
11
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_2

CHAPTER 2

Developing Applications
When developing applications with SAS, it is wise to keep in mind some principles and

best practices to follow. If you follow these principles, then they will help to avoid many

of the common problems and pitfalls that developers are confronted with. These things

are much easier to implement at the start of a project rather than part way through and

will provide a lot of benefits for the investment of time and effort.

This chapter is aimed at the project manager or architect of a project, as they tend

to be the person who thinks about the project as a whole. Sometimes this will be the

programmer, especially for small projects. There are advantages to following these

principles even with small projects, but the benefits grow as the size of the project grows

in size.

�Development Models
There are many ways to carry out development. I will briefly outline some of these now.

�Freestyle Approach
The freestyle approach is how many untrained people develop things. It basically involves

just diving in and starting to code with no planning at all. Of course, you need some idea

of what you are trying to build, but that can be a sketch on the back of an envelope or a

vague idea in your head. Many great systems have started this way, and often it is a valid

way to innovate new solutions. However, typically it’s not the best way to develop a big

system or application especially when more than one person is involved in the team.

For many years, the most popular model for larger developments was the System

Development Life Cycle (SDLC) pictured in Figure 2-1. When you look at this, it makes a

lot of logical sense and in fact is pretty much the process any sensible developer would

go through if doing it freestyle.

https://doi.org/10.1007/978-1-4842-5925-2_2#ESM

12

This model can run into some problems when the stages become very prescriptive

and lots of rules and guidelines are defined in an attempt to achieve best practice. I have

seen companies where there are many long documents that must be delivered at each

stage of this process which can mean that a small development that might take a day to

write code for ends up taking four weeks to complete once all the documents, meetings,

and stages have been done. This model is sometimes called the Waterfall model, as the

diagram can be drawn as a waterfall from “Planning” to “Maintenance.” Sometimes

“Planning” and “Analysis” are replaced by “Requirements,” and a “Verification” step is

added after “Implementation.”

�V-Model
The V-model of software development is an extension to the SDLC model. Each phase on

the left of Figure 2-2 has a corresponding phase on the right which is for validation. For

instance, the “Concepts of Operations” is validated by the “Operation & Maintenance.”

Figure 2-1.  SDLC/Waterfall

Chapter 2 Developing Applications

13

One common problem with this model is that it doesn’t fit the needs of all people

in the project. It’s a nice way for a project manager to look at a project, but not the best

way for a developer. And it is fairly inflexible although still probably a lot better than

SDLC.

�Agile
The Agile approach to development has shorter cycles of development and delivery so

we get results quicker which users can see, which in turn affects further development. It

is quite similar to another model called Rapid Application Development, which has been

around for many more years. Agile welcomes changes in requirements, which other

models don’t because it means returning to an earlier phase of the process. Agile has

many iterations of development, testing, and delivery, so users get things in weeks rather

than months. Developers and clients work together closely on an almost daily basis.

This model is sometimes preferred by developers and clients but is harder to manage for

project managers.

Figure 2-2.  V-model

Chapter 2 Developing Applications

14

�Architectural Concepts
It is wise to keep a range of architectural concepts in mind as you develop your software.

This is an incomplete list to remind you of some of the things to consider, which can lead

to a better design:

•	 Scalability issues – The biggest scalability issue with stored

processes used in web applications is the number of multibridge

connections defined. The default is 3 and that is often far too small.

You need your SAS administrator to increase this number if it is

too small. You may also want to set up your code to run in parallel

threads to improve performance. You might want to grid enable the

code if you have SAS/Grid. You might want to make use of SPDS if

you have that, since it can help improve performance on your tables

removing the need for sorting (for example).

•	 CRUD issues (Create Read Update Delete) – This is often a

consideration if you are developing web applications and want to

create tables, update records, or delete things. It’s easy to read data,

but there are various issues around these other things. It is more

difficult to use SAS tables with CRUD than using some other database

systems such as MySQL or Postgres.

•	 Browser differences – If you’re developing web applications, then

you need to look at how you support different browsers. You can

detect the browser you are using and potentially write special code to

handle its differences or make use of a JavaScript framework which

will handle many of these issues automatically.

•	 Complexity of code vs. ability to support it – You can sometimes

write complex code and reduce the number of lines needed.

However, you can usually achieve a similar level of performance by

using a simpler technique that perhaps has more lines. But if things

are easier for a future maintainer of your code to understand, then

you are wise to choose the simpler code.

Chapter 2 Developing Applications

15

•	 Platform differences – Will your application only ever run on a

laptop? What if it runs on a huge monitor with many times the

resolution of a laptop? Maybe you want to detect that and change the

way you are producing the user interface. What if it runs on a mobile

phone or tablet? Perhaps you want to detect that and change things.

It is useful to be aware of various development frameworks that

handle different platforms, such as Bootstrap. Many of those systems

allow setting up things on screen with a grid system and defining

different layouts for different sized devices so that you can write one

piece of code for mobile phones, laptops, and large screen devices.

�Useful Documents to Produce
It’s best not to go overboard with the production of documents for your development.

However, there are some documents that are usually advisable to create; even if on a

small development, you include them all in one:

•	 Requirements Documentation – Identifies what the system should

look like and be capable of.

•	 Architecture/Design Documentation – Describes how the software

components are designed and should have sufficient information for

programmer(s) to develop the programs.

•	 Technical Documentation – Documents the code, algorithms,

user interfaces, APIs, and so on. It is a document written by the

programmer(s) for other programmer(s) who might come along later

and need to understand and maintain the code.

•	 End-User Documentation – Describes how the software works

for those people that will use it. That could be end users, system

administrators, and support.

•	 Marketing/Training Material – Useful to provide to potential users

of the software to show the benefits.

Chapter 2 Developing Applications

16

�Source Control Systems
Source control systems are used to track changes to files, maintain different versions of

the same files, and allow multiple people to collaborate during the development phase.

These systems are sometimes called version control systems or revision control systems

too. The main idea is that the system manages source code and maintains a number of

versions and history.

If you have access to Data Integration Studio, this can handle source control for

you – so look no further. You will still need to do some additional configuration beyond

the default, such as setting up a SVN, CVS, or Git server. However, if you don’t have DI

Studio, then read on.

Using source control is extremely beneficial, because as we develop programs, the

system maintains previous versions. We can return to an old version if we need to. We

can compare the current version of the code to old versions to see what has changed.

The system can keep track of who has changed parts of the code. It can manage the code

so that only one person at a time is updating it.

Some important features that you should look for when choosing source control

systems are

•	 Concurrent development – A source control system should provide

tools to allow multiple developers to work on source code at the same

time. This might provide a mechanism for merging code together in a

controlled way.

•	 Tracking changes – It should provide a mechanism to see what changes

have been made by people, even when code is merged back together.

•	 Locking or branches – Locking applies to some source control

systems that manage code by locking it for use by one person at a

time. Other systems take an alternate approach of keeping multiple

copies of code, such as in different branches, which can then be

merged together. A system using locking can handle locking of

modules and checking code in and out. If a team member wanted

to make changes to the code, they could check it out. That would

lock the code so that others could not make changes to it until it

was finished with and checked back in. The benefits of this grow as

the size of a team increases, in that the more people trying to work

together on code, the easier a system like this makes it.

Chapter 2 Developing Applications

17

•	 Archive and backup – A system can also handle archiving and

backing up of code. Archiving tends to happen for code that is not

currently in use and therefore is copied away to an archive area so

that it can be retrieved if it is needed in future. Backups are taken

regularly with the aim of being used if code is lost or recent changes

lost. It is for current code that is in use but which we want another

copy kept as insurance.

•	 Release management – Release management is concerned with

releasing versions of code into different environments and can

be helped or managed with a source control system. Often an

application is made up of a number of programs which many people

might be working on together. Many of these pieces of code may

form modules within an application. A collection of these are usually

bundled up into a release. It might be the entire application code or a

collection of modules from the application. When a release happens,

you would usually increment the version of your application (e.g.,

Data_explorer v1.11). Usually you would increment by an integer for

a major release and increment decimals for minor releases. A good

source control system that manages releases would be able to issue

a release, perhaps by packaging up the new bits and passing them to

another environment. It could also roll back a release by packaging

up a previous release and delivering that to replace a current release

that might have problems.

There are many source control systems available with these features and more are

coming out year by year. Some of the common ones that have been around for many

years are Subversion (SVN), Git, Team Foundation Server (TFS), and Concurrent

Versions System (CVS). There are newer systems like GitHub for which SAS now provides

some integration. This is a fantastic system to use with SAS development, and I suggest

you search the SAS Global Forum proceedings online for papers from users describing

how to use this.

You may have a source control system that you have to use because it is the company

standard or already in use. If you do get to choose, look for one that has a client for your

operating system that supports it and makes it easier to use. For example, GitHub has a

desktop version that can be downloaded for Windows or macOS.

Chapter 2 Developing Applications

18

�Environments for Developing Web Applications
A development environment is the software that allows you to write, test, and edit a

program. You can develop in a single environment, but it is advisable to use at least

two environments. If you do develop in a single environment and then people use your

application from that environment, then when you have to fix a problem and make an

enhancement, you are doing it with the live code, which is likely to cause problems to

your users. One mistake and the application stops working.

You should develop in one development environment and then deliver the

developed code to production in another development environment. This allows you to

have the current release of your program running in production while you are changing

the development version and getting it ready to become the new production version.

If you are able to have three environments, then that allows you to have a

Development, Test, and Production environment. You then develop in Development

and, when something is ready, deliver it to Test for testing and user acceptance. Once

that is done, it can be moved to Production.

Sometimes people will have a Personal Development Environment (PDEV) as well as

a Common Development Environment (CDEV). Then they can do things in PDEV without

affecting anyone else, and once they are happy with that code, they can move it to CDEV.

Some larger companies have even more environments:

•	 Common Development (CDEV)

•	 Personal Development (PDEV)

•	 Component Integration Testing (CIT)

•	 System Integration Testing (SIT)

•	 User Acceptance Testing (UAT)

•	 Production (PROD)

This allows different kinds of testing to be done in different environments. Figure 2-3

shows what the flow of development would be in a multiple environment system.

Figure 2-3.  Multiple environment system flow of development

Chapter 2 Developing Applications

19

�Ways to Develop with SAS
SAS provides lots of different tools for developing applications. Each has some

advantages and disadvantages. It’s important to know what release of the software you

are using too, as that can make a difference as to what useful features you may or may

not have. For instance, at the time of writing, the latest version of Enterprise Guide has a

data step debugger built into it, whereas prior versions do not.

�Commonly Used SAS Tools
Commonly used SAS tools include the following:

•	 PC SAS, in which we can write SAS code of all kinds, but if creating

Stored Processes, we need to also use SAS Management Console.

•	 Enterprise Guide, which can create most kinds of SAS code including

SAS Stored Processes. It spawns a SAS Workspace server to run SAS

code from it.

•	 SAS Studio, which is similar to Enterprise Guide but only requires a

web browser to use. It doesn’t allow creation of Stored Processes via

any kind of wizard, but you can create them programmatically with

standard SAS code. That code would need to make metadata calls

in order to create them, perhaps using some open source macros

available for that purpose.

•	 Data Integration Studio provides a controlled way to create SAS

programs using a collection of transformations and custom SAS code.

It includes the ability to check out and check in code so that teams of

people can work on large systems together.

•	 Office Add-in provides a SAS program window from the add-in

toolbar which lets you write SAS code and execute it on the sever.

The results are brought back and displayed in the Word, EXCEL, or

PowerPoint. You can also view the SAS log.

There are lots of other less common SAS tools that can be used for developing, but I

will be focusing on the ones mentioned already.

Chapter 2 Developing Applications

20

Most people will create Stored Processes with Enterprise Guide, and it is the way

that SAS documentation says to create them. Doing this will use a system account for the

stored process though, and it has inherent dangers associated with that. Currently, you

must either use Enterprise Guide or Management Console to create Stored Processes as

there is no other simple way provided by SAS to do so. There are metadata functions that

can be used from Base SAS to create a stored process, and there are even some macros

available that make that easy to do. I recommend taking a look at them.1 One nice thing

that Enterprise Guide does for you is to take you through a wizard to help you make the

Stored Process. It also will do things like add the stpbegin and stpend macros around

your SAS code by default so that ODS will work in the various clients you use your Stored

Process with. If you are new to Stored Processes, then use Enterprise Guide to create

them until you find a reason to use another method.

�Write Your Own Tools in SAS
As we will see in this book, we can write our own tools. You will be able to create bespoke

tools that you need with the features you want and without features that are not required.

You can leverage the skills you have with SAS to make your tools without needing

knowledge of other languages. They can be SAS macros that we can provide parameters

to choose what we want them to do. Or we can build Stored Processes which are far more

flexible. I have created Stored Process tools like this which run through the web browser

and give me functions like

•	 Scheduling SAS programs to run

•	 Analyzing directories of SAS and Enterprise Guide projects,

producing reports summarizing each of the programs

•	 Displaying the output and logs from scheduled jobs, allowing them to

be viewed

•	 Displaying the logs or Stored Processes that have run recently or are

currently running

1�You can create a stored process from a SAS program with the code located here: https://
github.com/macropeople/macrocore/blob/master/meta/mm_createstp.sas

Chapter 2 Developing Applications

https://github.com/macropeople/macrocore/blob/master/meta/mm_createstp.sas
https://github.com/macropeople/macrocore/blob/master/meta/mm_createstp.sas

21

�Simple Techniques for Building Applications with Stored
Processes
I have made many a prototype application using one or more Stored Processes in a

matter of hours. You can use some simple techniques to do this kind of thing:

•	 Enterprise Guide can generate a web page automatically via a wizard

in older versions. For some reason, this was removed in newer

versions of EG.

•	 If you have a macro that does something (like produce a report

from some parameter choices), then this can be simply turned

into a Stored Process. Just make a Stored Process and put the

macro invocation into it, along with either the macro code or

option to point to an autocall library that has it. You will be able

to define a prompt for each macro parameter and use those

values to invoke the macro. Run this through the SAS Stored

Process Web Application and you have an application based on

your macro.

•	 Stored Processes, which create their own interactive elements, are

a great way to build applications. For instance, you can make a

Stored Process that produces selection lists, radio buttons, and so

on based on SAS data. This lets you build a form with selections you

can choose from which can then be defined to call another Stored

Process to make use of those selections.

•	 It’s easy to generate HTML with hyperlinks to other HTML from a

Stored Process.

•	 You can implement drill-down by making your Stored Process

generate HTML links that link to the Stored Process that produced

them, but passed a parameter value in with the call, thereby

implementing drill-down. For example, make a graph that has bars

with drill-down links that call the same Stored Process but add the

info for passing the bar value clicked.

•	 Make menus by a Stored Process generating forms with HTML, which

then call other Stored Processes.

Chapter 2 Developing Applications

22

•	 JavaServer Pages (JSP) can be created in a particular location with

the same name as a Stored Process. If you then invoke the Stored

Process with a certain _action parameter value, then the JSP will

be displayed, rather than the Stored Process being run. This allows

a flexible program to be written to prompt the user for parameters

before running the actual Stored Process. You can “hack” this process

by simply putting an HTML file in the JSP directory, with a JSP file

type, and your HTML will then be displayed in the same way.

�Useful Tools for Building Web Applications
Here is a range of mostly free tools that can be used to make the process of building

web applications with SAS much easier. I will outline some of these tools and describe

how they are useful. Tools come and go though, so some things I mention might not be

available in future or there may be better tools around. Hopefully, being aware of the

kind of tools on offer will enable you to search for others that superseded these ones.

�Lint Tools
Lint was originally a tool on UNIX systems that flagged suspicious or non-portable code

in C programs. However, people have extended this functionality to other languages and

provided more functionality. Some tools will not only look for a range of errors in your

code, but also lay out the code in a more standard way. Some tools will uppercase tags

and attributes used, highlight unmatched parentheses, wrap long lines, and so on. So, it

can take some very hard to read code and make it far easier to make sense of. Here are

some useful tools for web application development:

•	 JavaScript Lint – www.JavaScriptlint.com/ or

http://www.jslint.com/

•	 HTML Tidy – https://infohound.net/tidy/

•	 CSS Lint – http://csslint.net/

•	 JSON Lint – https://jsonlint.com/

•	 CSV Lint – https://csvlint.io/

Chapter 2 Developing Applications

http://www.javascriptlint.com/
http://www.jslint.com/
https://infohound.net/tidy/
http://csslint.net/
https://jsonlint.com/
https://csvlint.io/

23

The JavaScript Lint tool will look for these common mistakes, as well as many

uncommon ones:

•	 Missing semi-colons at the end of a line

•	 Curly braces without an if, for, while, and so on

•	 Code that is never run because of a return, throw, continue, or break

•	 Case statements in a switch that do not have a break statement

•	 Leading and trailing decimal points on a number

•	 A leading zero that turns a number into octal (base 8)

•	 Comments within comments

•	 Ambiguity whether two adjacent lines are part of the same statement

•	 Statements that don’t do anything

�IDE Tools
An IDE is an Interactive Development Environment. These are tools that aid you in

developing in one or more particular languages. They provide some or all of these

features: a source code editor with code completion, tools to automate building the

code, a debugger, compiler, interpreter, version control system, extensive help on the

language, and so on. Some IDEs worth looking at include

•	 NetBeans from Oracle; there are many versions of this and it’s

best to just download the HTML5/JavaScript version

(https://netbeans.org/).

•	 Brackets is an open source code editor with live preview of changes

and support for preprocessors (http://brackets.io/).

•	 Atom from GitHub is described as a hackable text editor, which

means it can be customized extensively (https://atom.io/).

•	 Visual Studio Code from Microsoft supports debugging, syntax

highlighting, code completion, snippets, and more (https://code.

visualstudio.com/).

Chapter 2 Developing Applications

https://netbeans.org/
http://brackets.io/
https://atom.io/
https://code.visualstudio.com/
https://code.visualstudio.com/

24

•	 Notepad++ deserves a mention, though it doesn’t have fancy tools

built into it. It is like a standard text editor on steroids and is my

number one choice for editing all kinds of programs whenever

possible. It does have syntax highlighting built in and can do great

things like edit hundreds of files simultaneously and find text across

them all very quickly (https://notepad-plus-plus.org/).

�Using a JavaScript IDE
An IDE is an Interactive Development Environment. You can use JavaScript IDEs for

developing HTML and JavaScript code. IDEs often have useful features like syntax

highlighting, debuggers, preview windows, and so on. Many good ones are free including

Notepad++ and Microsoft Visual Studio Code, which both run on Mac, Windows, and Linux.

It is sometimes useful to build some HTML and JavaScript code in an IDE and then

look at moving it onto the SAS web server and integrating into a Stored Process.

�JavaScript Debuggers
JavaScript debuggers are very useful for running your JavaScript and debugging any

errors you have. You can also trace variables reporting their values when they change,

which can be helpful in understanding how your JavaScript code runs. You can set

breakpoints too, so that the code will run up to a certain point and then pause so you can

look at the values of variables. Many web browsers have debuggers built in, so there is no

need to buy or download one.

Most developers will have their favorite development tools in their favorite browser.

For me, it has changed over time and was Firefox for many years, but more recently,

I have found Chrome to be great. These two browsers are great because they work on

many operating systems too. Internet Explorer only works on Windows, unless you

make use of an emulator such as browserstack.com which lets you test you web page on

lots of different browsers and platforms. I find that most browsers have much the same

capabilities now, all of which are sufficient for helping to build web applications:

•	 Microsoft Internet Explorer has built-in developer tools (Figure 2-4)

that can be accessed by pressing F12 or using Tools/Developer

Tools/Console (https://msdn.microsoft.com/en-us/library/

gg589507(v=vs.85).aspx).

Chapter 2 Developing Applications

https://notepad-plus-plus.org/
https://msdn.microsoft.com/en-us/library/gg589507(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/gg589507(v=vs.85).aspx

25

•	 Firefox has developer tools too (Figure 2-5) that can be accessed

using the Tools/Web Developer menu. There is a debugger, web

console, performance tools, and more (https://developer.

mozilla.org/en-US/docs/Tools).

•	 Google Chrome has built-in developer tools (Figure 2-6) which are

accessed using the Tools/Developer Tools menu. It also has a web

console, debugger, and other tools (https://developer.chrome.

com/devtools).

Figure 2-4.  Internet Explorer developer tools

Figure 2-5.  Firefox developer tools

Figure 2-6.  Chrome developer tools

Chapter 2 Developing Applications

https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools

26

•	 Apple Safari has built-in web developer tools (Figure 2-7) such as

a Web Inspector, network tools, debugger, and more (https://

developer.apple.com/safari/tools/).

�Code Comparison Tools
I have saved many hours of time and done things that were almost impossible to do

another way by using code comparison tools such as Beyond Compare (you’ve got to

buy this one if you are using Microsoft Windows) and WinMerge (free and open source).

My favorite of all time is Beyond Compare, even though it only runs on Windows and

Mac. It will give you a fantastic side-by-side comparison of two directories or files. You

can ignore unimportant differences (e.g., different numbers of spaces), show just things

that are different, produce reports of the differences, and much more.

Recently, Beyond Compare helped me solve a problem where it showed me that two

files were exactly the same, except one was twice the size of the other. Looking at the

top of the display, I could see that one file was encoded in ASCII, whereas the other was

Unicode. This also meant that when I uploaded one of the files to UNIX and tried to read

in the XML it contained, I was getting failures. I was able to bring the encoding into line

with what was expected, and my problems were solved.

This tool can produce great reports showing the code in different environments and

how it differs. For instance, compare your development code to your production code

and see exactly what the differences are. Or compare your current code to the previous

version to work out exactly what has changed. It’s great!

Figure 2-7.  Safari developer tools

Chapter 2 Developing Applications

https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/

27

These tools can compare two files and report the differences:

•	 Beyond Compare from Scooter Software is the best tool in this

category and does everything the others do. As well as comparing

files and directories, you can generate reports of differences, use

right-click menus through system integration, ignore unimportant

differences, and much more (www.scootersoftware.com/).

In the sample screenshot (Figure 2-8), you can see me comparing

two SAS programs. It shows me a map in the top left of where the

differences are; I have selected to see the differences in context,

and it is very clear what they are; when I select a line, it even

shows me the line comparison at the bottom.

Figure 2-8.  Comparison of two versions of source code using Beyond Compare

Chapter 2 Developing Applications

http://www.scootersoftware.com/

28

•	 WinMerge is a free, open source file and directory comparison/

synchronization tool. It does much of what Beyond Compare does,

and being free may be a better choice for you (http://winmerge.

org/?lang=en).

Figure 2-9 shows the same two SAS programs being compared using WinMerge.

•	 FC is a command in the Microsoft operating system which will let you

compare files (https://technet.microsoft.com/en-us/library/

bb490904.aspx). Figure 2-10 shows the output of the FC command,

which is a bit harder to use.

Figure 2-9.  Comparison of two versions of source code using WinMerge

Chapter 2 Developing Applications

http://winmerge.org/?lang=en
http://winmerge.org/?lang=en
https://technet.microsoft.com/en-us/library/bb490904.aspx
https://technet.microsoft.com/en-us/library/bb490904.aspx

29

•	 DIFF and DIFF3 are utilities built into most UNIX operating systems

which let you compare files. Their output is similar to the Microsoft

FC command, however perhaps a bit easier to use. You can read

more about them here: www.computerhope.com/unix/udiff.htm.

�Summary
In this chapter, we have learned some more general concepts about developing

applications, which are very useful when developing SAS Stored Process–based

applications:

Figure 2-10.  Comparing two files using the FC command

Chapter 2 Developing Applications

https://www.computerhope.com/unix/udiff.htm

30

•	 Freestyle approach to development has many disadvantages which

other approaches overcome.

•	 SDLC and the Waterfall model are commonly used methodologies

which are quite useful.

•	 The V-model is a development of the Waterfall model and has some

advantages over it.

•	 Agile development has become very popular in software

development in recent years, and I would recommend this.

•	 When planning for development, you should consider the

architectural aspects, especially from a SAS architecture standpoint.

•	 Make sure you have the most useful documents required for a

development project.

•	 Consider your toolkit such as IDE, source control, debuggers, code

comparison, automation tools, deployment tools, and so on.

Chapter 2 Developing Applications

	Chapter 2: Developing Applications
	Development Models
	Freestyle Approach
	V-Model
	Agile
	Architectural Concepts
	Useful Documents to Produce
	Source Control Systems

	Environments for Developing Web Applications
	Ways to Develop with SAS
	Commonly Used SAS Tools
	Write Your Own Tools in SAS
	Simple Techniques for Building Applications with Stored Processes

	Useful Tools for Building Web Applications
	Lint Tools
	IDE Tools

	Using a JavaScript IDE
	JavaScript Debuggers

	Code Comparison Tools
	Summary

