
SAS Stored
Processes

A Practical Guide to Developing Web
Applications
—
Philip Mason

SAS Stored Processes
A Practical Guide to

Developing Web Applications

Philip Mason

SAS Stored Processes: A Practical Guide to Developing Web Applications

ISBN-13 (pbk): 978-1-4842-5924-5			 ISBN-13 (electronic): 978-1-4842-5925-2
https://doi.org/10.1007/978-1-4842-5925-2

Copyright © 2020 by Philip Mason

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484259245. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Philip Mason
Wallingford, UK

https://doi.org/10.1007/978-1-4842-5925-2

iii

Chapter 1: ��Introduction��� 1

Background�� 1

What’s a Stored Process?�� 3

Benefits of Stored Processes��� 6

Other Key Features of Stored Processes��� 7

Skills Needed��� 8

SAS Products Required�� 9

Summary��� 9

Chapter 2: ��Developing Applications��� 11

Development Models��� 11

Freestyle Approach��� 11

V-Model�� 12

Agile��� 13

Architectural Concepts��� 14

Useful Documents to Produce�� 15

Source Control Systems��� 16

Environments for Developing Web Applications��� 18

Ways to Develop with SAS�� 19

Commonly Used SAS Tools��� 19

Write Your Own Tools in SAS��� 20

Simple Techniques for Building Applications with Stored Processes������������������������������������� 21

Table of Contents

About the Author�� ix

About the Technical Reviewer�� xi

iv

Useful Tools for Building Web Applications�� 22

Lint Tools�� 22

IDE Tools��� 23

Using a JavaScript IDE��� 24

JavaScript Debuggers�� 24

Code Comparison Tools�� 26

Summary��� 29

Chapter 3: ��HTML�� 31

Importance of Using HTML5��� 31

HTML Basics�� 32

FORM Tag�� 34

Ways to Generate HTML��� 36

General Techniques to Add HTML to a Web Page��� 44

Making a Stored Process Generate Its Own HTML Menu��� 54

Form Attributes��� 57

Persistence – How to Pass Data Between Stored Processes�� 59

Storage��� 60

Cookies��� 60

Files or Tables��� 62

URL��� 62

Where to Put HTML Code, JavaScript Libraries, Images, and More?��� 62

Summary��� 64

Chapter 4: ��JavaScript�� 65

Basic Example of a JavaScript Program�� 66

Writing and Testing�� 67

Debugging JavaScript�� 68

Using JavaScript with HTML�� 69

Basic DOM�� 70

Using Stored Processes to Generate Pure JavaScript�� 71

How Data Is Stored and Used��� 72

How SAS Stored Processes Can Feed Data to Objects��� 72

Table of Contents

v

More About Where to Put Files on Your Web Server��� 73

Directories�� 74

Relative Paths��� 74

Specifying Libraries�� 75

Building Interactivity with JavaScript�� 76

Pop-Up Windows�� 76

Validating Form Fields�� 77

Linking to One or More Other URLs�� 79

Summary��� 80

Chapter 5: ��JavaScript Libraries��� 81

Benefits of a Library��� 81

Choosing a JavaScript Library to Use As a Framework��� 82

Recommended Libraries�� 83

Content Delivery Networks (CDNs)��� 84

jQuery��� 85

Getting Started��� 86

Selecting Elements in jQuery��� 88

Fundamental jQuery Techniques�� 93

Actions�� 94

Summary��� 96

Chapter 6: ��Data�� 99

Dynamic Data��� 99

Using Stored Processes to Create Dynamic Data��� 100

How SAS Stored Processes Can Feed Data to Objects�� 101

Static Data��� 104

CSV��� 105

XML�� 111

JSON��� 115

Summary��� 124

Table of Contents

vi

Chapter 7: ��Stored Processes��� 125

Converting a SAS Program into a Stored Process�� 125

Creating a Stored Process��� 129

Creating a Stored Process with Management Console�� 130

Using Enterprise Guide to Make a Stored Process��� 147

Adding Dependencies��� 190

Using Input Streams and Output Prompts�� 196

Summary��� 202

Chapter 8: ��SAS Stored Process Web Application��� 203

Index Page��� 203

Sample Stored Processes�� 206

Reserved Macro Parameters��� 207

Macro Variables Used with %stpbegin��� 207

Automatic Macro Variables in Stored Processes Run via SAS Stored
Process Web Application�� 213

How to Use Macro Variables��� 215

Step-by-Step Guide to Building a Web Application Using Stored Processes������������������������ 216

A Note About Authentication�� 234

Creating an HTML Menu for Our Stored Process�� 234

Step 8: Use HTML Forms to Run Stored Processes�� 236

Uploading Files with a Stored Process�� 246

Example: Uploading Three Files�� 249

Passing Multiple Parameters of the Same Name��� 252

How to Use Sessions�� 256

Sessions with Graphs��� 259

Logs That Record Information About Stored Processes��� 261

Stored Process Server Logs��� 261

Workspace Server Logs�� 262

Pooled Workspace Server Logs�� 262

Metadata Server Logs�� 264

Object Spawner Logs��� 266

Table of Contents

vii

Linking Stored Processes�� 266

Stored Process Example��� 267

Loading a Stored Process into Part of a Web Page�� 271

Other Recommended JavaScript Libraries�� 272

Grids��� 272

Highcharts�� 276

D3��� 278

Summary��� 280

Chapter 9: ��SAS Procedures�� 283

PROC STP��� 283

PROC JSON�� 289

PROC STREAM�� 296

Streaming with a Data Step��� 297

Streaming with PROC STREAM��� 298

PROC HTTP��� 308

Example Accessing a Web Page��� 308

Example Using a Web Service�� 309

PROC EXPORT��� 312

Use Code with a Macro Variable for the Table Name�� 313

Call Stored Process Passing Parameter for Table��� 313

Use Code in JavaScript to Feed Objects��� 313

PROC IMPORT��� 313

Summary��� 317

�Index�� 319

Table of Contents

ix

About the Author

Philip Mason is a SAS expert with 35 years’ experience in many different industries.

He has worked extensively with SAS his entire career and has shared his expertise with

others. The last few years he’s been working on building web applications using SAS

and other technologies. For most of the last decade, Phil has enjoyed working around

SAS architecture; mentoring and training people in SAS; working with big data, business

intelligence, and analytics; and tuning and building web applications using SAS Stored

Processes, HTML, and JavaScript. He’s the author of several books on SAS.

xi

About the Technical Reviewer

Allan Bowe is a SAS geek with a passion for HTML5 apps

on SAS. Allan has made a number of contributions to the

SAS community such as SASjs (an adapter for bidirectional

communication between HTML5 and SAS), sasjs-cli (a

command-line tool for managing SAS project compilation,

build, and deployment), and macrocore (a SAS macro library

for building SAS apps on both SAS 9 and Viya). 

When not building web apps, Allan is working on Data

Controller, a commercial data capture, data quality, and data

governance web app for both SAS 9 and Viya.

1
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_1

CHAPTER 1

Introduction
SAS has been utilized by programmers for more than four decades. To keep up with the

ability to retrieve, edit, modify, and report on nearly any type of data from anywhere,

SAS has built SAS Stored Processes. Although you can find information about Stored

Processes in the SAS documentation on the SAS site, this book focuses on helping

programmers utilize the SAS Stored Process Web Application to create amazing tools for

your end users.

�Background
When I started using SAS in 1985 on IBM mainframes, I was using SAS 82.5 – in the

days before SAS started renumbering its products into the series we know today. We

used terminals connected to the mainframe and could write a program that was either

run interactively or saved and run in batch. The output produced was basic by today’s

standards and was effectively static output that was printed out and handed to users. If

changes were needed, we would edit the programs and re-run them.

Obviously, SAS has evolved over the decades, adding more and more features that

are useful in processing data into information and delivering it to users. Now you can

access data anywhere, process it, and display it in almost any way. The following are just

a few of the innovations in SAS over the years that have occurred since I started using

SAS:

•	 SAS/AF lets us produce applications which run in the SAS

environment and are very flexible. There are now many people

porting their old AF applications to Stored Processes running in a

web browser.

•	 SAS/IntrNet enables a web browser to prompt users for information

before using that to customize results of programs. Changing these

old programs to Stored Processes is very easy.

https://doi.org/10.1007/978-1-4842-5925-2_1#ESM

2

•	 ODS lets us easily provide output in a wide range of formats using the

same program. For instance, we could produce HTML, RTF, and PDF

from one report. This is all very helpful when using Stored Processes.

•	 SAS/ACCESS, together with Filename and Libname engines, lets us

read and write lots of different data formats whether Oracle database,

EXCEL spreadsheets, XML files, or many others. This enables Stored

Processes to read and write to almost any supported system or file

format.

•	 SAS Visual Analytics provides a complete platform for analytics

visualization, enabling you to identify patterns and relationships

in data that weren’t initially evident. Interactive, self-service BI and

reporting capabilities are combined with out-of-the-box advanced

analytics so everyone can discover insights from any size and type of

data, including text. Stored Processes can be used directly from VA or

included in reports. You can also link to a URL, which can be running

a Stored Process.

Since SAS 8.2 came out in 2001, web applications could be used through

SAS. Originally, HTML was generated from a data step, which could then be used

through a web browser. Then SAS/IntrNet came along which enabled the creation of

more flexible web apps. But now SAS has the SAS Stored Process Web Application – a

powerful way to deliver content to a web browser. The Stored Process Web Application

runs a Stored Process on behalf of a user and can deliver the output to the web browser.

Stored Processes can be used in this way to build web applications. They can produce all

the HTML and JavaScript needed to make a web application or just be used to produce

some data needed for a table displayed.

Some of these technologies have lasted many years and are still just as useful today

as they were 20 years ago. Some of the technologies are hardly used any more (such

as SAS/AF), but SAS has provided new and improved technologies in their place.

Never before have there been so many ways to turn data into information and build

applications with SAS.

This book will show you how to use the web technologies that you frequently

see used in impressive websites. By using Stored Processes, you will be able to build

applications that exploit CSS, JavaScript, and HTML libraries, which will enable you

to build powerful and impressive web applications using SAS as the back end. In the

Chapter 1 Introduction

3

last few years, some SAS users around the world have started to do this with amazing

results. This kind of approach is still very uncommon with SAS users around the world.

People who have SAS skills usually don’t have web development skills and vice versa.

Occasionally, people have both skills but are unaware of how to connect them with the

SAS Stored Process Web Application. This book lays out the skills needed to connect all

of this together.

�What’s a Stored Process?
A Stored Process lets you write SAS that is stored on a server and use it from many

places expanding on the utility of the SAS Software. A Stored Process can be executed as

required by requesting applications.

Stored Processes were introduced in SAS 9 in 2002 and are essentially just a SAS

program with some metadata associated with it. Metadata is generally defined as “data

about data.” Stored Processes are similar to the concept of a SAS macro, in that a Stored

Process can also have a range of parameters associated with it; however, there is much

more to a Stored Process in SAS.

Virtually, any SAS program can be a Stored Process. “Just add metadata” and you

can turn your SAS program into a Stored Process! As long as you define at least a few

key things, such as where it will run and where the code is stored, most other things will

default nicely for you. And Stored Processes can always be changed later if you want to

alter any defaults, add parameters, and so on.

There are two parts to a Stored Process:

	 1.	 The SAS code, which is run when the Stored Process is executed.

This might be stored within the metadata or stored elsewhere on a

disk as shown in Figures 1-1 and 1-2.

Figure 1-1.  Stored Process with code stored in metadata

Chapter 1 Introduction

4

	 2.	 The metadata for the Stored Process which holds information

about these:

	 1.	 Which server it will run on, which can be either a Stored Process server or

Workspace server

	 2.	 Which users are allowed to run it, as well as which users can change the

metadata for the Stored Process

	 3.	 What parameters can be used, including any ranges, required parameters,

and default values

Web applications are a great way to provide information and functionality to users.

Since they run in a web browser, it means that there is no software to be installed, which

makes it easy for anyone to use them. Running from a web browser means that any

devices which are able to browse the Web can initiate something to run on the web

application. So, whether you want to use your web app on a mainframe, PC, Mac, or

tablet, you will be able to. Remember the web app runs on a server, but you interact with

it through your client. See Table 1-1 for a comparison between stored processes and

workspace servers.

Figure 1-2.  Stored Process with SAS code stored on disk

Table 1-1.  Feature comparison for Stored Process vs. Workspace servers

Feature SAS Stored Process Server SAS Workspace Server

Server Started up once and then used to run

Stored Processes of different users

Started up when Stored Process is run

and then closed down when complete

Startup time The first time a server is used, it must

start up, but then will be very fast as it

is already running

Always starts a new server, so depending

on your installation could take very little

time up to 10 or 20 seconds

(continued)

Chapter 1 Introduction

5

Stored Processes can produce output which can be sent directly to the web browser.

This is called streamed output. There is a special fileref (_webout) where the Stored

Process execution context can use to steam output directly to the client. In a web

browser, the execution context would be the Stored Process Web Application, and it

would take anything written to it and send it to the client. This is enormously flexible and

powerful. It means that anything you can produce from SAS using ODS, or even a data

step, can be written to a web browser.

Stored Processes can run on SAS Stored Process servers or SAS Workspace servers;

however, many customers find it helpful to use Stored Process servers since they will

typically get started faster since they are shared. A Stored Process server will run under

the sassrv user account (by default); however, if running on a Workspace server, it will

run under the user’s account. Some customers find it useful to run on a Workspace

server for security reasons. It is useful to be aware of how the servers are configured and

how many multibridge connections are available of each of the defined servers. This can

help in choosing the best one to use.

Feature SAS Stored Process Server SAS Workspace Server

User ID When a SAS Stored Process is run on a

SAS Stored Process server, it is run on

behalf of a user by a special user id. If

you have configured SAS in the default

way, then Stored Processes will usually

be run under the sassrv user-id. So, if a

SAS metadata user called pmason tried

to run a Stored Process, it would check

whether that SAS metadata user was

allowed to run that Stored Process, and

if so, it would be run using the sassrv

user-id. This is an important fact to be

aware of when designing applications,

particularly for UNIX systems which are

very fussy about permissions

When a Stored Process is run on a

Workspace server, it is executed under

the account associated with that SAS

metadata user

Table 1-1.  (continued)

Chapter 1 Introduction

6

�Benefits of Stored Processes
A Stored Process basically gives your SAS program the ability to run in many more places

than before – not only within a SAS environment but also in other applications and all

kinds of other places. The following are some reasons for using a Stored Process:

•	 Centralized code on server providing “one version of the truth.”

•	 The user can be prompted to enter various parameters.

•	 Parameters can be passed to the Stored Process so that it can be

written in a very generic way.

•	 Code can be run on a server or grid to provide the best available

environment to run the code.

•	 Code can be run in many places:

•	 Web browser

•	 Microsoft Office: Excel, Word, and PowerPoint

•	 Many SAS clients

•	 Windows programs using .Net connection provided

•	 Many programs using Java connection provided

•	 Web services

•	 Accept user input from browser or via parameters on URL

•	 Produce output in web browser

•	 Easy to use – You can use a wizard in Enterprise Guide to create a

SAS program and then use a wizard to create a Stored Process from it.

•	 Logically separates the SAS code (what it does) from the metadata

(who can run it, where it runs, etc.).

•	 Use the power of ODS destinations.

•	 Create files such as PDF, Excel, PowerPoint, and Word.

•	 Render files produced using various applications such as MS

Word, MS Excel, PDF Viewer, and so on.

Chapter 1 Introduction

7

•	 Integrate output produced into other applications written in a range

of technologies such as HTML, Java, C++, and so on.

•	 Produce JSON or XML files to represent data in the form required by

other objects or applications.

•	 Use Proc HTTP or Proc STP to run a Stored Process with the Stored

Process Web Application, allowing you to run a Stored Process within

a Stored Process.

•	 Embed URL calls in emails, Word documents, or PowerPoints, so user

can click a link to run Stored Process and produce some content.

•	 Output produced by a call can be modified in various ways by passing

parameters to it, such as _odsdest or _xpixels.

•	 Can schedule URLs to run in windows scheduler, which could

produce a package and email it to someone, for example.

•	 Can run from Excel, Word, PowerPoint, and many other applications,

even without the Microsoft Office Add-in. It just has to be an

application capable of using a URL as input.

•	 Integrates with many other SAS clients such as the BI Dashboard,

Portal, Web Report Studio, Enterprise Miner, Visual Analytics, Visual

Statistics, and even JMP.

•	 Integrates with many other applications such as Tableau by

producing an output like a CSV and then automatically downloading

it to client and into application.1

�Other Key Features of Stored Processes
The key thing that makes a SAS program a Stored Process is some metadata, which is

defined and points to (or includes) the SAS code. If you compare a Stored Process and

some SAS code that effectively are doing the same thing, you will find that the Stored

Process can be run from many more places and be used in a far more flexible way. For

1�Using HTTP headers and Open With.

Chapter 1 Introduction

8

instance, running the Stored Process via the Office Add-in could bring results into Excel,

or running it with BI Dashboard could populate part of a screen.

If your Stored Process is producing ODS output, then you need to use ODS

statements. SAS has provided some great autocall macros you can use to take care of

this. You simply put %stpbegin at the start of your Stored Process and %stpend at the

end. There are lots of optional macro variables which can be set to alter the behavior of

ODS if you use these standard macros. Or you could just code your own custom ODS

statements if you want; however, if you don’t use the standard stpbegin and stpend

macros provided by SAS, you might find that the Stored Process doesn’t run as you

expect.

Your Stored Process doesn’t have to produce any output. It might just produce a

table in a database, copy a file, or carry out some other operation in the background. Of

course, generally you will want to provide some kind of output so that you know whether

the process worked or not. Your Stored Process might produce a report of some sort in

HTML for display in a browser, or a PDF file, or some CSV data to be loaded by a Python

program. The possibilities are endless.

The most important fileref to know for the Stored Process programmer is _webout.

It is automatically available when running a Stored Process through the Stored Process

Web Application. Writing to this allows you to write directly to the web browser, which

provides you with a very powerful technique that we will explore later.

You can run Stored Processes from lots of different places within SAS, but also

outside of SAS which can provide a great way to call SAS code from other applications.

�Skills Needed
The Stored Process Web Application and/or the Stored Process service API can be used

to implement web apps. An advantage of using the Stored Process Web Application is

that you only need HTML and SAS skills in order to build a web application. However,

if you use the Stored Process service API, then you will need Java skills in order to build

your web application in Java which then calls Stored Processes via the Stored Process

service API.

Chapter 1 Introduction

9

�SAS Products Required
To use Stored Processes in SAS, you will need the following products as a minimum:

•	 SAS Core

•	 SAS Integration Technologies

SAS runs across many kinds of hardware and is supported by many operating

systems. For example, you could be running PC SAS on a Windows laptop or using

SAS Studio from a web browser on your iPhone. However, if you want to run Stored

Processes, you will need a server somewhere that you can connect to and run those

Stored Processes, returning the output to you. That server needs to have the appropriate

parts of SAS installed on it to enable Stored Processes to run.

The standard way to develop Stored Processes provided by SAS is Enterprise Guide

which requires Windows, as it doesn’t run on other platforms. JMP is a powerful tool that

runs on Windows or Mac and can access SAS in a number of ways, including the running

of Stored Processes.

If using the Stored Process Web Application, all you need is a browser, which could

be run on PC, Mac, Linux, mobile phone, or tablet.

�Summary
We have been introduced to SAS Stored Processes in this chapter and learned some

things about them:

•	 A stored process is basically a SAS program with some metadata that

says who can run it, where it runs, and what parameters are used.

•	 You can use stored processes to build web applications and leverage

your SAS infrastructure.

•	 Stored processes run either on a Stored Process server or a

Workspace server.

•	 Stored processes work with Microsoft products, Java applications,

and .Net applications and even act as web services too.

Chapter 1 Introduction

10

•	 The _webout fileref can be used to write directly back to the client

using the stored process.

•	 Most SAS programmers can use stored processes quite easily without

much extra learning involved.

•	 Most big SAS installations have the required software available

without needing to purchase anything extra.

Chapter 1 Introduction

11
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_2

CHAPTER 2

Developing Applications
When developing applications with SAS, it is wise to keep in mind some principles and

best practices to follow. If you follow these principles, then they will help to avoid many

of the common problems and pitfalls that developers are confronted with. These things

are much easier to implement at the start of a project rather than part way through and

will provide a lot of benefits for the investment of time and effort.

This chapter is aimed at the project manager or architect of a project, as they tend

to be the person who thinks about the project as a whole. Sometimes this will be the

programmer, especially for small projects. There are advantages to following these

principles even with small projects, but the benefits grow as the size of the project grows

in size.

�Development Models
There are many ways to carry out development. I will briefly outline some of these now.

�Freestyle Approach
The freestyle approach is how many untrained people develop things. It basically involves

just diving in and starting to code with no planning at all. Of course, you need some idea

of what you are trying to build, but that can be a sketch on the back of an envelope or a

vague idea in your head. Many great systems have started this way, and often it is a valid

way to innovate new solutions. However, typically it’s not the best way to develop a big

system or application especially when more than one person is involved in the team.

For many years, the most popular model for larger developments was the System

Development Life Cycle (SDLC) pictured in Figure 2-1. When you look at this, it makes a

lot of logical sense and in fact is pretty much the process any sensible developer would

go through if doing it freestyle.

https://doi.org/10.1007/978-1-4842-5925-2_2#ESM

12

This model can run into some problems when the stages become very prescriptive

and lots of rules and guidelines are defined in an attempt to achieve best practice. I have

seen companies where there are many long documents that must be delivered at each

stage of this process which can mean that a small development that might take a day to

write code for ends up taking four weeks to complete once all the documents, meetings,

and stages have been done. This model is sometimes called the Waterfall model, as the

diagram can be drawn as a waterfall from “Planning” to “Maintenance.” Sometimes

“Planning” and “Analysis” are replaced by “Requirements,” and a “Verification” step is

added after “Implementation.”

�V-Model
The V-model of software development is an extension to the SDLC model. Each phase on

the left of Figure 2-2 has a corresponding phase on the right which is for validation. For

instance, the “Concepts of Operations” is validated by the “Operation & Maintenance.”

Figure 2-1.  SDLC/Waterfall

Chapter 2 Developing Applications

13

One common problem with this model is that it doesn’t fit the needs of all people

in the project. It’s a nice way for a project manager to look at a project, but not the best

way for a developer. And it is fairly inflexible although still probably a lot better than

SDLC.

�Agile
The Agile approach to development has shorter cycles of development and delivery so

we get results quicker which users can see, which in turn affects further development. It

is quite similar to another model called Rapid Application Development, which has been

around for many more years. Agile welcomes changes in requirements, which other

models don’t because it means returning to an earlier phase of the process. Agile has

many iterations of development, testing, and delivery, so users get things in weeks rather

than months. Developers and clients work together closely on an almost daily basis.

This model is sometimes preferred by developers and clients but is harder to manage for

project managers.

Figure 2-2.  V-model

Chapter 2 Developing Applications

14

�Architectural Concepts
It is wise to keep a range of architectural concepts in mind as you develop your software.

This is an incomplete list to remind you of some of the things to consider, which can lead

to a better design:

•	 Scalability issues – The biggest scalability issue with stored

processes used in web applications is the number of multibridge

connections defined. The default is 3 and that is often far too small.

You need your SAS administrator to increase this number if it is

too small. You may also want to set up your code to run in parallel

threads to improve performance. You might want to grid enable the

code if you have SAS/Grid. You might want to make use of SPDS if

you have that, since it can help improve performance on your tables

removing the need for sorting (for example).

•	 CRUD issues (Create Read Update Delete) – This is often a

consideration if you are developing web applications and want to

create tables, update records, or delete things. It’s easy to read data,

but there are various issues around these other things. It is more

difficult to use SAS tables with CRUD than using some other database

systems such as MySQL or Postgres.

•	 Browser differences – If you’re developing web applications, then

you need to look at how you support different browsers. You can

detect the browser you are using and potentially write special code to

handle its differences or make use of a JavaScript framework which

will handle many of these issues automatically.

•	 Complexity of code vs. ability to support it – You can sometimes

write complex code and reduce the number of lines needed.

However, you can usually achieve a similar level of performance by

using a simpler technique that perhaps has more lines. But if things

are easier for a future maintainer of your code to understand, then

you are wise to choose the simpler code.

Chapter 2 Developing Applications

15

•	 Platform differences – Will your application only ever run on a

laptop? What if it runs on a huge monitor with many times the

resolution of a laptop? Maybe you want to detect that and change the

way you are producing the user interface. What if it runs on a mobile

phone or tablet? Perhaps you want to detect that and change things.

It is useful to be aware of various development frameworks that

handle different platforms, such as Bootstrap. Many of those systems

allow setting up things on screen with a grid system and defining

different layouts for different sized devices so that you can write one

piece of code for mobile phones, laptops, and large screen devices.

�Useful Documents to Produce
It’s best not to go overboard with the production of documents for your development.

However, there are some documents that are usually advisable to create; even if on a

small development, you include them all in one:

•	 Requirements Documentation – Identifies what the system should

look like and be capable of.

•	 Architecture/Design Documentation – Describes how the software

components are designed and should have sufficient information for

programmer(s) to develop the programs.

•	 Technical Documentation – Documents the code, algorithms,

user interfaces, APIs, and so on. It is a document written by the

programmer(s) for other programmer(s) who might come along later

and need to understand and maintain the code.

•	 End-User Documentation – Describes how the software works

for those people that will use it. That could be end users, system

administrators, and support.

•	 Marketing/Training Material – Useful to provide to potential users

of the software to show the benefits.

Chapter 2 Developing Applications

16

�Source Control Systems
Source control systems are used to track changes to files, maintain different versions of

the same files, and allow multiple people to collaborate during the development phase.

These systems are sometimes called version control systems or revision control systems

too. The main idea is that the system manages source code and maintains a number of

versions and history.

If you have access to Data Integration Studio, this can handle source control for

you – so look no further. You will still need to do some additional configuration beyond

the default, such as setting up a SVN, CVS, or Git server. However, if you don’t have DI

Studio, then read on.

Using source control is extremely beneficial, because as we develop programs, the

system maintains previous versions. We can return to an old version if we need to. We

can compare the current version of the code to old versions to see what has changed.

The system can keep track of who has changed parts of the code. It can manage the code

so that only one person at a time is updating it.

Some important features that you should look for when choosing source control

systems are

•	 Concurrent development – A source control system should provide

tools to allow multiple developers to work on source code at the same

time. This might provide a mechanism for merging code together in a

controlled way.

•	 Tracking changes – It should provide a mechanism to see what changes

have been made by people, even when code is merged back together.

•	 Locking or branches – Locking applies to some source control

systems that manage code by locking it for use by one person at a

time. Other systems take an alternate approach of keeping multiple

copies of code, such as in different branches, which can then be

merged together. A system using locking can handle locking of

modules and checking code in and out. If a team member wanted

to make changes to the code, they could check it out. That would

lock the code so that others could not make changes to it until it

was finished with and checked back in. The benefits of this grow as

the size of a team increases, in that the more people trying to work

together on code, the easier a system like this makes it.

Chapter 2 Developing Applications

17

•	 Archive and backup – A system can also handle archiving and

backing up of code. Archiving tends to happen for code that is not

currently in use and therefore is copied away to an archive area so

that it can be retrieved if it is needed in future. Backups are taken

regularly with the aim of being used if code is lost or recent changes

lost. It is for current code that is in use but which we want another

copy kept as insurance.

•	 Release management – Release management is concerned with

releasing versions of code into different environments and can

be helped or managed with a source control system. Often an

application is made up of a number of programs which many people

might be working on together. Many of these pieces of code may

form modules within an application. A collection of these are usually

bundled up into a release. It might be the entire application code or a

collection of modules from the application. When a release happens,

you would usually increment the version of your application (e.g.,

Data_explorer v1.11). Usually you would increment by an integer for

a major release and increment decimals for minor releases. A good

source control system that manages releases would be able to issue

a release, perhaps by packaging up the new bits and passing them to

another environment. It could also roll back a release by packaging

up a previous release and delivering that to replace a current release

that might have problems.

There are many source control systems available with these features and more are

coming out year by year. Some of the common ones that have been around for many

years are Subversion (SVN), Git, Team Foundation Server (TFS), and Concurrent

Versions System (CVS). There are newer systems like GitHub for which SAS now provides

some integration. This is a fantastic system to use with SAS development, and I suggest

you search the SAS Global Forum proceedings online for papers from users describing

how to use this.

You may have a source control system that you have to use because it is the company

standard or already in use. If you do get to choose, look for one that has a client for your

operating system that supports it and makes it easier to use. For example, GitHub has a

desktop version that can be downloaded for Windows or macOS.

Chapter 2 Developing Applications

18

�Environments for Developing Web Applications
A development environment is the software that allows you to write, test, and edit a

program. You can develop in a single environment, but it is advisable to use at least

two environments. If you do develop in a single environment and then people use your

application from that environment, then when you have to fix a problem and make an

enhancement, you are doing it with the live code, which is likely to cause problems to

your users. One mistake and the application stops working.

You should develop in one development environment and then deliver the

developed code to production in another development environment. This allows you to

have the current release of your program running in production while you are changing

the development version and getting it ready to become the new production version.

If you are able to have three environments, then that allows you to have a

Development, Test, and Production environment. You then develop in Development

and, when something is ready, deliver it to Test for testing and user acceptance. Once

that is done, it can be moved to Production.

Sometimes people will have a Personal Development Environment (PDEV) as well as

a Common Development Environment (CDEV). Then they can do things in PDEV without

affecting anyone else, and once they are happy with that code, they can move it to CDEV.

Some larger companies have even more environments:

•	 Common Development (CDEV)

•	 Personal Development (PDEV)

•	 Component Integration Testing (CIT)

•	 System Integration Testing (SIT)

•	 User Acceptance Testing (UAT)

•	 Production (PROD)

This allows different kinds of testing to be done in different environments. Figure 2-3

shows what the flow of development would be in a multiple environment system.

Figure 2-3.  Multiple environment system flow of development

Chapter 2 Developing Applications

19

�Ways to Develop with SAS
SAS provides lots of different tools for developing applications. Each has some

advantages and disadvantages. It’s important to know what release of the software you

are using too, as that can make a difference as to what useful features you may or may

not have. For instance, at the time of writing, the latest version of Enterprise Guide has a

data step debugger built into it, whereas prior versions do not.

�Commonly Used SAS Tools
Commonly used SAS tools include the following:

•	 PC SAS, in which we can write SAS code of all kinds, but if creating

Stored Processes, we need to also use SAS Management Console.

•	 Enterprise Guide, which can create most kinds of SAS code including

SAS Stored Processes. It spawns a SAS Workspace server to run SAS

code from it.

•	 SAS Studio, which is similar to Enterprise Guide but only requires a

web browser to use. It doesn’t allow creation of Stored Processes via

any kind of wizard, but you can create them programmatically with

standard SAS code. That code would need to make metadata calls

in order to create them, perhaps using some open source macros

available for that purpose.

•	 Data Integration Studio provides a controlled way to create SAS

programs using a collection of transformations and custom SAS code.

It includes the ability to check out and check in code so that teams of

people can work on large systems together.

•	 Office Add-in provides a SAS program window from the add-in

toolbar which lets you write SAS code and execute it on the sever.

The results are brought back and displayed in the Word, EXCEL, or

PowerPoint. You can also view the SAS log.

There are lots of other less common SAS tools that can be used for developing, but I

will be focusing on the ones mentioned already.

Chapter 2 Developing Applications

20

Most people will create Stored Processes with Enterprise Guide, and it is the way

that SAS documentation says to create them. Doing this will use a system account for the

stored process though, and it has inherent dangers associated with that. Currently, you

must either use Enterprise Guide or Management Console to create Stored Processes as

there is no other simple way provided by SAS to do so. There are metadata functions that

can be used from Base SAS to create a stored process, and there are even some macros

available that make that easy to do. I recommend taking a look at them.1 One nice thing

that Enterprise Guide does for you is to take you through a wizard to help you make the

Stored Process. It also will do things like add the stpbegin and stpend macros around

your SAS code by default so that ODS will work in the various clients you use your Stored

Process with. If you are new to Stored Processes, then use Enterprise Guide to create

them until you find a reason to use another method.

�Write Your Own Tools in SAS
As we will see in this book, we can write our own tools. You will be able to create bespoke

tools that you need with the features you want and without features that are not required.

You can leverage the skills you have with SAS to make your tools without needing

knowledge of other languages. They can be SAS macros that we can provide parameters

to choose what we want them to do. Or we can build Stored Processes which are far more

flexible. I have created Stored Process tools like this which run through the web browser

and give me functions like

•	 Scheduling SAS programs to run

•	 Analyzing directories of SAS and Enterprise Guide projects,

producing reports summarizing each of the programs

•	 Displaying the output and logs from scheduled jobs, allowing them to

be viewed

•	 Displaying the logs or Stored Processes that have run recently or are

currently running

1�You can create a stored process from a SAS program with the code located here: https://
github.com/macropeople/macrocore/blob/master/meta/mm_createstp.sas

Chapter 2 Developing Applications

https://github.com/macropeople/macrocore/blob/master/meta/mm_createstp.sas
https://github.com/macropeople/macrocore/blob/master/meta/mm_createstp.sas

21

�Simple Techniques for Building Applications with Stored
Processes
I have made many a prototype application using one or more Stored Processes in a

matter of hours. You can use some simple techniques to do this kind of thing:

•	 Enterprise Guide can generate a web page automatically via a wizard

in older versions. For some reason, this was removed in newer

versions of EG.

•	 If you have a macro that does something (like produce a report

from some parameter choices), then this can be simply turned

into a Stored Process. Just make a Stored Process and put the

macro invocation into it, along with either the macro code or

option to point to an autocall library that has it. You will be able

to define a prompt for each macro parameter and use those

values to invoke the macro. Run this through the SAS Stored

Process Web Application and you have an application based on

your macro.

•	 Stored Processes, which create their own interactive elements, are

a great way to build applications. For instance, you can make a

Stored Process that produces selection lists, radio buttons, and so

on based on SAS data. This lets you build a form with selections you

can choose from which can then be defined to call another Stored

Process to make use of those selections.

•	 It’s easy to generate HTML with hyperlinks to other HTML from a

Stored Process.

•	 You can implement drill-down by making your Stored Process

generate HTML links that link to the Stored Process that produced

them, but passed a parameter value in with the call, thereby

implementing drill-down. For example, make a graph that has bars

with drill-down links that call the same Stored Process but add the

info for passing the bar value clicked.

•	 Make menus by a Stored Process generating forms with HTML, which

then call other Stored Processes.

Chapter 2 Developing Applications

22

•	 JavaServer Pages (JSP) can be created in a particular location with

the same name as a Stored Process. If you then invoke the Stored

Process with a certain _action parameter value, then the JSP will

be displayed, rather than the Stored Process being run. This allows

a flexible program to be written to prompt the user for parameters

before running the actual Stored Process. You can “hack” this process

by simply putting an HTML file in the JSP directory, with a JSP file

type, and your HTML will then be displayed in the same way.

�Useful Tools for Building Web Applications
Here is a range of mostly free tools that can be used to make the process of building

web applications with SAS much easier. I will outline some of these tools and describe

how they are useful. Tools come and go though, so some things I mention might not be

available in future or there may be better tools around. Hopefully, being aware of the

kind of tools on offer will enable you to search for others that superseded these ones.

�Lint Tools
Lint was originally a tool on UNIX systems that flagged suspicious or non-portable code

in C programs. However, people have extended this functionality to other languages and

provided more functionality. Some tools will not only look for a range of errors in your

code, but also lay out the code in a more standard way. Some tools will uppercase tags

and attributes used, highlight unmatched parentheses, wrap long lines, and so on. So, it

can take some very hard to read code and make it far easier to make sense of. Here are

some useful tools for web application development:

•	 JavaScript Lint – www.JavaScriptlint.com/ or

http://www.jslint.com/

•	 HTML Tidy – https://infohound.net/tidy/

•	 CSS Lint – http://csslint.net/

•	 JSON Lint – https://jsonlint.com/

•	 CSV Lint – https://csvlint.io/

Chapter 2 Developing Applications

http://www.javascriptlint.com/
http://www.jslint.com/
https://infohound.net/tidy/
http://csslint.net/
https://jsonlint.com/
https://csvlint.io/

23

The JavaScript Lint tool will look for these common mistakes, as well as many

uncommon ones:

•	 Missing semi-colons at the end of a line

•	 Curly braces without an if, for, while, and so on

•	 Code that is never run because of a return, throw, continue, or break

•	 Case statements in a switch that do not have a break statement

•	 Leading and trailing decimal points on a number

•	 A leading zero that turns a number into octal (base 8)

•	 Comments within comments

•	 Ambiguity whether two adjacent lines are part of the same statement

•	 Statements that don’t do anything

�IDE Tools
An IDE is an Interactive Development Environment. These are tools that aid you in

developing in one or more particular languages. They provide some or all of these

features: a source code editor with code completion, tools to automate building the

code, a debugger, compiler, interpreter, version control system, extensive help on the

language, and so on. Some IDEs worth looking at include

•	 NetBeans from Oracle; there are many versions of this and it’s

best to just download the HTML5/JavaScript version

(https://netbeans.org/).

•	 Brackets is an open source code editor with live preview of changes

and support for preprocessors (http://brackets.io/).

•	 Atom from GitHub is described as a hackable text editor, which

means it can be customized extensively (https://atom.io/).

•	 Visual Studio Code from Microsoft supports debugging, syntax

highlighting, code completion, snippets, and more (https://code.

visualstudio.com/).

Chapter 2 Developing Applications

https://netbeans.org/
http://brackets.io/
https://atom.io/
https://code.visualstudio.com/
https://code.visualstudio.com/

24

•	 Notepad++ deserves a mention, though it doesn’t have fancy tools

built into it. It is like a standard text editor on steroids and is my

number one choice for editing all kinds of programs whenever

possible. It does have syntax highlighting built in and can do great

things like edit hundreds of files simultaneously and find text across

them all very quickly (https://notepad-plus-plus.org/).

�Using a JavaScript IDE
An IDE is an Interactive Development Environment. You can use JavaScript IDEs for

developing HTML and JavaScript code. IDEs often have useful features like syntax

highlighting, debuggers, preview windows, and so on. Many good ones are free including

Notepad++ and Microsoft Visual Studio Code, which both run on Mac, Windows, and Linux.

It is sometimes useful to build some HTML and JavaScript code in an IDE and then

look at moving it onto the SAS web server and integrating into a Stored Process.

�JavaScript Debuggers
JavaScript debuggers are very useful for running your JavaScript and debugging any

errors you have. You can also trace variables reporting their values when they change,

which can be helpful in understanding how your JavaScript code runs. You can set

breakpoints too, so that the code will run up to a certain point and then pause so you can

look at the values of variables. Many web browsers have debuggers built in, so there is no

need to buy or download one.

Most developers will have their favorite development tools in their favorite browser.

For me, it has changed over time and was Firefox for many years, but more recently,

I have found Chrome to be great. These two browsers are great because they work on

many operating systems too. Internet Explorer only works on Windows, unless you

make use of an emulator such as browserstack.com which lets you test you web page on

lots of different browsers and platforms. I find that most browsers have much the same

capabilities now, all of which are sufficient for helping to build web applications:

•	 Microsoft Internet Explorer has built-in developer tools (Figure 2-4)

that can be accessed by pressing F12 or using Tools/Developer

Tools/Console (https://msdn.microsoft.com/en-us/library/

gg589507(v=vs.85).aspx).

Chapter 2 Developing Applications

https://notepad-plus-plus.org/
https://msdn.microsoft.com/en-us/library/gg589507(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/gg589507(v=vs.85).aspx

25

•	 Firefox has developer tools too (Figure 2-5) that can be accessed

using the Tools/Web Developer menu. There is a debugger, web

console, performance tools, and more (https://developer.

mozilla.org/en-US/docs/Tools).

•	 Google Chrome has built-in developer tools (Figure 2-6) which are

accessed using the Tools/Developer Tools menu. It also has a web

console, debugger, and other tools (https://developer.chrome.

com/devtools).

Figure 2-4.  Internet Explorer developer tools

Figure 2-5.  Firefox developer tools

Figure 2-6.  Chrome developer tools

Chapter 2 Developing Applications

https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools

26

•	 Apple Safari has built-in web developer tools (Figure 2-7) such as

a Web Inspector, network tools, debugger, and more (https://

developer.apple.com/safari/tools/).

�Code Comparison Tools
I have saved many hours of time and done things that were almost impossible to do

another way by using code comparison tools such as Beyond Compare (you’ve got to

buy this one if you are using Microsoft Windows) and WinMerge (free and open source).

My favorite of all time is Beyond Compare, even though it only runs on Windows and

Mac. It will give you a fantastic side-by-side comparison of two directories or files. You

can ignore unimportant differences (e.g., different numbers of spaces), show just things

that are different, produce reports of the differences, and much more.

Recently, Beyond Compare helped me solve a problem where it showed me that two

files were exactly the same, except one was twice the size of the other. Looking at the

top of the display, I could see that one file was encoded in ASCII, whereas the other was

Unicode. This also meant that when I uploaded one of the files to UNIX and tried to read

in the XML it contained, I was getting failures. I was able to bring the encoding into line

with what was expected, and my problems were solved.

This tool can produce great reports showing the code in different environments and

how it differs. For instance, compare your development code to your production code

and see exactly what the differences are. Or compare your current code to the previous

version to work out exactly what has changed. It’s great!

Figure 2-7.  Safari developer tools

Chapter 2 Developing Applications

https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/

27

These tools can compare two files and report the differences:

•	 Beyond Compare from Scooter Software is the best tool in this

category and does everything the others do. As well as comparing

files and directories, you can generate reports of differences, use

right-click menus through system integration, ignore unimportant

differences, and much more (www.scootersoftware.com/).

In the sample screenshot (Figure 2-8), you can see me comparing

two SAS programs. It shows me a map in the top left of where the

differences are; I have selected to see the differences in context,

and it is very clear what they are; when I select a line, it even

shows me the line comparison at the bottom.

Figure 2-8.  Comparison of two versions of source code using Beyond Compare

Chapter 2 Developing Applications

http://www.scootersoftware.com/

28

•	 WinMerge is a free, open source file and directory comparison/

synchronization tool. It does much of what Beyond Compare does,

and being free may be a better choice for you (http://winmerge.

org/?lang=en).

Figure 2-9 shows the same two SAS programs being compared using WinMerge.

•	 FC is a command in the Microsoft operating system which will let you

compare files (https://technet.microsoft.com/en-us/library/

bb490904.aspx). Figure 2-10 shows the output of the FC command,

which is a bit harder to use.

Figure 2-9.  Comparison of two versions of source code using WinMerge

Chapter 2 Developing Applications

http://winmerge.org/?lang=en
http://winmerge.org/?lang=en
https://technet.microsoft.com/en-us/library/bb490904.aspx
https://technet.microsoft.com/en-us/library/bb490904.aspx

29

•	 DIFF and DIFF3 are utilities built into most UNIX operating systems

which let you compare files. Their output is similar to the Microsoft

FC command, however perhaps a bit easier to use. You can read

more about them here: www.computerhope.com/unix/udiff.htm.

�Summary
In this chapter, we have learned some more general concepts about developing

applications, which are very useful when developing SAS Stored Process–based

applications:

Figure 2-10.  Comparing two files using the FC command

Chapter 2 Developing Applications

https://www.computerhope.com/unix/udiff.htm

30

•	 Freestyle approach to development has many disadvantages which

other approaches overcome.

•	 SDLC and the Waterfall model are commonly used methodologies

which are quite useful.

•	 The V-model is a development of the Waterfall model and has some

advantages over it.

•	 Agile development has become very popular in software

development in recent years, and I would recommend this.

•	 When planning for development, you should consider the

architectural aspects, especially from a SAS architecture standpoint.

•	 Make sure you have the most useful documents required for a

development project.

•	 Consider your toolkit such as IDE, source control, debuggers, code

comparison, automation tools, deployment tools, and so on.

Chapter 2 Developing Applications

31
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_3

CHAPTER 3

HTML
If you are a web developer or have some experience doing web development, you can

probably skip this chapter. It is intended to introduce the world of web development to

SAS programmers.

�Importance of Using HTML5
There have been many versions of HTML over the years, and the latest evolution is

HTML5. Current browsers support HTML5 well, but if you were using an old browser

such as Internet Explorer 6, you might find that parts of it are not supported, in which

case there might be some reasons for using HTML4. But HTML5 has been enhanced and

offers many advantages over older versions. Some of these advantages are

•	 HTML5 uses a new W3 specification called ARIA which is used to

assign specific roles to elements on HTML on a page. For example,

headers are tagged where you put your header for the page. This

makes it easy for screen readers to interpret a page making it more

accessible to all.

•	 The Canvas tag (<canvas>) allows us to produce all kinds of graphics

and animations in the browser. This is a hugely powerful feature

which has already been the subject of several books.

•	 Responsive design is easier. The device type is detected, and the

output display is changed to suit the device.

•	 Cleaner code can be written with less reliance on div tags, and it is

easier to read if you use the more meaningful tags available. This

increases maintainability and makes it easier to understand.

•	 Audio and video are handled via their own tags, though I don’t tend

to use much of that in my reporting.

https://doi.org/10.1007/978-1-4842-5925-2_3#ESM

32

�HTML Basics
Teaching HTML is outside the scope of this book, but I advise you to look at some of the

excellent resources for learning about web development and HTML on www.w3schools.

com/. It is worth making sure you understand forms really well by using a tutorial such as

this: www.w3schools.com/html/html_forms.asp. You can also learn CSS and JavaScript

on this site. I will go through some basics of HTML briefly here and spend a little time

looking at some of the more useful parts that can be used with Stored Processes in

building web applications.

The HTML document shown in Figure 3-1 produces the output on your web page

(see Figure 3-2).

Notice that tags in Figure 3-1 are enclosed in angle brackets “<” and “>”. There is

usually an open tag (e.g., <HTML>) and then a corresponding closing tag (e.g., </HTML>).

Note the closing tag has the same name as the starting tag but is preceded with a “/”.

Tags can optionally have parameters specified on them by specifying name=value pairs

(e.g., parameter names are in bold, name of tag is underlined):

<input type="submit" name="button name" value="button value">.

Figure 3-1.  Example of some simple HTML code

Figure 3-2.  This is what is shown in browser from the HTML code in Figure 3-1

Chapter 3 HTML

http://www.w3schools.com/
http://www.w3schools.com/
https://www.w3schools.com/html/html_forms.asp

33

The general structure of an HTML program is that there is a head section and a

body section. The head section is a container for metadata in which things like styles,

character sets, links, and JavaScript libraries are defined. Effectively this is for setting up

the environment of the page. The body section is where the content is defined, such as a

text, hyperlinks, tables, lists, figures, and so on.

A typical head section might contain a link to load the jQuery library for use. It would

look like this:

<head>

<script src="jquery-3.2.1.min.js"></script>

</head>

Or you might define some CSS in your head section so that you can define how your

text looks, for example:

<head>

<style>

h1 { text-decoration: overline;}

h2 { text-decoration: line-through;}

h3 { text-decoration: underline;}

</style>

</head>

The body section has the content for the page, for example:

<body>

<h1>This is heading 1</h1>

<h2>This is heading 2</h2>

<h3>This is heading 3</h3>

</body>

Using the CSS in the head section with the heading tags in the body section gives us

a page that looks like Figure 3-3.

Chapter 3 HTML

34

�FORM Tag
The FORM tag is probably the most useful thing in HTML for building web applications.

With it, we can build a form that prompts a user for information and will then pass the

values entered back to the application for processing. Forms start with the <FORM> tag

and end with the </FORM> tag. Prompts include

•	 Get input from the user by using an <input> tag.

•	 Specifying name on the <input> tag defines the name of the

parameter that will be passed on the URL, which will then appear as

a macro variable available to be used by our SAS code (e.g., <input

name="country">).

•	 Specify type on the <input> tag to choose between several available

types. By default, you don’t need to specify it and the type will be text.

But there are several other useful types to know about:

•	 Button displays a pushbutton which can be clicked. This is often

combined with some JavaScript code to carry out some special

actions when pressed on. You can do this by using the onclick

parameter.

•	 Checkbox shows check box(es) which allow choosing multiple

options for a parameter. This is similar to radio, though radio only

allows choosing one value.

•	 Color allows choosing a color using the systems color picker.

•	 Date allows choosing a date using standard date picker.

Figure 3-3.  This is what is displayed in browser from the HTML and CSS specified

Chapter 3 HTML

35

•	 Datetime-local allows choosing a date and time.

•	 Email allows entering a valid email address.

•	 File shows button to use file picker to get a filename.

•	 Hidden doesn’t display the field at all even though it is still there

and will be added to the URL created.

•	 Image displays an image and when it is clicked acts like a submit

but also sends the x and y coordinates of where the image was

clicked. So you could have an image with various parts to it and

be able to work out what part of the image was clicked.

•	 Month allows choosing a month.

•	 Number allows the entering a number and prevents entering

anything other than a number.

•	 Password is like text, except it doesn’t show the characters as the

user types. It is perfect for passwords and other secret text.

•	 Radio shows radio buttons allowing the choice of one option.

•	 Range displays a slider and allows choosing a value using it.

Remember that many of these types have associated parameters.

Range also makes use of min, max, and value which define the

range used and a starting value.

•	 Reset provides a pushbutton which if pressed will restore the

fields on a form to their default values.

•	 Search displays a text entry box to specify something to search

for. Some of these items produce useful effects when used on

mobile devices and tablets. For instance, search gives you a

specific keyboard with a search button.

•	 Submit provides a button to click which will then submit the URL

that was created by the form.

•	 Tel allows entry of a telephone number. Mobile devices will give

you a phone number entry keyboard.

•	 Text provides a box to enter some text in.

Chapter 3 HTML

36

•	 Time allows entry of a time using time dialog.

•	 Url allows entry of a URL.

•	 Week allows entry of a week number using a date picker.

With all those input types, we already have something very functional that we can

use when producing customer HTML from our Stored Process. But there are even more

elements that can be used in forms that give us more abilities:

•	 Select lets us define drop-down lists of options to choose from.

•	 Datalist is very similar to Select, but it also lets you type into the

box and displays a list of matching options in the drop-down list as

you type.

•	 Textarea defines a multiple line box into which a lot of text can be

entered.

�Ways to Generate HTML
The simplest technique that can be used to enhance the output from your Stored

Processes is to generate HTML which is then displayed in a web browser. Web browsers

have been created specifically for displaying output of various kinds. There is lots of

built-in functionality to display all kinds of text in various sizes and colors, as well as

displaying all kinds of graphics. In addition, you can animate things and detect where

the mouse is, and when it clicks in various ways, you can let the user interact with the

output and change it. You can produce static output which displays but does not change,

as well as dynamic output which changes in various ways. Web browsers can also display

many other kinds of output that you may generate with SAS, such as RTF and PDF files.

Another aspect of using HTML to generate output is that you can generate it in

flexible ways dependent on the platform you are delivering it to or add JavaScript or

other scripting to make the HTML adapt for the platform. This means you can make sure

your output displays in the best way on phones, tablets, computers, and so on.

There are several basic ways that you can use your Stored Process to generate HTML:

basic ODS, custom HTML, PROC STREAM, or writing your own HTML. Let’s examine

each of these in turn.

Chapter 3 HTML

37

�Basic ODS

Stored Process can generate HTML, as it might do with a range of ODS HTML reports. In

this model, we can make some enhancements to the HTML generated by inserting bit of

custom HTML/JavaScript in various ways such as by modifying templates, inserting data

null steps to write bits to _webout, and adding links to titles/footnotes.

�Custom HTML

Stored Process can generate custom HTML by using a data step that writes to _webout.

In this technique, we can write anything directly to the browser just as though it was part

of a standard web page. If you want to run this from a program in Enterprise Guide, just

to see what is generated, then you could use a filename statement to create _webout and

then look at what is written there.

The following code can be used as the source code for a stored process run through a

web browser. We can create simple HTML in several ways:

•	 We can simply have code in a cards statement and write it out:

data _null_;

 input ;

 file _webout ;

 put _infile_ ;

 cards ;

<HTML>

<h1>Hello</h1>

</HTML>

;;

run ;

•	 We can have code in a cards statement with macro references and

run it through a resolve function before writing it out:

data _null_;

 input ;

 line=resolve(_infile_) ;

 file _webout ;

 put line ;

 cards ;

Chapter 3 HTML

38

%make_HTML

;;

run ;

•	 We can generate code at different times and stream it to the browser

as needed:

data _null_ ;

 input ;

 file _webout ;

 put _infile_ ;

 cards ;

<HTML>

<BODY>

<h1>Summarizing customer data</h1>

;;

run ;

Proc summary data=big_file ;

 Class product group name ;

 Var paid ;

 Output out=big_file_summary sum= ;

Run ;

data _null_;

 input ;

 file _webout ;

 put _infile_ ;

 cards ;

Summary has finished

;;

run ;

A variation on this is to keep static code in one or more external files or in a

parmcards statement which can then be read in using INPUT/PUT statements when

required. These might have a static header with a company logo which you want at the

top of every page, a static footer, standard libraries to load, and so on.

Chapter 3 HTML

39

�PROC STREAM

This is the preferred method if you have SAS 9.3 or later. It lets you write your HTML,

JavaScript, CSS, and so on and include macro programs and variables. These will be

resolved as the code is streamed to the browser. This allows an enormous amount of

flexibility by specifying the HTML that you want to use with macro language mixed in

with it. PROC STREAM will resolve the macro language as each line is copied to the file

or web browser you are writing to.

�Writing Your Own Custom HTML

When working with a web browser, you have the _webout fileref pre-allocated if you

are using streaming output from your stored process. Anything written to _webout will

be directed to the browser. The key thing to remember in writing your own HTML from a

Stored Process is to write to the _webout fileref. If you have called the Stored Process

from the SAS Stored Process Web Application, then anything written to _webout will be

written to the environment you have called the Stored Process from. So, when calling

from a web browser, _webout points to the web browser. If calling from an application

like Excel, then output is written to that.

You need to be aware that these techniques that involve writing your own custom

HTML work best with a web browser, since that offers the widest support for HTML,

JavaScript, and CSS. In fact, how well it works will vary from web browser to web browser

too. But if you are writing HTML and then delivering output to other clients, like Excel,

then the techniques will work less well with less support for handling of HTML in various

clients.

STPBEGIN and STPEND Macros

You need to be careful when using %stpbegin and %stpend. These do a range of things,

but primarily they start and end ODS output. By default, Enterprise Guide will add them

in before and after your code when you make a Stored Process. When you create the

Stored Process, you can see that the Stored Process macros are selected by default as

shown in Figure 3-4.

Chapter 3 HTML

40

That is fine if you are doing something like using a procedure to produce some

output such as a Proc Report. However, if you are trying to write some custom HTML,

then as you try to write to the _WEBOUT fileref, you will find that it is already being used

by ODS and is not available. This results in you generating the following error in your log

for the Stored Process (Figure 3-5).

To avoid this error, you need to ensure that _webout is not in use when you want to

write to it. One way is to deselect the Stored Process macros when you create your code.

That means that they are not used, and so _webout is never allocated to ODS output. You

can still allocate ODS to _webout yourself in your own code or call the %stpbegin and

%stpend macros yourself at another point in you program. For example, you could use

the following code shown in Figure 3-6.

Figure 3-4.  Enterprise Guide’s editor allows you to choose what to add to code
automatically

Figure 3-5.  A common error you will see if you try to use _webout but are still
including code for Stored Process macros automatically

Chapter 3 HTML

41

This results in the output in the web browser shown in Figure 3-7.

You can look at the HTML generated for this by viewing the source from your

browser. This shows something like Figure 3-8 at the start.

Figure 3-6.  You can still use the Stored Process macros even if you don’t include
them in the source code automatically

Figure 3-7.  This HTML table is produced by the SAS code in Figure 3-6

Chapter 3 HTML

42

Beware Invalid Code  You can see the HTML code we wrote out from our data step,
followed by some of the HTML generated by SAS. The HTML is not actually valid,
and if you copy the source code into an online HTML validator, you will see the error
messages clearly. The <h1> tag should be within a body section, inside an HTML
section. So, we could adjust our code to write the required HTML around our <h1> tag,
but then we need to do something to remove the other tags that stpbegin write out.

You will also notice that ODS generates quite a lot of complex HTML code which

isn’t necessarily required. The STPBEGIN and STPEND macros are quite flexible though

so we can set some macro variables which will change the way that they behave. One of

the most useful macro variables that can be changed is _RESULT. If we set that to a value

of streamfragment,1 then it causes the STPBEGIN macro to just produce the HTML code

needed for the actual SAS output, rather than producing a full HTML program including

CSS styles and so on. So, by modifying our program as shown in Listing 3-1, it results in a

simpler form.

Listing 3-1.  Use streamfragment to create minimal HTML

data _null_ ;

 file _webout ;

 put "<h1>Hello</h1>" ;

run ;

1�This is not documented anywhere that I can find; however, I have been using it for many years,
and it still works nicely. I suspect it is something that SAS may use internally but don’t offer
support to customers. So, use this at your own risk!

Figure 3-8.  This is some of the HTML code that the SAS code in Figure 3-6
generated, producing the table in Figure 3-7

Chapter 3 HTML

43

%let _result=streamfragment ;

%stpbegin

 proc print data=sashelp.class ;

run ;

%stpend

This produces a simplified output with the same content as before which looks like

Figure 3-9.

However, the source code begins as shown in Listing 3-2.

Figure 3-9.  Title and table produced by the code in Listing 3-1. This shows how we
can combine some custom HTML with HTML produced by SAS’s Output Delivery
System

Chapter 3 HTML

44

Listing 3-2.  Source code generated automatically by SAS

<h1>Hello</h1>

<div class="branch">

<div>

<div align="center">

<table class="table" cellspacing="0" cellpadding="5" rules="all"

frame="box" summary="Procedure Print: Data Set SASHELP.CLASS">

You will notice that there is no style information there, but now we just get right to

the content. Our custom heading is written out and then the table produced by Proc

Print. This is great since we can then produce various pieces of ODS HTML output with

streamfragment, and just put them onto the web page we are making as we want to.

�General Techniques to Add HTML to a Web Page
You can use the code in Listing 3-3 as a template to add HTML to a web page. You just need

to put whatever HTML code that you want to put into the browser into the cards area.

Remember  Whenever you are writing to _webout in a Stored Process, you have
to ensure that the STPBEGIN and STPEND macro are not being used, unless you
are specifically putting them in yourself and know what you are doing. So that
means in the SAS code part of the Stored Process Manager, under “Include code
for,” you need to make sure that “Stored Process Macros” are not ticked. If you
do forget to untick the option, you will get some errors, which you can read about
here: http://support.sas.com/kb/13/599.html.

Listing 3-3.  Writing HTML directly to browser via _webout

data _null_ ;

 input ;

 file _webout ;

 put _infile_ ;

 cards ;

Chapter 3 HTML

http://support.sas.com/kb/13/599.html

45

<html>

<body>

<h1>Hello</h1>

It's the best practice to have properly formed HTML, like this.

</body>

</html>

;;

run ;

There is no reason why you can’t have multiple data steps to write out your HTML as

shown in Listing 3-4.

Listing 3-4.  Writing HTML using multiple data steps

data _null_ ;

 file _webout ;

 input;

 put _infile_;

 cards;

<html>

<body>

;;

run;

data _null_;

 file _webout;

 set sashelp.class;

 put name ' is ' height ' centimetres high.
' ;

run ;

data _null_ ;

 file _webout ;

 input;

 put _infile_;

 cards;

</body>

</html>

;;

run ;

Chapter 3 HTML

46

This code produces the output depicted in Listing 3-5, showing a collection of rather

short people!

Listing 3-5.  Shows lines of customized text produced from SAS code

Alfred is 69 centimetres high.

Alice is 56.5 centimetres high.

Barbara is 65.3 centimetres high.

Carol is 62.8 centimetres high.

Henry is 63.5 centimetres high.

James is 57.3 centimetres high.

Jane is 59.8 centimetres high.

Janet is 62.5 centimetres high.

Jeffrey is 62.5 centimetres high.

John is 59 centimetres high.

Joyce is 51.3 centimetres high.

Judy is 64.3 centimetres high.

Louise is 56.3 centimetres high.

Mary is 66.5 centimetres high.

Philip is 72 centimetres high.

Robert is 64.8 centimetres high.

Ronald is 67 centimetres high.

Thomas is 57.5 centimetres high.

William is 66.5 centimetres high.

Perhaps it’s a good idea to have the units of measurement in these sample SAS tables.

Using this technique, you are able to have a lot of SAS code which will gradually

build up the HTML that you want produced, thereby giving you precisely the result you

are looking for. But there are some ways to extend the power of this technique by using

macro language.

�Macro Language

You might like to use macro variables in your custom HTML in order to add some

flexibility. For instance, you can access the automatically generated macro variables,

such as ones which tell you the userid, machine, date/time, and so on. You could use

some macro variables that your SAS code generates in previous steps. You might also

Chapter 3 HTML

47

want to use macro variables with values that have been passed in as the Stored Process

was run. These might have been some choices made by a user using parameters you

have defined. Or it might just be some custom parameter(s) passed on the URL as the

SAS Stored Process Web Application was called.

So, in order to do this, you might produce a program like the one shown in

Listing 3-6.

Listing 3-6.  Macro variables are not resolved in this code

 data _null_ ;

 input;

 file _webout;

 put _infile_;

 cards;

<h1>Hello &sysuserid!</h1>

&message

;;

run ;

But when we run this, we get the output shown in Figure 3-10 in the web browser.

SAS has read the macro variables in and written them out to the web browser as is,

without resolving their values. Fortunately, SAS provides us a fantastic little function

called resolve. With resolve, you can give it some macro language, and it will return the

resolved text. The macro language might be a simple macro variable but can also be a

macro program. That provides a huge amount of potential power for the programmer.

Modifying our code a little, as shown in Listing 3-7, we can get it to work as we want.

Figure 3-10.  Browser will display this, which is not what we want. We want the
macro variables to be resolved, but they are not

Chapter 3 HTML

48

Listing 3-7.  Macro variables are resolved in this code

 data _null_ ;

 length line $ 60 ;

 input;

 file _webout;

 line=resolve(_infile_) ;

 put line;

 cards;

<h1>Hello &sysuserid!</h1>

&message

;;

run ;

Now our code reads a line in from the cards area, resolves any macro variables, and

then writes it to the web browser. This results in this output shown in Figure 3-11.

The automatic macro variable &sysuserid has been resolved; however, the other

variable &message has not been resolved, even though the resolve function was used,

since there was no value defined for it. We could add this as a prompt for the Stored

Process in order to create a default value for it or to prompt the user for one when

invoked in certain ways. But we can invoke the Stored Process and provide a value for it

using the SAS Stored Process Web Application by specifying the Stored Process using _

program and then the value of &message by specifying &message= in the URL. You could

get most of the URL for this by going to the web application index page and right-clicking

the Stored Process to copy the URL. But essentially, we just need to add &message to the

end of the URL with a value for message. The ampersand indicated a parameter we are

passing, and then we have an equal sign and its value. The first parameter in the URL

Figure 3-11.  Now we have the first macro variable resolved, showing the
username “Administrator”

Chapter 3 HTML

49

mustn’t have an ampersand, but must follow the question mark, which results in the

output in Figure 3-12.

http://server-name/SASStoredProcess/do?_program=%2FUser+Folders%2Fphil%2FMy

+Folder%2Fmacros+resolved+from+data+step&message=Remember%20to%20get%20a%20

coffee

As I mentioned earlier, we can resolve any macro language in the resolve function, so

if we wanted to use multiple macro variables on a line, then that would be OK. Also, if we

wanted to use macro programs, then that too would be fine. So, for instance, we could

use some code like the one shown in Listing 3-8.

Listing 3-8.  SAS code to resolve macro program execution

%let first=Phil;

%let last=Mason;

%macro content;

 %do i=1 %to 10;

 Line &i

 %end;

%mend content;

data _null_;

 file _webout;

 input;

 line=resolve(_infile_);

 put line;

 cards;

<h1>My name is &first &last</h1>

%content

;;

run;

Figure 3-12.  Having passed in a value for message, we see that value is displayed
in the browser

Chapter 3 HTML

50

The preceding SAS code would produce the HTML shown in Listing 3-9.

Listing 3-9.  Result of resolving macro program execution

<h1>My name is Phil Mason</h1>

Line 1
 Line 2
 Line 3
 Line 4
 Line 5
 Line

6
 Line 7
 Line 8
 Line 9
 Line 10

&first and &last have been resolved with one resolve function call. Then %content

has been executed with another call, and the text produced has been streamed to the

browser. Notice how my indenting in the macro has resulted in some extra spacing

in the HTML produced. Notice how those spaces have been ignored when producing

the output too, since the HTML ignores those spaces. Usually this kind of thing is not

a problem, but it is worth keeping in mind as extra spaces can affect some things. That

HTML produces the following output (Figure 3-13) in the web browser.

I think the ability to call macro programs in the resolve function is very powerful. You

could have quite a complex macro program which could open tables, use conditional

logic, and generate all kinds of custom output.

There is a limitation with this technique though which involves the size of the input

buffer. Since we are using cards and reading lines in with an input statement, each line

will be read in to the input buffer and then any macro variables or programs will be

replaced by text as they are resolved. But this all happens in the variable we are using,

which is called line in my examples. We can expand the text up to the length of the

variable being used, but then extra characters will be truncated which can cause all

Figure 3-13.  HTML output

Chapter 3 HTML

51

kinds of problems. We can mitigate against this issue by using a length statement and

ensuring we have a nice long variable to use, but the problem can still hit us. SAS comes

to the rescue with PROC STREAM though, which is not encumbered by any length limits.

�HTML Forms

It’s easy to make Stored Processes using parameters since SAS provides the prompting

facility provided. This gives you a range of options that provide a huge amount of

flexibility. But if you want even more flexibility, then that too is possible. You can still use

the prompting facility as well, or you can just use the following technique in which we

can add some custom prompting of our own.

The idea of this technique relies on calling a Stored Process via the SAS Stored

Process Web Application which can be invoked with a URL. A custom URL can be built

in HTML by using an HTML form. This is a fairly simple piece of HTML in which we

define a basic URL and then let the user select some values for some parts of the URL

which will be added to the end of it. For example, in Listing 3-10, we define a form to

invoke a Google search using text entered by the user.

Listing 3-10.  HTML form that will submit a search to Google

<html>

<form action="https://www.google.com/search?">

<input name="q">

<input type="submit">

</form>

</html>

When this is run, it produces what is shown in Figure 3-14 in the web browser.

This provides a box in which we can type a value for “q” and then click Submit. If we

enter the input shown in Figure 3-15 and click Submit, then it produces the URL shown

in Figure 3-16.

Figure 3-14.  Form displayed in browser

Chapter 3 HTML

52

So, you can see that it has taken the value of action and used the value we entered to

add “q=sas” to the end of the URL. This searches Google for “sas” and returns the results

in the browser.

Having looked at a simple pure HTML example calling Google, let’s now take a

simple example using SAS to get us going. We will use a simple Stored Process that can

take one parameter. The HTML that we can use is shown in Listing 3-11.

Listing 3-11.  Form to run a stored process and pass a parameter

<html>

<form action="https://d351tq92/SASStoredProcess/do?">

<input name="_program" value="/User Folders/phil/My Folder/test">

<input name="product_line" value="Children">

<input type="submit">

</form>

</html>

The action for the form is calling the SAS Stored Process Web Application, so it

should be the first part of how you invoke that up to and including the question mark.

Any extra parameters will be added to the end of the URL generated. The parameters

are added in the sequence you define them, which usually doesn’t matter unless using

multiple parameters of the same name. _program is always needed since it defines

that path through metadata to the Stored Process. In our example, we have a parameter

called product_line, which we have given a default value of children. This HTML will

produce what is shown in Figure 3-17 in the browser.

Figure 3-15.  Text entered in form

Figure 3-16.  URL shown in web page after Submit is pressed

Chapter 3 HTML

53

Clicking the Submit button, it generates a URL like this:

http://d351tq92/SASStoredProcess/do?_program=%2FUser+Folders%2Fphil%2FMy+Fo

lder%2Ftest&product_line=Children

Notice that the “&” was added to separate the first name/value parameter from the

next one. This is always done automatically for you by the browser as it processes the

form. Looking at this form displayed in the browser, we don’t really want the _program

field to be displayed as we don’t want the user to be able to type over it, they don’t need

to see the value, and we might not want them to even know the value. We can use the

hidden type in order to specify _program, but not show it (see Listing 3-12).

Listing 3-12.  Form to run stored process that will not display name of stored

process

<html>

<form action="https://d351tq92/SASStoredProcess/do?">

<input name="_program" value="/User Folders/phil/My Folder/test"

type="hidden">

<input name="product_line" value="Children">

<input type="submit">

</form>

</html>

This produces the nicer looking screen in the browser (see Figure 3-18).

Figure 3-17.  Form displaying stored process name and product_line prompts and
Submit button

Figure 3-18.  Form displaying product_line prompt and Submit button (stored
process name not displayed)

Chapter 3 HTML

54

�Making a Stored Process Generate Its Own
HTML Menu
Now that we know how to make HTML menus with forms that can call Stored Processes,

we can use another powerful technique to put our menu into our Stored Process. What

we want to achieve is to be able to run a Stored Process which will firstly generate an

HTML form-based menu. Once the user makes their selections, then it will call that

Stored Process again to produce the output/report required.

In order to achieve this, we will need to detect when the Stored Process is called the

first time to produce the menu and then when it is called the second time. The first time

it is called, we won’t have passed any parameters to it, so we could detect the absence

of parameters which we expect to be present from the form. If we are missing some

expected parameters, then we can generate a menu. If we detect those parameters, we

know that the Stored Process has been called by the HTML form, and so we can run it to

produce the output/report.

Listing 3-13 is a simple example of this.

Listing 3-13.  Stored process code that first will prompt for a value and when

called again will produce a report

%macro logic ;

%if %symexist(age) %then %do ;

 %stpbegin

 proc print data=sashelp.class ;

 where age=&age ;

 run ;

 %stpend

 %end ;

%else %do ;

 data _null_ ;

 file _webout ;

 set menu ;

 put line ;

 run ;

 %end ;

Chapter 3 HTML

55

%mend logic ;

* put HTML into a table, since we can't use datalines in a macro ;

data menu ;

 input ;

 line=_infile_ ;

 datalines ;

 <html>

 <form action="http://d351tq92/SASStoredProcess/do?">

 <�input name="_program" value="/User Folders/phil/My Folder/test12"

type="hidden">

 <input name="age" value="14">

 <input type="submit">

 </form>

 </html>

 ;;

run ;

%logic

In this Stored Process, we read some lines of HTML into a table, since we can’t do

this inside a macro program. Then in the macro, if we find the age parameter, then we

produce a report using the %stpbegin and %stpend macros to handle ODS. Otherwise,

we write out the menu, allowing the user to choose a value for age. When they press

Submit, the Stored Process is run again, passing the age value in. The menu looks like the

box shown in Figure 3-19.

After pressing Submit, we have the report shown in the browser (see Figure 3-20).

Figure 3-19.  First call of stored process prompts user for an age

Chapter 3 HTML

56

We could modify this code to generate a list of valid values for age and let the user

select one from a list rather than entering one. This code would look like Listing 3-14.

Listing 3-14.  Stored Process code to additionally produce a list of valid ages from

which user can select one

%macro logic ;

%if %symexist(age) %then %do ;

 %stpbegin

 proc print data=sashelp.class ;

 where age=&age ;

 run ;

 %stpend

 %end ;

%else %do ;

 data _null_ ;

 file _webout ;

 set menu ;

 put line ;

 run ;

 %end ;

%mend logic ;

proc sql noprint ;

 select distinct "<option value="""|| put(age,2.)|| """>"||

 put(age,2.)|| "</option>"

 into :age_options separated by '' from sashelp.class ;

quit ;

Figure 3-20.  Second call of stored process produces a report using the age that was
entered

Chapter 3 HTML

57

* put HTML into a table, since we can't use datalines in a macro ;

data menu ;

 input ;

 line=resolve(_infile_) ;

 datalines ;

 <HTML>

 <form action="http://d351tq92/SASStoredProcess/do?">

 �<input name="_program" value="/User Folders/phil/My Folder/test12"

type="hidden">

 <select name="age">

 &age_options

 </select>

 <input type="submit">

 </form>

 </HTML>

 ;;

run ;

%logic

And the page displayed would look like Figure 3-21.

�Form Attributes
There are a range of other attributes that can be specified on the <form> tag. We have

used action which defines the base URL to use when the form is submitted. This can be

an absolute or a relative path (relative to the place the HTML is on the web server). But

some of the other useful attributes are

Figure 3-21.  User can now select a valid age

Chapter 3 HTML

58

•	 Autocomplete, which can turn autocomplete on or off for the form

you are using. It can make it useful when you are using a menu over

and over again.

•	 Enctype defines how the form data is encoded when it is sent to the

server (if POST method is used). This usually comes in useful when

you are sending files to the server from the form.

•	 Name defines the name of the form, which is useful if you want to refer

to it with JavaScript.

•	 Target defines where to display the response that is received after

submitting the form. This has a few values and is very useful:

•	 _blank shows the response in a new window or tab.

•	 _self, by default, is used and displays response in the current

frame.

•	 _parent, the response is displayed in the parent frame.

•	 _top, the response is displayed in the full body of the window.

•	 Framename will display the output in a named frame

“framename”.

•	 Method defines the http method to use for sending form data.

•	 Get sends the form data as URL variables by appending the form data

to the URL as name/value pairs. This is the default which you get if

you don’t explicitly define a method:

•	 URL is limited to about 3000 characters which varies depending

on the browser you are using. It is often 2048 characters. Any

parts that don’t fit are just truncated without any warning, so you

can get unexpected results.

•	 You should never send sensitive data with GET since it can be

seen on the URL.

•	 URL can be bookmarked.

Chapter 3 HTML

59

•	 Post appends the form data inside the body of the HTTP request:

•	 Data is not shown in the URL so it is more secure.

•	 There are no size limitations. If you need many parameters and

length is an issue, then use this.

•	 Can’t bookmark the URL, since not all the information is there.

In order to change our previous code to use a POST method, we would just add

method=“post” to the form tag as shown in Listing 3-15.

Listing 3-15.  Form that uses a POST method, rather than a GET (which is

default)

data menu ;

 input ;

 line=_infile_;

 datalines ;

<html>

<form action="http://d351tq92/SASStoredProcess/do?" method="post">

<input name="_program" value="/User Folders/phil/My Folder/test12"

type="hidden">

<input name="age" value="14">

<input type="submit">

</form>

</html>

�Persistence – How to Pass Data Between Stored
Processes
Stored Processes can be used in a large number of flexible ways. In some applications

of Stored Process technology, you may want to keep data in between runs. For instance,

rather than asking for a name every time, you can keep the name and default to the last

one used by that user. We might want to keep some count or record of activity which can

then be reported back to the user. We might even just want to take some result(s) from

Chapter 3 HTML

60

one Stored Process and pass to another Stored Process to be used. This is what I call

persistence of data. By that I mean that certain data can persist after a Stored Process

has run. Usually data entered by a user is transient, meaning that it is used by the Stored

Process and then lost.

�Storage
One major consideration for persistence is whether you want to store the data locally

on a client that is being used or remotely on the server being used. If saved locally, then

moving to another client means you don’t have access to your data. There are a range of

solutions available for this:

•	 localStorage is an HTML5 technology that provides a way to store,

retrieve, and remove items that are stored for use by the web browser

on the client. It involves calling some JavaScript functions to do this,

but they are very simple to use.

•	 indexedDB is another web API that can be used but is far more

complex.

•	 Sessions are provided by SAS as a way of providing persistence for a

limited amount of time.

�Cookies
Cookies are a web technology that lets us store small items of text locally on the client

as a cookie. Other kinds of objects can often be converted to text and stored and then

converted back when retrieved. Cookies can be set using the stpsrv_header function in

SAS which can call the “Set-Cookie” method. You have to specify a name and value for

each cookie that is set. You can optionally specify a path and expiry date too.

The following example shows some code which can be used in a Stored Process via

the web application. We set a value for the cookie and then write some JavaScript code

out which gets the value of the cookies (Listing 3-16) and displays it in an alert box.

Chapter 3 HTML

61

Listing 3-16.  Setting a cookie with SAS function and then displaying it with

JavaScript

* set cookie ;

data _null_ ;

 old=stpsrv_header("Set-Cookie","CUSTOMER=Phil Mason") ;

run ;

* use some javascript to display the cookie that was set ;

data _null_ ;

 file _webout ;

 put "<script>alert(document.cookie);</script>" ;

run ;

Figure 3-22 shows the alert box displayed.

You can access cookies via the _HTCOOK automatic macro variable. The following

code in Listing 3-17 shows how to access the value.

Listing 3-17.  Examining cookies from a web page using SAS code

proc sql ;

select * from dictionary.macros

where name="_HTCOOK" ;

run ;

Figure 3-23 shows what is displayed.

Figure 3-22.  Alert box in web browser showing cookie that was set from SAS

Figure 3-23.  Cookies from the web browser visible in the SAS macro variable

Chapter 3 HTML

62

�Files or Tables
Files or tables can be used quite easily to store the data you want to make available

again and then for another Stored Process to read that data in. You will need to manage

multiple users who might try to write to a shared table at the same time. This can be

done by locking the table before writing to it. You might decide to have a separate table

for each user and then the locking issue virtually is eliminated.

�URL
Passing parameters on URL is probably the easiest way and achieves persistence by

passing data from one process to the next. So, when one Stored Process wants to pass

data to the next one, it is simply passed as name/value pair parameters on the URL.

�Where to Put HTML Code, JavaScript Libraries,
Images, and More?
When you are using the SAS Stored Process Web Application, you need to understand a

few things about the environment you are working in. It runs within a web application

server, which is often known as a servlet container. If you are running on SAS 9.4, you

may be using the SAS-provided web application server, which is highly recommended.

For a start, it can be automatically installed with SAS 9.4 and is well integrated. If you

use an alternate web application server (e.g., WebSphere), then there is likely to be a

bit of extra customization required during setup. When running in the web app server,

there will be certain directories on that server which are easily accessible to your Stored

Process to use. Some other locations on that server may need permissions changed or to

be referred to with a specific path in order to access them or may be inaccessible.

If your Stored Process specifies a relative pathname, then the key thing to remember

is that the root is not the root of the machine you are running on, but is the root of the

web application server, as defined in its configuration. So, on my SAS 9.4 system with

a default configuration, the root for the web app server is C:\SAS\Config\Lev1\Web\

WebServer\htdocs on the SAS server. Note that this will be different to the C: drive on the

client machine.

Chapter 3 HTML

63

So, if I code up a statement like this

filename x 'my_file.txt' ;

then this will actually be pointing at the server HOME directory, which is C:\SAS\Config\

Lev1\Web\WebServer\htdocs\my_file.txt on my server. If I want to use sub-directories,

then I would define a fileref like this:

Filename x 'orders\2018\my_file.txt' ;

Then this would actually be point at C:\SAS\Config\Lev1\Web\WebServer\htdocs\

orders\2018\my_file.txt.

And in case you are wondering, a fileref like this

Filename x '/orders.txt' ;

would point to something like c:/orders.txt, since this is not a relative path but instead

is an absolute path. You can always run the preceding code and then use the following

code to see exactly where this fileref is located:

Filename x list ;

If you are wanting to write a file temporarily to a location that you are allowed to

write to, then you can always find a temporary location that you have permission to in

a number of different ways. You could get the location of the work library by using the

pathname function, which returns the physical path to a SAS library which is already

allocated. This code will get the location and write it to the log:

%put %sysfunc(pathname(work)) ;

If you are using a UNIX system, then you might want to find out where your HOME

directory is by getting the value of the HOME environment variable. You can use the

sysget function to get the value of an environment variable, so this code will print the

value to the log:

%put %sysget(HOME) ;

Remember that UNIX is case sensitive, so you need to look for HOME, not home or

Home.

Chapter 3 HTML

64

Another way to find your home directory is to run some code like this, which

allocates a fileref to the home directory and then shows its location:

Filename test '.' ;

Filename test list ;

�Summary
In this chapter, we have learned about HTML and specifically some ways to use it with

SAS and stored processes:

•	 Using forms in HTML which is a major way to prompt the user for

information and get it to your SAS code in the form of SAS macro

variables

•	 Generating HTML code in several different ways:

•	 ODS (Output Delivery System) to generate HTML

•	 HTML produced by data steps in SAS code, resolving macro

references if required

•	 Proc Stream to produce HTML code while resolving macro

variables and macro programs

•	 Using the %stpbegin and %stpend macro programs provided by

SAS to produce ODS

•	 Making a stored process that generates a form with prompts that then

calls itself to produce the results and display them

•	 Using form attributes to make stored process calls

•	 Passing data between stored processes using browser storage,

cookies, files, or URLs

Chapter 3 HTML

65
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_4

CHAPTER 4

JavaScript
JavaScript is a language usually used with HTML to add functionality especially involving

interactivity. It was invented by Brendan Eich in 1995 and is not the same thing as Java,

which was released four years earlier. The official name of the JavaScript language is

actually ECMAScript, and it became a standard in 1997. It is now supported by most

modern web browsers, and it is a powerful tool that you can use as you build web-based

applications.

JavaScript is an easy-to-learn language that lets us do many things that are very

useful, including

•	 Validate input on the client machine, rather than having to send a

request to the server first. This reduces network traffic and load on

your servers.

•	 Provide instant feedback to users, rather than waiting for a page

refresh.

•	 Ability to make interactive interfaces since it can detect when the

mouse is hovering over something, when keys are pressed, single and

double clicks, and so on. Once something is detected, it can carry out

various actions that modify the screen.

•	 Ability to use items such as drag-and-drop components, sliders,

interactive tables, and so on.

JavaScript does limit you in doing some things you might like to do, mostly due to the

fact that it runs in your browser on your client machine and does not run on the server

you connect to. Some of JavaScript’s limitations are

•	 No reading or writing files on the client. This is a security measure.

You wouldn’t want a JavaScript program to read some information

from your machine and send somewhere else.

https://doi.org/10.1007/978-1-4842-5925-2_4#ESM

66

•	 No access to web pages from another domain with JavaScript.

•	 No support for multi-threading or use of multi-processors on the

client. So, we are not supposed to do compute heavy operations on

the client.

•	 No access to databases on a server without some kind of server-side

script. Fortunately, SAS Stored Processes can fulfill this function.

•	 No access to most of your local devices with JavaScript.

•	 JavaScript can be disabled in a browser, which means that many web

applications will no longer work.

There are many places to learn JavaScript: the Internet, books, web training, live

classroom training, and so on. I want to recommend a few things that I find very helpful.

Firstly, the print series In Easy Steps has books about HTML5, JavaScript, jQuery, and

CSS3.1 This series is very easy to dip into and get basic useful information quickly. The

other major resource that I love to use for learning is the W3Schools online tutorial

website (w3schools.com). It has a wealth of excellent information about JavaScript,2

HTML,3 CSS,4 jQuery, and more.

�Basic Example of a JavaScript Program
Here is a simple JavaScript example:

<HTML>

<body>

<p id="hello"></p>

<script>

document.getElementById("hello").innerHTML = "Hello World!";

</script>

</body>

</HTML>

1�http://ineasysteps.com/books-by-category/programming-2/
2�JavaScript info – www.w3schools.com/js/default.asp
3�HTML info – www.w3schools.com/HTML/default.asp
4�CSS info – www.w3schools.com/css/default.asp

Chapter 4 JavaScript

http://ineasysteps.com/books-by-category/programming-2/
https://www.w3schools.com/js/default.asp
http://www.w3schools.com/HTML/default.asp
http://www.w3schools.com/css/default.asp

67

In this example, we use an HTML paragraph tag <p> and give it an id called “hello”.

We put our JavaScript inside the <script> and </script> HTML tags, which is always

where JavaScript code goes.

Looking at the JavaScript statement, on the fifth line of the code

•	 Document refers to the entire HTML document or file.

•	 getElementById looks up the id called “hello” from the document.

•	 innerHTML refers to the HTML code that appears inside that element,

which in our case is a paragraph tag.

So, this first part of JavaScript points to the content of the paragraph tag, and using

an equals sign then assigns it a new value.

The output produced in the browser is as shown in Figure 4-1.

�Writing and Testing
All that is required to write JavaScript code is a text editor, preferably one such as

Notepad++ which is free. So, you don’t need any fancy software, although using software

that has been designed for this has some advantages. You can get free software which is

very good for this, and I have listed some of these later in this book. A great one I would

highly recommend is Notepad++. It has syntax highlighting, powerful search/replace

abilities, and many other features. It’s a great basic editor for most kinds of text. It also

has a Run menu which will take the code you have edited and open it in one of several

web browsers for testing. Figure 4-2 shows what the example program from the previous

section would look like in Notepad++.

Figure 4-1.  Displayed in web browser when previous JavaScript code is run

Chapter 4 JavaScript

68

There are more powerful editors available of course, such as IDEA, VScode,

VSCodium, NetBeans, BBEdit, or Atom (from GitHub). Some of these will let you run and

test your code directly from the tool. It’s best to think about the most useful features for

the way you develop and then to choose the best set of features for that.

�Debugging JavaScript
There are various ways to debug JavaScript code. Firstly, you can check the code before

it runs. There is a tool called Lint, which exists in a number of different forms such

as JavaScript Lint5 where it can be run online or downloaded to your machine. It will

check the JavaScript code for common mistakes such as comments within comments or

missing semi-colons at the end of lines. It also looks for less common mistakes such as

regular expressions missing a preceding left parenthesis. So, it will basically do a syntax

check and will also lay out your code nicely.

The other way to check your JavaScript code is to run it with a debugger. There

are debuggers built into most web browsers which enable you to break when errors

happen and examine things, see how long it takes for parts of the program to run, check

resources used, and so on. You can access developer tools in the following ways:

•	 Chrome – Menu item “View/Developer”.

•	 Firefox – Menu item “Tools/Web Developer”.

•	 Internet Explorer – Press F12.

•	 Safari – Menu item “Develop”.

Figure 4-2.  Program in Notepad++

5�JavaScript Lint – www.JavaScriptlint.com/index.htm

Chapter 4 JavaScript

http://www.javascriptlint.com/index.htm

69

There are lots of developer tools available in these browsers, some having far more

than others. For example, some browsers have a responsive design mode as well, which

will let you change your screen size to match that of another device such as an iPad so

you can see what your application looks like on that. Another good one is some browsers

have a switch to let you emulate different browsers, so you can see what your code looks

like in other browsers while only using one. It’s best to install them all and try out the

different tools before you settle on one that you like best.

�Using JavaScript with HTML
To use JavaScript in your HTML documents, there are two main ways to do so. Firstly,

you can use <script> tags and put your code between it. For example, if you wanted an

alert box to pop up on the screen saying “Hello World!”, then you could use this code:

<script>

alert("Hello World!") ;

</script>

Secondly, you can use JavaScript in some parameters of some of the HTML attributes

of tags. For example, if you wanted a pushbutton on your page which would call a

JavaScript function called my_function when it was pressed, then you could use this

code:

<button onclick="my_function()">Click here</button>

There are lot of these attributes that let us do different things in JavaScript based

on some kind of event that happens – these are often referred to as event handlers. The

main event handlers are shown in Table 4-1.

Chapter 4 JavaScript

70

�Basic DOM
When an HTML document is loaded into a web browser, a Document Object is created

which is made up of nodes. The Document Object Model (DOM) describes what you

will find on a Document Object. There are nodes for elements, attributes, text, and

comments. There are methods available to interact with the DOM, so that you can

interrogate it and change it. This gives you a massive amount of control over the web

page. Interacting with the DOM can be rather slow which has led to the emergence of

“virtual DOM” frameworks such as React (made by Facebook). If you are looking for

speed, then it may be worth looking into those.

You could use JavaScript to call some DOM methods and change some text on your

web page, change the styling of a title, or even add or delete parts of the web page. The

DOM is a big and complex thing to understand and is beyond the scope of this book.

I suggest looking online for some good resources to learn about it.6

Table 4-1.  JavaScript event handlers

Event Handler Description

Onabort, Onerror Responds when user aborts download of page or an error occurs

Onblur, Onfocus Responds when user moves focus onto or off an element

Onchange, Onselect Responds when user changes or selects an element

Onclick, Ondblclick,

Onmousedown, Onmouseup

Responds when user clicks or double-clicks the mouse button

Onload Responds when the page has finished loading

Onmousemove, Onmouseover,

Onmouseout

Responds when user moves mouse over an element

Onsubmit Responds when user submits a form to server

Ondragstart, Ondragover,

Ondragend, Ondragenter,

Ondragleave, Ondrag,

Ondrop

Responds when user drags or drops an element

6�W3Schools has some good info about the DOM here: www.w3schools.com/js/js_HTMLdom.asp

Chapter 4 JavaScript

http://www.w3schools.com/js/js_HTMLdom.asp

71

�Using Stored Processes to Generate Pure JavaScript
In the same way that Stored Processes can generate HTML, it can also generate

JavaScript. JavaScript can handle a lot of the logic required for a web application; in fact,

it is almost essential for any reasonable functionality.

With SAS, you can use ODS to produce output in a range of forms, including

HTML. HTML is the form which offers the greatest potential for creating applications

that have multiple screens, are lightweight, are running on multiple platforms, and are

secure and interactive. ODS has the ability to add some elements of interactivity but is

limited. If you use SAS to generate HTML with JavaScript and CSS code, then you can

produce almost anything.

When you run a Stored Process to generate JavaScript code, you will be running SAS

code on the server. The JavaScript generated will run in the browser after the SAS code

that generated it has run. You can do some clever things like having your Stored Process

pause for some time and then deliver some more JavaScript to the browser to run. In

fact, there are almost endless possibilities of what you can do. Just imagine all the things

you have seen running in a web browser – most of that can be done using JavaScript. And

all of your JavaScript can be generated from SAS Stored Processes and delivered to the

browser.

Remember that SAS has some limitations around the length of variables in SAS 9,

which means if you are dealing with names and values over 32,767 characters long, then

there will be truncation. There are techniques to get around this problem and some

clever open source software such as SASjs and SASjs-cli on GitHub which makes it easy

to do.

You don’t need to be an expert in these web technologies to achieve a lot. But you

do need to know some basics, which I am trying to cover in this book. I have mentioned

how to run JavaScript code by either using script tags or using event-handler attributes.

That is the key way that you get some JavaScript to run on your HTML page.

Another key thing to know is how to define JavaScript libraries to HTML. This is

also done using a script tag, but you specify a source to get the JavaScript code from. For

example, to load the jQuery library so that you can use JavaScript functions defined in it,

you would use the following code:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.

js"></script>

Chapter 4 JavaScript

72

Note  When loading libraries like this that are external to your network, you
should ideally use an integrity hash to avoid possible URL interception.7

You could just as easily save a lot of your own JavaScript code into different files

and load them in using this technique. This is the most important thing for a SAS

programmer to know, as it gets you access to a wealth of great JavaScript code that is out

there in the free and open source community.

The most important thing to know is how to use the event-handler attributes, which

I have already described. Knowing this allows the SAS programmer to do many things

like detecting clicks and button presses and then taking actions like running Stored

Processes and passing various values to them.

�How Data Is Stored and Used
In JavaScript, you can load data from various data structures using a range of methods.

This might be loading data in from plain text, JSON files, XML, HTML, CSV, databases,

and more. The data can be loaded into various structures in memory for use with

JavaScript, such as arrays or objects.

You can hard-code data into your JavaScript programs, and this is often a good way

to get started when writing some new code since you can enter some sample data easily.

Most of the time, you will load data from somewhere into JavaScript to then be

used. If you are using a JavaScript framework like D3, then you might use a provided

function to load a CSV file into a data structure that is compatible with other parts of that

framework.

�How SAS Stored Processes Can Feed Data to Objects
When building a normal web application using HTML and JavaScript, the programmer

would usually point to data that is being provided from some data source such as a CSV

file or which is being loaded from a database. It is easy to use a Stored Process to provide

7�https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://sasjs.io/security/#integrity-checking-for-javascript-files

Chapter 4 JavaScript

https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://sasjs.io/security/#integrity-checking-for-javascript-files

73

data when it is needed in the appropriate format. This means that you can use any kind

of SAS programming on the server to assemble the data you need to be delivered to the

code in the web browser that needs it.

A simple example of this comes from the world of D3, which is a powerful JavaScript

visualization library. It has a function used for loading data from a CSV file into a

JavaScript object where it is able to be used with many other functions. The code used to

do this would be something like this:

D3.csv

// Get the data

d3.csv("data.csv", function(error, data) { }) ;

If you wanted to use a Stored Process to provide the CSV data rather than the data.

csv file, then you could substitute in a call to a Stored Process as the data source for the

CSV function:

// Get the data

d3.csv("http://my.server.com/SASStoredProcess/do?_program=tools/

csv&table=sashelp.class", function(error, data) { }) ;

The basic principle in using a Stored Process to feed data to an object is to use the

appropriate syntax to point to the Stored Process via the Stored Process Web Application.

As long as the function you are using is capable of pointing to a URL, then it should work.

If you have to simply specify a hard-coded JavaScript array or object in order to use the

function/object that you wish to use, then you won’t be able to point to a Stored Process

to do this. However, you can use techniques discussed in the Proc Stream section of this

book. You can basically generate values as a result of a macro program or macro variable,

and proc stream will resolve those so that they appear in the appropriate place in the

HTML/JavaScript code.

�More About Where to Put Files on Your Web Server
Usually when creating JavaScript code, you would put that in a place that is accessible to

your web server, so that it can be referred to with a URL, or by using relative or absolute

paths in a program. Most web servers have a home directory which is the top level used

when URLs are used. It is often called HTDOCS, and all HTML, JavaScript, CSS, and

other files needed for web pages would be put in directories or under that.

Chapter 4 JavaScript

74

�Directories
For example, when entering a URL into a web browser such as www.sas.com/en_gb/

home.html, firstly the IP address for that website would be found by looking up sas.com

in a DNS.8 With this IP address, the computer containing the website can be accessed.

The browser then looks for the file home.HTML in the directory en_gb for the web

server, which often will be something like this: C:\SAS\Config\Lev1\Web\WebServer\
htdocs\en_gb\home.html. The part in bold is likely to be similar on another windows

installation.

The HTDOCS directory being the root directory for the web server means that

anything you put there is easily referred to with reference to it. So, if we had another file

such as C:\SAS\Config\Lev1\Web\WebServer\htdocs\reports\report1.HTML, then this

could be found using a URL like this: www.sas.com/reports/report1.HTML. Notice that

the slashes for a path in windows are “\”, whereas when used in a URL, they are the UNIX

style slashes which are “/”. And we have put a directory “reports” after the website, which

takes us down to that directory on the web server before looking for the file “report1.

HTML”.

Usually it’s best practice to have a directory on your web server for the web

application with sub-folders for JavaScript libraries, another for CSS files, another for

images, and so on. Although there is no reason, you can’t put them anywhere under

the root directory. Generally, there is no way to refer to files above a root directory or

elsewhere on a system which is not under that web server root directory. Of course, if

you have shared resources, they should be combined into an area accessible to the apps

that will be using them, rather than having multiple copies of them.

�Relative Paths
You can use relative paths to point to things on a root directory though. Suppose you

have an HTML file that is located in the reports directory. Then if you specify an image

as “logo.png” without a path specified, then it will look for that in the reports directory

too, since that is where the HTML file containing that reference is. Suppose the HTML

file was in the /reports directory, but the image was in the /images directory, then you

could use a path like where the “..” means go up one

8�DNS (Domain Name Server).

Chapter 4 JavaScript

https://www.sas.com/en_gb/home.html
https://www.sas.com/en_gb/home.html
http://www.sas.com/reports/report1.HTML

75

level, and then it goes down to the images directory to find the logo. Or you could specify

“/images/logo.png” which means go to the root directory and then down to the images

directory to find the logo.

�Specifying Libraries
If you want to make use of libraries such as the jQuery JavaScript library or the w3.css

CSS3 library, you can refer to them from your HTML code like this, which would look for

the libraries in your web server’s root directory:

<script src="jquery-3.2.1.min.js"></script>

<link rel="stylesheet" href="w3.css">

You could refer to these libraries in sub-directories under your web server root

directory like this. If you start the path with a “/”, it means that it starts at the web

server root. So the path in the following example might be "C:\SAS\Config\Lev1\Web\

WebServer\htdocs\JavaScript\jquery-3.2.1.min.js”:

<script src="/JavaScript/jquery-3.2.1.min.js"></script>

<link rel="stylesheet" href="/css/w3.css">

Or if you don’t have the libraries on your web server, then you can refer to them on

another web server like this:

<script src="https://code.jquery.com/jquery-3.2.1.min.js"></script>

<link rel="stylesheet" href="https://www.w3schools.com/w3css/4/w3.css">

You need to be aware of your organization’s security policies, since many companies

don’t like you to point to external libraries like this. If that is the case you may need

to obtain a copy of the library, pass it through some security procedure (such as virus

checking) and then to load it onto your internal network where it could then be referred

to.

When you specify libraries in your HTML code in this manner, the contents of those

files will be loaded in and processed, so you are then ready to make use of the functions

and classes that they define in the rest of your code.

Chapter 4 JavaScript

76

�Building Interactivity with JavaScript
JavaScript can add interactivity to your web pages. It enables you to do everything from

displaying a message when something happens to displaying a complex table enabling

you to sort the columns in it – and much more. I will outline a few things that you can

easily do without much expertise.

�Pop-Up Windows
There are three different kinds of functions in JavaScript which will pop up a window.

Alert displays a box with some text, which you can then close, useful for messages to

the user.

Confirm will display a box with some text and an OK and Cancel button. This allows

the user to confirm that something is OK or not.

Prompt will display a window with some text and an input box in which the user can

type some text. It is good for asking the user for a text response to a question.

Examples of these three pop-up windows follow here:

<script>

window.alert('Hello!') ;

window.confirm("Press a button!") ;

window.prompt("What's your name?","Phil") ;

</script>

These JavaScript calls display the following series of pop-up windows shown in

Figures 4-3, 4-4, and 4-5.

Figure 4-3.  Result of window.alert

Chapter 4 JavaScript

77

The JavaScript functions can return values and be used to capture those values to do

something with them. For instance, the following variable definition will prompt for the

name and assign it to the variable person when the user clicks OK, or if they click Cancel,

then it will return a null value:

var person = prompt("What’s your name?", "Phil");

Notice that you can also write the methods without the window prefix.

�Validating Form Fields
You can either do client-side or server-side validation or both! Client-side validation

happens on the client computer in the web browser. Server-side validation happens back

on the server once the form content has been sent there. To do client-side validation, you

can use JavaScript. You are able to get the value of a field that has been typed into or even

detect each character as it is typed.

The following HTML and JavaScript example in Listing 4-1 shows a simple way to get

you started doing client-side validation. The numbers (➀,➁,➂, and ➃) just show lines

that have a relationship of some kind.

Figure 4-4.  Result of window.confirm

Figure 4-5.  Result of window.prompt

Chapter 4 JavaScript

78

Listing 4-1.  HTML and JavaScript example

<HTML>

<head>

<script>

①function validateForm() {
② ③ var name = document.forms["survey"]["name"].value;
 if (name == "") {

 alert("Name must be filled out");

 return false;

 }

③ ④ var phone = document.forms["survey"]["phone"].value;
 if (phone == "") {

 alert("Phone must be filled out");

 return false;

 }

}

</script>

</head>

<body>

③ ①<form name="survey" onsubmit="return validateForm()" method="post"
action="run.php">

② Name: <input type="text" name="name">

④ Phone: <input name="phone" type="text" onkeypress='return event.charCode
>= 48 && event.charCode <= 57'></input>

<input type="submit" value="Submit">

</form>

</body>

</HTML>

We have a function which gets the value of name and checks if it is empty, in which

case a message is shown and the function returns a false, meaning that the action is not

done. If the name had some content, then it gets the value from the phone field and does

the same test.

Also, on the phone field, we have specified onkeypress, which carries out the

JavaScript in quotes each time a key is pressed. That will return the value of the text

Chapter 4 JavaScript

79

typed if it is between the ASCII codes of 48 and 57, which are the digits 0–9. This ensures

that we can only type numbers into the phone field, and any other characters will be

ignored.

The HTML produced is shown in Figure 4-6.

If we don’t enter a name, then the text in Figure 4-7 is displayed.

If we don’t enter a phone number, then the text in Figure 4-8 is displayed.

�Linking to One or More Other URLs
One common thing that is needed when building web applications is to be able to call

other web pages in various ways. Sometimes this is done just by clicking a link, which

is simply done using an anchor tag. These show up as blue underlined links usually,

although we can change how they look with CSS. Here is some HTML code for a link:

SAS Web Site

Figure 4-6.  HTML results in this displayed in browser

Figure 4-7.  Message when Submit is pressed without specifying a Name

Figure 4-8.  Message when Submit is pressed with specifying a Phone number

Chapter 4 JavaScript

80

Clicking a link like this will open a web page replacing the one you are currently on.

If you specify a target attribute on the anchor tag, then you can choose where to open

the web page. _blank will open the link on a new window/tab, _self will open it on the

same frame as it was clicked, _parent opens it in the parent frame, _top opens it in the

full body of the current window/tab, or you can specify the name of a frame to open

it in that. Using links like this will always require the user to click the link to make the

action happen. However, you can use JavaScript to open other URLs automatically. The

following JavaScript code will open the SAS home page when it is executed:

window.open("https://www.sas.com");

You can specify other parameters with window.open to control more about how the

URL is opened. For instance, the following code specifies the page to open, _blank says

to open it in a new windows, and then we specify that window should have a toolbar and

scrollbar and be resizable. It should also have its top-left corner 50 pixels in from the left

and down from the top, as well as being 1000 pixels wide and 500 high.

window.open("https://www.sas.com", "_blank", "toolbar=yes,scrollbars=yes,

resizable=yes,top=50,left=50,width=1000,height=500");

�Summary
In this chapter, we look at JavaScript especially with a view to what will be useful when

creating web applications with SAS Stored Processes. We look at the following things:

•	 Some of the features and limits of JavaScript

•	 Debugging JavaScript programs using tools available in web browsers

•	 The DOM (Domain Object Model) and how JavaScript and HTML

interact

•	 How stored processes can provide data to JavaScript programs

•	 How JavaScript libraries are basically used

•	 How to add more interactivity to HTML programs

•	 Adding validation to HTML forms

Chapter 4 JavaScript

81
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_5

CHAPTER 5

JavaScript Libraries
JavaScript libraries are a collection of pre-written JavaScript programs which have a

defined Application Programming Interface (API)1 that can be used by other programs

to make use of their functionality. For instance, a library might provide a collection of

useful objects such as tables and graphs of different kinds. Those objects would have

parameters defined so that you could provide data to them and define things about the

layout of the objects.

If you have used SAS/AF in the past, you will see similarities between JavaScript

libraries and SAS/AF. Both allow you to interact with a client by building a user interface,

detecting responses, and taking various actions. I have built applications in the past

using SAS/AF, and now JavaScript together with HTML lets me build quite similar

applications.

�Benefits of a Library
JavaScript libraries have some useful benefits over writing your own code to achieve the

same results. The primary benefit is that the code has already been written and used by

many people and is now shared for others. Other benefits of libraries include

•	 Browser support – Often a library will have code that supports

multiple browsers. If you don’t have code that does this, then you can

sometimes find inconsistencies in the behavior of your code.

•	 Cross-platform support – Libraries will often support differences

in how multiple platforms operate. For instance, using a library can

allow your applications to run properly on computers, tablets, and

mobile phones.

1�Application Programming Interface, or API, is a definition of how a program can make use of
another program. It defines the input, outputs, parameters, and so on.

https://doi.org/10.1007/978-1-4842-5925-2_5#ESM

82

•	 Functionality – Code and widgets from libraries can provide objects

with lots of functionality that can be used with very little coding.

The library of functionality means you can use them rather than

developing a lot of code to do similar things. This is similar to the

collection of widgets provided with SAS/AF which provided lots of

pre-built functionality.

•	 Extensible – With libraries, you get the source code and then have

the ability to extend and enhance any code provided. This is only

really applicable to expert JavaScript programmers though and is far

beyond the scope of this book.

•	 Learning – Often a JavaScript library has a community of users

providing support and sample code. This can provide a great

resource to learn from or base your own code on with some

modification of examples you like.

•	 Quality – Since the code is used by many people and has been well

tested, you get high-quality code to build upon.

•	 Speed of development – Using a library means you have a huge

amount of code available which you don’t need to write yourself, thus

saving a lot of development time.

�Choosing a JavaScript Library to Use
As a Framework
There are quite a lot of libraries around today and even more are being developed

all the time. Some of them have been around for a long time, and many form a

foundation for other ones which tends to ensure their longevity. So, I can be confident

in recommending the libraries in the next section. When picking a library, I suggest

evaluating them on the following criteria:

•	 Popularity – This tends to ensure ongoing development and bug

fixing. More popular libraries will have more examples floating

around the Web and more problems solved on forums.

Chapter 5 JavaScript Libraries

83

•	 Functionality – The key thing you’re after. Look at what the library

gives you in the way of functions, objects, widgets, and so on. It’s easy

to look through a library’s example to see a showcase of what it can

do. You might want to get one library because it gives you the best

grid that you are looking for, but it might not do graphs. So, you might

choose another library that does graphs really well. If you mix and

match, you need to make sure that the libraries operate together well.

•	 Ease of use – Varies between libraries, especially if you are not a

proper JavaScript programmer and just dabble.

•	 Available via CDN – Means that you will be able to point to the

libraries on a publicly available Code Delivery Network. If the library

you want is not available on one of these, then you need to install the

file on your server and point to it there.

•	 W3Schools – See if your library is covered on the W3Schools website

which provides free reference and training resources on a number of

web technologies. If a library is covered here, then you can be sure it

is a good choice.

•	 Cost – Most libraries can be downloaded and used for free at least

for a while. Even the ones that cost will allow free use for personal

development/non-commercial uses. However, some of the really

good ones charge by number of developers, websites, servers, or

some combination. So, you need to be aware of the potential cost

before investing a lot of expense in development.

�Recommended Libraries
There are a huge number of libraries around, but to get you started, I would suggest

looking at the following ones:

•	 jQuery – Perhaps the best known of all libraries. Its strapline is “write

less, do more”. And it’s free. You can learn more about jQuery in the

next section of this chapter.

•	 jqGrid – A great jQuery grid plug-in with some variations for pivot

tables, tree view, and so on.

Chapter 5 JavaScript Libraries

84

•	 Highcharts – One of the best for graphs and other visualizations.

•	 D3 – Lets you do amazing visualizations and has several other

libraries built on top of it such as C3, Dimple, and DC.

•	 Crossfilter – Lets you have linked objects in which selecting

something in one will apply filters to the others. Simple and powerful.

•	 Handsontable – A grid library that is almost like having Excel in a

web browser.

•	 Highmaps – Not free but does a great job at maps.

•	 Highstocks – Also not free, but has some great graph types

commonly used with stocks but not exclusively.

•	 Sencha Ext JS – Great, but not cheap. It has a very useful designer which

is a point and click interface to build applications using its library.

You will usually want a mix of libraries, since you will want jQuery for doing many

basic things; however, it doesn’t come with a grid or graphs. So, you might then add in a

grid like Handsontable and graphs like Highcharts. If money is no object, you might just

get Ext JS which will give you everything you need. If you don’t want to spend anything,

then a combination like jQuery with dataTables, DC.js, and dyGraphs is something that I

have used with great success.

�Content Delivery Networks (CDNs)
A great place to get libraries like jQuery is from a Content Delivery Network or CDN.

They are a collection of distributed servers which deliver content to users efficiently

based on factors such as geographical location. In practice, they are extremely useful for

loading JavaScript libraries. I have found that often it is difficult to get permission to host

a JavaScript library on a server of a client I am working for; however, I can point to a CDN

and just load that library when it is needed. Additionally, if people load the library a lot,

then it is held in cache and becomes very efficient to load.

A Google search of “CDN jQuery” will come up with a range of CDNs that have

jQuery libraries available. You will see that there are many versions of jQuery, and

with major new versions generally new functionality and support for older browsers is

dropped and newer browsers added. So generally, if you are using the latest browser,

then choose the latest version.

Chapter 5 JavaScript Libraries

85

You will also notice that there are usually several versions of each library on a

CDN. There is a normal version, a version with comments through it (which is bigger),

and a minimized version which has all the white space, carriage returns, comments, and

so on taken out so it is as small as possible while still working properly. We usually use

the minimized version since it is smallest and so is quicker to load. However, if you are

developing and using a debugger, you might want the bigger version with comments.

If using a CDN, you need to be aware of potential security issues. Using a CDN, you

are going to an external website and including JavaScript code which will then run on

your machines. That should be OK, but there might potentially be some malicious code

that someone hacks into a CDN so that it is used by many people. It is best to find copies

of libraries that you trust and run through virus and malicious code checkers. Then keep

a copy of the scanned libraries on your own web server and use that version rather than

a CDN version. Although, sometimes people don’t have the permission to update their

web servers like this and will reply on a CDN, or perhaps use a CDN for ease of use. You

can mitigate the risks by using an integrity hash.2

�jQuery
jQuery is a JavaScript library which greatly simplifies JavaScript programming. You can

usually achieve quite a lot with far less statements than it would take with standard

JavaScript. You can do things like manipulate the HTML on a web page, such as

changing things displayed and loading items into a list of items; modify the CSS on a

web page, such as changing the font/size/color of text and laying out items on a screen;

attach event handlers to things on a web page such as pressing a button, pressing the “Y”

key, or hovering over some text that can carry out an action; and create dynamic effects

and animations like having text slowly appear and grow in size as a web page opens.

One of the most useful things you can do with jQuery is to make use of AJAX, which

stands for Asynchronous JavaScript and XML. It lets you fire off requests from one web

page to do other things. So you might use AJAX to load three selection lists on a page

with values. The great thing about AJAX is that the rest of the web page will load and

display while AJAX requests are off running, and when they return, you are able to

update the web page with things they return. It’s a key feature that makes it possible to

build great web applications.

2�https://sasjs.io/security/#integrity-checking-for-javascript-files

Chapter 5 JavaScript Libraries

https://sasjs.io/security/#integrity-checking-for-javascript-files

86

�Getting Started
A great place to learn about jQuery, HTML, CSS, and more is at W3Schools website. The

jQuery section (www.w3schools.com/jquery) has lots of examples, tutorials, references,

and more. W3Schools uses a page for all examples which displays the code on the left

and the results on the right. You are able to modify the code and then see results on the

right updated, which makes it a great place to try things out and learn about jQuery.

To use jQuery, we need to include the jQuery library by using a script tag and then

have some JavaScript that makes use of some jQuery. A simple “hello world” example is

as follows in Listing 5-1.

Listing 5-1.  Hello World example

<HTML>

<head>

<script src='/Users/philipmason/Downloads/jquery.min.js'></script>

<script>

 $(document).ready(function() {

 alert("Hello World!") ;

}) ;

</script>

</head>

<body>

<h1>jQuery test</h1>

</body>

</HTML>

This HTML produces a page like the one shown in Figure 5-1.

Chapter 5 JavaScript Libraries

http://www.w3schools.com/jquery/

87

If you are using code like jQuery from outside your business, there are security

implications. You need to make sure you get a safe copy of it checked and loaded onto

your own infrastructure to reduce any possible risk. If you just connect to a CDN, then

you will always be grabbing the code from an external source every time you use your

web app. You can mitigate the risk by using integrity hashes.3 And having said that, these

libraries are used by millions of websites around the world and are very safe.

One important thing to note is that when you load the jQuery library to make use of

all the jQuery functionality, this statement should be used:

<script src='/Users/philipmason/Downloads/jquery.min.js'></script>

Here I have loaded the library from my Mac; however, you can load it from your own

web server or load it from somewhere online. A great place to load things like jQuery is

from a CDN which is described in the next section.

The other important thing in this example code is the piece of jQuery code:

 $(document).ready(function() {

 alert("Hello World!") ;

}) ;

You use jQuery by using the following syntax:

 $(selector).action() ;

3�https://sasjs.io/security/#integrity-checking-for-javascript-files

Figure 5-1.  Alert is shown when web page loads

Chapter 5 JavaScript Libraries

https://sasjs.io/security/#integrity-checking-for-javascript-files

88

The $ sign is how we invoke the jQuery functionality. The selector will look through

the HTML document and return a jQuery object that contains all the objects that match.

In our example, we are looking for a “document” object, which is how we refer to the

whole HTML page.4

JavaScript dot notation lets us append an action to be carried out on all the objects

returned in the jQuery object from the search. So “$(document)” looks for objects that

are a document and then “.ready” sets an action that will be carried out when the ready

event occurs. We do this to make sure the HTML document is completely loaded and

ready before we start manipulating anything with JavaScript. Inside the round brackets,

we have the code that will run when the document is ready. Here we define a function

to run, which contains the statement we want to run. “function()” indicates that this is

a function object, and the statements to run occur within the curly brackets. Within the

curly brackets, we simply have a standard JavaScript alert function which pops up a box

with some text in it.

Using this kind of code is a standard way you can use when you want to do

something once a web page is loaded. All you need is the following jQuery, as we have

seen in our example, and replace the code with whatever jQuery or JavaScript that you

want to run:

$(document).ready(function () {

// your code goes here

}) ;

�Selecting Elements in jQuery
There are a number of ways to select elements in an HTML document with jQuery. They

are quite flexible, and we are able to select things by referring to the name of the tag, the

id used on a particular tag, the class defined, attributes used, and much more. Here are

some of the major ones that you are likely to need.

4�If you’re a bit worried at this stage that things are getting a bit deep and that you will need to
learn all about the Domain Object Model, which is how HTML documents are represented in
a web browser, then don’t worry as we will be learning just enough to get things done and not
delving deep into web technologies as that is far beyond the scope of this book. We only need a
bit of knowledge about all this and some examples to work from in order for us to do a lot.

Chapter 5 JavaScript Libraries

89

�Selecting by Tag Name

You can specify the name of an HTML tag to select elements. In the following code, I select

the list item tag (“li”) and then use the jQuery text method to set the text for each tag.

Listing 5-2.  List item tag and jQuery text method example

<HTML>

<head>

<script src='/Users/philipmason/Downloads/jquery.min.js'></script>

<script>

$(document).ready(function () {

 $('li').text('new value')

}) ;

</script>

</head>

<body>

1

2

3

</body>

</HTML>

This results in the output shown in Figure 5-2.

Figure 5-2.  Result of JavaScript selecting all li tags and changing them

Chapter 5 JavaScript Libraries

90

�Selecting by ID

If you have specified an id with any of your tags, then you can select them by using that

id. If you put a hash symbol (#) in front of what you are selecting, then that indicates it is

an ID rather than a tag name. So in the code in Listing 5-3, we select the elements (see ①)

with an ID of “one” (see ②).

Listing 5-3.  Select by ID example

<HTML>

<head>

<script src='/Users/philipmason/Downloads/jquery.min.js'></script>

<script>

$(document).ready(function () {

$('#one').text('new value') ①
}) ;

</script>

</head>

<body>

<li id='one'>1 ②
<li id='two'>2

<li id='three'>3

</body>

</HTML>

This results in the output shown in Figure 5-3.

Figure 5-3.  Result of JavaScript selecting one specific id and changing it

Chapter 5 JavaScript Libraries

91

�Selecting by Class

If you have specified a class with any of your tags, then you can select them by using that

class. If you put a dot (.) in front of what you are selecting, then that indicates that it is a

class. So, in the code in Listing 5-4, we select the elements (see ①) with a class of “odd”

which results in selecting two lines (see ② and ③).

Listing 5-4.  Selecting by class example

<HTML>

<head>

<script src='/Users/philipmason/Downloads/jquery.min.js'></script>

<script>

$(document).ready(function () {

$('.odd').text('new value') ①
}) ;

</script>

</head>

<body>

① <li class='odd'>1 ②
<li class='even'>2

① <li class='odd'>3 ③

</body>

</HTML>

This results in the output shown in Figure 5-4.

Figure 5-4.  CSS class was used to select number 1 & 3, resulting in “new value”
being used

Chapter 5 JavaScript Libraries

92

It is best practice to specify the tag name, followed by the class ①, so in the previous

example that would be done like this:

$(document).ready(function () {

 $('li.odd').text('new value') ①
}) ;

�Other Ways to Select Things

I won’t go into all this much more, but just to let you know of some of the possibilities in

case you ever want a bit more control over what you select. Table 5-1 shows some other

examples of ways to select things.

You can find many more examples on the W3Schools website (www.w3schools.com/

jquery/jquery_ref_selectors.asp).

Table 5-1.  Some ways to select things in jQuery

HTML Code jQuery Code What It Does

<li lang=‘en’> $(‘[lang=”en”]’) Select elements which have an attribute

called lang equal to “en”

1

2

$(‘li:even’) Select “li” elements which with even row

numbers. Can also select :first, :last, :odd, :lt,

:gt, :eq

1

1

3

$(‘ul span’) Select the element with a span tag which is

within a ul tag

<h1>heading 1</h1>

<h2 id=‘2’>heading 2</h2>

<h3>heading 3</h3>

$(‘h1,#2’) Select the element with a span tag which is

within a ul tag

Chapter 5 JavaScript Libraries

http://www.w3schools.com/jquery/jquery_ref_selectors.asp
http://www.w3schools.com/jquery/jquery_ref_selectors.asp

93

�Fundamental jQuery Techniques
jQuery gives us a lot of tools to detect things happening on our HTML page and then

modify the page in various ways. That is the basis for building a web application. We

want to display some information and allow a user to interact with the page by moving

the mouse around, clicking, and typing. Based on those interactions, we might load

some more content, go to another page, hide or reveal something, and so on. The extent

of your imagination is the limit. We could even throw in some speech recognition or

virtual reality.

Listing 5-5 shows some examples of simple jQuery to show a few of the things we can

do with it and how little code is needed to achieve this:

•	 The code on the left will load a text file into a section of a web page

when a button is clicked.

•	 The code at the top right will hide all paragraphs on a web page when

a button is pressed.

•	 And code on the bottom right does some animation of some sections

of HTML when a button is pressed.

Listing 5-5.  jQuery example code

<script>

$(document).ready(function(){

 $("p").click(function(){

 $(this).hide();

 });

});

</script>

$(document).ready(function(){

 $("button").click(function() {

 $("#div1").load("demo_test.txt");

 })

});

</script>

Chapter 5 JavaScript Libraries

94

$(document).ready(function(){

 $("button").click(function() {

 $("#div1").fadeIn();

 $("#div2").fadeIn("slow");

 $("#div3").fadeIn(3000);

 })

});

Now let’s look at some of the fundamental jQuery techniques you can build on.

�Actions
We can use jQuery to easily attach actions to elements of a web page. We just need to

select an element on the web page and then attach a method to it which will handle an

event. We are able to detect things such as in Table 5-2.

Table 5-2.  Methods that can be used in jQuery to detect events

Jquery Method Explanation

click() Single click of mouse button

dblclick() Double click of mouse button

mousedown() Mouse button is pressed down

mouseup() Mouse button is released

mouseover() Mouse has moved over an element

mouseout() Mouse has moved off an element

mousemove() Mouse has moved on the screen; we can get the x and y coordinates of where

the mouse is

keypress() A key has been pressed; we can get the ASCII code for that key (e.g., 65 is “A”,

97 is “a”)

keydown() A key was held down. It is useful to recognize things like arrow keys (ASCII

codes 37–40)

keyup() A key was released

Chapter 5 JavaScript Libraries

95

There are also some other actions that can be taken when the screen is resized

(resize()), when something is scrolled (scroll()) and more.

The following example in Listing 5-6 shows how we can define a function for single

(②) and double (③) clicks. Additionally, you can see a way to identify if it was the left,

middle, or right mouse button that was pressed. The parameter “e” that I passed to the

click method returns an object which we can find the button from by using the button

method ①. A value of 0 indicates the left button, 1 is the middle button, and 2 is the right

button.

Listing 5-6.  Define a function for single and double clicks

<HTML>

<head>

<script src='/Users/philipmason/Downloads/jquery.min.js'></script>

<script>

$(document).ready(function () {

② $('#box').click(function (e) {
① �$(this).text('clicked button: ' + e.button)

.css('background','yellow');

 })

③ $('#box').dblclick(function () {
 $(this).text('double clicked').css('background','red');

 })

}) ;

</script>

<style>

#box {width:200px;height:100px;border:3px solid black}

</style>

</head>

<body>

<div id='box'>click</div>

</body>

</HTML>

Here is what the screen looks like at first (Figure 5-5), after a single click (Figure 5-6),

and then a double click (Figure 5-7).

Chapter 5 JavaScript Libraries

96

Many other JavaScript libraries work well with jQuery. In fact, out of the many

libraries I have seen, I have never found any that conflict with jQuery. jQuery uses

a $ sign to make calls to it, but this can even be substituted with “jquery” and the $

deactivated in case it conflicts with other web usage.

�Summary
In this chapter, we look at JavaScript libraries which can provide lots of pre-built

functionality to save you having to do a lot more programming:

•	 There are many benefits of using a library of JavaScript code.

•	 Some libraries provide a framework that you can.

Figure 5-7.  Browser shows this after a double click with left mouse button

Figure 5-5.  Browser shows this when page is first shown

Figure 5-6.  Browser shows this after one click with left mouse button

Chapter 5 JavaScript Libraries

97

•	 The best and most popular libraries change from time to time, but

currently some of the best are

•	 jQuery

•	 Highcharts

•	 D3

•	 Crossfilter

•	 Data tables

•	 Content Delivery Networks provide a source of libraries you can

reliably use from your web applications.

•	 We went into some more detail with jQuery about how to select

things on screen and detect when the user clicks with a mouse or hits

a key.

Chapter 5 JavaScript Libraries

99
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_6

CHAPTER 6

Data
Among many of the tools that SAS has in its arsenal, SAS can generate data for multiple

uses. This chapter allows the reader to determine how they plan to use the data. Are

you looking to interact with data managed by SAS using a spreadsheet? Are you looking

to bring SAS data into another application page, static HTML page, or in an Excel

spreadsheet (i.e., Office Analytics)? This section will help you see who SAS can be used

for all of these and more.

This section will talk about using data from SAS with other things such as some kind

of application that needs to consume data. For instance, it might be that you want to

import some data into Microsoft Excel. Or you might want to display a graph in a web

browser which uses the data from SAS. The possibilities are endless.

�Dynamic Data
Dynamic data is data produced by a SAS program at the point that it is needed. This

means it can always be completely up to date. So, we might have a SAS Stored Process

that can be called and will produce JSON data when it is needed based on a live system

in order to give up to the minute information to the calling application.

Dynamic data is easily produced with Stored Processes but could also potentially be

produced by running a standard SAS program in batch and then picking up the output

produced from it.

https://doi.org/10.1007/978-1-4842-5925-2_6#ESM

100

�Using Stored Processes to Create Dynamic Data
SAS allows Stored Processes to produce data which can be consumed by JavaScript

objects and libraries. As the newest web data transport format, JSON will be the most

common format; some processes may use CSV or XML. The key points in achieving this

are as follows:

•	 Exclude stpbegin and stpend macros from your Stored Process. These

are usually used by default if making a Stored Process with Enterprise

Guide.

•	 Produce the data using any method you like such as a data step,

PROC EXPORT, PROC JSON, and so on.

•	 Set the Stored Process to return streaming output.

•	 Write the output to the fileref _WEBOUT, since that will stream the

data directly to whatever has called the Stored Process.

The data called in the Stored Process will stream directly back to what has called it.

If you place the URL directly in a browser address bar, then the data will be shown in the

format designated in the stored process directly in the browser. Similarly, if you place

the URL inside a JavaScript function, the data will be available for consumption by the

JavaScript function or library. Stored Process production of web data allows us to build

flexible applications which use web-based data for generating grids, graphs, lists, and

many other objects on your web pages and applications.

The following code is a simple example of a Stored Process that uses a parameter for

the name of the table and writes CSV data to _webout so that it is streamed back to the web

application. We also have to specify replace for it to work; otherwise, the Stored Process

can’t write to _webout. In the metadata for the Stored Process, you just need to define the

table parameter so that the Stored Process can be called and specify those values for use:

proc export data=&table outfile=_webout dbms=csv replace ;

run ;

proc export data=sashelp.class outfile=_webout dbms=csv replace ;

run ;

Here is another simple example showing a Stored Process which returns JSON data.

It uses a parameter for libname and memname ① to specify the data required. In the

Chapter 6 Data

101

metadata for the Stored Process, you just need to define the libname and memname

parameters so that the Stored Process can be called and specify those values for use:

proc json out=_webout ;

 export &libname..&memname ; ①
run ;

proc json out=_webout ;

 export sashelp.orsales ;

run ;

WARNING: PROC JSON in SAS 9 can truncate what it produces if it is over

32,767 in length.

�How SAS Stored Processes Can Feed Data
to Objects
Many JavaScript objects use data provided via a URL. This could be a static file on a web

server, a PHP script, a file on a WebDAV server, or even a Stored Process. The JavaScript

object will typically be able to use some code to point to a data source. You will often

find example code or documentation that shows exactly how to associate data with a

file, since that is the simplest thing to do. For example, the following code uses jQuery to

point to a JSON file which will be used as input to a grid:

$('#table1').DataTable({

 "ajax": "http://d351tq92/sales.json"

});

So, we could generate a file from SAS to be used as input to an object like this,

although we can also just associate an object directly to a Stored Process. That Stored

Process will return a stream of content in the same way as reading from a file would

return a stream of content. For example, to change the previous example to use a Stored

Process, I could use some code like this:

$('#table1').DataTable({

 �"ajax": "http://d351tq92/SASStoredProcess/do?_program=%2FUser+Folders%2

Fphil%2FMy+Folder%2Fgrid_json"

});

Chapter 6 Data

102

The preceding Stored Process can further be enhanced by adding some parameters

to it. This adds a whole new level of benefit for us. If we point at a file, then we simply get

the content of that file. If we point at a Stored Process, we get the content of it. If we add

parameters to the Stored Process enabling us to specify the SAS table we want, then we

can have the Stored Process return us the data we select. This makes the Stored Process

into a general purpose one that could now drive a JavaScript grid which would be able

to show us any table. For example, the following code adds a libname and memname

parameter. To be clear, this only works if you are using a Stored Process with something

like Proc Stream so that the values of &libname and &memname are resolved when the

following code is written out. You can see this method shown in Listing 6-1.

$('#table1').DataTable({

 �"ajax": "http://d351tq92/SASStoredProcess/do?_program=%2FUser+Folders%2

Fphil%2FMy+Folder%2Fgrid_json%nrstr(&libname)=&libname%nrstr(&memname)=

&memname"

});

Here is the Stored Process code for the entire example that would make a grid object

and point to another Stored Process that would provide its data.

Listing 6-1.  Stored process code example

* generate a list of variable names to use as table headers and footers ;

proc sql noprint ;

 select '<th>'||strip(name)||'</th>' into :th

 separated by ''

 from dictionary.columns

 where libname="%upcase(&libname)" and memname="%upcase(&memname)" ;

quit ;

%put &=th ;

* write content out ;

data _null_ ;

 file _webout ;

 input ;

 line=resolve(_infile_) ;

 put line ;

cards4 ;

Chapter 6 Data

103

<HTML>

<head>

<script src="http://code.jquery.com/jquery-1.12.4.js"></script>

<script src="https://cdn.datatables.net/1.10.15/js/jquery.dataTables.min.

js"></script>

<script>

$(document).ready(function() {

 $('#table1').DataTable({

 �"ajax": "http://d351tq92/SASStoredProcess/do?_program=%2FUser+

Folders%2Fphil%2FMy+Folder%2Fgrid_json%nrstr(&libname)=&libname%

nrstr(&memname)=&memname"

 });

});

</script>

<link rel="stylesheet" href="https://cdn.datatables.net/1.10.15/css/jquery.

dataTables.min.css">

</head>

<body>

<table id="table1" class="display" cellspacing="0" width="100%">

<thead>

<tr>

&th

</tr>

</thead>

<tfoot>

<tr>

&th

</tr>

</tfoot>

</table>

</body>

</HTML>

;;;;

run ;

Chapter 6 Data

104

The Stored Process that provides the data is shown here. The code is very

straightforward as it produces some JSON data written out. The pretty parameter lays

the JSON out in a nice way that is easier to see the structure. We also need some write

statements to produce the exact form of JSON required for the object we are using.

Often, I find that PROC JSON doesn’t automatically provide the right JSON needed as

the format will vary depending on the JavaScript object you use. But the write statements

let you customize it quite a lot to make any kind of JSON you might need. We also use

nosastags to turn off some SAS JSON written out which is not required:

proc json out=_webout pretty ;

 write open object ;

 write value "data" ;

 write open array ;

 export &libname..&memname / nokeys nosastags ;

 write close ;

 write close ;

run ;

�Static Data
Static data is data that is produced by a SAS program at some point in the past and then

is used as is by an application. So, we might produce an XML file and place it on a server.

Various applications could then come along and pick up that file to use in different ways.

For it to be useful, we might need to update that file each week, so that applications will

always have the latest available data for the previous week. So there will be various things

to think about regarding

•	 How recent must the data be?

•	 Where is the best location for it, to be secure but available?

•	 Should it be password protected or encrypted?

•	 What volume of usage will it get? Should it be on fast storage? Does it

matter?

This data could be stored in a file somewhere or could even be delivered in the

form of a Stored Process report which is a cached version of a Stored Process. When you

download some static data, then that data will be fixed until you download some more

Chapter 6 Data

105

data to update it. So any changes to the data elsewhere will not be reflected in the data

you downloaded.

In this book, I am trying to show you how to use dynamic data rather than static data.

Dynamic data will be up to date and always go back to the source bringing you fresh data

when it is needed.

�CSV
CSV stands for comma-separated values. It’s a way of representing data which is usually

structured as a table. The usual way that people come to know about CSV is through

using a spreadsheet program such as Microsoft EXCEL or Apple Numbers from which

data can be saved to or loaded from CSV files. Having looked at JSON in the previous

chapter, you may realize that this is a bit more limited in its functionality since it can only

represent tabular data, whereas JSON can handle far more types of data.

Each line of a CSV file is a list of values separated by a delimiter which is traditionally

a comma, although can also be another character, often a semi-colon. The values would

tend to have quotes around those that are text and not around numerics to make the

distinction clear. If a value contained commas within it, then that would be OK as it

would be surrounded by quotes. If a value contained quotes within it, then it would often

have double quotes to indicate that. This can vary with applications that use CSV data

though.

Typically, a CSV would use the first row to have the names for the columns. These

names might indicate variable names or just be descriptions for what is each column.

Most of the time, these headings are desirable and there is little reason to drop them, as

they are easily ignored if not required. However, data in CSV format does not insist on

column headings.

One last important thing to mention is that if values are missing, then we might have

CSV data that just has consecutive commas that indicate a value is missing by having

whitespace or nothing between them. Consecutive commas can be handled differently

in different programs, so if you might have them, you need to know the behavior of the

application using your data. They might be ignored by treating multiple consecutive

commas the same as one comma or as a number of missing values.

Chapter 6 Data

106

�Making a CSV with a Data Step

In Chapter 4, we talked about the role of CSV files and the availability of CSV data

available over the Web. Some JavaScript libraries require a CSV input. Here we will show

you a couple of ways to generate CSV with SAS.

It is easy to make a CSV file from a data step. It just requires pointing to a file and

writing out values separated by commas. See Listing 6-2.

Listing 6-2.  CSV file from a data step

filename temp temp;

data _null_;

 file temp;

 set sashelp.class;

 put name ',' age;

run;

data _null_;

 infile temp;

 input;

 put _infile_;

run;

The log from this having run in SAS Studio shows the CSV data produced (in bold)

(Listing 6-3).

Listing 6-3.  CSV data example

 56 filename temp temp;

 57

 58 data _null_;

 59 file temp;

 60 set sashelp.class;

 61 put name ',' age;

 62 run;

Chapter 6 Data

107

 NOTE: The file TEMP is:

 Filename=/tmp/SAS_work4BDB00005068_localhost.localdomain/#LN00031,

 Owner Name=sasdemo,Group Name=sas,

 Access Permission=-rw-rw-r--,

 Last Modified=21 April 2017 12:05:33 o'clock

 NOTE: 19 records were written to the file TEMP.

 The minimum record length was 8.

 The maximum record length was 11.

 NOTE: There were 19 observations read from the data set SASHELP.CLASS.

 NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

 63

 64 data _null_;

 65 infile temp;

 66 input;

 67 put _infile_;

 68 run;

 NOTE: The infile TEMP is:

 Filename=/tmp/SAS_work4BDB00005068_localhost.localdomain/#LN00031,

 Owner Name=sasdemo,Group Name=sas,

 Access Permission=-rw-rw-r--,

 Last Modified=21 April 2017 12:05:33 o'clock,

 File Size (bytes)=198

 Alfred ,14

 Alice ,13

 Barbara ,13

 Carol ,14

 Henry ,14

 James ,12

 Jane ,12

 Janet ,15

 Jeffrey ,13

Chapter 6 Data

108

 John ,12

 Joyce ,11

 Judy ,14

 Louise ,12

 Mary ,15

 Philip ,16

 Robert ,12

 Ronald ,15

 Thomas ,11

 William ,15

 NOTE: 19 records were read from the infile TEMP.

 The minimum record length was 8.

 The maximum record length was 11.

 NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

There are some even easier ways to do this in SAS. The following code uses the

DLM= parameter to specify a delimiter to use when writing values out. That means there

is no need to write the delimiter in our PUT statement:

filename temp temp;

data _null_;

 file temp dlm=',';

 set sashelp.class;

 put name age;

run;

If I modify the code to include a variable that does not exist, then I will have missing

values written out to my file:

filename temp temp;

data _null_;

 file temp dlm=',';

 set sashelp.class;

 put name x age;

run;

Chapter 6 Data

109

This results in some CSV data like this. Notice the missing value indicated by a .

between the commas:

Alfred,.,14

Alice,.,13

Barbara,.,13

However, if I use the DSD parameter, then that means that I won’t write out missing

values, but just leave the commas following on from each other with nothing in between

them. So the modified code is this:

filename temp temp ;

data _null_ ;

file temp dlm=',' dsd ;

set sashelp.class ;

put name x age ;

run ;

And you can see that now we don’t have missing values written out:

Alfred,,14

Alice,,13

Barbara,,13

If I wanted to just simply write all the variables out in CSV format, then the most

efficient code is something like this. The part with “name--weight” is how we specify a

list of variables including all variables between name and weight inclusive:

data _null_;

 file temp dlm=',' ;

 set sashelp.class;

 put name--weight ;

run;

This produces output that looks like Listing 6-4.

Chapter 6 Data

110

Listing 6-4.  Output

Alfred,M,14,69,112.5

Alice,F,13,56.5,84

Barbara,F,13,65.3,98

Carol,F,14,62.8,102.5

Henry,M,14,63.5,102.5

James,M,12,57.3,83

Jane,F,12,59.8,84.5

Janet,F,15,62.5,112.5

Jeffrey,M,13,62.5,84

John,M,12,59,99.5

Joyce,F,11,51.3,50.5

Judy,F,14,64.3,90

Louise,F,12,56.3,77

Mary,F,15,66.5,112

Philip,M,16,72,150

Robert,M,12,64.8,128

Ronald,M,15,67,133

Thomas,M,11,57.5,85

William,M,15,66.5,112

�Using PROC EXPORT to Make CSV

Another nice easy way to generate CSV data from SAS is by using PROC EXPORT. We will

cover this elsewhere in more detail, but basically the code is as follows:

filename temp temp ;

proc export data=sashelp.class

 outfile=temp

 dbms=csv ;

run ;

By default, PROC EXPORT will give us column headings for our data. If we didn’t

want the column headings, we could specify PUTNAMES=no to suppress them.

Chapter 6 Data

111

�SASHELP.SAS in CSV

Using the PROC EXPORT code, we can generate the following CSV output. I have

included this so it can be easily compared to other types of output for sashelp.class. See

Listing 6-5.

Listing 6-5.  PROC EXPORT generated CSV output

Name,Sex,Age,Height,Weight

Alfred,M,14,69,112.5

Alice,F,13,56.5,84

Barbara,F,13,65.3,98

Carol,F,14,62.8,102.5

Henry,M,14,63.5,102.5

James,M,12,57.3,83

Jane,F,12,59.8,84.5

Janet,F,15,62.5,112.5

Jeffrey,M,13,62.5,84

John,M,12,59,99.5

Joyce,F,11,51.3,50.5

Judy,F,14,64.3,90

Louise,F,12,56.3,77

Mary,F,15,66.5,112

Philip,M,16,72,150

Robert,M,12,64.8,128

Ronald,M,15,67,133

Thomas,M,11,57.5,85

William,M,15,66.5,112

�XML
XML stands for eXtensible Markup Language, which was created to store and transport

data. It is designed to be readable by machines and humans, though it is not as easy to

read as JSON (in my opinion). It has been around a lot longer than JSON though, so is a

bit more embedded into things on the Internet.

Chapter 6 Data

112

XML is stored as a text file, like JSON and CSV. It is quite easy in SAS to deal with

simple XML files which have a table like structure, as the next examples will show. We

can also deal with far more complex types of XML; however, to do this requires the use

of XMLMaps which are beyond the scope of this book. Just be aware that there is a great

program available with SAS called the XML Mapper1 that helps you create XML maps, or

you can create them manually. You then specify a map that you are using in order to map

more complex XML structures into the simpler SAS table layout.

�Reading XML Data into SAS

The following SAS program in Listing 6-6 writes some XML data to a temporary file.

I then get the filename that was created (using pathname function). Using that I can use

the XML engine on the libname statement to point to the file. Because the XML is stored

in this way, I can easily read it into SAS and use it.

Listing 6-6.  XML data to temporary file

filename temp '/tmp/class.xml';

data _null_;

 file temp;

 input;

 put _infile_;

 cards;

<?xml version="1.0" encoding="windows-1252" ?>

<TABLE>

 <PEOPLE>

 <FirstName> Phil </FirstName>

 <Age> 52 </Age>

 </PEOPLE>

 <PEOPLE>

 <FirstName> Esther </FirstName>

 <Age> 48 </Age>

 </PEOPLE>

1�http://support.sas.com/documentation/cdl/en/engxml/64990/HTML/default/viewer.htm#n
0mxvt7afwoqron1pioilw0vzxq1.htm

Chapter 6 Data

http://support.sas.com/documentation/cdl/en/engxml/64990/HTML/default/viewer.htm#n0mxvt7afwoqron1pioilw0vzxq1.htm
http://support.sas.com/documentation/cdl/en/engxml/64990/HTML/default/viewer.htm#n0mxvt7afwoqron1pioilw0vzxq1.htm

113

 <PEOPLE>

 <FirstName> Jake </FirstName>

 <Age> 20 </Age>

 </PEOPLE>

</TABLE>

;;

run ;

libname temp xml;

data PEOPLE;

 set temp.PEOPLE;

run;

proc print data=PEOPLE;

run;

The output produced is shown in Figure 6-1.

�Using the XML Engine to Create SASHELP.CLASS in XML

Using the following simple code enables us to write some XML to an external file. I use

the temp engine on the filename statement to get a temporary file location, since this

doesn’t work with libname. Then I can use pathname to find where it is pointing to and

then use that with my libname statement which uses the XML engine to create an XML

file. Once that is done, it is simple to just create a table in that XML file, in the usual way.

Figure 6-1.  Result of Proc Print from XML data

Chapter 6 Data

114

filename temp temp;

libname temp xml;

data temp.class;

 set sashelp.class;

run;

The file contents are as follows in Listing 6-7. Compare it back to the SASHELP.

CLASS output for CSV and JSON data formats. CSV is much more compressed down in

size, and JSON is a bit more succinct compared to this XML.

Listing 6-7.  File contents example

<?xml version="1.0" encoding="utf-8" ?>

 <TABLE>

 <CLASS>

 <Name> Alfred </Name>

 <Sex> M </Sex>

 <Age> 14 </Age>

 <Height> 69 </Height>

 <Weight> 112.5 </Weight>

 </CLASS>

 <CLASS>

 <Name> Alice </Name>

 <Sex> F </Sex>

 <Age> 13 </Age>

 <Height> 56.5 </Height>

 <Weight> 84 </Weight>

 </CLASS>

 <CLASS>

 <Name> Barbara </Name>

 <Sex> F </Sex>

 <Age> 13 </Age>

 <Height> 65.3 </Height>

 <Weight> 98 </Weight>

 </CLASS>

Chapter 6 Data

115

 <CLASS>

 <Name> Mary </Name>

 <Sex> F </Sex>

 <Age> 15 </Age>

 <Height> 66.5 </Height>

 <Weight> 112 </Weight>

 </CLASS>

</TABLE>

�JSON
JSON stands for JavaScript Object Notation. It is a way of encoding data for use by

computer programs. It is similar to XML but is simpler. One of its main advantages is that

it is quite easily readable by humans, as well as computers. It can represent tabular and

hierarchical data structures which makes it very flexible. JSON is widely used on the Web

as a data source for JavaScript objects.

One of the best places on the Internet to find out about JSON is the section on the

W3Schools website.2

There are some useful things to know though:

•	 Data is always in name/value pairs which separate the name and

value with a colon, for example, “name”:”Phil”.

•	 Data is always separated by commas, when there is more than one

data item obviously, for example, “name”:”phil”,”lastname”:”mason”.

•	 Objects are defined within curly brackets.

•	 Arrays are defined within square brackets.

Putting all these things together lets you define all kinds of data. You can have arrays

of objects, objects made up of arrays, and so on.

2�www.w3schools.com/js/js_json_intro.asp

Chapter 6 Data

http://www.w3schools.com/js/js_json_intro.asp

116

�Example of JSON

For this example in Listing 6-8, you will notice some things about it:

•	 The curly brackets indicate that this structure is an object.

•	 The first item is just a text string, since we have the name for the

object followed by its value.

•	 The next item is an object, because we have a name for the item followed

by something enclosed in curly brackets indicating another object.

•	 This object has four items in it: town, phone, current home, and ages.

•	 The first item has a text value (quotes around the text value).

•	 The next item has a numeric value (notice there are no quotes

since this is a number).

•	 The next item has a Boolean value (true/false).

•	 The last item is an array, indicated by the square brackets.

•	 Within the array, we have five items which are all numeric

separated by commas.

Listing 6-8.  JSON example

{

 "name": "Phil Mason",

 "home": {

 "town": "Wallingford",

 "phone": 1491824891,

 "current home": true,

 "ages": [

 51,

 46,

 18,

 16,

 13

]

 }

}

Chapter 6 Data

117

�Read in JSON

From SAS 9.4 Maintenance Release 4 onward, we can use the JSON libname engine

to read JSON data in very easily. A JSON map is used to read the JSON data in, which

describes how the data is structured. The following code shows how we can create a map

to use for the JSON reading by specifying a libref where the map will be stored and by

specifying automap=create which will automatically create a JSON map:

* generate a map to see what is in the JSON, and what datasets are

automatically made ;

filename ex 'C:\Users\phil\Documents\My SAS Files\9.4\example json.sas' ;

filename jmap temp ;

libname in json fileref=ex map=jmap automap=create ;

We could then take a look at the map that was created using a data step like this:

* look at the map that was generated ;

data _null_ ;

 infile jmap ;

 input ;

 put _infile_ ;

run ;

Looking either at the fileref directly or in the log, we can see the map as shown in

Listing 6-9.

Listing 6-9.  JSON map that was automatically created by the libname statement

using the JSON engine

{

 "DATASETS": [

 {

 "DSNAME": "root", ①
 "TABLEPATH": "/root",

 "VARIABLES": [

 {

 "NAME": "ordinal_root",

 "TYPE": "ORDINAL",

Chapter 6 Data

118

 "PATH": "/root"

 },

 {

 "NAME": "name",

 "TYPE": "CHARACTER",

 "PATH": "/root/name",

 "CURRENT_LENGTH": 10

 }

]

 },

 {

 "DSNAME": "home", ②
 "TABLEPATH": "/root/home",

 "VARIABLES": [

 {

 "NAME": "ordinal_root",

 "TYPE": "ORDINAL",

 "PATH": "/root"

 },

 {

 "NAME": "ordinal_home",

 "TYPE": "ORDINAL",

 "PATH": "/root/home"

 },

 {

 "NAME": "town",

 "TYPE": "CHARACTER",

 "PATH": "/root/home/town",

 "CURRENT_LENGTH": 11

 },

 {

 "NAME": "phone",

 "TYPE": "NUMERIC",

 "PATH": "/root/home/phone"

 },

Chapter 6 Data

119

 {

 "NAME": "current_home",

 "TYPE": "NUMERIC",

 "PATH": "/root/home/current home"

 }

]

 },

 {

 "DSNAME": "home_ages", ③
 "TABLEPATH": "/root/home/ages",

 "VARIABLES": [

 {

 "NAME": "ordinal_home",

 "TYPE": "ORDINAL",

 "PATH": "/root/home"

 },

 {

 "NAME": "ordinal_ages",

 "TYPE": "ORDINAL",

 "PATH": "/root/home/ages"

 },

 {

 "NAME": "ages1",

 "TYPE": "NUMERIC",

 "PATH": "/root/home/ages/ages1"

 },

 {

 "NAME": "ages2",

 "TYPE": "NUMERIC",

 "PATH": "/root/home/ages/ages2"

 },

 {

 "NAME": "ages3",

 "TYPE": "NUMERIC",

 "PATH": "/root/home/ages/ages3"

 },

Chapter 6 Data

120

 {

 "NAME": "ages4",

 "TYPE": "NUMERIC",

 "PATH": "/root/home/ages/ages4"

 },

 {

 "NAME": "ages5",

 "TYPE": "NUMERIC",

 "PATH": "/root/home/ages/ages5"

 }

]

 }

]

}

Reading through the map, we can see that three datasets have automatically been

mapped (shown as ①, ②, and ③). We can look at them by using some PROC PRINT

statements (Figure 6-2).

Figure 6-2.  Proc Print output of one record from each JSON mapped table

Chapter 6 Data

121

So you can see how easy it is to read simple JSON data in with the new JSON engine.

It’s great.

�Using JSON Lint

Lint refers to a collection of tools which analyze a computer program and flags any errors

in it. They are usually free tools and often can be run by just using a web browser. It will

often also lay out the code in a standard way to make it easier to understand. There are

Lint tools available for various languages including JSON. Searching for JSON Lint will

find these tools, which can then be used to check your JSON and lay it out clearly. This

is especially useful if you are building some custom JSON yourself. Users should be

aware that web-based Lint tools will upload the code to be analyzed to a web server to

be analyzed. This is a potential security risk since your code could be seen by others.

You could buy Lint tools that could be run locally on a computer in which case the code

would not have to be uploaded for analysis.

Many text editors (such as Notepad++) allow the language for a file to be set and

then do context-sensitive highlighting. This can indicate where there are errors in syntax

especially things like non-matching brackets and quotes. If you are looking at JSON, you

can set the language to JavaScript since JSON is a form of JavaScript and it will show if

your JSON is valid or not.

For example, here is some badly formatted JSON:

{"name":"PhilMason","home":{"town":"Wallingford","phone":1491824891,

"current home":true,"ages":[51,46,18,16,13]}}

And here is that same JSON when it has been run through JSONLINT.COM:

{

 "name": "PhilMason",

 "home": {

 "town": "Wallingford",

 "phone": 1491824891,

 "current home": true,

 "ages": [51, 46, 18, 16, 13]

 }

}

Chapter 6 Data

122

�Using a Data Step to Make JSON

You can make JSON data from a data step (Listing 6-10).

Listing 6-10.  JSON data from a data step

data _null_ ;

 set sashelp.class end=_end ;

 if _n_=1 then put '[' ;

 put '{' ;

 put '"Name":"' name +(-1) '",' ;

 put '"Sex":"' sex +(-1) '",' ;

 put '"Age":"' age +(-1) '",' ;

 put '"Height":"' height +(-1) '",' ;

 put '"Weight":"' weight +(-1) '"' ;

 put '}' ;

 if not _end then put ',' ;

 else put ']' ;

run ;

�Using Proc JSON

Listing 6-11 shows an easy way to take SAS data and produce JSON data.

Listing 6-11.  SAS data to produce JSON data

filename temp temp;

proc json out=temp;

 export sashelp.class / tablename="class";

run;

data _null_;

 infile temp;

 input;

 put _infile_;

run;

Chapter 6 Data

123

�SASHELP.SAS in JSON

Using PROC JSON, we can transform SAS tables into JSON, as we have done here in

Listing 6-12 with SASHELP.CLASS. This gives you a good idea of how the table is an

object which has the rows represented as an array of objects – you can tell that by the

square bracket indicating the start of an array (I bolded them). In other words, each

row is a separate object in an array which holds all the rows in the table. You can see

that each row is contained within curly brackets, making it an object. Each row object

consists of a collection of name/value pairs, each of which represents a variable and its

value. I think this is a great example of how JSON is not only machine-readable but also

human-readable.

Listing 6-12.  Transform SAS tables into JSON

{"SASJSONExport":"1.0","SASTableData+class":[{"Name":"Alfred","Sex":"M",

"Age":14,"Height":69,"Weight":112.5},{"Name":"Alice","Sex":"F","Age":13,

"Height":56.5,"Weight":84},{"Name":"Barbara","Sex":"F","Age":13,"Height":65.3,

"Weight":98},{"Name":"Carol","Sex":"F","Age":14,"Height":62.8,"Weight":102.5},

{"Name":"Henry","Sex":"M","Age":14,"Height":63.5,"Weight":102.5},{"Name":

"James","Sex":"M","Age":12,"Height":57.3,"Weight":83},{"Name":"Jane",

"Sex":"F","Age":12,"Height":59.8,"Weight":84.5},{"Name":"Janet","Sex":"F",

"Age":15,"Height":62.5,"Weight":112.5},{"Name":"Jeffrey","Sex":"M","Age":13,

"Height":62.5,"Weight":84},{"Name":"John","Sex":"M","Age":12,"Height":59,

"Weight":99.5},{"Name":"Joyce","Sex":"F","Age":11,"Height":51.3,"Weight":

50.5},{"Name":"Judy","Sex":"F","Age":14,"Height":64.3,"Weight":90},{"Name":

"Louise","Sex":"F","Age":12,"Height":56.3,"Weight":77},{"Name":"Mary",

"Sex":"F","Age":15,"Height":66.5,"Weight":112},{"Name":"Philip","Sex":"M",

"Age":16,"Height":72,"Weight":150},{"Name":"Robert","Sex":"M","Age":12,

"Height":64.8,"Weight":128},{"Name":"Ronald","Sex":"M","Age":15,"Height":67,

"Weight":133},{"Name":"Thomas","Sex":"M","Age":11,"Height":57.5,"Weight":

85},{"Name":"William","Sex":"M","Age":15,"Height":66.5,"Weight":112}]}

Chapter 6 Data

124

�Summary
In this chapter, we look at aspects of using data with Stored Processes especially when

using them with web applications. We looked at some of these things:

•	 How stored processes can produce dynamic data and deliver it in

various formats such as CSV and JSON

•	 How to produce CSV data with Proc Export and data steps in flexible

ways

•	 How to produce XML using the XML libname engine

•	 How to produce JSON using a data step or PROC JSON

•	 Reading in JSON data with the JSON libname engine

Chapter 6 Data

125
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_7

CHAPTER 7

Stored Processes
In this chapter, we will focus on SAS Stored Processes and look at the details around

them so we can get a good understanding of how to create them along with all the details

around that. Let’s start by looking at how we move from a SAS program that every SAS

programmer understands to a Stored Process.

�Converting a SAS Program into a Stored Process
It is very easy to take a normal SAS program and make it into a Stored Process. Here is a

normal SAS program which extracts some data, summarizes it, and prints it:

* take a random sample ;

data sample ;

 set sashelp.class ;

if ranuni(1)<0.5 ;

run ;

* work out average height and weight by sex ;

proc summary data=sample ;

 class sex ;

 var height weight ;

 output out=class_sum

 mean= ;

run ;

proc print data=class_sum ;

run ;

And here is the same program code, once it has been converted to a Stored Process.

All that is needed for the SAS code is to add in the %stpbegin macro at the start and

%stpend macro at the end. No special program is needed to do this, just a simple text

https://doi.org/10.1007/978-1-4842-5925-2_7#ESM

126

editor like Notepad++. Note that the stpbegin and stpend macros are called from SAS

autocall libraries that are provided and will be pointed to by default. If you modify the

sasautos option, then it might be that you no longer point to where these are stored and

may get errors.

%stpbegin

* take a random sample ;

data sample ;

 set sashelp.class ;

if ranuni(1)<0.5 ;

run ;

* work out average height and weight by sex ;

proc summary data=sample ;

 class sex ;

 var height weight ;

 output out=class_sum

 mean= ;

run ;

proc print data=class_sum ;

run ;

%stpend

If you were to have the program in Enterprise Guide and choose to make it into a

Stored Process using the wizard, then Enterprise Guide would produce the following

code:

* Begin EG generated code (do not edit this line); ①
*

* Stored Process registered by

* Enterprise Guide Stored Process Manager V7.1 ②
*

* ==

* Stored Process name: test9 ③
* ==

*;

*ProcessBody; ④

Chapter 7 Stored Processes

127

%STPBEGIN; ⑤

* End EG generated code (do not edit this line); ⑥
 ⑦
* take a random sample ;

data sample ;

 set sashelp.class ;

if ranuni(1)<0.5 ;

run ;

* work out average height and weight by sex ;

proc summary data=sample ;

 class sex ;

 var height weight ;

 output out=class_sum

 mean= ;

run ;

proc print data=class_sum ;

run ;

* Begin EG generated code (do not edit this line); ⑧
;*';*";*/;quit; ⑨
%STPEND; ⑨

* End EG generated code (do not edit this line); ⑧

Notice that Enterprise Guide adds some code to the code that you enter. The

following things are added:

•	 ①First you get a comment indicating that the EG generated code

starts here and that you shouldn’t edit this line. This is so that

when the code is read in to Enterprise Guide, it knows what part it

generated and what part you entered.

•	 ②You get a block of comments at the top which identifies that the

code was generated by Enterprise Guide and the version used.

•	 ③Then you get some more comments that have the name of the

Stored Process, along with a description if that was entered in the

Stored Process.

Chapter 7 Stored Processes

128

•	 ④Next you get a special comment which is always this –

∗ProcessBody; – and it is used in SAS 9.2 and earlier Stored Processes

to indicate that the parameters should be read in and set as macro

variables at this point.

•	 ⑤The macro invocation is added next – %STPBEGIN – which is a

special macro supplied by SAS which does many things related to

setting the ODS output correctly.

•	 ⑥Now you get another specially formatted comment that you

should not edit. This indicates to Enterprise Guide that the code it

generated ends here.

•	 ⑦Your code appears after this, as it was entered in the Enterprise

Guide editor.

•	 ⑧Now there is some more code generated by Enterprise Guide, so

you have a comment line at the start and end of it which is specially

formatted and should never be edited.

•	 ⑨Preventing SAS programs from prematurely ending: inside the

generated block of code, there is a special comment line which is

designed to assist with stopping errors that may stop SAS working

properly. By itself, the line does nothing; however, it has been

carefully crafted so that it will end unmatched quotes, finish

unfinished statements, finish unfinished comments, and quit

procedures that haven’t been finished properly. Here is the line – a

handy one to use at the end of non-Enterprise Guide SAS programs

too.

;*';*";*/;quit;

•	 ⑩Inside the generated block of code, there is an invocation to

%stpend, which is a SAS-supplied macro which basically finishes off

the ODS output properly.

Chapter 7 Stored Processes

129

A WORD ABOUT THE PROCESSBODY COMMENT

If you are using SAS 9.2, then the parameters for Stored Processes are not initialized in the

same way as later versions. This means that you need to include a comment in your Stored

Process code like this:

*ProcessBody;

When using a Stored Process with a workspace server, none of the parameter values will

be available until that comment is processed. If using a Stored Process server, then it is not

required though. This means that useful automatic parameters such as _METAUSER as well as

any parameters passed in by the user are not available. For SAS 9.3 onward, you don’t need to

use ProcessBody anymore.

�Creating a Stored Process
There are several ways to make a Stored Process:

	 1.	 Management Console

	 2.	 Enterprise Guide

	 3.	 Data Integration Studio

	 4.	 Programmatically using SAS metadata calls

We will start with Management Console to make our first Stored Process. I think of it

as the purest way of making a Stored Process since it gives you full control over creating

the metadata and SAS code which make up the Stored Process. Using Enterprise Guide is

a little more restrictive in what can be done. Data Integration Studio is used far less in my

experience. The last method is not used much at all but turns out to be incredibly useful,

and more recently, some prolific programmers are using it. I will just be covering the first

two methods.

Chapter 7 Stored Processes

130

�Creating a Stored Process with Management Console
We will carefully go through the steps to make a stored process using Management

Console. Many users don’t have access to this by default, but it is very useful.

Permissions can be set by your SAS administrator so you can use this to create stored

processes while being prevented from doing any harm by changing settings in the SAS

system.

When you open Management Console for the first time, you will need to create a

connection profile for the SAS metadata server you want to use. Your SAS administrator

can provide the details you need to do this. When I opened Management Console for the

first time, I got this message shown in Figure 7-1.

Follow these steps to make your first Stored Process:

	 1.	 Start Management Console. In my case, I am using PC SAS, and I

have a link to it on my windows desktop. You may also have a link,

or you might need to navigate to where it is stored. In my default

windows system, the path was “C:\Program Files\SASHome\

SASManagementConsole\9.4\sasmc.exe”.

	 2.	 Next select the Folders tab as shown in Figure 7-2, which will show

you the SAS folders in metadata.

Figure 7-1.  Opening SAS Management Console

Chapter 7 Stored Processes

131

You may not be able to create Stored Processes in all the locations,

but there will usually be at least one folder put aside for you. Navigate

to a location like the one I have selected (if possible) in Figure 7-3.

A restriction of this location (My Folder) is that no other users can

execute this Stored Process, so don’t use it for anything you want

others to use.

	 3.	 Right-click a folder in which you want to create your Stored

Process. Click New ➤ Stored Process as shown in Figure 7-4.

Figure 7-2.  Folders tab in Management Console

Figure 7-3.  Metadata folders in Management Console

Chapter 7 Stored Processes

132

	 4.	 You are presented with the New Stored Process wizard (Figure 7-5)

which guides you through the process of creating a Stored Process.

Some parts of the wizard are optional and other parts have

required fields. The first screen is the General screen for specifying

the name, description, and keywords for the Stored Process to be

defined. The only field you have to specify on this screen is the

Stored Process name. Other fields are not essential, so click Next.

Figure 7-4.  Context menu for a metadata folder

Chapter 7 Stored Processes

133

	 5.	 Next, we must choose where the Stored Process is able to run by

selecting an application server from the list of available ones as

shown in Figure 7-6. Sometimes you might only have one choice

available, so it will be an easy choice. Stored Processes are able to

run on two kinds of SAS servers:

	 a.	 SAS Stored Process servers, which are started up when required

and stay up to run Stored Processes for any users that need them

run. So, this server is run under the general server identity and is

potentially used by multiple users.

Figure 7-5.  First page of New Stored Process wizard

Chapter 7 Stored Processes

134

	 b.	 SAS Workspace servers, which are started up when needed by

a Stored Process and closed down when that Stored Process

ends. This server is run under the identity of the metadata user.

Although there are two kinds of workspace servers, the standard

one (running under the metadata user identity) and a pooled one

(running under the pooled workspace server identity), the pooled

workspace server is never used to run Stored Processes.

	 6.	 The next part of the screen allows us to choose the type of server

that will be used: Default, Stored Process, or workspace server

(Figure 7-7). If you use Default, you can never be sure what kind of

server will be chosen to be used as it can vary. Best practice is to

choose the type you want for this Stored Process – usually I would

choose Stored Process server only.

	 7.	 The next part of this screen specifies where the SAS source code

is located. This could be on a disk somewhere or could be in the

metadata itself. As shown in Figure 7-8, I usually select the first

radio button which allows the Stored Process to execute in more

places and also stores the source code in the metadata.

Figure 7-6.  Choose an Application server drop-down menu

Figure 7-7.  Select type of server

Chapter 7 Stored Processes

135

You can also choose to store the code on disk as shown in Figure 7-9.

	 8.	 You can choose from the source code repositories you have defined.

If you want another location, you can click the Manage button and

define another Source Code Repository (see Figure 7-10).

Figure 7-8.  Source code location

Figure 7-9.  Storing code on disk requires a path and filename

Figure 7-10.  Define a Source Code Repository

Chapter 7 Stored Processes

136

	 9.	 Now you need to create some source code. If we had pointed to

some already existing source code in the previous step, then we

wouldn’t need to do this. So, click the “Edit Source Code …” button

to edit the source code.

	 10.	 If you are storing your code in metadata or to a file which

already exists, then you are put into an editor similar to the

enhanced editor in Classic SAS. Syntax is highlighted for you, but

functionality is fairly limited. It is best to develop the actual code

in a more powerful environment such as Enterprise Guide or

SAS Studio where you can test it as you go along. However, in this

editor, you can enter code or paste it in from elsewhere as shown

in Figure 7-11.

	 11.	 If you are storing code to a file which doesn’t yet exist, then

you will be prompted to create it, to which you can answer Yes

(Figure 7-12).

Figure 7-11.  Editing the source code when it is stored in metadata

Chapter 7 Stored Processes

137

This will then show you an editor window (Figure 7-13).

You can then save the code and return to edit it if you like (Figure 7-14).

Figure 7-12.  Edit Source Code prompt

Figure 7-13.  Editing some new source code in a file rather than metadata

Chapter 7 Stored Processes

138

	 12.	 You then need to specify the Result capabilities, which are what

kind of result is returned from your Stored Process. If you plan to

run the Stored Process from a client other than the Stored Process

Web Application, then it's best to choose both Stream and Package

(Figure 7-15).

A stream will return the output from a Stored Process streamed

back to the place that the Stored Process was called from. So if

it was run through a web browser using the Stored Process Web

Application, it would be sent back to the web browser.

A package is basically a SAS package file, which is pretty much

the same as a zip file and can be opened with a program such as

WinZip. This is handled by other clients you would run from such

as Enterprise Guide and the Microsoft Office Add-In.

Figure 7-14.  Returning to edit your source code

Figure 7-15.  Result capabilities

Chapter 7 Stored Processes

139

	 13.	 At this point, we have entered all the information for the Stored

Process that is needed, which is why we now have the option of

pressing the finish button to create the Stored Process. Otherwise,

we can press next and go on with choosing parameters and other

things. We will press finish.

	 14.	 You can see your Stored Process in the list of Stored Processes as

shown in Figure 7-16.

	 15.	 If you right-click the Stored Process, a number of things you can

do will be displayed (see Figure 7-17).

	 a.	 Copy the Stored Process and paste it into another metadata folder.

	 b.	 Delete it.

	 c.	 Rename it.

	 d.	 Export it as a SAS Package, which is basically a zip file. You will get the SAS

code and metadata in the package which means it could then be moved

somewhere else and imported into another SAS metadata server. For

example, when developing applications in a controlled environment, this

enables moving Stored Processes from Development to Test to Production.

Or should you want to copy from one metadata server to another to make

changes and test before returning to the original server, then exporting

enables this to be done easily.

	 e.	 Deploy as a web service, which will let you convert your Stored Process

into a web service. However, from SAS 9.3 onward, you can run any Stored

Process as a web service without deploying it as a web service.1

1�For more information, look here: http://support.sas.com/documentation/cdl/en/
wbsvcdg/64883/HTML/default/n1arlomsivd9q0n1qalkfhbppln6.htm

Figure 7-16.  Stored Process we created in list

Chapter 7 Stored Processes

http://support.sas.com/documentation/cdl/en/wbsvcdg/64883/HTML/default/n1arlomsivd9q0n1qalkfhbppln6.htm
http://support.sas.com/documentation/cdl/en/wbsvcdg/64883/HTML/default/n1arlomsivd9q0n1qalkfhbppln6.htm

140

	 f.	 Make compatible with SAS 9.2, which at the time of writing is still very

widely used. Later versions of SAS have some extra features not available

on SAS 9.2 Stored Processes so this will make the necessary changes to

make them compatible. You could then export a SAS 9.4 Stored Process and

import it into SAS 9.2.

	 g.	 Properties displays all the information about the Stored Process and allows

you to change any of it as long as you have the right permissions.

That is the end of the process for creating a Stored Process in Management Console.

Now let’s have a quick look at prompting with a Stored Process administered from

Management Console, and then we will see how Enterprise Guide is very similar but has

some important differences.

�Prompting from Management Console

Should you want to edit the Stored Process, go into Properties which displays the

screen shown in Figure 7-18. We can click the various tabs and see the metadata

defined for this Stored Process. We can also make any changes to it, so long as we have

permission to do so.

Figure 7-17.  Context menu for a stored process

Chapter 7 Stored Processes

141

We can add parameters which will prompt the user for values when the Stored

Process is run. So, clicking the Parameters tab takes us to the screen in Figure 7-19. We

might want to generalize our code a little by adding a prompt to allow us to summarize

our data by different variables. We can do this by clicking New Prompt.

Figure 7-18.  General tab of Properties window for a stored process

Chapter 7 Stored Processes

142

The New Prompt screen allows us to enter a name for the prompt/parameter and

text to display when the user is prompted (Figure 7-20).

Figure 7-19.  Parameters tab of Properties window for a stored process

Chapter 7 Stored Processes

143

Now we can click the Prompt Type and Values tab, which will let us specify what kind

of prompt this is – for example, are we asking the user for a number, for some text, for

one value or many, to select from a list of values, and so on? In our example, we want to

let the user pick one or more variable names from several possibilities, so we will provide

a list of values in a static list. My sample list of values is shown in Figure 7-21. I have

chosen the following items:

•	 Prompt type – Text.

•	 Method for populating prompt – User selects values from a static list.

•	 Number of values – Multiple ordered values.

•	 List of values – Sex (which has default checked), name, and age.

•	 No other tick boxes are checked.

Note T he use of parameters will be explained in more detail later.

Figure 7-20.  New Prompt window

Chapter 7 Stored Processes

144

Clicking OK, we will see that our parameter has now been added (Figure 7-22).

Figure 7-21.  Prompt Type and Values window

Figure 7-22.  Screen showing parameter we added

Chapter 7 Stored Processes

145

Now we need to modify our SAS code slightly to make use of the parameter. So, we

click the Execution tab and select Edit Source Code. In Figure 7-23, I change the variable

used in the class statement to use &var, which is a macro variable that is created with the

value of the parameter entered by the user.

Clicking OK will save the change. Then clicking OK exits the Properties dialog, which

saves our changes to the Stored Process metadata.

Now we can test this out by going to Enterprise Guide and running the Stored

Process. Find it in the list of Stored Processes in SAS Folders (Figure 7-24). Right-click it

and select Open which will add it to your Enterprise Guide project.

Figure 7-23.  Source code in Metadata

Figure 7-24.  Folder icon that changes view to show metadata folders

Chapter 7 Stored Processes

146

Now you can right-click the Stored Process in the process flow of Enterprise Guide

and run it by selecting Run.

The Stored Process runs and prompts you for parameters (Figure 7-25).

Make any selections you like and click Run.

The results are shown under the Results tab. The results of my Stored Process are

shown in Figure 7-26.

Figure 7-25.  Prompt that appears for parameters when running in Enterprise
Guide

Chapter 7 Stored Processes

147

�Using Enterprise Guide to Make a Stored Process
SAS Management Console is often just available to administrators, whereas SAS

Enterprise Guide tends to be available to most SAS programmers in an enterprise.

Enterprise Guide has a great wizard that guides the user through the creation of a stored

process, whereas Management Console is a little harder to use:

	 1.	 Open up Enterprise Guide, and from the File menu, select New

and then Stored Process as shown in Figure 7-27.

Figure 7-26.  Results

Chapter 7 Stored Processes

148

	 2.	 Labelling and saving the Stored Process – You are shown

the first page of a wizard (Figure 7-28) which will gather the

information needed to create a Stored Process. Some of the fields

are required, but many are optional. For our first Stored Process,

we will just fill a minimal number of fields in. On this first page,

you must enter a name for the Stored Process. The location is the

location of the Stored Process in the metadata. It might default to

a suitable place or else you can click browse to find a place to put

your Stored Process. The other fields on this page are optional,

but I would recommend always filling in the description field so

that others finding your work in future will have more chance of

understanding what you have done.

Figure 7-27.  Creating a new stored process in Enterprise Guide

Chapter 7 Stored Processes

149

	 3.	 SAS code – The second page of the wizard is for entering the SAS

code. You will have often created the code elsewhere and will

just be pasting in the code at this point. You could type it in if you

wanted to, although you can’t run it to test if it works at this point.

The button that is labelled “Include code for” is an important one,

but we will leave that for now. The only thing you must do on this

screen is to enter some code (Listing 7-1).

Listing 7-1.  Sample code to enter for stored process

* take a random sample ;

data sample ;

 set sashelp.class ;

if ranuni(1)<0.5 ;

run ;

Figure 7-28.  New Stored Process wizard

Chapter 7 Stored Processes

150

* work out average height and weight by sex ;

proc summary data=sample ;

 class sex ;

 var height weight ;

 output out=class_sum

 mean= ;

run ;

proc print data=class_sum ;

run ;

	 4.	 Location to run code – On the third screen of the wizard

(Figure 7-29), we specify where the code will run, where it will

be stored, and how any results will be returned. You can select

“default server” as the application server that the Stored Process

will run on. If you do this, you will never know where your Stored

Process will run. It might run on a Workspace server (if the client

application chooses to run it there) or a Stored Process server (if

no server type was specified by the client application). Workspace

servers don’t produce log files by default, and they run under

the user account rather than the Stored Process user account.

So many users consider it risky to let this default and choose the

server it will run on specifically from the drop-down list.

I usually specify that I want the code stored in the metadata

which means that the Stored Process metadata and code are

kept together. Alternatively, you could put the code in a source

code repository in a disk somewhere. If you store the code in the

metadata, then it does mean that when you export or move a

Stored Process, from one place to another, then the code is still

with it. However, if you store the code in a source code repository,

then if you move a stored process, you need to make sure that

it can access the code or also move the code and define where

its new location is. If you are following this example through,

you may not be able to save into the same location shown in my

screen shot, but that is OK. Just save to metadata if you have any

problems.

Chapter 7 Stored Processes

151

The result capabilities are usually best specified as stream and

package. Stream will stream results back to the place the Stored

Process was called from. A package is basically a SAS package file,

which is pretty much the same as a zip file and can be opened

with a program such as WinZip. This is handled by other clients

you would run from such as Enterprise Guide and the Microsoft

Office Add-In.

It doesn’t really matter where you store the code, as it won’t

affect whether this example would run or not. That goes for most

example Stored Processes in this book, so if you don’t have access

to some location that I store code, then just store it somewhere

else or in metadata which you should always be able to do.

At this point in the wizard, you can see that the Finish button has

ceased being grayed out. That means that we can finish the wizard

now and create the Stored Process. Or else we can continue and

potentially enter other optional information.

Chapter 7 Stored Processes

152

	 5.	 Process prompts – The fourth page of the wizard (Figure 7-30)

allows us to enter prompts (or input parameters) which will

prompt the user for information when a Stored Process is run.

That information is then used as the SAS code of the Stored

Process is executed. Specifying prompts will be covered in the next

section.

Figure 7-29.  Execution options from the wizard for creating a new stored process

Chapter 7 Stored Processes

153

	 6.	 Data sources and targets – The fifth page (Figure 7-31) is for

specifying data sources and targets which are used with web

services and the SAS Add-in for Microsoft Office. Note: From

SAS 9.3 onward, your Stored Process is available as a web service

automatically without any further action required by the user.

Access to the web application is described here.

Figure 7-30.  Prompts page in wizard where we can define parameters

Chapter 7 Stored Processes

154

	 7.	 The last page of the wizard (Figure 7-32) shows a summary of

information that has been entered.

Figure 7-31.  Data sources and targets

Chapter 7 Stored Processes

155

	 8.	 Now that you have finished the wizard, you can see your Stored

Process in the Enterprise Guide project process flow as shown

in Figure 7-33. If SAS has any problems with the configuration

of your stored process, you will get a prompt to tell you. You can

always use the Back button to go back and change things before

you press Finish to finalize your stored process.

Figure 7-32.  Summary page of wizard

Figure 7-33.  Icon for the Stored Process just created

Chapter 7 Stored Processes

156

	 9.	 Right-clicking the Stored Process will give you a range of actions

that you can select from (see Figure 7-34). We will just run the

Stored Process for now. If you chose to modify the Stored Process,

then you would go back into a version of the wizard where you

could revisit the various things that make your Stored Process up

and make changes.

	 10.	 After running the Stored Process, you will be shown a Results tab,

which has a range of actions along the toolbar. Some of these will

only work properly if certain parts of your SAS infrastructure are

configured correctly. The results of my Stored Process are shown

in Figure 7-35.

	 11.	 Choosing the Log tab shows you the log for the Stored Process

(Figure 7-36).

Figure 7-34.  Context menu for Stored Process

Figure 7-35.  Results

Chapter 7 Stored Processes

157

So that is how you create a Stored Process using either Management Console or

Enterprise Guide. You can create your Stored Process in one of those and then modify it

in the other one.

�Prompting in Enterprise Guide

Prompting allows the user to be prompted for information which will provide values

to parameters used in SAS code. This enables some code to be written in a more

generalized way to be far more flexible. The user can define that the values provided for

each prompt are macro variables available for use in the project SAS code. For instance,

we might be prompted to choose the parts of a country that we want a report to be

created for.

Enterprise Guide has its own prompting system available, which is not related to

Stored Processes. You can define prompts for a process flow which will prompt you for

information before running that process flow. You can look at and define Enterprise

Guide prompts by going to the Prompt Manager (Figure 7-37).

Figure 7-36.  Log from the Stored Process run

Chapter 7 Stored Processes

158

The prompt manager for Enterprise Guide is located in the lower half of the left

navigation pane (i.e., where you find the SAS folders and servers). We won’t be covering

this kind of prompting, but the manager is shown in Figure 7-38.

Stored Process prompts can be used with Stored Processes to prompt the user for

some input before running the SAS code within the Stored Process. The prompts might

be displayed in different ways depending on the client used, but will essentially be the

Figure 7-37.  Selecting the prompt manager for Enterprise Guide

Figure 7-38.  Prompt Manager

Chapter 7 Stored Processes

159

same. There are many kinds of prompts that can be used when making a Stored Process.

We will look at a brief example of each kind in the following. You can see a complete list

in the SAS documentation online.2

�Modifying a Stored Process

We can modify the stored process by right-clicking the Stored Process which is in

your process flow. When the menu appears, select Modify <name of stored process>

(Figure 7-39).

Now you can choose Prompts from the left menu (see Figure 7-40).

2�“Entering Prompt Values” from the SAS Stored Process Documentation - https://
documentation.sas.com/?docsetId=stpug&docsetTarget=n0174t2cve9kekn1tq627pnui5js.
htm&docsetVersion=9.4&locale=en and the quick reference guide on prompts which is here
https://documentation.sas.com/?docsetId=stpug&docsetTarget=n1x5bwm15z6zcmn1jjzrsch
l4z90.htm&docsetVersion=9.4&locale=en

Figure 7-39.  Modify stored process via context menu

Chapter 7 Stored Processes

https://documentation.sas.com/?docsetId=stpug&docsetTarget=n0174t2cve9kekn1tq627pnui5js.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=stpug&docsetTarget=n0174t2cve9kekn1tq627pnui5js.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=stpug&docsetTarget=n0174t2cve9kekn1tq627pnui5js.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=stpug&docsetTarget=n1x5bwm15z6zcmn1jjzrschl4z90.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=stpug&docsetTarget=n1x5bwm15z6zcmn1jjzrschl4z90.htm&docsetVersion=9.4&locale=en

160

Then to start using prompts, you first select New Prompt as shown in Figure 7-41.

This reveals a tab in a window that prompts you for General information about the

prompt (Figure 7-42).

Figure 7-40.  Menu in left pane

Figure 7-41.  Creating a new prompt

Chapter 7 Stored Processes

161

Name – SAS requires a name that is valid under the SAS naming conventions. In this

example, we will use the name Prompt_1. You can give it any name you like, and if it is

not valid (perhaps having spaces in it), then it will be converted to a valid SAS name. The

name you specify and the values the user assigns become a global macro variable. This

allows the prompt and user input to be available to all the SAS code in the Stored Process.

Displayed text – Displayed text is shown next to the prompt, so should describe what

you want the user to enter.

Description – Description will be displayed under the prompt to explain more about

it. You can arrange prompts into nested groups of prompts if you want to. Remember

that the prompt names are required but remaining fields are optional and also that the

fields can be modified later if required by editing the stored process.

Figure 7-42.  General tab of window used to add new prompt

Chapter 7 Stored Processes

162

Hide at runtime – When the hide at runtime box is checked, SAS will let you have a

prompt but not display it to the user. This is handy if you want a prompt value defined in

metadata and passed to the Stored Process, but not to be shown to user. Also, it is handy

if you use dependent prompts, as we will see later.

Requires a non-blank value – When the requires a non-blank value box is

checked, SAS makes the field required. In that case, the user won’t be able to run the

Stored Process unless a value is specified for that field. If the field has a default value

defined, then the user could just accept that and wouldn’t need to enter some other

value.

Read-only values – When the read-only values box is checked, SAS means that the

prompt is read-only by the user and the value cannot be changed. So, you can show the

user the prompt and value for information-only purposes.

Use prompt value throughout project – When the use prompt value throughout
project box is checked, SAS puts the macro variables used in the Stored Process into

global macro variables and so available across an Enterprise Guide project, if you are

using Stored Processes in that environment. This aligns with the Enterprise Guide

prompting system in which you can also make the value of a prompt into a global macro

variable in the same way. You need to carefully choose your prompt names if using them

like this though as they can’t be reserved words, and you don’t want them to overwrite

any other global macro variables that you might be using. Prompts can’t be longer than

32 characters either. If your prompt can have multiple values, then SAS will create a

version of it with a suffix on of _count to indicate how many values were specified. It

will also use numeric suffixes to indicate which value it is, for example, myprompt_1,

myprompt_2, and so on. myprompt_0 would be the same as myprompt_count and hold

the number of values specified. You need to take this extra variable length requirement

into account when naming your parameter.

Once you have specified everything you want to on the first tab, you can move onto

the second tab to specify the Prompt Types and Values (Figure 7-43).

Chapter 7 Stored Processes

163

Choosing a Prompt Type

Now you have a choice of Prompt type as shown in Figure 7-44.

Figure 7-43.  Prompt Type and Values dialog

Chapter 7 Stored Processes

164

We will look at each of these prompt types in detail now.

1. Text

With many of these prompts, you can specify the method for populating the prompt.

For text and many others, this usually can be one of the following options shown in

Figure 7-45.

User enters values – means the user has to type in a value.

User selects values from a static list – where the developer enters a list of values that

the user can select from (see Figure 7-46). We can also set one of the values as a default if

we want to. Pressing the Add button lets you add a line to the list of values.

Figure 7-45.  Options for populating values of a prompt

Figure 7-44.  Prompt type choices

Chapter 7 Stored Processes

165

Figure 7-46.  Entering your own values for a prompt

You can also click Get Values which will bring up another dialog (Figure 7-47) in

which we can specify a data source (either from metadata or a physical location) and

column to use to get a list of values to use. For instance, I can navigate using the Browse

button and choose SASHELP.CLASS and then pick the column Age. Then if I click Get

values, it gets me a list of all the unique values from that table for that column. Then I

can copy some or all of them into the selected values list.

Figure 7-47.  Getting values from a data source and choosing which ones to use

Chapter 7 Stored Processes

166

Next, select values from a dynamic list shown in Figure 7-48. You can navigate to

a data source defined in the metadata, choose a column, and get the values to use for

selecting from. You can choose either to have all the values or just distinct values. You

may choose either the unformatted values to use, the formatted values for variables

to use, or to append the formatted values with the unformatted values. You may also

specify a sort sequence for displaying the values. And you can choose to allow the user

to specify additional (unformatted) values. This is a good option if other values not

available from the data are possible, since the user can then enter any values.

As shown in Figure 7-49, you must also choose whether values can be either a single

value, multiple values, or multiple ordered values where the order that they are entered

is passed on to the SAS program.

Figure 7-48.  Specifying a sort order for dynamic prompt values from a data
source

Figure 7-49.  Specifying number of values that can be specified in a prompt

Chapter 7 Stored Processes

167

Figure 7-50.  Specifying values for text range prompt

You also define the formatted value that is shown to the user, as well as the

unformatted value which is passed on to the SAS code when it is selected.

When the prompt is displayed, the form it is displayed in will vary depending on the

choices you have made.

2. Text Range

Choosing the text range prompt option will let you choose a text range. You can specify

some parameters (see Figure 7-50) to restrict the values that can be entered for the

range: min/max length of the string, min/max value, and a default value for the range.

In Enterprise Guide, the text range prompt is displayed as shown in Figure 7-51.

3. Hyperlink

This prompt option allows you to enter the text and link for a URL. You can specify

defaults if you like as shown in Figure 7-52.

Figure 7-51.  Values for a text range

Chapter 7 Stored Processes

168

When running from Enterprise Guide, the hyperlink prompt is displayed as shown in

Figure 7-53.

4. Numeric

This is similar to the text prompt type. You can populate the prompt with values in a

number of ways, as shown in Figure 7-54.

Figure 7-52.  Specifying a hyperlink or URL prompt

Figure 7-53.  How a hyperlink prompt is displayed when being used from
Enterprise Guide

Figure 7-54.  Methods for populating a numeric prompt

Chapter 7 Stored Processes

169

User enters values – means the user has to type in a value User selects values from a

static list – where the developer enters a list of values that the user can select from (see

Figure 7-55). We can also set one of the values as a default if we want to. Pressing the Add

button lets you add a line to the list of values.

User selects values from a dynamic list – where the developer specifies a data source

that will provide the values.

For a static list, you can also click Get Values which will bring up another dialog

(Figure 7-56) in which we can specify a data source (either from metadata or a physical

location) and column to use to get a list of values to use. For instance, I can navigate

using the Browse button and choose SASHELP.CLASS and then pick the column Age.

Then if I click Get values, it gets me a list of all the unique values from that table for that

column. Then I can copy some or all of them into the selected values list.

Figure 7-55.  Specifying numeric values and formatted values to display

Chapter 7 Stored Processes

170

For a dynamic list as shown in Figure 7-57, we can navigate to a data source defined

in the metadata, choose a column, and get the values to use for selecting from. You can

choose either to have all the values or just distinct values. You may choose either the

unformatted values to use, the formatted values for variables to use, or to append the

formatted values with the unformatted values. You may also specify a sort sequence

for displaying the values. And you can choose to allow the user to specify additional

(unformatted) values. This is a good option if other values not available from the data are

possible, since the user can then enter any values.

Figure 7-56.  Specifying a data source to get values from and which ones to use

Chapter 7 Stored Processes

171

You must also choose whether values can be either a single value, multiple values,

or multiple ordered values where the order that they are entered is passed on to the SAS

program (see Figure 7-58).

You also define the formatted value that is shown to the user, as well as the

unformatted value which is passed on to the SAS code when it is selected.

In Enterprise Guide, this prompt is displayed as shown in Figure 7-59.

Figure 7-57.  Specifying a dynamic data source for a numeric prompt

Figure 7-58.  Specifying how many values can be entered for a numeric prompt

Chapter 7 Stored Processes

172

5. Numeric Range

This prompt type is similar to the text range type. You specify the min/max values and

default values if you want them, as shown in Figure 7-60. You can check a box to indicate

if you just want integers to be used or else optionally specify the decimal places to use.

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-61.

Figure 7-59.  Numeric prompt shown when used in Enterprise Guide

Figure 7-60.  Specifying a numeric range prompt

Chapter 7 Stored Processes

173

6. Date

This prompt type allows you to specify a date for a prompt which can be one of the

following types of date shown in Figure 7-62.

You can choose a minimum and/or maximum date to allow by entering it, picking a

value from the drop-down list (see Figure 7-63), or choosing a value from the calendar

icon which opens up a calendar to choose from (see Figure 7-64).

Figure 7-61.  Numeric range displayed when used in Enterprise Guide

Figure 7-62.  Specify a date type for a data prompt

Figure 7-63.  Specify a minimum value for a date prompt with a range of special
values

Chapter 7 Stored Processes

174

You can also choose whether to include all possible values and/or missing values in

the list of values that can be used, as shown in Figure 7-65.

You can also choose a default value using a drop-down list or calendar picker like

those already shown. You can see how to specify a defaul date in Figure 7-66.

Figure 7-64.  Choosing calendar icon allows specifying date using a calendar

Figure 7-65.  Specify what to include in data prompt

Figure 7-66.  Can specify a default value for date

Chapter 7 Stored Processes

175

If you choose to select values from a static list, then you will have the dialog options

we have already seen to make a list of values to choose from (see Figure 7-67).

If you choose to select values from a dynamic list, then you have dialog options to

choose a data source and variable to create a list of values from, as shown in Figure 7-68.

When it is running from Enterprise Guide, it is displayed like in Figure 7-69.

7. Date Range

This allows defining a date range to be used as a prompt. You can see how to do this in

Figure 7-70.

Figure 7-67.  Can specify to get values from a static list

Figure 7-68.  Can specify to get values from a dynamic list

Figure 7-69.  Display of date prompt when running from Enterprise Guide

Chapter 7 Stored Processes

176

Choosing a date type of Day lets min/max range be set up using calendar or drop-

down list shown in Figure 7-71.

Choosing week makes the drop-down list appear as in Figure 7-72.

Figure 7-70.  Defining a date range

Figure 7-71.  Special values available for specifying a day

Chapter 7 Stored Processes

177

Choosing month makes the drop-down list appear as in Figure 7-73.

Choosing quarter makes the drop-down list appear as in Figure 7-74.

Choosing year makes the drop-down list appear as in Figure 7-75.

Figure 7-72.  Special values available for specifying a week

Figure 7-73.  Special values available for specifying a month

Figure 7-74.  Special values available for specifying a quarter

Chapter 7 Stored Processes

178

For any date type, you can specify a range which can be specified using the

corresponding drop-down menus shown previously or selection dialogs like the ones

shown in Figures 7-76, 7-77, 7-78, and 7-79.

Figure 7-75.  Special values available for specifying a year

Figure 7-76.  Using calendar widget to specify a date

Figure 7-77.  Using special week widget to choose a week

Figure 7-78.  Using special month widget to choose a month

Chapter 7 Stored Processes

179

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-80.

8. Time

Choosing time lets us define a time as a prompt as shown in Figure 7-81.

Figure 7-79.  Using special quarter widget to choose a quarter

Figure 7-80.  Specifying a date range when run from Enterprise Guide

Figure 7-81.  Defining time as a prompt

Chapter 7 Stored Processes

180

Minimum/Maximum/Default can be picked from the drop-down list in Figure 7-82.

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-83.

9. Time Range

This prompt type allows specifying a time range (see Figure 7-84).

Figure 7-82.  Specifying times using special values

Figure 7-83.  Prompt for specifying a time in Enterprise Guide

Figure 7-84.  Defining a time range prompt

Chapter 7 Stored Processes

181

Times can be specified using a clock dialog (Figure 7-85) or drop-down list

(Figure 7-86).

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-87.

Figure 7-85.  Specifying a time using clock dialog

Figure 7-86.  Specifying a time using a special value

Chapter 7 Stored Processes

182

10. Timestamp

You can specify a timestamp as a prompt, which is a combination of a date and time (see

Figure 7-88).

You can choose from the drop-down menu (Figure 7-89) or icon (Figure 7-90) to

choose a value for Minimum, Maximum, or Default.

Figure 7-87.  Time range prompt used in Enterprise Guide

Figure 7-88.  Defining a timestamp as a prompt

Chapter 7 Stored Processes

183

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-91.

11. Timestamp Range

The timestamp range prompt type allows you to enter a range or datetime values, as seen

in Figure 7-92.

Figure 7-89.  Special values available for a timestamp

Figure 7-90.  Specifying a datestamp using a combined date and clock dialog

Figure 7-91.  Prompt for a timestamp used in Enterprise Guide

Chapter 7 Stored Processes

184

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-93.

12. Data Source

The data source prompt allows you to select a data source of one of the types, shown in

Figure 7-94.

Figure 7-92.  Defining a timestamp range prompt

Figure 7-93.  Timestamp range prompt when used in Enterprise Guide

Figure 7-94.  Specifying a data source prompt

Chapter 7 Stored Processes

185

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-95.

13. Data Source Item

The data source item prompt allows choosing a number of data sources from which you

can pick a variable, as shown in Figure 7-96.

When it is running from Enterprise Guide, it looks like Figure 7-97.

Figure 7-95.  Data source prompt when used in Enterprise Guide

Figure 7-96.  Defining a data source prompt

Chapter 7 Stored Processes

186

When you click the button, you get to choose a variable from the data sources

available in the dialog shown in Figure 7-98.

14. File or Directory

The file or directory prompt lets you choose either a file or a directory (see Figure 7-99).

If you choose the file or directory type as input, then that indicates that you will select

from things that already exist and so can be used as input. However, if you choose

output, then you can create directories or files so that they don’t have to already exist.

Figure 7-97.  Using a data source prompt in Enterprise Guide

Figure 7-98.  Dialog displayed when browsing for a data source to select

Chapter 7 Stored Processes

187

If you select to choose a file, you can enter some file extensions, so you will only see

files that match those in the list of files as you are browsing. You need to choose a server

where the files or directories are located on.

Next, you choose either files or directories, depending on what you want to select. If

you choose files, then you can also enter file extensions which will restrict the files that

you can use. Lastly, you can enter a default value if you want to.

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-100.

Pressing the Browse button brings up a dialog (Figure 7-101) to choose files or

directories depending on what you had chosen.

Figure 7-99.  Dialog to specify a file or directory prompt

Figure 7-100.  Prompt when used from Enterprise Guide

Chapter 7 Stored Processes

188

15. Color

The color prompt allows you to choose a color from a selection dialog (Figure 7-102).

You can choose a default color if you like.

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-103.

Figure 7-101.  Pressing browse shows this dialog to choose a file or directory

Figure 7-102.  Defining a color prompt

Figure 7-103.  Using a color prompt in Enterprise Guide

Chapter 7 Stored Processes

189

16. Data Library

You can choose a prompt to allow picking a library from the SAS metadata, as shown in

Figure 7-104.

When it is running from Enterprise Guide, the prompt looks like Figure 7-105.

17. Variable

The variable prompt allows you to choose a variable from a list of variables. You can

enter names of variables and set their types manually, as shown in Figure 7-106. Or you

can click the Load Values button to select one or more tables and have their variables

added to the list.

Figure 7-104.  Defining a prompt for a data library

Figure 7-105.  Using a data library prompt from Enterprise Guide

Chapter 7 Stored Processes

190

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-107.

�Adding Dependencies
The third tab when defining prompts is used when you are using dependencies.

Dependencies are great for making your prompts work together. To illustrate, I will make

a Stored Process which will print out some of the table sashelp.class. This table has

variables: name, age, sex, height, and weight. I would like to prompt the user for sex and

then display a list of the names that match that sex. So if the user chooses “F” for female,

then they will get a list of female names.

Figure 7-107.  Using a variable prompt from Enterprise Guide

Figure 7-106.  Defining a variable prompt

Chapter 7 Stored Processes

191

Figure 7-108 shows the SAS code I will use, which will make use of two macro

variables in a where clause that are provided by the prompts.

Next, I will define my prompts. Firstly, I want a prompt for Sex which must have a

value specified as I am using it in the where clause. So, I check the “Requires non-blank

value” check box in Figure 7-109.

This will have two possible values: M or F, which are added as shown in Figure 7-110.

Figure 7-108.  SAS code used for stored process

Figure 7-109.  Defining a prompt for sex

Chapter 7 Stored Processes

192

Now I want to make a new prompt for name, which I also don’t want to have any

blank values since it is being used in a where clause in my code (Figure 7-111).

Figure 7-110.  Defining possible values for sex

Chapter 7 Stored Processes

193

This prompt will get its values from a table that is defined in the metadata. Defining

a table in the metadata is easily done using Management Console using the Data Library

Manager plug-in. First, you define the library, if it isn’t already defined, and then you

register the table. That enables the table to be used in prompts like this, among other

things. For my examples, I added a library for sashelp and then registered all the tables to

it. That enables me to pick them out using metadata.

The key thing in defining this prompt is to choose “User selects values from a

dynamic list” as the “Method for populating prompt”. Then, you click the Browse button

to find the table you want to use. Next, you choose the column name to use as an

unformatted value and whether to just display distinct values rather than any repeated

values. Usually, you will just want distinct values for this kind of thing. You can see the

dialog used to do this in Figure 7-112.

Figure 7-111.  Defining a prompt for name

Chapter 7 Stored Processes

194

The final thing to define is how the values defined in this prompt will be dependent

on values from another prompt. In this example, if the user chose Sex=‘F’, then I just want

to display names for females. To define the dependency, I just do a few things shown in

Figure 7-113.

Click the Add button to add a new dependency.

Choose the prompt I want to use as a dependency.

Define what the dependency actually is by creating a condition that will be used. In

this case, Sex = “whatever the value of the sex prompt is”.

Figure 7-112.  Defining that values will be provided from a variable in a table

Chapter 7 Stored Processes

195

Figure 7-113.  Defining a dependency so we only get names matching the sex
chosen

Now when we run the Stored Process and go to select a name, we will see only names

that have a sex of whatever the value of the sex prompt is, as shown in Figure 7-114.

Chapter 7 Stored Processes

196

Running the Stored Process after selecting a sex and name will produce the report in

Figure 7-115 using those values.

�Using Input Streams and Output Prompts
Input streams are defined when you set up a Stored Process and can be used to read data

in as it is run. The data comes from a location that is defined as an input stream, such as

part of an EXCEL spreadsheet.

Output prompts are also defined when you set up a Stored Process and can be

used to output parameter values when it is run. For example, if you wanted to store the

Figure 7-114.  List of female names when prompt is in use and female was chosen
for sex

Figure 7-115.  Result of stored process when it is executed using the prompt values
specified

Chapter 7 Stored Processes

197

number of records that match the criteria of the query, you could perform a sql record

count and store the output in an output prompt for use elsewhere. Parameter values are

equivalent to macro variable values as the end of the stored process. So this will let you

write macro values out to a defined destination, such as a cell in an EXCEL spreadsheet.

Input streams and output prompts work really well when used with the Office Add-in

using Microsoft EXCEL. I will describe how to use both by making an example Stored

Process.

As we go through the Stored Process wizard in Enterprise Guide, we can enter our

stored process code which will be used to read in some data from EXCEL, write results

back to it, and also write macro values to EXCEL.

The following code has some key features for use with input streams, which are

highlighted in bold. The libname statement uses an XML engine to read data in from

EXCEL, since the input stream will be defined to produce XML data. The _webin_

sasname automatic macro variable is created by SAS and populated with the table name

that should be used with the XML input stream in order to read the data in properly.

If there are multiple input streams, then SAS will create a series of automatic macro

variables to use.

We create a macro variable that will be used with an output prompt, which is

highlighted in bold italics. An output prompt will be populated with the value from this

macro variable. We will also create two other output prompts which will be populated

with the values of automatic macro variables.

The Proc Print in Listing 7-2 will produce ODS output which will be written back to

EXCEL.

Listing 7-2.  Producing ODS output to Excel

libname instr xml ;

data input_from_excel(drop=i) ;

 set instr.&_webin_sasname ;

 array numbers(*) _numeric_ ;

 do i=1 to dim(numbers) ;

 calculated_total+numbers(i) ;

 end ;

run;

Chapter 7 Stored Processes

198

* ODS output ;

title "Data read in from EXCEL, numbers totalled and written back to EXCEL"

;

title2 "Ran at %sysfunc(datetime(),datetime.)" ;

proc print ;

run;

%* Get the number of observations in the table, and assign to output

parameter ;

%let dsid=%sysfunc(open(input_from_excel)) ;

%let out_value=%sysfunc(attrn(&dsid,nobs)) ;

%let dsid=%sysfunc(close(&dsid)) ;

As we go through the Stored Process wizard, we get to the page where we can define

output parameters, and we can define three parameters shown in Figure 7-116. The first

takes the value of &out_value, next is &_clientuserid, and last is &_clientusername. The

displayed text will be shown to the user as explanation of what the parameter is. The user

can then specify where the value will be placed.

We can specify a new data source for an input stream (see Figure 7-117). Since we are

using EXCEL, we should choose XML-based data, which then sets the expected content

type to text/xml. We could set this to anything we want to read in to match what is being

streamed to the stored process.

Figure 7-116.  Defining output parameters

Chapter 7 Stored Processes

199

The fileref specified can be any valid fileref but needs to match the one used in

the stored process code.

For EXCEL, we should check the box to allow rewinding stream.

The label will be displayed to the user as a prompt at the point that they can specify

where the data is located which will be streamed in.

After specifying all this, we see it in the list of data sources and targets, shown in the

spreadsheet in Figure 7-118.

Figure 7-117.  Creating a new data source

Figure 7-118.  List of data sources and targets

Chapter 7 Stored Processes

200

We can run the stored process from EXCEL using the SAS Add-in, as shown in

Figure 7-119. Just select SAS from the menu, choose Reports, navigate to the stored

process, and run it.

Figure 7-120 is some sample data I made, which I will stream into the stored process.

I also created some labels for the output parameters I will write out from the stored

process. On running the stored process, a window will pop up to prompt us for values

needed.

First, we need to choose where our input data sources are located. We can do this by

either typing in the references or just clicking the cell selector icon and then choosing

the range.

Next, we choose where we want the results from the stored process to go. This could

be a new sheet, a new workbook (which will be a new EXCEL file), or just a location in an

existing sheet which can also be chosen by using the cell selector icon.

Finally, we tick which of the output parameters we want to use and then choose

where the values go to.

Figure 7-119.  SAS tab when EXCEL has the SAS add-in

Chapter 7 Stored Processes

201

After making the selections shown in the previous screenshot and pressing OK, the

stored process will run and populate sheet as shown in Figure 7-121. The ODS results

have been put into columns E–I. The output parameters have been put into the cells in

column B on the last three rows of the figure.

Figure 7-120.  Specifying where output parameters from a stored process go

Figure 7-121.  Results of running the stored process with cells populated in EXCEL

Chapter 7 Stored Processes

202

�Summary
In this chapter, we took at close look at Stored Processes and the details around them:

•	 You can easily convert SAS programs to stored processes.

•	 You can create a stored process using Management Console,

including defining prompts using some great functionality.

•	 You can also create a stored process using Enterprise Guide,

including defining prompts using a similar set of functionality:

•	 We also looked at each type of prompt that is available.

•	 We look at making prompts flexible and data dependent.

•	 And we looked at using dependent prompts when the values

displayed in one prompt might depend on another.

•	 We looked at how to use input streams and output streams for

reading and writing to Microsoft EXCEL.

Chapter 7 Stored Processes

203
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_8

CHAPTER 8

SAS Stored Process
Web Application
The SAS Stored Process Web Application is a Java web application that can execute

stored processes and return results to a web browser. There are several parts to the

Stored Process Web Application which will let you carry out different tasks. Let’s explore

some of these features before moving on to discussing macro parameters.

�Index Page
There is an index page which is a very useful place to find your Stored Processes and

Stored Process reports. You get to it by using a URL in your web browser like this:

http://your-server/SASStoredProcess/do?_action=index

Just put your server machine name or IP address in place of “your-server”. You will

need to authenticate by entering your user id and password, but then you will get the

index page, shown in Figure 8-1.

https://doi.org/10.1007/978-1-4842-5925-2_8#ESM

204

The index page is a helpful visual tool for seeing the following :

•	 List of Stored Processes – If you want to see what Stored Processes

and/or Stored Process reports are available to you with the

credentials you are currently using, then the Stored Process web app

will give you a list of them.

•	 Metadata folder structure – As you look at the list of Stored

Processes, they are displayed within the folder structure in the

metadata. If this folder structure is set up well, then it can be used

to provide a nice logical arrangement for your Stored Processes (see

Figure 8-2).

•	 Run Stored Processes – You can run any of these Stored Processes,

and the results will appear to the right of the folder list on the same

page. This is quite useful to find Stored Processes, try them out, see if

they use any prompts, and so on.

Figure 8-1.  Index page

Chapter 8 SAS Stored Process Web Application

205

The index page also provides an easy way to get a link for a Stored Process. You can

right-click any of these Stored Processes displayed and copy the link (see Figure 8-3).

You can then take that link and use the URL in a web browser or elsewhere to run that

Stored Process. Or perhaps an easier way is to right-click the Stored Process and choose

“Open in new tab” or “Open in new window”. That will open it and show the URL at the

top of the window. Once you have a URL, you can add things to the end of it such as

“&_debug=log,trace” which will run the Stored Process producing a trace and show the

log, which is great for troubleshooting.

Figure 8-2.  List of stored processes in Enterprise Guide

Chapter 8 SAS Stored Process Web Application

206

�Sample Stored Processes
Some simple Stored Processes are provided as samples by SAS (see Figure 8-4). It is

useful to look through these when you first start working with Stored Processes to

make sure you understand the examples. You can then go off and look at the code and

metadata used for each of these to see exactly what techniques have been used.

Sample stored processes are also a good way to test if your software is working. If you

are making a new install of SAS or have applied some major maintenance, then you can

run these sample Stored Processes as a test to make sure that your Stored Process Web

Application and all the associated SAS configuration work correctly.

Figure 8-4.  Sample Stored Processes

Figure 8-3.  Context menu shown when right-clicking a stored process

Chapter 8 SAS Stored Process Web Application

207

�Reserved Macro Parameters
There are many reserved macro parameters that we can use for the Stored Process Web

Application. Some are used to pass information in, and some are just automatically set

by the Stored Process Web Application and provide useful information for you to use.

All of these start with an underscore, so it is generally best to avoid using underscores

when you write your application in case you clash with a SAS one. If you do use macro

variables starting with underscores, then you need to ensure that they don’t clash with

any existing SAS ones. Some of these variables are available all the time, but others

are only used in conjunction with a specific client such as the Stored Process Web

Application.

Some of these parameters are extremely useful. For instance, if you are debugging

your stored process, you can set “_action=debug” and you will get the SAS log displayed

at the end of your stored process execution. Using “_action=index” will display a

list of all the stored processes that you can select and run them from. And using “_

result=streamfragment” will generate just the HTML code directly produced by your

SAS procedures such as Proc Print, without all the extra front and bottom matter usually

generated by SAS.

�Macro Variables Used with %stpbegin
Some of the following macro variables will be populated by the web application and you

can look at the value to use it in your Stored Process (e.g., _metauser). Other values can

be set by you prior to %stpbegin being called, and then the stpbegin macro will make use

of the values you set.

Some of the most useful parameters are described here.

�_ACTION

This tells the web application to carry out an action of some kind. It can be one of two

values: Background or Data.

Background runs the Stored Process in the background like a batch job. So you can

fire off your Stored Process, and control is immediately returned to the caller. When you

do this, you just get a message back indicating that it has been submitted (Figure 8-5).

Chapter 8 SAS Stored Process Web Application

208

Data displays a summary of the general Stored Process data, not covering

parameters you might submit with a Stored Process. So, you get the kind of data you have

defined when creating your Stored Process as shown in Figure 8-6.

EXECUTE runs the Stored Process. It’s the default action anyway. You can use

_ACTION=EXECUTE in combination with other _ACTION= values.

PROPERTIES displays the property page, which enables you to set input parameters

and execution options and to execute the Stored Process. This is really useful and flexible

when you want to run an unfamiliar Stored Process since it is built automatically based

on the registered prompt metadata.

BACKGROUND executes the Stored Process in the background. It is useful if your

Stored Process runs for a long time, especially since browsers will usually time out after

about 30 minutes, and if your Stored Process runs longer, then you can lose track of it.

The Stored Process Web Application timeout is set to 30 minutes by default, although

this timeout can be increased.

INDEX displays a page which lists Stored Processes on the left in a tree structure.

This is very useful if you just want to browse all the Stored Processes that are defined and

then select which one you want to run.

Figure 8-6.  Information displayed with _action=data

Figure 8-5.  This is displayed when a stored process is run in the background

Chapter 8 SAS Stored Process Web Application

209

FORM displays a custom input form which is a JSP with the same name as the

Stored Process, if one exists. Additionally, if you specify _form=<path to a JSP custom

input form>, then it will look for a custom input form using the path and name that you

specify. This allows you to have custom input forms for your Stored Process, which is

quite a useful technique. If you don’t specify _form=, then it will look for custom forms in

the input folder under the SASStoredProcess directory.

Combining Values on _ACTION

_ACTION=FORM,EXECUTE

This displays a custom input form if one exists, otherwise executes the Stored

Process. If EXECUTE was not listed and no form was found, then an error would be

generated.

 _ACTION=FORM,PROPERTIES,EXECUTE

This displays a custom input form if one exists, and if none is found, then the client

app will look for metadata-defined prompts, and if there are no metadata-defined

prompts, then just execute the Stored Process. If EXECUTE was not listed and no form

was found plus no parameter prompts were defined, a web page with a "Run" button

would be displayed to the client. So using EXECUTE is useful in those situations.

JSPs Used with _ACTION=FORM

Form will look for a “form” to display which corresponds to the Stored Process being

called. So if our stored process is called “x”, then it will look for a form called “x.jsp”.

Forms are pieces of JavaServer Page (JSP) code. A JSP basically lets you run Java code on

the server, and the resulting output is displayed inside your web browser. That means

that the Java code is executed at runtime when your web page is displayed. So our stored

process called “x” would run “x.jsp” if it found that file. That file could generate some

HTML and display it perhaps to prompt us for some choices. In its simplest form, you

can just take an HTML file and change its suffix to JSP, and you have a JSP file that will

run as one. If you then add bits of Java code to it inside the right tags, then they will be

resolved at runtime. Writing JSP code is beyond the scope of this book, but I wanted to

let you know that it is a useful way to create pages to prompt the user for information and

allows you to execute code that could get data from the server to help create the page

that is displayed.

Chapter 8 SAS Stored Process Web Application

210

The JSPs for the sample Stored Processes are, by default, deployed with the SAS

Stored Process Web Application under the associated directory for each sample:

<SASBIConfigDir>\Config\Lev1\Web\WebAppServer\SASServer1_1\sas_webapps\sas.

storedprocess.war\input\Samples

For example, the JSP file for the "Hello World" sample is found here:

<SASBIConfigDir>\Config\Lev1\Web\WebAppServer\SASServer1_1\sas_webapps\sas.

storedprocess.war\input\Samples\stphello

You can read more about this in “Usage Note 38621: Tips for creating a Custom Input

Form for a SAS Stored Process”1 and also in “Specifying Custom Input Forms”.2

�_DEBUG

Debugging flags3 have a range of possible values:

•	 Fields – Shows the input parameters for the Stored Process.

•	 Dump – Shows output in hexadecimal format.

•	 Log – Shows the SAS log after the Stored Process runs.

•	 Trace – Traces the execution of the Stored Process, which is helpful

to understand the stages in the Stored Process execution process. It

will also show you the HTTP headers that the server returns.

•	 List – This doesn’t run the Stored Process, but instead displays a list

of known Stored Processes.

•	 Env – Displays the environment parameters for the Stored Process

Web Application.

•	 Time – Shows the real time taken by the Stored Process at the end.

1�Usage Note 38621: Tips for creating a Custom Input Form for a SAS Stored Process – http://
support.sas.com/kb/38/621.HTML

2�Specifying Web Application Input – http://support.sas.com/documentation/cdl/en/
stpug/68399/HTML/default/viewer.htm#webinput.htm

3�Debugging in the SAS Stored Process Web Application – http://support.sas.com/
documentation/cdl/en/stpug/68399/HTML/default/dbgsrvlt.htm

Chapter 8 SAS Stored Process Web Application

http://support.sas.com/kb/38/621.html
http://support.sas.com/kb/38/621.html
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/viewer.htm#webinput.htm
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/viewer.htm#webinput.htm
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/dbgsrvlt.htm
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/dbgsrvlt.htm

211

You can combine several _debug flags with commas like this: “_debug=log,time”.

A particularly useful combination is _debug=trace,time,log.

You can also use SAS/Intrnet style numbers to specify these flags4. My favorite is

using “_debug=2179”. This is a decimal converted from a binary, in which I set bits for

various _debug options I want. I arrive at 2179 by taking Trace (2048) + Log (128) +

Time (2) + Fields (1). Or another way to look at this is that the binary number equivalent

to 2179 is 100010000011. Each bit turns on one of these debug options. The leftmost “1”

bit is Trace, the next “1” bit is Log, and the last two “1” bits are Time and Fields.

�_GOPT_DEVICE

This sets the goption device parameter. I usually use sasemf for this, although other

popular choices are Java, activex, and png. One nice thing about using sasemf on UNIX

is that true type fonts are more easily used from it.

�_GOPT_HSIZE

This parameter sets the goption hsize parameter. It is useful if you want to specify the

horizontal graph size precisely.

�_GOPT_VSIZE

This parameter sets the goption vsize parameter. It is useful for specifying the vertical

graph size.

�_GOPT_XPIXELS

This parameter sets the goption xpixels parameter. I usually query my browser to work

out the width,5 allow for any other things taking up space on the screen, and then set

the width appropriately. I need to adjust this when I change destinations though, since

producing a graph for an RTF document is best done by customizing its size for the page.

4�Application Dispatcher Debugging – http://support.sas.com/documentation/cdl/en/
dispatch/64895/HTML/default/viewer.htm#debuging.htm

5�Use document.documentElement.clientWidth in JavaScript to get the width of window.
Alternatively, use the jQuery $(window).width().

Chapter 8 SAS Stored Process Web Application

http://support.sas.com/documentation/cdl/en/dispatch/64895/HTML/default/viewer.htm#debuging.htm
http://support.sas.com/documentation/cdl/en/dispatch/64895/HTML/default/viewer.htm#debuging.htm

212

�_GOPT_YPIXELS

This sets the goption ypixels parameter. In addition to the comments for _GOPT_

XPIXELS, I use this parameter when I have lots of items I want to put on my y axis. I can

make the graph very long and then display them all clearly as the user scrolls the HTML

page down.6

�_GOPTIONS

This sets any valid SAS/Graph options, and you can use multiple options if you separate

them with a space - for example, &_goptions=htext=2 hsize=3.

�_ODSDEST

This specifies the ODS destination (default is HTML). It can also be one of CSV, CSVALL,

TAGSETS.CSVBYLINE, HTML, HTML5, LATEX, NONE (which produces no ODS

output), PDF, PS, RTF, SASREPORT, WML, XML, or any other tagset destination.

�_ODSOPTIONS

This specifies options that are added to the end of the ODS statement. One key use of

this is if you want titles and/or footnotes to be included in graphs, since NOGTITLE and

NOGFOOTNOTE are default options. You can override them by specifying GTITLE and/

or GFOOTNOTE in _ODSOPTIONS.

�_ODSSTYLE

This sets ODS STYLE= option.

�_ODSSTYLESHEET

This sets the ODS STYLESHEET= option.

6�To get the height of the window, use the JavaScript document.documentElement.clientHeight or
the rather simpler jquery $(window).height().

Chapter 8 SAS Stored Process Web Application

213

�_RESULT

This specifies what kind of final result is produced by the Stored Process. It can be one of

the following:

•	 STATUS – Produces no output to client, since the ODS LISTING

destination is closed.

•	 STREAM – Output is streamed to client through the _WEBOUT fileref.

•	 STREAMFRAGMENT7 – Just like stream but kind of a cut-down

version. This is not documented, but I find it really useful for

producing HTML when I want to have more control over my

HTML. What it actually does is set the ODS no_top_matter and

no_bottom_matter options, which means that only the HTML

body is returned.

•	 PACKAGE_TO_ARCHIVE – Package is published to an archive file.

•	 PACKAGE_TO_REQUESTER – Package is returned to the client. The

package can also be published to an archive file in this case.

•	 PACKAGE_TO_WEBDAV – Package is published to a WebDAV server.

•	 PACKAGE_TO_EMAIL – Package published to one or more email

addresses.

•	 PACKAGE_TO_QUEUE – Package published to a message queue.

•	 PACKAGE_TO_SUBSCRIBERS – Package published to a subscriber

channel.

�Automatic Macro Variables in Stored Processes Run via
SAS Stored Process Web Application
When you run a Stored Process using the Stored Process Web Application, you will find

that there are a number of macro variables automatically created and populated with

some useful values. Some of these values are set by some clients but not others, so it will

7�StreamFragment has been undocumented in SAS up to the time of publishing this book. As with
any undocumented feature, it may disappear or be renamed in a future release of SAS.

Chapter 8 SAS Stored Process Web Application

214

depend on the client you are using as to what macro variables are available. If you want

to use values like this, it is sometimes necessary to check if they exist or what the client is

rather than assuming they will exist.

�_METAPERSON

This will show the name from the metadata which is associated with the user who is

running the Stored Process. If there is no name defined, then this will be empty. It can be

quite useful to use this when personalizing your web app so that you can use the user’s

name when asking them questions or for personalizing reports.

�_METAUSER

This contains the userid which was used to access the SAS metadata.

�_PROGRAM

This is the name of the Stored Process. This can be really useful for building web apps.

You might want to build up a link from the current Stored Process to itself, for instance,

which can be useful if you want to call itself again with some different parameters.

�_SRVNAME

This is the host name of the server. This is very useful when you want to write Stored

Processes that can build URLs for links.

�_SRVPORT

This is the port number on which this request was received. It is also useful in building

up a URL for links. Usually, you can leave this off URLs since it will default to port 80;

however, if your web application server uses a different port, then you may need to

specify that (e.g., 8080).

�_STPERROR

The global error variable is 0 if everything worked properly, otherwise, non-zero. So this

is useful in picking up some kinds of errors.

Chapter 8 SAS Stored Process Web Application

215

�_URL

This specifies the URL of the web server middle tier used to access the Stored Process.

This is also useful in building up a URL to use with links.

�_USERNAME

This is the username obtained from web client authentication.

�How to Use Macro Variables
Your Stored Process could produce a report with a little bit of HTML that gives you some

other options, such as choosing a different product type for your report. The HTML

could show some options along with different links, which have been generated by

your code. These links would be the same as your current Stored Process call, which

has shown this page, except you would want to change the value of the product type.

Therefore, you would want to get the current URL being used and then add or change the

product type parameter for it. You can construct the URL currently being used as follows:

http://&_srvname:&_srvport&_url?_program=&_program

If you need to dissect it and replace the value for a parameter, then that is quite easily

done. If you just need to add a parameter onto the end of it, then that is even easier to do.

You could use some of the other macro variables from the previous section in ways

like this:

title1 "Good morning &_metaperson, userid: &_metauser" ;

title2 "Username: &_username" ;

proc print data=sashelp.class ;

run ;

%macro check_for_errors ;

 %if &_stperror>0 %then %put ERROR: Stored Process Error: &=_stperror ;

%mend check_for_errors ;

%check_for_errors

Chapter 8 SAS Stored Process Web Application

216

�Step-by-Step Guide to Building a Web Application Using
Stored Processes
If you haven’t built a web application with SAS Stored Processes before, then this chapter

is a good place to get a quick start. It will take you through a series of simple steps

which show how to create a report in Enterprise Guide, make into a Stored Process, run

it in various ways, modify it, and finally build a simple web application using it. These

directions will show how someone with almost no knowledge of SAS could actually

make a web application using Stored Processes. The main features of SAS that make this

possible are the ability to create a Stored Process using wizards in Enterprise Guide and

the Stored Process Web Application which can run your Stored Process in a web browser.

The syntax and each idea used in this example are described fully in other sections of

the book.

�Step 1: Query Builder

In a windows environment, start up SAS Enterprise Guide. In Enterprise Guide, start the

Query Builder from the Tasks menu by following the path shown in Figure 8-7.

Now you can open some data to start building a query. As you can see in Figure 8-8,

I picked a standard sample dataset from our SAS 9.3 installation – sashelp.orsales.

Figure 8-7.  Tasks ➤ Data ➤ Query Builder

Chapter 8 SAS Stored Process Web Application

217

Now you can add tables, variables, and join tables. In Figure 8-9, I just added them

all in.

Figure 8-8.  Query Builder with sashelp.orsales

Figure 8-9.  Selecting data in Query Builder

Chapter 8 SAS Stored Process Web Application

218

You can also filter data, sort data, computed columns, and so on. You can also click

the Preview tool on the toolbar to see the SQL code that was produced (Figure 8-10). So,

if you know how to code in SAS, then you could skip this wizard and just create the code

yourself.

Once you have created the code, then you need to click the “Save and Close” button.

Having made the query, we can now convert it into a Stored Process.

�Step 2: Convert Query into Stored Process

Right-click the Query Builder and select Create Stored Process as shown in Figure 8-11.

Figure 8-10.  Preview of SAS code produced by Figure 8-9

Chapter 8 SAS Stored Process Web Application

219

Now use the wizard to create a Stored Process and give it a name. You can fill in

the other fields although you can leave them to default (see Figure 8-12). The location

defaults to the last one used; I am creating it in My Folder, which is a location set up by

default that only I can use. If I wanted others to use this stored process, then I should

pick a different location accessible by others.

Figure 8-11.  Choosing to create a stored process from a query made with Query
Builder

Chapter 8 SAS Stored Process Web Application

220

Press Next to see the SAS code of the Stored Process being created (Figure 8-13).

Figure 8-12.  First page of stored process creation wizard

Chapter 8 SAS Stored Process Web Application

221

Leave code and other settings as they are8 and then press Next to see the execution

options, which you can also just let default. It is advisable to choose the type of server

you want the Stored Process to run on. If you stick with Default Server, then it may run on

a workspace server or a Stored Process server. However, if you choose the type of server,

8�Include code for has three things you can tick: Stored process macros, global macro variables,
and Libname references. The first two are ticked by default.

Figure 8-13.  Second page of wizard showing SAS code produced

Chapter 8 SAS Stored Process Web Application

222

then you will know where it will run and where to find the log for it (see Figure 8-14).

You might need to modify the source code repository field so that you can ensure the SAS

code is stored where you want it to be.

Hit Next and you see a screen where you can define prompts, which can be used

to prompt the user for values when a Stored Process is run (Figure 8-15). The values

can then be passed through to the Stored Process code as macro variables. We are not

defining any prompts at this stage.

Figure 8-14.  Third page of stored process creation wizard

Chapter 8 SAS Stored Process Web Application

223

Hit Next and you see the page where we can define input and output streams for the

Stored Process (Figure 8-16). Our simple Stored Process won’t need any of these.

Figure 8-15.  Screen to define prompts for a Stored Process

Chapter 8 SAS Stored Process Web Application

224

Finally, hit Next and you will see a summary page showing key information about the

Stored Process you have created (Figure 8-17).

Figure 8-16.  Data sources and targets screen

Chapter 8 SAS Stored Process Web Application

225

Hit Finish and the Stored Process is created. This Stored Process can then be run,

and it creates a dataset based on the query that we built. However, we want to see that

dataset on the screen, so we will modify the Stored Process to do that.

�Step 3: Modify Stored Process

Now we need to right-click the Stored Process and modify it, as shown in Figure 8-18.

We can add a proc print or similar to show the data at the end (see Figure 8-19). Save

it and run it to test.

Figure 8-17.  Summary page of wizard

Figure 8-18.  Context menu when right-clicking stored process

Chapter 8 SAS Stored Process Web Application

226

�Step 4: Access Stored Process Web Application

Now you will need to find how to access your Stored Process Web Application. To open

the Stored Process Web Application at my site, we use this link: http://my-sas-server/
SASStoredProcess/. This will show us the Stored Process Web Application home page

(Figure 8-20).

Figure 8-19.  Adding code after existing code in stored process

Chapter 8 SAS Stored Process Web Application

227

Select “List Available Stored Processes and Reports”. Then drill down through tree to

show your Stored Process from the location in the metadata that you saved it, as shown

in Figure 8-21.

Figure 8-20.  Stored Process Web Application home page

Figure 8-21.  List of stored processes provided by SAS Stored Process Web
Application

Chapter 8 SAS Stored Process Web Application

228

Click your Stored Process to run it. The results show up on the page, as shown in

Figure 8-22.

Right-click your Stored Process and copy the link address. This link will let us run the

Stored Process from a number of other places. Or you can simply right-click and select

“Open in new tab/window” so that the Stored Process will be opened and run in another

tab/window. The URL will be shown at the top of that window.

Paste the link into the URL box in the browser, and hit Return to run it. You now

have the complete URL that can be used to call your Stored Process from anywhere

(Figure 8-23).

Figure 8-22.  Running a stored process shows results on the right of page

Chapter 8 SAS Stored Process Web Application

229

�Step 5: Run Stored Process from Excel

To show how flexible this is, we will run the Stored Process from EXCEL. This assumes

you have the Microsoft Office SAS Add-in installed. Open EXCEL. Select SAS menu item

and then click Reports as shown in Figure 8-24.

Navigate to your Stored Process and open it.

The Stored Process will run. A little progress bar is displayed while it runs.

When the Stored Process finishes running, then the table that it produces will

be imported into EXCEL. You now have the results of the Stored Process in EXCEL

(Figure 8-25).

Figure 8-23.  Result of stored process shown in a separate tab

Figure 8-24.  SAS tab in EXCEL

Figure 8-25.  Excel results

Chapter 8 SAS Stored Process Web Application

230

�Step 6: Adding Graphs

Now that we can create a Stored Process and run it from various places (more ways

to run it are listed later), we will add a graph to it. Go back to Enterprise Guide

and add a graph to the Stored Process. You can use something like a simple PROC

GCHART (as shown in Listing 8-1), or you could use a wizard in Enterprise Guide to

help you with this.

Listing 8-1.  Code in stored process that has been modified to add a graph

PROC SQL;

 CREATE TABLE WORK.QUERY_FOR_ORSALES AS

 SELECT tl.Year,

 tl.Quarter,

 t1.Product_Line,

 t1.Product_Category,

 t1.Product_Group,

 tl.Quantity,

 t1.Profit,

 ti.Total_Retail_Price

 FROM SASHELP.ORSALES tl;

QUIT;

/* —-— End of code for "Query Builder" --- */

proc gchart ;

 hbar product_category / subgroup=year sumvar=profit ;

run ;

proc print ;

run ;

Once you save your new code, you can run it from the web browser and see the

graph and table produced there (Figure 8-26). When you save your code, remember that

the place you save it to is important, as some locations you save to might accidentally be

modified by you or others in future which will affect your stored process that points to

that location.

Chapter 8 SAS Stored Process Web Application

231

�Step 7: Apply a Parameter

We might like to add a filter to our Stored Process, so let’s go back to EG. We will add

a parameter to let us filter on a variable (e.g., product_line). You can then use a macro

variable for the value of the that variable (e.g., where product_line=“&product_line”;) as

shown in Listing 8-2. This means that by changing the value of the macro variable, we

can apply a different filter.

Listing 8-2.  Code for stored process that has a where clause added

PROC SQL;

 CREATE TABLE WORK.QUERY_FOR_ORSALES AS

 SELECT tl.Year,

 tl.Quarter,

 t1.Product_Line,

 t1.Product_Category,

 t1.Product_Group,

 t1.Quantity,

Figure 8-26.  Output from the code that had a graph added

Chapter 8 SAS Stored Process Web Application

232

 t1.Profit,

 t1.Total_Retail_Price

 FROM SASHELP.ORSALES tl

 where product_line="&product_line" ;

QUIT;

/* —--— End of code for "Query Builder". --- */

proc gchart ;

 hbar product_category / subgroup=year sumvar=profit ;

run ;

proc print ;

run ;

Now we can add a prompt for this macro variable. The wizard will search our code

for macro variables and allow us to define them as prompts as shown in Figure 8-27. We

can just use the defaults.

Run the Stored Process again. You will be prompted for a value, so enter one

(Figure 8-28). Make sure your value matches one of the values from the data; otherwise,

you won’t find anything. Then click Run to execute the Stored Process using the value

you entered.

Figure 8-27.  Prompt created for stored process to pass a value for macro variable
to where clause

Figure 8-28.  Specifying a value to be passed to program as macro variable
value

Chapter 8 SAS Stored Process Web Application

233

You now see the Stored Process with your parameter applied (Figure 8-29).

If you want to use a URL to pass your parameter to your Stored Process, you can do

so by making use of one of the key features of the Stored Process Web Application. Any

parameter/value pairs like ¶meter=value will be passed into the SAS code as macro

variables. They don’t even have to be predefined in the SAS code. So that means that I

can call our Stored Process using the following URL to pass the value in, and then I can

see that the results are shown correctly in the graph shown next (Figure 8-30). This is the

URL that was used:

http://d351tq92/SASStoredProcess/do?_program=%2FShared+Data%2FSASTesting%2F

Test3&product_line=Sports

Figure 8-29.  Resulting graph when we pass in a value that is used in where clause

Chapter 8 SAS Stored Process Web Application

234

�A Note About Authentication
Sometimes you might find that you get an unexpected error message that says that

your application server has timed out (Figure 8-31). This will happen if you stop using

the Stored Process Web Application for a while, so that your authentication times out.

You will just need to re-authenticate to SAS, and then it should be OK again. This can

usually be done just by running your stored process again via the Stored Process Web

Application, and it should prompt you to authenticate and then it should work.

�Creating an HTML Menu for Our Stored Process
We can make a simple HTML file which allows us to select the report we want to run

from a menu. So, the following code simply calls our Stored Process and passes a

different value for product_line each time:

Figure 8-30.  Result of passing in a parameter value via a URL

Figure 8-31.  Error message when authentication in browser has timed out

Chapter 8 SAS Stored Process Web Application

235

<HTML> <body>

<h1>Pick a report to run</h1>

<a href="http://my.server/SASStoredProcess/do?

_program=%2FShared+Data%2FSASTesting%2FTest3

&product_line=Children"> Children<p>

<a href="http://my.server/SASStoredProcess/do?

_program=%2FShared+Data%2FSASTesting%2FTest3

&product_line=Clothes+%26+Shoes">Clothes & Shoes<p>

<a href="http://my.server/SASStoredProcess/do?

_program=%2FShared+Data%2FSASTesting%2FTest3

&product_line=Outdoors">Outdoors<p>

<a href="http://my.server/SASStoredProcess/do?_program=%2FShared+Data%2FSAS

Testing%2FTest3

&product_line=Sports">Sports<p>

</body> </HTML>

This displays the menu shown in Figure 8-32.

Selecting a value (e.g., Sports) runs the Stored Process with the appropriate

parameter to display the required report. So, you can see in Figure 8-33 that I now have a

graph and table reflecting my selection of “Sports”. You can also see this reflected in the

URL which shows &product_line=Sports:

/SASStoredProcess/do?_program=%2FShared+Data%2FSASTesting%2FTest3&produ

ct_line=Sports

Figure 8-32.  Menu displayed by the previous HTML code

Chapter 8 SAS Stored Process Web Application

236

�Step 8: Use HTML Forms to Run Stored Processes
With a little basic HTML knowledge, we can modify the HTML to make a better menu.

This introduces another useful technique of using HTML forms to run Stored Processes.

The key points in using this technique are

The form tag has two elements:

•	 Action element which defines the start of the URL to use when calling

your Stored Process

•	 Method element

The form uses other tags which are form elements defining what will be on the form.

These include Input and Select tags.

Input tags define name/value pairs which will be passed to the Stored Process as

parameters. Some of these tags simply define a field where the user can type in a value,

but others such as Hidden and Submit have special characteristics.

Figure 8-33.  Result in browser from passing in a parameter value via URL to web
application

Chapter 8 SAS Stored Process Web Application

237

Input tags with a type of Hidden won’t be displayed on the form but will be passed

to the Stored Process as a parameter. In the following example, we are passing the name

of the Stored Process with its parameter _program. You must always have this pointing to

your Stored Process when using this technique.

Input tags with a type of Submit will display a Submit button which can be pressed

to run the Stored Process and pass any values from the form to it.

Select tags will create a drop-down box of options. This allows the user to choose an

option and then the selected value will be passed to the Stored Process. The value from

the “value=” attribute is passed from the form to the Stored Process we are calling. The

text between the tags (e.g., “Clothes & Shoes”) is what is displayed in the drop-down box,

as shown in Listing 8-3.

Listing 8-3.  HTML code to produce a drop-down menu of choices to pass as a

parameter

<html>

<body>

<h1>Pick a report to run</h1>

<form method="get" action='http://khv-sas-iis.cfsi.local/SASStoredProcess/

do?'>

<input type="hidden" name="_program" value="/Shared Data/SASTesting/Test3">

<select name="product_line">

<option value="Children">Children</option>

<option value="Clothes+&+Shoes">Clothes & Shoes</option>

<option value="Outdoors">Outdoors</option>

<option value="Sports">Sports</option>

</select>

<input type="submit" value="Run">

</form>

</body>

</html>

Our menu in Figure 8-34 now has a drop-down menu of choices. You select one and

click Run which then adds your selection onto the URL as a parameter.

Chapter 8 SAS Stored Process Web Application

238

To automate this application a little more, we can automatically generate the drop-

down list of options. Create a new Stored Process which will create our HTML menu

for us. This can be done by using a Stored Process that will write the HTML directly

into the web browser. To do this, you need to write to a fileref called _webout which

is predefined for the Stored Process to use. You also need to turn off the automatically

generated Stored Process macros by using the Include Code For button. These macros

usually allocate the _webout fileref for their own use, which means that we can’t use it

from a data step.

The program in Listing 8-4 first runs some SQL code which gets the different values

of product_line and puts them into option tags, then concatenates them together, and

puts the result into a macro variable called options.

You have to be careful as you can run up against the 32K limit for a macro variable

when creating macro variables like this. If you reach the limit, then the value will be

truncated. You can get around this problem by using PROC STREAM and generating

values with a macro program which will write directly into the stream and has no

practical limits.

The program then runs a data step which basically just gets lines from the cards4

area and writes them out to the _webout file ref. After reading a line in, we then run it

through a resolve() function, which is very important. The resolve() function will resolve

any macro language in the line that was read, which means that our options’ macro

variable is resolved and the option lines that were made by our PROC SQL are inserted.

The SAS code for the stored process is as shown in Listing 8-4.

Figure 8-34.  Web browser menu displayed using HTML from Listing 8-3

Chapter 8 SAS Stored Process Web Application

239

Listing 8-4.  SAS code for the stored processes

proc sql ;

 select distinct '<option value="' || strip(product_line) || '">'

 || strip(product_line) || '</option>'

 into :options separated by ' '

 from sashelp.orsales ;

quit ;

data _null_ ;

 file _webout ;

 input ;

 line=resolve(_infile_) ;

 put line ;

 cards4 ;

<html>

<body>

<h1>Pick a report to run</h1>

<form method="get" action="http://d351tq92/SASStoredProcess/do?"

target="content">

<input type="hidden" name="_program" value="/User Folders/phil/My Folder/

test">

<select name="product_line">

&options

</select>

<input type="submit" value="Run">

</form>

</body>

</html>

;;;;

run ;

This generates the same web page that we made before, but now it is data driven and

flexible. So, if we added another product_line to our data, then we would get another

option in our drop-down list as shown in Figure 8-35.

Chapter 8 SAS Stored Process Web Application

240

We can further improve this by combining the menu and output onto a single page.

To do this, we add an IFRAME to our web page, specifying the size so it doesn’t default to

something too small. Then we must add TARGET= to the FORM tag, specifying a name

which matches the one for the IFRAME (see Listing 8-5). This means the URL for our

Stored Process will be opened in the IFRAME.

Listing 8-5.  Improving the SAS program that generates the HTML

proc sql ;

 select distinct '<option value="'||strip(product_line)||'">'||

 strip(product_line)||'</option>'

 into :options separated by ' '

 from sashelp.orsales ;

quit ;

data _null_ ;

 file _webout ;

 input ;

 line=resolve(_infile_) ;

 put line ;

 cards4 ;

<html>

<body>

<h1>Pick a report to run</h1>

<form method="get" action="http://d351tq92/SASStoredProcess/do?"

target="content">

<input type="hidden" name="_program" value="/User Folders/phil/My Folder/

test">

Figure 8-35.  Menu shown in web browser

Chapter 8 SAS Stored Process Web Application

241

<select name="product_line">

&options

</select>

<input type="submit" value="Run">

</form>

<iframe name="content" height="100%" width="100%">

</iframe>

</body>

</html>

;;;;

run ;

Now we have a simple web application that takes some input and updates the page

with output based on that (Figure 8-36).

We can use _ODSDEST to produce output in various formats, rather than the default

HTML format. We could add a drop-down for _ODSDEST to our web page. You can use

the HTML select tag to make this as shown in Figure 8-37. Then, we could run it and

select RTF, for example (see Listing 8-6). That would call the Stored Process passing

_ODSDEST=RTF to it.

Figure 8-36.  Web browser displays graphs after making selection and clicking the
Run button

Chapter 8 SAS Stored Process Web Application

242

Listing 8-6.  HTML to create a drop-down menu to select an ODS destination

<select name="_odsdest">

<option value="html">html</option>

<option value="pdf">pdf</option>

<option value="csv">csv</option>

<option value="rtf">rtf</option>

</select>

This makes an RTF file for us which we can open in Microsoft Word (Figure 8-38).

Remember that this is a simple example where we are not handling headers in an

ideal way.

We can enhance our web app again using _ODSSTYLE to choose different ODS styles

which control colors, fonts, and so on. So, we can add a drop-down with a select tag for

_ODSSTYLE as shown in Listing 8-7.

Figure 8-37.  Browser now shows the ODS destination drop-down menu

Figure 8-38.  Choosing RTF from the drop-down and pressing Run button
generates report seen here in Microsoft Word

Chapter 8 SAS Stored Process Web Application

243

Listing 8-7.  HTML to create drop-down menu for choosing an ODS style

<select name="_odsstyle">

<option value="meadow">meadow</option>

<option value="seaside">seaside</option>

<option value="statistical">statistical</option>

</select>

Then if we select seaside and run it, then it will produce output using that style. This

is because it will have passed _ODSSTYLE=SEASIDE to the Stored Process. Running it

and selecting statistical will produce output using that style (Figure 8-39).

We can further enhance our web app by using the _debug parameter to get various

debug information. So we add check boxes for each debug option, since there are several

that can be specified concurrently, such as log and time, as shown in Listing 8-8 and

Figure 8-40.

Listing 8-8.  HTML to add two check boxes

<input type="checkbox" name="_debug" value="log">Show log<nbsp>

<input type="checkbox" name="_debug" value="time">Show time taken

Figure 8-39.  Output using _ODSSTYLE=SEASIDE

Chapter 8 SAS Stored Process Web Application

244

Now if we select the check boxes, it will pass parameters for those selected, for

example, &_debug=log&_debug=time. This will let us see the log (Figure 8-41) and time

it took for the Stored Process to run (Figure 8-42).

It’s interesting to look at the URL that has been generated by our web app to run this.

It is

http://my-sas-server/SASStoredProcess/do?_program=%2FShared+Data%2FSAS

Testing%2FTest3&product_line=Children&_ODSDEST=HTML&_ODSSTYLE=meadow&_

debug=log&_debug=time

You can break this URL up into sections to understand what the HTML has

generated:

http://your-server/SASStoredProcess/do?

_program=%2FShared+Data%2FSASTesting%2FTest3

Figure 8-41.  Log is displayed after the results in the web browser

Figure 8-42.  Time taken appears after the results and log in web browser

Figure 8-40.  Check boxes being displayed for choosing to show log and time taken

Chapter 8 SAS Stored Process Web Application

245

&product_line=Children

&_ODSDEST=HTML

&_ODSSTYLE=meadow

&_Debug=log

&_debug=time

An interesting thing we can see from the log of the Stored Process is that there are

various macro variables which could be used to reconstruct the URL of the Stored

Process call, such as _program, _srvname, _srvport, and _url (see Figure 8-43). These

macro variables are generated when calling a stored process using the Stored Process

Web Application. You won’t see them if you just run a stored process in Enterprise Guide

though.

Using these automatically generated macro variables, we can change the hard-coded

URL in the Stored Process to use them. This will mean that if the Stored Process name

changes or the Stored Process is moved to another place in the metadata, then it will still

work as expected. So

http://your-server/SASStoredProcess/do?

would become

http://&_srvname.:&_srvport/&_url.?

We should always do this when possible as it is best practice. The reason is that we

can then move the Stored Process to other places, and it will still work. Or other things

could potentially change such as the name of our server, and the code would still work as

it is without need for modification (see Listing 8-9).

Figure 8-43.  Automatic macro variables we can see in the log in web browser

Chapter 8 SAS Stored Process Web Application

http://khv-sas-iis.cfsi.local/SASStoredProcess/do?

246

Listing 8-9.  Rewriting the action to use macro variables

<form method="get" action="http://&_srvname:&_srvport/&_url?"

target="content">

When the Stored Process runs, the resolve function will resolve these macro

variables. So, looking at the HTML code that the Stored Process has generated, we can

see how it has substituted the right values to create the HTML.

Another very useful parameter which we can pass to the Stored Process Web

Application is _RESULT. It can be used to determine how complex your HTML generated

will be. For instance, using _RESULT=stream (which is the default) for our current

example, we would generate 3998 lines of HTML, including almost 2000 lines of CSS

code. This is quite a lot for a quite simple report. Using _RESULT=STREAMFRAGMENT

would generate 1989 lines of HTML, with no CSS code – and the lines are shorter as they

don’t use the CSS. Also, no <body> and <head> tags are generated which makes it easier

to insert generated HTML into an existing HTML page. The downside is that your results

won’t look as good since you no longer have CSS to make it look nice.

�Uploading Files with a Stored Process
You can use the SAS Stored Process Web Application to upload files for use with a Stored

Process. This is done by using a custom input form which specifies a field on an HTML

form with a type of file. For instance, the following HTML would achieve this:

<input name='order_file' type='file'>

You would be prompted to enter or browse for the file you want to upload, and when

the form is submitted, then the file would be uploaded to the server that your Stored

Process is running on. You also get a collection of macro variables populated, so that in

your Stored Process code, you will be able to know where the file has been put in order

for you to use it.

The file is put into a temporary location when uploaded, and it is only available for

the life of the Stored Process. So, if you want to keep it permanently, then you need to

copy it to a permanent location from your Stored Process. Although, you might want

to process it in some way and then save the processed information. For example, you

might upload a CSV file, read it into SAS to produce a SAS table, and then save that table

permanently.

Chapter 8 SAS Stored Process Web Application

247

You can upload any number of files at one time; you just need an input field for

each of the files to be uploaded. You get useful macro variables that give you all the

information you need to handle many files. The reserved SAS macro variables that are

associated with uploading files all start with _WEBIN_. For instance, _webin_file_count

tells you how many files were uploaded.

The macro variables involved in the upload process are as follows:

_WEBIN_CONTENT_LENGTH specifies the length, in bytes, of the

file that was uploaded.

_WEBIN_CONTENT_TYPE specifies the content type that is

associated with the file.

_WEBIN_FILE_COUNT specifies the number of files that were

uploaded. If no files were uploaded, then the value of this variable

is set to zero.

_WEBIN_FILEEXT specifies the extension of the file that was

uploaded.

_WEBIN_FILENAME specifies the original location of the file.

_WEBIN_FILEREF specifies the SAS fileref that is automatically

assigned to the uploaded file. You can use this fileref to access

the file. The uploaded file is stored in a temporary location on the

Stored Process server or workspace server and is deleted when

the request is completed. Be sure to copy the file to a permanent

location if you need to access it at a later date.

_WEBIN_NAME specifies the value that is specified in the NAME

attribute of the INPUT tag.

_WEBIN_SASNAME specifies a unique name for the SAS table,

view, or catalog that was uploaded. A value is set for this macro

variable only if a SAS table, view, or catalog was uploaded. All SAS

data types are stored in the Work library. The type of SAS file that

was uploaded is stored in the _WEBIN_SASTYPE macro variable.

See also _WEBIN_SASNAME_ORI.

Chapter 8 SAS Stored Process Web Application

248

_WEBIN_SASNAME_ORI specifies the original name of the SAS

table, view, or catalog that was uploaded. If a SAS table named

mydata.sas7bdat was uploaded, then _WEBIN_SASNAME_ORI

contains the value mydata. A value is set for this macro variable

only if a SAS table, view, or catalog was uploaded. All SAS data

types are stored in the Work library. The type of SAS file that was

uploaded is stored in the _WEBIN_SASTYPE macro variable. See

also _WEBIN_SASNAME.

_WEBIN_SASTYPE specifies the type of SAS file that was

uploaded: DATA for SAS tables, VIEW for SAS views, and

CATALOG for SAS catalogs. A value is set for this macro variable

only if a SAS table, view, or catalog was uploaded. The name of the

uploaded file is stored in the _WEBIN_SASNAME macro variable.

_WEBIN_STREAM specifies the name of the data source that was

used to upload the file.

_WEBIN_STREAM_COUNT specifies the number of files that were

uploaded. If no files were uploaded, then the value of this variable

is set to zero.

If you are uploading more than one file, then unique macro variables are created for

each file. This applies to all of the previous reserved macro variables, except _WEBIN_

FILE_COUNT and _WEBIN_STREAM_COUNT.

Note  For z/OS, the SAS server must be invoked with the FILESYSTEM=HFS
option in order to be able to upload SAS file types.

One last thing is that when uploading a file, you need to specify

enctype=“multipart/form-data” on the FORM tag, for example:

<form action="http://your.server.name:8080/SASStoredProcess/do"

method="post" enctype="multipart/form-data">

Chapter 8 SAS Stored Process Web Application

249

�Example: Uploading Three Files
The following code prompts for three files to upload and then calls the Stored Process

upload which takes care of uploading those files. If you are going to try any of this HTML

code out, it is best to have a good text editor to do it such as Notepad++, which is one of

the best free editors there is. It will highlight the syntax you use and has powerful find/

replace features and many other things.

<HTML>

<form method="post" action="http://d351tq92/SASStoredProcess/do?"

enctype="multipart/form-data">

① <input type="hidden" name="_program" value="/User Folders/phil/My
Folder/upload">

Enter CSV to upload and import <input name="file1" type="file"><p>

Enter CSV to upload and import <input name="file2" type="file"><p>

Enter CSV to upload and import <input name="file3" type="file"><p>

Show this many rows <input name="obs" type="text" value="10"><p>

Debug options <input name='_debug' type='text'><p>

<input type="submit" value="Run">

</form>

</HTML>

This displays the following web page (Figure 8-44).

On entering some files to upload, the Stored Process (code as follows) is called. First,

this shows the values of the parameters passed in to do with the upload. These all start

with _WEBIN. The Stored Process takes care of uploading the CSV files, imports them,

and shows the first ten rows of each one. You can call it anything you like, but you must

point to the stored process where you specify the value of _program in the HTML (shown

Figure 8-44.  Web browser displays menu produced by HTML

Chapter 8 SAS Stored Process Web Application

250

in the previous code marked by ①). The SAS code for the stored process is shown as

follows. And the other settings in the stored process can be defaults.

* display values of the _webin macro variables passed in ;

proc sql ;

 select * from dictionary.macros

 where name like '_WEBIN_%' ;

quit ;

filename temp temp ;

%macro read_loop ;

 %if &_webin_file_count=1 %then %do ;

 %let _webin_fileref1=&_webin_fileref ;

 %let _webin_filename1=&_webin_filename ;

 %end ;

 %do i=1 %to &_webin_file_count ;

 %let csv_file=%sysfunc(pathname(&&_webin_fileref&i));

 %put &=csv_file ;

 * fix the end of line character for Proc Import ;

 data _null_ ;

 infile "&csv_file" sharebuffers termstr=cr ;

 file temp termstr=crlf ;

 input ;

 line=compress(_infile_,'1a'x) ;

 put line ;

 run ;

 filename in "&csv_file" ;

 proc import datafile=temp

 dbms=csv

 replace

 out=file&i ;

 getnames=yes ;

 run ;

 %let dsid=%sysfunc(open(file&i)) ;

 �title "%sysfunc(attrn(&dsid,nobs),comma12.) rows imported from CSV

file: &&_webin_filename&i" ;

Chapter 8 SAS Stored Process Web Application

251

 %let dsid=%sysfunc(close(&dsid)) ;

 title2 "Table produced: file&i" ;

 proc print data=file&i(obs=&obs) ;

 run ;

 %end ;

%mend read_loop ;

%read_loop

Figures 8-45 and 8-46 show what is displayed after uploading some files.

Figure 8-45.  Macro variables and values related to file upload

Chapter 8 SAS Stored Process Web Application

252

�Passing Multiple Parameters of the Same Name
Often when you are making selections from a list of values in HTML, you will have the

option choosing multiple values. As we know, parameters are passed on to the URL as

name/value pairs. In the following Stored Process shown in Listing 8-10, we have a select

list called “pick” and have specified that the user can make multiple selections.

Figure 8-46.  Listings of data to browser from SAS code in stored process

Chapter 8 SAS Stored Process Web Application

253

Listing 8-10.  SAS code to create HTML menu

%macro logic ;

%if %symexist(pick) %then %do ;

 %put _global_ ;

 %end ;

%else %do ;

 data _null_ ;

 set menu ;

 file _webout ;

 put line ;

 run ;

 %end ;

%mend logic ;

data menu ;

 input ;

 line=_infile_ ;

 datalines ;

 <html>

 <form action="http://d351tq92/SASStoredProcess/do?">

 �<input name="_program" value="/User Folders/phil/My Folder/test13"

type="hidden">

 <select name="pick" multiple>

 <option value="A">A</option>

 <option value="B">B</option>

 <option value="C">C</option>

 </select>

 <input type="submit">

 </form>

 </html>

 ;;

run ;

%logic

When this is run, we can make multiple selections and then press Submit

(Figure 8-47).

Chapter 8 SAS Stored Process Web Application

254

Looking at the URL in Figure 8-48, you can see how it was constructed and the two

selections that were passed from the form to the Stored Process.

After this has run, we can look at the SAS log to see the macro variables defined.

We see that our selection resulted in creating five macro variables:

&pick is the first value that was selected.

&pick0 shows how many selections were made.

&pick1 shows the first value selected.

&pick2 shows the second value selected.

&pick_count also shows how many selections were made.

It’s easy to make a macro to construct a macro variable for use with an IN operator,

for instance, you could simply assign a macro variable like this:

%let picks="a","b" ;

The following code shows an example where we use the SAS macro variables that

are created when passing multiple values in with a form to a Stored Process. We can use

a macro program to automatically create a list of quoted values separated by commas

which can then be used in a where clause:

Figure 8-47.  HTML menu displayed in web browser allowing multiple
selections

Figure 8-48.  URL generated when Submit button is pressed in web browser

Figure 8-49.  Macro variables available to stored process code

Chapter 8 SAS Stored Process Web Application

255

data sample ;

 input key $ 1 ;

 cards ;

A

B

C

D

E

;;

run ;

%let pick0=2;

%let pick1=A;

%let pick2=C;

%let pick_count=2;

%macro make_where_clause(var) ;

 %do i=1 %to &pick_count ;

 "&&pick&i"

 %if &i ne &pick_count %then , ;

 %end ;

%mend make_where_clause ;

proc print ;

 where key in (%make_where_clause(pick)) ;

run ;

The SAS log for this shows the where clause that was created and used:

161 options nosymbolgen nomlogic nomprint ;

162 data sample ;

163 input key $ 1 ;

164 cards ;

NOTE: The data set WORK.SAMPLE has 5 observations and 1 variables.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 seconds

Chapter 8 SAS Stored Process Web Application

256

170 ;;

171 run ;

172

173 %let pick0=2;

174 %let pick1=A;

175 %let pick2=C;

176 %let pick_count=2;

177 %macro make_where_clause(var) ;

178 %do i=1 %to &pick_count ;

179 "&&pick&i"

180 %if &i ne &pick_count %then , ;

181 %end ;

182 %mend make_where_clause ;

183

184 proc print ;

NOTE: Writing HTML Body file: sasHTML1.htm

185 where key in (%make_where_clause(pick)) ;

186 run ;

NOTE: There were 2 observations read from the data set WORK.SAMPLE.

 WHERE key in ('A', 'C');

NOTE: PROCEDURE PRINT used (Total process time):

 real time 0.51 seconds

 cpu time 0.32 seconds

�How to Use Sessions
The Web is a stateless environment, which means that when you open a page, the next

page starts with a clean slate having nothing remaining from the previous one. This

simplifies many things and makes them potentially more stable. If you are building web

applications, then you need to maintain the state of some things between one request

and the next. You can use cookies to store some text and retrieve it again, as many web

applications do. But another way to maintain state is to use SAS sessions.

Sessions enable storing macro variable values which start their name with “SAVE_”.

They also save tables and catalogs stored in the SAVE library. This means that you are able

to pass macro variables, tables, and so on from one Stored Process to another. The data

Chapter 8 SAS Stored Process Web Application

257

stored in a session generally expires after 15 minutes, but this is long enough to be quite

useful when developing applications constructed from a number of Stored Processes

which need to pass information between each other. You can increase the session

timeout from 15 minutes to a higher value by using the stpsrvset function, for example:

%LET rc=%sysfunc(stpsrvset(session timeout,1800));

To use a session, you have to create one in the Stored Process. You can use some

code like this to create a session:

%let rc=%sysfunc(stpsrv_session(create));

The following Stored Process code creates a session using the stpsrv_session

function. Then it creates a macro variable starting with “save_” and puts a table into

the save library. These will then both be available when used through another Stored

Process that is started up using the sessionid. It creates a little piece of HTML that will

call another Stored Process using the same sessionid, making the macro variable and

table available to it:

* here is some code with macro variable and table I want to save ;

%let name=Phil Mason ;

data x ;

 set sashelp.class ;

run ;

%* create a session, so we can save macro/table for later ;

%let rc=%sysfunc(stpsrv_session(create));

%put _SESSIONID=&_SESSIONID;

%put _THISSESSION=&_THISSESSION;

%* save them to session ;

%let save_name=&name ;

data save.x ;

 set x ;

run ;

* make HTML to link to another Stored Process where we will use session

data ;

 data _null;

Chapter 8 SAS Stored Process Web Application

258

 file _webout;

 put '<HTML>';

 put '<body>';

 put '<h1>test use of sessions</h1>';

 put '<a href="' "&_thissession"

 �'&_program=/User Folders/phil/My Folder/use session">Call next Stored

Process';

 put '</body>';

 put '</HTML>';

 run;

Running this Stored Process through the web application displays the following

(Figure 8-50).

The following code is for the Stored Process (“use session”) which the previous code

will call when the link is clicked. It uses the saved macro in a title and prints out the

saved table.

title 'Table x, created in previous Stored Process' ;

title "Macro variable from previous Stored Process - &save_name" ;

proc print data=save.x ;

run ;

The output produced by this Stored Process is shown in Figure 8-51.

Figure 8-50.  Web browser displays this from the previous Stored Process

Chapter 8 SAS Stored Process Web Application

259

If you wait too long and the session expires, then the saved macro variables and

tables are discarded. You will then get this message displayed in Figure 8-52.

�Sessions with Graphs
When you create a graph in a Stored Process through the Stored Process Web

Application, it creates a session and stores the graph image in a catalog within that

session. Here is some SAS code I used to create a graph:

Proc gchart data=sashelp.class ;

 Vbar sex / group=age ;

Run ;

Running this through the Stored Process Web Application shows this image on the

web page (Figure 8-53).

Figure 8-51.  Web browser showing macro variable from previous session in title

Figure 8-52.  Stored process error when session has expired

Chapter 8 SAS Stored Process Web Application

260

If I view the source for the page, I can see the HTML tag that displays the graph. I have

highlighted the session id ⓪ which is used to point to the session in which the created

image is stored. The _program value is replay ① which is used to display the image on

the web page. The value of _entry points to the location of the actual image, which is in a

catalog called APSWORK.TCAT0002 ②, and the image is called gchart.png ②. Note: I have

inserted line feeds in the URL which should not be there, so that it is more easily read.

<img alt="Bar chart of Sex" src="/SASStoredProcess/do?

_sessionid=57B00B1A-E808-44C5-AB98-D454D16988F9 ⓪
&_program=replay ①
&_entry=APSWORK.TCAT0002.gchart.png" ②
style=" border-width: 0px; height: 480px; width: 640px;" border="0"

usemap="#LN00102" class="c graph">

You can read all about sessions and how to use them in the SAS documentation.9

9�SAS Stored Processes – Sessions – http://support.sas.com/rnd/itech/doc9/dev_guide/
stprocess/sessions.HTML

Figure 8-53.  Displaying a graph in browser with stored process

Chapter 8 SAS Stored Process Web Application

http://support.sas.com/rnd/itech/doc9/dev_guide/stprocess/sessions.html
http://support.sas.com/rnd/itech/doc9/dev_guide/stprocess/sessions.html

261

�Logs That Record Information About Stored
Processes
There are many logs recorded for various programs within SAS. When using Stored

Processes, the most interesting ones are as follows.

�Stored Process Server Logs
These store a copy of the SAS logs from any Stored Processes that run on the Stored

Process servers. There will be a separate log for each Stored Process server, so if you have

the standard three defined, you will have three logs. On my system, this is located in C:\

SAS\Config\Lev1\SASApp\StoredProcessServer\Logs. Here are some sample lines from

a log:

Host: 'D351TQ92', OS: 'WIN', Release: '6.2', SAS Version: '9.04.01M3P06242015',

Command: '"C:\Program Files\SASHome\SASFoundation\9.4\sas.exe" -config

"C:\SAS\Config\Lev1\SASApp\StoredProcessServer\sasv9.cfg" /nologo /noterminal

/noxcmd /netencryptalgorithm SASProprietary /metaserver d351tq92 /metaport

8561 /metarepository Foundation /objectserver /objectserverparms "protocol=

bridge spawned spp=49263 cid=41 dnsmatch=d351tq92 pb classfactory=15931E31-

667F-11D5-8804-00C04F35AC8C server=OMSOBJ:SERVERCOMPONENT/A5GU5YZJ.AY000008

cel=credentials lb multiuser port=8611 saslangrunas=client"'

Log continued from C:\SAS\Config\Lev1\SASApp\StoredProcessServer\Logs\

SASApp_STPServer_2016-01-29_D351TQ92_18056.log

2016-01-31T15:52:09,183 INFO [00017309] :Administrator@D351TQ92 - New out

call client connection (41) for user phil@D351TQ92. Encryption level is

Credentials using encryption algorithm SASPROPRIETARY. Peer IP address and

port are [fe80::7d53:808:9a3c:a7b1%12]:8561.

2016-01-31T15:52:09,184 INFO [00017309] :phil@D351TQ92 - New client

connection (40) accepted from server port 8611 for SAS token user

phil@D351TQ92. Encryption level is Credentials using encryption algorithm

SASPROPRIETARY. Peer IP address and port are [::ffff:192.168.0.48]:49476

for APPNAME=Stored Process Web App 9.4.

2016-01-31T15:52:09,186 INFO [00017317] 40:phil@D351TQ92 - STP: 27:

Creating New Context, sessionID=

Chapter 8 SAS Stored Process Web Application

262

2016-01-31T15:52:09,233 INFO [00017317] 40:phil@D351TQ92 - STP: Sending

cost=101 to Load Balancer. Context Cost=100 STP Session Cost=1

2016-01-31T15:52:09,299 INFO [00017407] 40:phil@D351TQ92 - STP: 27:

Executing Client Source code from Metadata for /User Folders/phil/

My Folder/proc_stream

2016-01-31T15:52:09,299 INFO [00000003] :Administrator@D351TQ92 -

[00000027] STPXUTL Execute using SAS stmts directly.

2016-01-31T15:52:09,635 INFO [00017407] 40:phil@D351TQ92 - STP: 27:

Execution Complete. Status=0

2016-01-31T15:52:09,637 ERROR [00017407] 40:phil@D351TQ92 - STP: 27:

Fileref Deassign Failure for _WEBOUT

2016-01-31T15:52:09,639 INFO [00017650] 40:phil@D351TQ92 - STP: 27:

Context Close

2016-01-31T15:52:09,656 INFO [00017650] 40:phil@D351TQ92 - STP: Sending

cost=0 to Load Balancer. Context Cost=0 STP Session Cost=0

�Workspace Server Logs
These store a copy of the SAS logs from any Stored Processes that run on the workspace

servers. It also stores logs from any other clients that use workspace servers such as the

Office Add-in, Enterprise Guide, Data Integration Studio, and so on.

�Pooled Workspace Server Logs
These store a copy of SAS logs from any Stored Processes that run on the Stored Process

servers. It also stores logs from any other clients that use pooled workspace servers. On

my system, logs are stored here: C:\SAS\Config\Lev1\SASApp\PooledWorkspaceServer\

Logs. Here’s a sample of some lines from a log:

Host: 'D351TQ92', OS: 'WIN', Release: '6.2', SAS Version:

'9.04.01M4P11092016', Command: '"C:\Program Files\SASHome\

SASFoundation\9.4\sas.exe" -config "C:\SAS\Config\Lev1\SASApp\

PooledWorkspaceServer\sasv9.cfg" /nologo /noterminal /noxcmd /

netencryptalgorithm SASProprietary /metaserver d351tq92 /metaport 8561 /

metarepository Foundation /objectserver /objectserverparms "protocol=bridge

spawned spp=49286 cid=14 dnsmatch=d351tq92 pb classfactory=620963ee-32bf-

Chapter 8 SAS Stored Process Web Application

263

4128-bf5f-4b0df8ff90eb server=OMSOBJ:SERVERCOMPONENT/A5GU5YZJ.AY000007

cel=credentials lb sspool saslangrunas=client"'

2017-11-02T09:43:02,620 INFO [00000003] :Administrator@D351TQ92 - NOTE:

Unable to open SASUSER.PROFILE. WORK.PROFILE will be opened instead.

2017-11-02T09:43:02,620 INFO [00000003] :Administrator@D351TQ92 - NOTE:

All profile changes will be lost at the end of the session.

2017-11-02T09:43:02,620 INFO [00000003] :Administrator@D351TQ92 -

2017-11-02T09:43:02,689 INFO [00000007] :Administrator@D351TQ92 - Server

is executing on host D351TQ92 (fe80::7d53:808:9a3c:a7b1%12).

2017-11-02T09:43:02,689 INFO [00000007] :Administrator@D351TQ92 - Also

known as:

2017-11-02T09:43:02,689 INFO [00000007] :Administrator@D351TQ92 -

localhost

2017-11-02T09:43:02,689 INFO [00000007] :Administrator@D351TQ92 -

fe80::7d53:808:9a3c:a7b1%12

2017-11-02T09:43:02,689 INFO [00000007] :Administrator@D351TQ92 -

192.168.0.46

2017-11-02T09:43:02,689 INFO [00000007] :Administrator@D351TQ92 -

::1

2017-11-02T09:43:02,689 INFO [00000007] :Administrator@D351TQ92 -

127.0.0.1

2017-11-02T09:43:02,694 INFO [00000007] :Administrator@D351TQ92 - New out

call client connection (1) for user Administrator@D351TQ92. Encryption

level is Credentials using encryption algorithm SASPROPRIETARY. Peer IP

address and port are [fe80::7d53:808:9a3c:a7b1%12]:8561.

2017-11-02T09:43:02,760 INFO [00000010] :Administrator@D351TQ92 - NOTE:

Libref SASDATA successfully assigned from logical server.

2017-11-02T09:43:02,760 INFO [00000010] :Administrator@D351TQ92 - NOTE:

Libref WRSDIST successfully assigned from logical server.

2017-11-02T09:43:02,760 INFO [00000010] :Administrator@D351TQ92 - NOTE:

Libref WRSTEMP successfully assigned from logical server.

2017-11-02T09:43:02,760 INFO [00000010] :Administrator@D351TQ92 - NOTE:

Libref STPSAMP successfully assigned from logical server.

2017-11-02T09:43:02,770 INFO [00000009] :Administrator@D351TQ92 -

Chapter 8 SAS Stored Process Web Application

264

2017-11-02T09:43:02,770 INFO [00000009] :Administrator@D351TQ92 -

NOTE: AUTOEXEC processing beginning; file is C:\SAS\Config\Lev1\SASApp\

PooledWorkspaceServer\autoexec.sas.

2017-11-02T09:43:02,770 INFO [00000009] :Administrator@D351TQ92 -

2017-11-02T09:43:02,771 INFO [00000009] :Administrator@D351TQ92 -

2017-11-02T09:43:02,771 INFO [00000009] :Administrator@D351TQ92 - NOTE:

AUTOEXEC processing completed.

2017-11-02T09:43:02,771 INFO [00000009] :Administrator@D351TQ92 -

2017-11-02T09:43:02,777 INFO [00000188] :Administrator@D351TQ92 - New

client connection (2) to the object spawner daemon. Peer IP address and

port are [fe80::7d53:808:9a3c:a7b1%12]:49286.

2017-11-02T09:43:02,783 INFO [00000197] 2:Administrator@D351TQ92 -

Reserved IPv6 port 8811 for server listen (connection 3).

2017-11-02T09:43:02,784 INFO [00000197] 2:Administrator@D351TQ92 -

Activated listen on IPv6 port 8811 (connection 3).

2017-11-02T09:43:02,788 INFO [00000203] :Administrator@D351TQ92 - New out

call client connection (5) for user phil@D351TQ92. Encryption level is

Credentials using encryption algorithm SASPROPRIETARY. Peer IP address and

port are [fe80::7d53:808:9a3c:a7b1%12]:8561.

2017-11-02T09:43:02,788 INFO [00000203] :phil@D351TQ92 - New client

connection (4) accepted from server port 8811 for SAS token user phil@

D351TQ92. Encryption level is Credentials using encryption algorithm

SASPROPRIETARY. Peer IP address and port are [::ffff:192.168.0.46]:58599

for APPNAME=Stored Process Web App 9.4.

2017-11-02T09:43:02,958 ERROR [00000011] :phil@D351TQ92 - ERROR: The SAS

system library SASHELP may not be reassigned.

2017-11-02T09:43:02,958 ERROR [00000011] :phil@D351TQ92 - ERROR: Error in

the LIBNAME statement.

2017-11-02T09:43:03,048 ERROR [00000011] :Administrator@D351TQ92 - ERROR:

Errors printed on page 1.

�Metadata Server Logs
These keep a record of things that happen in the metadata server. In relation to Stored

Processes, you can look at when people authenticate to the system before running

Chapter 8 SAS Stored Process Web Application

265

a Stored Process. On my system, this is stored in C:\SAS\Config\Lev1\SASMeta\

MetadataServer\Logs. Here is a sample of a log:

017-11-15T18:26:33,100 INFO [00057488] :sasevs@saspw - Redirect client in

cluster SASMeta - Logical Metadata Server (A5GU5YZJ.AW000001) to server

SASMeta - Metadata Server (A5GU5YZJ.AY000001) at d351tq92:8561.

2017-11-15T18:26:33,134 INFO [00057516] 6042:SYSTEM@D351TQ92 - Client

connection 6042 for user sasevs@saspw closed.

2017-11-15T18:26:33,135 INFO [00057479] 5996:SYSTEM@D351TQ92 - Client

connection 5996 for user sastrust@saspw closed.

2017-11-15T18:26:33,142 INFO [00057519] :sastrust@saspw - New client

connection (5128) accepted from server port 8561 for user sastrust@

saspw. Encryption level is Credentials using encryption algorithm

SASPROPRIETARY. Peer IP address and port are [::ffff:192.168.0.55]:63626

for APPNAME=Web Infra Platform Identity Services 9.4.

2017-11-15T18:26:33,142 INFO [00057519] :sastrust@saspw - Request made to

cluster SASMeta - Logical Metadata Server (A5GU5YZJ.AW000001).

2017-11-15T18:26:33,144 INFO [00057519] :sastrust@saspw - Redirect client

in cluster SASMeta - Logical Metadata Server (A5GU5YZJ.AW000001) to server

SASMeta - Metadata Server (A5GU5YZJ.AY000001) at d351tq92:8561.

2017-11-15T18:26:33,146 INFO [00057524] :sasevs@saspw - New client

connection (5962) accepted from server port 8561 for SAS token user

sasevs@saspw. Encryption level is Credentials using encryption algorithm

SASPROPRIETARY. Peer IP address and port are [::ffff:192.168.0.55]:63627

for APPNAME=Web Infra Platform Identity Services 9.4.

2017-11-15T18:26:33,146 INFO [00057524] :sasevs@saspw - Request made to

cluster SASMeta - Logical Metadata Server (A5GU5YZJ.AW000001).

2017-11-15T18:26:33,146 INFO [00057524] :sasevs@saspw - Redirect client

in cluster SASMeta - Logical Metadata Server (A5GU5YZJ.AW000001) to server

SASMeta - Metadata Server (A5GU5YZJ.AY000001) at d351tq92:8561.

2017-11-15T18:26:33,152 INFO [00057535] 5128:SYSTEM@D351TQ92 - Client

connection 5128 for user sastrust@saspw closed.

2017-11-15T18:26:33,156 INFO [00057539] 5962:SYSTEM@D351TQ92 - Client

connection 5962 for user sasevs@saspw closed.

Chapter 8 SAS Stored Process Web Application

266

�Object Spawner Logs
These keep a record of things happening to the object spawner. The object spawner

starts up Stored Process, workspace, and pooled workspace servers. On my system, the

logs are located here:

Host: 'D351TQ92', OS: 'WIN', Release: '6.2', Command: '"C:\Program Files\

SASHome\SASFoundation\9.4\objspawn" -name "SAS [Config-Lev1] Object

Spawner"'

Log continued from C:\SAS\Config\Lev1\ObjectSpawner\Logs\

ObjectSpawner_2017-11-16_D351TQ92_8768.log

2017-11-17T00:00:00,097 INFO [00035160] :SYSTEM@D351TQ92 - New out call

client connection (2942) for user sasevs@saspw. Encryption level is

Credentials using encryption algorithm SASPROPRIETARY. Peer IP address and

port are [fe80::7d53:808:9a3c:a7b1%12]:8561.

2017-11-17T00:00:00,100 INFO [00035160] :SYSTEM@D351TQ92 - Client

connection 2942 for user sasevs@saspw closed.

2017-11-17T00:00:00,100 INFO [00035160] :sasevs@saspw - New client

connection (2939) accepted from server port 8581 for user sasevs@

saspw. Encryption level is Credentials using encryption algorithm

SASPROPRIETARY. Peer IP address and port are [::ffff:192.168.0.55]:57843

for APPNAME=Environment Manager 904400.

2017-11-17T00:00:00,111 INFO [00035183] 2939:SYSTEM@D351TQ92 - Client

connection 2939 for user sasevs@saspw closed.

Remember that most things in a SAS configuration can be customized, so you should

make sure your server options are set so you get the log info written that you want.

�Linking Stored Processes
In Chapter 4, we discussed the utility of JavaScript, JavaScript and JQuery libraries, and

where to store them. One of the goals of this book is to help you see the utility of bringing

this functionality to your Stored Processes. Now we will talk about how to implement

them as part of your Stored Process Web Application.

Often as part of an application, you will want to run a Stored Process which will then

run other Stored Processes for you. You can link Stored Processes together in a number

Chapter 8 SAS Stored Process Web Application

267

of ways. You can use the window.open method mentioned in the previous section to

enable a JavaScript program to open other pages, which can be Stored Processes if run

via the Stored Process Web Application. Sometimes you might want to run a Stored

Process when a web page opens, so that you can do some processing needed for that

web page before it is used.

The best way I have found to do this is by using the body onload method. The

following code would execute the alert before loading the rest of the web page:

<HTML>

<body onload="alert('hello')">

<h1>Hello World!</h1>

</body>

</HTML>

To run a Stored Process before loading the page, you could use something like this:

<HTML>

<body onload="window.open('http://d351tq92/SASStoredProcess/do?_program=%2F

User+Folders%2Fphil%2FMy+Folder%2FpreProcess')">

<h1>Pre-Processing has completed.</h1>

</body>

</HTML>

With JavaScript, you can detect all kinds of events in the page, on forms, and in drag

and drop events, print events, mouse events, and many others. Any of those can be used

to trigger the running of a Stored Process. Since a Stored Process can write any JavaScript

code out, you can use logic from your SAS programs to decide when you need to link to

another Stored Process and then write out the appropriate JavaScript code to do that. Easy.

�Stored Process Example
The following Stored Process generates an input form that does client-side validation

of an input field, by checking that the user has entered something for a table name. If

the user doesn’t enter something, then the JavaScript displays an alert and aborts the

submit. When it passes the validation, then the same Stored Process is resubmitted, but

it detects the presence of the table macro variable which indicates that this is the second

call of the Stored Process with a table name being passed in. The server-side validates

Chapter 8 SAS Stored Process Web Application

268

that the table exists, and if it doesn’t, then it uses JavaScript to display an alert and then

uses JavaScript to go back one page to display the original form again. If the table does

exist, then it does a proc print of it.

All this functionality effectively results in a single-page application with some

validation done in the browser by JavaScript and some done on the server by SAS. You

don’t need to enter any values for prompts as you create this stored process.

Here is the Stored Process code:

data lines ;

 input ;

 line=resolve(_infile_) ;

 cards4 ;

<HTML>

<head>

<script>

function validateForm() {

 var x = document.forms["myForm"]["table"].value;

 if (x == "") {

 alert("You have to enter a table");

 return false;

 }

}

</script>

</head>

<body>

<form method="get" action="http://&_srvname:&_srvport/&_url?"

 name="myForm" onsubmit="return validateForm()">

<input type="hidden" name="_program" value="&_program">

Enter the name of a table: <input type="text" name="table">

<input type="submit" value="Run">

</form>

<p>Try using sashelp.orsales as the table</p>

</body>

</HTML>

;;;;

run ;

Chapter 8 SAS Stored Process Web Application

269

%macro logic ;

 %if %symexist(table) %then %do ;

 %if %sysfunc(exist(&table)) %then %do ;

 %stpbegin

 proc print data=&table ;

 run ;

 %stpend

 %end ;

 %else %do ;

 data _null_ ;

 file _webout ;

 put "<script>alert('Table &table does not exist!');" ;

 put "window.history.back()</script>" ;

 run ;

 %end ;

 %end ;

 %else %do ;

 data _null_ ;

 file _webout ;

 set lines ;

 put line ;

 run ;

 %end ;

%mend logic ;

%logic

Figure 8-54 is what is displayed when it is run.

If this is run without entering a table name, then this alert is displayed (Figure 8-55).

Figure 8-54.  Prompt in browser

Chapter 8 SAS Stored Process Web Application

270

If a table name is entered and the Run button pressed, but the table does not exist,

then the message in Figure 8-56 is displayed.

Figure 8-55.  Alert displayed in browser if you don’t enter a table

Figure 8-56.  Alert displayed in browser if you enter a table that can’t be found

Figure 8-57.  Report produced in browser when valid table is entered

When a table that does exist is entered and Run pressed, then the table in Figure 8-57

is displayed.

Chapter 8 SAS Stored Process Web Application

271

�Loading a Stored Process into Part of a Web Page
Here is a piece of HTML which will run a Stored Process ① and load its output into part
of a web page when a button is pressed. This technique can form the basis of a web

application as you can prompt the user for things in one part of the screen and then run

a Stored Process to load the results into another part of the screen.

The text shown in bold shows the Stored Process that is being run. Whatever output

that this Stored Process produces will be returned and loaded into the div section called

div1.

The text shown in italics shows the id for the part of the HTML page that will be

populated with the output of the Stored Process. It is a div section, which is generally a

great tag to use to populate with things since it is basically a container for other things.

I have some text in the div section which will be displayed first, but will then be replaced

once the Stored Process has run and its results loaded into the div:

<!DOCTYPE HTML>

<HTML>

<head>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.0/jquery.

min.js"></script>

<script>

$(document).ready(function(){

 $("button").click(function(){

 �$("#div1").load("http://my_server/SASStoredProcess/do?_program=%2FUser

+Folders%2Fphil%2FMy+Folder%2FExercise+2"); ①
 });

});

</script>

</head>

<body>

<h1>This is how we can load something to this web page</h2>

<hr>

<div id="div1"><h2>Let jQuery AJAX Change This Text</h2></div>

<button>Get External Content</button>

</body>

</HTML>

Chapter 8 SAS Stored Process Web Application

272

This produces the following page as shown in Figure 8-58.

�Other Recommended JavaScript Libraries
I have used many libraries over the years and have found some to be great ones that I use

over and over again. Here is a list of some libraries to get you started. There are bound

to be other great ones I don’t know about, so you shouldn’t use this as a definitive list

but keep looking and seeing what people are using. A good place to see what people are

using is to search for a list of top JavaScript libraries and read one of the many reviews.

Or you can go to a Content Delivery Network and look at a list of how many times a

library has been used.10

�Grids
If you are unfamiliar with web technology, you may wonder what exactly a grid is – it’s

just a table displayed on a web page. We can make a table in HTML and display that;

however, when we scroll down a big table, we leave behind the column headings at the

top and can be left wondering what we are looking at. Same goes for when we scroll to

the right across a wide table and lose row titles. Grids work a bit like EXCEL keeping

row and column titles in place, so we avoid this problem. They can also add a lot of

functionality along the lines of what something like EXCEL can do. So, they might let

us use traffic lighting, create calculated columns, pop up menus of functionality with

the right mouse button, and so on. We can do some of this with a standard HTML table

and by using some CSS with it, but it is limited and quickly becomes overly complex.

But grids can make all this very simple, and if we choose the right one, it can work in a

similar/compatible way as jQuery.

10�Top 200 link on https://cdnjs.com/

Figure 8-58.  Displayed in browser using previous code

Chapter 8 SAS Stored Process Web Application

https://cdnjs.com/

273

�jqGrid

jqGrid (jQuery grid plug-in) is a JavaScript library which enables creating data grids on

web pages quite easily.

You can see demos and learn all about jqgrid at www.guriddo.net/demo/guriddojs/.

Their website shows many examples of grids you can display on a web page and the

huge amount of functionality available.

The following code shows an example of using a grid like this in conjunction with

a Stored Process ①, which produces JSON-formatted data that is then displayed by the

JavaScript object as a grid:

<!DOCTYPE HTML>

<HTML lang="en">

<head>

 <!-- The jQuery library is a prerequisite for all jqSuite products -->

 �<script type="text/ecmascript" src="http://code.jquery.com/jquery--

2.2.4.min.js"></script>

 <!-- This is the JavaScript file of jqGrid -->

 �<script type="text/ecmascript" src="http://www.guriddo.net/demo/js/

trirand/jquery.jqGrid.min.js"></script>

 �<!-- This is the localization file of the grid controlling messages,

labels, etc. -->

 <!-- We support more than 40 localizations -->

 �<script type="text/ecmascript" src="http://www.guriddo.net/demo/js/

trirand/i18n/grid.locale-en.js"></script>

 �<!-- A link to a jQuery UI ThemeRoller theme, more than 22 built-in and

many more custom -->

 �<link rel="stylesheet" type="text/css" media="screen" href="http://www.

guriddo.net/demo/css/jquery-ui.css" />

 <!-- The link to the CSS that the grid needs -->

 �<link rel="stylesheet" type="text/css" media="screen" href="http://www.

guriddo.net/demo/css/trirand/ui.jqgrid.css" />

 <meta charset="utf-8" />

 <title>jqGrid Loading Data - JSON</title>

</head>

<body>

Chapter 8 SAS Stored Process Web Application

http://www.guriddo.net/demo/guriddojs/

274

 <table id="jqGrid"></table>

 <div id="jqGridPager"></div>

<script type="text/JavaScript">

$(document).ready(function () {

 $("#jqGrid").jqGrid({

① url: �'http://my_server/SASStoredProcess/do?_program=%2FUser+Folders%2F
phil%2FMy+Folder%2Fjson',

 datatype: "json",

 colModel: [

 { label: 'Year', name: 'Year', width: 75 },

 { label: 'Quarter', name: 'Quarter', width: 90 },

 { label: 'Product_Line', name: 'Product_Line', width: 100 },

 { label: �'Product_Category', name: 'Product_Category', width: 100 },

 { label: 'Product_Group', name: 'Product_Group', width: 100 },

 { label: �'Profit', name: 'Profit', width: 80, sorttype: 'integer' },

 { label: �'Total_Retail_Price', name: 'Total_Retail_Price',

width: 80, sorttype: 'integer' },

 �// sorttype is used only if the data is loaded locally or loadonce

is set to true

 { label: �'Quantity', name: 'Quantity', width: 80, sorttype:

'number' }

],

 viewrecords: true, �// show the current page, data range and total

records on the toolbar

 width: 780,

 height: 400,

 rowNum: 30,

 loadonce: true, // this is just for the demo

 pager: "#jqGridPager"

 });

});

 </script>

</body>

</HTML>

Chapter 8 SAS Stored Process Web Application

275

The following SAS code is for the Stored Process (JSON) that delivers the data to

this grid. Here I have looked at the format of the JSON data that the grid needs and used

some nice options available from SAS 9.4 onward that allows me to customize my JSON

data to match what is required exactly:

* create a JSON version of the SAS table ;

proc json out=_webout pretty nosastags ;

 write open object ;

 write values "rows" ;

 write open array ;

 export sashelp.orsales ;

 write close ;

 write close ;

run ;

The grid that this makes will look like Figure 8-59, and you can sort the columns. The

drawback to using this specific technique on large tables is that I am loading the entire

table first and then using the grid to display it.

Figure 8-59.  Resulting grid

Chapter 8 SAS Stored Process Web Application

276

There are other features that can be used with this JavaScript object to change the

behavior of the grid. For instance, if you have a very large number of rows, then you can

specify a pager, rownum, and page parameter. When data is requested, it will pass these

parameters on the URL call to the Stored Process, which will enable you to modify your

Stored Process to just return the rows that are required for that page, rather than all the

rows in the table. This can make it very efficient to view very large tables.

�Highcharts
Highcharts is a JavaScript library which enables you to create powerful charts quite easily

with a relatively small amount of JavaScript. You can feed the graphs with data from a

Stored Process, like all other JavaScript objects we will look at. Many examples are shown

on their website – www.highcharts.com.

Here is some sample code which provides the data for the graph using a Stored
Process ①. Note that I am using a CSV file as input here, although Highcharts supports a

lot of different data formats.

<HTML>

 <head>

 <meta http-equiv="Content-Type" content="text/HTML; charset=utf-8">

 <title>Highcharts Example</title>

 �<!-- 1. Add these JavaScript inclusions in the head of your

page -->

 �<script type="text/JavaScript" src="http://code.jquery.com/jquery--

1.9.1.min.js"></script>

 �<script type="text/JavaScript" src="http://code.highcharts.com/

highcharts.js"></script>

 �<script type="text/JavaScript" src="http://code.highcharts.com/

modules/data.js"></script>

 �<!-- 2. Add the JavaScript to initialize the chart on document

ready -->

 <script type="text/JavaScript">

Chapter 8 SAS Stored Process Web Application

https://www.highcharts.com

277

 $(document).ready(function() {

① �$.get('http://d351tq92/SASStoredProcess/do?_program=%2FUser+Folders%2
Fphil%2FMy+Folder%2Fcsv', function(csv) {

 $('#container').highcharts({

 chart: { type: 'column' },

 data: { csv: csv },

 title: { text: 'Sales Data' },

 yAxis: { title: { text: 'USD' } }

 });

 });

 });

 </script>

 </head>

 <body>

 <!-- 3. Add the container -->

 �<div id="container" style="width: 800px; height: 400px; margin: 0

auto"></div>

 </body>

</HTML>

The following SAS code is the Stored Process (csv) which delivers the data to the

Highcharts object:

proc summary data=sashelp.orsales nway ;

 class Quarter ;

 var Total_Retail_Price Quantity Profit ;

 output out=sum_orsales(drop=_type_ _freq_) sum= ;

run ;

* create a CSV version of the summary ;

proc export data=sum_orsales outfile=_webout dbms=csv replace ;

run ;

This code produces a nice vertical bar chart which looks great and has some built-in

functionality. One simple thing you can do is to click the legend and eliminate bars from

the graph or click again to include them.

Chapter 8 SAS Stored Process Web Application

278

�D3
D3 is a very powerful and hugely popular JavaScript visualization library. It is reasonably

easy to make use of but is capable of quite complex usage to visualize in almost any way

you can think of. They have many great examples on their website – https://d3js.org.

This code uses the D3 library together with the DC and Crossfilter libraries which

allows you to link objects to create a very powerful visualization. Data is provided using

the Stored Process ①.

<!DOCTYPE HTML>

<HTML lang="en">

<head>

 <title>dc.js - Number Display Example</title>

 <meta charset="UTF-8">

 �<link rel="stylesheet" type="text/css" href="http://dc-js.github.io/

dc.js/css/dc.css"/>

</head>

<body>

<h1>Stored Process with simple crossfilter</h1>

<div id="chart-ring-Year"></div>

<div id="chart-hist-spend"></div>

<div id="chart-row-spenders"></div>

<script type="text/JavaScript" src="http://dc-js.github.io/dc.js/js/

d3.js"></script>

<script type="text/JavaScript" src="http://dc-js.github.io/dc.js/js/

crossfilter.js"></script>

<script type="text/JavaScript" src="http://dc-js.github.io/dc.js/js/

dc.js"></script>

<script type="text/JavaScript">

var YearRingChart = dc.pieChart("#chart-ring-Year"),

 spendHistChart = dc.barChart("#chart-hist-spend"),

 spenderRowChart = dc.rowChart("#chart-row-spenders");

① d3.csv("http://d351tq92/SASStoredProcess/do?_program=%2FUser+Folders%2Fp
hil%2FMy+Folder%2Fcsv2&table=sashelp.orsales", function(spendData) {

Chapter 8 SAS Stored Process Web Application

https://d3js.org

279

// normalize/parse data

spendData.forEach(function(d) {

 d.Quantity = d.Quantity.match(/\d+/);

});

// set crossfilter

var ndx = crossfilter(spendData),

 YearDim = ndx.dimension(function(d) {return +d.Year;}),

 �spendDim = ndx.dimension(function(d) {return Math.floor(d.

Quantity/1000);}),

 �Product_CategoryDim = ndx.dimension(function(d) {return d.Product_

Category;}),

 �spendPerYear = YearDim.group().reduceSum(function(d) {return

+d.Quantity;}),

 �spendPerProduct_Category = Product_CategoryDim.group().

reduceSum(function(d) {return +d.Quantity;}),

 spendHist = spendDim.group().reduceCount();

YearRingChart

 .width(300).height(300)

 .dimension(YearDim)

 .group(spendPerYear)

 .innerRadius(50);

spendHistChart

 .width(400).height(300)

 .dimension(spendDim)

 .group(spendHist)

 .x(d3.scale.linear().domain([0,10]))

 .elasticY(true);

spendHistChart.xAxis().tickFormat(function(d) {return d*1000}); // convert

back to base unit

spendHistChart.yAxis().ticks(2);

spenderRowChart

 .width(700).height(300)

 .dimension(Product_CategoryDim)

Chapter 8 SAS Stored Process Web Application

280

 .group(spendPerProduct_Category)

 .elasticX(true);

dc.renderAll();

});

</script>

</body>

</HTML>

The SAS code in the Stored Process (csv2) which delivers the data is very simple, as

follows:

proc export data=&table outfile=_webout dbms=csv replace ;

run ;

The following output in Figure 8-60 is produced by the preceding code. The three

graphs displayed are linked together so that if you click any bar or pie segment, then

that is selected, and the other graphs change to reflect your selection. This enables some

interactive data exploration to be done.

�Summary
In this chapter, we look at the incredibly useful SAS Stored Process Web Application.

This is provided by SAS to enable stored processes to execute through a web browser and

other RESTful applications. We looked at some of these topics:

•	 Index page that allows browsing through stored processes available

and running them

Figure 8-60.  Output graphs

Chapter 8 SAS Stored Process Web Application

281

•	 Sample stored processes available with a SAS installation

•	 Lots of macro variables that can be used with %stpbegin to affect

what the web application returns, for example, _debug=log to return

a SAS log

•	 Using automatic SAS macro variables to detect things about the

environment that the stored process is executing in, for example,

&_metaperson holds the name of the user from metadata

•	 How to use HTML forms to run stored processes from a web page

•	 Process of creating a simple SAS program and converting it into a

stored process–based web application providing flexibility and some

powerful features by using the macro variables available

•	 How to upload files to a server with a stored process

•	 How to use sessions for sharing information between stored

processes

•	 Logs that are available for help with understanding the execution of

stored processes

•	 Linking stored processes so that one will run after another

•	 Some very useful JavaScript libraries that can provide useful

functionality to web applications

Chapter 8 SAS Stored Process Web Application

283
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_9

CHAPTER 9

SAS Procedures
You can use all the power of SAS as you develop Stored Processes, including the many

procedures that provide so much functionality in an easy-to-use package. There are

several procedures that are particularly helpful with developing Stored Processes. In this

chapter, we will cover

•	 PROC STP, which allows you to run a Stored Process from other SAS

code.

•	 PROC JSON, which lets you produce JSON-formatted data that is

used extensively by JavaScript objects used in building web pages.

•	 PROC STREAM, which will take some text, resolve any macro

variables in it, and send the output on to somewhere, which could be

a file or web page.

•	 PROC HTTP, which can issue HTTP requests and get the response for

use in SAS.

•	 PROC EXPORT, which will export SAS data in various formats

including CSV and tab-separated formats.

•	 PROC IMPORT, which will import data from various supported formats

into a SAS table. This is useful to read CSV and other formats of data.

�PROC STP
This procedure allows Stored Processes to be executed from a SAS program. This opens

up a lot more flexibility and power for the use of Stored Processes. You can execute them

in batch, interactively or on servers. It can run locally or on a server, but with its own

execution environment, so it has its own work library and so on. If you want to run it on a

server, then it needs some additional configuration to work that way.

https://doi.org/10.1007/978-1-4842-5925-2_9#ESM

284

The following example code in Listings 9-1 and 9-2 shows how to run a stored

process from a normal SAS program. This could be run in batch overnight or in fact from

anywhere you can execute SAS code.

Listing 9-1.  SAS Program to run a stored process from a regular SAS program

* connect to metadata server ;

options metaserver=d351tq92 metaport=8561 metauser=phil metapass=goodnight_

for_president ;

* close any open ODS destinations ;

ods _all_ close;

* run Stored Process and put the ODS results into an ODS Item Store ;

proc stp program='/Products/SAS Intelligence Platform/Samples/Sample:

Cholesterol by Sex and Age Group'

 odsout=store;

run;

* set the format for graphics we will produce ;

goptions device=png;

* Open an HTML destination ;

ods HTML path="%sysfunc(pathname(work))" file='test.htm' style=HTMLBlue;

* Send the output to the current ODS destination ;

proc document name=&_ODSDOC (read);

 replay / levels=all;

run;

quit ;

ods HTML close;

%put _ODSDOC: %superq(_ODSDOC) ;

%put Output has been put into %sysfunc(pathname(work)) ;

Listing 9-2.  SAS Log produced from running the program

1 * connect to metadata server ;

2 �options metaserver=d351tq92 metaport=8561 metauser=phil

metapass=XXXXXXXXX;

3 * close any open ODS destinations ;

4 ods _all_ close;

Chapter 9 SAS Procedures

285

5 * run Stored Process and put the ODS results into an ODS Item Store ;

6 �proc stp program='/Products/SAS Intelligence Platform/Samples/Sample:

Cholesterol by Sex and Age

6 ! Group'

7 odsout=store;

8 run;

NOTE: The Stored Process will execute locally.

NOTE: PROC_STP: ====== Proc STP Execution Starting ======

NOTE: PROC_STP: ====== Stored Process: /Products/SAS Intelligence

Platform/Samples/Sample:

 Cholesterol by Sex and Age Group ======

>>> SAS Macro Variables:

 _CLIENT=PROCSTP TKESTP Windows X64_SRV12 X86_64 6.2

 _METAPERSON=phil

 _METAUSER=phil@!*(generatedpassworddomain)*!

 _ODSDEST=DOCUMENT

 _ODSDOC=APSWORK._odsdoc00000001

 _RESULT=STREAM

2 %STPBEGIN;

3

4 proc format;

5 value AgeAtStart low-35 = '< 36'

6 36-45 = '36 - 45'

7 46-55 = '46-55'

NOTE: Format AGEATSTART has been output.

8 56-high = '> 55';

9 run;

NOTE: PROCEDURE FORMAT used (Total process time):

 real time 0.04 seconds

 cpu time 0.01 seconds

9 ! quit;

10

Chapter 9 SAS Procedures

286

11 title 'Cholesterol by Sex and Age Group';

12 footnote "Generated %sysfunc(datetime(), datetime19.).";

13

14 proc sgpanel data=sashelp.heart;

15 panelby sex / columns=1

16 novarname;

17 hbox Cholesterol / category=AgeAtStart;

18 format AgeAtStart AgeAtStart.;

19 run;

19 ! quit;

NOTE: There were 5209 observations read from the data set SASHELP.HEART.

NOTE: PROCEDURE SGPANEL used (Total process time):

 real time 0.16 seconds

 cpu time 0.11 seconds

20

21 %STPEND;

NOTE: PROC_STP: ====== Stored Process: /Products/SAS Intelligence Platform/

Samples/Sample:

 Cholesterol by Sex and Age Group Return Status = 0 ======

NOTE: PROC_STP: ====== Proc STP Execution Ending ======

NOTE: PROCEDURE STP used (Total process time):

 real time 0.60 seconds

 cpu time 0.35 seconds

9 * set the format for graphics we will produce ;

10 goptions device=png;

11 * Open an HTML destination ;

12 �ods HTML path="%sysfunc(pathname(work))" file='test.htm'

style=HTMLBlue;

NOTE: Writing HTML Body file: test.htm

13 * Send the output to the current ODS destination ;

14 proc document name=&_ODSDOC (read);

15 replay / levels=all;

16 run;

Chapter 9 SAS Procedures

287

NOTE: The data set WORK.DATA1 has 4 observations and 21 variables.

NOTE: Format AGEATSTART has been output.

NOTE: There were 4 observations read from the data set WORK.DATA1.

NOTE: PROCEDURE FORMAT used (Total process time):

 real time 0.03 seconds

 cpu time 0.00 seconds

17 quit ;

NOTE: PROCEDURE DOCUMENT used (Total process time):

 real time 1.59 seconds

 cpu time 0.37 seconds

18 ods HTML close;

19 %put _ODSDOC: %superq(_ODSDOC) ;

_ODSDOC: APSWORK._odsdoc00000001

20 %put Output has been put into %sysfunc(pathname(work)) ;

Output has been put into

C:\Users\phil\AppData\Local\Temp\2\SAS Temporary Files_TD11484_D351TQ92_

The SAS Output is written to the location shown in the log, and the directory

listing of where PROC STP wrote the output to is also listed in the log. Notice that the

PROC DOCUMENT created a graphic file (Figure 9-1) called SGPanel.png (Figure 9-2).

The type was set by device= on the goptions statement, and the name defaults to the

procedure that was used to produce the graphic. If we have multiple graphics, then they

get a sequence number on the end, for example, SGPanel.png, SGPanel1.png, SGPanel2.

png, and so on.

Chapter 9 SAS Procedures

288

Figure 9-1.  Output produced by the previous program

Figure 9-2.  Temporary files in work area used by the program run

Chapter 9 SAS Procedures

289

To read more about the STP procedure in SAS 9.4, you can use this link:

http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/

p0yy4kd3k4dc03n1mcd76hog6y2u.htm. Remember that Proc STP is only available from

SAS 9.3 onward.

�PROC JSON
In SAS 9.4, there is a new procedure called PROC JSON which will create data in JSON

format from any data that SAS can read. This enables us to create JSON output to be used

in JavaScript objects from virtually any other data source. Some options are provided to

customize the JSON produced, which enables very flexible JSON output to be created.

Figure 9-3 shows a table we will use in an example.

Figure 9-3.  sashelp.class table to use in the following example

Chapter 9 SAS Procedures

http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/p0yy4kd3k4dc03n1mcd76hog6y2u.htm
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/p0yy4kd3k4dc03n1mcd76hog6y2u.htm

290

Here is the Stored Process code to create some JSON:

proc json out=_webout;

 export &table / tablename="&table";

run;

Here is some of the JSON that is produced by it, when I feed in a parameter of

&table=sashelp.class:

{"SASJSONExport":"1.0","SASTableData+sashelp.class":[{"Name":"Alfred","Sex"

:"M","Age":14,"Height":69,"Weight":112.5},{"Name":"Alice","Sex":"F","Age":1

3,"Height":56.5,"Weight":84},{"Name":"Barbara","Sex":"F","Age":13,"Height":

65.3,"Weight":98},{"Name":"Carol","Sex":"F","Age":14,"Height":62.8,"Weight"

:102.5},{"Name":"Henry","Sex":"M","Age":14,"Height":63.5,"Weight":102.5},

{"Name":"James","Sex":"M","Age":12,"Height":57.3,"Weight":83},{"Name":"Jane",

"Sex":"F","Age":12,"Height":59.8,"Weight":84.5},{"Name":"Janet","Sex":"F",

"Age":15,"Height":62.5,"Weight":112.5},{"Name":"Jeffrey","Sex":"M","Age":13,

"Height":62.5,"Weight":84},{"Name":"John","Sex":"M","Age":12,"Height":59,

"Weight":99.5},{"Name":"Joyce","Sex":"F","Age":11,"Height":51.3,"Weight":

50.5},{"Name":"Judy","Sex":"F","Age":14,"Height":64.3,"Weight":90},{"Name":

"Louise","Sex":"F","Age":12,"Height":56.3,"Weight":77},{"Name":"Mary",

"Sex":"F","Age":15,"Height":66.5,"Weight":112},{"Name":"Philip","Sex":"M",

"Age":16,"Height":72,"Weight":150},{"Name":"Robert","Sex":"M","Age":12,

"Height":64.8,"Weight":128},{"Name":"Ronald","Sex":"M","Age":15,"Height":67,

"Weight":133},{"Name":"Thomas","Sex":"M","Age":11,"Height":57.5,"Weight":

85},{"Name":"William","Sex":"M","Age":15,"Height":66.5,"Weight":112}]}

You can trim some extraneous information from the JSON using the nosastags

option on PROC JSON. Here is the output we get if we use NOSASTAGS. Note: In the

previous output, I have bolded what is dropped by using NOSASTAGS.

[{"Name":"Alfred","Sex":"M","Age":14,"Height":69,"Weight":112.5},{"Name":

"Alice","Sex":"F","Age":13,"Height":56.5,"Weight":84},{"Name":"Barbara",

"Sex":"F","Age":13,"Height":65.3,"Weight":98},{"Name":"Carol","Sex":"F",

"Age":14,"Height":62.8,"Weight":102.5},{"Name":"Henry","Sex":"M","Age":14,"

Height":63.5,"Weight":102.5},{"Name":"James","Sex":"M","Age":12,"Height":

57.3,"Weight":83},{"Name":"Jane","Sex":"F","Age":12,"Height":59.8,"Weight":

84.5},{"Name":"Janet","Sex":"F","Age":15,"Height":62.5,"Weight":112.5},

Chapter 9 SAS Procedures

291

{"Name":"Jeffrey","Sex":"M","Age":13,"Height":62.5,"Weight":84},{"Name":

"John","Sex":"M","Age":12,"Height":59,"Weight":99.5},{"Name":"Joyce","Sex":

"F","Age":11,"Height":51.3,"Weight":50.5},{"Name":"Judy","Sex":"F","Age":

14,"Height":64.3,"Weight":90},{"Name":"Louise","Sex":"F","Age":12,"Height":

56.3,"Weight":77},{"Name":"Mary","Sex":"F","Age":15,"Height":66.5,"Weight":

112},{"Name":"Philip","Sex":"M","Age":16,"Height":72,"Weight":150},{"Name":

"Robert","Sex":"M","Age":12,"Height":64.8,"Weight":128},{"Name":"Ronald",

"Sex":"M","Age":15,"Height":67,"Weight":133},{"Name":"Thomas","Sex":"M",

"Age":11,"Height":57.5,"Weight":85},{"Name":"William","Sex":"M","Age":15,

"Height":66.5,"Weight":112}]

You can also lay out the JSON produced in an easier to read form using the pretty

option on PROC JSON. This makes it far easier to read. Here is the first part of the output

produced:

{

 "SASJSONExport": "1.0 PRETTY",

 "SASTableData+class": [

 {

 "Name": "Alfred",

 "Sex": "M",

 "Age": 14,

 "Height": 69,

 "Weight": 112.5

 },

 {

 "Name": "Alice",

 "Sex": "F",

 "Age": 13,

 "Height": 56.5,

 "Weight": 84

 },

Chapter 9 SAS Procedures

292

If we use the PRETTY and NOSASTAGS options, then here is the first part of the

output produced:

[

 {

 "Name": "Alfred",

 "Sex": "M",

 "Age": 14,

 "Height": 69,

 "Weight": 112.5

 },

 {

 "Name": "Alice",

 "Sex": "F",

 "Age": 13,

 "Height": 56.5,

 "Weight": 84

 },

As we know, PROC JSON can produce JSON data, and there are many JavaScript

objects that can use JSON data as input. There is an object called jqGrid which has a

URL parameter which lets you point to a data source that is in JSON format. Here is

a JavaScript snippet of code which would be used to define where the data is for that

object. In this case, I can point the object to the SAS Stored Process Web Application,

which will call a Stored Process to provide the JSON data:

url: 'http://localhost/SASStoredProcess/do?_program=%2FUser+Folders%2Fphil%

2FMy+Folder%2Fjson',

In that Stored Process, I can use PROC JSON to produce the JSON data which is

needed to feed the object. If you need to customize the standard JSON in order to fit

some specific requirements for a JavaScript object, then you are able to use the write

statement to write out extra structure to your JSON. In the case of using the jqGrid object,

it needs a slightly different JSON layout to standard. I used the code here to get my JSON

in the right format for using with the jqGrid object:

Chapter 9 SAS Procedures

293

proc json out=_webout pretty nosastags;

 write open object;

 write values "rows";

 write open array;

 export sashelp.orsales;

 write close;

 write close;

run;

Notice in the preceding code that we write to _webout, which when used in a Stored

Process with the Stored Process Web Application will stream data directly to the browser.

Another useful thing you might do with PROC JSON is that when you are using some

kind of static HTML, you might want to get a list of variables that exist in the data table

you are using, so you can automatically generate the menus (for instance). The following

code in a stored process would get variable name, type, and label from a table, and then

send it back to the browser where JavaScript could make use of that data:

proc contents data=sashelp.class out=contents noprint;

run;

filename _webout temp;

proc json out=_webout nosastags pretty;

 export contents(keep=name type memlabel) ;

run;

The JSON that would be generated is as follows in Listing 9-3.

Listing 9-3.  Generated JSON

[

 {

 "MEMLABEL": "Student Data",

 "NAME": "Age",

 "TYPE": 1

 },

 {

 "MEMLABEL": "Student Data",

 "NAME": "Height",

Chapter 9 SAS Procedures

294

 "TYPE": 1

 },

 {

 "MEMLABEL": "Student Data",

 "NAME": "Name",

 "TYPE": 2

 },

 {

 "MEMLABEL": "Student Data",

 "NAME": "Sex",

 "TYPE": 2

 },

 {

 "MEMLABEL": "Student Data",

 "NAME": "Weight",

 "TYPE": 1

 }

]

Here is a full working example in Listing 9-4.

Listing 9-4.  Full example

var myfilter = "http://<server>/SASStoredProcess/do?_program=<program>%2F

<stored process name>";

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.

w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:mso="urn:schemas-

microsoft-com:office:office" xmlns:msdt="uuid:C2F41010-65B3-11d1-A29F-

00AA00C14882">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<meta http-equiv="X-UA-Compatible" content="IE=edge" />

<script type="text/javascript" charset="utf8" src="../../webres/jquery--

3.2.1.min.js"></script>

Chapter 9 SAS Procedures

295

<script type="text/javascript" charset="utf8" src="../../webres/jquery-

ui-1.12.1/jquery-ui.js"></script>

<link rel="stylesheet" type="text/css" href="../../webres/jquery-ui-

themes-1.9.2/base/jquery-ui.css" />

<link rel="stylesheet" type="text/css" href="../../webres/DT4/datatables.

min.css"/>

<script type="text/javascript" src="../../webres/DT4/datatables.min.js">

</script>

<script type="text/javascript">

var myfilter = "http://<server>/SASStoredProcess/do?_program=<program>%2F

<stored process name>";

var call = $.ajax({ url: myfilter,

 type: "GET",

 dataType: "json",

});

call.done(function (data,textStatus, jqXHR){

 $('#example2 tbody').off('click', 'tr');

 table2 = $('#example2').DataTable({

 dom: 'lfrtip', //'Bfrtip', /*dtsettings,*/

 bLengthChange: true,

 buttons: [

 'excelHtml5'

],

 "orderCellsTop": true,

 "bDestroy": true,

 "bProcessing": true,

 "lengthMenu": [[10, 25, 50, -1], [10, 25, 50, "All"]],

 "aaData": data,

 "scrollX": true,

 "aoColumns": [

 { 'sTitle': 'Year','mData': 'Year', 'sClass': 'center_column' }

 �,{ 'sTitle': 'Quarter','mData': 'Quarter', 'sClass': 'center_

column' }

 �,{ 'sTitle': 'Product_Line','mData': 'Product_Line', 'sClass':

'center_column' }

Chapter 9 SAS Procedures

296

 �,{ 'sTitle': 'Product_Category','mData': 'Product_

Category', 'sClass': 'center_column' }

 �,{ 'sTitle': 'Product_Group','mData': 'Product_

Group', 'sClass': 'center_column' }

 �,{ 'sTitle': 'Quantity','mData': 'Quantity', 'sClass':

'center_column' }

 �,{ 'sTitle': 'Profit','mData': 'Profit', 'sClass': 'center_

column' }

 �,{ 'sTitle': 'Total_Retail_Price','mData': 'Total_Retail_

Price', 'sClass': 'center_column' }

]

 ,"oLanguage": {

 "sSearch": "Search All Columns: "

 }

 });

});

call.fail(function (jqXHR,textStatus,errorThrown){

 alert('unable to obtain data from SAS');

});

</script>

</head>

<body>

<table id='example2' class='display' width='100%'><tfoot><tr></tr>

</tfoot></table>

</body>

</html>

�PROC STREAM
There are various ways that we can get code into a web browser. We could just write a

simple file and then load that into the web browser, such as by creating a file report.

HTML and opening it. Usually a better way to do this is to use SAS/Intrnet or a Stored

Process to stream code to the browser. From a Stored Process, you can do this by writing

lines to the _webout fileref. This could be done by writing to it from a data step, but

you can also use PROC STREAM to do this.

Chapter 9 SAS Procedures

297

�Streaming with a Data Step
The data step can be used to stream by writing to _webout, when used from a Stored

Process in the SAS Stored Process Web Application. If you use any macro language in what

is streamed, then it would not be resolved. For example, the following Stored Process

%let name=Phil Mason ;

data _null_ ;

 file _webout ;

 input ;

 put _infile_ ;

 cards ;

<HTML>

<h1>Hello &name</h1>

</HTML>

;;

run ;

Listing 9-5 would produce this output (Figure 9-4), when run through the SAS Stored

Process Web Application.

If you want to resolve the macro language before streaming the HTML code out, then

you can use something like the resolve() function. You would then change your Stored

Process code to be like this:

%let name=Phil Mason ;

data _null_ ;

 file _webout ;

 input ;

 line=resolve(_infile_) ;

 put line ;

 cards ;

<HTML>

Figure 9-4.  This is displayed when we view the HTML generated from Listing 9-1

Chapter 9 SAS Procedures

298

<h1>Hello &name</h1>

</HTML>

;;

run ;

This will produce the following output (Figure 9-5) in the web browser.

There are some problems using the resolve function in the data step, particularly

that there is a limitation on size. So the text for each line can only ever fit into the size of

a variable, which is 32K maximum. If macro language expands to take more space than

that, then it will be truncated. This can lead to unexpected results and errors. There can

be additional issues with escaped HTML characters such as & which is not a SAS macro

variable, although SAS will think it is.

�Streaming with PROC STREAM
Another way to stream data is to use PROC STREAM. The program would look like this:

proc stream outfile=_webout;

 BEGIN

<HTML>

<h1>Hello &name</h1>

</HTML>

;;;;

run;

PROC STREAM reads text that appears after the BEGIN statements up to the four

semi-colons which indicate the end of input. It then writes the lines to the _webout

filreref. As the lines are written, any macro references are resolved, and unlike the

RESOLVE() function, there is no limit of data size. This is a hugely powerful facility. In

the simplest example, we could have an HTML file where we have a macro variable for

the title, which would be replaced as the HTML is streamed to the browser.

Figure 9-5.  Using resolve function means we see this from the HTML generated

Chapter 9 SAS Procedures

299

A more complex example shows how macro variables and other macro language

such as macro functions are all resolved when used within PROC STREAM:

%let name=Phil Mason ;

proc stream outfile=_webout ;

BEGIN

<HTML>

<h1>Hello &name</h1>

The time is %sysfunc(time(),time.)

</HTML>

;;;;

run ;

The output produced by this is displayed in Figure 9-6.

An even more complex example shows how all macro language is resolved by PROC

STREAM, so even if you use macro programs, they will resolve and what they produce

will be included into the stream. If you have a Stored Process with the following code

%let name=Phil Mason ;

%macro loop(n) ;

 %do i=1 %to &n ;

 Counting: &i

 %end ;

%mend loop ;

proc stream outfile=_webout ;

BEGIN

<HTML>

<h1>Hello &name</h1>

The time is %sysfunc(time(),time.)

Figure 9-6.  Output with text resolved from macro function call

Chapter 9 SAS Procedures

300

<p>

%loop(5)

</HTML>

;;;;

run ;

it produces the following output (Figure 9-7).

�Streaming RTF Files with PROC STREAM

PROC STREAM also works well with other kinds of text files, such as RTF files. You could

make a letter and save it as RTF and replace certain parts with macro variables, and

then by using PROC STREAM, you could effectively carry out a mail merge to produce a

customized letter for a set of macro variables.

So if I go into Microsoft Word and make a document like the one shown in Figure 9-8

Figure 9-7.  HTML produced by macro program looping and generating text

Figure 9-8.  Document in Microsoft Word with some macro code

Chapter 9 SAS Procedures

301

I can then save that as an RTF file. This file will have many lines of RTF code, but the

lines of interest to use are the ones with the macro statements on them. These are

\par The date is %sysfunc(date(),date.).

\par

\par Yours sincerely,

\par &name

The following code can be used to read the RTF file in, resolve any macro language,

and write it to a new RTF file: “&streamdelim;”

%let name=Phil Mason ;

filename oldrtf "F:\letter.rtf" recfm=v lrecl=32767;

filename newrtf "F:\letter1.rtf" recfm=v lrecl=32767;

proc stream outfile=newrtf quoting=both asis;

begin

&streamdelim;

%include oldrtf;

;;;;

�DOSUB

We can also run SAS code while processing the PROC STREAM by using the dosub

function with a %sysfunc. SAS code to be run is pointed to by a fileref, and then the

dosub uses that fileref. If you have some code that you want to run during PROC

STREAM, such as this

filename myHTML "temp.txt";

data _null_;

 file myHTML;

 set sashelp.class end=end ;

 if _n_=1 then put '<h1>This is my heading</h1><table>';

 put '<tr><td>' name '</td>' '<td>' age '</td></tr>' ;

 if end then put '</table>' ;

run;

Chapter 9 SAS Procedures

302

you can run the preceding code by pointing to the file it is in (dosub.sas) and using the

dosub function to run it in PROC STREAM as follows:

filename makeHTML 'c:\test\dosub.sas' ;

filename myHTML "temp.txt";

filename report "report.HTML";

proc stream outfile=report ;

begin

%let abc=%sysfunc(dosub(makeHTML));

%include myHTML;

;;;;

This runs dosub.sas, which writes HTML to temp.txt. Then in PROC STREAM, we

include temp.txt which writes the HTML that the data step generated out to report.

HTML. Being able to run code on the fly from within PROC STREAM adds a huge

amount of power and flexibility to the use of PROC STREAM.

If you wanted to read a file in to be streamed, without having any macro language

resolved, then you can use the readfile keyword. Often this might be used to get some

content and put it between PRE tags in HTML, since they are used for pre-formatted

content. If you had a log you wanted shown as is in a non-proportional font, then that

would be easily done as shown in the code that follows.

For example, the following code uses readfile to read in some text using the exact

formatting it had in the file. We then use the PRE HTML tags to enclose that text which

indicates that it is pre-formatted text. You can also see that the &name which is inside the

pre-formatted text is not resolved. However, the &name which is inside the text of PROC

STREAM is resolved.

%let name=Phil ;

filename text temp ;

data _null_;

 file text ;

 input ;

 put _infile_;

 cards4 ;

Here is a line

And here is the next line

Chapter 9 SAS Procedures

303

Here is a macro variable - &name

;;;;

run ;

filename dest temp ;

proc stream outfile=dest ;

begin

<PRE>

&streamdelim readfile text ;

</PRE>

My name is &name

;;;;

data _null_;

 infile dest ;

 input ;

 put _infile_ ;

run;

The code produces the following output in the log:

341 %let name=Phil ;

342 filename text temp ;

343 data _null_;

344 file text ;

345 input ;

346 put _infile_;

347 cards4 ;

NOTE: The file TEXT is:

 �Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD10384_D351TQ92_\#LN00216,

 RECFM=V,LRECL=32767,File Size (bytes)=0,

 Last Modified=28 September 2017 21:46:30 o'clock,

 Create Time=28 September 2017 21:46:30 o'clock

NOTE: 4 records were written to the file TEXT.

 The minimum record length was 80.

 The maximum record length was 80.

Chapter 9 SAS Procedures

304

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

352 ;;;;

353 run ;

354

355 filename dest temp ;

356 proc stream outfile=dest ;

357 begin

358 <PRE>

359 &streamdelim readfile text ;

NOTE: PROCEDURE STREAM used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

360 </PRE>

361 My name is &name

362 ;;;;

363

364 data _null_;

365 infile dest ;

366 input ;

367 put _infile_ ;

368 run;

NOTE: The infile DEST is:

 �Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD10384_D351TQ92_\#LN00217,

 RECFM=V,LRECL=32767,File Size (bytes)=358,

 Last Modified=28 September 2017 21:46:30 o'clock,

 Create Time=28 September 2017 21:46:30 o'clock

<PRE>

Here is a line

And here is the next line

Here is a macro variable - &name

Chapter 9 SAS Procedures

305

</PRE>My name is Phil

NOTE: 6 records were read from the infile DEST.

 The minimum record length was 5.

 The maximum record length was 80.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

You can force a new line in the streamed output by using newline. You must have

the stream delimiter followed by newline in order to do this. There is no other way to be

absolutely sure of having a line break in a particular place.

For example, the following code redefines the stream delimiter to be _delim_

and then uses that with newline to make it go to a new line in the output.

filename sample temp ;

proc stream outfile=sample resetdelim='_delim_'; begin

Line 1

delim newline;

Line 2

;;;;data _null_ ;

 infile sample ;

 input ;

 put _infile_ ;

run ;

The log for this is as follows.

393 filename sample temp ;

394 proc stream outfile=sample resetdelim='_delim_'; begin

395 Line 1

NOTE: PROCEDURE STREAM used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

396 _delim_ newline;

397 Line 2

398 ;;;;

Chapter 9 SAS Procedures

306

399

400 data _null_ ;

401 infile sample ;

402 input ;

403 put _infile_ ;

404 run ;

NOTE: The infile SAMPLE is:

 �Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD10384_D351TQ92_\#LN00220,

 RECFM=V,LRECL=32767,File Size (bytes)=16,

 Last Modified=28 September 2017 21:59:28 o'clock,

 Create Time=28 September 2017 21:59:28 o'clock

Line 1

Line 2

NOTE: 2 records were read from the infile SAMPLE.

 The minimum record length was 6.

 The maximum record length was 6.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

If we didn’t redefine the delimiter, then the code would have been like the following

and produced the same result:

filename sample temp ;

proc stream outfile=sample ; begin

Line 1

&streamdelim newline;

Line 2

;;;;

data _null_ ;

 infile sample ;

 input ;

 put _infile_ ;

run ;

Chapter 9 SAS Procedures

307

If we remove the line which forces the newline, then the code will be as follows:

filename sample temp ;

proc stream outfile=sample ; begin

Line 1

Line 2

;;;;

data _null_ ;

 infile sample ;

 input ;

 put _infile_ ;

run ;

And this produces the following result:

451 filename sample temp ;

452 proc stream outfile=sample ; begin

NOTE: PROCEDURE STREAM used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

453 Line 1

454 Line 2

455 ;;;;

456

457 data _null_ ;

458 infile sample ;

459 input ;

460 put _infile_ ;

461 run ;

NOTE: The infile SAMPLE is:

 �Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD10384_D351TQ92_\#LN00225,

 RECFM=V,LRECL=32767,File Size (bytes)=14,

 Last Modified=28 September 2017 22:07:29 o'clock,

 Create Time=28 September 2017 22:07:29 o'clock

Chapter 9 SAS Procedures

308

Line 1Line 2

NOTE: 1 record was read from the infile SAMPLE.

 The minimum record length was 12.

 The maximum record length was 12.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 secondsYou should always check the performance

of code using features like dosub, as it can be quite inefficient in some cases and may

require some tuning or careful design. Read more about PROC STREAM in the SAS 9.4

documentation here: http://documentation.sas.com/?docsetId=proc&docsetTarget

=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docset

Version=9.4&locale=en.

�PROC HTTP
The HTTP procedure lets you issue HTTP requests. This means that you can make GET

or POST requests as well as other kinds of requests. You send data in the request and can

receive a response. Then you’ll be able to effectively make a call to a URL using PROC

HTTP and get the results of it. You can parse the output returned and extract data from

it or do something else with that output. You could call a web service, Stored Process, or

virtually any web page.

�Example Accessing a Web Page
The simplest usage of PROC HTTP is simply to open a web page and receive the response,

which will usually be the HTML. The following code in Listings 9-5 and 9-6 opens the SAS

home page and collects the HTML into a temporary file under the fileref resp.

Listing 9-5.  SAS Program that opens a web page and writes out response

filename resp TEMP;

proc http

 url="http://www.sas.com"

 out=resp;

run;

Chapter 9 SAS Procedures

http://documentation.sas.com/?docsetId=proc&docsetTarget=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetTarget=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetTarget=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docsetVersion=9.4&locale=en

309

Listing 9-6.  SAS Log of Listing 9-5

73 filename resp TEMP;

74 proc http

75 url="http://www.sas.com"

76 out=resp;

77 run;

NOTE: PROCEDURE HTTP used (Total process time):

 real time 1.87 seconds

 cpu time 0.01 seconds

NOTE: 200 OK

�Example Using a Web Service
The following code in Listing 9-7 allocates two temporary files, one which is used as

input to a web service and Listing 9-8 is used to receive the output.

Listing 9-7.  SAS Program that opens a web service passing in a value

dm 'log;clear' ;

filename in temp ;

filename out temp ;

data _null_;

 file in;

 input;

 put _infile_;

 datalines4;

Celsius=0

;;;;

 proc http

 in=in

 out=out

 url="https://www.w3schools.com/xml/tempconvert.asmx/CelsiusToFahrenheit"

 method="post"

Chapter 9 SAS Procedures

310

 ct="application/x-www-form-urlencoded"

 verbose

 ;

run;

data _null_ ;

 infile out ;

 input ;

 put _infile_ ;

run ;

Listing 9-8.  SAS Log from Listing 9-7 that uses a web service

84 dm 'log;clear' ;

85

86 filename in temp ;

87 filename out temp ;

88 data _null_;

89 file in;

90 input;

91 put _infile_;

92 datalines4;

NOTE: The file IN is:

 �Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary Files_

TD15020_D351TQ92_\#LN00044,

 RECFM=V,LRECL=32767,File Size (bytes)=0,

 Last Modified=05 September 2017 21:45:59 o'clock,

 Create Time=05 September 2017 21:45:59 o'clock

NOTE: 1 record was written to the file IN.

 The minimum record length was 80.

 The maximum record length was 80.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 seconds

Chapter 9 SAS Procedures

311

94 ;;;;

95

96 proc http

97 in=in

98 out=out

99 �url="https://www.w3schools.com/xml/tempconvert.asmx/

CelsiusToFahrenheit"

100 method="post"

101 ct="application/x-www-form-urlencoded"

102 verbose

103 ;

URL �= https://www.w3schools.com/xml/tempconvert.asmx/

CelsiusToFahrenheit

METHOD = post

CT = application/x-www-form-urlencoded

In = C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD15020_D351TQ92_\#LN00044

Out = C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files_TD15020_D351TQ92_\#LN00045

104 run;

NOTE: PROCEDURE HTTP used (Total process time):

 real time 0.30 seconds

 cpu time 0.03 seconds

NOTE: 200 OK

105

106 data _null_ ;

107 infile out ;

108 input ;

109 put _infile_ ;

110 run ;

Chapter 9 SAS Procedures

312

NOTE: The infile OUT is:

 �Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary Files_

TD15020_D351TQ92_\#LN00045,

 RECFM=V,LRECL=32767,File Size (bytes)=98,

 Last Modified=05 September 2017 21:45:59 o'clock,

 Create Time=05 September 2017 21:45:59 o'clock

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="https://www.w3schools.com/xml/">32</string>

NOTE: 2 records were read from the infile OUT.

 The minimum record length was 38.

 The maximum record length was 58.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

Note T he URL access method on the FILENAME statement provides quite similar
functionality to PROC HTTP. It might be a better option if you are considering PROC
HTTP. You can read about PROC HTTP in SAS 9.4 here: https://support.sas.
com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n
0bdg5vmrpyi7jn1pbgbje2atoov.htm.

�PROC EXPORT
PROC EXPORT takes a SAS table and converts to another format supported.

The converted formats could be

•	 CSV

•	 EXCEL

•	 JMP

These are delimited files, like a CSV, but with another delimiter.

The file produced is written to a fileref specified using OUTFILE. From a Stored

Process running through the Stored Process Web Application, we could specify this as

Chapter 9 SAS Procedures

https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0bdg5vmrpyi7jn1pbgbje2atoov.htm
https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0bdg5vmrpyi7jn1pbgbje2atoov.htm
https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0bdg5vmrpyi7jn1pbgbje2atoov.htm

313

_webout in order to send the exported data directly back to the browser. The REPLACE

parameter can be specified in order to replace any file which is there already. When

streaming to the browser, we always need to specify this. For example, to stream CSV

data from a specific table back to the browser, we could use a PROC EXPORT like this:

proc export data=sashelp.orsales outfile=_webout dbms=csv replace;

run;

�Use Code with a Macro Variable for the Table Name
To generalize this code so it can be used for different tables, we can replace the table

name with a macro variable. Here is that code:

proc export data=&table outfile=_webout dbms=csv replace;

run;

�Call Stored Process Passing Parameter for Table
If we now create a Stored Process containing the previous SAS code, then we will be able

to call that by using the SAS Stored Process Web Application as follows, remembering to

specify a value for the table to be exported. This will then send the table converted to a

CSV back to the web browser:

http://localhost/SASStoredProcess/do?_program=/User+Folders/phil/My+Folder/

csv&table=sashelp.class

�Use Code in JavaScript to Feed Objects
If you needed CSV data to feed to a JavaScript object, then you could use a line of

JavaScript like the following:

$.get('http://localhost/SASStoredProcess/do?_program=/User+Folders/phil/

My+Folder/csv&table=sashelp.class', function(csv)

�PROC IMPORT
This can be used to read data of various formats into SAS tables. When used with Stored

Processes, you could use this to import the data from files uploaded to the server.

Chapter 9 SAS Procedures

314

Here is some HTML code which will prompt the user for some files to upload to the

server. Note that we set the method to POST, so that we can handle the files being posted

in the HTTP request; the alternative would be GET but that would not work in all cases.

The enctype is set so that we can send multiple files in the upload.

<HTML>

<form method="post" action="http://d351tq92/SASStoredProcess/do?"

enctype="multipart/form-data">

<input type="hidden" name="_program" value="/User Folders/phil/My Folder/

upload">

Enter CSV to upload and import <input name="file1" type="file"><p>

Enter CSV to upload and import <input name="file2" type="file"><p>

Enter CSV to upload and import <input name="file3" type="file"><p>

Show this many rows <input name="obs" type="text" value="10"><p>

Debug options <input name='_debug' type='text'><p>

<input type="submit" value="Run">

</form>

</HTML>

Figure 9-9 is what is displayed when the HTML is used. Notice that when you specify

a type of “file”, you get a button which opens a dialog and lets you browse the file system

and select a file. When files are uploaded, we get a bunch of automatic macro variables

populated which all start with _WEBIN_.

Here is the Stored Process code which the HTML form calls. The PROC SQL at the

start of the code lets us look at the values of the _WEBIN_ macro variables. We get a

Figure 9-9.  Displayed in browser from previous HTML

Chapter 9 SAS Procedures

315

count of the number of files uploaded which is in _webin_file_count, and we use that to

look through each filename to carry out an import on it. We have some code ① to fix up

the file format of the CSV so it is ready for PROC IMPORT. PROC IMPORT imports each

CSV in and assigns it a table name.

proc sql ;

 select * from dictionary.macros

 where name like '_WEBIN_%' ;

quit ;

filename temp temp ;

%macro read_loop ;

 %if &_webin_file_count=1 %then %do ;

 %let _webin_fileref1=&_webin_fileref ;

 %let _webin_filename1=&_webin_filename ;

 %end ;

 %do i=1 %to &_webin_file_count ;

 %let csv_file=%sysfunc(pathname(&&_webin_fileref&i));

 %put &=csv_file ;

 * fix the end of line character for Proc Import ;

 data _null_ ; ①
 infile "&csv_file" sharebuffers termstr=cr ;

 file temp termstr=crlf ;

 input ;

 line=compress(_infile_,'1a'x) ;

 put line ;

 run ;

 filename in "&csv_file" ;

 proc import datafile=temp

 dbms=csv

 replace

 out=file&i ;

 getnames=yes ;

 run ;

 %let dsid=%sysfunc(open(file&i)) ;

 �title "%sysfunc(attrn(&dsid,nobs),comma12.) rows imported from CSV

file: &&_webin_filename&i" ;

Chapter 9 SAS Procedures

316

 %let dsid=%sysfunc(close(&dsid)) ;

 title2 "Table produced: file&i" ;

 proc print data=file&i(obs=&obs) ;

 run ;

 %end ;

%mend read_loop ;

%read_loop

Figure 9-10 is the kind of output you get from the PROC SQL, which shows the

automatic variables that describe the file being uploaded.

As this section is about using PROC IMPORT, let me describe its use in this instance.

PROC IMPORT specifies the file that is being read in by using the datafile option which

in our case points to a fileref, although it can also point directly at a file. The dbms

option specifies what the file format is, and several formats are supported such as

delimited files, EXCEL, and more. The out option specifies what SAS table to create

when the file is imported. The replace option specifies that a file should be overwritten

if it exists already. You can read about the procedure and options in depth in the

documentation.1

1�http://documentation.sas.com/?docsetId=proc&docsetTarget=n18jyszn33umngn14czw2qfw7
thc.htm&docsetVersion=9.4&locale=en

Figure 9-10.  Automatic macro variables available relating to reading files into
stored processes from a web browser

Chapter 9 SAS Procedures

http://documentation.sas.com/?docsetId=proc&docsetTarget=n18jyszn33umngn14czw2qfw7thc.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetTarget=n18jyszn33umngn14czw2qfw7thc.htm&docsetVersion=9.4&locale=en

317

�Summary
In this chapter, we look at some of the most useful SAS procedures for using with stored

processes and building web applications:

•	 Proc STP allows us to run a stored process from a regular SAS

program, meaning it could be run in the background or batch, or we

could run several stored processes from a single SAS program.

•	 Proc JSON allows us to access any data that SAS can access and write

JSON data out. There is quite a lot of flexibility available so we can

even build quite complex JSON structures.

•	 Proc STREAM allows us to take a “stream” of text and send it to a

destination (e.g., the web browser) and resolve all macro variables

and programs as it goes. You can stream all kinds of text, such as

HTML, JavaScript, CSS, RTF, CSV, and so on.

•	 You can use DOSUB to run SAS code while streaming text.

•	 Proc HTTP lets you issue HTTP GET or POST requests and capture

the response for further processing.

•	 Proc EXPORT will convert data the SAS can access into another

format such as CSV or EXCEL.

•	 Proc IMPORT will read in a range of different data and convert it into

a SAS-supported format.

Chapter 9 SAS Procedures

319
© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2

Index

A
Action element, 236
_ACTION parameter

background, 207, 208
combining values, 209
data, 208
FORM, 209
INDEX, 208
JSP, 209, 210

Agile approach, 13
Anchor tag, 79
Application programming

interface (API), 81
Architectural concepts, 14, 15
Asynchronous JavaScript and

XML (AJAX), 85
Authentication

error message, 234
HTML Menu, creation

code, 235
parameter value, 236

Automatic macro variables, 245, 316

B
Bespoke tools, 20
Beyond Compare, 26, 27
Body onload method, 267
Browser support, 81

C
CDN jQuery, 84
Client-side validation, 77
Code comparison tools

Beyond Compare, 26, 27
FC command, 28, 29
WinMerge, 28

Color prompt, 188
Comma-separated values (CSV)

consecutive commas, 105
data step, 106–110
list of values, 105
PROC EXPORT, 110, 111
SASHELP.SAS, 111
spreadsheet program, 105

Common Development
(CDEV), 18

Component integration
testing (CIT), 18

Concurrent versions
system (CVS), 17

Content delivery
networks (CDNs), 84, 85

Cookies, 60, 61
Crossfilter, 84
Cross-platform support, 81
Custom HTML, 37, 38

macro variables, 46
_webout fileref, 39

https://doi.org/10.1007/978-1-4842-5925-2#ESM

320

D
D3, 278, 280
Data, See also Dynamic data; Static data

JavaScript objects, 101, 104
nosastags, 104
Stored process code, 102, 103

Datafile option, 316
Data Integration Studio, 19, 129
Data Library Manager, 193
Data library prompt, 189
Data source item prompt, 184–186
Data structures, 72
Date prompt, 173, 175
Date range prompt, 175–179
_debug flags, 210, 211
Debugging JavaScript, 68, 69
Dependencies

name prompt, 193
prompt defining, sex, 191
SAS code, 191
stored process, 196
user selects values, 193
values for sex, 192

Developing web applications
environments

SAS, 19
tools, SAS, 19
write our own tools, 20

IDE tools, 23, 24
JavaScript IDE, 24–26
Lint tools, 22, 23
multiple environment system flow, 18
techniques, stored processes, 21, 22

Development models
Agile approach, 13
architectural concepts, 14, 15
documents production, 15
freestyle approach, 11, 12

source control systems (see Source
control systems)

V-model, 12, 13
Document Object Model (DOM), 70
dosub function, 301, 302, 304–308
Drop-down menu of choices, 237
Dynamic data

creation, Stored Processes, 100
JSON data, 99
SAS program, 99

E
ECMAScript, 65
End-user documentation, 15
Enterprise Guide, 19, 21, 39

context menu, Stored Process, 156
data sources and targets, 153, 154
execution options, 152
icon, Stored Process, 155
labelling and saving, Stored

Process, 148
location to run code, 150–152
log, Stored Process run, 157
modifying stored process

context menu, 159
general tab, add new

prompt, 161, 162
menu in left pane, 160
new prompt, creation, 160
prompt type, choosing (see Prompt

types)
new Stored Process wizard, 149
process prompts, 152, 153
prompting system, 157–159
results tab, 156
SAS code, 149, 150
stored process creation, 148
summary page, wizard, 155

Index

321

Event-handler attributes, 72
Event handlers, 70
eXtensible Markup Language (XML)

create SASHELP.CLASS, 113–115
Proc Print, 113
reading XML data into SAS, 112, 113
text file, 112

F
File/directory prompt, 186–188
fileref, 117
Form attributes

autocomplete, 58
enctype, 58
get, 58
method, 58
name, 58
post, 59
target, 58

FORM tag, 34–36, 236
Freestyle approach, 11, 12
Functionality, 82

G
GitHub, 17
_GOPT_DEVICE, 211
_GOPT_HSIZE, 211
_GOPTIONS, 212
_GOPT_VSIZE, 211
_GOPT_XPIXELS, 211
_GOPT_YPIXELS, 212

H
Handsontable, 84
Hide at runtime box, 162

Highcharts, 84, 276, 277
Highmaps, 84
Highstocks, 84
HTDOCS directory, 73, 74
HTML

add HTML to web page
HTML forms, 51–53
macro variables, 46–51
multiple data, 45
template, 44

CSS, 33
form attributes (see Form attributes)
FORM tag, 34–36
generate HTML, stored process

basic ODS, 37
custom HTML, 37, 38
PROC STREAM, 39
STPBEGIN and STPEND

macros, 39–44
head section, 33
menus, Stored Process, 54–57
persistence (see Persistence)
SAS library, 63
simple HTML code, 32
structure, 33

HTML5, 31
HTML form, 51–53
Hyperlink prompt, 167, 168

I
Index page

context menu, 206
link, Stored Process, 205
metadata folder structure, 204
run stored processes, 204
Stored Processes, list of, 204

INPUT/PUT statements, 38

Index

322

Input streams, 196
Interactive Development

Environment (IDE), 23, 24

J, K
JavaScript

debugging, 68, 69
description, 65
ECMAScript, 65
event handlers, 70
functions, 77
generate, Stored Processes

feed data to object, 72, 73
load data, 72
running SAS code, 71

HTML
attributes of tags, 69
basic DOM, 70

interactivity to web pages
pop up window, 76, 77
URLs, 79, 80
validating form fields, 77–79

libraries to HTML, 71
limitations, 65
program, 66, 67
web server

directories, 74
libraries, 75
relative paths, 74

writing and testing, 67, 68
JavaScript debuggers

Chrome developer tools, 25
Firefox developer tools, 25
Internet Explorer developer

tools, 25
Safari developer tools, 26

JavaScript dot notation, 88

JavaScript libraries
benefits, 81, 82
CDN, 84, 85
cost, 83
D3, 278, 280
ease of use, 83
functionality, 83
grids, 272, 275
Highcharts, 276, 277
jqGrid, 273, 274
jQuery (see jQuery)
popularity, 82
W3Schools, 83

JavaScript Lint tool, 23
JavaScript Object Notation (JSON)

data source for JavaScript objects, 115
data step, 122
example, 116
Lint, 121
Proc Print output, 120
reading, 117–121
SAS data to produce, 122
SASHELP.SAS, 123
W3Schools website, 115

JavaServer Pages (JSP), 22
jqGrid, 83, 273, 274, 292
jQuery, 83

actions, 94–96
AJAX, 85
code, 87
elements selection, 92

class, 91, 92
ID, 90
Tag Name, 89

functionality, 87, 88
function, single and double clicks, 95
hello world program, 86
HTML page, 93

Index

323

methods, 94
script tag, 86
$ sign, 88
web applications, 85

jQuery JavaScript library, 75

L
Lint tool, 22, 23
Locking, 16
Logs

metadata server, 264, 265
object spawner, 266
pooled workspace server, 262–264
Stored Process Server Logs, 261, 262
workspace server, 262

M
Macro functions, 299
Macro programs, 49
Macro variables, 46–48, 50, 247, 248, 313
Management Console, 20

application server drop-down
menu, 134

connection profile, SAS metadata
server, 130

context menu, metadata folder, 132
context menu, stored process, 140
editing source code, 136
edit Source Code prompt, 137, 138
folders tab, 131
metadata folders, 131
New Stored Process wizard,

page, 132, 133
prompting, Stored Process

administered
folder icon, metadata folders, 145

general tab of properties window, 141
new prompt window, 143
parameters, Enterprise Guide

running, 146
parameters tab of properties

window, 142
prompt type and values window, 144
results tab, 146
screen showing parameter, 144
source code in Metadata, 145

result capabilities, 138
SAS Stored Process servers, 133
server type, selection, 134
source code location, 135
source code repository, 135
Stored Process creation, 139
storing code on disk, 135
Workspace servers, 134

Metadata, 3, 4
Metadata folder structure, 204
Metadata Server Logs, 264, 265
_METAPERSON, 214
_METAUSER, 214
Method element, 236

N
Non-blank value box, 162
Non-matching brackets and quotes, 121
Notepad++, 67
Numeric prompt, 168–172
Numeric range prompt, 172, 173

O
Object Spawner Logs, 266
_ODSDEST, 212, 241
_ODSOPTIONS, 212

Index

324

_ODSSTYLE, 212
_ODSSTYLESHEET, 212
Output prompts, 196

P
Persistence

cookies, 60, 61
files/tables, 62
storage, 60
URL, 62

Personal Development (PDEV), 18
Platform differences, 15
Pooled Workspace Server

Logs, 262–264
Procedures, SAS

PROC EXPORT, 312, 313
PROC HTTP, 308–312
PROC IMPORT, 313, 314, 316
PROC JSON, 289–296
PROC STP, 283–289

Process prompts, 152, 153
PROC EXPORT, 110, 312, 313
PROC HTTP

web page, accessing, 308, 309
web service, 309–312

PROC IMPORT, 313, 314, 316
PROC JSON, 289–296
PROC PRINT statements, 120
PROC STP, 283–289
PROC STREAM, 39

data step, 297, 298
DOSUB, 301, 302, 304–308
stream data, 298–300
streaming RTF files, 300, 301

_program, 48, 52, 53
_PROGRAM, 214
Prompt manager, 158

Prompt types
color, 188
data library, 189
data source, 184, 185
data source item, 185, 186
date, 173, 175
date range, 175–179
file/directory, 186–188
hyperlink, 167, 168
numeric, 168–172
numeric range, 172, 173
text (see Text prompt)
text range, 167
time, 179, 180
time range, 180–182
timestamp, 182, 183
timestamp range, 183, 184
variable, 189, 190

Q
Query Builder, 216

R
Read-only values box, 162
Release management, 17
REPLACE parameter, 313
Requirements documentation, 15
Reserved macro parameters

automatic macro variables
_METAPERSON, 214
_METAUSER, 214
_PROGRAM, 214
_SRVNAME, 214
_SRVPORT, 214
stored process, 215
_STPERROR, 214

Index

325

_URL, 215
_USERNAME, 215

macro variables, %stpbegin
_ACTION (see _ACTION parameter)
_DEBUG, 210, 211
_GOPT_DEVICE, 211
_GOPT_HSIZE, 211
_GOPTIONS, 212
_GOPT_VSIZE, 211
_GOPT_XPIXELS, 211
_GOPT_YPIXELS, 212
_ODSDEST, 212
_ODSOPTIONS, 212
_ODSSTYLE, 212
_ODSSTYLESHEET, 212
_RESULT, 213

resolve() function, 238, 297, 298
_RESULT, 213
Revision control systems, 16

S
Sample stored processes, 206
SAS background, 1, 2
SAS/ACCESS, 2
SASHELP.CLASS, 114, 123
SAS/IntrNet, 1, 2
SAS Stored Process servers, 133
SAS Stored Process Web Application, 2, 47

HTML forms to run Stored Processes
automatic macro variables, 245
check boxes, 243, 244
drop-down menu of choices, 237
form tag, 236
graphs, display, 241
log, 244
macro variables, 246
menu in web browser, 240

ODS destination drop-down
menu, 242

_ODSSTYLE=SEASIDE, 243
resolve function, 246
RTF choosing, MS Word, 242
SAS code, 239, 240
time taken, 244
web browser menu, 238

reserved macro parameters (see
Reserved macro parameters)

upload files (see Uploading files)
SAS Studio, 19
SAS Workspace servers, 5
Scalability issues, 14
Script tags, 71
Sencha Ext JS, 84
Server-side validation, 77
Servlet container, 62
Sessions

data stored, 256
graphs, 259, 260
macro variable and table

available, 257, 259
Stored Process, 257
stored process error, 259
storing macro variable values, 256
stpsrv_session function, 257
web browser displays, 258

Source code repository, 135
Source control systems

archive and backup, 17
concurrent development, 16
configuration, 16
locking/branches, 16
release management, 17
tracking changes, 16

_SRVNAME, 214
_SRVPORT, 214

Index

326

Static data
CSV (see Comma-separated

values (CSV))
description, 104
JSON (see JavaScript Object

Notation (JSON))
XML (see eXtensible Markup

Language (XML))
Stored process

benefits, 6, 7
creation

Enterprise Guide (see Enterprise
Guide)

management console (see
Management Console)

dependencies, 190–196
description, 3
features, 7, 8
fileref, 8
input streams and output

prompts, 196–201
loading, web page, 271, 272
macros, 39, 40
SAS code stored in metadata, 3
SAS code stored on disk, 4
SAS products requirement, 9
SAS program, 3
SAS program convertion, 128–131
SAS Stored Process servers, 5
server logs, 261, 262
skills, 8
techniques, building applications, 21, 22
web application, 5
vs. Workspace servers, 4, 5

STPBEGIN and STPEND macros, 8, 39–44
_STPERROR, 214
stpsrv_session function, 257

Subversion (SVN), 17
System Development Life

Cycle (SDLC), 11, 12
System Integration Testing (SIT), 18

T
Team Foundation Server (TFS), 17
Technical documentation, 15
Text editors, 121
Text prompt

getting values, 165
options, populating values, 164
sort order, dynamic prompt values, 166
specifying number of values, 166
user selects values, 164

Text range prompt, 167
Time prompt, 179, 180
Time range prompt, 180–182
Timestamp prompt, 182, 183
Timestamp range prompt type, 183, 184

U
UNIX system, 63
Uploading files

code prompts, 249
data, 252
macro variables and

values, 247, 248, 251
passing multiple parameters, 252–256
SAS code, 250, 251
temporary location, 246
web browser displays menu, 249

_URL, 215
User Acceptance Testing (UAT), 18
_USERNAME, 215

Index

327

V
Variable prompt, 189, 190
Version control systems, 16
Virtual DOM frameworks, 70
Visual analytics, 2
V-model, 12, 13

W
w3.css CSS3 library, 75
W3Schools online tutorial website, 66
Waterfall model, 12
Web application building, Stored

Processes
access, 228–231
adding graphs, 231, 232
modify stored process, 225, 226

parameter, applying, 233–236
Query Builder, 216–218
run Stored Process from Excel, 229
stored process creation, 224–231

Web applications, 4
Web browser, 36, 121
WebDAV server, 101
WEBIN macro variables, 314
_WEBOUT fileref, 39, 40, 297, 298
window.open method, 267
WinMerge, 26, 28
Workspace Server Logs, 262
Workspace servers, 4, 5, 134

X, Y, Z
XML Mapper, 112
XMLMaps, 112

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	Background
	What’s a Stored Process?
	Benefits of Stored Processes
	Other Key Features of Stored Processes
	Skills Needed
	SAS Products Required
	Summary

	Chapter 2: Developing Applications
	Development Models
	Freestyle Approach
	V-Model
	Agile
	Architectural Concepts
	Useful Documents to Produce
	Source Control Systems

	Environments for Developing Web Applications
	Ways to Develop with SAS
	Commonly Used SAS Tools
	Write Your Own Tools in SAS
	Simple Techniques for Building Applications with Stored Processes

	Useful Tools for Building Web Applications
	Lint Tools
	IDE Tools

	Using a JavaScript IDE
	JavaScript Debuggers

	Code Comparison Tools
	Summary

	Chapter 3: HTML
	Importance of Using HTML5
	HTML Basics
	FORM Tag
	Ways to Generate HTML
	Basic ODS
	Custom HTML
	PROC STREAM
	Writing Your Own Custom HTML
	STPBEGIN and STPEND Macros

	General Techniques to Add HTML to a Web Page
	Macro Language
	HTML Forms

	Making a Stored Process Generate Its Own HTML Menu
	Form Attributes

	Persistence – How to Pass Data Between Stored Processes
	Storage
	Cookies
	Files or Tables
	URL

	Where to Put HTML Code, JavaScript Libraries, Images, and More?
	Summary

	Chapter 4: JavaScript
	Basic Example of a JavaScript Program
	Writing and Testing
	Debugging JavaScript
	Using JavaScript with HTML
	Basic DOM

	Using Stored Processes to Generate Pure JavaScript
	How Data Is Stored and Used
	How SAS Stored Processes Can Feed Data to Objects

	More About Where to Put Files on Your Web Server
	Directories
	Relative Paths
	Specifying Libraries

	Building Interactivity with JavaScript
	Pop-Up Windows
	Validating Form Fields
	Linking to One or More Other URLs

	Summary

	Chapter 5: JavaScript Libraries
	Benefits of a Library
	Choosing a JavaScript Library to Use As a Framework
	Recommended Libraries
	Content Delivery Networks (CDNs)
	jQuery

	Getting Started
	Selecting Elements in jQuery
	Selecting by Tag Name
	Selecting by ID
	Selecting by Class
	Other Ways to Select Things

	Fundamental jQuery Techniques
	Actions

	Summary

	Chapter 6: Data
	Dynamic Data
	Using Stored Processes to Create Dynamic Data

	How SAS Stored Processes Can Feed Data to Objects
	Static Data
	CSV
	Making a CSV with a Data Step
	Using PROC EXPORT to Make CSV
	SASHELP.SAS in CSV

	XML
	Reading XML Data into SAS
	Using the XML Engine to Create SASHELP.CLASS in XML

	JSON
	Example of JSON
	Read in JSON
	Using JSON Lint
	Using a Data Step to Make JSON
	Using Proc JSON
	SASHELP.SAS in JSON

	Summary

	Chapter 7: Stored Processes
	Converting a SAS Program into a Stored Process
	Creating a Stored Process
	Creating a Stored Process with Management Console
	Prompting from Management Console

	Using Enterprise Guide to Make a Stored Process
	Prompting in Enterprise Guide
	Modifying a Stored Process
	Choosing a Prompt Type
	1. Text
	2. Text Range
	3. Hyperlink
	4. Numeric
	5. Numeric Range
	6. Date
	7. Date Range
	8. Time
	9. Time Range
	10. Timestamp
	11. Timestamp Range
	12. Data Source
	13. Data Source Item
	14. File or Directory
	15. Color
	16. Data Library
	17. Variable

	Adding Dependencies
	Using Input Streams and Output Prompts

	Summary

	Chapter 8: SAS Stored Process Web Application
	Index Page
	Sample Stored Processes
	Reserved Macro Parameters
	Macro Variables Used with %stpbegin
	_ACTION
	Combining Values on _ACTION
	JSPs Used with _ACTION=FORM

	_DEBUG
	_GOPT_DEVICE
	_GOPT_HSIZE
	_GOPT_VSIZE
	_GOPT_XPIXELS
	_GOPT_YPIXELS
	_GOPTIONS
	_ODSDEST
	_ODSOPTIONS
	_ODSSTYLE
	_ODSSTYLESHEET
	_RESULT

	Automatic Macro Variables in Stored Processes Run via SAS Stored Process Web Application
	_METAPERSON
	_METAUSER
	_PROGRAM
	_SRVNAME
	_SRVPORT
	_STPERROR
	_URL
	_USERNAME

	How to Use Macro Variables
	Step-by-Step Guide to Building a Web Application Using Stored Processes
	Step 1: Query Builder
	Step 2: Convert Query into Stored Process
	Step 3: Modify Stored Process
	Step 4: Access Stored Process Web Application
	Step 5: Run Stored Process from Excel
	Step 6: Adding Graphs
	Step 7: Apply a Parameter

	A Note About Authentication
	Creating an HTML Menu for Our Stored Process
	Step 8: Use HTML Forms to Run Stored Processes

	Uploading Files with a Stored Process
	Example: Uploading Three Files
	Passing Multiple Parameters of the Same Name

	How to Use Sessions
	Sessions with Graphs

	Logs That Record Information About Stored Processes
	Stored Process Server Logs
	Workspace Server Logs
	Pooled Workspace Server Logs
	Metadata Server Logs
	Object Spawner Logs

	Linking Stored Processes
	Stored Process Example

	Loading a Stored Process into Part of a Web Page
	Other Recommended JavaScript Libraries
	Grids
	jqGrid

	Highcharts
	D3

	Summary

	Chapter 9: SAS Procedures
	PROC STP
	PROC JSON
	PROC STREAM
	Streaming with a Data Step
	Streaming with PROC STREAM
	Streaming RTF Files with PROC STREAM
	DOSUB

	PROC HTTP
	Example Accessing a Web Page
	Example Using a Web Service

	PROC EXPORT
	Use Code with a Macro Variable for the Table Name
	Call Stored Process Passing Parameter for Table
	Use Code in JavaScript to Feed Objects

	PROC IMPORT
	Summary

	Index

