
283
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_9

CHAPTER 9

SAS Procedures
You can use all the power of SAS as you develop Stored Processes, including the many

procedures that provide so much functionality in an easy-to-use package. There are

several procedures that are particularly helpful with developing Stored Processes. In this

chapter, we will cover

• PROC STP, which allows you to run a Stored Process from other SAS

code.

• PROC JSON, which lets you produce JSON-formatted data that is

used extensively by JavaScript objects used in building web pages.

• PROC STREAM, which will take some text, resolve any macro

variables in it, and send the output on to somewhere, which could be

a file or web page.

• PROC HTTP, which can issue HTTP requests and get the response for

use in SAS.

• PROC EXPORT, which will export SAS data in various formats

including CSV and tab-separated formats.

• PROC IMPORT, which will import data from various supported formats

into a SAS table. This is useful to read CSV and other formats of data.

 PROC STP
This procedure allows Stored Processes to be executed from a SAS program. This opens

up a lot more flexibility and power for the use of Stored Processes. You can execute them

in batch, interactively or on servers. It can run locally or on a server, but with its own

execution environment, so it has its own work library and so on. If you want to run it on a

server, then it needs some additional configuration to work that way.

https://doi.org/10.1007/978-1-4842-5925-2_9#ESM

284

The following example code in Listings 9-1 and 9-2 shows how to run a stored

process from a normal SAS program. This could be run in batch overnight or in fact from

anywhere you can execute SAS code.

Listing 9-1. SAS Program to run a stored process from a regular SAS program

* connect to metadata server ;

options metaserver=d351tq92 metaport=8561 metauser=phil metapass=goodnight_

for_president ;

* close any open ODS destinations ;

ods _all_ close;

* run Stored Process and put the ODS results into an ODS Item Store ;

proc stp program='/Products/SAS Intelligence Platform/Samples/Sample:

Cholesterol by Sex and Age Group'

 odsout=store;

run;

* set the format for graphics we will produce ;

goptions device=png;

* Open an HTML destination ;

ods HTML path="%sysfunc(pathname(work))" file='test.htm' style=HTMLBlue;

* Send the output to the current ODS destination ;

proc document name=&_ODSDOC (read);

 replay / levels=all;

run;

quit ;

ods HTML close;

%put _ODSDOC: %superq(_ODSDOC) ;

%put Output has been put into %sysfunc(pathname(work)) ;

Listing 9-2. SAS Log produced from running the program

1 * connect to metadata server ;

2 options metaserver=d351tq92 metaport=8561 metauser=phil

metapass=XXXXXXXXX;

3 * close any open ODS destinations ;

4 ods _all_ close;

Chapter 9 SaS proCedureS

285

5 * run Stored Process and put the ODS results into an ODS Item Store ;

6 proc stp program='/Products/SAS Intelligence Platform/Samples/Sample:

Cholesterol by Sex and Age

6 ! Group'

7 odsout=store;

8 run;

NOTE: The Stored Process will execute locally.

NOTE: PROC_STP: ====== Proc STP Execution Starting ======

NOTE: PROC_STP: ====== Stored Process: /Products/SAS Intelligence

Platform/Samples/Sample:

 Cholesterol by Sex and Age Group ======

>>> SAS Macro Variables:

 _CLIENT=PROCSTP TKESTP Windows X64_SRV12 X86_64 6.2

 _METAPERSON=phil

 _METAUSER=phil@!*(generatedpassworddomain)*!

 _ODSDEST=DOCUMENT

 _ODSDOC=APSWORK._odsdoc00000001

 _RESULT=STREAM

2 %STPBEGIN;

3

4 proc format;

5 value AgeAtStart low-35 = '< 36'

6 36-45 = '36 - 45'

7 46-55 = '46-55'

NOTE: Format AGEATSTART has been output.

8 56-high = '> 55';

9 run;

NOTE: PROCEDURE FORMAT used (Total process time):

 real time 0.04 seconds

 cpu time 0.01 seconds

9 ! quit;

10

Chapter 9 SaS proCedureS

286

11 title 'Cholesterol by Sex and Age Group';

12 footnote "Generated %sysfunc(datetime(), datetime19.).";

13

14 proc sgpanel data=sashelp.heart;

15 panelby sex / columns=1

16 novarname;

17 hbox Cholesterol / category=AgeAtStart;

18 format AgeAtStart AgeAtStart.;

19 run;

19 ! quit;

NOTE: There were 5209 observations read from the data set SASHELP.HEART.

NOTE: PROCEDURE SGPANEL used (Total process time):

 real time 0.16 seconds

 cpu time 0.11 seconds

20

21 %STPEND;

NOTE: PROC_STP: ====== Stored Process: /Products/SAS Intelligence Platform/

Samples/Sample:

 Cholesterol by Sex and Age Group Return Status = 0 ======

NOTE: PROC_STP: ====== Proc STP Execution Ending ======

NOTE: PROCEDURE STP used (Total process time):

 real time 0.60 seconds

 cpu time 0.35 seconds

9 * set the format for graphics we will produce ;

10 goptions device=png;

11 * Open an HTML destination ;

12 ods HTML path="%sysfunc(pathname(work))" file='test.htm'

style=HTMLBlue;

NOTE: Writing HTML Body file: test.htm

13 * Send the output to the current ODS destination ;

14 proc document name=&_ODSDOC (read);

15 replay / levels=all;

16 run;

Chapter 9 SaS proCedureS

287

NOTE: The data set WORK.DATA1 has 4 observations and 21 variables.

NOTE: Format AGEATSTART has been output.

NOTE: There were 4 observations read from the data set WORK.DATA1.

NOTE: PROCEDURE FORMAT used (Total process time):

 real time 0.03 seconds

 cpu time 0.00 seconds

17 quit ;

NOTE: PROCEDURE DOCUMENT used (Total process time):

 real time 1.59 seconds

 cpu time 0.37 seconds

18 ods HTML close;

19 %put _ODSDOC: %superq(_ODSDOC) ;

_ODSDOC: APSWORK._odsdoc00000001

20 %put Output has been put into %sysfunc(pathname(work)) ;

Output has been put into

C:\Users\phil\AppData\Local\Temp\2\SAS Temporary Files_TD11484_D351TQ92_

The SAS Output is written to the location shown in the log, and the directory

listing of where PROC STP wrote the output to is also listed in the log. Notice that the

PROC DOCUMENT created a graphic file (Figure 9-1) called SGPanel.png (Figure 9-2).

The type was set by device= on the goptions statement, and the name defaults to the

procedure that was used to produce the graphic. If we have multiple graphics, then they

get a sequence number on the end, for example, SGPanel.png, SGPanel1.png, SGPanel2.

png, and so on.

Chapter 9 SaS proCedureS

288

Figure 9-1. Output produced by the previous program

Figure 9-2. Temporary files in work area used by the program run

Chapter 9 SaS proCedureS

289

To read more about the STP procedure in SAS 9.4, you can use this link:

http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/

p0yy4kd3k4dc03n1mcd76hog6y2u.htm. Remember that Proc STP is only available from

SAS 9.3 onward.

 PROC JSON
In SAS 9.4, there is a new procedure called PROC JSON which will create data in JSON

format from any data that SAS can read. This enables us to create JSON output to be used

in JavaScript objects from virtually any other data source. Some options are provided to

customize the JSON produced, which enables very flexible JSON output to be created.

Figure 9-3 shows a table we will use in an example.

Figure 9-3. sashelp.class table to use in the following example

Chapter 9 SaS proCedureS

http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/p0yy4kd3k4dc03n1mcd76hog6y2u.htm
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/p0yy4kd3k4dc03n1mcd76hog6y2u.htm

290

Here is the Stored Process code to create some JSON:

proc json out=_webout;

 export &table / tablename="&table";

run;

Here is some of the JSON that is produced by it, when I feed in a parameter of

&table=sashelp.class:

{"SASJSONExport":"1.0","SASTableData+sashelp.class":[{"Name":"Alfred","Sex"

:"M","Age":14,"Height":69,"Weight":112.5},{"Name":"Alice","Sex":"F","Age":1

3,"Height":56.5,"Weight":84},{"Name":"Barbara","Sex":"F","Age":13,"Height":

65.3,"Weight":98},{"Name":"Carol","Sex":"F","Age":14,"Height":62.8,"Weight"

:102.5},{"Name":"Henry","Sex":"M","Age":14,"Height":63.5,"Weight":102.5},

{"Name":"James","Sex":"M","Age":12,"Height":57.3,"Weight":83},{"Name":"Jane",

"Sex":"F","Age":12,"Height":59.8,"Weight":84.5},{"Name":"Janet","Sex":"F",

"Age":15,"Height":62.5,"Weight":112.5},{"Name":"Jeffrey","Sex":"M","Age":13,

"Height":62.5,"Weight":84},{"Name":"John","Sex":"M","Age":12,"Height":59,

"Weight":99.5},{"Name":"Joyce","Sex":"F","Age":11,"Height":51.3,"Weight":

50.5},{"Name":"Judy","Sex":"F","Age":14,"Height":64.3,"Weight":90},{"Name":

"Louise","Sex":"F","Age":12,"Height":56.3,"Weight":77},{"Name":"Mary",

"Sex":"F","Age":15,"Height":66.5,"Weight":112},{"Name":"Philip","Sex":"M",

"Age":16,"Height":72,"Weight":150},{"Name":"Robert","Sex":"M","Age":12,

"Height":64.8,"Weight":128},{"Name":"Ronald","Sex":"M","Age":15,"Height":67,

"Weight":133},{"Name":"Thomas","Sex":"M","Age":11,"Height":57.5,"Weight":

85},{"Name":"William","Sex":"M","Age":15,"Height":66.5,"Weight":112}]}

You can trim some extraneous information from the JSON using the nosastags

option on PROC JSON. Here is the output we get if we use NOSASTAGS. Note: In the

previous output, I have bolded what is dropped by using NOSASTAGS.

[{"Name":"Alfred","Sex":"M","Age":14,"Height":69,"Weight":112.5},{"Name":

"Alice","Sex":"F","Age":13,"Height":56.5,"Weight":84},{"Name":"Barbara",

"Sex":"F","Age":13,"Height":65.3,"Weight":98},{"Name":"Carol","Sex":"F",

"Age":14,"Height":62.8,"Weight":102.5},{"Name":"Henry","Sex":"M","Age":14,"

Height":63.5,"Weight":102.5},{"Name":"James","Sex":"M","Age":12,"Height":

57.3,"Weight":83},{"Name":"Jane","Sex":"F","Age":12,"Height":59.8,"Weight":

84.5},{"Name":"Janet","Sex":"F","Age":15,"Height":62.5,"Weight":112.5},

Chapter 9 SaS proCedureS

291

{"Name":"Jeffrey","Sex":"M","Age":13,"Height":62.5,"Weight":84},{"Name":

"John","Sex":"M","Age":12,"Height":59,"Weight":99.5},{"Name":"Joyce","Sex":

"F","Age":11,"Height":51.3,"Weight":50.5},{"Name":"Judy","Sex":"F","Age":

14,"Height":64.3,"Weight":90},{"Name":"Louise","Sex":"F","Age":12,"Height":

56.3,"Weight":77},{"Name":"Mary","Sex":"F","Age":15,"Height":66.5,"Weight":

112},{"Name":"Philip","Sex":"M","Age":16,"Height":72,"Weight":150},{"Name":

"Robert","Sex":"M","Age":12,"Height":64.8,"Weight":128},{"Name":"Ronald",

"Sex":"M","Age":15,"Height":67,"Weight":133},{"Name":"Thomas","Sex":"M",

"Age":11,"Height":57.5,"Weight":85},{"Name":"William","Sex":"M","Age":15,

"Height":66.5,"Weight":112}]

You can also lay out the JSON produced in an easier to read form using the pretty

option on PROC JSON. This makes it far easier to read. Here is the first part of the output

produced:

{

 "SASJSONExport": "1.0 PRETTY",

 "SASTableData+class": [

 {

 "Name": "Alfred",

 "Sex": "M",

 "Age": 14,

 "Height": 69,

 "Weight": 112.5

 },

 {

 "Name": "Alice",

 "Sex": "F",

 "Age": 13,

 "Height": 56.5,

 "Weight": 84

 },

Chapter 9 SaS proCedureS

292

If we use the PRETTY and NOSASTAGS options, then here is the first part of the

output produced:

[

 {

 "Name": "Alfred",

 "Sex": "M",

 "Age": 14,

 "Height": 69,

 "Weight": 112.5

 },

 {

 "Name": "Alice",

 "Sex": "F",

 "Age": 13,

 "Height": 56.5,

 "Weight": 84

 },

As we know, PROC JSON can produce JSON data, and there are many JavaScript

objects that can use JSON data as input. There is an object called jqGrid which has a

URL parameter which lets you point to a data source that is in JSON format. Here is

a JavaScript snippet of code which would be used to define where the data is for that

object. In this case, I can point the object to the SAS Stored Process Web Application,

which will call a Stored Process to provide the JSON data:

url: 'http://localhost/SASStoredProcess/do?_program=%2FUser+Folders%2Fphil%

2FMy+Folder%2Fjson',

In that Stored Process, I can use PROC JSON to produce the JSON data which is

needed to feed the object. If you need to customize the standard JSON in order to fit

some specific requirements for a JavaScript object, then you are able to use the write

statement to write out extra structure to your JSON. In the case of using the jqGrid object,

it needs a slightly different JSON layout to standard. I used the code here to get my JSON

in the right format for using with the jqGrid object:

Chapter 9 SaS proCedureS

293

proc json out=_webout pretty nosastags;

 write open object;

 write values "rows";

 write open array;

 export sashelp.orsales;

 write close;

 write close;

run;

Notice in the preceding code that we write to _webout, which when used in a Stored

Process with the Stored Process Web Application will stream data directly to the browser.

Another useful thing you might do with PROC JSON is that when you are using some

kind of static HTML, you might want to get a list of variables that exist in the data table

you are using, so you can automatically generate the menus (for instance). The following

code in a stored process would get variable name, type, and label from a table, and then

send it back to the browser where JavaScript could make use of that data:

proc contents data=sashelp.class out=contents noprint;

run;

filename _webout temp;

proc json out=_webout nosastags pretty;

 export contents(keep=name type memlabel) ;

run;

The JSON that would be generated is as follows in Listing 9-3.

Listing 9-3. Generated JSON

[

 {

 "MEMLABEL": "Student Data",

 "NAME": "Age",

 "TYPE": 1

 },

 {

 "MEMLABEL": "Student Data",

 "NAME": "Height",

Chapter 9 SaS proCedureS

294

 "TYPE": 1

 },

 {

 "MEMLABEL": "Student Data",

 "NAME": "Name",

 "TYPE": 2

 },

 {

 "MEMLABEL": "Student Data",

 "NAME": "Sex",

 "TYPE": 2

 },

 {

 "MEMLABEL": "Student Data",

 "NAME": "Weight",

 "TYPE": 1

 }

]

Here is a full working example in Listing 9-4.

Listing 9-4. Full example

var myfilter = "http://<server>/SASStoredProcess/do?_program=<program>%2F

<stored process name>";

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.

w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:mso="urn:schemas-

microsoft- com:office:office" xmlns:msdt="uuid:C2F41010-65B3-11d1-A29F-

00AA00C14882">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<meta http-equiv="X-UA-Compatible" content="IE=edge" />

<script type="text/javascript" charset="utf8" src="../../webres/jquery- -

3.2.1.min.js"></script>

Chapter 9 SaS proCedureS

295

<script type="text/javascript" charset="utf8" src="../../webres/jquery-

ui- 1.12.1/jquery-ui.js"></script>

<link rel="stylesheet" type="text/css" href="../../webres/jquery-ui-

themes-1.9.2/base/jquery-ui.css" />

<link rel="stylesheet" type="text/css" href="../../webres/DT4/datatables.

min.css"/>

<script type="text/javascript" src="../../webres/DT4/datatables.min.js">

</script>

<script type="text/javascript">

var myfilter = "http://<server>/SASStoredProcess/do?_program=<program>%2F

<stored process name>";

var call = $.ajax({ url: myfilter,

 type: "GET",

 dataType: "json",

});

call.done(function (data,textStatus, jqXHR){

 $('#example2 tbody').off('click', 'tr');

 table2 = $('#example2').DataTable({

 dom: 'lfrtip', //'Bfrtip', /*dtsettings,*/

 bLengthChange: true,

 buttons: [

 'excelHtml5'

],

 "orderCellsTop": true,

 "bDestroy": true,

 "bProcessing": true,

 "lengthMenu": [[10, 25, 50, -1], [10, 25, 50, "All"]],

 "aaData": data,

 "scrollX": true,

 "aoColumns": [

 { 'sTitle': 'Year','mData': 'Year', 'sClass': 'center_column' }

 ,{ 'sTitle': 'Quarter','mData': 'Quarter', 'sClass': 'center_

column' }

 ,{ 'sTitle': 'Product_Line','mData': 'Product_Line', 'sClass':

'center_column' }

Chapter 9 SaS proCedureS

296

 ,{ 'sTitle': 'Product_Category','mData': 'Product_

Category', 'sClass': 'center_column' }

 ,{ 'sTitle': 'Product_Group','mData': 'Product_

Group', 'sClass': 'center_column' }

 ,{ 'sTitle': 'Quantity','mData': 'Quantity', 'sClass':

'center_column' }

 ,{ 'sTitle': 'Profit','mData': 'Profit', 'sClass': 'center_

column' }

 ,{ 'sTitle': 'Total_Retail_Price','mData': 'Total_Retail_

Price', 'sClass': 'center_column' }

]

 ,"oLanguage": {

 "sSearch": "Search All Columns: "

 }

 });

});

call.fail(function (jqXHR,textStatus,errorThrown){

 alert('unable to obtain data from SAS');

});

</script>

</head>

<body>

<table id='example2' class='display' width='100%'><tfoot><tr></tr>

</tfoot></table>

</body>

</html>

 PROC STREAM
There are various ways that we can get code into a web browser. We could just write a

simple file and then load that into the web browser, such as by creating a file report.

HTML and opening it. Usually a better way to do this is to use SAS/Intrnet or a Stored

Process to stream code to the browser. From a Stored Process, you can do this by writing

lines to the _webout fileref. This could be done by writing to it from a data step, but

you can also use PROC STREAM to do this.

Chapter 9 SaS proCedureS

297

 Streaming with a Data Step
The data step can be used to stream by writing to _webout, when used from a Stored

Process in the SAS Stored Process Web Application. If you use any macro language in what

is streamed, then it would not be resolved. For example, the following Stored Process

%let name=Phil Mason ;

data _null_ ;

 file _webout ;

 input ;

 put _infile_ ;

 cards ;

<HTML>

<h1>Hello &name</h1>

</HTML>

;;

run ;

Listing 9-5 would produce this output (Figure 9-4), when run through the SAS Stored

Process Web Application.

If you want to resolve the macro language before streaming the HTML code out, then

you can use something like the resolve() function. You would then change your Stored

Process code to be like this:

%let name=Phil Mason ;

data _null_ ;

 file _webout ;

 input ;

 line=resolve(_infile_) ;

 put line ;

 cards ;

<HTML>

Figure 9-4. This is displayed when we view the HTML generated from Listing 9-1

Chapter 9 SaS proCedureS

298

<h1>Hello &name</h1>

</HTML>

;;

run ;

This will produce the following output (Figure 9-5) in the web browser.

There are some problems using the resolve function in the data step, particularly

that there is a limitation on size. So the text for each line can only ever fit into the size of

a variable, which is 32K maximum. If macro language expands to take more space than

that, then it will be truncated. This can lead to unexpected results and errors. There can

be additional issues with escaped HTML characters such as & which is not a SAS macro

variable, although SAS will think it is.

 Streaming with PROC STREAM
Another way to stream data is to use PROC STREAM. The program would look like this:

proc stream outfile=_webout;

 BEGIN

<HTML>

<h1>Hello &name</h1>

</HTML>

;;;;

run;

PROC STREAM reads text that appears after the BEGIN statements up to the four

semi-colons which indicate the end of input. It then writes the lines to the _webout

filreref. As the lines are written, any macro references are resolved, and unlike the

RESOLVE() function, there is no limit of data size. This is a hugely powerful facility. In

the simplest example, we could have an HTML file where we have a macro variable for

the title, which would be replaced as the HTML is streamed to the browser.

Figure 9-5. Using resolve function means we see this from the HTML generated

Chapter 9 SaS proCedureS

299

A more complex example shows how macro variables and other macro language

such as macro functions are all resolved when used within PROC STREAM:

%let name=Phil Mason ;

proc stream outfile=_webout ;

BEGIN

<HTML>

<h1>Hello &name</h1>

The time is %sysfunc(time(),time.)

</HTML>

;;;;

run ;

The output produced by this is displayed in Figure 9-6.

An even more complex example shows how all macro language is resolved by PROC

STREAM, so even if you use macro programs, they will resolve and what they produce

will be included into the stream. If you have a Stored Process with the following code

%let name=Phil Mason ;

%macro loop(n) ;

 %do i=1 %to &n ;

 Counting: &i

 %end ;

%mend loop ;

proc stream outfile=_webout ;

BEGIN

<HTML>

<h1>Hello &name</h1>

The time is %sysfunc(time(),time.)

Figure 9-6. Output with text resolved from macro function call

Chapter 9 SaS proCedureS

300

<p>

%loop(5)

</HTML>

;;;;

run ;

it produces the following output (Figure 9-7).

 Streaming RTF Files with PROC STREAM

PROC STREAM also works well with other kinds of text files, such as RTF files. You could

make a letter and save it as RTF and replace certain parts with macro variables, and

then by using PROC STREAM, you could effectively carry out a mail merge to produce a

customized letter for a set of macro variables.

So if I go into Microsoft Word and make a document like the one shown in Figure 9-8

Figure 9-7. HTML produced by macro program looping and generating text

Figure 9-8. Document in Microsoft Word with some macro code

Chapter 9 SaS proCedureS

301

I can then save that as an RTF file. This file will have many lines of RTF code, but the

lines of interest to use are the ones with the macro statements on them. These are

\par The date is %sysfunc(date(),date.).

\par

\par Yours sincerely,

\par &name

The following code can be used to read the RTF file in, resolve any macro language,

and write it to a new RTF file: “&streamdelim;”

%let name=Phil Mason ;

filename oldrtf "F:\letter.rtf" recfm=v lrecl=32767;

filename newrtf "F:\letter1.rtf" recfm=v lrecl=32767;

proc stream outfile=newrtf quoting=both asis;

begin

&streamdelim;

%include oldrtf;

;;;;

 DOSUB

We can also run SAS code while processing the PROC STREAM by using the dosub

function with a %sysfunc. SAS code to be run is pointed to by a fileref, and then the

dosub uses that fileref. If you have some code that you want to run during PROC

STREAM, such as this

filename myHTML "temp.txt";

data _null_;

 file myHTML;

 set sashelp.class end=end ;

 if _n_=1 then put '<h1>This is my heading</h1><table>';

 put '<tr><td>' name '</td>' '<td>' age '</td></tr>' ;

 if end then put '</table>' ;

run;

Chapter 9 SaS proCedureS

302

you can run the preceding code by pointing to the file it is in (dosub.sas) and using the

dosub function to run it in PROC STREAM as follows:

filename makeHTML 'c:\test\dosub.sas' ;

filename myHTML "temp.txt";

filename report "report.HTML";

proc stream outfile=report ;

begin

%let abc=%sysfunc(dosub(makeHTML));

%include myHTML;

;;;;

This runs dosub.sas, which writes HTML to temp.txt. Then in PROC STREAM, we

include temp.txt which writes the HTML that the data step generated out to report.

HTML. Being able to run code on the fly from within PROC STREAM adds a huge

amount of power and flexibility to the use of PROC STREAM.

If you wanted to read a file in to be streamed, without having any macro language

resolved, then you can use the readfile keyword. Often this might be used to get some

content and put it between PRE tags in HTML, since they are used for pre-formatted

content. If you had a log you wanted shown as is in a non-proportional font, then that

would be easily done as shown in the code that follows.

For example, the following code uses readfile to read in some text using the exact

formatting it had in the file. We then use the PRE HTML tags to enclose that text which

indicates that it is pre-formatted text. You can also see that the &name which is inside the

pre-formatted text is not resolved. However, the &name which is inside the text of PROC

STREAM is resolved.

%let name=Phil ;

filename text temp ;

data _null_;

 file text ;

 input ;

 put _infile_;

 cards4 ;

Here is a line

And here is the next line

Chapter 9 SaS proCedureS

303

Here is a macro variable - &name

;;;;

run ;

filename dest temp ;

proc stream outfile=dest ;

begin

<PRE>

&streamdelim readfile text ;

</PRE>

My name is &name

;;;;

data _null_;

 infile dest ;

 input ;

 put _infile_ ;

run;

The code produces the following output in the log:

341 %let name=Phil ;

342 filename text temp ;

343 data _null_;

344 file text ;

345 input ;

346 put _infile_;

347 cards4 ;

NOTE: The file TEXT is:

 Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD10384_D351TQ92_\#LN00216,

 RECFM=V,LRECL=32767,File Size (bytes)=0,

 Last Modified=28 September 2017 21:46:30 o'clock,

 Create Time=28 September 2017 21:46:30 o'clock

NOTE: 4 records were written to the file TEXT.

 The minimum record length was 80.

 The maximum record length was 80.

Chapter 9 SaS proCedureS

304

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

352 ;;;;

353 run ;

354

355 filename dest temp ;

356 proc stream outfile=dest ;

357 begin

358 <PRE>

359 &streamdelim readfile text ;

NOTE: PROCEDURE STREAM used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

360 </PRE>

361 My name is &name

362 ;;;;

363

364 data _null_;

365 infile dest ;

366 input ;

367 put _infile_ ;

368 run;

NOTE: The infile DEST is:

 Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD10384_D351TQ92_\#LN00217,

 RECFM=V,LRECL=32767,File Size (bytes)=358,

 Last Modified=28 September 2017 21:46:30 o'clock,

 Create Time=28 September 2017 21:46:30 o'clock

<PRE>

Here is a line

And here is the next line

Here is a macro variable - &name

Chapter 9 SaS proCedureS

305

</PRE>My name is Phil

NOTE: 6 records were read from the infile DEST.

 The minimum record length was 5.

 The maximum record length was 80.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

You can force a new line in the streamed output by using newline. You must have

the stream delimiter followed by newline in order to do this. There is no other way to be

absolutely sure of having a line break in a particular place.

For example, the following code redefines the stream delimiter to be _delim_

and then uses that with newline to make it go to a new line in the output.

filename sample temp ;

proc stream outfile=sample resetdelim='_delim_'; begin

Line 1

delim newline;

Line 2

;;;;data _null_ ;

 infile sample ;

 input ;

 put _infile_ ;

run ;

The log for this is as follows.

393 filename sample temp ;

394 proc stream outfile=sample resetdelim='_delim_'; begin

395 Line 1

NOTE: PROCEDURE STREAM used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

396 _delim_ newline;

397 Line 2

398 ;;;;

Chapter 9 SaS proCedureS

306

399

400 data _null_ ;

401 infile sample ;

402 input ;

403 put _infile_ ;

404 run ;

NOTE: The infile SAMPLE is:

 Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD10384_D351TQ92_\#LN00220,

 RECFM=V,LRECL=32767,File Size (bytes)=16,

 Last Modified=28 September 2017 21:59:28 o'clock,

 Create Time=28 September 2017 21:59:28 o'clock

Line 1

Line 2

NOTE: 2 records were read from the infile SAMPLE.

 The minimum record length was 6.

 The maximum record length was 6.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

If we didn’t redefine the delimiter, then the code would have been like the following

and produced the same result:

filename sample temp ;

proc stream outfile=sample ; begin

Line 1

&streamdelim newline;

Line 2

;;;;

data _null_ ;

 infile sample ;

 input ;

 put _infile_ ;

run ;

Chapter 9 SaS proCedureS

307

If we remove the line which forces the newline, then the code will be as follows:

filename sample temp ;

proc stream outfile=sample ; begin

Line 1

Line 2

;;;;

data _null_ ;

 infile sample ;

 input ;

 put _infile_ ;

run ;

And this produces the following result:

451 filename sample temp ;

452 proc stream outfile=sample ; begin

NOTE: PROCEDURE STREAM used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

453 Line 1

454 Line 2

455 ;;;;

456

457 data _null_ ;

458 infile sample ;

459 input ;

460 put _infile_ ;

461 run ;

NOTE: The infile SAMPLE is:

 Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD10384_D351TQ92_\#LN00225,

 RECFM=V,LRECL=32767,File Size (bytes)=14,

 Last Modified=28 September 2017 22:07:29 o'clock,

 Create Time=28 September 2017 22:07:29 o'clock

Chapter 9 SaS proCedureS

308

Line 1Line 2

NOTE: 1 record was read from the infile SAMPLE.

 The minimum record length was 12.

 The maximum record length was 12.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 secondsYou should always check the performance

of code using features like dosub, as it can be quite inefficient in some cases and may

require some tuning or careful design. Read more about PROC STREAM in the SAS 9.4

documentation here: http://documentation.sas.com/?docsetId=proc&docsetTarget

=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docset

Version=9.4&locale=en.

 PROC HTTP
The HTTP procedure lets you issue HTTP requests. This means that you can make GET

or POST requests as well as other kinds of requests. You send data in the request and can

receive a response. Then you’ll be able to effectively make a call to a URL using PROC

HTTP and get the results of it. You can parse the output returned and extract data from

it or do something else with that output. You could call a web service, Stored Process, or

virtually any web page.

 Example Accessing a Web Page
The simplest usage of PROC HTTP is simply to open a web page and receive the response,

which will usually be the HTML. The following code in Listings 9-5 and 9-6 opens the SAS

home page and collects the HTML into a temporary file under the fileref resp.

Listing 9-5. SAS Program that opens a web page and writes out response

filename resp TEMP;

proc http

 url="http://www.sas.com"

 out=resp;

run;

Chapter 9 SaS proCedureS

http://documentation.sas.com/?docsetId=proc&docsetTarget=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetTarget=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetTarget=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docsetVersion=9.4&locale=en

309

Listing 9-6. SAS Log of Listing 9-5

73 filename resp TEMP;

74 proc http

75 url="http://www.sas.com"

76 out=resp;

77 run;

NOTE: PROCEDURE HTTP used (Total process time):

 real time 1.87 seconds

 cpu time 0.01 seconds

NOTE: 200 OK

 Example Using a Web Service
The following code in Listing 9-7 allocates two temporary files, one which is used as

input to a web service and Listing 9-8 is used to receive the output.

Listing 9-7. SAS Program that opens a web service passing in a value

dm 'log;clear' ;

filename in temp ;

filename out temp ;

data _null_;

 file in;

 input;

 put _infile_;

 datalines4;

Celsius=0

;;;;

 proc http

 in=in

 out=out

 url="https://www.w3schools.com/xml/tempconvert.asmx/CelsiusToFahrenheit"

 method="post"

Chapter 9 SaS proCedureS

310

 ct="application/x-www-form-urlencoded"

 verbose

 ;

run;

data _null_ ;

 infile out ;

 input ;

 put _infile_ ;

run ;

Listing 9-8. SAS Log from Listing 9-7 that uses a web service

84 dm 'log;clear' ;

85

86 filename in temp ;

87 filename out temp ;

88 data _null_;

89 file in;

90 input;

91 put _infile_;

92 datalines4;

NOTE: The file IN is:

 Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary Files_

TD15020_D351TQ92_\#LN00044,

 RECFM=V,LRECL=32767,File Size (bytes)=0,

 Last Modified=05 September 2017 21:45:59 o'clock,

 Create Time=05 September 2017 21:45:59 o'clock

NOTE: 1 record was written to the file IN.

 The minimum record length was 80.

 The maximum record length was 80.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 seconds

Chapter 9 SaS proCedureS

311

94 ;;;;

95

96 proc http

97 in=in

98 out=out

99 url="https://www.w3schools.com/xml/tempconvert.asmx/

CelsiusToFahrenheit"

100 method="post"

101 ct="application/x-www-form-urlencoded"

102 verbose

103 ;

URL = https://www.w3schools.com/xml/tempconvert.asmx/

CelsiusToFahrenheit

METHOD = post

CT = application/x-www-form-urlencoded

In = C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD15020_D351TQ92_\#LN00044

Out = C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD15020_D351TQ92_\#LN00045

104 run;

NOTE: PROCEDURE HTTP used (Total process time):

 real time 0.30 seconds

 cpu time 0.03 seconds

NOTE: 200 OK

105

106 data _null_ ;

107 infile out ;

108 input ;

109 put _infile_ ;

110 run ;

Chapter 9 SaS proCedureS

312

NOTE: The infile OUT is:

 Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary Files_

TD15020_D351TQ92_\#LN00045,

 RECFM=V,LRECL=32767,File Size (bytes)=98,

 Last Modified=05 September 2017 21:45:59 o'clock,

 Create Time=05 September 2017 21:45:59 o'clock

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="https://www.w3schools.com/xml/">32</string>

NOTE: 2 records were read from the infile OUT.

 The minimum record length was 38.

 The maximum record length was 58.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

Note the urL access method on the FILeNaMe statement provides quite similar
functionality to proC http. It might be a better option if you are considering proC
http. You can read about proC http in SaS 9.4 here: https://support.sas.
com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n
0bdg5vmrpyi7jn1pbgbje2atoov.htm.

 PROC EXPORT
PROC EXPORT takes a SAS table and converts to another format supported.

The converted formats could be

• CSV

• EXCEL

• JMP

These are delimited files, like a CSV, but with another delimiter.

The file produced is written to a fileref specified using OUTFILE. From a Stored

Process running through the Stored Process Web Application, we could specify this as

Chapter 9 SaS proCedureS

https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0bdg5vmrpyi7jn1pbgbje2atoov.htm
https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0bdg5vmrpyi7jn1pbgbje2atoov.htm
https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0bdg5vmrpyi7jn1pbgbje2atoov.htm

313

_webout in order to send the exported data directly back to the browser. The REPLACE

parameter can be specified in order to replace any file which is there already. When

streaming to the browser, we always need to specify this. For example, to stream CSV

data from a specific table back to the browser, we could use a PROC EXPORT like this:

proc export data=sashelp.orsales outfile=_webout dbms=csv replace;

run;

 Use Code with a Macro Variable for the Table Name
To generalize this code so it can be used for different tables, we can replace the table

name with a macro variable. Here is that code:

proc export data=&table outfile=_webout dbms=csv replace;

run;

 Call Stored Process Passing Parameter for Table
If we now create a Stored Process containing the previous SAS code, then we will be able

to call that by using the SAS Stored Process Web Application as follows, remembering to

specify a value for the table to be exported. This will then send the table converted to a

CSV back to the web browser:

http://localhost/SASStoredProcess/do?_program=/User+Folders/phil/My+Folder/

csv&table=sashelp.class

 Use Code in JavaScript to Feed Objects
If you needed CSV data to feed to a JavaScript object, then you could use a line of

JavaScript like the following:

$.get('http://localhost/SASStoredProcess/do?_program=/User+Folders/phil/

My+Folder/csv&table=sashelp.class', function(csv)

 PROC IMPORT
This can be used to read data of various formats into SAS tables. When used with Stored

Processes, you could use this to import the data from files uploaded to the server.

Chapter 9 SaS proCedureS

314

Here is some HTML code which will prompt the user for some files to upload to the

server. Note that we set the method to POST, so that we can handle the files being posted

in the HTTP request; the alternative would be GET but that would not work in all cases.

The enctype is set so that we can send multiple files in the upload.

<HTML>

<form method="post" action="http://d351tq92/SASStoredProcess/do?"

enctype="multipart/form-data">

<input type="hidden" name="_program" value="/User Folders/phil/My Folder/

upload">

Enter CSV to upload and import <input name="file1" type="file"><p>

Enter CSV to upload and import <input name="file2" type="file"><p>

Enter CSV to upload and import <input name="file3" type="file"><p>

Show this many rows <input name="obs" type="text" value="10"><p>

Debug options <input name='_debug' type='text'><p>

<input type="submit" value="Run">

</form>

</HTML>

Figure 9-9 is what is displayed when the HTML is used. Notice that when you specify

a type of “file”, you get a button which opens a dialog and lets you browse the file system

and select a file. When files are uploaded, we get a bunch of automatic macro variables

populated which all start with _WEBIN_.

Here is the Stored Process code which the HTML form calls. The PROC SQL at the

start of the code lets us look at the values of the _WEBIN_ macro variables. We get a

Figure 9-9. Displayed in browser from previous HTML

Chapter 9 SaS proCedureS

315

count of the number of files uploaded which is in _webin_file_count, and we use that to

look through each filename to carry out an import on it. We have some code ① to fix up

the file format of the CSV so it is ready for PROC IMPORT. PROC IMPORT imports each

CSV in and assigns it a table name.

proc sql ;

 select * from dictionary.macros

 where name like '_WEBIN_%' ;

quit ;

filename temp temp ;

%macro read_loop ;

 %if &_webin_file_count=1 %then %do ;

 %let _webin_fileref1=&_webin_fileref ;

 %let _webin_filename1=&_webin_filename ;

 %end ;

 %do i=1 %to &_webin_file_count ;

 %let csv_file=%sysfunc(pathname(&&_webin_fileref&i));

 %put &=csv_file ;

 * fix the end of line character for Proc Import ;

 data _null_ ; ①
 infile "&csv_file" sharebuffers termstr=cr ;

 file temp termstr=crlf ;

 input ;

 line=compress(_infile_,'1a'x) ;

 put line ;

 run ;

 filename in "&csv_file" ;

 proc import datafile=temp

 dbms=csv

 replace

 out=file&i ;

 getnames=yes ;

 run ;

 %let dsid=%sysfunc(open(file&i)) ;

 title "%sysfunc(attrn(&dsid,nobs),comma12.) rows imported from CSV

file: &&_webin_filename&i" ;

Chapter 9 SaS proCedureS

316

 %let dsid=%sysfunc(close(&dsid)) ;

 title2 "Table produced: file&i" ;

 proc print data=file&i(obs=&obs) ;

 run ;

 %end ;

%mend read_loop ;

%read_loop

Figure 9-10 is the kind of output you get from the PROC SQL, which shows the

automatic variables that describe the file being uploaded.

As this section is about using PROC IMPORT, let me describe its use in this instance.

PROC IMPORT specifies the file that is being read in by using the datafile option which

in our case points to a fileref, although it can also point directly at a file. The dbms

option specifies what the file format is, and several formats are supported such as

delimited files, EXCEL, and more. The out option specifies what SAS table to create

when the file is imported. The replace option specifies that a file should be overwritten

if it exists already. You can read about the procedure and options in depth in the

documentation.1

1 http://documentation.sas.com/?docsetId=proc&docsetTarget=n18jyszn33umngn14czw2qfw7
thc.htm&docsetVersion=9.4&locale=en

Figure 9-10. Automatic macro variables available relating to reading files into
stored processes from a web browser

Chapter 9 SaS proCedureS

http://documentation.sas.com/?docsetId=proc&docsetTarget=n18jyszn33umngn14czw2qfw7thc.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetTarget=n18jyszn33umngn14czw2qfw7thc.htm&docsetVersion=9.4&locale=en

317

 Summary
In this chapter, we look at some of the most useful SAS procedures for using with stored

processes and building web applications:

• Proc STP allows us to run a stored process from a regular SAS

program, meaning it could be run in the background or batch, or we

could run several stored processes from a single SAS program.

• Proc JSON allows us to access any data that SAS can access and write

JSON data out. There is quite a lot of flexibility available so we can

even build quite complex JSON structures.

• Proc STREAM allows us to take a “stream” of text and send it to a

destination (e.g., the web browser) and resolve all macro variables

and programs as it goes. You can stream all kinds of text, such as

HTML, JavaScript, CSS, RTF, CSV, and so on.

• You can use DOSUB to run SAS code while streaming text.

• Proc HTTP lets you issue HTTP GET or POST requests and capture

the response for further processing.

• Proc EXPORT will convert data the SAS can access into another

format such as CSV or EXCEL.

• Proc IMPORT will read in a range of different data and convert it into

a SAS-supported format.

Chapter 9 SaS proCedureS

	Chapter 9: SAS Procedures
	PROC STP
	PROC JSON
	PROC STREAM
	Streaming with a Data Step
	Streaming with PROC STREAM
	Streaming RTF Files with PROC STREAM
	DOSUB

	PROC HTTP
	Example Accessing a Web Page
	Example Using a Web Service

	PROC EXPORT
	Use Code with a Macro Variable for the Table Name
	Call Stored Process Passing Parameter for Table
	Use Code in JavaScript to Feed Objects

	PROC IMPORT
	Summary

