tqpq/table-of-contents
https://app.pluralsight.com/library/courses/sqlserver-dataretrieval/table-of-contents
https://app.pluralsight.com/library/courses/sqlserver-dataretrieval/table-of-contents
https://app.pluralsight.com/library/courses/sql-server-common-query-tuning-problems-solutions/table-of-contents
https://app.pluralsight.com/library/courses/sql-server-common-query-tuning-problems-solutions/table-of-contents
https://na01.safelinks.protection.outlook.com/?url=https://twitter.com/JoeSackMSFT&data=02|01|Joe.Sack@microsoft.com|60d5481b93bf46b91da008d5a3e53630|72f988bf86f141af91ab2d7cd011db47|1|0|636595127207743310&sdata=2TkFfg7ROe/P8xrX1LOhznhTsrcjy3P8I4T0yautg8k=&reserved=0

xix

Foreword

Cloud computing has become a pivotal part of business and our world. Azure, the

world’s computer, is at the forefront of delivering cloud computing at the scale the world

needs. Azure SQL has been part of Microsoft’s cloud lineup since the beginning. From

SQL Services to SQL Azure to the powerful lineup of Azure SQL cloud services, databases

have always been a core part of Azure.

In this book, Bob Ward, an architect on my team who for 27 years has been an

integral part of the SQL Server story for Microsoft, leads you on a journey to learn Azure

SQL starting with the compelling history of Azure and Azure SQL. Then he describes in

detail the Azure SQL lineup, including SQL Server for Azure Virtual Machine, Azure SQL

Managed Instance, and Azure SQL Database. A complete chapter is available for you to

understand the details of using SQL Server in Azure Virtual Machine.

The heart of the book gives you what you need to deploy and configure Azure SQL

to meet your requirements. You will then learn how to secure your data, maintain

performance, and achieve high availability with your Azure SQL investments. I love how

Bob compares and contrasts our SQL Server product you know so well to Azure SQL

deployment options. But you will also learn the innovation of Azure SQL that can truly

provide your business new value, including built-in High Availability, Automatic Tuning,

Advanced Threat Protection, Serverless computing, and Hyperscale databases.

With 60+ Azure cloud regions around the world and more coming every quarter,

Azure is everywhere you need it with scale, compliance, and resiliency for even the

most demanding applications. Azure SQL services are a core element of our strategy to

provide databases at scale. I believe this book will give you the knowledge you need to

translate your skills with SQL Server to maximize the capabilities of the Azure SQL data

platform and meet the needs of your migrations or new database applications.

—Scott Guthrie, Executive Vice President, Microsoft, Cloud and AI

xxi

Acknowledgments

I want to first thank God for giving me the endless gift of grace through his son Jesus

Christ. God’s grace blesses me every day, including the honor of being married to Ginger

Ward. My wife Ginger continues to show me the example of what it is like to show

kindness, grace, and respect to everyone she meets. Her support throughout my time

writing this book kept me going. My sons, Troy and Ryan Ward, bless me every day as I

see them carry on what I’ve taught them about integrity and responsibility.

Publishing a book is not easy, and without Jonathan Gennick and Jill Balzano from

Apress, I could not have made it. Thank you both for your professionalism and kindness.

I owe a huge thanks to my technical reviewer Joe Sack. If you have never met Joe Sack,

I hope someday you do. Not only is he one of the nicest people I know, but a brilliant

engineer. He brought the right balance of pointing out what could work better with

compliments on many of the chapters.

I want to also thank my leadership at Microsoft for giving me this opportunity,

including Scott Guthrie for writing the foreword, Rohan Kumar for all his guidance and

wisdom, and to my manager Asad Khan who always supports me in everything I do at

Microsoft.

They say “it takes a village” to build something big, but to write a book like this it

takes an army. It is hard to call out every individual who helps you as you create a book

like this, so I’ll first start by thanking all the software engineers and program managers

across the Azure SQL team in Redmond, Israel, and Serbia. I do want to mention a few

specific individuals, and it all starts with Anna Hoffman. Anna and I worked together the

entire calendar year of 2020 on Azure SQL, all remote. Her patience with what she calls

my “hyperfocused” work amazes me every day. But more important, she possesses what

I call an “old school” work ethic at a very young age. I find that hard to see these days. I

also want to thank my colleagues Buck Woody and Marisa Brasile for all their guidance,

encouragement, and help promoting our work in Azure SQL. I want to pay special

thanks to the folks I interviewed for the first chapter of the book to tell you the history

of Azure SQL, including Ted Kummert, Rohan Kumar, Ajay Kalhan, Peter Carlin, Brian

Chamberlain, Conor Cunningham, Ron Matchoro, Guy Bowerman, Drazen Sumic, Morgan

Oslake, Cristian Diaconu, Steve Lindell, Mark Russinovich, Evan Basalik, and Keith Elmore.

xxii

There were many members of the Azure SQL and other engineering teams that

helped me with quotes and questions that I want to thank, including Dimitri Furman,

Denzil Ribeiro, Sanjay Mishra, Emily Lisa, Joachim Hammer, Andreas Wolter, Girish

Mittur Venkataramanappa, Alain Dormehl, Abdul Sathar Sait, Mine Tokus, Ajay

Jagannathan, Borko Novakovic, Hans Olav Norheim, Misha Kolianko, Pratyush Rawat,

Scott Kim, Stojan Rakic, Venkata Raj Pochiraju, Yadi Reyes, Jovan Popovic, Sherif

Mahmoud, Tomer Rotstein, Andrey Karpovsky, Rohit Nayak, Vassilis Papadimos, Dejan

Krakovic, Craig Freedman, Silvano Coriani, Davide Mauri, Hanuma Kodavalla, Ebru

Ersan, and Srini Acharya.

Our marketing team has always been very supportive of my work, so a big thanks to

John “JG” Chirapurath, Wisam Hirzalla, Eric Hudson, Debbi Lyons, and Miwa Monji.

And finally thanks to you, the community, who supports and helps us promote the

amazing story of SQL Server. Many of you are now engaging with Azure, so my hope

is the timing of this book is perfect for you to begin your journey with Azure SQL and

empower you to put the same energy and passion behind it as you have with SQL Server

for so many years.

aCknowledgmenTs

xxiii

Introduction

In November of 2019, I had just released my second book on SQL Server called SQL

Server 2019 Revealed (my first book was Pro SQL Server on Linux which was released in

2018). It was only one week after we had also just launched the SQL Server 2019 release.

I had also delivered some eight sessions at the recent PASS Summit conference in

Seattle. Therefore, near the end of calendar 2019, I wanted to reflect back on what was

successful but also look toward the future.

I found myself sitting in a room with my manager Asad Khan reviewing the work I

had done over the last year and what might be the next focus for me (that is how we will

roll at Microsoft; yes, we were celebrating the release of SQL Server 2019, but we are

always looking at what is our next big thing). We agreed that for at least the foreseeable

future I needed to focus on delivering the message of SQL Server 2019, Containers,

Linux, and Kubernetes to customers and our internal teams.

I then asked a very dangerous question: “What about Azure?” Asad owns the

program management for SQL Server and Azure SQL. He paused for a few seconds

and then asked me, “Bob, what do you mean? Do you mean you want to get involved

in Azure?” I had been thinking about this for some time. Back in the fall of 2019, I did

a roadshow with Buck Woody and Anna Hoffman called “Ground to Cloud” (see the

workshop for yourself at https://github.com/microsoft/sqlworkshops/tree/master/

SQLGroundToCloud). During the roadshow, I was also thinking ahead despite the fact

that I was still finishing the SQL Server 2019 Revealed book and part of our overall launch

work for SQL Server 2019. So I told Asad, “I think one thing I can help with the cloud is

to do an assessment of Azure SQL from the perspective of a SQL Server expert.” Why not

take my 27+ years of experience on SQL Server and see how it lines up with the cloud?

Asad in his usual calm demeanor said that he thought this would be an excellent idea,

but I think he was privately excited to see my involvement.

Roll forward to early January of 2020. I had spent time over the holiday break in

December of 2019 talking to my wife Ginger and my sons Troy and Ryan. “Should I go

for a third book?” Ginger replied with her usual wry smile “Why not? Don’t you have

a hang for this book writing thing now?” I thought it over for a bit and then decided to

dive in. After all, 2020 marks the tenth anniversary of Azure and Azure SQL. I thought

https://github.com/microsoft/sqlworkshops/tree/master/SQLGroundToCloud
https://github.com/microsoft/sqlworkshops/tree/master/SQLGroundToCloud

xxiv

this introduction would include all the places I travelled while writing this book, as I

had with my previous two books. However, there was a historic worldwide event you

may have heard of called COVID-19 which disrupted not only my travel but has also

affected so many people. I grieve and pay respects to all of those reading this book for

themselves and any of their loved ones affected. The time not travelling did allow for me

to have more focus to write this book, so I hope you like the final result. All of this book

was written in my home office in North Richland Hills, Texas, but I was connected to the

world throughout the writing.

This book is the culmination of work for an assessment of Azure SQL from the

perspective of SQL Server. However, even if you don’t know SQL Server, I believe you

will gain much knowledge to learn Azure SQL. The book has many examples embedded

into the text you can use, but you can also download code examples from my GitHub

repository at https://github.com/Microsoft/bobsql.

The book starts out with a history of Azure and Azure SQL. I think understanding

the history of something can help you gain knowledge of current capabilities and what is

possible. I had fun writing the first chapter as it involved some fairly intensive research

and interviews with some names you will find familiar.

I then will take time to explain what Azure SQL means. This is a great chapter to get

started so you understand what is possible with Azure SQL cloud services, including the

Azure ecosystem. This chapter will also help guide your decisions as you choose which

Azure SQL option best fits your requirements. I recommend anyone reading this book to

review this chapter.

One of the choices for Azure SQL is Azure Virtual Machine. Since the experience

of Azure Virtual Machine (VM) inside the guest OS is very much like SQL Server on-

premises, I chose to dedicate a single chapter to the subject instead of including Azure

VM in the rest of the book. This chapter is great though if Azure VM is your target as I talk

about deployment, networking, storage, and performance. The rest of the book covers

Azure SQL Managed Instance and Azure SQL Database as Azure SQL.

One of the first things you do with SQL Server is install the software and configure

it. Therefore, that is where your Azure SQL journey begins: learning the details and

options to deploy and configure Azure SQL. I think you will find this is a fairly thorough

discussion of the topic, because in some cases, making the right decisions during

deployment will save you time and money. Even if you are familiar with the basics

of deploying Azure, I recommend you review these chapters. You might find some

interesting details you didn’t know about.

InTroduCTIon

https://github.com/Microsoft/bobsql

xxv

The heart of the book then takes you on a journey to learn the core of Azure SQL,

which are security, performance, and availability. Every customer I’ve talked to that

has mastered SQL Server knows these three areas, and they represent the core of the

SQL Server engine. Therefore, when you read these chapters, you will understand the

capabilities and tasks of Azure SQL compared to SQL Server. These chapters are the

largest in the book and contain the most examples.

You will finish the book learning “What else.” There are some topics like Job

Management that don’t fit into security, performance, and availability, so you will round

off your knowledge in the second to last chapter. One of the goals of this book is to get

the SQL Server professional comfortable with Azure SQL. However, I want readers to

end their journey with the book in the last chapter to see what is possible beyond the

fundamentals because you are now in the world’s computer, Azure.

This book is intended to help you get to Azure SQL, stay on Azure SQL, and use

Azure SQL to its maximum potential. So gear up and start learning. Welcome to the

world’s database: Azure SQL.

Bob Ward

North Richland Hills, Texas

InTroduCTIon

1
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_1

CHAPTER 1

SQL Server Rises
to the Clouds
In late 2005, Microsoft as a company was humming (I’m a little biased here) in the

enterprise space and so was the SQL Server product. In October of 2005, we were close

to releasing SQL Server 2005 (code name Yukon) which was unfortunately 5 years in

the making (that is a story for another book; just ask Paul Randal). I was in Microsoft

Support in those days, and despite the delay in getting SQL Server 2005 to market, I

was very proud of the release. Windows, Windows Server, Office, and Xbox 360 were all

popular products from Microsoft.

In October of 2005, an architect new to Microsoft named Ray Ozzie sent an internal

email to several executives at Microsoft (which eventually was sent to all employees

including a 12-year veteran named Bob Ward) called The Internet Services Disruption

(the email leaked to the Web fairly quickly which you can read at www.cnet.com/news/

ozzie-memo-internet-services-disruption/). I remember hearing about the email

leak and some of its contents as an employee but didn’t pay much attention. Wasn’t the

Internet just for email and web browsing? In that email, Ray Ozzie painted a picture of

Microsoft becoming a cloud provider vs. just a “traditional software company.” Microsoft

only really had a few “Internet services” offerings at the time which included the

legendary Hotmail email service (which had existed since 1997), the Bing Search Service,

and Xbox Live. The email from Ray Ozzie painted a picture for something far bigger.

One of the key statements from this email was “…All Business Groups have been

asked to develop their plans to embrace this mission and create new service offerings

that deliver value to customers and utilize the platform capabilities that we have today

and are building for the future.” Little did I know how much behind-the-scenes work

would kick in within the SQL Server team to develop plans for this statement.

https://doi.org/10.1007/978-1-4842-5931-3_1#DOI
http://www.cnet.com/news/ozzie-memo-internet-services-disruption/
http://www.cnet.com/news/ozzie-memo-internet-services-disruption/

2

Ray Ozzie became the Chief Software Architect of Microsoft in the summer of 2006

(taking the role held by Bill Gates), and this email would set the stage for what would

become known as Azure. SQL Server was destined to become a huge part of it.

 CloudDB
In early 2006, Paul Flessner, Vice President of the Data Storage and Platform division of

Microsoft, decided to step down as the leader of SQL Server and turn over the reins to

Ted Kummert. When Ted took over to lead SQL Server, a project was already underway

to look at cloud services led by Technical Fellow Peter Spiro, who was a chief architect

for several SQL Server releases, including SQL Servers 7.0, 2000, and 2005. Peter formed

a team which included several engineers. Among them were two architects still at

Microsoft today: Ajay Kalhan and Tomas Talius. The team embarked on a project to build

a cloud-based service to host databases. They called it CloudDB. As Ted tells it, “We

needed to build a cloud version of SQL. Our goal was to build a serverless or Platform as a

Service (PaaS) SQL. A customer wouldn’t worry about a server or VM, just a database.”

In order to build a cloud-based database service, the team needed to build out a

robust design to support the concept of hosting multiple customers or “databases”

isolated from each other using shared resources. This concept is called multi-tenant.

Note The term tenant can mean many things in the cloud. For CloudDB, in the
beginning, a tenant referred to a database owned by a customer. You will see
throughout this book the word tenant, but I’ll be clear about the scope of what I
mean when using the term.

According to Ajay Kalhan, from the beginning the CloudDB team started working

out designs to incorporate concepts such as failure detection, logical master (think

of a “metadata” master, not physical), load balancing, and deployment. Early designs

even looked at the idea of a “key-value store” instead of traditional relational database

concepts. Not long after the team was building out the design for CloudDB, Ted assigned

David Campbell to also work on the project and lead the team toward a true mission of

“SQL Server in the Cloud.”

ChapTer 1 SQL Server rISeS To The CLouDS

3

The team believe it needed an internal customer to help dogfood the project and

prove they could host customers. That internal customer would become a public-facing

cloud service called Exchange Hosted Archive (EHA) (an email archive solution in the

cloud predating Office 365). For this internal customer, early designs to support multi-

tenants (which in this case even though there was one internal customer, that customer

serviced the needs of multiple customers) used a concept called silos where a SQL

Server could host multiple databases, but tenants were partitioned within the database

itself. EHA became one of the first Software as a Service (SaaS) services at Microsoft

to use our cloud-based database service. Think of SaaS as purchasing software on a

subscription basis and using the software from a hosted solution, like in Azure. You just

focus on using an application hosted somewhere other than your computers. Since SQL

Server hosted the back-end databases, the team forked the codebase of SQL Server 2005

to use for the service.

While the CloudDB team was working on their project with a goal to support EHA

and other customers, another team at Microsoft was chartered by Ray Ozzie to look at

how to host compute services in the cloud.

 The Red Dog
In 2006, Ray Ozzie enlisted Microsoft veteran Amitabh Srivastava to lead a “Cloud

OS” project in the attempt to move forward the “Internet services disruption” he

had talked about a year ago. One of the first actions Amitabh took was to bring out of

retirement Dave Cutler, the “father” of DEC VMS and Windows NT operating systems.

As part of their initial project work, Srivastava and Cutler visited groups at Microsoft

that were providing “cloud services,” including Xbox Live, Hotmail, and Bing. On one

of the trips to visit Hotmail in San Jose, California, the team drove by a club called the

Pink Poodle. It was Dave Cutler who famously said, “Maybe we should name

our project the Pink Poodle?” The project team all agreed that would not go

over well so named the project instead “Red Dog.” The name stuck (you can read

more about the great history of the beginning of Red Dog at www.wired.com/2008/11/

ff-ozzie/?currentPage=7 and www.zdnet.com/article/how-the-red-dog-dream-

team-built-a-cloud-os-from-scratch/).

ChapTer 1 SQL Server rISeS To The CLouDS

http://www.wired.com/2008/11/ff-ozzie/?currentPage=7
http://www.wired.com/2008/11/ff-ozzie/?currentPage=7
http://www.zdnet.com/article/how-the-red-dog-dream-team-built-a-cloud-os-from-scratch/
http://www.zdnet.com/article/how-the-red-dog-dream-team-built-a-cloud-os-from-scratch/

4

From the beginning, the Red Dog team did things differently at Microsoft to build

the “Cloud OS.” They built their own “data center” in the heart of the Microsoft campus,

even taking reserve power from neighboring buildings. Their goals were ambitious and

still resonate today. Their main overall goal was to build a cloud service for developers

to build scalable web applications. They also had a massive theme from the beginning:

reliability. As Dave Cutler said back in 2008, “One of the things you did not ask is why

aren’t we saying more about Azure and in the process filling the marketplace with

sterling promises for the future? The answer to this is simply that the RD group is very

conservative, and we are not anywhere close to being done. We believe that cloud

computing will be very important to Microsoft’s future and we certainly don’t want to

do anything that would compromise the future of the product. We are hypersensitive

about losing people’s data. We are hypersensitive about the OS or hypervisor crashing

and having properties experience service outages. So, we are taking each step slowly and

attempting to have features 100% operational and solidly debugged before talking about

them. The opposite is what Microsoft has been criticized for in the past and the RD dogs

hopefully have learned a new trick.”

The RedDog and CloudDB teams were marching together as separate projects

(ironically on the same campus only buildings apart) to support cloud services for web

applications and hosted databases in the cloud. These projects were on a path to come

together in 2007 and 2008 for a launch of a unified cloud service.

 The Azure Services Platform
In October of 2008 at the Microsoft Professional Developers Conference (PDC) in Los

Angeles, California, Ray Ozzie announced Windows Azure. The PDC was the pre-cursor

to today’s Microsoft //Build conference (https://en.wikipedia.org/wiki/Build_

(developer_conference). PDC was a huge event for Microsoft for developers.

Windows Azure was launched as part of the Azure Services Platform. Figure 1-1

shows a snapshot of the Azure Services Platform offerings.

ChapTer 1 SQL Server rISeS To The CLouDS

https://en.wikipedia.org/wiki/Build_(developer_conference)
https://en.wikipedia.org/wiki/Build_(developer_conference)

5

The Red Dog team had been cranking away since 2006 with the goal of releasing a

cloud service for developers. Ray Ozzie called Windows Azure a “new Windows offering

at the web tier of computing” (watch the video for yourself at www.zdnet.com/article/

ray-ozzie-announces-windows-azure/). He also called Azure “Windows in the cloud.”

Microsoft now would offer customers Windows on your laptop (at that time, it was

Windows Vista), servers for your enterprise (Windows Server), and Windows in the

cloud (Azure).

Note I sought out many folks at Microsoft on why our cloud service was named
azure. as Buck Woody, who is my colleague now but worked on azure in the early
days, tells the story, “azure means clear blue sky with no clouds. The name just
seemed right without using the word cloud in our name.”

Like the goal of the CloudDB project, when Windows Azure first released, the

goal was all about scalability and availability targeting web applications in the form

of a Platform as a Service (PaaS). Think of PaaS as purchasing a platform to host your

application or database based on a subscription where the platform is managed by a

Figure 1-1. The Azure Services Platform in 2008

ChapTer 1 SQL Server rISeS To The CLouDS

http://www.zdnet.com/article/ray-ozzie-announces-windows-azure/
http://www.zdnet.com/article/ray-ozzie-announces-windows-azure/

6

provider, like Azure. With PaaS, you are typically abstracted from a host computer or

virtual machine. Therefore, Cloud Services was the first service in Windows Azure. This

type of service was known internally as PaaS V1.

Note Cloud services is still offered today in azure. You can read more about cloud
services at https://azure.microsoft.com/en-us/services/cloud-
services/. a new service for web applications has become popular today
called azure app Service which you can read more about at https://azure.
microsoft.com/en-us/services/app-service/.

Even though a cloud service application ran in one or more Virtual Machines, the

idea was to support easy-to-scale web applications in the cloud where developers didn’t

focus on the details of the virtual machine but more on the application. Developers

at this time for Windows were used to the Internet Information Server (IIS) feature of

Windows Server. While developers didn’t have to worry as much about deploying and

configuring IIS, they typically had to have an administrator within their organization.

While developers had some access to the Virtual Machine native OS environment for

cloud services, that access was limited. It would be a few years later that Microsoft

would introduce the concept of Infrastructure as a Service (IaaS) through Azure Virtual

Machine. Think of IaaS as purchasing an infrastructure to host your virtual machine

based on a subscription. You worry about the guest VM and the provider manages the

host, hardware, networking, and storage.

One of the other promises of PaaS and cloud services is to create an easy-to-use

concept of application deployment, configuration, and updates. Furthermore, providing

capabilities for scalability, built-in high availability, and load balancing made the

concept of cloud services extremely appealing to web developers. These same concepts

you will see are a part of the appeal as well for Azure SQL and databases.

In order to host PaaS cloud services, an underlying hosting system had to be built.

The Windows Azure team took the designs from the RedDog project to build this hosting

system to support deployment, networking, high availability, scale, and security, as

cloud services abstracted all these details from the developer. This software hosting

system was known as the Windows Fabric. Providing the underlying hosting system for

services consumed by users is the power of the cloud. I found this interesting slide from

a talk at the PDC 2008 conference that talks about all the details required for someone to

run their own fabric in a data center as seen in Figure 1-2.

ChapTer 1 SQL Server rISeS To The CLouDS

https://azure.microsoft.com/en-us/services/cloud-services/
https://azure.microsoft.com/en-us/services/cloud-services/
https://azure.microsoft.com/en-us/services/app-service/
https://azure.microsoft.com/en-us/services/app-service/

7

This slide speaks volumes for what a fabric must support for cloud services at scale.

A highly available fabric controller (FC) is key to the system. The FC maintains a graph

of the inventory of what it manages: computer, Virtual Machines, load balancers, and

switches with edges being objects like network cables. One key to the fabric system is

the use of a declarative model so the FC takes what you declare and implements it. Very

early on, the Windows Fabric in Azure had concepts of high availability such as fault and

update domains (I’ll describe the importance of these in Chapters 2 and 3 of the book).

Figure 1-2. Building your own fabric in a data center

ChapTer 1 SQL Server rISeS To The CLouDS

8

Tip The slide from Figure 1-2 comes from an excellent presentation from the
pDC 2008 event which talks about Windows Fabric and the hosting environment of
the original Windows azure service. You can watch this presentation at https://
channel9.msdn.com/blogs/pdc2008/es19. another good resource I found on
some basics of hosting and Windows Fabric comes from an interview with azure
CTo Mark russinovich at https://searchcloudcomputing.techtarget.
com/blog/The-Troposphere/How-Azure-actually-works-courtesy-
of-Mark-Russinovich.

Windows Fabric is today known as Service Fabric. The usage of service fabric is

also exposed to applications to host their own services in a Service Fabric cluster. You

can read more about Azure Service Fabric at https://azure.microsoft.com/en-us/

services/service-fabric/.

Note as you read more about service fabric in this chapter in the book, you
will likely see some similarity to another fabric system called Kubernetes. If you
want to read more about differences between these two systems, this blog post
is a good place to start: https://techcommunity.microsoft.com/t5/
azure-developer-community-blog/service-fabric-and-kubernetes-
community-comparison-part-1-8211/ba-p/337421.

To round out the set of Azure Services, Microsoft announced the data platform or

SQL Services, thus beginning the first public announcement of the journey that would

become Azure SQL.

 The Road to SQL Azure
A big part of the announcement for Windows Azure at PDC in 2008 involved data. Since

the CloudDB project in 2006, Peter Spiro, David, Campbell, Ajay Kalhan, Tomas Talius,

and the rest of the team had built out a set of cloud services for SQL Server to now host

multi-tenant databases (or multiple customers in a shared set of SQL Servers).

ChapTer 1 SQL Server rISeS To The CLouDS

https://channel9.msdn.com/blogs/pdc2008/es19
https://channel9.msdn.com/blogs/pdc2008/es19
https://searchcloudcomputing.techtarget.com/blog/The-Troposphere/How-Azure-actually-works-courtesy-of-Mark-Russinovich
https://searchcloudcomputing.techtarget.com/blog/The-Troposphere/How-Azure-actually-works-courtesy-of-Mark-Russinovich
https://searchcloudcomputing.techtarget.com/blog/The-Troposphere/How-Azure-actually-works-courtesy-of-Mark-Russinovich
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/service-fabric-and-kubernetes-community-comparison-part-1-8211/ba-p/337421
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/service-fabric-and-kubernetes-community-comparison-part-1-8211/ba-p/337421
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/service-fabric-and-kubernetes-community-comparison-part-1-8211/ba-p/337421

9

The first name announced at PDC 2008 was SQL Data Services (SDS). While the

news of this service made buzz in the industry, so many customers were focused on

on-premises enterprise deployments and our team overall were heavily focused on

SQL Server (e.g., shipping SQL Server 2008 code-named Katmai). But internally, the

leadership of the company was making a major push for the cloud but not just because

they were “told to do this.” Ted Kummert said, “We were believers. We believed PaaS was

the future, but we were early in the industry for a service like this.”

 SQL Data Services
SQL Data Services was announced as part of a broader set of services called SQL
Services which would include DataSync, Reference Data, Reporting, Data Mining, and

ETL as seen in Figure 1-3.

This image came from a slide from a talk presented by David Campbell back at PDC

in 2008.

Note It is interesting to see our intention was to also provide “data warehouse”
services which we do today with azure Synapse and “eTL” which is now azure
Data Factory. “reporting” never really panned out in SQL Services (but there were
attempts), but Microsoft eventually created a very powerful reporting service
called power BI.

Figure 1-3. SQL Services at PDC in 2008

ChapTer 1 SQL Server rISeS To The CLouDS

10

SQL Data Services embodied the ability for developers to host databases for their

applications and be completely abstracted from the details of computers, virtual

machines, and SQL Server itself. Basically, you create a database; populate it with

tables, data, and indexes; and then just start using it. No machine, Operating System, or

machine installation required.

Note The announcement of SQL Data Services can be seen in this blog post:
https://azure.microsoft.com/en-us/blog/microsoft-announces-
windows-azure-and-azure-services-platform/.

The other concept that SDS provided was “database as a utility” or “pay-as-you-go

service.” That was really the same concept across all of Windows Azure. It represented

a shift for customers to use a subscription service to pay for database usage (and the

compute and storage that went behind it) vs. a license for SQL Server.

The team learned a quick lesson when it introduced the programming interface as

REST API instead of T-SQL. REST stands for Representational State Transfer and is a

common protocol used for web services. Customer feedback quickly changed that model

(but REST API interfaces remain to this day for many aspects of Azure SQL which you

will see throughout the book). You can see from this blog post in March 2009 (https://

web.archive.org/web/20140411144147/http://blogs.msdn.com/b/sqlazure/

archive/2009/03/10/9469228.aspx) that the SDS team needed to provide developers

and users a “relational data experience” which includes programming interfaces through

Tabular Data Stream (TDS). Translation: T-SQL. Other basic features you expect from

a SQL Server database had to be there, including indexes, stored procedures, triggers,

views, and so on.

Since the SDS and Windows Azure teams were innovating at the same time, the SDS

team had to figure out a hosting system for databases and SQL Server. The Windows Fabric

was being built as the SDS team was innovating. The decision was made to use a hosting

system that already existed at Microsoft instead of using Windows Azure. That platform was

called AutoPilot (you can read more about the AutoPilot system at www.microsoft.com/

en-us/research/publication/autopilot-automatic-data-center-management/?from=

http%3A%2F%2Fresearch.microsoft.com%2Fapps%2Fpubs%2Fdefault.aspx%3Fid%3D64604)

built by the team running the Bing Search Service. AutoPilot was effectively a platform to

provision “bare metal” computers in a scaled fashion. SDS clusters would physically be

co-located with Windows Azure clusters, but SDS managed their own systems.

ChapTer 1 SQL Server rISeS To The CLouDS

https://azure.microsoft.com/en-us/blog/microsoft-announces-windows-azure-and-azure-services-platform/
https://azure.microsoft.com/en-us/blog/microsoft-announces-windows-azure-and-azure-services-platform/
https://web.archive.org/web/20140411144147/http:/blogs.msdn.com/b/sqlazure/archive/2009/03/10/9469228.aspx
https://web.archive.org/web/20140411144147/http:/blogs.msdn.com/b/sqlazure/archive/2009/03/10/9469228.aspx
https://web.archive.org/web/20140411144147/http:/blogs.msdn.com/b/sqlazure/archive/2009/03/10/9469228.aspx
http://www.microsoft.com/en-us/research/publication/autopilot-automatic-data-center-management/?from=http://research.microsoft.com/apps/pubs/default.aspx?id=64604
http://www.microsoft.com/en-us/research/publication/autopilot-automatic-data-center-management/?from=http://research.microsoft.com/apps/pubs/default.aspx?id=64604
http://www.microsoft.com/en-us/research/publication/autopilot-automatic-data-center-management/?from=http://research.microsoft.com/apps/pubs/default.aspx?id=64604

11

AutoPilot just provided software services to deploy and maintain applications

on bare-metal servers at scale. The SDS team had to build their own set of services

for fault tolerance, high availability, and connectivity. The SDS team built their own

fabric to deploy, run, scale, and maintain SQL Server instances to host their customer

databases. The original design of silos was replaced by “database per tenant” model

called partitions (not the same as SQL Server partitions), but multiple databases could

be hosted on a single SQL Server. Each bare-metal server could also host multiple SQL

Server instances.

The other piece of this design to support the concept of a “database service” was to

abstract users from the SQL Server instance itself (even though SQL Server instances

were used to host databases). Thus, the concept of a “master node” was built into the

service to host metadata about the “data nodes.” These data nodes had the concept

of replicas and fabric controllers. In addition, a front-end service was built where

applications would connect instead of connecting to the back-end SQL Server. This

would be the early design of what is now known as Gateway Server for Azure SQL.

Figure 1-4 shows the original design of the SDS hosting system or cluster (this comes

from the PDC talk at https://channel9.msdn.com/Blogs/pdc2008/BB03 from Gopal

Kakivaya).

Figure 1-4. Original SDS hosting design for SQL Services databases

ChapTer 1 SQL Server rISeS To The CLouDS

https://channel9.msdn.com/Blogs/pdc2008/BB03

12

Fabric processes help coordinate with the overall cluster for failover purposes. So

early on, we needed to provide

• The ability to isolate customers with our partition concept but share

SQL Servers for density

• Failover logic within the fabric

• Replica sets of data. Sound familiar? (kind of like an Availability

Group)

• Access for our databases to underlying storage and networking across

the data center but abstracted from users

• A logical “master” database for application databases to support

logins and store other metadata

• The ability to collect metrics to gain insight into telemetry and health

• Watchdog processes for health detection

The team learned a lot in these early days. Ted Kummert described the challenges

of now not just enhancing and building the software but owning all aspects of a “live

service,” including hardening, quality, availability, development velocity, telemetry,

outages, security, and even things like Cost of Goods Sold (COGS) and capacity

planning. These early learnings would eventually allow Microsoft to scale to the levels

the original team had dreamed about. As Ted described it, “…we were now not just

evolving a codebase, but we were evolving as a team and our capabilities all at the same

time. It was both an exhilarating and humbling experience.”

Another important event in Microsoft’s company history happened in 2008. Steve

Ballmer then asked a leader within the company to re-invent another cloud service, the

Bing Search Service. That leader was a man named Satya Nadella. According to Satya

in his book Hit Refresh, “Ultimately, Bing would prove to be a great training ground for

building the hyper-scale, cloud-first services that permeate Microsoft today.”

ChapTer 1 SQL Server rISeS To The CLouDS

13

 SQL Azure Is Born
It was a massive effort to move to a market release. Along the way, SQL Data Services just

didn’t have the right name to many. Therefore, in the summer of 2009, while the service

was still in Community Technology Preview (CTP), a branding name change was made

from SQL Data Services to SQL Azure. The SQL Azure name is still what many call Azure

SQL today (just ask Conor Cunningham). The programming and usage model were the

same as SDS (except T-SQL and the TDS protocol were adopted instead of REST), the

hosting was the same, but the name SQL Azure was the go-to market brand.

On February 1, 2010, it all became official. Windows Azure was officially launched

and, along with it, the first truly PaaS relational database service in the industry, SQL

Azure (you can read the official blog announcement at https://blogs.microsoft.

com/blog/2010/02/01/windows-azure-general-availability/). Along with the

announcement was a new logo (changing the current SQL Server 2008 logo from red to

blue) as seen in Figure 1-5.

In order to interact with Windows Azure, the team had to also snap into a user

interface experience called a portal. The first version of the Windows Azure portal used

HTML, but quickly after this, a new portal experience based on Microsoft Silverlight was

adopted. This also included a separate Silverlight “administration” experience for SQL

Azure.

Figure 1-6 shows an example SQL Azure management portal based on Silverlight.

Figure 1-5. The original SQL Azure logo

ChapTer 1 SQL Server rISeS To The CLouDS

https://blogs.microsoft.com/blog/2010/02/01/windows-azure-general-availability/
https://blogs.microsoft.com/blog/2010/02/01/windows-azure-general-availability/

14

When Windows Azure launched, the concept of an Azure datacenter was introduced

to our customers. A datacenter is a physical set of buildings in a specific geographic

location where Microsoft hosted Azure services. The names of the datacenters were

based on a geographical region (we have since shifted to a concept of regions and

datacenters which I’ll explain later in this chapter and in other places in the book). At

the original launch of SQL Azure, customers could deploy databases in datacenters with

names of North Central US, South Central US, East Asia, and North Europe.

The original SQL Azure had some interesting characteristics:

• We launched with a business model that had two editions: Web and

Business. The basic difference was the maximum database size: 1Gb

for Web and 10Gb for Business (as you will see in this book, you can

create sizes much larger than this now). We quickly bumped this up

to 50Gb by June 2010.

• In order to deploy a database, you would deploy first a logical

database server. Multiple databases could be associated with a logical

server. The logical server also contained other metadata such as

logins and firewall rules for security.

Figure 1-6. The SQL Azure Management Portal

ChapTer 1 SQL Server rISeS To The CLouDS

15

• Any table in a database was required to have a clustered index.

• We used our own internal “replica system” but ensured that we

always kept three replicas available. We also automated processes

like backups and kept multiple copies.

• We updated the software for SQL Server through a concept called a

Service Update (SU) and made announcement about these updates

in blog posts (an example blog post for a service update can be found

at https://web.archive.org/web/20140420195848/http://blogs.

msdn.com/b/sqlazure/archive/2010/02/17/9965464.aspx).

• We introduced the concept of a Service-Level Agreement (SLA) to

ensure a level of database availability.

• Early on we developed an integrated experience with the popular

tool SQL Server Management Studio (SSMS).

• Customers struggled with concepts like application retry logic, new

error messages, logical master, throttling, and inequality with the

T-SQL surface area of SQL Server.

Note If you want to step back in time and see some older blogs about SQL azure,
visit https://web.archive.org/web/20140410165353/http://blogs.
msdn.com/b/sqlazure/default.aspx?PageIndex=1 and traverse the links
at the bottom of the page.

In these early days for both Windows and SQL Azure, it was even a new world within

Microsoft. Buck Woody worked on the original Windows Azure teams. He told me that

working on Azure was in a group at Microsoft called “Incubation” – a startup-like culture.

“One of the most interesting parts of that,” he said, “was seeing everything getting built

in the technology, and in the business side. It was probably the best MBA I ever got.” In

Incubation, you were “walled off” from the rest of Microsoft, having your own engineers,

sales, marketing, and the like. When the product showed a profit and all the business

processes were established, it “graduated” to the rest of the field at Microsoft. Some

products graduated, and others didn’t – so there was a lot of pressure to succeed.

ChapTer 1 SQL Server rISeS To The CLouDS

https://web.archive.org/web/20140420195848/http:/blogs.msdn.com/b/sqlazure/archive/2010/02/17/9965464.aspx
https://web.archive.org/web/20140420195848/http:/blogs.msdn.com/b/sqlazure/archive/2010/02/17/9965464.aspx
https://web.archive.org/web/20140410165353/http:/blogs.msdn.com/b/sqlazure/default.aspx?PageIndex=1
https://web.archive.org/web/20140410165353/http:/blogs.msdn.com/b/sqlazure/default.aspx?PageIndex=1

16

 The SAWA Project
To this point in time, SQL Azure still was deployed and ran using the AutoPilot cluster

system with SQL Server instances hosted on bare-metal servers (Brian Chamberlain, one

of the principal engineers for Azure SQL, calls this internally SQL Azure v1).

We knew as a team we needed to snap into the Windows Azure hosting system

which uses virtual machines to deploy services. We needed to take more advantage of

what Windows Azure offers for deployment, networking, and storage without making

wholesale changes to the SQL Azure architecture. Therefore, a project was born called

SAWA (SQL Azure on Windows Azure). Brian calls this SQL Azure v2. In order to help

abstract the team from having to deploy on both AutoPilot and SAWA systems, we built a

software layer code-named Blackbird.

The SAWA project was important because it would allow the team to eventually

become a full-fledged Azure service, taking advantage of everything internally that

Windows Azure provides to services. But for a few years, the team operated and

managed SQL Azure databases deployed on both AutoPilot and SAWA. Users didn’t see

the difference. The service still looked and behaved the same.

For the next few years, Windows Azure offered compute services through Cloud

Services and database services through SQL Azure. The SQL Azure team had also added

other engineering leaders to the team including Nigel Ellis and Peter Carlin. It was

the beginning of the journey, but Microsoft leadership was behind the scenes already

working on changes and bigger things to push Azure further in the public cloud.

 The Virtual Machine Initiative
When Windows Azure first released, among the primary target solutions were scalable

web applications in the cloud. Therefore, Cloud Services was the first compute service

in Windows Azure. As I described in the preceding section on Windows Azure, Cloud

Service applications ran in virtual machines and had the ability to store data in SQL

Azure or in Azure Blob Storage using APIs. But application developers did not have

access to any local storage or full virtual machine access. The concept of a virtual

machine in the cloud as a service, also called Infrastructure as a Service (IaaS), had

been introduced by Amazon in 2006 called Amazon Elastic Compute Cloud (EC2) as part

of their overall Amazon Web Services (AWS) suite. EC2 was literally a virtual machine

where you can deploy your choice of operating system and application.

ChapTer 1 SQL Server rISeS To The CLouDS

17

For many, Cloud Services in Windows Azure was still thought of as Platform as a

Service (PAAS) since developers didn’t really have access to the entire guest VM or

concepts like local storage. Our Windows Azure team knew we needed something to

compete with EC2 and make IaaS a big part of Azure.

In 2011, Microsoft decided to make a bold move in leadership. Steve Ballmer wanted

to make big bets in the cloud including Azure. He asked Satya Nadella to move from

his current position leading the Bing team to run the division at Microsoft called Server

Tools and Business (STB). This was the chief enterprise software group at Microsoft that

ran Windows Server, SQL Server, and Windows Azure. As part of his role in taking over

STB, Satya did several key things. First, he hired Scott Guthrie to lead the engineering

efforts for Azure. Scott is now the leader of Cloud and Enterprises, also known as

C&E, which used to be STB. Second, he hired Jason Zander to lead the Azure core

infrastructure team. Jason is now the leader for all of Azure. And third, he empowered

Azure CTO Mark Russinovich to build the road map for the future. And one of the first

bold moves of this team was to launch into preview Azure Virtual Machine (VM) to

provide a true IaaS service offering for Windows Azure.

One of the first key workloads to showcase Azure Virtual Machine would be SQL

Server. I remember these early days of Azure VM as I was assigned in Microsoft support

to look at the supportability of SQL Server in this environment. It was at that point I met

the lead program manager for SQL Server on this effort, Guy Bowerman.

When Guy joined the SQL team around June of 2010, he found out about Cloud

Services with worker and web roles, but also saw we had announced the concept of a

VM role. A VM role allowed a user to upload a Virtual Machine image (VHD) and run

their VM. However, the VM role didn’t provide the richness of a true IaaS solution. The

VM role, for example, did not provide local persistent storage for the operating system or

attached persistent drives.

Throughout 2011 and 2012, the Windows Azure team worked with groups like SQL

Server to launch a new Azure Virtual Machine preview program (you can read more

about the preview launch at Preview of VM announced in June 2012, https://azure.

microsoft.com/en-us/blog/announcing-new-windows-azure-services-to-deliver-

hybrid-cloud/). Azure Virtual Machine was officially launched in April of 2013 (you can

read more about the launch at http://up2v.nl/2013/04/16/windows-azure-virtual-

machines-is-now-general-available/). Azure Virtual Machine was a significant

move for Microsoft. “Opening up” the Virtual Machine now allowed users to deploy the

operating system of their choice including Linux (this move would set the stage for a

little project you may have heard about called Helsinki or SQL Server on Linux).

ChapTer 1 SQL Server rISeS To The CLouDS

https://azure.microsoft.com/en-us/blog/announcing-new-windows-azure-services-to-deliver-hybrid-cloud/
https://azure.microsoft.com/en-us/blog/announcing-new-windows-azure-services-to-deliver-hybrid-cloud/
https://azure.microsoft.com/en-us/blog/announcing-new-windows-azure-services-to-deliver-hybrid-cloud/
http://up2v.nl/2013/04/16/windows-azure-virtual-machines-is-now-general-available/
http://up2v.nl/2013/04/16/windows-azure-virtual-machines-is-now-general-available/

18

The new Azure Virtual Machine platform provided all types of benefits for running

SQL Server including a dedicated “OS disk,” a temporary disk for storing files like

tempdb, and persistent storage for SQL Server database and log files called data

disks. Even though the choices were limited, there were various Virtual Machine sizes

customers could choose to deploy SQL Server, including the number of CPUs, memory,

number of disks, and maximum capacity. In addition to providing these choices for the

virtual machine configuration, the Windows Azure team provided a system where teams

like SQL Server could provide customer choices for a fully deployed virtual machine

with SQL Server pre-installed through a concept called gallery images or a marketplace.

Now a user could choose a virtual machine configuration, a version of SQL Server, make

a few other choices, click a button, and within 10–15 minutes have access to a fully

deployed SQL Server in a virtual machine hosted in Azure. You could then use a program

like Remote Desktop, connect into the VM, and off you went. In addition, Azure Virtual

Machine services included SLAs and availability sets (update and fault domains).

The initial launch of Azure Virtual Machine used the same Windows Fabric that

hosted Cloud Services. The SQL Server team was effectively an “internal customer” of

Windows Azure to deploy virtual machines. The main interface and system in place

for the SQL team to deploy was called RDFE (Red Dog Front End). This system later

affectionally became known as classic Virtual Machines. Today, the classic system is

rarely longer used in favor of the Azure Resource Manager (ARM) system, which you will

learn more about in various places in the book.

While the initial Azure Virtual Machine classic system was popular with customers,

it presented issues for the SQL Server team. Disk performance stood out as an issue and

I remember in the early days of Azure VM as a Microsoft support engineer working with

customers on trying to solve these problems. In addition, using RDFE presented some

challenges to deploy virtual machine with SQL Server and provide robust programming

interfaces to deploy and manage virtual machines.

Still the service was popular and important to the success of SQL Server in Azure.

Now customers who didn’t feel that SQL Azure could meet their requirements had

another choice. They could still host a SQL Server in the public cloud in Azure with

Virtual Machines. As Guy told me, “The SQL Server on Azure VMs offering proved to be

one of the most popular and successful offerings after the announcement of Azure VM.”

ChapTer 1 SQL Server rISeS To The CLouDS

19

 Becoming Azure SQL Database
By the summer of 2012, Microsoft started branding SQL Azure as Windows Azure SQL
Database. There was no official branding news that I could ever find. My research and

internal discussions on our teams were that we just decided to start calling the service

SQL Database to highlight the fact that the service is all about “Database as a Service”

abstracting the details of SQL Server instance from the user.

In 2014, Microsoft changed the branding of Windows Azure to Microsoft Azure, or

just Azure, so the current name of Azure SQL Database came to life.

Note The branding of Microsoft azure was significant to the future of azure.
Windows was and still is a dominant force for operating systems. however, since
the launch of azure virtual Machine, we had seen an uptick in the number of
deployments for virtual machines running Linux. With the branding of Microsoft
azure or just azure, we were sending a signal to the industry that azure is more
than just a Windows cloud.

As SQL Azure started to mature, other engineers from the “traditional” SQL Server

team started to come on board including Conor Cunningham. One of Conor’s goals was

to work directly with customers to make them successful with SQL Azure. This included

internal customers such as Team Foundation Services (TFS). Conor to this day still

works with TFS (which has morphed into Azure DevOps) and their success with Azure

SQL. According to Conor, “They are one of our best ISVs using the platform and they

help us make SQL Azure better every day.”

There were also important external customers who wanted to harness the power

of Azure. One of the largest and most notable customers Conor and many on the team

worked with was Pottermore. Around 2012, all the Harry Potter movies had been

released, but the popularity of the books and movies was massive. Therefore, the

Pottermore company decided to build a website experience for fans. And they chose

Windows Azure and SQL Azure to power the website experience (see the full story at

https://news.microsoft.com/2012/06/06/pottermore-new-website-based-on-the-

hugely-popular-harry-potter-books-uses-windows-azure-to-scale-up-to-1-

billion-page-views-in-first-two-weeks/).

ChapTer 1 SQL Server rISeS To The CLouDS

https://news.microsoft.com/2012/06/06/pottermore-new-website-based-on-the-hugely-popular-harry-potter-books-uses-windows-azure-to-scale-up-to-1-billion-page-views-in-first-two-weeks/
https://news.microsoft.com/2012/06/06/pottermore-new-website-based-on-the-hugely-popular-harry-potter-books-uses-windows-azure-to-scale-up-to-1-billion-page-views-in-first-two-weeks/
https://news.microsoft.com/2012/06/06/pottermore-new-website-based-on-the-hugely-popular-harry-potter-books-uses-windows-azure-to-scale-up-to-1-billion-page-views-in-first-two-weeks/

20

Note pottermore (see https://en.wikipedia.org/wiki/Pottermore)
is actually a company, and the previous pottermore website is now officially
wizardingworld.com.

Pottermore was an interesting test for the SQL Azure team. This project involved

many databases and concurrent users. As Conor tells it, “We clearly didn’t want to

disappoint all the Harry Potter fans of the world, but we also learned a lot about how to

design things that scale.” As with any innovation, projects like these were ambitious but

also became a foundation of knowledge to improve the future.

Microsoft support also experienced big shifts to deal with the cloud. My longtime

colleague and friend Keith Elmore (the famous author of the popular ostress tool), now

a Principal Engineer for Microsoft CSS, was involved in Azure support from beginning.

He told me that supporting Azure had some interesting challenges but also opened new

possibilities. Keith said, “There was a major shift in how we could troubleshoot. We no

longer had to ask customers to capture a lot of troubleshooting data as we did in the

on-premises environment, but could immediately access a large set of Azure telemetry

to assess the general nature of their problem, and often narrow down the specific issue.”

Supporting the cloud though presented a new expectation from customers to deliver

a solution fast. Microsoft now owned the “back end” so data that customers normally

had completely control over obtaining was not possible for them in Azure. According to

Keith, “the expectation of resolving a large percentage of your support cases in a day or

less was radical. The team rallied around how we could organize ourselves and leverage

this Azure telemetry to resolve most issues in one day.” You will learn about some of the

resources Azure provides customers for support and troubleshooting later in this book.

 The Sterling (SAWAv2) Project
By 2013 and 2014 timeframe, Azure SQL Database had many different successful

customers, but the legacy architecture even running on SAWA was starting to show its

age through different problems and customer experiences like TFS and Pottermore:

• As much as we made changes in the infrastructure, one thorny

problem cropped up all the time, called the noisy neighbor problem.

A customer could consume resources for one database that could

ChapTer 1 SQL Server rISeS To The CLouDS

https://en.wikipedia.org/wiki/Pottermore

21

adversely affect another. We needed a solution where each tenant

(database) had their own SQL Server instance. This would allow us to

use features like SQL Server Resource Governor.

• We also felt a lot of pressure to open more of the T-SQL surface area

for SQL Azure customers. Since multiple tenants shared a SQL Server

instance, this was a major problem. For example, how do we present

a Dynamic Management View (DMV) of just your database when

they by design show anything on the underlying instance?

• We also needed a model where customers would expect more

predicable performance since they had no way of choosing things

like the number of CPUs, memory, or I/O speed.

• Our codebase for Azure SQL Database was still forked from SQL

Server 2005 (yikes!). For the SQL team to become truly Cloud First,

we needed to merge the codebase of SQL Azure and SQL Server.

• We still used local disks for everything (including user databases,

telemetry, etc.) with our own custom replication system. Even with

SAWA we were using custom hardware to support large disk needs as

all our storage was local using spindles (non-SSD drives). We needed

to move toward hardware generations that were aligned with all of

Windows Azure. However, the generation of hardware at this time

only supported very small local SSD drives. Therefore, we needed a

strategy that allowed for “remote” databases using Azure storage.

• The Windows Fabric which hosts and powers most Azure services

internally has many built-in capabilities to support deployment,

scaling, networking, storage, high availability, and fault tolerance.

We knew to enable new models and options like Azure Storage

for databases, Azure SQL Database needed to become a WinFab

application (or Windows Fabric application).

As early as 2011, team members including Morgan Oslake were looking to solve the

noisy neighbor problem with concepts like resource reservations and node isolation.

Resource reservations were implemented with a concept called a Service-Level
Objective (SLO). Even today, you can see the term SLO in some of the diagnostics for

Azure SQL. This work led to several innovations which would shape the future.

ChapTer 1 SQL Server rISeS To The CLouDS

22

As Morgan tells it, “The initial solution also set the stage for enabling true scaling

elasticity. Incidentally, this project is also where IO Resource Governor was born in

partnership with Microsoft Research and the solution was eventually integrated into the

SQL Server boxed product.”

As SQL Server 2014 was being developed and launched, the Azure SQL Database

team internally started working on a project called Sterling (also known as project

Dearborn or SAWAv2). At this time, SQL Azure was known as v11 (the @@VERSION

string had 11.x in it).

Note The name of Sterling comes from an interesting source. as peter Carlin
tells it, “The name of the project was supposed to be after Stirling, a well-known
efficient heat engine invented by robert Stirling in the 1800s. Ironically, the project
name got misspelled to Sterling, but the name stuck.”

For the team, Sterling effectively became a rewrite of the architecture of the service

while still maintain the principles of a database service for customers. The next

generation of Azure SQL Database would also get a “version bump” to highlight this new

architecture called v12. v12 also included a merge of the SQL Server codebase. Code

fixes and new features could be done in a single branch that would be used for both SQL

Server and Azure SQL Database. The v12 name was confusing for customers because

it did not line up to a specific version of SQL Server. We named it v12 because with this

new architecture, we opened more SQL Server features like columnstore and instance-

level diagnostics. We didn’t want to break applications so changed the major version to

v12 (which corresponded to the SQL Server version number 12.x of SQL Server 2014).

Since this time, Azure SQL Database has become a versionless SQL Server, which I’ll

describe more in Chapter 5 of the book.

Rohan Kumar, the current Vice Present of Azure Data Engineering, was leading

engineering efforts in Azure SQL around this period. He says about the codebase merge,

“Probably the most important decision technically we made was to unify the codebase.”

In fact, Rohan was assigned to lead this project which took some 18 months while we

were maintaining and running the service and delivering releases of SQL Server at high

quality.

The Sterling architecture involved running the SQL Server instance (and other

needed programs) as a WinFab application or effectively as worker roles in the Windows

Azure nomenclature. One interesting aspect to the deployment of Azure SQL Database

ChapTer 1 SQL Server rISeS To The CLouDS

23

for Sterling was that only a single virtual machine is used per host with one or more

SQL Server instances, each hosting a tenant database. The Sterling architecture is in use

today for Azure SQL Database.

Note You will see later in Chapter 4 of the book that azure Managed Instance can
combine more than one virtual machine per host.

Figure 1-7 comes from a diagram Peter Carlin built to show the primary difference

between the SAWA (and AutoPilot) and Sterling architectures from a SQL Server

instance, logical server, and database perspective.

In this diagram, a Node is a virtual machine or server. An Instance is a SQLSERVR.

EXE instance. The Cluster is a logical collection of machines hosting virtual machines. A

logical server is a really a set of metadata describing the collection of databases.

Notice in the “Old Service” (SAWA and AutoPilot) that databases from two different

logical servers could be deployed on a single SQL instance. With Sterling, each instance

was reserved for a single logical server, but multiple instances could (but don’t have to)

be deployed on a single virtual machine (or node).

Figure 1-7. Sterling architecture database isolation

ChapTer 1 SQL Server rISeS To The CLouDS

24

Note Today almost every azure SQL Database has its own dedicated SQL
instance with a few exceptions, which I’ll cover in Chapter 4.

Using the Windows Fabric also allowed us to provide better resource governance

closer to the operating system, provide direct connections to the back-end SQL Servers,

and leverage Azure Storage for databases and backups. The Windows Fabric also

provided architectures for fault tolerance and networking in the form of clusters, nodes,

and rings. You will learn more about these concepts as well as other aspects of the Azure

SQL Database architecture throughout the rest of this book. You will also learn in this

chapter and the rest of the book how we have created other deployment options based

on the Sterling architecture including Elastic Database, Managed Instance, Hyperscale,

and Serverless. After a long journey, Azure SQL Database V12 becomes generally

available in the spring of 2015.

In addition to work on Sterling, Microsoft Azure had pivoted to a new portal

experience based on HTML (moving away from Silverlight) for all Azure services

including Azure SQL Database. Figure 1-8 is a snapshot of Scott Guthrie showing off the

new portal in one of his blog posts’ archives.

Figure 1-8. The Windows Azure admin portal

ChapTer 1 SQL Server rISeS To The CLouDS

25

Tip Given Scott Guthrie’s long role in azure, the archives of his blog are
incredible to tour the history of azure! You can find them at https://weblogs.
asp.net/scottgu/archive.

 New Editions, the DTU, and Previews
Independent of the new V12 architecture, we also had realized the current editions of

Azure SQL Database, Web and Business, were outdated both from a payment model and

a predictable performance and choice perspective.

The SLO work that had started before Sterling ultimately led to a preview of a new

edition called Premium. In some cases, Premium customers were isolated to a single

node to provide maximum performance. Along with the Sterling architecture, the

concept of resource reservations and node isolation pave the way for a new edition suite

and a self-service method to choose sizes.

In April of 2014, we announced a new pricing model based on new editions, Basic,
Standard, and Premium and concept to materialize sizes called performance tiers.

Performance tiers offered granularity within an edition for maximum database size

and a SLO. In order to support a SLO, we introduced a new concept called a Database
Transaction Unit (DTU). We started this new model with a preview of these editions

and tiers in April 2014. By this time, we allowed up to a 500 GB for Premium editions.

See the blog post and video of ScottGu talking about these new models at https://

weblogs.asp.net/scottgu/azure-99-95-sql-database-sla-500-gb-db-size-

improved-performance-self-service-restore-and-business-continuity.

A DTU was a logical concept of measurement for a combined resource usage of CPU,

I/O, and memory. The idea was to provide a metric to obtain more predictable performance

and pay for resource usage. You will learn more details about SLO, tiers, and DTU throughout

the rest of the book. By spring of 2015, we had also announced the retirement of Web and

Business editions and had fully rolled out Basic, Standard, and Premium editions.

With these new editions, we also introduced the concept of self-service database

restore (Point-In-Time restore or PITR) and active geo-replication (our way of

introducing Always On Availability Group replicas in the cloud). See more information

about this capability and the new tiers announcement with this Channel 9 video

featuring former Microsoft program managers Tobias Ternstrom and Tony Petrossian

(instrumental during these years for Azure SQL), https://channel9.msdn.com/Series/

Windows-Azure-Storage-SQL-Database-Tutorials/Scott-Klein-Video-01.

ChapTer 1 SQL Server rISeS To The CLouDS

https://weblogs.asp.net/scottgu/archive
https://weblogs.asp.net/scottgu/archive
https://weblogs.asp.net/scottgu/azure-99-95-sql-database-sla-500-gb-db-size-improved-performance-self-service-restore-and-business-continuity
https://weblogs.asp.net/scottgu/azure-99-95-sql-database-sla-500-gb-db-size-improved-performance-self-service-restore-and-business-continuity
https://weblogs.asp.net/scottgu/azure-99-95-sql-database-sla-500-gb-db-size-improved-performance-self-service-restore-and-business-continuity
https://channel9.msdn.com/Series/Windows-Azure-Storage-SQL-Database-Tutorials/Scott-Klein-Video-01
https://channel9.msdn.com/Series/Windows-Azure-Storage-SQL-Database-Tutorials/Scott-Klein-Video-01

26

Another concept introduced during these years (and across all of Azure) was private

and public preview. The SQL Server team had already shifted to the term Community

Technology Preview (CTP) vs. “beta” builds before they released a version of SQL

Server. New Azure services and enhancements to existing services started rolling out in

previews. Since Microsoft hosted the software in the public cloud, they had the ability to

whitelist specific customer subscriptions to use specific services and even features for

services. A private preview required a customer to sign up to gain access to a new service

or enhancement. A private preview was often free, limited in availability, and involved

direct interaction between engineering and a customer (and the customer was in a

non-disclosure agreement with us). A public preview was often open to the public. For

a new service, it was sometimes free but most often involved a significantly discounted

price. In most cases, for a new feature for a service, public preview was free. Previews

allowed Azure teams to move agile and fast, gain customer adoption and feedback very

quickly, and eventually move to General Availability (GA). You will learn in this book as

a customer how to keep up with previews and announcements for Azure services and

enhancements.

Note You will read terms in the book like “went Ga” or “went public preview” to
note when a service or feature was released.

The preview system also was a great example of a new approach for the SQL team,

namely, a cloud first approach. Cloud first means that the SQL team could build out a

new service or feature first in the cloud and then eventually allow that feature to appear

in the next major release of SQL Server. Previews combined with a merged SQL codebase

allowed for these types of motions to happen.

As Peter Carlin tells it, with the cloud first approach, “…we use service telemetry to

learn what is wrong and needs to be improved, use that telemetry as we build and refine

it via iterative deployments and then when we know it works well for the scenarios.”

 Intelligent Performance and the MDCS
By the 2013 timeframe, the SQL Engineering team had hired resources outside of

Redmond. Microsoft had built a development center in Serbia called the Microsoft

Developer Center Serbia (MDCS). You can read more about MDCS at www.microsoft.

com/sr-latn-rs/mdcs. Our Azure SQL Database team assigned engineers from MDCS

ChapTer 1 SQL Server rISeS To The CLouDS

http://www.microsoft.com/sr-latn-rs/mdcs
http://www.microsoft.com/sr-latn-rs/mdcs

27

to form a data science team. One of the first tasks for this team was to investigate how

to provide value-added services for Azure. Azure SQL Database was launched as a true

PaaS service. Abstracting the developer from the details of SQL Server was important,

and providing built-in HA and predictable performance were critical. However, our team

wanted to see what type of additional services we could offer customers as part of the

platform.

Performance is perhaps one of the toughest problems within SQL Server to solve

given how vague an issue can be (ever heard of “it is just slow”). Add to that the open

nature of T-SQL and databases (bad indexes + bad queries = poor performance).

Engineers Vladimir Ivanovic and Miroslav Grbic embarked on a project to see how

Machine Learning at scale could improve performance for Azure SQL Database. As

current team member Miodrag Radulovic tells it, “the original intention was to leverage

data science and ML at Azure scale to find a way to improve customer experience of

using Azure SQL Database. Performance optimization was identified as one of the

areas where the team could deliver pretty impactful improvements, especially for those

novice users who are not that skilled in perf optimizing SQL Server engine.” Vladimir

specifically said that index recommendation for performance was an area the team felt

important to tackle. SQL Server had technologies to assist with index recommendations,

namely, Dynamic Management Views and a tool called Database Tuning Advisor (DTA).

Vladimir says, “We picked index recommendations since the technology was already

partially available via missing indexes DMV and also DTA, and our initial analyses

showed that a significant number of SQL DB customers could benefit from this.”

The work for this project took some time to get it right. The work started in 2014 and

was released for public preview in July of 2015 known as Database Tuning Advisor. The

functionality would use Machine Learning combined with existing SQL Server resources

(including the Query Store) to recommend and even auto-create/drop indexes. In

January of 2016, the experience went GA and was named Automatic Tuning. You will

learn more about the details of Automatic Tuning in Chapter 7 of this book.

 Advanced Data Security and the ILDC Team
In addition to adding services for Azure SQL Database for performance, the team wanted

to create new experiences for security. Microsoft had formed the first Research and

Development Center outside the United States in 1991 in Israel called the Microsoft

Israel Development Center (ILDC). You can read more about the ILDC at www.

microsoftrnd.co.il/.

ChapTer 1 SQL Server rISeS To The CLouDS

http://www.microsoftrnd.co.il/
http://www.microsoftrnd.co.il/

28

In 2014, the Azure SQL team turned to the ILDC to look more into security to form a

group called the Azure Security Center for SQL. When first formed, this group, according

to one of the original members Ron Matchoro, was chartered to look at security topics

like auditing, data masking, vulnerability assessments, and threat protection techniques.

This work led to several innovations for both Azure SQL and SQL Server. The team

first landed the concept of Dynamic Data Masking in Azure SQL in 2015 and in the SQL

Server 2016 release (read more about Dynamic Data Masking today at https://docs.

microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking).

The team then accelerated further by enhancing auditing (SQL Server already had

a concept called SQL Server Audit) for Azure SQL, delivering on a method to perform

vulnerability assessments (which would also land in SQL Server Management Studio).

The ILDC also invested in a concept for data classification which now exists in Azure

SQL and SQL Server 2019.

Perhaps the biggest area of investment was in threat protection. The concept was to

use the power of the cloud to detect possible threats to an Azure SQL deployment and

alert administrators. This included concepts like detecting SQL injection attacks. This

capability went GA with Azure SQL in 2017 as Advanced Threat Protection (ATP). In

2019, the team grouped together a series of capabilities including ATP, Vulnerability

Assessment, and Data Classification called Advanced Data Security (ADS). You will

learn more about ADS in Chapter 6 of this book. Today, the ILDC continues to work with

our teams in Redmond to deliver on new security capabilities for Azure SQL.

 A Pane for the Future Called Ibiza
Microsoft also decided around the 2014 timeframe the current Azure portal experience

needed a new look (yes again). Project Ibiza was a new Azure portal with a completely

new look and design. This was effectively the fourth generation of the Azure portal. The

Ibiza portal was also known early on as the “Preview Portal.” This new portal used a

concept called blades as a user interface experience. Users reported very early on this

portal was more reliable, faster, and an overall better user experience that included a

dashboard and pins and supported all the various Azure services.

Figure 1-9 shows the Ibiza portal at launch in 2015. Today it is simply known as the

Azure Portal (accessed by almost anyone from portal.azure.com).

ChapTer 1 SQL Server rISeS To The CLouDS

https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking
https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking

29

You can read more about the launch of the Ibiza portal at https://azure.

microsoft.com/en-us/blog/announcing-azure-portal-general-availability/. This

portal serves as the foundation of the current Azure portal which you will see throughout

the chapters of this book.

 A New Engineering Model for Azure
Even since the launch of SQL Azure, a unique experience existed within Microsoft. For

SQL Server, the engineering team mostly focused on designing and building a new

release. They absolutely take in customer feedback as they build new features or resolve

problems, but their lenses mostly came from feedback forums or Microsoft Technical

Support.

With the launch of a service, the engineering team now owned the operation of SQL

Server in the cloud. They built the software but also managed the operation of a data

center. While other teams owned the overall operation of data centers, the SQL Azure

engineering team owned the health, cost, and operations of the Azure SQL Database

service. This involved all types of proactive monitoring for health and reliability. But it

also meant the team owned updating all the software behind the scenes that powered

the service.

Figure 1-9. The original Ibiza portal

ChapTer 1 SQL Server rISeS To The CLouDS

https://azure.microsoft.com/en-us/blog/announcing-azure-portal-general-availability/
https://azure.microsoft.com/en-us/blog/announcing-azure-portal-general-availability/

30

SQL Azure engineers were now involved in Live Site experiences (a good reference

to read more about Live Site can be found at https://docs.microsoft.com/en-us/

azure/devops/learn/devops-at-microsoft/live-site-culture-and-reliability). If

an outage occurred, the SQL Azure engineering team was directly involved in resolving

the problem. These experiences over time drove innovation and automation. Much of

the functionality behind the scenes that is part of the Azure SQL Database ecosystem

was built to avoid manual intervention of problems. Even new features introduced

both for Azure SQL Database and SQL Server came from Live Site experiences for the

team ensuring the service was healthy, applications were performant, and databases

were reliable and available. Peter Carlin describes the benefits of Live Site “…basically

everything we have built in the last 5 years are driven by learnings from live site. In many

ways, we didn’t know how to run our own product, and once we realized how hard we

had made it, could make the changes to make it much easier to operate - benefiting all

SQL DBAs.”

As Rohan Kumar tells it, “One of our biggest challenges was team culture. We needed

to create a team that could not only build great software but also operationally run it.”

By 2015, Azure SQL Database had a robust architecture for the future with v12

and innovation to add value for both performance and security. As new customers

built applications with the service, feedback and LiveSite experiences drove future

innovation, both for the architecture and new deployment models.

 Bending Azure SQL Database
As we announced the introduction of Basic, Standard, and Premium editions and

were phasing out Web and Business editions, we had some customers, mostly ISVs,

that brought us a dilemma. Web and Business editions charged only for storage,

not for compute, but there was no predictable performance. Basic, Standard, and

Premium editions were paid by DTU, not just storage. Some ISVs wanted to host many

databases, sometimes 1000s, to support their application, many of them Software as

a Service (SaaS) applications. The new edition model with DTUs would now become

cost prohibitive. Not all 1000 databases needed the same DTU capacity, but more

importantly, the needed DTU usage could vary widely across these databases. The only

way to support all these databases to provide required performance would be to pay for

the maximum DTU needed for any database.

ChapTer 1 SQL Server rISeS To The CLouDS

https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/live-site-culture-and-reliability
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/live-site-culture-and-reliability

31

Around the 2014 timeframe, program managers Morgan Oslake and Tobias

Ternstrom were assigned to come up with a solution where, according to Morgan, “We

(SQL DB) needed a price-perf optimized solution for SaaS ISVs with apps containing

10s, 100s, 1000s, or more databases.” Tobias proposed the project named Malmo (as

Morgan recalls, “…the name was motivated by the observation that Malmo, the city in

Sweden, was growing rapidly and bursting in population size. In any case, a concept of

Malmo is to more efficiently accommodate bursting episodes of multi-database apps”).

The team moved fast to a private preview of the capability for databases to be grouped

together called an elastic pool. We moved to public preview in April of 2015 and General

Availability in 2016. Read the announcement at https://azure.microsoft.com/en-us/

updates/azure-sql-database-supports-large-numbers-of-databases-for-saas-

providers/.

Elastic pools allowed a developer to group databases together in a pool and consume

and pay for usage as an elastic DTU or eDTU. You will learn more about how elastic

pools work in Chapter 2 of the book. Having elastic pool as an offering also helped pave

the way to deprecate and remove the Web and Business edition model.

With new editions, the Sterling architecture, DTUs, and elastic pools, many of

what customers needed to adopt Azure SQL Database were in place. However, some

customers using the SQL Server “box” product were resistant. As we polled and talked

to these customers, we discovered the surface area of Azure SQL Database didn’t meet

their core requirements. By 2016, we determined we needed to develop another option

to enable more customers to adopt Azure SQL.

 Lifting Customers to the Cloud
With the success of the MDCS team working on Automatic Tuning, our team turned to

them to work on another project to help reduce the friction from migrating SQL Server

instances to Azure. One of the leaders in MDCS, Drazen Sumic, told me the origin of the

project. He said, “Lindsey Allen, one or our leaders in Azure SQL, was on a flight back

from Microsoft Ignite in 2016 after receiving tons of feedback on Azure SQL and came up

with an idea to lift customers to the cloud.” By December of 2016, the MDCS team was

working on project CloudLifter.

ChapTer 1 SQL Server rISeS To The CLouDS

https://azure.microsoft.com/en-us/updates/azure-sql-database-supports-large-numbers-of-databases-for-saas-providers/
https://azure.microsoft.com/en-us/updates/azure-sql-database-supports-large-numbers-of-databases-for-saas-providers/
https://azure.microsoft.com/en-us/updates/azure-sql-database-supports-large-numbers-of-databases-for-saas-providers/

32

By 2016, Azure Virtual Machine offered many choices to deploy a full instance of SQL

Server. However, a user must still own the management and every aspect of the guest OS

and SQL Server. No Azure service existed to provide some of the benefits of PaaS but also

feel like a SQL Server instance. That is what Lindsey proposed to Drazen and the MDCS

team. The team had to find a way to deploy and expose a SQL Server instance within the

PaaS architecture of Azure including integration with Service Fabric. Users would then

connect to the SQL Server instance and use it just like a regular SQL Server on-premises

or in Azure Virtual Machine. In addition, the new service still needed to provide the

benefits of PaaS, such as built-in high availability and SLAs.

The team spent almost the entire 2017 year in a private preview program for a new

service called Azure SQL Database Managed Instance (or often called just Managed

Instance). Many folks in MDCS worked on this project, including Borko Novakovic,

Jovan Cukalovic, Branko Kokanovic, and Milan Novakovic. Public Preview of Managed

Instance landed in March of 2018, and General Availability for the first set of tiers was

announced at the Microsoft Ignite conference in September 2018 (you can read the

announcement at https://azure.microsoft.com/en-us/blog/azure-sql-database-

managed-instance-general-purpose-tier-general-availability/).

Even though many folks in Redmond were instrumental in this project, including

Lindsey Allen, Peter Carlin, and Alexander Vorobyov, this project was an important

milestone for the MDCS team for SQL. According to Drazen, “Yes, this was the largest

project to date to be driven from the Serbia team. We’re proud of it, and thankful for the

trust. Previous efforts were also important (e.g., Query Store for the SQL 2016 wave) but

were smaller features compared to this one.”

Managed Instance solved another aspect for increased cloud adoption, but the

ability to handle very large enterprise workloads was still an issue for the team.

 Project Socrates Goes Hyper
In the fall of 2015, Rohan Kumar, who effectively owned engineering teams for both

SQL Server and Azure SQL at the time, was holding a meeting with many in his senior

staff talking about a recent Live Site incident involving a customer when he asked the

question to the room “If we had to build an architecture for Azure SQL Database from

scratch what would that look like?” It was not like the current Sterling architecture was

not good. In fact, the Sterling architecture had allowed Azure SQL to grow significantly.

ChapTer 1 SQL Server rISeS To The CLouDS

https://azure.microsoft.com/en-us/blog/azure-sql-database-managed-instance-general-purpose-tier-general-availability/
https://azure.microsoft.com/en-us/blog/azure-sql-database-managed-instance-general-purpose-tier-general-availability/

33

However, if we wanted to truly run very large sized mission critical workloads, the team

thought something different might be needed. Something we could build on top of the

existing Sterling architecture. “How can we provide no-limits scale to SQL in the cloud”

was the mission Rohan gave the team.

One of the people in that room was Cristian Diaconu, one of the principal engineers

who had been instrumental in the Hekaton project for SQL Server (In-Memory OLTP).

Cristian talks about those early meetings with Rohan, “So Rohan kept at it saying that he

wants us to think about building for the longer term, with more architectural durability

and something that we’d be hanging our name to because it was differentiated in the

industry.”

That meeting led to a series of discussions about a possible new architecture with

engineering leaders like Hanuma Kodavalla, Tomas Talius, Donald Kossman, Justin

Levandovski, Phil Bernstein, Peter Byrne, Peter Carlin, and eventual engineering leader

Naveen Prakash.

Note You can see a more comprehensive list of team members and contributors
from the white paper written for this project at www.microsoft.com/en-us/
research/uploads/prod/2019/05/socrates.pdf.

By May of 2016, the team had funding to move forward with their designs into a

full-fledged project. They called it Socrates (Cristian says that “…as I was meeting a lot of

folks with a ton more experience doing this than I, so it dawned on me that all I had were

questions – hence Socrates”).

The Socrates concept was to build a very scalable architecture in Azure through

separation of services like logging and caching services (e.g., page servers). The original

Socrates architecture can be seen in Figure 1-10 (from the paper www.microsoft.com/

en-us/research/uploads/prod/2019/05/socrates.pdf).

ChapTer 1 SQL Server rISeS To The CLouDS

http://www.microsoft.com/en-us/research/uploads/prod/2019/05/socrates.pdf
http://www.microsoft.com/en-us/research/uploads/prod/2019/05/socrates.pdf
http://www.microsoft.com/en-us/research/uploads/prod/2019/05/socrates.pdf
http://www.microsoft.com/en-us/research/uploads/prod/2019/05/socrates.pdf

34

The team moved quickly to turn their design into working code. By December of

2016, they had a working prototype. However, this architecture was not a trivial project

to get right, so it took until September of 2018 to launch a public preview. The name

of the new offering would be called SQL Database Hyperscale (we technically call

this Hyperscale Service Tier). By May of 2019, Hyperscale was a generally available

service (you can read the announcement at https://azure.microsoft.com/en-us/

updates/azure-sql-database-hyperscale-support-for-single-databases-is-now-

available/).

Figure 1-10. The Socrates architecture

ChapTer 1 SQL Server rISeS To The CLouDS

https://azure.microsoft.com/en-us/updates/azure-sql-database-hyperscale-support-for-single-databases-is-now-available/
https://azure.microsoft.com/en-us/updates/azure-sql-database-hyperscale-support-for-single-databases-is-now-available/
https://azure.microsoft.com/en-us/updates/azure-sql-database-hyperscale-support-for-single-databases-is-now-available/

35

Hyperscale literally put Azure SQL on the map at a new level even within Microsoft.

Watch Rohan Kumar demonstrate Hyperscale at the keynote with Satya Nadella at the

Microsoft Inspire 2019 conference, https://youtu.be/WtoU8gugP5g. You will learn more

about Hyperscale in other chapters in the book including Chapters 4, 7, and 8.

 Azure SQL Today
The evolution of Azure SQL from CloudDB to Hyperscale has been an amazing journey

for the SQL team and Microsoft. February 1, 2020, marked the official tenth year of

Windows and SQL Azure. However, as the story I’ve told in this chapter unveils, the

origins of Azure go back much farther. Figure 1-11 shows the timeline of significant

events in the history of Azure SQL.

What started as shared databases on bare-metal servers supporting only a maximum

of 10Gb is now a powerful force in the industry and the future of data services in the cloud

called Azure SQL. Azure SQL today even supports the concept of a serverless database

which you will learn about more in the next chapter. New purchasing models and tiers are

available in the form of vCores with new hardware generation options (you can read the

2006
• CloudDB

Project
• RedDog

Project

2008
• Windows

Azure and
SQL Data
Services
announced
at PDC

2010
• Windows

Azure and
SQL Azure
officially
launch.

2012
• SQL Azure

branded
Azure SQL
Database

2013
• Azure

Virtual
Machines
released

2014
• Windows

Azure
branded
Microsoft
Azure

2015
• Azure SQL

Database
V12
released

2016
• Azure SQL

Database
Elastic Pools
released

2018
• Azure SQL

Database
Managed
Instance
released

2019
• Azure SQL

Database
Hyperscale
Released

• Azure SQL
Database
Serverless
Released

Figure 1-11. Significant events in Azure SQL history

ChapTer 1 SQL Server rISeS To The CLouDS

https://youtu.be/WtoU8gugP5g

36

announcement of vCore purchasing models at https://azure.microsoft.com/en-us/

updates/general-availability-vcore-based-purchasing-model-for- azure- sql-

databases-and-elastic-pools/). New security models and monitoring options are now

available. You will learn throughout the rest of this book how to navigate all the flavors and

options of Azure SQL.

Azure itself has grown from a few datacenters in three countries to 58 regions

available in 140 countries worldwide (that number will likely be obsolete by the time you

are reading this book!). Figure 1-12 shows the incredible vastness of Azure across the

globe.

Tip If you want to see an interactive visual map of azure regions across the
globe, visit http://map.buildazure.com/.

Azure is chartering new territories including Project Natick for a self-sustaining

underwater datacenter (read more about Natick at https://news.microsoft.com/

features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-

could-provide-internet-connectivity-for-years/).

Figure 1-12. Azure regions worldwide as of early 2020

ChapTer 1 SQL Server rISeS To The CLouDS

https://azure.microsoft.com/en-us/updates/general-availability-vcore-based-purchasing-model-for-azure-sql-databases-and-elastic-pools/
https://azure.microsoft.com/en-us/updates/general-availability-vcore-based-purchasing-model-for-azure-sql-databases-and-elastic-pools/
https://azure.microsoft.com/en-us/updates/general-availability-vcore-based-purchasing-model-for-azure-sql-databases-and-elastic-pools/
http://map.buildazure.com/
https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/
https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/
https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/

37

Azure experiences include a robust cross-platform command-line interface called

az cli (you will see the usage of az cli throughout the rest of this book), enhancements to

the Azure portal, and new portal experiences as both a Windows and mobile application

(try out the Windows Azure Portal application from https://portal.azure.com/App/

Download).

Azure and Azure SQL are poised for the future for even bigger things. Azure SQL

can be a destination for SQL Server in the cloud. I believe it which is why I decided to

write this book. This book is intended to help you navigate how to make Azure SQL a

successful destination. The first step in that road to success is to further understand the

scope and options for Azure SQL. What do I mean when I say the word Azure SQL? What

are all the options for Azure SQL? When and why would I choose one over the other?

Read on to get answers to those fundamental questions and more.

ChapTer 1 SQL Server rISeS To The CLouDS

https://portal.azure.com/App/Download
https://portal.azure.com/App/Download

39
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_2

CHAPTER 2

What Is Azure SQL?
“Bob, what is the cloud?” I vividly remember over a year ago my beautiful and talented

wife Ginger asking me this question when I walked in our kitchen after coming home from

work. I paused for a second, getting ready to present my incredible and thoughtful answer,

and said, “Well, you see the cloud is….” Fifteen minutes later (as Ginger recalls; I thought

it was just a few minutes), Ginger politely interrupted me and said, “Uh…I was kind of

looking for the CliffNotes answer?” I was taken back. How can anyone define the cloud as

something so simple when it is such a complex topic and provides so much. I couldn’t let

this go so spent the next few days researching a simpler answer that still defined the cloud.

But I also wanted to make sure Ginger knew the answer to the question “What is Azure?”

Turns out Microsoft has an answer for this in the documentation at https://azure.

microsoft.com/en-us/overview/what-is-azure/. Azure is defined as “…an ever-

expanding set of cloud services to help your organization meet your business challenges.

It’s the freedom to build, manage, and deploy applications on a massive, global network

using your favorite tools and frameworks.” I proudly showed this to my wife thinking I

have now provided the simple answer she wanted. With a twinkle in her eye (she does

that), she said, “That is impressive of course but what?” Leave it to my CEO, Satya Nadella,

to save the day for me. He says simply, “Azure is the world’s computer” (see the exact

quote from the keynote he presented at Build 2018 at https://news.microsoft.com/

speeches/satya-nadella-build-2018/).

I then showed this quote to my wife. She responded “Yes. I get it. If you don’t have

your own computer just use Azure. Just use the cloud” (maybe, we should hire her).

That is what Azure is in a nutshell. Azure defines and provides the promise of cloud
computing including the following:

• Scale out instead of having to scale up.

• Add and remove capacity on demand.

• Pay for what you use as you go.

• Double down on automation to reduce cost.

https://doi.org/10.1007/978-1-4842-5931-3_2#DOI
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://news.microsoft.com/speeches/satya-nadella-build-2018/
https://news.microsoft.com/speeches/satya-nadella-build-2018/

40

Note Microsoft provides a free training course on the concepts of cloud
computing at https://docs.microsoft.com/en-us/learn/modules/
principles-cloud-computing/?WT.mc_id=azureportalcard_
Category_overview_- inproduct- azureportal. You should also know
that this course is part of a suite of free Azure training (400+) you can find at
https://docs.microsoft.com/en-us/learn/browse/?products=azure.

If this is Azure, then what is Azure SQL? This is the chapter to set the foundation

for the rest of the book to answer that question. In this chapter, I’ll define in more

detail Azure SQL and all the “what, why, and how” behind it. However, first, I feel it is

important for you to know more about some of the basic elements of Azure.

 The Azure Ecosystem
In order to properly understand all the elements of Azure SQL and go through examples

in the book, it is important to know certain aspects of Azure independent of Azure SQL. I

call this the Azure ecosystem. This includes Azure accounts and subscriptions, interfaces

such as the Azure Portal and APIs, resource management, regions, and Service-Level

Agreements (SLA). This section is not a comprehensive discussion on the topic. I’ll

provide you enough information (with references) so you can understand terms and

systems that Azure provides as you deploy and use Azure SQL services.

 Azure Accounts and Subscriptions
One of the most fundamental concepts you need to get started in Azure SQL is an Azure

account. An Azure account is required to do anything with Azure. You may be working

for a company that has already created an account for you. If not, you can create one

yourself by following the documentation at https://azure.microsoft.com/en-us/

account/. Azure offers a free trial account which you can read more about at https://

azure.microsoft.com/en-us/free/.

Note While you can deploy Azure SQL resources with a free trial account, the
credits for this account may not be enough to complete all examples in this book.

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/learn/modules/principles-cloud-computing/?WT.mc_id=azureportalcard_Category_overview_-inproduct-azureportal
https://docs.microsoft.com/en-us/learn/modules/principles-cloud-computing/?WT.mc_id=azureportalcard_Category_overview_-inproduct-azureportal
https://docs.microsoft.com/en-us/learn/modules/principles-cloud-computing/?WT.mc_id=azureportalcard_Category_overview_-inproduct-azureportal
https://docs.microsoft.com/en-us/learn/browse/?products=azure
https://azure.microsoft.com/en-us/account/
https://azure.microsoft.com/en-us/account/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/

41

Accounts are used as a mechanism for billing and are used to assign owners or

members of one or more subscriptions. In this book, I will not focus on the details

of billing in Azure, but I will talk about various aspects of how Azure SQL services are

charged. You can read more about management costs and billing in Azure at https://

docs.microsoft.com/en-us/azure/cost-management-billing/cost-management-

billing-overview.

Subscriptions are a very important concept in Azure. Azure resources and access

rights to resources are managed through a subscription. You will learn how to access

resources and use an Azure subscription throughout this book. It is possible in your

organization you are members of many different subscriptions but have different levels

of access within each subscription. You will find out that many Azure resource names are

unique within the scope of a subscription (while other names are unique to a scope of an

Azure resource or global to the entire Azure system).

Subscriptions also provide a very convenient method to organize resources within

an organization (such as production vs. non-production). The Azure documentation

has very good instructions on using subscriptions at https://docs.microsoft.com/

en-us/azure/cloud-adoption-framework/ready/azure-best-practices/initial-

subscriptions.

There are also various subscription offers that determine how you pay for Azure

services. The most basic subscription offer is Pay-As-You-Go which you can read more

about at https://azure.microsoft.com/en-us/offers/ms-azr-0003p/. There are

other offers including Free Trial, Enterprise Agreement (EA), Cloud Service Provider

(CSP), Enterprise Dev/Test, Pay-As-You-Go Dev/Test, and Monthly Azure Credits for

Visual Studio subscribers. You can learn about all of these options at https://azure.

microsoft.com/en-us/pricing/purchase-options/.

Azure also has the concept of Management Groups which allow you to organize

and set policies and access to a group of subscriptions in your organization. You can

read more about Management Groups at https://docs.microsoft.com/en-us/azure/

governance/management-groups/overview.

One important security concept in the Azure ecosystem that applies to accounts,

management groups, and subscriptions is Azure Policy. Azure Policy is a system that

allows you or your organization to establish policies for management groups and

subscriptions (or at a lower level like resource groups which you will read about in the

following section called “Azure Resource Manager (ARM)”). Example policies are built

into Azure, and others can be created by you. An example of a built-in policy is to require

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/cost-management-billing/cost-management-billing-overview
https://docs.microsoft.com/en-us/azure/cost-management-billing/cost-management-billing-overview
https://docs.microsoft.com/en-us/azure/cost-management-billing/cost-management-billing-overview
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/initial-subscriptions
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/initial-subscriptions
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/initial-subscriptions
https://azure.microsoft.com/en-us/offers/ms-azr-0003p/
https://azure.microsoft.com/en-us/pricing/purchase-options/
https://azure.microsoft.com/en-us/pricing/purchase-options/
https://docs.microsoft.com/en-us/azure/governance/management-groups/overview
https://docs.microsoft.com/en-us/azure/governance/management-groups/overview

42

all Azure SQL Databases to enable Transparent Data Encryption (TDE). You can read

more about Azure policies at https://docs.microsoft.com/en-us/azure/governance/

policy/overview.

 The Azure Portal
If Azure is the world’s computer, then the Azure Portal is the user interface for the

world’s computer. You may have read in Chapter 1 the interesting evolution of the

Azure Portal over the years. Today the Azure Portal is available through a web browser

(https://portal.azure.com), Windows application (in preview at https://portal.

azure.com/App/Download), or mobile application (https://azure.microsoft.com/en-

us/features/azure-portal/mobile-app/). The Azure Portal is supported on multiple

browsers (see the latest supported list at https://docs.microsoft.com/en-us/azure/

azure-portal/azure-portal-supported-browsers-devices).

Figure 2-1 shows the Home page from the latest Azure Portal experience for my

account.

Figure 2-1. The Azure Portal Home page

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/governance/policy/overview
https://docs.microsoft.com/en-us/azure/governance/policy/overview
https://portal.azure.com
https://portal.azure.com/App/Download
https://portal.azure.com/App/Download
https://azure.microsoft.com/en-us/features/azure-portal/mobile-app/
https://azure.microsoft.com/en-us/features/azure-portal/mobile-app/
https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-supported-browsers-devices
https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-supported-browsers-devices

43

Note In this book, I’ll be showing various screenshots of the Azure portal.
Microsoft employees by default use a preview of the Azure portal to help test the
latest updates. For the most part, your view of the Azure portal should look similar,
but there could be some differences.

There are several features of the Azure Portal I think you will find important as you

see it used in this book and in your own experiences. Figure 2-2 highlights some of these.

Following the number sequences in the preceding figure, consider these Azure

Portal features:

 1. Dashboard – Select the dashboard to see important resources

you have pinned (you can pin almost anything in Azure to your

dashboard).

 2. Customize your dashboard – Select Edit to move your pinned

resources around and organize them in your dashboard. You can

have multiple dashboards.

 3. Search – You will use this often to search for and find resources

and Azure services.

Figure 2-2. Highlights to use the Azure Portal

ChApter 2 WhAt IS Azure SQL?

44

 4. Notifications – As deploy and manage Azure resources,

notifications are provided for progress, failures, and completion

events.

 5. Quick create an Azure resource – Choose this to quickly create a

resource from a popular Azure service.

 6. Navigate to popular Azure objects – Navigate to favorite resource

or Azure services.

 7. Azure Cloud Shell – Open a command prompt for PowerShell or

bash within the portal experience.

I’m a “command-line” person by nature (most of us who worked in computers from

the 1980s are). The Azure Cloud Shell is simply amazing! The Azure Cloud Shell comes

with your subscription, is accessible via the Portal, has many tools pre-installed (e.g.,

sqlcmd), and comes with free storage for a personal “hard drive” for your files. Figure 2-3

shows an example Azure Cloud Shell for my account using PowerShell.

You can read and learn more about the Azure Cloud Shell at https://azure.

microsoft.com/en-us/features/cloud-shell/.

Figure 2-3. The Azure Cloud Shell

ChApter 2 WhAt IS Azure SQL?

https://azure.microsoft.com/en-us/features/cloud-shell/
https://azure.microsoft.com/en-us/features/cloud-shell/

45

Note Microsoft offers a free online training course on how to use the Azure
portal at https://docs.microsoft.com/en-us/learn/modules/tour-
azure- portal/?WT.mc_id=azureportalcard_Category_Overview_-
inproduct- azureportal.

 The Azure Marketplace
To deploy or consume an Azure service, you use the Azure Marketplace. The

marketplace is a collection of services you can deploy, consume, and pay for. Microsoft

provides many of the services in the marketplace as publisher (not all but many

Microsoft services start with the word Azure). The marketplace also has solutions

provided by other publishers, known as partners.

To see a list of services in the Azure marketplace provided by Microsoft, you can

choose the QuickStart Create Resource option in Portal as seen in Figure 2-4.

Figure 2-4. The Azure marketplace in the portal

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/learn/modules/tour-azure-portal/?WT.mc_id=azureportalcard_Category_Overview_-inproduct-azureportal
https://docs.microsoft.com/en-us/learn/modules/tour-azure-portal/?WT.mc_id=azureportalcard_Category_Overview_-inproduct-azureportal
https://docs.microsoft.com/en-us/learn/modules/tour-azure-portal/?WT.mc_id=azureportalcard_Category_Overview_-inproduct-azureportal

46

At this point, you can search the marketplace with keywords, pick from categories, or

choose from popular services. If you select See all, you will get a list of all Azure services

in the marketplace by all publishers organized by categories.

Azure services published by Microsoft are also known as products. You can see a list

of Azure products on the Azure documentation site from https://azure.microsoft.com/

as seen in Figure 2-5.

 Azure API and CLI
Almost every Azure service has its own application programming interface (API),

protocol (TDS, e.g., for Azure SQL), and tools (sqlcmd or SSMS for Azure SQL).

However, a common thread across all Microsoft Azure services is a Representational

State Transfer (REST) API. Azure REST APIs are service endpoints that support sets of

HTTP operations (methods), which provide create, retrieve, update, or delete access to

the service’s resources. You can think REST APIs are a low-level core layer of API across

many different Azure services and base functionality (like Azure Resource Manager). You

can find more information about the fundamentals of Azure REST API at https://docs.

microsoft.com/en-us/rest/api/azure/.

Figure 2-5. Azure products

ChApter 2 WhAt IS Azure SQL?

https://azure.microsoft.com/
https://docs.microsoft.com/en-us/rest/api/azure/
https://docs.microsoft.com/en-us/rest/api/azure/

47

Your API usage with Azure services most likely will be at a higher layer using

programming languages such as .Net, Java, or Python. Or you may use the Azure

command-line interface (CLI) called az CLI. The az CLI is cross-platform program used

for many different types of operations across a wide variety of Azure services and core

operations such as accounts and subscriptions. You can get all the latest information

on the az CLI at https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-

latest. The az CLI uses Azure REST APIs under the covers.

Tip You can see a trace of Azure reSt ApI from az CLI by using the --debug
option for any az CLI command.

Azure also provides a series of PowerShell cmdlets for managing Azure services. You

can go to the central hub for Azure PowerShell at https://docs.microsoft.com/en-us/

powershell/azure.

 Azure Resource Manager (ARM)
I’ve described an Azure service as something you consume or deploy. An instance of

an Azure service you have deployed can be thought of as a resource. Technically, some

Azure services result in multiple resources being created as part of a deployment. For

example, you might deploy an Azure Virtual Machine, and the result is a virtual machine

resource plus other resources associated with the VM such as networks and storage.

The system that supports management of Azure services as resources is called the

Azure Resource Manager (ARM). You can read all about the Azure Resource Manager

at https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/

overview. ARM is not a service you consume. Rather it is a system to support your

deployment and management of services across Azure.

Every system like ARM is based on interfaces. ARM exposes an interface both in

and outside of Azure. You might remember the RDFE interface from Chapter 1 that

was used previously in Azure (also referred to as the classic model). ARM is today the

primary system used by tools and APIs including the Azure Portal. Figure 2-6 from the

Azure documentation at https://docs.microsoft.com/en-us/azure/azure-resource-

manager/management/overview#consistent-management-layer shows the interfaces of

ARM.

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/powershell/azure
https://docs.microsoft.com/en-us/powershell/azure
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview#consistent-management-layer
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview#consistent-management-layer

48

ARM provides many benefits of consistency and management across all Azure

services including

• Resource Groups

One of the objects in the Azure ecosystem you will use often are

resource groups. Resource groups are a logical collection of

resources you can manage as a unit. Every Azure resource (e.g., a

Virtual Machine or database) must exist in a resource group and

can only be a member of one resource group. Resource groups

have metadata including a region location (but resources in a

group can be in different regions). You can read more about

resource groups at https://docs.microsoft.com/en-us/azure/

azure-resource- manager/management/overview#resource-

groups.

A resource group is always associated with a specific Azure

subscription. Remember that earlier I mentioned that Azure

subscriptions are associated with an account and possibly

management groups. You can therefore apply Azure policies at

the account, management group, subscription, resource group, or

resource level.

Figure 2-6. Azure Resource Manager interfaces

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview#resource-groups
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview#resource-groups
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview#resource-groups

49

One nice advantage of managing resources at the group level is

deletion. If you delete a resource group, all resources associated

with the group are also deleted. You could therefore associate all

resources for a proof-of-concept (POC) project with a resource

group and then delete the group when you are done, thereby

avoiding any unnecessary costs.

• Role-Based Access Control (RBAC)

RBAC is an authorization system that provides access

management to Azure resources. RBAC is based on security

principals, roles, and scope. Security principals are objects

like users associated with an Azure subscription. Roles are

collections of permissions based on types such as owners or

contributors. Scope is the level of access such as management

groups, subscriptions, resource groups, or resources. You will

see examples of RBAC throughout this book including Azure

SQL specific RBAC objects. You can read more about RBAC

at https://docs.microsoft.com/en-us/azure/role-based-

access- control/overview.

• Locks

Azure locks allow you to prevent users from accidentally deleting

or modifying critical resources. For example, you could create

a resource group and apply a lock that prevents any user from

deleting resources in the group. Valid lock types are CanNotDelete

and ReadOnly. You can read more about locks at https://

docs.microsoft.com/en-us/azure/azure-resource-manager/

management/lock-resources.

• Templates

ARM is a declarative system. You use ARM by stating your

intentions and ARM does the rest. You declare your intentions

through interfaces such as the Azure Portal or APIs. ARM also

provides an interface mechanism to declare your intentions

through a JSON file called a template. Templates provide a

method to deploy resources consistently, repeatedly, and at

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/lock-resources
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/lock-resources
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/lock-resources

50

scale. I’ll show you example templates you can use with Azure

SQL throughout the book. You can read more about templates at

https://docs.microsoft.com/en-us/azure/azure-resource-

manager/templates/overview.

• Activity Logs

As you use the Azure Portal or APIs to interact with ARM to deploy

and manage resources, your activities or operations are logged

in a store called the Activity Log. Each subscription has a single

activity log that records operations against resources associated

with the subscription. Subscription-level events in the activity log

are general (like an Azure Policy action) or specific to a resource

(like updating an Azure SQL Database). You can read more about

Azure Activity Logs at https://docs.microsoft.com/en-us/

azure/azure- monitor/platform/activity-log-view.

 Azure Monitor
SQL Server professionals are used to look at metrics and logged events in tools like

Windows Performance Monitor, Windows Event Log, Linux systemd logs, or Grafana

dashboards. You will see in this book that Azure Virtual Machine will give you access to

all these tools inside the Guest Operating System.

However, given Azure is the hosting system for all your Azure resources, it would be

nice to have a centralized system for hosting, viewing, and analyzing metrics and logs of

events for all your Azure resources. That in a nutshell is what Azure Monitor provides.

You will learn more about how to use Azure Monitor with Azure SQL services

throughout this book. You can read more about Azure Monitor at https://docs.

microsoft.com/en-us/azure/azure-monitor/overview.

 Azure Regions and Datacenters
Where does the world’s computer exist? While it is perhaps fun to think of Azure

existing literally in the clouds, Azure services are hosted in physical buildings called

a datacenter. You might have remembered in the first chapter of the book that Azure

started with four datacenters around the world.

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/activity-log-view
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/activity-log-view
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://docs.microsoft.com/en-us/azure/azure-monitor/overview

51

Today, datacenters are not the choice you make to deploy Azure resources. Instead,

datacenters are organized around the globe into regions. Regions are a group of

datacenters connected through a low-latency network. You will see in this book, as you

deploy Azure SQL services, you will choose a region as the target for deployment. At the

time of writing this book, Azure has 58 regions worldwide available in 140 countries.

I have no doubt that by the time you are reading this chapter those numbers will be

higher. Some regions have special purposes for specific customers such as government

or national regions. For example, Azure provides special regions throughout the United

States called Azure Government regions (you can learn more about Azure Government

at https://azure.microsoft.com/en-us/global-infrastructure/government/).

A geography is a market of two or more regions that preserve data residency and

compliance boundaries. To ensure further resiliency, regions are sometimes located

close enough to be paired but far enough in distance for scenarios like natural disasters.

In addition, within some regions, one or more datacenters are grouped in an

availability zone to prove further high availability for Azure resources. You can learn

more about regions, geographies, and zones at https://azure.microsoft.com/en-au/

global-infrastructure/regions/.

 Azure Service-Level Agreement (SLA)
Formal documents called Service-Level Agreements (SLAs) capture the specific terms

that define the performance standards that apply to Azure.

SLAs describe Microsoft’s commitment to providing Azure customers with specific

performance and availability standards. There are SLAs for individual Azure products

and services. SLAs also specify what happens if a service or product fails to perform to a

governing SLA’s specification. Azure SQL has specific SLAs that apply to availability and

performance which you will learn about throughout this book. You can read more about

Azure SLA at https://azure.microsoft.com/en-us/support/legal/sla/.

Note Microsoft provides free training on Azure regions and Service-
Level Agreements (SLA) at https://docs.microsoft.com/en-us/
learn/modules/explore-azure-infrastructure/?WT.mc_
id=azureportalcard_Category_overview_-inproduct-azureportal.

ChApter 2 WhAt IS Azure SQL?

https://azure.microsoft.com/en-us/global-infrastructure/government/
https://azure.microsoft.com/en-au/global-infrastructure/regions/
https://azure.microsoft.com/en-au/global-infrastructure/regions/
https://azure.microsoft.com/en-us/support/legal/sla/
https://docs.microsoft.com/en-us/learn/modules/explore-azure-infrastructure/?WT.mc_id=azureportalcard_Category_overview_-inproduct-azureportal
https://docs.microsoft.com/en-us/learn/modules/explore-azure-infrastructure/?WT.mc_id=azureportalcard_Category_overview_-inproduct-azureportal
https://docs.microsoft.com/en-us/learn/modules/explore-azure-infrastructure/?WT.mc_id=azureportalcard_Category_overview_-inproduct-azureportal

52

 What Is the Azure SQL?
Azure SQL represents a suite of Azure services for databases. It is both a collection and a

brand, including virtual machines, managed instances, and database services. It spans

both Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). If Azure is the

world’s computer, then Azure SQL is the world’s database.

 IaaS vs. PaaS
Infrastructure as a Service (IaaS) is a computing system hosted by a cloud service

provider like Microsoft Azure. Users of IaaS deploy and manage a virtual machine

while Azure provides the hosting infrastructure for the hardware, including host

server, storage, and networking. Azure IaaS services are surfaced through Azure Virtual

Machines. Azure SQL has specific options for IaaS customers. You can read more about

Azure IaaS at https://azure.microsoft.com/en-us/overview/what-is-azure/iaas/.

Platform as a Service (PaaS) provides all the benefits of IaaS with additional

benefits of cloud services usually abstracted from an underlying Operating System or

Virtual Machine. The concept is for the developer or user to focus on the application

or in the case of Azure SQL a database or instance instead of details of the OS or

VM. Typically, a PaaS service provides other benefits to the user, including built-in

scalability, high availability, and security. Azure SQL provides two PaaS services,

including Managed Instances and Databases. You can read more about Azure PaaS at

https://azure.microsoft.com/en-us/overview/what-is-paas/.

One other pivot to the cloud service model is Software as a Service (SaaS). A SaaS

user takes advantage of using application software hosted by a cloud service provider.

Many SaaS providers use IaaS, PaaS, or some combination of cloud services to support

their service. Azure IaaS or PaaS services make the perfect system for many SaaS

vendors. SaaS applications were the early pioneers of cloud services in the form of email

systems like Hotmail. Today, Microsoft SaaS applications include the famous Microsoft

365 application suite. You can read more about SaaS with Azure at https://azure.

microsoft.com/en-us/overview/what-is-saas/.

ChApter 2 WhAt IS Azure SQL?

https://azure.microsoft.com/en-us/overview/what-is-azure/iaas/
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://azure.microsoft.com/en-us/overview/what-is-saas/
https://azure.microsoft.com/en-us/overview/what-is-saas/

53

 The Azure SQL Lineup
With the concepts of the Azure ecosystem and IaaS/PaaS in mind, Azure SQL consists

of the following Azure services: SQL Server on Azure Virtual Machines, Azure SQL

Managed Instance, and Azure SQL Database. Figure 2-7 shows a visual of the Azure SQL

lineup.

There is a purpose to the order of the Azure SQL lineup left to right. As you move

left to right, the friction is higher to migrate an existing SQL Server application to Azure

and your control over all aspects to the underlying SQL Server is less. However, this is

not a negative thing. As you move right, you increase capabilities for PaaS or managed

capabilities for databases. There are benefits to abstracting the details of a SQL Server as

you will see when you learn all about Azure SQL Databases. As you read about each of

these options for Azure SQL, keep in mind these common threads:

• The same SQL Server engine powers each of these options.

Figure 2-7. The Azure SQL lineup

ChApter 2 WhAt IS Azure SQL?

54

• The same T-SQL language you know and love works with each of

these options.

• The tools and APIs that you use today with SQL Server all work with

each of these options.

SQL Virtual Machines
Officially called SQL Server on Azure Virtual Machines, this is your IaaS option to

deploy SQL Server in Azure. You should think of this option as the same as you are using

SQL Server in a virtual machine today except Azure hosts your virtual machine. Azure

manages the host servers and hardware system. It provides interfaces for you to deploy

a complete virtual machine running Windows or Linux and your choice of SQL Server.

SQL Server is a complete edition (Enterprise, etc.) as you would deploy in a virtual

machine in Hyper-V or VMware. Your responsibility is to manage all aspects of the Guest

Operating System and SQL Server environment. However, because the virtual machine

runs in Azure, there are benefits to assist you in managing the SQL Server and Virtual

Machine. Instead of providing any further details in this chapter, Chapter 3 is a complete

discussion of SQL Server on Azure Virtual Machines.

Managed Instances
Officially called Azure SQL Managed Instance, this is an Azure service one level

up from Azure Virtual Machine. Managed Instance is a full SQL Server database engine

instance deployed as a PaaS service, hence the term managed. Azure provides the host

server, hardware system, and virtual machines allowing you to focus on deploying and

managing a SQL Server instance and set of databases. You will see in this book the

benefits of Azure PaaS for Managed Instance, especially in the areas of security, scale,

and high availability.

Databases
Officially known as Azure SQL Database, this is an Azure PaaS service up another

level from managed instance. Azure provides a method to deploy one or more databases

and takes care of the host, hardware system, virtual machine, and SQL Server instance.

You will see that Azure SQL Database provides many different deployment options to

meet some unique database application scenarios. Azure SQL Database provides PaaS

benefits in the areas of security, scale, intelligent performance, and high availability.

We are always innovating database services in the cloud. Chapter 13 will discuss new

innovations to the Azure SQL lineup.

ChApter 2 WhAt IS Azure SQL?

https://doi.org/10.1007/978-1-4842-5931-3_13

55

 Azure SQL Managed Instance
I described the history and purpose behind Azure SQL Managed Instance, or Managed
Instance, in Chapter 1 of the book: make it easier to lift SQL Server applications to

Azure (a.k.a. CloudLifter). You should absolutely think of a Managed Instance like a SQL

Server Database Engine instance today you install on-premises. The install or deploy

experience will be completely different as you will learn in Chapter 4 of the book. The

experience of setting up the infrastructure to connect and network with the instance will

also be different. However, once you have completed these tasks, your experience with

Managed Instance will feel like a SQL Server instance today.

Note A Database engine instance is one type of instance for the SQL Server
product. Another type is SQL Server Analysis Services (SSAS) as described at
https://docs.microsoft.com/en-us/analysis-services/instances/
analysis-services-instance-management. A paaS version of SSAS is
Azure Analysis Services which you can read more about at https://azure.
microsoft.com/en-us/services/analysis-services/.

Today, when you install SQL Server, you have a single database engine instance of

SQL Server running (see a definition of a database engine instance in the documentation

at https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/

database-engine-instances-sql-server). You also have options to install multiple

instances (on Windows; for Linux, you would use containers).

For a Managed Instance, you also will have a database engine instance running in

the Azure infrastructure after a successful deployment. You then are free to perform

instance-level configuration tasks, create databases, load data, and start connecting and

use the instance. You are abstracted from the infrastructure details of how a managed

instance is deployed. However, it can be important to know some aspects of how a

managed instance is deployed in the Azure infrastructure. You will learn more about the

architecture of a managed instance deployment in Chapter 4 of the book.

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/analysis-services/instances/analysis-services-instance-management
https://docs.microsoft.com/en-us/analysis-services/instances/analysis-services-instance-management
https://azure.microsoft.com/en-us/services/analysis-services/
https://azure.microsoft.com/en-us/services/analysis-services/
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/database-engine-instances-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/database-engine-instances-sql-server

56

 Managed Instance Capabilities
Since a managed instance is like a database engine instance of SQL Server, the surface

area of the database engine is almost 100% like SQL Server. If these capabilities of SQL

Server are important to you, then a Managed Instance may be the best choice:

• SQL Server Agent Jobs

• Database Mail

• Cross-database transactions

• SQL Server Replication and Change Data Capture

• Resource Governor

• Service Broker

These capabilities are not exposed with Azure SQL Database.

Note We are always updating the capabilities of Azure SQL Database so some
options on this list may be available for Azure SQL Database at the time of the
publication of this book.

That is not the complete list, and we are constantly adding new features to get

Managed Instance as close to a complete 100% SQL Server database engine instance as

possible. You can see the latest complete list of differences between Managed Instance

and SQL Server at https://docs.microsoft.com/en-us/azure/sql-database/sql-

database- managed-instance-transact-sql-information.

Note this is an exhaustive list of t-SQL differences. Consider in some cases it
may not matter. For example, the t-SQL syntax to create and manage availability
groups doesn’t exist for managed instance. however, this may be just fine for your
requirements since managed instance can automatically deploy and manage an
availability group for you.

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-transact-sql-information
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-transact-sql-information

57

There are major benefits in using a managed instance because it is a PaaS service:

• Built-in high availability (including availability groups), automated

backups, Point-In-Time restore, and recovery of deleted databases.

• A 99.99% uptime SLA.

• HADR across Azure regions with Auto-Failover Groups.

• Security isolation with Virtual Network Integration.

• Azure Active Directory Integration.

• Simple and easy-to-use scaling options for resources.

• A versionless SQL Server constantly updated with the latest updates

and features.

Note You will learn more details on what a versionless SQL Server means in
Chapter 5 of this book.

• Abstraction from the details and maintenance of the host and virtual

machine environment.

• Integration with Azure Monitor.

• PaaS security capabilities such as Advanced Data Security (ADS). You

will learn more about ADS in Chapter 6 of this book.

As you go through this book, you will be learning in more details about many

capabilities of a managed instance. To see a complete list in our documentation, read

more at https://docs.microsoft.com/en-us/azure/sql-database/sql-database-

managed-instance#key-features-and-capabilities.

 Managed Instance Options and Limits
When you install a SQL Server in a Virtual Machine or bare-metal server, you typically

have pre-configured CPUs, memory, and storage resources (size and speed).

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance#key-features-and-capabilities
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance#key-features-and-capabilities

58

When you will deploy a managed instance, you will have similar choices to make to

meet your resource needs. These choices start with a concept called a service or pricing
tier. For Managed Instance, the two service tier choices are General Purpose and

Business Critical.
These tier choices will dictate your performance capabilities, resource limits, and in

some cases feature capabilities. You will see more details about how to pick these tiers in

Chapter 4 of the book (and you will also see the same service tier names, plus more, with

Azure SQL Database). Here is a quick tour of each of these service tiers for an Azure SQL

Managed Instance.

 General Purpose

General Purpose is a service tier choice for most Managed Instance deployments, hence

the term general. General Purpose service tier supports vCores from 4 to 80 (remember

numbers like these can change over time as we add more capabilities for Azure). You

should think of vCore as a logical CPU for your Managed Instance. Managed Instances

are charged based on your vCore choice (at a fixed cost per hour).

Your choice of vCore affects other capacity choices or limits for General Purpose,

including maximum memory, maximum storage for databases for the instance, and

resource rates such as Input/Output Per Second (IOPS) or Log Write throughput.

General Purpose tiers also provide basic built-in high availability using Azure Storage

(think of Failover Cluster Instance) which you will learn more about in Chapters 10 and 11

on Availability.

Even though a managed instance has an almost full feature set of a SQL Server, a

General Purpose service tier does not support In-Memory OLTP. One of the reasons

behind this is the storage requirements for In-Memory OLTP that can be only met on

local storage.

You can read all the capacities and limits for a General Purpose Managed Instance at

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-

instance-resource-limits#service-tier-characteristics.

Note Columnstore indexes, which are considered another in-memory technology,
are available with General purpose tiers.

ChApter 2 WhAt IS Azure SQL?

https://doi.org/10.1007/978-1-4842-5931-3_11
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits#service-tier-characteristics
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits#service-tier-characteristics

59

 Business Critical

Business critical has all the maximum capacities you need for a managed instance.

Business critical choices have the same number of vCores as General Purpose but have

these unique characteristics:

• Built-in High Availability with replicas using Always On Availability

Groups (1 read replica is included)

• High-speed low-latency I/O using local storage

• In-Memory OLTP

• Higher IOPS and I/O throughput rates than General Purpose

It is important to know that today since Business Critical uses local storage, your

maximum database size is less than a General Purpose service tier.

There are a few limits for managed instances for a given subscription in a region (e.g.,

total number of vCores). You can read about these limits at https://docs.microsoft.

com/en-us/azure/sql-database/sql-database-managed-instance-resource-

limits#regional-resource-limitations.

You will learn various aspects of both service tiers for managed instance throughout

the rest of this book.

 Managed Instance Pools
One of the interesting aspects of Managed Instances is the deployment architecture,

which is a virtual cluster built for a new managed instance. You will learn more about

the architecture of a Managed Instance in Chapter 4 of the book. For now, know that this

type of deployment can result in a much longer time to deploy new managed instances

than an Azure SQL Database. In addition, because of the nature of deployment, the

smallest CPU choice for a Managed Instance is 4 vCores.

Therefore, we now allow the concept of a Managed Instance Pools (in Public

Preview at the time of writing of this book; you can read the announcement at https://

azure.microsoft.com/en-us/updates/azure-sql-database-instance-pools-are-

now-in-preview/).

A Managed Instance pools provide all the same capabilities as a Managed Instance

except they allow for smaller instance deployments (2 vCores) and provide a method

to deploy instances much faster. You will learn more about the architecture differences

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits#regional-resource-limitations
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits#regional-resource-limitations
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits#regional-resource-limitations
https://azure.microsoft.com/en-us/updates/azure-sql-database-instance-pools-are-now-in-preview/
https://azure.microsoft.com/en-us/updates/azure-sql-database-instance-pools-are-now-in-preview/
https://azure.microsoft.com/en-us/updates/azure-sql-database-instance-pools-are-now-in-preview/

60

between a Managed Instance and a Managed Instance Pool in Chapter 4 of the book.

To read more now about a Managed Instance Pool, you can read the documentation at

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-instance-

pools.

 Managed Instance vs. SQL Server on Azure Virtual
Machine
As you have read about SQL Server in an Azure Virtual Machine and Azure SQL

Managed Instance, it might be clear to you the main differences between these Azure

SQL options. However, let me provide a quick summary so you can make decisions on

which option you might choose.

SQL Server on Azure Virtual Machines is your best choice

• If you need to migrate quickly to Azure from an existing SQL Server

installation. This is really a lift and shift of your SQL Server (which

most likely is already installed in a VM) to a different VM hosting

system. You will learn more in Chapter 3 about optimizing this

experience and configuration.

• If you need full SQL Server box capabilities like Filestream,

Distributed Transactions (DTC), Simple Recovery databases, and

SQL Server Analysis Services (SSAS).

• If you want complete control of the Operating System and SQL
Server. This includes SQL Server versions back to SQL Server 2008

and choice of Windows, Linux, or Containers.

Tip Before you think you absolutely need full control of the version of SQL Server,
carefully study all the capabilities of a Managed Instance. It may have everything
you need for your SQL Server; moving away from having to depend on a version of
SQL Server or having to manage the Guest OS can be a good thing!

• Capacity can be a factor. If you need more than 80 vCores

(remember this could increase as we improve Managed Instance),

400Gb memory, or a database bigger than 8TB. In addition, Managed

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-instance-pools
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-instance-pools

61

Instance may limit things like transaction log rates depending on

your deployment choices. SQL Server on Azure Virtual Machine has

no limits on transaction log rates within the engine. The only limit

would be the I/O rate applies to storage for the virtual machine.

Note Azure SQL Database can offer more vCores, memory, and database
size which you will learn about in the section of this chapter called “Azure SQL
Database.”

If these factors are not critical for your requirements, there are big advantages to use

Azure SQL Managed Instance since this is a database engine instance with almost full

SQL Server engine capabilities combined with the power of PaaS.

 Customers Using Managed Instance
One question I often receive about our technologies is “Who else is using this?” For

Managed Instance, it is a good question. Is anyone using Managed Instance and

why? A great customer case study (and a cool story) I found is PowerDetails (www.

powerdetails.com/). PowerDetails provides an easy-to-use platform for police officers

to find part-time security opportunities that they can pursue off duty. Originally,

PowerDetails wanted to build a SaaS model and needed the “power of the cloud.” So,

they moved their SQL Server on-premises instances to SQL Server on Azure Virtual

Machine. This model worked great, but PowerDetails needed more. They needed the full

extent of a SQL engine instance but wanted to not spend as much time on management

tasks like backups and configuring HADR. They made the move to Azure Managed

Instance which now gave them the feel of SQL Server with new PaaS capabilities and

ever better SLAs from Azure. As Andy Rivera from PowerDetails says it, “When Managed

Instance first came out, we were excited because it felt like we knew how to use it already.

Because Managed Instance has near 100 percent compatibility with SQL Server, our team

was very comfortable with everything we were seeing.” You can read the full customer

case study at https://customers.microsoft.com/en-us/story/powerdetails-

partner- professional-services-azure-sql-database-managed-instance. It is an

interesting evolution of migration story. This customer first moved to Azure with Virtual

Machines, and then to get more efficient, they moved to Managed Instances.

ChApter 2 WhAt IS Azure SQL?

http://www.powerdetails.com/
http://www.powerdetails.com/
https://customers.microsoft.com/en-us/story/powerdetails-partner-professional-services-azure-sql-database-managed-instance
https://customers.microsoft.com/en-us/story/powerdetails-partner-professional-services-azure-sql-database-managed-instance

62

 Azure SQL Database
As you read in Chapter 1 of the book, Azure SQL Database (formerly SQL Azure) is

where it all started. Even though a database for an Azure SQL Database deployment is

installed on an actual SQL Server instance, the concept is to abstract you away from

details of the instance and focus on the database. An Azure SQL Database is sometimes

called a single database. It doesn’t mean you won’t get exposed to the feel of a SQL

Server as you will see throughout the book.

 Azure SQL Database Capabilities
Azure SQL Database offers you the most complete PaaS capabilities including the most

options for deployment. Like an Azure Managed Instance, an Azure SQL Database gives

you access to core SQL Server database engine capabilities. However, not all database

engine instance features are available. For example, columnstore indexes are available

with an Azure SQL Database, but you cannot create SQL Server Agent jobs.

There are major benefits in using an Azure SQL Database because it is a complete

PaaS service:

• Built-in high availability (including availability groups), automated

backups, long-term backup retention, Point-In-Time restore, and

recovery of deleted databases.

• Up to 99.995% uptime SLA.

• HADR across Azure regions with Active Geo-Replication and

Auto- Failover Groups.

• Virtual Network Integration and security isolation with Private Link

Support.

• Azure Active Directory Integration.

• Simple and easy-to-use scaling options for resources.

• A versionless SQL Server constantly updated with the latest updates

and features.

ChApter 2 WhAt IS Azure SQL?

63

Note You will learn more details on what a versionless SQL Server means in
Chapter 5 of this book.

• Abstraction from the details and maintenance of the host, virtual

machine environment, and SQL Server instance.

• Intelligent Performance capabilities such as Automatic Tuning. You

will learn more about Automatic Tuning in Chapter 7 of the book.

• Integration with Azure Monitor.

• Azure Portal visualizations for query performance analysis.

• PaaS security capabilities such as Advanced Data Security (ADS). You

will learn more about ADS in Chapter 6 of this book.

• Integration with other Azure and Cloud services such as Azure Data

Sync, Azure Search, Azure Stream Analytics, and Power Platform. You

will learn more about these Azure integration options in Chapter 10

of the book.

 Azure SQL Database Options and Limits
You have similar but more choices to deploy an Azure SQL Database than a Managed

Instance along with different sets of resource limits. Even though you will see more

details of how to pick these options and various resource limits in Chapter 4, it is worth

reviewing these choices as you evaluate whether Azure SQL Database is the right option

for you.

Figure 2-8 shows a high-level decision flow for Azure SQL Database Options.

ChApter 2 WhAt IS Azure SQL?

64

Let’s explore the options and each part of this decision process.

 DTU vs. vCore

One of the first decisions you will make is a concept called a purchasing option for Azure

SQL Database. Even though this option will also dictate your resource capacity and limit,

it greatly affects how you pay for the Azure SQL Database service.

One option you can choose Database Transaction Unit (DTU). As I described

in Chapter 1 of the book, we introduced the DTU concept as a logical concept of

measurement for a combined resource usage of CPU, I/O, and memory. Your choice of

resource limits and capacities for the DTU choice are DTU levels called Basic, Standard,

and Premium (with multiple levels for each of these). Microsoft recommends for most

customers to use the vCore model, so I won’t spend any other time in this book on the

DTU model. You can read more about the DTU model should you want to choose this

option at https://docs.microsoft.com/en-us/azure/sql-database/sql-database-

service-tiers-dtu.

The vCore model is very similar to the model for Azure SQL Managed Instance and

the recommended purchasing model. In fact, using the Azure Portal will show you the

vCore options by default. The vCore model gives you more choice of choosing different

Figure 2-8. Azure SQL Database Options

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-dtu

65

resources you pay for including CPU and storage. In addition, the vCore model allows

you to take advantage of cost savings options such as Azure Hybrid Benefit (AHB)

licensing (which you can read more about at https://docs.microsoft.com/en-us/

azure/sql-database/sql-database-azure-hybrid-benefit) and Reserved Capacity

(which you can read more about at https://docs.microsoft.com/en-us/azure/sql-

database/sql-database-reserved-capacity).

What is different about the vCore model from an Azure SQL Managed Instance is

that you now have three service tier options: General Purpose, Business Critical, and
Hyperscale.

 General Purpose

Like a Managed Instance, General Purpose is a service tier choice for many Azure SQL

Database deployments, hence the term general. Unlike a Managed Instance, Azure SQL

Database supports two General Purpose options called Compute Tiers: Provisioned and
Serverless.

A provisioned General Purpose choice is very much like General Purpose for a

Managed Instance. General Purpose provisioned service tiers support vCores from 2 to

80 (remember numbers like these can change over time as we add more capabilities for

Azure). You should think of vCore as a logical CPU for your Azure SQL Database. Azure

SQL Databases are charged based on your vCore choice (at a fixed cost per hour).

Your choice of a provisioned vCore affects other capacity choices or limits for

General Purpose, including maximum memory, maximum storage for databases for

the instance, and resource rates such as Input/Output Per Second (IOPS), I/O latency,

or Log Write throughput. You can see the details of these limits for a General Purpose

provisioned service tier at https://docs.microsoft.com/en-us/azure/sql-database/

sql-database-vcore-resource-limits-single-databases#general-purpose---

provisioned-compute---gen5.

There is another choice for General Purpose provisioned tier called a Hardware
Generation. At the time of the writing of this book, hardware generation options for

General Purpose provisioned tiers are Gen5 and Fsv2 (in Preview). This choice can also

affect resource options such as number of vCores. You can read more about hardware

generation choices at https://docs.microsoft.com/en-us/azure/sql-database/sql-

database- service-tiers-vcore?tabs=azure-portal#hardware-generations.

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-azure-hybrid-benefit
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-azure-hybrid-benefit
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-reserved-capacity
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-reserved-capacity
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases#general-purpose---provisioned-compute---gen5
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases#general-purpose---provisioned-compute---gen5
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases#general-purpose---provisioned-compute---gen5
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-vcore?tabs=azure-portal#hardware-generations
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-vcore?tabs=azure-portal#hardware-generations

66

Note At the time of writing this book, the Gen4 hardware generation was being
phased out. Microsoft is constantly looking at providing the best hardware choices
that power Azure SQL Databases. By the time you read this book, there could be
new hardware generation choices.

General Purpose tiers also provide basic built-in high availability using Azure

Storage (think of Failover Cluster Instance) which you will learn more about in

Chapters 10 and 11 on Availability.

Like Azure SQL Managed Instance, engine features like In-Memory OLTP are not

available for General Purpose (but columnstore indexes are supported).

 Serverless

The other compute tier option for General Purpose is Serverless. You may remember

the story behind Serverless from Chapter 1 of the book. The vCore model still applies to

Serverless but in a different way.

You will choose a range of vCores which includes a min and a max value (the min

can be < 1 vCore). Azure SQL Database will autoscale your application to the number of

vCores required by the application within this range. One of the advantages of Serverless

is that you pay for resource compute usage by the second vs. a fixed vCore cost per hour

with provisioned.

In addition, Serverless supports the concept of pausing the database when it is not

in use. If activity for the database is inactive within an autopause delay interval (which

you can configure), no compute charges are billed, only storage costs. This provides an

amazing cost savings opportunity for a user who has an application that does not use

Azure SQL Database 24/7. We found some customers who are building new applications

have natural complete idle times or natural times of different compute scale needs.

Serverless provides a natural fit for those customers. Although the capabilities of

Serverless are the same as Provisioned, the resource capacities and limits are different.

You can read the specific resource limits for Serverless at https://docs.microsoft.

com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-

databases#general-purpose---serverless-compute---gen5. I personally believed the

Serverless model will become one of the most popular choices for many applications

using Azure SQL Database.

ChApter 2 WhAt IS Azure SQL?

https://doi.org/10.1007/978-1-4842-5931-3_11
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases#general-purpose---serverless-compute---gen5
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases#general-purpose---serverless-compute---gen5
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases#general-purpose---serverless-compute---gen5

67

You will learn how to use Serverless throughout this book. For now, you can read

more details about Serverless at https://docs.microsoft.com/en-us/azure/sql-

database/sql-database-serverless#serverless-compute-tier. You can also see

a nice comparison to decide between Serverless and Provisioned at https://docs.

microsoft.com/en-us/azure/sql-database/sql-database-serverless#comparison-

with- provisioned-compute-tier.

 Business Critical

Just like with a Managed Instance, Business Critical service tiers are designed for

applications that need maximum performance and availability. The differentiators for

Business Critical are

• Built-in High Availability with replicas using Always On Availability

Groups including read scale-out (with 1 read-only replica).

• Provide further availability protection using Azure Availability Zones.

You will learn more about this capability in Chapter 8 of this book.

• High-speed low-latency I/O using local storage.

• In-Memory OLTP.

• Higher IOPS and I/O throughput rates than General Purpose.

• A new compute option called M-Series which offers more vCores

and Memory than any other Azure SQL Database option (including

Hyperscale).

The SQL Server surface area and T-SQL support (other than In-Memory OLTP) are

the same as for General Purpose.

 Hyperscale

As you read in Chapter 1 of the book, the Socrates project was a milestone of innovation

for the Azure SQL engineering team which launched as Hyperscale.

Hyperscale is an appropriate name given that the reason to consider using

Hyperscale is about scaling. Consider these facts about why Hyperscale could be your

best service tier choice over General Purpose or Business Critical:

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-serverless#serverless-compute-tier
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-serverless#serverless-compute-tier
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-serverless#comparison-with-provisioned-compute-tier
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-serverless#comparison-with-provisioned-compute-tier
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-serverless#comparison-with-provisioned-compute-tier

68

• First and foremost is database size. The current documented

maximum size of a Hyperscale database is 100TB and 1TB

transaction log (as with other Azure options, I expect these to change

and get bigger over time). Automatic database sizing for Hyperscale

database is also extremely fast.

Note We built the hyperscale architecture so that it could theoretically support
limitless database and transaction log sizes.

• The vCore support limits are the same as General Purpose or

Business Critical, but the time required for scaling operations is
constant.

• Read scale is truly scale. You get up to four read replicas with

Hyperscale.

• Restore operations are incredibly fast regardless of size. Hyperscale

uses snapshot backups of database files to provide fast backups and

very fast restores.

• Your transaction log throughput is independent of your vCore

configuration or the fact that Hyperscale has replicas. This is because

the replica architecture doesn’t rely on Always On Availability Group

technology.

• I/O operations can be extremely fast especially if they are served by

caching systems implemented with Hyperscale.

There are some limitations as of the time of this writing on Hyperscale you should

know as you make decisions. For example, Automatic Tuning is not available for

Hyperscale. Keep track of the latest known limitations with Hyperscale at https://

docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tier-

hyperscale#known-limitations.

Being a lifelong SQL Server engine internals geek, I believe Hyperscale is one of the

most innovative engineering efforts for the SQL team (right along the amazing story of

SQL Server on Linux which you can read more about in Pro SQL Server on Linux) in

its history. Talking about Hyperscale just in this section doesn’t give it due justice so

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tier-hyperscale#known-limitations
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tier-hyperscale#known-limitations
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tier-hyperscale#known-limitations

69

you will read more about Hyperscale throughout this book. But take a few minutes and

watch this video where Kevin Farlee, my colleague in the SQL Server engineering team,

shows the Microsoft Mechanics team why Hyperscale is so special at https://youtu.be/

Z9AFnKI7sfI.

 Elastic Pool Databases

As I told the story in Chapter 1 of the book, Project Malmo turned into the popular

option for software vendors called SQL Elastic Pools. Elastic Pools are simply the

concept of grouping a collection of Azure SQL Databases for the purpose of lower cost

and management of databases.

Think of a scenario where you are a Software as a Service (SAAS) vendor and want to

use Azure SQL Database. You decide to build a database for each customer to partition

and isolate their performance and experience. You may need to deploy thousands of

databases.

Here is your problem. How do you decide which pricing tier to use for each database

for each customer when they may not all have the same usage across time? You have two

choices:

• Provision all databases with the maximum resource capacity (such

as vCores) you think may be needed. In this scenario, you may be

overpaying across all databases.

• Provision all the databases with a lower resource capacity which can

save you money but might cause issues for you to have to scale up

and down specific databases depending on their usage leading to

downtime.

Elastic pools allow you to provision (serverless is not available) a General Purpose

or Business Critical service tier with a vCore choice (DTU is also possible) and database

size that will be used across a group of databases that are added to the pool. This way,

you pay for the resources of the entire pool and databases can share resources across the

pool.

ChApter 2 WhAt IS Azure SQL?

https://youtu.be/Z9AFnKI7sfI
https://youtu.be/Z9AFnKI7sfI

70

Databases in an elastic pool can use all Azure SQL Database options except for

Serverless or Hyperscale. I won’t spend a lot of time in the rest of the book with details or

usage of Elastic Pools. I recommend you look at the following resources should you want

to use this deployment option:

• Read an overview of Elastic Pools at https://docs.microsoft.com/

en-us/azure/sql-database/sql-database-elastic-pool.

• Read about guidance to pick the right sizes for the pool at https://

docs.microsoft.com/en-us/azure/sql-database/sql-database-

elastic-pool#how-do-i-choose-the-correct-pool-size.

• Read about how to manage elastic pools at https://docs.

microsoft.com/en-us/azure/sql-database/sql-database-

elastic-pool#using-other-sql-database-features-with-

elastic-pools.

 Azure SQL Database vs. Azure SQL Managed Instance
As you have read and seen all the options for Azure SQL Managed Instance and Azure

SQL Databases, you might have enough information to start making choices. Many

customers choose a combination of these options depending on their application needs.

As you make this decision, consider these major factors as differences between an

Azure Managed Instance and Azure SQL Database:

• If you need a database > 8TB, Hyperscale today is your only choice.

• If your deployment requires Database Engine Instance features

such as SQL Server Agent jobs, Database Mail, Resource Governor,

or Transactional Replication, Azure Managed Instance is your only

choice.

• If your application is very sensitive to I/O latency, Business Critical
service tiers or Hyperscale may be your best choices.

• If you need the highest level of availability and resiliency, then

Business Critical service tier is your best choice.

• If your application has a very intermittent usage patterns including

periods of almost complete idleness, then Serverless may be a very

good choice for you.

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool#how-do-i-choose-the-correct-pool-size
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool#how-do-i-choose-the-correct-pool-size
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool#how-do-i-choose-the-correct-pool-size
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool#using-other-sql-database-features-with-elastic-pools
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool#using-other-sql-database-features-with-elastic-pools
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool#using-other-sql-database-features-with-elastic-pools
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool#using-other-sql-database-features-with-elastic-pools

71

As you look at these factors and still may not be sure whether an Azure SQL Managed

Instance or Azure SQL Database fits your requirements, then I would first recommend

you look at Azure SQL Database. Azure SQL Database has most of the core database

engine features you likely need and provides the highest level of managed service

capabilities. I’ve also found that Azure SQL Database has the fastest deployment and

scaling operations across various deployment options.

You still may find that Azure SQL Database does not have the feature set you

need. Therefore, I highly recommend you look at this feature comparison in the

documentation (which we are always updating) at https://docs.microsoft.com/en-

us/azure/sql-database/sql-database-features.

A really nice comparison between service tiers across Azure SQL Database General

Purpose, Business Critical, Hyperscale, and Azure SQL Managed Instance can be found

at https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-

tiers-general-purpose-business-critical#service-tier-comparison.

 Customers Using Azure SQL Database
Azure SQL Database has been a popular customer choice across a single database,

Hyperscale, Serverless, and Elastic Pools.

For example, a great example of a Software as a Service (SaaS) vendor using the

power of the cloud including Azure SQL Database is Teledoc. Teledoc provides a

complete virtual healthcare delivery system. Without Azure, this could not be a viable

business operation. Teledoc uses many different Azure services including Azure SQL

Database. You can read more about the Teledoc customer case study at https://

customers.microsoft.com/en-gb/story/teladoc-health-provider-azure.

ClearSale helps major online brands accurately detect fraud and reduce false

declines on their ecommerce channels. They wanted to move to the cloud to handle

their expanding business but needed the familiarity of SQL Server. The Hyperscale

option of Azure SQL Database was a perfect choice for them. According to ClearSale,

“Working in the Azure SQL Database hyperscale tier helps us streamline upgrades to

new and existing applications, and with instant, unlimited scaling, customers can rely

on us when it counts.” You can read the complete ClearSale story at https://customers.

microsoft.com/en-us/story/773410-clearsale-partner-professional-services-

azure.

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-features
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-features
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-general-purpose-business-critical#service-tier-comparison
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-general-purpose-business-critical#service-tier-comparison
https://customers.microsoft.com/en-gb/story/teladoc-health-provider-azure
https://customers.microsoft.com/en-gb/story/teladoc-health-provider-azure
https://customers.microsoft.com/en-us/story/773410-clearsale-partner-professional-services-azure
https://customers.microsoft.com/en-us/story/773410-clearsale-partner-professional-services-azure
https://customers.microsoft.com/en-us/story/773410-clearsale-partner-professional-services-azure

72

The true power of Serverless is cost savings for applications that don’t need a high

level of compute usage 24/7. CampBrain is a software company that offers a service to

help camps run their operations. When CampBrain discovered Microsoft Azure SQL

Database serverless, a compute tier for databases with intermittent, unpredictable usage,

it cleared one of its biggest hurdles: managing compute costs despite the highs and lows

created by extreme usage, plus reducing performance management complexity and risk.

You can read the full CampBrain customer story at https://customers.microsoft.com/

en-us/story/779861-campbrain_professionalservices_azure_canada.

Paychex serves some 650,000 businesses across the United States and Europe.

They chose Azure SQL Database to gain the availability and performance they needed.

However, they wanted to isolate customers per database. Therefore, using Elastic Pools

became the natural choice to deliver on performance but optimize costs. You can read

the full story about Paychex at https://customers.microsoft.com/en-us/story/

paychex-azure-sql-database-us.

 Interfaces for Azure SQL
At the beginning of this chapter, I described the various interfaces in the Azure

ecosystem: Portal, API, and CLI. Azure SQL integrates with all these interfaces but also

with traditional SQL Server interfaces.

 Azure Portal
We have created an Azure SQL experience in the Azure Portal to snap to the Azure SQL

lineup. Figure 2-9 shows the Azure SQL options after using search in the portal.

ChApter 2 WhAt IS Azure SQL?

https://customers.microsoft.com/en-us/story/779861-campbrain_professionalservices_azure_canada
https://customers.microsoft.com/en-us/story/779861-campbrain_professionalservices_azure_canada
https://customers.microsoft.com/en-us/story/paychex-azure-sql-database-us
https://customers.microsoft.com/en-us/story/paychex-azure-sql-database-us

73

If you choose Azure SQL Services, you will see a list of resources you have created

for Azure SQL (including registered Virtual Machines). If you choose the Azure SQL

Marketplace option, you will see choices to create Azure SQL Services as seen in

Figure 2-10.

You will also see that after you have deployed Azure SQL resources, there are specific

integrations for virtual machines, instances, and databases. You will see the examples

throughout the rest of the book.

Even though we will not use it in the book, the Azure Portal includes a Query Editor

to submit T-SQL queries to an Azure SQL Database. Figure 2-11 shows the Query Editor

(which was in Public Preview at the time of the writing of this book).

Figure 2-9. Azure SQL Services and Marketplace

Figure 2-10. Azure SQL deployment options

ChApter 2 WhAt IS Azure SQL?

74

 az CLI
There are specific options for the az CLI cross-platform utility for virtual machines,

managed instances, and databases. Don’t forget az is installed by default in the Azure

Cloud Shell. You can find a complete list of az commands specifically geared toward

Azure SQL at https://docs.microsoft.com/en-us/cli/azure/sql?view=azure-cli-

latest.

• Here is a reference for how to use the az for SQL Server on Virtual

Machines: https://docs.microsoft.com/en-us/cli/azure/sql/

vm?view=azure-cli-latest.

• You can find a list of az options specifically for managed instances

at https://docs.microsoft.com/en-us/cli/azure/sql/

mi?view=azure-cli-latest.

• You can find examples for using the az with databases at https://

docs.microsoft.com/en-us/azure/sql-database/sql-database-

cli-samples?tabs=single-database.

Figure 2-11. The Query Editor in the Azure Portal

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/cli/azure/sql?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/sql?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/sql/vm?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/sql/vm?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/sql/mi?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/sql/mi?view=azure-cli-latest
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-cli-samples?tabs=single-database
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-cli-samples?tabs=single-database
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-cli-samples?tabs=single-database

75

Don’t forget about ARM templates. You can find many examples of ARM templates

specific to Azure SQL. A great resource is QuickStart templates all found on GitHub.

To see the complete gallery, visit https://azure.microsoft.com/en-us/resources/

templates/.

 PowerShell
The PowerShell Azure cmdlet suite includes specific options for Azure SQL:

• The following link contains an example of how to use Azure

PowerShell to provision a SQL Server on Virtual Machines: https://

docs.microsoft.com/en-us/azure/virtual-machines/windows/

sql/virtual-machines-windows-ps-sql-create.

• You can find examples for PowerShell for Azure SQL Database at

 https://docs.microsoft.com/en-us/azure/sql-database/sql-

database- powershell-samples?tabs=single-database.

• You can find a complete list of Azure PowerShell cmdlets for Azure

Managed Instance and Databases at https://docs.microsoft.com/

en-us/powershell/module/az.sql.

 REST API
It may be rare you use the REST API interfaces for Azure:

• If you do, there are some specific REST API operations for Azure SQL

Database which you can see at https://docs.microsoft.com/en-

us/rest/api/sql/.

• You can find REST API references for Azure SQL Managed Instance

at https://docs.microsoft.com/en-us/azure/sql-database/sql-

database- managed-instance-create-manage#rest-api-create-

and-manage-managed-instances.

• You can also manage Azure Virtual Machines through REST which

you can read about at https://docs.microsoft.com/en-us/rest/

api/compute/virtualmachines.

ChApter 2 WhAt IS Azure SQL?

https://azure.microsoft.com/en-us/resources/templates/
https://azure.microsoft.com/en-us/resources/templates/
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-ps-sql-create
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-ps-sql-create
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-ps-sql-create
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-powershell-samples?tabs=single-database
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-powershell-samples?tabs=single-database
https://docs.microsoft.com/en-us/powershell/module/az.sql
https://docs.microsoft.com/en-us/powershell/module/az.sql
https://docs.microsoft.com/en-us/rest/api/sql/
https://docs.microsoft.com/en-us/rest/api/sql/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-create-manage#rest-api-create-and-manage-managed-instances
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-create-manage#rest-api-create-and-manage-managed-instances
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-create-manage#rest-api-create-and-manage-managed-instances
https://docs.microsoft.com/en-us/rest/api/compute/virtualmachines
https://docs.microsoft.com/en-us/rest/api/compute/virtualmachines

76

 TDS and T-SQL
All Azure SQL services are powered by the SQL Server Engine. This means all Azure SQL

services support the Tabular Data Stream (TDS) protocol. The full TDS specification can

be found at https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-

tds/b46a581a-39de-4745-b076-ec4dbb7d13ec.

This also means that all Azure SQL services support a variety of programming

languages, drivers, and providers. Use the website https://aka.ms/sqldev to learn

how to develop programs for SQL Server and Azure SQL. In some cases, a provider may

provide specific options only applicable to Azure SQL. For example, the .Net provides

modules for Azure SQL Management which you can read at https://docs.microsoft.

com/en-us/dotnet/api/microsoft.azure.management.sql.models?view=azure-

dotnet.

Because all Azure SQL services are powered by the SQL Server database engine, the

engine programming language for all is T-SQL. As described throughout this chapter, not

all Azure SQL options support all 100% T-SQL statements supported in SQL Server. Here

is a summary guide for you to use:

• SQL Server on Azure Virtual Machine is a 100% support of T-SQL.

• Azure SQL Managed Instance is close to 100% T-SQL support. You

can read the differences at https://docs.microsoft.com/en-us/

azure/sql-database/sql-database-managed-instance-transact-

sql-information.

• Azure SQL Database has the largest difference in T-SQL support

from SQL Server, but core database engine T-SQL statements are

supported. The documentation provides a guide for you at https://

docs.microsoft.com/en-us/azure/sql-database/sql-database-

transact-sql-information.

In some cases, there are new T-SQL options only applicable to a Managed Instance

or Database. For example, CREATE DATABASE has option to specific service tiers for

Azure SQL.

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/b46a581a-39de-4745-b076-ec4dbb7d13ec
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/b46a581a-39de-4745-b076-ec4dbb7d13ec
https://aka.ms/sqldev
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.management.sql.models?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.management.sql.models?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.management.sql.models?view=azure-dotnet
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-transact-sql-information
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-transact-sql-information
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-transact-sql-information
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-transact-sql-information
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-transact-sql-information
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-transact-sql-information

77

Tip the Microsoft documentation for the t-SQL reference has a concept called
“Applies to.” this guide will help steer you whether a t-SQL statement applies
to SQL Server, Azure SQL Database, or both. You can read about this guidance
at https://docs.microsoft.com/en-us/sql/t-sql/language-
reference?view=sql-server-ver15#applies-to-references.

 SQL CLI
All common SQL Server command-line interfaces (CLI) support all options for

Azure SQL, including sqlcmd and bcp. You can read about these tools at https://

docs.microsoft.com/en-us/sql/tools/overview-sql-tools?view=sql-server-

ver15#command-line-tools.

 SQL Server Management Studio (SSMS)
SSMS is perhaps the most popular SQL Server tool in the world. SSMS fully supports

all options for Azure SQL. In fact, SSMS detects the specific Azure SQL type and only

provides options that work for that type. For example, if you connect SSMS to Azure SQL

Database, it will not show you options in Object Explorer (e.g., SQL Server Agent) that

are not supported for Azure SQL Database. Download the latest SSMS version (typically

updated monthly) at https://docs.microsoft.com/en-us/sql/ssms/download-sql-

server-management-studio-ssms?view=sql-server-ver15.

When you connect with SSMS to an Azure SQL Database, the icon in Object Explorer

will look like Figure 2-12.

Figure 2-12. SSMS Object Explorer connected to Azure SQL Database

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/sql/t-sql/language-reference?view=sql-server-ver15#applies-to-references
https://docs.microsoft.com/en-us/sql/t-sql/language-reference?view=sql-server-ver15#applies-to-references
https://docs.microsoft.com/en-us/sql/tools/overview-sql-tools?view=sql-server-ver15#command-line-tools
https://docs.microsoft.com/en-us/sql/tools/overview-sql-tools?view=sql-server-ver15#command-line-tools
https://docs.microsoft.com/en-us/sql/tools/overview-sql-tools?view=sql-server-ver15#command-line-tools
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15

78

When you connect with SSMS to an Azure SQL Managed Instance, the icon in Object

Explorer will look like Figure 2-13.

 Azure Data Studio (ADS)
Azure Data Studio (ADS) is a new, modern, cross-platform database tool that works

with SQL Server and all the Azure SQL services. You can download the latest ADS

(typically updated monthly) from https://docs.microsoft.com/en-us/sql/azure-

data- studio/download-azure-data-studio?view=sql-server-ver15. ADS includes

the concept of extensions. Figure 2-14 shows an example of ADS connect to both an

Azure SQL Database and an Azure SQL Managed Instance using an extension built to

operate specifically against an Azure SQL Managed Instance.

Figure 2-13. SSMS Object Explorer connected to Azure SQL Managed Instance

ChApter 2 WhAt IS Azure SQL?

https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15

79

One of the most interesting features of ADS are Notebooks. Notebooks give you the

power of markdown documentation code embedded with language code such as T-SQL,

PowerShell, Python, and other languages. You will be using ADS with notebooks in

several examples of this book. There is no better way to get started with notebooks than

to watch this video from my colleague Vicky Harp, the Group Program Manager for SQL

Server tools, at https://youtu.be/Nt4kIHQ0IOc.

 Visual Studio Tools
The popular SQL Server Data Tools (SSDT) fully supports Azure SQL Database. You

can read more about SSDT at https://visualstudio.microsoft.com/vs/features/

ssdt/. Visual Studio Code supports an extension called mssql which supports Azure

SQL Database and Managed Instance. You can see an example of using the mssql

extension with Azure SQL Database at https://docs.microsoft.com/en-us/azure/

sql-database/sql-database-connect-query-vscode.

Figure 2-14. Azure Data Studio connected to Azure SQL services

ChApter 2 WhAt IS Azure SQL?

https://youtu.be/Nt4kIHQ0IOc
https://visualstudio.microsoft.com/vs/features/ssdt/
https://visualstudio.microsoft.com/vs/features/ssdt/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-connect-query-vscode
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-connect-query-vscode

80

 Summary
Azure SQL is the world’s database. With services for virtual machines, managed

instances, and databases, there is just about every option you need – all powered by the

same database engine for one of the world’s most popular database products SQL Server.

Azure SQL is fully integrated with the Azure ecosystem including the Azure Portal

and popular interfaces and tools.

SQL Server on Azure Virtual Machines provides you the ultimate level of control

while taking advantage of the benefits of the Azure system. Azure SQL Managed

Instances provide you a database engine instance combined with the power of a PaaS

service including built-in high availability. Azure SQL Database provides you the

most deployment options for a modern cloud application including serverless and

Hyperscale. Azure SQL Database gives you maximum PaaS capabilities including built-

in HADR and Automatic Tuning.

The rest of this book is a deep dive into the Azure SQL lineup. Your first stop in that

journey is SQL Server on Azure Virtual Machines.

ChApter 2 WhAt IS Azure SQL?

81
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_3

CHAPTER 3

SQL Server on Azure
Virtual Machine
In Chapter 2, I described the Azure SQL lineup which includes SQL Server on Azure

Virtual Machine (VM). SQL Server on Azure VM represents the primary IaaS deployment

option for SQL in Azure.

In this chapter, I will cover all aspects of deploying, configuring, optimizing, and

managing SQL Server on Azure Virtual Machine. To get you started, read the overview

of SQL Server on Azure Virtual Machine in our documentation at https://docs.

microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-

windows-sql-server-iaas-overview.

You will go through several examples in this chapter. You will need the following to

complete these examples:

• An Azure subscription.

• A minimum of Contributor role access to the Azure subscription.

You can read more about Azure built-in roles at https://docs.

microsoft.com/en-us/azure/role-based-access-control/built-

in- roles.

• Access to the Azure Portal (web or Windows application).

• Installation of the az CLI (see https://docs.microsoft.com/en-us/

cli/azure/install-azure-cli?view=azure-cli-latest for more

details). You can also use the Azure Cloud Shell instead since az is

already installed. You can read more about the Azure Cloud Shell at

https://azure.microsoft.com/en-us/features/cloud-shell/.

https://doi.org/10.1007/978-1-4842-5931-3_3#DOI
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas-overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com/en-us/features/cloud-shell/

82

 Deploying
As a longtime SQL Server user, I have never really used the term deploy. I have always

used the term install or setup. Deploy is a term I will use for the rest of this book to talk

about installing a SQL Server on Azure Virtual Machine, Managed Instance, or Database.

There is a good reason to snap to the term deploy. When you create a resource for an

Azure service (whether that is through the Portal or CLI), Azure Resource Manager will

create a deployment. You will learn how to view information about deployment history

in this chapter and in Chapter 4 of this book. You can read more about a deployment

history at https://docs.microsoft.com/en-us/azure/azure-resource-manager/

templates/deployment-history.

The basic process to deploy SQL Server on Azure Virtual Machine is

 ✓ Decide to use a SQL Server Gallery Image or “deploy on your own.”

 ✓ Choose a Resource Group, Region, and Availability option.

 ✓ Choose a Virtual Machine Size, admin account, and port rule.

 ✓ Optionally supply other configuration choices.

 ✓ Deploy it!

Note This chapter assumes virtual machines deployed using Azure Resource
Manager. I do not recommend using classic deployment. You can read more about
deployment models at https://docs.microsoft.com/en-us/azure/
azure-resource-manager/management/deployment-models.

 Pricing
Before I get into the details of deployment, you should understand more about how

you pay for Azure Virtual Machines. Since you are deploying in Azure, you are paying

Microsoft a fee on a regular basis (billed monthly) for resource usage such as compute

and storage. This is referred to as pay as you go. In addition, you will pay for the license

for the operating system (if that OS requires a paid license such as Windows Server)

and the license for SQL Server. You will have options to Bring Your Own License (BYOL)

for both the OS and SQL Server to utilize licenses you have already paid for. This is

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/deployment-models
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/deployment-models

83

referred to as Azure Hybrid Benefit (AHB). You will also learn that there are other

ways in this chapter to save money such as Reserved Instances and stopping the VM

when you do not need it. Read more about pricing at https://azure.microsoft.com/

en-us/pricing/details/virtual-machines/windows/. You can also use a very nifty

website called a pricing calculator at https://azure.microsoft.com/en-us/pricing/

calculator/?service=virtual-machines.

 SQL Server Gallery Images
To deploy a SQL Server on Virtual Machine, you can choose from a set of pre-installed

images of an Operating System/SQL Server version/Edition combination called Gallery

Images. When you choose a SQL Server Gallery Image, you are making a conscious

decision to pay for a SQL Server license using your subscription. There are all types of

choices here. For all the details for pricing of SQL Server on Azure Virtual Machines,

look at the documentation at https://docs.microsoft.com/en-us/azure/virtual-

machines/windows/sql/virtual-machines-windows-sql-server-pricing-guidance.

In addition, there is a good FAQ resource on SQL Server images at https://docs.

microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/frequently-

asked- questions-faq#images.

Think of using a SQL Server Gallery Image like a sysprep installed SQL Server (read

more about sysprep and SQL Server at https://docs.microsoft.com/en-us/sql/

database-engine/install-windows/considerations-for-installing-sql-server-

using-sysprep?view=sql-server-ver15). You can also choose to deploy a Virtual

Machine with an Operating System from a Gallery Image and then install SQL Server

from your own media inside the Guest OS of the VM. I call this method “deploy on your

own.” I will discuss this option in the following section titled “Deploy on Your Own.”

Let us explore using the Azure Portal a deployment of SQL Server 2019 on Azure

Virtual Machines using a Gallery Image.

In your Azure Portal, search for Azure SQL in the Marketplace using the Search box

at the top of your portal as in Figure 3-1.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/en-us/pricing/calculator/?service=virtual-machines
https://azure.microsoft.com/en-us/pricing/calculator/?service=virtual-machines
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-pricing-guidance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-pricing-guidance
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/frequently-asked-questions-faq#images
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/frequently-asked-questions-faq#images
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/frequently-asked-questions-faq#images
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/considerations-for-installing-sql-server-using-sysprep?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/considerations-for-installing-sql-server-using-sysprep?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/considerations-for-installing-sql-server-using-sysprep?view=sql-server-ver15

84

You are now presented choices on the type of Azure service to deploy. Use the drop-

down list under SQL virtual machines to choose SQL Server 2019 Enterprise Windows
Server 2019 as in Figure 3-2.

Figure 3-1. Azure SQL from the Marketplace

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

85

For purposes of this example, I am going to choose SQL Server 2019 Enterprise.

This allows me to show you a few configuration choices in the rest of this chapter. You

could have easily picked Free SQL Server 2019 Developer on Windows Server 2019.

For this image choice, the SQL Server license is free, but you can only use the VM for

development purposes.

Choose this option and click the Create button. You are now presented a screen for a

series of required fields and choices to deploy the VM as seen in Figure 3-3.

Figure 3-2. SQL Server 2019 Gallery Image from Azure SQL

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

86

Some of your defaults will be different (e.g., your Azure subscription will be listed

as a default. If you have more than one subscription, change it here to the desired target

subscription for the VM deployment) and you will be making various choices. Let us

walk through all your choices during the deploy process and create screens.

 Resource Group, Region, and Availability
Your first several options are required fields to provide, including a resource group,

name, and Azure region. In addition, you have an option to choose an availability option.

Figure 3-3. The initial Create SQL VM screen

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

87

 Resource Group

As I have described in Chapter 2 of the book, a resource group is a great way to

organize and manage Azure resources together. You will see in this chapter that, by

default, a virtual network is created for a new resource group you specify and the VM

is automatically added to the virtual network. For the purposes of this exercise, choose

Create New and give it a name. I called mine bwsqlvmsrg.

 Virtual Machine Name

This is both the name of the Azure resource and the guest host name inside the VM (you

can change the host name in the VM after deployment). Note some special characters

are not allowed and the name must be no longer than 15 characters. This name must be

unique within the resource group. For this exercise, I put in the name bwsql2019.

 Region

This is the region where Azure data centers are located. I described Azure regions and

data centers in Chapter 2 of the book. There are several factors for the region you choose

including available VM sizes, compliance, price, and latency to users and applications.

You can read more about choosing the right region at www.cloudelicious.net/azure-

region- and-datacenter-find-your-best-match/. Note it is also possible that your

subscription does not support certain Azure regions. Check with the owner of your

account associated with your subscription. I will choose East US for my region.

 Availability Options

This is an optional field during deployment. This choice will only make sense to

choose if you plan to connect your SQL VM to other VMs for HADR purposes (such as

Availability Groups, Failover Cluster Instance, etc.). Unfortunately, it is best to decide

which option to use here during deployment. For the purposes of this example, leave this

as “No infrastructure redundancy required.” I will discuss more on when to use certain

options here under the section titled “HADR” later in this chapter.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

http://www.cloudelicious.net/azure-region-and-datacenter-find-your-best-match/
http://www.cloudelicious.net/azure-region-and-datacenter-find-your-best-match/

88

Note This does not mean you do not get basic high Availability for a stand-alone
SQL Server. Azure can handle migrating your vM to a host within a data center for
failures (using live Migration). In addition, there is built-in redundancy for Azure
storage for your databases.

 Image

This will be filled in with the choice you made from the Azure SQL screen. It is possible

for you to change it at this point before you deploy. Leave the choice SQL Server 2019

Enterprise Windows Server 2019 for now.

Note You can get a complete list of SQL Server Gallery Images available in a
specific region using the following powerShell command (substitute in your region
name of choice):

Get-AzVMImageOffer -Location ‘East US’ -Publisher ‘MicrosoftSQLServer’

Spot Instance
An Azure Spot Instance is a concept to save you money on Virtual Machines that

are not used consistently. This is a great concept but probably not applicable to your

use of SQL Server in Azure Virtual Machine. You can read more about Spot Instance at

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/spot-vms.

After making these choices, my screen looks like Figure 3-4.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/spot-vms

89

 Virtual Machine Sizes
One of the most important decisions you will make is what size to make the Virtual

Machine for SQL Server in Azure. Size is effectively a combination of CPU, memory, and

I/O choices. You make these choices today in your data center when you deploy SQL

Server to a Virtual Machine or bare metal. You select out how many CPUs, CPU speed,

RAM, size of disks, and disk speed.

Figure 3-4. Specifying Resource Group, Region, and Availability

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

90

Azure Virtual Machine sizes are categorized by type and are known with a letter

designation (B, D, etc.). If you are just trying to get started and try out SQL Server in

Azure Virtual Machine, my recommendation is to pick a reasonable size to test out SQL

Server vs. cost. If you are choosing a size for production, you need to carefully review size

options. As you can imagine, the higher the horsepower, the higher the cost.

Tip I use Azure vMs a great deal in my job even when demonstrating SQL Server
“box” capabilities. Therefore, I must carefully consider the costs of deploying in
Azure. If you are using Azure for demonstrations, development, or just testing, be
sure to stop your virtual Machine through the portal or CLI when you are not using
it. My colleague Anna hoffman also gave me the great tip of using burstable or
B-series which you can read more about at https://docs.microsoft.com/
en-us/azure/virtual-machines/sizes-b-series-burstable.

As Azure data centers bring in new models of computers to support virtual machine

and Azure resources, new sizes support different hardware generations. Therefore, you

will see Virtual Machine sizes called Dv2 or Dv3. Rather than trying to explain all the

sizes, take some time to review the documentation for Azure Virtual Machine sizes for

Windows at https://docs.microsoft.com/en-us/azure/virtual-machines/windows/

sizes and Virtual Machine sizes for Linux at https://docs.microsoft.com/en-us/

azure/virtual-machines/linux/sizes.

I will talk more about the performance ramifications of sizes in the section of this

chapter called “Maximizing Storage Performance.” For now, look at our documentation

best practice guidance for choosing VM sizes better suited for SQL Server’s unique

CPU, memory, and I/O characteristics at https://docs.microsoft.com/en-us/azure/

virtual-machines/windows/sql/virtual-machines-windows-sql-performance#vm-

size- guidance.

For the purposes of our example, I want to show you a few specific options that are

only available with certain sizes. Therefore, I will use the Select size option as seen in

Figure 3-5 to bring up a list of choices.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance#vm-size-guidance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance#vm-size-guidance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance#vm-size-guidance

91

You should now be presented with a screen that gives you choices on VM sizes.

These tables can look daunting, but it gives you a feel of the why you would pick a

specific size because it dictates the number of CPUs, RAM, disks, IOPS, and so on you

get for your VM deployment. Figure 3-6 shows results after I have typed in the “Search by

VM size…” the string v3 which shows me some of the latest hardware for VMs.

Figure 3-5. Choosing a VM size

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

92

I am going to choose D4s_v3 because it has plenty of CPUs and RAM for my purposes

and enables a few options I need which I will describe shortly. Notice on this screen a tag

that shows my choice is used by many Azure users.

You can also see a cost factor in the VM size list so this could be a factor in your

choices. Even though I will mention sizes throughout the rest of this chapter in various

situations, keep these important points in mind:

• You can read more about VM sizes for Windows and Linux at

https://docs.microsoft.com/en-us/azure/virtual-machines/

windows/sizes.

• You can change the VM size after you have deployed without having

to delete and recreate it. This is called resizing a VM. There are limits

here and it will require some downtime, but you can read more

about resizing VMs at https://docs.microsoft.com/en-us/azure/

virtual-machines/windows/resize-vm.

Figure 3-6. VM size choices for Azure

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/resize-vm
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/resize-vm

93

 Account, Port, and OS Licensing
To finish off the default screen to deploy SQL Server in a Virtual Machine, I must provide

an administrator account and password. For Windows, this becomes the local admin

account and for Linux a root user. For a SQL Server Gallery Image deployment on

Windows, this local admin account is automatically added to the sysadmin role (just like

you would add yourself during SQL Server setup). The password for the admin account

can be between 12 and 123 characters and must be a strong password with at least 3 of

the following characters: 1 lowercase, 1 uppercase, 1 number, and 1 special character.

The next choice is to decide whether any ports for the virtual machine will be opened

and available for inbound traffic. By default, port 3389 which is used by the Remote

Desktop Connection (RDP) protocol is selected (for Linux, this would be port 22 which

is the default port for the ssh protocol). Using this option is the most flexible but not the

most secure option. I will leave this option for now, but later in this chapter in the section

called “Connecting to Your VM,” I will talk about using different security options.

The final choice involves licensing for Windows deployments. When you choose

a SQL Server Gallery Image with Windows, your license will be a pay-as-you-go

subscription for both SQL Server and Windows. This basically means you pay each

month for a fixed cost of using Windows and SQL Server. You also pay cost for resource

usage based on CPU usage and storage. If you own existing licenses for Windows Server,

you can apply those licenses to your Azure Virtual Machine cost. You can read more

about using Azure Hybrid Benefit for Windows Server at https://docs.microsoft.com/

en-us/azure/virtual-machines/windows/hybrid-use-benefit-licensing.

Figure 3-7 shows the rest of the portal screen to fill out these options.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/hybrid-use-benefit-licensing
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/hybrid-use-benefit-licensing

94

At this point in the deployment process, you can click Review + create and deploy

your VM with other default options. And if you want to get up and running quickly, just

select Review + create. However, there could be reasons for you to choose other options

to configure how the Virtual Machine is deployed.

 Making Configuration Choices As Part of Deploy
Let us look at the other options you can select as part of deploying SQL Server for Azure

Virtual Machine.

 OS Disks

Select Next: Disks > to see the following options as seen in Figure 3-8.

Figure 3-7. Choosing account, port, and license

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

95

The disk options presented here (note I expanded the Advanced option) are for

the disk supporting the Operating System and other system files. For all SQL Server

deployments, I recommend you choose the default options provided here including

Premium Managed disks. I will talk more about different types of Managed disks you

can use with SQL Server for Azure Virtual Machine in the section called “Maximizing

Storage Performance.” I will recommend you take advantage of Managed disks with SQL

Server for the simple advantage of fault tolerance, but you may want to read more about

unmanaged and ephemeral disks. You can read more about Managed Disks at https://

docs.microsoft.com/en-us/azure/virtual-machines/windows/managed-disks-

overview. You can read more about ephemeral disks at https://docs.microsoft.com/

en-us/azure/virtual-machines/windows/ephemeral-os-disks.

Note If you install just an operating system image from the marketplace
(e.g., Windows Server), you would get options here to add data disks. For SQL
Server marketplace images, you will be able to add data disks in the following
configuration section called “SQL Server Settings” or after you have deployed.

Figure 3-8. Disk options for Azure Virtual Machine during deployment

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/managed-disks-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/managed-disks-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/managed-disks-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/ephemeral-os-disks
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/ephemeral-os-disks

96

 Networking

Now click Next: Networking >. Here you are going to be presented with a set of choices

to configure various aspects of networking for your virtual machine as seen in Figure 3-9.

Figure 3-9. Networking options during deploy for Azure Virtual Machine

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

97

The two options you may want to consider changing are the Virtual Network and

Subnet if this virtual machine needs to be included in an existing Azure Virtual Network.

Notice in this example, a new virtual network will be created including a name that

contains my new Resource Group. If you would have selected an existing Resource

Group on the first screen to deploy, the virtual network associated with that resource

group (if one exists) would be selected. I will discuss more about networking options for

Azure Virtual Machine in the section later in this chapter called “Networking.”

The only other option I want to call out on this screen that I believe applies to

your SQL Server on Azure Virtual Machine deployments is Accelerated Networking.

Accelerated networking can be extremely beneficial for SQL Server deployments where

client applications must communicate across a virtual network to SQL Server. Therefore,

you may want to choose a VM size (or a VM size with the required number of CPUs)

that supports accelerated networking. If you plan to just deploy SQL Server in a virtual

machine and do everything inside the virtual machine, you do not need to worry about

this option. You can read more about the benefits of Accelerated Networking at https://

docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-

networking-powershell#benefits.

Note You can later change the size of the virtual machine and then enable
Accelerated networking using powerShell. You can read more about how to
do this at https://docs.microsoft.com/en-us/azure/virtual-
network/create-vm-accelerated-networking-powershell#enable-
accelerated- networking-on-existing-vms.

 Management

Select Next: Management >. Figure 3-10 shows some options that may be interesting to

your deployment and use of SQL Server with Azure Virtual Machine.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell#benefits
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell#benefits
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell#benefits
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell#enable-accelerated-networking-on-existing-vms
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell#enable-accelerated-networking-on-existing-vms
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell#enable-accelerated-networking-on-existing-vms

98

You can see on this example screen I have turned on Enable detailed monitoring,

Boot diagnostics, and OS guest diagnostics. Perhaps it is my nature from having

worked in technical support, but I want as much diagnostics available to me.

Figure 3-10. Management options during deploy for Azure Virtual Machine

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

99

Enabled detailed monitoring will allow you to choose an existing or new log analytics

workspace. I will show you later in this chapter how you will use this workspace for

performance monitoring. You can read more about what Enable detailed monitoring

provides you at https://docs.microsoft.com/en-us/azure/azure-monitor/insights/

vminsights-overview.

Boot diagnostics are very helpful to see the serial output screen of your virtual

machine on the host. This is like seeing the boot screen using a tool like Hyper-V

Manager. You can read more about boot diagnostics at https://azure.microsoft.com/

en-us/support/legal/support-diagnostic-information-collection/.

I personally recommend you select OS guest diagnostics. This will allow you to see

performance information from the guest OS in systems like Azure Monitor and even get

alerts. I will discuss how to use this in the section titled “Performance Monitoring” later

in this chapter.

Two other options worth talking about but that I do not personally use much are

System assigned managed identity and Enable auto-shutdown.

System assigned managed identity is an interesting option allowing you to create

an identity in Azure Active Directory to use for authentication without having to put

credentials in your code or application. One nice example to use this capability with Azure

Virtual Machine is to connect to an Azure SQL Database from a virtual machine using

Azure Active Directory without prompting for any passwords. You can read more about

managed identities at https://docs.microsoft.com/en-us/azure/active- directory/

managed-identities-azure-resources/overview. You can see the example of using

this with Azure SQL Database at https://docs.microsoft.com/en-us/azure/active-

directory/managed-identities-azure-resources/tutorial-windows-vm- access-sql.

Enable auto-shutdown provides an option where the virtual machine will be shut

down daily on the time of your choosing. Why would you ever select this for a SQL

Server deployment? The primary reason is that you have a SQL Server deployment

and you have some downtime you can afford and want to save money. When a virtual

machine is shut down, you only pay for your licensing and storage costs. I will talk more

about stopping and starting virtual machines in the section titled “Configuration and

Managing” later in this chapter.

 Advanced

With these options selected, click Next: Advanced >. As the name implies, these are

advanced options that may interest you as seen in Figure 3-11.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/azure-monitor/insights/vminsights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/vminsights-overview
https://azure.microsoft.com/en-us/support/legal/support-diagnostic-information-collection/
https://azure.microsoft.com/en-us/support/legal/support-diagnostic-information-collection/
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/tutorial-windows-vm-access-sql
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/tutorial-windows-vm-access-sql

100

Figure 3-11. Advanced options for Azure VM

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

101

Extensions are applications that run inside the VM that can provide post

deployment and automation tasks. The SQL Server gallery images have an extension

used to configure SQL Server after deployment called the SQL Server IaaS Agent
Extension which you can read about at https://docs.microsoft.com/en-us/azure/

azure-sql/virtual-machines/windows/sql-server-iaas-agent-extension-

automate-management. You do not need to select this extension on this screen, but there

are others you may be interested in.

Host group defines an Azure Dedicated Host used for your virtual machine. I

will discuss more about Azure dedicated hosts in a later section of this chapter titled

“Reserved Instances and Dedicated Hosts.”

Proximity placement groups are an interesting concept in Azure that allows you

to request multiple Azure resources be located as close as possible within an Azure

datacenter to provide the lowest network latency possible. This may be an option to

consider if the application to connect to SQL Server in Azure Virtual Machine will be

hosted in Azure.

Note I would not recommend using proximity groups for a hA solution for SQL
Server in Azure virtual Machines such as Availability Groups. In this scenario, you
will use a concept called Availability Sets or Availability zones. I will discuss these
concepts later in the chapter in a section titled “hADR.”

VM generation allows you to specify a new VM architecture which can provide

you some benefits (e.g., faster boot and install times). We do not enable all SQL Server

gallery images with this option. You can read more about support for Generation 2 VMs

on Azure at https://docs.microsoft.com/en-us/azure/virtual-machines/windows/

generation-2. If you need this option and the SQL Server gallery image does not

support it, you can use the “deploy on your own” technique.

Click Next: SQL Server Settings > to see the next set of options.

 SQL Server Settings

Up to this point, all the configuration choices are independent of SQL Server. This screen

provides specific configuration choices for deployment specific to SQL Server. Let us

look at these choices in more detail. Figure 3-12 shows choices for Networking, Security,

and Storage.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-iaas-agent-extension-automate-management
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-iaas-agent-extension-automate-management
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-iaas-agent-extension-automate-management
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/generation-2
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/generation-2

102

Note As of the time of writing this book, SQL Server Linux images do not support
SQL Server settings during deployment.

Networking provides a choice on how to expose the SQL Server instance default

TCP port 1433. Think of this choice like using a firewall. Private means any Azure source

within the virtual network of the VM can access this port. This is the default and one

I recommend you use. Local means the only access is allowed inside the VM. Public

Figure 3-12. SQL Server settings for network, security, and storage

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

103

means the TPC port is exposed on the Internet. As tempting as it may be to use the

public option so you can connect with a tool like SSMS from your laptop to this deployed

VM, I do not recommend using this option.

Note The first time I deployed a SQL Server in Azure vM using the public option, I
immediately got attacked from outside intruders trying to log in using the sa account
guessing password. I found this out when I saw my eRRoRLoG flooded with login
failed messages. This occurred almost immediately after deploying the vM.

The choice for SQL Authentication is identical to enabled Mixed Mode security for

SQL Server. Even though the sa login is disabled by default if you choose to enable this

option, you will be prompted for a SQL login that will be granted SQL Server sysadmin

rights for your deployment.

Azure Key Vault integration is a choice you might want to enable, but do not

worry you can enable this post deployment. Azure Key Vault integration may be helpful

to ease your use of Azure Key Value for scenarios like Transparent Data Encryption

(TDE). You can read more about Azure Key Vault integration with SQL Server in Azure

Virtual Machine at https://docs.microsoft.com/en-us/azure/azure-sql/virtual-

machines/windows/azure-key-vault-integration-configure#enabling-and-

configuring-key-vault-integration.

Storage configuration is perhaps one of the most important choices you will make

for SQL Server in Azure Virtual Machine especially for performance. While I will talk

more about storage performance in the section titled “Maximizing Storage Performance”

later in this chapter, let us take a brief look at your options to configure storage during

deployment.

The default settings for storage configuration are to configure two data disks using

Azure Premium storage: one intended for database files and one for transaction log files.

Tempdb will be kept on a local SSD drive. The default configuration as you see on the

screen is intended for typical OLTP type workloads. If you click Change configuration,

you will see options such as seen in Figure 3-13.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/azure-key-vault-integration-configure#enabling-and-configuring-key-vault-integration
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/azure-key-vault-integration-configure#enabling-and-configuring-key-vault-integration
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/azure-key-vault-integration-configure#enabling-and-configuring-key-vault-integration

104

You can see at the top of this screen three options for Storage optimization: General,

Transactional processing, and Data warehousing. The General option will help create

a single data disk where you can place database, transaction log files, and tempdb (in

different folders). The Transaction processing and Data warehousing options help

you spread out your database and transaction log files on different data disks and

store tempdb on the local SSD drive of the VM. This screen is provided to aid you in

configuring storage to optimize performance or cost for your SQL Server deployment.

Note We are looking to make some changes to these options in the future so this
screen may be different when you view it.

For my deployment, I am going to use the defaults which deploy two data disks for

database and transaction log files and use the local SSD drive for tempdb. You must

choose some disk options here, but you can totally reconfigure or change this after

deployment.

Figure 3-13. Configuring storage for SQL Server in Azure Virtual Machine

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

105

Notice the warning at the bottom of the screen. It says the configured disks have

a performance vector that is greater than what the VM size supports. You could either

choose a disk type for each that lines up more with the VM size selected or choose a

larger VM size. Again, you can change these after you deploy. SQL Server does not place

any databases or files on these data disks. System databases such as master, model, and

msdb are placed by default on the operating system disk.

Figure 3-14 shows the additional options for SQL Server Settings.

SQL Server License allows you to testify that you have an existing SQL Server license

that allows you to apply it for Azure Hybrid Benefit (AHB) like the choice for Windows.

This can be a significant cost savings to you when using SQL Server for Azure Virtual

Machine. You can learn more about AHB at https://azure.microsoft.com/en-us/

pricing/hybrid-benefit/.

Figure 3-14. Additional SQL Server Settings

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://azure.microsoft.com/en-us/pricing/hybrid-benefit/
https://azure.microsoft.com/en-us/pricing/hybrid-benefit/

106

Note If you do not see this option available, it is because you picked a SQL
Server image choice where this option cannot be or is already selected. For
example, images that start with the title BYoL (this means Bring Your own License)
already imply you are stating you can use AhB. Developer edition is free, so no
license applies.

We also announced in 2019 new licensing benefits for HA and DR scenarios when

using Azure Virtual Machine. You can read more at https://cloudblogs.microsoft.

com/sqlserver/2019/10/30/new-high-availability-and-disaster-recovery-

benefits-for-sql-server/.

Automated patching provides specific configurations on when how to deploy

important and critical updates for Windows and SQL Server. Other updates for Windows

and SQL Server will depend on how you configure Windows Update inside the VM. You

can read more about automated patching at https://docs.microsoft.com/en-us/

azure/azure-sql/virtual-machines/windows/automated-patching. If you do not

select this during deployment, you can configure it later. You can also provide your own

customer automation for updates as found in our documentation at https://docs.

microsoft.com/en-us/azure/automation/automation-tutorial-update-management.

Automated backup uses the Managed Backups to Azure capability that was shipped

as part of SQL Server 2016. Your needs may vary, but many users might find this option

very useful to provide a simple automated backup solution for SQL Server. When you

enable this option, you have several choices to configure how backups are executed.

You can also configure this option after deployment. You can read more about

automated backups at https://docs.microsoft.com/en-us/azure/azure-sql/

virtual- machines/windows/automated-backup.

Note Automated patching and Automated backup options may not show up
as enabled immediately after deployment. The SQL IaaS extension runs in the
background after deployment.

R Services (Advanced Analytics) is an option to install the SQL Server Machines

Learning services feature as part of deployment. I will describe in the next section called

“Deploy!” what exactly is installed with the SQL Server gallery image.

Click Next: Tags > to see the last option.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://cloudblogs.microsoft.com/sqlserver/2019/10/30/new-high-availability-and-disaster-recovery-benefits-for-sql-server/
https://cloudblogs.microsoft.com/sqlserver/2019/10/30/new-high-availability-and-disaster-recovery-benefits-for-sql-server/
https://cloudblogs.microsoft.com/sqlserver/2019/10/30/new-high-availability-and-disaster-recovery-benefits-for-sql-server/
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/automated-patching
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/automated-patching
https://docs.microsoft.com/en-us/azure/automation/automation-tutorial-update-management
https://docs.microsoft.com/en-us/azure/automation/automation-tutorial-update-management
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/automated-backup
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/automated-backup

107

 Tags

The last option before you deploy your virtual machine is to potentially use a tag.

Tags are a concept supported by the Azure ecosystem to assign a string value to a

resource in Azure, like a virtual machine, to organize your resources. Tags have many

different purposes. As you can see in Figure 3-15, you can see I used a tag of a Name =

Environment and Value = Development, assigned to a Virtual Machine resource.

Figure 3-15. Assigning tags to an Azure resource

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

108

Now I can use the Azure portal, CLI, or APIs to “find all resources or virtual machine

that is part of my development environment.” You can learn more about how to use Tags

at https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/

tag-resources.

Click Next: Review + create > to validate and deploy the virtual machine.

 Deploy!
The portal will take all your options, perform validation steps, and then present you the

ability to create the virtual machine. Figure 3-16 shows some interesting information on

the final validation screen before you click Create.

Figure 3-16. Validation before creating the virtual machine

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/tag-resources
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/tag-resources

109

At the top of this screen, you can see the size of the VM you chose plus estimated

costs per hour. Also notice Terms of use and Privacy policy. The End User Licensing

Agreement (EULA) that comes with SQL Server still applies to Azure Virtual Machine

since this is a fully licensed SQL Server. However, since you are deploying the virtual

machine in Azure, there are terms and privacy policies you should review. You can

read more about Azure terms of use at https://azure.microsoft.com/en-us/

support/legal/. Privacy is a very important topic, and since Microsoft is hosting

your virtual machine in the cloud, you need to understand all the details of what

information Microsoft collects. Read more at https://privacy.microsoft.com/en-us/

privacystatement. Your usage of a gallery image for the operating system and/or SQL

Server also has terms called Azure Marketplace Terms. You can read more at https://

azure.microsoft.com/en-us/support/legal/marketplace-terms/.

You will also notice on this screen a warning about allowing the RDP port to be

exposed to the Internet. You will learn more about how to control access and limit any

issues in the following section titled “Connecting to Your VM.” If you scroll down on

this screen, you will see all the details of the options you chose to deploy the virtual

machine. Notice also at the bottom of the screen the option to Download a template for
automation. I will discuss using an option for automation with a template in a section

later in this chapter called “Using a CLI and ARM Template.”
Click the Create button when you are ready to launch! The deployment of the virtual

machine is asynchronous so you can even exit the portal and the deployment is done

in the background. However, if you leave the portal screen open, you can track progress

live. Within seconds of clicking Create, my screen looks like Figure 3-17 to track the

progress of the deployment.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://azure.microsoft.com/en-us/support/legal/
https://azure.microsoft.com/en-us/support/legal/
https://privacy.microsoft.com/en-us/privacystatement
https://privacy.microsoft.com/en-us/privacystatement
https://azure.microsoft.com/en-us/support/legal/marketplace-terms/
https://azure.microsoft.com/en-us/support/legal/marketplace-terms/

110

Not only does the main screen refresh as the virtual machine is being created but you

can click the Notifications icon on the title bar of the portal to also track progress. In my

example, in about 10 minutes my deployment was complete. Figure 3-18 shows all the

details including status from the Notifications icon.

Figure 3-18. Deployment complete for SQL Server in Azure Virtual Machine

Figure 3-17. Azure virtual machine deployment in progress

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

111

You will notice for Deployment details that it is not just a virtual machine deployed

but many different resources including network interfaces, disks, storage accounts,

virtual networks, and security groups. If you want more details about the deployment,

you can click More events in the activity log. Figure 3-19 shows an example of activity

log output. Remember the activity log is your “event log” for all operations as part of the

Azure ecosystem.

If you click Go to resource, you will be presented with the overview screen for the

virtual machine. Let us take a brief moment to talk about how to navigate the overview

screen for a virtual machine.

 Navigating in the Portal
You will find yourself often using several aspects to the overview screen for Azure virtual

machine and all Azures resources in this book. Let us examine the main areas of the

overview screen as seen in Figure 3-20.

Figure 3-19. Azure activity log for a virtual machine deployment

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

112

 1. Resource Menu

Each Azure resource provides a series of options to manage the

resource. The very top of the Resource Menu is the same for all

resources. You will want to use the Overview option to “find your

way back” if you are deep into using blades for details on the

virtual machine. This is super important as I often have hit the X at

the top right of a screen and completely lost context of my VM. By

clicking Overview on the Resource Menu, I can keep that context.

Other options exist on the Resource Menu for virtual machines

including Settings, Operations, Monitoring, and Support +

Troubleshooting.

I will not go over each option here but will use several of these

options throughout the rest of the chapter.

 2. Command bar

These are buttons that allow you to operate the virtual machine.

Every Azure resource has buttons unique to the resource. The

most common buttons you will use are Connect, Start, and Stop.

Figure 3-20. The overview screen for Azure virtual machine

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

113

 3. Working Pane

This area displays key information about your virtual machine

including resource group and status but also lets you navigate to

certain aspects of the virtual machine such as virtual network.

 4. Monitoring Pane

Technically, this is part of the Working pane as there are options

to look at Properties (this is the default, so you need to choose

Monitoring here) and choose Capabilities, but I mainly use this for

Monitoring. You can see in Figure 3-20 some of the key performance

metrics typically viewed for a virtual machine such as CPU, Network,

and I/O. Think of this as your “Task Manager” but viewed outside

of the VM. This is one of the benefits of Azure Monitor in the Azure

ecosystem. Explore more about how to navigate around the portal at

https://docs.microsoft.com/en-us/azure/azure-portal/azure-

portal-overview#getting- around- the-portal.

 Connecting to Your VM
Now that you have deployed, one of the first things you will want to do is connect to the

VM. For a Windows VM, the most popular way to connect and use the VM is with the

Remote Desktop Protocol (RDP). You saw in the VM deployment example that I chose

the option to open the RDP port (3389) to the Internet.

To use RDP, click the Connect button in the Command bar and choose RDP. You

will see now a screen giving you the option of downloading an RDP file to use with your

Remote Desktop program (typically Remote Desktop client on Windows machines) as

seen in Figure 3-21.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-overview#getting-around-the-portal
https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-overview#getting-around-the-portal

114

By default, the RDP file will be copied to your Downloads folder on your client

machine. The public IP address for the VM is also posted here if you just want to take any

valid RDP client and connect directly to the VM. Once you connect, just like any VM or

Windows computer, you will be prompted to enter your credentials (which you supplied

as part of deployment) which by default is a member of the Administrators group.

Note If you notice under Download RDp File, there are options to help you
troubleshoot any RDp connectivity issues which I highly recommend you look at
should you encounter any issues.

You can also see on this screen a recommendation to enable just-in-time access

to the VM to improve security. Just-in-time access is a way to gain RDP access to the

VM “on-demand” so that the RDP port is not opened to the Internet when you are not

using the VM. This is a way to allow you to connect to the VM from any client yet limit

the exposure of the RDP port to everyone. I use this method within Microsoft for all my

Azure VMs. You can learn more about just-in-time access at https://docs.microsoft.

com/en-us/azure/security-center/security-center-just-in-time.

Figure 3-21. Connecting with RDP to Azure virtual machine

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/security-center/security-center-just-in-time
https://docs.microsoft.com/en-us/azure/security-center/security-center-just-in-time

115

There are two other methods to restrict access to RDP for the VM. One method is to

set a more restrictive Inbound port rule for port 3389. You can click Networking on the

Resource on the Resource Menu to access these rules. Check out the documentation

at https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-

quickstart- portal to learn more how to do this. The other method is to use a more

secure method called Azure Bastion which you can learn more about at https://azure.

microsoft.com/en-us/services/azure-bastion/.

You may also connect with standard SQL tools from another Azure VM that you have

deployed in the same Azure virtual network. Keep in mind that if anytime you deploy

an Azure VM in the same resource group as another VM, they are both part of the same

virtual network by default. I use this method a lot when using many different VMs in

Azure.

 Exploring the SQL Server Installation
I thought you might find it interesting to know exactly what we install and how we

configure the SQL Server instance when you deploy with a SQL Server gallery images.

 What Is Installed

A SQL Server gallery image installs the entire database engine, SQL Server Analysis

Services, SQL Server Integration Services, MDS, and DQS. In addition, we install the

following engine features:

• SQL Server Agent

• SQL Server Replication

• Full-text search

We also install client, tools, SDK, and SQL Server Management Studio. We do not

install Polybase by default. As I have described earlier in this chapter, you can install R

Services as part of the deployment based on an option you choose.

For a SQL Server gallery image, we copy the SQL Server media so you can install or

remove any features you want. You can find all the setup files in the C:\SQLServerFull
folder in the VM. Figure 3-22 shows an example of what features are installed by default

using a SQL Server gallery image.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal
https://azure.microsoft.com/en-us/services/azure-bastion/
https://azure.microsoft.com/en-us/services/azure-bastion/

116

 What Is Configured

The following is a list of configuration choices we make as part of a SQL Server gallery

image installation:

• SQL Server, SQL Server Agent, and SSIS services are set to Automatic

and are running after deployment. Service SIDs are used for all

services.

• The VM admin account you specify during deployment becomes a

SQL sysadmin.

• The # of tempdb files is to a default of 2. MAXDOP is also configured

for 2 for the instance.

Figure 3-22. SQL Server features installed by default

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

117

Note Why? Because the gallery images are “images” that are predefined, and
they were built on a two-core machine. This is an important thing to note and make
sure you adjust post deployment. We are looking toward the future for a better way
to help integrate these choices to align with your vM size vCore deployment.

• The filestream feature is disabled by default (but can be enabled and

supported).

• Always On Availability Groups are disabled by default (but can be

enabled and supported).

• The TCP/IP protocol is enabled for SQL Server (even for Developer

Edition).

• We typically have a recent Cumulative Update installed, but it may

not be the exact latest cumulative update. You can read more about

how we keep our images up to date at https://docs.microsoft.

com/en-us/azure/azure-sql/virtual-machines/windows/

sql-server- on-azure-vm-iaas-what-is-overview#lifecycle.

• Locked pages and Instant File Initialization are not enabled by

default (they are supported, and I personally recommend you use

these when possible).

• CEIP is enabled by default, but you can disable it. Read more at

https://docs.microsoft.com/en-us/azure/virtual-machines/

windows/sql/virtual-machines-windows-sql-server-iaas-

overview#customer-experience-improvement-program-ceip.

• I also observed the Microsoft VSS Writer for SQL Server is installed.

You can read more about the SQL Writer Service at https://docs.

microsoft.com/en-us/sql/database-engine/configure-windows/

sql-writer-service.

 Deploy on Your Own
Today when I deploy a SQL Server instance in a Hyper-V virtual machine (often just

on my laptop), I go through the process of choosing certain options for the VM (like

number of logical CPUs, memory, location of disks) and then install an operating system

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-on-azure-vm-iaas-what-is-overview#lifecycle
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-on-azure-vm-iaas-what-is-overview#lifecycle
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-on-azure-vm-iaas-what-is-overview#lifecycle
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas-overview#customer-experience-improvement-program-ceip
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas-overview#customer-experience-improvement-program-ceip
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas-overview#customer-experience-improvement-program-ceip
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-writer-service
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-writer-service
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-writer-service

118

like Windows Server or Linux (typically from an .ISO file). When this is done, I usually

connect to the VM with Remote Desktop (Windows) or ssh (Linux). For Windows, I

will download the installation media for SQL Server to my local drive and then “copy

and paste” it into a folder in the VM. I then run setup and am off and running to deploy

SQL Server. For Linux, I just make sure my VM is connected to the Internet and run the

SQL Server on Linux installation which downloads packages as part of the installation

process.

This same process is almost identical to the “deploy on your own” option for SQL

Server on Azure Virtual Machine, with one exception. You will configure the VM and

deploy an Operating System by using one of the gallery images just for the operating

system. You can use the portal, az cli, or PowerShell to choose your VM size and

Operating System very similar to using a SQL Server gallery image, except all the options

for SQL Server will not be part of the process.

This technique is one I sometimes use because I have complete control of how and

what is installed with SQL Server vs. what Microsoft chooses from a gallery image. If you

use this method, there is one downside. You do not immediately get to take advantage

of the options you get with a SQL gallery image such as automated backups and security

updates. Fortunately, there is a solution to use this customized method for deployment

but take advantage of automated features and licensing options. This solution is called

the SQL Virtual Machine resource provider. I will discuss more about the SQL VM

Resource Provider in the following section called “SQL Virtual Machine Resource

Provider.”

Keep in mind that using this method is one way to install SQL Server Reporting

Services which you still have access to in your installation media files and can be part of

your SQL Server license.

 Using a CLI and ARM Template
Azure provides other ways to deploy SQL Server on Azure Virtual Machine besides the

Azure portal using a command-line interface (CLI) with the az vm CLI.

Here is an example of using az vm to create a virtual machine like the VM example I

showed you in the portal (I ran this using the Azure Cloud Shell):

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

119

Tip To use az vm, you must first create the resource group using az group
create. In addition, to find the name of the SQL gallery images, you need to
first run the command az vm image list-offer -l <region> -p
MicrosoftSQLServer.

az group create -l eastus -n bwsqlvmsrg

az vm create -n bwsql2019 -l eastus -g bwsqlvmsrg --image

MicrosoftSQLServer:sql2019-ws2019:enterprise:latest --size Standard_D4s_

V3 --admin-username thewandog --admin-password <password> --nsg-rule RDP

Tip If you want to only install SQL Server engine components (basically not SSAS
and SSIS), you can use the image MicrosoftSQLServer:sql2019-ws2019:enterprise
dbengineonly:latest.

A few thoughts about this example are as follows:

• You can add more options for the VM independent of SQL Server as

you saw from the portal.

• You cannot configure SQL Server Settings but can use the az sql vm

command or the portal to do this post deployment. In fact, you need

to do this to have this VM registered with the SQL Resource Provider.

• You will also need to configure storage (including moving tempdb to

the local SSD drive).

You can read all the options for az vm at https://docs.microsoft.com/en-us/cli/

azure/vm?view=azure-cli-latest.

PowerShell also has a module to create an Azure Virtual Machine with the

New- AzVM command. In addition, a PowerShell command called New-AzSqlVM can be

used to add the SQL IaaS extension and choose a license type (you could then configure

auto-backup and auto-security settings post deployment). While az CLI accepts many

parameters, PowerShell expects you to run various commands to set properties of the

VM before you execute New-AzVM. You can see a great example of using PowerShell to

create a SQL Server in Azure Virtual Machine at https://docs.microsoft.com/en-us/

azure/azure-sql/virtual-machines/windows/create-sql-vm-powershell.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/cli/azure/vm?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/vm?view=azure-cli-latest
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/create-sql-vm-powershell
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/create-sql-vm-powershell

120

While you can script out the usage of az CLI or PowerShell with all the parameters

and option, there is a better way. Azure provides a mechanism for any Azure resource

to automate the use of Azure CLI tools with a concept called an ARM template. An ARM

template is a JSON file that describes in a declarative fashion the configuration and

infrastructure of a deployment.

While you can try to learn how to build templates from scratch, I recommend you get

an example. If GitHub is your thing, you can download and edit an example of an azure

template to create a new SQL Server in Azure Virtual Machine from https://github.

com/Azure/azure-quickstart-templates/tree/master/101-sql-vm-new-storage.

Azure templates not only configure all the properties to create the virtual machine but

support parameters so you can use a template and then supply the parameters you want

to customize the deployment at runtime.

The az CLI command az deployment can be used to deploy based on a template.

You can even export a template based on a current deployment using this command.

You can also download a template from an existing resource, resource group, or past

deployment from the Azure Portal. You can read more about how to deploy using az

CLI and templates at https://docs.microsoft.com/en-us/azure/azure-resource-

manager/templates/deploy-cli. You can read how to download a template from the

portal at https://docs.microsoft.com/en-us/azure/virtual-machines/windows/

download-template.

 Reserved Instances and Dedicated Hosts
To save money on Azure Virtual Machines, you can prepay for a period (one to three

years) and then save on the compute costs of the Azure Virtual Machine as you deploy.

This option is called Azure Reserved VM Instances. If you plan to deploy many SQL

Server Azure Virtual Machines, you probably should investigate this option. Learn more

about reserved instances at https://azure.microsoft.com/en-us/pricing/reserved-

vm- instances/.

You might remember there was an option during the deployment example in the

portal called a dedicated host. An Azure Dedicated Host allows you to reserve physical

servers dedicated to you and your organization. While normal virtual machines are

dedicated to your deployment, you are typically sharing the underlying hosts with

other users. A dedicated host may give you the option you need for specific compliance

requirements. In addition, you have more control over maintenance events of the

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://github.com/Azure/azure-quickstart-templates/tree/master/101-sql-vm-new-storage
https://github.com/Azure/azure-quickstart-templates/tree/master/101-sql-vm-new-storage
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-cli
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/download-template
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/download-template
https://azure.microsoft.com/en-us/pricing/reserved-vm-instances/
https://azure.microsoft.com/en-us/pricing/reserved-vm-instances/

121

infrastructure hosting your VM deployment. You can read more about dedicated hosts at

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/dedicated-

hosts.

 Migrate Using Azure Migrate
You might be considering a migration of an existing SQL Server installation to Azure

Virtual Machine. Here are a few tips that might help your migration plans.

 Restoring a Database

Since SQL Server in Azure Virtual Machine is a full SQL Server engine, one simple way to

migrate an existing SQL Server is to just restore a backup of existing databases.

Since the target SQL Server is in the Azure Infrastructure, you have a few ways to do

this:

• Copy the backup file with “copy and paste” over RDP. RDP clients

allow you to copy and paste files, and I have done this a bunch

of times for Azure VM. Of course, this only makes sense for small

backup files (although I have done this with backup files even 1Gb

in size).

• Back up the database to Azure Storage using the backup to URL

functionality within SQL Server. Then in the Azure VM, restore the

backup from the same Azure Storage account. You can read more

about SQL Server Backup to URL at https://docs.microsoft.com/

en-us/sql/relational-databases/backup-restore/sql-server-

backup-to-url?view=sql-server-ver15.

• Use Azure Files. Think of this like creating your own file share in

the cloud. You can use az CLI or tools to copy your backup file to the

Azure file share. Then you can mount the Azure file share within the

Azure VM (i.e., it will look like a network share in the VM). Read more

about how to do this at https://docs.microsoft.com/en-us/azure/

storage/files/storage-files-introduction. I have used this

method several times for both Azure VMs for Windows and Linux.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/dedicated-hosts
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/dedicated-hosts
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/sql-server-backup-to-url?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/sql-server-backup-to-url?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/sql-server-backup-to-url?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction

122

• For large backup files, consider the Azure Import/Export service.

You literally will securely ship a hard drive to Microsoft (we can

supply you these with Azure Data Box Disk), and we will import

this to Azure Storage or Azure files. You can read more about this

at https://docs.microsoft.com/en-us/azure/storage/common/

storage-import-export-service.

 Using Data Migration Assistant (DMA)

The Data Migration Assistant (DMA) is a free tool that can be downloaded from www.

microsoft.com/en-us/download/details.aspx?id=53595. I will discuss the importance

of DMA more with Azure SQL in Chapter 4 of the book. But know that you can use DMA

to migrate a database from SQL Server into a deployed SQL Server in Azure Virtual

Machine. The tool will use a backup/restore method and requires you to be able to

connect to the SQL Server Azure Virtual Machine in a virtual network connected to the

computer where you are running DMA.

 Using Azure Migrate Server Migration

What if you would like to migrate the installation of an entire physical server or virtual

machine to Azure instead of just your data? Azure supports this concept with a service

called Azure Migrate Server Migration. This is perhaps a true lift and shift operation.

Think of this like taking a snapshot of your machine or VM and creating an entire VM

from the snapshot. Then you configure and optimize after the fact. You can read more

about Server Migration at https://docs.microsoft.com/en-us/azure/migrate/

migrate-services-overview#azure-migrate-server-migration-tool. A great

example of how this works for VMware installation can be seen at https://aka.ms/

mechanicsazuremigrate with legendary Windows guru Jeff Woolsey.

 Deploying SQL Server on Linux with Azure Virtual
Machine
Up to this point, my examples and discussion have centered around deploying SQL

Server in Azure Virtual Machines based on Windows Server.

The options and deployment process are very similar for SQL Server on Linux with

some notable differences:

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/storage/common/storage-import-export-service
https://docs.microsoft.com/en-us/azure/storage/common/storage-import-export-service
http://www.microsoft.com/en-us/download/details.aspx?id=53595
http://www.microsoft.com/en-us/download/details.aspx?id=53595
https://docs.microsoft.com/en-us/azure/migrate/migrate-services-overview#azure-migrate-server-migration-tool
https://docs.microsoft.com/en-us/azure/migrate/migrate-services-overview#azure-migrate-server-migration-tool
https://aka.ms/mechanicsazuremigrate
https://aka.ms/mechanicsazuremigrate

123

• The gallery images are offered for Linux distributions Ubuntu, Red

Hat Enterprise Server, and SUSE. You pay for licenses if the Linux

distribution requires it (e.g., Ubuntu is a free license).

• We do not support any SQL Server Settings. This is because the SQL

Resource Provider does not exist for Linux (yet; we are working on it).

• This means Azure Hybrid Benefit, special storage recommendations,

automated backup, and automated security updates are not

available.

After using a SQL Linux gallery image, you will find the mssql-server, mssql-tools,

and mssql-ha packages have been installed.

SQL Agent is not enabled, but you can do this yourself. You can enable SQL Server

Agent on Linux with the mssql-conf script which you can read more about at https://

docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-sql-agent.

Post deployment, you can use documented methods to install other SQL Server

Linux packages. For example, you can read https://docs.microsoft.com/en-us/sql/

linux/sql-server-linux-setup-machine-learning to learn how to install SQL Server

Machine Learning Services for Linux.

 Deploying SQL Server Containers
There is no special gallery image or process to deploy SQL Server Containers in Azure

Virtual Machine. You will use the same process you use today to deploy a SQL Server

container in a virtual machine. You can read more about this process at https://docs.

microsoft.com/en-us/sql/linux/quickstart-install-connect-docker.

Tip If you need to deploy SQL Server containers in a Windows 10 vM with
Docker, you may need to deploy a vM that supports nested virtualization. You can
read more about this at https://docs.microsoft.com/en-us/azure/
virtual-machines/windows/nested-virtualization. You can read more
about how to run Linux Containers on Windows Server at https://success.
docker.com/article/how-to-enable-linux-containers-on-windows-
server- 2019.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-sql-agent
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-sql-agent
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nested-virtualization
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nested-virtualization
https://success.docker.com/article/how-to-enable-linux-containers-on-windows-server-2019
https://success.docker.com/article/how-to-enable-linux-containers-on-windows-server-2019
https://success.docker.com/article/how-to-enable-linux-containers-on-windows-server-2019

124

Another option in Azure to deploy SQL Server containers is with Azure DevOps and

Pipelines. I did a demonstration of this capability at the virtual Build 2020 conference

which you can watch at https://mybuild.microsoft.com/sessions/61cd7d08-115b-

4ff5-b1a7-5df70649863e?source=sessions. The code for the demo can be found

at https://github.com/microsoft/bobsql/tree/master/demos/build2020. This

capability is so powerful including the ability for Azure to automatically deploy your

containers without you needing to deploy a VM.

Finally, Azure Kubernetes Service (AKS) provides a method to deploy containers

at scale using the power of Kubernetes. You can see a tutorial of how to do this at

https://docs.microsoft.com/en-us/sql/linux/tutorial-sql-server-containers-

kubernetes?view=sql-server-ver15.

 SQL Virtual Machine Resource Provider
You have seen several examples in this chapter of special options and advantages

of deploying a SQL Server in Azure Virtual Machine with a gallery image, including

licensing, configuration, and automation. This is all made possible through the SQL
Virtual Machine Resource Provider in coordination with the SQL IaaS Extension.

If you deploy using a SQL Server gallery image, you just take advantage of what the

resource provider does, and no action is required from you. However, if you deploy on

your own and want these advantages including licensing, you have some steps you need

to do.

First, you need to ensure your Azure subscription has the Microsoft.

SqlVirtualMachine resource provider registered. You can do this from the Azure Portal as

part of your Azure subscription. Or you can use the following PowerShell command:

Register-AzureRmResourceProvider -ProviderNamespace Microsoft.

SqlVirtualMachine

Next, you need to register your virtual machine with the resource provider.

Registering your VM installs the SQL Server IaaS Agent Extension. The default mode to

install this agent is called lightweight mode. This provides you the capability of taking

advantage of Azure Hybrid Benefit (AHB) and does not require a restart of the VM.

You can then register the VM for full management mode which gives you all the

capabilities as you do when using a SQL Server gallery image. This does, however,

require a restart of the VM.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://mybuild.microsoft.com/sessions/61cd7d08-115b-4ff5-b1a7-5df70649863e?source=sessions
https://mybuild.microsoft.com/sessions/61cd7d08-115b-4ff5-b1a7-5df70649863e?source=sessions
https://github.com/microsoft/bobsql/tree/master/demos/build2020
https://docs.microsoft.com/en-us/sql/linux/tutorial-sql-server-containers-kubernetes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/linux/tutorial-sql-server-containers-kubernetes?view=sql-server-ver15

125

Note For older releases of SQL Server such as SQL Server 2008, you can even
use a “noAgent” mode so you can register your SQL Server to take advantage of
licensing.

You can read about all of the steps at https://docs.microsoft.com/en-us/azure/

azure-sql/virtual-machines/windows/sql-vm-resource-provider-register. Mine

Tokus, the lead program manager for SQL Server on Azure VM, wrote an excellent blog

describing the SQL VM Resource Provider at https://azure.microsoft.com/en-us/

blog/sql-server-on-azure-virtual-machine-resource-provider/.

Once your VM is registered or if you used a SQL gallery image, your VM is now

considered both an Azure virtual machine resource and also a SQL virtual machine. This

means your VM will show up when searching for Azure SQL resources. Additionally, the

portal will show additional properties as seen in Figure 3-23 based on the deployment I

did earlier in this chapter.

Figure 3-23. A registered SQL virtual machine

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-vm-resource-provider-register
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-vm-resource-provider-register
https://azure.microsoft.com/en-us/blog/sql-server-on-azure-virtual-machine-resource-provider/
https://azure.microsoft.com/en-us/blog/sql-server-on-azure-virtual-machine-resource-provider/

126

Note one easy way to get to this overview page is to go to the Resource Menu of
your virtual machine and select SQL Server Configuration. Then click Manage SQL
virtual machine.

In addition to using the portal, we have added to the az cli a special option called

az sql vm. This allows you to register your VM or change SQL Server properties. You

can read all these options at https://docs.microsoft.com/en-us/cli/azure/sql/

vm?view=azure-cli-latest.

 Configuration
Inside the VM, your configuration of SQL Server is completely identical to a virtual

machine you deploy in your data center. There are some aspects to configuration of the

virtual machine from the Azure infrastructure you should be aware of.

 Stopping vs. Deallocating
There could be several reasons to shut down your virtual machine in Azure. If you shut

down the virtual machine inside the VM (e.g., Windows shutdown), the VM is stopped

but compute resources are reserved for the VM, which means you are still billed for

compute. The VM status will show as Stopped in the portal and CLI interfaces. To shut

down the VM and ensure you are not billed for compute, you need to use the interfaces

outside the VM (such as the portal or az CLI) to stop the VM. In this case, the status of the

VM is listed as Stopped (deallocated). Depending on your requirements, you can even

automate the process of starting and stopping VMs using Azure interfaces. Read more

at https://techcommunity.microsoft.com/t5/educator-developer-blog/azure-

virtual- machine-auto-shutdown/ba-p/379342.

A related topic is maintenance windows for the infrastructure hosting virtual

machines. Read more about updates and maintenance of Azure virtual machine hosts

at https://docs.microsoft.com/en-us/azure/virtual-machines/maintenance-and-

updates.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/cli/azure/sql/vm?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/sql/vm?view=azure-cli-latest
https://techcommunity.microsoft.com/t5/educator-developer-blog/azure-virtual-machine-auto-shutdown/ba-p/379342
https://techcommunity.microsoft.com/t5/educator-developer-blog/azure-virtual-machine-auto-shutdown/ba-p/379342
https://docs.microsoft.com/en-us/azure/virtual-machines/maintenance-and-updates
https://docs.microsoft.com/en-us/azure/virtual-machines/maintenance-and-updates

127

 Resizing
What if you did not pick the right Azure virtual machine size during deployment? You

can use the Azure portal (choose Size from the Resource Menu) or CLI interfaces to

change the size of the virtual machine. This process is called resizing an Azure virtual

machine. Resizing is much like you being able to change the resources available (CPU,

storage, memory, etc.) for a VM within your data center. While you can resize a running

Azure VM, a reboot of the VM is required for the resize operation. The sizes available to

your choice to resize depend on whether your VM is running or stopped (deallocated).

This difference is because there may be only certain sizes available on the current host

of your VM (the running case). To see the full complete list of VM sizes, I recommend

you stop (deallocate) your VM first. Read the overall Azure virtual machine resize story at

https://azure.microsoft.com/en-us/blog/resize-virtual-machines/.

You can use Azure Migrate to move Azure virtual machines to other regions. Read

more at https://docs.microsoft.com/en-us/azure/site-recovery/azure-to-azure-

tutorial-migrate.

In addition, to change the resource group or subscription of your virtual machine,

read the documentation at https://docs.microsoft.com/en-us/azure/azure-

resource- manager/management/move-resource-group-and-subscription.

 Security
There are a few areas you can configure related to security for SQL Server on Azure

Virtual Machine outside of the standard SQL Server security options for the database

engine.

 RBAC

Role-Based Access Control (RBAC) allows you to assign privileges to other Azure

accounts to have permissions to manage the Azure virtual machine. Learn more

at https://docs.microsoft.com/en-us/azure/role-based-access-control/

quickstart-assign-role-user-portal.

 Advanced Data Security

Advanced Data Security (ADS) represents a series of capabilities for security for SQL

Server in Azure. You will learn more about these capabilities in Chapter 6 of this book.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://azure.microsoft.com/en-us/blog/resize-virtual-machines/
https://docs.microsoft.com/en-us/azure/site-recovery/azure-to-azure-tutorial-migrate
https://docs.microsoft.com/en-us/azure/site-recovery/azure-to-azure-tutorial-migrate
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/move-resource-group-and-subscription
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/move-resource-group-and-subscription
https://docs.microsoft.com/en-us/azure/role-based-access-control/quickstart-assign-role-user-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/quickstart-assign-role-user-portal

128

For now, understand that ADS has been expanded to support Azure Virtual Machine.

Learn more at https://azure.microsoft.com/en-us/updates/advanced-data-

security-for-sql-servers-on-azure-virtual-machines/.

 Other Config Options
There are other options to configure your Azure Virtual Machine using the portal from

the Resource Menu or CLI interfaces.

Examples include resetting the password for the admin user, viewing Security

recommendations, and redeploying the VM to another host. Read more about some

of these options at https://docs.microsoft.com/en-us/azure/virtual-machines/

windows/tutorial-config-management.

 Maximizing Storage Performance
Getting the right size for your Azure Virtual Machine is the number one factor in

ensuring you have the right performance you need for SQL Server (except for standard

SQL Server performance optimization practices).

You saw earlier in this chapter the example of how a SQL Server gallery image will

create additional managed data disks based on Azure Premium storage. To achieve your

best, I/O performance and availability SQL Server on Azure Virtual Machine, you should

keep these principles in mind:

• Do not create any user databases on the OS disk. The system

databases (except for tempdb) are there which should not pose a

problem.

• Put tempdb on the local SSD drive which is also called temporary

storage. If your VM needs to be failed over to a different host, the

contents of tempdb are lost but who cares since tempdb is recreated

at startup time.

• Separate your database and log files on different managed disks.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://azure.microsoft.com/en-us/updates/advanced-data-security-for-sql-servers-on-azure-virtual-machines/
https://azure.microsoft.com/en-us/updates/advanced-data-security-for-sql-servers-on-azure-virtual-machines/
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/tutorial-config-management
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/tutorial-config-management

129

• Use read caching for disks hosting database files (available with

Premium Storage). If you need more disk space and IOPS than a

given managed disks supports, use multiple data disks with concepts

like Storage Spaces.

• Use no caching for disks hosting transaction log files.

• Use Premium managed disks at minimum (also called Premium

SSD). Recently, a new disk type called Ultra is also available for the

most demanding latency-sensitive workloads.

• Choose disks and VM sizes that support your IOPS, throughput, and

latency requirements.

You of course must balance these choices with cost. All the managed disks are based

on Azure Blob Storage. An entire chapter would be needed to give you all the internals of

how Azure Blob Storage and managed disks work. For now, look at these resources:

• Details on Azure Managed Disk Types can be found at https://

docs.microsoft.com/en-au/azure/virtual-machines/linux/

disks-types. You will see in these tables what sizes, IOPS, and

throughput each type supports.

• We have guidance in our documentation specific to choosing

the right storage for SQL Server for Azure VM at https://docs.

microsoft.com/en-us/azure/azure-sql/virtual-machines/

windows/performance-guidelines-best-practices#storage-

guidance.

• This documentation provides nice guidance on choosing the right

sizes for Azure Premium storage along with VM size. You can read

this at https://docs.microsoft.com/en-us/azure/virtual-

machines/windows/premium-storage-performance.

• Check out this excellent blog post by Mine Tokus on why Azure VM

can provide the performance you need. This blog post talks about the

importance of how Azure Blob Storage Read Cache improves OLTP

performance. There are some good performance numbers as well in

this blog post at https://techcommunity.microsoft.com/t5/sql-

server/optimize-oltp-performance-with-sql-server-on-azure-

vm/ba-p/916794.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-au/azure/virtual-machines/linux/disks-types
https://docs.microsoft.com/en-au/azure/virtual-machines/linux/disks-types
https://docs.microsoft.com/en-au/azure/virtual-machines/linux/disks-types
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices#storage-guidance
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices#storage-guidance
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices#storage-guidance
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices#storage-guidance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage-performance
https://techcommunity.microsoft.com/t5/sql-server/optimize-oltp-performance-with-sql-server-on-azure-vm/ba-p/916794
https://techcommunity.microsoft.com/t5/sql-server/optimize-oltp-performance-with-sql-server-on-azure-vm/ba-p/916794
https://techcommunity.microsoft.com/t5/sql-server/optimize-oltp-performance-with-sql-server-on-azure-vm/ba-p/916794

130

• An independent study on performance for SQL Server on Azure

Virtual Machine was published by GigaOm in early 2020. You

can read the report at https://azure.microsoft.com/en-us/

resources/gigaom-report-sql-transactional-processing-

price-performance/ including how they configured storage.

The key point to make here is that you need to match the right VM size to meet your

storage needs as VM sizes have limits on number of data disks and total IOPS across

all disks. Then provision the data disks you need for database and transaction log files

within that total IOPS.

 Performance Monitoring
Since SQL Server is deployed inside a virtual machine, you should use all the normal

techniques available to you to monitor performance including SQL tools such as

Dynamic Management Views (DMVs) and operating system tools such as Windows

Performance Monitor or Linux tools.

Having said that, Azure Monitor provides integrated performance metrics for virtual

machines including SQL Server performance counters (for Windows only).

Earlier in this chapter, I showed you during the deployment process from the Azure

Portal in the “Management” section an option called Enabled detailed monitoring and

OS guest diagnostics. Using these options will enable abilities to use the Azure Monitor

system to look at various metrics about the performance of the guest VM. In addition,

you can configure the ability to integrate basic SQL Server performance metrics into this

system.

 Azure Metrics
I showed earlier in this chapter in the Monitoring Pane of the Overview page of the

VM basic metrics you can see visually for things like CPU, Network, and I/O. From the

Resource Menu, you can click Metrics to see a different view of this information such as

in Figure 3-24.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://azure.microsoft.com/en-us/resources/gigaom-report-sql-transactional-processing-price-performance/
https://azure.microsoft.com/en-us/resources/gigaom-report-sql-transactional-processing-price-performance/
https://azure.microsoft.com/en-us/resources/gigaom-report-sql-transactional-processing-price-performance/

131

Think of Azure metrics like your Windows Performance Monitor for the VM that

automatically has a history of 14 days.

You can use the Diagnostic Settings option in the Resource Menu to add in SQL

Server metrics to this metric collection. By selecting Diagnostic Settings and then

selecting the option for Configure performance counters, you can check the option for

SQL Server and click Save. It will take a few minutes to save these diagnostic settings.

Tip notice on the Diagnostic Settings screen many other options to collect other
data like event logs.

Once these are saved, you can go back and look at common SQL Server performance

metrics as seen in Figure 3-25.

Figure 3-24. Azure metrics for a virtual machine

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

132

 Logs
Another way to look at metrics over time is to use the Logs option from the Resource

Menu. Azure metrics are stored in Azure Monitor Logs. You can use the Kusto Query

Language (KQL) to view this data. After selecting Logs from the Resource Menu, see an

example query by choosing Chart CPU usage trends and click Run. You should see a

chart like Figure 3-26.

Figure 3-25. Using Azure Metrics for SQL Server

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

133

I will show you how to use Kusto in later chapters in this book for Azure SQL

Database. For now, you can learn more about Kusto at https://docs.microsoft.com/

en-us/azure/data-explorer/kusto/concepts/.

 Insights
When you selected Enabled detailed monitoring and chose a Log Analytics workspace

during deployment, Azure Monitor started collecting metrics in a Log Analytics

workspace. By choosing the Insights option from the Resource Menu, you can look at

another visualization of these metrics. A Log Analytics workspace will keep metrics for

93 days of history. You can see an example of these metrics in Figure 3-27.

Figure 3-26. Azure Logs with the Kusto Query Language (KQL)

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/

134

You can go even farther using a concept called Workbooks which you can read

more about https://docs.microsoft.com/en-us/azure/azure-monitor/insights/

vminsights-workbooks.

 Networking
When I deployed the Azure virtual machine earlier in this chapter, several types of

network resources were created in the resource group, including a virtual network,

network interface, public IP address, and network security group.

The public IP address is important as it allows you to use tools like Remote Desktop

to connect to the virtual machine. The network interface is the interconnection between

the VM and the virtual network. The network security group (NSG) provides an Access

Control List (ACL) for rules to allow or deny network traffic to the VM. You can read the

complete picture of networks and Azure virtual machines at https://docs.microsoft.

com/en-us/azure/virtual-machines/windows/network-overview#network-security-

groups.

Figure 3-27. Insights for Azure Virtual Machine using Log Analytics

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/azure-monitor/insights/vminsights-workbooks
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/vminsights-workbooks
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/network-overview#network-security-groups
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/network-overview#network-security-groups
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/network-overview#network-security-groups

135

Previously I connected to the virtual machine using the Remote Desktop Client

(RDP) which used the public IP address and access to the RDP port (3389). There could

be other methods you want to use to connect to the virtual machine.

I earlier recommend against enabled the SQL Server port 1433 to be open to the

public Internet. However, that is the only method for you to connect a SQL Server client

application or tool (like SSMS) the SQL Server instance in the Azure Virtual Machine

unless you run the application or tool in a computer that is connected to the virtual

network of the VM. One method to do this is to deploy the application or another VM

in Azure and join the same Azure virtual network (a simple way to do this for another

Azure VM is deploy it in the same resource group). You can also deploy in another Azure

virtual network and set up a configuration called Virtual Network Peering which you can

read about at https://docs.microsoft.com/en-us/azure/virtual-network/virtual-

network- peering-overview.

Finally, you may find yourself wanting to connect on-premises resources such

as applications or other computer or virtual machines to the virtual network for the

Azure VM. You can read more about the details of setting up a configuration like

this at https://docs.microsoft.com/en-us/azure/architecture/reference-

architectures/hybrid-networking/.

Tip A great resource to learn everything you need to know about Azure virtual
networks can be found at https://docs.microsoft.com/en-us/azure/
virtual-network/.

 HADR
No matter where you deploy SQL Server, almost everyone wants high availability at some

level and the ability to execute when necessary disaster recovery techniques. Azure

provides methods to deliver several choices for HADR.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/hybrid-networking/
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/hybrid-networking/
https://docs.microsoft.com/en-us/azure/virtual-network/
https://docs.microsoft.com/en-us/azure/virtual-network/

136

 Azure Storage
In the example in this chapter where I showed you how to deploy SQL Server in Azure

Virtual Machine, I used data disks based on Premium managed disks from Azure

storage. By default, managed disks have built-in redundancy called Locally Redundant
Storage (LRS). LRS maintains three copies of data within the data center region. You can

read more about Azure Storage redundancy at https://docs.microsoft.com/en-us/

azure/storage/common/storage-redundancy.

 Backups
Since you are running SQL Server in the Azure infrastructure, you will no doubt want

to store backups of SQL Server database and transaction logs within Azure. You could

store your backups using T-SQL to a separate data disk using managed disks. However,

another option is to store your backups to Azure Storage accounts using the backup to

URL capability of SQL Server. You can read more about SQL Server Backup to URL at

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/

sql-server-backup-to-url?view=sql-server-ver15. One advantage of using URL

backups is you can configure your Azure Storage account to use a higher level of

availability called geo-redundant storage (GRS). View the Service-Level Agreement

(SLA) for Azure Storage accounts at https://azure.microsoft.com/en-us/support/

legal/sla/storage/v1_5/.

Another option is to integrate backups for SQL Server with the Azure Backup

service. Azure Backup offers a streaming-based service to back up SQL Server to Azure

Storage. Azure Backups involve a VM extension that will use the Virtual Device Interface

(VDI) APIs with SQL Server for backups. Read more about using Azure Backup with SQL

Server at https://docs.microsoft.com/en-us/azure/backup/backup-azure-sql-

database.

The final option for backups in Azure uses file snapshot backups. File snapshot

backups can be extremely fast. They require storing SQL Server data files directly to an

Azure storage account vs. a managed disk. You can read more about SQL Server file

snapshot backups in Azure at https://docs.microsoft.com/en-us/sql/relational-

databases/backup-restore/file-snapshot-backups-for-database-files-in-

azure?view=sql-server-ver15.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/sql-server-backup-to-url?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/sql-server-backup-to-url?view=sql-server-ver15
https://azure.microsoft.com/en-us/support/legal/sla/storage/v1_5/
https://azure.microsoft.com/en-us/support/legal/sla/storage/v1_5/
https://docs.microsoft.com/en-us/azure/backup/backup-azure-sql-database
https://docs.microsoft.com/en-us/azure/backup/backup-azure-sql-database
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/file-snapshot-backups-for-database-files-in-azure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/file-snapshot-backups-for-database-files-in-azure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/file-snapshot-backups-for-database-files-in-azure?view=sql-server-ver15

137

 Always On Failover Cluster Instance
A failover cluster instance (FCI) provides high availability for SQL Server through shared

storage. Since this is a virtual machine, using an FCI will be very much like a normal

SQL Server. However, one of the key aspects to FCI is shared storage. Azure provides

a concept called a premium file share which can be used for this purpose. Mine Tokus

has a very nice blog post you can read about using premium file shares at https://

azure.microsoft.com/en-us/blog/leverage-azure-premium-file-shares-for-high-

availability- of-data/. In addition, you can read a complete list of instructions for the

process of configuring an FCI with premium file shares at https://docs.microsoft.

com/en-us/azure/azure-sql/virtual-machines/windows/failover-cluster-

instance-premium-file-share-manually-configure. These instructions also include

steps to configure an Azure load balancer for the IP address of the FCI.

 Always On Availability Groups
Always On Availability Groups (AG) increase your high availability RPO and RTO using

replicas. You can read through the process of setting up an AG in Azure at https://docs.

microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/availability-

group- manually-configure-tutorial. I will tell you up front this is a fairly complex

process but uses Azure storage for each replica and an Azure load balancer to support

the AG listener. However, if you need the capabilities of SQL AG based on your RPO and

RTO needs, it can be worth it to get this deployed and configured correctly.

The az sql vm CLI provides option to help you set up an AG with the SQL Resource

Provider. In addition, we have built ARM templates to help automate the process of

deploying and configuring an AG in Azure. You can read more at https://azure.

microsoft.com/en-us/blog/automate-always-on-availability-group-deployments-

with-sql-virtual-machine-resource-provider/. You can also directly access

templates at https://docs.microsoft.com/en-us/azure/azure-sql/virtual-

machines/windows/availability-group-quickstart-template-configure.

One other scenario to consider is to set up a secondary replica for an AG in Azure

from an on-premises AG primary replica. You can get more guidance on how to set

this up at https://docs.microsoft.com/en-us/azure/virtual-machines/windows/

sqlclassic/virtual-machines-windows-classic-sql-onprem-availability.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://azure.microsoft.com/en-us/blog/leverage-azure-premium-file-shares-for-high-availability-of-data/
https://azure.microsoft.com/en-us/blog/leverage-azure-premium-file-shares-for-high-availability-of-data/
https://azure.microsoft.com/en-us/blog/leverage-azure-premium-file-shares-for-high-availability-of-data/
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/failover-cluster-instance-premium-file-share-manually-configure
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/failover-cluster-instance-premium-file-share-manually-configure
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/failover-cluster-instance-premium-file-share-manually-configure
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/availability-group-manually-configure-tutorial
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/availability-group-manually-configure-tutorial
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/availability-group-manually-configure-tutorial
https://azure.microsoft.com/en-us/blog/automate-always-on-availability-group-deployments-with-sql-virtual-machine-resource-provider/
https://azure.microsoft.com/en-us/blog/automate-always-on-availability-group-deployments-with-sql-virtual-machine-resource-provider/
https://azure.microsoft.com/en-us/blog/automate-always-on-availability-group-deployments-with-sql-virtual-machine-resource-provider/
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/availability-group-quickstart-template-configure
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/availability-group-quickstart-template-configure
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sqlclassic/virtual-machines-windows-classic-sql-onprem-availability
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sqlclassic/virtual-machines-windows-classic-sql-onprem-availability

138

 Go Further with Azure Availability
Azure virtual machine is part of the Azure infrastructure that provides for availability

during unplanned and planned events. For example, if an unplanned hardware problem

occurs, Azure can use live migration technologies to fail over your azure virtual machine

to a healthy host. Azure also may update the underlying hosts of your virtual machine

which may or may not require a reboot. You can read more about unplanned and

planned downtime for Azure virtual machines at https://docs.microsoft.com/en-us/

azure/virtual-machines/windows/manage-availability#understand-vm-reboots---

maintenance-vs-downtime.

Azure offers more options to go further with high availability for Azure virtual

machines:

 1. Availability Set – Spreads your VMs across multiple fault and

update domains in the same datacenter. Basically, this makes sure

your VMs are spread across different racks and switches. The SLA

is 99.95%.

 2. Availability Zone – Think of this as spreading an availability set

across data centers within a region. The SLA is 99.99% but can cost

more.

Unfortunately, you need to make this choice when you deploy. You can change it

later, but you must migrate your VM to do it.

These choices only make sense if you plan to use an HADR solution for SQL Server

like AGs, FCI, DB Mirroring, Replication, Log Shipping, and so on.

 SQL Server and Linux Availability
SQL Server on Linux supports Always On Failover Cluster Instance and Availability

Groups functionality through the database engine. Automatic failover capabilities are

often supported through Linux packages like Pacemaker. In order to properly ensure

high availability with Pacemaker and Azure virtual machine, you may need to consider

using a Linux distribution like Red Hat Enterprise Linux (RHEL). Azure has integrated

concepts like STONITH with Azure virtual machine with RHEL. Learn more how to

configure an AG with SQL Server on RHEL and Azure virtual machine at https://

docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/linux/rhel-high-

availability-stonith-tutorial.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-availability#understand-vm-reboots---maintenance-vs-downtime
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-availability#understand-vm-reboots---maintenance-vs-downtime
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-availability#understand-vm-reboots---maintenance-vs-downtime
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/linux/rhel-high-availability-stonith-tutorial
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/linux/rhel-high-availability-stonith-tutorial
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/linux/rhel-high-availability-stonith-tutorial

139

 Summary
You have learned in this chapter how to deploy and configure SQL Server with Azure

virtual machine looking at many different options as part of deployment. You have also

learned unique aspects of security, performance, and HADR related to SQL Server and

Azure VM.

Azure VM provides a great infrastructure for running SQL Server. Mine Tokus

summed it up when I was talking to her about SQL Server and Azure VM. “Our

customers love the agility and elasticity Azure VMs. It is amazing that cores and memory

available to SQL Server can be increased only with a VM restart exactly when the

workload demands; no need to plan for hardware purchases months away. Azure VM

has price performance advantages of running SQL Server on Azure. For example, Azure

Storage offers high performance and high capacity reads which is critical for SQL Server

performance for free. Considering the close collaboration between SQL Server, Azure

Compute, and Azure Storage engineering teams, Azure will stay as the best hosting

platform for SQL Server in the future.”

Now that you have studied SQL Server on Azure VM, it is time to show you how to

deploy and configure Azure SQL Database and Managed Instance.

ChApTeR 3 SQL SeRveR on AzuRe vIRTuAL MAChIne

141
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_4

CHAPTER 4

Deploying Azure SQL
Deploying an Azure SQL Managed Instance or Database is a different but similar

experience than deploying SQL Server on Azure Virtual Machine. The experience is

the same because you can use the Azure portal and CLI. The difference is that Azure is

managing the virtual machine and infrastructure, so several of the options you pick for a

virtual machine you do not have to worry about.

In this chapter, you will learn the options and process to deploy and connect to an

Azure SQL Managed Instance and Database. You will also learn the options to migrate

existing databases into Azure SQL. In addition, you will learn some implementation

details of the architecture used to host Azure SQL Managed Instances and Databases.

You have the option to follow along the examples in this chapter. You will need the

following to complete these examples:

• An Azure subscription.

• A minimum of Contributor role access to the Azure subscription.

You can read more about Azure built-in roles at https://docs.

microsoft.com/en-us/azure/role-based-access-control/built-

in- roles.

• Access to the Azure Portal (web or Windows application).

• Installation of the az CLI (see https://docs.microsoft.com/en-us/

cli/azure/install-azure-cli?view=azure-cli-latest for more

details). You can also use the Azure Cloud Shell instead since az is

already installed. You can read more about the Azure Cloud Shell at

https://azure.microsoft.com/en-us/features/cloud-shell/.

https://doi.org/10.1007/978-1-4842-5931-3_4#DOI
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com/en-us/features/cloud-shell/

142

• You will run some T-SQL in this chapter, so install a tool like SQL

Server Management Studio (SSMS) at https://docs.microsoft.

com/en-us/sql/ssms/download-sql-server-management-studio-

ssms?view=sql-server-ver15. You can also use Azure Data Studio

at https://docs.microsoft.com/en-us/sql/azure-data-studio/

download-azure-data-studio?view=sql-server-ver15.

• For migration scenarios, you will need to download the Data Migration

Assistant (DMA) tool from https://docs.microsoft.com/en-us/sql/

dma/dma-overview and have access to a SQL Server instance.

 Pre-deployment Planning
Before you jump into deploying an Azure SQL Database or Managed Instance, I

recommend you spend some time doing some pre-deployment planning. Reviewing

your choices and making a few informed decisions will save you time and money.

 New Deployment or Migration
One of the first decisions to make which may be easy is whether you plan to migrate

an existing database or instance or deploy a new database or instance. The process

of deploying will be the same, but migrating implies you need to assess your current

SQL Server instance, database, or other database environment before you deploy. Your

assessment will give you guidance on what type of deployment choice you need to make

based on your current requirements. You must decide what possible changes must be

made to your application, schema, scripts, or other aspects to your current deployment

with SQL Server or other database platforms. You also must consider how to migrate

your actual data into the new deployment. This chapter will include sections specifically

geared around what consideration and tools you can use to migrate to Azure SQL

Managed Instance and Database. Here are two great resources for you to consider as you

think about migration:

• Azure Migration Program – https://azure.microsoft.com/en-us/

migration/migration-program/

• The Microsoft Data Migration Guide – https://datamigration.

microsoft.com/

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/dma/dma-overview
https://docs.microsoft.com/en-us/sql/dma/dma-overview
https://azure.microsoft.com/en-us/migration/migration-program/
https://azure.microsoft.com/en-us/migration/migration-program/
https://datamigration.microsoft.com/
https://datamigration.microsoft.com/

143

 Making Deployment Choices
Whether you are migrating or creating a new deployment, you have several choices to

make that is worth the time to plan out. Chapter 2 of this book is invaluable to go back

and read as it describes choices and differences between Azure SQL Managed Instance

and Azure SQL Database.

Having said that, let us quickly review some important choices at a high level that

can affect your decision-making:

• If you need SQL Server instance features like SQL Server Agent,

Database Mail, and cross-database queries, Managed Instance is the

choice you need to make.

• If your database size is > 8TB, your only choice as of the time of

writing this book is Azure SQL Database Hyperscale.

Past these two choices, either Azure SQL Managed Instance or Database likely meets

your needs. However, as I called out in Chapter 2 of the book, there can be advantages

in using Azure SQL Database because Microsoft will manage both the infrastructure

and the SQL Server instance to let you focus on the database. Furthermore, Azure SQL

Database can offer you more options such as Serverless compute and Automated Tuning

for indexes.

The options you will pick as you deploy a Managed Instance or Database will look

like the following as seen in Figure 4-1.

Figure 4-1. Deployment choices for Azure SQL

Chapter 4 Deploying azure SQl

144

 Deployment Method

You can deploy an Azure Managed Instance using the Azure Portal or through a CLI with

the az utility, PowerShell, or even REST APIs (az rest can be used if you do not want to

write code).

If you are just trying out Azure SQL or doing a proof of concept, you can easily use

the Azure Portal. However, for a repeatable process to deploy (imagine if you needed to

for some reason redeploy at any time), a script using a CLI is a better option. Remember

you also can use Azure templates to help automate deployments. You can read more

about using Azure templates for Azure SQL at https://docs.microsoft.com/en-us/

azure/azure-sql/database/arm-templates-content-guide?tabs=single-database.

Another option for developers to automate deployment is with Azure DevOps and

Pipelines. I really like this blog post by my colleague at Microsoft Arvind Shyamsundar

on DevOps and Azure SQL at https://devblogs.microsoft.com/azure-sql/devops-

for- azure-sql/.

 Deployment Option

I discussed earlier whether you will consider Azure SQL Managed Instance or Database.

Within each of these options are a choice of using a pool. Azure SQL Managed Instance

offers a Managed Instance Pool which could be a better fit for a smaller, cost-effective

Managed Instance. Deployment times are also much faster with pools. You can read

more about Managed Instance Pools at https://docs.microsoft.com/en-us/azure/

azure-sql/managed-instance/instance-pools-overview.

Azure SQL Database provides an option called an elastic pool. An elastic pool can

be a good choice if you plan to use Azure SQL Database to host many databases. ISVs

and Software as a Service (SaaS) developers often look at this choice to save costs and

manage databases more efficiently. You can read more about elastic pools at https://

docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview.

 Region

Choosing a specific Azure region can be important just as I described in Chapter 3 on

virtual machines. You need to make sure your deployment options are available in your

Azure region choice. A full list of Azure products by region can be found at https://

azure.microsoft.com/en-us/global-infrastructure/services/.

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/arm-templates-content-guide?tabs=single-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/arm-templates-content-guide?tabs=single-database
https://devblogs.microsoft.com/azure-sql/devops-for-azure-sql/
https://devblogs.microsoft.com/azure-sql/devops-for-azure-sql/
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://azure.microsoft.com/en-us/global-infrastructure/services/
https://azure.microsoft.com/en-us/global-infrastructure/services/

145

You may have certain compliance and security requirements which also dictate what

region you choose.

You may be implementing specific HADR options like Availability Zones, Geo-

replication, or Auto-Failover Groups and have specific regions in mind to make those

deployments successful.

If you need to move an Azure SQL Managed Instance or database to another region,

read a checklist in our documentation at https://docs.microsoft.com/en-us/azure/

azure-sql/database/move-resources-across-regions.

Azure SQL Database is a “Ring 0” service which means it gets deployed in every

region as a default service. Managed Instance is not exactly at that status yet, but it is

generally available in all regions.

In addition, you need to consider where your application will be hosted and latency

requirements between where the application will be hosted and your Azure SQL

deployment. Consider performance and proximity to other services. I was chatting with

my colleague Anna Thomas on this topic. She said, “…but I feel that it’s not just where the

application is – where are the users? Where should the application be? If you have geo-

replication or auto-failover groups, how do you build a globally available solution?”

 Purchasing Model

For Azure SQL Database only, you will need to choose a Purchasing model. The choices

are DTU or vCore. I explained these models and the history behind them in Chapters 1

and 2 of the book. While the DTU model may be a valid choice for you, I recommend the

vCore model.

If you select the DTU model and want to move to the vCore model at a later date,

consult the documentation at https://docs.microsoft.com/en-us/azure/azure-sql/

database/migrate-dtu-to-vcore.

 Service Tier (SLO)

If Azure SQL Managed Instance is your deployment option, then you will need to select

a Service Tier of General Purpose (GP) or Business Critical (BC). A SLO stands for Service

Level Objective and is the combination of choices of Purchasing Model, Service Tier, and

Hardware. I described these service tier options in Chapter 2 of the book. While resource

limits and performance may differ, one of the primary differences with these tiers is

how Availability works which you will learn more about in Chapter 8 of the book. One

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/move-resources-across-regions
https://docs.microsoft.com/en-us/azure/azure-sql/database/move-resources-across-regions
https://docs.microsoft.com/en-us/azure/azure-sql/database/migrate-dtu-to-vcore
https://docs.microsoft.com/en-us/azure/azure-sql/database/migrate-dtu-to-vcore

146

notable difference for Business Critical is that it supports In-Memory OLTP capabilities.

A comparison between GP and BC for Managed Instance can be found at https://docs.

microsoft.com/en-us/azure/azure-sql/database/service- tiers- general-purpose-

business-critical.

Tip you will see later in this chapter that the time it takes to deploy for Managed
instance can be lengthy. Changing between gp and BC is possible but could result
in significant downtime.

If Azure SQL Database is your deployment option, then you also have the choice

of General Purpose (GP) vs. Business Critical (BC) service tiers. In addition, you have

the choice of Hyperscale. If you choose General Purpose, you also have the choice of

Provisioned vs. Serverless. This is also called a computer model or tier. I covered all these

options in Chapter 2 of the book.

GP vs. BC is a similar choice as with Azure SQL Managed Instance. Read the same

documentation page at https://docs.microsoft.com/en-us/azure/azure-sql/

database/service-tiers-general-purpose-business-critical for a comparison.

Hyperscale is your best choice for very large databases and has some attractive capabilities

for scaling, replicas, and restore performance. You can read more about Hyperscale at

https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-

hyperscale. Serverless is a unique option we have created for autoscale and scenarios

where your database may always not be utilized. It provides a new cost- effective way to

deploy and use an Azure SQL Database. Read more about Serverless at https://docs.

microsoft.com/en-us/azure/azure-sql/database/serverless-tier- overview.

Switching between GP and BC for Azure SQL Database is typically significantly faster

than with Managed Instance. You can also switch between Serverless and Provisioned

easily. However, Hyperscale is the one option you cannot switch back once you choose it

without completing migrating your database to the new deployment option.

 Hardware

Even though for Azure SQL we abstract you from the infrastructure and virtualization

used for the deployment, we provide options for a hardware generation.

We are constantly looking to take advantage of new hardware supplied within the

Azure infrastructure so these choices may be new by the time you are reading this book.

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-general-purpose-business-critical
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview

147

As of summer of 2020, the only hardware generation choices aside from the default

Gen5 generation are with Azure SQL Database. The Fsv2-series is available in certain

regions for General Purpose. This hardware option provides more CPU performance

per vCore than Gen5. The M-series option for Business Critical offers more memory and

vCores. Keep track of the latest on hardware generations at https://docs.microsoft.

com/en-us/azure/azure-sql/database/service-tiers-vcore?tabs=azure-

portal#hardware-generations.

Note you might see some evidence of gen4 hardware as you use azure
SQl. this hardware generation is being phased out, so focus on gen5 or newer
hardware generations.

 Sizes

Once you have figured these options, you have choices on size. The DTU model for

Azure SQL Database has a DTU number you can choose (and a data size). For the vCore

purchasing you model, you have both number of vCores and database size to select.

There are a few differences on how these options work depending on your other choices.

I will describe these differences as I walk you through the deployment process in the rest

of this chapter.

 Price

Just like with Azure Virtual Machine, take advantage of the Azure Pricing Calculator

to plug in some of these choices to get an idea of your costs. This includes using Azure

Hybrid Benefit. You can find the pricing calculator for Azure SQL Managed Instance at

https://azure.microsoft.com/en-ca/pricing/details/azure-sql/sql-managed-

instance/single/ and Azure SQL Database at https://azure.microsoft.com/en-us/

pricing/calculator/?service=sql-database. Figure 4-2 shows an example of the

pricing calculator for Azure SQL Database.

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal#hardware-generations
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal#hardware-generations
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-vcore?tabs=azure-portal#hardware-generations
https://azure.microsoft.com/en-ca/pricing/details/azure-sql/sql-managed-instance/single/
https://azure.microsoft.com/en-ca/pricing/details/azure-sql/sql-managed-instance/single/
https://azure.microsoft.com/en-us/pricing/calculator/?service=sql-database
https://azure.microsoft.com/en-us/pricing/calculator/?service=sql-database

148

 Consider Resource Limits
Your choices from deployment options, service tier, and sizes can affect your resource

limits. These are the following resource limits to consider as you make these choices. I

call these out because these may not be obvious as you deploy through the Azure Portal:

• Max Memory

• Max Log Size

• Log Rate Governance

• IOPS and I/O latency

• Max size of Tempdb

• Max concurrent workers

• Backup Retention

Figure 4-2. The pricing calculator for Azure SQL Database

Chapter 4 Deploying azure SQl

149

I will discuss more about Log Rate Governance and IOPS and I/O latency in Chapter 7

of this book. For now, keep these concepts in mind as they can affect performance of

applications such as those that are heavy transaction log users.

To see the specific limits for Azure SQL Managed Instance, please see these very

well-documented tables at https://docs.microsoft.com/en-us/azure/sql-database/

sql-database-managed-instance-resource-limits.

To see the specific limits for Azure SQL Database, please see the table at https://

docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-

limits- single-databases.

You should also know that you have overall Azure SQL limits per subscription per

region. You can view what these limits are at https://docs.microsoft.com/en-us/

azure/sql-database/sql-database-managed-instance-resource-limits#regional-

resource- limitations and https://docs.microsoft.com/en-us/azure/sql- database/

sql-database-resource-limits-database-server#maximum-resource- limits.

It is possible to make a request to Microsoft increase your subscription limits. This

is called a quota increase request. Read more at https://docs.microsoft.com/en-us/

azure/sql-database/quota-increase-request.

 Deploying Azure SQL Managed Instance
Similar to the process I documented in Chapter 3 for a virtual machine, deploying an

Azure SQL Managed Instance through the Azure Portal starts by using the Azure SQL

option from the Azure Marketplace (I showed you this view in Figure 3-1).

Using the three Azure SQL choices, you would select SQL Managed Instance and

single instance and then click Create.

Note at the time of writing this book, an instance pool can only be created
through powerShell. i will talk more about instance pools in the section titled
“implementation Details.” you can read more about instance pools at https://
docs.microsoft.com/en-us/azure/azure-sql/managed-instance/
instance-pools-overview.

Like the experience of deploying a virtual machine, you will have options but not the same

options. You can see in Figure 4-3 you will have options for Basics, Networking, Additional

settings, and Tags. Basics is the only required set of fields, while the others are optional.

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-vcore-resource-limits-single-databases
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits-database-server
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits-database-server
https://docs.microsoft.com/en-us/azure/sql-database/quota-increase-request
https://docs.microsoft.com/en-us/azure/sql-database/quota-increase-request
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview

150

 Deployment and Options
Let us walk through each screen with deployment options of a Managed Instance and

then deploy it through the Azure Portal.

Figure 4-3. The initial Azure SQL Managed Instance screen in the portal

Chapter 4 Deploying azure SQl

151

 Basics

Figure 4-4 shows the fields you complete on the Basics screen, including choosing

Subscription, Resource group, Region, Managed Instance name (this becomes part of

the server name and @@SERVERNAME of the instance), and Administrator account and

password.

Figure 4-4. Filling out the basics for an Azure SQL Managed Instance deployment

Chapter 4 Deploying azure SQl

152

The Administrator account becomes a SQL Server login assigned to the sysadmin role.

Notice in the middle is an option called Compute + storage. This is where you will

choose Service Tier and Size (vCores + Storage). Notice for me the default is General

Purpose with 8 vCores and 256Gb max storage. Click Configure Managed Instance to

see what your options are which should look like Figure 4-5.

Figure 4-5. Azure SQL Managed Instance Service Tier options

Chapter 4 Deploying azure SQl

153

At the top of this screen, you can see that you can choose General Purpose (GP) or

Business Critical (BC), and some of the resource limits and performance expectations

are listed with each. From pre-deployment planning, remember there are other

significant reasons to choose BC including

• Access to the In-memory OLTP feature

• Higher availability because BC uses a local storage and replica

architecture

Below this are slider bars to choose the desired number of vCores and Maximum

Storage. As you use each slider, the expected costs are updated to the right. vCores are

only allowed in the increments shown on the screen. Managed Instance today supports

up to 80 vCores for both GP and BC. 4 vCores is the minimum choice (Instance Pools

support 2 vCore deployments).

The maximum storage value is called the maximum instance size and is the

maximum size allowed for all database and transaction log files associated with

databases for the managed instance. You should think of this like the maximum of a

storage drive for your databases. The maximum storage size is different depending on

your vCore choice and choice of GP and BC:

• 4 vCores have a max storage limit of 2TB for GP and 1TB for BC.

• Any other vCore choice past this supports up to 8TB for GP and 4TB

for BC.

Note i discussed the architecture of Business Critical deployments in Chapter 2
of the book and will elaborate more on this architecture in Chapter 8. the reason
for the lower limit of storage for BC is the fact that databases are stored on local
SSD drives which have lower capacity than using azure Storage.

Tempdb max sizes are dependent on vCore selections but are counted toward the

overall maximum storage limit. In fact, all databases including system databases count

toward the overall max instance storage size.

Chapter 4 Deploying azure SQl

154

You can run the following query after you deploy your managed instance to see how

much space your databases are taking up in relation to the max storage for the instance:

select top 1 used_storage_gb = storage_space_used_mb/1024,

 max_storage_size_gb = reserved_storage_mb/1024

from sys.server_resource_stats order by start_time desc

You also have a choice to save money using your existing SQL Server licenses with

Azure Hybrid Benefit (AHB).

There is also a statement about backup storage and costs on this page. I will discuss

more about Backups and Managed Instance in Chapter 8 of the book. Click Apply after

you make any changes (Apply is only enabled if you change the defaults. You can click

the X to get back to the Basics screen). For my example, I will leave the choice at 8 vCores

and 256Gb of max storage.

Tip hitting apply will not deploy the Managed instance yet but take your time to
get your choices here as close to correct as possible. Why? you can change them
later, but Managed instance changes to tiers and sizes can be a long operation.
instance pools will not require as much time.

 Networking

Click Next: Networking > to review your networking choices. Your screen should look

like Figure 4-6.

Chapter 4 Deploying azure SQl

155

Figure 4-6. Azure SQL Managed Instance Networking options

Chapter 4 Deploying azure SQl

156

Virtual Network
You can see at the top of the screen that a new virtual network will be created to

host the Azure SQL Managed Instance. One of the advantages of Managed Instance is

that it is deployed in a private virtual network. You could deploy your own Azure Virtual

Network first (you can use the Azure portal or CLI) and select that virtual network on this

deployment screen. If you choose to use your own virtual network, you must configure

it a specific way which you can read at https://docs.microsoft.com/en-us/azure/

azure-sql/managed-instance/vnet-existing-add-subnet.

Connection Type
Notice on my screen I have chosen a connection type of Redirect. The default is

proxy. A proxy connection requires that any connection to the Managed Instance by

a tool or application (a connection to the TDS port 1433) must always go through a

gateway. A redirect connection type uses the gateway to find the direct virtual private

IP address of the node containing the Managed Instance. All subsequent traffic flows

directly to the node. You can read more about these connection types at https://docs.

microsoft.com/en-us/azure/azure-sql/managed-instance/connection-types-

overview. Proxy can be more secure, but redirect can be faster. The virtual network

and included subnet will have all the appropriate Network Security Group (NSG)

rules applied for these types if you choose to create the virtual network as part of this

deployment step.

Public Endpoint
You have the option to enable TDS traffic on a public endpoint. The public endpoint

will be enabled on port 3342 (and get redirected in the virtual network to the node

instance port 1433). While I do not recommend using this option, it is one of the quickest

ways to get connected to a Managed Instance. There could be other scenarios where you

want to enable this. You can read more about the public endpoint for Managed Instance

at https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/public-

endpoint- overview.

Notice that Accelerated networking is automatically enabled for the Managed

Instance.

 Additional Settings

Click Next: Additional settings > to enable a few additional options for the deployment

as seen in Figure 4-7.

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/vnet-existing-add-subnet
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/vnet-existing-add-subnet
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connection-types-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connection-types-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connection-types-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/public-endpoint-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/public-endpoint-overview

157

The Collation here is like setting a collation for a SQL Server. It is important to know

that you cannot change the instance collation after it is supplied here.

Figure 4-7. Additional settings for Managed Instance

Chapter 4 Deploying azure SQl

158

Note you can set and change database collations on Managed instance after
deployment.

The Time zone is the recognized time zone by the SQL Server engine on the

Managed Instance node. I have changed this to my local time zone, but it can be UTC or

whatever time zone you want to choose. You cannot change this after deployment.

The Managed Instance can be part of a failover group which we will talk more about

in Chapter 8 of the book. You will use that option when you review those topics later. For

now, leave it to the default of No.

 Tags

Click Next: Tags > to define a tag like how I described in Chapter 3 with Azure Virtual

Machines. I will use a Name = Environment and Value = Development with a SQL

managed instance resource.

 Deploy!

Click Next: Review + create > to view the final screen before deploying as seen in Figure 4-8.

Figure 4-8. The validation screen for Managed Instance before deploy

Chapter 4 Deploying azure SQl

159

Like Figure 3-16 for Azure Virtual Machine, this screen shows estimated costs,

Terms of use, Privacy Policy, a review of all the options you have chosen, and the option

to download an Azure template that describes these deployment options. Notice the

important warning at the top of the screen on the time it takes to deploy. So, click Create

to deploy, leave this screen open to see the progress, and read on to the next section

about deploying with a CLI and then some architecture and implementation details you

might find interesting why the deployment runs. This section will explain a bit why the

deployment can take so long.

 Deploying with a CLI
An Azure Managed Instance can be deployed with command-line interfaces (CLI)

through the az sql mi (https://docs.microsoft.com/en-us/cli/azure/sql/
mi?view=azure-cli-latest) command interfaces or through New-AzSQLInstance

PowerShell cmdlet (https://docs.microsoft.com/en-us/powershell/module/az.sql/

New-AzSqlInstance).

I went down the path to build an example with az sql mi and found that I needed to

run several az CLI commands to create the virtual network, subnet, and all associated

settings. Therefore, I only recommend you use the az sql mi CLI with Azure templates. An

example template can be found at https://docs.microsoft.com/en-us/azure/azure-

sql/managed-instance/create-template-quickstart?tabs=azure-cli.

PowerShell requires you to set up the virtual network and other context before

executing New-AzSQLInstance. There is a good tutorial on using PowerShell at https://

docs.microsoft.com/en-us/azure/azure-sql/managed-instance/scripts/create-

configure- managed-instance-powershell.

 Implementation Details

Note these implementation details may change over time as we change and
improve the service. i offer up some of these details so you can understand how
we build, manage, and run the service.

Azure SQL Managed Instance is deployed on nodes (virtual machines) powered by

Azure Service Fabric in a concept called a ring or virtual cluster. A virtual cluster is a

dedicated set of isolated virtual machines that run in a virtual network subnet. Using a

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/cli/azure/sql/mi?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/sql/mi?view=azure-cli-latest
https://docs.microsoft.com/en-us/powershell/module/az.sql/New-AzSqlInstance
https://docs.microsoft.com/en-us/powershell/module/az.sql/New-AzSqlInstance
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/create-template-quickstart?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/create-template-quickstart?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/scripts/create-configure-managed-instance-powershell
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/scripts/create-configure-managed-instance-powershell
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/scripts/create-configure-managed-instance-powershell

160

dedicated ring or cluster gives Managed Instance the isolation and private connection

that was lacking for years from Azure SQL Database (which you will see has also been

resolved).

When you deploy your first managed instance in a new virtual network (subnet)

as I did in my example, you are in fact deploying an entire virtual cluster. This explains

why the initial deployment can take so long to complete. You can deploy other managed

instances in the same virtual network subnet, and the deployment is much faster.

A managed instance is a full SQL Server engine database instance deployed in a

dedicated virtual machine in the virtual cluster. Microsoft will decide how to deploy

these virtual machines on various nodes of the cluster. It is possible that a node may have

one virtual machine with an instance or multiple virtual machines. As per the promise

of Platform as a Service (PaaS), Microsoft abstracts you from those details. Your interface

with the Managed Instance is through either standard SQL Server interfaces such as

T-SQL or Azure interfaces such as the portal, CLI, or REST API. You will never directly

access the underlying virtual machines.

This architecture explains also why certain management operations such as scaling

vCores can also take a long period of time as some of these operations can require a

deployment of a new virtual cluster with either attaching files from Azure Storage or

reseeding a replica.

I described some of the architecture of General Purpose (GP) vs. Business Critical

(BC) tiers in Chapter 2 of the book. I will describe them further in Chapter 8 of the book.

Either of these service tiers uses the same virtual cluster architecture just with different

storage and HA implementations.

Resource limits for a Managed Instance such as memory limits, max storage size,

and others are enforced through several mechanisms. For example, memory limits are

enforced with Windows Job Objects (and you cannot configure “max server memory”).

You can read more about Windows Job Objects at https://docs.microsoft.com/en-us/

windows/win32/procthread/job-objects. Storage capacity (or max size) is enforced by

The File Server Resource Manager (FSRM) which you can read more about at https://

docs.microsoft.com/en-us/windows-server/storage/fsrm/fsrm-overview.

A Managed Instance pool deployment can be far faster because an instance pool

can be a set of SQL Server instances running in the same virtual machine. Isolation and

resource limits are applied using Windows Job Objects. Figure 4-9 represents a visual

comparing managed instance and pools. This figure comes from the documentation at

 https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-

pools- overview#architecture.

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/windows/win32/procthread/job-objects
https://docs.microsoft.com/en-us/windows/win32/procthread/job-objects
https://docs.microsoft.com/en-us/windows-server/storage/fsrm/fsrm-overview
https://docs.microsoft.com/en-us/windows-server/storage/fsrm/fsrm-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview#architecture
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/instance-pools-overview#architecture

161

 Connecting and Verifying Deployment
Once your deployment is complete, you can view the details of the deployment using the

Activity Log like an Azure Virtual Machine as seen in Figure 4-10.

Figure 4-9. The Managed Instance and pool architecture

Figure 4-10. Deployment complete for Managed Instance

Chapter 4 Deploying azure SQl

162

If you select More events in the activity log, you will see a screen like in Figure 4-11.

If you click Go to Resource, you will see a screen like in Figure 4-12.

One of the first steps you will want to do at this point is try and connect to the new

instance and verify the deployment. I like to verify my SQL Server installations with a set

of simple T-SQL queries, but I will show you other navigation details as well.

Figure 4-11. The activity log for the deployment for Managed Instance

Figure 4-12. The Overview screen for Azure SQL Managed Instance

Chapter 4 Deploying azure SQl

163

 Connect to a Managed Instance

You can see at the top of Figure 4-12 guidance to get started for a Managed Instance. If

you click this message, you will see choices like the following in Figure 4-13.

The list on this screen points to guidance on how to perform various tasks for a newly

deployed Azure SQL Managed Instance. Since I did not enable the Public endpoint

for the deployed Managed Instance, I have expanded the option to connect through a

Virtual Machine.

I will follow these steps by first using the provided PowerShell script and executing

it from the Azure Cloud shell. I used the copy button , edited the script, to provide an

admin password, and then pasted the script into an Azure Cloud Shell.

This virtual machine is deployed in the same virtual network as the Azure SQL

Managed Instance. Therefore, you can RDP into this virtual machine and then use tools

like SSMS (which is already installed in this VM) to connect to the Managed Instance.

The screen shows you the DNS name to use to connect with SSMS (in my case, the server

name to connect to is bwazuresqlmi.ef276e8e4194.database.windows.net).

Figure 4-13. Connecting to Azure SQL Managed Instance with a VM

Chapter 4 Deploying azure SQl

164

Tip you can navigate to the newly created virtual machine by finding the
resource group of the Managed instance (which is bwazuresqlmirg in my
example). the new VM is called Jumpbox. navigate to the overview screen for
this VM and select Connect and use the rDp file with a remote Desktop Client.
once you use rDp to log in to the Windows Server, use SSMS to connect to the
Managed instance name with the SQl admin login and password you used during
deployment.

The concept of using a virtual machine to connect to SQL Server for a Managed

Instance is called a jumpbox. Jumpbox is the actual name of the VM created by the script

provided as an example by Microsoft (but can be any name).

Figure 4-14 shows an example of SSMS connected to an Azure SQL Managed

Instance.

If you want to connect from on-premises, you would need to either enable the public

endpoint or connect your network to the Azure virtual network created.

Figure 4-14. SSMS connected to Azure SQL Managed Instance through a
jumpbox

Chapter 4 Deploying azure SQl

165

 Verify the Deployment

Notice that Object Explorer in SSMS looks almost identical to a SQL Server except for the

Fully Qualified Domain Name (FQDN) for the server name.

To verify an installation of SQL Server, I often use a few techniques including running

queries against system catalog views and DMVs and look at the ERRORLOG.

Examining the ERRORLOG
You do not have access to the filesystem for the virtual machine hosting the Managed

Instance. To look at the ERRORLOG, we will need a tool like SSMS or T-SQL.

You can use Object Explorer in SSMS to view the ERRORLOG, but I prefer just T-SQL

so can I execute sp_readerrorlog to look at the current ERRORLOG file. I must warn you

that we dump all types of extra information in the ERRORLOG for a Managed Instance

(yes even more than a SQL Server). My colleague Dimitri Furman wrote a blog post with

some sample code to filter down the ERRORLOG for a Managed Instance. You can view

this at https://techcommunity.microsoft.com/t5/datacat/azure-sql-db-managed-

instance- sp-readmierrorlog/ba-p/305506.

There are a few key messages I look at startup in the ERRORLOG and found these in

my Managed Instance:

SQL Server detected 1 sockets with 4 cores per socket and 8 logical

processors per socket, 8 total logical processors; using 8 logical

processors based on SQL Server licensing. This is an informational message;

no user action is required.

SQL Server is starting at normal priority base (=7). This is an

informational message only. No user action is required.

Detected 44645 MB of RAM. This is an informational message; no user action

is required.

I can see that eight logical processors were detected which is what I expect given I

deployed an 8 vCore instance.

The memory detected is how much memory the SQL Server engine detects from the

host or VM. You will see in several places in the book how Azure will use Windows Job

Objects to limit the memory visible to SQL Server to enforce resource limits per service

tier and vCores. You will find for this Managed Instance the job object will not allow SQL

Server to access all the memory as shown here in the ERRORLOG. In fact, you should

never rely on what the ERRORLOG shows but instead on the DMV sys.dm_os_job_object

which I will show you how to use in the next section.

Chapter 4 Deploying azure SQl

https://techcommunity.microsoft.com/t5/datacat/azure-sql-db-managed-instance-sp-readmierrorlog/ba-p/305506
https://techcommunity.microsoft.com/t5/datacat/azure-sql-db-managed-instance-sp-readmierrorlog/ba-p/305506

166

Verification Queries
Whenever I install a SQL Server, I typically use a few T-SQL queries as a sanity check.

Let us look these and the results from the Managed Instance compared to SQL Server (I

will not show the complete results of every query):

SELECT @@version

Microsoft SQL Azure (RTM) - 12.0.2000.8 May 15 2020 00:47:08 Copyright

(C) 2019 Microsoft Corporation

I explained in Chapter 1 of the book in describing the history of Azure SQL why v12

was a monumental moment for the service. Since that time, we have not changed the

major version of 12.

Basically, the major version of Azure SQL Managed Instance has no meaning. It does

not line up with any major version of SQL Server since Azure SQL Managed Instance is

versionless. I will discuss more the concept of versionless in Chapter 5 of the book. Just

know that Microsoft strives to keep instances and databases of Azure SQL up to date with

all the right changes and fixes, so you do not worry about applying updates:

SELECT database_id, name, compatibility_level FROM sys.databases

database_id name compatibility_level

1 master 150

2 tempdb 150

3 model 150

4 msdb 150

This looks normal (I have not created any user databases), except the

mssqlsystemresource database is not listed as with SQL Server (it does exist as you can

see it in the ERRORLOG). Notice the compatibility level is set to 150 which is the latest

dbcompat level of SQL Server 2019:

SELECT name, object_id, type_desc FROM sys.objects

The results from this query are what you would normally think from a master

database on a SQL Server with system tables at the top of the list. About 113 rows

returned from this query in master which is very close to a SQL Server:

SELECT * FROM sys.dm_os_schedulers

Chapter 4 Deploying azure SQl

167

Since we have deployed an 8 vCore Managed Instance, I would expect eight VISIBLE

ONLINE schedulers which is the case. I also expect to see a few HIDDEN ONLINE

schedulers which are there in the result of this query:

SELECT * FROM sys.dm_os_sys_info

This is a DMV that provides system information about SQL Server. I can see from

the output of this DMV the number of CPUs detected, amount of memory detected, the

target (max server memory), and total memory used by the engine and the actual worker

thread max (1640 for 8 vCores), and that the conventional memory model is not used. I

will talk more about locked pages in Chapter 5 of the book:

SELECT * FROM sys.dm_os_process_memory

This DMV shows OS-related memory information including whether locked or large

pages are used (they are not for Azure SQL Managed Instance or Database). I normally just

use this as a sanity check that enough memory is available for SQL Server in a VM or server:

SELECT * FROM sys.dm_exec_requests

This is one of the most common DMVs in the world to check the state of what

is running on a SQL Server. I run this just to make sure all the normal background

processes are running including LAZ WRITER, RECOVERY WRITER, LOCK MONITOR,

and so on and that I can see active queries:

SELECT SERVERPROPERTY('EngineEdition')

Per the documentation at https://docs.microsoft.com/en-us/sql/t-sql/

functions/serverproperty-transact-sql, the value of 8 is for a Managed Instance.

There are also two new DMVs specific to Azure not found in SQL Server:

SELECT * FROM sys.dm_user_db_resource_governance

This DMV is really intended to show you resource limits for a specific Azure SQL

Database, but it also works for Managed Instance (you will see a row for all databases

including system databases except for tempdb). You can view limits like memory,

max storage, log rates, and so on. You can read the documentation for this DMV

at https://docs.microsoft.com/en-us/sql/relational-databases/system-

dynamic- management-views/sys-dm-user-db-resource-governor-azure-sql-

database?view=azuresqldb-current. Note that the docs say this is mostly for internal

use, which means it might change in the future:

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/sql/t-sql/functions/serverproperty-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/functions/serverproperty-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current

168

Note there is an undocumented DMV called sys.dm_instance_resource_
governance which shows resource limits at the instance level.

SELECT * FROM sys.dm_os_job_object

This is a DMV specific to Azure (although I tested it and it works for a SQL Server, but

you can’t rely on the results there because it is not applicable) that shows resource limits

Azure applies to a Managed Instance using Windows Job Objects. The specific column I

look at is memory_limit_mb which shows me the true amount of memory the Managed

Instance has access to. I talked about Windows Job Objects in the preceding section

“Implementation Details.”

You may be asking at this point what is so special about Managed Instance, since

from the perspective of using a tool like SSMS, it feels like a SQL Server running in an

Azure Virtual Machine. This is the point of a Managed Instance. We want you to have the

feel of a SQL Server instance, but not worry about the details you might have to consider

with a virtual machine. And since Azure SQL Managed Instance (MI) is a PaaS service,

you will see the benefits of using MI, especially when it comes to a versionless SQL

Server, predictable performance, and built-in high availability and disaster recovery.

 Migrating to Azure SQL Managed Instance
As part of deploying an Azure SQL Managed Instance, you may be migrating existing

databases. The process to migrate should include assessment and planning, the actual

migration, application changes, and post-migration optimization.

Let us look at each of these aspects to the migration process.

 Assessment and Planning
An assessment for migration includes analyzing any problems that might occur for your

migration depending on what the source of your migration and your preferred Managed

Instance deployment option. This is when you use the details I described with pre-

deployment planning earlier in this chapter.

Chapter 4 Deploying azure SQl

169

Most users migrating to Azure SQL Managed Instance are coming from an existing

SQL Server installation. However, it is possible to migrate from other data platforms

including Oracle. Check out this blog post on how to migrate from Oracle to Azure SQL

Managed Instance, https://techcommunity.microsoft.com/t5/microsoft-data-

migration/migrate-your-oracle-database-to-azure-sql-database-managed/ba-

p/368750.

The key to getting an entire migration project started is to use Azure Migrate at

https://azure.microsoft.com/en-us/services/azure-migrate/. From there, you

can start an Azure Migrate project and use the Data Migration Assistant (DMA) tool

(https://docs.microsoft.com/en-us/sql/dma/dma-overview) and Data Migration

Service (DMS) (https://azure.microsoft.com/en-us/services/database-

migration/).

I could show you a ton of details here and walk you through an example. But I have

something better. My colleague Anna Thomas developed an entire workshop complete

with slides and exercises at https://github.com/microsoft/sqlworkshops-sqlg2c/

tree/master/sqlgroundtocloud (Modules 4 and 5). Anna walks you through everything

to see how DMA and DMS work to perform an assessment and migration. You have

the choice to migrate all the databases for the instance or one or more databases

incrementally.

Note two important things you should consider as you migrate are in the
documentation, and i want to highlight them here.

When you are migrating a database protected by transparent Data encryption to a
managed instance using native restore option, the corresponding certificate from
the on-premises or azure VM SQl Server needs to be migrated before database
restore.

restore of system databases is not supported. To migrate instance-level objects
(stored in master or msdb databases), we recommend to script them out and run
t-SQl scripts on the destination instance.

One last important point: consider using a database compatibility level that matches

your current SQL Server installation and then move later to the latest compat level.

Learn more about dbcompat at https://aka.ms/dbcompat.

Chapter 4 Deploying azure SQl

https://techcommunity.microsoft.com/t5/microsoft-data-migration/migrate-your-oracle-database-to-azure-sql-database-managed/ba-p/368750
https://techcommunity.microsoft.com/t5/microsoft-data-migration/migrate-your-oracle-database-to-azure-sql-database-managed/ba-p/368750
https://techcommunity.microsoft.com/t5/microsoft-data-migration/migrate-your-oracle-database-to-azure-sql-database-managed/ba-p/368750
https://azure.microsoft.com/en-us/services/azure-migrate/
https://docs.microsoft.com/en-us/sql/dma/dma-overview
https://azure.microsoft.com/en-us/services/database-migration/
https://azure.microsoft.com/en-us/services/database-migration/
https://github.com/microsoft/sqlworkshops-sqlg2c/tree/master/sqlgroundtocloud
https://github.com/microsoft/sqlworkshops-sqlg2c/tree/master/sqlgroundtocloud
https://aka.ms/dbcompat

170

 Migration
To perform an actual migration of an existing SQL Server instance (the entire instance or

just a database), Azure SQL Managed Instance provides a great capability to make this

faster and better: the ability to restore a database from a backup of SQL Server.

This allows you to perform an offline migration (restore a full database backup) while

the application is down and then connect back again to the Managed Instance when the

restore finishes.

The Database Migration Service (DMS) specifically allows for an online migration

using technology based on SQL Server Log Shipping to restore a full backup and then a

series of log backups until you are ready for the migration cutover. Anna’s workshop goes

through both options.

In addition, you can watch me on the Microsoft Mechanics channel at https://

youtu.be/P_4EaqVR5PI and go through the entire migration process including a demo

of migration to a Managed Instance. One of the aspects of using DMA I love is the

SKU recommendation PowerShell script. This script analyzes your current SQL Server

workload to guide you on Azure SQL Managed Instance deployment choices. Read

more at https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-

db?view=sql-server-ver15.

Note even though i am the person interviewed for this video and demo, the real
heroes behind the scenes are the migration team, including folks like Venkata raj
pochiraju and Sreraman narasimhan.

 Application Changes
One of the best stories for migration is the minimal changes required by your application

after migrating to Managed Instance. The most basic change for you to make is the

connection string to use the new server name. You may also have to change the

authentication method (SQL Authentication or Azure Active Directory). But other than

that, provided you are using all the features supported by Managed Instance, these may

be the only changes you need to get your application up and running.

Chapter 4 Deploying azure SQl

https://youtu.be/P_4EaqVR5PI
https://youtu.be/P_4EaqVR5PI
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-ver15

171

 Post Migration
After you have migrated your database(s) and made the necessary application changes,

you may want to make some configuration changes or adjustments for security,

performance, and availability.

Here is the good news. The rest of the book is devoted to these topics, so you have the

resources you need to make any changes to go bigger with Azure.

 Deploying an Azure SQL Database
Deploying an Azure SQL Database is both different and like Azure SQL Managed

Instance. The experience is similar as you will use the Azure Portal or CLI (or even

T-SQL) to deploy a database but different since you are…well deploying a database, not

an instance of SQL Server. Since you are deploying just a database, you get more options

as I have described in this book, including Serverless and Hyperscale.

The basic process to deploy Azure SQL Database is

• Decide to deploy a single database or elastic pool.

• Choose a Resource Group and Region.

• Choose an existing or new logical database server.

• Choose your purchasing model, compute model, service tier,

and size.

• Optionally supply other configuration choices.

• Deploy it!

 Deployment and Options
To get started, I will use the Azure SQL screen to deploy by searching for Azure SQL

in the marketplace. With a screen like in Figure 4-15, I can choose to deploy a Single

database, Elastic pool, or Database server. I will show you how to deploy a Single

database which will allow me to also deploy a Database server (and I will describe what

and why you need a Database server).

Chapter 4 Deploying azure SQl

172

 Basics

If you choose Single database, you are presented with a Basics screen like Azure SQL

Managed Instance as seen in Figure 4-16.

Figure 4-15. Using Azure SQL to choose to deploy an Azure SQL Database

Chapter 4 Deploying azure SQl

173

You can see from my screen that I have already created a new Resource Group,

defined a Database name, and chose to create a new Database server. You may be

wondering why you need a Database server when the promise of Azure SQL Database is

“you own the database; Azure will manage everything else.”

A Database server, also known as a logical server, is a collection of metadata stored

in the Azure infrastructure used to organize one or more Azure SQL databases. It is not

a single SQL Server instance on a physical server. A Database server contains a logical
master database just like a true SQL Server instance. Notice the region is associated

with the logical server, not the database. Any database created for the logical server will

be hosted in the region of the server. All connectivity and networking will be associated

with the logical server. In fact, you could create a logical server first, connect to that

server, and use T-SQL CREATE DATABASE to create Azure SQL databases. The login

and password you supply for the logical server becomes a login in the logical master

database which is a server-level principal who is effectively a server admin for all

databases. In Modules 6 and 7, I will show you how to integrate Azure Active Directory

(AAD) for an admin login.

Figure 4-16. Defining a Database server as part of Azure SQL deployment

Chapter 4 Deploying azure SQl

174

Once you click OK for the logical server (it will be created as part of the deployment),

you can choose if you want to make this part of an elastic pool and select your options

for purchasing model, service tier, and size. I will not spend a lot of time in the book

discussing the details of how to create and manage an elastic pool. I recommend you

use this documentation to learn and go further with using elastic pools, https://docs.

microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview.

Figure 4-17 shows an example of selecting Configure database to see your

deployment options.

Let us look at the various options on this screen, what they mean, and how they

affect your deployment:

 1. The default purchasing model is vCore. You can select on this

screen the ability to choose the DTU purchase model. While I will

not cover details about deploying the DTU model, you can read

about this option at https://docs.microsoft.com/en-us/azure/

azure-sql/database/service-tiers-dtu.

Figure 4-17. Azure SQL purchasing, compute, service tier, and size options

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-dtu
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tiers-dtu

175

 2. The default hardware generation for the vCore model is Gen5.

As I described in pre-deployment planning, choosing Change

configuration allows you to pick other hardware generations such

as Fsv2- and M-series.

 3. Just like a Managed Instance, you can choose to apply your

existing SQL Server license with Azure Hybrid Benefit (AHB).

 4. Just like a Managed Instance, you have a slider bar to choose the

number of vCores for your deployment. You will notice that for

Azure SQL Database, you have more granular choices for vCores.

 5. Just like a Managed Instance, you have a slider bar for Data max

size. The more vCores you choose, the larger the max size. This

max size is the maximum size of the single database file hosting

your database. Notice below the size is a number for LOG SPACE

ALLOCATED. You are given for free a maximum transaction log

size that is 30% over your data max size.

Note if you are worried this may not be enough, we continuously back up the
transaction log and have accelerated Database recovery enabled by default (which
means a long active transaction does not hold up log truncation). as much as i
tried, i never ran out of log space in my testing with azure SQl Database.

 6. Provisioned is the default Compute model. For the General

Purpose service tier, you have the choice of the Serverless model.

I will show you Serverless options in the section titled “Deploying

Serverless” later in this chapter.

 7. As you make choices, the portal will show you estimated costs per

month broken out by costs for vCores and storage.

 8. Besides General Purpose, you also have the choice to deploy a

Hyperscale service tier. I will show you the process of deploying

Hyperscale in the following section titled “Deploying Hyperscale.”

 9. You also have the choice to choose the Business Critical service tier.

I will show you the process of deploying a Business Critical database

in the following section titled “Deploying Business Critical.”

Chapter 4 Deploying azure SQl

176

I know there are many choices which is one of the benefits of Azure SQL Database but

does require some thinking for your requirements. Thankfully, changing these options or

resizing your Azure SQL Database is flexible and fast (the exception is Hyperscale).

I will leave the default of General Purpose, 2 vCore, 32Gb max data size and click Apply.

 Networking

Click Next: Networking > to see your choices for connectivity and network security as

seen in Figure 4-18.

Figure 4-18. Networking choices when deploying an Azure SQL Database

Chapter 4 Deploying azure SQl

177

Unlike Azure SQL Managed Instance, Azure SQL Database is not part of a virtual

network. You have three choices during deployment:

No access – Deploy the database, but do not allow any connectivity until you are

ready to make your choice.

Public endpoint – Expose connectivity of the logical server and/or database to the

public within Azure or to the Internet (or both).

Private endpoint – This is a new addition to Azure SQL Database to make it very

secure. This allows you to deny public access to your server and/or database and only

allows private connectivity within defined virtual networks in and outside of Azure.

For now, I will select Public endpoint and set Allow Azure services and resources
access this server to Yes and Add current client IP address to Yes. This allows me to

deploy an Azure Virtual Machine and connect to this database or to connect with SQL

client tools on the client computer where I am currently deploying the browser. My client

IP address will be added to a firewall rule to connect to the logical server associated with

this database. I will show you how to tighten up the security of this model in Chapters 6

and 7 of the book.

 Additional Settings

Click Next: Additional settings > to see more options for the deployment. Figure 4-19

shows these additional options.

Chapter 4 Deploying azure SQl

178

Figure 4-19. Additional settings for the deployment of Azure SQL Database

Chapter 4 Deploying azure SQl

179

Your first choice is to either create a blank database or create a database based on a

backup of a geo-replicated Azure SQL Database or from the sample AdventureWorksLT

(LT stands for light). You can learn more about how to restore from a geo-replicated

backup at https://docs.microsoft.com/en-us/azure/azure-sql/database/

recovery-using-backups#geo-restore. I will choose the sample AdventureWorksLT

database because I want to show some demonstrations of other capabilities using that

database later in the book.

Your next choice is Database collation. Since I chose a sample database, the collation

is already decided. For a new blank database, it is important to choose this during

deployment because you cannot change it later.

The final choice is to enable Advanced Data Security. I will not enable this for now

and show you more about this capability in Chapters 6 and 7 of the book.

 Tags

Click Next: Tags > to define a tag for the deployment. Just like with Azure Virtual

Machine and Managed Instance, I will use a Name = Environment and Value =

Development. In this case, I will leave the resources selected for both SQL Database and

SQL database server.

Note after you deploy, you can now search for tags for your description and see
all your resources that are “for development purposes.”

 Deploy It!

Click Next: Review + create > to see the final validation screen as seen in Figure 4-20.

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#geo-restore
https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#geo-restore

180

Just like with Managed Instance, you can see estimated costs, Terms of Use, privacy

policy, a review of your choices, and the ability to download an Azure template.

Click Create to see the deployment take off. Just like with Managed Instance, if

you do not leave this screen, you will see a progress of your deployment in both the

Notifications area of the portal and on your main screen.

There is no warning of time to deploy like with Managed Instance, because in most

cases, the deployment should finish quickly. In my example, the deployment only took a

matter of minutes as shown in Figure 4-21.

Figure 4-20. Final screen before deployment of Azure SQL Database

Chapter 4 Deploying azure SQl

181

Tip i have found that i can connect to the logical server and use the database
being deployed even before i get signaled the deployment is complete.

Just like a Managed Instance deployment, you can click More events in the activity

log to see the sequence of deploying all resources.

Click Go to resource to see the Overview screen on the database like Figure 4-22.

Figure 4-21. A completed deployment of Azure SQL Database

Chapter 4 Deploying azure SQl

182

Just like with a Virtual Machine and Managed Instance, the portal shows a Resource

Menu, Command Bar, Working Pane, and Monitoring Pane. While this looks like other

Azure resources, most of this information is specific to Azure SQL Database. We will

use many of these options throughout the rest of the chapter as you explore security,

performance, availability, and other features.

Let us see the experience of deploying an Azure SQL Database Business Critical,

Hyperscale, and Serverless database on the same logical server. In the Working Pane,

click the Server Name.

This is the Overview screen for the Database Server as seen in Figure 4-23.

Figure 4-22. The Overview screen of an Azure SQL Database

Chapter 4 Deploying azure SQl

183

Notice at the bottom the database we just deployed. I also want to stop and point out

a key feature of the portal called breadcrumbs. You were brought to the overview screen

of the database server by selecting it from the overview screen of the database. The

breadcrumbs “show you where you came from” and allow you to navigate to a specific

resource in the portal.

Click Create database from the command bar.

Note the following sections for Business Critical, Serverless, and hyperscale
require costs if you leave these deployments active. you can choose to go through
and deploy these or just follow along.

 Deploying Business Critical
Notice now you are brought to a Basics screen to create a new database, but the resource

group and server are already selected. Click configure database and choose the Business

Critical service tier. Notice some new choices as seen in Figure 4-24.

Figure 4-23. Overview of an Azure SQL Database Server

Chapter 4 Deploying azure SQl

184

You still choose the number of vCores and Data max size. But you also choose

whether this database will enable read scale-out and zone redundancy. I will discuss

these high availability capabilities in Chapters 10 and 11 of the book. For now, I will leave

Read scale-out Enabled (you should; it is free) and select Yes for zone redundancy.

Click Apply and put in a database name. I will use a new name and call it

bwazuresqldbbc. Instead of making additional choices, I will choose Review + create

and then Create.

Note you could make other choices here including setting up a private endpoint
for your database different than the choice made for the first database on the
server.

Once this deployment is complete (it should be fast), you can click Go to resource

and see you now have a Business Critical database deployed. Click the Server name

again and repeat the process to create a new database.

Figure 4-24. Azure SQL Business Critical service tier choices

Chapter 4 Deploying azure SQl

https://doi.org/10.1007/978-1-4842-5931-3_11

185

 Deploying Serverless
Like the Business Critical Scenario, click configure database. Then select Serverless as

seen in Figure 4-25 with new choices.

Instead of a slider to choose vCores, I can choose a min and max vCore. Serverless

will autoscale based on the CPU needs of my workload. Notice the values for min and

max memory. This means that for my Serverless database I can use a maximum of 48Gb,

but when my usage is idle, my memory may be trimmed down to as low as 6Gb. Think of

this like max and min server memory configuration values for SQL Server. The difference

is that our Azure services will trim memory (almost like external memory pressure) if

usage is idle.

So, what defines idle? That is the choice for Auto-pause delay. If there is no usage for

1 hour, the compute for this database will be paused and memory resources reclaimed.

Drill more into Serverless at https://docs.microsoft.com/en-us/azure/azure-sql/

database/serverless-tier-overview.

Click Apply and put in a database name. I used bwazuresqldbserverless. Click

Review + create. Notice on the validation screen the costs is listed as per second which

is one of the great stories of saving costs with Serverless. Click Create and wait for the

Figure 4-25. Serverless compute options

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview

186

deployment to finish. When the deployment is finished, click Go to resource. Notice in

the Monitoring Pane metrics for Compute utilization vs. App CPU billed. This helps you

track billing per second of compute usage for a Serverless database.

Click the Server name again so you can create a Hyperscale database.

 Deploying Hyperscale
Click Create Database from the command bar to see the screen again to create a new

database on the same logical server. Click configure database and select the Hyperscale

option as seen in Figure 4-26.

The first thing you may notice about this screen is that you must select the option

that you understand that by choosing Hyperscale you cannot change the service tier (to

General Purpose or Business Critical) once you deploy.

The slider for vCores looks just like General Purpose and Business Critical. But

notice there is no Data max size. Hyperscale is theoretically limitless (although today we

limit you to a 100TB database but a large transaction log). When you deploy a Hyperscale

database, we create an initial size of ~40Gb and then just grow as you need space.

Figure 4-26. Hyperscale deployment options

Chapter 4 Deploying azure SQl

187

Hyperscale offers a unique choice for number of replicas. You will learn in Chapter 8

of this book about how Hyperscale provides unique availability. Allowing you to specify

up to four replicas which can be used for read scale is one of them.

I will choose 8 vCores and four Secondary Replicas. Click Apply, put in a database

name (I will use bwazuresqldbhyper), and click Review + create. I will click Create to

start the deployment.

Once the deployment is complete, you can click Go to resource to bring up the

Overview page of the database. If you select Server name, you can see now you have four

databases spanning all the service and compute tiers as seen in Figure 4-27.

Notice that my Serverless database is already paused because quite frankly I

had paused for an hour before I deployed the Hyperscale database. Before we try to

connect to these databases, let us explore more how to deploy with CLI tools and some

implementation details of Azure SQL Database.

 Deploying with a CLI
An Azure SQL Database can be deployed with command-line interfaces (CLI) through

the az sql db (https://docs.microsoft.com/en-us/cli/azure/sql/db?view=azure-

cli- latest) command interfaces or through New-AzSQLDatabase PowerShell

cmdlet (https://docs.microsoft.com/en-us/powershell/module/az.sql/New-

AzSqlDatabase).

Unlike Managed Instance, it is easier to use the az CLI for Azure SQL Database

without an Azure template because I only have to create the logical server and then I

can create the database (I don’t have to create a virtual network and all the components

first).

Figure 4-27. Available databases from an Azure logical server

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/cli/azure/sql/db?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/sql/db?view=azure-cli-latest
https://docs.microsoft.com/en-us/powershell/module/az.sql/New-AzSqlDatabase
https://docs.microsoft.com/en-us/powershell/module/az.sql/New-AzSqlDatabase

188

Here is an example of using az sql db to create a single database for a General

Purpose, 2 vCore database:

az group create –name bwazuresqlrg2 -l eastus

az sql server create --location eastus --resource-group bwazuresqlrg2

 --name bwazuresqlserver2 -u thewandog -p '<password>' --enable-public-

network true

az sql db create --resource-group bwazuresqlrg2 --server bwazuresqlserver2

 --name bwazuresqldb2 --edition GeneralPurpose --family Gen5 --capacity 2

 --sample-name AdventureWorksLT

Note the only option that cannot be done with the az Cli for database that i
could in the portal is to set allow azure services to yes and set the current Client
ip address for a firewall rule. you can easily configure this after the deployment or
use an azure template.

PowerShell does give you all the options you need to deploy as with the portal. There

is a good tutorial on using PowerShell at https://docs.microsoft.com/en-us/azure/

azure-sql/database/scripts/create-and-configure-database-powershell?toc=/

powershell/module/toc.json.

An Azure template is still a great idea to use and in fact is the best option to automate

deployment of many databases. Read about how to use Azure templates and Azure

SQL Database at https://docs.microsoft.com/en-us/azure/azure-sql/database/

single-database-create-arm-template-quickstart.

 Implementation Details

Note these implementation details may change over time as we change and
improve the service. i offer up some of these details so you can understand how
we build, manage, and run the service.

In Chapter 1 of this book, I covered the incredible history of how we have built an

architecture to power millions of databases for Azure SQL Database. Let me give you a

few more details about how we implement Azure SQL Database behind the scenes.

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/scripts/create-and-configure-database-powershell?toc=/powershell/module/toc.json
https://docs.microsoft.com/en-us/azure/azure-sql/database/scripts/create-and-configure-database-powershell?toc=/powershell/module/toc.json
https://docs.microsoft.com/en-us/azure/azure-sql/database/scripts/create-and-configure-database-powershell?toc=/powershell/module/toc.json
https://docs.microsoft.com/en-us/azure/azure-sql/database/single-database-create-arm-template-quickstart
https://docs.microsoft.com/en-us/azure/azure-sql/database/single-database-create-arm-template-quickstart

189

Note as i interviewed many people in the Microsoft engineering team behind
the scenes about azure SQl Database even as i write this chapter, we are looking
into how to make our implementation more efficient. therefore, it is possible even
some of these details could be a bit outdated by the time you read this chapter.
that is the speed of the cloud and an author’s nightmare!

 Dedicated Rings and Instances

Unlike Managed Instance, we pre-deploy rings dedicated to hosting Azure SQL Databases.

With only a few exceptions, each database is hosted by a dedicated SQL Server instance

(exceptions being “subcore” DTU options and elastic pools). This allows us to provide

better isolation for a customer and keep the “just worry about the database” model while

opening some instance-level surface area (e.g., DMVs and columnstore indexes). We may

provision these instances on the same VM or node, but those details are abstracted from

you, provided we keep to our SLA agreement and objectives for performance.

All the rings and instances are powered and managed using Azure Service Fabric.

This is the same service fabric software that you can build your own microservices. The

Azure Service Fabric architecture is well documented at https://docs.microsoft.com/

en-us/azure/service-fabric/service-fabric-architecture.

 The Logical Server

As I stated earlier in this chapter, a database or logical server is just a metadata concept.

We provide an interface to a server and a master database. But, when you query various

aspects of the master database, we may be pulling data from other stores or files within

the service to show you the information. There is a good description of why you need

a logical server for even one database at https://docs.microsoft.com/en-us/azure/

azure-sql/database/logical-servers.

 Storage, Compute, and Gateways

You will see in Chapter 8 for Availability more details on the architecture behind the

scenes on how we implement High Availability (HA) for General Purpose, Business

Critical, and Hyperscale service tiers. We achieve certain HA capabilities by either using

Azure Storage or local storage with technologies like Always On Availability Groups.

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture
https://docs.microsoft.com/en-us/azure/azure-sql/database/logical-servers
https://docs.microsoft.com/en-us/azure/azure-sql/database/logical-servers

190

In each of these cases, one of the key components for connectivity is a gateway.

Gateways are nodes that basically route traffic to nodes hosting SQL Server databases.

I mentioned the use of redirect vs. proxy connection types with a Managed Instance

earlier in the chapter. The same concept will apply with an Azure SQL Database.

Gateways are critical to connectivity in that they provide abstractions to an application

for connectivity no matter where the node for the database lives which you will learn

more about in Chapter 6 on Security and Chapter 8 on Availability.

 Serverless

Serverless compute models involve several interesting technologies we implement

within the standard deployment of a SQL Server. Many of these details are described

in our documentation at https://docs.microsoft.com/en-us/azure/azure-sql/

database/serverless-tier-overview.

Since storage and compute are separated for a Serverless deployment, pausing a

database is not that difficult since no application is connected. We just need to keep

around enough state information that when a new login is made, we can connect the

database to an instance and “warm up” the application.

Autoscaling is more interesting. We need to scale up or down the database CPU

resources without application disruption. And if we can scale on a node that can meet

the new scaling demand, there is no disruption. However, if we cannot meet that

demand, we may need to use an Azure Load Balance to keep the application connected

if possible until a new node is found to meet demand, but there can be a disconnection

when the new node is brought up.

Memory management is also different in that we must deploy memory policies

to reclaim memory for the SQL Server instance when CPU or cache utilization is low.

Think of this concept as though we are signaling SQL Server there is external memory

pressure and lowering the target for memory. Autoscaling and Memory Management

for Serverless is described more at https://docs.microsoft.com/en-us/azure/azure-

sql/database/serverless-tier-overview#autoscaling.

 Hyperscale

Hyperscale is a unique implementation for a database within the same architecture of

databases (dedicated rings and nodes) implemented much differently than General

Purpose or Business Critical service tiers.

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview#autoscaling
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview#autoscaling

191

A hyperscale deployment involves a series of nodes for compute, logging, and

caching combined with Azure Storage. I talked about this architecture in Chapter 1 of the

book, but it is worth showing you again as seen in Figure 4-28 (which is directly from the

documentation at https://docs.microsoft.com/en-us/azure/azure-sql/database/

service-tier-hyperscale#distributed-functions-architecture).

I will show you more of the working parts of this architecture in Chapter 8 of this

book, but let me stop and call out a few key components:

• Separate of compute and storage

Just like General Purpose, we store database files on Azure

storage. But notice here we use Azure Standard Storage. Speed

to access the database files is not as important because of the

caching system.

• The caching system

We use a combination of page servers (actual nodes that host

database pages) and buffer pool caches (think SSD drives that

extend the buffer pool) on page servers and compute nodes.

Figure 4-28. The Hyperscale architecture

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale#distributed-functions-architecture
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale#distributed-functions-architecture

192

• Log Service

For Hyperscale, any logged changes are still in a log cache on

the primary compute node. However, when log changes must

be flushed to disk (a commit), these I/O requests are redirected

to another node where a component called the Log Service

runs (this is also called Xlog). The Log Service is responsible for

ensuring changes are stored locally (called the Landing Zone)

and are refreshed to the caching system, secondary replicas, and

eventually to Azure storage.

• Decoupled Replicas

In a way Hyperscale provides you the best of both the General

Purpose and Business Critical tiers. The actual database and

transaction log files are stored in Azure Storage (which has its own

redundancy), but we also have replicas for extremely fast high

availability.

However, the secondary replica system does not use Always On

Availability Groups. In fact, the primary and secondary replicas

are not aware of each other. Secondary replicas use a log change

methodology but are fed changes from the Log Service. Commits

on the primary replica can proceed once the Log Service has

hardened the changes not sending to a replica.

High availability is even allowed with no secondary replicas. How?

If the primary node has an issue, we can deploy a new primary

replica on a new node and use page servers or even the database

files on Azure Storage because it is decoupled. Having said this,

RTO is much faster with the presence of secondary replicas. The

secondary replica system (because you can have four of these)

provides the best read- scale option for Azure SQL Database.

• Hyperfast Backup and Restore

Because most of the data access comes from the caching system,

reading database pages from the database files is rare with a warm

system. This allows us to use snapshot backups for database files.

Chapter 4 Deploying azure SQl

193

Snapshot backups are extremely fast since we just copy the files to

another storage location. And the other amazing story is Restore.

Restoring a database snapshot is crazy fast!

My colleague Kevin Farlee has an excellent video describing the

Hyperscale architecture including the great story of restore at

https://youtu.be/Z9AFnKI7sfI.

 Resource Governance

To meet the SLA requirements for Azure SQL Database, we must put some resource

limits on the usage of the database. I have described some of these limits in this chapter.

Behind the scenes, we use these technologies to enforce these limits:

SQL Server Resource Governor
Azure SQL Managed Instance allows for user-defined workload groups and pools.

Azure SQL Database uses Resource Governor behind the scenes to enforce certain

limits. Moving to a dedicated SQL Server instance was a key driver in allowing us to use

Resource Governor.

Engine enhancements
The engine has been enhanced in Azure to detect the generation of a certain

size and rate of transaction log records and govern the application if necessary. The

primary signal this governance is happening is seeing a wait type of LOG_RATE_

GOVERNOR. You can read more about log rate governance at https://docs.

microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-

server#transaction-log-rate-governance.

Windows Job Objects
I have mentioned this technology before in this chapter. Windows Job Objects allow

us to control resource usage on the SQL Server engine process to ensure we properly

enforce resource limits like memory.

File Source Resource Manager (FSRM)
FSRM provides a mechanism so we can properly enforce storage maximum sizes

outside of what we control through SQL Server file size limits.

We have created a great blog post talking about how we enforce resource limits using

these technologies and why we use them at https://azure.microsoft.com/en-us/

blog/resource-governance-in-azure-sql-database/.

Chapter 4 Deploying azure SQl

https://youtu.be/Z9AFnKI7sfI
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance
https://azure.microsoft.com/en-us/blog/resource-governance-in-azure-sql-database/
https://azure.microsoft.com/en-us/blog/resource-governance-in-azure-sql-database/

194

 Connecting and Verifying Deployment
Once you deploy an Azure SQL Databases, you are likely going to want to quickly

connect and verify aspects of the deployment.

 Connecting to Azure SQL Database

Earlier in this chapter, I deployed my logical server and Azure SQL Database allowing

public endpoint access with options to access through Azure services and with a firewall

rule for the client IP address where I deployed through the portal. I will show you how to

connect using both techniques.

Because I used the option Allow Azure services and resources to access this server

when I deployed the logical server for the database, I can use an Azure Virtual Machine

or even sqlcmd from the Azure Cloud Shell to connect to this server and database.

To connect with Azure Cloud shell, you need to find the name of the logical server

for the deployment. There are many ways to do this through the portal. You can simply

look at your resource groups or resources from the home of the portal and find the server

bwazuresqlserver (or your name).

Figure 4-29 shows the Working pane of the server with the Server name to use when

connecting with a SQL Server tool or application.

Notice I clicked next to the server name to copy the Fully Qualified Domain Name

(FQDN) to the clipboard. You will find the FQDN is a combination of the logical server

name and .database.windows.net.

Figure 4-29. Find the Server name to connect

Chapter 4 Deploying azure SQl

195

Note azure SQl Database also supports the concept of a DnS alias which you
can read about at https://docs.microsoft.com/en-us/azure/azure-
sql/database/dns-alias-overview.

I can now bring up the Azure Cloud Shell (you can use the home page of the portal,

but I like to use https://shell.azure.com).

Since sqlcmd is installed with the cloud shell, I can use a syntax like Figure 4-30.

I also configured the logical server for a firewall rule for the IP address of the

computer when I was using the Azure Portal. In the working pane of the logical server,

I can select Show firewall settings to see the following information. Figure 4-31 shows

this firewall setting along with other network options.

Figure 4-30. Using sqlcmd from the Azure Cloud Shell

Figure 4-31. Configure firewall rules for Azure SQL Database

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/dns-alias-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/dns-alias-overview
https://shell.azure.com

196

A firewall rule is very much like a firewall rule you would configure in Windows

Server or Linux. If you have used SQL Server before you know that by default, we do

not open the firewall rules in the OS for port 1433 by default. The firewall rule earlier is

opening access to the gateway for this logical server for this specific IP address. Firewall

rules can be specified at the logical server or database level. You can read more about

firewall rules for Azure SQL Database at https://docs.microsoft.com/en-us/azure/

azure-sql/database/firewall-configure.

Since my client IP address is in the firewall rule, I can use a tool like SQL Server

Management Studio to connect to the logical server as seen in Figure 4-32.

Once I hit Connect, I get the familiar Object Explorer, and expanding the list of

databases, I see all the databases I have deployed in this chapter. I can right-click the

server, select New Query, and try to switch database context to one of my databases as

seen in Figure 4-33.

Figure 4-32. Connecting to Azure SQL Database with SSMS

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/firewall-configure
https://docs.microsoft.com/en-us/azure/azure-sql/database/firewall-configure

197

You can first see some differences for Object Explorer (OE) including the color of the

icon (Azure blue) for the server name. Notice also there are not as many choices in OE

as there are with SQL Server or Managed Instance (because this is not a full SQL Server

instance).

When I connected with SSMS specifying no options, I was put in the context of the

logical master for the logical server. I tried to change database context with the familiar

T-SQL USE statement, but if fails. Why?

If you think about T-SQL USE on a SQL Server, the engine switches context to a

database stored on the instance. For an Azure SQL Database logical server, the databases

are on separate SQL Server instances that can be spread across various rings in the Azure

region. The USE statement is not built to redirect connections to different server.

Therefore, for SSMS, you can either specify the database to connect to before you hit

the Connect button (use the Options button) or switch database context using the drop-

down box (which does change the connection context).

In Chapter 5 of the book, I will show you how to configure the connection type for

the Azure SQL Database to use redirect instead of proxy. In Chapter 6 of the book, I will

show you how to make the connection to the database more secure.

Figure 4-33. Trying to switch database context for Azure SQL Database

Chapter 4 Deploying azure SQl

198

 Verifying Deployment

While you can use the Activity Log to verify the deployment of the database, there is no

method to see the ERRORLOG behind the SQL Server instance. Therefore, you can use

several T-SQL queries to examine the deployment:

Note even though there are some queries that make sense to run in the
context of the logical master, i ran these queries in the context of my database
bwazuresqldb.

SELECT @@version

Microsoft SQL Azure (RTM) - 12.0.2000.8 May 15 2020 00:47:08 Copyright

(C) 2019 Microsoft Corporation

This is the exact same result as with Azure SQL Managed Instance indicating a

versionless SQL Server:

SELECT database_id, name, compatibility_level FROM sys.databases

database_id name compatibility_level

1 master 150

5 bwazuresqldb 150

You will always see master and only your database from the context of a user

database. But note that this is still the logical master, not the physical master on the SQL

Server instance hosting the database:

SELECT name, object_id, type_desc FROM sys.objects

Since this database was built on the sample AdventureWorksLT, I have ~204 rows

from this catalog view including system tables:

SELECT * FROM sys.dm_os_schedulers

Chapter 4 Deploying azure SQl

199

This is one of the DMVs we can expose since we are running on a dedicated SQL

Server instance. I deployed a 2 vCore General Purpose database so as I would expect I

get two ONLINE schedulers:

SELECT * FROM sys.dm_os_sys_info

Just like with a Managed Instance, I can use this to look at CPU and memory

information for the database deployment. Keep in mind though that true limits must be

observed with other DMVs as described as follows:

Note i used sys.dm_os_process_memory with Managed instance, but that is
not supported with azure SQl Database.

SELECT * FROM sys.dm_exec_requests

This is one of the most common DMVs in the world to check the state of what

is running on a SQL Server. I run this just to make sure all the normal background

processes are running, including LAZ WRITER, RECOVERY WRITER, LOCK MONITOR,

and so on.

Here is the interesting twist on this DMV for Azure SQL Database. This will show

you requests for the instance for your database, not requests for other databases on your

logical server (because they are deployed on other instances):

SELECT SERVERPROPERTY('EngineEdition')

Per the documentation at https://docs.microsoft.com/en-us/sql/t-sql/

functions/serverproperty-transact-sql, the value of 5 is a SQL Database.

There are also two new DMVs specific to Azure not found in SQL Server:

SELECT * FROM sys.dm_user_db_resource_governance

This DMV is really intended to show you resource limits for a specific Azure SQL

Database. You can view limits like memory, max storage, log rates, and so on. You

can read the documentation for this DMV at https://docs.microsoft.com/en-us/

sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-

resource- governor-azure-sql-database?view=azuresqldb-current. Note that the

docs say this is mostly for internal use, which means it might change in the future:

SELECT * FROM sys.dm_os_job_object

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/sql/t-sql/functions/serverproperty-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/functions/serverproperty-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current

200

This is a DMV specific to Azure (although I tested it and it works for a SQL Server, but

you can’t rely on the results there because it is not applicable) that shows resource limits

Azure applies to the Database using Windows Job Objects. The specific column I look

at is memory_limit_mb which shows me the true amount of memory the database has

access to. I talked about Windows Job Objects in the section “Implementation Details.”

Note i do not recommend you rely on any results of running these queries in the
context of the logical master. even though you might see results, they do not mean
anything since the logical master is not a true physical master database. there are
a few queries that make sense to run in the logical master which you will see later
in the book.

 Migrating to Azure SQL Database
Migrating to Azure SQL Database involves the same process as with a Managed Instance

of assessment and planning, migration, application changes, and post migration.

While the steps are the same, you will find several differences that are important:

• Azure SQL Database has more restrictions on features, so you may find

your assessment is going to find more problems you need to take care

before migrating. An example is a feature like Service Broker which is

supported in Managed Instance but not in Azure SQL Database.

• Let me give you a simple example. When I first tried to migrate

the example WideWorldImporters (https://github.com/

Microsoft/sql-server-samples/releases/tag/wide-world-

importers-v1.0) to Azure SQL Database, I ran into a bunch of

problems because certain features used in the sample didn’t

work in Azure SQL Database. Therefore, I needed to use the

Standard WideWorldImporters found at https://github.com/

Microsoft/sql-server-samples/releases/download/wide-world-

importers-v1.0/WideWorldImporters-Standard.bacpac.

Chapter 4 Deploying azure SQl

https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Standard.bacpac
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Standard.bacpac
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Standard.bacpac

201

• Migrating to Azure SQL Database involves migrating your schema

(all your definitions) first and then the data. You can use DMS and

DMA to do this. Read more about how to do this at https://docs.

microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-

sql. Like Managed Instance, consider using a database compatibility

level that matches your current SQL Server installation and then

move later to the latest compat level. Learn more about dbcompat at

https://aka.ms/dbcompat.

• You can also load your data into Azure SQL Database using SSIS

packages, Azure Data Factor, bcp, or a BACPAC file. Remember

that minimal logging for bulk import is not supported in Azure SQL

Database.

• Even though the Microsoft Mechanics video I did on migration

focuses demonstrations more on Azure Managed Instance, it is still

worth watching for tips on migration to Azure SQL Database. Watch

the video at https://youtu.be/P_4EaqVR5PI. One of the aspects

of using DMA I love is the SKU recommendation PowerShell script.

This script analyzes your current SQL Server workload to guide you

on Azure SQL Database deployment choices. Read more at https://

docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-

db?view=sql-server-ver15.

Like Managed Instance, the application needs to change the connection string and

possibly authentication method. Depending on what T-SQL features and language

constructs are used, further application changes may be needed. The DMA tool does a

good job of finding these based on database compatibility. To be more thorough, please

look over this documentation for T-SQL differences at https://docs.microsoft.com/

en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server.

Use the rest of the chapters in the book to guide you on any post-migration changes

you need to make to fully take advantage of security, performance, and availability in

Azure.

Chapter 4 Deploying azure SQl

https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql
https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql
https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql
https://aka.ms/dbcompat
https://youtu.be/P_4EaqVR5PI
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server
https://docs.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server

202

 Summary
In this chapter, you learned how to go through a pre-deployment exercise to make the

best choices possible to deploy Azure SQL Managed Instance or Database. You learned

the details of deployment for both a Managed Instance and Database along with some

interesting implementation details.

You learned how to connect and run verification queries against a Managed Instance

and Database deployment. You also learn migration techniques and tools to migrate an

existing SQL Server to Azure SQL Managed Instance and Database.

Now that you have deployed, learn more in the next chapter about how to make

configuration choices and compare these choices to configuring a SQL Server instance

or database.

Chapter 4 Deploying azure SQl

203
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_5

CHAPTER 5

Configuring Azure SQL
Now that you have deployed your Azure SQL Managed Instance or Database, there

could be some configuration changes you may want to make before or after moving into

production.

In this chapter, we will explore configuration options for Azure SQL Managed

Instance and Database as it compares to configuration options for SQL Server. I will

discuss some of the configuration choices for SQL Server that are restricted for Azure

SQL and why. I will also spend time toward the end of the chapter explaining space

management, various techniques to load data, and why Azure SQL is referred to as

versionless.

You can try out some of the methods I describe in the chapter. I will use the existing

deployment I did in Chapter 4 of the book when discussing configuration choices and

restrictions. For you to try out any of the techniques or commands I use in this chapter,

you will need

• An Azure subscription.

• A minimum of Contributor role access to the Azure subscription.

You can read more about Azure built-in roles at https://docs.

microsoft.com/en-us/azure/role-based-access-control/built-

in- roles.

• Access to the Azure Portal (web or Windows application).

• A deployment of an Azure SQL Managed Instance and/or an Azure

SQL Database.

• Installation of the az CLI (see https://docs.microsoft.com/en-us/

cli/azure/install-azure-cli?view=azure-cli-latest for more

details). You can also use the Azure Cloud Shell instead since az is

already installed. You can read more about the Azure Cloud Shell at

https://azure.microsoft.com/en-us/features/cloud-shell/.

https://doi.org/10.1007/978-1-4842-5931-3_5#DOI
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com/en-us/features/cloud-shell/

204

• You will run some T-SQL in this chapter, so install a tool like SQL

Server Management Studio (SSMS) at https://docs.microsoft.

com/en-us/sql/ssms/download-sql-server-management-studio-

ssms?view=sql-server-ver15. You can also use Azure Data Studio

at https://docs.microsoft.com/en-us/sql/azure-data-studio/

download-azure-data-studio?view=sql-server-ver15.

 Configuring Azure SQL Managed Instance
There are several options you can choose from to configure the instance of a SQL Server.

Let us look at a few of these compared to configuring an Azure SQL Managed Instance.

 sp_configure
One of the ways to configure SQL Server at the instance level is with the system

procedure sp_configure. This stored procedure is supported to use with Azure SQL

Managed Instance with these exceptions:

• Any configuration value that requires a server restart is not supported

(since we do not offer an interface for you to restart the instance).

For example, if you try to change the scan for startup procs

configuration option, you will get an error:

Msg 5869

Changes to server configuration option scan for startup procs are

not supported in SQL Database Managed Instances

• Advanced configuration values are supported.

• Some options are not supported because we do not allow that level of

configuration or are enforced in a different manner through resource

limits. For example, if I try to change the max server memory value, I

get the following error:

Msg 5870

Changes to server configuration option max server memory (MB) are

not supported in SQL Database Managed Instances

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15

205

 Trace Flags
Azure SQL Managed Instance sets a predetermined set of global trace flags ON which

you can see with DBCC TRACESTATUS (there are some 26 trace flags set as of the time

of the writing of this book).

Some trace flags we set which you cannot turn off, such as trace flag 1800 (which is

used for disk sector size alignments), and some you can turn off and on. To see a list of

trace flags you can turn on and off, please see https://docs.microsoft.com/en-us/

sql/t-sql/database-console-commands/dbcc-traceon-transact-sql?view=sql-

server- ver15#remarks.

For a complete list of all trace flags so you can understand the meaning of any of

these trace flags, please see the documentation at https://docs.microsoft.com/en-

us/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-

sql?view=sql-server-ver15#trace-flags.

Session-level trace flags are not supported.

Note We have been striving for some time to eliminate the need for trace flags,
but clearly some are still needed. the addition of commands like aLter DataBaSe
SCopeD Configuration are examples of configuration methods to use instead of
trace flags.

 Tempdb
Tempdb size or number of files is not configurable with Azure SQL Managed Instance

directly with T-SQL.

Note this is something we are looking to allow in the future.

The number of tempdb files is fixed at 12 no matter what deployment option you

choose for a Managed Instance.

The size of tempdb is configurable by changing your deployment option or size.

For a General Purpose deployment, you get 24Gb per vCore but limited to a max of

~2TB. For a Business Critical deployment, you are limited by the maximum storage size

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-transact-sql?view=sql-server-ver15#remarks
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-transact-sql?view=sql-server-ver15#remarks
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-transact-sql?view=sql-server-ver15#remarks
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql?view=sql-server-ver15#trace-flags
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql?view=sql-server-ver15#trace-flags
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql?view=sql-server-ver15#trace-flags

206

of the instance. The transaction log is capped at 120Gb, but since Accelerated Database

Recovery is ON by default and we regularly back up the transaction log, I do not foresee a

problem with you running out of space.

 Master and Model
Like SQL Server, you can configure the size of the master database and even add objects

to it (but that is usually not recommended on SQL Server anyway).

The same concept applies to model. You can configure the model database size so

that new databases will take on that size. Furthermore, you can add objects to model

which will be picked up by new user databases.

 Configuring Edition
You can use the SQL Server setup program (or mssql-conf with Linux) to change the

edition of SQL Server (e.g., Standard to Enterprise).

For Azure SQL Managed Instance, you can change the deployment service tier

(General Purpose or Business Critical) or size (vCores or max storage) using the Azure

Portal or CLI interfaces such as az sql mi update or PowerShell Set-AzSqlInstance.

Note as i have mentioned to this point in the book, deploying or changing the
deployment for a Managed instance can be a time-consuming operation.

 Networking Configuration
Once you have deployed a Managed Instance, you may need to make some adjustments

to the network configuration for the instance. As seen in Figure 5-1, you can select

Virtual Network from the Azure Portal Resource Menu to change several network

options.

Chapter 5 Configuring azure SQL

207

This screen offers choices to enable the Public Endpoint (which I left disabled during

deploy) and change the Connection Type to Proxy (which is the default, but I chose

Redirect during deployment).

In addition, there is another option that was not offered during deployment

which is the TLS version. Transport Layer Security (TLS) is a protocol for encrypting

connections and is supported by SQL Server and Azure SQL. TLS 1.2 is the minimal

supported version recommended today as it includes fixes for some vulnerabilities

found in previous versions. However, be careful with this setting as it could break an

application not using that TLS version. You can read more about minimal TLS version

at https://docs.microsoft.com/en-us/azure/azure-sql/database/connectivity-

settings#minimal-tls-version.

Networking options for Managed Instance can also be configured using az sql mi
update and PowerShell Set-AzSqlInstance.

Figure 5-1. Configuring network options for a Managed Instance

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/connectivity-settings#minimal-tls-version
https://docs.microsoft.com/en-us/azure/azure-sql/database/connectivity-settings#minimal-tls-version

208

You can read about all possible other options to configure for a Managed Instance by

looking at the az sql mi update documentation at https://docs.microsoft.com/en-us/

cli/azure/sql/mi?view=azure-cli-latest#az-sql-mi-update.

 Configuring Databases
Once you deploy an Azure SQL Managed Instance, you can now add databases or

configure existing databases using the Azure Portal, tools like SSMS, or the T-SQL

CREATE DATABASE or ALTER DATABASE statements.

The CREATE DATABASE T-SQL syntax is very simple since you do not specify files

or any WITH options. For example, for the Managed Instance I deployed, I can run the

following T-SQL statement to create a new database:

CREATE DATABASE gocowboys;

The new database will take on the properties of the model database just like SQL

Server. The one difference is that we automatically create a memory-optimized filegroup

called XTP, which you can see if you query the sys.filegroups catalog view. We create

XTP filegroup even if you are using the General Purpose service tier which does not

support In-Memory OLTP. This makes it easier to support this feature if you move to

Business Critical.

This database will also take on the properties set by Model and is like SQL Server,

except for two key options that are on by default: query store and accelerated database
recovery.

Once a database is created, you can use the ALTER DATABASE statement to make

various changes to options or to add/remove files and filegroups. One of the nifty things

we have done with the T-SQL documentation is to allow you to choose a product to see

the exact syntax support for statements like ALTER DATABASE. Figure 5-2 shows the

documentation reference for ALTER DATABASE (which is at https://docs.microsoft.

com/en-us/sql/t-sql/statements/alter-database-transact-sql?view=azuresqldb-

mi- current) after I selected Managed Instance.

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/cli/azure/sql/mi?view=azure-cli-latest#az-sql-mi-update
https://docs.microsoft.com/en-us/cli/azure/sql/mi?view=azure-cli-latest#az-sql-mi-update
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql?view=azuresqldb-mi-current
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql?view=azuresqldb-mi-current
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql?view=azuresqldb-mi-current

209

Most of the SET options you normally see for SQL Server are available for Managed

Instance. One notable exception is ACCELERATED_DATABASE_RECOVERY. We turn

on this option by default for your database and do not allow you to disable it. Why? It is

important for this option to be on for us to meet SLA requirements and ensure you do

not have issues with running out of transaction log space.

One of the key options for a database is database compatibility level, and Managed

Instance supports setting the “dbcompat” with ALTER DATABASE. Compat levels 90

through 150 are currently supported for Managed Instance databases. Read more about

dbcompat at https://aka.ms/dbcompat.

I asked my colleague Joe Sack more about the use of dbcompat with Azure SQL. He told

me, “150 is the current default and means you will have support for features like Intelligent

Query Processing out-of-the-gate. Customer can shift down to lower levels if they choose.

We will never force a customer to the latest dbcompat level for existing databases.

New databases will use the latest default and then customers can change per their needs.”

Figure 5-2. ALTER DATABASE reference for Managed Instance

Chapter 5 Configuring azure SQL

https://aka.ms/dbcompat

210

Note if you restore a backup from an existing SQL Server database to Managed
instance, we will retain the dbcompat level of that database when it is was backed up.

Even though you do not have to worry about physical file placement, you do have the

ability to add database files and change file sizes up to the maximum instance storage

limit. You can also create filegroups. A good example of why you might want to increase

the number of files or size is to improve I/O performance. My colleague Jovan Popovic

has a very nice blog post describing how to do this at https://medium.com/azure-

sqldb- managed-instance/increasing-data-files-might-improve-performance-on-

general- purpose-managed-instance-tier-6e90bad2ae4b.

Note SQL Server Managed Studio (SSMS) also supports changing database
options and file options as you can with SQL Server.

It is also important to know that the ALTER DATABASE SCOPED CONFIGURATION

T-SQL statement is supported for Azure SQL Managed Instance just like SQL Server. You

can read more at https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-

database- scoped-configuration-transact-sql?view=sql-server-ver15.

 Configuring Azure SQL Database
Since deploying an Azure SQL Database is effectively creating a database, you may

want to configure some settings about the database from the deployment. You may also

want to perform some configuration on the logical server associated with the database

including creating a new database on the logical server.

 Creating New Databases
The T-SQL CREATE DATABASE statement is supported when connected to a logical

server (in any database context). You can view the full syntax of CREATE DATABASE for

Azure SQL Database at https://docs.microsoft.com/en-us/sql/t-sql/statements/

create-database-transact-sql?view=azuresqldb-current.

Chapter 5 Configuring azure SQL

https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-transact-sql?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-transact-sql?view=azuresqldb-current

211

Note remember that creating a database for azure SQL Database with
Create DataBaSe is a deployment. for SQL Server, we create new files and
add metadata to the master database. for azure SQL Database, we are building
a new deployment (i.e., a dedicated instance for the database) to host the
database and storing information in our control plan (e.g., gateways). this means
the Create DataBaSe is an asynchronous operation but can be tracked with
the DMV sys.dm_operation_status. You must query this DMV from the logical
master, and we retain history for 1 hour.

You will notice that you only have two options when creating a new database:

collation and deployment options. Deployment options allow you to choose a

purchasing model, service tier, compute model, and size.

If you remember in Chapter 4, I deployed several databases using different options

for the deployment. Using the logical server bwazuresqlserver I used in the Chapter 4

examples, I can create a new Business Critical, 4 vCore database with the following

T-SQL syntax:

CREATE DATABASE bwazuresqldbbc2

(EDITION = 'BusinessCritical', MAXSIZE = 1000 GB, SERVICE_OBJECTIVE =

'BC_GEN5_4');

The preceding documentation reference shows all the possible options you can

use for EDITION and SERVICE_OBJECTIVE. In this case, the EDITION is used to

decide a DTU model, General Purpose, Business Critical, or Hyperscale. The SERVICE_

OBJECTIVE is used to select options like Serverless, hardware generation, and number

of vCores.

The CREATE DATABASE statement for Azure SQL Database also supports the AS

COPY OF option to create a database as a copy of another database even from another

logical server.

Any database that is created has the following options turned on by default:

• SNAPSHOT_ISOLATION_STATE

• READ_COMMITTED_SNAPSHOT

• FULL RECOVERY

• CHECKSUM

Chapter 5 Configuring azure SQL

212

• TDE

• QUERY_STORE

• ACCELERATED_DATABASE_RECOVERY

One option you may not notice is set on if you examine sys.databases is stale page

detection. Stale page detection assists Azure SQL Database to find possible data integrity

problems due to I/O problems in the infrastructure. I will discuss more data integrity

checks provided by Azure SQL in Chapter 8 of the book.

 Altering Databases
For any database that is created, you can use the T-SQL ALTER DATABASE statement

to modify certain SET options. You can use this documentation reference to see what

options you can turn on and off at https://docs.microsoft.com/en-us/sql/t-sql/

statements/alter-database-transact-sql-set-options?view=azuresqldb-current.

You do not have the ability to change any properties of the files behind this database.

To change the maximum size of the database, you would use the MAXSIZE parameter.

You can also change the EDITION or SERVICE_OBJECTIVE with ALTER DATABASE or

the Azure Portal. Any execution of ALTER DATABASE is also asynchronous and can be

tracked with sys.dm_operation_status.

One of the key options for a database is database compatibility level, and Azure

SQL Database supports setting the “dbcompat” with ALTER DATABASE. Compat levels

90 through 150 are currently supported for Azure SQL Database. Read more about

dbcompat at https://aka.ms/dbcompat.

It is also important to know that the ALTER DATABASE SCOPED CONFIGURATION

T-SQL statement is supported for Azure SQL Database just like SQL Server. You can

read more at https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-

database- scoped-configuration-transact-sql?view=sql-server-ver15.

The az sql db CLI also supports the ability to change options about the deployment

of the database as documented at https://docs.microsoft.com/en-us/cli/azure/

sql/db?view=azure-cli-latest#az-sql-db-update. PowerShell also provides the

Set-AzSQLDatabase which is documented at https://docs.microsoft.com/en-us/

powershell/module/az.sql/Set-AzSqlDatabase?view=azps-4.3.0.

And of course the Azure Portal supports changing several options about the database

deployment from the Resource Menu, Command Bar, and Working Pane. I will show you

examples of these configuration options in other chapters of the book.

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options?view=azuresqldb-current
https://aka.ms/dbcompat
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/cli/azure/sql/db?view=azure-cli-latest#az-sql-db-update
https://docs.microsoft.com/en-us/cli/azure/sql/db?view=azure-cli-latest#az-sql-db-update
https://docs.microsoft.com/en-us/powershell/module/az.sql/Set-AzSqlDatabase?view=azps-4.3.0
https://docs.microsoft.com/en-us/powershell/module/az.sql/Set-AzSqlDatabase?view=azps-4.3.0

213

 Network Configuration
When we deployed an Azure SQL Database in Chapter 4 of the book, we were able to

specify a few networking options for the logical server, including public endpoint access,

allowing azure services, and firewall rules.

There are a few other networking options you may want to configure for the logical

server or database as seen in Figure 5-3.

Two of the network options that were not available when you deployed the database

and logical server are Minimal TLS Version and Connection Policy.

Minimal TLS Version is exactly like the TLS requirements as I described earlier in

this chapter for a Managed Instance.

Connection Policy is like the Connection type for a Managed Instance: Proxy or

Redirect. Notice here for Azure SQL Database there is the choice of Default. Default uses

a policy to use a Proxy connection type if the connection originates outside of Azure

while Redirect if the connection is within Azure.

Figure 5-3. Networking options for a logical server

Chapter 5 Configuring azure SQL

214

The Redirect connection policy can be much faster for application latency because

the Gateway is used to redirect traffic to the direct node for the Azure SQL Database. My

colleague Anna Thomas has a nice example to how much faster Redirect can be over

Proxy at https://github.com/microsoft/sqlworkshops-azuresqlworkshop/tree/

master/azuresqlworkshop/02-DeployAndConfigure. This example uses a notebook

with Azure Data Studio. Learn more how to use notebooks with Azure Data Studio at

https://docs.microsoft.com/en-us/sql/azure-data-studio/notebooks-guidance.

There are other network options on this screen such as virtual networks. I will describe

more about how to use other networking options in Chapters 6 and 7 of the book.

 Configuration Restrictions
While there are several options to configure an Azure SQL Managed Instance and

Database, I thought it is important to call out some of the configuration options you can

make for SQL Server both at the instance and database level but are restricted in Azure

SQL. When possible, I will call out why certain options are restricted or are not needed in

a PaaS environment.

 Azure SQL Managed Instance Restrictions
Many of the configuration choices at a SQL Server level are done using the SQL

Server Configuration Manager (Windows) or mssql-conf (Linux), T-SQL, or tools like

SSMS. Since I have worked with SQL Server for many years, I thought it would be

interesting for you to know what options exist in these tools and interfaces and why they

are restricted for Azure SQL Managed Instance and Databases.

 Start and Stop Services

You are not allowed to stop your Managed Instance (therefore, you cannot start it).

Your Managed Instance is always running. There are no configuration options allowed

that require a restart, so effectively there is no reason for you to have to restart the SQL

Server instance. Since every deployment option for Managed Instance supports High

Availability, a failover will occur if necessary due to an unforeseen event or maintenance.

Since you are abstracted from the SQL Server instance for Azure SQL Database, there

is also no interface to restart the instance.

Chapter 5 Configuring azure SQL

https://github.com/microsoft/sqlworkshops-azuresqlworkshop/tree/master/azuresqlworkshop/02-DeployAndConfigure
https://github.com/microsoft/sqlworkshops-azuresqlworkshop/tree/master/azuresqlworkshop/02-DeployAndConfigure
https://docs.microsoft.com/en-us/sql/azure-data-studio/notebooks-guidance

215

Note You will learn in Chapters 10 and 11 of the book how to manually
fail over an azure SQL Database using the powerShell command Invoke-
AzSqlDatabaseFailover.

 Instant File Initialization

There is no interface for you to enable Instant File Initialization (IFI) which you can

read about at https://docs.microsoft.com/en-us/sql/relational-databases/

databases/database-instant-file-initialization?view=sql-server-ver15.

However, there are two important points on why I do not think this is a big factor:

• IFI is not supported or used when the database has Transparent Data

Encryption (TDE) enabled. TDE is enabled by default for databases

for Azure SQL Managed Instance and Database.

• I did some testing for “autogrow” scenarios and could never cause

any major performance bottlenecks.

 Locked Pages

There is no interface to enable Locked Pages (or Large Pages) as with SQL Server. We

have not seen many issues with working set trim issues that would require the need to

enable this.

Having said that, we are investigating for the future whether we should enable this by

default behind the scenes for Azure SQL.

 FILESTREAM and Availability Groups

SQL Server Configuration Manager allows you to enable the FILESTREAM and Always

On Availability Group features. FILESTREAM is not supported in Azure SQL. Always On

Availability Groups (AG) are used behind the scenes for Business Critical service tiers,

but you cannot set up or configure an AG on your own.

Chapter 5 Configuring azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_11
https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-instant-file-initialization?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-instant-file-initialization?view=sql-server-ver15

216

 Server Collation

You can set the collation for the SQL Server instance during deployment of a Managed

Instance but cannot change it after that. You can set collations for databases or columns

in tables like SQL Server.

Azure SQL Database allows you to specify a database collation during deployment,

but you cannot change it later. You can also define collations at the column level.

 Startup Parameters

SQL Server Configuration Manager allows you to set certain startup parameters for

the SQL Server engine as documented at https://docs.microsoft.com/en-us/

sql/database-engine/configure-windows/database-engine-service-startup-

options?view=sql-server-ver15. None of these options are exposed to modify for

Azure SQL. In my experience, most of these options are used for certain “edge” scenarios

that you won’t need or can’t use (like starting SQL Server in single user mode).

 ERRORLOG Configuration

SSMS allows you to configure the number of ERRORLOG files and maximum size.

These options are not supported to configure for Azure SQL Managed Instance because

it requires a restart of the instance. Furthermore, while it might be nice to have more

than the default of six ERRORLOG files, the maximum size of the ERRORLOG value is

generally used to control disk space, but that is not a concern with Managed Instance.

Note the system procedure sp_cycle_errorlog is supported on Managed
instance. however, errorLog files are stored on the local node, so they are not
saved on a failover.

 Error Reporting and Customer Feedback

SQL Server provides a way to configure error reporting and customer feedback as

documented at https://docs.microsoft.com/en-us/sql/sql-server/usage-and-

diagnostic-data-configuration-for-sql-server?view=sql-server-ver15. This

configuration is not possible for Azure SQL but does not apply.

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/database-engine-service-startup-options?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/database-engine-service-startup-options?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/database-engine-service-startup-options?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/usage-and-diagnostic-data-configuration-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/usage-and-diagnostic-data-configuration-for-sql-server?view=sql-server-ver15

217

Note We do use telemetry to improve azure SQL. take a look at this article
where one of our partner architects, Conor Cunningham, explains in more detail:
https://redmondmag.com/articles/2018/02/14/qa-lead-sql-
architect-part-1.aspx.

If you have any concerns about what information about your deployment is collected

or used by Microsoft, I recommend you read over privacy and other legal documents at

https://azure.microsoft.com/en-us/support/legal/.

 ALTER SERVER CONFIGURATION

ALTER SERVER CONFIGURATION was introduced several releases ago with SQL Server

as a new way to configure the instance vs. sp_configure.

ALTER SERVER CONFIGURATION is not supported with Azure SQL, but there are no

options where it makes sense to configure an instance for Azure SQL given most of these

options are done automatically or do not apply.

 “Mixed Mode” Security

Because a SQL login is required to deploy Azure SQL Managed Instance and Database,

Mixed Mode Security is enabled and cannot be configured.

Note We are investigating in the future whether we would support an azure
active Directory only concept for azure SQL, thereby offering an option to not
support SQL authentication.

 Logon Auditing

The SQL Server engine for years has supported the ability to track successful, failed, both

(and none) login attempts. This tracking is written to the ERRORLOG and is configured

typically through SSMS. While for Managed Instance the options exist to configure this

tracking of logins, they do not take effect because it requires a restart of SQL Server.

Failed login, which is the default, is tracked in the ERRORLOG.

Chapter 5 Configuring azure SQL

https://redmondmag.com/articles/2018/02/14/qa-lead-sql-architect-part-1.aspx
https://redmondmag.com/articles/2018/02/14/qa-lead-sql-architect-part-1.aspx
https://azure.microsoft.com/en-us/support/legal/

218

You can perform your own audit of logins with Extended Events or SQL Audit for

Azure SQL. I will show you more about auditing for Azure SQL in Chapters 6 and 7 of the

book.

 Server Proxy Account

SSMS supports the configuration of a Server proxy account for the system procedure

xp_cmdshell. This configuration is not supported for Managed Instance since

xp_cmdshell is not supported for Azure SQL Managed Instance or Database.

 Database Restrictions

Many of the common options to configure a database through ALTER DATABASE are

allowed for Managed Instance just like SQL Server. One notable exception is that you

cannot disable ACCELERATE_DATABASE_RECOVERY. That is because we rely on ADR

technology to ensure the promised SLA for availability.

 Azure SQL Database Restrictions
All the restrictions listed in the previous section for Managed Instance also apply to

Azure SQL Database.

A few other notable restrictions you may have guessed since Azure SQL Database

does not expose a full SQL Server instance are as follows:

• sp_configure is not supported.

• DBCC TRACEON is not supported. In fact, if you run this command,

it fails with Msg 2571 (i.e., no permissions).

• You can use DBCC TRACESTATUS to see what trace flags we enable

even if you cannot turn them on or off (the list is pretty much the

same as is used with Managed Instance).

ACCELERATED_DATABASE_RECOVERY is also enabled by default and cannot be

disabled.

Chapter 5 Configuring azure SQL

219

 Azure SQL Space Management
One other topic related to Azure SQL configuration is space management. While we

have abstracted the physical placement of database and transaction log files for both

Azure SQL Managed Instance and Database, sizes are still a factor you must manage

and consider. Because Azure SQL Managed Instance and Database provide different

deployment surface areas, space management can be different between each option.

 Azure SQL Managed Instance Space Management
As I have described in Chapter 4 for deployment, the maximum size for data for a

Managed Instance is the overall size for all database storage. Your choice of vCores and

options like Business Critical affect the maximum storage size for the instance.

You can configure files for databases including size and number of files. As I

mentioned earlier in this chapter, changing the size and number of files can potentially

improve I/O performance for the General Purpose service tier (which uses Azure

Storage). You can read more about this technique at https://medium.com/azure-

sqldb- managed-instance/increasing-data-files-might-improve-performance-on-

general- purpose-managed-instance-tier-6e90bad2ae4b.

With SQL Server, when a database file has a limit on size, you may encounter Msg

1105 to indicate you have run out of space. This error could occur if you also run out

of disk space on the filesystem hosting your database. For a Managed Instance, you

can also encounter Msg 1105 if you have run out of space on the maximum size of your

database. However, since we enforce maximum storage limits for all databases, you may

also encounter an error before you run out of space in your database like this:

Msg 1133

The managed instance has reached its storage limit. The storage usage for

the managed instance cannot exceed (%d) MBs.

To be clear what this means, it is possible for you to hit this error before hitting the

maximum size of an individual database because collectively you have hit the limit for all

databases (including system databases).

Chapter 5 Configuring azure SQL

https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b

220

 Azure SQL Database Space Management
Azure SQL Database manages space differently than Managed Instance. The maximum

size as specified during deployment is the possible maximum size of a single database file.

If you deploy an Azure SQL Database, the maximum size is typically reflected in

the max_size column of sys.database_files for a single data file. However, for larger

maximum database size values (e.g., 1TB), we may not set the max_size to that value but

grow as data is added to the eventual max_size.

If you run out of space in the database, you will get a quota error instead of the

traditional 1105 error like this:

Msg 40544, Level 17, State 2, Line 12

The database '<database>' has reached its size quota. Partition or delete

data, drop indexes, or consult the documentation for possible resolutions.

The transaction log is handled differently. While your subscription is charged for the

maximum database size, you get 30% above this size for free for your transaction log. Do

not use the max_size in sys.database_files for the maximum size of the transaction log. It

does not accurately reflect the quota. In all my testing, I never ran out of transaction log

space due to two factors:

• We regularly and often back up the transaction log (remember we use

full recovery).

• We have Accelerated Database Recovery (ADR) enabled by default

and you cannot disable it. With ADR, the log can be truncated even in

the presence of active transactions.

The one exception to space management for Azure SQL Database is the Hyperscale

service tier. A Hyperscale database has a 100TB limit, but theoretically, we believe

it could be unlimited. When you deploy a Hyperscale database, we create multiple

database files that total around 40Gb. Then as you add data, we automatically grow the

database. The transaction log has a limit of 1TB, but we back up the log regularly and rely

also on ADR so I do not think you will run out of space.

Chapter 5 Configuring azure SQL

221

 Loading Data
Whether you deployed a new Managed Instance or Database or migrated from an

existing instance or database, you inevitably will want to load data. Just like a SQL Server

installation, you have several tools and options to load data. In addition, you have new

services available to you in Azure.

 Keep These in Mind
Just like a SQL Server, you may need additional resources when importing large

amounts of data. For Azure SQL Managed Instance or Database, keep in mind any

additional vCore or size requirements for importing data. I have described how long

scaling can take for Managed Instance, so keep this mind as you deploy.

Several of the data loading techniques involve loading a file. While you can always

use these techniques to load files from on-premises environment, any tool or command

run in the Azure infrastructure should be done using Azure Storage or Azure Files. Some

of your data may not be cloud born, so consider using tools like AzCopy to load your files

into Azure Storage or Azure Files. You can read more about AzCopy at https://docs.

microsoft.com/en-us/azure/storage/common/storage-use-azcopy-files. If your files

are very large, take a look at our documentation on guidance and tools at https://docs.

microsoft.com/en-us/azure/storage/common/storage-solution-large-dataset-

moderate- high-network.

I have mentioned already in the book that Azure SQL Managed Instance and

Database both use the FULL recovery model, and this cannot be changed (we need

this to meet SLA requirements). This means that minimal logging is not supported

for bulk operations (except for tempdb). Therefore, you should ensure you use certain

techniques like batch sizes. A batch for bulk import is a defined unit of transaction.

So a batch size of 10000 means 10000 rows are imported for a transaction. Typically,

using large batch sizes can improve bulk performance and should be used for Azure

SQL. However, you should also keep in mind that if you use too large of a batch size, you

might be throttled by Log Rate Governance. You can read more about log rate governance

at https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-

limits- logical-server#transaction-log-rate-governance. If you intended target

for data is columnstore, you should consider directly importing into a clustered

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-files
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-files
https://docs.microsoft.com/en-us/azure/storage/common/storage-solution-large-dataset-moderate-high-network
https://docs.microsoft.com/en-us/azure/storage/common/storage-solution-large-dataset-moderate-high-network
https://docs.microsoft.com/en-us/azure/storage/common/storage-solution-large-dataset-moderate-high-network
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance

222

columnstore index. You can read more about data loading guidance for columnstore

at https://docs.microsoft.com/en-us/sql/relational-databases/indexes/

columnstore-indexes-data-loading-guidance?view=sql-server-ver15.

Azure does charge on certain type of network traffic called inbound and outbound.

Any inbound traffic (e.g., bulk import data from your on-premises environment into

Azure) is free.

Outbound traffic can be charged if that traffic travels between Azure regions. So if

you bulk import from an Azure Virtual Machine or Azure Data Factory Service from

one region into an Azure SQL Database in another region, there could be outbound

network charges. You can read more at https://azure.microsoft.com/en-us/pricing/

details/bandwidth/.

Note Some network connectivity options may vary these charges. read more
at https://azure.microsoft.com/en-us/pricing/details/virtual-
network/.

 bcp
The bulk copy program (bcp) is perhaps the oldest and most popular tool in the history

of SQL Server to export and import data. The bcp program runs on Windows, Linux, and

macOS computers. You can get all the latest information about bcp at https://docs.

microsoft.com/en-us/sql/tools/bcp-utility.

Since bcp is a program that reads a file and bulk imports data into a SQL Server

or Azure SQL, you must run the bcp program on a computer that can access the file

and connect to Azure SQL. That could be on a computer on-premises or Azure Virtual

Machine. In any of these scenarios, you can use bcp against a file that is hosted on your

on-premises environment, local to the Azure Virtual Machine storage (which may be

data disks in Azure Storage), or in Azure Storage. Since bcp does not support a direct

path to Azure Storage (i.e., URL), you can use Azure Files.

One other option is to use bcp from the Azure Cloud Shell. bcp in the Azure Cloud

Shell runs in the Azure infrastructure (think of it like running in a temporary VM), so

provided you have network connectivity set up correctly, you can bulk import into Azure

SQL Managed Instance or Database. The only provision here is that the cloud shell

cannot join a virtual network, so you would have to set up a public endpoint access.

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-data-loading-guidance?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-data-loading-guidance?view=sql-server-ver15
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/virtual-network/
https://azure.microsoft.com/en-us/pricing/details/virtual-network/
https://docs.microsoft.com/en-us/sql/tools/bcp-utility
https://docs.microsoft.com/en-us/sql/tools/bcp-utility

223

The Azure Cloud Shell supports persistence of files through a concept called a clouddrive

which you can read more about at https://docs.microsoft.com/en-us/azure/cloud-

shell/persisting-shell-storage#clouddrive-commands. So you can copy files into

your clouddrive and then use bcp to import the file into Azure SQL.

bcp uses Bulk APIs behind the scenes so you can also write applications that use the

Bulk APIs. Here is an example of Bulk APIs with ODBC at https://docs.microsoft.

com/en-us/sql/relational-databases/native-client-odbc-extensions-bulk-copy-

functions/sql-server-driver-extensions-bulk-copy-functions?view=sql-server-

ver15.

 BULK INSERT and OPENROWSET
The T-SQL BULK INSERT and OPENROWSET (using the BULK option) statements

support bulk import of data from a file. One nice advantage of these commands is that

they run in the context of the SQL Server engine.

For SQL Server, it is common to copy a file to drive or network share that the

computer hosting SQL Server can access. Then you use BULK INSERT to reference that

file to import. The problem is that for Azure SQL Managed Instance and Database, you

do not have access to the underlying node file system. Therefore, BULK INSERT and

OPENROWSET statements have been enhanced to support Azure Blob Storage (even

from an on-premises SQL Server).

Here is how this works. You create an EXTERNAL DATA SOURCE (like Polybase) to

reference an Azure Storage account. The BULK INSERT and OPENROWSET statements

have been enhanced to support a DATA_SOURCE parameter.

Now you can connect directly to your Azure SQL Managed Instance or Database with

your favorite SQL tool (remember it could be sqlcmd in the Azure Cloud shell) and bulk

import data having the SQL Server engine do the work.

Here is an example syntax on how to do this with BULK INSERT from the

documentation at https://docs.microsoft.com/en-us/sql/t-sql/statements/bulk-

insert- transact-sql?view=sql-server-ver15#f-importing-data-from-a-file-

in-azure-blob-storage. This requires you first create an Azure Storage account and

container:

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/azure/cloud-shell/persisting-shell-storage#clouddrive-commands
https://docs.microsoft.com/en-us/azure/cloud-shell/persisting-shell-storage#clouddrive-commands
https://docs.microsoft.com/en-us/sql/relational-databases/native-client-odbc-extensions-bulk-copy-functions/sql-server-driver-extensions-bulk-copy-functions?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/native-client-odbc-extensions-bulk-copy-functions/sql-server-driver-extensions-bulk-copy-functions?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/native-client-odbc-extensions-bulk-copy-functions/sql-server-driver-extensions-bulk-copy-functions?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/native-client-odbc-extensions-bulk-copy-functions/sql-server-driver-extensions-bulk-copy-functions?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/bulk-insert-transact-sql?view=sql-server-ver15#f-importing-data-from-a-file-in-azure-blob-storage
https://docs.microsoft.com/en-us/sql/t-sql/statements/bulk-insert-transact-sql?view=sql-server-ver15#f-importing-data-from-a-file-in-azure-blob-storage
https://docs.microsoft.com/en-us/sql/t-sql/statements/bulk-insert-transact-sql?view=sql-server-ver15#f-importing-data-from-a-file-in-azure-blob-storage

224

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'YourStrongPassword1';

GO

--> Optional - a DATABASE SCOPED CREDENTIAL is not required because the

blob is configured for public (anonymous) access!

CREATE DATABASE SCOPED CREDENTIAL MyAzureBlobStorageCredential

 WITH IDENTITY = 'SHARED ACCESS SIGNATURE',

 SECRET = '******srt=sco&sp=rwac&se=2017-02-01T00:55:34Z&st=2016-12-

29T16:55:34Z***************';

 -- NOTE: Make sure that you don't have a leading ? in SAS token, and

 -- that you have at least read permission on the object that should be

loaded srt=o&sp=r, and

 -- that expiration period is valid (all dates are in UTC time)

CREATE EXTERNAL DATA SOURCE MyAzureBlobStorage

WITH (TYPE = BLOB_STORAGE,

 LOCATION = 'https://****************.blob.core.windows.net/

invoices'

 , CREDENTIAL= MyAzureBlobStorageCredential --> CREDENTIAL is not

required if a blob is configured for public (anonymous) access!

);

BULK INSERT Sales.Invoices

FROM 'inv-2017-12-08.csv'

WITH (DATA_SOURCE = 'MyAzureBlobStorage');

 SQL Server Integration Services (SSIS)
SSIS packages are one of the most popular methods today for Extract Transform and

Load (ETL) applications with SQL Server.

Azure SQL Managed Instance and Database can always be targets for data loading

with SSIS packages no matter where you run the SSIS package with the SSIS runtime.

This means you can build SSIS packages and run them on-premises in your data center

or in Azure Virtual Machine. Here is a simple tutorial on how to use SSIS to load data

into Azure SQL Database: https://docs.microsoft.com/en-us/sql/integration-

services/load-data-to-sql-database-with-ssis.

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/sql/integration-services/load-data-to-sql-database-with-ssis
https://docs.microsoft.com/en-us/sql/integration-services/load-data-to-sql-database-with-ssis

225

There are other methods to execute an SSIS package in Azure SQL itself (which

you could use to have packages that import data into Azure SQL Managed Instance or

Database).

 Azure SSIS

There is no specific service called Azure SSIS, but I have coined this term to refer to

services in Azure to host and execute SSIS packages. There are two components to make

Azure SSIS a reality:

• Azure SSIS Integration Runtime (SSIS IR)

Azure Data Factor (ADF) is a service in Azure that provides ETL

capabilities. ADF supports an Integration runtime compute

environment. One of the choices for an integration runtime

environment is SSIS. Effectively, ADF will host compute nodes

that allow you to run SSIS packages. This compute environment

can also be connected to a virtual network paving the way for

connectivity to Azure SQL resources. The steps to deploy SSIS IR

can be found at https://docs.microsoft.com/en-us/azure/

data-factory/create-azure-ssis-integration-runtime.

• SSIS Catalog Database (SSISDB) in Azure

Although not required to use SSIS IR, you can host the catalog

database for SSIS called SSISDB in Azure SQL Database or

Managed Instance. This way, you can execute packages that are

stored in Azure SQL Database or Managed Instance, leaving all

your ETL packages, managed, and execution in the cloud. These

packages can access any data source a normal SSIS package

could including on-premises. Think of this as a way of executing

everything in Azure and pulling data from on-premises. The

easiest method to create the SSISDB catalog in Azure SQL is to

provision it when deploying SSIS IR. You will need to have already

deployed an Azure SQL Database Logical Server or Managed

Instance to deploy the SSISDB in Azure. Check out this tutorial

at https://docs.microsoft.com/en-us/azure/data-factory/

tutorial-deploy-ssis-packages-azure.

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/azure/data-factory/create-azure-ssis-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/create-azure-ssis-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/tutorial-deploy-ssis-packages-azure
https://docs.microsoft.com/en-us/azure/data-factory/tutorial-deploy-ssis-packages-azure

226

Once you have deployed SSIS IR and SSISDB for Azure, you basically have a compute

structure to run packages and a catalog to host them (without you having to provision

your own VM).

Note You still can execute packages stored in a file system such as azure files.

You now have the option to execute these packages using several methods:

• Execute packages with SQL Server Data Tools (SSDT). Learn more

at https://docs.microsoft.com/en-us/azure/data-factory/how-

to- invoke-ssis-package-ssdt.

• Execute packages using SQL Server Agent on a Managed Instance.

Learn more at https://docs.microsoft.com/en-us/azure/data-

factory/how-to-invoke-ssis-package-managed-instance-agent.

• Execute packages with the Azure enabled version of dtexec called

AzureDTExec (Windows only). Learn more at https://docs.

microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-

package- azure-enabled-dtexec.

• Execute an Execute SSIS Package activity as part of an Azure Data

Factory (ADF) pipeline. Learn more at https://docs.microsoft.com/

en-us/azure/data-factory/how-to-invoke-ssis-package-ssis-

activity. You can also use ADF to run a stored procedure activity.

Read more at https://docs.microsoft.com/en-us/azure/data-

factory/how-to-invoke-ssis-package-stored-procedure- activity.

Using SSIS IR and SSISDB in Azure could be a book in itself! To find out more details

about other options including migrating existing SSIS packages to Azure, read the

following documentation at https://docs.microsoft.com/en-us/sql/integration-

services/lift-shift/ssis-azure-lift-shift-ssis-packages-overview.

 BACPAC
A BACPAC file (.bacpac extension) is a file that includes schema and data for a database.

You can use a BACPAC file generated through tools like SSMS, SqlPackage, or PowerShell

to import into Azure SQL. The import process in this case creates a full database with the

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-ssdt
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-ssdt
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-managed-instance-agent
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-managed-instance-agent
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-azure-enabled-dtexec
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-azure-enabled-dtexec
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-azure-enabled-dtexec
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-ssis-activity
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-ssis-activity
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-ssis-activity
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-stored-procedure-activity
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-stored-procedure-activity
https://docs.microsoft.com/en-us/sql/integration-services/lift-shift/ssis-azure-lift-shift-ssis-packages-overview
https://docs.microsoft.com/en-us/sql/integration-services/lift-shift/ssis-azure-lift-shift-ssis-packages-overview

227

schema and data in the file. You can store your BACPAC file in Azure Storage or in a local

file depending on what tool and where you are importing the data.

Azure SQL Database supports importing to a new database using the Azure Portal

(the BACPAC file would be in Azure Storage), the SqlPackage tools, SSMS, or PowerShell.

Figure 5-4 shows the option from the command bar of a logical server to import a

database with a BACPAC file.

For Azure SQL Managed Instance, you can use SSMS or SqlPackage.

To read more about using BACPAC files to import a new database in Azure SQL,

consult our docs at https://docs.microsoft.com/en-us/azure/azure-sql/database/

database-import.

 Database Copy
Azure SQL Database supports the ability to create a new database by making a

transactional consistent copy from another deployed database. You can use the Azure

Portal, PowerShell, az cli, or the T-SQL CREATE DATABASE statement. One nice aspect

to this capability is that you can copy a database to a different logical server. The portal

also allows you to configure the deployment option for the target database.

Figure 5-4. Importing a database from the Azure Portal

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/database-import
https://docs.microsoft.com/en-us/azure/azure-sql/database/database-import

228

Figure 5-5 shows that the copy database capability can be accessed from the

command bar in the Azure Portal from the context of an existing database.

You can read more about how to copy a database for Azure SQL Database at

https://docs.microsoft.com/en-us/azure/azure-sql/database/database-copy.

Note the copy option may not be available for hyperscale databases in the azure
portal but is supported through t-SQL.

 RESTORE to Managed Instance
Since Azure SQL Managed Instance is a full SQL Server instance with almost all surface

area including T-SQL available to you, you can perform a native restore of a SQL Server

backup to the instance.

This means you can back up a database from a SQL Server, copy the backup file to

Azure Storage, and then restore the database using the RESTORE DATABASE statement

to the Azure Managed Instance.

Figure 5-5. Copying a database using the Azure Portal

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/database-copy

229

At this time, only a full database backup can be restored. There is a key difference

in RESTORE with Managed Instance from SQL Server. A RESTORE is an asynchronous

operation. You can drop the connection and the restore option is done in the

background. You can use the DMVs sys.dm_operation_status to check on the

deployment.

To learn more about how to use RESTORE with Azure SQL Managed Instance,

check out the documentation at https://docs.microsoft.com/en-us/sql/t-sql/

statements/restore-statements-transact-sql?view=azuresqldb-mi-current.

Note You cannot restore the other direction. in other words, you cannot back up
a database from Managed instance (which is supported) and restore it on a SQL
Server on-premises. this is due to the nature of versionless azure SQL.

 Spark Connector
Spark is a technology that can often be used for ETL operations. Microsoft supports

a Spark connector that allows you to export and import data to and from Azure SQL

Database and Managed Instance. It supports bulk operations that can be very fast and

even use Azure Active Directory Authentication.

Anywhere you can run Spark and connect to Azure SQL, you can use this connector.

Learn more at https://docs.microsoft.com/en-us/azure/azure-sql/database/

spark-connector. Get examples on GitHub at https://github.com/microsoft/sql-

spark- connector.

 Azure Data Factory (ADF)
Azure Data Factor (ADF) is a cloud service built for data integration. You can build

pipelines to orchestrate data integration activities much like SSIS. ADF can be as simple

or complex as you want or need. You can see a simple example of using ADF to copy data

from Azure Blob storage to Azure SQL Database at https://docs.microsoft.com/en-

us/azure/data-factory/tutorial-copy-data-portal.

While ADF uses compute integration runtime environments for execution, you

should think of ADF as PaaS service for data integration (it includes an SLA). The ADF

team likes to think of their service as Code-free ETL as a Service.

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/sql/t-sql/statements/restore-statements-transact-sql?view=azuresqldb-mi-current
https://docs.microsoft.com/en-us/sql/t-sql/statements/restore-statements-transact-sql?view=azuresqldb-mi-current
https://docs.microsoft.com/en-us/azure/azure-sql/database/spark-connector
https://docs.microsoft.com/en-us/azure/azure-sql/database/spark-connector
https://github.com/microsoft/sql-spark-connector
https://github.com/microsoft/sql-spark-connector
https://docs.microsoft.com/en-us/azure/data-factory/tutorial-copy-data-portal
https://docs.microsoft.com/en-us/azure/data-factory/tutorial-copy-data-portal

230

If you do not have a lot of investment in SSIS packages already and need to perform

ETL or just data movement operations in Azure on a consistent basis, I highly encourage

you to consider ADF. Start by reading the introduction at https://docs.microsoft.com/

en-us/azure/data-factory/introduction.

Like SSIS, ADF supports a rich set of data sources (called data stores). Check out the

complete list at https://docs.microsoft.com/en-us/azure/data-factory/concepts-

pipelines- activities#data-movement-activities.

 SQL Data Sync
SQL Data Sync is a cloud service that lets you synchronize data between sources even

bidirectionally. SQL Data Sync was in preview at the time of the writing of this book.

One possible scenario is to synchronize data and changes between a SQL Server on-

premises and Azure SQL Database.

Note SQL Data Sync does not currently support azure SQL Managed instance.

Learn more about how to set up and use SQL Data Sync at https://docs.

microsoft.com/en-us/azure/azure-sql/database/sql-data-sync-data-sql-server-

sql-database.

 Replication Subscriber
SQL Transaction replication is a proven technology with SQL Server to synchronize

changes between a publisher and a subscriber.

While Azure SQL Managed Instance supports the ability to set up and create a

replication topology in Azure, Azure SQL Database can also be a subscriber to a SQL

Server publisher on-premises, in Azure Virtual Machine, or from Managed Instance

(which is one way to move a database between Azure SQL Managed Instance and

Database).

You could therefore set up an Azure SQL Database as a subscriber and perform a

semi-online migration from SQL Server. Replicate data from your on-premises SQL Server

and then stop replication when you are ready to switch to your Azure SQL Database.

Both snapshot and transaction replication are supported. Learn more at https://docs.

microsoft.com/en-us/azure/azure-sql/database/replication-to- sql-database.

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/azure/data-factory/introduction
https://docs.microsoft.com/en-us/azure/data-factory/introduction
https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipelines-activities#data-movement-activities
https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipelines-activities#data-movement-activities
https://docs.microsoft.com/en-us/azure/azure-sql/database/sql-data-sync-data-sql-server-sql-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/sql-data-sync-data-sql-server-sql-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/sql-data-sync-data-sql-server-sql-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/replication-to-sql-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/replication-to-sql-database

231

 Updating Azure SQL
I have mentioned in this book that Azure SQL Managed Instance and Azure SQL

Database are versionless. Versionless means that we do not release major versions of

SQL Server in Azure SQL and then let you adopt them. We are continuously updating

the software that powers Azure SQL to give you the latest updates and enhancements.

You are completely unburdened from keeping up and updating both the Operating
System and SQL Server.

 Maintenance of Azure SQL
But what exactly does the latest updates mean in comparison to SQL Server. For SQL

Server (as of SQL Server 2017), we release major versions, Cumulative Updates (CU), and

General Distribution Releases (GDR). Customers download and apply the updates they

would like to use.

When we release a new major version, for example, SQL Server 2019, it includes new

features and capabilities, but it also includes a series of bug fixes that includes fixes from

all CU and GDR builds from the previous major release, plus a set of fixes we believe

makes sense to include in the major release.

For bug fixes (and some minor enhancements that are not necessarily features),

we are constantly keeping these fixes up to date in our main branch of the source code.

These changes are pushed into Azure SQL on a frequent basis and often available earlier

to our customers vs. having to wait for a CU, GDR, or even major version release. This is a

major advantage in running in Azure. We are constantly testing these fixes and changes,

but effectively, you are getting a constant flow of bug fixes only found in a major version

release.

We do not document or publish how often we roll out updates to SQL Server and

other components that power Azure SQL. The process of rolling these updates is called a

train. A train contains updates to all the components that support Azure SQL including

OS, SQL Server, Service Fabric components, and other software we use to power Azure

SQL. We do not roll out trains to every Azure Region at one time. Rather, these trains

roll out across regions. If we detect any issue in rolling out a train in an early phase,

we can easily roll it back. Since every Azure SQL deployment has built-in availability,

Chapter 5 Configuring azure SQL

232

when we update nodes and instances, we can fail over the deployment and ensure your

data is available per the SLA agreement associated with your deployment. Concepts

like Availability Zones also help provide further availability. I will discuss more about

Availability Zones in Chapters 10 and 11 of the book. Resource Health options in the

Azure Portal or through REST APIs can provide you information about whether a failover

occurred because of deployments. Deployments are planned maintenance events that

affect availability.

Note it is possible the timing of a Cumulative update for SQL Server may result
in a fix landing in a Cu before it rolls out in a train for azure SQL. unless the fix in
the Cu has a regression, that fix will make it eventually in a deployment train.

At the time of the writing of this book, we are working on plans to provide better

notification and control of maintenance events.

Note if we have a major impacting customer problem, we may notify a specific
customer that their deployment may be affected so we can correct their problem.

Part of the improvements we are working on will provide advance maintenance

notification to customers so they can plan for these events. Furthermore, we are also

investigating the ability for customers to select a custom schedule for a maintenance

event.

Our work in the cloud often generates innovation. One very cool capability we

have rolled out to reduce the number of scenarios where maintenance of Azure SQL

requires a restart of SQL Server (and therefore a failover) is called hot patching. You

can read more how hot patching improves availability in Azure SQL in this blog post by

my colleague Hans Olav Norheim at https://azure.microsoft.com/en-us/blog/hot-

patching- sql-server-engine-in-azure-sql-database/.

Chapter 5 Configuring azure SQL

https://doi.org/10.1007/978-1-4842-5931-3_11
https://azure.microsoft.com/en-us/blog/hot-patching-sql-server-engine-in-azure-sql-database/
https://azure.microsoft.com/en-us/blog/hot-patching-sql-server-engine-in-azure-sql-database/

233

 New Features and Capabilities in Azure SQL
In general over the last few years, we have tried to adopt a cloud-first mentality for SQL

Server. We build a new capability and roll it out in Azure SQL first through a private

(limited customers and usually requires a sign-up) and public preview (not fully

Generally Available but customers can try it out) program. Eventually, this capability

goes into General Availability (GA).

Then based on the timing of a new major version of SQL Server, that capability is

included in that major version. A great example of this is Intelligent Query Processing

(IQP) which you can read about at https://docs.microsoft.com/en-us/sql/

relational-databases/performance/intelligent-query-processing. We rolled

out IQP for Azure SQL customers before it was released in SQL Server 2019. You can

use this website to read about and subscribe to a RSS feed for new enhancements for

Azure SQL Managed Instance and Database: https://azure.microsoft.com/en-us/

updates/?product=sql-database. You can also use this documentation page to track

new features that come in preview: https://docs.microsoft.com/en-us/azure/azure-

sql/database/doc-changes-updates-release-notes.

Do not forget about the use of database compatibility to control the enablement

of some functionality like Intelligent Query Processing. See more at https://aka.ms/

dbcompat.

Finally, as much as we try to ensure that all new capabilities are first in Azure SQL,

in some cases, this is not possible. In most cases, this is because the functionality

involves access to external resources and can be complex to ensure it is secure in Azure

SQL. For SQL Server 2019, a great example of this is Polybase. However, we try our best

to catch up quickly. Machine Learning Services, which involves the ability to run R and

Python code, is now in Preview for Azure SQL Managed Instance. You can learn more

at https://azure.microsoft.com/en-us/updates/machine-learning-on-azure-sql-

managed-instance-limited-preview-available/.

Chapter 5 Configuring azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?
https://azure.microsoft.com/en-us/updates/?product=sql-database
https://azure.microsoft.com/en-us/updates/?product=sql-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/doc-changes-updates-release-notes
https://docs.microsoft.com/en-us/azure/azure-sql/database/doc-changes-updates-release-notes
https://aka.ms/dbcompat
https://aka.ms/dbcompat
https://azure.microsoft.com/en-us/updates/machine-learning-on-azure-sql-managed-instance-limited-preview-available/
https://azure.microsoft.com/en-us/updates/machine-learning-on-azure-sql-managed-instance-limited-preview-available/

234

 Summary
In this chapter, you learned the various method, capabilities, techniques, and

restrictions for configuring Azure SQL Managed Instance and Database after you deploy.

You learned both configuration options specific to Azure SQL and ones for the database

engine and databases using familiar techniques like T-SQL.

You also learned some interesting aspects to Space Management which can be

important as you manage database in Azure SQL.

In this chapter, we covered the various methods to load data from both on-premises

and in Azure to Azure SQL.

Finally, you learned the details of how Azure SQL is updated and why it is referred to

as a versionless database.

Now that you have learned how to deploy and configure Azure SQL, it is time to

jump into the first category of the meat and potatoes of Azure SQL, security. In the next

chapter, we will cover the capabilities of security for Azure SQL as it compares to SQL

Server.

Chapter 5 Configuring azure SQL

235
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_6

CHAPTER 6

Securing Azure SQL
Now that you have deployed and configured your Azure SQL Managed Instance or

Database, you will want to ensure you have done all the right things to fully secure your

Azure SQL deployment. Azure SQL has all the capabilities that come with SQL Server for

security plus more.

My colleague Anna Hoffman asked me why I keep calling security, performance,

and availability the meat and potatoes of SQL Server and Azure SQL. I can’t take credit.

This phrase comes from my longtime colleague, the famous Conor Cunningham. Conor

and I have together presented several demos at the PASS Summit keynote. One time I

was thinking of doing some pretty leading edge demos, and Conor stopped me and said,

“Bob, that is nice, but our customers expect you and I to showcase the core innovation of

the engine. Things like security, performance, and availability. You know, the meat and

potatoes of SQL Server.” The phrase has stuck ever since.

Note For those who don’t know the phrase, it is one we use in Texas to mean
something fundamental or core. A basic meal consists of meat and potatoes. Not a
problem for me since I love both.

So in this chapter, we will explore all the capabilities and tasks you normally use to

secure a SQL Server and compare it with Azure SQL. You will also learn about unique

capabilities and methods you will use to secure your Azure SQL Managed Instance and

Database deployments.

This chapter (and the next two) will have many more examples than you have

seen so far in the book. I will use the deployments I did in Chapter 4 of the book when

discussing security. For you to try out any of the techniques or commands I use in this

chapter, you will need

https://doi.org/10.1007/978-1-4842-5931-3_6#DOI

236

• An Azure subscription.

• A minimum of Contributor role access to the Azure subscription.

You can read more about Azure built-in roles at https://docs.

microsoft.com/en-us/azure/role-based-access-control/built-

in- roles.

• Access to the Azure Portal (web or Windows application).

• A deployment of an Azure SQL Managed Instance and/or an Azure

SQL Database as I did in Chapter 4.

• To connect to Managed Instance, you will need a jumpbox or

virtual machine in Azure to connect. I showed you how to do this in

Chapter 4 of the book. One simple way to do this is to create a new

Azure Virtual Machine and deploy it to the same virtual network

as the Managed Instance (you will use a different subnet than the

Managed Instance).

• To connect to Azure SQL Database, you can use your on-premises

client using firewall rules, but this chapter also shows you how to

connect using a private endpoint in a virtual network, so you will

need an Azure Virtual Machine. For my example, I will use the virtual

machine I created in Chapter 3 of the book, called bwsql2019.

• Installation of the az CLI (see https://docs.microsoft.com/en-us/

cli/azure/install-azure-cli?view=azure-cli-latest for more

details). You can also use the Azure Cloud Shell instead since az is

already installed. You can read more about the Azure Cloud Shell at

https://azure.microsoft.com/en-us/features/cloud-shell/.

• You will run some T-SQL in this chapter, so install a tool like SQL

Server Management Studio (SSMS) at https://docs.microsoft.

com/en-us/sql/ssms/download-sql-server-management-studio-

ssms?view=sql-server-ver15. You can also use Azure Data Studio

at https://docs.microsoft.com/en-us/sql/azure-data-studio/

download-azure-data-studio?view=sql-server-ver15. I installed

both SSMS and ADS in the bwsql2019 Azure Virtual Machine.

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com/en-us/features/cloud-shell/
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15

237

 Security Capabilities and Tasks
As I studied Azure SQL and compared this to my own knowledge of SQL Server security,

I found out that Azure SQL Managed Instance and Azure SQL Database have just about

all the capabilities for security as SQL Server. And the tasks you use to secure an Azure

SQL deployment will feel a lot like SQL Server.

Before we dig into some of the details, let’s review a few of these important

capabilities and tasks.

 Security Capabilities
This list doesn’t represent all the capabilities because as I’ve mentioned already

that many fundamental security capabilities in SQL Server are available in Azure

SQL. However, it is worth mentioning a few capabilities to ensure you know what is

possible. We will dive into more details and see examples later in the chapter.

 Active Directory Authentication

You have seen in this book during deployment that you provide an admin SQL Server

login and password for authentication. With SQL Server, you are used to using Windows

Authentication, also known as Integrated Security, using protocols like Kerberos for a

more secure solution.

Since the platform for Azure SQL is abstracted, you don’t have access to set up

domain authentication services and Kerberos with Windows Server. SQL Server on Linux

provides Kerberos authentication using Active Directory, but that technique still uses a

domain-joined system with a Window Server.

Azure Active Directory (AAD) to the rescue! AAD provides domain services and

Kerberos authentication for Azure services like Azure SQL. You will see later in this

chapter how to set up an AAD admin for Azure SQL and add logins and users based

on AAD.

 Azure RBAC and Locks

Azure Role-Based Access Control (RBAC) provides an authorization system for Azure

SQL resources for operations like deployment. You will learn more about Azure RBAC

and Azure SQL in the section later in this chapter “Authentication and Access.”

ChApTer 6 SeCurINg Azure SQL

238

 Auditing

Auditing actions and operations against SQL Server has been available through the

SQL Server Audit capability for several releases. Azure SQL provides SQL Server Audit

capabilities and goes further using technologies like Log Analytics. You will learn in this

chapter how to configure and use audits.

 Data Encryption

SQL Server provides various methods to encrypt data and connections, including TLS,

column level encryption, Transparent Data Encryption (TDE), and Always Encrypted.

Azure SQL supports all these encryption methods and techniques which use services

like Azure Key Vault for maximum control of keys. Azure SQL enables TDE by default for

newly created databases.

 Dynamic Data Masking

Dynamic Data Masking can protect the view of sensitive data to granted users shifting

the logic to the database from the application. Dynamic Data Masking is supported with

Azure SQL through the same T-SQL statements as SQL Server but also provides visual

aids through the Azure portal.

 Advanced Data Security

Azure SQL provides new capabilities to help you classify, analyze, and protect your data

assets through Data Classification, Vulnerability Assessments, and Advanced Threat
Protection. This suite of services is known as Advanced Data Security. Some of this

functionality exists in SQL Server, but Azure SQL provides even more capabilities and

visual aids through the Azure portal.

 Security Tasks
The tasks to secure Azure SQL are very similar to SQL Server, but some of these tasks

require specific work to integrate with the Azure infrastructure. You will learn how to use

the security capabilities of Azure SQL on how to accomplish these tasks in this chapter.

ChApTer 6 SeCurINg Azure SQL

239

 Set Up and Configure Network Security

With SQL Server, you sometimes must deal with OS firewalls, but generally, your assets

are protected within your data center. For Azure, you need to consider how to secure

your network connectivity either with firewall or virtual networks.

 Set Up and Configure Authentication and Authorization

For SQL Server, you are used to establishing logins and users for certain roles and

then granting access to databases and objects. For Azure SQL, this process will be very

familiar with some differences for Azure SQL Database.

 Set Up and Configure Data Protection

You want your data protected, so you will learn in this chapter how to set up encryption

for connections and data. You will also learn how to configure and use Dynamic Data

Masking.

 Monitor Security

Auditing can be a key aspect to ensuring your deployment is protected. You will learn in

this chapter how to configure and monitor audits for access to your Azure SQL assets.

 Go Bigger with Advanced Data Security

You will learn in this chapter how to take advantage of Data Classification, Vulnerability

Assessments, and Advanced Threat Protection.

 Network Security
Most administrators who install SQL Server use a private network within a company

infrastructure. Firewalls block incoming traffic within this network. In addition,

Operating Systems provide firewalls to protect ports for applications like SQL Server. In

fact, if you have installed SQL Server before, you know that by default the firewall for port

1433 is blocked for both Windows and Linux. You generally must take action to add an

exception for this port for remote connectivity to SQL Server.

ChApTer 6 SeCurINg Azure SQL

240

Azure SQL is no different except that you have options to allow connectivity to the

SQL Server instance behind the scenes as a public endpoint on the Internet or private

within a virtual network.

I will admit to you as you review the information in this section of the chapter that

you should absolutely consult networking experts in your organization to configure

Azure SQL Managed Instance or Database for the requirements you need.

 Azure SQL Managed Instance Network Security
As you saw in Chapter 4 to deploy Azure SQL Managed Instance, a virtual network and

private connectivity are baked into the Managed Instance experience (although you can

expose a public endpoint).

Since you use a virtual network, you will have choices to connect from a resource

in the same virtual network as the Managed Instance (using a different subnet) or to

connect with another virtual network that is connected to the Managed Instance Virtual

Network.

Figure 6-1 shows an example of possible connectivity to a Managed Instance.

Based on this figure, the Azure VM with a Private IP address of 10.0.0.2 is very much

like the jumpbox VM I deployed in Chapter 4. Let’s say though that you want to connect

to one of these Managed Instances from another virtual network or on-premises.

Figure 6-1. Network security to Azure SQL Managed Instance

ChApTer 6 SeCurINg Azure SQL

241

VNet Peering allows you to connect from a resource in one virtual network that is

peered to another. In the preceding figure, the Azure VM with the Private IP address of

10.0.0.3 is an example. Check out this blog post for instructions to connect to a Managed

Instance with VNet peering: https://techcommunity.microsoft.com/t5/azure-

database- support-blog/connect-to-azure-sql-database-managed-instance-with-

virtual/ba-p/369077. You can read more about virtual network peering at https://

docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-

overview. Virtual network peering can occur within a region or across regions.

If you would like to connect to the Managed Instance from on-premises, you will

need to use an Azure Virtual Network Gateway. There are several options to connect

your on-premises environment with a virtual network gateway: Point-to-Site (P2S),

Site-to-Site (S2S), and ExpressRoute. ExpressRoute is by far the fastest (but the most

expensive) way to connect with a gateway. You can learn about all of these gateway

options at https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-

about-vpngateways. As I’ve said earlier in this chapter, if networking is not your

area of expertise (it is not mine), then I would consult networking engineers in your

organization on the best option.

Our documentation also provides an overview of your networking options for a

Managed Instance at https://docs.microsoft.com/en-us/azure/azure-sql/managed-

instance/connect-application-instance. Here is an important point made in the

documentation if you have connectivity issues:

If you’ve established an on-premises to Azure connection successfully and you
can’t establish a connection to SQL Managed Instance, check if your firewall has an
open outbound connection on SQL port 1433 as well as the 11000–11999 range of
ports for redirection.

The documentation also has a tutorial to set a P2S connections from your on-

premises network to a Managed Instance at https://docs.microsoft.com/en-us/

azure/azure-sql/managed-instance/point-to-site-p2s-configure.

A virtual network gateway can also be used to connect an existing virtual network

in Azure instead of using VNet Peering. If you are running inside Azure, VNet Peering

is probably your choice because everything is private and network latency is typically

faster. However, there may be some reasons why you need a VNet2VNet gateway

scenario. Here is a great resource to compare both options: https://azure.microsoft.

com/en-us/blog/vnet-peering-and-vpn-gateways/.

ChApTer 6 SeCurINg Azure SQL

https://techcommunity.microsoft.com/t5/azure-database-support-blog/connect-to-azure-sql-database-managed-instance-with-virtual/ba-p/369077
https://techcommunity.microsoft.com/t5/azure-database-support-blog/connect-to-azure-sql-database-managed-instance-with-virtual/ba-p/369077
https://techcommunity.microsoft.com/t5/azure-database-support-blog/connect-to-azure-sql-database-managed-instance-with-virtual/ba-p/369077
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connect-application-instance
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connect-application-instance
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/point-to-site-p2s-configure
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/point-to-site-p2s-configure
https://azure.microsoft.com/en-us/blog/vnet-peering-and-vpn-gateways/
https://azure.microsoft.com/en-us/blog/vnet-peering-and-vpn-gateways/

242

It is important to know that besides the SQL Server endpoint (the standard TCP

port to connect and run queries), an Azure SQL Managed Instance has a Management

endpoint. Since a Managed Instance is deployed in its own virtual cluster, various

services outside the cluster but within Azure (such as deployment within Resource

Manager) must be able to access the cluster. That access is through the Management

endpoint. The Management endpoint is a public endpoint protected by firewalls.

This means when you use the portal or CLIs to manage the Manage Instance (e.g.,

scaling operations), you are connecting to this endpoint. Read more about how the

Management endpoint is protected at https://docs.microsoft.com/en-us/azure/

azure-sql/managed-instance/connectivity-architecture-overview#management-

endpoint.

A few last points on network security for Managed Instance are as follows:

• You can enable a public endpoint for an Azure SQL Managed

Instance. If you decide to do this, the endpoint is on port 3342, not

1433. Additionally, you can use Network Security Group (NSG) rules

to effectively set up a firewall on the port. Read more at https://

docs.microsoft.com/en-us/azure/azure-sql/managed-instance/

public-endpoint-configure.

• I showed during deployment in Chapter 4 the connection type

of Proxy vs. Redirect. Even though the SQL Server endpoint is in

a private virtual network, technically a Proxy connection is more

secure because all traffic is routed through a Gateway. With a redirect

connection, the connection is first made to the Gateway, and then

all subsequent traffic goes directly to the Managed Instance node.

Redirect can be much faster, and since a private endpoint is being

used, I recommend this option. Any use of a public endpoint always

uses proxy connection. You can learn more about these policies at

https://docs.microsoft.com/en-us/azure/azure-sql/database/

connectivity-architecture#connection-policy.

There is no exercise or example here for Managed Instance network security since I

already showed you how to connect to Azure SQL Managed Instance with a jumpbox VM

in Chapter 4 of the book.

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connectivity-architecture-overview#management-endpoint
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connectivity-architecture-overview#management-endpoint
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connectivity-architecture-overview#management-endpoint
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/public-endpoint-configure
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/public-endpoint-configure
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/public-endpoint-configure
https://docs.microsoft.com/en-us/azure/azure-sql/database/connectivity-architecture#connection-policy
https://docs.microsoft.com/en-us/azure/azure-sql/database/connectivity-architecture#connection-policy

243

 Azure SQL Database Network Security
Network security for Azure SQL Database (any deployment option) is a bit different than

Managed Instance because when you deploy a database, we do not have a dedicated

private virtual cluster. Rather, all database deployments share virtual clusters (rings) in

Azure regions. Remember that when I talk about these network security options, they

apply to the logical server for all databases. The only exception to this rule is that you can

configure firewall rules specific to a database different than the logical server.

This doesn’t mean you can’t be protected and have a private endpoint to your

database deployment as you will see in this section of the chapter.

 Using the Public Endpoint

In Chapter 4 for deployment, I showed you some of the connection options for a

database deployment:

• Allow access to Azure services – This option allows any Azure

resource (e.g., VM, Application, or Cloud shell) to access the public

endpoint for the database deployment.

• Firewall rules – This option allows you to create specific firewall

rules for client computers outside of Azure. I used this technique in

Chapter 4 to connect to the logical server I deployed with my laptop

and SQL Server Management Studio (SSMS).

Figure 6-2 shows a network connectivity diagram of how both Azure resource and

on-premises computers can be connected to the logical server with a public endpoint.

ChApTer 6 SeCurINg Azure SQL

244

You can see in this figure Azure VM resources that are connected through the Allow

access to Azure services and on-premises computers connecting through a firewall rule.

Notice the IP addresses of the Azure Virtual Machines are using their public IP address

because even they are using a public endpoint connection within Azure.

Note To be clear, you could use Allow access to Azure services and turn OFF all
other firewall rules. While this is not a private endpoint scenario, it does prevent
any connection unless it comes within Azure to connect to the logical server.

Notice in this figure the name of the logical server is mysqldbsrv.database.windows.

net (this is from an example that is not the logical server I used). That is the name

of the logical server, but how does the public endpoint get resolved on the Internet?

Notice underneath this name in the figure is a public IP address and a network name of

westus1-a.control.database.windows.net. This name is part of the DNS name of the node

for the gateways when connecting to the logical server.

Figure 6-2. Connecting to a logical server with a public endpoint

ChApTer 6 SeCurINg Azure SQL

245

Since Allow access to Azure services is enabled, let’s use the Azure Virtual Machine I

created in Chapter 3, bwsql2019, to examine connectivity properties to the logical server.

I used RDP to connect into the virtual machine (I noted earlier in the chapter I

installed SSMS and Azure Data Studio in the VM). I then connected using SSMS to the

Azure Logical Server just like I showed you in Figure 4-32. dm_exec_connections is a

DMV for SQL Server that can provide key information about connections to the server.

Therefore, I ran the following T-SQL statement from SSMS:

SELECT client_net_address FROM sys.dm_exec_connections

WHERE session_id = @@SPID;

And the returned result is the following:

52.188.149.54

This IP address is the Public IP address of the Azure Virtual Machine, bwsql2019. This

proves that the VM is connecting to the logical server over a public endpoint. However,

the VM has access (without allowing the connection through a firewall) because I used

the option Allow access to Azure services.

Another interesting way to look at the public endpoint aspect to Azure SQL

Database is to examine the DNS infrastructure of the logical server. You can use the

nslookup command to do this (nslookup is available by default on Windows and Linux

operating systems. See more at https://docs.microsoft.com/en-us/windows-server/

administration/windows-commands/nslookup).

From my Azure Virtual Machine, I then ran nslookup from PowerShell like the following:

nslookup bwazuresqlserver.database.windows.net

I received the following results:

Server: UnKnown

Address: 168.63.129.16

Non-authoritative answer:

Name: cr5.eastus1-a.control.database.windows.net

Address: 40.78.225.32

Aliases: bwazuresqlserver.database.windows.net

 dataslice6.eastus.database.windows.net

 dataslice6eastus.trafficmanager.net

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/nslookup
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/nslookup

246

The top result is IP Address 168.63.129.16. It turns out this address is a special virtual

IP address used for Azure communications, so within Azure your address will always say

this (see more information at https://docs.microsoft.com/en-us/azure/virtual-

network/what-is-ip-address-168-63-129-16).

The results at the bottom show the DNS hierarchy of the logical server, which

includes a DNS server within the control ring (gateways) of Azure.

Also note that a ping is blocked, but it shows how a public endpoint is attempted to

be accessed:

ping bwazuresqlserver.database.windows.net

Pinging cr5.eastus1-a.control.database.windows.net [40.78.225.32] with 32

bytes of data:

Request timed out.

There is a third option to secure the connectivity to access the logical server. Let’s

say you want to turn off Allow access to Azure services but don’t want to have to use a

fixed IP address for a firewall rule. You can use a virtual network service endpoint to

allow only specific Azure sources in a virtual network (which could include on-premises

connections) to connect to the logical server. This is still a public endpoint connection

but strictly limited to resources from a specific Azure Virtual Network. Read more about

how to use a virtual network service endpoint at https://docs.microsoft.com/en-us/

azure/azure-sql/database/vnet-service-endpoint-rule-overview.

Let’s use different technique to tighten up the security of the network connectivity to

the Azure logical server.

 Using Private Link

Let’s say you do not want to allow any public endpoint access to your Azure SQL

Databases regardless whether connections come from within or outside of Azure.

The Azure team has created a concept called private link to allow PaaS services like

Azure SQL Database to restrict access only through a private endpoint. You can read an

overview about Private Link at https://docs.microsoft.com/en-us/azure/private-

link/private-link-overview.

Let’s look at new variation of Figure 6-2 using private link. Figure 6-3 shows how

private link provides a private endpoint for Azure SQL Database.

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/virtual-network/what-is-ip-address-168-63-129-16
https://docs.microsoft.com/en-us/azure/virtual-network/what-is-ip-address-168-63-129-16
https://docs.microsoft.com/en-us/azure/azure-sql/database/vnet-service-endpoint-rule-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/vnet-service-endpoint-rule-overview
https://docs.microsoft.com/en-us/azure/private-link/private-link-overview
https://docs.microsoft.com/en-us/azure/private-link/private-link-overview

247

Private link will expose a private endpoint in an existing Azure virtual network.

Notice in this diagram the DNS name for the logical server is no longer in a public DNS

hierarchy.

Let’s see how to implement a private link connection using the existing deployment

of Azure SQL Database from Chapter 4 and the Azure portal.

The first step is to disable public endpoint access to the logical server. From my

logical server (mine is called bwazuresqlserver), I’ll select Firewalls and virtual

networks from the Azure Portal Resource menu. Then I’ll turn Deny public network

access to Yes and set Allow Azure services to No as seen in Figure 6-4.

Figure 6-3. Private link with Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

248

I’ll select Save to commit these changes. This change should be effective in a manner

of seconds. I then verified I could not connect with SSMS in my Azure Virtual Machine

as I did previously in this chapter. Figure 6-5 shows the error I get when trying to connect

with SSMS.

Figure 6-4. Turning off public endpoint for Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

249

This error is a detection that the client has no access but can add a firewall rule to get

connected. However, there is another way.

I need to create a private link and associate this with my Azure SQL Database logical

server and the virtual network of my Azure Virtual Machine.

Using the Azure portal home page, I added a resource and searched for the word

Private Link. I picked Private link and selected Create private endpoint. You may be then

presented with a screen that is called the Private Link Center. Select the option Create

private endpoint as seen in Figure 6-6.

Figure 6-5. Connection error with no access to Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

250

Like other Azure resources, you will now go through a series of screens starting with

Basics to fill out information about the resource to deploy it.

Figure 6-7 shows how I will use Basics to place the private endpoint in the same

resource group as my Azure SQL Database, give it a name, and place it in the same

region as the virtual network of my Azure Virtual Machine.

Note The private endpoint must be in the same region as the Azure Virtual
Network you choose. remember the endpoint now becomes a resource in that
VNet. however, your client connection could be in another virtual network using
VNet peering or VNet gateways as seen in Figure 6-3.

Figure 6-6. Using the Private Link Center

ChApTer 6 SeCurINg Azure SQL

251

Click Next: Resource >. Now you need to associate the private endpoint with the

Azure SQL Database logical server. Figure 6-8 shows these choices.

Figure 6-7. Basics for creating a private endpoint

ChApTer 6 SeCurINg Azure SQL

252

Click Next: Configuration > to associate this with the virtual network of the Azure

Virtual Machine as seen in Figure 6-9.

Figure 6-8. Associating the private endpoint with Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

253

Note I found the virtual network of my Azure Virtual Machine on the Working
pane of the Overview of the virtual machine bwsql2019.

Leave the default for the DNS zone information. I decided to not put a tag on this

source so just clicked Review + create and then Create. The deployment for the private

endpoint took only a few minutes to complete.

After the deployment if I navigate to the Private endpoint resource, it looked like

Figure 6-10.

Figure 6-9. Configuring a private endpoint for Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

254

Take note of the Private IP on this screen of 172.16.6.5. This address is a Private IP for

the private endpoint within the IP range for the virtual network bwsqlvmsrg-vnet.

You can now navigate to the Azure SQL Database logical server and select Private

endpoint connections from the Resource Menu to see the linked private endpoint

connection like Figure 6-11.

Figure 6-10. Deployed private endpoint

Figure 6-11. A private endpoint connection for Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

255

You can see the private endpoint in my case was “auto-approved,” but you can use

an approval process to approve a private endpoint to be associated with an Azure SQL

Database. Read more at https://docs.microsoft.com/en-us/azure/private-link/

private-endpoint-overview#access-to-a-private-link-resource-using-approval-

workflow.

Now I’ll go back to my Azure VM bwsql2019 and try to connect again with SSMS. My

connection now works. If I run the following T-SQL statement

SELECT client_net_address FROM sys.dm_exec_connections

WHERE session_id = @@SPID;

the result is this:

172.16.6.4

This is the private IP address of the Azure Virtual Machine bwsql2019. Let’s try to

ping the logical server this time:

ping bwazuresqlserver.database.windows.net

Pinging bwazuresqlserver.privatelink.database.windows.net [172.16.6.5] with

32 bytes of data:

Request timed out.

Notice the private IP address of the server and the new DNS name which is not in the

public hierarchy.

Also note the output for nslookup:

nslookup bwazuresqlserver.database.windows.net

Server: UnKnown

Address: 168.63.129.16

Non-authoritative answer:

Name: bwazuresqlserver.privatelink.database.windows.net

Address: 172.16.6.5

Aliases: bwazuresqlserver.database.windows.net

Read more in our documentation at using Azure Private Link for Azure SQL Database

at https://docs.microsoft.com/en-us/azure/azure-sql/database/private-

endpoint- overview. For anyone wanting to integrate their on-premises environment,

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/private-link/private-endpoint-overview#access-to-a-private-link-resource-using-approval-workflow
https://docs.microsoft.com/en-us/azure/private-link/private-endpoint-overview#access-to-a-private-link-resource-using-approval-workflow
https://docs.microsoft.com/en-us/azure/private-link/private-endpoint-overview#access-to-a-private-link-resource-using-approval-workflow
https://docs.microsoft.com/en-us/azure/azure-sql/database/private-endpoint-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/private-endpoint-overview

256

pay special attention to this documentation page: https://docs.microsoft.com/en-us/

azure/azure-sql/database/private-endpoint-overview#connecting-from-an-on-

premises- environment-over-vpn.

Tip private link connections for Azure SQL Database currently only support proxy
connection types. We had left the Connection policy for our Azure SQL Database as
Default, so if a connection uses private Link which is inside of Azure, it will not use
redirect but proxy.

Technically, Private Link is even more secure than the virtual network configuration

of Managed Instance which is why we are even looking to enable this functionality for

Managed Instance in the future.

Go further with your knowledge of Azure SQL and Network Security by watching

videos from Anna Hoffman and Rohit Nayak as part of the Data Exposed Channel at

www.youtube.com/playlist?list=PL3EZ3A8mHh0xtbf4Cr2yR4-xsUtELwPjw.

 Authentication and Access
You have now successfully deployed an Azure SQL Managed Instance and Database(s)

and connected using a secure network architecture. When you deployed both Azure

SQL services, you specified an admin, which is a SQL login and password. The next

steps are to set up and configure other logins and users just like you would a SQL Server

deployment. I call this process setting up Authentication. Then you will want to grant

access to users to the objects they need based on the requirements of your application

and business.

Before we talk about the details of authentication and access for Azure SQL, let’s

review first the authentication and access for Azure SQL resources outside of SQL but in

the Azure infrastructure called Azure Role-Based Access Control (RBAC).

 Azure Role-Based Access Control (RBAC)
I’ve mentioned the concept of Azure RBAC in previous chapters in the book. Today when

you deploy SQL Server on Windows or Linux, you must have certain rights and privileges

to install SQL Server. For example, on Windows, most use local administrator accounts

when installing SQL Server.

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/private-endpoint-overview#connecting-from-an-on-premises-environment-over-vpn
https://docs.microsoft.com/en-us/azure/azure-sql/database/private-endpoint-overview#connecting-from-an-on-premises-environment-over-vpn
https://docs.microsoft.com/en-us/azure/azure-sql/database/private-endpoint-overview#connecting-from-an-on-premises-environment-over-vpn
http://www.youtube.com/playlist?list=PL3EZ3A8mHh0xtbf4Cr2yR4-xsUtELwPjw

257

At this point in the book, I’ve listed in several chapters the requirements to deploy

Azure SQL such as the Contributor role. An Azure account user that is part of the

Contributor role has the permissions to manage everything, except grant access to

resources to other accounts (that access is reserved for members of the Owner or User

Access Administrator roles).

Therefore, if you are assigned the Contributor role for your Azure subscription, you

should have the rights to deploy Azure SQL Managed Instances and Databases.

It is possible you want to set up a system for your organization so that some Azure

users have rights to deploy or manage Azure SQL Managed Instances and Databases

but not access the resources. Think of an administrator that only deploys or manages

resources but doesn’t have access to the underlying SQL Server.

Azure provides the following built-in roles for these purposes:

SQL DB Contributor
Members of this role can deploy and manage Azure SQL databases but not access

them.

SQL Server Contributor
Members of this role can deploy and manage Azure SQL logical servers and

databases but not access them.

SQL Security Manager
Members of this role can manage security policies of Azure SQL logical servers and

databases but not access them.

SQL Managed Instance Contributor
Members of this role can deploy and manage Azure SQL Managed Instances but not

access them.

You can read more about Azure built-in roles at https://docs.microsoft.com/en-

us/azure/role-based-access-control/built-in-roles. You can learn more about

role definitions at https://docs.microsoft.com/en-us/azure/role-based-access-

control/role-definitions.

 Authentication for Azure SQL Managed Instance
When you deploy SQL Server on Windows, the default authentication mode is Windows

only. This means only Windows users can log in to SQL Server. Mixed mode security

allows both SQL and Windows logins (Linux requires mixed mode). Azure SQL Managed

Instance forces Mixed Mode security and you cannot change this.

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-definitions
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-definitions

258

When you deploy an Azure SQL Managed Instance, you specify an Administrator
Account as I showed you in Figure 4-4. This account will be created as a SQL login for

the SQL Server instance and added as a member of the sysadmin role. The sa login is

disabled by default, but you can enable and use it (but I don’t recommend it).

With this sysadmin login, you can add other SQL logins, assign them to roles (even

sysadmin) just like SQL Server. You can also create users in database and map them to

logins just like SQL Server.

Note You cannot change the admin once you deploy. You can reset the password
for the admin through the Azure portal, az CLI, or powerShell.

You can even create a contained database which supports containers users just

like SQL Server. You can read more about contained database users at https://docs.

microsoft.com/en-us/sql/relational-databases/security/contained-database-

users-making-your-database-portable.

 Azure Active Directory Authentication

Since you don’t have access to the underlying Windows Operating System of the VMs,

you cannot join domains and set up Windows Authentication. Therefore, we provide the

ability for you to add Azure Active Directory logins to your Managed Instance.

When you use Windows or domain authentication with SQL Server, you are using

behind-the-scenes Active Directory Domain Services. SQL Server on Linux even

supports this concept. Azure provides the same type of service through Azure Active

Directory Services (AADS).

The first step in using Azure Active Directory authentication for a Managed Instance

is to provision an administrator for the Managed Instance from an Azure Active

Directory user. To use AAD with Managed Instance, you first need to create an AAD

domain. You can read the process for setting this up at https://docs.microsoft.com/

en-us/azure/active-directory-domain-services. It is possible when you sign into

the Azure Portal, you are already part of an AAD for your organization. For me, that is the

case at Microsoft.

To set up an AAD admin for a Managed Instance, you must have “Administrator”

rights for your AAD to grant read permissions. I don’t have these at Microsoft.

The documentation shows the process to configure this AAD admin at

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/security/contained-database-users-making-your-database-portable
https://docs.microsoft.com/en-us/sql/relational-databases/security/contained-database-users-making-your-database-portable
https://docs.microsoft.com/en-us/sql/relational-databases/security/contained-database-users-making-your-database-portable
https://docs.microsoft.com/en-us/azure/active-directory-domain-services
https://docs.microsoft.com/en-us/azure/active-directory-domain-services

259

https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-

aad- configure?tabs=azure-powershell#provision-azure-ad-admin-sql-managed-

instance. This covers both the portal and CLI options to configure an AAD admin for

Managed Instance.

The new AAD admin will become a member of the sysadmin server role for the

Managed Instance. Now you can use the T-SQL CREATE LOGIN statement to create

new logins based on AAD users. The FROM EXTERNAL PROVIDER clause provides

this capability. The documentation shows an example of this syntax at https://

docs.microsoft.com/en-us/sql/t-sql/statements/create-login-transact-

sql?view=azuresqldb-mi-current like the following T-SQL statement:

CREATE LOGIN [bob@contoso.com] FROM EXTERNAL PROVIDER;

Note If you look at the logins for a Managed Instance, you will notice two logins
that are created by default for any Managed Instance: WASDrgTenantMonitoringrO
and xtsuser (which is actually disabled). These logins are part of the internal role
Microsoft creates for DevOps purposes. These roles only have CONNeCT and VIeW
SerVer STATe permissions, don’t have access to your data, and have no ability to
make any modifications.

You can read more about authentication and access for Azure SQL Managed

Instance at https://docs.microsoft.com/en-us/azure/azure-sql/database/logins-

create- manage.

 Authentication for Azure SQL Database
When I showed you how to deploy an Azure SQL Database in Chapter 4 of the book, I

supplied a Server admin login. I used this login to connect to the logical server using

SQL Authentication. Just like Managed Instance, mixed mode security is forced for the

logical server. This admin account is a server-level principal for the logical server and is

mapped as dbo in all databases.

Note You cannot change the admin once you deploy. You can reset the password
for the admin through the Azure portal, az CLI, or powerShell.

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure?tabs=azure-powershell#provision-azure-ad-admin-sql-managed-instance
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure?tabs=azure-powershell#provision-azure-ad-admin-sql-managed-instance
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure?tabs=azure-powershell#provision-azure-ad-admin-sql-managed-instance
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-login-transact-sql?view=azuresqldb-mi-current
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-login-transact-sql?view=azuresqldb-mi-current
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-login-transact-sql?view=azuresqldb-mi-current
https://docs.microsoft.com/en-us/azure/azure-sql/database/logins-create-manage
https://docs.microsoft.com/en-us/azure/azure-sql/database/logins-create-manage

260

If you would like to create other logins who have admin capabilities (but not full

server admin), you use the CREATE LOGIN statement to create standard SQL logins for

the logical server in the context of the logical master database. You can then create a

user in context of the logical master database and assign this user to two special roles for

Azure SQL Database using ALTER ROLE:

dbmanager – Users assigned to this role can create and manage databases and will

be mapped to the dbo of that database, so has full database owner permissions.

loginmanager – Users assigned to this role can create new logins in the context of

the logical master but are not mapped to the dbo role of databases.

You can now use the standard process as with SQL Server to create SQL logins and

map them to users in any database they need access. You can assign users to roles and

even create new roles just like SQL Server.

Note One complexity with using logins is that when you choose a failover option
like geo-replication, you must create the login on the secondary server manually.

 Using Contained Users

You can also create contained database users that don’t require a login. This concept has

been around a while with SQL Server using contained databases. Azure SQL Database is

in a way a contained database. Contained users are also called user accounts.

The CREATE USER T-SQL statement supports contained users using the WITH

PASSWORD clause. One advantage of a contained user is that the information is stored

in the database and therefore replicated as part of a geo-replication failover deployment.

I’ll show you an example of how to connect and use a contained user in the next

section.

 Azure Active Directory Authentication

Like Managed Instance, Azure SQL Database supports Azure Active Directory (AAD)

Authentication. Like using Windows authentication for SQL Server, AAD authentication

can be the most secure and best method to use with Azure SQL Database. You can

create an AAD server admin (in addition to the SQL server admin you create during

deployment) for the logical server. You can then create contained users based on an AAD

account. You can even create users based on AAD groups.

ChApTer 6 SeCurINg Azure SQL

261

Let’s explore using the logical server and databases I deployed in Chapter 4 how to

set up an AAD admin, how to connect with the admin, and how to create and connect

with AAD contained users.

I love how the documentation at https://docs.microsoft.com/en-us/azure/

azure-sql/database/authentication-aad-overview lists out the steps to use AAD with

Azure SQL Database:

• Create and populate Azure AD.

• Create an Azure Active Directory administrator.

• Create contained database users in your database mapped to Azure

AD identities.

• Connect to your database by using Azure AD identities.

Microsoft has already created and populated an Azure AD and associated it with my

subscription. So I’ll now create an Azure AD administrator.

I’m going to navigate to my logical server called bwazuresqlserver and select Active
Directory admin from the Resource Menu, select Set admin, and search for my name in

the AD as seen in Figure 6-12.

Figure 6-12. Creating an AAD admin for Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-overview

262

I then click Save, and within a few seconds, the AAD admin is created.

Now let’s try to connect with SSMS using the Azure VM bwsql2019 that is now set up

with Private Link. Connecting with SSMS shows options you may not be familiar with as

seen in Figure 6-13.

Let’s look at each of these options:

AAD – Universal with MFA
Log in with your AAD account but require multi-factor authentication (MFA). MFA

is a secure method used for many secure connection purposes including websites, and

AAD for Azure SQL Database supports this. Learn more at https://docs.microsoft.

com/en-us/azure/azure-sql/database/authentication-mfa-ssms-overview.

AAD – Integrated
This option is like Windows Authentication when you are logged into a client

computer using your AAD credentials. Windows 10 offers this type of capability. Learn

more about a seamless AAD experience at https://docs.microsoft.com/en-us/azure/

active-directory/hybrid/how-to-connect-sso.

AAD – Password
Use this method if you are using a client where your computer is not domain joined.

You can put in your full AAD account with password.

Figure 6-13. AAD options when connecting with SSMS

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-mfa-ssms-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-mfa-ssms-overview
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sso
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sso

263

At Microsoft, we have a policy where we must use MFA, so I’ll use that method to

connect. In my VM when I choose this method, I get a dialog box to complete the MFA

process.

The AAD admin is going to look a big strange to the average SQL Server user since it

technically is not a login in the logical master. It is a user where the type is EXTERNAL.

You can see this by running these T-SQL statements in the context of the logical

master connected as the AAD admin:

SELECT name, type_desc, authentication_type_desc

FROM sys.database_principals WHERE name = 'bobward@microsoft.com';

GO

SELECT suser_name();

GO

The results look like the following:

name type_desc authentication_type_desc

bobward@microsoft.com EXTERNAL_GROUP EXTERNAL

and

bobward@microsoft.com

EXTERNAL_GROUP is a type for an AAD user or group. And EXTERNAL for

authentication_type is reserved for an AAD connection.

If you run a query in the context of a user database like the one I created called

bwazuresqldb, you can run these queries to see the “login” connected or the server

principal and the user of the database which is mapped to dbo (and is the owner of the

database):

SELECT suser_name()

GO

SELECT user_name()

GO

The results are

bobward@microsoft.com

and

dbo

ChApTer 6 SeCurINg Azure SQL

264

Note SeLeCT user_name() in logical master would have yielded your AAD login
since you are added as a user in the logical master.

PowerShell supports creating an AAD admin using the Set- AzSqlServerActiveDirec
toryAdministrator cmdlet, and az CLI supports az sql server ad-admin create.

Connected as the AAD admin to this user database, I could then create a contained

user based on another AAD account like this (this is hypothetical account in the

Microsoft AAD):

CREATE USER [thereisonlyonebuckwoody@microsoft.com] FROM EXTERNAL PROVIDER;

GO

I will then give this user access to read data by adding them to the db_datareader

role:

ALTER ROLE db_datareader ADD MEMBER [thereisonlyonebuckwoody@microsoft.com];

GO

You can also create AAD contained users based on the display name of a

security group in AAD or with an AAD token. Learn more how to do this at https://

docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-

configure?tabs=azure-cli#create-contained-users-mapped-to-azure-ad-

identities.

You might want to connect with AAD to Azure SQL Database other than just with

SSMS. Here are some tips:

• Learn how to connect with an application at https://

docs.microsoft.com/en-us/azure/azure-sql/database/

authentication-aad-configure?tabs=azure-cli#using-an-

azure-ad-identity-to-connect-from-a-client-application.

• The popular sqlcmd utility supports the -G parameter to connect

with AAD.

• The new popular tool Azure Data Studio supports AAD

authentication with MFA. Figure 6-14 shows an example where I

connected with AAD to my Azure SQL Database.

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure?tabs=azure-cli#create-contained-users-mapped-to-azure-ad-identities
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure?tabs=azure-cli#create-contained-users-mapped-to-azure-ad-identities
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure?tabs=azure-cli#create-contained-users-mapped-to-azure-ad-identities
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure?tabs=azure-cli#create-contained-users-mapped-to-azure-ad-identities
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure?tabs=azure-cli#using-an-azure-ad-identity-to-connect-from-a-client-application
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure?tabs=azure-cli#using-an-azure-ad-identity-to-connect-from-a-client-application
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure?tabs=azure-cli#using-an-azure-ad-identity-to-connect-from-a-client-application
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure?tabs=azure-cli#using-an-azure-ad-identity-to-connect-from-a-client-application

265

Check out our documentation for more information about the trust architecture

and limitations using AAD users and groups: https://docs.microsoft.com/en-us/

azure/azure-sql/database/authentication-aad-overview. Also, read about how

to configure a conditional access policy with AAD at https://docs.microsoft.com/

en-us/azure/azure-sql/database/conditional-access-configure#configure-

conditional- access.

Figure 6-14. Using AAD with Azure Data Studio

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/conditional-access-configure#configure-conditional-access
https://docs.microsoft.com/en-us/azure/azure-sql/database/conditional-access-configure#configure-conditional-access
https://docs.microsoft.com/en-us/azure/azure-sql/database/conditional-access-configure#configure-conditional-access

266

 Set Up and Configure Access
Now that you have created logins and users, what do you do now? You do what you do

for SQL Server. You grant access and permissions to objects within your database to

meet your application requirements.

This could involve creating schemas, roles, and grant or revoking specific

permissions. To get a primer on permissions for SQL Server, refer to the docs at https://

docs.microsoft.com/en-us/sql/relational-databases/security/permissions-

database- engine?view=sql-server-ver15.

Don’t forget that row-level security (RLS) is supported in Azure SQL just like SQL

Server. Read about RLS at https://docs.microsoft.com/en-us/sql/relational-

databases/security/row-level-security?view=sql-server-ver15.

You can read more about authentication and access for Azure SQL Database at

https://docs.microsoft.com/en-us/azure/azure-sql/database/logins-create-

manage.

 Protecting Your Data
Ensuring you have set up proper authorization to connect and access data is just the

first step. You need to protect your data for all aspects of your deployment, including

connections, data at rest, data end to end, and ensuring only the right people can view

important data. Azure SQL has all the capabilities to protect data just like SQL Server.

 Encrypting Connections
Like SQL Server, Azure SQL supports encryption of connections through the Transparent

Layer Security (TLS) protocol (you can read about TLS at https://en.wikipedia.org/

wiki/Transport_Layer_Security).

By default, Azure SQL Managed Instance enforces encryption for connections. Tools

and applications should enable an encrypted connection for a Managed Instance to

avoid client/server negotiation. In addition, you can force a minimal TLS version for a

client connection. The latest TLS version, 1.2, fixes some known security vulnerability,

so you may consider requiring this version. You can set the minimal version through the

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/azure-sql/database/logins-create-manage
https://docs.microsoft.com/en-us/azure/azure-sql/database/logins-create-manage
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security

267

Azure portal, through PowerShell (Set-AzInstance) or az cli (az sql mi update). You can

read more about TLS and Managed Instance at https://docs.microsoft.com/en-us/

azure/azure-sql/managed-instance/minimal-tls-version-configure.

Azure SQL Database forces encrypted connections whether the client or application

enables it. You can verify this by examining the encrypt_option column for sys.
dm_exec_connections and seeing it will always be a value of TRUE for any user TCP

connection. Azure SQL Database also offers enforcement of a minimal TLS version (1.0,

1.1, and 1.2) through the Azure portal, PowerShell (Set-AzSqlServer), and az cli (az sql
server update). You can read more at https://docs.microsoft.com/en-us/azure/

azure-sql/database/connectivity-settings#minimal-tls-version.

Tip Because Azure SQL Database forces an encrypted connection, a best
practice is to enable this for your client tool or application. This speeds up
connection time since the server must negotiate with the client to set the
encryption if not set by the client.

 Transparent Data Encryption (TDE)
Transparent Data Encryption (TDE) is an encryption at rest technology that has been in

use with SQL Server for many releases. The concept is that the SQL Server engine will

encrypt and decrypt data to the files for the database as data is written and read from

disk. This way, the data in the file is encrypted to protect any offline attempt to access the

files of the database. Azure SQL Managed Instance and Database enable this option by
default.

You might wonder why you would need this encryption option since you or anyone

doesn’t have access to files in the underlying virtual machines of Azure SQL. Enabling

TDE by default is just another mechanism in Azure’s commitment to a defense-in-depth

methodology to protect your data. Many use TDE with SQL Server deployments in their

own data center to protect from an unexpected intrusion to access database files outside

the engine. The same holds true for Azure even though the Azure ecosystem has many

protection mechanisms in place for data centers.

For Azure SQL Managed Instance, TDE is on by default for the instance, which

means all databases created for the instance are enabled by TDE. You cannot disable this

option for the instance, but you can individually disable TDE through ALTER DATABASE

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/minimal-tls-version-configure
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/minimal-tls-version-configure
https://docs.microsoft.com/en-us/azure/azure-sql/database/connectivity-settings#minimal-tls-version
https://docs.microsoft.com/en-us/azure/azure-sql/database/connectivity-settings#minimal-tls-version

268

or tools like SSMS. One option you do have for a Managed Instance is to control what

keys are used for encryption for TDE. By default, Azure SQL Managed Instance uses a

service-managed key, which means Azure SQL manages a certificate for the key (rotates

the key and protects it with a root key within Azure).

Azure SQL Database also supports configuring TDE for databases with ALTER

DATABASE (ENCRYPTION option) but also allows you to enable and disable TDE

through the Azure portal, PowerShell (Set- AzSqlDatabaseTransparentDataEncry
ption), and az cli (az sql db tde set). The default key management is also a service-

managed key at the logical server level.

 Bring Your Own Key (BYOK)

SQL Server provides a method to use an Extensible Key Management (EKM) provider to

protect the Database Encryption Key (DEK) used to encrypt data with TDE. One of the

EKM providers allowed is Azure Key Vault. This allows keys used for encryption to be

stored outside of SQL Server.

Azure SQL provides a similar mechanism affectionately called Bring Your Own Key

(BYOK). You may also see this referred to as Customer-managed key. The mechanism

to use Azure Key Vault for BYOK is referred to as a TDE protector. Azure Key Vault is a

service in Azure to help you centrally store and manage secrets and keys. As stated in

the introductory documentation for Azure Key Vault at https://docs.microsoft.com/

en-us/azure/key-vault/general/overview, Azure Key Vault is “Secrets and keys are

safeguarded by Azure, using industry-standard algorithms, key lengths, and hardware

security modules (HSMs). The HSMs used are Federal Information Processing Standards

(FIPS) 140-2 Level 2 validated.”

Authorization to create a key vault and create and manage keys is done through

Azure Active Directory. Azure Key Vault keys are set at the instance or logical server level

and apply to all databases in the instance or logical server. I like the diagram in this blog

post at https://azure.microsoft.com/en-us/blog/announcing-transparent-data-

encryption-tde-with-customer-managed-keys-for-managed-instance/ to show how

Azure Key Vault BYOK works as seen in Figure 6-15.

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/key-vault/general/overview
https://docs.microsoft.com/en-us/azure/key-vault/general/overview
https://azure.microsoft.com/en-us/blog/announcing-transparent-data-encryption-tde-with-customer-managed-keys-for-managed-instance/
https://azure.microsoft.com/en-us/blog/announcing-transparent-data-encryption-tde-with-customer-managed-keys-for-managed-instance/

269

I used my Azure subscription to create a new Azure Key Vault and added a key to

the vault (see a tutorial at https://docs.microsoft.com/en-us/azure/key-vault/

general/quick-create-portal). I then navigated to the logical server I created called

bwazuresqlserver, selected Transparent data encryption from the Resource Menu, and

selected Customer-managed key as seen in Figure 6-16.

Figure 6-15. Using Azure Key Vault for BYOK with TDE

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/key-vault/general/quick-create-portal
https://docs.microsoft.com/en-us/azure/key-vault/general/quick-create-portal

270

I then selected Change key and picked my key vault and key as seen in Figure 6-17.

Figure 6-16. Changing to a customer-managed key for TDE

ChApTer 6 SeCurINg Azure SQL

271

I chose Select and then Save on the next screen. Within a few seconds, my key is now

enabled as the TDE protector.

This seems easy enough, but there are several tasks and considerations when you

use BYOK with Azure SQL:

• COPY_ONLY backups for Managed Instance are only supported

when you use BYOK (because you have the keys to restore). Learn

more about COPY_ONLY backups at https://docs.microsoft.com/

en-us/sql/relational-databases/backup-restore/copy-only-

backups-sql-server.

• Your key vault and Azure SQL deployment must belong to the same

Azure Active Directory tenant.

• Like any scenario where you manage keys, you should back them up

regularly. Learn more about Azure Key Vault backups at https://

docs.microsoft.com/en-us/azure/key-vault/general/backup.

• There are considerations for BYOK with high availability.

Read more at https://docs.microsoft.com/en-us/azure/

azure-sql/database/transparent-data-encryption-byok-

overview?view=sql-server-ver15#high-availability-with-

customer-managed-tde.

Figure 6-17. Choosing a key from Azure Key Vault

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/copy-only-backups-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/copy-only-backups-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/copy-only-backups-sql-server
https://docs.microsoft.com/en-us/azure/key-vault/general/backup
https://docs.microsoft.com/en-us/azure/key-vault/general/backup
https://docs.microsoft.com/en-us/azure/azure-sql/database/transparent-data-encryption-byok-overview?view=sql-server-ver15#high-availability-with-customer-managed-tde
https://docs.microsoft.com/en-us/azure/azure-sql/database/transparent-data-encryption-byok-overview?view=sql-server-ver15#high-availability-with-customer-managed-tde
https://docs.microsoft.com/en-us/azure/azure-sql/database/transparent-data-encryption-byok-overview?view=sql-server-ver15#high-availability-with-customer-managed-tde
https://docs.microsoft.com/en-us/azure/azure-sql/database/transparent-data-encryption-byok-overview?view=sql-server-ver15#high-availability-with-customer-managed-tde

272

When using BYOK with Azure SQL, I highly recommend you read thoroughly our

documentation at https://docs.microsoft.com/en-us/azure/azure-sql/database/

transparent-data-encryption-byok-overview.

 Always Encrypted
Always Encrypted is a technology based on work from Microsoft research used to provide

end-to-end encryption for SQL applications. It was introduced in SQL Server 2016 and

has all the same capabilities in Azure SQL. Just like with SQL Server, keys for Always

Encrypted can be stored in Azure Key Vault. Read the entire story about how Always

Encrypted works and how to set it up at https://docs.microsoft.com/en-us/sql/

relational-databases/security/encryption/always-encrypted-database-engine.

The one exception in capabilities at the time of the writing of this book is secure

enclaves. Secure enclaves extend the capabilities of Always Encrypted but is currently

not available for Azure SQL Managed Instance or Database. You can read more about

secure enclaves with Always Encrypted at https://docs.microsoft.com/en-us/sql/

relational-databases/security/encryption/always-encrypted-enclaves.

 Dynamic Data Masking (DDM)
One other method to protect your data is to control which users have access to view

sensitive data. Many applications provide this type of protection by masking data in the

display layers of their program. For example, a web application may display a phone

number as XXX-XXX for some users and the full phone number for others. The problem

with this approach is that the application must be modified if any rule changes on the

masks used or which users can see data or masked data.

SQL Server provides a method to control masking of data at the database layer

instead of the application. Then any application or tool would only see data based on

masking rules defined with T-SQL. This feature is called Dynamic Data Masking (DDM)

and was introduced in SQL Server 2016. You can read the full documentation of DDM at

https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-

data- masking.

Azure SQL supports DDM through T-SQL statements as referenced in the

documentation. In addition, Azure SQL Database allows you to manage masks and

permissions through the Azure portal as seen in Figure 6-18.

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/transparent-data-encryption-byok-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/transparent-data-encryption-byok-overview
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves
https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking
https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking

273

You can see using the Azure portal will provide recommendations on columns to

mask based on the column names (e.g., LastName or EmailAddress).

Figure 6-18. Dynamic Data Masking through the Azure portal

ChApTer 6 SeCurINg Azure SQL

274

 Monitoring Security
After you have configured security for authentication, access, and data protection, you

will most likely want to monitor all activity against your Azure SQL Managed Instance

and Database deployments.

Monitoring typically means auditing activity against your deployment. You can audit

activities against your deployment within the Azure ecosystem (or outside of SQL) and

activity within Azure SQL.

 Monitoring the Azure Ecosystem
When you deploy and manage SQL Server on Windows and Linux, the operating system

provides several different methods to audit activity outside of SQL Server. You may have

other methods within your data center to audit this type of activity.

The Azure ecosystem provides this same type of audit capabilities. You may have

seen in Chapter 4 after deploying Azure SQL Managed Instance and Database the

Activity Log for these types of activities.

The Activity Log is a platform log supported by the Azure ecosystem for all

subscriptions. In fact, the activity log is a record of all events for your Azure subscription

and includes events specific to Azure SQL Managed Instance and Database. Basically,

any operation you perform against an Azure SQL resource that is outside of SQL Server is

recorded in the Activity Log. I’ve used the Windows Event Log for many years, and I like

to think of the Activity Log as the Event log of Azure.

The Azure portal provides an excellent way to view activity log entries specific to an

Azure resource. For example, if I navigate to my logical server bwazuresqlserver in the

Azure portal, select Activity log from the Resource menu, and then change the timeframe

to Last week I see entries like in Figure 6-19.

ChApTer 6 SeCurINg Azure SQL

275

You can see at the top of this screen filters automatically set to the logical server, but

at this point, you can adjust these to any resource in your subscription (or for all events

in your subscription). You also have options here to download the log as .csv file. You

can review activity log entries through the portal, through PowerShell (Get-AzLog), az

CLI (az monitor activity-log), or even REST (https://docs.microsoft.com/en-us/

rest/api/monitor/). If you look at the column Event initiated by, you can see that

some events are logged based on an operation from the Azure infrastructure and some

based on actions by a user. If you look at the Operation name, you can tell from some

entries what the activity is all about. For example, Update Azure SQL Server Encryption
Protector was an action when I enabled TDE BYOK for the server and a good example of

an operation outside the scope of SQL. The operation “deployifNotExists” Policy action

are Azure Policy compliance checks. It is common to see these coupled with operations

against an Azure resource. Read more at https://docs.microsoft.com/en-us/azure/

governance/policy/concepts/effects.

By default, Azure activity log entries are kept for 90 days (and the roll over). If

you want to keep activity log entries longer than this, you can create a Log Analytics

workspace. A Log Analytics workspace also gives you more capabilities to query

and visualize activity log entries. On this screen, there is an option at the top for

Figure 6-19. The activity log for Azure SQL Database logical server

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/rest/api/monitor/
https://docs.microsoft.com/en-us/rest/api/monitor/
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/effects
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/effects

276

Diagnostic settings. This allows you to create a Log Analytics workspace and add

activity log entries to it. You also have the option to send activity log entries to Event Hub

for streaming. To read more about using the Activity Log in general, go to https://docs.

microsoft.com/en-us/azure/azure-monitor/platform/activity-log.

 Auditing Azure SQL Managed Instance
Since Azure SQL Managed Instance is very much like a full SQL Server instance, many of

the familiar tools and features for auditing are available to you.

 Tracking Logins

Since I can remember, almost every SQL Server version tracks failed logins in the

ERRORLOG of SQL Server. A failed login looks like this in the ERRORLOG for a Managed

Instance:

Error: 18456, Severity: 14, State: 7.

Login failed for user 'sa'. Reason: An error occurred while evaluating the

password. [CLIENT: 10.1.0.4]

SQL Server provides the ability to turn off this tracking or also track successful logins.

That capability is not available for a Managed Instance (even though SSMS gives you

the appearance it is allowed) because it requires a restart of SQL Server which you don’t

have access to do.

Since Azure SQL Managed Instance gives you full access to Extended Events, there

are events you can use to track logins, including process_login_finish, login_event, and

login. Extended Events for Azure SQL Managed Instance supports all events, actions,

and targets. File targets must use Azure Blob Storage since you don’t have access to the

underlying OS file system.

 SQL Server Audit

SQL Server Audit is a capability that has been in SQL Server in several releases to audit

and track instance and database activity. SQL Server Audit is fully supported with Azure

SQL Managed Instance with a few exceptions:

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-monitor/platform/activity-log
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/activity-log

277

• Audit files are stored in Azure Blob Storage. Read more how to do

this at https://docs.microsoft.com/en-us/azure/azure-sql/

managed-instance/auditing-configure#set-up-auditing-for-

your- server-to-azure-storage.

• The option to shut down SQL Server on an audit failure is not

supported (but continue and fail options are supported).

If you have never used SQL Server Audit, look through the documentation at

https://docs.microsoft.com/en-us/sql/relational-databases/security/

auditing/sql-server-audit-database-engine.

SQL Server Audit produces files to track activity based on the Extended Event

format (SQL Server Audit uses Extended Event sessions behind the scenes). Azure

SQL Managed Instance also allows you to produce audit events to Azure Monitor Logs

and Event Hub. The option TO EXTERNAL MONITOR has been added to the CREATE

SERVER AUDIT T-SQL statement.

See an example of how to configure SQL Server Audit to Azure logs or Event Hub at

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/auditing-

configure#set-up-auditing-for-your-server-to-event-hubs-or-azure-monitor-logs.

 Auditing Azure SQL Database
Auditing activity for Azure SQL Database is provided through metrics in Dynamic

Management Views (DMVs) and Azure Metrics. In addition, the SQL Server Audit

capability is exposed as a feature called SQL Database auditing.

 Tracking Connections

Azure SQL Database provides a DMV called sys.event_log that can be queried in the

context of the logical master database of the logical server. This DMV shows information

collected in 5-minute aggregate intervals for connectivity metrics. This DMV doesn’t

track individual successful or failed connection but rather connectivity metrics across all

databases (including the logical master) for the logical server.

Examples of what you can view for this DMV include

• Number of successful connections

• Number of failed connections due to invalid login name

• Number of failed connections due to blocked firewall rule

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/auditing-configure#set-up-auditing-for-your-server-to-azure-storage
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/auditing-configure#set-up-auditing-for-your-server-to-azure-storage
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/auditing-configure#set-up-auditing-for-your-server-to-azure-storage
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-database-engine
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/auditing-configure#set-up-auditing-for-your-server-to-event-hubs-or-azure-monitor-logs
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/auditing-configure#set-up-auditing-for-your-server-to-event-hubs-or-azure-monitor-logs

278

While this information is stored across all databases, you can use Azure Metrics

and Logs to capture aggregate numbers for failed connections, connections blocked by

firewall rules, and successful connections.

Figure 6-20 shows how I’ve added the number of successful connections over the last

30 days (in 6-hour measures) to an Azure Metric chart for one of my Azure SQL databases.

 SQL Database Auditing

Since you don’t have access to the underlying SQL Server instance for an Azure SQL

Database, you don’t have access to use the T-SQL statement CREATE SERVER AUDIT to

use SQL Server Audit capabilities.

Therefore, we have created interfaces outside of Azure SQL Database to audit

database and logical server activities. We call this SQL Database auditing. Read the

complete documentation at https://docs.microsoft.com/en-us/azure/azure-sql/

database/auditing-overview. SQL Database Auditing can be enabled through the

Azure portal, PowerShell (Set-AzSqlDatabaseAudit and Set-AzSqlServerAudit),

az cli (az sql db audit-policy), and REST APIs (https://docs.microsoft.com/en-us/

rest/api/sql/database%20auditing%20settings/createorupdate).

Figure 6-20. Tracking successful connections with Azure Metrics

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/auditing-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/auditing-overview
https://docs.microsoft.com/en-us/rest/api/sql/database auditing settings/createorupdate
https://docs.microsoft.com/en-us/rest/api/sql/database auditing settings/createorupdate

279

You can direct SQL Database auditing to an Azure storage account, a Log Analytics

workspace, or Event Hub for streaming.

Let’s look at an example of creating an audit for the logical server and direct the audit

to a Storage Account and Log Analytics workspace (and explain why you might want to

you one vs. the other or both). Auditing the logical server will audit all activities for all

databases.

Note You could also create a separate audit specific to each database, but when
you audit a logical server, all activities for all databases go into that audit as well.

I started the process by navigating to my logical server bwazuresqlserver, selected

Auditing from the Resource menu, turned on Auditing, and checked Storage Account

and Log Analytics as seen in Figure 6-21.

To have the audits started, I need to configure the Azure Storage details and Log

Analytics details.

Figure 6-21. Configuring auditing for Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

280

I selected Configure from Storage details and was presented with this screen as

seen in Figure 6-22 (0 days means unlimited).

Since I don’t have a storage account, I selected Configure required settings and was

presented with a list of storage accounts for my subscription. I chose to create a new

storage account with this screen as seen in Figure 6-23.

Figure 6-22. Configuring storage details for auditing for Azure SQL Database

Figure 6-23. Creating a new storage account for auditing for Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

281

I selected OK. The account took less than a minute to create, and now I was brought

to the screen to configure Log Analytic details. I was presented with a list of existing

Log Analytic workspaces, but I chose Create New Workspace and was presented with a

screen like in Figure 6-24 to create the new workspace.

I then clicked Save to save the audit configuration for Storage and Log Analytics.

Once this was successful, the user interface looks odd here since it is tempting to hit

Save again. Don’t do that or hit the X in the right-hand corner! Just select Overview in the

Resource menu of the logical server.

SQL Server Audit has a concept called an action group which defines what activities

are audited. SQL Database auditing has by default the following action groups enabled:

• BATCH_COMPLETED_GROUP – Audit all successful SQL statements.

Figure 6-24. Creating a Log Analytics workspace for auditing for Azure SQL
Database

ChApTer 6 SeCurINg Azure SQL

282

• SUCCESSFUL_DATABASE_AUTHENTICATION_GROUP – Audit a

successful login to a database.

• FAILED_DATABASE_AUTHENTICATION_GROUP – Audit a failed

connection to a database.

All the possible action groups to use can be found at https://docs.microsoft.com/

en-us/sql/relational-databases/security/auditing/sql-server-audit-action-

groups- and-actions. You can use the PowerShell cmdlet Set-AzSqlDatabaseAudit to

enable other action groups.

With SQL Server, you typically can view an audit through SSMS or using the system

function sys.fn_get_audit_file. It turns out you can do the same thing for each database

as part of the logical server. Let’s look at two different ways to view this audit data using

the Azure portal.

I’ll navigate to my database called bwazuresqldb, select Auditing in the Resource

Menu, and View audit logs from the command bar as seen in Figure 6-25.

Figure 6-25. Selecting an audit for an Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions

283

Notice on this screen Auditing is off for the database, but the information message

above it says it is enabled for the server. This means auditing is also enabled for this

database.

If I select View audit logs, I get a screen like in Figure 6-26.

First notice the Audit source is Server audit. This just means the source for auditing

this database is from the overall server vs. just the database. You will also notice a list of

audit records. These are audit records from the Azure storage option I selected earlier.

Notice the option to Run in Query Editor. I mentioned in Chapter 2 in the book the

Query Editor and said “we would not use this in the book,” but there is an opportunity to

peek at it. When you select this option, you will be prompted to log in to the server. You

will then see a screen like Figure 6-27 after you hit the Run button.

Figure 6-26. Viewing audit for Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

284

Notice a query is automatically populated to use sys.fn_get_audit_file to read from

the Azure storage account I configured for auditing and is the same result as the Audit

records in the previous screen. I now will use the breadcrumbs at the top of the screen

to go back to the Audit Records and view audit data for the database (I’ll get prompted to

discard my changes).

Let’s click View dashboard from the command bar to see a unique way to view audit

data from the Log Analytics workspace. Figure 6-28 shows a dashboard with a graph for

Azure SQL – Security Insights.

Figure 6-27. Using the Query Editor to view audit data

ChApTer 6 SeCurINg Azure SQL

285

Figure 6-28. Log Analytics dashboard for auditing for Azure SQL Database

Figure 6-29. Azure SQL – Security Insights dashboards

After I select the Azure SQL – Security Insights chart, I’m presented with a series

of dashboards related to audit data for the Azure SQL Database as seen in Figure 6-29

(there is a scrollback to see more charts).

ChApTer 6 SeCurINg Azure SQL

286

I’ll leave these audits active as they might help when looking at certain scenarios

later in the book. Use the breadcrumbs to navigate back to the Overview of the logical

server.

 Advanced Data Security
Now that you have seen how to authenticate, protect your data, and audit activities to

monitor security, let me show you some capabilities to go further with security with

Azure SQL. We call this suite of capabilities Advanced Data Security (ADS). At any

point, you can read our documentation covering ADS at https://docs.microsoft.com/

en-us/azure/azure-sql/database/advanced-data-security.

Advanced Data Security is managed and works the same with Azure SQL Managed

Instance and Database. I’ll use my Azure SQL Database for examples in the rest of this

section of the chapter.

To use any of the features for Advanced Data Security, I’ll need to enable this from

the Azure portal since I did not enable ADS during deployment back in Chapter 4.

Advanced Data Security is enabled at the logical server level for Azure SQL Database. I’ll

navigate to my logical server, bwazuresqlserver, select Advanced Data Security from the

Resource menu, and then select a few options from the screen as seen in Figure 6-30.

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/advanced-data-security
https://docs.microsoft.com/en-us/azure/azure-sql/database/advanced-data-security

287

There are a few things worth pointing out here on this screen. I turned Periodic

recurring scans to ON. This means Vulnerability scans are done on a scheduled basis. I

also added an email account to send the scanned results. I also added an email address

to send Advanced Threat Protection alerts. Also notice that Advanced Data Security does

not come for free included with your costs for the database. There is a trial period of no

charge, but then after that, there is a small charge each month for using these services.

Before saving, I selected the Storage Account for auditing bwazuresqlauditstorage to

hold the Vulnerability results.

Figure 6-30. Configuring Advanced Data Security

ChApTer 6 SeCurINg Azure SQL

288

Notice on this screen you can configure different Advanced Threat Protection (ATP)

types to track which include SQL injection, Brute Force, and others (or just use the

default of All). You will learn more about ATP types later in this chapter.

Once you have configured Advanced Data Security for the logical server, you can use

the Azure portal and other methods to manage and view the results for each database.

Let’s use the portal to see how each of the pieces of Advanced Data Security works. The

first path is to select ADS from the portal from the context of a specific database as seen

in Figure 6-31.

 Data Classification
You may be in a situation where you need to classify and label columns for tables in your

database and then audit access to these columns. One possible scenario where you need

to do this is for compliance with certain regulations such as General Data Protection

Regulation (GDPR).

Azure SQL and SQL Server provide a capability to label and classify your columns

through T-SQL statements like ADD SENSITIVITY CLASSIFICATION. You can use

T-SQL against SQL Server, Azure SQL Managed Instance, and Database. You can see

how to use T-SQL for Data Classification in a workshop I built for SQL Server 2019 at

https://github.com/microsoft/sqlworkshops-sql2019workshop/blob/master/

sql2019workshop/03_Security.md.

Figure 6-31. Advanced Data Security for Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

https://github.com/microsoft/sqlworkshops-sql2019workshop/blob/master/sql2019workshop/03_Security.md
https://github.com/microsoft/sqlworkshops-sql2019workshop/blob/master/sql2019workshop/03_Security.md

289

In addition, PowerShell cmdlets exist to work with data classification

for Azure SQL. See Set-AzSqlDatabaseSensitivityClassification and Set-

AzSqlInstanceDatabaseSensitivity as examples. az CLI also provides interfaces for data

classification such as az sql db classification.

Let’s see how to manage Data Classifications from the Azure portal. Using

the navigation from Figure 6-31, select Data Discover & Classification. You can

see in Figure 6-32 a dashboard of existing classifications (which is empty) and

recommendations to classify columns.

If you click the recommendations, you will see a list of recommendations for

Information types and Sensitivity labels for columns in your database as seen in

Figure 6-33.

Figure 6-32. Data Classification for Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

290

These recommendations for types and labels are based on the name of the columns.

If you select Accept selected recommendations and then Save, you can select Overview

to see a new chart of classifications as seen in Figure 6-34.

Figure 6-33. Recommendations for Data Classification

ChApTer 6 SeCurINg Azure SQL

291

You have several options to manage classifications at this point. If you select

Classification, you can add a classification through the portal. As a developer, you can

query the sys.sensitivity_classifications catalog view to see classification definitions.

You can also use PowerShell to view classification definitions with Get- AzSqlDatabaseS
ensitivityClassification and even recommendations with Get- AzSqlDatabaseSensitivit
yRecommendation. Similar interfaces exist for Azure SQL Managed Instance.

If you select Configure as seen in Figure 6-34, you can add your own Information

Types and Sensitivity Labels that can now appear as options to choose for other

classifications in the portal. This is called SQL Information Protection policies and

is only available with certain permissions in your Active Directory. Because this is

considered an information protection policy for the Azure tenant, you must have

administrative privileges, which I don’t at Microsoft (another example of separation of

duties for a corporation). You can read more about information protection policies at

 https://docs.microsoft.com/en-us/azure/security-center/security-center-

info-protection-policy.

Figure 6-34. Data classification dashboard populated

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/security-center/security-center-info-protection-policy
https://docs.microsoft.com/en-us/azure/security-center/security-center-info-protection-policy

292

Note When you add classifications, you can add your own information types and
labels for a new column through the portal, T-SQL, and powerShell. however, they
won’t show up as options to choose from a list of information types and labels
unless you use information policies.

Once you have classified columns for your tables, you will likely want to audit who

has accessed these columns. Since we configured auditing previously in this chapter, we

should be able to see this access.

I’ll use my Azure VM bwsql2019 with SSMS to connect (with my AAD account) to

the logical server and the context of the bwazuresqldb database. I then will use Object

Explorer to find the SalesLT.Customer table, right-click the icon for the table, and use

the Select Top 1000 rows option.

Now if I navigate back to the bwazureqsldb database in the Azure portal and select

Auditing from the Resource menu and View audit logs from the command bar, I see a

screen like Figure 6-35.

I can see there is a BATCH COMPLETED event. If I click this, I can see the query

that was run for the Object Explorer option and I see SENSITIVITY INFORMATION was

audited as part of the query like Figure 6-36.

Figure 6-35. Audit records from SQL Database Audit

ChApTer 6 SeCurINg Azure SQL

293

If I now use breadcrumbs to get back to Audit Records, I can choose View

Dashboard. You will now see like in Figure 6-37 a populated graph showing Access to

Sensitive Data.

Figure 6-36. An audit record showing sensitivity information access

ChApTer 6 SeCurINg Azure SQL

294

You can click this graph to drill into the details. I can now drill into several

dashboards showing more access to sensitive data like Figure 6-38.

Figure 6-37. Log analytics dashboard showing access to sensitive data

Figure 6-38. Access to sensitive data audit dashboard

ChApTer 6 SeCurINg Azure SQL

295

Note Data classification functionality is included in SSMS and works against
SQL Server 2019 and Managed Instance (but not Azure SQL Database). This
functionality existed in SQL Server 2017 but used a different approach. If SSMS is
pointed to a SQL Server 2019 or Managed Instance, it uses T-SQL interfaces. Any
modifications to Data Classification through SSMS will show up in the Azure portal
for Managed Instance and likewise in SSMS.

For a complete review of Data Classification, look through the documentation at

 https://docs.microsoft.com/en-us/azure/azure-sql/database/data-discovery-

and-classification-overview.

You can now use the breadcrumbs at the top to navigate back to the overview of your

database.

 Vulnerability Assessment
Another aspect to securing your data is to proactively monitor and check for any known

security vulnerabilities. But what are known vulnerabilities? Azure SQL has a knowledge

base of rules we have built (based on an industry standard from www.cisecurity.

org/cis-benchmarks/) to scan your Azure SQL Manage Instances and Databases for

configurations that might be considered vulnerable. I like to think of a vulnerability

assessment like a virus checker which uses a scan method to look for possible issues.

The best way to see what I mean by this is to see it in action. Let’s navigate back to the

database bwazuresqldb and select Advanced Data Security from the Resource menu.

This shows the Advanced Data Security dashboard for Data Classification, Vulnerability

Assessment, and Advanced Threat Protection. Click the Vulnerability Assessment

dashboard. You should see results like Figure 6-39.

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/data-discovery-and-classification-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/data-discovery-and-classification-overview
http://www.cisecurity.org/cis-benchmarks/
http://www.cisecurity.org/cis-benchmarks/

296

From the command bar, you can initiate a scan on-demand (remember when we

configured Advanced Data Security, we set up for periodic scans which is once a week)

or click Scan if you don’t see results immediately. A scan is very lightweight, typically

only takes a few seconds, and is completely a read-only operation. You can also from the

command bar export results to a .csv file and go back and look at the history of previous

scans.

You can see in the results of the scan that we categorize Findings as High Risk,

Medium, and Low Risk. You can also see there is an option to look at Passed results,

which are checks we make that we determine are good on your deployment (at least for

this scan).

Let’s look at one of these rules that have fired to see how you can use Vulnerability

Assessments in an effective way.

First, click the High Risk rule that describes a scenario for firewall rules. You can see

from Figure 6-40 a description of the condition detected to fire this rule and the possible

impact to security.

Figure 6-39. A scanned vulnerability assessment for Azure SQL Database

ChApTer 6 SeCurINg Azure SQL

297

If you scroll down, you can find out how we detected this condition and how you can

remediate it as seen in Figure 6-41.

This page shows you the query we use to detect the rule and remediation steps both

with T-SQL and a link that will allow you to change this in the Azure portal. Once you make

the remediation, the fired rule will move to the Passed category. Since we have private link

configured for this logical server, it may make sense to remove this firewall rule. If you later

added the firewall back after a scan, the subsequent scan would pick it back up again.

Figure 6-40. A high risk vulnerability detected for Azure SQL Database

Figure 6-41. Details of high risk rule from Vulnerability Assessment

ChApTer 6 SeCurINg Azure SQL

298

Note The existence of a firewall rule doesn’t mean you will be open to
widespread hacking. As I’ve started earlier in this chapter, it is not the most secure
way to allow connections to your server.

Let’s say you are OK with the firewall rule and don’t want any scans to flag this as a

high-risk problem. You can use the option on the command bar for the rule to Approve
as Baseline. When you do that, this rule will never fire unless you clear the baseline. You

can apply a baseline to any rule that is fired.

When I configured Advanced Data Security, I also set up my email account to send

details of any scheduled scans. Figure 6-42 shows an example of the body of an email I

received showing a summary of scans across all databases for my logical server.

Figure 6-42. Email of schedule scan for logical server

ChApTer 6 SeCurINg Azure SQL

299

You can also use PowerShell (e.g., Get- AzSqlDatabaseVulnerabilityAssessment
ScanRecord) to show and manage Vulnerability Assessments.

Note SSMS provides a feature to run a Vulnerability Assessment. It works against
both Managed Instances and Database and has similar rules, but the tool is not
integrated or tied into Azure portal or powerShell.

You can learn more about Vulnerability Assessments at https://docs.microsoft.

com/en-us/azure/azure-sql/database/sql-vulnerability-assessment.

 Advanced Threat Protection (ATP)
The last component of Advanced Data Security is Advanced Threat Protection (ATP).

I mentioned the history behind ATP in Chapter 1 of the book. ATP is a service run in

Azure that is designed to detect potential harmful attacks, access, or exploits to Managed

Instance or Database.

ATP uses Extended Events and Machine Learning technology to detect and alert

you to certain types of suspicious activities. An example of a suspicious activity is code

designed for a SQL injection. You can read all the various rules and alerts detected

by ATP at https://docs.microsoft.com/en-us/azure/security-center/alerts-

reference#alerts-sql-db-and-warehouse.

While we don’t document the details of how we detect all rules, I can show you how

to simulate a SQL injection using SSMS to see an alert fire.

Using my Azure VM bwsql2019 with SSMS, I’ll create a new query connection

using SSMS but used the Additional Connection Parameters of SSMS (from the Options

button) to put in this string:

Application Name=webappname

I also used the Connect to database to connect to the bwazuresqldb database. In the

query editor window, I put in this query and executed it:

SELECT * FROM SalesLT.Customer WHERE CustomerID like '' or 1 = 1 --' and

family = 'test1';

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/sql-vulnerability-assessment
https://docs.microsoft.com/en-us/azure/azure-sql/database/sql-vulnerability-assessment
https://docs.microsoft.com/en-us/azure/security-center/alerts-reference#alerts-sql-db-and-warehouse
https://docs.microsoft.com/en-us/azure/security-center/alerts-reference#alerts-sql-db-and-warehouse

300

Note We filter out SSMS as an application because no one sends in injections
from a tool like SSMS. Therefore, I used a different application name to simulate a
real application sending a query that looks like it could be a SQL injection attack.

Within a matter of seconds, the Advanced Data Security dashboard showed a

Security Alert. I selected Advanced Threat Protection and saw a chart like Figure 6-43.

SQL injection is an interesting security topic and we have documentation at

https://docs.microsoft.com/en-us/sql/relational-databases/security/sql-

injection to explain it and why the query pattern I used was detected as an injection.

Just like a Vulnerability Scan, I received an email after this alert showed up on my

dashboard for the threat. The email body looks like Figure 6-44.

Figure 6-43. A SQL injection detected by Advanced Threat Protection

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/security/sql-injection
https://docs.microsoft.com/en-us/sql/relational-databases/security/sql-injection

301

You can see on the dashboard screen you have an option to download a report as a

.csv file or create rules to suppress certain types of alerts.

ATP also has interfaces for PowerShell (e.g., Set- AzSqlDatabaseThreatDetection
Policy) and az CLI (e.g., az sql db threat-policy).

Advanced Threat Protection (ATP) is one of the signature capabilities that is unique

to Azure. ATP works for Managed Instance and Azure SQL Database and at the time of

the writing of this book was in preview for Azure Virtual Machine.

 Azure Security Center
Among the benefits of deploying your resources in Azure are services that work across

all your resources. Azure Security Center (ASC) is a security management system that

Figure 6-44. Email for security alert from Advanced Threat Protection

ChApTer 6 SeCurINg Azure SQL

302

works within the Azure ecosystem across all your Azure assets. You can read the full story

of the Azure Security Center at https://docs.microsoft.com/en-us/azure/security-

center/.

Every Azure subscription gets the Free tier of the Azure Security Center which covers

resources like Virtual Machines. You can pay a monthly subscription fee for the Standard

tier. The standard tier will include integration into assets like Azure SQL and more. You

can compare the features of Free vs. Standard tier at https://azure.microsoft.com/en-

us/pricing/details/security-center/.

There are a few ways you can access ASC with Azure SQL. One is from an icon on

your home page of your Azure portal. The other way you saw in Figure 6-43 is Advanced

Threat Protection at the command bar.

If you select Security Center from there, you will be brought to an overview screen

like in Figure 6-45 for Policy & compliance, Security hygiene, and Threat protection

across all Azure resources in your subscription.

You can see in the Threat protection section information about threats detected

by ATP for Azure SQL. The Azure Security Center is truly one of the most innovative

services in Azure and is well worth your time and investment to use across all your Azure

resources.

Figure 6-45. The Azure Security Center

ChApTer 6 SeCurINg Azure SQL

https://docs.microsoft.com/en-us/azure/security-center/
https://docs.microsoft.com/en-us/azure/security-center/
https://azure.microsoft.com/en-us/pricing/details/security-center/
https://azure.microsoft.com/en-us/pricing/details/security-center/

303

 Summary
In this chapter, you learned how Azure SQL security is just like SQL Server in many

ways. You learned how to secure your network and authenticate logins and users

including with Azure Active Directory. You learned how to protect your data with various

encryption techniques. You learned all the audit capabilities you can use outside and in

Azure SQL. Furthermore, you learned to go further with the cloud using Advanced Data

Security.

I believe Azure SQL Security has the capabilities for any enterprise. Security is

something baked into our engineering teams. As Andrea Wolter, Senior Program

Manager in our security team, tells it, “Trust is the most fundamental design principle

for Azure SQL. From early design on, every feature is scrutinized by security reviews and

on an ongoing regular basis. And this is more than plainly implementing the Security

Development Lifecycle (SDL). We continuously test our services and infrastructure in

so-called wargame exercises and the results are shared with the teams to keep improving

our security posture against potential attack vectors even before they could get used.”

You have learned in this book that the speed of the cloud helps us innovate and

adapt quickly. Security is always part of that innovation. According to Joachim Hammer,

Principal Group PM Manager for Security, “We continue to invest in a three-pronged

approach to ensure Azure SQL meets the most stringent security requirements as well

as regulatory compliances in the industry. These areas include State-of-the-art, built-in

Security Controls, Trust and Compliance, and Threat detection and assessment.”

In the next section, we will explore and dive deep into the second major aspect to the

core of Azure SQL: performance.

ChApTer 6 SeCurINg Azure SQL

305
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_7

CHAPTER 7

Monitoring and Tuning
Performance for Azure
SQL
You now have seen how to secure your Azure SQL deployment. Another aspect to

ensure you have the best possible database for your application is understanding how

to monitor and tune performance. If you know SQL Server, here is some good news. The

engine that powers Azure SQL is the same one for SQL Server! This means that just about

any performance capability you need exists for Azure SQL. It also means that many of

the same tasks and skills you use for SQL Server apply to Azure SQL. In this chapter,

we will explore all the capabilities and tasks you normally use to monitor and tune

performance for a SQL Server and compare it with Azure SQL.

This chapter will contain examples for you to try out and use as you read along. For

you to try out any of the techniques, commands, or examples I use in this chapter, you

will need

• An Azure subscription.

• A minimum of Contributor role access to the Azure subscription.

You can read more about Azure built-in roles at https://docs.

microsoft.com/en-us/azure/role-based-access-control/built-

in- roles.

• Access to the Azure Portal (web or Windows application).

• A deployment of an Azure SQL Managed Instance and/or an Azure

SQL Database as I did in Chapter 4. The Azure SQL Database I

deployed uses the AdventureWorks sample which will be required to

use some of the examples.

https://doi.org/10.1007/978-1-4842-5931-3_7#DOI
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

306

• To connect to Managed Instance, you will need a jumpbox or virtual

machine in Azure to connect. I showed you how to do this in Chapter 4

of the book. One simple way to do this is to create a new Azure Virtual

Machine and deploy it to the same virtual network as the Managed

Instance (you will use a different subnet than the Managed Instance).

• To connect to Azure SQL Database, I’m going to use the Azure VM I

deployed in Chapter 3, called bwsql2019, and configured for a private

endpoint in Chapter 6 (you could use another method as long as you

can connect to the Azure SQL Database).

• Installation of the az CLI (see https://docs.microsoft.com/en-us/

cli/azure/install-azure-cli?view=azure-cli-latest for more

details). You can also use the Azure Cloud Shell instead since az is

already installed. You can read more about the Azure Cloud Shell at

https://azure.microsoft.com/en-us/features/cloud-shell/.

• You will run some T-SQL in this chapter, so install a tool like SQL

Server Management Studio (SSMS) at https://docs.microsoft.

com/en-us/sql/ssms/download-sql-server-management-studio-

ssms?view=sql-server-ver15. You can also use Azure Data Studio

at https://docs.microsoft.com/en-us/sql/azure-data-studio/

download-azure-data-studio?view=sql-server-ver15. I installed

both SSMS and ADS in the bwsql2019 Azure Virtual Machine.

• For this chapter, I have script files you can use for several of the

examples. You can find these scripts in the ch7_performance folder

for the source files included for the book. I will also use the very

popular tool ostress.exe for exercises in this chapter which comes with

the RML Utilities. You can download RML from www.microsoft.com/

en-us/download/details.aspx?id=4511. Make sure to put the folder

where RML gets installed in your system path (which is by default C:\

Program Files\Microsoft Corporation\RMLUtils).

 Performance Capabilities
Since the engine that powers Azure SQL is the same as SQL Server, just about any

performance capability is available to you. Having said that, I feel it is important to

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com/en-us/features/cloud-shell/
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
http://www.microsoft.com/en-us/download/details.aspx?id=4511
http://www.microsoft.com/en-us/download/details.aspx?id=4511

307

cover a few important areas that are similar and different that can affect your ability to

ensure maximum performance for your Azure SQL deployment. This includes maximum

capacities, indexes, In-Memory OLTP, Partitions, SQL Server 2019 performance

enhancements, and new Azure SQL Intelligent performance capabilities.

 Max Capacities
When you choose a platform to install SQL Server, you typically size the resources you

need. In many cases, you plot out the maximum capacities you will need for resources

such as CPU, memory, and disk space. You may also ensure you have the correct

performance capabilities for I/O with regard to IOPS and latency.

In Chapters 4 and 5 of the book, I showed you all the options to choose, deploy, and

configure your Azure SQL Managed Instance and Azure SQL Database deployments. To

ensure you have the performance, you need keep these capacities in mind with Azure SQL:

• Azure SQL Managed Instance can support up to 80 vCores, ~400Gb of

memory, and a maximum storage of 8TB. The Business Critical tier is

limited to 4TB because that is the current maximum size we can store

on the local SSD drives of the nodes that host Managed Instance.

• Azure SQL Database can support up to 128 vCores, ~4TB Memory,

and a 4TB database using the M-Series.

• The Hyperscale deployment option for Azure SQL Database can

support up to 100TB database and unlimited transaction log space.

• Your decision on deployment options such as number of vCores

greatly affects other resource capacities whether it is a Managed

Instance or Database deployment. For example, the number of

vCores for a General Purpose Azure SQL Database affects the

maximum memory, maximum database size, maximum transaction

log size, and maximum log rate, among others.

Let’s stop here to help you get oriented. How can you see a chart or table to figure out

the limits for all these choices?

For a Managed Instance, go to this documentation page: https://docs.microsoft.

com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-

characteristics.

Figure 7-1 shows an example of the table that describes the resource limits (this may

be hard to read, but I wanted to squeeze as much as I could in a screenshot).

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-characteristics
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-characteristics
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-characteristics

308

Figure 7-1. Resource capacities and limits for Azure SQL Managed Instance

Chapter 7 Monitoring and tuning perforManCe for azure SQL

309

What about Azure SQL Database? You can view a table for capacities and limits

based on vCores at https://docs.microsoft.com/en-us/azure/azure-sql/database/

resource-limits-vcore-single-databases like in Figure 7-2.

The default table is the first choice which is a Serverless compute tier. You can see

on the right-hand side of this figure you can choose different deployment options to see

what the capacity and limits for different options. Bookmark these documentation links.

I use them all the time. It is possible these limits will change over time as we evolve the

capabilities of Azure SQL services.

Keep in mind that some limits like memory are enforced by Windows Job Objects. I

mentioned this implementation in Chapter 4 of the book. Use the DMV sys.dm_os_job_
object to see the true limits for memory and other resources for your deployment.

Figure 7-2. Resource capacities and limits for Azure SQL Database

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases

310

Tip i’m a developer at heart, so i wanted a way to find out these capacities and
limits without looking at a table. the best method i could find is reSt apis. an
example is in our documentation at https://docs.microsoft.com/en-us/
rest/api/sql/capabilities/listbylocation. once you deploy, you get to
see your resource limits with dMVs like sys.dm_user_db_resource_governance.

What if you make the wrong choice and need more capacity? The good news is that

you can make changes for Azure SQL Managed Instance and Database to get more (or

less) without any database migration required. You will see an example of this later in

this chapter. Just remember that a change for Managed Instance can take a significant

amount of time.

Note there are two exceptions to this statement about migration. first, you
cannot switch between azure SQL database and azure SQL Managed instance.
Second, if you deploy or switch to the hyperscale service tier, you cannot switch
back.

 Indexes
Anyone who works with SQL Server knows that without proper indexes, it is difficult to

obtain the query performance you need.

Every type of index option you can use in SQL Server is available to you with Azure

SQL, including clustered, non-clustered, online, and resumable indexes. You can read

an index primer at https://docs.microsoft.com/en-us/sql/relational-databases/

indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15

and details on online indexes at https://docs.microsoft.com/en-us/sql/relational-

databases/indexes/perform-index-operations-online. Resumable online indexes

are a recent capability. You can read more at https://azure.microsoft.com/en-us/

blog/modernize-index-maintenance-with-resumable-online-index-rebuild/.

Columnstore indexes are nothing short of amazing. I continue to see customers

who just don’t take advantage of this capability. Columnstore index can accelerate read

query performance by 100x for the right workload. Columnstore indexes are supported

in every deployment option you choose with Azure SQL. One myth about columnstore is

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/rest/api/sql/capabilities/listbylocation
https://docs.microsoft.com/en-us/rest/api/sql/capabilities/listbylocation
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/perform-index-operations-online
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/perform-index-operations-online
https://azure.microsoft.com/en-us/blog/modernize-index-maintenance-with-resumable-online-index-rebuild/
https://azure.microsoft.com/en-us/blog/modernize-index-maintenance-with-resumable-online-index-rebuild/

311

that it is only an in-memory technology. The truth is that columnstore indexes perform

best when they fit in memory and use compression so more will fit in your memory

limits. However, a columnstore index does not have to all fit in memory. To get a start on

columnstore indexes, see the documentation at https://docs.microsoft.com/en-us/

sql/relational-databases/indexes/columnstore-indexes-overview.

 In-Memory OLTP
In SQL Server 2014 (and greatly enhanced in SQL Server 2016), we introduced a

revolutionary capability for high-speed transactions called In-Memory OLTP (code

name Hekaton). In-Memory OLTP is available for Azure SQL Managed Instance and

Databases if you choose the Business Critical service tier.

Memory-optimized tables are the mechanism to use In-Memory OLTP. Memory-

optimized tables are truly in-memory as they must completely fit in memory. The

memory available for store memory-optimized tables is a subset of the memory limits

of your Business Critical service tier. The number of vCores for your deployment

determines what percentage of memory is available for memory-optimized tables.

Note Memory-optimized tables require a memory-optimized filegroup. azure
SQL creates this filegroup for any databases even if it is not a Business Critical
(BC) service tier. this way, if you move to BC, the filegroup is set up for memory-
optimized tables.

New to In-Memory OLTP? Start with our documentation at https://docs.

microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-

usage-scenarios.

 Partitions
Partitions are often used with SQL Server for tables with many rows to improve

performance by sub-dividing data by a column in the table. Consider these points for

partitions and Azure SQL:

• Partitions are supported for Azure SQL Database and Managed

Instance.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios

312

• You can only use filegroups with partitions with Azure SQL

Managed Instance (remember, Azure SQL Database only has a

primary partition, while Managed Instance supported user-defined

filegroups).

Need a primer for partitions? Start with this documentation page: https://docs.

microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-

and-indexes?view=sql-server-ver15.

Note there are some interesting partitioning techniques with azure SQL
database not associated with SQL partitions you may want to look at as
a developer. read more at https://docs.microsoft.com/en-us/
azure/architecture/best-practices/data-partitioning-
strategies#partitioning-azure-sql-database.

 SQL Server 2019 Enhancements
SQL Server 2019 was a monumental release including several new capabilities.

Performance was an area of major investment for SQL Server 2019. Because Azure SQL

is versionless, almost all the performance enhancements for SQL Server 2019 are part of

Azure SQL including built-in engine features like Intelligent Query Processing. The one

exception is Tempdb Metadata Optimization. We first built this feature in SQL Server

2019 and have yet to integrate this into Azure SQL. But rest assured, we are working on

either baking this into Azure SQL as a default or providing an option to enable it.

Note it is important to know that some “hidden gem” capabilities like merry-go-
round scans and buffer pool ramp-up are all used behind the scenes for all editions
of azure SQL.

 Intelligent Performance
Over the past few releases of SQL Server, we have been striving to provide built-in

capabilities to enhance performance without you making application changes. Our goal

is to use data and automation to make smart decision to make your queries run faster.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies#partitioning-azure-sql-database
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies#partitioning-azure-sql-database
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies#partitioning-azure-sql-database

313

We call this Intelligent Performance. These capabilities exist in Azure SQL, but we go

further in the cloud. We use the power of the cloud to offer even more. You learn more

details about Intelligent Performance for Azure SQL in the final section of this chapter.

 Configuring and Maintaining for Performance
In Chapter 5 of this book, I described many of the options to configure an Azure SQL

Managed Instance and Database. There are some configuration options that can affect

performance worth diving deeper into. This includes the Tempdb database, configuring

database options, files and filegroups, max degree of parallelism, and Resource

Governor. In addition, it is worth reviewing the various tasks you would go through to

maintain indexes and statistics for database for Azure SQL as compared to SQL Server.

 Tempdb
The Tempdb database is an important shared resource used by applications.

Ensuring the right configuration of tempdb can affect your ability to deliver consistent

performance. Tempdb is used the same with Azure SQL like SQL Server, but your ability

to configure tempdb is different, including placement of files, the number and size of

files, tempdb size, and tempdb configuration options.

In Azure SQL, Tempdb files are always automatically stored on local SSD drives, so

I/O performance shouldn’t be an issue.

SQL Server professionals often use more than one database file to partition

allocations for tempdb tables. For Azure SQL Database, the number of files is scaled with

the number of vCores (e.g., 2 vCores = 4 files, etc.) with a max of 16. The number of files is

not configurable through T-SQL against tempdb but by changing the deployment option.

The maximum size of the tempdb database is scaled per number of vCores.

You get 12 files with Azure SQL Managed Instance independent of vCores, and you

cannot change this number. We are looking in the future to allow configuration of the

number of files for Azure SQL Managed Instance.

Tempdb database option MIXED_PAGE_ALLOCATION is set to OFF and

AUTOGROW_ALL_FILES is set to ON. This cannot be configured, but they are the

recommended defaults as with SQL Server.

Currently, the Tempdb Metadata Optimization feature in SQL Server 2019, which can

alleviate heavy latch contention, is not available in Azure SQL but is planned for the future.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

314

 Database Configuration
As I described in Chapter 5, just about every database configuration option is available

to you with Azure SQL as it is with SQL Server through ALTER DATABASE and ALTER

DATABASE SCOPED configuration. Consult the documentation at https://docs.

microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql and

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-

scoped-configuration-transact-sql. You will see later in this chapter there are new

options specific to Azure SQL from ALTER DATABASE.

For performance, one database option that is not available to change is the recovery

model of the database. The default is full recovery and cannot be modified. This ensures

your database can meet Azure service-level agreements (SLAs). Therefore, minimal

logging for bulk operations is not supported. Minimal logging for bulk operations is

supported for tempdb.

 Files and Filegroups
SQL Server professionals often use files and filegroups to improve I/O performance

through physical file placement. Azure SQL does not allow users to place files on specific

disk systems. However, Azure SQL has resource commitments for I/O performance with

regard to rates, IOPS, and latencies, so abstracting the user from physical file placement

can be a benefit.

Azure SQL Database only has one database file (Hyperscale may have several),

and the size is configured through Azure interfaces. There is no functionality to create

additional files, but again you don’t need to worry about this given IOPS and I/O latency

commitments.

Note hyperscale has a unique architecture and may create one or more files
upon initial deployment depending on your vCore choice. for example, for an 8
vCore deployment, i’ve seen hyperscale create multiple files totaling 40gb. this
implementation may change, and you shouldn’t rely on it. hyperscale simply
creates the files and size it needs to meet your requirements.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql

315

Azure SQL Managed Instance supports adding database files and configuring sizes

but not physical placement of files. The number of files and file sizes for Azure SQL

Managed Instance can be used to improve I/O performance. I will discuss more of the

details on how this works later in this chapter. In addition, user-defined filegroups are

supported for Azure SQL Managed Instance for manageability purposes such as use with

partitions and using commands like DBCC CHECKFILEGROUP.

 Max Degree of Parallelism
Max degree of parallelism (MAXDOP), which can affect the performance of individual

queries, works the same in the engine for Azure SQL as SQL Server. The ability to

configure MAXDOP may be important to delivering consistent performance in Azure

SQL. You can configure MAXDOP in Azure SQL like SQL Server using the following

techniques:

• ALTER DATABASE SCOPED CONFIGURATION to configure

MAXDOP is supported for Azure SQL.

• sp_configure for “max degree of parallelism” is supported for

Managed Instance.

• MAXDOP query hints are fully supported.

• Configuring MAXDOP with Resource Governor is supported for

Managed Instance.

Read more about MAXDOP at https://docs.microsoft.com/en-us/sql/database-

engine/configure-windows/configure-the-max-degree-of-parallelism-server-

configuration- option?view=sql-server-ver15.

 Resource Governor
Resource Governor is a feature in SQL Server that can be used to control resource usage

for workloads through I/O, CPU, and memory. While Resource Governor is used behind

the scenes for Azure SQL Database, it is only supported for Azure SQL Managed Instance

for user-defined workload groups and pools. If you would like to use Resource Governor

in Azure SQL Managed Instance, consult our documentation at https://docs.

microsoft.com/en-us/sql/relational-databases/resource-governor/resource-

governor.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor

316

 Maintaining Indexes
Unfortunately, indexes for SQL don’t just maintain themselves, and they do

occasionally need maintenance. In fairness, index maintenance (specifically rebuild or

reorganization) does not have a single answer. I’ve seen many customers perform too

often a rebuild or reorganization when it is not necessary. Likewise, there can be many

times where these operations can help performance. You might consider looking at our

documentation on index fragmentation as one reason why index maintenance can make

sense: https://docs.microsoft.com/en-us/sql/relational-databases/indexes/

reorganize-and-rebuild-indexes.

Note i’m not telling the complete truth. for azure SQL, there is a solution here
that can help with decisions on building or dropping indexes. But i won’t get too far
ahead. the tale of that story is at the end of the chapter.

Indexes for SQL Server occasionally need to be reorganized and sometimes rebuilt.

Azure SQL supports all the options you have for SQL Server to reorganize and rebuild

indexes including online and resumable indexes.

Online and resumable index operations can be extremely important to maintain

maximum application availability. Read all about these capabilities at https://docs.

microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-

index-operations.

 Maintaining Statistics
Correct statistics can be the lifeblood for query performance. SQL Server offers options

to automatically keep statistics up to date based on database modification, and Azure

SQL supports all those options. Our documentation has a very detailed explanation on

how statistics are used for query performance at https://docs.microsoft.com/en-us/

sql/relational-databases/statistics/statistics.

One interesting aspect to automatic statistics updates is a database scoped

configuration we specifically introduced for Azure SQL to help improve application

availability. You can read about this in great detail from a blog post by my colleague

Dimitri Furman at https://techcommunity.microsoft.com/t5/azure-sql-database/

improving-concurrency-of-asynchronous-statistics-update/ba-p/1441687.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics
https://techcommunity.microsoft.com/t5/azure-sql-database/improving-concurrency-of-asynchronous-statistics-update/ba-p/1441687
https://techcommunity.microsoft.com/t5/azure-sql-database/improving-concurrency-of-asynchronous-statistics-update/ba-p/1441687

317

 Monitoring and Troubleshooting Performance
If you want to ensure you have the best performance for a SQL application, you need to

learn how to monitor and troubleshoot performance scenarios. Azure SQL comes with

the performance tools and capabilities of SQL Server to help you with this task. This

includes tools from the Azure ecosystem as well as capabilities built into the SQL Server

engine that powers Azure SQL.

In this part of the chapter of the book, you will learn not just monitoring capabilities

but how to apply them to performance scenarios for Azure SQL including examples.

 Monitoring Tools and Capabilities
Are you used to using Dynamic Management Views (DMV) and Extended Events? Azure

SQL has what you need. Do you need to debug query plans? Azure SQL has all the

capabilities of SQL Server including Lightweight Query Profiling and showplan details.

Query Store has become the bedrock for performance tuning, and it is on by default

in Azure SQL. The Azure portal includes visualizations, such as Query Performance

Insight, to view Query Store data without needing tools like SSMS.

All this lines up to be a formidable set of tools and capabilities to help you monitor

and troubleshoot performance for Azure SQL.

We want to invest more to make Azure SQL monitoring the best experience as

possible. According to Alain Dormehl, Senior Program Manager for Azure SQL, “Our

continued investment into infrastructure and new features on the platform will continue

to drive the expectations from our customers for deep insights. On a daily basis we

gather a huge amount of telemetry data and our teams will continue to innovate in how

we present this data to customers, so that it adds value, but also to build smarter, more

innovative features for monitoring, alerting, and automating.”

 Azure Monitor

Azure Monitor is part of the Azure ecosystem, and Azure SQL is integrated to support

Azure Metrics, Alerts, and Logs. Azure Monitor data can be visualized in the Azure Portal

or accessed by applications through Azure Event Hub or APIs. An example of why Azure

Monitor is important is accessing resource usage metrics for Azure SQL outside of SQL

Server tools much like Windows Performance Monitor. Read more about how to use

Chapter 7 Monitoring and tuning perforManCe for azure SQL

318

Azure Monitor with Azure SQL in the Azure portal at https://docs.microsoft.com/

en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-

capabilities-in-the-azure-portal.

 Dynamic Management Views (DMV)

Azure SQL provides the same DMV infrastructure as with SQL Server with a few

differences. DMVs are a crucial aspect to performance monitoring since you can view

key SQL Server performance data using standard T-SQL queries. Information such as

active queries, resource usage, query plans, and resource wait types are available with

DMVs. Learn more details about DMVs with Azure SQL later in this chapter.

 Extended Events (XEvent)

Azure SQL provides the same Extended Events infrastructure as with SQL Server.

Extended Events is a method to trace key events of execution within SQL Server that

powers Azure SQL. For performance, extended events allow you to trace the execution

of individual queries. Learn more details about Extended Events with Azure SQL later in

this chapter.

 Lightweight Query Profiling

Lightweight Query Profiling is a capability to examine the query plan and running state

of an active query. This is a key feature to debug query performance for long-running

statements as they are running. This capability cuts down the time for you to solve

performance problems vs. using tools like Extended Events to trace query performance.

Lightweight Query Profiling is accessed through DMVs and is on by default for Azure

SQL just like SQL Server 2019. Read more about Lightweight Query Profiling at https://

docs.microsoft.com/en-us/sql/relational-databases/performance/query-

profiling- infrastructure?view=sql-server-ver15#lwp.

 Query Plan Debugging

In some situations, you may need additional details about query performance for

an individual T-SQL statement. T-SQL SET statements such as SHOWPLAN and

STATISTICS can provide these details and are fully supported for Azure SQL as they

are for SQL Server. A good example of using SET statements for query plan debugging

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-capabilities-in-the-azure-portal
https://docs.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-capabilities-in-the-azure-portal
https://docs.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview#monitoring-and-tuning-capabilities-in-the-azure-portal
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15#lwp
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15#lwp
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15#lwp

319

can be found at https://docs.microsoft.com/en-us/sql/t-sql/statements/set-

statistics- profile-transact-sql. In addition, looking at plans in a graphical or XML

format is always helpful and completely works for Azure SQL. Learn more at https://

docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-

estimated-execution-plan?view=sql-server-ver15.

 Query Store

Query Store is a historical record of performance execution for queries stored in the user

database. Query Store is on by default for Azure SQL and is used to provide capabilities

such as Automatic Plan Correction and Automatic Tuning. SQL Server Management

Studio (SSMS) reports for Query Store are available for Azure SQL. These reports can be

used to find top resource consuming queries including query plan differences and top

wait types to look at resource wait scenarios. I will show you an example of using the

Query Store in this chapter with Azure SQL. If you have never seen or used Query Store,

start reading at https://docs.microsoft.com/en-us/sql/relational-databases/

performance/monitoring-performance-by-using-the-query-store.

 Performance Visualization in Azure Portal

For Azure SQL Database, we have integrated Query Store performance information

into the Azure Portal through visualizations. This way, you can see some of the same

information for Query Store as you would with a client tool like SSMS by using the Azure

Portal with an option called Query Performance Insight. I’ll show you an example of

using these visuals in the portal later in the chapter. For now to get started using it, check

out our documentation at https://docs.microsoft.com/en-us/azure/azure-sql/

database/query-performance-insight-use.

 Dive into DMVs and Extended Events
Dynamic Management Views (DMV) and Extended Events (XEvent) have been the

bedrock of diagnostics including performance monitoring and troubleshooting for SQL

Server for many years. I can truthfully tell you that DMV and XEvent technology all

started with the brains of folks like Slava Oks and Conor Cunningham so many years ago.

Many on the engineering team have worked, molded, and shaped these technologies,

but I remember being there from the beginning with Slava and my colleague for many

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statistics-profile-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statistics-profile-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-estimated-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-estimated-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-the-estimated-execution-plan?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use
https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use

320

years Robert Dorr working on these technologies when we were in Microsoft support

together. DMVs and XEvent are very important technologies to support performance

monitoring and troubleshooting for Azure SQL because Azure SQL is powered by the

SQL Server engine and the SQL Server engine powers Azure SQL Managed Instance and

Database.

Let’s dive a bit deeper into what DMV and XEvent capabilities are the same and new

for Azure SQL vs. SQL Server.

 DMVs Deep Dive

Let’s dive deeper into DMV for Azure SQL vs. SQL Server across Azure SQL Managed

Instance and Database.

Azure SQL Managed Instance
All DMVs for SQL Server are available for Managed Instance. Key DMVs like sys.

dm_exec_requests and sys.dm_os_wait_stats are commonly used to examine query

performance.

One DMV is specific to Azure called sys.server_resource_stats and shows historical

resource usage for the Managed Instance. This is an important DMV to see resource

usage since you do not have direct access to OS tools like Performance Monitor. You can

learn more about sys.server_resource_stats at https://docs.microsoft.com/en-us/

sql/relational-databases/system-catalog-views/sys-server-resource-stats-

azure- sql-database?view=azuresqldb-current.

Azure SQL Database
Most of the common DMVs you need for performance including sys.dm_exec_

requests and sys.dm_os_wait_stats are available. It is important to know that these

DMVs only provide information specific to the database and not across all databases for

a logical server.

sys.dm_db_resource_stats is a DMV specific to Azure SQL Database and can

be used to view a history of resource usage for the database. Use this DMV similar

to how you would use sys.server_resource_stats for a Managed Instance. I will show

you how to use this DMV in an example later in this chapter. For now, you can

read more at https://docs.microsoft.com/en-us/sql/relational-databases/

system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-

database?view=azuresqldb-current.

sys.elastic_pool_resource_stats is similar to sys.dm_db_resource_stats but can be

used to view resource usage for elastic pool databases.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current

321

DMVs You Will Need
There are a few DMVs worth calling out you will need to solve certain performance

scenarios for Azure SQL:

sys.dm_io_virtual_file_stats is important for Azure SQL since you don’t have direct

access to operating system metrics for I/O performance per file.

sys.dm_os_performance_counters is available for both Azure SQL Database and

Managed Instance to see SQL Server common performance metrics. This can be used to

view SQL Server Performance Counter information that is typically available in Windows

Performance Monitor.

sys.dm_instance_resource_governance can be used to view resource limits for a

Managed Instance. You can view this information to see what your expected resource

limits should be without using the Azure portal.

sys.dm_user_db_resource_governance can be used to see common resource

limits per the deployment option, service tier, and size for your Azure SQL Database

deployment. You can view this information to see what your expected resource limits

should be without using the Azure portal. I’ll show you an example of looking at this

DMV in an example. For now, you can read more at https://docs.microsoft.com/en-

us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-

resource- governor-azure-sql-database?view=azuresqldb-current.

DMVs for Deep Troubleshooting
These DMVs provide deeper insight into resource limits and resource governance for

Azure SQL. They are not meant to be used for common scenarios but might be helpful

when looking deep into complex performance problems:

• sys.dm_user_db_resource_governance_internal (Managed
Instance only)

• sys.dm_resource_governor_resource_pools_history_ex

• sys.dm_resource_governor_workload_groups_history_ex

Geek out with these DMVs. The last two DMVs provide historical information across

time (right now about 30 minutes). Be warned when using these DMVs. We kind of

built these for our internal purposes to debug issues with Azure to look at problems like

background activity vs. user load. So don’t be surprised if we change these to suit our

needs to ensure we provide a great database service.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-user-db-resource-governor-azure-sql-database?view=azuresqldb-current

322

 XEvent at Your Service

Extended Events (XEvent) was introduced as the new tracing mechanism for SQL Server

in SQL Server 2005 to replace SQL Trace. XEvent today supports some 1800+ trace points

in the SQL Server engine. XEvent powers other capabilities including SQL Audit and

Advanced Threat Protection (ATP).

Extended Events for Azure SQL Managed Instance
Extended Events can be used for Azure SQL Managed Instance just like SQL Server

by creating sessions and using events, actions, and targets. Keep these important points

in mind when creating extended event sessions:

• All events, targets, and actions are supported.

• File targets are supported with Azure Blob Storage since you don’t

have access to the underlying operating system disks.

• Some specific events are added for Managed Instance to trace events

specific to the management and execution of the instance.

You can use SSMS or T-SQL to create and start sessions. You can use SSMS to

view extended event session target data or the system function sys.fn_xe_file_target_
read_file.

Let’s peek at how XEvent is used behind the scenes in Managed Instance to power

Advanced Threat Protection (ATP). I had disabled Advanced Data Security from my

Managed Instance and then enabled it again using the portal and techniques I described

in Chapter 6 of the book. I then used my jumpbox (my Azure VM I showed you how to

deploy in Chapter 4 of the book) to bring up SSMS and look at XEvent sessions in Object

Explorer. Figure 7-3 shows the definition of a new session that shows up when you

enable Advanced Data Security.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

323

Warning You are the administrator of this SQL Server and have permissions to
delete that Xevent session. if you do this, you will effectively disable us from serving
you atp needs. to get the Xevent session back, disable and enable advanced data
Security from the portal. this session for atp is part of the solution we use internally.
don’t rely on its definition or output as we may change this in the future.

There is another XEvent session defined which is used for availability purposes

called TPS_TdService_session_control. You can look at the event definition but don’t rely

on this. We use this internally and may change it in the future. You will also notice the

system_health session and AlwaysOn_health session which are normally with any SQL

Server. I’ll take more about system_health in Chapter 8 of the book. AlwaysOn_health is

not started and not used for a Managed Instance.

Extended Events for Azure SQL Database
Extended Events can be used for Azure SQL Database just like SQL Server by creating

sessions and using events, actions, and targets. Keep these important points in mind

when creating extended event sessions:

• Most commonly used Events and Actions are supported. For

example, the fundamental event sql_batch_completed is available

to you. Azure SQL Database offers ~400 events vs. SQL Server (and

Managed Instance) which has around 1800. Use the DMV sys.dm_
xe_objects to find out all objects available to you.

• File, ring_buffer, and counter targets are supported.

Figure 7-3. XEvent session to help track queries for Advanced Threat Protection
(ATP)

Chapter 7 Monitoring and tuning perforManCe for azure SQL

324

• File targets are supported with Azure Blob Storage since you don’t

have access to the underlying operating system disks. Here is a

blog from the Azure Support team for a step-by-step process to set

up Azure Blob Storage as a file target: https://techcommunity.

microsoft.com/t5/azure-database-support-blog/extended-

events- capture-step-by-step-walkthrough/ba-p/369013.

You can use SSMS or T-SQL to create and start sessions. You can use SSMS to view

extended event session target data or the system function sys.fn_xe_file_target_read_file.

Note the ability with SSMS to View Live data is not available for azure SQL
database.

It is important to know that any extended events fired for your sessions are specific to

your database and not across the logical server. Therefore, we have a new set of catalog

views such as sys.database_event_sessions (definitions) and DMVs such as sys.dm_xe_
database_sessions (active sessions).

Take a look through our documentation for a complete list of differences for XEvent

between Azure SQL Database and SQL Server: https://docs.microsoft.com/en-us/

azure/azure-sql/database/xevent-db-diff-from-svr.

 Performance Scenarios
In a galaxy, far, far away when I was in Microsoft Support, my longtime friend Keith

Elmore was considered our expert on performance troubleshooting. As we trained other

support engineers, Keith came up with an idea that most SQL performance problems

could be categorized as either Running or Waiting.

Note Keith’s work led to a report called the performance dashboard reports. that
report is now part of the Standard reports for SQL Server Management Studio.
unfortunately, the report relies on some dMVs which are not exposed for azure
SQL database. however, the reports will work for Managed instance.

One way to look at this concept is with Figure 7-4.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://techcommunity.microsoft.com/t5/azure-database-support-blog/extended-events-capture-step-by-step-walkthrough/ba-p/369013
https://techcommunity.microsoft.com/t5/azure-database-support-blog/extended-events-capture-step-by-step-walkthrough/ba-p/369013
https://techcommunity.microsoft.com/t5/azure-database-support-blog/extended-events-capture-step-by-step-walkthrough/ba-p/369013
https://docs.microsoft.com/en-us/azure/azure-sql/database/xevent-db-diff-from-svr
https://docs.microsoft.com/en-us/azure/azure-sql/database/xevent-db-diff-from-svr

325

Let’s take a look at more of the details of this figure from the perspective of

performance scenarios.

Note as you look at dMVs in this section, remember that for azure SQL database
you are only looking at results for a specific database not across all databases for
the logical server.

 Running vs. Waiting

Running or waiting scenarios can often be determined by looking at overall resource

usage. For a standard SQL Server deployment, you might use tools such as Performance

Monitor in Windows or top in Linux. For Azure SQL, you can use the following methods:

Azure Portal/PowerShell/Alerts
Azure Monitor has integrated metrics to view resource usage for Azure SQL. You

can also set up alerts to look for resource usage conditions such as high CPU percent.

Since we have integrated some Azure SQL performance data with Azure Monitor, having

alerts is a huge advantage to snapping into the ecosystem. Read more about how to set

up alerts with Azure Metrics at https://docs.microsoft.com/en-us/azure/azure-

monitor/platform/alerts-metric.

Figure 7-5 shows an example of an alert on high CPU for my database sent to my

phone from Azure Metrics.

Figure 7-4. The Running vs. Waiting for SQL performance

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-metric
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-metric

326

sys.dm_db_resource_stats
For Azure SQL Database, you can look at this DMV to see CPU, memory, and I/O

resource usage for the database deployment. This DMV takes a snapshot of this data

every 15 seconds. The reference for all columns in this DMV can be found at https://

docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-

views/sys-dm-db-resource-stats-azure-sql- database?view=azuresqldb-current.

I’ll use this DMV in an example later in this section.

Figure 7-5. Azure Metric alerts sent via SMS text

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-resource-stats-azure-sql-database?view=azuresqldb-current

327

Note a dMV called sys.resource_stats works within the logical master to
review resource stats for up to 14 days across all azure databases associated with
the logical server. Learn more at https://docs.microsoft.com/en-us/sql/
relational-databases/system-catalog-views/sys-resource-stats-
azure-sql-database?view=azuresqldb-current.

sys.server_resource_stats
This DMV behaves just like sys.dm_db_resource_stats, but it used to see resource

usage for the Managed Instance for CPU, memory, and I/O. This DMV also takes

a snapshot every 15 seconds. You can find the complete reference for this DMV at

 https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-

views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current.

 Running

If you have determined the problem is high CPU utilization, this is called a running

scenario. A running scenario can involve queries that consume resources through

compilation or execution. Further analysis to determine a solution can be done by using

these tools:

Query Store
Query Store was introduced with SQL Server 2016 and has been one of the most

game-hanging capabilities for performance analysis. Use the Top Consuming Resource

reports in SSMS, Query Store catalog views, or Query Performance Insight in the Azure

Portal (Azure SQL Database only) to find which queries are consuming the most CPU

resources. Need a primer for Query Store? Start with our documentation at https://

docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-

performance- by-using-the-query-store.

sys.dm_exec_requests
This DMV has become perhaps the most popular DMV to use for SQL Server in

history. This DMV displays a snapshot of all current active requests, which could be a

T-SQL query or background task. Use this DMV in Azure SQL to get a snapshot of the state

of active queries. Look for queries with a state of RUNNABLE and a wait type of SOS_

SCHEDULER_YIELD to see if you have enough CPU capacity. Get the complete reference

for this DMV at https://docs.microsoft.com/en-us/sql/relational- databases/

system-dynamic-management-views/sys-dm-exec-requests-transact-sql.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-server-resource-stats-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-requests-transact-sql

328

sys.dm_exec_query_stats
This DMV can be used much like Query Store to find top resource consuming

queries but only is available for query plans that are cached where Query Store provides

a persistent historical record of performance. This DMV also allows you to find the query

plan for a cached query. Get the complete reference at https://docs.microsoft.com/

en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-

query-stats-transact-sql.

Since Query Store is not yet available for readable secondaries, this DMV could be

useful for those scenarios.

sys.dm_exec_procedure_stats
This DMV provides information much like sys.dm_exec_query_stats, except the

performance information can be viewed at the stored procedure level. Get the complete

reference at https://docs.microsoft.com/en-us/sql/relational-databases/

system-dynamic-management-views/sys-dm-exec-procedure-stats-transact-sql.

Once you determine what query or queries are consuming the most resources, you

may have to examine whether you have enough CPU resources for your workload or

debug query plans with tools like Lightweight Query Profiling, SET statements, Query

Store, or Extended Events tracing.

Waiting
If your problem doesn’t appear to be a high CPU resource usage, it could be the

performance problem involves waiting on a resource. Scenarios involving waiting on

resources are as follows:

I/O Waits – This includes wait types such as PAGEIOLATCH latches (wait on

database I/O) and WRITELOG (wait on transaction log I/O).

Lock Waits – These waits show up as standard “blocking” problems.

Latch Waits – This includes PAGELATCH (“hot” page) or even just LATCH

(concurrency on an internal structure).

Buffer Pool limits – If you run out of Buffer Pool, you might run into unexpected

PAGEIOLATCH waits.

Memory Grants – A high number of concurrent queries that need memory grants or

large grants (could be from overestimation) could result in RESOURCE_SEMAPHORE

waits.

Plan Cache Eviction – If you don’t have enough plan cache and plans get evicted,

this could lead to higher compile times (which could result in higher CPU) or RUNNABLE

status with SOS_SCHEDULER_YIELD because there is not enough CPU capacity to

handle compiles. You also might see waiting on locks for schema to compile queries.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-procedure-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-procedure-stats-transact-sql

329

To perform analysis on waiting scenarios, you typically look at the following tools:

sys.dm_os_wait_stats
Use this DMV to see what the top wait types for the database or instance are. This can

guide you on what action to take next depending on the top wait types. Remember that

for Azure SQL Database these are just waits for the database, not across all databases on

the logical server. You can view the complete reference at https://docs.microsoft.

com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-

os-wait-stats-transact-sql.

Note there is a dMV specific to azure SQL database called sys.dm_db_wait_
stats (it also works with Managed instance, but i don’t recommend using it given
you are looking at the instance) which only shows waits specific for the database.
You might find this useful, but sys.dm_os_wait_stats will show all waits for the
dedicated instance hosting your azure SQL database.

sys.dm_exec_requests
Use this DMV to find specific wait types for active queries to see what resource they

are waiting on. This could be a standard blocking scenario waiting on locks from other

users.

sys.dm_os_waiting_tasks
Queries that use parallelism use multiple tasks for a given query so you may need to

use this DMV to find wait types for a given task for a specific query.

Query Store
Query Store provides reports and catalog views that show an aggregation of the top

waits for query plan execution. The catalog view to see waits in Query Store is called sys.
query_store_wait_stats which you can read more about at https://docs.microsoft.

com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-

wait-stats-transact-sql. It is important to know that a wait of CPU is equivalent to a

running problem.

Tip extended events can be used for any running or waiting scenarios but
requires you to set up an extended events session to trace queries and can be
considered a heavier method to debug a performance problem.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-wait-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-query-store-wait-stats-transact-sql

330

Let’s look at an example of a performance scenario to show how to use tools and

capabilities I’ve discussed in this section to identify a performance scenario. I’ll use the

following resources for this exercise:

• The logical server bwazuresqlserver as well as the database

bwazuresqldb. This database was deployed as a General Purpose 2

vCore database.

• The Azure VM called bwsql2019. I left my security settings from

Chapter 6 so this VM has access to the logical server and database.

• I’ll use SQL Server Management Studio (SSMS) to run some queries

and look at Query Store Reports.

Tip if you connect with SSMS to an azure SQL database logical server and with
SSMS choose a specific database, object explorer will only show you the logical
master and your database. if you connect to the logical master with a server admin
account, object explorer will show you all databases.

• I’ll use the Azure portal to view Azure Metrics and look at logs.

• For this chapter, I have script files you can use for several of the

examples. You can find scripts for this example (and the next one) in

the ch7_performance\monitor_and_scale folder for the source files

included for the book. I will also use the very popular tool ostress.

exe for exercises in this chapter which comes with the RML Utilities.

You can download RML from www.microsoft.com/en-us/download/

details.aspx?id=4511. Make sure to put the folder where RML gets

installed in your system path (which is by default C:\Program Files\

Microsoft Corporation\RMLUtils).

Let’s go through an example in a step-by-step fashion:

Note in some of these examples, you may see a different database name than
i deployed. i’ve run these exact examples with different database names so you
might see some different context in figures in this chapter.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

http://www.microsoft.com/en-us/download/details.aspx?id=4511
http://www.microsoft.com/en-us/download/details.aspx?id=4511

331

 1. Set up to monitor Azure SQL Database with a DMV query.

Tip to open a script file in the context of a database in SSMS, click the database
in object explorer and then use the file/open menu in SSMS.

Launch SQL Server Management Studio (SSMS) and load a

query in the context of the database to monitor the Dynamic

Management View (DMV) sys.dm_exec_requests from the script

dmexecrequests.sql which looks like this:

SELECT er.session_id, er.status, er.command, er.wait_type,

er.last_wait_type, er.wait_resource, er.wait_time

FROM sys.dm_exec_requests er

INNER JOIN sys.dm_exec_sessions es

ON er.session_id = es.session_id

AND es.is_user_process = 1;

 2. Load another query to observe resource usage.

In another session for SSMS in the context of the database, load

a query to monitor a Dynamic Management View (DMV) unique

to Azure SQL Database called sys.dm_db_resource_stats from a

script called dmdbresourcestats.sql:

SELECT * FROM sys.dm_db_resource_stats;

This DMV will track overall resource usage of your workload

against Azure SQL Database such as CPU, I/O, and memory.

 3. Edit the workload script.

Edit the script sqlworkload.cmd (which will use the ostress.exe

program).

I’ll substitute my server, database, and password. The script will

look like this (without password substitution):

ostress.exe -Sbwazuresqlserver.database.windows.net

 -itopcustomersales.sql -Uthewandog -dbwazuresqldb -P<password>

 -n10 -r2 -q

Chapter 7 Monitoring and tuning perforManCe for azure SQL

332

 4. Examine the T-SQL query we will use for the workload. You can

find this T-SQL batch in the script topcustomersales.sql:

DECLARE @x int

DECLARE @y float

SET @x = 0;

WHILE (@x < 10000)

BEGIN

SELECT @y = sum(cast((soh.SubTotal*soh.TaxAmt*soh.TotalDue)

as float))

FROM SalesLT.Customer c

INNER JOIN SalesLT.SalesOrderHeader soh

ON c.CustomerID = soh.CustomerID

INNER JOIN SalesLT.SalesOrderDetail sod

ON soh.SalesOrderID = sod.SalesOrderID

INNER JOIN SalesLT.Product p

ON p.ProductID = sod.ProductID

GROUP BY c.CompanyName

ORDER BY c.CompanyName;

SET @x = @x + 1;

END

GO

This database is not large, so the query to retrieve customer and

their associated sales information ordered by customers with

the most sales shouldn’t generate a large result set. It is possible

to tune this query by reducing the number of columns from the

result set, but these are needed for demonstration purposes of this

activity. You will note in this query I don’t return any results to the

client but assign values to a local variable. This will put all the CPU

resources to run the query to the server.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

333

 5. Now let’s run the workload and observe its performance and results

from queries we loaded earlier. Run the workload by executing the

sqlworkload.cmd script from a command shell or PowerShell. The

script uses ostress to simulate ten concurrent users running the

T-SQL batch. You should see output that looks similar to this:

[datetime] [ostress PID] Max threads setting: 10000

[datetime] [ostress PID] Arguments:

[datetime] [ostress PID] -S[server].database.windows.net

[datetime] [ostress PID] -isqlquery.sql

[datetime] [ostress PID] -U[user]

[datetime] [ostress PID] -dbwazuresqldb

[datetime] [ostress PID] -P********

[datetime] [ostress PID] -n10

[datetime] [ostress PID] -r2

[datetime] [ostress PID] -q

[datetime] [ostress PID] Using language id (LCID): 1024 [English_

United States.1252] for character formatting with NLS: 0x0006020F

and Defined: 0x0006020F

[datetime] [ostress PID] Default driver: SQL Server Native

Client 11.0

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_1.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_2.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

 [directory]\sqlquery_3.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_4.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_5.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_6.out]

Chapter 7 Monitoring and tuning perforManCe for azure SQL

334

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_7.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_8.out]

[datetime] [ostress PID] Attempting DOD5015 removal of

[directory]\sqlquery_9.out]

[datetime] [ostress PID] Starting query execution...

[datetime] [ostress PID] BETA: Custom CLR Expression support

enabled.

[datetime] [ostress PID] Creating 10 thread(s) to process queries

[datetime] [ostress PID] Worker threads created, beginning

execution...

 6. Now use the DMVs that you loaded to observe performance

while this runs. First, run the query from dmexecrequests.sql
five or six times in the query window from SSMS. You will see

several users have status = RUNNABLE and last_wait_type =

SOS_SCHEDULER_YIELD. This is a classic signature of not having

enough CPU resources for a workload.

 7. Observe the results from the query dmdbresourcestats.sql. Run

this query a few times and observe the results. You will see several

rows with a value for avg_cpu_percent close to 100%. sys.dm_db_

resource_stats takes a snapshot every 15 seconds of resource usage.

 8. Let the workload complete and take note of its duration. For me, it

measured around 1 minute and 30 seconds.

 9. Let’s use the Query Store now to dive deeper into the performance

the queries in this workload. In SSMS in the Object Explorer, load

the Top Resource Consuming Queries as seen in Figure 7-6.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

335

 10. Dive into the details of this report to see the performance of the

workload.

Select the report to find out what queries have consumed the most

average resources and execution details of those queries. Based on

the workload run to this point, your report should look something

like Figure 7-7.

Figure 7-6. Finding the Top Consuming Queries report for Query Store

Chapter 7 Monitoring and tuning perforManCe for azure SQL

336

The query that is shown is the one from our workload. If you click

the bar chart, you will see details about the query including the

query_id which should look like Figure 7-8 (your query_id will

likely be different).

Figure 7-7. The Top Consuming Queries Report in SSMS

Chapter 7 Monitoring and tuning perforManCe for azure SQL

337

If I hover over the dot on the right-hand side of this report, you

will see performance statistics about the query which will look like

Figure 7-9.

Figure 7-8. query_id from the Top Resource Consuming Query report

Chapter 7 Monitoring and tuning perforManCe for azure SQL

338

Your times may vary some. You can see here the average duration

was around 5ms for each query. You can also look at the bottom

of this report to see the query plan. There are not many rows in

these tables, so there is not much to tune for the query plan. 5ms

doesn’t sound bad for performance for each execution, but let’s

keep analyzing to see if it could be faster.

 11. Look at the Query Wait Statistics Report for the Query Store.

Based on the decision tree earlier in this chapter, this appears to

be a running scenario. If the query plan can’t be tuned, how can

we make the query run faster? The Query Wait Statistics report

could help give us a clue (along with the DMV results we have

already observed).

If you then select Query Wait Statistics report from the Object

Explorer and hover over the Bar Chart that says CPU, you will see

something like Figure 7-10.

Figure 7-9. Query stats for a query plan

Chapter 7 Monitoring and tuning perforManCe for azure SQL

339

So the top wait category is CPU, and the average time waiting for

this wait type is almost 4ms. A wait category of CPU is equivalent

to a wait type = SOS_SCHEDULER_YIELD.

If you click the bar chart, you see the same query_id from our

workload. Notice the average wait time is just the same as the

average wait time for all CPU waits. And this average wait time is

almost the entire duration of the query as seen in Figure 7-11.

Figure 7-10. Query Wait Statistic report from SSMS

Chapter 7 Monitoring and tuning perforManCe for azure SQL

340

Now consider the evidence. The workload consumes CPU

resources for the database at almost 100%. The status of many

requests is RUNNABLE, and the top wait type for the workload

is SOS_SCHEDULER_YIELD. If the query cannot be changed,

then the most likely scenario is that you don’t have enough CPU

resources for your workload. Later in this chapter, we will use

Azure interfaces to make this query run faster.

 12. Use Azure Monitor and metrics.

Let’s look at this performance scenario through the lens of Azure

Monitor and metrics. I’ll navigate to my database using the

Azure portal. In the monitoring pane is an area called Compute

utilization. After my workload has run, my chart looks similar to

Figure 7-12.

Note i grabbed these numbers from a different test i had already done
using databases just like bwazuresqldb called adventureWorks0406 and
adventureWorksLt.

Figure 7-11. Average wait time for CPU for a specific query

Chapter 7 Monitoring and tuning perforManCe for azure SQL

341

This view comes from Azure Metrics. You can get a different angle

on this if you select Metrics from the resource menu and choose

CPU percentage as seen in Figure 7- 13.

Figure 7-12. Viewing CPU utilization from the Azure portal

Figure 7-13. Azure metrics for an Azure SQL Database

Chapter 7 Monitoring and tuning perforManCe for azure SQL

342

As you can see in the screenshot, there are several metrics you

can use to view with Metrics Explorer. The default view of Metrics

Explorer is for a 24-hour period showing a 5-minute granularity.

The Compute Utilization view is the last hour with a 1-minute

granularity (which you can change). To see the same view, select

CPU percentage and change the capture for 1 hour. The granularity

will change to 1 minute and should look like Figure 7-14.

 13. Use Azure Monitor Logs.

I’ve mentioned Azure Monitor includes another capability called

Azure Monitor Log. Azure Monitor Logs can provide a longer

historical record than Metrics.

Note there is a delay in seeing results in Logs, so it may take several minutes
for you to see results like this figure.

I can choose Logs from the Resource menu and run a Kusto Query

as seen in Figure 7-15 to see the same type of CPU utilization.

Figure 7-14. Granular view of Azure Metrics

Chapter 7 Monitoring and tuning perforManCe for azure SQL

343

I’ve talked about Kusto in the book before, but here is a link for you

to learn more: https://docs.microsoft.com/en-us/azure/data-

explorer/kusto/concepts/. There is another tool you can use to

run Kusto queries is Kusto Explorer which you can read more about

at https://docs.microsoft.com/en-us/azure/data-explorer/

kusto/tools/kusto-explorer. At the time I was writing this chapter,

we plan to bring the Kusto query experience to Azure Data Studio!

 Azure SQL Specific Performance Scenarios
Based on the Running vs. Waiting scenario, there are some scenarios which are specific

to Azure SQL.

 Log Governance

Azure SQL can enforce resource limits on transaction log usage called log rate

governance. This enforcement is often needed to ensure resource limits and to meet

promised SLA. Log governance may be seen from the following wait types:

LOG_RATE_GOVERNOR – Waits for Azure SQL Database

Figure 7-15. Using Kusto to view resource usage from Azure Monitor Logs

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/tools/kusto-explorer
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/tools/kusto-explorer

344

POOL_LOG_RATE_GOVERNOR – Waits for Elastic Pools

INSTANCE_LOG_GOVERNOR – Waits for Azure SQL Managed

Instance

HADR_THROTTLE_LOG_RATE* – Waits for Business Critical and

Geo-Replication latency

Log rate governance is enforced inside the SQL Server engine before transaction

log blocks are submitted for I/O. The documentation has a good description of how this

works at https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-

limits- logical-server#transaction-log-rate-governance. Scaling your deployment

to a different service tier or vCore choice can give you more log rate for your application.

 Worker Limits

SQL Server uses a worker pool of threads but has limits on the maximum number of

workers. Applications with a large number of concurrent users may need a certain

number of workers. Keep these points in mind on how worker limits are enforced for

Azure SQL Database and Managed Instance:

• Azure SQL Database has limits based on service tier and size. If you

exceed this limit, a new query will receive an error like

Msg 10928

The request limit for the database is <limit> and has been

reached.

• Azure SQL Managed Instance uses “max worker threads” so workers

past this limit may see THREADPOOL waits.

Note Managed instance in the future may enforce worker limits similar to azure
SQL database.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-logical-server#transaction-log-rate-governance

345

 Business Critical (BC) HADR Waits

Let’s say you deploy a Business Critical service tier for Azure SQL Managed Instance or

Azure SQL Database. Now you start running transactions that modify data and therefore

require logged changes.

You look at a DMV like sys.dm_exec_requests and see wait types like HADR_SYNC_

COMMIT. What? This wait type is only seen when you deploy a sync replica for an

Always On Availability Group (AG).

It turns out Business Critical service tiers uses an AG behind the scenes. Therefore,

it is not surprising to see these wait types normally, but it may surprise you if you are

monitoring wait types.

You can also see HADR_DATABASE_FLOW_CONTROL and HADR_THROTTLE_

LOG_RATE_SEND_RECV waits as part of Log Governance to ensure we can meet your

promised SLA.

 Hyperscale Scenarios

I’ve talked about the Hyperscale architecture briefly in Chapter 4 of the book. I’ll go even

deeper in Chapter 8. While Hyperscale has log rate limits just like other deployment

options, there are cases where we must govern transaction log generation due to a

page server or replica getting significantly behind (which would then affect our ability

to deliver our SLA). When this occurs, you may see wait types that start with the word

RBIO_.

Even though we don’t dive into the details of how to diagnose various aspects of the

Hyperscale architecture in this book, there are interesting capabilities for you to take

advantage of. For example, reads from page servers are now available in DMVs like sys.
dm_exec_query_stats, sys.dm_io_virtual_file_stats, and sys.query_store_runtime_
stats. In addition, the I/O statistics in sys.dm_io_virtual_file_stats apply to RBEX cache

and page servers since these are the I/O files that mostly affect Hyperscale performance.

Get all the details for Hyperscale performance diagnostics at https://docs.

microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-

diagnostics.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-diagnostics
https://docs.microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-diagnostics
https://docs.microsoft.com/en-us/azure/azure-sql/database/hyperscale-performance-diagnostics

346

 Accelerating and Tuning Performance
You have seen performance capabilities for Azure SQL including monitoring tools.

You have also seen an example of how to apply your knowledge of monitoring and a

performance scenario to recognize a possible performance bottleneck. Let’s apply that

knowledge to learn how to accelerate and tune performance in the areas of scaling CPU

capacity, I/O performance, memory, application latency, and SQL Server performance

tuning best practices.

 Scaling CPU Capacity
Let’s say you ran into the performance problem with high CPU as I showed you in the

previous exercise in your data center. What would you do? If you were running SQL

Server on a bare-metal server, you would have to potentially acquire more CPUs or even

move to another server. For a virtual machine, you may be able to reconfigure the VM to

get more vCPUs, but what if the host server didn’t support that? You are possibly facing a

scenario to migrate your database to another VM on another host. Ouch.

For Azure SQL, you have the ability to scale your CPU resources with very simple

operations from the Azure portal, az CLI, PowerShell, and even T-SQL. And you can do

all of this with no database migration required.

For Azure SQL Database, there will be some small downtime to scale up your CPU

resources. It is possible with larger database sizes this downtime could be longer,

especially if we need to move your deployment to another host with enough resources

for your request. We also have to ensure your replicas have the same new resources

for Business Critical service tiers. Hyperscale provides a more constant scaling motion

regardless of database size.

Azure SQL Managed Instance can be a concern for duration of scaling. We may need

to build a new virtual cluster, so scaling operations can be significantly longer. This is

something to keep in mind and is why deploying with the right resources for Managed

Instance can be important. Managed Instance pools are much faster but still significantly

longer than Azure SQL Database in most cases.

Azure SQL Database Serverless compute tier provides the concept of autoscaling as I

described its implementation in Chapter 4 of the book.

Let’s go back where we left off in our exercise where we determined it is likely we

didn’t have enough CPU resources for our workload. Let’s scale it up and see if workload

performance improves:

Chapter 7 Monitoring and tuning perforManCe for azure SQL

347

 1. Look at scaling options in the Azure portal.

I’ll navigate to my database in the Azure portal and select Pricing

tier as seen in Figure 7-16.

You are now presented with a screen to make changes to your

deployment. I showed you a screen similar to this in Chapter 4 as

I described all the options after you deploy. My options look like

Figure 7-17 where I can use a slider bar to increase the number of

vCores for my General Purpose deployment.

Figure 7-16. Choosing a pricing or service tier for a General Purpose database

Chapter 7 Monitoring and tuning perforManCe for azure SQL

348

 2. Scale vCores using T-SQL.

Let’s use a more familiar method to make changes to SQL Server.

The T-SQL ALTER DATABASE statement has been enhanced for

Azure SQL Database to scale CPUs for the deployment.

To properly show a performance difference with Query Store

reports, I’m going to flush the current data in memory in the

Query store using the script flushquerystore.sql which executes

this T-SQL statement:

EXEC sp_query_store_flush_db;

Now let’s use other T-SQL queries to view the current service or

pricing tier for our deployment. Execute the T-SQL script get_
service_objective.sql which uses the following T-SQL statements

(you need to substitute in your database name):

Figure 7-17. Using the Azure portal to increase vCores

Chapter 7 Monitoring and tuning perforManCe for azure SQL

349

SELECT database_name,slo_name,cpu_limit,max_db_memory,

max_db_max_size_in_mb, primary_max_log_rate,primary_group_max_io,

volume_local_iops,volume_pfs_iops

FROM sys.dm_user_db_resource_governance;

GO

SELECT DATABASEPROPERTYEX('<databasename>', 'ServiceObjective');

GO

The results from these queries look like this for my deployment:

database_name slo_name cpu_limit max_db_memory

max_db_max_size_in_mb primary_max_log_rate primary_group_max_io

volume_local_iops volume_pfs_iops

bwazuresqldb SQLDB_GP_GEN5_2_SQLG5 2 7836980

4194304 7864320 640

8000 1000

(No column name)

GP_Gen5_2

You are seeing the same information you saw in the Azure portal

regarding CPUs, but sys.dm_user_db_resource_governance

effectively gives us a way to programmatically look at resource

limits you would read in our tables in the documentation.

The system function DATABASEPROPERTYEX has also been

enhanced to show you the ServiceObjective for a database.

You can decode the information from the slo_name column (slo

= service-level objective) or the system function. For example,

SQLDB_GP_GEN5_2_SQLG5 is equivalent to General Purpose

Gen5 Hardware 2 vCores. SQLDB_OP… is used for Business

Critical.

We can use the T-SQL ALTER DATABASE documentation to see

all possible values for the service objective at https://docs.

microsoft.com/en-us/sql/t-sql/statements/alter-database-

transact-sql.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql

350

Using this documentation, let’s change the tier or objective to

8 vCores using the script modify_service_objective.sql or the

T-SQL statement:

ALTER DATABASE <databasename> MODIFY (SERVICE_OBJECTIVE =

'GP_Gen5_8');

This statement executes immediately because the modification to

scale to 8 vCores is an option that happens in the background.

If you navigate to the Azure portal, you will see a notification that

the operation is in progress as seen in Figure 7-18.

In addition, you can use the T-SQL statement in the context of the

master database of the logical server to see operations against

databases:

SELECT * FROM sys.dm_operation_status;

Figure 7-18. Scaling of Azure SQL Database in progress

Chapter 7 Monitoring and tuning perforManCe for azure SQL

351

For my logical server, I got the following results:

session_activity_id resource_type

resource_type_desc major_resource_id minor_resource_id

operation state state_desc percent_complete

error_code error_desc error_severity

error_state start_time last_modify_time

D22C1CB5-C164-4BB5-BC18-EE593C1759AF 0

Database bwazuresqldb ALTER DATABASE

2 COMPLETED 100 0

0 0

 2020- 07- 19 15:21:40.670 2020-07-19 15:22:14.423

You can read more details about sys.dm_operation_status

at https://docs.microsoft.com/en-us/sql/relational-

databases/system-dynamic-management- views/sys-dm-

operation-status-azure-sql-database.

 3. Run the workload again.

Let’s run the workload again to see if there is any performance

differences. I’ll use the same scripts, queries, and SSMS reports as

I did in the previous example in the chapter.

Run the script sqlworkload.cmd again from the command

prompt.

 4. Observe resource usage with sys.dm_db_resource_stats.

Just as you did before running this query, several times should

show a lower overall CPU usage for the database.

 5. Observe active queries with sys.dm_exec_requests.

You should see more RUNNING requests and less SOS_

SCHEDULER_YIELD waits.

 6. Observe the overall workload duration.

Remember this ran in around 1 minute and 30 seconds before.

Now it should finish in around 25–30 seconds – clearly, a

significant performance improvement.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-operation-status-azure-sql-database
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-operation-status-azure-sql-database
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-operation-status-azure-sql-database

352

 7. Observe performance with Query Store Top Consuming Reports.

Using the same report as before, you can see two queries in the

report with a new query_id as seen in Figure 7-19.

Even though there is a new query_id, it is the exact same query.

Because the SQL Server that hosts our database was restarted

for scaling (or a new SQL Server used), the query had to be

recompiled, hence a new query_id. This scenario is also where

the power of Query Store comes into play. Query performance is

stored in the user database, so even if we had to migrate your SQL

Server behind the scenes to a new node, no query performance

information is lost.

Note the behavior of a different query_id is actually very interesting. the query
was recompiled, but in many cases, the same query_id would appear in the Query
Store. however, in this case, the first execution of the query was against a 2 vCore
deployment. in a 2 vCore deployment, maxdop is fixed at 1. When the back-end
server has a fixed maxdop of 1, queries will use a context setting with a bit that
is not set for Parallel Plan. With a deployment of 8 vCores, maxdop is fixed at 8.
in this case, the context_setting will include the bit set for parallel plan. parallel
plan is not an option set by the application but rather by a negotiation with the

Figure 7-19. Top Consuming Query report with a faster query

Chapter 7 Monitoring and tuning perforManCe for azure SQL

353

server and indicates the query can use a parallel plan. in this case, the query_id is
different because the context_settings_id (see the catalog view sys.query_store_
query) is different for each execution. You can view context settings in the Query
Store using the catalog view sys.query_context_settings. You can see more
about context settings “bits” in the dMV sys.dm_exec_plan_attributes.

You can see from this figure a significantly faster average duration

for the query than before.

 8. Look at Query Wait Statistics report.

If you use the Query Wait Statistics report, you can see a

significant less time waiting on CPU for the query as seen in

Figure 7-20.

 9. Look at differences with Azure Metrics and Logs.

Let’s navigate to the Azure portal to see the difference in compute

utilization. Figure 7-21 shows the example.

Figure 7-20. Faster query with less waiting on CPU

Chapter 7 Monitoring and tuning perforManCe for azure SQL

354

If you run the same Kusto query as before (there will be a lag in

seeing these results), you can see the performance difference as

well from Azure Logs like Figure 7-22.

Figure 7-21. Azure compute after scaling CPUs

Figure 7-22. Using Kusto with Azure logs after scaling CPUs

Chapter 7 Monitoring and tuning perforManCe for azure SQL

355

What happens if we were to use the Serverless compute tier option for our workload?

Remember Serverless offers the ability to autoscale workloads and also pause idle compute.

I deployed a new Serverless database with a min vCore = 2 and max vCore = 8.

Turns out in most cases (not guaranteed), a Serverless database is deployed with the

number of SQL Schedulers = max vCores. So provided the Serverless database is not

paused, running the same workload as in this example gives you approximately the

same performance as the scaled General Purpose 8 vCore deployment. Here is the big

advantage of Serverless over the General Purpose deployment. Let’s say over a period

of two hours, this workload only consumes compute for 15 minutes of the 120 minutes.

For a General Purpose deployment, you will pay for compute for the entire 120 minutes.

For a Serverless deployment, you would pay for the 15 minutes of compute usage for 8

vCores, and for the remaining 90 minutes, you would pay for the equivalent compute

usage for the min vCores. In addition, if you have AutoPause enabled, you will not pay

for any compute costs for the last 60 minutes of that two-hour period (this is because the

smallest time before a Serverless deployment is paused if idle is one hour).

Figure 7-23 shows an example of CPU utilization for a Serverless deployment and

below it a graph of actual compute billed. Notice the highest average CPU billed is

during high compute utilization. After the utilization, a lower static billing is for min

vCores. Then following this is no compute is billed as the deployment is paused.

Figure 7-23. Serverless scale and compute billing

Chapter 7 Monitoring and tuning perforManCe for azure SQL

356

 I/O Performance
I/O performance can be critical to SQL Server applications and queries. Azure SQL

abstracts you from physical file placement, but there are methods to ensure you get the

I/O performance you need.

Input/Output Per Second (IOPS) may be important to your application. Be sure

you have chosen the right service tier and vCores for your IOPS needs. Understand how

to measure IOPS for your queries on-premises if you are migrating to Azure (Hint: Look

at Disk Transfers/sec in Performance Monitor). If you have restrictions on IOPS, you

may see long I/O waits. Scale up vCores or move to Business Critical or Hyperscale if you

don’t have enough IOPS.

I/O latency is another key component for I/O performance. For faster I/O latency for

Azure SQL Database, consider Business Critical or Hyperscale. For faster I/O latency for

Managed Instance, move to Business Critical or increase file size or number of files for

the database.

Let’s take a minute to examine this last statement a bit more closely for Managed

Instance and file size or number of files. I’ve pointed you to this blog post from Jovan

Popovic before on the topic at https://medium.com/azure-sqldb-managed-instance/

increasing-data-files-might-improve-performance-on-general-purpose-managed-

instance- tier-6e90bad2ae4b.

The concept is that for the General Purpose tier, we store database and log files on

Azure premium storage disks. Turns out that for premium disks, the larger the size of

disk we use, the better performance we can get. So as you increase the size of your files,

we will use a level of Premium storage to meet those needs, which can result in more

IOPS or better throughput. I love Jovan’s blog post because he backs up his statements

with data using the popular open source tool HammerDB.

Configuration isn’t your only choice. Improving transaction log latency may require

you to use multi-statement transactions. Learn more at https://docs.microsoft.com/

en-us/azure/azure-sql/performance-improve-use-batching.

 Increasing Memory or Workers
Memory is also an important resource for SQL Server performance and Azure SQL is no

different. The total memory available to you for buffer pool, plan cache, columnstore,

and In-Memory OLTP is all dependent on your deployment choice. As I described

earlier in this chapter, your highest memory capacity comes from an Azure SQL

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://medium.com/azure-sqldb-managed-instance/increasing-data-files-might-improve-performance-on-general-purpose-managed-instance-tier-6e90bad2ae4b
https://docs.microsoft.com/en-us/azure/azure-sql/performance-improve-use-batching
https://docs.microsoft.com/en-us/azure/azure-sql/performance-improve-use-batching

357

Database Business Critical tier using the new M-Series hardware generation (around

4TB). For a Managed Instance, you can get around 400Gb of memory using the 80 vCore

deployment for Business Critical. Also keep in mind that In-Memory OLTP, which is only

available for Business Critical service tiers, has a maximum memory as a subset of the

overall maximum memory.

One key statement about memory that holds true for SQL Server or Azure SQL: If you

think you don’t have enough memory, be sure you have an optimal database and query

design. You may think you are running out of buffer pool after you scan a massive table.

Maybe indexes should be deployed to enhance performance of your query and use less

memory. Columnstore indexes are compressed, so use far less memory than traditional

indexes.

Note the hyperscale vCore choice not only affects the amount of memory
available to the compute nodes but also the size of the rBeX cache which can also
affect performance.

I’ve described worker limits in this chapter already which is set to a maximum value

for Azure SQL Database, but Managed Instance uses “max worker threads” (but this

is something we may limit less than this in the future). As with SQL Server, running

out of workers may be an application problem. A heavy blocking problem for all users

may result in an error running out of workers when the problem is fixing the blocking

problem.

 Improving Application Latency
Even if you configure your deployment for all your resource needs, applications may

introduce latency performance issues. Be sure to follow these best practices with Azure

SQL applications:

• Use a redirect connection type instead of proxy.

• Optimize “chatty” applications by using stored procedures or limiting

the number of query round trips through techniques like batches.

• Optimize transactions by grouping them vs. singleton transactions.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

358

Take a look at this documentation page for tuning applications for Azure SQL

Database: https://docs.microsoft.com/en-us/azure/azure-sql/database/

performance-guidance.

 Tune Like It Is SQL Server
Azure SQL is still SQL Server. Even though you will see capabilities to help you with

performance built into the engine, there is almost never a substitute for ensuring you

tune your SQL Server queries and look at the following:

• Proper index design.

• Using batches.

• Using stored procedures.

• Parameterize queries to avoid too many cached ad hoc queries.

• Process results in your application quickly and correctly (avoid the

dreaded ASYNC_NETWORK_IO waits).

Let’s use an exercise to demonstrate how in some cases, while it may seem natural

to try and change a service tier to improve performance, a change in your queries or

application can show benefits.

For this exercise, I’ll use all the same tools, the same Azure SQL database

deployment (which now has 8 vCores), and the same VM to look at a performance

scenario for I/O. The scripts for this exercise can be found in the ch7_performance\
tuning_applications folder for the source files included.

Let’s consider the following application scenario to set up how to see this problem.

Assume that to support a new extension to a website for AdventureWorks orders to

provide a rating system from customers, you need to add a new table for a heavy set of

concurrent INSERT activity. You have tested the SQL query workload on a development

computer with SQL Server 2019 that has a local SSD drive for the database and

transaction log. When you move your test to Azure SQL Database using the General

Purpose tier (8 vCores), the INSERT workload is slower. You need to discover whether

you need to change the service objective or tier to support the new workload or look at

the application.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/azure/azure-sql/database/performance-guidance
https://docs.microsoft.com/en-us/azure/azure-sql/database/performance-guidance

359

Important i ran all of my tests for this exercise in an azure VM which will use
the redirect connection type by default. if you run this outside of azure, the default
is proxy. You will not see the same significant performance increase i observed if
you use proxy, but you will see some gains. this is because the simulation of the
application requires enough round trips that proxy can affect overall performance.

 1. Create a new table in the database.

I’ll use SSMS in my Azure VM that is connected to Azure SQL

Database to add this table into the database based on the script

order_rating_ddl.sql:

DROP TABLE IF EXISTS SalesLT.OrderRating;

GO

CREATE TABLE SalesLT.OrderRating

(OrderRatingID int identity not null,

SalesOrderID int not null,

OrderRatingDT datetime not null,

OrderRating int not null,

OrderRatingComments char(500) not null);

GO

 2. Load queries to monitor execution.

Using SSMS, load up queries in separate query windows to look

at DMVs using scripts in the context of the user database with

sqlrequests.sql, top_waits.sql, and tlog_io.sql. You will need to

modify tlog_io.sql to put in your database name.

These scripts use the following queries, respectively:

SELECT er.session_id, er.status, er.command, er.wait_type,

er.last_wait_type, er.wait_resource, er.wait_time

FROM sys.dm_exec_requests er

INNER JOIN sys.dm_exec_sessions es

ON er.session_id = es.session_id

AND es.is_user_process = 1;

Chapter 7 Monitoring and tuning perforManCe for azure SQL

360

SELECT * FROM sys.dm_os_wait_stats

ORDER BY waiting_tasks_count DESC;

SELECT io_stall_write_ms/num_of_writes as avg_tlog_io_write_ms, *

FROM sys.dm_io_virtual_file_stats

(db_id('<database name>'), 2);

The DMVs used in these queries are a great example of showing

you diagnostics in the context of a database based on instance-

level DMV diagnostics. It is one of the benefits when we moved to

the V12 architecture I mentioned in Chapter 1 of the book.

Tip You can also find your session_id and use the dMV sys.dm_exec_session_
wait_stats to see only the waits for your session. note that this dMV will not show
waits for any background tasks. Learn more at https://docs.microsoft.
com/en- us/sql/relational-databases/system-dynamic-management-
views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-
server- ver15.

 3. Run the workload.

The workload to insert database can be found in the script order_
rating_insert_single.sql. The batch for this script looks like this:

DECLARE @x int;

SET @x = 0;

WHILE (@x < 500)

BEGIN

SET @x = @x + 1;

INSERT INTO SalesLT.OrderRating

(SalesOrderID, OrderRatingDT, OrderRating, OrderRatingComments)

VALUES (@x, getdate(), 5, 'This was a great order');

END

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-session-wait-stats-transact-sql?view=sql-server-ver15

361

We will use ostress.exe to run this query with a script as found in

order_rating_insert_single.cmd. For you to run this, you will

need to edit the script to put in your correct server, database,

login, and password.

Run this script from a command or PowerShell prompt.

 4. Observe query performance and duration.

Using the DMV you loaded, you will likely observe the following:

• Many requests constantly have a wait_type of WRITELOG with a

value > 0.

• The WRITELOG wait type is one of the highest counts for

wait types.

• The avg time to write to the transaction log is somewhere

around 2ms.

The overall duration of running this workload on SQL Server 2019

on a computer with fairly normal SSD storage is around 10–12

seconds. The total duration of running thins using Azure SQL

Database with my deployed General Purpose 8 vCore database is

around 25 seconds. The latency of WRITELOG waits is affecting

the overall performance of the application.

Note the documentation states that the expected latency for general purpose is
5–7ms for writes. our diagnostics showed better performance, but it won’t be the
same as using an SSd storage system.

 5. Decide on a resolution.

You could look at changing your deployment to Business Critical

or Hyperscale to get better I/O latency. But is there a more cost-

effective way? If you looked at the batch for order_rating_insert_

single.sql, you will notice that each INSERT is its own commit

or singleton transactions. What if we grouped INSERTs into

transactions?

Chapter 7 Monitoring and tuning perforManCe for azure SQL

362

 6. Change the application workload.

You can see a new workload method to group INSERTs into a

transaction with order_rating_insert.sql like the following:

DECLARE @x int;

SET @x = 0;

BEGIN TRAN;

WHILE (@x < 500)

BEGIN

SET @x = @x + 1;

INSERT INTO SalesLT.OrderRating

(SalesOrderID, OrderRatingDT, OrderRating, OrderRatingComments)

VALUES (@x, getdate(), 5, 'This was a great order');

END

COMMIT TRAN;

GO

Notice the use of BEGIN TRAN and COMMIT TRAN to wrap the

loop of INSERT statements.

You can now edit the order_rating_insert.cmd script with your

server, database, login, and password to run this workload change.

 7. Run the new workload change.

When you run the new script (which is executing the same

number of INSERT statements), you will see

• Far less WRITELOG waits with lower average wait time

• A much faster overall duration

The workload runs even faster now (I’ve seen as fast as 3 seconds

overall).

This is a great example of ensuring you are looking at your application when running

it against Azure SQL vs. just assuming you need to make a deployment option change

and pay more in your subscription.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

363

 Intelligent Performance
I mentioned earlier in this chapter our intention to build into the database engine

intelligent capabilities based on data and your application workload to get you faster

with no code changes.

Let’s take a look in more detail to these areas of Intelligent Query Processing,

Automatic Plan Correction, and Automatic Tuning.

 Intelligent Query Processing
In SQL Server 2017, we enhanced the query processor to adapt to query workloads and

improve performance when you used the latest database compatibility level. We called

this Adaptive Query Processing (AQP). We went a step further in SQL Server 2019 and

rebranded it as Intelligent Query Processing (IQP).

IQP is a suite of new capabilities built into the Query Processor and enabled using

the latest database compatibility level. Applications can gain performance with no code

changes by simply using the latest database compatibility level. An example of IQP is

table variable deferred compilation to help make queries using table variables run faster

with no code changes. Azure SQL Database and Managed Instance support the same

database compatibility level required to use IQP (150) as SQL Server 2019. IQP is a great

example of a cloud-first capability since it was first adopted by customers in Azure before

it was released in SQL Server 2019.

I covered this topic extensively in the book SQL Server 2019 Revealed. You can go run

any of these examples from https://github.com/microsoft/bobsql/tree/master/

sql2019book/ch2_intelligent_performance against Azure SQL to see how this works

in action.

In addition, the documentation covers this topic extensively at https://docs.

microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-

processing.

At the time of the writing of this book, Scalar UDF inlining was not yet available in

Azure SQL Database, but probably by the time you are reading this, it will be available.

I asked Joe Sack who is not only the technical reviewer of this book but also the

program manager lead for IQP about the significance of IQP for Azure SQL. According

to Joe, “Over the last four years, the query processing team delivered two waves of

Intelligent QP features – all with the objective to improve workload performance

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://github.com/microsoft/bobsql/tree/master/sql2019book/ch2_intelligent_performance
https://github.com/microsoft/bobsql/tree/master/sql2019book/ch2_intelligent_performance
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing

364

automatically with minimal changes to application code. Today we’re already seeing

millions of databases and billions of queries using IQP features. Just as one example,

we already have millions of unique query execution plans being executed hundreds

of millions of times per day that use the memory grant feedback feature. In Azure

SQL on a daily basis, this ends up preventing terabytes of query spills and petabytes

worth of overestimations for user queries. The end result is improved query execution

performance and workload concurrency.”

This area of improving our query processor to help your application is significant

for Azure SQL. As Joe tells it for the future, “We have a long-term plan and active

engineering investments to keep alleviating the hardest query processing problems that

customers face at-scale. We look at a myriad of signals in order to prioritize features –

including telemetry, customer support case volume, customer engagements and SQL

community member feedback. We have eight separate Intelligent Database-related

efforts underway in “wave 3”, and our plan is to light these efforts up in Azure SQL

Database first over the next few years.”

 Automatic Plan Correction
In 2017, I stood on stage with Conor Cunningham at the PASS Summit and showed off

an amazing piece of technology for SQL Server 2017 to solve a performance problem

using automation with Query Store. Query Store has such rich data; why not use it with

automation?

What I showed on stage was a demonstration of a query plan regression problem

that can be automatically fixed.

Note You can see the code i used for this demonstration at https://github.
com/microsoft/bobsql/tree/master/demos/sqlserver/autotune.

A query plan regression occurs when the same query is recompiled and a new

plan results in worse performance. A common scenario for query plan regression are

parameter-sensitive plans (PSP), also known as parameter sniffing.

SQL Server 2017 and Azure SQL Database introduced the concept of Automatic Plan
Correction (APC) by analyzing data in the Query Store. When the Query Store is enabled

with a database in SQL Server 2017 (or later) and in Azure SQL Database, the SQL Server

engine will look for query plan regressions and provide recommendations. You can see

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://github.com/microsoft/bobsql/tree/master/demos/sqlserver/autotune
https://github.com/microsoft/bobsql/tree/master/demos/sqlserver/autotune

365

these recommendations in the DMV sys.dm_db_tuning_recommendations. These

recommendations will include T-SQL statements to manually force a query plan when

performance was “in a good state.”

If you gain confidence in these recommendations, you can enable SQL Server to

force plans automatically when regressions are encountered. Automatic Plan Correction

can be enabled using ALTER DATABASE using the AUTOMATIC_TUNING argument.

For Azure SQL Database, you can also enable Automatic Plan Correction through

automatic tuning options in the Azure Portal or REST APIs. You can read more about

these techniques in the documentation. Automatic Plan Correction recommendations

are always enabled for any database where Query Store is enabled (which is the default

for Azure SQL Database and Managed Instance). Automatic Plan Correction (FORCE_

PLAN) is enabled by default for Azure SQL Database as of March 2020 for new databases.

You can read more about Automatic Plan Correction at https://docs.microsoft.

com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning.

 Automatic Tuning
Technically, Automatic Plan Correction is part of a suite of services to use automation to

improve query performance with no code changes called Automatic Tuning. Automatic

Plan Correction works in SQL Server, Azure SQL Managed Instance, and Azure SQL

Database.

In Chapter 1 of this book, I talked about the history of how Automatic Tuning was

created. Azure SQL Database offers a unique feature of Automatic Tuning to help

automate creating and dropping indexes called automatic indexing.

Note today automatic indexing is not available for azure SQL Managed instance.

This capability is known as Automatic Tuning for Azure SQL Database (also known

in some parts of the documentation as SQL Database Advisor). These services run as

background programs analyzing performance data from an Azure SQL Database and

are included in the price of any database subscription. Automatic Tuning will analyze

data from telemetry of a database including the Query Store and Dynamic Management

Views to recommend indexes to be created that can improve application performance.

Additionally, you can enable Automatic Tuning services to automatically create indexes

that it believes will improve query performance. Automatic Tuning will also monitor

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning
https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning

366

index changes and recommend or automatically drop indexes that do not improve

query performance. Automatic Tuning for Azure SQL Database takes a conservative

approach to recommend indexes. This means that recommendations that may show

up in a DMV like sys.dm_db_missing_index_details or a query show plan may not

show up immediately as recommendations for Automatic Tuning. Automatic Tuning

services monitor queries over time and use machine learning algorithms to make

recommendations to truly affect query performance.

One downside to Automatic Tuning for index recommendations is that it does not

account for any overhead performance an index could cause insert, update, or delete

operations.

Note You can read an excellent paper for how automatic indexing is built by
our engineering team at www.microsoft.com/en-us/research/uploads/
prod/2019/02/autoindexing_azuredb.pdf.

One additional scenario in preview for Automatic Tuning for Azure SQL Database is

parameterized queries. Queries with non-parameterized values can lead to performance

overhead because the execution plan is recompiled each time the non-parameterized

values are different. In many cases, the same queries with different parameter values

generate the same execution plans. These plans, however, are still separately added to

the plan cache. The process of recompiling execution plans uses database resources,

increases the query duration time, and overflows the plan cache. These events, in turn,

cause plans to be evicted from the cache. This SQL Server behavior can be altered by

setting the forced parameterization option on the database (this is done by executing

the ALTER DATABASE T-SQL statement using the PARAMETERIZATION FORCED

option). Automatic tuning can analyze a query performance workload against a database

over time and recommend forced parameterization for the database. If over time

performance degradation has been observed, the option will be disabled.

Let’s see an example of automatic indexing in action. I’ll use a database I deployed

based on the AdventureWorks example to show this capability. You can try this out

yourself using the scripts found in the ch7_performance\tuning_recommendations.

You will need to edit the query_order_rating.cmd script to put in your server, database,

login, and password. These scripts assume you have completed the previous exercise for

concurrent INSERT execution as it uses the OrderRating table created in that exercise.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

http://www.microsoft.com/en-us/research/uploads/prod/2019/02/autoindexing_azuredb.pdf
http://www.microsoft.com/en-us/research/uploads/prod/2019/02/autoindexing_azuredb.pdf

367

Here is the main issue when using these scripts. It takes time and patience. Why? Our

algorithms don’t just recommend indexes based on a single query and single execution.

We look at query workloads over time and for frequent executions to decide if an index

makes sense. Therefore, when you try this yourself, you will need to let this script run to

completion (it runs thousands of iterations). When I did this within 24 hours, I saw the

information I’m about to show you from the Azure portal:

 1. See recommendations in the Azure portal.

After running the workload and waiting for 24 hours, I saw

recommendations how up in the Azure portal similar to

Figure 7-24.

I can click Performance overview in the Resource menu of the

database to visually see information from the Query Store and a

look at Recommendations. This looks similar to Figure 7-25.

Figure 7-24. Index recommendation notification in the Azure portal

Chapter 7 Monitoring and tuning perforManCe for azure SQL

368

The Azure portal offers another visualization for query

performance called Query Performance Insights from the

Resource Menu as seen in Figure 7-26.

You can see in this figure a list of top queries consuming resources

and a suggestion at the top of the screen to improve performance.

Figure 7-25. Performance overview from the Azure portal

Figure 7-26. Query performance insights from the Azure portal

Chapter 7 Monitoring and tuning perforManCe for azure SQL

369

The Azure portal can also take you directly to Performance

recommendation from the Resource menu as seen in Figure 7-27.

You can see here specific recommendations for indexes, possible

impact on performance, and history of any automatic tuning

actions. You can also see in the command bar an option to select

Automate.

To this point, everything is a recommendation. If you select

Automate, you will be presented options to enable automation

of automatic plan correction force plans, creating, and dropping

indexes. This screen will look like Figure 7-28.

Figure 7-27. Performance recommendations from the Azure portal

Chapter 7 Monitoring and tuning perforManCe for azure SQL

370

You can configure Automatic Tuning options at the logical

server or database level. You can also view automatic tuning

options through the catalog view sys.database_automatic_
tuning_options. You can view all the columns for this catalog

view at https://docs.microsoft.com/en-us/sql/relational-

databases/system-catalog- views/sys-database-automatic-

tuning-options-transact-sql?view=sql-server- ver15.

If you would have had create index turned on for this database, an

index would have been automatically created.

If you go back and look at the recommended index, you can view

more details as seen in Figure 7-29.

Figure 7-28. Setting automatic tuning options

Chapter 7 Monitoring and tuning perforManCe for azure SQL

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-automatic-tuning-options-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-automatic-tuning-options-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-automatic-tuning-options-transact-sql?view=sql-server-ver15

371

You can apply the index recommendation or even view the T-SQL

script behind the operation as seen in Figure 7-30.

Figure 7-30. T-SQL script for index recommendations

Figure 7-29. Details of a create index recommendation

Chapter 7 Monitoring and tuning perforManCe for azure SQL

372

You can see an online index is the default method used for

automatic indexing. One thing I love about automatic indexing

is that the service will run behind the scenes to monitor your

workload performance after the index is applied. If performance

degrades, a recommendation (or automation) can be provided to

remove the index.

 Summary
To deliver the best performance for you application, you need the capabilities and

monitor tools that are tried and proven from SQL Server. Azure SQL gives you that and

more, including capabilities and tools specific to Azure.

Azure SQL gives you the controls and options to accelerate and tune performance

including the ability to scale easily with no database migration required.

Finally, Azure SQL comes with Intelligent Performance capabilities built into the

query processor and services that leverage the power of Query Store from your database.

In the next chapter, we will explore and dive deep into the final core engine

capability of Azure SQL to ensure your deployment is highly available and ensure you

have the tools you need for disaster recovery.

Chapter 7 Monitoring and tuning perforManCe for azure SQL

373
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_8

CHAPTER 8

Availability for Azure SQL
You have now made the journey from deploy to configure to security and then to

monitor and tune performance. The final piece of the core of Azure SQL is availability.

I have rarely talked to a SQL Server customer over the years that didn’t need their

database to be highly available. I also almost never talk to a customer who doesn’t

care about being able to recover from a disaster. Therefore, this chapter is really about

High Availability and Disaster Recovery (HADR) for Azure SQL. I will tell you that

in my opinion after now assessing and using Azure SQL over this last year, the built-in

capabilities for HADR for Azure SQL are one of the great stories of the service. In fact, I

believe after you go through this chapter you will be convinced that looking at Azure SQL

as a target for your deployment is worth it just on the HADR capabilities alone.

In this chapter, we will spend the majority of time diving into the details of HADR

capabilities including Backup and Restore, built-in HA, Azure capabilities to go farther,

and database availability and consistency. Then I’ll finish the chapter on how to monitor

HADR for your deployment.

This chapter will contain examples for you to try out and use as you read along. For

you to try out any of the techniques, commands, or examples I use in this chapter, you

will need

• An Azure subscription.

• A minimum of Contributor role access to the Azure subscription.

You can read more about Azure built-in roles at https://docs.

microsoft.com/en-us/azure/role-based-access-control/built-

in-roles.

• Access to the Azure Portal (web or Windows application).

• A deployment of an Azure SQL Managed Instance and/or an Azure

SQL Database as I did in Chapter 4. The Azure SQL Database I

deployed uses the AdventureWorks sample which will be required to

use some of the examples.

https://doi.org/10.1007/978-1-4842-5931-3_8#DOI
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

374

• To connect to Managed Instance, you will need a jumpbox or virtual

machine in Azure to connect. I showed you how to do this in

Chapter 4 of the book. One simple way to do this is to create a new

Azure Virtual Machine and deploy it to the same virtual network

as the Managed Instance (you will use a different subnet than the

Managed Instance).

• To connect to Azure SQL Database, I’m going to use the Azure VM

I deployed in Chapter 3, called bwsql2019, and configured for a

private endpoint in Chapter 6 (you could use another method as long

as you can connect to the Azure SQL Database).

• Installation of the az CLI (see https://docs.microsoft.com/en-us/

cli/azure/install-azure-cli?view=azure-cli-latest for more

details). You can also use the Azure Cloud Shell instead since az is

already installed. You can read more about the Azure Cloud Shell at

https://azure.microsoft.com/en-us/features/cloud-shell/.

• Installation of Azure PowerShell. Use the following documentation

on how to install Azure PowerShell for your client: https://docs.

microsoft.com/en-us/PowerShell/azure/install-az-ps.

I installed Azure PowerShell in my Azure VM.

• You will run some T-SQL in this chapter, so install a tool like SQL

Server Management Studio (SSMS) at https://docs.microsoft.

com/en-us/sql/ssms/download-sql-server-management-studio-

ssms?view=sql-server-ver15. You can also use Azure Data Studio

at https://docs.microsoft.com/en-us/sql/azure-data-studio/

download-azure-data-studio?view=sql-server-ver15. I installed

both SSMS and ADS in the bwsql2019 Azure Virtual Machine.

• For this chapter, I have script files you can use for a few of the

examples. You can find these scripts in the ch8_availability folder for

the source files included for the book. I will also use the very popular

tool ostress.exe for exercises in this chapter which comes with the

RML Utilities. You can download RML from www.microsoft.com/

en-us/download/details.aspx?id=4511. Make sure to put the folder

where RML gets installed in your system path (which is by default C:\

Program Files\Microsoft Corporation\RMLUtils).

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com/en-us/features/cloud-shell/
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
http://www.microsoft.com/en-us/download/details.aspx?id=4511
http://www.microsoft.com/en-us/download/details.aspx?id=4511

375

 HADR Capabilities
I want to first review with you the amazing HADR capabilities that come with Azure SQL

before we dive deeper with examples into each topic.

 Automatic Backups and Point-In-Time restore
Azure SQL is SQL Server, so the full complement of BACKUP and RESTORE functionality

is possible. However, the promise of PaaS is to provide managed capabilities. Therefore,

Azure SQL provides an automated backup system for both Managed Instance and

Databases to meet your Recovery Point Object (RPO) and historical data needs. In

fact, for Azure SQL Database, you are completely abstracted from the BACKUP T-SQL

statement. Managed Instance will allow a COPY_ONLY backup to Azure Storage.

All backups from Azure SQL are kept on separate storage from your database and log

files with automated geo-redundant mirrors. Azure SQL also offers a long-term backup

retention option.

Azure SQL will use full, differential, and log backups supporting a complete Point-In-

Time restore interface. In addition, you have these restore capabilities:

• Restore deleted databases.

• Managed Instance supports the RESTORE T-SQL statement from

Azure Blob Storage which could be from an on-premises SQL Server

backup or a COPY_ONLY backup from a Managed Instance.

 Built-In High Availability
You may be used to using an Always On Failover Cluster Instance (FCI) or Always On

Availability Group (AG) with SQL Server to give you high availability and achieve a

desired Recovery Time Object (RTO).

As part of every Azure SQL deployment, you get a complete built-in High Availability

system, just by deploying Azure SQL. This is included in your Azure subscription and

fees for your deployment.

As you will see in this chapter, a General Purpose deployment will behave similar to

FCI and Business Critical will be similar to AGs. Hyperscale uses a unique architecture

that will feel like a combination of both. In all cases, the power of the Azure Service

Fabric is used for automatic failover capabilities.

Chapter 8 availability for azure SQl

376

 Azure Redundancy
Why rely on a single data center when you have three? Azure SQL can integrate with

a capability called Availability Zones in Azure. Each zone is a set of one or more

datacenters (so actually more than three) within an Azure region that has independent

power, cooling, and networking. Azure SQL can deploy a high available solution across

zones to provide you even more availability should there a failure in a particular data

center.

All Azure SQL deployments are created as part of an Azure Availability Set

which includes using different fault and update domains. Fault domains define the

group of virtual machines that share a common power source and network switch.

Update domains are groups of virtual machines and underlying physical hardware

that can be rebooted at the same time. Only one update domain is rebooted at a

time. A rebooted update domain is given 30 minutes to recover before maintenance

is initiated on a different update domain. You can read more about this concept at

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-

availability#configure-multiple-virtual-machines-in-an-availability-set-

for-redundancy.

 Geo-replication and Auto-failover Groups
You might want to provide even higher levels of availability by synchronizing your

deployments across Azure regions. Azure SQL provides two methods for this capability

called Geo-replication and Auto-failover groups. We will go into each option in this

chapter and why you may want to choose one vs. the other.

 Database Availability and Consistency
With SQL Server, you are used to using various techniques to make your database

available and checking consistency. Azure SQL eliminates the need for heavy

“emergency” recovery options and provides many built-in consistency checks. I’ll

explore more in this chapter specific comparisons for database availability, recovery,

and consistency for Azure SQL as compared to SQL Server.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-availability#configure-multiple-virtual-machines-in-an-availability-set-for-redundancy
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-availability#configure-multiple-virtual-machines-in-an-availability-set-for-redundancy
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-availability#configure-multiple-virtual-machines-in-an-availability-set-for-redundancy

377

 SQL Server Replication
SQL Server Replication has been a popular method to provide a level of availability and

database synchronization over many SQL Server releases. I won’t dive into the details of

using SQL Server Replication in this chapter, but point out these capabilities:

• Azure SQL Managed Instance gives you the full capabilities to set up

a transaction or snapshot replication system including publisher,

distribution, and subscribers. A subscriber can be another Managed

Instance database, an Azure SQL Database, or even a SQL Server in

Azure VM or on-premises. Read more about Azure SQL Managed

Instance and Replication at https://docs.microsoft.com/en-us/

azure/azure-sql/managed-instance/replication-transactional-

overview.

• An Azure SQL Database can be a subscriber from an on-premises

SQL Server, SQL Server in Azure VM, or Managed Instance for

transaction and snapshot replication. This might be an interesting

migration option when moving to Azure SQL Database because

it can provide a type of “online” migration strategy. Read more at

https://docs.microsoft.com/en-us/azure/azure-sql/database/

replication-to-sql-database.

 Backup and Restore
Imagine you needed to set up an automated backup system for your SQL Server

deployment. You basically want a system to abstract even other DBAs from worrying

about performing backups. You want these backups to run regularly; use a combination

of full, differential, and log backups; and be placed on storage separate from your

database for full protection. And, you would also like the storage for your backups to be

mirrored even across data centers in your company.

Guess what? When you deploy an Azure SQL Managed Instance or Azure SQL

Database, we just do all of this by default and more. Let’s look at various aspects to the

automated backup system and how to use restore with these backups.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/replication-transactional-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/replication-transactional-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/replication-transactional-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/replication-to-sql-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/replication-to-sql-database

378

 Automatic Backups
When you deploy an Azure SQL Database or create a new database for an Azure SQL

Managed Instance deployment, we monitor this activity and kick in the following

schedule of backup activity:

• A full database backup once a week.

• A differential backup every 12 hours.

• A transaction log backup every 5–10 minutes. The actual frequency of

log backups is based on number of vCores and database activity.

Note We may vary the implementation of how we do this. the concept is that
provided we give you point-in-time restore and meet your rpo objective.

All backups are done using standard T-SQL statements in the background and stored

separately from your data and log files (even if they are on Azure Storage). In fact, your

backup files are stored on Azure Storage using RA-GRS. RA-GRS stands for read-access
geo-zone-redundant storage. This means that backup files are copied across three

Azure availability zones in the primary region and also copied asynchronously to a

single physical location in a different region. Read more about RA-GRS at https://docs.

microsoft.com/en-us/azure/storage/common/storage-redundancy#redundancy-in-

a-secondary-region.

When you deploy or create a new database, we schedule a full database backup

almost immediately. We perform integrity checks on your backups using CHECKSUM

and restore techniques. Read the complete story of automated backups for Azure SQL

at https://docs.microsoft.com/en-us/azure/azure-sql/database/automated-

backups- overview.

 Backup Retention

By default, we keep enough backup files to allow you to perform a Point-In-Time

restore (PITR) within the last 7 days at any point in time. For Azure SQL Database,

you can change this retention lower to 1 day or up to 35 days. This is called short-
term backup retention. You have the same option for any database created for a

Managed Instance.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy#redundancy-in-a-secondary-region
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy#redundancy-in-a-secondary-region
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy#redundancy-in-a-secondary-region
https://docs.microsoft.com/en-us/azure/azure-sql/database/automated-backups-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/automated-backups-overview

379

Note you cannot configure the retention of 7 days for hyperscale deployment. We
are looking in the future to allow this.

Retention policies affect how far back you can restore from a point in time but also how

much storage space your backups consume. You can configure the short-term retention

policy for Azure SQL Database backups through the Azure portal (I’ll show you an example

when I discuss long-term retentions later in this section of the chapter), az CLI (az sql db
ltr-policy), or PowerShell (Set- AzSqlDatabaseBackupShortTermRetentionPolicy).

Note anytime there is az Cli or powerShell support, there is also reSt api
support because that is what az and powerShell use. for backup retention, you can
read about reSt api support at https://docs.microsoft.com/en-us/rest/
api/sql/backupshorttermretentionpolicies.

Short-term backup retention can be configured for databases for Managed Instance

using the Azure portal as seen in Figure 8-1 for one of the databases I deployed on my

Managed Instance.

Figure 8-1. Configuring short-term backup retention for a Managed Instance
database

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/rest/api/sql/backupshorttermretentionpolicies
https://docs.microsoft.com/en-us/rest/api/sql/backupshorttermretentionpolicies

380

The portal only allows configuration on a database level, so for the instance you

may want to use scripts for automation. Therefore, you can also manage the short-term

retention policy for Managed Instance backups with az CLI (az sql midb short-term-
retention-policy) and PowerShell (Set- AzSqlInstanceDatabaseBackupShortTermRete
ntionPolicy).

 Backup Storage Consumption and Costs

As part of your deployment, you get free storage for backups equivalent to the maximum

size of your database or Managed Instance storage size. This includes the space for all

full, differential, and log backups. Even though we compress all backups, the size you

need will depend on the size of your data, how many changes you make (affects size of

differential and log backups), and your number of backup retention days.

If you exceed the backup storage you get for free with your managed instance

maximum storage size or maximum Azure SQL Database size, you can incur extra costs

for backups.

In most cases, we have found customers that use the default retention period of

7 days rarely incur extra charges. For Azure SQL, you can track if you are using extra

space that is being charged on your subscription by using the Azure portal and viewing

billing information with your subscription. Learn more at https://docs.microsoft.

com/en-us/azure/azure-sql/database/automated-backups-overview?tabs=single-

database#storage-costs.

For Azure SQL Database, Azure Metrics allow you to track and even get alerts on

backup storage consumed for full, differential, and log backups. Figure 8-2 shows an

example of using Azure Metrics through the portal to see what is available.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/automated-backups-overview?tabs=single-database#storage-costs
https://docs.microsoft.com/en-us/azure/azure-sql/database/automated-backups-overview?tabs=single-database#storage-costs
https://docs.microsoft.com/en-us/azure/azure-sql/database/automated-backups-overview?tabs=single-database#storage-costs

381

Here are some tips to help you on consuming backup storage space:

• Reduce the retention period to the shortest possible number of days

per your requirements.

• The larger modifications you make (e.g., index rebuilds), the larger

the space needed for differential and log backups. Take a look to

ensure these operations are all needed.

• It is possible that you can increase your maximum storage size so you

get more backup space, but the increase in storage size could cost

less than backup storage costs.

Point-In-Time restore
Now that you know about the automated backup strategy we use, you may have a need

to use backups to perform a restore. In some cases for SQL Server, you may run into a

situation where an accident has occurred that affects availability like a database owner

dropping a table.

Figure 8-2. Metrics for backup storage consumption for Azure SQL Database

Chapter 8 availability for azure SQl

382

Since we deploy a combination of full, differential, and log backups, we allow you

to pick a point in time and restore back to that state using these backups. This concept

is called Point-In-Time restore (PITR) and is available in SQL Server (provided you

deploy the right backup strategy).

If you look at the SQL Server documentation at https://docs.microsoft.com/en-

us/sql/relational-databases/backup-restore/restore-a-sql-server-database-

to-a-point-intime-full-recovery-model, the method to restore to a point in time

is to use a series of backups to restore from a log backup using the T-SQL RESTORE

statement. For Azure SQL, PITR is supported for the automated backups we create for

Azure SQL Managed Instance and Databases. Therefore, to perform a Point-In-Time

restore, you must use Azure interfaces such as the portal, az CLI, or PowerShell.

Note even though the reStore statement is supported for a Managed instance,
your syntax is limited and you cannot perform a point-in-time restore. this is only
to restore full backups from the Copy_oNly option or from a SQl Server.

Azure SQL Managed Instance supports PITR through the Azure portal (navigate

to the database in the portal and select the Restore option from the command bar), az

CLI (az sql midb restore), and PowerShell (Restore-AzSqlInstanceDatabase). A PITR

operation is asynchronous and creates a new database (in fact a new deployment) based

on the date and time you select for the restore. Your date and time choices are based on

your backup day retention.

Azure SQL Database also supports PITR through the Azure portal, az CLI (az-sql-db-
restore), and PowerShell (Restore-AzSqlDatabase).

Let’s look at an example of how to use PITR for the database I deployed called

bwazuresqldb in Chapter 4 of the book. I created this database some time back as I

was writing the chapters of the book, so by now at least 7 days has gone by for a series of

backups. Let’s go through an exercise where I accidentally drop a table in my database

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-a-sql-server-database-to-a-point-intime-full-recovery-model
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-a-sql-server-database-to-a-point-intime-full-recovery-model
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-a-sql-server-database-to-a-point-intime-full-recovery-model

383

and then use PITR to restore the database to a new database name before the drop so I

can merge that data back into my current database:

 1. Drop the table.

I’ll use the Azure VM bwsql2019 I deployed in Chapter 3 and have

used in the last two chapters to connect with SSMS and run the

following T-SQL statement against the bwazuresqldb database

connected as the server admin I used during deployment

(remember it is based on the AdventureWorks sample):

DROP TABLE SalesLT.OrderRating;

GO

Note this is the table i created as part of an example in Chapter 7. i left around
1500 rows in the table before i dropped it. So, if we restore it correctly, we should
have it back with 1500 rows.

 2. Audit when the table was dropped.

I dropped the table to show the example but imagine the scenario

is that someone else dropped the table and no one remembers

exactly when. In order to find out when to restore the database to

a point in time, we need to know when the table was dropped. If

you remember, we set up auditing for this database in Chapter 6

of the book. Let’s take advantage of that auditing to see when the

table was dropped. I showed you in Chapter 6 of the book how to

navigate to find Audit records for a database. The records for my

database just after the DROP statement look like Figure 8-3.

Chapter 8 availability for azure SQl

384

If I click the first BATCH_COMPLETED record, I see the DROP

statement including date and time and the user like in Figure 8-4.

Figure 8-3. Audit records after a DROP statement

Figure 8-4. An audit record for a DROP statement

Chapter 8 availability for azure SQl

385

 3. Restore the database to the time before the DROP.

I purposely waited overnight from when I dropped the table to

simulate a real-world scenario where someone could realize the

drop happened at an earlier point in time. Based on the preceding

audit record, I know I need to restore to a point in time before

7/22/2020 at 12:02 AM UTC time. Let’s use the Azure portal to

perform a restore. I’ll navigate to my database, bwazuresqldb, in

the Azure portal and choose Restore from the command bar as

seen in Figure 8-5.

Notice in the working pane for this database, you can see what the

earliest time you can restore.

Note the earliest point in time is based on the first transaction log backup after
the database is created. a full backup must first complete before the log backup is
taken.

After I select Restore, I’m presented with a screen where I can fill

out the time I want to restore to as seen in Figure 8-6.

Figure 8-5. Choosing to Restore a database with PITR

Chapter 8 availability for azure SQl

386

Figure 8-6. Restoring to a point in time for Azure SQL Database

Chapter 8 availability for azure SQl

387

You will notice where I can select a date and time and then I get

options for Database name, whether I want this to be part of

an elastic pool, and compute and storage options (e.g., service

tier). You wonder why you can choose compute and storage?

This is because a restore will create a new database and you can

choose that database to have the same options (General Purpose,

Serverless, Business Critical, Hyperscale, vCores, etc.) as when

you create a new database or different ones. I clicked Review
+ create and a new deployment was started. You need to set

some expectations on time here to deploy. This is not just a new

database. We must do all the things to deploy a new database

and restore a full database backup and a series of differential and

log backups up to the time you selected. For me, this restore took

around 10 minutes. I can do all the activities we talked about in

Chapter 4 of the book to look at the activity log and see how the

restore deployed a new database. I recommend customers try out

various scenarios here to see expected recovery times for their

workload. Just remember that higher RTO and RPO objective can

be achieved with concepts like geo-replication and auto-failover

groups which will be discussed later in this chapter.

Note your recovery time will depend on what we need to restore to get you to the
desired point in time. learn more at https://docs.microsoft.com/en-us/
azure/azure-sql/database/recovery-using-backups#recovery-time
including limits on the number of concurrent restores.

 4. Verify the new database has the dropped table.

I went back to my Azure VM, bwsql2019, where I had connected

as an admin to the logical master. Object Explorer in SSMS now

shows the new database as in Figure 8-7.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#recovery-time
https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#recovery-time

388

If I navigate to this database and run the following T-SQL

statement:

SELECT COUNT(*) FROM SalesLT.OrderRating;

GO

I get back 1500 rows. I now have two choices:

• Drop bwazuresqldb and rename this new database so my

applications would lose any changes since the time for PITR.

• Merge the data from this new database from SalesLT.OrderRating

into my original database. I realize this may not be a simple

operation if foreign keys exist.

 Long-Term Retention Backups
You have seen we can keep backups for your databases from 1 to 35 days to meet your

RPO requirements. However, what if your business needs to meet certain regulations

and keep a longer history of backups? You may not need these backups to recover from a

Figure 8-7. A restored Azure SQL Database in SSMS

Chapter 8 availability for azure SQl

389

disaster, but rather need them to access historical data to meet some type of compliance.

Azure SQL offers a concept called long-term backup retention (LTR). This allows you to

keep backups for up to 10 years. All LTR backups that are kept are full database backups.

Note at the time of the writing of this book, azure SQl Managed instance offers
ltr in a limited preview, and you must use powerShell to configure ltr. See this
documentation page https://docs.microsoft.com/en-us/azure/azure-
sql/managed-instance/long-term-backup-retention-configure
for more details. you could as an alternative use the Copy_oNly backup feature
of Managed instance to create any schedule for backups to your azure Storage
account for any period of time you like.

Here is how the concept works. You configure a retention period > the maximum of

short-term retention of 35 days. You do this by selecting the frequency of how long you

want LTR backups to be kept on a weekly, monthly, and yearly basis. You can select all

three options if you like. Azure SQL will take short-term retention backups and copy

them to a different Azure storage account (it also uses RA-GRS so is geo-redundant)

based on the choices you make. LTR is not included as part of the subscription fee

for your database but is charged a less expensive rate than excess short-term backup

retention storage over what is included with your deployment.

Let’s look at one of my databases and see an example of how you could configure

LTR. In order to configure LTR in the Azure Portal, I need to navigate to my logical server

vs. directly to the database. Figure 8-8 shows how I can select the Manage Backups from

the Resource menu of the logical server, select a database I want to configure, and select

the Configure retention option.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/long-term-backup-retention-configure
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/long-term-backup-retention-configure

390

When I select Configure retention, I’m presented with a screen where I can configure

short-term backup retention and LTR. Figure 8-9 shows the choices you can make.

Figure 8-9. Configuring backup retention policies for Azure SQL Database

Figure 8-8. Configuring backup retention for Azure SQL Database

Chapter 8 availability for azure SQl

391

Let me explain how the choices I’ve made affect backup retention for this database:

• I modified the short-term backup retention for the database to

35 days.

• I chose that each full database backup taken weekly be kept for

six weeks.

• I chose that the first full backup taken for a month be kept for

12 months.

• I chose that the full backup taken on the 16th week of the year be

kept for 10 years.

You don’t have to choose all three options as I did. You can choose various

combinations or just one of them. We have a chart in our documentation that can help

you sketch out a schedule for LTR at https://docs.microsoft.com/en-us/azure/

azure-sql/database/long-term-retention-overview#how-long-term-retention-

works.

You can also configure LTR for Azure SQL Database using az CLI (azsqldbltr- policy)

or PowerShell (Set-AzSqlDatabaseBackupLongTermRetentionPolicy).

Note if you use geo-replication or auto-failover groups, which i will discuss later
in this chapter, you can configure ltr for those databases, but ltr backups are not
taken unless that database becomes a primary.

 Geo-restore of Databases
Let’s say that your database from Azure SQL Database or Managed Instance is

unavailable due to a data center outage. While these situations are rare, it would be nice

to able to restore a backup from a geo-redundant backup from another region that does

not have an outage.

The process is called geo-restore and is outlined at https://docs.microsoft.

com/en-us/azure/azure-sql/database/recovery-using-backups#geo-restore.

The concept is that you will deploy a new Azure SQL Database or create a new

database for a Managed Instance based on a backup. When you select this option, you

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/long-term-retention-overview#how-long-term-retention-works
https://docs.microsoft.com/en-us/azure/azure-sql/database/long-term-retention-overview#how-long-term-retention-works
https://docs.microsoft.com/en-us/azure/azure-sql/database/long-term-retention-overview#how-long-term-retention-works
https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#geo-restore
https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#geo-restore

392

will be presented with all the known backups that exist for your existing Azure SQL

deployments. If the data center is down where your backups are normally stored, we will

retrieve the geo-redundant copy of the backup from a different region.

 Restore Backups from Deleted Databases
The built-in HADR options just keep coming with Azure SQL. Let’s say you accidentally

delete a database for an Azure SQL Database or Managed Instance.

Note Deleting a database for azure SQl Database or Managed instance does
more behind the scenes than a traditional SQl Server given we have all types
of services and operations tied to the database. this is why you can delete a
database through azure interfaces or the Drop DatabaSe t-SQl statement.

I realize this may not be something you almost never see, but one of the great stories

for built-in HADR is that when you delete a database, you can restore from backups

associated with the deleted database using PITR based on the retention period you

configured. If your retention period is 7 days and you delete a database, we can’t perform

any more backups, but you can restore to a point in time from the earliest backup point

to the time of database deletion.

Note you cannot recover from a deleted logical server or Managed instance.
however, if you have configured ltr backup retention, you can create new
databases based on these backups. you may be asking since ltr backups are
not free, how do i ever remove ltr backups? you can use the powerShell cmdlets
Remove- AzSqlDatabaseLongTermRetentionBackup or Remove- AzSqlInstan
ceDatabaseLongTermRetentionBackup even if the logical server or Managed
Instance has been deleted.

You can restore deleted databases through the Azure portal, az CLI, or PowerShell.

Read more about how to do this at https://docs.microsoft.com/en-us/azure/azure-

sql/database/recovery-using-backups#deleted-database-restore.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#deleted-database-restore
https://docs.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#deleted-database-restore

393

 Restore in Azure SQL Managed Instance
I’ve mentioned that it is possible to execute a BACKUP T-SQL statement for an Azure

SQL Managed Instance earlier in this chapter. We have referred this capability as a native

database backup. The term native is used because you can perform a full database

backup using the BACKUP T-SQL statement to disk storage. This disk storage must be

an Azure storage account and uses the “backup to URL” capability that SQL Server has

supported for several releases.

You must use the WITH COPY_ONLY option to back up a database for a Managed

Instance. SQL Server has supported a copy-only backup for several releases. A copy-

only backup does not affect the backup sequence of full, differential, and log backups.

Our team has posted a nice blog about how to set up a native backup with Managed

Instance at https://techcommunity.microsoft.com/t5/azure-sql-database/native-

database- backup-in-azure-sql-managed-instance/ba-p/386154.

Since you can perform a native backup with a Managed Instance, you can also

restore these backups using the T-SQL RESTORE statement. You can only restore copy-

only backups from a Managed Instance to an existing or new Managed Instance. Just

remember it is a new database. For example, you will get an error (Mg 41901) if you try

to use the WITH REPLACE syntax of RESTORE. You cannot restore these backups to SQL

Server or Azure SQL Database.

Note the reason you cannot restore a backup from Managed instance to a SQl
Server is because Managed instance is versionless.

In addition, you can take any full database backup from any supported version of

SQL Server and restore it to a Managed Instance. This is actually the process you use to

perform an offline or online migration from SQL Server to a Managed Instance. Learn

more at https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-

managed-instance-online.

The following documentation page walks you through the process of performing a

native restore with a Managed Instance: https://docs.microsoft.com/en-us/azure/

azure-sql/managed-instance/restore-sample-database-quickstart.

Chapter 8 availability for azure SQl

https://techcommunity.microsoft.com/t5/azure-sql-database/native-database-backup-in-azure-sql-managed-instance/ba-p/386154
https://techcommunity.microsoft.com/t5/azure-sql-database/native-database-backup-in-azure-sql-managed-instance/ba-p/386154
https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-managed-instance-online
https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-managed-instance-online
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/restore-sample-database-quickstart
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/restore-sample-database-quickstart

394

 Built-In High Availability
SQL Server has a great tradition of providing the necessary capabilities and software

to keep your database highly available. The tradition started with Always On Failover

Cluster Instance (FCI) using shared storage and integrating with technologies such as

Windows Server Failover Clustering (WSFC) for automated failover. In SQL Server 2012,

we introduced Always On Availability Groups to allow a non-shared storage approach,

read replicas, and still integrated with WSFC for automatic failover decisions. SQL Server

Linux also supports these capabilities but is integrated with Linux technologies such as

Pacemaker.

One of the aspects of Azure SQL the engineering wanted to provide was a public

commitment to a Service-Level Agreement (SLA) included availability. They also wanted

the deployment process for a database or Managed Instance to “just do it” when it came

to configuring and setting up availability. Finally, since Azure SQL was deployed with

Azure Service Fabric (SF), we needed to integrate with SF for failover decisions.

The result is truly an amazing story. Every Azure SQL deployment option you

choose has a built-in High Availability. Let’s take a look at each deployment option and

the architecture of availability that makes it all happen. You can also use the following

documentation page as a reference: https://docs.microsoft.com/en-us/azure/

azure-sql/database/high-availability-sla. The details of this chapter for General

Purpose and Business Critical service tiers apply to both Azure SQL Managed Instance

and Database.

I asked Girish Mittur Venkataramanappa, a Principal Group Software Engineering

Manager, who has worked on SQL availability for many years on the importance of

our investment in built-in availability for Azure. According to Girish, “Our customers

are increasingly migrating mission critical workloads to SQL DB. Availability outages

not only impact our customer’s business, operations, and bottom line, it also erodes

their own customer trust putting their business at risk. At Microsoft, our mission is

to empower every person and every organization on the planet to achieve more. We

offer strong Availability SLAs and stand behind them. We have built very effective High

Availability technologies that offer redundant stand by replicas, multiple Availability

Zones, and GeoDR which protect Databases against a variety of failures. In addition

we have sophisticated monitoring, alerting and self-healing capabilities, and a well-

trained 24x7 live site DevOps team. We take Availability very seriously. Most recently we

invested a couple of years reengineering our Database Crash Recovery algorithms so

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla
https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla

395

that crash recovery is near instant as opposed to several minutes prior to that. We have a

continuous development cycle of measuring and improving availability for the millions

of Databases that we run today.”

 General Purpose High Availability
I’ve described the overall concept of a General Purpose (GP) service tier several times in

this book. Your databases are stored on Azure Storage, while tempdb is stored on local

SSD storage. Let’s use a visual to describe more about the General Purpose architecture

and how availability and failover work. (these figures are based on diagrams in the

documentation at https://docs.microsoft.com/en-us/azure/azure-sql/database/

high-availability-sla#basic-standard-and-general-purpose-service-tier-

availability).

First, let’s look at Figure 8-10.

Figure 8-10. Application connects to a General Purpose deployment using
Gateways

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#basic-standard-and-general-purpose-service-tier-availability
https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#basic-standard-and-general-purpose-service-tier-availability
https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#basic-standard-and-general-purpose-service-tier-availability

396

An application will connect to the primary replica (there is only one replica with

General Purpose) by using Gateways in the control ring in an Azure region. If you

remember, we talked about connection types of proxy and redirect with gateways

in Chapters 4 and 6 of the book. In either case, the gateways provide a connection

abstraction for the application. Notice the local SSD storage for the deployment is where

tempdb is stored.

Figure 8-11 shows the next piece of the architecture.

The Database and transaction log files are put on Azure premium storage using LRS

(Locally Redundant Storage). This means your database and transaction log files are

replicated three times within a physical location of the data center. You can read more

about LRS at https://docs.microsoft.com/en-us/azure/storage/common/storage-

redundancy#redundancy-in-the-primary-region.

As I’ve described earlier in this chapter, your backup files are stored in a different

storage location within the data center but using RA-GRS so they are geo-redundant.

The Azure SQL deployment is integrated with Service Fabric (SF) to detect problems

(e.g., a node failure) and initiate a failover if necessary. If a failover is required, we will

find a new node with spare capacity to host your deployment as seen in Figure 8-12.

Figure 8-11. Storage for a General Purpose deployment

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy#redundancy-in-the-primary-region
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy#redundancy-in-the-primary-region

397

The local storage of the new node hosts SQL Server including tempdb. The new

SQL Server will be directed to your database and log files on Azure storage. This type of

architecture is very similar to how an FCI works for SQL Server. Your downtime is based

on how fast we can find a new node with enough capacity to host your deployment

choices (vCores, etc.). In addition, SQL Server that is hosting your database on the new

node has just started up with a cold buffer and plan cache, so normal startup activities

will affect your performance (recovery of the database will be extremely fast since we use

Accelerated Database Recovery).

You may be wondering how does the application connect to the new node after a

failover? The gateways are the answer. The application never changes any names to

connect to the new node. The gateways take care of that logic. The application must

simply retry a connection and is off and running.

You can learn more about the GP availability architecture at https://docs.

microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#basic-

standard- and-general-purpose-service-tier-availability.

Figure 8-12. A failover for a General Purpose deployment

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#basic-standard-and-general-purpose-service-tier-availability
https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#basic-standard-and-general-purpose-service-tier-availability
https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#basic-standard-and-general-purpose-service-tier-availability

398

Note the Serverless compute tier uses the same high availability architecture
since today it is only available for General purpose service tiers. Some haDr
features such as long-term backup retention will prevent the autopause
feature of Serverless to be used. learn more at https://docs.microsoft.
com/en-us/azure/azure-sql/database/serverless-tier-
overview#autopausing-and-autoresuming.

 Business Critical High Availability
A Business Critical (BC) deployment relies on local storage and a series of replicas, much

like an Always On Availability Group (AG). Let’s look at the BC architecture as compared

to General Purpose. Figure 8-13 shows the basic architecture of a BC deployment.

Figure 8-13. A Business Critical deployment with replicas

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview#autopausing-and-autoresuming
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview#autopausing-and-autoresuming
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview#autopausing-and-autoresuming

399

You can see from this figure that gateways are still an important part of connectivity

and that a primary replica exists. Local storage is used for tempdb but also for database

and log files. In addition, like an Always On Availability Group, there are secondary

replicas. For a BC deployment, we always keep four replicas up and running (one

primary and three secondaries). From a transaction point of view, a commit cannot

proceed on the primary replica until at least one of the secondary replicas has

acknowledged the changes are hardened.

You can also see that backup files are stored in Azure storage with RA-GRS just like a

General Purpose deployment.

If a failover is necessary, we simply need to choose a secondary replica that is

synchronized and make that the primary replica just like an AG as seen in Figure 8-14.

Downtime is significantly less General Purpose since the new primary replica simply

has to run undo recovery to become available. Since Accelerated Database Recovery

(ADR) is enabled, undo recovery can be very fast. I’ll discuss more about the important

of ADR later in this chapter. You can read the entire Business Critical high availability

Figure 8-14. A failover for a Business Critical deployment

Chapter 8 availability for azure SQl

400

story at https://docs.microsoft.com/en-us/azure/azure-sql/database/high-

availability- sla#premium-and-business-critical-service-tier-availability.

If the old primary replica is not usable, we will need to spin up a new secondary replica

(and synchronize it) to keep four available.

Just like General Purpose service tier, applications just need to reconnect and start

running again due to the use of gateways. In addition, a BC deployment will allow you

to use one of the secondary replicas as a read-only replica as part of your monthly free

for using BC. Our gateways help provide the redirection logic. You simply just ensure

application supplied the correct “read intent” option. You can learn more at https://

docs.microsoft.com/en-us/azure/azure-sql/database/read-scale-out.

Note read Scale-out supports session-level consistency. it means if the read-
only session reconnects after a connection error caused by replica unavailability,
it may be redirected to a replica that is not 100% up to date with the read-write
replica. likewise, if an application writes data using a read-write session and
immediately reads it using a read-only session, it is possible that the latest
updates are not immediately visible on the replica. the latency is caused by an
asynchronous transaction log redo operation.

Let’s take a look at an example to show you that even though GP provides good built-

in availability to your application, BC can truly be faster and provide higher availability.

For this example, I’m going to use the same General Purpose database I deployed

in Chapter 4 and have used in other chapters called bwazuresqldb. I deployed a BC

database in Chapter 4, but it was empty. So I deleted this database and deployed a

new Business Critical database called bwazuresqldbbc using 8 vCores and the sample

AdventureWorks database (I used 8 vCores because bwazuresqldb was scaled to 8

vCores in Chapter 7 of the book).

You will also need the ostress.exe program I’ve used in previous chapters as

described and in the prerequisites in the beginning of the chapter. As I also stated at the

beginning of this chapter, you will need Azure PowerShell.

I also have scripts you will use in the ch8_availability\gp_vs_bc folder.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#premium-and-business-critical-service-tier-availability
https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#premium-and-business-critical-service-tier-availability
https://docs.microsoft.com/en-us/azure/azure-sql/database/read-scale-out
https://docs.microsoft.com/en-us/azure/azure-sql/database/read-scale-out

401

For a client, I’ll use the Azure VM bwsql2019 which is already set up to connect to

the logical server for these databases:

 1. Log in to Azure with PowerShell and set your subscription context.

I first had to log in to Azure with PowerShell using the command

Connect-AzAccount

This prompts me for MFA which is required at Microsoft.

I then need to set the context to my correct subscription with

these commands

Set-AzContext -SubscriptionId $subscriptionId

where $subscriptionId is set to the subscription associated with

the resource group of the database deployment.

 2. Prepare and run scripts to test General Purpose availability.

In order to see these results correctly, I recommend you have two

PowerShell windows displayed side by side.

In the left-hand window, you will want to run the script

querybase_gp.cmd. This script looks like the following:

ostress.exe -S<server>.database.windows.net -Q"SELECT COUNT(*)

FROM SalesLT.Customer" -Uthewandog -dbwazuresqldb -P<password>

-n1 -r50000

You should substitute in your server name, login, database, and

password for your deployment. You can see this script uses ostress

to find the count for a table in the database with a single user over

50,000 iterations. The idea here is to query the table over and over.

ostress.exe is smart enough to retry a connection should a failover

occur.

In the right-hand window, you will be running the script

failoverbase_gp.ps1 which looks like the following:

$resourceGroup = "<resource group>"

$server = "<server>"

$database = "<database>"

Chapter 8 availability for azure SQl

402

Invoke-AzSqlDatabaseFailover -ResourceGroupName $resourceGroup

 -ServerName $server -DatabaseName $database

You will substitute in your resource group, server, and database.

Note the server is not the fully qualified DNS name, just the logical

server name.

Now execute the script in the left-hand window querybase_
gp.cmd. You should see results scroll across your screen like this:

847

(1 row affected)

847

(1 row affected)

We are just repeating this query over and over.

Now run in the right-hand window the script failoverbase_
gp.ps1. Very quickly in the left-hand window, you will notice

errors like these:

07/22/20 21:44:17.444 [0x00001E6C] Attempt to establish connection

failed. See the detailed errors that follow:

07/22/20 21:44:17.444 [0x00001E6C] SQLState: HY000, Native Error:

40613

[SQL Server]Database 'bwazuresqldb' on server 'bwazuresqlserver'

is not currently available. Please retry the connection

later. If the problem persists, contact customer support, and

provide them the session tracing ID of '{CC39135B-D638-4A51-BB25-

EABB8A5315A0}'.

Then within about 30 seconds, you will see the count of rows

appear again. This shows a failover occurred and the application

was down for a short period of time but then can reconnect

and just get the same results. You can exit the script by hitting

<ctrl>+<c> and typing in “Y” to quit.

Chapter 8 availability for azure SQl

403

We only allow manual failovers for Azure SQL Database (except

Hyperscale and is not allowed for Managed Instance) and only

allow them every 30 minutes. A manual failover requires a lot

of things in the background to ensure you are available, so if we

allowed you to do this anytime you want as much as you want,

it could overwhelm our infrastructure systems. Therefore, if you

tried to run failoverbase_gp.ps1 immediately again, you will get

this error after a few seconds:

Invoke-AzSqlDatabaseFailover : Long running operation failed with

status

'Failed'. Additional Info:'There was a recent failover on the

database or

pool if database belongs in an elastic pool. At least 30 minutes

must pass

between database failovers.'

You can read more about testing high availability at https://

docs.microsoft.com/en-us/azure/azure-sql/database/high-

availability- sla#testing-application-fault-resiliency.

 3. Test failover for Business Critical.

Perform the same tests as with General Purpose, but this time use

the scripts querybase_bc.cmd and failoverbase_bc.ps1. You will

this time substitute all the same information except the database

should be your Business Critical database (mine was called

bwazursqldbbc).

Then using the same concept as in step #2, run the script to query

the database and then run the script to invoke a failover. See any

differences? The result set of rows should come back in seconds

with a Business Critical failover.

This demonstrates both General Purpose and Business Critical have built-in

availability, but Business Critical provides the highest level of availability.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#testing-application-fault-resiliency
https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#testing-application-fault-resiliency
https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#testing-application-fault-resiliency

404

 Hyperscale High Availability
I’ve described the unique characteristics of the Hyperscale service tier for Azure SQL

Database in several chapters of the book so far. Let’s dive further into the pieces of the

Hyperscale architecture including the interesting way availability is handled. For a

complete reading on Hyperscale high availability, see the documentation at https://

docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-

sla#hyperscale-service-tier-availability.

First, let’s look at how compute nodes and replicas are part of the architecture as in

Figure 8-15.

The primary compute node is a primary replica for a Hyperscale deployment.

Hyperscale has zero to four secondary replicas which are represented as secondary
compute nodes. I’ll discuss more about how replicas work shortly. The primary

Figure 8-15. Compute nodes for Hyperscale

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#hyperscale-service-tier-availability
https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#hyperscale-service-tier-availability
https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#hyperscale-service-tier-availability

405

compute node hosts a SQL Server for your database. This SQL Server has the standard

components like a buffer pool to host database pages. Additionally on this primary

compute node is your tempdb databases on local storage plus an RBEX cache. Caches

in Hyperscale are all files on local SSD storage. RBEX stands for Resilient Buffer Pool
Extension. It is similar but not exactly the same as the Buffer Pool Extension (which you

can read more about at https://docs.microsoft.com/en-us/sql/database-engine/

configure-windows/buffer-pool-extension). The concept is that if a query needs a

database page and it is not in buffer pool, it will first try to read that page from RBEX.

What if a page is not available in either the compute buffer pool or RBEX cache?

Figure 8-16 shows that we deploy a set of page servers.

Figure 8-16. Page servers in a Hyperscale deployment

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/buffer-pool-extension
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/buffer-pool-extension

406

Page servers are nodes with SQL Servers that host database pages in memory and

are covered by another RBEX cache. Page servers are paired for redundancy and high

availability. Azure SQL determines the proper number of page servers to support the

deployment and database size. Remember, for Hyperscale you don’t choose a maximum

database size. We just keep growing and scaling the system through page server and

Azure storage to meet your database size.

What if the database page the query needs is not on the compute node or a page

server? Figure 8-17 shows that the database files that back your database are stored in

Azure standard storage.

In order to maximize performance, this architecture works best when we rarely have

to go to Azure storage to retrieve a page for a database. When page servers first start up,

they are seeded with pages from database files on Azure Storage. Page servers then will

Figure 8-17. Data files for Hyperscale on Azure storage

Chapter 8 availability for azure SQl

407

populate RBEX caches on the primary node (and secondaries if they exist). If a page is

not on the primary compute buffer pool but we find it in the RBEX cache of the node,

that is considered a cache hit. If the page is not in RBEX, we attempt to get the page from

a page server (or its RBEX cache) but is considered a cache miss.

Having database files on Azure storage has one major advantage for automated

backups and Point-In-Time restore for Hyperscale. Because the data files are infrequently

accessed once the Hyperscale caching system is warm, we can back up the database

using snapshot backups. This capability is very similar to using file snapshot backups

with Azure Virtual Machine as documented at https://docs.microsoft.com/en-us/

sql/relational-databases/backup-restore/file-snapshot-backups-for-database-

files-in-azure. Snapshot backups are a huge advantage for Hyperscale because it

doesn’t affect application operations and a restore of a database is extremely fast. Just

like other Azure SQL options, backups are stored on geo-redundant storage separate

from the data and log files.

There is another piece I haven’t discussed yet from this model. What about the

transaction log?

Hyperscale redirects a transaction log I/O from the primary node to a Log Service as

seen in Figure 8-18.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/file-snapshot-backups-for-database-files-in-azure
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/file-snapshot-backups-for-database-files-in-azure
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/file-snapshot-backups-for-database-files-in-azure

408

Compute nodes still have a log cache, but when an I/O is needed to flush log records,

they are directed by the SQL Server engine to the Log Service. The Log Service runs

on a different node. It has its own log cache (local SSD storage), log storage with Azure

Premium Storage called the landing zone, and redundant storage with Azure Standard

Storage called long-term log storage. We never have to back up the transaction log. A

combination of snapshot backups and long-term log storage can be used to restore to a

point in time.

The Log Service receives logged changes and then feeds these changes to update

page servers and replicas (if they exist). This means that while Hyperscale uses logged

changes to feed replicas, it doesn’t use the exact underlying technology of Always On

Availability groups to keep replicas in sync.

Figure 8-18. The Log Service in Azure SQL Database Hyperscale

Chapter 8 availability for azure SQl

409

One interesting aspect to Hyperscale is database pages I/O. For the compute node,

dirty pages are not written to a database file. Hot pages on the compute node are written

to RBEX cache so they are readily available. Page servers are updated though logged

changes with the Log Service. Therefore, any type of checkpoint I/O happens from

a page server to database files on Azure storage. This is very nice as it off-loads any

database file I/O from the compute node.

I mentioned earlier the concept that you can have zero to four secondary replicas.

You may be asking how can this architecture support built-in high availability with zero

replicas? Because the underlying database and transaction log files are on Azure storage

(and not on local storage), if we need to execute a failover, we simply provision a new

node and data will be synchronized from underlying page servers (which are backed

by Azure storage). Furthermore, like all of Azure SQL, Accelerated Database Recovery

(ADR) is enabled, so when the new compute node comes online or a secondary replica

becomes the primary, recovery to get to a consistent state is extremely fast. Every aspect

of the Hyperscale distributed architecture is fault tolerant.

If we have secondary replicas provisioned, failover (which like other Azure SQL

architectures is integrated with Azure Service Fabric) is of course must faster because we

can just switch to one of those nodes to become the new primary node. In addition, if

your application connects to the database with read intent, Azure SQL will load balance

across all available secondary replicas. Read more about using read-scale replicas with

Hyperscale at https://docs.microsoft.com/en-us/azure/azure-sql/database/

service-tier-hyperscale#connect-to-a-read-scale-replica-of-a-hyperscale-

database.

Want to learn more about Hyperscale? Watch my colleague Kevin Farlee

demonstrate the architecture of Hyperscale including an amazing restore demonstration

at www.youtube.com/watch?v=Z9AFnKI7sfI.

Tip remember, because of the unique architecture of hyperscale, you cannot
change the service tier back to General purpose or business Critical once you
deploy or change to hyperscale. you would have to export out your data and import
into the new tier.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale#connect-to-a-read-scale-replica-of-a-hyperscale-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale#connect-to-a-read-scale-replica-of-a-hyperscale-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/service-tier-hyperscale#connect-to-a-read-scale-replica-of-a-hyperscale-database
http://www.youtube.com/watch?v=Z9AFnKI7sfI

410

 Go Further with Azure
While the built-in high availability of Azure SQL is really a major advantage for you

to consider moving to the cloud, there are ways to go even further and build in more

availability to your plans.

This includes zone redundancy, geo-replication, and auto-failover groups. In

addition, it is important to understand how the promise of the Azure SQL Service-Level

Agreement meets your needs. This includes how we govern and limit certain activity and

deploy innovative technologies like hot patching to maximize uptime.

 Zone Redundancy
I mentioned in Chapter 2 of the book features of the Azure ecosystem including regions

and datacenters. One of the capabilities you can take advantage of to infuse higher

availability is to deploy with Azure Availability Zones. Availability zones are a collection

of unique physical locations within a region. Each zone in the collections is made up of

multiple data centers. Today, availability zones are available only to Azure SQL Database

Business Critical service tiers and is free of charge.

Note We are working to expand availability zones to other azure SQl deployment
options.

You can choose an availability zone during deployment or configure it later.

Figure 8- 19, from the documentation at https://docs.microsoft.com/en-us/azure/

azure-sql/database/high-availability-sla#zone-redundant-configuration,

shows a visual example of how availability zones are implemented with a Business

Critical service tier deployment.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#zone-redundant-configuration
https://docs.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla#zone-redundant-configuration

411

Notice that each secondary replica is deployed in a different zone. Each zone has

its own set of gateways for connection. Additionally, an Azure Traffic Manager service

is deployed automatically to redirect traffic to each set of gateways. Your application is

completely abstracted for worrying about the traffic manager.

Let’s see how to configure an existing database to be zone redundant (if you

remember back to Chapter 4 this was a choice I could have made when creating a

business critical tier database but I did not enable it).

Figure 8-19. An availability zone implementation with an Azure SQL Database
Business Critical deployment

Chapter 8 availability for azure SQl

412

If I navigate to my database bwazuresqldbbc and select Configure from the

Resource menu, I see an option to make my database zone redundant as seen in

Figure 8-20.

Note this option may only be available in certain azure regions. Keep up with the
latest support for regions at https://docs.microsoft.com/en-us/azure/
availability-zones/az-region.

I selected Yes on this screen and hit the Apply button. As you can imagine, moving to

zones is not completely trivial as we have to redeploy your replicas across zones within

the region. However, for my deployment which is a small database, the operation only

took a few minutes. You can also configure zone redundancy with the az CLI (az sql db
update) and PowerShell (Set-AzSqlDatabase). Availability zones are not available in all

regions. Check your region availability at https://docs.microsoft.com/en-us/azure/

availability-zones/az-region.

Figure 8-20. Making a database zone redundant

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/availability-zones/az-region
https://docs.microsoft.com/en-us/azure/availability-zones/az-region
https://docs.microsoft.com/en-us/azure/availability-zones/az-region
https://docs.microsoft.com/en-us/azure/availability-zones/az-region

413

Note because replicas are now in different datacenters, you may experience
some increased latency for workloads, especially write-intensive oltp applications.
you will have to balance the benefit of availability with the performance needs of
your application. you can always easily switch back to a single zone deployment.

You may be wondering whether you even need a zone redundant deployment. I

mean how often does a datacenter have a major issue. I asked Emily Lisa, lead program

for Azure SQL over Availability Zones, about her thoughts. She gave me an interesting

perspective: “As I am writing this quote I am working from home at my desk after several

months in quarantine due to the COVID-19 pandemic. After the world suddenly and

unexpectedly shut down I had to find new ways and places to stay “available” for my

job. Through this experience I’ve realized how important it is to recognize that nothing

is perfect, unexpected things happen and being ready to adapt to new circumstances is

crucial. At any moment, a natural disaster can take out an entire datacenter, a network

failure can impact the functionality of servers, and many other unexpected events can

occur potentially jeopardizing the availability of your database. We embrace this reality

by actively working to minimize the effects of a single failing component with as little

downtime as possible. With Azure Availability Zones, databases can be replicated within

the same region across several unique physical locations with independent power,

cooling, and networking. The zone redundant configuration which is currently available

for Azure SQL Database Premium, Business Critical, and General Purpose (coming soon)

tiers makes databases resilient to a large set of failures, including catastrophic datacenter

outages, without any changes of the application logic. With this feature enabled, even a

meteor can crash and destroy an entire datacenter and your database will still be up and

running in a different Availability Zone within the same region (too bad the dinosaurs

didn’t have a zone redundant configuration). This gives peace of mind by ensuring low

downtime and no loss of committed data, while automatically handling virtually all

maintenance and failovers. Zone redundancy is the future of HA in the cloud!”

 Geo-replication
Let’s say you want to go even further and make your database resilient across Azure

regions. Azure SQL Database supports a concept called geo-replication. Geo-replication

uses Always On Availability Group technology to asynchronously transmit log changes

Chapter 8 availability for azure SQl

414

to another Azure SQL Database deployment on a different logical server. The secondary

database can be in a different Azure region or the same Azure region. Secondary

databases can be used for read replica purposes.

Note using a geo-replicated database in the same region can give a General
purpose service tier a read replica or expand the number of replicas for a business
Critical service tier (which by default gets one).

Geo-replicated databases can be used for failover purposes, which include

unexpected Azure region events or to support an application upgrade with minimal

downtime. However, failover is a manual process initiated by an administrator through

Azure interfaces or through T-SQL (ALTER DATABASE).

Let’s see how to take the Business Critical deployment I just enabled for availability

zones and create a geo-replicated secondary database in another Azure region. I’ll

navigate to my database, called bwazuresqldbbc, in the Azure portal and select Geo-

Replication from the Azure portal like in Figure 8-21.

Figure 8-21. Configuring geo-replication for Azure SQL Database

Chapter 8 availability for azure SQl

415

Note you see a message on this screen about using auto-failover groups. i will
discuss auto-failover groups in the next section of the chapter.

I want to replicate the database in the South Central US region so will select that

region. I now get a new screen to configure the new logical server to use (could be an

existing server in that region) and choose a Pricing tier. You can see in Figure 8-22

I created a new server as part of the process called bwazuresqlserver2 (on that

screen I was allowed to choose “Allow Azure services to access server”).

Figure 8-22. Choices for creating a geo-replicated database

Chapter 8 availability for azure SQl

416

Notice the Pricing tier matches the deployment, vCore, and storage of my current

database. You do have the option of increasing or decreasing vCore capacity for the

secondary, but you can’t use other service tiers. It may be tempting to use a lower

capacity for the secondary, but there could be consequences for this choice including

• A secondary that gets significantly out of sync

• Transaction log governance on the primary to ensure a secondary

doesn’t get too far out of sync

• An improperly sized new primary if a failover has to occur (although

you could change it after a failover)

The deployment creates a new database of the same name as the primary on the new

logical server and then performs an initial synchronization called seeding. When this

operation is complete, you can see the status of the new secondary like Figure 8-23.

Any changes from my primary are asynchronously sent to the secondary. In

addition, I can now connect to bwazuresqlserver2.database.windows.net and

perform read operation against the bwazuresqldbbc database. The database is read-

only, so any modification operations would fail. Remember I also have access to a

secondary read replica in my primary region since I used Business Critical. In the

case of the secondary replica in the primary region, I need to use a connection string

option (as documented at https://docs.microsoft.com/en-us/azure/azure-sql/

database/read-scale-out#connect-to-a-read-only-replica). When I connect to

Figure 8-23. A geo-replicated secondary database after seeding

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/read-scale-out#connect-to-a-read-only-replica
https://docs.microsoft.com/en-us/azure/azure-sql/database/read-scale-out#connect-to-a-read-only-replica

417

the geo- replicated secondary database, I don’t need this special connection string

option. Azure SQL supports up to four secondary databases configured with geo-

replication. By implementing a geo-replication architecture for a Business Critical

database, I’ve effectively set up a deployment similar to a distributed availability

group in SQL Server (learn more at https://docs.microsoft.com/en-us/sql/

database-engine/availability-groups/windows/distributed-availability-

groups).

Tip you are allowed to create geo-secondary databases based on a geo-
replicated secondary database, thus giving you even more read replica. this is
called chaining, but know that these chained secondaries will likely have a lag of
data synchronization the further you build the chain.

Applications can use Azure technology like Azure Traffic Manager to set

up abstraction to connect to a primary even after failover. Learn more from our

documentation about building applications for global Azure SQL Database deployments

at https://docs.microsoft.com/en-us/azure/azure-sql/database/designing-

cloud- solutions-for-disaster-recovery. Our documentation at https://docs.

microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-

overview has a nice visual showing what a fully deployed Azure SQL Database with geo-

replication can look like as seen in Figure 8-24.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/distributed-availability-groups
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/distributed-availability-groups
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/distributed-availability-groups
https://docs.microsoft.com/en-us/azure/azure-sql/database/designing-cloud-solutions-for-disaster-recovery
https://docs.microsoft.com/en-us/azure/azure-sql/database/designing-cloud-solutions-for-disaster-recovery
https://docs.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview

418

Here are some important points to consider when using geo-replication:

• You can set up a geo-replicated database on another Azure

subscription with a little work. Learn more at https://docs.

microsoft.com/en-us/azure/azure-sql/database/active-geo-

replication-overview#cross-subscription-geo-replication.

• Server-level firewall rules on the primary are not replicated, so

consider using database firewall rules or other methods to connect to

the secondary.

• Using contained database users (even with Azure Activity Directory)

has a huge advantage as they are replicated.

• Geo-replication uses asynchronous replication of data. Therefore, if

you fail over to a secondary, you might experience data loss (but not

consistency). However, if you require a secondary to be completely in

Figure 8-24. A fully deployed Azure SQL Database using geo-replication

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview#cross-subscription-geo-replication
https://docs.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview#cross-subscription-geo-replication
https://docs.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview#cross-subscription-geo-replication

419

sync before a failover, you can use the sp_wait_for_database_copy_
sync stored procedure. Learn more at https://docs.microsoft.

com/en-us/azure/azure-sql/database/active-geo-replication-

overview#preventing-the-loss-of-critical-data.

• Az CLI supports creating and configuring geo-replication (e.g., az sql
db replica), and PowerShell cmdlets exist to support geo-replication

(e.g., New-AzSqlDatabaseSecondary).

 Auto-failover Group
While geo-replication is a great capability, what about Azure SQL Managed Instance?

Also, it would be nice to have an option where failover is automatic and for an

abstraction on the connection to the primary database wherever it exists. That is a

nutshell what auto-failover groups provide.

Figure 8-25 shows a visual of an auto-failover group so you can compare to geo-

replication.

Figure 8-25. Auto-failover groups for Azure SQL Database

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview#preventing-the-loss-of-critical-data
https://docs.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview#preventing-the-loss-of-critical-data
https://docs.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview#preventing-the-loss-of-critical-data

420

Notice here that unlike geo-replication, auto-failover groups operate at the logical

server level (and then you place databases in the failover group).

Figure 8-26 shows the architecture for auto-failover groups for Azure SQL Managed

Instance.

In both figures, notice an Azure Traffic Manager helps abstract the application (you

need to implement this though). Let’s take the logical server I deployed in Chapter 4,

bwazuresqlserver, and create a failover group with a new logical server in another

region. Then I will add a database to the failover group.

I’ll first navigate to my logical server bwazuresqlserver in the Azure portal and select

Failover groups from the Resource menu like in Figure 8-27.

Figure 8-26. Auto-failover groups for Azure SQL Managed Instance

Chapter 8 availability for azure SQl

421

I’ll select Add group to create the new failover group. Figure 8-28 shows my

selections to create the failover group, which includes creating a new logical server in

the South Central US region called bwazuresqlserversouth. I also chose to add the

bwazuresqldb General Purpose database to the group.

Figure 8-28. Choices to create a failover group

Figure 8-27. Creating a failover group for a logical server

Chapter 8 availability for azure SQl

422

Notice the first field is the Failover group name. You are going to love this aspect to

auto-failover groups. This is effectively the virtual logical server name to connect. You

specify this logical server name in your application, and you will always be connected

to the primary logical server for read-write purposes. I’ll discuss shortly how to use the

failover group name to connect to read replicas for secondaries.

I selected Create which fires off a new deployment for the failover group. When the

deployment finished (which includes seeding like geo-replication), Figure 8-29 shows

the update screen for the status of the failover group.

If you click the failover group, you get a very nice global map visual with options to

manage the failover group and connection information for both the primary server and

read-only replicas like Figure 8-30.

Figure 8-29. Failover group after deployment

Chapter 8 availability for azure SQl

423

I’ll come back to this screen shortly to look at failover.

Both servers in the failover group are configured to allow connectivity from my

virtual machine bwsql2019 I deployed in Chapter 3 and have been using in the book.

The current primary server is configured using private link, and when I created the

secondary server as part of the failover group deployment, I chose Allow Azure services

to access server.

Using SSMS in my Azure VM, I connected to the standard logical server

(bwazuresqlserver) and can see all databases, the failover group server name
(bwazuresqlww), the secondary logical server directly (bwazuresqlserversouth),

and the failover group logical server for read replica (bwazuresqlww.secondary).

Figure 8-31 shows all these options.

Figure 8-30. Configuration and managing a failover group in the Azure portal

Chapter 8 availability for azure SQl

424

I only connected to bwazuresqlserver and bwazuresqlserversouth to show you in

SSMS. When I deploy an auto-failover group, it only makes sense to use the failover

server and failover server secondary names.

Let’s now test a failover using the failover group name. I’ll use the scripts from the

ch8_availability\gp_vs_bc folder and modify the querybase_gp.cmd script to use the

server name bwazuresqlww.database.windows.net and leave everything else the same:

 1. Run the workload.

Run the script querybase_gp.cmd from PowerShell. As before,

you should see a stream of row counts like this:

847

Figure 8-31. Connecting to servers for a failover group with SSMS

Chapter 8 availability for azure SQl

425

(1 row affected)

847

(1 row affected)

 2. Navigate back to the Azure portal to failover.

Using the Azure portal, I’ll navigate back to the bwazuresqlserver

logical server and select Failover groups from the Resource Menu.

Then as you can see in Figure 8-32, I’ll select Failover and Yes.

 3. Check the workload status.

For a short period of time, ostress will hit some connection errors

such as these:

07/26/20 22:13:13.945 [0x000007E0] Attempt to establish

connection failed. See the detailed errors that follow:

07/26/20 22:13:13.946 [0x000007E0] SQLState: 42000, Native

Error: 40613

[SQL Server]Database 'bwazuresqldb' on server

'bwazuresqlserver' is not currently available. Please

retry the connection later. If the problem persists,

contact customer support, and provide them the session

tracing ID of '1C2C1472-3C6D-4EE7-AB1D-073D3009409E'.

Notice the error to connect is for the actual logical server, not the

failover group name.

Figure 8-32. Failing over a failover group for Azure SQL Database

Chapter 8 availability for azure SQl

426

 4. Check the Azure portal.

The Azure portal shows in this map a visual of the failover action

occurring to make bwazuresqlserversouth the new primary as

seen in Figure 8-33.

After the failover has occurred, the portal shows the new primary

as seen in Figure 8- 34.

Figure 8-34. Failover group status after a failover

Figure 8-33. A failover in progress for a failover group

Chapter 8 availability for azure SQl

427

 5. Check the workload status.

You will see the workload has already started showing row counts

proving the application doesn’t need to change its connection

properties to stay available.

Here are a few other important points about auto-failover groups for Azure SQL:

• Auto-failover groups can also be managed using the PowerShell

(Add-AzSqlDatabaseToFailoverGroup and Switch-
AzSqlDatabaseFailoverGroup).

• Because auto-failover groups use asynchronous replication data

when a failover occurs automatically, data loss could occur.

Therefore, if you require no data loss with auto-failover groups,

applications can call the sp_wait_for_database_copy_sync

procedure after committing a transaction to ensure all data is

synchronized. Learn more at https://docs.microsoft.com/

en-us/azure/azure-sql/database/auto-failover-group-

overview?tabs=azure-PowerShell#preventing-the-loss-of-

critical- data.

• One of the options you can configure with an auto-failover group is

called a grace period using the GracePeriodWithDataLossHours

parameter (the default is 1 hour). This parameter defines the time

we will wait to do an automatic failover should the primary be down

and we believe data loss may occur. If no data loss would occur, the

automatic failover takes place immediately.

Tip there could be a scenario where the primary comes back online or is
available even after one hour. therefore, if you cannot accept data loss and are not
using the sp_wait_for_database_copy_sync procedure, you may want to set
the grace period to something like 24 hours.

• A great example of how to use an application with an auto-failover

group is available in our documentation with a Java application at

 https://docs.microsoft.com/en-us/azure/azure-sql/database/

geo-distributed-application-configure-tutorial.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-PowerShell#preventing-the-loss-of-critical-data
https://docs.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-PowerShell#preventing-the-loss-of-critical-data
https://docs.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-PowerShell#preventing-the-loss-of-critical-data
https://docs.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-PowerShell#preventing-the-loss-of-critical-data
https://docs.microsoft.com/en-us/azure/azure-sql/database/geo-distributed-application-configure-tutorial
https://docs.microsoft.com/en-us/azure/azure-sql/database/geo-distributed-application-configure-tutorial

428

• A tutorial about how to add an Azure SQL Managed Instance to a

failover group can be found at https://docs.microsoft.com/en-

us/azure/azure-sql/managed-instance/failover-group-add-

instance-tutorial.

The important limitations for auto-failover groups are system databases. System

databases are not replicated. Therefore, any instance-level data, such as SQL Server

Agent jobs, must be manually created on the secondary instance.

Auto-failover groups use geo-replication technology behind the scenes but are

different. My colleague Anna Hoffman created this very nice table as seen in Figure 8-35

to compare geo-replication and auto-failover groups.

 Azure SQL SLA
One of the advantages to deploy SQL Server with Azure SQL Managed Instance and

Database is the promise of availability. Our architecture which I’ve described in this

chapter helps us achieve this promise. The promise for you is in the form of a Service-
Level Agreement (SLA). You can view the official SLA for Azure SQL at https://azure.

microsoft.com/en-us/support/legal/sla/sql-database.

The Azure SQL SLA means that Microsoft will ensure we maintain a service level
or you will be eligible for a credit for your account. Service levels are stated in terms

of nines. Nines are a percentage of uptime or availability you are guaranteed for your

deployment.

Figure 8-35. Geo-replication vs. auto-failover groups

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/failover-group-add-instance-tutorial
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/failover-group-add-instance-tutorial
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/failover-group-add-instance-tutorial
https://azure.microsoft.com/en-us/support/legal/sla/sql-database
https://azure.microsoft.com/en-us/support/legal/sla/sql-database

429

As an example, if you deploy an Azure SQL Database with the Business Critical

or Premium service tier and use Zone Redundancy, your SLA is 99.995%. If you look

at a table like https://en.wikipedia.org/wiki/High_availability, you can see

that 99.995% is defined as “four and a half nines” and means you could experience

at maximum 26.30 minutes per year or 2.19 minutes per month of downtime. Other

deployment options have different service-level promises.

If you look at our SLA documentation, downtime is defined as “…the total

accumulated Deployment Minutes across all Databases in a given Microsoft Azure

subscription during which the Database is unavailable. A minute is considered

unavailable for a given Database if all continuous attempts by Customer to establish a

connection to the Database within the minute fail.”

We also include in our SLA promises for Recovery Point Objective (RPO) and

Recovery Time Objective (RTO) if you use Azure SQL Database with a Business Critical

service tier and use geo-replication (or auto-failover).

Note even though Managed instance is not specifically listed in the Sla
documentation (we are working to add it explicitly), the following Sla applies to
databases for a Managed instance. “azure SQl Database business Critical or
premium tiers not configured for zone redundant Deployments, General purpose,
Standard, or basic tiers, or hyperscale tier with two or more replicas have an
availability guarantee of at least 99.99%.”

There are certain aspects to Azure SQL which allow us to make these SLA promises

including but not limited to

• Built-in availability and integration with the Azure Service Fabric

• Enforcing resource limits such as log governance

Note there are several reasons why log governance is needed to manage paaS
services. this includes database recoverability, high availability, disaster recovery,
and predictable performance. learn more at https://azure.microsoft.com/
en-us/blog/resource-governance-in-azure-sql-database/.

• Enabling database options such as Accelerated Database Recovery

Chapter 8 availability for azure SQl

https://en.wikipedia.org/wiki/High_availability
https://azure.microsoft.com/en-us/blog/resource-governance-in-azure-sql-database/
https://azure.microsoft.com/en-us/blog/resource-governance-in-azure-sql-database/

430

One innovative technology we use in Azure SQL to maximize availability is hot
patching. Hot patching allows us to patch the SQL Server engine code without restarting

SQL Server. Read the amazing story of hot patching from my colleague Hans Olav

Norheim at https://azure.microsoft.com/en-us/blog/hot-patching-sql-server-

engine- in-azure-sql-database/.

 Database Availability and Consistency
For SQL Server, you may be familiar with features and tools to make or restrict the

availability of your database or perform advanced recovery scenarios. In addition, SQL

Server provides tools to ensure the database is consistent, both from a physical and

logical perspective.

Azure SQL in general does not provide the same level of advanced capabilities in

this area mainly because they are not needed given the high level of redundancy and

availability built into the service.

Let’s examine a few of these areas, so your knowledge can be more complete when

comparing to SQL Server.

 Database Availability
You may have needed with a SQL Server to change the database state with ALTER

DATABASE to OFFLINE or EMERGENCY for advanced recovery scenarios. You don’t have

access to use these options, but after reading about all of the built-in capabilities of Azure

SQL and our SLA, you have to ask “Does it matter?” In my opinion (and believe me I’ve

used these options to help customers over the years in support), the answer is no.

With Azure SQL Database and Managed Instance, while you cannot put the data

in single user mode, Azure SQL Database allows you to use the option RESTRICTED_

USER. Learn more at https://docs.microsoft.com/en-us/sql/t-sql/statements/

alter-database-transact-sql-set-options.

In SQL Server 2005, my colleague Robert Dorr and I were in Microsoft Support and

convinced the engineering team to create a simple method to connect into a “hung

server.” The result was a feature called Dedicated Admin Connection (DAC). DAC is

supported for Azure SQL. Learn more at https://docs.microsoft.com/en-us/sql/

database-engine/configure-windows/diagnostic-connection-for-database-

administrators?view=sql-server-ver15.

Chapter 8 availability for azure SQl

https://azure.microsoft.com/en-us/blog/hot-patching-sql-server-engine-in-azure-sql-database/
https://azure.microsoft.com/en-us/blog/hot-patching-sql-server-engine-in-azure-sql-database/
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/diagnostic-connection-for-database-administrators?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/diagnostic-connection-for-database-administrators?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/diagnostic-connection-for-database-administrators?view=sql-server-ver15

431

 Accelerated Database Recovery (ADR)
In my book, SQL Server 2019 Revealed, I covered the amazing story of Accelerated

Database Recovery (ADR). No longer will a SQL Server administrator worry about long-

running database recovery times or out-of-control transaction logs. ADR is not just a

feature; it is part of the Azure SQL availability story! In fact, for Azure SQL, it is just part

of the engine and not really something you turn on or off. You can learn more how ADR

works in our documentation at https://docs.microsoft.com/en-us/azure/azure-

sql/accelerated-database-recovery or in the white paper written by our engineering

team at www.microsoft.com/en-us/research/publication/constant-time-recovery-

in-azure-sql-database/.

 Database Consistency
All Azure SQL databases are configured using the CHECKSUM option for database

consistency. One of the benefits of using a PaaS service is that our engineering team has

automation to check for any inconsistencies due to issues like a checksum problem and

take correction action. For example, if you are deploying a Business Critical service tier,

we can issue an online automatic page repair (learn more how this works at https://

docs.microsoft.com/en-us/sql/sql-server/failover-clusters/automatic-page-

repair-availability-groups-database-mirroring?view=sql-server-ver15).

In addition, keep in mind these facts if you are concerned about any database

inconsistency issue:

• General Purpose and Hyperscale store database and log files on

Azure storage which is mirrored by default with three copies.

• Business Critical tiers have three other replicas always available with

their own storage.

• Our engineering team has built-in data integrity and consistency

alert monitoring in our service. If automation can’t solve the

problem, we will directly notify a customer and take necessary steps

to ensure data is restored and consistent. If we think we can repair a

problem with no data loss, we might take this action and you never

have to be notified.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/accelerated-database-recovery
https://docs.microsoft.com/en-us/azure/azure-sql/accelerated-database-recovery
http://www.microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-sql-database/
http://www.microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-sql-database/
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/automatic-page-repair-availability-groups-database-mirroring?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/automatic-page-repair-availability-groups-database-mirroring?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/automatic-page-repair-availability-groups-database-mirroring?view=sql-server-ver15

432

• Azure SQL does support DBCC CHECKDB (but not repair option) for

you to manually check your database consistency at any time.

• We’ve added checks for databases for “lost write” and “stale read”

detection which we have seen in some situations occur due to an

underlying I/O system issue.

Peter Carlin, a Distinguished Engineer at Microsoft who I mentioned as part of

Azure SQL history in Chapter 1, has a very nice blog post outlining all the things we do

to manage data integrity for your database in Azure. Read his post at https://azure.

microsoft.com/en-us/blog/data-integrity-in-azure-sql-database/.

 Monitoring Availability
As with any set of capabilities, you will no doubt want to monitor various aspects of

availability for Azure SQL. This includes server and instance availability, database

availability, backup/restore history, status of replicas, and failover reasons. In addition,

since Azure SQL runs in the Azure ecosystem, knowing the status and health of Azure

services in regions and datacenters can also be important.

Azure SQL provides you similar interfaces to SQL Server to monitor availability,

including catalog views, Dynamic Management Views (DMV), and Extended Events

(XEvent). In addition, Azure interfaces such as the Azure portal, az CLI, PowerShell, and

REST provide additional capabilities to monitor the availability of your deployment.

Let’s dive into a few examples of using these interfaces and monitoring capabilities.

 Instance, Server, and Database Availability
Aside from Azure service-impacting events, you can view the availability of your Azure

SQL Managed Instance or Azure Database Server and databases through the Azure

portal. One of the primary methods to view a possible reason for a Managed Instance or

Database to not be available is by examining Resource Health through the Azure portal

or REST APIs.

You can always use standard SQL Server tools such as SQL Server Management

Studio to connect to a Managed Instance or Database server and check the status of

these resources through the tool or T-SQL queries.

Chapter 8 availability for azure SQl

https://azure.microsoft.com/en-us/blog/data-integrity-in-azure-sql-database/
https://azure.microsoft.com/en-us/blog/data-integrity-in-azure-sql-database/

433

In addition, interfaces such as az CLI can show the status of Azure SQL such as

az sql mi list – List the status of managed instances.

az sql db list – List the status of Azure SQL Databases.

PowerShell commands can also be used to find out the availability of an Azure SQL

Database such as

Get-AzSQLDatabase – Get all the databases on a server and their details including

status.

REST APIs, although not as simple to use, can also be used to get the status of

Managed Instances and Databases. The complete REST API reference is at https://

docs.microsoft.com/en-us/rest/api/sql/.

Note for a SQl Server, i often look at past errorloG files or the system_health
Xevent session files for service availably and health. azure SQl Managed instance
supports these tools. however, these files are not copied to replicas, so if a failover
occurs, the history of these files is lost.

 Backup and Restore History
Azure SQL automatically backs up databases and transaction logs. Although standard

backup history is not available, long-term backup retention history can be viewed

through the Azure portal or CLI interfaces. Learn more at https://docs.microsoft.

com/en-us/azure/azure-sql/database/long-term-backup-retention-configure.

Additionally, Azure SQL Managed Instance supports using XEvents to track

backup history. See a blog post describing how to do this at https://techcommunity.

microsoft.com/t5/azure-database-support-blog/lesson-learned-128-how-to-

track-the-automated-backup-for-an/ba-p/1442355.

Any restore of a database using Point-In-Time restore results in the creation of a

new database so the history of restore can be viewed as looking at the creation of a

new database. All operations to create a new database can be viewed through Azure

Activity Logs.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/rest/api/sql/
https://docs.microsoft.com/en-us/rest/api/sql/
https://docs.microsoft.com/en-us/azure/azure-sql/database/long-term-backup-retention-configure
https://docs.microsoft.com/en-us/azure/azure-sql/database/long-term-backup-retention-configure
https://techcommunity.microsoft.com/t5/azure-database-support-blog/lesson-learned-128-how-to-track-the-automated-backup-for-an/ba-p/1442355
https://techcommunity.microsoft.com/t5/azure-database-support-blog/lesson-learned-128-how-to-track-the-automated-backup-for-an/ba-p/1442355
https://techcommunity.microsoft.com/t5/azure-database-support-blog/lesson-learned-128-how-to-track-the-automated-backup-for-an/ba-p/1442355

434

 Region, Data Center, and Service Availability
To get a global view of the status of Azure regions and datacenters, use the Azure Status

dashboard which you can find at https://status.azure.com. Figure 8-36 shows an

example of the Azure Status dashboard.

Azure status shows the status of all Azure services in all Azure regions. The status

shows all services independent of your use of a specific service. To get notified of

Azure status, you can use the RSS feed at the top of the page. In addition, you can see a

complete history of Azure status through Azure status history at https://status.azure.

com/status/history.

Figure 8-36. The Azure status dashboard

Chapter 8 availability for azure SQl

https://status.azure.com
https://status.azure.com/status/history
https://status.azure.com/status/history

435

You can also get more information about the health of Azure services specific

to your subscription through the Azure portal for a capability called Azure Service
Health. Through Service Health, you can see current issues for Azure services, planned

maintenance that could affect availability, and health history. Figure 8-37 shows an

example of Service Health for my subscription.

The default view shows any active incidents that could affect availability of your

Azure resources in addition to incidents over the last week. If you select Health History,

you can get more details of past issues for up to the last 3 months. You can select Service

Health from your Azure portal in the dashboard. You can also view history of the health

of a specific Azure resource, such as a database or Managed Instance. I’ll show you an

example of resource health later in this section.

Figure 8-37. Azure Service Health

Chapter 8 availability for azure SQl

436

 Replica Status
To monitor the state of replicas in Azure SQL, you can use the DMV sys.dm_database_
replica_states. This DMV could be used for example to look at the status of replicas for a

Business Critical service tier. You could also use this DMV to check the status for replicas

for a deployment with geo-replication or auto-failover groups.

If you remember, I deployed in Chapter 4 of this book a Business Critical service tier

database called bwazuresqldbbc. I can connect with SSMS to this database and run the

following T-SQL statement:

SELECT is_primary_replica, synchronization_state_desc, synchronization_

health_desc, last_received_time, last_redone_time

FROM sys.dm_database_replica_states;

GO

I get the following results from this database on the logical server:

is_primary_replica synchronization_state_desc synchronization_health_

desc last_received_time last_redone_time

1 SYNCHRONIZED HEALTHY

NULL NULL

I then connected to the same logical server with the database bwazuresqldbbc with

applicationintent=readonly (to connect to a read replica) and ran the same query. The

results look like this:

is_primary_replica synchronization_state_desc synchronization_health_

desc last_received_time last_redone_time

0 SYNCHRONIZED HEALTHY

2020-07-28 01:22:24.813 2020-07-28 01:22:13.880

For geo-replication and auto-failover groups, there are additional DMVs to check

on the status of replication between logical server and instances. This includes

sys.geo_replication_links (run in the context of the logical master) and sys.dm_geo_
replication_link_status (run in the context of the user database). One example of

Chapter 8 availability for azure SQl

437

using these DMVs is seeding (the initial sync of the geo-secondary). sys.geo_replication_

links can show the state of the seeding process as it progresses and completes.

In this chapter, I configured an auto-failover group. Let’s connect to both the primary

and secondary failover group server and see what these DMVs look like.

I connected to the failover group server bwazuresqlww.database.windows.net and

ran the following T-SQL statement:

SELECT partner_server, partner_database, replication_lag_sec, replication_

state_desc, role_desc

FROM sys.dm_geo_replication_link_status;

GO

I got the following results:

partner_server partner_database replication_lag_sec replication_

state_desc role_desc

bwazuresqlserversouth bwazuresqldb 0 CATCH_UP

PRIMARY

A replication_state_desc = CATCHUP means the servers are synchronized.

I then connected to the secondary failover group server of bwazuresqlww.
secondary.database.windows.net and ran the same query. I got these results:

partner_server partner_database replication_lag_sec replication_

state_desc role_desc

bwazuresqlserver bwazuresqldb NULL CATCH_UP

SECONDARY

You can see this is the secondary server paired with the primary logical server.

replication_lage_sec can be used to see if there is a delay in synchronizing the servers.

You can see the full documentation of sys.dm_geo_replication_link_status

at https://docs.microsoft.com/en-us/sql/relational-databases/system-

dynamic- management-views/sys-dm-geo-replication-link-status-azure-sql-

database?view=azuresqldb-current.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-geo-replication-link-status-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-geo-replication-link-status-azure-sql-database?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-geo-replication-link-status-azure-sql-database?view=azuresqldb-current

438

All of these DMVs to check replica status work for both Azure SQL Managed

Instance and Database. az CLI can be used to check on replica status (az sql db replica).

PowerShell cmdlets exist to support checking replica status, for example, Get- AzSqlData
baseReplicationLink.

 Failover Reasons
There are various reasons why a failover can occur, planned and unplanned, for Azure

SQL Managed Instance and Database. Because the reasons for failover could vary, the

best method to track if a failover occurred for your database is to use Resource Health for

your Managed Instance or Database. Figure 8-38 shows an example of Resource Health

for one of my Azure SQL Database deployments and a health event which resulted in a

failover.

Note resource health is reported at the database level for both azure SQl
Managed instance and Database deployments.

Figure 8-38. Resource health history for an Azure SQL Database

Chapter 8 availability for azure SQl

439

You can also use REST APIs to check resource health for an Azure resource. Learn

more at https://docs.microsoft.com/en-us/rest/api/resourcehealth/.

 System Center Management Pack for Azure SQL
System Center Operations Management (SCOM) packs are software modules that help

a user of System Center monitor applications and services. You can learn more about

SCOM packs at https://docs.microsoft.com/en-us/system-center/scom/manage-

overview- management-pack. We have built SCOM packs for both Azure SQL Database

and Managed Instances.

My colleague Ebru Ersan leads our team on the design of SCOM packs. You can read

her blog post about SCOM packs for Managed Instance at https://techcommunity.

microsoft.com/t5/sql-server/released-azure-sql-managed-instance-management-

pack-7-0-22-0/ba-p/1503931. You can download the SCOM pack for Azure SQL

Database at www.microsoft.com/en-us/download/details.aspx?id=38829.

 Summary
In this chapter, you learn the amazing built-in availability capabilities for Azure

SQL, including automatic backups, Point-In-Time restore, and built-in availability

architectures of General Purpose, Business Critical, and Hyperscale.

You also learned how to use the power of Azure for further redundancy with Azure

Availability Zones, geo-replication, and auto-failover groups. You learned how Azure

provides built-in data integrity capabilities and processes and how to monitor the

availability of your Azure SQL deployments.

Availability is the last part of the meat and potatoes of Azure SQL. In the next chapter,

you will complete your knowledge of Azure SQL to learn capabilities not specifically

related to security, performance, or availability.

Chapter 8 availability for azure SQl

https://docs.microsoft.com/en-us/rest/api/resourcehealth/
https://docs.microsoft.com/en-us/system-center/scom/manage-overview-management-pack
https://docs.microsoft.com/en-us/system-center/scom/manage-overview-management-pack
https://techcommunity.microsoft.com/t5/sql-server/released-azure-sql-managed-instance-management-pack-7-0-22-0/ba-p/1503931
https://techcommunity.microsoft.com/t5/sql-server/released-azure-sql-managed-instance-management-pack-7-0-22-0/ba-p/1503931
https://techcommunity.microsoft.com/t5/sql-server/released-azure-sql-managed-instance-management-pack-7-0-22-0/ba-p/1503931
http://www.microsoft.com/en-us/download/details.aspx?id=38829

441
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_9

CHAPTER 9

Completing Your
Knowledge of Azure SQL
You have been through the journey of deploying and configuring Azure SQL Managed

Instance and Databases. You have then seen all the capabilities and tasks you need

to secure your deployments, make and keep Azure SQL fast, and ensure your data is

highly available. In this chapter, we will complete your knowledge for Azure SQL by

looking closer at a feature comparison with SQL Server, understanding options for job

management, see how ways you can help support your deployments, and review best

practices for using Azure SQL.

This chapter will contain examples for you to try out and use as you read along. For

you to try out any of the techniques, commands, or examples I use in this chapter, you

will need

• An Azure subscription.

• A minimum of Contributor role access to the Azure subscription.

You can read more about Azure built-in roles at https://docs.

microsoft.com/en-us/azure/role-based-access-control/built-

in- roles.

• Access to the Azure Portal (web or Windows application).

• A deployment of an Azure SQL Managed Instance and/or an Azure

SQL Database as I did in Chapter 4. The Azure SQL Database I

deployed uses the AdventureWorks sample which will be required to

use some of the examples (I only briefly show Azure SQL Managed

Instance in this chapter, so it is not a problem if skip this step. If you

still have your Managed Instance deployed from previous chapters,

you can use that).

https://doi.org/10.1007/978-1-4842-5931-3_9#DOI
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

442

• To connect to Managed Instance, you will need a jumpbox or virtual

machine in Azure to connect. I showed you how to do this in Chapter 4

of the book. One simple way to do this is to create a new Azure Virtual

Machine and deploy it to the same virtual network as the Managed

Instance (you will use a different subnet than the Managed Instance).

• To connect to Azure SQL Database, I’m going to use the Azure VM

I deployed in Chapter 3, called bwsql2019, and configured for a

private endpoint in Chapter 6 (you could use another method as long

as you can connect to the Azure SQL Database).

• You will run some T-SQL in this chapter, so install a tool like SQL

Server Management Studio (SSMS) at https://docs.microsoft.

com/en-us/sql/ssms/download-sql-server-management-studio-

ssms?view=sql-server-ver15. You can also use Azure Data Studio

at https://docs.microsoft.com/en-us/sql/azure-data-studio/

download-azure-data-studio?view=sql-server-ver15. I installed

both SSMS and ADS in the bwsql2019 Azure Virtual Machine.

• For this chapter, I have script files you can use for several of the

examples. You can find these scripts in the ch9_completingazure

folder for the source files included for the book.

 Surface Area of Azure SQL
Throughout this book, I have compared the features and capabilities of SQL Server with

Azure SQL Managed Instance and Database. Let’s review a few capabilities I often get

asked about that are not specifically related to security, performance, and availability.

As you read through this section, consider these documentation references:

• T-SQL differences between Managed Instance and SQL Server at

https://docs.microsoft.com/en-us/azure/azure-sql/managed-

instance/transact-sql-tsql-differences-sql-server

• T-SQL differences between Azure SQL Database and SQL Server at

 https://docs.microsoft.com/en-us/azure/azure-sql/database/

transact-sql-tsql-differences-sql-server

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server
https://docs.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server
https://docs.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server

443

• Feature comparison between Azure SQL Managed Instance and

Azure SQL Database at https://docs.microsoft.com/en-us/azure/

azure-sql/database/features-comparison

 Linked Servers and Cross-Database Queries
SQL Server users in some cases execute queries for objects (and joining them) that

reside in other databases on the same SQL Server instance (cross-database query)

or another instance (linked server query). Linked servers for SQL Server also allow

queries against other data providers (through OLE-DB) such as Oracle. Cross-database

queries and linked servers allow read queries (SELECT) but also (assuming the provider

supports it) distributed transactions.

Cross-database queries are supported in Azure SQL Managed but not with Azure

SQL Database.

Note azure SQl database does support the concept of elastic database query (in
preview) which can allow joining data across databases. learn more at https://
docs.microsoft.com/en-us/azure/azure-sql/database/elastic-
query-getting-started-vertical.

Linked Servers are supported for Azure SQL Managed Instance but not with

Azure SQL Database. There are limitations though for how you can use Linked Servers

with Azure SQL Managed Instance. For example, you cannot use a linked server for

distributed transactions and only SQL Server–based providers are supported. See the full

list of differences for Linked Servers on Managed Instance at https://docs.microsoft.

com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-

sql- server#linked-servers.

Note You can create a linked Server from a SQl Server on-premises, in azure
Virtual machine, or managed instance, where the remote server is an azure
database logical Server.

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/features-comparison
https://docs.microsoft.com/en-us/azure/azure-sql/database/features-comparison
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-query-getting-started-vertical
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-query-getting-started-vertical
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-query-getting-started-vertical
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#linked-servers
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#linked-servers
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#linked-servers

444

 External Tables
In SQL Server 2016, we introduced a capability called Polybase using a T-SQL object

EXTERNAL TABLE to be directed to Hadoop file systems. In SQL Server 2019, we

expanded this capability to include other data sources such as SQL Server, Oracle,

MongoDB, Teradata, and other sources that support an ODBC Driver.

Note to see examples of polybase with SQl Server 2019, check out module
8 of the SQl Server 2019 workshop at https://github.com/microsoft/
sqlworkshops-sql2019workshop or Chapter 9 of the book SQL Server 2019
Revealed.

At the current time, we do not support Polybase as feature for Azure SQL Managed

Instance or Databases.

However, Azure SQL Database supports external tables to use for elastic scale

query. This means that you can technically set up an external data source to another

Azure SQL Database logical server and database and define an external table with

that data source. So you can now query the remote database as an external table

or even join a local table with the remote database table. You can review the T-SQL

reference for external data source for Azure SQL Database at https://docs.microsoft.

com/en-us/sql/t-sql/statements/create-external-data-source-transact-

sql?view=azuresqldb-current. The external table reference for Azure SQL Database

can be found at https://docs.microsoft.com/en-us/sql/t-sql/statements/create-

external- table-transact-sql?view=azuresqldb-current.

Take a look at a cool example of using this capability from my colleague Dimitri

Furman where he uses external tables to look at Hyperscale read-scale monitoring. You

can find the source at https://github.com/dimitri-furman/samples/tree/master/

azure-sql-readscale-monitoring.

 Database Mail
SQL Server has supported a built-in mail capability since back in the days of SQL Server

4.21 for Windows NT. The latest version of this feature is called Database Mail. The

concept is that you can use T-SQL to send mail messages based on the Simple Mail

Chapter 9 Completing Your Knowledge of azure SQl

https://github.com/microsoft/sqlworkshops-sql2019workshop
https://github.com/microsoft/sqlworkshops-sql2019workshop
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-table-transact-sql?view=azuresqldb-current
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-table-transact-sql?view=azuresqldb-current
https://github.com/dimitri-furman/samples/tree/master/azure-sql-readscale-monitoring
https://github.com/dimitri-furman/samples/tree/master/azure-sql-readscale-monitoring

445

Transfer Protocol (SMTP). If you have never used Database Mail before, you can learn

more at https://docs.microsoft.com/en-us/sql/relational-databases/database-

mail/database-mail.

We introduced support for Database Mail as a feature for Azure SQL Managed

Instance as this was a capability many customers who were trying to use Azure SQL

Database desired as part of their migration. Database Mail is an instance feature which

makes sense why it is part of Azure SQL Managed Instance.

One of the common scenarios for using Database Mail is for alerts for SQL Server

Agent jobs. There are a few configuration differences to use Database Mail for SQL Server

Agent jobs. Read more at https://docs.microsoft.com/en-us/azure/azure-sql/

managed-instance/transact-sql-tsql-differences-sql-server#sql-server-agent.

Just about everything else is the same to use Database Mail with Azure SQL Managed

Instance except for these two differences as called out in the documentation:

• sp_send_dbmail cannot send attachments using @file_attachments

parameter. Local file system and external shares or Azure Blob

Storage are not accessible from this procedure.

• The @query parameter in the sp_send_db_mail procedure doesn’t

work.

 Service Broker
Back in SQL Server 2005, we heard from our customers that they wanted to build

service- oriented applications using asynchronous messaging techniques. We designed

and built a system called Service Broker that uses the power of SQL Server tables,

programming, and communication to implement a messaging system within the SQL

Server engine. If you have never used Service Broker, you can get started at https://

docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-

server-service-broker.

Service broker is another example of an instance feature, and we did not support this

capability with Azure SQL Database. CloudLifter to the rescue again. We support Service

broker applications with Azure SQL Managed Instance. One major exception is that we

only support service broker within the Managed Instance and not cross-instance. See

the full set of differences at https://docs.microsoft.com/en-us/azure/azure-sql/

managed-instance/transact-sql-tsql-differences-sql-server#service-broker.

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/database-mail
https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/database-mail
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#sql-server-agent
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#sql-server-agent
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-service-broker
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-service-broker
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-service-broker
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#service-broker
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#service-broker

446

 Full-Text Search
Full-text search has been an integrated component of the SQL Server engine for many

releases. Full-text search provides searching capabilities through T-SQL against text

data stored in the database. Even though full-text search is technically an instance-

level feature for SQL Server, we support this for both Azure SQL Managed Instance and

Databases. You can read about how to get started with full-text search at https://docs.

microsoft.com/en-us/sql/relational-databases/search/full-text-search.

There are a few limitations with full text when it comes to Azure SQL:

• “Third-party filters” are not supported (examples are Office and .pdf

filters).

• You cannot manage aspects to the services that support full text like

fdhost.

• Semantic search (learn more at https://docs.microsoft.com/

en-us/sql/relational-databases/search/semantic-search-sql-

server) is not supported.

There is another angle to integrate searching capabilities with Azure SQL. That is to

use Azure Search which I’ll discuss in Chapter 10 of the book.

 Machine Learning Services
In SQL Server 2016, we introduced R Services for SQL Server. The concept is that we

would use a new architecture to allow you to run R programs in a secure, isolated, and

scalable manner on the same computer as SQL Server. In SQL Server 2017, we added

Python support and rebranded this capability as Machine Learning Services.

Up until the end of calendar year 2019, we did not offer this capability in Azure

SQL. So I was very excited to see us announce in 2020 the preview of Machines Learning

Services in Azure SQL Managed Instance. Machine Learning Services is an instance-

level feature, so Managed Instance is the perfect fit.

Keep track of the progress of the preview program and eventual general availability

of Machine Learning Services for Azure SQL at https://docs.microsoft.com/en-us/

azure/azure-sql/managed-instance/machine-learning-services-overview. To

gain a deeper understanding of Machine Learning Services, start at https://docs.

microsoft.com/en-us/sql/machine-learning.

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/sql/relational-databases/search/full-text-search
https://docs.microsoft.com/en-us/sql/relational-databases/search/full-text-search
https://docs.microsoft.com/en-us/sql/relational-databases/search/semantic-search-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/search/semantic-search-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/search/semantic-search-sql-server
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/machine-learning-services-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/machine-learning-services-overview
https://docs.microsoft.com/en-us/sql/machine-learning
https://docs.microsoft.com/en-us/sql/machine-learning

447

 What Is Missing?
While the documentation links I’ve provided in this chapter show you some of the

feature differences between Azure SQL and SQL Server, there are two areas that stand

out where I’ve had several customers ask me about a capability they had in SQL Server

but don’t have with Azure SQL.

 Distributed Transactions (DTC)

Distributed transactions with SQL Server require the support and execution of the

Microsoft Distributed Transaction Coordinator (MSDTC). DTC support currently doesn’t

exist in Azure SQL Managed Instance and Database. I suspect one of the reasons is the

complexity of supporting MSDTC in the Azure SQL infrastructure. I also believe that if

we add support for DTC, it would first come to Azure SQL Managed Instance.

It is possible to develop application with distributed transactions across databases

in Azure, but it won’t use the DTC capabilities with SQL Server. You can learn more

at https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-

transactions- overview.

 xp_cmdshell

xp_cmdshell is a system-supported extended stored procedure (xproc) in SQL Server.

This xproc runs as a DLL in the process space of SQL Server but creates a new process on

the SQL Server computer to run the command you provide as a parameter. While a nifty

feature of SQL Server for years, some administrators disable the use of this procedure

because it can open up security concerns. For that reason, we don’t support xp_cmdshell

in Azure SQL.

There really isn’t anything equivalent for Azure SQL to run commands from a T-SQL

procedure that is invoked by the engine. You would need to bring this code outside of

your server-side programming logic into a script or application.

 Job Management
As part of managing a SQL Server environment, you will no doubt want to schedule jobs

to perform various activities related to your SQL Server. Let’s review what options you

have to perform various aspects for job management with your Azure SQL deployment.

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-transactions-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-transactions-overview

448

 SQL Server Agent
For years, users of SQL Server have used the built-in capabilities of SQL Server Agent.

SQL Server Agent is a job scheduling system that is integrated with SQL Server. SQL

Server Agent is another example of an instance-level feature we have not supported with

Azure SQL Database but now support with Azure SQL Managed Instance.

Figure 9-1 shows SSMS within my jumpbox VM I deployed in Chapter 4 connected to

my Azure SQL Managed Instance.

Figure 9-1. SQL Server Agent with Azure SQL Managed Instance

Chapter 9 Completing Your Knowledge of azure SQl

449

You will start using SQL Server Agent, and it will feel very much like job management

with SQL Server. There are a few limitations, and we document these at https://docs.

microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-

differences-sql-server#sql-server-agent.

Probably the biggest difference you will see is that we do not support CmdExec or

PowerShell job step types. SQL Agent for Managed Instance is mostly used for T-SQL

jobs, SSIS jobs, and jobs used to support Replication.

 Elastic Jobs
If Azure SQL Database is your preferred and best deployment option, you do have an

alternative to scheduling jobs that execute T-SQL statements using Azure Elastic Jobs.

You can get started by reading at https://docs.microsoft.com/en-us/azure/azure-

sql/database/elastic-jobs-overview.

One of the cool features of elastic jobs is that I can run jobs in parallel. Let’s see

it in action. I’ll use elastic jobs to schedule a reorganization for an index in databases

concurrently using elastic jobs. I’ll use two of my example databases that I deployed in

Chapter 4 and have used in several other chapters bwazuresqldb and bwazuresqldbbc

from the logical server bwazuresqlserver (if you have deleted this by now, just deploy

two new Azure SQL databases, General Purpose, 2 vCores).

Here are the outlined steps of how to create and execute elastic jobs:

• Deploy a job database.

• Deploy an Elastic Job Agent service referring to the job database.

• Create job credentials, logins, and users.

• Define a target group.

• Create the job.

• Add job steps.

• Run the job.

• Monitor job execution.

Another term you should be familiar with is target logical server and target

database(s). These are the logical server and database(s) you want to run your

jobs against. In my example, bwazuresqlserver is the target logical server and

bwazuresqldb and bwazuresqldbbc are the target logical databases.

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#sql-server-agent
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#sql-server-agent
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server#sql-server-agent
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-overview

450

Let’s go through each step in detail and see how this works. All the scripts for this

example can be found in the ch9_completingazure\elasticjobs folder:

 1. Deploy an elastic job database.

Elastic Job is an Azure service and needs a database to store

information about jobs and scheduling. I’ll call this database

the elastic job database in this example. This is similar to how

SQL Server Agent uses the msdb database. There is no special

requirement for this database. The documentation says you can

use a “S0 or higher” Azure SQL Database. S0 stands for Standard

Service tier (DTU model) and is the lowest of that level. S0 is

actually equivalent to less than one vCore. You could also choose

any vCore-based deployment option including Serverless. Just

know that with Serverless there could be warm-up time that

affects how fast your jobs are executed.

I created a new resource group (bwelasticjobrg), a new

logical server (bwazuresqljob), and a Serverless database

(bwelasticjobdb) with a min of 0.5 cores and max of 1 core to save

costs.

 2. Deploy an Elastic Job Agent Service.

Now you need to deploy the Azure Elastic Job service called

Elastic Job Agent Service.

Search for Elastic Job agent through portal. To create an Elastic

job agent, you will need to choose your elastic job database like in

Figure 9-2.

Chapter 9 Completing Your Knowledge of azure SQl

451

Figure 9-2. Deploying Elastic job agent through the portal

Chapter 9 Completing Your Knowledge of azure SQl

452

 3. Ensure connectivity between the Elastic job agent service and

your target logical server.

In Chapter 6 of the book, I configured my logical server to use

Private Link and to disable any public access. To use elastic jobs,

I’ll need to enable Allow Azure services and resources to access
this server.

 4. Create job credentials, logins, and users.

In order for the Elastic Job Agent service to execute jobs against

a target logical server and database, it needs a login and users

to have permissions. In the elastic job database, you will create

credentials to map to logins and users.

You will need two credentials that will map to logins and users in

the target logical server and database. The credentials can be any

name, but I’ll use a term to describe them:

mastercred – This will map to a login for the logical server and a

user in the target logical master.

jobcred – This will map to a different login in the target logical

server and a user in the target database(s).

You are responsible for creating the logins and users in the target

logical server and database. The jobcred login and user must have

permissions to run the T-SQL code that is part of the job. In my

case, I’m rebuilding indexes so I’ll need this login and user to have

permissions to rebuild the index. I won’t use the server admin

login for the logical server I deployed.

I’ll first create the login and user for mastercred in the logical

master database (I am connected using the server admin

account) with these T-SQL statements as found in the script

mastercredlogin.sql:

CREATE LOGIN mastercred WITH PASSWORD = 'Strongpassw0rd';

GO

Chapter 9 Completing Your Knowledge of azure SQl

453

CREATE USER mastercred FROM LOGIN mastercred;

GO

Now I’ll create the login for the jobcred in the context of the logical

master database as found in the script jobcredlogin.sql:

CREATE LOGIN jobcred WITH PASSWORD = 'Strongpassw0rd';

GO

Next, I’ll create a user mapped to the jobcred login in both target

databases, bwazuresqldb and bwazuresqldbbc, as found in the

script jobcreduser.sql:

CREATE USER jobcred FROM LOGIN jobcred;

GO

exec sp_addrolemember 'db_owner', 'jobcred';

GO

Now in the context of the elastic job database, I need to create

credentials that map to these logins.

Azure SQL (and SQL Server) provides a concept called database
scoped credentials for this purpose. Furthermore, since database

scoped credentials contain password information, they can be

protected by a master key encryption.

Since my elastic job database logical server has Allows Azure

access I can also use bwsql2019 to connect to it can run the

following T-SQL statements to create these credentials as found in

the script createcreds.sql:

Note You may already have a master key in which you don’t need the first step.

-- Create a db master key if one does not already exist,

using your own password.

CREATE MASTER KEY ENCRYPTION BY PASSWORD='Strongpassw0rd';

GO

Chapter 9 Completing Your Knowledge of azure SQl

454

-- Create a database scoped credential for the master

database of server1.

CREATE DATABASE SCOPED CREDENTIAL mymastercred WITH

IDENTITY = 'mastercred', SECRET = 'Strongpassw0rd';

GO

-- Create a database scoped credential.

CREATE DATABASE SCOPED CREDENTIAL myjobcred WITH IDENTITY =

'jobcred', SECRET = 'Strongpassw0rd';

GO

 5. Create target groups and members.

A target group is a logical collection of target members. A target

member is a target logical server and databases. I used the

following T-SQL in the context of the elastic job database to create

the target group and member in the elastic job database as found

in the script createtargetgroup.sql:

-- Add a target group containing server(s)

EXEC jobs.sp_add_target_group 'bwazuresqlgroup'

-- Add a server target member

EXEC jobs.sp_add_target_group_member

'bwazuresqlgroup',

@target_type = 'SqlServer',

@refresh_credential_name='mymastercred', --credential

required to refresh the databases in a server

@server_name='bwazuresqlserver.database.windows.net';

GO

-- Add a server target member

EXEC jobs.sp_add_target_group_member

'bwazuresqlgroup',

@membership_type = 'Exclude',

@target_type = 'SqlDatabase',

@server_name='bwazuresqlserver.database.windows.net',

@database_name = 'bwazuresqldbhyper';

GO

Chapter 9 Completing Your Knowledge of azure SQl

455

EXEC jobs.sp_add_target_group_member

'bwazuresqlgroup',

@membership_type = 'Exclude',

@target_type = 'SqlDatabase',

@server_name='bwazuresqlserver.database.windows.net',

@database_name = 'bwazuresqldbserverless';

GO

--View the recently created target group and target group

members

SELECT * FROM jobs.target_groups WHERE target_group_

name='bwazuresqlgroup';

SELECT * FROM jobs.target_group_members WHERE target_

group_name='bwazuresqlgroup';

GO

The default is that all databases for the logical server will be part

of the target group. Since I only want the job to apply to two of my

databases, you notice I use a syntax to exclude some databases.

 6. Create the job.

Now I’ll create the job which includes a job step (those familiar

with SQL Server Agent will recognize the concept of a job step)

to reorganize an index with the following T-SQL statements in

the context of the elastic job database as found in the script

createjob.sql:

--Add job for create table

EXEC jobs.sp_add_job @job_name='ReorganizeIndexes',

@description='Reorganize Indexes';

GO

-- Add job step for create table

EXEC jobs.sp_add_jobstep @job_name='ReorganizeIndexes',

@command=N'ALTER INDEX PK_SalesOrderDetail_SalesOrderID_

SalesOrderDetailID

ON SalesLT.SalesOrderDetail REORGANIZE;',

Chapter 9 Completing Your Knowledge of azure SQl

456

@credential_name='myjobcred',

@target_group_name='bwazuresqlgroup';

GO

Notice in this case, I use the jobcred credential which is used to

execute the command from the job step. Job can have multiple job

steps, but I’ll only use one for this example.

 7. Run the job.

Now I’ll execute the job with the following T-SQL statement

in the context of the elastic job database as found in the script

startjob.sql:

-- Execute the latest version of a job

EXEC jobs.sp_start_job 'ReorganizeIndexes';

GO

Note the sp_add_job procedure supports parameters to schedule job execution
on the frequency of your choice. You can also update an existing job with sp_
update_job to add in a schedule. learn more at https://docs.microsoft.
com/en-us/azure/azure-sql/database/elastic-jobs-tsql-create-
manage#schedule-execution-of-a-job.

 8. Monitor job execution.

I can monitor the execution of the job using the following T-SQL

statement in the context of the elastic job database as found in the

script jobhistory.sql:

SELECT * FROM jobs.job_executions;

GO

The results will show the successful or failed execution of steps of

the job.

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-tsql-create-manage#schedule-execution-of-a-job
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-tsql-create-manage#schedule-execution-of-a-job
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-tsql-create-manage#schedule-execution-of-a-job

457

 9. View jobs via the Azure portal.

You can also view properties of target groups, credentials, job,

and job history through the Azure portal of the Elastic job agent.

Figure 9- 3 shows an example.

Use the tutorial at https://docs.microsoft.com/en-us/azure/azure-sql/

database/elastic-jobs-tsql-create-manage to learn more about creating elastic job.

PowerShell provides interfaces as well to create and manage elastic jobs. Learn more

at https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-

powershell-create.

Other information about elastic jobs can be found at https://docs.microsoft.com/

en-us/azure/azure-sql/database/elastic-jobs-overview.

 Azure Automation
Azure automation is an Azure service that allows you to automate cloud management

tasks which can include integration with Azure SQL. This includes executing tasks

using languages like PowerShell or Python with a concept called a runbook. Learn more

about Azure automation at https://docs.microsoft.com/en-us/azure/automation/

automation-intro#process-automation.

Figure 9-3. Elastic job agent properties and job history

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-tsql-create-manage
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-tsql-create-manage
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-powershell-create
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-powershell-create
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/elastic-jobs-overview
https://docs.microsoft.com/en-us/azure/automation/automation-intro#process-automation
https://docs.microsoft.com/en-us/azure/automation/automation-intro#process-automation

458

Check out our documentation for specific information on how to use Azure

automation with Azure SQL Database at https://docs.microsoft.com/en-us/azure/

azure-sql/database/automation-manage.

 Supporting Azure SQL
I have spent the majority of my career at Microsoft in technical support, and many of

the details of SQL Server I have compared in this book are based on knowledge I gained

while in support.

There are a few topics regarding supporting your Azure SQL deployment that are

different than SQL Server worth calling out in this chapter including error handling,

stack dumps, using resources in the Azure portal to assist in troubleshooting, and

providing feedback with UserVoice.

 Handling Errors
Most errors that you can encounter with Azure SQL Managed Instance and Database will

be common with SQL Server. Our documentation has a complete list of engine errors at

https://docs.microsoft.com/en-us/sql/relational-databases/errors-events/

database-engine-events-and-errors.

For Azure SQL, you may encounter some new errors, and they usually center around

connectivity, resource governance, and support. You can find a list of some of these

scenarios in our documentation at https://docs.microsoft.com/en-us/azure/azure-

sql/database/troubleshoot-common-errors-issues.

For example, in Chapter 8 of the book, you saw a scenario when an application could

not connect during a failover and encountered an error like this:

07/22/20 21:44:17.444 [0x00001E6C] Attempt to establish connection

failed. See the detailed errors that follow:

07/22/20 21:44:17.444 [0x00001E6C] SQLState: HY000, Native Error: 40613

[SQL Server]Database 'bwazuresqldb' on server 'bwazuresqlserver' is not

currently available. Please retry the connection later. If the problem

persists, contact customer support, and provide them the session tracing ID

of '{CC39135B-D638-4A51-BB25-EABB8A5315A0}'.

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/automation-manage
https://docs.microsoft.com/en-us/azure/azure-sql/database/automation-manage
https://docs.microsoft.com/en-us/sql/relational-databases/errors-events/database-engine-events-and-errors
https://docs.microsoft.com/en-us/sql/relational-databases/errors-events/database-engine-events-and-errors
https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-errors-issues
https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-errors-issues

459

Msg 40613 is an example of a connectivity error because a valid logical server is not

available, but your network connectivity is fine. What this error effectively means is that

your connectivity is fine to our gateways, but the resource we need to redirect you to

(your logical server or instance) is not available.

Let’s say the problem is that a network error has occurred for your application. You

would get a more traditional SQL Server error like this:

10053: A transport-level error has occurred when receiving results from the

server. (Provider: TCP Provider, error: 0 - An established connection was

aborted by the software in your host machine)

An example of a resource governance type of error is exceeding a resource limit

as specified by your deployment option. For example, for Azure SQL Database, if you

exceeded the maximum number of workers, you might get an error like this:

Msg 10928

The request limit for the database is <limit> and has been reached.

The limit you may encounter could be storage. The following code is an example of

an error when you have exceeded the maximum storage limit for a Managed Instance:

Msg 1133

The managed instance has reached its storage limit. The storage usage for

the managed instance cannot exceed (%d) MBs.

Finally, you may encounter an error because you are trying to use a feature or a

T-SQL statement that is not supported. For example, if you tried to change the “max

server memory” option with sp_configure in Managed Instance, you would get an error

like this:

Msg 5870

Changes to server configuration option max server memory (MB) are not

supported in SQL Database Managed Instances

An error may not be so obvious as to the problem. If you tried to execute sp_

configure when connected to Azure SQL Database, you would get an error like as follows,

indicating this system procedure is not supported for Azure SQL Database:

Msg 2812, Level 16, State 62, Line 1

Could not find stored procedure 'sp_configure'.

Chapter 9 Completing Your Knowledge of azure SQl

460

In some cases, you will encounter an error because you don’t have access to a feature

due to your deployment option. For example, In-Memory OLTP is only available in

Business Critical service tiers. Therefore, if you try to create a memory-optimized table in

a General Purpose service tier, you will encounter the following error:

Msg 40536, Level 16, State 2, Line 1

'MEMORY_OPTIMIZED tables' is not supported in this service tier of the

database. See Books Online for more details on feature support in different

service tiers of Windows Azure SQL Database.

 Stack Dumps
In some cases, the SQL Server engine encounters a fatal error (e.g., ACCESS_

VIOLATION) that results in a termination of the connection of the application and the

creation of a stack dump on the server. If this type of problem is persistent, users of SQL

Server are used to working with Microsoft technical support to examine these dump

files to determine the cause of the problem. Here is a link to a Microsoft article that

describes an example of this type of problem: https://support.microsoft.com/en-

us/help/4519796/fix-stack-dump-occurs-when-table-type-has-a-user-defined-

constraint-in.

For Azure SQL, you don’t have access to the underlying file system to look at these

files. The good news is that it doesn’t matter. Stack dumps are conditions that Azure

SQL automatically handles. It is possible your application may encounter one of these

types of problems, but our back-end systems have alerts to monitor these types of issues

automatically. Our engineers get notified, and an immediate investigation is initiated.

If the problem is severe enough to require SQL Server to be restarted, we may initiate a

failover. One of the benefits to this type of monitoring is that we may recognize a pattern

to a problem like this that affects multiple users and initiate a code fix on the next train –

another example of the benefits of a versionless SQL Server.

 Troubleshooting Resources in the Azure Portal
My longtime friend and colleague at Microsoft Keith Elmore pivoted his career in

support several years ago to focus on Azure SQL. Keith and his team in support worked

with our engineering team to build in tools to assist you in troubleshooting your own

problems in the Azure portal.

Chapter 9 Completing Your Knowledge of azure SQl

https://support.microsoft.com/en-us/help/4519796/fix-stack-dump-occurs-when-table-type-has-a-user-defined-constraint-in
https://support.microsoft.com/en-us/help/4519796/fix-stack-dump-occurs-when-table-type-has-a-user-defined-constraint-in
https://support.microsoft.com/en-us/help/4519796/fix-stack-dump-occurs-when-table-type-has-a-user-defined-constraint-in

461

There are two paths in the Azure portal to get assistance for troubleshooting:

• The Troubleshooting tool through Resource Health

• Assisted path by opening a support request

I mentioned using the Resource Health option in the Resource Menu to look for

possible failovers that affected availability. Figure 9-4 shows this screen for my Azure

SQL Database bwazuresqldb with a reference to select a Troubleshooting tool.

If you select Troubleshooting tool, you will see a set of Common Problems based on

the top issues Microsoft support sees from customer support requests like Figure 9-5.

Figure 9-4. Accessing the troubleshooting tool from Resource Health

Chapter 9 Completing Your Knowledge of azure SQl

462

Note this screen is also available from Diagnose and Solve Problems in the
resource menu in the azure portal.

If I select a topic like Availability and Connectivity, I’m presented with a screen

like Figure 9-6 that has options to run a troubleshooter or look at possible manual

troubleshooting steps based on known common issues related to the topic.

Figure 9-5. Common problems for Azure SQL

Chapter 9 Completing Your Knowledge of azure SQl

463

In the top section, you can put in details like when the problem happened and errors

you are seeing. If you select Submit, then a process is run to check telemetry available

about your deployment (not your data) to see if any issues were detected. It is possible

there was a known problem during the time you selected that has been resolved or point

you to resources to solve it.

Figure 9-6. An Azure SQL troubleshooter

Chapter 9 Completing Your Knowledge of azure SQl

464

At the bottom of the screen (you will see more if you scroll down) are a series of common

errors or scenarios related to the topic with pointers to documentation to assist you.

You also may want to try and create a support request online about your problem.

Figure 9-7 shows how you can select New support request from the Resource Menu to

be provided with a list of questions.

Figure 9-7. Creating a support request for Azure

Chapter 9 Completing Your Knowledge of azure SQl

465

Notice on this screen we can recognize what resources you have deployed. Having

more context on your resources could potentially allow us to find a known problem.

Furthermore, if we don’t find a known problem, having this context allows Microsoft

Support to resolve your issue faster. You can read more about the complete support

request experience at https://docs.microsoft.com/en-us/azure/azure-portal/

supportability/how-to-create-azure-support-request.

Microsoft has various support plans to help you with your Azure deployments. All

Azure customers for no charge get a fundamental set of support options. However, there

are also options to pay for support to increase your level of availability for Microsoft

Support to handle business critical issues 24x7. Learn about all the Azure support plans

at https://azure.microsoft.com/en-us/support/plans/.

 UserVoice
You may be using Azure SQL and have a suggestion, not necessarily a problem that

needs support. Microsoft provides a forum for your feedback for Azure SQL through a

concept called UserVoice or Azure feedback. You can access the feedback sites for Azure

SQL Database and Managed Instance at

https://feedback.azure.com/forums/217321-sql-database

https://feedback.azure.com/forums/915676-sql-managed-instance.

I can assure you that as an engineering team we do look at these requests and how

customers vote on them, so find something you are passionate about and get others to

vote for your idea.

 Azure SQL Best Practices
To wrap up this chapter, let’s take a look at resources that can help you with best

practices for your Azure SQL deployment.

 Security Playbook
About a year ago, Jakub Szymaszek, a Principal Program Manager on our team who

specializes in security (and one of the nicest people you will ever meet), approached me

about an idea the team was working on. He said, “Bob, you have worked with SQL Server

for many years. Can you take a look at a security playbook we are working on?” I gave him

some feedback and looked forward to how the project would progress.

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/azure/azure-portal/supportability/how-to-create-azure-support-request
https://docs.microsoft.com/en-us/azure/azure-portal/supportability/how-to-create-azure-support-request
https://azure.microsoft.com/en-us/support/plans/
https://feedback.azure.com/forums/217321-sql-database
https://feedback.azure.com/forums/915676-sql-managed-instance

466

The result of this effort has been infused into our documentation at https://docs.

microsoft.com/en-us/azure/azure-sql/database/security-best-practice. This

document covers the collective knowledge of our team for best practices for you to

secure Azure SQL. This includes authentication, access management, data protection,

network security, monitoring and auditing, common security threads, and security

aspects for availability. This is your “de facto” guide to read and learn as you deploy and

secure your Azure SQL deployments. You will find many of the concepts you learned in

Chapter 6 of the book line up with these best practices.

One of the best practices recommended in this document (as well as in Chapter 6

of the book) is to take advantage of the Azure Security Center. You can read more about

the Azure Security Center at https://docs.microsoft.com/en-us/azure/security-

center/security-center-intro. Figure 9-8 is an example of the dashboard that comes

with the Azure Security Center across all Azure resources.

Figure 9-8. The Azure security center

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/security-best-practice
https://docs.microsoft.com/en-us/azure/azure-sql/database/security-best-practice
https://docs.microsoft.com/en-us/azure/security-center/security-center-intro
https://docs.microsoft.com/en-us/azure/security-center/security-center-intro

467

 Best Practices for Performance
In Chapter 7 of the book, you saw a comprehensive look at performance for Azure

SQL. There are some best practices to follow as you saw in that chapter. We also have

a very nice summary of performance best practices for you to read at https://docs.

microsoft.com/en-us/azure/azure-sql/database/performance-guidance. This

includes guidance for monitoring, query design, and application development.

Another excellent resource comes from my longtime colleague Jack Li who now

works in our engineering team. Learn more at https://docs.microsoft.com/en-us/

azure/azure-sql/identify-query-performance-issues.

 Azure Advisor
Given that in the Azure ecosystem there is much telemetry about your deployments

(but not your data), why not build in some automation to give you advice? That is Azure
Advisor. Azure Advisor is the collective knowledge of the Azure engineering team all

up to give you advice about your deployments in the topics of Cost, Security, Reliability,

Operational Excellence, and Performance. You can read more about Azure Advisor at

https://docs.microsoft.com/en-us/azure/advisor/advisor-overview. Figure 9-9

shows an example of Azure Advisor for my subscriptions.

Figure 9-9. Azure Advisor

Chapter 9 Completing Your Knowledge of azure SQl

https://docs.microsoft.com/en-us/azure/azure-sql/database/performance-guidance
https://docs.microsoft.com/en-us/azure/azure-sql/database/performance-guidance
https://docs.microsoft.com/en-us/azure/azure-sql/identify-query-performance-issues
https://docs.microsoft.com/en-us/azure/azure-sql/identify-query-performance-issues
https://docs.microsoft.com/en-us/azure/advisor/advisor-overview

468

Here is a nice blog post outlining what Azure Advisor can do you for: https://

azure.microsoft.com/en-us/blog/your-single-source-for-azure-best-

practices/.

Notice in Azure Advisor the area of saving costs. Our documentation calls out some

of these cost saving ideas at https://docs.microsoft.com/en-us/azure/advisor/

advisor-cost-recommendations. For me, saving costs are very important balanced with

the needs of your application for security, performance, and availability. Keep these

cost saving ideas in mind for Azure SQL:

• Monitor your performance for Azure SQL Database and right-size

your vCore and storage choices over time. You saw in Chapter 7 of

the book how easy it is to scale databases. However, Hyperscale (as

of today) is a one-way choice and Managed Instance scaling can take

time.

• Take a hard look at the Serverless compute tier. Serverless comes with

autoscaling, pay per second, and pause for compute when idle.

• Shut down Azure Virtual Machines when you don’t need them.

Remember the advice Anna Hoffman gave me I discussed in

Chapter 3 about using burstable Azure virtual machines

(https://docs.microsoft.com/en-us/azure/virtual-machines/

sizes-b-series- burstable).

• Our General Manager of Data Marketing, John “JG” Chirapurath,

has a very nice blog post on how to optimize costs for Azure SQL

including taking advantage of Azure Hybrid Benefit. Read more

at https://azure.microsoft.com/en-us/blog/eight-ways-to-

optimize-costs-on-azure-sql/.

Note another way to analyze costs is to use the Cost analysis option in the
azure portal. this provides a nice breakdown of costs and helps forecast future
costs. learn more at https://docs.microsoft.com/en-us/azure/cost-
management- billing/costs/quick-acm-cost-analysis.

Chapter 9 Completing Your Knowledge of azure SQl

https://azure.microsoft.com/en-us/blog/your-single-source-for-azure-best-practices/
https://azure.microsoft.com/en-us/blog/your-single-source-for-azure-best-practices/
https://azure.microsoft.com/en-us/blog/your-single-source-for-azure-best-practices/
https://docs.microsoft.com/en-us/azure/advisor/advisor-cost-recommendations
https://docs.microsoft.com/en-us/azure/advisor/advisor-cost-recommendations
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://azure.microsoft.com/en-us/blog/eight-ways-to-optimize-costs-on-azure-sql/
https://azure.microsoft.com/en-us/blog/eight-ways-to-optimize-costs-on-azure-sql/
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis

469

 Stay in Touch with Our Team
I have some resources for you to use to keep track of various aspects of Azure SQL, gain

more knowledge, and learn more best practices:

• Follow the Twitter handle @AzureSQL. This is the official twitter

handle for our Azure SQL engineering team. Also we often use

#azuresql to post interesting announcements, presentations, and

facts about Azure SQL. My colleague Marisa Brasile does an amazing

job of keeping the community and industry up to date with these

resources.

• Want to keep track of the latest updates on Azure SQL (especially

when it comes to performance)? Follow my colleague Joe Sack (who

is the technical reviewer of this book) for his blog posts at https://

azure.microsoft.com/en-us/blog/author/josack/. You can

also follow future blog posts from Joe and other members of our

engineering team at https://techcommunity.microsoft.com/t5/

azure-sql-database/bg-p/Azure-SQL-Database.

• Several engineers who used to work for the famous CAT team now

work as my colleagues. There are excellent blog posts from people

like Dimitri Furman and Denzil Ribeiro you can find at https://

techcommunity.microsoft.com/t5/datacat/bg-p/DataCAT.

• My colleague Anna Hoffman and I built a series of training materials

for self-paced study and hands-on learning. The content for these

materials spans labs, videos, and open source. Check out more at

these links:

https://aka.ms/azuresqlfundamentals – This is a self-paced course you can

take on Microsoft Learn. The cool part of this course is that you don’t need an Azure

subscription. A free sandbox is provided for you to try out Azure SQL!

https://aka.ms/azuresql4beginners – This is a series of short videos on YouTube

(some 60+ videos) for you to learn Azure SQL at your own pace. The videos line up with

the Azure SQL Fundamentals labs (but there is even more here).

Chapter 9 Completing Your Knowledge of azure SQl

https://azure.microsoft.com/en-us/blog/author/josack/
https://azure.microsoft.com/en-us/blog/author/josack/
https://techcommunity.microsoft.com/t5/azure-sql-database/bg-p/Azure-SQL-Database
https://techcommunity.microsoft.com/t5/azure-sql-database/bg-p/Azure-SQL-Database
https://techcommunity.microsoft.com/t5/datacat/bg-p/DataCAT
https://techcommunity.microsoft.com/t5/datacat/bg-p/DataCAT
https://aka.ms/azuresqlfundamentals
https://aka.ms/azuresql4beginners

470

https://aka.ms/sqlworkshops – This website directs you to GitHub repos built by

the engineering team. My colleague Buck Woody shepherds this site, and we have an

Azure SQL Workshop tied off this site. The workshop is open source and includes a slide

deck that you will see on the YouTube videos. The content here is free. Take the content,

deck, and source code and fork it for your own training needs. Since this is GitHub, the

latest version of the training will be here.

• Anna also hosts a video series called Data Exposed where members

of the engineering team talk about various aspects of Azure SQL and

SQL Server. Take a look at this series at https://channel9.msdn.

com/Shows/Data-Exposed.

 Summary
In this chapter, you completed your knowledge of Azure SQL by looking at features

compared to SQL Server such as linked servers and Database Mail, understanding

options for job management, exploring ways to support your deployments, and

reviewing best practices for using Azure SQL.

If your knowledge is complete, is that it? Not quite. If you are going to make the move

to Azure, why not go bigger? In the final chapter of this book, we will explore how to take

advantage of the fact that you have deployed your database in the world’s computer.

Chapter 9 Completing Your Knowledge of azure SQl

https://aka.ms/sqlworkshops
https://channel9.msdn.com/Shows/Data-Exposed
https://channel9.msdn.com/Shows/Data-Exposed

471
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3_10

CHAPTER 10

Go Big with the Cloud
I wanted readers of this book to finish with a feeling of comfort. Azure SQL is SQL Server

in the cloud, and you have read in this book details on what is the same and what is

different. I also wanted readers to not just think Azure SQL is just about deploying

an instance or a database. I want you to learn how to take advantage of the world’s

computer and all the services that come with it.

This chapter will contain examples for you to try out and use as you read along. For you

to try out any of the techniques, commands, or examples I use in this chapter, you will need

• An Azure subscription.

• A minimum of Contributor role access to the Azure subscription. You

can read more about Azure built-in roles at https://docs.microsoft.

com/en-us/azure/role-based-access-control/built-in-roles.

• Access to the Azure Portal (web or Windows application).

• A deployment of an Azure SQL Database as I did in Chapter 4. The

Azure SQL Database I deployed uses the AdventureWorks sample

which will be required to use some of the examples.

 Integration with Azure Services
Because you have deployed in Azure, you have access to the world’s computer through

your Azure subscription. You have already seen examples of this so far in the book including

• Azure interfaces like the Azure portal, az CLI, PowerShell,

and REST APIs

• Connecting to Azure SQL Managed Instance and Databases from an

Azure Virtual Machine

• Kerberos authentication with Azure Active Directory

https://doi.org/10.1007/978-1-4842-5931-3_10#DOI
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

472

• Managing your own encryption keys with Azure Key Vault

• Azure services to give you the advice you need with Azure Advisor

and Azure Security Center

• Azure Elastic Job Agent to schedule T-SQL jobs for your Azure SQL

Database

Basically, if any Azure Service has the ability to connect using the TDS protocol, it

can integrate with Azure SQL Managed Instance or Databases. I’ll discuss a few possible

options for Azure services for you to consider in the next section on Azure solutions.

Consider first taking a look at some of the designed integrated services by looking at

the Azure portal for a deployed Azure SQL Database.

 Power Platform
Figure 10-1 shows integration with the Power Platform (https://docs.microsoft.com/

en-us/power-platform/) from the Resource menu.

Let’s examine each of these integration points in more detail.

Figure 10-1. Power Platform integration with Azure SQL

Chapter 10 Go BiG with the Cloud

https://docs.microsoft.com/en-us/power-platform/
https://docs.microsoft.com/en-us/power-platform/

473

 Power BI

Power BI is the most popular reporting platform in the world. Selecting this integration

point will point you to documentation on how to build Power BI reports to connect to

your Azure SQL Database and the ability to point and click to get a Power BI Desktop file

(a .pbids file) which has connection information built in to connect to your logical server

and database.

If you are interested in looking at Power BI reports connected to Azure SQL, consider

these resources:

• Get started with Power BI at https://powerbi.microsoft.com/.

• Get started with Power BI with Azure SQL Database at https://

powerbi.microsoft.com/en-us/blog/using-power-bi-to-

visualize- and-explore-azure-sql-databases/.

• Learn from one of the world’s experts on Power BI (and a close friend

of mine) Adam Saxton at https://guyinacube.com/. Adam is joined

on this site by another amazing expert (and another great friend)

Patrick LeBlanc, https://guyinacube.com/author/pleblanc/.

 Power Apps

Power Apps is a new rapid low-code system to build new applications. Think of visual-

based development. I love trying new technology, so I selected Power Apps from the

Resource Menu from my database. On the next screen, I selected Get Started and was

presented with a screen like Figure 10-2.

Chapter 10 Go BiG with the Cloud

https://powerbi.microsoft.com/
https://powerbi.microsoft.com/en-us/blog/using-power-bi-to-visualize-and-explore-azure-sql-databases/
https://powerbi.microsoft.com/en-us/blog/using-power-bi-to-visualize-and-explore-azure-sql-databases/
https://powerbi.microsoft.com/en-us/blog/using-power-bi-to-visualize-and-explore-azure-sql-databases/
https://guyinacube.com/
https://guyinacube.com/author/pleblanc/

474

When I selected Create, I was brought to a new browser window (pop-ups must be

enabled) that looked like Figure 10-3.

Figure 10-2. Creating a Power App application with Azure SQL Database

Chapter 10 Go BiG with the Cloud

475

The visual in the middle of the screen is a pre-built object in Power Apps to view

Customer data from my database. I can then use the Power App designer to customize to

my needs.

Power Apps could be a very attractive way for your organization to build new

applications, especially using Azure resources. Get started with Power Apps at

 https://powerapps.microsoft.com/en-us/build-powerapps/.

 Power Automate

Power Automate, formerly known as Microsoft Flow, is a no-code/low-code platform

for building flows to automate business processes. Get started with Power Automate at

https://docs.microsoft.com/en-us/power-automate/getting-started. If you select

Power Automate form the Resource menu of your database, you will be presented with

a series of flow templates to integrate Power automation with Azure SQL Database. An

example of a flow template is building automation to send email when an Azure SQL

Database table is refreshed. You can see this example at https://flow.microsoft.com/

en-us/galleries/public/templates/2040562fd8d0432d97673715051841ac/send-

office- 365-email-and-mobile-notification-when-sql-table-is-refreshed.

Figure 10-3. A Power App application

Chapter 10 Go BiG with the Cloud

https://powerapps.microsoft.com/en-us/build-powerapps/
https://docs.microsoft.com/en-us/power-automate/getting-started
https://flow.microsoft.com/en-us/galleries/public/templates/2040562fd8d0432d97673715051841ac/send-office-365-email-and-mobile-notification-when-sql-table-is-refreshed
https://flow.microsoft.com/en-us/galleries/public/templates/2040562fd8d0432d97673715051841ac/send-office-365-email-and-mobile-notification-when-sql-table-is-refreshed
https://flow.microsoft.com/en-us/galleries/public/templates/2040562fd8d0432d97673715051841ac/send-office-365-email-and-mobile-notification-when-sql-table-is-refreshed

476

 Azure Search
In Chapter 9, I discussed how full-text search is integrated with the SQL Server engine

and is available for Azure SQL Managed Instance and Database. Another option is to

integrate search with an Azure service called Azure Search, newly renamed to Azure
Cognitive Search.

Azure Search is a search-as-a-service cloud solution. Similar to a PaaS service, Azure

Search lets you focus on building search indexes and applications vs. worrying about the

underlying infrastructure. Get started with Azure Search at https://docs.microsoft.

com/en-us/azure/search/.

Let’s see how Azure Search integrates with Azure SQL Database. If I select Azure

Search from the Resource menu, I get a screen to add an Azure search service to index

my database. I selected the option on this screen to first create a new Azure search

service. You can see in Figure 10-4 I now have an option to connect my new search

service to my database.

Figure 10-4. Connect Azure search with Azure SQL Database

Chapter 10 Go BiG with the Cloud

https://docs.microsoft.com/en-us/azure/search/
https://docs.microsoft.com/en-us/azure/search/

477

Now as seen in Figure 10-5, I add in details for my database and table to index with

the search service.

Next, there is an optional step to add in AI enrichment into the search index. This

is where the cognitive part of the name comes into play. Learn more how to add these

options at https://docs.microsoft.com/en-us/azure/search/cognitive-search-

concept-intro. I’ll skip this step to get a screen like Figure 10-6 to customize the index

for searching.

Figure 10-5. Connect Azure search with a database and table

Chapter 10 Go BiG with the Cloud

https://docs.microsoft.com/en-us/azure/search/cognitive-search-concept-intro
https://docs.microsoft.com/en-us/azure/search/cognitive-search-concept-intro

478

This is where I can select different columns to index with different indexing

techniques. I then select Create an indexer to pick a one-time build or a schedule like in

Figure 10-7.

Figure 10-6. Customizing the search index

Chapter 10 Go BiG with the Cloud

479

After I hit Submit, an index population is started asynchronously like in Figure 10-8.

Figure 10-7. Creating an indexer for Azure Search

Figure 10-8. Index build notification

Chapter 10 Go BiG with the Cloud

480

I can see in the Notifications links to check the progress of the index. When the build

is done, I chose a link to search on the index (click here to start searching) using Search

Explorer as seen in Figure 10-9.

Learn more how to use Azure Search Explorer in the portal at https://docs.

microsoft.com/en-us/azure/search/search-explorer.

Here are other resources to help you go further with Azure Search and Azure SQL:

• Learn more how to get started with Azure Search at https://docs.

microsoft.com/en-us/azure/search/search-what-is-azure-

search#how-to-get-started.

• Check out this tutorial to connect to a Managed Instance at https://

docs.microsoft.com/en-us/azure/search/search-howto-

connecting-azure-sql-mi-to-azure-search-using-indexers.

Figure 10-9. Azure Search Explorer

Chapter 10 Go BiG with the Cloud

https://docs.microsoft.com/en-us/azure/search/search-explorer
https://docs.microsoft.com/en-us/azure/search/search-explorer
https://docs.microsoft.com/en-us/azure/search/search-what-is-azure-search#how-to-get-started
https://docs.microsoft.com/en-us/azure/search/search-what-is-azure-search#how-to-get-started
https://docs.microsoft.com/en-us/azure/search/search-what-is-azure-search#how-to-get-started
https://docs.microsoft.com/en-us/azure/search/search-howto-connecting-azure-sql-mi-to-azure-search-using-indexers
https://docs.microsoft.com/en-us/azure/search/search-howto-connecting-azure-sql-mi-to-azure-search-using-indexers
https://docs.microsoft.com/en-us/azure/search/search-howto-connecting-azure-sql-mi-to-azure-search-using-indexers

481

• Here is more information on how to use Azure Search with Azure

SQL Database at https://docs.microsoft.com/en-us/azure/

search/search-howto-connecting-azure-sql-database-to-

azure- search-using-indexers.

• Read this comparison of Azure Search with other search services and

techniques including full-text search at https://docs.microsoft.

com/en-us/azure/search/search-what-is-azure-search#how-it-

compares.

 Stream Analytics
Azure Stream Analytics as its name implies is a real-time event-processing engine to

analyze and process high volumes of streaming data. Get started with Azure Stream

Analytics at https://docs.microsoft.com/en-us/azure/stream-analytics/stream-

analytics- introduction.

Stream Analytics uses a job system. From the Azure portal, you can select Stream

Analytics to assist you in creating a job that will take input data from Azure IOT Hub or

Azure Event Hub and stream the data into Azure SQL Database. Learn more the process

of how to do this at https://docs.microsoft.com/en-us/azure/azure-sql/database/

stream-data-stream-analytics-integration.

I love examples to learn a topic, so check out our documentation for Streaming

Analytic solutions such as Read-time fraud detection at https://docs.microsoft.com/

en-us/azure/stream-analytics/stream-analytics-real-time-fraud-detection.

 Azure Architectures and Solutions
Because Azure is the world’s computer, just connecting an Azure service to Azure

SQL Database is just the tip of the iceberg. Connecting Azure services into a complete

solution architecture is not only possible but very real. Microsoft has put together (and

continually adds) solutions based on architectures for real-world business scenarios.

Start with the Azure Architecture Center at https://docs.microsoft.com/en-us/

azure/architecture/. Here you will find Azure architectures you can browse for

solutions at https://docs.microsoft.com/en-us/azure/architecture/browse/.

Chapter 10 Go BiG with the Cloud

https://docs.microsoft.com/en-us/azure/search/search-howto-connecting-azure-sql-database-to-azure-search-using-indexers
https://docs.microsoft.com/en-us/azure/search/search-howto-connecting-azure-sql-database-to-azure-search-using-indexers
https://docs.microsoft.com/en-us/azure/search/search-howto-connecting-azure-sql-database-to-azure-search-using-indexers
https://docs.microsoft.com/en-us/azure/search/search-what-is-azure-search#how-it-compares
https://docs.microsoft.com/en-us/azure/search/search-what-is-azure-search#how-it-compares
https://docs.microsoft.com/en-us/azure/search/search-what-is-azure-search#how-it-compares
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/azure-sql/database/stream-data-stream-analytics-integration
https://docs.microsoft.com/en-us/azure/azure-sql/database/stream-data-stream-analytics-integration
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-real-time-fraud-detection
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-real-time-fraud-detection
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/browse/

482

One example is Internet of Things (IOT) solutions. An example solution

architecture to build an IOT solution is at https://docs.microsoft.com/en-us/azure/

architecture/reference-architectures/iot. The documentation shows a visual of

how Azure services are connected like Figure 10-10.

You can see from this visual that data is processed from IOT Hub into a Warm path

store which can be Azure SQL Database. We have even built sample code on GitHub

at https://github.com/mspnp/iot-guidance to show you how to build a solution

like this. The code to implement the Azure SQL Database part of this solution can be

found at https://github.com/mspnp/iot-guidance/tree/master/src/WarmPath/

WarmPathDeployment_SqlDb. If you look closely at this solution, Azure SQL Database

is used to store telemetry events generated by drones. The code uses technology like

clustered columnstore indexes, JSON functions in T-SQL, and geo-spatial functions built

into the SQL Server engine for Azure SQL.

Figure 10-10. Azure IOT reference architecture

Chapter 10 Go BiG with the Cloud

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/iot
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/iot
https://github.com/mspnp/iot-guidance
https://github.com/mspnp/iot-guidance/tree/master/src/WarmPath/WarmPathDeployment_SqlDb
https://github.com/mspnp/iot-guidance/tree/master/src/WarmPath/WarmPathDeployment_SqlDb

483

 Azure Synapse
Azure Synapse (formerly called Azure SQL Data Warehouse) is an analytics as a service.

Synapse combines the power of data warehousing with Big Data analytics. Azure

Synapse deserves its own book, but I wanted to call it out in this chapter so you know it

is not technically part of the Azure SQL suite. Azure Synapse is amazing technology, and

if you are looking for a cloud service for large-scale analytics, Synapse could be a good

choice for you. Get started with Azure Synapse at https://docs.microsoft.com/en-us/

azure/synapse-analytics/sql-data-warehouse/.

One interesting component of Synapse is SQL on-demand. SQL on-demand is a

serverless query service against your data lake. There is a database to store metadata

(e.g., external tables) but not data. You use the query service to query data against other

data sources such as your warehouse or Big Data filesystem. Learn more about SQL

on- demand at https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/

on- demand- workspace-overview.

 Azure Arc
Not long after our team had built SQL Server Big Data Clusters (see Chapter 10 of the

book SQL Server 2019 Revealed), we realized our investments in automation with

Kubernetes could be used in other ways. At the same time, other teams at Microsoft were

discussing how we could connect the world of Azure with on-premises. The result is a

series of products under a family called Azure Arc (in this case, the word arc is like an

electrical arc that connects two points).

Azure Arc was announced at the Microsoft Ignite conference in 2019, and our team

was a big part of it. At the time of the writing of this book, it is still in Preview and we are

working to refine the architecture and the solutions behind it. You can get started with

Azure Arc at https://azure.microsoft.com/en-us/services/azure-arc/.

When it comes to SQL, Azure Arc has two flavors:

• Azure Arc enabled SQL Server

• This is a set of software components that run on your existing SQL

Server installation (Azure Arc Agent) to connect your server to Azure

for billing, subscription, and inventory purposes. In addition, we

can now connect you to services traditionally found in the cloud like

Chapter 10 Go BiG with the Cloud

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/on-demand-workspace-overview
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/on-demand-workspace-overview
https://azure.microsoft.com/en-us/services/azure-arc/

484

Advanced Threat Protection. Read more about the Azure Arc enabled

for SQL Server announcement at https://devblogs.microsoft.

com/azure-sql/preview-of-azure-arc-enabled-sql-server-is-

now-available/.

• Azure Arc enabled data services

• Instead of connecting your existing deployments, Azure Arc enabled

data services is a complete solution that runs on top of Kubernetes

(K8s). This is where our work on Big Data Clusters is paying off since

it is also a platform based on K8s.

• One of the solutions that comes with Azure Arc enabled data services

is an Azure SQL Managed Instance. Even though the architecture is

different than how we deploy Azure SQL Managed Instance in the

Azure ecosystem, the concept of abstracting you from the underlying

infrastructure is part of the solution. Concepts like versionless, built-

in HADR, and security services are all part of the vision.

• We are still working on Azure Arc enabled data services, but to

learn more, check out this video from my colleague Travis Wright:

https://youtu.be/eEipBtXV78I.

 Summary
There are great benefits in deploying Azure SQL in the world’s computer. You now have

access to a wealth of other services to open up new possibilities for your application and

business. I had hoped that as part of writing this book in 2020, I would be able to visit an

Azure data center and give you insights into the incredible innovation and security and

thought that we have built to host your resources in the cloud. That could not happen

because of the COVID-19 pandemic. I hope to visit one in the future when possible. For

now, check out our videos and information about the power you are harnessing when

you use Azure at https://azure.microsoft.com/en-us/global-infrastructure/.

You may be a DBA or a SQL Server professional and after reading this book

wondering “Do my skills still matter?” Is there a future for me in a cloud world? I

was going to add in my own comment here, but my technical reviewer Joe Sack said

Chapter 10 Go BiG with the Cloud

https://devblogs.microsoft.com/azure-sql/preview-of-azure-arc-enabled-sql-server-is-now-available/
https://devblogs.microsoft.com/azure-sql/preview-of-azure-arc-enabled-sql-server-is-now-available/
https://devblogs.microsoft.com/azure-sql/preview-of-azure-arc-enabled-sql-server-is-now-available/
https://youtu.be/eEipBtXV78I
https://azure.microsoft.com/en-us/global-infrastructure/

485

it better than I, “…your DBA readers can see that gaining cloud skills are very much

within their grasp. And with a future with cloud front-and-center, these are valuable

AND critical skills to pick up.” If you know SQL Server, Azure SQL is for you and it can

be your future too.

The future of Azure SQL is bright. We will continue to build new capabilities into

SQL Server for Azure Virtual Machine, Azure SQL Managed Instance, and Azure SQL

Database. We will keep pushing the limits of scale and size balanced with costs to meet

the demands of customers both large and small.

I asked Asad Khan, my manager and the Partner Director of Program Management

for Azure SQL, about his thoughts for the future. He told me, “As we look into the future,

here are few areas where we are heavily investing: We want to empower the developers

by taking away the worry of managing databases. Whether it be the infrastructure or the

query processor or the database engine, all three should automatically adapted to the

application needs, without the developer or DBA intervention. Today we are already

making heavy use of AI to offer better database service to our customers. The first one is

in intelligent Query processing. Customers don’t have to worry about writing performant

queries or query performance degradation. We have machine learning models that

automatically optimize the query plan and add or drop indexes to provide the best query

performance. The second area where we are using AI is in Azure SQL Serverless. SQL

Serverless offers the same SQL Server that developers love but we have taken away the

worry of managing the infrastructure. You only pay when you run the query; but on top

of that, the underlying infrastructure management layer is intelligent; it continuously

monitors the usage. The system detects as soon as the application needs more resources,

we will scale up and scale down the both the underlying compute as well as the memory

resources. The machine learning models that govern the resource allocation get

retrained over time and become more intelligent. Azure SQL Serverless lets you cost

optimize in unpredictable usage patterns.

In the next couple of years, we will take the use of AI to a whole new level by offering

‘AI governed’ databases. A database that is self-managed at all three levels, database

core, query processing, and at the infrastructure layer. Second is our commitment

towards limitless databases. In the last 2–3 years we have made a huge investment into

making Azure SQL limitless. Today Azure SQL Hyperscale is the only relational database

in the world that can scale one database to support 100TB plus size of data. Next, we

will bring Hyperscale to every deployment option of SQL Server. Developers should not

worry about the size of data or compute needed to process that data. In additional to a

Chapter 10 Go BiG with the Cloud

486

limitless database, we are also looking at enabling capabilities that will make Azure SQL

a globally distributed relational database. Third is our investment for enterprise security.

Today Azure SQL has the most comprehensive security features, all the way from

network security, access management, threat detection, and information protection.

Year over year, industry analysts and security experts rank Azure SQL as the most secure

data platform. We will continue to do innovations in this area. You will see us innovate

towards immutability of SQL tables and temper proof auditing. This will allow us to

solve 80% of the scenarios for which customers use blockchain but struggle with the

complexity of the tech. One more area under security where we are investing is ‘always

protected’; we are looking at how to protect the data even when the data leaves Azure

SQL. Think of it as the DRM capability in Office 365 coming to Azure SQL. Lastly, we will

remove any differences that exist between cloud and on-prem deployments. When you

deploy SQL, it doesn’t matter where it runs; we will bring the same versionless, cloud

managed, and centrally governed SQL databases everywhere.”

I remember early in the writing of this book when I interviewed Rohan Kumar about

the future of Azure SQL. His vision is more capability with a simpler path for choice

and deployment. Rohan says we want to move to a model of “…You declare what you

want and we pick the right Azure SQL option for you. We will continue to build SQL as

cloud first but not cloud only. Azure SQL is SQL Server.” For me, Azure SQL is the world’s

database, and I hope this book will put you on a path to maximize its potential.

Chapter 10 Go BiG with the Cloud

487
© Bob Ward 2021
B. Ward, Azure SQL Revealed, https://doi.org/10.1007/978-1-4842-5931-3

Index

A
Accelerated database recovery (ADR),

208, 399, 409, 431
Accelerated networking, 97
Accelerating and tuning performance

AdventureWorks, 358–362
application latency, 357
increasing memory/workers, 356, 357
I/O performance, 356
scaling CPU capacity, 346–355
SQL Server, 358–362

Access, 266
Access control list (ACL), 134
Access to sensitive data, 294
Active directory authentication, 237
Activity log, 50, 274–276
Administrator account, 258
Advanced data security (ADS), 28, 63, 127,

179, 238
ASC, 301, 302
ATP, 299–301
Azure SQL Database, 288
configuration, 287, 288
data classification (see Data

classification)
vulnerability assessment, 295–299

Advanced threat protection (ATP), 28, 288,
299–301, 322

AdventureWorks, 358
AdventureWorksLT database, 179

AdventureWorks sample, 373, 441
ALTER DATABASE reference, 209
Altering databases, 212
ALTER SERVER CONFIGURATION, 217
Always Encrypted, 238, 272
Always On Availability Groups (AG),

25, 137, 215
Always on failover cluster instance, 137
Amazon elastic compute cloud (EC2), 16
Amazon web services (AWS) suite, 16
Analytics as a service, 483
Application programming

interface (API), 46
ARM template, 120
Asynchronous messaging techniques, 445
Auditing, 238

Azure SQL Database
configuration, 279
log analytics dashboard, 285
log analytics workspace, 281
query editor, view data, 284
security insights dashboards, 285
selection, 282
storage account, creation, 280
storage details, configuration, 280
tracking connections, 277, 278
viewing audit, 283

managed instance
SQL Server Audit, 276, 277
tracking logins, 276

https://doi.org/10.1007/978-1-4842-5931-3#DOI

488

Audit record for DROP statement, 384
Audit records after DROP statement, 384
Authentication

Azure Active Directory, 258, 259
Azure RBAC, 256, 257
Azure SQL Database

AAD (see Azure Active Directory
(AAD))

contained users, 260
Azure SQL Managed Instance, 257

Auto-failover groups, 376, 419–428, 436
Automated patching, 106
Automatic backups 106

and Point-In-Time restore, 375
retention, 378–380
schedule, activity, 378
storage consumption and costs, 380, 381

Automatic indexing, 365
Automatic plan correction (APC), 364, 365
Automatic Tuning, 27, 31

AdventureWorks example
details, index recommendation, 371
index recommendation

notification, 367
performance overview, 368
performance recommendations, 369
query performance insights, 368
setting automatic tuning options, 370
T-SQL script, index

recommendations, 371
Azure SQL Database, 365, 366
index recommendations, 366

Autopause delay, 66
AutoPilot, 10, 11
Auto-shutdown, 99
Availability, 373

auto-failover groups, 419–428
backup and restore, 377–393

built-in high, 394–409
and connectivity, 462
and consistency, 376, 430–432
geo-replication, 413–419
HADR capabilities, 375–377
monitoring, 432–439
SLA, 428–430
zone redundancy, 410–413

Availability set, 138
Availability zones in Azure, 51, 138, 376
az CLI, 37, 74, 75
AzCopy, 221
az deployment, 120
az sql vm CLI, 137
Azure account, 40
Azure Active Directory (AAD), 173, 237

admin, Azure SQL Database, 261
authentication, 260
Azure Data Studio, 265
Azure SQL Database, 264
options, 262

Azure Active Directory logins, 258
Azure Active Directory

Services (AADS), 258
Azure advisor, 467, 468
Azure Arc, 483, 484
Azure automation, 457
Azure availability set, 376
Azure availability zones, 410
Azure Backup, 136
Azure Blob Storage, 129
Azure Cloud Shell, 44
Azure Cognitive Search, 476
Azure datacenter, 14
Azure Data Factor (ADF), 225, 229
Azure Data Studio (ADS), 78, 79
Azure Dedicated Host, 120
Azure DevOps, 124

Index

489

Azure ecosystem
accounts and subscriptions, 40–42
API and CLI, 46, 47
ARM, 47–50
Azure Marketplace, 45, 46
Azure Monitor, 50
Azure portal, 42–44
regions and datacenters, 51
SLAs, 51

Azure Event Hub, 481
Azure feedback, 465
Azure Hybrid Benefit (AHB), 83, 105, 124
Azure IOT Hub, 481
Azure IOT reference architecture, 482
Azure Key Vault, 269, 271
Azure Key Vault integration, 103
Azure Kubernetes Service (AKS), 124
Azure locks, 49
Azure Marketplace, 45, 46
Azure metrics

SQL Server, 132
virtual machine, 131

Azure Migrate Server Migration, 122
Azure Monitor, 50, 317
Azure policy, 41
Azure portal, 28, 72–74

features, 43, 44
home page, 42

Azure PowerShell, 374
Azure redundancy, 376
Azure regions worldwide, 36
Azure Reserved VM Instances, 120
Azure Resource Manager (ARM), 41

activity log, 50
interfaces, 47
locks, 49
RBAC, 49
resource groups, 48

system, 18
templates, 49

Azure REST APIs, 46
Azure role-based access control

(RBAC), 256, 257
Azure Search, 446, 476

Azure SQL Database, 476
database and table, 477
explorer, 480
index build notification, 479
indexer, creation, 479
integrates with Azure SQL Database, 476
search-as-a-service cloud solution, 476
search index, customizing, 478

Azure Security Center (ASC), 301, 302, 466
Azure Security Center for SQL, 28
Azure Service Fabric, 189
Azure Service Health, 435
Azure Services Platform, 4–8
Azure SQL

databases, 54
deployment options, 73
features and capabilities, 233
lineup, 53
managed instance (see Managed

Instance)
services and marketplace, 73
virtual machines, 54

Azure SQL resources, 125
Azure SQL Database

advanced data security and ILDC
team, 27, 28

vs. Azure SQL Managed Instance, 70, 71
basic, standard, and premium

editions, 30
capabilities, 62, 63
configure firewall rules, 195
customers, 71, 72

Index

490

DTU, 25
editions, 25
engineering model, 29, 30
Ibiza, 28, 29
intelligent performance and

MDCS, 26, 27
managed instance, 32
options, 64

business critical, 67
DTU vs. vCore, 64, 65
elastic pool databases, 69, 70
general purpose, 65, 66
Hyperscale, 67–69
serverless, 66

private and public preview, 26
restrictions, 218
significant events, 35
sterling (SAWAv2) project, 20–24

Azure SQL Database architecture, 24
Azure SQL Data Warehouse, 483
Azure SSIS, 225
Azure status dashboard, 434
Azure Storage, 136
Azure subscription, 236, 373, 441
Azure Synapse, 483
Azure Virtual Machine, see Virtual

Machine (VM)
Azure Virtual Network Gateway, 241
az vm CLI, 118

B
Backup retention policies, 390
Backups, 136
BACPAC file, 226, 227
Blackbird, 16
Bring your own key (BYOK), 268–270, 272

Bring Your Own License (BYOL), 82
Buffer Pool limits, 328
Built-in high availability

Azure SQL deployment, 375
business critical (BC), 398–403
general purpose (GP), 395–397
hyperscale, 375, 404–409
investment, 394

Bulk copy program (bcp), 222
Business Critical (BC), 67

HADR waits, 345
high-availability, 398–403

bwazuresqlauditstorage, 287
bwazuresqldb, 382, 400
bwazuresqldbbc, 400, 414, 436
bwazuresqlserver, 194, 211, 286
bwazuresqlserver2, 415
bwazuresqlserversouth, 421
bwsql2019, 374, 442

C
CampBrain, 72
Capabilities

managed, 375
restore, 375

Catalog views, 432
Classic virtual machines, 18
ClearSale, 71
Cloud-based database service, 2
Cloud computing, 39
CloudDB, 2–4, 35
clouddrive, 223
Cloud first approach, 26
CloudLifter, 31
Cloud OS, 4
Cloud provider, 1
Cloud service provider (CSP), 41

Azure SQL Database (cont.)

Index

491

Cluster, 11, 23
Column level encryption, 238
Columnstore indexes, 310
Command-line interfaces (CLI), 47, 77,

118, 159
Community technology

preview (CTP), 13, 26
Configuration

Azure SQL Database
altering databases, 212
databases, creation, 210–212
network configuration, 213

Azure SQL Managed Instance
databases, 208–210
edition, 206
master and model, 206
networking, 206, 208
sp_configure, 204
Tempdb, 205
trace flags, 205

VM
options, 128
resizing, 127
security, 127
stopping vs. deallocating, 126

Connection policy, 213
Connectivity, 462
CREATE DATABASE statement, 211
Cross-database queries, 443
Cumulative updates (CU), 231
Customer feedback, 216
Customer-managed key, 268, 270

D
DAC, see Dedicated admin connection

(DAC)
Database availability, 430

Database collation, 179
Database compatibility level, 212
Database configuration, 314
Database consistency, 431, 432
Database copy, 227
Database crash recovery algorithms, 394
Database encryption key (DEK), 268
Database engine instance, 55
DATABASE engine instance of

SQL Server, 56
Database Mail, 444, 445
Database migration service (DMS), 170
Database restrictions, 218
Database scoped credentials, 453
Database server, 173
Database service, 11
Database transaction unit (DTU), 25, 64
Database Tuning Advisor (DTA), 27
Data centers, 50, 90
Data classification

access to sensitive data, 294
audit records, 292, 293
Azure SQL Database, 289
dashboard, 291
log analytics dashboard, 294
recommendations, 290

Data disks, 18, 103, 136
Data encryption, 238
Data exposed, 470
Data loading

ADF, 229
additional resources, 221
AzCopy, 221
BACPAC file, 226, 227
bcp, 222, 223
BULK INSERT and OPENROWSET, 223
database copy, 227
replication subscriber, 230

Index

492

RESTORE to managed
instance, 228, 229

spark connector, 229
SQL data sync, 230
SSIS, 224–226

Data Migration Assistant (DMA), 122
Data protection

always encrypted, 272
BYOK, 268–270, 272
DDM, 272, 273
encrypting connections, 266
TDE, 267

Data residency, 51
dbmanager, 260
Dedicated admin connection (DAC), 430
Deploy Azure SQL Database

additional settings, 177–179
basics options, 172–176
business critical, 183, 184
with CLI, 187
completed deployment, 181
connecting, 194–197
final screen, 180
hyperscale, 186, 187
implementation details

dedicated rings and instances, 189
hyperscale, 190–192
logical server, 189
resource governance, 193
serverless, 190
storage, compute, and

gateways, 189
networking choices, 176, 177
overview screen, 182
serverless, 185, 186
tags, 179
verifying deployment, 198–200

Deploying Azure SQL Managed Instance
activity log, 162
CLI, 159
connection

SSMS, jumpbox, 164
VM, 163

implementation details, 159–161
overview screen, 162
verifying deployment, 165–168

Deployment choices, Azure SQL
deployment method, 144
hardware, 146
option, 144
price, 147, 148
purchasing model, 145
region, 144
resource limits, 148, 149
service tier, 145, 146
sizes, 147

Deployment, VM
activity log, 111
advanced options, 100
availability options, 87
image, 88, 89
management options, 98
pricing, 82
in progress, 110
region, 87
resource group, 87
SQL Server Gallery Images, 83–86
virtual machine name, 87

Distributed transactions
(DTC), 447

DMVs, see Dynamic management views
(DMVs)

DTC, see Distributed transactions (DTC)
Dynamic data masking (DDM), 28, 238,

272, 273

Data loading (cont.)

Index

493

Dynamic Management Views (DMVs), 21,
130, 317–319, 432

Azure SQL Database, 320
deep troubleshooting, 321
dive deeper, 320

E
Elastic Database, 24
Elastic job agent service, 450
Elastic jobs, 452

agent properties and job history, 457
agent service, 450, 451
create and execute, 449
create the job, 455
credentials, logins and users, 452, 453
database, 450
databases concurrently, 449
monitor job execution, 456
run the job, 456
services and resources, 452
target groups and members, 454
target logical server and

database(s), 449
view jobs via Azure portal, 457

Elastic pools, 31, 69, 70, 72
Encryption of connections, 266
End User Licensing Agreement

(EULA), 109
Engineering team, 29
Enterprise Agreement (EA), 41
ERRORLOG configuration, 165, 216
Error reporting, 216
Exchange hosted archive (EHA), 3
Extended event format, 277
Extended Events (XEvent), 299, 318, 319, 432

Azure SQL Database, 323
Azure SQL Managed Instance, 322

session, 323
track queries, ATP, 323

Extensible Key Management (EKM), 268
External data source, 444
EXTERNAL_GROUP, 263
External tables, 444
Extract Transform and Load (ETL), 224

F
Fabric controller (FC), 7
Failover, 12
Failover cluster instance

(FCI), 137, 375, 394
Failover group after deployment, 422
Failover group name, 422
FCI, see Failover cluster instance (FCI)
Federal Information Processing Standards

(FIPS), 268
Filegroups, 314
Files, 314
Files, Azure, 121
File snapshot backups, 136
File Source Resource Manager

(FSRM), 193
Firewall rule, 177
Free trial, 41
Full-text search, 446
Fully Qualified Domain Name (FQDN),

165, 194

G
Gallery images, 18, 83
Gateways, 190
General Availability (GA), 26
General Data Protection Regulation

(GDPR), 288

Index

494

General distribution releases
(GDR), 231

General purpose (GP) high-availability,
395–397

Geography, 51
Geo-redundant storage (GRS), 136
Geo-replication, 376, 413–419, 436

vs. auto-failover groups, 428
Geo-restore, 391

H
HADR, see High availability and disaster

recovery (HADR)
Handling errors, 458–460
Hardware generation, 65, 146
Hardware security modules (HSMs), 268
High availability and disaster recovery

(HADR), 373
always on availability groups, 137
always on failover cluster

instance, 137
Azure availability, 138
Azure Storage, 136
Backups, 136
capabilities

automatic backups and Point-In-
Time restore, 375

Azure redundancy, 376
built-in high availability, 375
database availability and

consistency, 376
geo-replication and auto-failover

groups, 376
SQL Server replication, 377

SQL Server and Linux
availability, 138

High Availability (HA), 138, 189

Host group, 101
Hot patching, 430
Hyperscale, 35, 67–69, 71, 146

architecture, 191, 192, 404
compute nodes, 404, 405, 408
data files, 406
deployment, 191
fault tolerant, 409
landing zone, 408
log service, 407, 408
long-term log storage, 408
page servers, 405, 406, 409
read-scale replicas, 409
snapshot backups, 407
zero to four secondary replicas, 404

Hyperscale deployment options, 186
Hyperscale read-scale monitoring, 444
Hyper-V virtual machine, 117

I
Ibiza portal, 29
Inbound traffic, 222
Incubation, 15
Indexes, 310, 316
Infrastructure as a Service (IaaS), 6, 16, 52
In-Memory OLTP, 311
Input/Output Per Second (IOPS), 58, 356
Insights, 133, 134
Instant File Initialization (IFI), 215
Intelligent performance, 27, 312

APC, 364, 365
automatic tuning (see Automatic

Tuning)
capabilities, 63
IQP, 363, 364

Intelligent query
processing (IQP), 312, 363, 364

Index

495

Interfaces, Azure SQL
ADS, 78, 79
az CLI, 74, 75
Azure Portal, 72–74
PowerShell, 75
REST API, 75
SQL CLI, 77
SSMS, 77, 78
TDS and T-SQL, 76
Visual Studio tools, 79

Internet Information Server (IIS), 6
I/O latency, 356
I/O performance, 356
I/O waits, 328

J
Job management

Azure automation, 457
elastic jobs, 449, 450, 452–457
SQL Server Agent, 448

Jumpbox, 164, 236, 374, 442

K
Kusto Query Language (KQL), 132

L
Latch waits, 328
Latency performance, 357
Lifting customers to Cloud, 31, 32
Lightweight mode, 124
Lightweight query profiling, 318
Linked servers, 443
Locally redundant storage (LRS), 136, 396
Locked pages, 215
Lock waits, 328

Log governance, 343
Logical master database, 173
Logical server, 173, 189, 298
loginmanager, 260
Logon auditing, 217
Log rate governance, 343
Logs, 132, 133
Log service, 407
Long-term backup retention (LTR),

389–391
Long-term log storage, 408
LTR, see Long-term backup retention

(LTR)

M
Machine learning services, 233, 446
Machine learning technology, 299
Maintaining indexes, 316
Maintenance, Azure SQL, 231, 232
Managed Instance, 54

vs. Azure SQL Database, 70, 71
business critical, 59
capabilities, 56, 57
customers, 61
deployed with CLI, 159
deployment options

additional settings, 156, 158
basics, 151–154
deploy, 158
networking, 154, 156
tags, 158

general purpose, 58
pool deployment, 160
pools, 59
restrictions (see Restrictions)
SQL server on Azure VM, 60, 61
verifying deployment, 165–168

Index

496

Management endpoint, 242
Management groups, 41
Marketplace, 18, 83, 84
Max degree of parallelism (MAXDOP), 315
Max server memory, 459
Memory, 356, 357
Memory grants, 328
Memory management, 190
Memory-optimized tables, 311
Microsoft Azure, 19
Microsoft Developer Center Serbia

(MDCS), 26
Microsoft distributed transaction

coordinator (MSDTC), 447
Microsoft Israel Development Center

(ILDC), 27
Microsoft technical support, 29
Migration, 142
Migration process, Azure SQL Database,

200, 201
Migration process, managed instance

application changes, 170
assessment and planning, 168, 169
migration, 170
post migration, 171

Minimal logging, 221
Mixed mode security, 217, 257
Monitoring availability

backup and restore history, 433
failover reasons, 438, 439
instance, server and database, 432, 433
region, data center and

service, 434, 435
replica status, 436, 437
system center management pack, 439

Monitoring security, 239
auditing (see Auditing)
Azure ecosystem, 274–276

Monitoring tools and capabilities
Azure Monitor, 317
DMV, 318
extended events, 318
lightweight query profiling, 318
performance visualization, 319
query plan debugging, 318
query store, 319

MSDTC, see Microsoft distributed
transaction coordinator (MSDTC)

Multi-tenant databases, 2, 8

N
Networking, 96, 97, 102

deploying Azure SQL Database,
176, 177

VM, 134, 135
Network security

Azure SQL Database
private link, 246–256
public endpoint, 243–246

Azure SQL Managed
Instance, 240–242

Network security group (NSG), 134
New-AzSqlVM, 119
New-AzVM command, 119
New support request, 464
Node, 23
Node isolation, 21
Noisy neighbor problem, 20

O
Object Explorer (OE), 197
Online migration strategy, 377
OS guest diagnostics, 130
Outbound traffic, 222

Index

497

P
Partitions, 11, 311
Pay-as-you-go, 41, 93
Paychex, 72
Performance best practices, 467
Performance capabilities

indexes, 310
in-memory OLTP, 311
intelligent performance, 312
maximum capacities, 307–310
partitions, 311
SQL Server 2019 enhancements, 312

Performance monitoring
Azure metrics, 130–132
insights, 133, 134
logs, 132, 133

Performance scenarios
resources, example, 330–343
running scenario (see Running

scenario)
running vs. waiting, 325–327

Performance tiers, 25
Performance visualization,

Azure Portal, 319
Pipelines, 124
PITR, see Point-in-time restore (PITR)
Plan cache eviction, 328
Platform as a Service (PaaS), 2, 5, 17, 52, 160
Point-in-time restore (PITR), 375, 378,

381–383, 385–388
Polybase, 444
Post migration, 171
Pottermore, 19, 20
Power Apps, 473–475
Power Automate, 475
Power BI, 473
PowerDetails, 61

Power Platform
integration with Azure SQL, 472
Power Apps, 473–475
Power Automate, 475
Power BI, 473

PowerShell cmdlets, 47
PowerShell Azure cmdlet, 75
Premium, 25
Privacy policy, 109
Private and public preview, 26
Private endpoint, 177
Private link, 246–256
Proximity placement groups, 101
Public endpoint, 177, 243–246
Purchasing model, 145

Q
Query performance insight, 319
Query plan debugging, 318
Query plan regression, 364
Query store, 208, 319, 327

R
RBEX, see Resilient Buffer Pool Extension

(RBEX)
Read-access geo-zone-redundant

storage, 378
Recovery point objective (RPO), 375, 429
Recovery time objective (RTO), 375, 429
RedDog, 3, 4
Red Dog Front End (RDFE), 18
Red Hat Enterprise Linux (RHEL), 138
Redirect connection policy, 214
Regions, 51
Reliability, 4
Remote Desktop Client (RDP), 135

Index

498

Remote Desktop Protocol (RDP), 113
Replication subscriber, 230
Representational State Transfer

(REST) API, 10, 46
Resilient Buffer Pool

Extension (RBEX), 405
Resizing, 127
Resource capacities and limits, 308, 309
Resource Governor, 315
Resource groups, 48, 87
Resource health, 432, 435, 438
Resource limits, 148, 149, 160
Resource reservations, 21
Restore backups from deleted

databases, 392
RESTORE DATABASE statement, 228
Restore in Azure SQL Managed

Instance, 393
Restoring database, 121
Restrictions

Azure SQL Database, 218
Managed Instance

ALTER SERVER CONFIGURATION,
217

database restrictions, 218
ERRORLOG Configuration, 216
error reporting and customer

feedback, 216
FILESTREAM and availability

groups, 215
instant file initialization, 215
locked pages, 215
logon auditing, 217
mixed mode security, 217
server collation, 216
server proxy account, 218
start and stop services, 214
startup parameters, 216

Role-based access control (RBAC), 49,
127, 237, 256

RPO, see Recovery point objective (RPO)
R Services (Advanced Analytics), 106
RTO, see Recovery time objective (RTO)
Runbook, 457
Running scenario

query store, 327
sys.dm_exec_procedure_stats, 328
sys.dm_exec_query_stats, 328
waiting, 328

S
Scalable web applications, 4
Scaling, 67
Scaling CPU capacity, 346–355
SCOM, see System center operations

management (SCOM)
SDS hosting system, 11
Security capabilities

active directory authentication, 237
advanced data security, 238
auditing, 238
Azure RBAC and locks, 237
data encryption, 238
dynamic data masking, 238

Security playbook, 465
Security tasks

advanced data security, 239
authentication and authorization

configuration, 239
data protection, 239
monitor, 239
set up and configure network security,

239
Seeding, 416, 437
Self-service database restore, 25

Index

499

Sensitive data, 272
Server admin login, 259
Server collation, 216
Server Data Tools (SSDT), 79
Serverless, 66, 72, 355
Serverless compute models, 190
Serverless compute options, 185
Serverless query service, 483
Serverless scale, 355
Server proxy account, 218
Server tools and business (STB), 17
Service broker, 445
Service fabric, 8
Service-level agreement (SLA), 15, 40, 51,

394, 428–430
Service-Level Objective (SLO), 21, 145
Service/pricing tier, 58
Service Tier, 145, 146
Set- AzSqlServerActiveDirectory

Administrator cmdlet, 264
Short-term backup retention, 378, 379
Simple Mail Transfer

Protocol (SMTP), 445
Single database, 62
Sizes, VM

account, port, and OS licensing, 93, 94
choices for Azure, 92
CLI and ARM template, 118–120
configuration options, deploying SQL

Server
advanced, 99–101
management, 97, 99
networking, 96, 97
OS disks, 94, 95
SQL Server settings, 101–106
tags, 107

deploying SQL Server on
Linux, 122, 123

deployment, 108–111
Dv2/Dv3, 90
migration, 121, 122
portal navigation, 111–113
RDP connection, 113, 115
reserved instances and dedicated

hosts, 120
size option, selection, 90
SQL Server Containers, deploy, 123, 124
SQL Server Installation, 115–117

SLA, see Service-level agreement (SLA)
SMTP, see Simple Mail Transfer Protocol

(SMTP)
Snapshot backups, 407
Socrates, 32–35
Software as a Service (SaaS), 3, 30, 52, 69
Space management

Azure SQL Database, 220
Azure SQL Managed Instance, 219

Spark connector, 229
sp_configure, 204
Specific performance scenarios

BC HADR waits, 345
hyperscale, 345
log governance, 343
worker limits, 344

SQL Authentication, 103
SQL Azure

logo, 13
management portal, 14
on Windows Azure (SAWA) project, 16

SQL Database, 19
SQL Database auditing, 278
SQL Database Hyperscale, 34
SQL data services (SDS), 9–12
SQL data sync, 230
SQL elastic pools, 69
SQL Information Protection policies, 291

Index

500

SQL injection, 299, 300
SQL on-demand, 483
SQL Server 2019 Enterprise Windows

Server 2019, 84
SQL Server Agent, 448
SQL Server Audit, 28, 276, 277
SQL Server Containers, 123, 124
SQL Server Gallery Images, 83–86

configuration choices, 116, 117
installation, 115, 116

SQL Server IaaS Agent Extension, 101
SQL Server Integration Services (SSIS),

224–226
SQL Server License, 105
SQL Server Management Studio (SSMS),

15, 77, 78, 319, 330, 374, 388, 442
SQL Server on Azure Virtual

Machines, 54, 60, 61
SQL Server on Linux, 138
SQL Server replication, 377
SQL Server settings

authentication, 103
automated backup, 106
automated patching, 106
Azure Key Vault integration, 103
license, 105
networking, 102
storage configuration, 103
storage optimization, 104

SQL services, 8, 9
SQLSERVR.EXE instance, 23
SQL Virtual Machine resource provider,

118, 124, 125
SSMS, see SQL Server Management Studio

(SSMS)
Stack dump, 460
Stale page detection, 212

Statistics, maintaining, 316
Sterling

architecture, 22, 23
Azure SQL Database, 22
v12, 22

Storage configuration, 103
Storage optimization, 104
Storage performance, 128–130
Stream analytics, 481
Subscription offers, 41
Subscriptions, 41
Supporting Azure SQL

handling errors, 458–460
stack dump, 460
troubleshooting resources, 460–463,

465
UserVoice, 465

Surface area, Azure SQL
cross-database queries, 443
database mail, 444, 445
documentation references, 442
DTC, 447
external table, 444
full-text search, 446
linked servers, 443
machine learning services, 446
service broker, 445
xp_cmdshell, 447

sys.database_event_sessions, 324
sys.databases, 212
sys.dm_db_missing_index_details, 366
sys.dm_operation_status, 212
sys.filegroups, 208
sys.sensitivity_classifications, 291
System assigned managed identity, 99
System center operations management

(SCOM), 439

Index

501

T
Tabular data stream (TDS), 10, 76
Tags, 107
TDE protector, 268
Team foundation services (TFS), 19
Teledoc, 71
Tempdb, 205, 313
Templates, 49
Terms of use, 109
TPS_TdService_session_control, 323
Trace flags, 205
Tracking logins, 276
Transaction/snapshot replication

system, 377
Transparent data encryption (TDE), 42,

238, 267
Transparent Layer Security (TLS)

protocol, 207, 266
Troubleshooter, 462, 463
Troubleshooting resources, 460–463, 465
T-SQL statements, 76

U
Underlying hosting system, 6
User accounts, 260
UserVoice, 465

V
v12, 22
vCore model, 35, 64, 65, 313, 348
Versionless, 231
Versionless SQL Server, 22, 62

Virtual cluster, 59, 159
Virtual Machine (VM), 16–18, 374, 442

deploying (see Deployment, VM)
overview screen, 112

Visual Studio Code, 79
VM generation, 101
VNet2VNet gateway, 241
VNet Peering, 241
Vulnerability assessment, 295–299

W
Waiting scenarios

query store, 329
sys.dm_exec_requests, 329
sys.dm_os_waiting_tasks, 329
sys.dm_os_wait_stats, 329

Wait types, 343
Windows Azure admin portal, 24
Windows Azure SQL Database, 19
Windows Fabric, 6, 10, 21, 24
Windows server failover clustering

(WSFC), 394
WinFab application, 22
Worker limits, 344

X, Y
XEvent, see Extended events (XEvent)
xp_cmdshell, 447

Z
Zone redundancy, 410–413

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	Chapter 1: SQL Server Rises to the Clouds
	CloudDB
	The Red Dog
	The Azure Services Platform
	The Road to SQL Azure
	SQL Data Services
	SQL Azure Is Born
	The SAWA Project

	The Virtual Machine Initiative
	Becoming Azure SQL Database
	The Sterling (SAWAv2) Project
	New Editions, the DTU, and Previews
	Intelligent Performance and the MDCS
	Advanced Data Security and the ILDC Team
	A Pane for the Future Called Ibiza
	A New Engineering Model for Azure

	Bending Azure SQL Database
	Lifting Customers to the Cloud
	Project Socrates Goes Hyper
	Azure SQL Today

	Chapter 2: What Is Azure SQL?
	The Azure Ecosystem
	Azure Accounts and Subscriptions
	The Azure Portal
	The Azure Marketplace
	Azure API and CLI
	Azure Resource Manager (ARM)
	Azure Monitor
	Azure Regions and Datacenters
	Azure Service-Level Agreement (SLA)

	What Is the Azure SQL?
	IaaS vs. PaaS
	The Azure SQL Lineup

	Azure SQL Managed Instance
	Managed Instance Capabilities
	Managed Instance Options and Limits
	General Purpose
	Business Critical

	Managed Instance Pools
	Managed Instance vs. SQL Server on Azure Virtual Machine
	Customers Using Managed Instance

	Azure SQL Database
	Azure SQL Database Capabilities
	Azure SQL Database Options and Limits
	DTU vs. vCore
	General Purpose
	Serverless
	Business Critical
	Hyperscale
	Elastic Pool Databases

	Azure SQL Database vs. Azure SQL Managed Instance
	Customers Using Azure SQL Database

	Interfaces for Azure SQL
	Azure Portal
	az CLI
	PowerShell
	REST API
	TDS and T-SQL
	SQL CLI
	SQL Server Management Studio (SSMS)
	Azure Data Studio (ADS)
	Visual Studio Tools

	Summary

	Chapter 3: SQL Server on Azure Virtual Machine
	Deploying
	Pricing
	SQL Server Gallery Images
	Resource Group, Region, and Availability
	Resource Group
	Virtual Machine Name
	Region
	Availability Options
	Image

	Virtual Machine Sizes
	Account, Port, and OS Licensing
	Making Configuration Choices As Part of Deploy
	OS Disks
	Networking
	Management
	Advanced
	SQL Server Settings
	Tags

	Deploy!
	Navigating in the Portal
	Connecting to Your VM
	Exploring the SQL Server Installation
	What Is Installed
	What Is Configured

	Deploy on Your Own
	Using a CLI and ARM Template
	Reserved Instances and Dedicated Hosts
	Migrate Using Azure Migrate
	Restoring a Database
	Using Data Migration Assistant (DMA)
	Using Azure Migrate Server Migration

	Deploying SQL Server on Linux with Azure Virtual Machine
	Deploying SQL Server Containers

	SQL Virtual Machine Resource Provider
	Configuration
	Stopping vs. Deallocating
	Resizing
	Security
	RBAC
	Advanced Data Security

	Other Config Options

	Maximizing Storage Performance
	Performance Monitoring
	Azure Metrics
	Logs
	Insights

	Networking
	HADR
	Azure Storage
	Backups
	Always On Failover Cluster Instance
	Always On Availability Groups
	Go Further with Azure Availability
	SQL Server and Linux Availability

	Summary

	Chapter 4: Deploying Azure SQL
	Pre-deployment Planning
	New Deployment or Migration
	Making Deployment Choices
	Deployment Method
	Deployment Option
	Region
	Purchasing Model
	Service Tier (SLO)
	Hardware
	Sizes
	Price

	Consider Resource Limits

	Deploying Azure SQL Managed Instance
	Deployment and Options
	Basics
	Networking
	Additional Settings
	Tags
	Deploy!

	Deploying with a CLI
	Implementation Details
	Connecting and Verifying Deployment
	Connect to a Managed Instance
	Verify the Deployment

	Migrating to Azure SQL Managed Instance
	Assessment and Planning
	Migration
	Application Changes
	Post Migration

	Deploying an Azure SQL Database
	Deployment and Options
	Basics
	Networking
	Additional Settings
	Tags
	Deploy It!

	Deploying Business Critical
	Deploying Serverless
	Deploying Hyperscale
	Deploying with a CLI
	Implementation Details
	Dedicated Rings and Instances
	The Logical Server
	Storage, Compute, and Gateways
	Serverless
	Hyperscale
	Resource Governance

	Connecting and Verifying Deployment
	Connecting to Azure SQL Database
	Verifying Deployment

	Migrating to Azure SQL Database
	Summary

	Chapter 5: Configuring Azure SQL
	Configuring Azure SQL Managed Instance
	sp_configure
	Trace Flags
	Tempdb
	Master and Model
	Configuring Edition
	Networking Configuration
	Configuring Databases

	Configuring Azure SQL Database
	Creating New Databases
	Altering Databases
	Network Configuration

	Configuration Restrictions
	Azure SQL Managed Instance Restrictions
	Start and Stop Services
	Instant File Initialization
	Locked Pages
	FILESTREAM and Availability Groups
	Server Collation
	Startup Parameters
	ERRORLOG Configuration
	Error Reporting and Customer Feedback
	ALTER SERVER CONFIGURATION
	“Mixed Mode” Security
	Logon Auditing
	Server Proxy Account
	Database Restrictions

	Azure SQL Database Restrictions

	Azure SQL Space Management
	Azure SQL Managed Instance Space Management
	Azure SQL Database Space Management

	Loading Data
	Keep These in Mind
	bcp
	BULK INSERT and OPENROWSET
	SQL Server Integration Services (SSIS)
	Azure SSIS

	BACPAC
	Database Copy
	RESTORE to Managed Instance
	Spark Connector
	Azure Data Factory (ADF)
	SQL Data Sync
	Replication Subscriber

	Updating Azure SQL
	Maintenance of Azure SQL
	New Features and Capabilities in Azure SQL

	Summary

	Chapter 6: Securing Azure SQL
	Security Capabilities and Tasks
	Security Capabilities
	Active Directory Authentication
	Azure RBAC and Locks
	Auditing
	Data Encryption
	Dynamic Data Masking
	Advanced Data Security

	Security Tasks
	Set Up and Configure Network Security
	Set Up and Configure Authentication and Authorization
	Set Up and Configure Data Protection
	Monitor Security
	Go Bigger with Advanced Data Security

	Network Security
	Azure SQL Managed Instance Network Security
	Azure SQL Database Network Security
	Using the Public Endpoint
	Using Private Link

	Authentication and Access
	Azure Role-Based Access Control (RBAC)
	Authentication for Azure SQL Managed Instance
	Azure Active Directory Authentication

	Authentication for Azure SQL Database
	Using Contained Users
	Azure Active Directory Authentication

	Set Up and Configure Access

	Protecting Your Data
	Encrypting Connections
	Transparent Data Encryption (TDE)
	Bring Your Own Key (BYOK)

	Always Encrypted
	Dynamic Data Masking (DDM)

	Monitoring Security
	Monitoring the Azure Ecosystem
	Auditing Azure SQL Managed Instance
	Tracking Logins
	SQL Server Audit

	Auditing Azure SQL Database
	Tracking Connections
	SQL Database Auditing

	Advanced Data Security
	Data Classification
	Vulnerability Assessment
	Advanced Threat Protection (ATP)
	Azure Security Center

	Summary

	Chapter 7: Monitoring and Tuning Performance for Azure SQL
	Performance Capabilities
	Max Capacities
	Indexes
	In-Memory OLTP
	Partitions
	SQL Server 2019 Enhancements
	Intelligent Performance

	Configuring and Maintaining for Performance
	Tempdb
	Database Configuration
	Files and Filegroups
	Max Degree of Parallelism
	Resource Governor
	Maintaining Indexes
	Maintaining Statistics

	Monitoring and Troubleshooting Performance
	Monitoring Tools and Capabilities
	Azure Monitor
	Dynamic Management Views (DMV)
	Extended Events (XEvent)
	Lightweight Query Profiling
	Query Plan Debugging
	Query Store
	Performance Visualization in Azure Portal

	Dive into DMVs and Extended Events
	DMVs Deep Dive
	XEvent at Your Service

	Performance Scenarios
	Running vs. Waiting
	Running

	Azure SQL Specific Performance Scenarios
	Log Governance
	Worker Limits
	Business Critical (BC) HADR Waits
	Hyperscale Scenarios

	Accelerating and Tuning Performance
	Scaling CPU Capacity
	I/O Performance
	Increasing Memory or Workers
	Improving Application Latency
	Tune Like It Is SQL Server

	Intelligent Performance
	Intelligent Query Processing
	Automatic Plan Correction
	Automatic Tuning

	Summary

	Chapter 8: Availability for Azure SQL
	HADR Capabilities
	Automatic Backups and Point-In-Time restore
	Built-In High Availability
	Azure Redundancy
	Geo-replication and Auto-failover Groups
	Database Availability and Consistency
	SQL Server Replication

	Backup and Restore
	Automatic Backups
	Backup Retention
	Backup Storage Consumption and Costs

	Point-In-Time restore
	Long-Term Retention Backups
	Geo-restore of Databases
	Restore Backups from Deleted Databases
	Restore in Azure SQL Managed Instance

	Built-In High Availability
	General Purpose High Availability
	Business Critical High Availability
	Hyperscale High Availability

	Go Further with Azure
	Zone Redundancy
	Geo-replication
	Auto-failover Group
	Azure SQL SLA

	Database Availability and Consistency
	Database Availability
	Accelerated Database Recovery (ADR)
	Database Consistency

	Monitoring Availability
	Instance, Server, and Database Availability
	Backup and Restore History
	Region, Data Center, and Service Availability
	Replica Status
	Failover Reasons
	System Center Management Pack for Azure SQL

	Summary

	Chapter 9: Completing Your Knowledge of Azure SQL
	Surface Area of Azure SQL
	Linked Servers and Cross-Database Queries
	External Tables
	Database Mail
	Service Broker
	Full-Text Search
	Machine Learning Services
	What Is Missing?
	Distributed Transactions (DTC)
	xp_cmdshell

	Job Management
	SQL Server Agent
	Elastic Jobs
	Azure Automation

	Supporting Azure SQL
	Handling Errors
	Stack Dumps
	Troubleshooting Resources in the Azure Portal
	UserVoice

	Azure SQL Best Practices
	Security Playbook
	Best Practices for Performance
	Azure Advisor
	Stay in Touch with Our Team

	Summary

	Chapter 10: Go Big with the Cloud
	Integration with Azure Services
	Power Platform
	Power BI
	Power Apps
	Power Automate

	Azure Search
	Stream Analytics

	Azure Architectures and Solutions
	Azure Synapse
	Azure Arc
	Summary

	Index

