SAS Stored
Processes

A Practical Guide to Developing Web
Applications

Philip Mason

Apress:

SAS Stored Processes

A Practical Guide to
Developing Web Applications

Philip Mason

Apress’

SAS Stored Processes: A Practical Guide to Developing Web Applications

Philip Mason
Wallingford, UK

ISBN-13 (pbk): 978-1-4842-5924-5 ISBN-13 (electronic): 978-1-4842-5925-2
https://doi.org/10.1007/978-1-4842-5925-2

Copyright © 2020 by Philip Mason

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott

Development Editor: Laura Berendson

Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484259245. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5925-2

Table of Contents

About the AUROKccuvcmmimmienminmssssas s annas ix
About the Technical REVIEWETccususssassssnsssansssassssssssasssssssssssssasssssssssnsssassssasssansss Xi
Chapter 1: Introduction..........ccccmiiismmmmniissssnmmmssssnmmmsssnmmmsssssnsass s 1
572 o1 (o | (0] T o OSSR 1
What's @ STOred PrOCESS?cuicererirriseise s 3
Benefits Of ST0red PrOCESSES.......ccoviriiieiiririssssse s 6
Other Key Features of STOred PrOCESSEScccivvererererieririnenireseris e ses e sesse s sessesessesessssessssenens 7
SKIllS NEBEUBMceceeeeereecrercre e sesre e e e s e re e e e e nnnnn s 8
SAS Products REQUITEM.......ccuvuiiriererieiirsire s sttt s st 9
SUMIMAIY...eeiteeereese e e e e b e e n e R e e e R e ne e Re e e R e e e e e e e e Re e e Ra e nennenrnRnan s 9
Chapter 2: Developing Applications.........ccccvuumsemnmmnssssnnmmssssssnmmssssssnmmsssssssessssssnnenns 11
Development MOUEIS ... e s r e e 11
Freestyle APProach..........co i e 11
VoMOOE] ...voeeeeeescassseseesss et s s b bbbt 12
AGIIB et e E e e e e e e R R e e e e aenan 13
ArchiteCtUral CONCEPIScvvevveierere ettt s p e e e s a e e nnen 14
Useful Documents 10 PrOdUCEcccovriiincninnsse s 15
S0Urce CoNtrol SYSIEMSccvereiriirr e 16
Environments for Developing Web AppliCations........cccvvvrvriernnenienne s sessese e sessessennes 18
Ways 10 DeVEIop With SAS.........ccriirrrrr e s sre e s snes 19
CommONly USEA SAS TOOISceeruererreriererrrserseressessssessessessssessessessessssessessesssssssessessessssensessens 19
Write Your OWn TOOIS in SAS.........cccon s 20
Simple Techniques for Building Applications with Stored ProCesses........cvvrvvererenserserserens 21

iii

TABLE OF CONTENTS

Useful Tools for Building Web AppliCationscccvvvreninininne s sss s sessens 22
L (00 22
1L 23

USING @ JAVASCHIPL IDEcoevevererese e seressesee e ssessessesessessessesas s ssessesasssssessesaessssesnesassessasnensenas 24
B LT BT] 0 T=T o o 24

Code CompariSon TOOIS........ccciuirrniinin s s p e s 26

SUIMIMANY....eeeereecrere s e e e e s e s se e e e e e e e s Re e e re e ne s e e e Re e s re e nensn e nrnnnes 29

Chapter 3: HTMLccoiiiieeeeinnnininsssssssssssnnsessssssssssssssssssssssssssssnnnsssnssssssssnnnnnnnnesssnsnns 31

Importance of USING HTMLS.........co. e 31

HTIMIL BASICSvvucerseerreesessesessesessssesesssssssssessessssssssnssssssssnsssssssnsssnsssnns 32
a0 31 - T 34
Ways t0 Generate HTIVILccoccoienerercrercserese s s s e ses e snsnens 36
General Techniques to Add HTML t0 @ WED Pageccccveverencrnenenenerese e 44

Making a Stored Process Generate [ts Own HTML MeNU..........cocuerenrnesesesesssesessesesssessssesenns 54
FOrmM ALDULES ... e 57

Persistence — How to Pass Data Between Stored ProCessescocuvrnmsnensssnssssssesssssnens 59
R3] (0] Vo< RSN 60
COOKIS ..vuvurreuerensessssesessee s s e s s e se e s e s e s b e e e e e R e b e e e R e e R e R e e e e e e e Re e R e e e n e rnns 60
FileS OF TADIEScveveerreerrnesise e p e e ne e nr s 62
URL ..ttt R e R R e E R e e Re e e R e Re e e 62

Where to Put HTML Code, JavaScript Libraries, Images, and More?ccccovevvvverrerenensensenaens 62

£ 111 4= 7R 64

Chapter 4: JavaScript........ccovemmsmmmsmmmssnmmssmsssmmssmssssmssssmssssssssssssssssssssnsssassssnsssannas 65

Basic Example of @ JavaScCript Programcccvcveevevennnseniesssensessessssssessessesssssssessesssssssessesaes 66

WHtING and TESHINGcecceicicirsir e s s b r s e nne 67

Debugging JavaSCripL.........ccovrerrrcrerener e 68

Using JavaScript With HTIMLc..ccoiieicsrese s se s sessesens 69
BASIC DOM ..o s n e e ne e 70

Using Stored Processes to Generate Pure JavaScCript........c.cccovvrernnnnesnesessse s sessssesens 4!
How Data Is Stored and USEdcooucevrenerincmnsesnnese s sessessssesessnnes 72
How SAS Stored Processes Can Feed Data to Objects.........ccccvvvvrivsrnvcnnssnssc s 72

iv

TABLE OF CONTENTS

More About Where to Put Files on Your Web SErver..........cocovcnnnnnsnssssesesssssese e 73
D=0 (0] N 74
Relative Paths..........coiii s 74
SPECITYING LIDIAIIES...ceveireierierereserseresesse s ssese s s e s e ssessese s e ssessesaese s e saesaess s e ssesaessesssnensesaes 75

Building Interactivity With JAVaSCHPEccvceverrirere s enes 76
POP-UP WINAOWSooirieeeierieriee e ressse e e sessee s sae s e s see s e saessessaesaesaessesssesaesaessssnsesassansnens 76
Validating FOrm Fields.........cooeeeririene et s s a e sne s s 77
Linking to One or More Other URLSccccvererreriereressersersessessnsessessessssessessesssssssessessessssessessens 79

1] 1= SRS S RO S 80

Chapter 5: JavaScript LIDrariescocmsmsmsmsmsmsmsmssasasasasas 81

Benefits 0f @ LIDFary........covcoieerss s 81

Choosing a JavaScript Library to Use AS @ Frameworkccovevnenennsesnsessnesesssessssessssenens 82

Recommended LiDraries ... s s sssesssssssas 83
Content Delivery NETWOrKS (CDNS)ccccvuerrererrerieresersersesesssssssessessesessessessessssessessessessssessessens 84
(L= S 85

[T T = (=T o R 86
Selecting Elements in JAUETYcovcvieirisnnse e et 88

Fundamental jQUEry TECRNIGUES.........ccveruereriiierire s e 93
ACHIONS.....ecececireee e e e ne e n R 94

1] 1= OSSOSO 96

Chapter 6: Data........cccuseemmmmsssnnnmmmsssnnnmmmssssnmmssssssnmessssssnnessssssneessssnnnsesssnnnnessssnnnnnssss 99

03 F= Ly 1o | S 99
Using Stored Processes to Create Dynamic Data...........cccevvrenennnernsesensesesesesessesessssenennes 100

How SAS Stored Processes Can Feed Data 10 Objectscccvvvrnennenennsennseseseses e 101

SHALC DALA ... —————————— 104
CSV ettt R E e e 105
XIVIL. o R R R R R nn 11
USON s 115

£ 11134 7R 124

TABLE OF CONTENTS

Chapter 7: STOred ProCeSSESuuuussesrrsssssnnsssssssnnsssssssnsnssssssnnnssssssnnsssssssnnssssssnnnnss 125
Converting a SAS Program into @ Stored ProCESS.......cccccvreverenernserenseser s ses e sese e 125
Creating @ STOred PrOCESScccverininiinere s n s s st 129

Creating a Stored Process with Management CONnSOIeccccvvevercerverreenercersenseeseersennens 130
Using Enterprise Guide to Make a Stored ProCeSSccvvvnvrennsnsnsenessssessesessssesessens 147
Adding DEPENUENCIES......cccveriirsirere e s s b p e p e e nn 190
Using Input Streams and Output Prompis ... 196
£ 1117 S 202

Chapter 8: SAS Stored Process Web Application.........ccccusemmmmnssssnnnmssssssnsssssssnnns 203
10 ey T SRS 203
SAMPIE STOrEA PrOCESSESvecvrvereerierirserere st sene st s s sa s e s e s sae e s e s saesse e s saesaeses e saenaes 206
Reserved Macro Parameters.........covrinninnnns s s 207

Macro Variables Used with %Stpbegin ... 207
Automatic Macro Variables in Stored Processes Run via SAS Stored
Process Webh APPlICALIONccvceveverrerierierersenere s sessessesaeses e ssessessssessesaessssessessesassesensesas 213
How t0 Use Macro VariabIEs.........c.coumeneninnssesesessssssse s e sesesssssssssssens 215
Step-by-Step Guide to Building a Web Application Using Stored ProCcesses........cvevrervereens 216
A Note About AUtRENEICALIONccovreerce s 234
Creating an HTML Menu for Our STOred ProCESS.......ccvveveverrerserersnsenseressesessessessessssessessees 234
Step 8: Use HTML Forms t0 Run Stored ProCESSEScuvvvrerverereserserersessssessessessessssessessens 236
Uploading Files with @ ST0red ProCESSccceeerrreriniennenire st se e ses e sens 246
Example: Uploading Three Files........ccrnnininnn s s ssssessesnes 249
Passing Multiple Parameters of the Same Name............ccocvrnvrininnicnnnsnnse s 252
HOW 10 USE SESSIONS.......covecrereerreerreerenesessese e ses e ses e se s ses e sesse s e e ses e e ssssessesesessesenns 256
SeSSIoNS With GraphS ... e e nne 259
Logs That Record Information About Stored ProCESSES........cccvveererererenerresesessesesesesseesessenenns 261
Stored ProCeSS SEIVEI LOGScocvueeerrererrnesessesesrenesesesessese s sessesessssessssesessssessssessssssssssenns 261
WOrKSPACE SEIVEE LOUS....eiueerreerereserseesseesessesessesessesesessesessssessssessssssssssssssssssssessnsssssssnens 262
Pooled WOrkSPace SEIVEr LOGSccurrreerermrersenersssesesesesssssssssesessessssssssssssssssesesssnssssnsssnnes 262
Metadata SEIVEr LOGSccovererererrenerensesesesessese s sesse e s e ses e sss e s sessesessssessssessnses 264
ODJECT SPAWNEE LOGS......ccerueerreereeeresesesseserese e s e sseseses e ssesesse e sessesessssessesesessesesssnsssnnes 266

TABLE OF CONTENTS

LiNKIiNG STOred PrOCESSES ..cvvevvererrersersessrsersersesssssssessesssssssessessesssssssessesssssssessessessssessessesssssnsessens 266
Stored ProCeSS EXAMPIE......cccevrererrerierersssenseressesessesessessesssessesssssssessessessssessessesasssssensessens 267
Loading a Stored Process into Part of a Web Page.........ccccoovvvnvrnicnnisnnnnscrnscsne e 271
Other Recommended JavaScript LIDraries ... sessesesss s sessesnes 272
€0 3 272
HIGRCRAMS ... s 276

D3 e ———————————————— AR E e e e nE s 278

£ 1117 S 280
Chapter 9: SAS ProCedUres......cciuussssmmmsssssnnsmsssssnnsssssssnnsssssssnnnssssssnnssssssnnnssssssnnnnss 283
o (LR I OO RSS 283
PROC JSON ...oieiecceeess s bbb e 289
PROC STREAM........cccoueeeeessssssssssssssssssssssssssssssssesesesesessnsssnsnsnsnsnenes 296
Streaming With @ Data STEP......ccvvvrvierierrrirrrre e s sa e nne e 297
Streaming With PROC STREAM.........ccccecevererrerereesesseressessesessessessessssessessesssssssessesssssssessessens 298
PROG HTTP...vititeeseeseeeee s ses e ss st ssss s nsssnenaenes 308
Example AccesSing aWeh PAge........cccvvererieriernee e rerres e sesses e e sessee s ssesessessaesnessenns 308
Example USiING @ WED SEIVICEcoivverrerierererrereressssessessesaessssessessesssssssessesssssssessessssssssssesaes 309
PROG EXPORT......ccuiteeeeeeeesssssssssssssssssssssssssssssesesesesesssnsnsssnsnsnsnsnes 312
Use Code with a Macro Variable for the Table Name..........ccooorerrnenniesenese e 313
Call Stored Process Passing Parameter for Table..........ccccoovvvvrinininsniniesssensesesssessennens 313
Use Code in JavaScript 10 Feed ODJECtS.......ccvvvrenrecrncrre s 313
PROG IMPORT.......cceticeeeeeesssssssssss s ssssss s se e e e s snsssssssnsnsnsnsnensnenen 313
£ o S 317
INA@X iiiiiisnnnnnnnnnnnnssssssssnnnnnnnnnessssssssnnnnnnnnnsssssssssnnnnnnnnessssssssnnnnnnnnnssssssssnnnnnnnnnesssssnnn 319

vii

About the Author

Philip Mason is a SAS expert with 35 years’ experience in many different industries.

He has worked extensively with SAS his entire career and has shared his expertise with
others. The last few years he’s been working on building web applications using SAS
and other technologies. For most of the last decade, Phil has enjoyed working around
SAS architecture; mentoring and training people in SAS; working with big data, business
intelligence, and analytics; and tuning and building web applications using SAS Stored
Processes, HTML, and JavaScript. He’s the author of several books on SAS.

ix

About the Technical Reviewer

Allan Bowe is a SAS geek with a passion for HTML5 apps
on SAS. Allan has made a number of contributions to the
SAS community such as SASjs (an adapter for bidirectional
communication between HTML5 and SAS), sasjs-cli (a
command-line tool for managing SAS project compilation,
build, and deployment), and macrocore (a SAS macro library
for building SAS apps on both SAS 9 and Viya).

When not building web apps, Allan is working on Data
. Controller, a commercial data capture, data quality, and data
4 governance web app for both SAS 9 and Viya.

CHAPTER 1

Introduction

SAS has been utilized by programmers for more than four decades. To keep up with the
ability to retrieve, edit, modify, and report on nearly any type of data from anywhere,
SAS has built SAS Stored Processes. Although you can find information about Stored
Processes in the SAS documentation on the SAS site, this book focuses on helping
programmers utilize the SAS Stored Process Web Application to create amazing tools for
your end users.

Background

When I started using SAS in 1985 on IBM mainframes, I was using SAS 82.5 - in the
days before SAS started renumbering its products into the series we know today. We
used terminals connected to the mainframe and could write a program that was either
run interactively or saved and run in batch. The output produced was basic by today’s
standards and was effectively static output that was printed out and handed to users. If
changes were needed, we would edit the programs and re-run them.

Obviously, SAS has evolved over the decades, adding more and more features that
are useful in processing data into information and delivering it to users. Now you can
access data anywhere, process it, and display it in almost any way. The following are just
a few of the innovations in SAS over the years that have occurred since I started using
SAS:

e SAS/AF lets us produce applications which run in the SAS
environment and are very flexible. There are now many people
porting their old AF applications to Stored Processes running in a
web browser.

e SAS/IntrNet enables a web browser to prompt users for information
before using that to customize results of programs. Changing these
old programs to Stored Processes is very easy.

© Philip Mason 2020
P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_1

https://doi.org/10.1007/978-1-4842-5925-2_1#ESM

CHAPTER 1 INTRODUCTION

e ODS lets us easily provide output in a wide range of formats using the
same program. For instance, we could produce HTML, RTE and PDF
from one report. This is all very helpful when using Stored Processes.

e SAS/ACCESS, together with Filename and Libname engines, lets us
read and write lots of different data formats whether Oracle database,
EXCEL spreadsheets, XML files, or many others. This enables Stored
Processes to read and write to almost any supported system or file
format.

e SAS Visual Analytics provides a complete platform for analytics
visualization, enabling you to identify patterns and relationships
in data that weren'’t initially evident. Interactive, self-service BI and
reporting capabilities are combined with out-of-the-box advanced
analytics so everyone can discover insights from any size and type of
data, including text. Stored Processes can be used directly from VA or
included in reports. You can also link to a URL, which can be running
a Stored Process.

Since SAS 8.2 came out in 2001, web applications could be used through
SAS. Originally, HTML was generated from a data step, which could then be used
through a web browser. Then SAS/IntrNet came along which enabled the creation of
more flexible web apps. But now SAS has the SAS Stored Process Web Application - a
powerful way to deliver content to a web browser. The Stored Process Web Application
runs a Stored Process on behalf of a user and can deliver the output to the web browser.
Stored Processes can be used in this way to build web applications. They can produce all
the HTML and JavaScript needed to make a web application or just be used to produce
some data needed for a table displayed.

Some of these technologies have lasted many years and are still just as useful today
as they were 20 years ago. Some of the technologies are hardly used any more (such
as SAS/AF), but SAS has provided new and improved technologies in their place.
Never before have there been so many ways to turn data into information and build
applications with SAS.

This book will show you how to use the web technologies that you frequently
see used in impressive websites. By using Stored Processes, you will be able to build
applications that exploit CSS, JavaScript, and HTML libraries, which will enable you
to build powerful and impressive web applications using SAS as the back end. In the

CHAPTER 1 INTRODUCTION

last few years, some SAS users around the world have started to do this with amazing
results. This kind of approach is still very uncommon with SAS users around the world.
People who have SAS skills usually don’t have web development skills and vice versa.
Occasionally, people have both skills but are unaware of how to connect them with the
SAS Stored Process Web Application. This book lays out the skills needed to connect all
of this together.

What'’s a Stored Process?

A Stored Process lets you write SAS that is stored on a server and use it from many
places expanding on the utility of the SAS Software. A Stored Process can be executed as
required by requesting applications.

Stored Processes were introduced in SAS 9 in 2002 and are essentially just a SAS
program with some metadata associated with it. Metadata is generally defined as “data
about data.” Stored Processes are similar to the concept of a SAS macro, in that a Stored
Process can also have a range of parameters associated with it; however, there is much
more to a Stored Process in SAS.

Virtually, any SAS program can be a Stored Process. “Just add metadata” and you
can turn your SAS program into a Stored Process! As long as you define at least a few
key things, such as where it will run and where the code is stored, most other things will
default nicely for you. And Stored Processes can always be changed later if you want to
alter any defaults, add parameters, and so on.

There are two parts to a Stored Process:

1. The SAS code, which is run when the Stored Process is executed.
This might be stored within the metadata or stored elsewhere on a
disk as shown in Figures 1-1 and 1-2.

Stored Process

(Metadata) (SAS Code)

Figure 1-1. Stored Process with code stored in metadata

CHAPTER 1 INTRODUCTION

Stored Process

(Metadata)

»(_SAS Code)

Figure 1-2. Stored Process with SAS code stored on disk

2. The metadata for the Stored Process which holds information

about these:

1. Which server it will run on, which can be either a Stored Process server or

Workspace server

2. Which users are allowed to run it, as well as which users can change the

metadata for the Stored Process

3. What parameters can be used, including any ranges, required parameters,

and default values

Web applications are a great way to provide information and functionality to users.

Since they run in a web browser, it means that there is no software to be installed, which

makes it easy for anyone to use them. Running from a web browser means that any

devices which are able to browse the Web can initiate something to run on the web

application. So, whether you want to use your web app on a mainframe, PC, Mac, or

tablet, you will be able to. Remember the web app runs on a server, but you interact with

it through your client. See Table 1-1 for a comparison between stored processes and

workspace servers.

Table 1-1. Feature comparison for Stored Process vs. Workspace servers

Feature SAS Stored Process Server

SAS Workspace Server

Server Started up once and then used to run
Stored Processes of different users

Startup time The first time a server is used, it must
start up, but then will be very fast as it
is already running

Started up when Stored Process is run
and then closed down when complete

Always starts a new server, so depending
on your installation could take very little
time up to 10 or 20 seconds

(continued)

CHAPTER 1 INTRODUCTION

Table 1-1. (continued)

Feature SAS Stored Process Server SAS Workspace Server

User ID When a SAS Stored Process isrunona When a Stored Process is run on a
SAS Stored Process server, itis runon ~ Workspace server, it is executed under
behalf of a user by a special userid. If the account associated with that SAS
you have configured SAS in the default metadata user
way, then Stored Processes will usually
be run under the sassrv user-id. So, if a
SAS metadata user called pmason tried
to run a Stored Process, it would check
whether that SAS metadata user was
allowed to run that Stored Process, and
if s0, it would be run using the sassrv
user-id. This is an important fact to be
aware of when designing applications,
particularly for UNIX systems which are
very fussy about permissions

Stored Processes can produce output which can be sent directly to the web browser.
This is called streamed output. There is a special fileref (_webout) where the Stored
Process execution context can use to steam output directly to the client. In a web
browser, the execution context would be the Stored Process Web Application, and it
would take anything written to it and send it to the client. This is enormously flexible and
powerful. It means that anything you can produce from SAS using ODS, or even a data
step, can be written to a web browser.

Stored Processes can run on SAS Stored Process servers or SAS Workspace servers;
however, many customers find it helpful to use Stored Process servers since they will
typically get started faster since they are shared. A Stored Process server will run under
the sassrv user account (by default); however, if running on a Workspace server, it will
run under the user’s account. Some customers find it useful to run on a Workspace
server for security reasons. It is useful to be aware of how the servers are configured and
how many multibridge connections are available of each of the defined servers. This can
help in choosing the best one to use.

CHAPTER 1 INTRODUCTION

Benefits of Stored Processes

A Stored Process basically gives your SAS program the ability to run in many more places
than before - not only within a SAS environment but also in other applications and all
kinds of other places. The following are some reasons for using a Stored Process:

o Centralized code on server providing “one version of the truth.”
e The user can be prompted to enter various parameters.

o Parameters can be passed to the Stored Process so that it can be
written in a very generic way.

e Code can be run on a server or grid to provide the best available
environment to run the code.

e Code can be run in many places:
e Web browser
o Microsoft Office: Excel, Word, and PowerPoint
e Many SAS clients
o Windows programs using .Net connection provided
e Many programs using Java connection provided
e Web services
e Accept user input from browser or via parameters on URL
e Produce output in web browser

o Easyto use - You can use a wizard in Enterprise Guide to create a
SAS program and then use a wizard to create a Stored Process from it.

o Logically separates the SAS code (what it does) from the metadata
(who can run it, where it runs, etc.).

e Use the power of ODS destinations.
o Create files such as PDEF, Excel, PowerPoint, and Word.

o Render files produced using various applications such as MS
Word, MS Excel, PDF Viewer, and so on.

CHAPTER 1 INTRODUCTION

o Integrate output produced into other applications written in a range
of technologies such as HTML, Java, C++, and so on.

e Produce JSON or XML files to represent data in the form required by
other objects or applications.

e Use Proc HTTP or Proc STP to run a Stored Process with the Stored
Process Web Application, allowing you to run a Stored Process within
a Stored Process.

¢ Embed URL calls in emails, Word documents, or PowerPoints, so user
can click a link to run Stored Process and produce some content.

e Output produced by a call can be modified in various ways by passing
parameters to it, such as _odsdest or _xpixels.

e Can schedule URLs to run in windows scheduler, which could
produce a package and email it to someone, for example.

e Can run from Excel, Word, PowerPoint, and many other applications,
even without the Microsoft Office Add-in. It just has to be an
application capable of using a URL as input.

o Integrates with many other SAS clients such as the BI Dashboard,
Portal, Web Report Studio, Enterprise Miner, Visual Analytics, Visual
Statistics, and even JMP.

o Integrates with many other applications such as Tableau by
producing an output like a CSV and then automatically downloading
it to client and into application.!

Other Key Features of Stored Processes

The key thing that makes a SAS program a Stored Process is some metadata, which is
defined and points to (or includes) the SAS code. If you compare a Stored Process and
some SAS code that effectively are doing the same thing, you will find that the Stored
Process can be run from many more places and be used in a far more flexible way. For

'Using HTTP headers and Open With.

CHAPTER 1 INTRODUCTION

instance, running the Stored Process via the Office Add-in could bring results into Excel,
or running it with BI Dashboard could populate part of a screen.

If your Stored Process is producing ODS output, then you need to use ODS
statements. SAS has provided some great autocall macros you can use to take care of
this. You simply put Zstpbegin at the start of your Stored Process and %stpend at the
end. There are lots of optional macro variables which can be set to alter the behavior of
ODS if you use these standard macros. Or you could just code your own custom ODS
statements if you want; however, if you don’t use the standard stpbegin and stpend
macros provided by SAS, you might find that the Stored Process doesn’t run as you
expect.

Your Stored Process doesn’t have to produce any output. It might just produce a
table in a database, copy a file, or carry out some other operation in the background. Of
course, generally you will want to provide some kind of output so that you know whether
the process worked or not. Your Stored Process might produce a report of some sort in
HTML for display in a browser, or a PDF file, or some CSV data to be loaded by a Python
program. The possibilities are endless.

The most important fileref to know for the Stored Process programmer is _webout.
It is automatically available when running a Stored Process through the Stored Process
Web Application. Writing to this allows you to write directly to the web browser, which
provides you with a very powerful technique that we will explore later.

You can run Stored Processes from lots of different places within SAS, but also
outside of SAS which can provide a great way to call SAS code from other applications.

Skills Needed

The Stored Process Web Application and/or the Stored Process service API can be used
to implement web apps. An advantage of using the Stored Process Web Application is
that you only need HTML and SAS skills in order to build a web application. However,
if you use the Stored Process service API, then you will need Java skills in order to build
your web application in Java which then calls Stored Processes via the Stored Process
service API.

CHAPTER 1 INTRODUCTION

SAS Products Required

To use Stored Processes in SAS, you will need the following products as a minimum:
o SAS Core
o SAS Integration Technologies

SAS runs across many kinds of hardware and is supported by many operating
systems. For example, you could be running PC SAS on a Windows laptop or using
SAS Studio from a web browser on your iPhone. However, if you want to run Stored
Processes, you will need a server somewhere that you can connect to and run those
Stored Processes, returning the output to you. That server needs to have the appropriate
parts of SAS installed on it to enable Stored Processes to run.

The standard way to develop Stored Processes provided by SAS is Enterprise Guide
which requires Windows, as it doesn’t run on other platforms. JMP is a powerful tool that
runs on Windows or Mac and can access SAS in a number of ways, including the running
of Stored Processes.

If using the Stored Process Web Application, all you need is a browser, which could
be run on PC, Mac, Linux, mobile phone, or tablet.

Summary

We have been introduced to SAS Stored Processes in this chapter and learned some
things about them:

o Astored process is basically a SAS program with some metadata that
says who can run it, where it runs, and what parameters are used.

e You can use stored processes to build web applications and leverage
your SAS infrastructure.

o Stored processes run either on a Stored Process server or a
Workspace server.

o Stored processes work with Microsoft products, Java applications,
and .Net applications and even act as web services too.

CHAPTER 1 INTRODUCTION

o The webout fileref can be used to write directly back to the client
using the stored process.

e Most SAS programmers can use stored processes quite easily without
much extra learning involved.

o Most big SAS installations have the required software available
without needing to purchase anything extra.

10

CHAPTER 2

Developing Applications

When developing applications with SAS, it is wise to keep in mind some principles and
best practices to follow. If you follow these principles, then they will help to avoid many
of the common problems and pitfalls that developers are confronted with. These things
are much easier to implement at the start of a project rather than part way through and
will provide a lot of benefits for the investment of time and effort.

This chapter is aimed at the project manager or architect of a project, as they tend
to be the person who thinks about the project as a whole. Sometimes this will be the
programmer, especially for small projects. There are advantages to following these
principles even with small projects, but the benefits grow as the size of the project grows

in size.

Development Models

There are many ways to carry out development. I will briefly outline some of these now.

Freestyle Approach

The freestyle approach is how many untrained people develop things. It basically involves
just diving in and starting to code with no planning at all. Of course, you need some idea
of what you are trying to build, but that can be a sketch on the back of an envelope or a
vague idea in your head. Many great systems have started this way, and often it is a valid
way to innovate new solutions. However, typically it’s not the best way to develop a big
system or application especially when more than one person is involved in the team.

For many years, the most popular model for larger developments was the System
Development Life Cycle (SDLC) pictured in Figure 2-1. When you look at this, it makes a
lot of logical sense and in fact is pretty much the process any sensible developer would
go through if doing it freestyle.

11
© Philip Mason 2020

P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_2

https://doi.org/10.1007/978-1-4842-5925-2_2#ESM

CHAPTER 2 DEVELOPING APPLICATIONS

Maintenance
,,..J
Implementation

Planning

Design

Analysis

Figure 2-1. SDLC/Waterfall

This model can run into some problems when the stages become very prescriptive
and lots of rules and guidelines are defined in an attempt to achieve best practice. I have
seen companies where there are many long documents that must be delivered at each
stage of this process which can mean that a small development that might take a day to
write code for ends up taking four weeks to complete once all the documents, meetings,
and stages have been done. This model is sometimes called the Waterfall model, as the
diagram can be drawn as a waterfall from “Planning” to “Maintenance.” Sometimes
“Planning” and “Analysis” are replaced by “Requirements,” and a “Verification” step is
added after “Implementation.”

V-Model

The V-model of software development is an extension to the SDLC model. Each phase on
the left of Figure 2-2 has a corresponding phase on the right which is for validation. For
instance, the “Concepts of Operations” is validated by the “Operation & Maintenance.”

12

CHAPTER 2 DEVELOPING APPLICATIONS

Concepts Operation
of &
Operations Maintenance

Requirements System
Verification
hitecture & Validation

Integration,

Detailed Tost &

Design

Implementation

Time

Figure 2-2. V-model

One common problem with this model is that it doesn’t fit the needs of all people
in the project. It’s a nice way for a project manager to look at a project, but not the best
way for a developer. And it is fairly inflexible although still probably a lot better than
SDLC.

Agile

The Agile approach to development has shorter cycles of development and delivery so
we get results quicker which users can see, which in turn affects further development. It
is quite similar to another model called Rapid Application Development, which has been
around for many more years. Agile welcomes changes in requirements, which other
models don’t because it means returning to an earlier phase of the process. Agile has
many iterations of development, testing, and delivery, so users get things in weeks rather
than months. Developers and clients work together closely on an almost daily basis.

This model is sometimes preferred by developers and clients but is harder to manage for
project managers.

13

CHAPTER 2 DEVELOPING APPLICATIONS

Architectural Concepts

It is wise to keep a range of architectural concepts in mind as you develop your software.
This is an incomplete list to remind you of some of the things to consider, which can lead
to a better design:

o Scalability issues - The biggest scalability issue with stored
processes used in web applications is the number of multibridge
connections defined. The default is 3 and that is often far too small.
You need your SAS administrator to increase this number if it is
too small. You may also want to set up your code to run in parallel
threads to improve performance. You might want to grid enable the
code if you have SAS/Grid. You might want to make use of SPDS if
you have that, since it can help improve performance on your tables
removing the need for sorting (for example).

e CRUD issues (Create Read Update Delete) - This is often a
consideration if you are developing web applications and want to
create tables, update records, or delete things. It’s easy to read data,
but there are various issues around these other things. It is more
difficult to use SAS tables with CRUD than using some other database
systems such as MySQL or Postgres.

o Browser differences - If you're developing web applications, then
you need to look at how you support different browsers. You can
detect the browser you are using and potentially write special code to
handle its differences or make use of a JavaScript framework which
will handle many of these issues automatically.

o Complexity of code vs. ability to support it - You can sometimes
write complex code and reduce the number of lines needed.
However, you can usually achieve a similar level of performance by
using a simpler technique that perhaps has more lines. But if things
are easier for a future maintainer of your code to understand, then
you are wise to choose the simpler code.

14

CHAPTER 2 DEVELOPING APPLICATIONS

Platform differences - Will your application only ever run on a
laptop? What if it runs on a huge monitor with many times the
resolution of a laptop? Maybe you want to detect that and change the
way you are producing the user interface. What if it runs on a mobile
phone or tablet? Perhaps you want to detect that and change things.
It is useful to be aware of various development frameworks that
handle different platforms, such as Bootstrap. Many of those systems
allow setting up things on screen with a grid system and defining
different layouts for different sized devices so that you can write one
piece of code for mobile phones, laptops, and large screen devices.

Useful Documents to Produce

It’s best not to go overboard with the production of documents for your development.

However, there are some documents that are usually advisable to create; even if on a

small development, you include them all in one:

Requirements Documentation - Identifies what the system should
look like and be capable of.

Architecture/Design Documentation - Describes how the software
components are designed and should have sufficient information for
programmer(s) to develop the programs.

Technical Documentation - Documents the code, algorithms,

user interfaces, APIs, and so on. It is a document written by the
programmer(s) for other programmer(s) who might come along later
and need to understand and maintain the code.

End-User Documentation - Describes how the software works
for those people that will use it. That could be end users, system
administrators, and support.

Marketing/Training Material - Useful to provide to potential users
of the software to show the benefits.

15

CHAPTER 2 DEVELOPING APPLICATIONS

Source Control Systems

Source control systems are used to track changes to files, maintain different versions of
the same files, and allow multiple people to collaborate during the development phase.
These systems are sometimes called version control systems or revision control systems
too. The main idea is that the system manages source code and maintains a number of
versions and history.

If you have access to Data Integration Studio, this can handle source control for
you - so look no further. You will still need to do some additional configuration beyond
the default, such as setting up a SVN, CVS, or Git server. However, if you don’t have DI
Studio, then read on.

Using source control is extremely beneficial, because as we develop programs, the
system maintains previous versions. We can return to an old version if we need to. We
can compare the current version of the code to old versions to see what has changed.
The system can keep track of who has changed parts of the code. It can manage the code
so that only one person at a time is updating it.

Some important features that you should look for when choosing source control
systems are

e Concurrent development - A source control system should provide
tools to allow multiple developers to work on source code at the same
time. This might provide a mechanism for merging code together in a
controlled way.

o Tracking changes - It should provide a mechanism to see what changes
have been made by people, even when code is merged back together.

o Locking or branches - Locking applies to some source control
systems that manage code by locking it for use by one person at a
time. Other systems take an alternate approach of keeping multiple
copies of code, such as in different branches, which can then be
merged together. A system using locking can handle locking of
modules and checking code in and out. If a team member wanted
to make changes to the code, they could check it out. That would
lock the code so that others could not make changes to it until it
was finished with and checked back in. The benefits of this grow as
the size of a team increases, in that the more people trying to work
together on code, the easier a system like this makes it.

16

CHAPTER 2 DEVELOPING APPLICATIONS

Archive and backup - A system can also handle archiving and
backing up of code. Archiving tends to happen for code that is not
currently in use and therefore is copied away to an archive area so
that it can be retrieved if it is needed in future. Backups are taken
regularly with the aim of being used if code is lost or recent changes
lost. It is for current code that is in use but which we want another
copy kept as insurance.

Release management - Release management is concerned with
releasing versions of code into different environments and can

be helped or managed with a source control system. Often an
application is made up of a number of programs which many people
might be working on together. Many of these pieces of code may
form modules within an application. A collection of these are usually
bundled up into a release. It might be the entire application code or a
collection of modules from the application. When a release happens,
you would usually increment the version of your application (e.g.,
Data_explorer v1.11). Usually you would increment by an integer for
a major release and increment decimals for minor releases. A good
source control system that manages releases would be able to issue
arelease, perhaps by packaging up the new bits and passing them to
another environment. It could also roll back a release by packaging
up a previous release and delivering that to replace a current release
that might have problems.

There are many source control systems available with these features and more are

coming out year by year. Some of the common ones that have been around for many

years are Subversion (SVN), Git, Team Foundation Server (TFS), and Concurrent

Versions System (CVS). There are newer systems like GitHub for which SAS now provides

some integration. This is a fantastic system to use with SAS development, and I suggest

you search the SAS Global Forum proceedings online for papers from users describing

how to use this.

You may have a source control system that you have to use because it is the company

standard or already in use. If you do get to choose, look for one that has a client for your

operating system that supports it and makes it easier to use. For example, GitHub has a

desktop version that can be downloaded for Windows or macOS.

17

CHAPTER 2 DEVELOPING APPLICATIONS

Environments for Developing Web Applications

A development environment is the software that allows you to write, test, and edit a
program. You can develop in a single environment, but it is advisable to use at least
two environments. If you do develop in a single environment and then people use your
application from that environment, then when you have to fix a problem and make an
enhancement, you are doing it with the live code, which is likely to cause problems to
your users. One mistake and the application stops working.

You should develop in one development environment and then deliver the
developed code to production in another development environment. This allows you to
have the current release of your program running in production while you are changing
the development version and getting it ready to become the new production version.

Ifyou are able to have three environments, then that allows you to have a
Development, Test, and Production environment. You then develop in Development
and, when something is ready, deliver it to Test for testing and user acceptance. Once
that is done, it can be moved to Production.

Sometimes people will have a Personal Development Environment (PDEV) as well as
a Common Development Environment (CDEV). Then they can do things in PDEV without
affecting anyone else, and once they are happy with that code, they can move it to CDEV.

Some larger companies have even more environments:

e Common Development (CDEV)

e Personal Development (PDEV)

e Component Integration Testing (CIT)
o System Integration Testing (SIT)

e User Acceptance Testing (UAT)

e Production (PROD)

This allows different kinds of testing to be done in different environments. Figure 2-3
shows what the flow of development would be in a multiple environment system.

Personal Commen Component System User
Development Development —_— Inte_lg_gersattlon —_— Inte_lg_;;:ttlon — Acc$2;?nce — Production

Figure 2-3. Multiple environment system flow of development

18

CHAPTER 2 DEVELOPING APPLICATIONS

Ways to Develop with SAS

SAS provides lots of different tools for developing applications. Each has some

advantages and disadvantages. It's important to know what release of the software you

are using too, as that can make a difference as to what useful features you may or may

not have. For instance, at the time of writing, the latest version of Enterprise Guide has a

data step debugger built into it, whereas prior versions do not.

Commonly Used SAS Tools

Commonly used SAS tools include the following:

PC SAS, in which we can write SAS code of all kinds, but if creating
Stored Processes, we need to also use SAS Management Console.

Enterprise Guide, which can create most kinds of SAS code including
SAS Stored Processes. It spawns a SAS Workspace server to run SAS
code from it.

SAS Studio, which is similar to Enterprise Guide but only requires a
web browser to use. It doesn’t allow creation of Stored Processes via
any kind of wizard, but you can create them programmatically with
standard SAS code. That code would need to make metadata calls
in order to create them, perhaps using some open source macros
available for that purpose.

Data Integration Studio provides a controlled way to create SAS
programs using a collection of transformations and custom SAS code.
It includes the ability to check out and check in code so that teams of
people can work on large systems together.

Office Add-in provides a SAS program window from the add-in
toolbar which lets you write SAS code and execute it on the sever.
The results are brought back and displayed in the Word, EXCEL, or
PowerPoint. You can also view the SAS log.

There are lots of other less common SAS tools that can be used for developing, but I

will be focusing on the ones mentioned already.

19

CHAPTER 2 DEVELOPING APPLICATIONS

Most people will create Stored Processes with Enterprise Guide, and it is the way
that SAS documentation says to create them. Doing this will use a system account for the
stored process though, and it has inherent dangers associated with that. Currently, you
must either use Enterprise Guide or Management Console to create Stored Processes as
there is no other simple way provided by SAS to do so. There are metadata functions that
can be used from Base SAS to create a stored process, and there are even some macros
available that make that easy to do. I recommend taking a look at them.! One nice thing
that Enterprise Guide does for you is to take you through a wizard to help you make the
Stored Process. It also will do things like add the stpbegin and stpend macros around
your SAS code by default so that ODS will work in the various clients you use your Stored
Process with. If you are new to Stored Processes, then use Enterprise Guide to create
them until you find a reason to use another method.

Write Your Own Tools in SAS

As we will see in this book, we can write our own tools. You will be able to create bespoke
tools that you need with the features you want and without features that are not required.
You can leverage the skills you have with SAS to make your tools without needing
knowledge of other languages. They can be SAS macros that we can provide parameters
to choose what we want them to do. Or we can build Stored Processes which are far more
flexible. I have created Stored Process tools like this which run through the web browser
and give me functions like

e Scheduling SAS programs to run

e Analyzing directories of SAS and Enterprise Guide projects,
producing reports summarizing each of the programs

o Displaying the output and logs from scheduled jobs, allowing them to
be viewed

o Displaying the logs or Stored Processes that have run recently or are

currently running

'You can create a stored process from a SAS program with the code located here: https://
github.com/macropeople/macrocore/blob/master/meta/mm_createstp.sas

20

https://github.com/macropeople/macrocore/blob/master/meta/mm_createstp.sas
https://github.com/macropeople/macrocore/blob/master/meta/mm_createstp.sas

CHAPTER 2 DEVELOPING APPLICATIONS

Simple Techniques for Building Applications with Stored
Processes

I have made many a prototype application using one or more Stored Processes in a
matter of hours. You can use some simple techniques to do this kind of thing:

o Enterprise Guide can generate a web page automatically via a wizard
in older versions. For some reason, this was removed in newer
versions of EG.

e Ifyou have a macro that does something (like produce a report
from some parameter choices), then this can be simply turned
into a Stored Process. Just make a Stored Process and put the
macro invocation into it, along with either the macro code or
option to point to an autocall library that has it. You will be able
to define a prompt for each macro parameter and use those
values to invoke the macro. Run this through the SAS Stored
Process Web Application and you have an application based on
your macro.

o Stored Processes, which create their own interactive elements, are
a great way to build applications. For instance, you can make a
Stored Process that produces selection lists, radio buttons, and so
on based on SAS data. This lets you build a form with selections you
can choose from which can then be defined to call another Stored
Process to make use of those selections.

e It's easy to generate HTML with hyperlinks to other HTML from a
Stored Process.

e You can implement drill-down by making your Stored Process
generate HTML links that link to the Stored Process that produced
them, but passed a parameter value in with the call, thereby
implementing drill-down. For example, make a graph that has bars
with drill-down links that call the same Stored Process but add the
info for passing the bar value clicked.

e Make menus by a Stored Process generating forms with HTML, which
then call other Stored Processes.

21

CHAPTER 2 DEVELOPING APPLICATIONS

o JavaServer Pages (JSP) can be created in a particular location with
the same name as a Stored Process. If you then invoke the Stored
Process with a certain _action parameter value, then the JSP will
be displayed, rather than the Stored Process being run. This allows
a flexible program to be written to prompt the user for parameters
before running the actual Stored Process. You can “hack” this process
by simply putting an HTML file in the JSP directory, with a JSP file
type, and your HTML will then be displayed in the same way.

Useful Tools for Building Web Applications

Here is a range of mostly free tools that can be used to make the process of building
web applications with SAS much easier. I will outline some of these tools and describe
how they are useful. Tools come and go though, so some things I mention might not be
available in future or there may be better tools around. Hopefully, being aware of the
kind of tools on offer will enable you to search for others that superseded these ones.

Lint Tools

Lint was originally a tool on UNIX systems that flagged suspicious or non-portable code
in C programs. However, people have extended this functionality to other languages and
provided more functionality. Some tools will not only look for a range of errors in your
code, but also lay out the code in a more standard way. Some tools will uppercase tags
and attributes used, highlight unmatched parentheses, wrap long lines, and so on. So, it
can take some very hard to read code and make it far easier to make sense of. Here are
some useful tools for web application development:

o JavaScript Lint - www.JavaScriptlint.com/ or
http://www.jslint.com/

e HTML Tidy - https://infohound.net/tidy/
e CSSLint-http://csslint.net/

e JSON Lint - https://jsonlint.com/

e CSVLlint-https://csvlint.io/

22

http://www.javascriptlint.com/
http://www.jslint.com/
https://infohound.net/tidy/
http://csslint.net/
https://jsonlint.com/
https://csvlint.io/

CHAPTER 2 DEVELOPING APPLICATIONS

The JavaScript Lint tool will look for these common mistakes, as well as many

uncommon ones:

Missing semi-colons at the end of a line

Curly braces without an if, for, while, and so on

Code that is never run because of a return, throw, continue, or break
Case statements in a switch that do not have a break statement
Leading and trailing decimal points on a number

A leading zero that turns a number into octal (base 8)

Comments within comments

Ambiguity whether two adjacent lines are part of the same statement

Statements that don’t do anything

IDE Tools

An IDE is an Interactive Development Environment. These are tools that aid you in

developing in one or more particular languages. They provide some or all of these

features: a source code editor with code completion, tools to automate building the

code, a debugger, compiler, interpreter, version control system, extensive help on the

language, and so on. Some IDEs worth looking at include

NetBeans from Oracle; there are many versions of this and it’s
best to just download the HTML5/JavaScript version
(https://netbeans.org/).

Brackets is an open source code editor with live preview of changes
and support for preprocessors (http://brackets.io/).

Atom from GitHub is described as a hackable text editor, which

means it can be customized extensively (https://atom.io0/).

Visual Studio Code from Microsoft supports debugging, syntax
highlighting, code completion, snippets, and more (https://code.
visualstudio.com/).

23

https://netbeans.org/
http://brackets.io/
https://atom.io/
https://code.visualstudio.com/
https://code.visualstudio.com/

CHAPTER 2 DEVELOPING APPLICATIONS

e Notepad++ deserves a mention, though it doesn’t have fancy tools
built into it. It is like a standard text editor on steroids and is my
number one choice for editing all kinds of programs whenever
possible. It does have syntax highlighting built in and can do great
things like edit hundreds of files simultaneously and find text across
them all very quickly (https://notepad-plus-plus.org/).

Using a JavaScript IDE

An IDE is an Interactive Development Environment. You can use JavaScript IDEs for
developing HTML and JavaScript code. IDEs often have useful features like syntax
highlighting, debuggers, preview windows, and so on. Many good ones are free including
Notepad-++ and Microsoft Visual Studio Code, which both run on Mac, Windows, and Linux.

It is sometimes useful to build some HTML and JavaScript code in an IDE and then
look at moving it onto the SAS web server and integrating into a Stored Process.

JavaScript Debuggers

JavaScript debuggers are very useful for running your JavaScript and debugging any
errors you have. You can also trace variables reporting their values when they change,
which can be helpful in understanding how your JavaScript code runs. You can set
breakpoints too, so that the code will run up to a certain point and then pause so you can
look at the values of variables. Many web browsers have debuggers built in, so there is no
need to buy or download one.

Most developers will have their favorite development tools in their favorite browser.
For me, it has changed over time and was Firefox for many years, but more recently,
I have found Chrome to be great. These two browsers are great because they work on
many operating systems too. Internet Explorer only works on Windows, unless you
make use of an emulator such as browserstack.com which lets you test you web page on
lots of different browsers and platforms. I find that most browsers have much the same
capabilities now, all of which are sufficient for helping to build web applications:

e Microsoft Internet Explorer has built-in developer tools (Figure 2-4)
that can be accessed by pressing F12 or using Tools/Developer
Tools/Console (https://msdn.microsoft.com/en-us/library/
gg589507(v=vs.85).aspx).

24

https://notepad-plus-plus.org/
https://msdn.microsoft.com/en-us/library/gg589507(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/gg589507(v=vs.85).aspx

CHAPTER 2 DEVELOPING APPLICATIONS

File Find Disable View Images Cache Tools Validate | Browser Mode: IE10 Document Mode: Standards

HTML = CSS Console Script Profiler Network
R EHAF

:
E-<html class="subpage” lang="en-AU">
El-<head>
~-Text - Empty Text Node
<meta charset="utf-8"/>
Text - Emotv Text Node

Figure 2-4. Internet Explorer developer tools

« Firefox has developer tools too (Figure 2-5) that can be accessed
using the Tools/Web Developer menu. There is a debugger, web
console, performance tools, and more (https://developer.
mozilla.org/en-US/docs/Tools).

= [Conscle [> Debugger {} StyleEditer (J) Performance i Memory = Network

B-H B &06 x|
+

Search HTML & = m Computed Animations Fonts
<!DOCTYPE htal> (% Finor Stptee e G
<html lang="en"> (D =
b <)< hbsads element { inline
w <body>
b <div id="main">(=) </div> body {

wordle.css:1
<script type="tex avascript® =" /static/vid70/10uery-1.2.6. 5" »</script> background-color: #eee;
¥ font: 13pt/ 16pt Calibri, sans-serif;

}

Figure 2-5. Firefox developer tools

Google Chrome has built-in developer tools (Figure 2-6) which are
accessed using the Tools/Developer Tools menu. It also has a web

console, debugger, and other tools (https://developer.chrome.
com/devtools).

[%] Elements Console Sources MNetwork Performance Memory Application Security Audits Adblock Plus

02 : X
| Styles Computed Event Listeners »
<html lang="en-AU" class="subpage"> |
»#shadow-root (open) Filter thov .els +
» <head=.</head=
Iilmn"“ﬂ”
b adiv class="cc_banner=wrapper "< /div= |
Pk <div id="wrapper”>.</div> | body { 0pp €1.655:9
Pk <ifrare name="oauth2relaydB5962716" id="ocauth2relayd86962716" src="https:// @ min-width: 1000px;
nts. le. hi Fparent=h % | B background:» uri{../img/bghtml.gif}
Fre TelP —yF £, n=34 for re=1" | repeat-x top lefy;
bl mdamn Al e fn hlddann el et antodadrhe Anus halahes Saus sme it laes
nmisupage [EZT |
i Console %
® top ¥ | Filter info v -3
© Failed to load resource: net::ERR_BLOCKED_BY CLIENT adsbygoogle.is
© Failed to load resource: net::ERR_BLOCKED_BY_CLIENT monetization.is
>

Figure 2-6. Chrome developer tools

25

https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools

CHAPTER 2 DEVELOPING APPLICATIONS

o Apple Safari has built-in web developer tools (Figure 2-7) such as
a Web Inspector, network tools, debugger, and more (https://
developer.apple.com/safari/tools/).

52 Elements | @ Network | [®1 Resources @_ Timelines l {i} Debugger |l £ storage _ Console _|_+ .@
[E] htmi.js.no-tauch.svg.no-ieB. gallery. id.no-ie.no-ie-edge + [3] body.page-home.ac-nav-overiap A AR: VAR

¥ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US" lang="en-US" prefix="og: http://ogp.me/ns#" class="js no-touch svg no-ieB
enhanced-gallery no-android no-ie no-ie-edge"»
¥ <heads
«<meta charset="utf-8"»
<meta name="robots" content="noodp">
<link rel="canonical" href="https://www.apple.com/">
<link rel="alternate"” href="https://www.apple.com/" hreflang="en-Us">
<link rel="alternate" hrefs"https://www.apple.com/ae-ar/" hreflang="ar-AE">
<link rel="alternate" href="https://www.apple.com/ae/" hreflang="en-AE">

>

Figure 2-7. Safari developer tools

Code Comparison Tools

I'have saved many hours of time and done things that were almost impossible to do
another way by using code comparison tools such as Beyond Compare (you've got to
buy this one if you are using Microsoft Windows) and WinMerge (free and open source).
My favorite of all time is Beyond Compare, even though it only runs on Windows and
Mac. It will give you a fantastic side-by-side comparison of two directories or files. You
can ignore unimportant differences (e.g., different numbers of spaces), show just things
that are different, produce reports of the differences, and much more.

Recently, Beyond Compare helped me solve a problem where it showed me that two
files were exactly the same, except one was twice the size of the other. Looking at the
top of the display, I could see that one file was encoded in ASCII, whereas the other was
Unicode. This also meant that when [uploaded one of the files to UNIX and tried to read
in the XML it contained, I was getting failures. I was able to bring the encoding into line
with what was expected, and my problems were solved.

This tool can produce great reports showing the code in different environments and
how it differs. For instance, compare your development code to your production code
and see exactly what the differences are. Or compare your current code to the previous
version to work out exactly what has changed. It’s great!

26

https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/

CHAPTER 2

These tools can compare two files and report the differences:

e Beyond Compare from Scooter Software is the best tool in this

category and does everything the others do. As well as comparing

files and directories, you can generate reports of differences, use

right-click menus through system integration, ignore unimportant

differences, and much more (www.scootersoftware.com/).

In the sample screenshot (Figure 2-8), you can see me comparing

two SAS programs. It shows me a map in the top left of where the

differences are; I have selected to see the differences in context,

and it is very clear what they are; when I select a line, it even

shows me the line comparison at the bottom.

DEVELOPING APPLICATIONS

Sessicn File Edit Search View Tools Help

aﬁ.;*-l=«|g B @ ¥ 4 @ 9
Home Sessions | All Same | | Context| Miner | Rules Format Edit | MedSection PrevSection Swap Reload
[Fepost.sas v E-E [E 2 R =Ad
| TIOT/2017 033632 2664bytes Everything Elie = ANS| = PC 11/0/2017 214211 2504 bytes Eventhing Else ~ ANS ~ PC
b{—] ¥ S FATERED LHES Ta] E Tl
end ; end ;
l- J end ; end 3
= * set the filename ; * set the filename ;
rc = stpsrv_header(’'C ispesition’, =i h Estr(;] re = stpsev_header('Content-Disposition’, “attachesent¥ste(;
Fun Fun
| * output the file ; = cutput the file ;)
| AiF Fupcase(Stype)aC Fthen do ; 1 e | xif iq)cose(&type)-c Hthen ¥do ; |
proc export 1 &oba) outfiles prac export 1p.&tabl Bobs) outfiles)
run run :
Xend ; Xend
Xelse ¥if Xupcase(Btype)=E Xthen Xdo ; Xalse Xif ﬂpcase(!type) € Xthen Xdo ;
ads excel files webout ; ods excel files webout
| proc print data=sashelp.dtable(cbs=8obs) ; proc print data-sul:‘.l.p &table(obs=8cbs) ;
= 3MTERED LIS
| Xelse ¥if Xupcase{&type)=d Xthen Xdo ; Xelse Xif Nupcase(&type)=H Xthen Xdo ;
ods htsl5 files_webout ; ods htels files webout ;
proc print datassashelp.Atable(cbssSobs) ; proc print datassashelp.8table(cbss=8chs) ;
run ; run
ods htal5 close ; ods htnls clese ;
nd ; Yend ;
|= %else ¥if Xupcase(&type)sil then ¥do ; & .
ods rtf file=_webout ;
proc print data=sashelp.dtable(ocbs=8obs) ;
run ;
ods rtf close ;
Xend ; 7 /
Xelse Xif Xupcace{ftype)=PPT Xthen Xdo ; Xelse Xif Xupcase(Brype)=PPT Xthen Xdo ;
ods powerpaint files_webout layout=TitleandContent nogtitle ods powerpoint files_webout layoutsTitlesndContent nogtitle
title “Btable” ; title “Btable” ;
proc print data=sashelp.itable(obs=8cbs) ; proc print data=sashelp.itable(obs=8cbs) ;
run j run ;
ods powerpoint closc H ods powerpoint close ;
B RTERED L0
| proc print dwa-suhelp Btahk(ohs-&abi] H proc print data=sashelp.dtable(obs=Scbs) ;
run run 3
ods pdf close ; ods pdf close ;
%end ; Send ;
Xelse ¥do ; Xelse Xdo ;
ods listing file=_webout ; ods listing file=_webout ;
(=] proc print data=sashelp.&table(cbs=8obs) ; @ proc print data=sashelp.itable ;
run run
ods listing close ; ods listing close ; —
nd ; %end 3 v
X¥mend set_content_type ; Xmend set_content_type ; z
¥set_content_type(&type,Atable) Xset_content_type(Stype,Stable) o
| v v
[ag: 1) Default test 1<] u > fagr Default text] [m >
= Xif- Xubcase(&type)-c “Sthen %do-; -
= ¥if-%upcase(&type)=C- - - - ¥then %do- ;-
K3 [>
3 dilference secti Ursirny nt Difference Insert Load time: 0 seconds

Figure 2-8. Comparison of two versions of source code using Beyond Compare

27

http://www.scootersoftware.com/

CHAPTER 2 DEVELOPING APPLICATIONS

e WinMerge is a free, open source file and directory comparison/
synchronization tool. It does much of what Beyond Compare does,
and being free may be a better choice for you (http://winmerge.
org/?lang=en).

Figure 2-9 shows the same two SAS programs being compared using WinMerge.

3 |

2§ File Edit View Merge Tools Plugins Window Help L [ax
IRk ea BT 2EF »¢hAtBpae
Lacaton Pane
Tun ; -
* gucput the file ;
PICC @Xpert help.stable] o Proc export lp.&table (cks=ickbs) o
run ; Tun ;
tend i send
%else ¥if Yupcase (stype)=E %then %do : %else %if %upcase (stype)=E %then %¥do :
cds excel file=_webout ; ods excel file=_webout i
pree print dat 1p.stable (ob) proc print dat help. stable (ob bs)
- run : run ;
’7'_ s cds excel close ! ods excel close !
Yend ; %end ;
telse tif fupcase (stype)=H Sthen %do ; selse %if Supcase (stype)=H Sthen %do ;
eds hrml5 file= webout : ods html5 file= webout | |
- - prec print help. stable {0] proc print lp.&table (cks=tcbs) 7 ‘
L - run ; Tun ;
cds html5 close ; ods html5 close ;
%end ; %end ; -]
ods rrf file= webout ;

tolse %if %upcagelatype)=W %then %do s
prec print data=sashelp.stable (asbs=gobs) »
Tun i
cds rif close ;.
Yend ;

telss %if Supecase(stype)=PPT Sthen Rda : telse %if %upecase(stype)=PPT %then ido :

cds powerpoint file= webout layout=TitleandContent nc ods powerpeint file= webout layout=TitleandContent n¢
title "&table”™ ; title "stable” ; ™
1 e S P T sk B PP 5
\Ln: 45 Cok 27137 Chv 434 152 Win Ln: 42 Cob 179 Che 133 1252 Win
‘| Vif %upcase (stype)=C tzhen ¥do ;

£
i.

Ready Difference 1l 3 [

" %if %upcase(stype)=c [4then %do
<[

Figure 2-9. Comparison of two versions of source code using WinMerge

o FCisacommand in the Microsoft operating system which will let you
compare files (https://technet.microsoft.com/en-us/library/
bb490904.aspx). Figure 2-10 shows the output of the FC command,
which is a bit harder to use.

28

http://winmerge.org/?lang=en
http://winmerge.org/?lang=en
https://technet.microsoft.com/en-us/library/bb490904.aspx
https://technet.microsoft.com/en-us/library/bb490904.aspx

CHAPTER 2 DEVELOPING APPLICATIONS

[F:»>fc export.sas export2.sas
Comparing files export.sas and EXPORT2.SAS
(MM gxport ..sas
putput the file ;
#if zupcasel&typed=C xthen xdo ;
proc export data=sashelp.&tabledobs=&obhs> dbms=csv outfile=_weho
ut replace ;
EXPORT2.SAS
gutput the file ;
#if xupcase{&typed=C #“then xdo ;

proc export data=sashelp.&table(obs=&obs?> dbms=csv outfile=_webo
ut replace ;

export .sas
zend ;
#else xif xupcase(Btyped=W xthen xdo ;
ods rtf file=_webout ;
groc print data=sashelp.&tableCobs=&obs)> ;
pessms EXPORT2.SA

zend ;
zelse xif xupcase(&type)=PPT xthen xdo ;
ods powerpoint file=_webout layout=TitleandContent nogtitle nogf
ootnote;
title “&table" ;
proc print data=sashelp.&table{obs=&ohs) ;

export.sas
run ;
ods rtf close ;
“end ;
#else #if xupcase(&type)=PPT xthen xdo ;
ods powerpoint file=_webout layout=TitleandContent nogtitle nogf

ootnote;
title “&table" ;
EXPORT2.SAS
run ;
ods powerpoint close ;
“end ;

#“else %if xupcase(&type)=PDF xthen xdo ;
ods pdf file=_webhout ;
title “&table" ;

(MM gxport.sas
run ;
ods powerpoint close ;
“Zen H
Zelse #%if xupcase{&type)=PDF xthen %xdo ;
ods pdf file=_webout ;

title “&table" ;
wmimnn nuint data=ansnabhalae SeahTafaha=Rahay =

Figure 2-10. Comparing two files using the FC command

o DIFF and DIFF3 are utilities built into most UNIX operating systems
which let you compare files. Their output is similar to the Microsoft
FC command, however perhaps a bit easier to use. You can read
more about them here: waw. computerhope.com/unix/udiff.htm.

Summary

In this chapter, we have learned some more general concepts about developing
applications, which are very useful when developing SAS Stored Process-based
applications:

29

https://www.computerhope.com/unix/udiff.htm

CHAPTER 2

30

DEVELOPING APPLICATIONS

Freestyle approach to development has many disadvantages which
other approaches overcome.

SDLC and the Waterfall model are commonly used methodologies
which are quite useful.

The V-model is a development of the Waterfall model and has some
advantages over it.

Agile development has become very popular in software
development in recent years, and I would recommend this.

When planning for development, you should consider the
architectural aspects, especially from a SAS architecture standpoint.

Make sure you have the most useful documents required for a
development project.

Consider your toolkit such as IDE, source control, debuggers, code
comparison, automation tools, deployment tools, and so on.

CHAPTER 3

HTML

If you are a web developer or have some experience doing web development, you can
probably skip this chapter. It is intended to introduce the world of web development to
SAS programmers.

Importance of Using HTML5

There have been many versions of HTML over the years, and the latest evolution is
HTMLS5. Current browsers support HTML5 well, but if you were using an old browser
such as Internet Explorer 6, you might find that parts of it are not supported, in which
case there might be some reasons for using HTML4. But HTMLS5 has been enhanced and
offers many advantages over older versions. Some of these advantages are

o HTMLS5 uses a new W3 specification called ARIA which is used to
assign specific roles to elements on HTML on a page. For example,
headers are tagged where you put your header for the page. This
makes it easy for screen readers to interpret a page making it more
accessible to all.

o The Canvas tag (<canvas>) allows us to produce all kinds of graphics
and animations in the browser. This is a hugely powerful feature
which has already been the subject of several books.

o Responsive design is easier. The device type is detected, and the
output display is changed to suit the device.

o Cleaner code can be written with less reliance on div tags, and it is
easier to read if you use the more meaningful tags available. This
increases maintainability and makes it easier to understand.

e Audio and video are handled via their own tags, though I don’t tend
to use much of that in my reporting.

31
© Philip Mason 2020

P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_3

https://doi.org/10.1007/978-1-4842-5925-2_3#ESM

CHAPTER 3 HTML

HTML Basics

Teaching HTML is outside the scope of this book, but I advise you to look at some of the
excellent resources for learning about web development and HTML on www.w3schools.
com/. It is worth making sure you understand forms really well by using a tutorial such as
this: www.w3schools.com/html/html_forms.asp. You can also learn CSS and JavaScript
on this site. I will go through some basics of HTML briefly here and spend a little time
looking at some of the more useful parts that can be used with Stored Processes in
building web applications.

The HTML document shown in Figure 3-1 produces the output on your web page
(see Figure 3-2).

<html>

<head>

</head>

<body>

<h1>My heading</hl>
<h2>Sub heading</h2>
<p>Paragraph</p>
</body>

</html>

Figure 3-1. Example of some simple HTML code

My heading
Sub heading

Paragraph

Figure 3-2. This is what is shown in browser from the HTML code in Figure 3-1

 _n

Notice that tags in Figure 3-1 are enclosed in angle brackets “<” and “>” There is
usually an open tag (e.g., <HTML>) and then a corresponding closing tag (e.g., </HTML>).
Note the closing tag has the same name as the starting tag but is preceded with a “/”.
Tags can optionally have parameters specified on them by specifying name=value pairs
(e.g., parameter names are in bold, name of tag is underlined):

<input type="submit" name="button name" walue="button value">.

32

http://www.w3schools.com/
http://www.w3schools.com/
https://www.w3schools.com/html/html_forms.asp

CHAPTER 3 HTML

The general structure of an HTML program is that there is a head section and a
body section. The head section is a container for metadata in which things like styles,
character sets, links, and JavaScript libraries are defined. Effectively this is for setting up
the environment of the page. The body section is where the content is defined, such as a
text, hyperlinks, tables, lists, figures, and so on.

A typical head section might contain a link to load the jQuery library for use. It would
look like this:

<head>
<script src="jquery-3.2.1.min.js"></script>
</head>

Or you might define some CSS in your head section so that you can define how your
text looks, for example:

<head>

<style>

h1 { text-decoration: overline;}

h2 { text-decoration: line-through;}
h3 { text-decoration: underline;}
</style>

</head>

The body section has the content for the page, for example:

<body>
<h1>This is heading 1</h1>
<h2>This is heading 2</h2>
<h3>This is heading 3</h3>
</body>

Using the CSS in the head section with the heading tags in the body section gives us
a page that looks like Figure 3-3.

33

CHAPTER 3 HTML

This is heading 1
Phis s headine2

This is heading 3

Figure 3-3. This is what is displayed in browser from the HTML and CSS specified

FORM Tag

The FORM tag is probably the most useful thing in HTML for building web applications.
With it, we can build a form that prompts a user for information and will then pass the
values entered back to the application for processing. Forms start with the <FORM> tag
and end with the </FORM> tag. Prompts include

e Getinput from the user by using an <input> tag.

o Specifying name on the <input> tag defines the name of the
parameter that will be passed on the URL, which will then appear as
a macro variable available to be used by our SAS code (e.g., <input
name="country">).

o Specify type on the <input> tag to choose between several available
types. By default, you don’t need to specify it and the type will be text.
But there are several other useful types to know about:

o Button displays a pushbutton which can be clicked. This is often
combined with some JavaScript code to carry out some special
actions when pressed on. You can do this by using the onclick

parameter.

e Checkbox shows check box(es) which allow choosing multiple
options for a parameter. This is similar to radio, though radio only
allows choosing one value.

e Color allows choosing a color using the systems color picker.

e Date allows choosing a date using standard date picker.

34

CHAPTER 3 HTML

Datetime-local allows choosing a date and time.
Email allows entering a valid email address.
File shows button to use file picker to get a filename.

Hidden doesn’t display the field at all even though it is still there
and will be added to the URL created.

Image displays an image and when it is clicked acts like a submit
but also sends the x and y coordinates of where the image was
clicked. So you could have an image with various parts to it and
be able to work out what part of the image was clicked.

Month allows choosing a month.

Number allows the entering a number and prevents entering
anything other than a number.

Password is like text, except it doesn’t show the characters as the
user types. It is perfect for passwords and other secret text.

Radio shows radio buttons allowing the choice of one option.

Range displays a slider and allows choosing a value using it.
Remember that many of these types have associated parameters.
Range also makes use of min, max, and value which define the
range used and a starting value.

Reset provides a pushbutton which if pressed will restore the
fields on a form to their default values.

Search displays a text entry box to specify something to search
for. Some of these items produce useful effects when used on
mobile devices and tablets. For instance, search gives you a
specific keyboard with a search button.

Submit provides a button to click which will then submit the URL
that was created by the form.

Tel allows entry of a telephone number. Mobile devices will give
you a phone number entry keyboard.

Text provides a box to enter some text in.

35

CHAPTER 3 HTML

o Time allows entry of a time using time dialog.
o Url allows entry of a URL.
o Week allows entry of a week number using a date picker.

With all those input types, we already have something very functional that we can
use when producing customer HTML from our Stored Process. But there are even more
elements that can be used in forms that give us more abilities:

o Select lets us define drop-down lists of options to choose from.

o Datalist is very similar to Select, but it also lets you type into the
box and displays a list of matching options in the drop-down list as

you type.

o Textarea defines a multiple line box into which a lot of text can be
entered.

Ways to Generate HTML

The simplest technique that can be used to enhance the output from your Stored
Processes is to generate HTML which is then displayed in a web browser. Web browsers
have been created specifically for displaying output of various kinds. There is lots of
built-in functionality to display all kinds of text in various sizes and colors, as well as
displaying all kinds of graphics. In addition, you can animate things and detect where
the mouse is, and when it clicks in various ways, you can let the user interact with the
output and change it. You can produce static output which displays but does not change,
as well as dynamic output which changes in various ways. Web browsers can also display
many other kinds of output that you may generate with SAS, such as RTF and PDF files.

Another aspect of using HTML to generate output is that you can generate it in
flexible ways dependent on the platform you are delivering it to or add JavaScript or
other scripting to make the HTML adapt for the platform. This means you can make sure
your output displays in the best way on phones, tablets, computers, and so on.

There are several basic ways that you can use your Stored Process to generate HTML:
basic ODS, custom HTML, PROC STREAM, or writing your own HTML. Let’s examine
each of these in turn.

36

CHAPTER 3 HTML

Basic 0DS

Stored Process can generate HTML, as it might do with a range of ODS HTML reports. In
this model, we can make some enhancements to the HTML generated by inserting bit of
custom HTML/JavaScript in various ways such as by modifying templates, inserting data
null steps to write bits to _webout, and adding links to titles/footnotes.

Custom HTML

Stored Process can generate custom HTML by using a data step that writes to _webout.
In this technique, we can write anything directly to the browser just as though it was part
of a standard web page. If you want to run this from a program in Enterprise Guide, just
to see what is generated, then you could use a filename statement to create _webout and
then look at what is written there.

The following code can be used as the source code for a stored process run through a
web browser. We can create simple HTML in several ways:

e We can simply have code in a cards statement and write it out:

data null ;
input ;
file webout ;
put infile ;
cards ;
<HTML>
<h1>Hello</h1>
</HTML>
55
Tun ;
¢ We can have code in a cards statement with macro references and
run it through a resolve function before writing it out:

data null ;
input ;
line=resolve(_infile) ;
file webout ;
put line ;
cards ;
37

CHAPTER 3 HTML

%make HTML
55
run ;

e We can generate code at different times and stream it to the browser
as needed:

data null_;
input ;
file webout ;
put _infile_;
cards ;
<HTML>
<BODY>
<h1>Summarizing customer data</h1>
35
run ;
Proc summary data=big file ;
Class product group name ;
Var paid ;
Output out=big file summary sum= ;
Run ;

data null ;
input ;
file webout ;
put _infile_;
cards ;
Summary has finished
55
run ;

A variation on this is to keep static code in one or more external files or in a
parmcards statement which can then be read in using INPUT/PUT statements when
required. These might have a static header with a company logo which you want at the
top of every page, a static footer, standard libraries to load, and so on.

38

CHAPTER 3 HTML

PROC STREAM

This is the preferred method if you have SAS 9.3 or later. It lets you write your HTML,
JavaScript, CSS, and so on and include macro programs and variables. These will be
resolved as the code is streamed to the browser. This allows an enormous amount of
flexibility by specifying the HTML that you want to use with macro language mixed in
with it. PROC STREAM will resolve the macro language as each line is copied to the file
or web browser you are writing to.

Writing Your Own Custom HTML

When working with a web browser, you have the webout fileref pre-allocated if you
are using streaming output from your stored process. Anything written to _webout will
be directed to the browser. The key thing to remember in writing your own HTML from a
Stored Process is to write to the _webout fileref.If you have called the Stored Process
from the SAS Stored Process Web Application, then anything written to _webout will be
written to the environment you have called the Stored Process from. So, when calling
from a web browser, webout points to the web browser. If calling from an application
like Excel, then output is written to that.

You need to be aware that these techniques that involve writing your own custom
HTML work best with a web browser, since that offers the widest support for HTML,
JavaScript, and CSS. In fact, how well it works will vary from web browser to web browser
too. But if you are writing HTML and then delivering output to other clients, like Excel,
then the techniques will work less well with less support for handling of HTML in various
clients.

STPBEGIN and STPEND Macros

You need to be careful when using %stpbegin and %stpend. These do a range of things,
but primarily they start and end ODS output. By default, Enterprise Guide will add them
in before and after your code when you make a Stored Process. When you create the
Stored Process, you can see that the Stored Process macros are selected by default as
shown in Figure 3-4.

39

CHAPTER 3 HTML

l Include codefor ~ | l Clear

i . Stored process macros
. Global macro variables
LIBNAME references

an

Figure 3-4. Enterprise Guide’s editor allows you to choose what to add to code
automatically

That is fine if you are doing something like using a procedure to produce some
output such as a Proc Report. However, if you are trying to write some custom HTML,
then as you try to write to the WEBOUT fileref, you will find that it is already being used
by ODS and is not available. This results in you generating the following error in your log
for the Stored Process (Figure 3-5).

)

20 data _null_ ;

21 file _webout ;

22 put '<hl>Test of _webout</hl>' ;
23 run ;

ERROR: File is in use, _WEBOUT .
WOTE: The SAS System stopped processing this step because of errors.
NOTE: DATA statement used (Total process time):

real time 0.03 seconds

cpu time 0.01 seconds

Figure 3-5. A common error you will see ifyou try to use_webout but are still
including code for Stored Process macros automatically

To avoid this error, you need to ensure that _webout is not in use when you want to
write to it. One way is to deselect the Stored Process macros when you create your code.
That means that they are not used, and so _webout is never allocated to ODS output. You
can still allocate ODS to _webout yourself in your own code or call the %stpbegin and
%stpend macros yourself at another point in you program. For example, you could use
the following code shown in Figure 3-6.

40

SAS Code

run ;

run ;

tstpbegin

- proc print data=sashelp.class ;

% stpend

-data _null_;
file _webout
put ‘<hl>Hello</hl>"

r

CHAPTER 3 HTML

Figure 3-6. You can still use the Stored Process macros even if you don't include

them in the source code automatically

This results in the output in the web browser shown in Figure 3-7.

Hello

Obs

@w & N ot AW N =

SO [T (O (O [RrON raN O e
@ N @& ot AW N = O

19

Name
Alfred
Alice
Barbara
Carol
Henry
James
Jane
Janet
Jeffrey
John
Joyce
Judy
Louise
Mary
Philip
Robert
Ronald
Thomas

William

Sex Age
M 14
F 13
F 13
F 14
M 14
M 12
F 12
F 15
M 13
M 12
F 1"
F 14
F 12
F 15
M 16
M 12
M 15
M 1
M 15

Height
69.0
56.5
65.3
62.8
63.5
57.3
59.8
62.5
62.5
59.0
51.3
64.3
56.3
86.5
72.0
64.8
67.0
57.5
66.5

Weight
1125
84.0
8.0
102.5
102.5
83.0
84.5
125
84.0
99.5
50.5
90.0
77.0
12.0
150.0
128.0
133.0
85.0
112.0

Figure 3-7. This HTML table is produced by the SAS code in Figure 3-6

You can look at the HTML generated for this by viewing the source from your

browser. This shows something like Figure 3-8 at the start.

41

CHAPTER 3 HTML

i <hl>Hello</hl>

3| <html>

4| <head>

5 <meta name="Generator" content="SAS Software Version 9.4, see www.sas.com">
6 <meta http-equiv="Content-type" content="text/html">

7 <title>SAS Output</title>

8 <style type="text/css">

g <l==

10 .aftercaption

1n| {

12 background-color: #FAFBFE;

Figure 3-8. This is some of the HTML code that the SAS code in Figure 3-6
generated, producing the table in Figure 3-7

Beware Invalid Code You can see the HTML code we wrote out from our data step,
followed by some of the HTML generated by SAS. The HTML is not actually valid,

and if you copy the source code into an online HTML validator, you will see the error
messages clearly. The <h1> tag should be within a body section, inside an HTML
section. So, we could adjust our code to write the required HTML around our <h1> tag,
but then we need to do something to remove the other tags that stpbegin write out.

You will also notice that ODS generates quite a lot of complex HTML code which
isn’t necessarily required. The STPBEGIN and STPEND macros are quite flexible though
so we can set some macro variables which will change the way that they behave. One of
the most useful macro variables that can be changed is _RESULT. If we set that to a value
of streamfragment,’ then it causes the STPBEGIN macro to just produce the HTML code
needed for the actual SAS output, rather than producing a full HTML program including
CSS styles and so on. So, by modifying our program as shown in Listing 3-1, it results in a

simpler form.

Listing 3-1. Use streamfragment to create minimal HTML

data null_;

file webout ;

put "<hi>Hello</h1>" ;
run ;

'This is not documented anywhere that I can find; however, I have been using it for many years,
and it still works nicely. I suspect it is something that SAS may use internally but don’t offer
support to customers. So, use this at your own risk!

42

%let _result=streamfragment ;
%stpbegin

proc print data=sashelp.class ;

CHAPTER 3 HTML

Tun ;
%stpend
This produces a simplified output with the same content as before which looks like
Figure 3-9.
Hello
'Obs| Name | Sex Age | Height | Weight
1 Alfred M |14 690 | 1125
2 |Alice F |13 |565 840
3 Barbara F |13 653 980
4 [Carol F |14 |628 |1025
5 Henry M |14 |635 |1025
6 |James (M |12 |573 830
7 |lme |F |12 |598 845
8 Janet F [15 (625 1125
9 |leffrey M [13 |625 840
10 John |M |12 |590 |995
11 Joyee F |11 |513 505
12 Judy |F |14 |643 |900
13 |Louise |[F |12 |563 |770
14 Mary |F |15 |665 |[1120
15 |Philip |M |16 |720 |1500
16 Robert |[M |12 |648 |1280
17 Ronald (M |15 |670 |1330
18 | Thomas (M |11 |575 |850
19 | William M |15 |665 | 112.0

Figure 3-9. Title and table produced by the code in Listing 3-1. This shows how we
can combine some custom HTML with HTML produced by SAS’s Output Delivery

System

However, the source code begins as shown in Listing 3-2.

43

CHAPTER 3 HTML

Listing 3-2. Source code generated automatically by SAS

<h1>Hello</h1>

<div class="branch">

<div>

<div align="center">

<table class="table" cellspacing="0" cellpadding="5" rules="all"
frame="box" summary="Procedure Print: Data Set SASHELP.CLASS">

You will notice that there is no style information there, but now we just get right to
the content. Our custom heading is written out and then the table produced by Proc
Print. This is great since we can then produce various pieces of ODS HTML output with
streamfragment, and just put them onto the web page we are making as we want to.

General Techniques to Add HTML to a Web Page

You can use the code in Listing 3-3 as a template to add HTML to a web page. You just need
to put whatever HTML code that you want to put into the browser into the cards area.

Remember Whenever you are writing to _webout in a Stored Process, you have
to ensure that the STPBEGIN and STPEND macro are not being used, unless you
are specifically putting them in yourself and know what you are doing. So that
means in the SAS code part of the Stored Process Manager, under “Include code
for,” you need to make sure that “Stored Process Macros” are not ticked. If you

do forget to untick the option, you will get some errors, which you can read about
here: http://support.sas.com/kb/13/599.html.

Listing 3-3. Writing HTML directly to browser via _webout

data null ;
input ;
file webout ;
put infile ;
cards ;

44

http://support.sas.com/kb/13/599.html

CHAPTER 3 HTML

<html>
<body>
<h1>Hello</h1>
It's the best practice to have properly formed HTML, like this.
</body>
</html>
55
run ;
There is no reason why you can’t have multiple data steps to write out your HTML as
shown in Listing 3-4.

Listing 3-4. Writing HTML using multiple data steps

data null_;
file webout ;
input;
put _infile_;
cards;

<html>

<body>

55

run;

data null_;
file webout;
set sashelp.class;
put name ' is ' height ' centimetres high.
" ;

run ;

data null ;
file webout ;
input;
put infile ;
cards;

</body>

</html>

35

run ;

45

CHAPTER 3 HTML

This code produces the output depicted in Listing 3-5, showing a collection of rather
short people!

Listing 3-5. Shows lines of customized text produced from SAS code

Alfred is 69 centimetres high.
Alice is 56.5 centimetres high.
Barbara is 65.3 centimetres high.
Carol is 62.8 centimetres high.
Henry is 63.5 centimetres high.
James is 57.3 centimetres high.
Jane is 59.8 centimetres high.
Janet is 62.5 centimetres high.
Jeffrey is 62.5 centimetres high.
John is 59 centimetres high.
Joyce is 51.3 centimetres high.
Judy is 64.3 centimetres high.
Louise is 56.3 centimetres high.
Mary is 66.5 centimetres high.
Philip is 72 centimetres high.
Robert is 64.8 centimetres high.
Ronald is 67 centimetres high.
Thomas is 57.5 centimetres high.
William is 66.5 centimetres high.

Perhaps it’s a good idea to have the units of measurement in these sample SAS tables.

Using this technique, you are able to have a lot of SAS code which will gradually
build up the HTML that you want produced, thereby giving you precisely the result you
are looking for. But there are some ways to extend the power of this technique by using
macro language.

Macro Language

You might like to use macro variables in your custom HTML in order to add some

flexibility. For instance, you can access the automatically generated macro variables,
such as ones which tell you the userid, machine, date/time, and so on. You could use
some macro variables that your SAS code generates in previous steps. You might also

46

CHAPTER 3 HTML

want to use macro variables with values that have been passed in as the Stored Process
was run. These might have been some choices made by a user using parameters you
have defined. Or it might just be some custom parameter(s) passed on the URL as the
SAS Stored Process Web Application was called.

So, in order to do this, you might produce a program like the one shown in
Listing 3-6.

Listing 3-6. Macro variables are not resolved in this code

data null_ ;
input;
file webout;
put infile_;
cards;
<h1>Hello &sysuserid!</h1>
&message

Tun ;

But when we run this, we get the output shown in Figure 3-10 in the web browser.

Hello &sysuserid!

&message

Figure 3-10. Browser will display this, which is not what we want. We want the
macro variables to be resolved, but they are not

SAS has read the macro variables in and written them out to the web browser as is,
without resolving their values. Fortunately, SAS provides us a fantastic little function
called resolve. With resolve, you can give it some macro language, and it will return the
resolved text. The macro language might be a simple macro variable but can also be a
macro program. That provides a huge amount of potential power for the programmer.
Modifying our code a little, as shown in Listing 3-7, we can get it to work as we want.

47

CHAPTER 3 HTML

Listing 3-7. Macro variables are resolved in this code

data null_ ;
length line $ 60 ;
input;
file webout;
line=resolve(_infile) ;
put line;
cards;
<h1>Hello &sysuserid!</h1>
&message
55
run ;
Now our code reads a line in from the cards area, resolves any macro variables, and

then writes it to the web browser. This results in this output shown in Figure 3-11.

Hello Administrator!

&message

Figure 3-11. Now we have the first macro variable resolved, showing the
username “Administrator”

The automatic macro variable &sysuserid has been resolved; however, the other
variable &message has not been resolved, even though the resolve function was used,
since there was no value defined for it. We could add this as a prompt for the Stored
Process in order to create a default value for it or to prompt the user for one when
invoked in certain ways. But we can invoke the Stored Process and provide a value for it
using the SAS Stored Process Web Application by specifying the Stored Process using _
program and then the value of &message by specifying &message= in the URL. You could
get most of the URL for this by going to the web application index page and right-clicking
the Stored Process to copy the URL. But essentially, we just need to add &message to the
end of the URL with a value for message. The ampersand indicated a parameter we are
passing, and then we have an equal sign and its value. The first parameter in the URL

48

CHAPTER 3 HTML

mustn’t have an ampersand, but must follow the question mark, which results in the
output in Figure 3-12.

http://server-name/SASStoredProcess/do?_program=%2FUser+Folders%2Fphil%2FMy
+Folder%2Fmacros+resolved+from+data+step&message=Remember%20to%20get%20a%20
coffee

Hello Administrator!

Remember to get a coffee

Figure 3-12. Having passed in a value for message, we see that value is displayed
in the browser

As I mentioned earlier, we can resolve any macro language in the resolve function, so
if we wanted to use multiple macro variables on a line, then that would be OK. Also, if we
wanted to use macro programs, then that too would be fine. So, for instance, we could
use some code like the one shown in Listing 3-8.

Listing 3-8. SAS code to resolve macro program execution

%let first=Phil;
%let last=Mason;
Zmacro content;
%do i=1 %to 10;
Line &i

%end;
Zmend content;
data null ;
file webout;
input;
line=resolve(_infile);
put line;
cards;
<h1>My name is &first &last</hi1>
%content
55

run;

49

CHAPTER 3 HTML

The preceding SAS code would produce the HTML shown in Listing 3-9.

Listing 3-9. Result of resolving macro program execution

<h1>My name is Phil Mason</h1>
Line 1
 Line 2
 Line 3
 Line 4
 Line 5
 Line
6
 Line 7
 Line 8
 Line 9
 Line 10

&first and &last have been resolved with one resolve function call. Then %content
has been executed with another call, and the text produced has been streamed to the
browser. Notice how my indenting in the macro has resulted in some extra spacing
in the HTML produced. Notice how those spaces have been ignored when producing
the output too, since the HTML ignores those spaces. Usually this kind of thing is not
a problem, but it is worth keeping in mind as extra spaces can affect some things. That
HTML produces the following output (Figure 3-13) in the web browser.

My name is Phil Mason

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8
Line 9
Line 10

Figure 3-13. HTML output

I think the ability to call macro programs in the resolve function is very powerful. You
could have quite a complex macro program which could open tables, use conditional
logic, and generate all kinds of custom output.

There is a limitation with this technique though which involves the size of the input
buffer. Since we are using cards and reading lines in with an input statement, each line
will be read in to the input buffer and then any macro variables or programs will be
replaced by text as they are resolved. But this all happens in the variable we are using,
which is called line in my examples. We can expand the text up to the length of the
variable being used, but then extra characters will be truncated which can cause all

50

CHAPTER 3 HTML

kinds of problems. We can mitigate against this issue by using a length statement and
ensuring we have a nice long variable to use, but the problem can still hit us. SAS comes
to the rescue with PROC STREAM though, which is not encumbered by any length limits.

HTML Forms

It’s easy to make Stored Processes using parameters since SAS provides the prompting
facility provided. This gives you a range of options that provide a huge amount of
flexibility. But if you want even more flexibility, then that too is possible. You can still use
the prompting facility as well, or you can just use the following technique in which we
can add some custom prompting of our own.

The idea of this technique relies on calling a Stored Process via the SAS Stored
Process Web Application which can be invoked with a URL. A custom URL can be built
in HTML by using an HTML form. This is a fairly simple piece of HTML in which we
define a basic URL and then let the user select some values for some parts of the URL
which will be added to the end of it. For example, in Listing 3-10, we define a form to
invoke a Google search using text entered by the user.

Listing 3-10. HTML form that will submit a search to Google

<html>

<form action="https://www.google.com/search?">
<input name="g">

<input type="submit">

</form>

</html>

When this is run, it produces what is shown in Figure 3-14 in the web browser.

Submit

Figure 3-14. Form displayed in browser

u_n

This provides a box in which we can type a value for “q” and then click Submit. If we
enter the input shown in Figure 3-15 and click Submit, then it produces the URL shown
in Figure 3-16.

51

CHAPTER 3 HTML

sas| Submit

Figure 3-15. Text entered in form

@ https://www.google.com/search?g=sas

Figure 3-16. URL shown in web page after Submit is pressed

So, you can see that it has taken the value of action and used the value we entered to
add “g=sas” to the end of the URL. This searches Google for “sas” and returns the results
in the browser.

Having looked at a simple pure HTML example calling Google, let’s now take a
simple example using SAS to get us going. We will use a simple Stored Process that can
take one parameter. The HTML that we can use is shown in Listing 3-11.

Listing 3-11. Form to run a stored process and pass a parameter

<html>

<form action="https://d351tq92/SASStoredProcess/do?">

<input name="_program" value="/User Folders/phil/My Folder/test">
<input name="product_line" value="Children">

<input type="submit">

</form>

</html>

The action for the form is calling the SAS Stored Process Web Application, so it
should be the first part of how you invoke that up to and including the question mark.
Any extra parameters will be added to the end of the URL generated. The parameters
are added in the sequence you define them, which usually doesn’t matter unless using
multiple parameters of the same name. _program is always needed since it defines
that path through metadata to the Stored Process. In our example, we have a parameter
called product_line, which we have given a default value of children. This HTML will
produce what is shown in Figure 3-17 in the browser.

52

CHAPTER 3 HTML

JUser Folders/phil/My Fold: Children Submit

Figure 3-17. Form displaying stored process name and product_line prompts and

Submit button

Clicking the Submit button, it generates a URL like this:

http://d351tq92/SASStoredProcess/do?_program=7%2FUser+Folders%2Fphil%2FMy+Fo

lder%2Ftest&product_line=Children

Notice that the “&” was added to separate the first name/value parameter from the

next one. This is always done automatically for you by the browser as it processes the

form. Looking at this form displayed in the browser, we don’t really want the _program

field to be displayed as we don’t want the user to be able to type over it, they don’t need

to see the value, and we might not want them to even know the value. We can use the
hidden type in order to specify _program, but not show it (see Listing 3-12).

Listing 3-12. Form to run stored process that will not display name of stored
process

<html>

<form action="https://d351tq92/SASStoredProcess/do?">

<input name="_program" value="/User Folders/phil/My Folder/test"
type="hidden">

<input name="product line" value="Children">

<input type="submit">

</form>

</html>

This produces the nicer looking screen in the browser (see Figure 3-18).

Children Submit

Figure 3-18. Form displaying product_line prompt and Submit button (stored
process name not displayed)

53

CHAPTER 3 HTML

Making a Stored Process Generate Its Own
HTML Menu

Now that we know how to make HTML menus with forms that can call Stored Processes,
we can use another powerful technique to put our menu into our Stored Process. What
we want to achieve is to be able to run a Stored Process which will firstly generate an
HTML form-based menu. Once the user makes their selections, then it will call that
Stored Process again to produce the output/report required.

In order to achieve this, we will need to detect when the Stored Process is called the
first time to produce the menu and then when it is called the second time. The first time
itis called, we won’t have passed any parameters to it, so we could detect the absence
of parameters which we expect to be present from the form. If we are missing some
expected parameters, then we can generate a menu. If we detect those parameters, we
know that the Stored Process has been called by the HTML form, and so we can run it to
produce the output/report.

Listing 3-13 is a simple example of this.

Listing 3-13. Stored process code that first will prompt for a value and when
called again will produce a report

%macro logic ;
%if %symexist(age) %then %do ;
%stpbegin
proc print data=sashelp.class ;
where age=&age ;
run ;
%stpend
%end ;
%else %do ;
data null ;
file webout ;
set menu ;
put line ;
run ;
%end ;

54

CHAPTER 3 HTML

%mend logic ;
* put HTML into a table, since we can't use datalines in a macro ;
data menu ;
input ;
line=_infile ;
datalines ;
<html>
<form action="http://d351tq92/SASStoredProcess/do?">
<input name="_program" value="/User Folders/phil/My Folder/test12"
type="hidden">
<input name="age" value="14">
<input type="submit">
</form>
</html>
55
run ;
%logic

In this Stored Process, we read some lines of HTML into a table, since we can’t do
this inside a macro program. Then in the macro, if we find the age parameter, then we
produce a report using the %stpbegin and %stpend macros to handle ODS. Otherwise,
we write out the menu, allowing the user to choose a value for age. When they press
Submit, the Stored Process is run again, passing the age value in. The menu looks like the

box shown in Figure 3-19.

14 Submit

Figure 3-19. First call of stored process prompts user for an age

After pressing Submit, we have the report shown in the browser (see Figure 3-20).

55

CHAPTER 3 HTML

Obs Name Sex Age Height Weight

1 Alfred M 14 69.0 112.5

4 Carol F 14 62.8 102.5

5 Henry M 14 63.5 1025
F

12 Judy 14 64.3 90.0

Figure 3-20. Second call of stored process produces a report using the age that was
entered

We could modify this code to generate a list of valid values for age and let the user
select one from a list rather than entering one. This code would look like Listing 3-14.

Listing 3-14. Stored Process code to additionally produce a list of valid ages from
which user can select one

%macro logic ;
%if %symexist(age) %then %do ;
%stpbegin
proc print data=sashelp.class ;
where age=&age ;
run ;
%stpend
%end ;
%else %do ;
data null_;
file webout ;
set menu ;
put line ;
run ;
%end ;
#mend logic ;
proc sql noprint ;
select distinct "<option value="""|| put(age,2.)|| """>"|]|
put(age,2.)|| "</optiony"
into :age_options separated by '' from sashelp.class ;
quit ;

56

CHAPTER 3 HTML

* put HTML into a table, since we can't use datalines in a macro ;
data menu ;
input ;
line=resolve(_infile_) ;
datalines ;
<HTML>
<form action="http://d351tq92/SASStoredProcess/do?">
<input name="_program" value="/User Folders/phil/My Folder/test12"
type="hidden">
<select name="age"»
&age_options
</select>
<input type="submit">
</form>
</HTML>
55
run ;
%logic

And the page displayed would look like Figure 3-21.

15 v || Submit
M1

EE
14
15

116

Figure 3-21. User can now select a valid age

Form Attributes

There are a range of other attributes that can be specified on the <form> tag. We have
used action which defines the base URL to use when the form is submitted. This can be
an absolute or a relative path (relative to the place the HTML is on the web server). But
some of the other useful attributes are

57

CHAPTER 3

58

HTML

Autocomplete, which can turn autocomplete on or off for the form
you are using. It can make it useful when you are using a menu over
and over again.

Enctype defines how the form data is encoded when it is sent to the
server (if POST method is used). This usually comes in useful when
you are sending files to the server from the form.

Name defines the name of the form, which is useful if you want to refer
to it with JavaScript.

Target defines where to display the response that is received after
submitting the form. This has a few values and is very useful:

e _blank shows the response in a new window or tab.

_self, by default, is used and displays response in the current
frame.

o _parent, the response is displayed in the parent frame.
e _top, the response is displayed in the full body of the window.

o Framename will display the output in a named frame
“framename’.

Method defines the http method to use for sending form data.

Get sends the form data as URL variables by appending the form data
to the URL as name/value pairs. This is the default which you get if
you don’t explicitly define a method:

e URLislimited to about 3000 characters which varies depending
on the browser you are using. It is often 2048 characters. Any
parts that don't fit are just truncated without any warning, so you
can get unexpected results.

¢« You should never send sensitive data with GET since it can be
seen on the URL.

e URL can be bookmarked.

CHAPTER 3 HTML

e Post appends the form data inside the body of the HTTP request:
o Datais not shown in the URL so it is more secure.

e There are no size limitations. If you need many parameters and
length is an issue, then use this.

e Can’t bookmark the URL, since not all the information is there.

In order to change our previous code to use a POST method, we would just add
method=“post” to the form tag as shown in Listing 3-15.

Listing 3-15. Form that uses a POST method, rather than a GET (which is
default)

data menu ;
input ;
line=_infile_;
datalines ;
<html>
<form action="http://d351tq92/SASStoredProcess/do?" method="post">
<input name="_program" value="/User Folders/phil/My Folder/test12"
type="hidden">
<input name="age" value="14">
<input type="submit">
</form>
</html>

Persistence — How to Pass Data Between Stored
Processes

Stored Processes can be used in a large number of flexible ways. In some applications

of Stored Process technology, you may want to keep data in between runs. For instance,
rather than asking for a name every time, you can keep the name and default to the last
one used by that user. We might want to keep some count or record of activity which can
then be reported back to the user. We might even just want to take some result(s) from

59

CHAPTER 3 HTML

one Stored Process and pass to another Stored Process to be used. This is what I call
persistence of data. By that I mean that certain data can persist after a Stored Process
has run. Usually data entered by a user is transient, meaning that it is used by the Stored
Process and then lost.

Storage

One major consideration for persistence is whether you want to store the data locally
on a client that is being used or remotely on the server being used. If saved locally, then
moving to another client means you don’t have access to your data. There are a range of
solutions available for this:

o localStorage is an HTML5 technology that provides a way to store,
retrieve, and remove items that are stored for use by the web browser
on the client. It involves calling some JavaScript functions to do this,
but they are very simple to use.

¢ indexedDB is another web API that can be used but is far more
complex.

o Sessions are provided by SAS as a way of providing persistence for a
limited amount of time.

Cookies

Cookies are a web technology that lets us store small items of text locally on the client
as a cookie. Other kinds of objects can often be converted to text and stored and then
converted back when retrieved. Cookies can be set using the stpsrv_header function in
SAS which can call the “Set-Cookie” method. You have to specify a name and value for
each cookie that is set. You can optionally specify a path and expiry date too.

The following example shows some code which can be used in a Stored Process via
the web application. We set a value for the cookie and then write some JavaScript code
out which gets the value of the cookies (Listing 3-16) and displays it in an alert box.

60

CHAPTER 3

Listing 3-16. Setting a cookie with SAS function and then displaying it with
JavaScript

* set cookie ;
data null ;
old=stpsrv_header("Set-Cookie","CUSTOMER=Phil Mason") ;
run ;
* use some javascript to display the cookie that was set ;
data null ;
file webout ;
put "<script>alert(document.cookie);</script>" ;
run ;

Figure 3-22 shows the alert box displayed.

d351tq92 says:
CUSTOMER=Phil Masan

oK

Figure 3-22. Alert box in web browser showing cookie that was set from SAS

HTML

You can access cookies via the _HTCOOK automatic macro variable. The following

code in Listing 3-17 shows how to access the value.

Listing 3-17. Examining cookies from a web page using SAS code

proc sql ;

select * from dictionary.macros
where name="_HTCOOK" ;

run ;

Figure 3-23 shows what is displayed.

Offset into
Macro Macro Variable Macro
Scope Name Varlable = Macre Varlablo Value

GLOBAL _HTCOOK 0 Cabdal0ds Clust
CUSTOMER=PHil Mason®

Figure 3-23. Cookies from the web browser visible in the SAS macro variable

61

CHAPTER 3 HTML

Files or Tables

Files or tables can be used quite easily to store the data you want to make available
again and then for another Stored Process to read that data in. You will need to manage
multiple users who might try to write to a shared table at the same time. This can be
done by locking the table before writing to it. You might decide to have a separate table
for each user and then the locking issue virtually is eliminated.

URL

Passing parameters on URL is probably the easiest way and achieves persistence by
passing data from one process to the next. So, when one Stored Process wants to pass
data to the next one, it is simply passed as name/value pair parameters on the URL.

Where to Put HTML Code, JavaScript Libraries,
Images, and More?

When you are using the SAS Stored Process Web Application, you need to understand a
few things about the environment you are working in. It runs within a web application
server, which is often known as a servlet container. If you are running on SAS 9.4, you
may be using the SAS-provided web application server, which is highly recommended.
For a start, it can be automatically installed with SAS 9.4 and is well integrated. If you
use an alternate web application server (e.g., WebSphere), then there is likely to be a

bit of extra customization required during setup. When running in the web app server,
there will be certain directories on that server which are easily accessible to your Stored
Process to use. Some other locations on that server may need permissions changed or to
be referred to with a specific path in order to access them or may be inaccessible.

If your Stored Process specifies a relative pathname, then the key thing to remember
is that the root is not the root of the machine you are running on, but is the root of the
web application server, as defined in its configuration. So, on my SAS 9.4 system with
a default configuration, the root for the web app server is C:\SAS\Config\Levl\Web\
WebServer\htdocs on the SAS server. Note that this will be different to the C: drive on the
client machine.

62

CHAPTER 3 HTML
So, ifI code up a statement like this
filename x 'my file.txt' ;

then this will actually be pointing at the server HOME directory, which is C:\SAS\Config\
Levl\Web\WebServer\htdocs\my_file.txt on my server. If I want to use sub-directories,
then Iwould define a fileref like this:

Filename x 'orders\2018\my file.txt' ;

Then this would actually be point at C:\SAS\Config\Levl\Web\WebServer\htdocs\
orders\2018\my_file.txt.
And in case you are wondering, a fileref like this

Filename x '/orders.txt' ;

would point to something like c:/orders.txt, since this is not a relative path but instead
is an absolute path. You can always run the preceding code and then use the following
code to see exactly where this fileref is located:

Filename x list ;

If you are wanting to write a file temporarily to a location that you are allowed to
write to, then you can always find a temporary location that you have permission to in
a number of different ways. You could get the location of the work library by using the
pathname function, which returns the physical path to a SAS library which is already
allocated. This code will get the location and write it to the log:

%put %sysfunc(pathname(work)) ;

If you are using a UNIX system, then you might want to find out where your HOME
directory is by getting the value of the HOME environment variable. You can use the
sysget function to get the value of an environment variable, so this code will print the
value to the log:

%put %sysget(HOME) ;

Remember that UNIX is case sensitive, so you need to look for HOME, not home or
Home.

63

CHAPTER 3 HTML

Another way to find your home directory is to run some code like this, which
allocates a fileref to the home directory and then shows its location:

Filename test '.' ;
Filename test list ;

Summary

In this chapter, we have learned about HTML and specifically some ways to use it with
SAS and stored processes:

e Using forms in HTML which is a major way to prompt the user for
information and get it to your SAS code in the form of SAS macro
variables

e Generating HTML code in several different ways:
e ODS (Output Delivery System) to generate HTML

e HTML produced by data steps in SAS code, resolving macro
references if required

e Proc Stream to produce HTML code while resolving macro
variables and macro programs

o Using the %stpbegin and %stpend macro programs provided by
SAS to produce ODS

e Making a stored process that generates a form with prompts that then
calls itself to produce the results and display them

o Using form attributes to make stored process calls

o Passing data between stored processes using browser storage,
cookies, files, or URLs

64

CHAPTER 4

JavaScript

JavaScript is a language usually used with HTML to add functionality especially involving
interactivity. It was invented by Brendan Eich in 1995 and is not the same thing as Java,
which was released four years earlier. The official name of the JavaScript language is
actually ECMAScript, and it became a standard in 1997. It is now supported by most
modern web browsers, and it is a powerful tool that you can use as you build web-based
applications.

JavaScript is an easy-to-learn language that lets us do many things that are very
useful, including

e Validate input on the client machine, rather than having to send a
request to the server first. This reduces network traffic and load on

your servers.

o Provide instant feedback to users, rather than waiting for a page
refresh.

o Ability to make interactive interfaces since it can detect when the
mouse is hovering over something, when keys are pressed, single and
double clicks, and so on. Once something is detected, it can carry out
various actions that modify the screen.

o Ability to use items such as drag-and-drop components, sliders,
interactive tables, and so on.

JavaScript does limit you in doing some things you might like to do, mostly due to the
fact that it runs in your browser on your client machine and does not run on the server
you connect to. Some of JavaScript’s limitations are

e No reading or writing files on the client. This is a security measure.
You wouldn’t want a JavaScript program to read some information

from your machine and send somewhere else.

65
© Philip Mason 2020

P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_4

https://doi.org/10.1007/978-1-4842-5925-2_4#ESM

CHAPTER 4 JAVASCRIPT

e No access to web pages from another domain with JavaScript.

e No support for multi-threading or use of multi-processors on the
client. So, we are not supposed to do compute heavy operations on
the client.

e No access to databases on a server without some kind of server-side
script. Fortunately, SAS Stored Processes can fulfill this function.

e No access to most of your local devices with JavaScript.

e JavaScript can be disabled in a browser, which means that many web
applications will no longer work.

There are many places to learn JavaScript: the Internet, books, web training, live
classroom training, and so on. I want to recommend a few things that I find very helpful.
Firstly, the print series In Easy Steps has books about HTML5, JavaScript, jQuery, and
CSS3.! This series is very easy to dip into and get basic useful information quickly. The
other major resource that I love to use for learning is the W3Schools online tutorial
website (w3schools.com). It has a wealth of excellent information about JavaScript,>
HTML,? CSS,* jQuery, and more.

Basic Example of a JavaScript Program

Here is a simple JavaScript example:

<HTML>

<body>

<p id="hello"></p>

<script>

document.getElementById("hello").innerHTML = "Hello World!";
</script>

</body>

</HTML>

'http://ineasysteps.com/books-by-category/programming-2/
*JavaScript info - www.w3schools.com/js/default.asp

SHTML info - www.w3schools.com/HTML/default.asp

*CSS info - www.w3schools.com/css/default.asp

66

http://ineasysteps.com/books-by-category/programming-2/
https://www.w3schools.com/js/default.asp
http://www.w3schools.com/HTML/default.asp
http://www.w3schools.com/css/default.asp

CHAPTER 4 JAVASCRIPT

In this example, we use an HTML paragraph tag <p> and give it an id called “hello”
We put our JavaScript inside the <script> and </script> HTML tags, which is always
where JavaScript code goes.

Looking at the JavaScript statement, on the fifth line of the code

e Document refers to the entire HTML document or file.
o getElementByIdlooks up the id called “hello” from the document.

e innerHTML refers to the HTML code that appears inside that element,
which in our case is a paragraph tag.

So, this first part of JavaScript points to the content of the paragraph tag, and using
an equals sign then assigns it a new value.
The output produced in the browser is as shown in Figure 4-1.

Hello World!

Figure 4-1. Displayed in web browser when previous JavaScript code is run

Writing and Testing

All that is required to write JavaScript code is a text editor, preferably one such as
Notepad++ which is free. So, you don’t need any fancy software, although using software
that has been designed for this has some advantages. You can get free software which is
very good for this, and I have listed some of these later in this book. A great one I would
highly recommend is Notepad++. It has syntax highlighting, powerful search/replace
abilities, and many other features. It’s a great basic editor for most kinds of text. It also
has a Run menu which will take the code you have edited and open it in one of several
web browsers for testing. Figure 4-2 shows what the example program from the previous
section would look like in Notepad++.

67

CHAPTER 4 JAVASCRIPT

<html:>

<body>

<p id="hello"></p>

<script>

document.getElementById("hello™) .innerHTML = "Hello World!"™:;
</script>

</body>

</html>

=] & 0 b W N

co

Figure 4-2. Program in Notepad++

There are more powerful editors available of course, such as IDEA, VScode,
VSCodium, NetBeans, BBEdit, or Atom (from GitHub). Some of these will let you run and
test your code directly from the tool. It’s best to think about the most useful features for
the way you develop and then to choose the best set of features for that.

Debugging JavaScript

There are various ways to debug JavaScript code. Firstly, you can check the code before
it runs. There is a tool called Lint, which exists in a number of different forms such
as JavaScript Lint® where it can be run online or downloaded to your machine. It will
check the JavaScript code for common mistakes such as comments within comments or
missing semi-colons at the end of lines. It also looks for less common mistakes such as
regular expressions missing a preceding left parenthesis. So, it will basically do a syntax
check and will also lay out your code nicely.

The other way to check your JavaScript code is to run it with a debugger. There
are debuggers built into most web browsers which enable you to break when errors
happen and examine things, see how long it takes for parts of the program to run, check
resources used, and so on. You can access developer tools in the following ways:

e Chrome - Menu item “View/Developer”.
o Firefox - Menu item “Tools/Web Developer”.
o Internet Explorer - Press F12.

o Safari - Menu item “Develop”.

*JavaScript Lint - www. JavaScriptlint.com/index.htm

68

http://www.javascriptlint.com/index.htm

CHAPTER 4 JAVASCRIPT

There are lots of developer tools available in these browsers, some having far more
than others. For example, some browsers have a responsive design mode as well, which
will let you change your screen size to match that of another device such as an iPad so
you can see what your application looks like on that. Another good one is some browsers
have a switch to let you emulate different browsers, so you can see what your code looks
like in other browsers while only using one. It’s best to install them all and try out the
different tools before you settle on one that you like best.

Using JavaScript with HTML

To use JavaScript in your HTML documents, there are two main ways to do so. Firstly,
you can use <script> tags and put your code between it. For example, if you wanted an
alert box to pop up on the screen saying “Hello World!; then you could use this code:

<script>
alert("Hello World!") ;
</script>

Secondly, you can use JavaScript in some parameters of some of the HTML attributes
of tags. For example, if you wanted a pushbutton on your page which would call a
JavaScript function called my_function when it was pressed, then you could use this
code:

<button onclick="my function()">Click here</button>

There are lot of these attributes that let us do different things in JavaScript based
on some kind of event that happens - these are often referred to as event handlers. The
main event handlers are shown in Table 4-1.

69

CHAPTER 4 JAVASCRIPT

Table 4-1. JavaScript event handlers

Event Handler Description

Onabort, Onerror Responds when user aborts download of page or an error occurs
Onblur, Onfocus Responds when user moves focus onto or off an element
Onchange, Onselect Responds when user changes or selects an element

Onclick, Ondblclick, Responds when user clicks or double-clicks the mouse button

Onmousedown, Onmouseup
Onload Responds when the page has finished loading

Onmousemove, Onmouseover, Responds when user moves mouse over an element
Onmouseout

Onsubmit Responds when user submits a form to server

Ondragstart, Ondragover, Responds when user drags or drops an element
Ondragend, Ondragenter,

Ondragleave, Ondrag,

Ondrop

Basic DOM

When an HTML document is loaded into a web browser, a Document Object is created
which is made up of nodes. The Document Object Model (DOM) describes what you
will find on a Document Object. There are nodes for elements, attributes, text, and
comments. There are methods available to interact with the DOM, so that you can
interrogate it and change it. This gives you a massive amount of control over the web
page. Interacting with the DOM can be rather slow which has led to the emergence of
“virtual DOM” frameworks such as React (made by Facebook). If you are looking for
speed, then it may be worth looking into those.

You could use JavaScript to call some DOM methods and change some text on your
web page, change the styling of a title, or even add or delete parts of the web page. The
DOM is a big and complex thing to understand and is beyond the scope of this book.

I suggest looking online for some good resources to learn about it.®

5W3Schools has some good info about the DOM here: www.w3schools.com/js/js_HTMLdom.asp

70

http://www.w3schools.com/js/js_HTMLdom.asp

CHAPTER 4 JAVASCRIPT

Using Stored Processes to Generate Pure JavaScript

In the same way that Stored Processes can generate HTML, it can also generate
JavaScript. JavaScript can handle a lot of the logic required for a web application; in fact,
itis almost essential for any reasonable functionality.

With SAS, you can use ODS to produce output in a range of forms, including
HTML. HTML is the form which offers the greatest potential for creating applications
that have multiple screens, are lightweight, are running on multiple platforms, and are
secure and interactive. ODS has the ability to add some elements of interactivity but is
limited. If you use SAS to generate HTML with JavaScript and CSS code, then you can
produce almost anything.

When you run a Stored Process to generate JavaScript code, you will be running SAS
code on the server. The JavaScript generated will run in the browser after the SAS code
that generated it has run. You can do some clever things like having your Stored Process
pause for some time and then deliver some more JavaScript to the browser to run. In
fact, there are almost endless possibilities of what you can do. Just imagine all the things
you have seen running in a web browser - most of that can be done using JavaScript. And
all of your JavaScript can be generated from SAS Stored Processes and delivered to the
browser.

Remember that SAS has some limitations around the length of variables in SAS 9,
which means if you are dealing with names and values over 32,767 characters long, then
there will be truncation. There are techniques to get around this problem and some
clever open source software such as SASjs and SASjs-cli on GitHub which makes it easy
to do.

You don’t need to be an expert in these web technologies to achieve a lot. But you
do need to know some basics, which I am trying to cover in this book. I have mentioned
how to run JavaScript code by either using script tags or using event-handler attributes.
That is the key way that you get some JavaScript to run on your HTML page.

Another key thing to know is how to define JavaScript libraries to HTML. This is
also done using a script tag, but you specify a source to get the JavaScript code from. For
example, to load the jQuery library so that you can use JavaScript functions defined in it,
you would use the following code:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.
js"></script>

71

CHAPTER 4 JAVASCRIPT

Note When loading libraries like this that are external to your network, you
should ideally use an integrity hash to avoid possible URL interception.’

You could just as easily save a lot of your own JavaScript code into different files
and load them in using this technique. This is the most important thing for a SAS
programmer to know, as it gets you access to a wealth of great JavaScript code that is out
there in the free and open source community.

The most important thing to know is how to use the event-handler attributes, which
I have already described. Knowing this allows the SAS programmer to do many things
like detecting clicks and button presses and then taking actions like running Stored
Processes and passing various values to them.

How Data Is Stored and Used

In JavaScript, you can load data from various data structures using a range of methods.
This might be loading data in from plain text, JSON files, XML, HTML, CSV, databases,
and more. The data can be loaded into various structures in memory for use with
JavaScript, such as arrays or objects.
You can hard-code data into your JavaScript programs, and this is often a good way
to get started when writing some new code since you can enter some sample data easily.
Most of the time, you will load data from somewhere into JavaScript to then be
used. If you are using a JavaScript framework like D3, then you might use a provided
function to load a CSV file into a data structure that is compatible with other parts of that
framework.

How SAS Stored Processes Can Feed Data to Objects

When building a normal web application using HTML and JavaScript, the programmer
would usually point to data that is being provided from some data source such as a CSV
file or which is being loaded from a database. It is easy to use a Stored Process to provide

"https://developer.mozilla.org/en-US/docs/Web/Security/Subresource Integrity
https://sasjs.io/security/#integrity-checking-for-javascript-files

72

https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://sasjs.io/security/#integrity-checking-for-javascript-files

CHAPTER 4 JAVASCRIPT

data when it is needed in the appropriate format. This means that you can use any kind
of SAS programming on the server to assemble the data you need to be delivered to the
code in the web browser that needs it.

A simple example of this comes from the world of D3, which is a powerful JavaScript
visualization library. It has a function used for loading data from a CSV file into a
JavaScript object where it is able to be used with many other functions. The code used to
do this would be something like this:

D3.csv
// Get the data
d3.csv("data.csv", function(error, data) { }) ;

If you wanted to use a Stored Process to provide the CSV data rather than the data.
csv file, then you could substitute in a call to a Stored Process as the data source for the
CSV function:

// Get the data
d3.csv("http://my.server.com/SASStoredProcess/do? program=tools/
csvdtable=sashelp.class", function(error, data) { }) ;

The basic principle in using a Stored Process to feed data to an object is to use the
appropriate syntax to point to the Stored Process via the Stored Process Web Application.
As long as the function you are using is capable of pointing to a URL, then it should work.
If you have to simply specify a hard-coded JavaScript array or object in order to use the
function/object that you wish to use, then you won'’t be able to point to a Stored Process
to do this. However, you can use techniques discussed in the Proc Stream section of this
book. You can basically generate values as a result of a macro program or macro variable,
and proc stream will resolve those so that they appear in the appropriate place in the
HTML/JavaScript code.

More About Where to Put Files on Your Web Server

Usually when creating JavaScript code, you would put that in a place that is accessible to
your web server, so that it can be referred to with a URL, or by using relative or absolute
paths in a program. Most web servers have a home directory which is the top level used
when URLs are used. It is often called HTDOCS, and all HTML, JavaScript, CSS, and
other files needed for web pages would be put in directories or under that.

73

CHAPTER 4 JAVASCRIPT

Directories

For example, when entering a URL into a web browser such as www. sas.com/en_gb/
home. html, firstly the IP address for that website would be found by looking up sas.com
in a DNS.2 With this IP address, the computer containing the website can be accessed.
The browser then looks for the file home.HTML in the directory en_gb for the web
server, which often will be something like this: C:\SAS\Config\Levl\Web\WebServer\
htdocs\en_gb\home.html. The part in bold is likely to be similar on another windows
installation.

The HTDOCS directory being the root directory for the web server means that
anything you put there is easily referred to with reference to it. So, if we had another file
such as C:\SAS\Config\Levl\Web\WebServer\htdocs\reports\reportl. HTML, then this
could be found using a URL like this: www. sas.com/reports/report1.HTML. Notice that
the slashes for a path in windows are “\’) whereas when used in a URL, they are the UNIX
style slashes which are “/” And we have put a directory “reports” after the website, which
takes us down to that directory on the web server before looking for the file “reportl.
HTML!

Usually it’s best practice to have a directory on your web server for the web
application with sub-folders for JavaScript libraries, another for CSS files, another for
images, and so on. Although there is no reason, you can’t put them anywhere under
the root directory. Generally, there is no way to refer to files above a root directory or
elsewhere on a system which is not under that web server root directory. Of course, if
you have shared resources, they should be combined into an area accessible to the apps
that will be using them, rather than having multiple copies of them.

Relative Paths

You can use relative paths to point to things on a root directory though. Suppose you

have an HTML file that is located in the reports directory. Then if you specify an image
as “logo.png” without a path specified, then it will look for that in the reports directory
too, since that is where the HTML file containing that reference is. Suppose the HTML
file was in the /reports directory, but the image was in the /images directory, then you

()l

could use a path like where the “..” means go up one

SDNS (Domain Name Server).

74

https://www.sas.com/en_gb/home.html
https://www.sas.com/en_gb/home.html
http://www.sas.com/reports/report1.HTML

CHAPTER 4 JAVASCRIPT

level, and then it goes down to the images directory to find the logo. Or you could specify
“/images/logo.png” which means go to the root directory and then down to the images
directory to find the logo.

Specifying Libraries

If you want to make use of libraries such as the jQuery JavaScript library or the w3.css
CSS3 library, you can refer to them from your HTML code like this, which would look for
the libraries in your web server’s root directory:

<script src="jquery-3.2.1.min.js"></script>
<link rel="stylesheet" href="w3.css">

You could refer to these libraries in sub-directories under your web server root
directory like this. If you start the path with a “/’) it means that it starts at the web
server root. So the path in the following example might be "C:\SAS\Config\Levl\Web\
WebServer\htdocs\JavaScript\jquery-3.2.1.min.js":

<script src="/JavaScript/jquery-3.2.1.min.js"></script>
<link rel="stylesheet" href="/css/w3.css">

Or if you don’t have the libraries on your web server, then you can refer to them on
another web server like this:

<script src="https://code.jquery.com/jquery-3.2.1.min.js"></script>
<link rel="stylesheet" href="https://www.w3schools.com/w3css/4/w3.css">

You need to be aware of your organization’s security policies, since many companies
don’t like you to point to external libraries like this. If that is the case you may need
to obtain a copy of the library, pass it through some security procedure (such as virus
checking) and then to load it onto your internal network where it could then be referred
to.

When you specify libraries in your HTML code in this manner, the contents of those
files will be loaded in and processed, so you are then ready to make use of the functions
and classes that they define in the rest of your code.

75

CHAPTER 4 JAVASCRIPT

Building Interactivity with JavaScript

JavaScript can add interactivity to your web pages. It enables you to do everything from
displaying a message when something happens to displaying a complex table enabling
you to sort the columns in it - and much more. I will outline a few things that you can
easily do without much expertise.

Pop-Up Windows

There are three different kinds of functions in JavaScript which will pop up a window.

Alert displays a box with some text, which you can then close, useful for messages to
the user.

Confirm will display a box with some text and an OK and Cancel button. This allows
the user to confirm that something is OK or not.

Prompt will display a window with some text and an input box in which the user can
type some text. It is good for asking the user for a text response to a question.

Examples of these three pop-up windows follow here:

<script>

window.alert('Hello!") ;
window.confirm("Press a button!") ;
window.prompt("What's your name?","Phil") ;
</script>

These JavaScript calls display the following series of pop-up windows shown in
Figures 4-3, 4-4, and 4-5.

Hello!

Close

Figure 4-3. Result of window.alert

76

CHAPTER 4 JAVASCRIPT

Press a button!

Cancel OK

Figure 4-4. Result of window.confirm

— w1

What's your name?

Phil

Cancel OK
| m— e |

Figure 4-5. Result of window.prompt

The JavaScript functions can return values and be used to capture those values to do
something with them. For instance, the following variable definition will prompt for the
name and assign it to the variable person when the user clicks OK, or if they click Cancel,
then it will return a null value:

var person = prompt("What’s your name?", "Phil");

Notice that you can also write the methods without the window prefix.

Validating Form Fields

You can either do client-side or server-side validation or both! Client-side validation
happens on the client computer in the web browser. Server-side validation happens back
on the server once the form content has been sent there. To do client-side validation, you
can use JavaScript. You are able to get the value of a field that has been typed into or even
detect each character as it is typed.

The following HTML and JavaScript example in Listing 4-1 shows a simple way to get
you started doing client-side validation. The numbers (©,®,®, and @) just show lines
that have a relationship of some kind.

77

CHAPTER 4 JAVASCRIPT

Listing 4-1. HTML and JavaScript example

<HTML>
<head>
<script>
®function validateForm() {
® ® var name = document.forms["survey"]["name"].value;
if (name == "") {
alert("Name must be filled out");
return false;

}
® @ var phone = document.forms["survey"]["phone"].value;
if (phone == "") {
alert("Phone must be filled out");
return false;
}
}
</script>
</head>
<body>

® @O<form name="survey" onsubmit="return validateForm()" method="post"
action="run.php">

@ Name: <input type="text" name="name">

@ Phone: <input name="phone" type="text" onkeypress='return event.charCode
>= 48 && event.charCode <= 57'></input>

<input type="submit" value="Submit">

</form>

</body>

</HTML>

We have a function which gets the value of name and checks if it is empty, in which
case a message is shown and the function returns a false, meaning that the action is not
done. If the name had some content, then it gets the value from the phone field and does
the same test.

Also, on the phone field, we have specified onkeypress, which carries out the
JavaScript in quotes each time a key is pressed. That will return the value of the text

78

CHAPTER 4 JAVASCRIPT

typed if it is between the ASCII codes of 48 and 57, which are the digits 0-9. This ensures
that we can only type numbers into the phone field, and any other characters will be
ignored.

The HTML produced is shown in Figure 4-6.

Name:
Phone: Submit

Figure 4-6. HTML results in this displayed in browser

If we don’t enter a name, then the text in Figure 4-7 is displayed.

Name must be filled out

Close

Figure 4-7. Message when Submit is pressed without specifying a Name

If we don’t enter a phone number, then the text in Figure 4-8 is displayed.

Phone must be filled out

Close

Figure 4-8. Message when Submit is pressed with specifying a Phone number

Linking to One or More Other URLs

One common thing that is needed when building web applications is to be able to call
other web pages in various ways. Sometimes this is done just by clicking a link, which
is simply done using an anchor tag. These show up as blue underlined links usually,
although we can change how they look with CSS. Here is some HTML code for a link:

SAS Web Site

79

CHAPTER 4 JAVASCRIPT

Clicking a link like this will open a web page replacing the one you are currently on.
If you specify a target attribute on the anchor tag, then you can choose where to open
the web page. _blank will open the link on a new window/tab, _self will open it on the
same frame as it was clicked, _parent opens it in the parent frame, _top opens it in the
full body of the current window/tab, or you can specify the name of a frame to open
itin that. Using links like this will always require the user to click the link to make the
action happen. However, you can use JavaScript to open other URLs automatically. The
following JavaScript code will open the SAS home page when it is executed:

window.open("https://www.sas.com");

You can specify other parameters with window.open to control more about how the
URL is opened. For instance, the following code specifies the page to open, _blank says
to open it in a new windows, and then we specify that window should have a toolbar and
scrollbar and be resizable. It should also have its top-left corner 50 pixels in from the left
and down from the top, as well as being 1000 pixels wide and 500 high.

window.open("https://www.sas.com", " blank", "toolbar=yes,scrollbars=yes,
resizable=yes,top=50,left=50,width=1000,height=500");

Summary

In this chapter, we look at JavaScript especially with a view to what will be useful when
creating web applications with SAS Stored Processes. We look at the following things:

e Some of the features and limits of JavaScript
o Debugging JavaScript programs using tools available in web browsers

e The DOM (Domain Object Model) and how JavaScript and HTML
interact

o How stored processes can provide data to JavaScript programs
e How JavaScript libraries are basically used
e How to add more interactivity to HTML programs

e Adding validation to HTML forms

80

CHAPTER 5

JavaScript Libraries

JavaScript libraries are a collection of pre-written JavaScript programs which have a
defined Application Programming Interface (API)! that can be used by other programs
to make use of their functionality. For instance, a library might provide a collection of
useful objects such as tables and graphs of different kinds. Those objects would have
parameters defined so that you could provide data to them and define things about the
layout of the objects.

If you have used SAS/AF in the past, you will see similarities between JavaScript
libraries and SAS/AF. Both allow you to interact with a client by building a user interface,
detecting responses, and taking various actions. I have built applications in the past
using SAS/AF, and now JavaScript together with HTML lets me build quite similar
applications.

Benefits of a Library

JavaScript libraries have some useful benefits over writing your own code to achieve the
same results. The primary benefit is that the code has already been written and used by
many people and is now shared for others. Other benefits of libraries include

e Browser support - Often a library will have code that supports
multiple browsers. If you don’t have code that does this, then you can
sometimes find inconsistencies in the behavior of your code.

e Cross-platform support - Libraries will often support differences
in how multiple platforms operate. For instance, using a library can
allow your applications to run properly on computers, tablets, and
mobile phones.

'Application Programming Interface, or API, is a definition of how a program can make use of
another program. It defines the input, outputs, parameters, and so on.

81
© Philip Mason 2020

P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_5

https://doi.org/10.1007/978-1-4842-5925-2_5#ESM

CHAPTER 5 JAVASCRIPT LIBRARIES

o Functionality - Code and widgets from libraries can provide objects
with lots of functionality that can be used with very little coding.
The library of functionality means you can use them rather than
developing a lot of code to do similar things. This is similar to the
collection of widgets provided with SAS/AF which provided lots of
pre-built functionality.

o Extensible - With libraries, you get the source code and then have
the ability to extend and enhance any code provided. This is only
really applicable to expert JavaScript programmers though and is far
beyond the scope of this book.

e Learning - Often a JavaScript library has a community of users
providing support and sample code. This can provide a great
resource to learn from or base your own code on with some
modification of examples you like.

e Quality - Since the code is used by many people and has been well
tested, you get high-quality code to build upon.

e Speed of development - Using a library means you have a huge
amount of code available which you don’t need to write yourself, thus
saving a lot of development time.

Choosing a JavaScript Library to Use
As a Framework

There are quite a lot of libraries around today and even more are being developed

all the time. Some of them have been around for a long time, and many form a
foundation for other ones which tends to ensure their longevity. So, I can be confident
in recommending the libraries in the next section. When picking a library, I suggest
evaluating them on the following criteria:

o Popularity - This tends to ensure ongoing development and bug
fixing. More popular libraries will have more examples floating
around the Web and more problems solved on forums.

82

CHAPTER 5 JAVASCRIPT LIBRARIES

Functionality - The key thing you're after. Look at what the library
gives you in the way of functions, objects, widgets, and so on. It’s easy
to look through a library’s example to see a showcase of what it can
do. You might want to get one library because it gives you the best
grid that you are looking for, but it might not do graphs. So, you might
choose another library that does graphs really well. If you mix and
match, you need to make sure that the libraries operate together well.

Ease of use - Varies between libraries, especially if you are not a
proper JavaScript programmer and just dabble.

Available via CDN - Means that you will be able to point to the
libraries on a publicly available Code Delivery Network. If the library
you want is not available on one of these, then you need to install the
file on your server and point to it there.

W3Schools - See if your library is covered on the W3Schools website
which provides free reference and training resources on a number of
web technologies. If a library is covered here, then you can be sure it
is a good choice.

Cost - Most libraries can be downloaded and used for free at least
for a while. Even the ones that cost will allow free use for personal
development/non-commercial uses. However, some of the really
good ones charge by number of developers, websites, servers, or
some combination. So, you need to be aware of the potential cost
before investing a lot of expense in development.

Recommended Libraries

There are a huge number of libraries around, but to get you started, I would suggest

looking at the following ones:

jQuery - Perhaps the best known of all libraries. Its strapline is “write
less, do more”. And it’s free. You can learn more about jQuery in the
next section of this chapter.

jqGrid - A great jQuery grid plug-in with some variations for pivot
tables, tree view, and so on.

83

CHAPTER 5 JAVASCRIPT LIBRARIES

o Highcharts - One of the best for graphs and other visualizations.

e D3 - Lets you do amazing visualizations and has several other
libraries built on top of it such as C3, Dimple, and DC.

o Crossfilter - Lets you have linked objects in which selecting
something in one will apply filters to the others. Simple and powerful.

o Handsontable - A grid library that is almost like having Excel in a

web browser.
o Highmaps - Not free but does a great job at maps.

o Highstocks - Also not free, but has some great graph types
commonly used with stocks but not exclusively.

e Sencha Ext]S - Great, but not cheap. It has a very useful designer which
is a point and click interface to build applications using its library.

You will usually want a mix of libraries, since you will want jQuery for doing many
basic things; however, it doesn’t come with a grid or graphs. So, you might then add in a
grid like Handsontable and graphs like Highcharts. If money is no object, you might just
get Ext JS which will give you everything you need. If you don’t want to spend anything,
then a combination like jQuery with dataTables, DC.js, and dyGraphs is something that I
have used with great success.

Content Delivery Networks (CDNs)

A great place to get libraries like jQuery is from a Content Delivery Network or CDN.
They are a collection of distributed servers which deliver content to users efficiently
based on factors such as geographical location. In practice, they are extremely useful for
loading JavaScript libraries. I have found that often it is difficult to get permission to host
aJavaScript library on a server of a client I am working for; however, I can point to a CDN
and just load that library when it is needed. Additionally, if people load the library a lot,
then it is held in cache and becomes very efficient to load.

A Google search of “CDN jQuery” will come up with a range of CDNs that have
jQuery libraries available. You will see that there are many versions of jQuery, and
with major new versions generally new functionality and support for older browsers is
dropped and newer browsers added. So generally, if you are using the latest browser,
then choose the latest version.

84

CHAPTER 5 JAVASCRIPT LIBRARIES

You will also notice that there are usually several versions of each library on a
CDN. There is a normal version, a version with comments through it (which is bigger),
and a minimized version which has all the white space, carriage returns, comments, and
so on taken out so it is as small as possible while still working properly. We usually use
the minimized version since it is smallest and so is quicker to load. However, if you are
developing and using a debugger, you might want the bigger version with comments.

If using a CDN, you need to be aware of potential security issues. Using a CDN, you
are going to an external website and including JavaScript code which will then run on
your machines. That should be OK, but there might potentially be some malicious code
that someone hacks into a CDN so that it is used by many people. It is best to find copies
of libraries that you trust and run through virus and malicious code checkers. Then keep
a copy of the scanned libraries on your own web server and use that version rather than
a CDN version. Although, sometimes people don’t have the permission to update their
web servers like this and will reply on a CDN, or perhaps use a CDN for ease of use. You
can mitigate the risks by using an integrity hash.?

jQuery

jQuery is a JavaScript library which greatly simplifies JavaScript programming. You can
usually achieve quite a lot with far less statements than it would take with standard
JavaScript. You can do things like manipulate the HTML on a web page, such as
changing things displayed and loading items into a list of items; modify the CSS on a
web page, such as changing the font/size/color of text and laying out items on a screen;
attach event handlers to things on a web page such as pressing a button, pressing the “Y”
key, or hovering over some text that can carry out an action; and create dynamic effects
and animations like having text slowly appear and grow in size as a web page opens.

One of the most useful things you can do with jQuery is to make use of AJAX, which
stands for Asynchronous JavaScript and XML. It lets you fire off requests from one web
page to do other things. So you might use AJAX to load three selection lists on a page
with values. The great thing about AJAX is that the rest of the web page will load and
display while AJAX requests are off running, and when they return, you are able to
update the web page with things they return. It’s a key feature that makes it possible to
build great web applications.

*https://sasjs.io/security/#integrity-checking-for-javascript-files

85

https://sasjs.io/security/#integrity-checking-for-javascript-files

CHAPTER 5 JAVASCRIPT LIBRARIES

Getting Started

A great place to learn about jQuery, HTML, CSS, and more is at W3Schools website. The
jQuery section (www.w3schools.com/jquery) has lots of examples, tutorials, references,
and more. W3Schools uses a page for all examples which displays the code on the left
and the results on the right. You are able to modify the code and then see results on the
right updated, which makes it a great place to try things out and learn about jQuery.

To use jQuery, we need to include the jQuery library by using a script tag and then
have some JavaScript that makes use of some jQuery. A simple “hello world” example is
as follows in Listing 5-1.

Listing 5-1. Hello World example

<HTML>

<head>

<script src='/Users/philipmason/Downloads/jquery.min.js'></script>

<script>
$(document).ready(function() {

alert("Hello World!") ;

P

</script>

</head>

<body>

<h1>jQuery test</h1>

</body>

</HTML>

This HTML produces a page like the one shown in Figure 5-1.

86

http://www.w3schools.com/jquery/

CHAPTER 5 JAVASCRIPT LIBRARIES

eee <[> file:///Users/philipmason/Dc X >

Hello World!

Figure 5-1. Alert is shown when web page loads

If you are using code like jQuery from outside your business, there are security
implications. You need to make sure you get a safe copy of it checked and loaded onto
your own infrastructure to reduce any possible risk. If you just connect to a CDN, then
you will always be grabbing the code from an external source every time you use your
web app. You can mitigate the risk by using integrity hashes.®* And having said that, these
libraries are used by millions of websites around the world and are very safe.

One important thing to note is that when you load the jQuery library to make use of
all the jQuery functionality, this statement should be used:

<script src='/Users/philipmason/Downloads/jquery.min.js'></script>

Here I have loaded the library from my Mac; however, you can load it from your own
web server or load it from somewhere online. A great place to load things like jQuery is
from a CDN which is described in the next section.

The other important thing in this example code is the piece of jQuery code:

$(document).ready(function() {
alert("Hello World!") ;

D
You use jQuery by using the following syntax:

$(selector).action() ;

Shttps://sasjs.io/security/#integrity-checking-for-javascript-files

87

https://sasjs.io/security/#integrity-checking-for-javascript-files

CHAPTER 5 JAVASCRIPT LIBRARIES

The $ sign is how we invoke the jQuery functionality. The selector will look through
the HTML document and return a jQuery object that contains all the objects that match.
In our example, we are looking for a “document” object, which is how we refer to the
whole HTML page.*

JavaScript dot notation lets us append an action to be carried out on all the objects
returned in the jQuery object from the search. So “$(document)” looks for objects that
are a document and then “ready” sets an action that will be carried out when the ready
event occurs. We do this to make sure the HTML document is completely loaded and
ready before we start manipulating anything with JavaScript. Inside the round brackets,
we have the code that will run when the document is ready. Here we define a function
to run, which contains the statement we want to run. “function()” indicates that this is
a function object, and the statements to run occur within the curly brackets. Within the
curly brackets, we simply have a standard JavaScript alert function which pops up a box
with some text in it.

Using this kind of code is a standard way you can use when you want to do
something once a web page is loaded. All you need is the following jQuery, as we have
seen in our example, and replace the code with whatever jQuery or JavaScript that you
want to run:

$(document).ready(function () {
// your code goes here

P

Selecting Elements in jQuery

There are a number of ways to select elements in an HTML document with jQuery. They
are quite flexible, and we are able to select things by referring to the name of the tag, the
id used on a particular tag, the class defined, attributes used, and much more. Here are
some of the major ones that you are likely to need.

“If you're a bit worried at this stage that things are getting a bit deep and that you will need to
learn all about the Domain Object Model, which is how HTML documents are represented in
aweb browser, then don’t worry as we will be learning just enough to get things done and not
delving deep into web technologies as that is far beyond the scope of this book. We only need a
bit of knowledge about all this and some examples to work from in order for us to do a lot.

88

CHAPTER 5 JAVASCRIPT LIBRARIES

Selecting by Tag Name

You can specify the name of an HTML tag to select elements. In the following code, I select
the list item tag (“li”) and then use the jQuery text method to set the text for each tag.

Listing 5-2. Listitem tag and jQuery text method example

<HTML>

<head>

<script src='/Users/philipmason/Downloads/jquery.min.js'></script>

<script>

$(document).ready(function () {
$('1i").text("'new value')

D

</script>

</head>

<body>

1</1i>

2¢</1i>

<1i>3</1i>

</body>

</HTML>

This results in the output shown in Figure 5-2.

1. new value
2. new value
3. new value

Figure 5-2. Result of JavaScript selecting all li tags and changing them

89

CHAPTER 5 JAVASCRIPT LIBRARIES

Selecting by ID

If you have specified an id with any of your tags, then you can select them by using that
id. If you put a hash symbol (#) in front of what you are selecting, then that indicates it is
an ID rather than a tag name. So in the code in Listing 5-3, we select the elements (see ®)
with an ID of “one” (see ®@).

Listing 5-3. Select by ID example

<HTML>

<head>

<script src='/Users/philipmason/Downloads/jquery.min.js'></script>
<script>

$(document).ready(function () {
$('#one").text("'new value') @
b

</script>

</head>

<body>

<li id="one'>1</1i> ®
<li id="two'>2</1i>

<li id="three'>3</1i>

</body>

</HTML>

This results in the output shown in Figure 5-3.

1. new value
2.2
3.3

Figure 5-3. Result of JavaScript selecting one specific id and changing it

90

CHAPTER 5 JAVASCRIPT LIBRARIES

Selecting by Class

If you have specified a class with any of your tags, then you can select them by using that
class. If you put a dot (.) in front of what you are selecting, then that indicates that it is a
class. So, in the code in Listing 5-4, we select the elements (see ®) with a class of “odd”
which results in selecting two lines (see @ and ®).

Listing 5-4. Selecting by class example

<HTML>

<head>

<script src='/Users/philipmason/Downloads/jquery.min.js'></script>
<script>

$(document).ready(function () {
$('.0dd").text('new value') @
Do

</script>

</head>

<body>

® <1li class="odd"'>1</1i> ©)
<li class="even'>2</1i>

® <1li class="odd"'>3</1i> ®

</body>

</HTML>

This results in the output shown in Figure 5-4.

1. new value
2.2
3. new value

Figure 5-4. CSS class was used to select number 1 & 3, resulting in “new value”
being used

91

CHAPTER 5 JAVASCRIPT LIBRARIES

It is best practice to specify the tag name, followed by the class @, so in the previous
example that would be done like this:

$(document).ready(function () {
$('li.odd").text("'new value") ®

P
Other Ways to Select Things

I'won't go into all this much more, but just to let you know of some of the possibilities in
case you ever want a bit more control over what you select. Table 5-1 shows some other
examples of ways to select things.

Table 5-1. Some ways to select things in jQuery

HTML Code jQuery Code What It Does

<li lang=‘en’> $(‘[lang="en"7’) Select elements which have an attribute
called lang equal to “en”

1 $(‘li:even’) Select “li” elements which with even row

2 numbers. Can also select :first, :last, :0dd, :It,
:0t, :eq

 $(‘ul span’) Select the element with a span tag which is

1 within a ul tag

1

3

<h1>heading 1</h1> $(‘h1,#2) Select the element with a span tag which is

<h2 id="2">heading 2</h2> within a ul tag

<h3>heading 3</h3>

You can find many more examples on the W3Schools website (www.w3schools . com/
jquery/jquery ref selectors.asp).

92

http://www.w3schools.com/jquery/jquery_ref_selectors.asp
http://www.w3schools.com/jquery/jquery_ref_selectors.asp

CHAPTER 5 JAVASCRIPT LIBRARIES

Fundamental jQuery Techniques

jQuery gives us a lot of tools to detect things happening on our HTML page and then
modify the page in various ways. That is the basis for building a web application. We
want to display some information and allow a user to interact with the page by moving
the mouse around, clicking, and typing. Based on those interactions, we might load
some more content, go to another page, hide or reveal something, and so on. The extent
of your imagination is the limit. We could even throw in some speech recognition or
virtual reality.

Listing 5-5 shows some examples of simple jQuery to show a few of the things we can
do with it and how little code is needed to achieve this:

e The code on the left will load a text file into a section of a web page
when a button is clicked.

e The code at the top right will hide all paragraphs on a web page when
a button is pressed.

e And code on the bottom right does some animation of some sections
of HTML when a button is pressed.

Listing 5-5. jQuery example code
<script>

$(document).ready(function(){
$("p").click(function(){
$(this).hide();
};
I9F

</script>

$(document).ready(function(){
$("button").click(function() {
$("#divi").load("demo test.txt");
9
1;

</script>

93

CHAPTER 5

JAVASCRIPT LIBRARIES

$(document) .ready(function(){
$("button").click(function() {
$("#div1").fadeIn();
$("#div2").fadeIn("slow");
$("#div3").fadeIn(3000);

3]
};

Now let’s look at some of the fundamental jQuery techniques you can build on.

Actions

We can use jQuery to easily attach actions to elements of a web page. We just need to

select an element on the web page and then attach a method to it which will handle an

event. We are able to detect things such as in Table 5-2.

Table 5-2. Methods that can be used in jQuery to detect events

Jquery Method Explanation

click() Single click of mouse button

dblclick() Double click of mouse button

mousedown() Mouse button is pressed down

mouseup() Mouse button is released

mouseover() Mouse has moved over an element

mouseout() Mouse has moved off an element

mousemove() Mouse has moved on the screen; we can get the x and y coordinates of where
the mouse is

keypress() A key has been pressed; we can get the ASCII code for that key (e.g., 65 is “A”,
97is“a”)

keydown() A key was held down. It is useful to recognize things like arrow keys (ASCII
codes 37-40)

keyup() A key was released

94

CHAPTER 5 JAVASCRIPT LIBRARIES

There are also some other actions that can be taken when the screen is resized
(resize()), when something is scrolled (scroll()) and more.

The following example in Listing 5-6 shows how we can define a function for single
(®) and double (®) clicks. Additionally, you can see a way to identify if it was the left,
middle, or right mouse button that was pressed. The parameter “e” that I passed to the
click method returns an object which we can find the button from by using the button
method @. A value of 0 indicates the left button, 1 is the middle button, and 2 is the right
button.

Listing 5-6. Define a function for single and double clicks

<HTML>
<head>
<script src='/Users/philipmason/Downloads/jquery.min.js'></script>
<script>
$(document).ready(function () {
® $('#box").click(function (e) {
® $(this).text('clicked button: ' + e.button)
.css('background', 'yellow');

1))

® $('#box").dblclick(function () {
$(this).text('double clicked').css('background', ' 'red");

3]
b s

</script>

<style>

#box {width:200px;height:100px;border:3px solid black}
</style>

</head>

<body>

<div id="box'>click</div>

</body>

</HTML>

Here is what the screen looks like at first (Figure 5-5), after a single click (Figure 5-6),
and then a double click (Figure 5-7).

95

CHAPTER 5 JAVASCRIPT LIBRARIES

lick

Figure 5-5. Browser shows this when page is first shown

licked button: O

Figure 5-6. Browser shows this after one click with left mouse button

Figure 5-7. Browser shows this after a double click with left mouse button

Many other JavaScript libraries work well with jQuery. In fact, out of the many
libraries I have seen, I have never found any that conflict with jQuery. jQuery uses
a $ sign to make calls to it, but this can even be substituted with “jquery” and the $
deactivated in case it conflicts with other web usage.

Summary

In this chapter, we look at JavaScript libraries which can provide lots of pre-built
functionality to save you having to do a lot more programming:

o There are many benefits of using a library of JavaScript code.

e Some libraries provide a framework that you can.

96

CHAPTER 5 JAVASCRIPT LIBRARIES

The best and most popular libraries change from time to time, but

currently some of the best are

jQuery
Highcharts
D3
Crossfilter

Data tables

Content Delivery Networks provide a source of libraries you can

reliably use from your web applications.

We went into some more detail with jQuery about how to select

things on screen and detect when the user clicks with a mouse or hits

a key.

97

CHAPTER 6

Data

Among many of the tools that SAS has in its arsenal, SAS can generate data for multiple
uses. This chapter allows the reader to determine how they plan to use the data. Are
you looking to interact with data managed by SAS using a spreadsheet? Are you looking
to bring SAS data into another application page, static HTML page, or in an Excel
spreadsheet (i.e., Office Analytics)? This section will help you see who SAS can be used
for all of these and more.

This section will talk about using data from SAS with other things such as some kind
of application that needs to consume data. For instance, it might be that you want to
import some data into Microsoft Excel. Or you might want to display a graph in a web
browser which uses the data from SAS. The possibilities are endless.

Dynamic Data

Dynamic data is data produced by a SAS program at the point that it is needed. This
means it can always be completely up to date. So, we might have a SAS Stored Process
that can be called and will produce JSON data when it is needed based on a live system
in order to give up to the minute information to the calling application.

Dynamic data is easily produced with Stored Processes but could also potentially be
produced by running a standard SAS program in batch and then picking up the output
produced from it.

99
© Philip Mason 2020

P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_6

https://doi.org/10.1007/978-1-4842-5925-2_6#ESM

CHAPTER6 DATA

Using Stored Processes to Create Dynamic Data

SAS allows Stored Processes to produce data which can be consumed by JavaScript
objects and libraries. As the newest web data transport format, JSON will be the most
common format; some processes may use CSV or XML. The key points in achieving this
are as follows:

o Exclude stpbegin and stpend macros from your Stored Process. These
are usually used by default if making a Stored Process with Enterprise
Guide.

e Produce the data using any method you like such as a data step,
PROC EXPORT, PROC JSON, and so on.

o Set the Stored Process to return streaming output.

o Write the output to the fileref WEBOUT, since that will stream the
data directly to whatever has called the Stored Process.

The data called in the Stored Process will stream directly back to what has called it.
If you place the URL directly in a browser address bar, then the data will be shown in the
format designated in the stored process directly in the browser. Similarly, if you place
the URL inside a JavaScript function, the data will be available for consumption by the
JavaScript function or library. Stored Process production of web data allows us to build
flexible applications which use web-based data for generating grids, graphs, lists, and
many other objects on your web pages and applications.

The following code is a simple example of a Stored Process that uses a parameter for
the name of the table and writes CSV data to _webout so that it is streamed back to the web
application. We also have to specify replace for it to work; otherwise, the Stored Process
can’twrite to_webout. In the metadata for the Stored Process, you just need to define the
table parameter so that the Stored Process can be called and specify those values for use:

proc export data=&table outfile=_webout dbms=csv replace ;
run ;

proc export data=sashelp.class outfile= webout dbms=csv replace ;
run ;

Here is another simple example showing a Stored Process which returns JSON data.
It uses a parameter for libname and memname @ to specify the data required. In the

100

CHAPTER6 DATA

metadata for the Stored Process, you just need to define the libname and memname
parameters so that the Stored Process can be called and specify those values for use:

proc json out=_webout ;
export &libname..&memname ; ©
run ;

proc json out=_webout ;
export sashelp.orsales ;
run ;
WARNING: PROC JSON in SAS 9 can truncate what it produces if it is over
32,767 in length.

How SAS Stored Processes Can Feed Data
to Objects

Many JavaScript objects use data provided via a URL. This could be a static file on a web
server, a PHP script, a file on a WebDAV server, or even a Stored Process. The JavaScript
object will typically be able to use some code to point to a data source. You will often
find example code or documentation that shows exactly how to associate data with a
file, since that is the simplest thing to do. For example, the following code uses jQuery to
point to a JSON file which will be used as input to a grid:

$('#table1').DataTable({
"ajax": "http://d351tq92/sales.json"
})s

So, we could generate a file from SAS to be used as input to an object like this,
although we can also just associate an object directly to a Stored Process. That Stored
Process will return a stream of content in the same way as reading from a file would
return a stream of content. For example, to change the previous example to use a Stored
Process, I could use some code like this:

$('#ttable1').DataTable({
"ajax": "http://d351tq92/SASStoredProcess/do? program=%2FUser+Foldersi2
Fphil%2FMy+Folder%2Fgrid json"

)

101

CHAPTER6 DATA

The preceding Stored Process can further be enhanced by adding some parameters
to it. This adds a whole new level of benefit for us. If we point at a file, then we simply get
the content of that file. If we point at a Stored Process, we get the content of it. If we add
parameters to the Stored Process enabling us to specify the SAS table we want, then we
can have the Stored Process return us the data we select. This makes the Stored Process
into a general purpose one that could now drive a JavaScript grid which would be able
to show us any table. For example, the following code adds a libname and memname
parameter. To be clear, this only works if you are using a Stored Process with something
like Proc Stream so that the values of &libname and &memname are resolved when the
following code is written out. You can see this method shown in Listing 6-1.

$('#table1').DataTable({
"ajax": "http://d351tq92/SASStoredProcess/do? program=%2FUser+Foldersi2
Fphil%2FMy+Folder%2Fgrid json%nrstr(&libname)=&libname%nrstr(8memname)=
&memname”

})s

Here is the Stored Process code for the entire example that would make a grid object
and point to another Stored Process that would provide its data.

Listing 6-1. Stored process code example

* generate a list of variable names to use as table headers and footers ;
proc sql noprint ;
select '<th>'||strip(name)||'</th>" into :th

separated by "'

from dictionary.columns

where libname="%upcase(&libname)" and memname="%upcase(&memname)" ;
quit ;
%put &=th ;

* write content out ;

data null ;
file webout ;
input ;
line=resolve(_infile) ;
put line ;

cards4 ;

102

CHAPTER6 DATA

<HTML>

<head>

<script src="http://code.jquery.com/jquery-1.12.4.js"></script>

<script src="https://cdn.datatables.net/1.10.15/js/jquery.dataTables.min.

js"></script>

<script>

$(document).ready(function() {

$('#table1').DataTable({

"ajax": "http://d351tq92/SASStoredProcess/do?_program=%2FUser+
Folders%2Fphil%2FMy+Folder%2Fgrid_json%nrstr(&libname)=&1libname%
nrstr(&memname)=&memname"

})s
)

</script>

<link rel="stylesheet" href="https://cdn.datatables.net/1.10.15/css/jquery.
dataTables.min.css">

</head>

<body>

<table id="table1" class="display" cellspacing="0" width="100%">
<thead>

<tr>

&th

</tr>

</thead>

<tfoot>

<tr>

&th

</tr>

</tfoot>

</table>

</body>

</HTML>

run ;

103

CHAPTER6 DATA

The Stored Process that provides the data is shown here. The code is very
straightforward as it produces some JSON data written out. The pretty parameter lays
the JSON out in a nice way that is easier to see the structure. We also need some write
statements to produce the exact form of JSON required for the object we are using.
Often, I find that PROC JSON doesn’t automatically provide the right JSON needed as
the format will vary depending on the JavaScript object you use. But the write statements
let you customize it quite a lot to make any kind of JSON you might need. We also use
nosastags to turn off some SAS JSON written out which is not required:

proc json out=_webout pretty ;
write open object ;
write value "data" ;
write open array ;
export &libname..&memname / nokeys nosastags ;
write close ;
write close ;
run ;

Static Data

Static data is data that is produced by a SAS program at some point in the past and then
is used as is by an application. So, we might produce an XML file and place it on a server.
Various applications could then come along and pick up that file to use in different ways.
For it to be useful, we might need to update that file each week, so that applications will
always have the latest available data for the previous week. So there will be various things
to think about regarding

o How recent must the data be?
o Where is the best location for it, to be secure but available?
e Should it be password protected or encrypted?

o What volume of usage will it get? Should it be on fast storage? Does it
matter?

This data could be stored in a file somewhere or could even be delivered in the
form of a Stored Process report which is a cached version of a Stored Process. When you
download some static data, then that data will be fixed until you download some more

104

CHAPTER6 DATA

data to update it. So any changes to the data elsewhere will not be reflected in the data
you downloaded.

In this book, I am trying to show you how to use dynamic data rather than static data.
Dynamic data will be up to date and always go back to the source bringing you fresh data
when it is needed.

CSV

CSV stands for comma-separated values. It's a way of representing data which is usually
structured as a table. The usual way that people come to know about CSV is through
using a spreadsheet program such as Microsoft EXCEL or Apple Numbers from which
data can be saved to or loaded from CSV files. Having looked at JSON in the previous
chapter, you may realize that this is a bit more limited in its functionality since it can only
represent tabular data, whereas JSON can handle far more types of data.

Each line of a CSV file is a list of values separated by a delimiter which is traditionally
a comma, although can also be another character, often a semi-colon. The values would
tend to have quotes around those that are text and not around numerics to make the
distinction clear. If a value contained commas within it, then that would be OK as it
would be surrounded by quotes. If a value contained quotes within it, then it would often
have double quotes to indicate that. This can vary with applications that use CSV data
though.

Typically, a CSV would use the first row to have the names for the columns. These
names might indicate variable names or just be descriptions for what is each column.
Most of the time, these headings are desirable and there is little reason to drop them, as
they are easily ignored if not required. However, data in CSV format does not insist on
column headings.

One last important thing to mention is that if values are missing, then we might have
CSV data that just has consecutive commas that indicate a value is missing by having
whitespace or nothing between them. Consecutive commas can be handled differently
in different programs, so if you might have them, you need to know the behavior of the
application using your data. They might be ignored by treating multiple consecutive
commas the same as one comma or as a number of missing values.

105

CHAPTER6 DATA

Making a CSV with a Data Step

In Chapter 4, we talked about the role of CSV files and the availability of CSV data
available over the Web. Some JavaScript libraries require a CSV input. Here we will show
you a couple of ways to generate CSV with SAS.

It is easy to make a CSV file from a data step. It just requires pointing to a file and
writing out values separated by commas. See Listing 6-2.

Listing 6-2. CSV file from a data step
filename temp temp;

data null ;
file temp;
set sashelp.class;

put name '," age;
run;

data null ;
infile temp;
input;
put infile ;
Tun;

The log from this having run in SAS Studio shows the CSV data produced (in bold)
(Listing 6-3).

Listing 6-3. CSV data example

56 filename temp temp;
57

58 data null_;

59 file temp;

60 set sashelp.class;
61 put name ',' age;
62 run;

106

NOTE:

NOTE:

CHAPTER6 DATA

The file TEMP is:

Filename=/tmp/SAS_work4BDB00005068 localhost.localdomain/#LN00031,
Owner Name=sasdemo,Group Name=sas,

Access Permission=-1w-rw-1--,

Last Modified=21 April 2017 12:05:33 o'clock

19 records were written to the file TEMP.
The minimum record length was 8.
The maximum record length was 11.

NOTE: There were 19 observations read from the data set SASHELP.CLASS.

NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

63

64 data null ;

65 infile temp;

66 input;

67 put infile_;

68 run;

NOTE: The infile TEMP is:
Filename=/tmp/SAS work4BDB00005068 localhost.localdomain/#LN00031,
Owner Name=sasdemo,Group Name=sas,
Access Permission=-1w-rw-1--,
Last Modified=21 April 2017 12:05:33 o'clock,
File Size (bytes)=198

Alfred ,14

Alice ,13

Barbara ,13

Carol ,14

Henry ,14

James ,12

Jane ,12

Janet ,15

Jeffrey ,13

107

CHAPTER6 DATA

John ,12

Joyce ,11

Judy ,14

Louise ,12

Mary ,15

Philip ,16

Robert ,12

Ronald ,15

Thomas ,11

William ,15

NOTE: 19 records were read from the infile TEMP.
The minimum record length was 8.
The maximum record length was 11.

NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

There are some even easier ways to do this in SAS. The following code uses the
DLM-= parameter to specify a delimiter to use when writing values out. That means there
is no need to write the delimiter in our PUT statement:

filename temp temp;

data null ;
file temp dlm=",";
set sashelp.class;
put name age;

run;

If I modify the code to include a variable that does not exist, then I will have missing

values written out to my file:
filename temp temp;

data null_;
file temp dlm=",";
set sashelp.class;
put name x age;
run;

108

CHAPTER6 DATA

This results in some CSV data like this. Notice the missing value indicated by a .
between the commas:

Alfred,.,14
Alice,.,13
Barbara,.,13

However, if I use the DSD parameter, then that means that I won’t write out missing
values, but just leave the commas following on from each other with nothing in between
them. So the modified code is this:

filename temp temp ;
data null_ ;

file temp dlm='," dsd ;
set sashelp.class ;

put name x age ;

run ;

And you can see that now we don’t have missing values written out:

Alfred,,14
Alice,,13
Barbara,,13

If I wanted to just simply write all the variables out in CSV format, then the most
efficient code is something like this. The part with “name--weight” is how we specify a
list of variables including all variables between name and weight inclusive:

data null_;
file temp dlm=","' ;
set sashelp.class;
put name--weight ;
run;

This produces output that looks like Listing 6-4.

109

CHAPTER 6 DATA
Listing 6-4. Output

Alfred,M,14,69,112.5
Alice,F,13,56.5,84
Barbara,F,13,65.3,98
Carol,F,14,62.8,102.5
Henry,M,14,63.5,102.5
James,M,12,57.3,83
Jane,F,12,59.8,84.5
Janet,F,15,62.5,112.5
Jeffrey,M,13,62.5,84
John,M,12,59,99.5
Joyce, F,11,51.3,50.5
Judy,F,14,64.3,90
Louise,F,12,56.3,77
Mary,F,15,66.5,112
Philip,M,16,72,150
Robert,M,12,64.8,128
Ronald,M,15,67,133
Thomas,M,11,57.5,85
William,M,15,66.5,112

Using PROC EXPORT to Make CSV

Another nice easy way to generate CSV data from SAS is by using PROC EXPORT. We will
cover this elsewhere in more detail, but basically the code is as follows:

filename temp temp ;

proc export data=sashelp.class
outfile=temp
dbms=csv ;

run ;

By default, PROC EXPORT will give us column headings for our data. If we didn’t
want the column headings, we could specify PUTNAMES=no to suppress them.

110

CHAPTER6 DATA

SASHELP.SAS in CSV

Using the PROC EXPORT code, we can generate the following CSV output. I have
included this so it can be easily compared to other types of output for sashelp.class. See
Listing 6-5.

Listing 6-5. PROC EXPORT generated CSV output

Name, Sex,Age,Height,Weight
Alfred,M,14,69,112.5
Alice,F,13,56.5,84
Barbara,F,13,65.3,98
Carol,F,14,62.8,102.5
Henry,M,14,63.5,102.5
James,M,12,57.3,83
Jane,F,12,59.8,84.5
Janet,F,15,62.5,112.5
Jeffrey,M,13,62.5,84
John,M,12,59,99.5
Joyce, F,11,51.3,50.5
Judy,F,14,64.3,90
Louise,F,12,56.3,77
Mary,F,15,66.5,112
Philip,M,16,72,150
Robert,M,12,64.8,128
Ronald,M,15,67,133
Thomas,M,11,57.5,85
William,M,15,66.5,112

XML

XML stands for eXtensible Markup Language, which was created to store and transport
data. It is designed to be readable by machines and humans, though it is not as easy to
read as JSON (in my opinion). It has been around a lot longer than JSON though, so is a
bit more embedded into things on the Internet.

111

CHAPTER6 DATA

XML is stored as a text file, like JSON and CSV. It is quite easy in SAS to deal with
simple XML files which have a table like structure, as the next examples will show. We
can also deal with far more complex types of XML; however, to do this requires the use
of XMLMaps which are beyond the scope of this book. Just be aware that there is a great
program available with SAS called the XML Mapper! that helps you create XML maps, or
you can create them manually. You then specify a map that you are using in order to map
more complex XML structures into the simpler SAS table layout.

Reading XML Data into SAS

The following SAS program in Listing 6-6 writes some XML data to a temporary file.

I then get the filename that was created (using pathname function). Using that I can use
the XML engine on the libname statement to point to the file. Because the XML is stored
in this way, I can easily read it into SAS and use it.

Listing 6-6. XML data to temporary file
filename temp '/tmp/class.xml’;

data null ;
file temp;
input;
put infile ;
cards;
<?xml version="1.0" encoding="windows-1252" ?>
<TABLE>
<PEOPLE>
<FirstName> Phil </FirstName>
<Age> 52 </Age>
</PEOPLE>
<PEOPLE>
<FirstName> Esther </FirstName>
<Age> 48 </Age>
</PEOPLE>

'http://support.sas.com/documentation/cdl/en/engxml/64990/HTML/default/viewer. htmin
omxvt7afwogronipioilwOvzxqgl.htm

112

http://support.sas.com/documentation/cdl/en/engxml/64990/HTML/default/viewer.htm#n0mxvt7afwoqron1pioilw0vzxq1.htm
http://support.sas.com/documentation/cdl/en/engxml/64990/HTML/default/viewer.htm#n0mxvt7afwoqron1pioilw0vzxq1.htm

<PEOPLE>

<FirstName> Jake </FirstName>
<Age> 20 </Age>

</PEOPLE>

</TABLE>

)

run ;
libname temp xml;

data PEOPLE;
set temp.PEOPLE;
run;

proc print data=PEOPLE;
run;

The output produced is shown in Figure 6-1.

The SAS System

Obs AGE FIRSTNAME

1 52 Phil
2 48 Esther
3| 20 Jake

Figure 6-1. Result of Proc Print from XML data

CHAPTER6 DATA

Using the XML Engine to Create SASHELP.CLASS in XML

Using the following simple code enables us to write some XML to an external file. I use

the temp engine on the filename statement to get a temporary file location, since this

doesn’t work with libname. Then I can use pathname to find where it is pointing to and

then use that with my libname statement which uses the XML engine to create an XML

file. Once that is done, it is simple to just create a table in that XML file, in the usual way.

113

CHAPTER6 DATA

filename temp temp;
libname temp xml;

data temp.class;
set sashelp.class;
run;

The file contents are as follows in Listing 6-7. Compare it back to the SASHELP.
CLASS output for CSV and JSON data formats. CSV is much more compressed down in
size, and JSON is a bit more succinct compared to this XML.

Listing 6-7. File contents example

<?xml version="1.0" encoding="utf-8" ?>
<TABLE>
<CLASS>
<Name> Alfred </Name>
<Sex> M </Sex>
<Age> 14 </Age>
<Height> 69 </Height>
<Weight> 112.5 </Weight>
</CLASS>
<CLASS>
<Name> Alice </Name>
<Sex> F </Sex>
<Age> 13 </Age>
<Height> 56.5 </Height>
<Weight> 84 </Weight>
</CLASS>
<CLASS>
<Name> Barbara </Name>
<Sex> F </Sex>
<Age> 13 </Age>
<Height> 65.3 </Height>
<Weight> 98 </Weight>
</CLASS>

114

CHAPTER6 DATA

<CLASS>

<Name> Mary </Name>
<Sex> F </Sex>

<Age> 15 </Age>
<Height> 66.5 </Height>
<Weight> 112 </Weight>

</CLASS>

</TABLE>

JSON

JSON stands for JavaScript Object Notation. It is a way of encoding data for use by

computer programs. It is similar to XML but is simpler. One of its main advantages is that

itis quite easily readable by humans, as well as computers. It can represent tabular and

hierarchical data structures which makes it very flexible. JSON is widely used on the Web

as a data source for JavaScript objects.

One of the best places on the Internet to find out about JSON is the section on the
W3Schools website.?
There are some useful things to know though:

Data is always in name/value pairs which separate the name and
value with a colon, for example, “name”:”Phil”.

Data is always separated by commas, when there is more than one

».n n.n

data item obviously, for example, “name”:”phil’)’lastname”:"mason’”.
Objects are defined within curly brackets.

Arrays are defined within square brackets.

Putting all these things together lets you define all kinds of data. You can have arrays

of objects, objects made up of arrays, and so on.

Zwww .w3schools.com/js/js_json_intro.asp

115

http://www.w3schools.com/js/js_json_intro.asp

CHAPTER6 DATA

Example of JSON

For this example in Listing 6-8, you will notice some things about it:

o The curly brackets indicate that this structure is an object.

o The firstitem is just a text string, since we have the name for the

object followed by its value.

o Thenextitem is an object, because we have a name for the item followed

by something enclosed in curly brackets indicating another object.

This object has four items in it: town, phone, current home, and ages.
The first item has a text value (quotes around the text value).

The next item has a numeric value (notice there are no quotes
since this is a number).

The next item has a Boolean value (true/false).
The last item is an array, indicated by the square brackets.

Within the array, we have five items which are all numeric
separated by commas.

Listing 6-8. JSON example
{
"name": "Phil Mason",
"home": {
“town": "Wallingford",
"phone": 1491824891,
"current home": true,
"ages": [
51)
46,
18,
16,
13
]
}
}

116

CHAPTER6 DATA

Read in JSON

From SAS 9.4 Maintenance Release 4 onward, we can use the JSON libname engine

to read JSON data in very easily. A JSON map is used to read the JSON data in, which
describes how the data is structured. The following code shows how we can create a map
to use for the JSON reading by specifying a libref where the map will be stored and by
specifying automap=create which will automatically create a JSON map:

* generate a map to see what is in the JSON, and what datasets are
automatically made ;

filename ex 'C:\Users\phil\Documents\My SAS Files\9.4\example json.sas' ;
filename jmap temp ;

libname in json fileref=ex map=jmap automap=create ;

We could then take a look at the map that was created using a data step like this:

* look at the map that was generated ;

data null ;
infile jmap ;
input ;

put infile ;
run ;

Looking either at the fileref directly or in the log, we can see the map as shown in
Listing 6-9.

Listing 6-9. JSON map that was automatically created by the libname statement

using the JSON engine
{
"DATASETS": [
{

"DSNAME": "root", @
"TABLEPATH": "/root",
"VARIABLES": [
{
"NAME": "ordinal root",
"TYPE": "ORDINAL",

117

CHAPTER6 DATA

118

1
{

b
{

}
]

"PATH":

"NAME" :
"TYPE":
"PATH":

"/root"

"name",
"CHARACTER",
"/root/name",

"CURRENT_LENGTH": 10

"DSNAME": "home", @
"TABLEPATH": "/root/home",
"VARIABLES": [

{

b

"NAME" :
"TYPE":
"PATH":

"NAME" :
"TYPE":
"PATH":

"NAME" :
"TYPE":
"PATH":

"ordinal root",
"ORDINAL",
"/root"

"ordinal home",
"ORDINAL",
"/root/home"

"town",
"CHARACTER",
"/root/home/town",

"CURRENT_LENGTH": 11

"NAME" :
"TYPE":
"PATH":

“phone",
"NUMERIC",
"/root/home/phone”

{

]
1
{

"NAME" :
"TYPE":
"PATH":

"DSNAME" :

"TABLEPATH":
"VARIABLES":

{

b

"current_home",
"NUMERIC",
"/root/home/current home"

"home_ages", ®

"NAME" :
"TYPE":
"PATH":

"NAME" :
"TYPE":
"PATH":

"NAME" :
"TYPE":
"PATH":

"NAME" :
"TYPE":
"PATH":

"NAME" :
"TYPE":
"PATH":

"/root/home/ages",

[

"ordinal_home",
"ORDINAL",
"/root/home"

"ordinal_ages",
"ORDINAL",
"/root/home/ages"

"agesl",
"NUMERIC",
"/root/home/ages/ages1"

Ilageszll,
"NUMERIC",
"/root/home/ages/ages2"

uagessn’
"NUMERIC",
"/root/home/ages/ages3"

CHAPTER6 DATA

119

CHAPTERG6 DATA

{

"NAME": "ages4",

"TYPE": "NUMERIC",

"PATH": "/root/home/ages/ages4"
})
{

"NAME": "ages5",

"TYPE": "NUMERIC",

"PATH": "/root/home/ages/ages5"
}

Reading through the map, we can see that three datasets have automatically been
mapped (shown as ®, ®, and ®). We can look at them by using some PROC PRINT
statements (Figure 6-2).

Obs ordinal_root name

1 1 | Phil Mason

Obs ordinal_root ordinal_ home town phone | current_home

1 1 1 Wallingford 1431824891 1

Obs ordinal_ home | ordinal_ages ages1 agesZ | ages3 agesd4 agesd

1 1 1 51 46 18 16 13

Figure 6-2. Proc Print output of one record from each JSON mapped table

120

CHAPTER6 DATA

So you can see how easy it is to read simple JSON data in with the new JSON engine.
It’s great.

Using JSON Lint

Lint refers to a collection of tools which analyze a computer program and flags any errors
in it. They are usually free tools and often can be run by just using a web browser. It will
often also lay out the code in a standard way to make it easier to understand. There are
Lint tools available for various languages including JSON. Searching for JSON Lint will
find these tools, which can then be used to check your JSON and lay it out clearly. This
is especially useful if you are building some custom JSON yourself. Users should be
aware that web-based Lint tools will upload the code to be analyzed to a web server to
be analyzed. This is a potential security risk since your code could be seen by others.
You could buy Lint tools that could be run locally on a computer in which case the code
would not have to be uploaded for analysis.

Many text editors (such as Notepad++) allow the language for a file to be set and
then do context-sensitive highlighting. This can indicate where there are errors in syntax
especially things like non-matching brackets and quotes. If you are looking at JSON, you
can set the language to JavaScript since JSON is a form of JavaScript and it will show if
your JSON is valid or not.

For example, here is some badly formatted JSON:

"name":"PhilMason", "home" :{"town": "Wallingford", "phone":1491824891,
"current home":true,"ages":[51,46,18,16,13]}}

And here is that same JSON when it has been run through JSONLINT.COM:

{
"name": "PhilMason",
"home": {
“town": "Wallingford",
"phone": 1491824891,
"current home": true,
"ages": [51, 46, 18, 16, 13]
}
}

121

CHAPTER6 DATA

Using a Data Step to Make JSON

You can make JSON data from a data step (Listing 6-10).

Listing 6-10. JSON data from a data step

data null_;
set sashelp.class end=_end ;
if n_ =1 then put '[' ;

put "{" ;

put '"Name":"' name +(-1) '"," ;
put '"Sex":"' sex +(-1) '"," ;
put '"Age":"' age +(-1) '",'

put '"Height":"' height +(-1) '"," ;
put '"Weight":"' weight +(-1) '"' ;
put "}' ;
if not _end then put ',' ;
else put '] ;

run ;

Using Proc JSON

Listing 6-11 shows an easy way to take SAS data and produce JSON data.

Listing 6-11. SAS data to produce JSON data
filename temp temp;

proc json out=temp;
export sashelp.class / tablename="class";
Tun;

data null ;
infile temp;
input;
put infile ;
Tun;

122

CHAPTER6 DATA

SASHELP.SAS in JSON

Using PROC JSON, we can transform SAS tables into JSON, as we have done here in
Listing 6-12 with SASHELP.CLASS. This gives you a good idea of how the table is an
object which has the rows represented as an array of objects - you can tell that by the
square bracket indicating the start of an array (I bolded them). In other words, each
row is a separate object in an array which holds all the rows in the table. You can see
that each row is contained within curly brackets, making it an object. Each row object
consists of a collection of name/value pairs, each of which represents a variable and its
value. I think this is a great example of how JSON is not only machine-readable but also
human-readable.

Listing 6-12. Transform SAS tables into JSON

{"SASISONExport":"1.0","SASTableData+class":[{"Name":"Alfred","Sex":"M",
"Age":14,"Height":69, "Weight":112.5},{"Name": "Alice","Sex":"F","Age":13,
"Height":56.5, "Weight":84},{"Name" :"Barbara","Sex":"F","Age" :13, "Height":65.3,
"Weight":98},{"Name":"Carol","Sex":"F","Age":14,"Height":62.8, "Weight":102.5},
{"Name" : "Henry","Sex":"M","Age" :14, "Height":63.5, "Weight":102.5},{"Name":
"James","Sex":"M","Age":12, "Height":57.3, "Weight":83},{"Name": "Jane",
"Sex":"F","Age":12,"Height":59.8, "Weight":84.5},{"Name": "Janet","Sex":"F",
"Age":15,"Height":62.5, "Weight":112.5},{"Name":"Jeffrey", "Sex":"M", "Age":13,
"Height":62.5,"Weight":84},{"Name":"John","Sex":"M","Age":12, "Height":59,
"Weight":99.5},{"Name":"Joyce","Sex":"F","Age":11, "Height":51.3, "Weight":

50.5},{"Name":"Judy","Sex":"F","Age":14, "Height":64.3, "Weight":90},{"Name":
"Louise","Sex":"F","Age":12,"Height":56.3, "Weight":77},{"Name": "Mary",

"Sex":"F","Age":15,"Height":66.5, "Weight":112},{"Name": "Philip", "Sex":"M",

"Age":16, "Height":72, "Weight":150},{"Name": "Robert","Sex":"M","Age":12,

"Height":64.8, "Weight":128},{"Name": "Ronald","Sex":"M","Age" :15, "Height":67,
"Weight":133},{"Name":"Thomas","Sex":"M","Age":11, "Height":57.5, "Weight":
85},{"Name":"William","Sex":"M","Age":15,"Height":66.5, "Weight":112}]}

123

CHAPTER6 DATA

Summary

In this chapter, we look at aspects of using data with Stored Processes especially when

using them with web applications. We looked at some of these things:

124

How stored processes can produce dynamic data and deliver it in
various formats such as CSV and JSON

How to produce CSV data with Proc Export and data steps in flexible
ways

How to produce XML using the XML libname engine
How to produce JSON using a data step or PROC JSON

Reading in JSON data with the JSON libname engine

CHAPTER 7

Stored Processes

In this chapter, we will focus on SAS Stored Processes and look at the details around
them so we can get a good understanding of how to create them along with all the details
around that. Let’s start by looking at how we move from a SAS program that every SAS
programmer understands to a Stored Process.

Converting a SAS Program into a Stored Process

It is very easy to take a normal SAS program and make it into a Stored Process. Here is a

normal SAS program which extracts some data, summarizes it, and prints it:

* take a random sample ;
data sample ;
set sashelp.class ;
if ranuni(1)<0.5 ;
run ;
* work out average height and weight by sex ;
proc summary data=sample ;
class sex ;
var height weight ;
output out=class sum
mean= ;
run ;
proc print data=class sum ;
run ;

And here is the same program code, once it has been converted to a Stored Process.
All that is needed for the SAS code is to add in the %stpbegin macro at the start and
%stpend macro at the end. No special program is needed to do this, just a simple text

125
© Philip Mason 2020

P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_7

https://doi.org/10.1007/978-1-4842-5925-2_7#ESM

CHAPTER 7 STORED PROCESSES

editor like Notepad++. Note that the stpbegin and stpend macros are called from SAS
autocall libraries that are provided and will be pointed to by default. If you modify the
sasautos option, then it might be that you no longer point to where these are stored and

may get errors.

%stpbegin
* take a random sample ;
data sample ;
set sashelp.class ;
if ranuni(1)<0.5 ;
run ;
* work out average height and weight by sex ;
proc summary data=sample ;
class sex ;
var height weight ;
output out=class sum
mean= ;
Tun ;
proc print data=class_sum ;
run ;
%stpend

If you were to have the program in Enterprise Guide and choose to make it into a
Stored Process using the wizard, then Enterprise Guide would produce the following
code:

Begin EG generated code (do not edit this line); (1)

*
*

* Stored Process registered by

* Enterprise Guide Stored Process Manager V7.1 (2)
*

*
v
o+
o
H
I
Q.
0
H
o
(]
™
w0
w0
>
Q
=
I
o+
™
wn
+
©

*ProcessBody; (4)

126

CHAPTER 7 STORED PROCESSES

%STPBEGIN; (5)

* End EG generated code (do not edit this line); (6)

@

* take a random sample ;

data sample ;
set sashelp.class ;
if ranuni(1)<0.5 ;

run ;

* work out average height and weight by sex ;
proc summary data=sample ;

class sex ;
var height weight ;
output out=class_sum

run ;

mean= ;

proc print data=class_sum ;

run ;

* Begin EG generated code (do not edit this line);
3*15* M squit; (9
%STPEND; (9)

* End EG generated code (do not edit this line);

Notice that Enterprise Guide adds some code to the code that you enter. The

following things are added:

(DFirst you get a comment indicating that the EG generated code
starts here and that you shouldn’t edit this line. This is so that
when the code is read in to Enterprise Guide, it knows what part it
generated and what part you entered.

(2)You get a block of comments at the top which identifies that the
code was generated by Enterprise Guide and the version used.

(3)Then you get some more comments that have the name of the
Stored Process, along with a description if that was entered in the
Stored Process.

127

CHAPTER 7 STORED PROCESSES

128

(4)Next you get a special comment which is always this -
xProcessBody; - and it is used in SAS 9.2 and earlier Stored Processes
to indicate that the parameters should be read in and set as macro
variables at this point.

(5)The macro invocation is added next - %STPBEGIN - which is a
special macro supplied by SAS which does many things related to
setting the ODS output correctly.

(6)Now you get another specially formatted comment that you
should not edit. This indicates to Enterprise Guide that the code it
generated ends here.

(7)Your code appears after this, as it was entered in the Enterprise
Guide editor.

(8)Now there is some more code generated by Enterprise Guide, so
you have a comment line at the start and end of it which is specially
formatted and should never be edited.

(9)Preventing SAS programs from prematurely ending: inside the
generated block of code, there is a special comment line which is
designed to assist with stopping errors that may stop SAS working
properly. By itself, the line does nothing; however, it has been
carefully crafted so that it will end unmatched quotes, finish
unfinished statements, finish unfinished comments, and quit
procedures that haven’t been finished properly. Here is the line - a
handy one to use at the end of non-Enterprise Guide SAS programs
too.

FX* 5quit;

Inside the generated block of code, there is an invocation to
%stpend, which is a SAS-supplied macro which basically finishes off
the ODS output properly.

CHAPTER 7 STORED PROCESSES

A WORD ABOUT THE PROCESSBODY COMMENT

If you are using SAS 9.2, then the parameters for Stored Processes are not initialized in the
same way as later versions. This means that you need to include a comment in your Stored
Process code like this:

*ProcessBody;

When using a Stored Process with a workspace server, none of the parameter values will

be available until that comment is processed. If using a Stored Process server, then it is not
required though. This means that useful automatic parameters such as _METAUSER as well as
any parameters passed in by the user are not available. For SAS 9.3 onward, you don’t need to
use ProcessBody anymore.

Creating a Stored Process

There are several ways to make a Stored Process:

1.

2.

3.

4.

Management Console
Enterprise Guide
Data Integration Studio

Programmatically using SAS metadata calls

We will start with Management Console to make our first Stored Process. I think of it

as the purest way of making a Stored Process since it gives you full control over creating

the metadata and SAS code which make up the Stored Process. Using Enterprise Guide is

a little more restrictive in what can be done. Data Integration Studio is used far less in my

experience. The last method is not used much at all but turns out to be incredibly useful,

and more recently, some prolific programmers are using it. I will just be covering the first
two methods.

129

CHAPTER 7 STORED PROCESSES

Creating a Stored Process with Management Console

We will carefully go through the steps to make a stored process using Management

Console. Many users don’t have access to this by default, but it is very useful.

Permissions can be set by your SAS administrator so you can use this to create stored

processes while being prevented from doing any harm by changing settings in the SAS

system.

When you open Management Console for the first time, you will need to create a

connection profile for the SAS metadata server you want to use. Your SAS administrator

can provide the details you need to do this. When I opened Management Console for the
first time, I got this message shown in Figure 7-1.

Im; SAS Management Console

File; Edt Yiew Help

g (T

-] Enwironment Management
| @173 Metadata Manager
[Monitoring

. [Maintenance

() Application Management

SAS® Management Console

Environment Management

New Connection Profile

Connection Profile Wizard

This wizard will guide you through the steps necessary
After collecting the information required to connect to a
be generated containing your connection information an
may be loaded at any time, or you can choose to have |
whenever you start this application.

Plug-ins that enable

173 Metadata |
Monitoring
Plug-ins that monite
Maintenance
Plug-ins that enable
Application Manage

Figure 7-1. Opening SAS Management Console

Follow these steps to make your first Stored Process:

1. Start Management Console. In my case, I am using PC SAS, and I

have a link to it on my windows desktop. You may also have a link,

or you might need to navigate to where it is stored. In my default
windows system, the path was “C:\Program Files\SASHome\
SASManagementConsole\9.4\sasmc.exe”.

2. Next select the Folders tab as shown in Figure 7-2, which will show
you the SAS folders in metadata.

130

CHAPTER 7 STORED PROCESSES

Plug-ins

Folders

Search

Figure 7-2. Folders tab in Management Console

You may not be able to create Stored Processes in all the locations,
but there will usually be at least one folder put aside for you. Navigate
to a location like the one I have selected (if possible) in Figure 7-3.

A restriction of this location (My Folder) is that no other users can

execute this Stored Process, so don’t use it for anything you want

others to use.

Figure 7-3. Metadata folders in Management Console

3. Right-click a folder in which you want to create your Stored

Process. Click New » Stored Process as shown in Figure 7-4.

131

CHAPTER 7 STORED PROCESSES

| oo

4] bar_pe2

&) crossfiterd

&) cossfiterd

&) v

:A'}ml

(&) cov2

3} easyUl4

;} Exercise 1

&) Exerciee 2
i » £ |Folder
< Delete 3 Favorites Folder...

s 4 soredProcess... |
2 p =

B Export SAS Package... %) | Stored Process Report
Import SAS Package...
73 Add Content From Extemnal Files or Directories...
[E Properties

=

Figure 7-4. Context menu for a metadata folder

4. You are presented with the New Stored Process wizard (Figure 7-5)
which guides you through the process of creating a Stored Process.
Some parts of the wizard are optional and other parts have
required fields. The first screen is the General screen for specifying
the name, description, and keywords for the Stored Process to be
defined. The only field you have to specify on this screen is the
Stored Process name. Other fields are not essential, so click Next.

132

CHAPTER 7 STORED PROCESSES

General
Specify the name, desaription and keywords for the stored process to be defined.

Name: [eg_smc

Description: Example of a Stored Process created in SAS Management Console{

Keywords: | Add... |
Edit... |
Delete |

Responsibiities: Name Role [Add.. |
Delete ,'

[[] Hide from user

[<Bok |[Next> | [Fnsh | [[canced | [heb |

Figure 7-5. First page of New Stored Process wizard

5.

Next, we must choose where the Stored Process is able to run by
selecting an application server from the list of available ones as
shown in Figure 7-6. Sometimes you might only have one choice
available, so it will be an easy choice. Stored Processes are able to
run on two kinds of SAS servers:

a. SAS Stored Process servers, which are started up when required
and stay up to run Stored Processes for any users that need them
run. So, this server is run under the general server identity and is
potentially used by multiple users.

133

CHAPTER 7 STORED PROCESSES

b. SAS Workspace servers, which are started up when needed by
a Stored Process and closed down when that Stored Process
ends. This server is run under the identity of the metadata user.
Although there are two kinds of workspace servers, the standard
one (running under the metadata user identity) and a pooled one
(running under the pooled workspace server identity), the pooled
workspace server is never used to run Stored Processes.

Application server:
[<5electa server> v

<Select a server>
SASApp
Detault server

Figure 7-6. Choose an Application server drop-down menu

Server type:

6.

The next part of the screen allows us to choose the type of server
that will be used: Default, Stored Process, or workspace server
(Figure 7-7). If you use Default, you can never be sure what kind of
server will be chosen to be used as it can vary. Best practice is to
choose the type you want for this Stored Process - usually I would

choose Stored Process server only.

Default server

O select this option to allow the dient application to spedify the server.

__ | Stored process server only
® Select this option if the stored process uses sessions or if it uses replay (for example, to produce graphics in streaming output).

Workspace server only
Select this option if the stored process must be run under the dient identity.

Figure 7-7. Select type of server

134

The next part of this screen specifies where the SAS source code
is located. This could be on a disk somewhere or could be in the
metadata itself. As shown in Figure 7-8, I usually select the first

radio button which allows the Stored Process to execute in more

places and also stores the source code in the metadata.

CHAPTER 7 STORED PROCESSES

Source code location and execution:

() Allow execution on other application servers (store source code in metadata)

() Allow execution on selected application server only

Figure 7-8. Source code location

You can also choose to store the code on disk as shown in Figure 7-9.

Source code location and execution:
() Allow execution on other application servers (store source code in metadata)
(@) Allow execution on selected application server only

() Store source code in metadata

(@ Store source code on application server

Source code repository: | C:\Program Files\SASHome \SASFoundation\9. 4\inttech\sample v Manage... |
Source file: ;eg_smc‘sasl .
| Edit Source Code... |

Figure 7-9. Storing code on disk requires a path and filename

8. You can choose from the source code repositories you have defined.
If you want another location, you can click the Manage button and
define another Source Code Repository (see Figure 7-10).

S

| = Manage Source Code Repositories Lx]
% [path Desaription Add... | i
Bl C: Program Files\SASHome\sAsF..f |
iq
:
&3

Figure 7-10. Define a Source Code Repository
135

CHAPTER 7 STORED PROCESSES

9. Now you need to create some source code. If we had pointed to
some already existing source code in the previous step, then we
wouldn’t need to do this. So, click the “Edit Source Code ...” button
to edit the source code.

10. Ifyou are storing your code in metadata or to a file which
already exists, then you are put into an editor similar to the
enhanced editor in Classic SAS. Syntax is highlighted for you, but
functionality is fairly limited. It is best to develop the actual code
in a more powerful environment such as Enterprise Guide or
SAS Studio where you can test it as you go along. However, in this
editor, you can enter code or paste it in from elsewhere as shown
in Figure 7-11.

1 istpbegin ~
2 * take a random sample ;
3 [data sample ;

4 set sashelp.class ;
5 if ranuni{1)<0.5 ;
6

7

8

run ;

'g* work out average height and weight by sex ;
-] proc summary data=sample ;

9 class sex ; —
10 var height weight ;

11 output out=class_sum

12 nean= ;

13 run ;

14 [Eprnc print data=class_sum ;

run ;
16 stpend

w

[k][concel |

Figure 7-11. Editing the source code when it is stored in metadata

11. Ifyou are storing code to a file which doesn’t yet exist, then
you will be prompted to create it, to which you can answer Yes
(Figure 7-12).

136

CHAPTER 7 STORED PROCESSES

The source file “C:\Program
Files\SASHome\SASFoundation\9.4\inttech\sample\eg_s
mc.sas” does not exist. Do you want to create it?

Figure 7-12. Edit Source Code prompt

This will then show you an editor window (Figure 7-13).

Source code repository: C:\Program Files\SASHome\SASFoundation\9. 4\inttech\sample
Source file: eg_smc.sas
1 * take a random sample ; ~
2 |-l data sample ;
3 set sashelp.class ;
4 if ranuni(1)<0.5 ;
5 | rum ; =
6 J_* work out average height and weight by sex ;
7 [=l proc summary data=sample :
8 class sex :
9 var height weight ;
10 output out=class_sum
1l means= ;
12 | run ;
13 proc print data=class_sum ;
14 Eﬁrun :
15 [
hd
[save || concel |

Figure 7-13. Editing some new source code in a file rather than metadata

You can then save the code and return to edit it if you like (Figure 7-14).

137

CHAPTER 7 STORED PROCESSES

Source code repository: C:\Program Files\SASHome \SASFoundation9. 4\inttech\sample

Source file: eg_smc.sas
1 sstpbegin ad
2 * take a random sample ;
3 [data sample ;
4 2et sashelp.class ;
5 if ranuni(1)<0.5 ;
6 | run ;
7 EI;* work out average height and weight by sex
8 [proc summary data=sample ; =
9 class sex ;
10 wvar height weight :
11 output out=class_sum
1z nean=
13 | run ;
14 Tpmc print data=class_sum ; L
15 run ;
le sstpend

Figure 7-14. Returning to edit your source code

12. You then need to specify the Result capabilities, which are what
kind of result is returned from your Stored Process. If you plan to
run the Stored Process from a client other than the Stored Process
Web Application, then it's best to choose both Stream and Package
(Figure 7-15).

A stream will return the output from a Stored Process streamed
back to the place that the Stored Process was called from. So if
it was run through a web browser using the Stored Process Web
Application, it would be sent back to the web browser.

A package is basically a SAS package file, which is pretty much
the same as a zip file and can be opened with a program such as
WinZip. This is handled by other clients you would run from such
as Enterprise Guide and the Microsoft Office Add-In.

Result capabilities: [v] Stream [v/] Package

Figure 7-15. Result capabilities

138

CHAPTER 7 STORED PROCESSES

13. At this point, we have entered all the information for the Stored
Process that is needed, which is why we now have the option of
pressing the finish button to create the Stored Process. Otherwise,
we can press next and go on with choosing parameters and other
things. We will press finish.

14. You can see your Stored Process in the list of Stored Processes as
shown in Figure 7-16.

l Name | Description Type Last Modified %
[g,. eg_smc Example of a Stored Process created in SAS Management Console Stored process 29-Apr-2017 16:52:04

,,,,,

Figure 7-16. Stored Process we created in list

15. Ifyouright-click the Stored Process, a number of things you can
do will be displayed (see Figure 7-17).

a. Copy the Stored Process and paste it into another metadata folder.
b. Delete it.
c. Rename it.

d. Exportit as a SAS Package, which is basically a zip file. You will get the SAS
code and metadata in the package which means it could then be moved
somewhere else and imported into another SAS metadata server. For
example, when developing applications in a controlled environment, this
enables moving Stored Processes from Development to Test to Production.
Or should you want to copy from one metadata server to another to make
changes and test before returning to the original server, then exporting
enables this to be done easily.

e. Deploy as a web service, which will let you convert your Stored Process
into a web service. However, from SAS 9.3 onward, you can run any Stored
Process as a web service without deploying it as a web service.!

'For more information, look here: http://support.sas.com/documentation/cdl/en/
wbsvcdg/64883/HTML/default/n1arlomsivddqoniqalkfthbppln6.htm

139

http://support.sas.com/documentation/cdl/en/wbsvcdg/64883/HTML/default/n1arlomsivd9q0n1qalkfhbppln6.htm
http://support.sas.com/documentation/cdl/en/wbsvcdg/64883/HTML/default/n1arlomsivd9q0n1qalkfhbppln6.htm

CHAPTER 7 STORED PROCESSES

f. Make compatible with SAS 9.2, which at the time of writing is still very
widely used. Later versions of SAS have some extra features not available
on SAS 9.2 Stored Processes so this will make the necessary changes to
make them compatible. You could then export a SAS 9.4 Stored Process and
importitinto SAS 9.2.

g. Properties displays all the information about the Stored Process and allows
you to change any of it as long as you have the right permissions.

Delete

i By Copy
X

1 Rename

- [Export SAS Package...

B

[h‘.‘; Deploy As Web Service...
7 Make Compatible

Properties

Figure 7-17. Context menu for a stored process

That is the end of the process for creating a Stored Process in Management Console.
Now let’s have a quick look at prompting with a Stored Process administered from
Management Console, and then we will see how Enterprise Guide is very similar but has
some important differences.

Prompting from Management Console

Should you want to edit the Stored Process, go into Properties which displays the
screen shown in Figure 7-18. We can click the various tabs and see the metadata
defined for this Stored Process. We can also make any changes to it, so long as we have
permission to do so.

140

CHAPTER 7 STORED PROCESSES

General | Execution | Parameters | Data | Authorization
o
Type: [g Stored process
Desaription: | Eyample of a Stored Process created in SAS Management Console
Location: User Foldersphil My Folder
Created: 29/04/17 16:52 (phi)
Modified: 29/04/17 16:52 (phi)

Edit.. |

[Delete |
Responsibiiities: Name Role [Add...

[Delete
[[] Hide from user

[ok || Cancel || Hep |

Figure 7-18. General tab of Properties window for a stored process

We can add parameters which will prompt the user for values when the Stored
Process is run. So, clicking the Parameters tab takes us to the screen in Figure 7-19. We
might want to generalize our code a little by adding a prompt to allow us to summarize
our data by different variables. We can do this by clicking New Prompt.

141

CHAPTER 7 STORED PROCESSES

Standard group

I

Delete
. Move.L.lD

5 Move Down]

ws

| Save as Shared...

Unshare

Output parameters:
Label Name Type Description

ik

Edit...

Delete

[k J[come [nep |

Figure 7-19. Parameters tab of Properties window for a stored process

The New Prompt screen allows us to enter a name for the prompt/parameter and
text to display when the user is prompted (Figure 7-20).

142

CHAPTER 7 STORED PROCESSES

General | Prompt Type and Values

Name:

[>]

[var I
Displayed text:

[Enter variable to summarise by |
Description:

This will allow user to select a variable to use in Proc Summary in the code.|

Parent group:

lDParan'leltrs v
Options
[[]Hide atrun tme [] Requires a non-blank value

[] Read-only values

ok | [cancel | [hep |

Figure 7-20. New Prompt window

Now we can click the Prompt Type and Values tab, which will let us specify what kind
of prompt this is - for example, are we asking the user for a number, for some text, for
one value or manyj, to select from a list of values, and so on? In our example, we want to
let the user pick one or more variable names from several possibilities, so we will provide
a list of values in a static list. My sample list of values is shown in Figure 7-21. I have
chosen the following items:

o Prompttype - Text.

e Method for populating prompt - User selects values from a static list.
e Number of values - Multiple ordered values.

o List of values - Sex (which has default checked), name, and age.

e No other tick boxes are checked.

Note The use of parameters will be explained in more detail later.

143

CHAPTER 7 STORED PROCESSES

General | Prompt Type and Values |

Prompt type:

|Text v
Method for populating prompt: Number of values:

|User selects values from a staticlist v | |Multiple ordered values v
Text type:

[ingle ine v
Minimum value count: Maximum value count:

| Il |
Minimum length: Maxdimum length:

| | |

["] Append formatted values with unformatted values

Indude Spedal Values
[] All possible values [] Missing values
List of values:
Formatted (Displayed) Yalue Add
sex (use unformatted value) Get Values...
name {use unformatted value) O Delete
age l(use urformatted value) El Clear Defaults

| Move Down |

[] Allow user to specify additional (unformatted) values

oK | [Concd | [Heb |

Figure 7-21. Prompt Type and Values window

Clicking OK, we will see that our parameter has now been added (Figure 7-22).

Execution | Parameters | pata | Authorization |
Prompts (input parameters):

& Parameters Standard group
--(2) Enter variable to summarise by
| e

Figure 7-22. Screen showing parameter we added

144

CHAPTER 7 STORED PROCESSES

Now we need to modify our SAS code slightly to make use of the parameter. So, we
click the Execution tab and select Edit Source Code. In Figure 7-23, I change the variable
used in the class statement to use &var, which is a macro variable that is created with the
value of the parameter entered by the user.

1 %stpbegin

2 * take a random sample ;

3 [Jdata sample ;

4 set sashelp.class :

s if ranuni(1)<0.5 ;

6 | run ;

7 LJ;" work out average height and weight by sex :
8 [=l proc summary datas=sample ;
9 class &val:l H

10 var height weight ;

11 output out=class_sum

12z mean= ;

13 | run :

14 Eﬁproc print data=class_sum ;
15 run ;

16 tstpend

ok || cancel

Figure 7-23. Source code in Metadata

Clicking OK will save the change. Then clicking OK exits the Properties dialog, which
saves our changes to the Stored Process metadata.

Now we can test this out by going to Enterprise Guide and running the Stored
Process. Find it in the list of Stored Processes in SAS Folders (Figure 7-24). Right-click it
and select Open which will add it to your Enterprise Guide project.

mGEAS® [

Show: IAIIapplicaHeSAStypes vl
€ Refresh [Stop |~ X Delete
eg_smc P
P re W " . ' I I

Figure 7-24. Folder icon that changes view to show metadata folders

145

CHAPTER 7 STORED PROCESSES

Now you can right-click the Stored Process in the process flow of Enterprise Guide
and run it by selecting Run.

The Stored Process runs and prompts you for parameters (Figure 7-25).

Parameters Reset qroup defaults |
Enter variable to summarise by
This will allow user to select a variable to use in Proc Summary in
the code.
Available Selected:
sex sex
name B X
age » Ll
A 4
| Rm || Cancel |

Figure 7-25. Prompt that appears for parameters when running in Enterprise
Guide

Make any selections you like and click Run.

The results are shown under the Results tab. The results of my Stored Process are
shown in Figure 7-26.

146

CHAPTER 7 STORED PROCESSES

$9 Refresh [1] Modify Stored Process | Export ~ Send To ~ Create ~

Obs Sex _TYPE_ _FREQ_| Height Weight
1 0 8 64.6125 108.688
2F 1 3 64.8667 104.167
3M 1 5 64.4600 111.400

Page Break

Figure 7-26. Results

Using Enterprise Guide to Make a Stored Process

SAS Management Console is often just available to administrators, whereas SAS
Enterprise Guide tends to be available to most SAS programmers in an enterprise.
Enterprise Guide has a great wizard that guides the user through the creation of a stored
process, whereas Management Console is a little harder to use:

1. Open up Enterprise Guide, and from the File menu, select New
and then Stored Process as shown in Figure 7-27.

147

CHAPTER 7 STORED PROCESSES

File | Edit View Tasks Favorites Program Tools Help

New 4 | Project

NG

Open »
Close Project

Data or

Program

&d

Save Project Ctrl+S
Save Project As...
Save All Ctrl+Shift+5

Report

Stored Process

Note
Process Flow
Ordered List

Import Data

Run Project

Schedule Project

Export »
Send To »
Publish

HdEEsBE &

v By

Page Setup for Process Flow...
Print Preview for Process Flow

Print Process Flow... Cirl+P

m ol 5

Project Properties

I Recent Projects 3 E
Recent Programs »
Exit

IO IV SpPITCHOTS SR TP '—l

Figure 7-27. Creating a new stored process in Enterprise Guide

148

2.

Labelling and saving the Stored Process - You are shown

the first page of a wizard (Figure 7-28) which will gather the
information needed to create a Stored Process. Some of the fields
are required, but many are optional. For our first Stored Process,
we will just fill a minimal number of fields in. On this first page,
you must enter a name for the Stored Process. The location is the
location of the Stored Process in the metadata. It might default to
a suitable place or else you can click browse to find a place to put
your Stored Process. The other fields on this page are optional,
but I would recommend always filling in the description field so
that others finding your work in future will have more chance of
understanding what you have done.

CHAPTER 7 STORED PROCESSES

1 of5 Name and Description Ssas_

Name:

[eg_s29]
Location:

[ty Folder [Bowse. |
(Example: /My Foldes/SPs/Proc One)

Description:
’Eumdaamﬁmmmdhmmmm -~

S [hetteod |
[Dol kel
Name Rele | Add Responsbity |
[Pritp Masen |[ovmer v] | [Delete Responsiizy
te: SAS Cor
[[] Make 9.2 compatible version
[[] Hide from user
More [F1)...
[<Back || [Mexe][Firish |[comcel |

Figure 7-28. New Stored Process wizard

3. SAS code - The second page of the wizard is for entering the SAS
code. You will have often created the code elsewhere and will
just be pasting in the code at this point. You could type it in if you
wanted to, although you can’t run it to test if it works at this point.
The button that is labelled “Include code for” is an important one,
but we will leave that for now. The only thing you must do on this
screen is to enter some code (Listing 7-1).

Listing 7-1. Sample code to enter for stored process

* take a random sample ;
data sample ;

set sashelp.class ;
if ranuni(1)<0.5 ;
run ;

149

CHAPTER 7 STORED PROCESSES

* work out average height and weight by sex ;

proc summary data=sample ;

class sex ;
var height weight ;

output out=class sum

run ;

mean= ;

proc print data=class sum ;

run ;

150

Location to run code - On the third screen of the wizard

(Figure 7-29), we specify where the code will run, where it will

be stored, and how any results will be returned. You can select
“default server” as the application server that the Stored Process
will run on. If you do this, you will never know where your Stored
Process will run. It might run on a Workspace server (if the client
application chooses to run it there) or a Stored Process server (if
no server type was specified by the client application). Workspace
servers don’t produce log files by default, and they run under

the user account rather than the Stored Process user account.

So many users consider it risky to let this default and choose the
server it will run on specifically from the drop-down list.

I usually specify that I want the code stored in the metadata
which means that the Stored Process metadata and code are
kept together. Alternatively, you could put the code in a source
code repository in a disk somewhere. If you store the code in the
metadata, then it does mean that when you export or move a
Stored Process, from one place to another, then the code is still
with it. However, if you store the code in a source code repository,
then if you move a stored process, you need to make sure that

it can access the code or also move the code and define where
its new location is. If you are following this example through,
you may not be able to save into the same location shown in my
screen shot, but that is OK. Just save to metadata if you have any
problems.

CHAPTER 7 STORED PROCESSES

The result capabilities are usually best specified as stream and
package. Stream will stream results back to the place the Stored
Process was called from. A package is basically a SAS package file,
which is pretty much the same as a zip file and can be opened
with a program such as WinZip. This is handled by other clients
you would run from such as Enterprise Guide and the Microsoft
Office Add-In.

It doesn’t really matter where you store the code, as it won't

affect whether this example would run or not. That goes for most
example Stored Processes in this book, so if you don’t have access
to some location that I store code, then just store it somewhere
else or in metadata which you should always be able to do.

At this point in the wizard, you can see that the Finish button has
ceased being grayed out. That means that we can finish the wizard
now and create the Stored Process. Or else we can continue and
potentially enter other optional information.

151

CHAPTER 7 STORED PROCESSES

Figure 7-29. Execution options from the wizard for creating a new stored process

152

[s4580p

v]

Sarver typa:
(@) Default server

Select this option to allow the chent appication to specly the server.
() ored process server ooly

Select this option ¥ the stored process uses sessions or ¥ @ uses neplay for example, to produce graphics in streaming output).
o mmmlﬁmmmhmmmmm

Source code lacation and exscution:

O AR e servers (s de in maladaia)
© How execut oy

@ Slore sowres code in metadata

) Store seuree cade on appheation server

Source code repostiory:

|C:\P:up'm| Fles\SASHame'\SASFoundaton'\3 4\inttech'sample

¥ Soucetie:

[eo_segsas

[[] Overwrite mxsting fie

Resut capabiities: [Sweam [V Package

[Soeciies the type of server that wil un the stored process that you are defining.

Mora (F1)... ‘

<Back (7] [Nex» | [Finish] [Concel |

5.

Process prompts - The fourth page of the wizard (Figure 7-30)
allows us to enter prompts (or input parameters) which will
prompt the user for information when a Stored Process is run.
That information is then used as the SAS code of the Stored

Process is executed. Specifying prompts will be covered in the next

section.

CHAPTER 7 STORED PROCESSES

4 of6 Prompts S%s
Input Prompts:
Displayed Text Name i New -
| e
| & +
[Dislate
Output Parameters:
= s s e ——
ex. |
Dalate
| - o More (F1)...
| Boek v] [News || Finish || Conesl |

Figure 7-30. Prompts page in wizard where we can define parameters

6. Data sources and targets - The fifth page (Figure 7-31) is for
specifying data sources and targets which are used with web
services and the SAS Add-in for Microsoft Office. Note: From
SAS 9.3 onward, your Stored Process is available as a web service
automatically without any further action required by the user.
Access to the web application is described here.

153

CHAPTER 7 STORED PROCESSES

5 of6 Data Sources and Targels S%S
Diata S (nput streams to 2
Fiere! / Table Poometer Cortent Lobdl Descaption New... |
Edi..
[Detete |
[Ciata Targets foutput streams from a stored proceas):
Fiered / Table Parameter Content Label Descrgtion
[Delete |
Lists any where you cutput when th Thess data targets are also called output streams.
Mare (F1)...
[=) [| [Fien | []

Figure 7-31. Data sources and targets

7. The last page of the wizard (Figure 7-32) shows a summary of
information that has been entered.

154

CHAPTER 7 STORED PROCESSES

6 of6 Summary Ssas

:Descriptive information A
: Name
i eg_seg
Location
[User Folders/phil/My Folder/ B
Description

Example of a Stored Process created in SAS Enterprise Guide

Usage Version
2.0

IsHidden
No

Keywords
None

Responsible parties
User [Role
hil Owner

SAS code
* Begin EG generated code (do not edit this line);

-

* Stored process registered by
* Enterprise Guide Stored Process Manager V7.1

I

= *

[] Show full SAS code [Gopyto dipboard

Run stored process when finished

Hoes 1)

<Back |v] | Net |[Finish | [Cancel

Figure 7-32. Summary page of wizard

8. Now that you have finished the wizard, you can see your Stored
Process in the Enterprise Guide project process flow as shown
in Figure 7-33. If SAS has any problems with the configuration
of your stored process, you will get a prompt to tell you. You can
always use the Back button to go back and change things before
you press Finish to finalize your stored process.

Process Flow ~

B Run ~ [Stop | Export ~ Schedule ~ | [Project Log | [E] Properties ~

#

€g_seg

Figure 7-33. Icon for the Stored Process just created

155

CHAPTER 7 STORED PROCESSES

9. Right-clicking the Stored Process will give you a range of actions
that you can select from (see Figure 7-34). We will just run the
Stored Process for now. If you chose to modify the Stored Process,
then you would go back into a version of the wizard where you
could revisit the various things that make your Stored Process up
and make changes.

=z Open »
| P Runeg_seg
[Modify eg_seg

Link eg_seg to...

&

Copy
Paste

Delete

Add to Favorites

B 4 X @

Properties

Figure 7-34. Context menu for Stored Process

10. After running the Stored Process, you will be shown a Results tab,
which has a range of actions along the toolbar. Some of these will
only work properly if certain parts of your SAS infrastructure are
configured correctly. The results of my Stored Process are shown
in Figure 7-35.

Obs Sex _TYPE_| _FREQ_ Height Weight

1 0 8 64.6125 108.688
2F 1 3| 64.8667 104.167
3M 1 5 64.4600 111.400

Figure 7-35. Results

11. Choosing the Log tab shows you the log for the Stored Process
(Figure 7-36).

CHAPTER7 STORED PROCESSES
€g_seg ~ *
= g |12 Resuts
[5] Modify Stored Process | Export = Send To ~ | 4 & ||[3] Log Summary || [Project Log | [E] Properties
21 The SAS System 17:

NOTE: SAS (r) Proprietary Software 9.4 (TS1M3)
Licensed te WOOD STREET CONSULTANTS LTD, Site 70195163.
NOTE: This session is executing on the X64_SRV12 platform.

NOTE: Updated analytical products:

SAS/STAT 14.1
SAS/ETS 14.1
SAs/OR 14.1
SAS/IML 14.1

NOTE: Additional host information:

1L

XE4_SRV12 WIN 6€.2.9200 Server
NOTE: SAS Initialization used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

>>> SAS Macro Variables:

< [

NOTE: Copyright (c) 2002-2012 by SAS Institute Inc., Cary, NC, USA.

_APSLIST=_RESULT, CLIENTVERSION, CLIENTMACHINE, ODSDEST,_ ODSSTYLESHEET,

NOTE: The autoexec file, C:\SAS\Config\Levl\SASApp\WorkspaceServer\autoexec.sas, was executed at server in

_ODSOPTIONS, TIMEZONE, GOPFT_DEVICE,

3

Figure 7-36. Log from the Stored Process run

So that is how you create a Stored Process using either Management Console or

Enterprise Guide. You can create your Stored Process in one of those and then modify it

in the other one.

Prompting in Enterprise Guide

Prompting allows the user to be prompted for information which will provide values

to parameters used in SAS code. This enables some code to be written in a more

generalized way to be far more flexible. The user can define that the values provided for

each prompt are macro variables available for use in the project SAS code. For instance,

we might be prompted to choose the parts of a country that we want a report to be

created for.

Enterprise Guide has its own prompting system available, which is not related to

Stored Processes. You can define prompts for a process flow which will prompt you for

information before running that process flow. You can look at and define Enterprise

Guide prompts by going to the Prompt Manager (Figure 7-37).

157

CHAPTER 7 STORED PROCESSES

Tasks Favorites Program 1

Maximize Workspace Ctrl+M
Workspace Layout 4

Project Tree

Process Flow F4 i

Sroesg ¢ mm—

MER a@ml @ Sa O §‘

Tasks
SAS Folders

Servers

Prompt Manager
Data Exploration History

Project Log
Log Summary
Task Status

I

Figure 7-37. Selecting the prompt manager for Enterprise Guide

The prompt manager for Enterprise Guide is located in the lower half of the left
navigation pane (i.e., where you find the SAS folders and servers). We won’t be covering
this kind of prompting, but the manager is shown in Figure 7-38.

AAEPEE

Add Edit X Delete

Name Used By
No Prompts Defined

Figure 7-38. Prompt Manager

Stored Process prompts can be used with Stored Processes to prompt the user for
some input before running the SAS code within the Stored Process. The prompts might
be displayed in different ways depending on the client used, but will essentially be the

158

CHAPTER 7 STORED PROCESSES

same. There are many kinds of prompts that can be used when making a Stored Process.
We will look at a brief example of each kind in the following. You can see a complete list

in the SAS documentation online.?

Modifying a Stored Process

We can modify the stored process by right-clicking the Stored Process which is in
your process flow. When the menu appears, select Modify <name of stored process>
(Figure 7-39).

Help |8~

Edit View Tasks Favorites Program Tools

eg_seg ~
Elxgg Process Flow 2] Log [&) Resuts
. T-[&) Program [&] Modify Stored Process | Exp
=[] Stored Processes | =1
QE Open >
Run eg_seg L,
| Modify eg_seg E
Replace Stored Process Code with Process Flow... L
B Paste
X Delete
: h.
gpF Add to Favorites
Properties L
LHLLI A/ Elo 1%

Figure 7-39. Modify stored process via context menu

Now you can choose Prompts from the left menu (see Figure 7-40).

2“Entering Prompt Values” from the SAS Stored Process Documentation - https://
documentation.sas.com/?docsetId=stpugddocsetTarget=n0174t2cvedkekn1tq627pnuisjs.
htm&docsetVersion=9.48locale=en and the quick reference guide on prompts which is here
https://documentation.sas.com/?docsetId=stpugBdocsetTarget=nix5bwm15z6zcmn1jjzrsch
14z90.htm8docsetVersion=9.48locale=en

159

https://documentation.sas.com/?docsetId=stpug&docsetTarget=n0174t2cve9kekn1tq627pnui5js.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=stpug&docsetTarget=n0174t2cve9kekn1tq627pnui5js.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=stpug&docsetTarget=n0174t2cve9kekn1tq627pnui5js.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=stpug&docsetTarget=n1x5bwm15z6zcmn1jjzrschl4z90.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=stpug&docsetTarget=n1x5bwm15z6zcmn1jjzrschl4z90.htm&docsetVersion=9.4&locale=en

CHAPTER 7 STORED PROCESSES

Name and Description
SAS Code

Execution Options

Data Sources and Targets
Summary

Figure 7-40. Menu in left pane

Then to start using prompts, you first select New Prompt as shown in Figure 7-41.

|
|® New Prompt...

(3> Prompt from SAS Codefor »
@ Project prompt copy

@ New Group...

Figure 7-41. Creating a new prompt

This reveals a tab in a window that prompts you for General information about the
prompt (Figure 7-42).

160

CHAPTER 7 STORED PROCESSES

General | Prompt Type and Values | Dependencies |
Name:
Prompt 1 |
Displayed text:

|Prompt_1 |
Description:

Parent group:
| @ \General v

Options
[] Hide st runtime [_] Requires a non-blank value
[] Read-only values [] Use prompt value throughout project

Figure 7-42. General tab of window used to add new prompt

Name - SAS requires a name that is valid under the SAS naming conventions. In this
example, we will use the name Prompt_1. You can give it any name you like, and if it is
not valid (perhaps having spaces in it), then it will be converted to a valid SAS name. The
name you specify and the values the user assigns become a global macro variable. This
allows the prompt and user input to be available to all the SAS code in the Stored Process.

Displayed text - Displayed text is shown next to the prompt, so should describe what
you want the user to enter.

Description - Description will be displayed under the prompt to explain more about
it. You can arrange prompts into nested groups of prompts if you want to. Remember
that the prompt names are required but remaining fields are optional and also that the
fields can be modified later if required by editing the stored process.

161

CHAPTER 7 STORED PROCESSES

Hide at runtime - When the hide at runtime box is checked, SAS will let you have a
prompt but not display it to the user. This is handy if you want a prompt value defined in
metadata and passed to the Stored Process, but not to be shown to user. Also, it is handy
if you use dependent prompts, as we will see later.

Requires a non-blank value - When the requires a non-blank value box is
checked, SAS makes the field required. In that case, the user won’t be able to run the
Stored Process unless a value is specified for that field. If the field has a default value
defined, then the user could just accept that and wouldn’t need to enter some other
value.

Read-only values - When the read-only values box is checked, SAS means that the
prompt is read-only by the user and the value cannot be changed. So, you can show the
user the prompt and value for information-only purposes.

Use prompt value throughout project - When the use prompt value throughout
project box is checked, SAS puts the macro variables used in the Stored Process into
global macro variables and so available across an Enterprise Guide project, if you are
using Stored Processes in that environment. This aligns with the Enterprise Guide
prompting system in which you can also make the value of a prompt into a global macro
variable in the same way. You need to carefully choose your prompt names if using them
like this though as they can’t be reserved words, and you don’t want them to overwrite
any other global macro variables that you might be using. Prompts can’t be longer than
32 characters either. If your prompt can have multiple values, then SAS will create a
version of it with a suffix on of _count to indicate how many values were specified. It
will also use numeric suffixes to indicate which value it is, for example, myprompt_1,
myprompt_2, and so on. myprompt_0 would be the same as myprompt_count and hold
the number of values specified. You need to take this extra variable length requirement
into account when naming your parameter.

Once you have specified everything you want to on the first tab, you can move onto
the second tab to specify the Prompt Types and Values (Figure 7-43).

162

CHAPTER 7 STORED PROCESSES

I Errie] | Prompt Type and Values | Dependencies ‘
Prompt type:
[Tex v|
Method for populating prompt: Number of values:
| User enters values v | | Single value v
Texd type:

| Single line v |

Minimum length: Maxdmum length:
Include Special Values
] All possible values [] Missing values

Default value:

| |
Hint:

I |

Figure 7-43. Prompt Type and Values dialog

Choosing a Prompt Type

Now you have a choice of Prompt type as shown in Figure 7-44.

163

CHAPTER 7 STORED PROCESSES

Prompt type:
Texd v

Text range
Hyperink
Numeric
Numeric range
Date]
Date range

Time

Time range
Timestamp
Timestamp range
Data source
Data source tem
File or directory
Color

Data library
Variable

T

Figure 7-44. Prompt type choices

We will look at each of these prompt types in detail now.

1. Text

With many of these prompts, you can specify the method for populating the prompt.
For text and many others, this usually can be one of the following options shown in
Figure 7-45.

Method for populating prompt:

User enters values W

User enters values

User selects values from a static list
l;|§t_3'=l"_ selects values from a dynamic list]

Figure 7-45. Options for populating values of a prompt

User enters values - means the user has to type in a value.

User selects values from a static list - where the developer enters a list of values that
the user can select from (see Figure 7-46). We can also set one of the values as a default if
we want to. Pressing the Add button lets you add a line to the list of values.

164

[} Append formatted values with unformatted values

CHAPTER 7 STORED PROCESSES

List of values:
Unformatted Value Formatted (Displayed) Value Defaul | Ad |
a Apple .
b Banana i
Delete
c Carmot| ‘ﬂ

[] Allow user to specify additional {urformatted) values

Figure 7-46. Entering your own values for a prompt

Move up

Move down

iy

You can also click Get Values which will bring up another dialog (Figure 7-47) in
which we can specify a data source (either from metadata or a physical location) and

column to use to get a list of values to use. For instance, I can navigate using the Browse
button and choose SASHELP.CLASS and then pick the column Age. Then if I click Get
values, it gets me a list of all the unique values from that table for that column. Then I

can copy some or all of them into the selected values list.

Data source:
[cLass || Browse... |
Unformatted Values
Column:
[Age v]
[Show only distinct values
Formatted (Displayed) Values
Column: Format:
[Use “Unformatted Values' column v| [Defaut format Select.
Available values Selected values:
Browse A Vakio 5:'?1166 (Displayed) | ~
X
Formatted (Displayed) 73 12 120 = t 3
= Ve Ve = 13 130 =l &
14 140
15 15.0 |
16 16.0 N
[ok][canca |

Figure 7-47. Getting values from a data source and choosing which ones to use

165

CHAPTER 7 STORED PROCESSES

Next, select values from a dynamic list shown in Figure 7-48. You can navigate to
a data source defined in the metadata, choose a column, and get the values to use for
selecting from. You can choose either to have all the values or just distinct values. You
may choose either the unformatted values to use, the formatted values for variables
to use, or to append the formatted values with the unformatted values. You may also
specify a sort sequence for displaying the values. And you can choose to allow the user
to specify additional (unformatted) values. This is a good option if other values not
available from the data are possible, since the user can then enter any values.

Data source:
[oDSSTYLE | Browse.. |

Unformatted Values
Column:

[SME v |
[v] Show only distinct values

Formatted (Displayed) Values
Celumn: Format:

’Use 'Unformatted Values' colt v | ’Default format Select...

[] Append formatted values with unformatted values
Include Special Values
[[] All possible values

Sort order: Default value:
|Default sort order v| |{None} v| | Select... ‘

[] Allow user to specify additional {unformatted) values

Figure 7-48. Specifying a sort order for dynamic prompt values from a data
source

As shown in Figure 7-49, you must also choose whether values can be either a single
value, multiple values, or multiple ordered values where the order that they are entered
is passed on to the SAS program.

Number of values:
Single value v

Multiple values
Multiple ordered values

Figure 7-49. Specifying number of values that can be specified in a prompt

166

CHAPTER 7 STORED PROCESSES

You also define the formatted value that is shown to the user, as well as the
unformatted value which is passed on to the SAS code when it is selected.

When the prompt is displayed, the form it is displayed in will vary depending on the
choices you have made.

2. Text Range

Choosing the text range prompt option will let you choose a text range. You can specify
some parameters (see Figure 7-50) to restrict the values that can be entered for the
range: min/max length of the string, min/max value, and a default value for the range.

Prompt type:
| Text range v |

Method for populating prompt: Number of values:

lser enters values Single value

Minimum length: Maximum length:

Minimum value allowed: Maximum value allowed:

Default Range

From: To:

2 [l |

Figure 7-50. Specifying values for text range prompt
In Enterprise Guide, the text range prompt is displayed as shown in Figure 7-51.

Prompt_2
From:

3 |

To:
© |

Figure 7-51. Values for a text range

3. Hyperlink

This prompt option allows you to enter the text and link for a URL. You can specify
defaults if you like as shown in Figure 7-52.

167

CHAPTER 7 STORED PROCESSES

Prompt type:
| Hyperiink v
Method for populating prompt: MNumber of values:

[User enters values . ‘ Single value ‘
Default link text:

|SAS Support ‘
Default link address (URL):

|htlp:support.sas com| ‘

Figure 7-52. Specifying a hyperlink or URL prompt

When running from Enterprise Guide, the hyperlink prompt is displayed as shown in
Figure 7-53.

Prompt_3
Link text:

|SAS Support |
Link address (URL):
Iadasdasd |

Figure 7-53. How a hyperlink prompt is displayed when being used from
Enterprise Guide

4. Numeric

This is similar to the text prompt type. You can populate the prompt with values in a
number of ways, as shown in Figure 7-54.

Method for populating prompt:
User enters values v

User enters values

User selects values from a static list
User selects values from a dynamic list]

-y

Figure 7-54. Methods for populating a numeric prompt

168

CHAPTER 7 STORED PROCESSES

User enters values - means the user has to type in a value User selects values from a
static list - where the developer enters a list of values that the user can select from (see
Figure 7-55). We can also set one of the values as a default if we want to. Pressing the Add

button lets you add a line to the list of values.

(] Append formatted values with unformatted values

List of values:
Urfomated Fomated Displayed) Vabue Defauk [A
1 eat C Get Values...
2 |dog C]
Delete |
3 |bead C

Clear Default

Move up
Move down |

[] Allow userto specify additional {unformatted) values

Figure 7-55. Specifying numeric values and formatted values to display

User selects values from a dynamic list - where the developer specifies a data source
that will provide the values.

For a static list, you can also click Get Values which will bring up another dialog
(Figure 7-56) in which we can specify a data source (either from metadata or a physical
location) and column to use to get a list of values to use. For instance, I can navigate
using the Browse button and choose SASHELP.CLASS and then pick the column Age.
Then ifI click Get values, it gets me a list of all the unique values from that table for that
column. Then I can copy some or all of them into the selected values list.

169

CHAPTER 7 STORED PROCESSES

Data source:
[cuass | [Browse... |
Unformatted Values
Column
|Age v
[V Show only distinct values
Formatted (Displayed) Values
Column Format:
Use ‘Unformatted Values® column v‘ |Dda|.l format | | __ Select...
Available values Selected values
Browse Unformatted Value Forzled:bed (Displayed) | ~
I
-~ -l ?
Unfomatted Vaie omatted (Dislayed) & = =
E 13 130 L
14 14.0
3 5 [|15 150 |
12 130 oy Lis 60 -
[ok || Cancel |

Figure 7-56. Specifying a data source to get values from and which ones to use

For a dynamic list as shown in Figure 7-57, we can navigate to a data source defined
in the metadata, choose a column, and get the values to use for selecting from. You can
choose either to have all the values or just distinct values. You may choose either the
unformatted values to use, the formatted values for variables to use, or to append the
formatted values with the unformatted values. You may also specify a sort sequence
for displaying the values. And you can choose to allow the user to specify additional
(unformatted) values. This is a good option if other values not available from the data are
possible, since the user can then enter any values.

170

CHAPTER 7 STORED PROCESSES

Data source:
[STPBGT || Browse.. |

Unformatted Values
Column:

QTR v]
Show only distinct values

Formatted (Displayed) Values
Column: Format:
|Use ‘Unformatted Values' colt v‘ | Default format | Select...

[T] Append formatted values with unformatted values
Include Special Values

[] All possible values

Sort order: Default value:
|Defau1t sort order V‘ |{None} Vl | Select... ‘

[] Allow userto specify additional {unformatted) values

Figure 7-57. Specifying a dynamic data source for a numeric prompt

You must also choose whether values can be either a single value, multiple values,
or multiple ordered values where the order that they are entered is passed on to the SAS
program (see Figure 7-58).

Number of values:

Single value v
Snglevale |

Multiple values
Multiple ordered values

Figure 7-58. Specifying how many values can be entered for a numeric prompt

You also define the formatted value that is shown to the user, as well as the
unformatted value which is passed on to the SAS code when it is selected.
In Enterprise Guide, this prompt is displayed as shown in Figure 7-59.

171

CHAPTER 7 STORED PROCESSES

Prompt_4
Available: Selected:
|1.0
20

¢

Figure 7-59. Numeric prompt shown when used in Enterprise Guide

5. Numeric Range

This prompt type is similar to the text range type. You specify the min/max values and
default values if you want them, as shown in Figure 7-60. You can check a box to indicate
if you just want integers to be used or else optionally specify the decimal places to use.

Prompt type:
| MNumeric range W

Method for populating prompt: Number of values:
User enters values Single value

iAllow only integer values:

Minimum value allowed: Maximum value allowed:

[|12 |
Default Range
From: To:

[| [12 |

Figure 7-60. Specifying a numeric range prompt

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-61.

172

CHAPTER 7 STORED PROCESSES

Prompt_5
From:

]
To:
12

Figure 7-61. Numeric range displayed when used in Enterprise Guide
6. Date

This prompt type allows you to specify a date for a prompt which can be one of the
following types of date shown in Figure 7-62.

Date type:
Day W

Quarter [
Year

Figure 7-62. Specify a date type for a data prompt

You can choose a minimum and/or maximum date to allow by entering it, picking a
value from the drop-down list (see Figure 7-63), or choosing a value from the calendar
icon @ which opens up a calendar to choose from (see Figure 7-64).

Minimum value allowed:

| v

Today
Yesterday e
Tomomow

Curmrent day of last year
Current day of next year
Cument day of last month
Current day of next month
N days ago -
N days from now

Figure 7-63. Specify a minimum value for a date prompt with a range of special
values

173

CHAPTER 7 STORED PROCESSES

Mo Tue We Thu Fri Sat Sun

24 25 26 27 28 29 30
<l 2 3 4 5 6 7
8 9 10 1 12 13 14 [
15 16 17 18 19 20 21 L
2 23 24 2% 2% 27 28
29 30 3N 1 2 3 4

Figure 7-64. Choosing calendar icon allows specifying date using a calendar

You can also choose whether to include all possible values and/or missing values in

the list of values that can be used, as shown in Figure 7-65.

Include Special Values

[] Al possible values [] Missing values

Figure 7-65. Specify what to include in data prompt

You can also choose a default value using a drop-down list or calendar picker like
those already shown. You can see how to specify a defaul date in Figure 7-66.

Prompt type:
| Date v |
Method for populating prompt: Number of values:
| User enters values v | ‘ Single value v
Date type:
| Day v| (Example: 01 May 2017)
Minimum value allowed: Maximum value allowed:

| J@ | @

Include Special Values

[] All possible values [] Missing values

Default value:

| o

Figure 7-66. Can specify a default value for date

174

CHAPTER 7 STORED PROCESSES

If you choose to select values from a static list, then you will have the dialog options
we have already seen to make a list of values to choose from (see Figure 7-67).

Method for populating prompt:

[User selects values from a static list v ‘

Figure 7-67. Can specify to get values from a static list

If you choose to select values from a dynamic list, then you have dialog options to
choose a data source and variable to create a list of values from, as shown in Figure 7-68.

Method for populating prompt:

‘ User selects values from a dynamic list v ‘

Figure 7-68. Can specify to get values from a dynamic list
When it is running from Enterprise Guide, it is displayed like in Figure 7-69.

Prompt_6
| v (Example: 01 May 2017)

Figure 7-69. Display of date prompt when running from Enterprise Guide

7. Date Range

This allows defining a date range to be used as a prompt. You can see how to do this in
Figure 7-70.

175

CHAPTER 7 STORED PROCESSES

Prompt type:
| Date range v |
Method for populating prompt: Number of values:
User enters values ‘ | Single value
Date type:
| Day v | (Example: 01 May 2017)
Minimum value allowed: Maximum value allowed:
| @ | 3
Default Range
Range type:
[Custom v ‘
From: To:
| 7@ | 3

Figure 7-70. Defining a date range

Choosing a date type of Day lets min/max range be set up using calendar or drop-
down list shown in Figure 7-71.

I HI

Today
Yesterday
Tomomow
Beginning of cument year —
Current day of last year
Current day of next year
Beginning of cument month I
Current day of last month
Current day of next month
N days ago

N days from now

Figure 7-71. Special values available for specifying a day

Choosing week makes the drop-down list appear as in Figure 7-72.

176

CHAPTER 7 STORED PROCESSES

Cumrent week

Previous week

Next week

Curmrent week of previous year
Curmrent week of next year

N weeks ago

N weeks from now

Figure 7-72. Special values available for specifying a week

Choosing month makes the drop-down list appear as in Figure 7-73.

Current month

Previous month

Next month

Current month of previous year
Curmrent month of next year

N months ago

N months from now

Figure 7-73. Special values available for specifying a month

Choosing quarter makes the drop-down list appear as in Figure 7-74.

Current quarter

Previous quarter

Next quarter

Current quarter of previous year
Curmrent quarter of next year

N quarters ago

N quarters from now

[

Figure 7-74. Special values available for specifying a quarter

Choosing year makes the drop-down list appear as in Figure 7-75.

177

CHAPTER 7 STORED PROCESSES

| B

Current year
Previous year
Next year 1
N years ago

N years from now

Figure 7-75. Special values available for specifying a year

For any date type, you can specify a range which can be specified using the
corresponding drop-down menus shown previously or selection dialogs like the ones
shown in Figures 7-76, 7-77, 7-78, and 7-79.

Mo Tue We Thu Fri Sat Sun

24 25 268 27 28 29 30
BN 2 3 4 5 68 7
8§ 9 10 11 12 13 14
15 16 17 18 19 20 21
2 23 24 2 Xk 27 28
29 3w x» 1 2 3 4

Figure 7-76. Using calendar widget to specify a date

Week: Year:
17 v| 2017]
Example: 1 Example: 2005
From: 24 April 2017
To: 30 April 2017
| ok || cance |

Figure 7-77. Using special week widget to choose a week

Month: Year:

| May v|[2017 |

Example: January Example: 2005
| ok || Cancel |

Figure 7-78. Using special month widget to choose a month

178

CHAPTER 7 STORED PROCESSES

Quarter: Year:
a2 v|[2017 |
Eample: Q7 Example: 2005

| ok || Cancel |

Figure 7-79. Using special quarter widget to choose a quarter

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-80.

Prompt_7

Range type:

[Custom ~ |

From:

|Previous year v| (2016)

Example: 2006
To:

N1
|Current year v| (2017)

Example: 2006

Figure 7-80. Specifying a date range when run from Enterprise Guide

8. Time

Choosing time lets us define a time as a prompt as shown in Figure 7-81.

Prompt type:
| Time v| (Example: 15:52:48)

Method for populating prompt: Number of values:
l User enters values ‘ ‘S‘lngle value v |
Minimum value allowed: Maximum value allowed:

| v ® | v ®
Include Special Values
[] Al possible values [] Missing values

Default value:
| v|®

Figure 7-81. Defining time as a prompt

179

CHAPTER 7 STORED PROCESSES

Minimum/Maximum/Default can be picked from the drop-down list in Figure 7-82.

I v

Cument time

Beginning of cument hour
Beginning of previous hour
Beginning of next hour
Beginning of cument minute
Beginning of previous minute
Beginning of next minute

N hours ago -
N hours from now
N minutes ago

N minutes from now

Figure 7-82. Specifying times using special values
When it is running from Enterprise Guide, it is displayed as shown in Figure 7-83.

Prompt_8
[v| ® (Example: 16:16:45)

Figure 7-83. Prompt for specifying a time in Enterprise Guide

9. Time Range

This prompt type allows specifying a time range (see Figure 7-84).

Prompt type:
|‘I‘|me range v ‘ (Example: 16:18:09)
Method for populating prompt: Number of values:
User enters values ‘ Single value ‘
Minimum value allowed: Maximum value allowed:
| v @ | v|®
Default Range
Range type:
|Cuslom W ‘
From: To:
[v @ | v|®

Figure 7-84. Defining a time range prompt

180

CHAPTER 7 STORED PROCESSES

Times can be specified using a clock dialog (Figure 7-85) or drop-down list
(Figure 7-86).

Time

62610 &

| ok || cancal |

Figure 7-85. Specifying a time using clock dialog

| v

Current time

Beginning of cument hour
Beginning of previous hour
Beginning of next hour
Beginning of cument minute
Beginning of previous minute
Beginning of next minute

N hours ago

N hours from now

N minutes ago

N minutes from now

Figure 7-86. Specifying a time using a special value

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-87.

181

CHAPTER 7 STORED PROCESSES

Prompt_9

Range type:

| vl
From:

| v|®
To:

| v| ®

Figure 7-87. Time range prompt used in Enterprise Guide

10. Timestamp

You can specify a timestamp as a prompt, which is a combination of a date and time (see
Figure 7-88).

Prompt fype:
| Timestamp v| (Example: 1 May 2017 16:29:33)

Method for populating prompt: Number of values:

User enters values _ | Single value v |
Minimum value allowed: Maximum value allowed:

| v| @ | v| @

Include Special Values

[C] All possible values [] Missing values

Default value:

[v| @

Figure 7-88. Defining a timestamp as a prompt

You can choose from the drop-down menu (Figure 7-89) or icon (Figure 7-90) to
choose a value for Minimum, Maximum, or Default.

182

CHAPTER 7 STORED PROCESSES

| v

Curment date and time

Curment date and time previous year
Curent date and time next year
Beginning of cument hour
Beginning of previous hour
Beginning of next hour
Beginning of cument minute
Beginning of previous minute |
Beginning of next minute i)
N hours ago

N hours from now
N minutes ago

N minutes from now

Figure 7-89. Special values available for a timestamp

Figure 7-90. Specifying a datestamp using a combined date and clock dialog

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-91.

Prompt_10

v| (Example: 1 May 2017 16:33:19)

Figure 7-91. Prompt for a timestamp used in Enterprise Guide

11. Timestamp Range

The timestamp range prompt type allows you to enter a range or datetime values, as seen
in Figure 7-92.

183

CHAPTER 7 STORED PROCESSES

Prompt type:

Timestamp range

vl (Example: 1 May 2017 16:34:04)

Method for populating prompt:

User enters values

Number of values:

‘ Single value

Minimum value allowed:

Maximum value allowed:

v|B |

Default Range
From:

To:

v|B |

Figure 7-92. Defining a timestamp range prompt

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-93.

Prompt_11

From:

| v| 3
To:

| v| B

Figure 7-93. Timestamp range prompt when used in Enterprise Guide

12. Data Source

The data source prompt allows you to select a data source of one of the types, shown in

Figure 7-94.

Prompt type:

I Data source v ‘

Method for populating prompt: : Number of values:

‘ User enters values ‘ Single value
Data Source Types
[#] OLAP information map [] OLAP cube
[v] Relational information map Table

Default value:

Figure 7-94. Specifying a data source prompt

184

CHAPTER 7 STORED PROCESSES

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-95.

Prompt_12

| [Bowse |

Figure 7-95. Data source prompt when used in Enterprise Guide

13. Data Source ltem

The data source item prompt allows choosing a number of data sources from which you
can pick a variable, as shown in Figure 7-96.

Prompt type:

| Data source item W |

Method for populating prompt: MNumber of values:

: User enters values | |Single value v

Data Source Types

W] Information map Table
Data Sources:
/Shared Data/ODSSTYLE Browse...
| Delete
| Move Up
| Move Down .
Data Types
] Character Numeric Date Time [Timestamp
Default value:
| vl | Select...

Figure 7-96. Defining a data source prompt

When it is running from Enterprise Guide, it looks like Figure 7-97.

185

CHAPTER 7 STORED PROCESSES

Prompt_13

| V]]

Figure 7-97. Using a data source prompt in Enterprise Guide

When you click the button, you get to choose a variable from the data sources

available in the dialog shown in Figure 7-98.

Select a Data Source ltem | X |

Select a data source item:
Browse | Search

. Sort order: Default ~

=gz ODSSTYLE
Eﬁ,@ display
A style
=gz STPEURO
Ea@ country
@ growth
@ bith
@ death
@ iom
@ Ifeexp

Figure 7-98. Dialog displayed when browsing for a data source to select

14. File or Directory

The file or directory prompt lets you choose either a file or a directory (see Figure 7-99).
If you choose the file or directory type as input, then that indicates that you will select
from things that already exist and so can be used as input. However, if you choose
output, then you can create directories or files so that they don’t have to already exist.

186

CHAPTER 7 STORED PROCESSES

Prompt type:
| File or directory v |

Method for populating prompt: Number of values:

I User enters values ' ‘ _Single value
File or directory type:

| Input

Server:

| SASApp - Logical Workspace Server

Selectiontype: @ Files O Directories

File Extensions

.53s d

e
Delete

Move Down

TR |

Default value:
| | Browse

i

Figure 7-99. Dialog to specify a file or directory prompt

Ifyou select to choose a file, you can enter some file extensions, so you will only see
files that match those in the list of files as you are browsing. You need to choose a server
where the files or directories are located on.

Next, you choose either files or directories, depending on what you want to select. If
you choose files, then you can also enter file extensions which will restrict the files that
you can use. Lastly, you can enter a default value if you want to.

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-100.

Prompt_14
| | Bro

3

Figure 7-100. Prompt when used from Enterprise Guide

Pressing the Browse button brings up a dialog (Figure 7-101) to choose files or
directories depending on what you had chosen.

187

CHAPTER 7 STORED PROCESSES

(I Select a File
Lookin: [9.4 v/ «\'@‘ X "“a‘"i' 5]
graphviz sas

H Servers =
|=] Ul macros sas

Figure 7-101. Pressing browse shows this dialog to choose a file or directory

15. Color

The color prompt allows you to choose a color from a selection dialog (Figure 7-102).
You can choose a default color if you like.

Prompt type:
[Color v |
Method for populating prompt: MNumber of values:

‘ User enters values v ‘ ‘ Single value
Default value:

I |~ |

Figure 7-102. Defining a color prompt

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-103.

Prompt_15 _
I - |
| Automatic |

EEENENEEEN
EE(EEENEN
BEOODC NN

Custom Colors...

Figure 7-103. Using a color prompt in Enterprise Guide

188

CHAPTER 7 STORED PROCESSES

16. Data Library

You can choose a prompt to allow picking a library from the SAS metadata, as shown in
Figure 7-104.

Prompt type:
| Data library v
Method for populating prompt: Number of values:
User enters values Single value
Default Value
Library: Libref:

| ||| | X l Browse...

Figure 7-104. Defining a prompt for a data library

When it is running from Enterprise Guide, the prompt looks like Figure 7-105.

Prompt_16
| || | X | Browse... |

Figure 7-105. Using a data library prompt from Enterprise Guide

17. Variable

The variable prompt allows you to choose a variable from a list of variables. You can
enter names of variables and set their types manually, as shown in Figure 7-106. Or you
can click the Load Values button to select one or more tables and have their variables
added to the list.

189

CHAPTER 7 STORED PROCESSES

Prompt type:
|Van’able v
Method for populating prompt: Number of values:
User selects values from a static list Single value
Value list: Options:
Name [T Defautt value:
Sex
< Click here to enter values >
Variable type:
@ Numeric
&3] Date
&) Time
&]_& Cumrency
&) Geography

[T] Mllow userto specify additional values

Figure 7-106. Defining a variable prompt

When it is running from Enterprise Guide, it is displayed as shown in Figure 7-107.

* Prompt_17

Name
Sex

Figure 7-107. Using a variable prompt from Enterprise Guide

Adding Dependencies

The third tab when defining prompts is used when you are using dependencies.
Dependencies are great for making your prompts work together. To illustrate, I will make
a Stored Process which will print out some of the table sashelp.class. This table has
variables: name, age, sex, height, and weight. I would like to prompt the user for sex and

then display a list of the names that match that sex. So if the user chooses “F” for female,
then they will get a list of female names.

190

CHAPTER 7 STORED PROCESSES

Figure 7-108 shows the SAS code I will use, which will make use of two macro
variables in a where clause that are provided by the prompts.

SAS Code

Prompts Eproc print data=sashelp.class ;

Data Sources and Targets where sex="&sex" and name="&name" ;
Summary run ;

Figure 7-108. SAS code used for stored process

Next, I will define my prompts. Firstly, I want a prompt for Sex which must have a
value specified as I am using it in the where clause. So, I check the “Requires non-blank
value” check box in Figure 7-109.

General | Prompt Type and Values | Dependenci

|
B

<]

Parent group:

|@\Geﬂetal v
Options

[] Hide st untime [Requires a non-blank value

[[] Read-only values [] Use prompt value throughout project

[ok || Concel || Heb |

Figure 7-109. Defining a prompt for sex

This will have two possible values: M or E, which are added as shown in Figure 7-110.

191

CHAPTER 7 STORED PROCESSES

General PmrﬂTypedeabeshr 3 |

Prompt type: Ll
|Te.\d v|

Method for populating prompt: Number of values:

[User selects values from a static st v| [Single value vl
Minimurm length: Maodmum length:

| I |
Include Special Values

[[] All possible values [] Missing values

[C] Append fomatted values with unformatted values

List of values:
Unformatted Value F i (Displayed) Value Default [Add |
F
.
[C] Allow user to specify addtional (unformatted) values .
ok |[Concel || hHeb |

Figure 7-110. Defining possible values for sex

Now I want to make a new prompt for name, which I also don’t want to have any
blank values since it is being used in a where clause in my code (Figure 7-111).

192

CHAPTER 7 STORED PROCESSES

General | Prompt Type and Values | Dependencies |

Displayed text:
[name |

Description:

Parent group:

|@‘.General v
Options

[[] Hide atuntime [V Requires a non-blank value

] Read-only values [] Use prompt value throughout project

Lok J[Cancel || Heb |

Figure 7-111. Defining a prompt for name

This prompt will get its values from a table that is defined in the metadata. Defining
atable in the metadata is easily done using Management Console using the Data Library
Manager plug-in. First, you define the library, if it isn’t already defined, and then you
register the table. That enables the table to be used in prompts like this, among other
things. For my examples, I added a library for sashelp and then registered all the tables to
it. That enables me to pick them out using metadata.

The key thing in defining this prompt is to choose “User selects values from a
dynamic list” as the “Method for populating prompt” Then, you click the Browse button
to find the table you want to use. Next, you choose the column name to use as an
unformatted value and whether to just display distinct values rather than any repeated
values. Usually, you will just want distinct values for this kind of thing. You can see the
dialog used to do this in Figure 7-112.

193

CHAPTER 7 STORED PROCESSES

- Prompt Type and Values | Dependenci |

Prompt type:
|Tui v|
Method for populating prompt: Number of values:

[User selects values from a dynamic list v | | Single value

Minimum length: Maxi length:

I |

Data source:

|cLass

Urformatted Values
Column:

[Name

[Show only distinct values

Formatted (Displayed) Values
Column: Format:

[Use "Unformatted Values' column v | Defaul fomnat

[Append formatted values with urformatted values
Include Special Values
[[] Al possible values

Sort order: Default value:

[Defaut sort order v| [(None)

v| [Select..

[] Alow userto speciy addtional {urformatted) values

| ok

| | Cancel

Help

Figure 7-112. Defining that values will be provided from a variable in a table

The final thing to define is how the values defined in this prompt will be dependent

on values from another prompt. In this example, if the user chose Sex=F, then I just want

to display names for females. To define the dependency, I just do a few things shown in

Figure 7-113.
Click the Add button to add a new dependency.
Choose the prompt I want to use as a dependency.

Define what the dependency actually is by creating a condition that will be used. In

this case, Sex = “whatever the value of the sex prompt is”.

194

CHAPTER 7 STORED PROCESSES

General | Prompt Type and Values | Dependencies |

This prompt depends on the value of the following prompts:

Prompt Description of Dependency Add
Sex v | CLASS.Sex = Value of "Sex" |—|
Dependency

Column: Operator: Value of:

ISex v||Equal v‘Sex

The following prompts depend on the value of this prompt:

Prompt Description of Dependency

No other prompts depend on this prompt
[0K || Cancel |[Hep

Figure 7-113. Defining a dependency so we only get names matching the sex

chosen

Now when we run the Stored Process and go to select a name, we will see only names
that have a sex of whatever the value of the sex prompt is, as shown in Figure 7-114.

195

CHAPTER 7 STORED PROCESSES

[[] Show only required items (denoted by %)

G TN

LR |[Concel |

Figure 7-114. List of female names when prompt is in use and female was chosen
for sex

Running the Stored Process after selecting a sex and name will produce the report in
Figure 7-115 using those values.

Obs Name Sex Age Height Weight
3 Barbara F 13 653 98

Figure 7-115. Result of stored process when it is executed using the prompt values
specified

Using Input Streams and Output Prompts

Input streams are defined when you set up a Stored Process and can be used to read data
in as it is run. The data comes from a location that is defined as an input stream, such as
part of an EXCEL spreadsheet.

Output prompts are also defined when you set up a Stored Process and can be
used to output parameter values when it is run. For example, if you wanted to store the

196

CHAPTER 7 STORED PROCESSES

number of records that match the criteria of the query, you could perform a sql record
count and store the output in an output prompt for use elsewhere. Parameter values are
equivalent to macro variable values as the end of the stored process. So this will let you
write macro values out to a defined destination, such as a cell in an EXCEL spreadsheet.

Input streams and output prompts work really well when used with the Office Add-in
using Microsoft EXCEL. I will describe how to use both by making an example Stored
Process.

As we go through the Stored Process wizard in Enterprise Guide, we can enter our
stored process code which will be used to read in some data from EXCEL, write results
back to it, and also write macro values to EXCEL.

The following code has some key features for use with input streams, which are
highlighted in bold. The libname statement uses an XML engine to read data in from
EXCEL, since the input stream will be defined to produce XML data. The _webin_
sasname automatic macro variable is created by SAS and populated with the table name
that should be used with the XML input stream in order to read the data in properly.

If there are multiple input streams, then SAS will create a series of automatic macro
variables to use.

We create a macro variable that will be used with an output prompt, which is
highlighted in bold italics. An output prompt will be populated with the value from this
macro variable. We will also create two other output prompts which will be populated
with the values of automatic macro variables.

The Proc Print in Listing 7-2 will produce ODS output which will be written back to
EXCEL.

Listing 7-2. Producing ODS output to Excel

libname instr xml ;
data input from excel(drop=i) ;
set instr.&_ webin_sasname ;
array numbers(*) numeric_ ;
do i=1 to dim(numbers) ;
calculated total+numbers(i) ;
end ;
Tun;

197

CHAPTER 7 STORED PROCESSES

* 0DS output ;

title "Data read in from EXCEL, numbers totalled and written back to EXCEL"
5

title2 "Ran at %sysfunc(datetime(),datetime.)" ;

proc print ;

run;

%* Get the number of observations in the table, and assign to output
parameter ;

%let dsid=%sysfunc(open(input_from excel)) ;

%let out_wvalue=%sysfunc(attrn(&dsid,nobs)) ;

%let dsid=%sysfunc(close(8dsid)) ;

As we go through the Stored Process wizard, we get to the page where we can define
output parameters, and we can define three parameters shown in Figure 7-116. The first
takes the value of &out_value, next is & clientuserid, and last is & clientusername. The
displayed text will be shown to the user as explanation of what the parameter is. The user
can then specify where the value will be placed.

Output Parameters:

Name Type Displayed Text
out_value String Number of observations
_CLIENTUSERID String Client Usend
_CLIENTUSERNAME String Client User Name

Figure 7-116. Defining output parameters

We can specify a new data source for an input stream (see Figure 7-117). Since we are
using EXCEL, we should choose XML-based data, which then sets the expected content
type to text/xml. We could set this to anything we want to read in to match what is being
streamed to the stored process.

198

Create a New Data Source

CHAPTER 7 STORED PROCESSES

i

Form of Data

) Generic (bytestream)data (@ XML based data
Expected content4ype:

textsaml

Fileref:

instr

Label:

©) Data Table

[¥] Allow rewinding stream

Select the data range from EXCEL sheet.
1Yl Desecription:

Figure 7-117. Creating a new data source

The fileref specified can be any valid fileref but needs to match the one used in

the stored process code.

For EXCEL, we should check the box to allow rewinding stream.
The label will be displayed to the user as a prompt at the point that they can specify

where the data is located which will be streamed in.
After specifying all this, we see it in the list of data sources and targets, shown in the

spreadsheet in Figure 7-118.

Data Sources and Targets

Data Sources (input streams to a stored process):

Fileref / Table Parameter Content
instr text aml

Figure 7-118. List of data sources and targets

Label Description
Select the data rang...

199

CHAPTER 7 STORED PROCESSES

We can run the stored process from EXCEL using the SAS Add-in, as shown in
Figure 7-119. Just select SAS from the menu, choose Reports, navigate to the stored
process, and run it.

(LS. | \ (U R D o — ——

“ Home Insert Page Layout Formulas Data Review View SAS

= L S & B BN O
SAS Tasks Reports SAS SAS SAS Refresh Manage Tools Help
Data Programs Central Favorites ~ bt v

Insert Selection Tools

I aa -

Figure 7-119. SAS tab when EXCEL has the SAS add-in

Figure 7-120 is some sample data I made, which I will stream into the stored process.
I also created some labels for the output parameters I will write out from the stored
process. On running the stored process, a window will pop up to prompt us for values
needed.

First, we need to choose where our input data sources are located. We can do this by
either typing in the references or just clicking the cell selector icon and then choosing
the range.

Next, we choose where we want the results from the stored process to go. This could
be a new sheet, a new workbook (which will be a new EXCEL file), or just a location in an
existing sheet which can also be chosen by using the cell selector icon.

Finally, we tick which of the output parameters we want to use and then choose
where the values go to.

200

CHAPTER 7 STORED PROCESSES

" [B c D E F G H 1
. 3AS Country Score
! Phil Mason Australia 0.756072
i Rafal Gagor Poland 0.593062
i |Chris Brooks Wales 0.346715
i Dimitri Woei Netherlands 0.301404
i MarkBodt NewZealand 0.351029
i | Rowsread: (&)} instream g
| Userid:

Input Data Sources
D] Us J =
Select the data range from EXCEL sheet. [Book1]Shest1!8A51:5CS6 i3]
2
3 Stored Process Resulls
a) New worksheel: [inctream
5 @) Bxsting worksheet: [Book 1]Sheet 11SES1 EI
6 {22 New workbook
z Output Farameters
2 [7] Mumber of observations [Book 1]Sheet 115858
3 ! .
0 [V] Chent Usesid [Bock 1]Sheet 115BS9 iy
1 7] Chent User Name [Bock 1}Sheet115BS10
2
3 [ok][cenes [Heo |
4
5

Figure 7-120. Specifying where output parameters from a stored process go

After making the selections shown in the previous screenshot and pressing OK, the
stored process will run and populate sheet as shown in Figure 7-121. The ODS results

have been put into columns E-I. The output parameters have been put into the cells in

column B on the last three rows of the figure.

E3 - _ S ’ Ran at 28NOV17:08:35:38
A B c D E F | G | H I
Data read in from EXCEL, numbers totalled and written back to
SAS Country Score EXCEL
Phil Mason Australia 0.499987
]Rafal Gagor Poland 0.32871 | Ran at 28NOV17:08:35:38 |
Chris Brooks Wales 0.80207
Dimitri Woei Netherlands 0.104055 Obs| SCORE|COUNTRY SAS calculated_total
Mark Bodt New Zealand 0.352505 1| 0.7560719|Australia Phil Mason 0.756071872
2| 0.5930616|Poland Rafal Gagor 1.349133507
Rows read: 5 3| 0.346715|Wales Chris Brooks 1.695848529
Userid: 8726117 4| 0.3014035|Netherlands |Dimitri Woei 1.997252046
|| Username: Mason, Philip (Contractor - Simp EJ 5| 0.3510294|New Zealand |Mark Bodt 2.348281405

Figure 7-121. Results of running the stored process with cells populated in EXCEL

201

CHAPTER 7 STORED PROCESSES

Summary

In this chapter, we took at close look at Stored Processes and the details around them:
e You can easily convert SAS programs to stored processes.

e You can create a stored process using Management Console,
including defining prompts using some great functionality.

e You can also create a stored process using Enterprise Guide,
including defining prompts using a similar set of functionality:

e We also looked at each type of prompt that is available.
e We look at making prompts flexible and data dependent.

e And we looked at using dependent prompts when the values
displayed in one prompt might depend on another.

e Welooked at how to use input streams and output streams for
reading and writing to Microsoft EXCEL.

202

CHAPTER 8

SAS Stored Process
Web Application

The SAS Stored Process Web Application is a Java web application that can execute
stored processes and return results to a web browser. There are several parts to the
Stored Process Web Application which will let you carry out different tasks. Let’s explore
some of these features before moving on to discussing macro parameters.

Index Page

There is an index page which is a very useful place to find your Stored Processes and
Stored Process reports. You get to it by using a URL in your web browser like this:

http://your-server/SASStoredProcess/do?_action=index

Just put your server machine name or IP address in place of “your-server”. You will
need to authenticate by entering your user id and password, but then you will get the
index page, shown in Figure 8-1.

203
© Philip Mason 2020

P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_8

https://doi.org/10.1007/978-1-4842-5925-2_8#ESM

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

1 Stored Processes
=1 Products

-1 SAS Intelligence Platform

= L1 Samples

Sample STP Report: Cholesterol by Sex and Age Group
Sample: Cholesterol by Sex and Age Group
Sample: European Demographic Data
Sample: Frequency Analysis of Municipalities
Sample: Hello World
Sample: Multiple Output Formats
Sample: Server Test
Sample: Shoe Sales by Region
Sample: Shoe Sales Graphics
Sample: Stored Process Macro Variables
Sample: Year to Date Budget

 EEEEEEEEEES

ra

Figure 8-1. Index page

204

The index page is a helpful visual tool for seeing the following :

List of Stored Processes - If you want to see what Stored Processes
and/or Stored Process reports are available to you with the
credentials you are currently using, then the Stored Process web app
will give you a list of them.

Metadata folder structure - As you look at the list of Stored
Processes, they are displayed within the folder structure in the
metadata. If this folder structure is set up well, then it can be used
to provide a nice logical arrangement for your Stored Processes (see
Figure 8-2).

Run Stored Processes - You can run any of these Stored Processes,
and the results will appear to the right of the folder list on the same
page. This is quite useful to find Stored Processes, try them out, see if
they use any prompts, and so on.

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Home

Stored Processes

() stored Processes

= [0 Products

= (3 User Folders

=L phil
= [My Folder
@] bar_piez
& crossfilters
A crossfilterdh
& o
& ol
& ez
&l easylle
Al Exercise 1
& Exercise 2
&) Exercise 3
Al Exercise 4
&) highcharts
G htnl3
A hmisb
& hemis
& htmis
& hmls
@) jogrid2
& joprids
& json
& json2
@) jsom3
& me_stp
& mad Caleulator
Gl proc_stream
& Reportt
&) run_venn
| L8 stream

Figure 8-2. List of stored processes in Enterprise Guide

The index page also provides an easy way to get a link for a Stored Process. You can
right-click any of these Stored Processes displayed and copy the link (see Figure 8-3).
You can then take that link and use the URL in a web browser or elsewhere to run that
Stored Process. Or perhaps an easier way is to right-click the Stored Process and choose
“Open in new tab” or “Open in new window”. That will open it and show the URL at the
top of the window. Once you have a URL, you can add things to the end of it such as
“&_debug=log,trace” which will run the Stored Process producing a trace and show the
log, which is great for troubleshooting.

205

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

18 Evescise 3

@ {Exercise 4

[#) highck Open

[} htmiz Open in new tab

[} htmize Open in new window
(& htmtd Save target as...

[# himls Print target

&) html

&) jagrid:

&) jogrids oy

[json Copy shortcut

@ json2 e

& json3 | _

(&) me_stp = E-mail with Windows Live
[&) Mod C 5% Translate with Bing

[#] proc_s All Accelerators *
=4 1

% Repor! | Addto favorites..

il

E :::::v Properties

Figure 8-3. Context menu shown when right-clicking a stored process

Sample Stored Processes

Some simple Stored Processes are provided as samples by SAS (see Figure 8-4). It is
useful to look through these when you first start working with Stored Processes to
make sure you understand the examples. You can then go off and look at the code and
metadata used for each of these to see exactly what techniques have been used.

Log Off Philip Mason

SAS Stored Process Web Application Gsas

Wwielcome to the Version 9 545 Stored Process Web application. This application allows you 1o execute SAS Stored Processss from & Web browser
= Stored Process Samples

The following samples display some of the capabilities of stored processes. Many of the samples allow you to view the 545 log and see the SAS program used to generate the HTML or graphic output. Click
on one of the following program names to execute the stored process.

Stored Processes Description
&} sample: Cholessercl by Sex and Age Group Creates b plots using ODS.
&) sample: European Demographic Data Dynamically generated map with drilldown capabilities using 0DS.
) sarple: Frequimcy Analysis of Municipalities Usirs ODS 1o generate culput.
& sample: Hello world DATA Step-generated cutput using PUT statemients.
i Sample: Multiple Output Formats Uses ODS 1o generate POF, PostSoript, RTF and other output.
& sample: Server Test Simgle OU5-generated output used 1o Lest server response.
&} sample: shoe sales by Region Creates a drillable bar chart using ODS.
&) sample: Shoe Sales Graphics OO5-generated output with table of contents and pie charts.
&) sample: Stored Process Macro Variables Ilustrates how macro variables are created and used.
& samgle: vear 1o Date Budget 0D5-generated cutput with table of contents, charts and tables.

Figure 8-4. Sample Stored Processes

Sample stored processes are also a good way to test if your software is working. If you
are making a new install of SAS or have applied some major maintenance, then you can
run these sample Stored Processes as a test to make sure that your Stored Process Web
Application and all the associated SAS configuration work correctly.

206

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Reserved Macro Parameters

There are many reserved macro parameters that we can use for the Stored Process Web
Application. Some are used to pass information in, and some are just automatically set
by the Stored Process Web Application and provide useful information for you to use.
All of these start with an underscore, so it is generally best to avoid using underscores
when you write your application in case you clash with a SAS one. If you do use macro
variables starting with underscores, then you need to ensure that they don’t clash with
any existing SAS ones. Some of these variables are available all the time, but others

are only used in conjunction with a specific client such as the Stored Process Web
Application.

Some of these parameters are extremely useful. For instance, if you are debugging
your stored process, you can set “_action=debug” and you will get the SAS log displayed
at the end of your stored process execution. Using “_action=index” will display a
list of all the stored processes that you can select and run them from. And using “_
result=streamfragment” will generate just the HTML code directly produced by your
SAS procedures such as Proc Print, without all the extra front and bottom matter usually
generated by SAS.

Macro Variables Used with %stpbegin

Some of the following macro variables will be populated by the web application and you
can look at the value to use it in your Stored Process (e.g., _metauser). Other values can
be set by you prior to %stpbegin being called, and then the stpbegin macro will make use
of the values you set.

Some of the most useful parameters are described here.

_ACTION

This tells the web application to carry out an action of some kind. It can be one of two
values: Background or Data.

Background runs the Stored Process in the background like a batch job. So you can
fire off your Stored Process, and control is immediately returned to the caller. When you
do this, you just get a message back indicating that it has been submitted (Figure 8-5).

207

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Stored Process /User Folders/phil/My Folder/venn submitted for background processing.

Figure 8-5. This is displayed when a stored process is run in the background

Data displays a summary of the general Stored Process data, not covering
parameters you might submit with a Stored Process. So, you get the kind of data you have
defined when creating your Stored Process as shown in Figure 8-6.

Stored Process venn

Metadata path JUser Folders/phil /My Folder/venn
Source code location Metadata
Source file
SAS server type Stared Process Server
Result type Stream/Package
Created 02 May 2016 19:07:06 BST
Last modified 02 May 2016 20:39:51 BST
Keywords
Description

[Run]

Figure 8-6. Information displayed with _action=data

EXECUTE runs the Stored Process. It’s the default action anyway. You can use
_ACTION=EXECUTE in combination with other _ACTION= values.

PROPERTIES displays the property page, which enables you to set input parameters
and execution options and to execute the Stored Process. This is really useful and flexible
when you want to run an unfamiliar Stored Process since it is built automatically based
on the registered prompt metadata.

BACKGROUND executes the Stored Process in the background. It is useful if your
Stored Process runs for a long time, especially since browsers will usually time out after
about 30 minutes, and if your Stored Process runs longer, then you can lose track of it.
The Stored Process Web Application timeout is set to 30 minutes by default, although
this timeout can be increased.

INDEX displays a page which lists Stored Processes on the left in a tree structure.
This is very useful if you just want to browse all the Stored Processes that are defined and
then select which one you want to run.

208

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

FORM displays a custom input form which is a JSP with the same name as the
Stored Process, if one exists. Additionally, if you specify _form=<path to a JSP custom
input form>, then it will look for a custom input form using the path and name that you
specify. This allows you to have custom input forms for your Stored Process, which is
quite a useful technique. If you don’t specify _form=, then it will look for custom forms in
the input folder under the SASStoredProcess directory.

Combining Values on _ACTION
_ACTION=FORM, EXECUTE

This displays a custom input form if one exists, otherwise executes the Stored
Process. If EXECUTE was not listed and no form was found, then an error would be
generated.

_ACTION=FORM, PROPERTIES, EXECUTE

This displays a custom input form if one exists, and if none is found, then the client
app will look for metadata-defined prompts, and if there are no metadata-defined
prompts, then just execute the Stored Process. If EXECUTE was not listed and no form
was found plus no parameter prompts were defined, a web page with a "Run" button
would be displayed to the client. So using EXECUTE is useful in those situations.

JSPs Used with ACTION=FORM

Form will look for a “form” to display which corresponds to the Stored Process being
called. So if our stored process is called “x’, then it will look for a form called “x.jsp”
Forms are pieces of JavaServer Page (JSP) code. A JSP basically lets you run Java code on
the server, and the resulting output is displayed inside your web browser. That means
that the Java code is executed at runtime when your web page is displayed. So our stored
process called “x” would run “x.jsp” if it found that file. That file could generate some
HTML and display it perhaps to prompt us for some choices. In its simplest form, you
can just take an HTML file and change its suffix to JSP, and you have a JSP file that will
run as one. If you then add bits of Java code to it inside the right tags, then they will be
resolved at runtime. Writing JSP code is beyond the scope of this book, but I wanted to
let you know that it is a useful way to create pages to prompt the user for information and
allows you to execute code that could get data from the server to help create the page
that is displayed.

209

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

The JSPs for the sample Stored Processes are, by default, deployed with the SAS
Stored Process Web Application under the associated directory for each sample:

<SASBIConfigDir>\Config\Levi\Web\WebAppServer\SASServer1l 1\sas webapps\sas.
storedprocess.war\input\Samples

For example, the JSP file for the "Hello World" sample is found here:

<SASBIConfigDir>\Config\Levi\Web\WebAppServer\SASServer1l 1\sas_webapps\sas.
storedprocess.war\input\Samples\stphello

You can read more about this in “Usage Note 38621: Tips for creating a Custom Input
Form for a SAS Stored Process”! and also in “Specifying Custom Input Forms”?

_DEBUG

Debugging flags® have a range of possible values:
o Fields - Shows the input parameters for the Stored Process.
e Dump - Shows output in hexadecimal format.
o Log - Shows the SAS log after the Stored Process runs.

o Trace - Traces the execution of the Stored Process, which is helpful
to understand the stages in the Stored Process execution process. It
will also show you the HTTP headers that the server returns.

e List - This doesn’t run the Stored Process, but instead displays a list
of known Stored Processes.

o Env - Displays the environment parameters for the Stored Process
Web Application.

o Time - Shows the real time taken by the Stored Process at the end.

'Usage Note 38621: Tips for creating a Custom Input Form for a SAS Stored Process - http://
support.sas.com/kb/38/621.HTML

2Specifying Web Application Input - http://support.sas.com/documentation/cdl/en/
stpug/68399/HTML/default/viewer. htm#webinput.htm

SDebugging in the SAS Stored Process Web Application - http://support.sas.com/
documentation/cdl/en/stpug/68399/HTML/default/dbgsrvlt.htm

210

http://support.sas.com/kb/38/621.html
http://support.sas.com/kb/38/621.html
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/viewer.htm#webinput.htm
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/viewer.htm#webinput.htm
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/dbgsrvlt.htm
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/dbgsrvlt.htm

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

You can combine several _debug flags with commas like this: “_debug=log,time”.
A particularly useful combination is _debug=trace,time,log.

You can also use SAS/Intrnet style numbers to specify these flags*. My favorite is
using “_debug=2179" This is a decimal converted from a binary, in which I set bits for
various _debug options I want. I arrive at 2179 by taking Trace (2048) + Log (128) +
Time (2) + Fields (1). Or another way to look at this is that the binary number equivalent
to 2179 is 100010000011. Each bit turns on one of these debug options. The leftmost “1”
bit is Trace, the next “1” bit is Log, and the last two “1” bits are Time and Fields.

_GOPT_DEVICE

This sets the goption device parameter. I usually use sasemf for this, although other
popular choices are Java, activex, and png. One nice thing about using sasemf on UNIX
is that true type fonts are more easily used from it.

_GOPT_HSIZE

This parameter sets the goption hsize parameter. It is useful if you want to specify the
horizontal graph size precisely.

_GOPT_VSIZE

This parameter sets the goption vsize parameter. It is useful for specifying the vertical
graph size.

_GOPT_XPIXELS

This parameter sets the goption xpixels parameter. I usually query my browser to work
out the width,’ allow for any other things taking up space on the screen, and then set

the width appropriately. I need to adjust this when I change destinations though, since
producing a graph for an RTF document is best done by customizing its size for the page.

*Application Dispatcher Debugging - http://support.sas.com/documentation/cdl/en/
dispatch/64895/HTML/default/viewer.htm#debuging.htm

*Use document.documentElement.clientWidth in JavaScript to get the width of window.
Alternatively, use the jQuery $(window).width().

211

http://support.sas.com/documentation/cdl/en/dispatch/64895/HTML/default/viewer.htm#debuging.htm
http://support.sas.com/documentation/cdl/en/dispatch/64895/HTML/default/viewer.htm#debuging.htm

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

_GOPT_YPIXELS

This sets the goption ypixels parameter. In addition to the comments for _GOPT_
XPIXELS, I use this parameter when I have lots of items I want to put on my y axis. I can
make the graph very long and then display them all clearly as the user scrolls the HTML
page down.®

_GOPTIONS

This sets any valid SAS/Graph options, and you can use multiple options if you separate
them with a space - for example, &_goptions=htext=2 hsize=3.

_ODSDEST

This specifies the ODS destination (default is HTML). It can also be one of CSV, CSVALL,
TAGSETS.CSVBYLINE, HTML, HTML5, LATEX, NONE (which produces no ODS
output), PDE, PS, RTE SASREPORT, WML, XML, or any other tagset destination.

_ODSOPTIONS

This specifies options that are added to the end of the ODS statement. One key use of
this is if you want titles and/or footnotes to be included in graphs, since NOGTITLE and
NOGFOOTNOTE are default options. You can override them by specifying GTITLE and/
or GFOOTNOTE in _ODSOPTIONS.

_ODSSTYLE

This sets ODS STYLE= option.

_ODSSTYLESHEET

This sets the ODS STYLESHEET= option.

To get the height of the window, use the JavaScript document.documentElement.clientHeight or
the rather simpler jquery $(window).height().

212

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

_RESULT

This specifies what kind of final result is produced by the Stored Process. It can be one of

the following:

STATUS - Produces no output to client, since the ODS LISTING
destination is closed.

STREAM - Output is streamed to client through the WEBOUT fileref.

STREAMFRAGMENT?Y - Just like stream but kind of a cut-down
version. This is not documented, but I find it really useful for
producing HTML when I want to have more control over my
HTML. What it actually does is set the ODS no_top_matter and
no_bottom_matter options, which means that only the HTML
body is returned.

PACKAGE_TO_ARCHIVE - Package is published to an archive file.

PACKAGE_TO_REQUESTER - Package is returned to the client. The
package can also be published to an archive file in this case.

PACKAGE_TO_WEBDAV - Package is published to a WebDAV server.

PACKAGE_TO_EMAIL - Package published to one or more email
addresses.

PACKAGE_TO_QUEUE - Package published to a message queue.

PACKAGE_TO_SUBSCRIBERS - Package published to a subscriber
channel.

Automatic Macro Variables in Stored Processes Run via
SAS Stored Process Web Application

When you run a Stored Process using the Stored Process Web Application, you will find

that there are a number of macro variables automatically created and populated with

some useful values. Some of these values are set by some clients but not others, so it will

“StreamFragment has been undocumented in SAS up to the time of publishing this book. As with
any undocumented feature, it may disappear or be renamed in a future release of SAS.

213

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

depend on the client you are using as to what macro variables are available. If you want
to use values like this, it is sometimes necessary to check if they exist or what the client is
rather than assuming they will exist.

_METAPERSON

This will show the name from the metadata which is associated with the user who is
running the Stored Process. If there is no name defined, then this will be empty. It can be
quite useful to use this when personalizing your web app so that you can use the user’s
name when asking them questions or for personalizing reports.

_METAUSER

This contains the userid which was used to access the SAS metadata.

_PROGRAM

This is the name of the Stored Process. This can be really useful for building web apps.
You might want to build up a link from the current Stored Process to itself, for instance,
which can be useful if you want to call itself again with some different parameters.

_SRVNAME

This is the host name of the server. This is very useful when you want to write Stored
Processes that can build URLs for links.

_SRVPORT

This is the port number on which this request was received. It is also useful in building
up a URL for links. Usually, you can leave this off URLs since it will default to port 80;
however, if your web application server uses a different port, then you may need to
specify that (e.g., 8080).

_STPERROR

The global error variable is 0 if everything worked properly, otherwise, non-zero. So this
is useful in picking up some kinds of errors.

214

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

_URL

This specifies the URL of the web server middle tier used to access the Stored Process.
This is also useful in building up a URL to use with links.

_USERNAME

This is the username obtained from web client authentication.

How to Use Macro Variables

Your Stored Process could produce a report with a little bit of HTML that gives you some
other options, such as choosing a different product type for your report. The HTML
could show some options along with different links, which have been generated by

your code. These links would be the same as your current Stored Process call, which

has shown this page, except you would want to change the value of the product type.
Therefore, you would want to get the current URL being used and then add or change the
product type parameter for it. You can construct the URL currently being used as follows:

http://& srvname:& srvportd url? program=& program

If you need to dissect it and replace the value for a parameter, then that is quite easily
done. If you just need to add a parameter onto the end of it, then that is even easier to do.

You could use some of the other macro variables from the previous section in ways
like this:

title1l "Good morning & metaperson, userid: & metauser" ;
title2 "Username: & username" ;

proc print data=sashelp.class ;

run ;

%macro check for errors ;

%if & stperror>0 %then %put ERROR: Stored Process Error: &= stperror ;
%mend check for_errors ;
%check for errors

215

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Step-by-Step Guide to Building a Web Application Using
Stored Processes

If you haven'’t built a web application with SAS Stored Processes before, then this chapter

is a good place to get a quick start. It will take you through a series of simple steps

which show how to create a report in Enterprise Guide, make into a Stored Process, run

it in various ways, modify it, and finally build a simple web application using it. These

directions will show how someone with almost no knowledge of SAS could actually

make a web application using Stored Processes. The main features of SAS that make this

possible are the ability to create a Stored Process using wizards in Enterprise Guide and

the Stored Process Web Application which can run your Stored Process in a web browser.
The syntax and each idea used in this example are described fully in other sections of

the book.

Step 1: Query Builder

In a windows environment, start up SAS Enterprise Guide. In Enterprise Guide, start the
Query Builder from the Tasks menu by following the path shown in Figure 8-7.

File Edit View'Tasks Program Tocls Help 2- E;' 5&

_Data » | @4 Filter and Sort...

OLAP » 'L% Query Builder... ;
[?3 Append Table...

Task Templates LA

Figure 8-7. Tasks » Data » Query Builder

Now you can open some data to start building a query. As you can see in Figure 8-8,
I picked a standard sample dataset from our SAS 9.3 installation - sashelp.orsales.

216

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Quesy name: |Query Bulder | Ouputname: [WORKQUERY_FOR_ORSALES | | Change.. |

il Computed Columns | &) Prompt Manager [T2 Preview | 45} Tooks - | [Options -

[E3/Add Tables | X< Delcte g loin Tables | | Select Data | Fter Dota | Sor Data |

= 811 (PR34T Tabie o the Query | Cokm .. SowceC.. 5. Fomat Detais
- Drop a coksmn here to add & 1o the query E

L

X

|

[+]

o

3

<] " >
[C] Selact distinct rows only

[) [woon | [[

Figure 8-8. Query Builder with sashelp.orsales

Now you can add tables, variables, and join tables. In Figure 8-9, I just added them
allin.

Query name: | Guery Buider | Ouputname: [WORKQUERY_FOR_ORSALES | | Change.. |
[Computed Columns &3 Prompt Manager §y Tools » 7] Options ~
[Add Tables X Delete & Join Tables || Select Data | Fter Dt | Sort Dt |
o Bl || [Comm— T SowmeC.. |5, | Foma Detals
Cuuaster @ Year (. 11 Year
Product_Line i Ouate. . 11 Guarter
Product_Category A Produ.. 11 Produ... (@]
Product_Group {)Produ.. 11 Produ...
Quantty {Produ... 11 Produ... X
Profi @ Quanti. 11 Guantty —
Tetal_Retad_Price @ Profe (. 11 Proft 15
G Total_ . 11.Total_... ==
L}
—
2]
< [| [>
|| [Select distinct rows orly
| Run v|| SaveandCose || Cancel || Heb |

Figure 8-9. Selecting data in Query Builder

217

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

You can also filter data, sort data, computed columns, and so on. You can also click
the Preview tool on the toolbar to see the SQL code that was produced (Figure 8-10). So,
if you know how to code in SAS, then you could skip this wizard and just create the code
yourself.

Code Results €% Log

F eg conditional dropds(WORK.QUERY_FOR_ORSALES); A
= PROC SQL;
CREATE TABLE WORK.QUERY_FOR_ORSALES AS
SELECT tl.Year, =
tl.Quarter,

tl.Product_Line,

tl.Product_Category,

tl.Product_Group,

tl.Quantity,

tl.Profit,

tl.Total_Retail Price
FROM SASHELP.ORSALES tl;

QUIT;

Code

Figure 8-10. Preview of SAS code produced by Figure 8-9

Once you have created the code, then you need to click the “Save and Close” button.
Having made the query, we can now convert it into a Stored Process.

Step 2: Convert Query into Stored Process

Right-click the Query Builder and select Create Stored Process as shown in Figure 8-11.

218

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

E SngrowssHow P Run » @ Stop
] Eﬁonsm.es

B ouen buide

Open >

Run Query Builder
Modify Query Builder
Publish...

Add as Code Template —
Create Task Template...

Create Stored Process...

XeEpME HEBav W

Copy
Paste

Delete
Rename

Add to Favorites
Properties

Figure 8-11. Choosing to create a stored process from a query made with Query
Builder

B 4

Now use the wizard to create a Stored Process and give it a name. You can fill in
the other fields although you can leave them to default (see Figure 8-12). The location
defaults to the last one used; I am creating it in My Folder, which is a location set up by
default that only I can use. If I wanted others to use this stored process, then I should

pick a different location accessible by others.

219

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

M
[SASHewsumarsa |
Location:
/28y Foler][oowe]
Eamgie: My Folder 5Py Prac Ora)
(Dwscrption:

Kinpworda e per e | Aoyt |

Responsbites.

foe

[Make 9.2 compattie verson
1] e from user

| More 1)

@ ack [»| [e || Finan | [Comcel]

Figure 8-12. First page of stored process creation wizard

Press Next to see the SAS code of the Stored Process being created (Figure 8-13).

220

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

2of6 SASCode §SaS

/* =--- start of shared macro functions. --- */ ~
/* Conditionally delete set of tables or views, if they exists =
/* If the member does not exist, then no action is performed o

F¥macro _eg conditional dropds /parmbuff; E

%local num;

%local stepneeded;
%local stepstarted;
%local dsname;
%local name;

%let num=1;
/* flags to determine whether a PROC SQL step is needed */
/* or even started yet “f
%let stepneeded=0;
%let atepstarted=0;
tlet d ®g (&=syspbuff, &num, *, ()"} ;
tdo %while (&dsname ne);
%let name = %sysfunc(left (&dsname));
%if %gaysfunc(exist(&name)) %then %do;
%let stepnesdad=l;
%if (&stepstarted eg 0) %then %do;
proc aql;
%let atepstarted=l1;

$end;
drop table &name;
%end;

%if $aysfunc(exist (éname,view)) %then %do;
%let stepneeded=1;
%if (&stepstarted eq 0) %then %do;
proc agl;
%let stepstarted=1;
%end;
drop view &name;
%end;
%let num=%eval (&num+l);
%let dsname=%gscan(&syspbuff, &num,", ()");
%end; I
< »

| Replacewthcodefrom~ | | Inchdecodefor = | | Clearcode |

More (F1)... |

[= [Rew][s | [omea]

Figure 8-13. Second page of wizard showing SAS code produced

Leave code and other settings as they are® and then press Next to see the execution
options, which you can also just let default. It is advisable to choose the type of server
you want the Stored Process to run on. If you stick with Default Server, then it may run on
a workspace server or a Stored Process server. However, if you choose the type of server,

®Include code for has three things you can tick: Stored process macros, global macro variables,
and Libname references. The first two are ticked by default.

221

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

then you will know where it will run and where to find the log for it (see Figure 8-14).
You might need to modify the source code repository field so that you can ensure the SAS
code is stored where you want it to be.

3 of6 Execution Options Ssas

Poplication server:
|SASApp %
Server type:

@) Default server
Select this option to allow the client application to specify the server.

® Stored process server only
Select this option if the stored process uses sessions or if & uses replay for e, to prod hics in ing output).

(o) Workspace server only
Select this option f the stored process must be run under the client identity.

Source code location and execution:
@) Allow execution on other application servers (store source code in metadata)
(O Alow execution on selected application server only

de in metadata

J) Store source c

(® Store source code on application server

Source code repository:

T'“Séedarepostory“‘ V!l Manage...
(%] Source fie:

O] Ovenwrte existngfle.

Resul capabiities: V] Stream [V] Package

More (F1)...

[| [es | [Fuss | [coea |

Figure 8-14. Third page of stored process creation wizard

Hit Next and you see a screen where you can define prompts, which can be used
to prompt the user for values when a Stored Process is run (Figure 8-15). The values
can then be passed through to the Stored Process code as macro variables. We are not
defining any prompts at this stage.

222

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

4 of6 Prompts SSaS
Mﬁwul 1
Diglayed Tz Name Tee

P Gerwndl Standard group | = -
2] 3]
[Swm -]

Deete |

Output Parameters:

Home: Tipe Displayed Teat lIl
[Ex. |
=

Delete |
Ine

| More [F1)...

=) [@ack 7] [bow | [Foish | [Concnl |

Figure 8-15. Screen to define prompts for a Stored Process

Hit Next and you see the page where we can define input and output streams for the

Stored Process (Figure 8-16). Our simple Stored Process won’t need any of these.

223

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

5 of6 DataSources and Targets 5%5
Data Sources frput streass 10 8 slored process)

Flored / Table Paramater Cortient Label Descrpron New.. |
Data Targets foutput streams from 8 stored process)

Floref / Table Paramater Cortient Latd Descrgoon

[
I-—- any

These data sources are siso caled rout streams.

MMore (1)

[@k][Moo |[Fiak

| |_cancel

Figure 8-16. Data sources and targets screen

Finally, hit Next and you will see a summary page showing key information about the

Stored Process you have created (Figure 8-17).

224

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

6 of6

Summary

Name
SASHelpSalesExample

Location
JUser Folders/phil/My Folder/

Description
None

Usage Version
| 20

| IsHidden

i Mo

Keywords
None

EGETTRET

Responsible parties
User
phil

TRole

Owner

SAS code

= gStored proceas registered by

[Run stored process when finished

* Begin EG generated code (do not edit this line);

* Enterprise Guide Stored Frocess Manager V7.1l w

=] B

] Show full SAS code

Figure 8-17. Summary page of wizard

Hit Finish and the Stored Process is created. This Stored Process can then be run,

and it creates a dataset based on the query that we built. However, we want to see that

dataset on the screen, so we will modify the Stored Process to do that.

Step 3: Modify Stored Process

Now we need to right-click the Stored Process and modify it, as shown in Figure 8-18.

ﬁ“ﬁ" [|pr Zaata nuil
% {3 Open pif
B Runtest3 -
[Modify test3
Replace Stored Process Code with Process Flow... E

Figure 8-18. Context menu when right-clicking stored process

We can add a proc print or similar to show the data at the end (see Figure 8-19). Save

it and run it to test.

225

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

$AS Codo SAS Codo
Execution Optons
Libwes ZPROC SQL;
Prompts CREATE TABLE WORK.QUERY _FOR_CREALES A=
Deta Seurces and Tergets SELECT tl.Year,
tl.Quarter,
tl.Product_Line,
tl.Product_Categery,
tl.Product_Group,
tl.Quantity,
tl.Profit,
ti.Total Retail Price
FROM SASHELP.ORSALES tl;
QuIT;
J* =--"End of code for "gQuery Builder”. --- 4/
- proc print ;
run ;|
]
<)
[Focemirconion: | | onmcoior <] | Oomonte | | etcoms |
Moro F1)
&

.|5m-m\n]| Seve || Coed |

Figure 8-19. Adding code after existing code in stored process

Step 4: Access Stored Process Web Application

Now you will need to find how to access your Stored Process Web Application. To open

the Stored Process Web Application at my site, we use this link: http://my-sas-server/
SASStoredProcess/. This will show us the Stored Process Web Application home page

(Figure 8-20).

226

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Log Off Phil Manoc

SAS Stored Process Web Application 5533

Welcome 1o the Version 9 a5 Stored Process Web Application. This application allows you 1o execute 545 Stored Processes from a Web browser.
* Stored Process Samples

The following samples display some of the capabilities of stored procevses. Many of the samples allow you to view the 545 log and see the SAS program uied to generate the HTML or graphic cutput. Click on one of the
following program names 1o execute the stored process.

Stored Procesier Description
&) sampie: Cholesterol by Sex and Age Group Creates box plots wing 005,
&} sample: Eurcpean Demographic Data Dynamically generated map with drildawn capabilities using ODS.
&) saenple: Frequency Anslysis of Muricipalities Uses DS 10 generate cutpet,
A Sample: Hello World DATA Step-genevated output wsing PUT statements.
&} sample: Multiple Output Formats. Uses 005 to generate PDF, PoutSeript, RTF and ather cutput.
&) sampie: server Test Skmple ODS-generated output uwsed to test server response.
) sample: shoe Sales by Reglon Crentes a drillable bar chart uing 05,
&) sample: Shoe Sales Graghics 005 -generated output with table of contents and ple charts,
&) Sarnple: Stored Process Macro Varlables Histrates how macro varlsbles are created and wed,
& sample: Year to Date Budget OlS-gevierated cutput with table of contents, charts snd tables,

o List Avaflable Stored Processes and Reports
» Search for Stored Processes and Reports
» 545 Stored Procemes: Developer's Guide - requires IMermet access

Figure 8-20. Stored Process Web Application home page

Select “List Available Stored Processes and Reports”. Then drill down through tree to
show your Stored Process from the location in the metadata that you saved it, as shown
in Figure 8-21.

Home

| Stored Processes

(1 stored Processes
& Bl Reporting
[Decision Engine
#L Pricing Team
@ Products
= Shared Data
& Monitor
=3 SASTesting
[# errors
(£ liblist
[#) loganalysis
% memlist
£} phil test 3
{#) pmasont
(%) ppmHistory
[# prdsale_sTP
iZ':J- Stored Process for PrdSale
[#) testoo1
[£) Teston2
& Test3
@ waits
@ Sec_rep
®] System
[User Folders

sample2

sample3
SASHelpSalesExample
select

set

set cookie

slanmla svnmsmla

H
w4

™
=

Figure 8-21. List of stored processes provided by SAS Stored Process Web
Application

227

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Click your Stored Process to run it. The results show up on the page, as shown in
Figure 8-22.

5 Stored Processes x
& C } | ® d3511q92/SASStoredProcess/do * | 200 © 0 G
“ Bookmarks [Timesheet Admin Christian Fun Travel Shop SAS » Cther bookmarks
Home Log Off Philip Mason
Stored Processes
£ set = I T % T T ” s =
- @ rklines Obs | Year | Quarter | Product_Line | Product_Category | Product_Group GQuantity Profit Total_Retail Price | |
7! sfraeam 1 1690 | 100001 | Chisdren Children Sports | A-Team, iids 288 | 468015 2000.00
i ?@ stream example 2| 1990 | 100901 | Chidren Children Sports | Bathing Suits, 88| 147005 2580.40
2 Hids
|-[#] stream0 ——1 T T T T T t -
L&) stream0b 3| 1999 | 1999Q1 | Chidren CrigensSgots | Euse. s 588 | eaeses 1878880
= 4 1999 | 169001 | Chidren Children Sperts | Eclipse, Kid's 234 712880 14237.20
-[# stream2 Shees
£ stream3 5| 1000 | 100001 | Chideen Children Sperts Lusky Guy, Kds 303 | T183.00 12000.20
L& streams | I | | ot I a2 |] =
& ¢
| L@ tabs 6| 1999 | 100001 | Children Children Sperts | M.D. Gear. Kids 755 | 19153.05 2425050
! @ test 7 | 1899 | 199901 | Chidren Children Sports Cissons, Kids 200 1675.35 333030
-ﬂ test 8 1900 1000Q1 | Chidren Children Spocts. Orion Kid's 14 288,80 880.40
| L[test hsds = | f Cholex |
| L& teststpserver 9| 1699 | 199901 | Chidren Children Sports Csprey. Kids 454 733470 13219.00
| LE testt 10| 1200 | 100001 | Chidren Chidren Sports | Tracker Kid's 1243 | 2184788 40040.50
i Clothes.
L testiz | | 1 | | |
| L&) testizb 1 1609 | 199901 | Chidren Children Sports | Yosilon, Kids 139 | 202085 5354.70
| test1z 12 | 1000 | 100001 | Clothes & Clothes Ecipse Clathing 2038 | 8408250 170208.10
LE) testz - | | Shoe . . | .
EREr Y test:) | 13 | 1580 | 199901 gbth"-& Clothes Green Tomato 171 | 470885 7848.20
| ek hoes
| tests | | | |
L[&) treemap3 14 | 1900 | 100001 | Ciothes & Clotnes Knitwear 1584 | TeOs1.60 140077.04
£ 3 Sheas
L tsv — | ! ! ! |
L 15 | 1699 | 169901 | Clothes & Clothes LsF 235 | 18678.00 2258550
A upload Sheas
B‘!’ using stpbegin m 16 | 1909 | 109901 | Clothes & Clathes Leisure 12| 1430430 20047.20
|- vars Shows
i @ venn 17 | 1999 | 190001 | Clothes & Cletres Massd 25| am8TeD 718210
L wait o | [. o | | | . |
@ tableEditor z 18 | 1900 | 109001 | Clothes & Clotes Crion 793 | 3208535 7223650
« I » Shoes =

Figure 8-22. Running a stored process shows results on the right of page

Right-click your Stored Process and copy the link address. This link will let us run the
Stored Process from a number of other places. Or you can simply right-click and select
“Open in new tab/window” so that the Stored Process will be opened and run in another
tab/window. The URL will be shown at the top of that window.

Paste the link into the URL box in the browser, and hit Return to run it. You now
have the complete URL that can be used to call your Stored Process from anywhere
(Figure 8-23).

228

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

| S48 Cutpun
* @ M [kw-sas-iisciilocal 5A55iomdProcess do?_aal

T dggs B Gl [Focebwch B BOC Rade D VouTube o Super b [GUE BB ETM gw G Toacks §\um §m smm ol Bas [FRE I PROD [esn [oests G SASEOwhbesd O ETed

Figure 8-23. Result of stored process shown in a separate tab

Step 5: Run Stored Process from Excel

To show how flexible this is, we will run the Stored Process from EXCEL. This assumes
you have the Microsoft Office SAS Add-in installed. Open EXCEL. Select SAS menu item
and then click Reports as shown in Figure 8-24.

N9 o Z0

Home [nsert Page I.aynul Fcnnufas Datu Rem:w View JMP | SAS

[5] Modify t’
* O i |
= RE e Q Do |Gy | 2
SAS Tasks |Reports' Quick SAS Refresh Manage Tools Help
Data >, Start - ' Favorites - Content ~ o
Insert = Selection Tools
Al - (n fal

Figure 8-24. SAS tab in EXCEL

Navigate to your Stored Process and open it.

The Stored Process will run. A little progress bar is displayed while it runs.

When the Stored Process finishes running, then the table that it produces will
be imported into EXCEL. You now have the results of the Stored Process in EXCEL
(Figure 8-25).

Insert Selection Took
Al - Ju| Obs

i 8 c o E F G H 1
1 Obs, Year|Quarter |Product Line Product_Category Product_Group Quantity profit| Total_Retail Price
2 1 1999/1995Q1 |Children (Children Sports A-Team, Kids 286/ 4980.1% 8990.90)
3 2| 1999/199%Ql1 |Children Children Sports Bathing Suits, Kids 98, 1479.95 2560.40
4 3 1999/1999Q1 |Children Children Sports Eclipse, Kid's Clothes 588 9348.95 18768.80
5 4 1999199901 |Children Children Sports Eclipse, Kid's Shoes 133 7136.80 14337.20/
6 5| 1995/1595Q1 | Children (Children Sports Lucky Guy, Kids 303) 7163.00 12956.20)
7 6| 19991599Q1 | Children Children Sports N.D. Gear, Kids 755] 15153.05 34250.50
8 7 1999/1995Q1 |Children (Children Sports Olssons, Kids 209 1975.35 3339.30
9 B 1999/19995Q1 |Children (Children Sports Orion Kid's Clothes 14 288.80 580.40
10 9| 1995(1999Q1 |Children (Children Sports Osprey, Kids 454 T334.70 13215.60,
1eealinae0 |chide T — i Cloti 1 FTPYTY ™ 2004550

Figure 8-25. Excel results

229

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Step 6: Adding Graphs

Now that we can create a Stored Process and run it from various places (more ways
to run it are listed later), we will add a graph to it. Go back to Enterprise Guide

and add a graph to the Stored Process. You can use something like a simple PROC
GCHART (as shown in Listing 8-1), or you could use a wizard in Enterprise Guide to
help you with this.

Listing 8-1. Code in stored process that has been modified to add a graph

PROC SOL;
CREATE TABLE WORK.QUERY FOR_ORSALES AS
SELECT tl.Year,
tl.Quarter,
t1.Product Line,
t1.Product_Category,
t1.Product_Group,
tl.Quantity,
t1.Profit,
ti.Total Retail Price
FROM SASHELP.ORSALES t1;
QUIT;
/* —— End of code for "Query Builder" --- */
proc gchart ;
hbar product category / subgroup=year sumvar=profit ;
run ;
proc print ;
run ;

Once you save your new code, you can run it from the web browser and see the
graph and table produced there (Figure 8-26). When you save your code, remember that
the place you save it to is important, as some locations you save to might accidentally be
modified by you or others in future which will affect your stored process that points to
that location.

230

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Product Category
Assorted sports Aicies [T
crieren spors [N
cone [
o I
Indoor Sports -
ousoss I
Racket Sports [NJIRIN
Running -.Ingglng-
Swim Sporis .
Team Sports
. . . N — . e . . —
0.00 500000000 1000000000 1500000000
Profit in USD (Sum)
‘Year [1999 [2000 [2001 [2002
©Obs | Year | Quarter | Product_Line | Product_Category Product_Group Quantity | Profit | Total_Retail_Price
1 1889 | 196601 | Chicren Children Sports ATeam, Kids 288 | 488015 2690 60
2 1989 | 198601 | Chichen Children Spons Bathing Suits. Kds s 14TRES 2880 40
3 1090 | 100001 | Chicken Children Spanis Eckpse. Kaf's Clothes 528 0343 85 18788 80

Figure 8-26. Output from the code that had a graph added

Step 7: Apply a Parameter

We might like to add a filter to our Stored Process, so let’s go back to EG. We will add

a parameter to let us filter on a variable (e.g., product_line). You can then use a macro
variable for the value of the that variable (e.g., where product_line="“&product_line”;) as
shown in Listing 8-2. This means that by changing the value of the macro variable, we
can apply a different filter.

Listing 8-2. Code for stored process that has a where clause added

PROC SOL;
CREATE TABLE WORK.QUERY FOR_ORSALES AS
SELECT tl.Year,

tl.Quarter,

t1.Product Line,
t1.Product_Category,
t1.Product_Group,
t1.Quantity,

231

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

t1.Profit,
t1.Total Retail Price
FROM SASHELP.ORSALES tl1
where product_line="&product_line" ;
QUIT;
/* —-— End of code for "Query Builder". --- */
proc gchart ;
hbar product category / subgroup=year sumvar=profit ;

run ;
proc print ;
run ;

Now we can add a prompt for this macro variable. The wizard will search our code
for macro variables and allow us to define them as prompts as shown in Figure 8-27. We
can just use the defaults.

3 Promptfiom $45 Codefor b Mhutiple...

Poject prompt copy '

MewGroup. I

Figure 8-27. Prompt created for stored process to pass a value for macro variable
to where clause

Run the Stored Process again. You will be prompted for a value, so enter one
(Figure 8-28). Make sure your value matches one of the values from the data; otherwise,
you won't find anything. Then click Run to execute the Stored Process using the value
you entered.

General
product_line
[Chlldreﬂ

Run |

Figure 8-28. Specifying a value to be passed to program as macro variable
value

232

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION
You now see the Stored Process with your parameter applied (Figure 8-29).

Product Category

Children Sports

' o o I [
0.00 500000.00 1000000.00 1500000.00 2000000.00 2500000.00

Profit in USD (Sum)

Year [} 1999 [l 2000 [2001 [2002

Figure 8-29. Resulting graph when we pass in a value that is used in where clause

If you want to use a URL to pass your parameter to your Stored Process, you can do
so by making use of one of the key features of the Stored Process Web Application. Any
parameter/value pairs like ¶meter=value will be passed into the SAS code as macro
variables. They don’t even have to be predefined in the SAS code. So that means that I
can call our Stored Process using the following URL to pass the value in, and then I can
see that the results are shown correctly in the graph shown next (Figure 8-30). This is the
URL that was used:

http://d351tq92/SASStoredProcess/do?_program=%2FShared+Data%2FSASTesting%2F
Test3&product_line=Sports

233

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Product Category

e e S R S
[17] 50000000 100000000 150000000 200000000 2500000.00
Profit in USD (Sum)

Year [1999 [2000 [2001 [2002

Obs Year Quarter Product Line Product Category Product Group Quantity

%
}j_] 1999 199901 Chidven Chidren Sports ATeam, Kids 286

Figure 8-30. Result of passing in a parameter value via a URL

A Note About Authentication

Sometimes you might find that you get an unexpected error message that says that
your application server has timed out (Figure 8-31). This will happen if you stop using
the Stored Process Web Application for a while, so that your authentication times out.
You will just need to re-authenticate to SAS, and then it should be OK again. This can
usually be done just by running your stored process again via the Stored Process Web
Application, and it should prompt you to authenticate and then it should work.

a Parameter Error

mmm=ES The Application Server has timed out.
The prompt parameter values must be reentered.

Figure 8-31. Error message when authentication in browser has timed out

Creating an HTML Menu for Our Stored Process

We can make a simple HTML file which allows us to select the report we want to run
from a menu. So, the following code simply calls our Stored Process and passes a
different value for product_line each time:

234

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

<HTML> <body>

<h1>Pick a report to run</hi1>

<a href="http://my.server/SASStoredProcess/do?
_program=%2FShared+Data%2FSASTesting%2FTest3
&product_line=Children"> Children<p>

<a href="http://my.server/SASStoredProcess/do?
_program=%2FShared+Data%2FSASTesting%2FTest3

&product line=Clothes+%26+Shoes">Clothes & Shoes<p>
<a href="http://my.server/SASStoredProcess/do?
_program=%2FShared+Data%2FSASTesting%2FTest3
&product_line=Outdoors">Outdoors<p>

<a href="http://my.server/SASStoredProcess/do? program=%2FShared+Data%2FSAS
Testing%2FTest3

&product_line=Sports">Sports<p>

</body> </HTML>

This displays the menu shown in Figure 8-32.

2 CH file:///C:/Users/pmason,/Desktop/testhtml
% Apps [Gmail [Facebook M BBC Radic KB YouTube 4 SuperHul

Pick a report to run
Children

Clothes & Shoes

Qutdoors

Spots

Figure 8-32. Menu displayed by the previous HTML code

Selecting a value (e.g., Sports) runs the Stored Process with the appropriate
parameter to display the required report. So, you can see in Figure 8-33 that I now have a
graph and table reflecting my selection of “Sports” You can also see this reflected in the
URL which shows &product_line=Sports:

/SASStoredProcess/do? program=%2FShared+Data%2FSASTesting%2FTest3&produ
ct_line=Sports

235

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

ehvv-sas-s.chsilocal 2 e 2 2 %
| [Focobock WM BEC Rache D VeuTube o SuperribGul D 0T G Sppont G Tmckn G whdems G 5TF G Communtion o Lo o baf (PRE L PROD U emen watn G L85 B Derbears

Product Category

Year [1999 [2000 [H 2001 [2002

g Sports Assoned Sports Abcies Assorted Spods arcies 4220 14681120
2 1999 19991 Spots Assored Sports Acles Darts 1108 2022420
03 1990 199901 Spors Assorted Sports Aices Petangue - Boue e 899185 1622530

Figure 8-33. Result in browser from passing in a parameter value via URL to web
application

Step 8: Use HTML Forms to Run Stored Processes

With a little basic HTML knowledge, we can modify the HTML to make a better menu.
This introduces another useful technique of using HTML forms to run Stored Processes.
The key points in using this technique are

The form tag has two elements:

e Action element which defines the start of the URL to use when calling
your Stored Process

¢ Method element

The form uses other tags which are form elements defining what will be on the form.
These include Input and Select tags.

Input tags define name/value pairs which will be passed to the Stored Process as
parameters. Some of these tags simply define a field where the user can type in a value,
but others such as Hidden and Submit have special characteristics.

236

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Input tags with a type of Hidden won’t be displayed on the form but will be passed
to the Stored Process as a parameter. In the following example, we are passing the name
of the Stored Process with its parameter _program. You must always have this pointing to
your Stored Process when using this technique.

Input tags with a type of Submit will display a Submit button which can be pressed
to run the Stored Process and pass any values from the form to it.

Select tags will create a drop-down box of options. This allows the user to choose an
option and then the selected value will be passed to the Stored Process. The value from
the “value=" attribute is passed from the form to the Stored Process we are calling. The
text between the tags (e.g., “Clothes & Shoes”) is what is displayed in the drop-down box,
as shown in Listing 8-3.

Listing 8-3. HTML code to produce a drop-down menu of choices to pass as a
parameter

<html>

<body>

<h1>Pick a report to run</h1>

<form method="get" action="http://khv-sas-iis.cfsi.local/SASStoredProcess/
do?'>

<input type="hidden" name="_program" value="/Shared Data/SASTesting/Test3">
<select name="product_line">

<option value="Children">Children</option>

<option value="Clothes+&+Shoes">Clothes & Shoes</option>

<option value="Outdoors">Outdoors</option>

<option value="Sports">Sports</option>

</select>

<input type="submit" value="Run">

</form>

</body>

</html>

Our menu in Figure 8-34 now has a drop-down menu of choices. You select one and
click Run which then adds your selection onto the URL as a parameter.

237

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

2 C fH file:///C:/Users/pmason/Desktop/test2.html
i Apps [Gmail [Facebook om BBCRadic KB YouTube 4 SuperHu

Pick a report to run

Children ¥ | | Run

—

Clothes & Shoes
QOutdoors

I Sports
Figure 8-34. Web browser menu displayed using HTML from Listing 8-3

To automate this application a little more, we can automatically generate the drop-
down list of options. Create a new Stored Process which will create our HTML menu
for us. This can be done by using a Stored Process that will write the HTML directly
into the web browser. To do this, you need to write to a fileref called webout which
is predefined for the Stored Process to use. You also need to turn off the automatically
generated Stored Process macros by using the Include Code For button. These macros
usually allocate the _webout fileref for their own use, which means that we can’t use it
from a data step.

The program in Listing 8-4 first runs some SQL code which gets the different values
of product_line and puts them into option tags, then concatenates them together, and
puts the result into a macro variable called options.

You have to be careful as you can run up against the 32K limit for a macro variable
when creating macro variables like this. If you reach the limit, then the value will be
truncated. You can get around this problem by using PROC STREAM and generating
values with a macro program which will write directly into the stream and has no
practical limits.

The program then runs a data step which basically just gets lines from the cards4
area and writes them out to the webout file ref. After reading a line in, we then run it
through a resolve() function, which is very important. The resolve() function will resolve
any macro language in the line that was read, which means that our options’ macro
variable is resolved and the option lines that were made by our PROC SQL are inserted.

The SAS code for the stored process is as shown in Listing 8-4.

238

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Listing 8-4. SAS code for the stored processes

proc sql ;
select distinct '<option value="' || strip(product line) || "">'
|| strip(product line) || '</option>’
into :options separated by ' '
from sashelp.orsales ;
quit ;
data null ;
file webout ;
input ;
line=resolve(_infile) ;
put line ;
cards4 ;
<html>
<body>
<h1>Pick a report to run</hi1>
<form method="get" action="http://d351tq92/SASStoredProcess/do?"
target="content">
<input type="hidden" name="_program" value="/User Folders/phil/My Folder/
test™>
<select name="product_line">
&options
</select>
<input type="submit" value="Run">
</form>
</body>
</html>
3555
run ;
This generates the same web page that we made before, but now it is data driven and
flexible. So, if we added another product_line to our data, then we would get another
option in our drop-down list as shown in Figure 8-35.

239

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Pick a report to run

Qutdoors v | | Run
Children

Clothes & Shoes
Qutdoors

| Sports

Figure 8-35. Menu shown in web browser

We can further improve this by combining the menu and output onto a single page.
To do this, we add an IFRAME to our web page, specifying the size so it doesn’t default to
something too small. Then we must add TARGET= to the FORM tag, specifying a name
which matches the one for the IFRAME (see Listing 8-5). This means the URL for our
Stored Process will be opened in the IFRAME.

Listing 8-5. Improving the SAS program that generates the HTML

proc sql ;
select distinct '<option value=""||strip(product line)||"'">"|]|
strip(product_line)||'</option>"
into :options separated by ' '

from sashelp.orsales ;
quit ;
data null_;
file webout ;
input ;
line=resolve(_infile) ;
put line ;
cards4 ;
<html>
<body>
<h1>Pick a report to run</hi1>
<form method="get" action="http://d351tq92/SASStoredProcess/do?"
target="content">
<input type="hidden" name="_program" value="/User Folders/phil/My Folder/
test™>

240

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

<select name="product_line">
&options
</select>
<input type="submit" value="Run">
</form>
<iframe name="content" height="100%" width="100%">
</iframe>
</body>
</html>
3555
run ;
Now we have a simple web application that takes some input and updates the page
with output based on that (Figure 8-36).

Pick a report to run

Clathes & Shoes «| | Run |

Product Category

W r) T T | T
2000000.00 400000000 6000000.00 B000000.00 1000000000
Profit in USD (Sum)

Figure 8-36. Web browser displays graphs after making selection and clicking the
Run button

We can use _ODSDEST to produce output in various formats, rather than the default
HTML format. We could add a drop-down for _ODSDEST to our web page. You can use
the HTML select tag to make this as shown in Figure 8-37. Then, we could run it and
select RTE for example (see Listing 8-6). That would call the Stored Process passing
_ODSDEST=RTF to it.

241

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION
Listing 8-6. HTML to create a drop-down menu to select an ODS destination

<select name="_odsdest">

<option value="html">html</option>
<option value="pdf">pdf</option>
<option value="csv">csv</option>
<option value="rtf">rtf</option>
</select>

Pick a report to run

Children v (nf v||Run |

Figure 8-37. Browser now shows the ODS destination drop-down menu

This makes an RTF file for us which we can open in Microsoft Word (Figure 8-38).

' o (1) [Compstitiity Mode] - Microscft Word Tablle Tools
~ Mome Inset Papelayout References Malings Review | View | Desgn Layout

= | | Ruler Document Map | lonerage 1 11 View Sidte by Side —
[@l (=] (=] Q ¢ = : =

"ij Griglines Thumbnaits == L1 two Pages — L : 1} Symenron n L= 4

Frint [Full Screen Web Outline Draft Zoom 100% New Amange Spiit 5 2
|Layout| Reaging Layout Message Bar < Page Wigth | window ANl =12 Reset Wingew Pesition | wandows =

Droqument Views ShowsHide Zoom Window Macros

Posduct Cangory [¥u] oo i
e Gmmetprn [AcToam B R

e i e] W e BT

| T e [e T A W

| T | e T T |

T e e) L ks

e T T | et o T i LS T
B | | e B = T

T Tt | et D e

L e Tapery Kl o TN L

o] 1o | cadaee EoD Eo e CoEn

T T | e St | T X E D]

i AN —— b s e Bl Bk

ot G0 O e e e e W = i

Vear [0 9 0 o e [e T T | e L L e L ToLE|

e el e EECD EE

e e e e EED A

Figure 8-38. Choosing RTF from the drop-down and pressing Run button
generates report seen here in Microsoft Word

Remember that this is a simple example where we are not handling headers in an
ideal way.

We can enhance our web app again using _ODSSTYLE to choose different ODS styles
which control colors, fonts, and so on. So, we can add a drop-down with a select tag for
_ODSSTYLE as shown in Listing 8-7.

242

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Listing 8-7. HTML to create drop-down menu for choosing an ODS style

<select name="_odsstyle">

<option value="meadow">meadow</option>

<option value="seaside">seaside</option>

<option value="statistical">statistical</option>

</select>

Then if we select seaside and run it, then it will produce output using that style. This
is because it will have passed _ODSSTYLE=SEASIDE to the Stored Process. Running it
and selecting statistical will produce output using that style (Figure 8-39).

Product Categary

Cribdren Sports

L1 500000 00 1D0GO0D 00 15320000 00 TOX0000 00 250062000
Pro#t in USO (Sum)

Year [1999 [2000 [2001 @ 2002

Figure 8-39. Output using ODSSTYLE=SEASIDE

We can further enhance our web app by using the _debug parameter to get various
debug information. So we add check boxes for each debug option, since there are several
that can be specified concurrently, such as log and time, as shown in Listing 8-8 and
Figure 8-40.

Listing 8-8. HTML to add two check boxes

<input type="checkbox" name="_debug" value="log">Show log<nbsp>
<input type="checkbox" name="_debug" value="time">Show time taken

243

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Pick a report to run

Children v| |html *| meadow *| ¥ Show log
¢ Show time taken
Run

Figure 8-40. Check boxes being displayed for choosing to show log and time taken

Now if we select the check boxes, it will pass parameters for those selected, for
example, & debug=log&_debug=time. This will let us see the log (Figure 8-41) and time
it took for the Stored Process to run (Figure 8-42).

(173 2002 200204 Chilgren Chilgren Sponts Crion Kigs Clothes 35| 4720 1303.20
ili‘-l 2002 200204 Chilgren Chilgren Spons Cspray, Kigs 1170 1850125 3356236
i 175 2002 200204 Children Chilsren Spans Tracker Kid's Clothes 3124 5529263 104167.78
il'ﬂi 2002 200204 Children Chilgren Sponts Ypsilon. Kids 31 #5405 1245210

SAS Log
NOTE: Copyright (c) 2002-2010 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software 9.3 (TS1M1)

Figure 8-41. Log is displayed after the results in the web browser

259 =+
NOTE: %INCLUDE (level 1) ending.

This request took 3.16 seconds of real time.

Figure 8-42. Time taken appears after the results and log in web browser

It’s interesting to look at the URL that has been generated by our web app to run this.
Itis

http://my-sas-server/SASStoredProcess/do?_program=%2FShared+Data%2FSAS
Testing%2FTest38&product line=Children& ODSDEST=HTML& ODSSTYLE=meadow&
debug=log& debug=time

You can break this URL up into sections to understand what the HTML has
generated:

http://your-server/SASStoredProcess/do?
_program=%2FShared+Data%2FSASTesting%2FTest3

244

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

&product line=Children
&_ODSDEST=HTML
&_ODSSTYLE=meadow
&_Debug=1og
&_debug=time

An interesting thing we can see from the log of the Stored Process is that there are
various macro variables which could be used to reconstruct the URL of the Stored
Process call, such as _program, _srvname, _srvport, and _url (see Figure 8-43). These
macro variables are generated when calling a stored process using the Stored Process
Web Application. You won'’t see them if you just run a stored process in Enterprise Guide
though.

Data/SASTesting/Test3
sessionid=BD5654D4-0493

Figure 8-43. Automatic macro variables we can see in the log in web browser

Using these automatically generated macro variables, we can change the hard-coded
URL in the Stored Process to use them. This will mean that if the Stored Process name
changes or the Stored Process is moved to another place in the metadata, then it will still
work as expected. So

http://your-server/SASStoredProcess/do?
would become
http://& srvname.:& srvport/& url.?

We should always do this when possible as it is best practice. The reason is that we
can then move the Stored Process to other places, and it will still work. Or other things
could potentially change such as the name of our server, and the code would still work as
it is without need for modification (see Listing 8-9).

245

http://khv-sas-iis.cfsi.local/SASStoredProcess/do?

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Listing 8-9. Rewriting the action to use macro variables

<form method="get" action="http://& srvname:& srvport/& url?"
target="content">

When the Stored Process runs, the resolve function will resolve these macro
variables. So, looking at the HTML code that the Stored Process has generated, we can
see how it has substituted the right values to create the HTML.

Another very useful parameter which we can pass to the Stored Process Web
Application is _RESULT. It can be used to determine how complex your HTML generated
will be. For instance, using _RESULT=stream (which is the default) for our current
example, we would generate 3998 lines of HTML, including almost 2000 lines of CSS
code. This is quite a lot for a quite simple report. Using . RESULT=STREAMFRAGMENT
would generate 1989 lines of HTML, with no CSS code - and the lines are shorter as they
don’t use the CSS. Also, no <body> and <head> tags are generated which makes it easier
to insert generated HTML into an existing HTML page. The downside is that your results
won’t look as good since you no longer have CSS to make it look nice.

Uploading Files with a Stored Process

You can use the SAS Stored Process Web Application to upload files for use with a Stored
Process. This is done by using a custom input form which specifies a field on an HTML
form with a type of file. For instance, the following HTML would achieve this:

<input name='order_ file' type='file'>

You would be prompted to enter or browse for the file you want to upload, and when
the form is submitted, then the file would be uploaded to the server that your Stored
Process is running on. You also get a collection of macro variables populated, so that in
your Stored Process code, you will be able to know where the file has been put in order
for you to use it.

The file is put into a temporary location when uploaded, and it is only available for
the life of the Stored Process. So, if you want to keep it permanently, then you need to
copy it to a permanent location from your Stored Process. Although, you might want
to process it in some way and then save the processed information. For example, you
might upload a CSV file, read it into SAS to produce a SAS table, and then save that table
permanently.

246

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

You can upload any number of files at one time; you just need an input field for
each of the files to be uploaded. You get useful macro variables that give you all the
information you need to handle many files. The reserved SAS macro variables that are
associated with uploading files all start with _WEBIN_. For instance, _webin_file_count
tells you how many files were uploaded.

The macro variables involved in the upload process are as follows:

_WEBIN_CONTENT_LENGTH specifies the length, in bytes, of the
file that was uploaded.

_WEBIN_CONTENT_TYPE specifies the content type that is
associated with the file.

_WEBIN_FILE_COUNT specifies the number of files that were
uploaded. If no files were uploaded, then the value of this variable
is set to zero.

_WEBIN_FILEEXT specifies the extension of the file that was
uploaded.

_WEBIN_FILENAME specifies the original location of the file.

_WEBIN_FILEREEF specifies the SAS fileref that is automatically
assigned to the uploaded file. You can use this fileref to access
the file. The uploaded file is stored in a temporary location on the
Stored Process server or workspace server and is deleted when
the request is completed. Be sure to copy the file to a permanent
location if you need to access it at a later date.

_WEBIN_NAME specifies the value that is specified in the NAME
attribute of the INPUT tag.

_WEBIN_SASNAME specifies a unique name for the SAS table,
view, or catalog that was uploaded. A value is set for this macro
variable only if a SAS table, view, or catalog was uploaded. All SAS
data types are stored in the Work library. The type of SAS file that
was uploaded is stored in the _"WEBIN_SASTYPE macro variable.
See also _WEBIN_SASNAME_ORI.

247

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

_WEBIN_SASNAME_ORI specifies the original name of the SAS
table, view, or catalog that was uploaded. If a SAS table named
mydata.sas7bdat was uploaded, then WEBIN_SASNAME_ORI
contains the value mydata. A value is set for this macro variable
only if a SAS table, view, or catalog was uploaded. All SAS data
types are stored in the Work library. The type of SAS file that was
uploaded is stored in the _"WEBIN_SASTYPE macro variable. See
also _WEBIN_SASNAME.

_WEBIN_SASTYPE specifies the type of SAS file that was
uploaded: DATA for SAS tables, VIEW for SAS views, and
CATALOG for SAS catalogs. A value is set for this macro variable
only if a SAS table, view, or catalog was uploaded. The name of the
uploaded file is stored in the _WEBIN_SASNAME macro variable.

_WEBIN_STREAM specifies the name of the data source that was
used to upload the file.

_WEBIN_STREAM_COUNT specifies the number of files that were
uploaded. If no files were uploaded, then the value of this variable
is set to zero.

If you are uploading more than one file, then unique macro variables are created for
each file. This applies to all of the previous reserved macro variables, except _'WEBIN_
FILE_COUNT and _WEBIN_STREAM_COUNT.

Note For z/0S, the SAS server must be invoked with the FILESYSTEM=HFS
option in order to be able to upload SAS file types.

One last thing is that when uploading a file, you need to specify
enctype=“multipart/form-data” on the FORM tag, for example:

<form action="http://your.server.name:8080/SASStoredProcess/do"
method="post" enctype="multipart/form-data">

248

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Example: Uploading Three Files

The following code prompts for three files to upload and then calls the Stored Process
upload which takes care of uploading those files. If you are going to try any of this HTML
code out, it is best to have a good text editor to do it such as Notepad++, which is one of
the best free editors there is. It will highlight the syntax you use and has powerful find/
replace features and many other things.

<HTML>

<form method="post" action="http://d351tq92/SASStoredProcess/do?"
enctype="multipart/form-data">

® <input type="hidden" name="_program" value="/User Folders/phil/My
Folder/upload">

Enter CSV to upload and import <input name="file1" type="file"><p>
Enter CSV to upload and import <input name="file2" type="file"><p>
Enter CSV to upload and import <input name="file3" type="file"><p>
Show this many rows <input name="obs" type="text" value="10"><p>
Debug options <input name='_debug' type='text'><p>

<input type="submit" value="Run">

</form>

</HTML>

This displays the following web page (Figure 8-44).

Enter CSV to upload and import | Cheose file | N file chosen
Enter CSV to upload and import Cheese file | Ne file ehasen
Enter CSV to upload and import | Cheese file | N file chosen
Show this many rows 10

Debug options

R |

Figure 8-44. Web browser displays menu produced by HTML

On entering some files to upload, the Stored Process (code as follows) is called. First,
this shows the values of the parameters passed in to do with the upload. These all start
with _WEBIN. The Stored Process takes care of uploading the CSV files, imports them,
and shows the first ten rows of each one. You can call it anything you like, but you must
point to the stored process where you specify the value of _program in the HTML (shown

249

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

in the previous code marked by @). The SAS code for the stored process is shown as
follows. And the other settings in the stored process can be defaults.

* display values of the webin macro variables passed in ;
proc sql ;

select * from dictionary.macros

where name like ' WEBIN %' ;
quit ;

filename temp temp ;
%macro read loop ;
%if & webin file count=1 %then %do ;
%let webin fileref1=& webin fileref ;
%let webin filename1=& webin filename ;
%end ;
%do i=1 %to & webin file count ;
%let csv_file=%sysfunc(pathname(&&% webin fileref&i));
%put &=csv_file ;
* fix the end of line character for Proc Import ;
data null ;
infile "&csv_file" sharebuffers termstr=cr ;
file temp termstr=crlf ;
input ;
line=compress(_infile ,'1a'x) ;
put line ;
run ;
filename in "&csv_file" ;
proc import datafile=temp
dbms=csv
replace
out=Ffile&i ;
getnames=yes ;
run ;
%let dsid=%sysfunc(open(file&i)) ;
title "%sysfunc(attrn(8dsid,nobs),commai2.) rows imported from CSV
file: && webin filename&i" ;

250

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

%let dsid=%sysfunc(close(8dsid)) ;
title2 "Table produced: file&i" ;
proc print data=file&i(obs=&obs) ;
run ;
%end ;

%mend read loop ;

%read_loop

Figures 8-45 and 8-46 show what is displayed after uploading some files.

Offset into Macro

Macro Scope | Macro Variable Name Varlable | Macro Variable Value
GLOBAL | _WEBIN_GONTENT LENGTH | 0 170351

GLOBAL _WEBIN_CONTENT_LENGTHD 03

GLOBAL | _WESIN_CONTENT_LENGTH o 170381

GLOBAL _WEBIN_CONTENT_LENGTHZ 0 40419

GLOBAL | _WEBIN_CONTENT_LENGTH3 0 549

GLOBAL _WEBIN_CONTENT_LENGTH_COUNT 03

GLOBAL | _\WESIN_CONTENT_TYPE 0 texvesy

GLOBAL _WEBIN_CONTENT_TYPEQ 03

GLOBAL | _WEBIN_CONTENT_TYPE! 0 texvesy

GLOBAL _WEBIN_CONTENT_TYPEZ 0 texticsy

GLOBAL | _WEBIN_CONTENT_TYPES 0 texvesy

GLOBAL _WEBIN_CONTENT_TYPE_COUNT 03

GLOBAL | _WEBIN_FILEEXT o e

GLOBAL _WEBIN_FILEEXTO 03

GLOBAL | _WEBIN_FILEEXT! 0 e

GLOBAL _WEBIN_FILEEXT2 0 csv

GLOBAL | _WEBIN_FILEEXTS 0 e

GLOBAL _WEBIN_FILENAME 0 | API_SPPOPTOTL DSZ_en_csv_vi.csv
GLOBAL | _WEBIN_FILENAVED 03

GLOBAL _WEBIN_FILENAME1 0 | API_SPPOPTOTL DSZ_en_csv_vi.cov
GLOBAL | _WEBIN_FILENAVEZ 0 Wewadaia_Country API_SPPORTOTL DS2Z_cn_csy_v2.csv
GLOBAL _WEBIN_FILENAME3 0 Metadata_indicator API_SPPORTOTL_DSZ_en_csv_vZ.csv
GLOBAL | _WESIN_FILENAVE_COUNT 03

GLOBAL _WEBIN_FILEREF 0 #LNO1070

GLOBAL | _WEBIN_FILEREFO 03

GLOBAL _WEBIN_FILEREF1 0 #LNO1070

GLOBAL | _WEBIN_FILEREF2 0 #LNO1072

GLOBAL _WEBIN_FILEREF2 0 #LNO1074

GLOBAL | _WEBIN_FILE_COUNT 03

GLOBAL _WEBIN_NAME 0 fiet

GLOBAL | _WESIN_NAMED 03

GLOBAL _WWEBIN_NAMEY 0 | fiat

GLOBAL | _WEBIN_NAMEZ o | fiez

GLOBAL _WEBIN_NAMEZ 0 te3

GLOBAL | WEBIN_NAME_COUNT 03

GLOBAL _WEBIN_STREAM 0 _int

GLOBAL | _WEBIN_STREAM) 03

GLOBAL _WEBIN_STREAM1 0 _int

GLOBAL | _WEBIN_STREAM2 o iz

GLOBAL _WEBIN_STREAM3 0 _in3

GLOBAL | _WEBIN_STREAM_COUNT o3

Figure 8-45. Macro variables and values related to file upload
251

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

528 rows imported from CSV file: Metadata_Country_API_SP.POP.TOTL_DS2_en_csv_v2.csv
Table produced: file1

Obs | Country_Code | Region | IncomeGroup | SpeciaiNotes | vabloName |vars |
=+ b iidh iR ey
[! ABW Latn High intome SNA data for 2000-2011 are updated from official govemment statisbes: 1954-1999 from UN databases. Base yoar has changed from 1995 10 2000. | Aruba

Cortoaen
=
4 WG Soutn Asa Low income Fistal yoar end: March 20 se0orting £onoc fof natonal a0C0unts Ca1D is CaloNTar yoar, e5IMATRS 10 INSUNt CONBISIENCy DOWOEN NA%onal acccunts Afghansian
and fiscal data. National accoun HmammmadNwﬂumedMMhW;U%mOmmﬂmmuuMhummofM
oM economy.
5
=l s
Adrca
T
8 AB Eurcped | Lpper mecie Abana

Cantral Asin | income

| w'mu Eurcpe & Hghincome | WE-3 code changed from ADO 1o AND 1o align with 1SC coce. Andoma
Ceniral Asia

538 rows imported from CSV file: API_SP.POP.TOTL_DS2_en_csv_v2.csv
Table produced: file2

Obs | Data_Source | Warid_Developmont_indicators | VAR3 VARY | vars | vars |var? |vars | vaRe | vAR10 |vaRtt | vaARt2 | vAR1S | VAR1E | VAR1S |VAR1S | VARIZ | VAR1E | VAR
. MART:)
2
3
4 LastUpdated | 2017-10-30
Date

B | Country | Country Coge [ingicater | Insieater |1s60 | 1961 1962 | 1963 | 1964 | 1985 1966 | 1967 | <968 | 1969 | 1970 | 1971 197z | 1973 | 1974
Hame HName Cede
9
10| Arvba ABW Populaton, SPPORTOTL | 84211 | 55436 | 56226 | 6605 | 57032 | 57360 | STT15 | 56065 | 55386 | 68726 | SO063 5440 60840 | 60243 | 60528
total

4 rows imported from CSV file: Metadata_Indicater_API_SP.POP.TOTL_DS2_en_csv_vZ.csv
Table produced: file3

| Obs | INDICATOR_CODE | INDICATOR_NAME | SOURCE_NOTE | SOURCE_ORGANIZATION [vas |
1
2 SPPOPTOTL Populaton, total Total poputation s based on the de facto cefinition of pogulation, (1) United Nations Populaton Devison. Workd Population Prospects. [2) Census reports and other
which counts a1 residients regardiess of legal siabus o cizenship. | stabiabeal pubbzabons from natonal uamlms.ia}w Demograghve Stabsbes, [4)
mmmnmwemm’. United Natons Statatcal Dnasion.

Figure 8-46. Listings of data to browser from SAS code in stored process

Passing Multiple Parameters of the Same Name

Often when you are making selections from a list of values in HTML, you will have the
option choosing multiple values. As we know, parameters are passed on to the URL as
name/value pairs. In the following Stored Process shown in Listing 8-10, we have a select
list called “pick” and have specified that the user can make multiple selections.

252

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Listing 8-10. SAS code to create HTML menu

%macro logic ;
%if %symexist(pick) %then %do ;
%put _global ;
%end ;
%else %do ;
data null ;
set menu ;
file webout ;
put line ;
run ;
%end ;
%mend logic ;
data menu ;
input ;
line=_infile_;
datalines ;
<html>
<form action="http://d351tq92/SASStoredProcess/do?">
<input name="_program" value="/User Folders/phil/My Folder/test13"
type="hidden">
<select name="pick" multiple>
<option value="A">A</option>
<option value="B">B</option>
<option value="C">C</option>
</select>
<input type="submit">
</form>
</html>
55
run ;
%logic

When this is run, we can make multiple selections and then press Submit
(Figure 8-47).

253

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Submit

Figure 8-47. HTML menu displayed in web browser allowing multiple
selections

Looking at the URL in Figure 8-48, you can see how it was constructed and the two
selections that were passed from the form to the Stored Process.

(D d351tq92/SASStoredProcess/do?_program=%2FUser+Folders%2Fphil%2FMy+Folder%2Ftest 1 3&pick=A&pick=C
Figure 8-48. URL generated when Submit button is pressed in web browser

After this has run, we can look at the SAS log to see the macro variables defined.
We see that our selection resulted in creating five macro variables:

&pick is the first value that was selected.

&pick0 shows how many selections were made.

&pickl shows the first value selected.

&pick2 shows the second value selected.

&pick_count also shows how many selections were made.

<> SAS Macro Variables:
PICK=A
PICKO=2
PICK1=A

PICK2=C
PICK_COUNT=2

Figure 8-49. Macro variables available to stored process code

It’s easy to make a macro to construct a macro variable for use with an IN operator,
for instance, you could simply assign a macro variable like this:

%let picks="a","b" ;

The following code shows an example where we use the SAS macro variables that
are created when passing multiple values in with a form to a Stored Process. We can use
a macro program to automatically create a list of quoted values separated by commas
which can then be used in a where clause:

254

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

data sample ;
input key $ 1 ;
cards ;

m O N @ >

35
run ;
%let picko=2;
%let pick1=A;
%let pick2=C;
%let pick_count=2;
%macro make where clause(var) ;
%do i=1 %to &pick count ;
"&&pick&i”
%if &i ne &pick_count %then , ;
%end ;

%mend make where clause ;

proc print ;
where key in (%make where clause(pick)) ;
run ;

The SAS log for this shows the where clause that was created and used:

161 options nosymbolgen nomlogic nomprint ;
162 data sample ;

163 input key $ 1 ;

164 cards ;

NOTE: The data set WORK.SAMPLE has 5 observations and 1 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds

cpu time 0.01 seconds

255

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

170 ;;
171 run ;
172

173 Z%let picko=2;

174 %let picki=A;

175 Z%let pick2=C;

176 %let pick count=2;

177 %macro make where clause(var) ;
178 %do i=1 %to &pick_count ;

179 "&&pick&i"

180 %if &i ne &pick_count %then , ;
181 %end ;

182 7%mend make where clause ;

183

184 proc print ;

NOTE: Writing HTML Body file: sasHTML1.htm

185 where key in (%make_where_clause(pick)) ;
186 run ;

NOTE: There were 2 observations read from the data set WORK.SAMPLE.
WHERE key in ('A', 'C');

NOTE: PROCEDURE PRINT used (Total process time):
real time 0.51 seconds
cpu time 0.32 seconds

How to Use Sessions

The Web is a stateless environment, which means that when you open a page, the next
page starts with a clean slate having nothing remaining from the previous one. This
simplifies many things and makes them potentially more stable. If you are building web
applications, then you need to maintain the state of some things between one request
and the next. You can use cookies to store some text and retrieve it again, as many web
applications do. But another way to maintain state is to use SAS sessions.

Sessions enable storing macro variable values which start their name with “SAVE_".
They also save tables and catalogs stored in the SAVE library. This means that you are able
to pass macro variables, tables, and so on from one Stored Process to another. The data

256

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

stored in a session generally expires after 15 minutes, but this is long enough to be quite
useful when developing applications constructed from a number of Stored Processes
which need to pass information between each other. You can increase the session
timeout from 15 minutes to a higher value by using the stpsrvset function, for example:

%LET rc=%sysfunc(stpsrvset(session timeout,1800));

To use a session, you have to create one in the Stored Process. You can use some
code like this to create a session:

%let rc=ksysfunc(stpsrv_session(create));

The following Stored Process code creates a session using the stpsrv_session
function. Then it creates a macro variable starting with “save_” and puts a table into
the save library. These will then both be available when used through another Stored
Process that is started up using the sessionid. It creates a little piece of HTML that will
call another Stored Process using the same sessionid, making the macro variable and
table available to it:

* here is some code with macro variable and table I want to save ;
%let name=Phil Mason ;
data x ;
set sashelp.class ;
run ;

%* create a session, so we can save macro/table for later ;
%let rc=ksysfunc(stpsrv_session(create));

%put SESSIONID=& SESSIONID;

%put THISSESSION=&_ THISSESSION;

%* save them to session ;
%let save_name=&name ;
data save.x ;

set x ;
Tun ;

* make HTML to link to another Stored Process where we will use session
data ;
data null;

257

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

file webout;

put '<HTML>';

put '<body>"';

put '<hi>test use of sessions</h1>';

put '<a href="' "& thissession"
'& program=/User Folders/phil/My Folder/use session">Call next Stored
Process"';

put '</body>"';

put '</HTML>';

run;

Running this Stored Process through the web application displays the following

(Figure 8-50).

test use of sessions
Call next stored process
Figure 8-50. Web browser displays this from the previous Stored Process
The following code is for the Stored Process (“use session”) which the previous code

will call when the link is clicked. It uses the saved macro in a title and prints out the
saved table.

title 'Table x, created in previous Stored Process' ;

title "Macro variable from previous Stored Process - &save_name" ;
proc print data=save.x ;

Tun ;

The output produced by this Stored Process is shown in Figure 8-51.

258

Macro variable from previous stored process - Phil Mason

o]
-

[N TR T R S TR T

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Name Sex Age Height

Phitip

William

M
F
F
E
M
M
E
E
M
M
E
E
F
F
M
M
M
M
M

9.0
56.5
653
628
635
573
508
625
625

Weight
125
B840
98.0
1025
102.5
830

Figure 8-51. Web browser showing macro variable from previous session in title

If you wait too long and the session expires, then the saved macro variables and
tables are discarded. You will then get this message displayed in Figure 8-52.

Figure 8-52. Stored process error when session has expired

Sessions with Graphs

When you create a graph in a Stored Process through the Stored Process Web
Application, it creates a session and stores the graph image in a catalog within that
session. Here is some SAS code I used to create a graph:

i) Stored Process Error

Unable to execute stored process.

STP: The client subrmitted an expired o inealid sevsion identifier..

Proc gchart data=sashelp.class ;

Vbar sex / group=age ;
Run ;

Running this through the Stored Process Web Application shows this image on the

web page (Figure 8-53).

259

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Frequency

3.

2

0
F M F M F oM F M F oM F M Sex
11 12 13 14 15 16 Age

Figure 8-53. Displaying a graph in browser with stored process

If I view the source for the page, I can see the HTML tag that displays the graph. [have
highlighted the session id @ which is used to point to the session in which the created
image is stored. The _program value is replay © which is used to display the image on
the web page. The value of _entry points to the location of the actual image, which is in a
catalog called APSWORK.TCAT0002 ®, and the image is called gchart.png @. Note: I have
inserted line feeds in the URL which should not be there, so that it is more easily read.

<img alt="Bar chart of Sex" src="/SASStoredProcess/do?
_sessionid=57B00B1A-E808-44C5-AB98-D454D16988F9 ©

& program=replay ©)

& entry=APSWORK.TCAT0002.gchart.png" ®

style=" border-width: Opx; height: 480px; width: 640px;" border="0"
usemap="#LN00102" class="c graph">

You can read all about sessions and how to use them in the SAS documentation.®

9SAS Stored Processes - Sessions - http://support.sas.com/rnd/itech/doc9/dev_guide/
stprocess/sessions.HTML

260

http://support.sas.com/rnd/itech/doc9/dev_guide/stprocess/sessions.html
http://support.sas.com/rnd/itech/doc9/dev_guide/stprocess/sessions.html

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Logs That Record Information About Stored
Processes

There are many logs recorded for various programs within SAS. When using Stored
Processes, the most interesting ones are as follows.

Stored Process Server Logs

These store a copy of the SAS logs from any Stored Processes that run on the Stored
Process servers. There will be a separate log for each Stored Process server, so if you have
the standard three defined, you will have three logs. On my system, this is located in C:\
SAS\Config\Levl1\SASApp\StoredProcessServer\Logs. Here are some sample lines from
alog:

Host: 'D351TQ92', 0S: 'WIN', Release: '6.2', SAS Version: '9.04.01M3P06242015',
Command: '"C:\Program Files\SASHome\SASFoundation\9.4\sas.exe" -config
"C:\SAS\Config\Levi\SASApp\StoredProcessServer\sasv9.cfg" /nologo /noterminal
/noxcmd /netencryptalgorithm SASProprietary /metaserver d351tq92 /metaport
8561 /metarepository Foundation /objectserver /objectserverparms "protocol=
bridge spawned spp=49263 cid=41 dnsmatch=d351tq92 pb classfactory=15931E31-
667F-11D5-8804-00C04F35AC8C server=0MSOBJ:SERVERCOMPONENT/A5GU5YZJ.AY000008
cel=credentials 1b multiuser port=8611 saslangrunas=client™'

Log continued from C:\SAS\Config\Levi\SASApp\StoredProcessServer\Logs\
SASApp_STPServer 2016-01-29 D351TQ92_18056.1og

2016-01-31T715:52:09,183 INFO [00017309] :Administrator@D351TQ92 - New out
call client connection (41) for user phil@D351TQ92. Encryption level is
Credentials using encryption algorithm SASPROPRIETARY. Peer IP address and
port are [fe80::7d53:808:9a3c:a7b1%12]:8561.

2016-01-31T15:52:09,184 INFO [00017309] :phil@D351TQ92 - New client
connection (40) accepted from server port 8611 for SAS token user
phil@D3517Q92. Encryption level is Credentials using encryption algorithm
SASPROPRIETARY. Peer IP address and port are [::ffff:192.168.0.48]:49476
for APPNAME=Stored Process Web App 9.4.

2016-01-31T15:52:09,186 INFO [00017317] 40:phil@D351TQ92 - STP: 27:
Creating New Context, sessionID=

261

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

2016-01-31T15:52:09,233 INFO [00017317] 40:phil@D351TQ92 - STP: Sending
cost=101 to Load Balancer. Context Cost=100 STP Session Cost=1
2016-01-31T15:52:09,299 INFO [00017407] 40:phil@D351TQ92 - STP: 27:
Executing Client Source code from Metadata for /User Folders/phil/

My Folder/proc_stream

2016-01-31T15:52:09,299 INFO [00000003] :Administrator@D351TQ92 -
[00000027] STPXUTL Execute using SAS stmts directly.

2016-01-31T15:52:09,635 INFO [00017407] 40:phil@D351TQ92 - STP: 27:
Execution Complete. Status=0

2016-01-31T15:52:09,637 ERROR [00017407] 40:phil@D351TQ92 - STP: 27:
Fileref Deassign Failure for _WEBOUT

2016-01-31T15:52:09,639 INFO [00017650] 40:phil@D351TQ92 - STP: 27:

Context Close
2016-01-31T15:52:09,656 INFO [00017650] 40:phil@D351T0_92
cost=0 to Load Balancer. Context Cost=0 STP Session Cost=0

STP: Sending

Workspace Server Logs

These store a copy of the SAS logs from any Stored Processes that run on the workspace
servers. It also stores logs from any other clients that use workspace servers such as the
Office Add-in, Enterprise Guide, Data Integration Studio, and so on.

Pooled Workspace Server Logs

These store a copy of SAS logs from any Stored Processes that run on the Stored Process
servers. It also stores logs from any other clients that use pooled workspace servers. On
my system, logs are stored here: C:\SAS\Config\Levl1\SASApp\PooledWorkspaceServer\
Logs. Here’s a sample of some lines from a log:

Host: 'D351TQ92', 0S: 'WIN', Release: '6.2', SAS Version:
'9.04.01M4P11092016", Command: '"C:\Program Files\SASHome\
SASFoundation\9.4\sas.exe" -config "C:\SAS\Config\Lev1\SASApp\
PooledWorkspaceServer\sasv9.cfg" /nologo /noterminal /noxcmd /
netencryptalgorithm SASProprietary /metaserver d351tq92 /metaport 8561 /
metarepository Foundation /objectserver /objectserverparms "protocol=bridge
spawned spp=49286 cid=14 dnsmatch=d351tq92 pb classfactory=620963ee-32bf-

262

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

4128-bf5f-4bodf8ff90eb server=0MSOBJ:SERVERCOMPONENT/A5GU5YZJ.AY000007

cel=credentials 1b sspool saslangrunas=client

2017-11-02T09:43:02,620 INFO [00000003] :Administrator@D351TQ92 - NOTE:
Unable to open SASUSER.PROFILE. WORK.PROFILE will be opened instead.
2017-11-02T09:43:02,620 INFO [00000003] :Administrator@D351TQ92
All profile changes will be lost at the end of the session.

2017-11-02T09:43:02,620 INFO
2017-11-02T09:43:02,689 INFO

[00000003] :
[00000007]

is executing on host D3517Q92 (fe80::7d53:

2017-11-02T09:43:02,689 INFO
known as:
2017-11-02T09:43:02,689 INFO
localhost
2017-11-02T09:43:02,689 INFO
fe80::7d53:808:9a3c:a7b1%12
2017-11-02T09:43:02,689 INFO
192.168.0.46
2017-11-02T09:43:02,689 INFO
11

2017-11-02T09:43:02,689 INFO
127.0.0.1
2017-11-02T09:43:02,694 INFO

call client connection (1) for user Administrator@D3517Q92.

[00000007] :
[00000007]
[00000007]
[00000007]
[00000007]
[00000007]

[00000007]

level is Credentials using encryption algorithm SASPROPRIETARY.
address and port are [fe80::7d53:808:9a3c:a7b1%12]:8561.

2017-11-02T09:43:02,760 INFO

[00000010] :

Libref SASDATA successfully assigned from

2017-11-02T09:43:02,760 INFO

[00000010]

Libref WRSDIST successfully assigned from

2017-11-02T09:43:02,760 INFO

[00000010] :

Libref WRSTEMP successfully assigned from

2017-11-02T09:43:02,760 INFO

[00000010]

Libref STPSAMP successfully assigned from

2017-11-02T09:43:02,770 INFO

[00000009]

logical server.

:Administrator@D351TQ92

- NOTE:
Administrator@D351TQ92 -
:Administrator@D351TQ92 - Server
808:9a3c:a7b1%12).
Administrator@D3517Q92 - Also
:Administrator@D351TQ92 -
:Administrator@D351TQ92 -
:Administrator@D351TQ92 -
:Administrator@D351TQ92 -
:Administrator@D351TQ92 -
:Administrator@D351TQ92 - New out

Encryption

Peer IP
Administrator@D351TQ92 - NOTE:
logical server.
:Administrator@D351TQ92 - NOTE:
logical server.
Administrator@D351T092 - NOTE:
logical server.
:Administrator@D351TQ92 - NOTE:

263

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

2017-11-02T09:43:02,770 INFO [00000009] :Administrator@D351TQ92 -

NOTE: AUTOEXEC processing beginning; file is C:\SAS\Config\Lev1\SASApp\
PooledWorkspaceServer\autoexec.sas.

2017-11-02T09:43:02,770 INFO [00000009] :Administrator@D351TQ92 -
2017-11-02T09:43:02,771 INFO [00000009] :Administrator@D351TQ92 -
2017-11-02T09:43:02,771 INFO [00000009] :Administrator@D351TQ92 - NOTE:
AUTOEXEC processing completed.

2017-11-02T09:43:02,771 INFO [00000009] :Administrator@D351TQ92 -
2017-11-02T09:43:02,777 INFO [00000188] :Administrator@351TQ92 - New
client connection (2) to the object spawner daemon. Peer IP address and
port are [fe80::7d53:808:9a3c:a7b1%12]:49286.

2017-11-02T09:43:02,783 INFO [00000197] 2:Administrator@351TQ92 -
Reserved IPv6 port 8811 for server listen (connection 3).
2017-11-02T09:43:02,784 INFO [00000197] 2:Administrator@D351TQ92 -
Activated listen on IPv6 port 8811 (connection 3).
2017-11-02T09:43:02,788 INFO [00000203] :Administrator@D351TQ92 - New out
call client connection (5) for user phil@D3517Q92. Encryption level is
Credentials using encryption algorithm SASPROPRIETARY. Peer IP address and
port are [fe80::7d53:808:9a3c:a7b1%12]:8561.

2017-11-02T709:43:02,788 INFO [00000203] :phil@D351TQ92 - New client
connection (4) accepted from server port 8811 for SAS token user phil@
D351TQ92. Encryption level is Credentials using encryption algorithm
SASPROPRIETARY. Peer IP address and port are [::ffff:192.168.0.46]:58599
for APPNAME=Stored Process Web App 9.4.

2017-11-02T09:43:02,958 ERROR [00000011] :phil@D351TQ92 - ERROR: The SAS
system library SASHELP may not be reassigned.

2017-11-02T09:43:02,958 ERROR [00000011] :phil@D351T7Q92 - ERROR: Error in
the LIBNAME statement.

2017-11-02T09:43:03,048 ERROR [00000011] :Administrator@D351TQ92 - ERROR:
Errors printed on page 1.

Metadata Server Logs

These keep a record of things that happen in the metadata server. In relation to Stored
Processes, you can look at when people authenticate to the system before running

264

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

a Stored Process. On my system, this is stored in C:\SAS\Config\Levl1\SASMeta\
MetadataServer\Logs. Here is a sample of a log:

017-11-15T18:26:33,100 INFO [00057488] :sasevs@saspw - Redirect client in
cluster SASMeta - Logical Metadata Server (A5GU5SYZJ.AW000001) to server
SASMeta - Metadata Server (A5GU5YZJ.AY000001) at d351tq92:8561.
2017-11-15T18:26:33,134 INFO [00057516] 6042:SYSTEM@D3517Q92 - Client
connection 6042 for user sasevs@saspw closed.

2017-11-15T18:26:33,135 INFO [00057479] 5996:SYSTEM@D351TQ92 - Client
connection 5996 for user sastrust@saspw closed.

2017-11-15T18:26:33,142 INFO [00057519] :sastrust@saspw - New client
connection (5128) accepted from server port 8561 for user sastrust@

saspw. Encryption level is Credentials using encryption algorithm
SASPROPRIETARY. Peer IP address and port are [::ffff:192.168.0.55]:63626
for APPNAME=Web Infra Platform Identity Services 9.4.
2017-11-15T18:26:33,142 INFO [00057519] :sastrust@saspw - Request made to
cluster SASMeta - Logical Metadata Server (A5GU5YZJ.AW000001).
2017-11-15T18:26:33,144 INFO [00057519] :sastrust@saspw - Redirect client
in cluster SASMeta - Logical Metadata Server (A5GU5YZJ.AW000001) to server
SASMeta - Metadata Server (A5GU5YZJ.AY000001) at d351tq92:8561.
2017-11-15T18:26:33,146 INFO [00057524] :sasevs@saspw - New client
connection (5962) accepted from server port 8561 for SAS token user
sasevs@saspw. Encryption level is Credentials using encryption algorithm
SASPROPRIETARY. Peer IP address and port are [::ffff:192.168.0.55]:63627
for APPNAME=Web Infra Platform Identity Services 9.4.
2017-11-15T18:26:33,146 INFO [00057524] :sasevs@saspw - Request made to
cluster SASMeta - Logical Metadata Server (A5GU5YZJ.AW000001).
2017-11-15T18:26:33,146 INFO [00057524] :sasevs@saspw - Redirect client
in cluster SASMeta - Logical Metadata Server (A5GU5YZJ.AW000001) to server
SASMeta - Metadata Server (A5GU5YZJ.AY000001) at d351tq92:8561.
2017-11-15T18:26:33,152 INFO [00057535] 5128:SYSTEM@D3517Q92 - Client
connection 5128 for user sastrust@saspw closed.

2017-11-15T18:26:33,156 INFO [00057539] 5962:SYSTEM@D351TQ92 - Client
connection 5962 for user sasevs@saspw closed.

265

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Object Spawner Logs

These keep a record of things happening to the object spawner. The object spawner
starts up Stored Process, workspace, and pooled workspace servers. On my system, the
logs are located here:

Host: 'D351TQ92', 0S: 'WIN', Release: '6.2', Command: '"C:\Program Files\
SASHome\SASFoundation\9.4\objspawn" -name "SAS [Config-Levi] Object
Spawner"'

Log continued from C:\SAS\Config\Levi\ObjectSpawner\Logs\
ObjectSpawner_2017-11-16_D351TQ92_8768.1og

2017-11-17T00:00:00,097 INFO [00035160] :SYSTEM@D3517Q92 - New out call
client connection (2942) for user sasevs@saspw. Encryption level is
Credentials using encryption algorithm SASPROPRIETARY. Peer IP address and
port are [fe80::7d53:808:9a3c:a7b1%12]:8561.

2017-11-17T00:00:00,100 INFO [00035160] :SYSTEM@D351TQ92 - Client
connection 2942 for user sasevs@saspw closed.

2017-11-17T00:00:00,100 INFO [00035160] :sasevs@saspw - New client
connection (2939) accepted from server port 8581 for user sasevs@

saspw. Encryption level is Credentials using encryption algorithm
SASPROPRIETARY. Peer IP address and port are [::ffff:192.168.0.55]:57843
for APPNAME=Environment Manager 904400.

2017-11-17T00:00:00,111 INFO [00035183] 2939:SYSTEM@D351TQ92 - Client
connection 2939 for user sasevs@saspw closed.

Remember that most things in a SAS configuration can be customized, so you should
make sure your server options are set so you get the log info written that you want.

Linking Stored Processes

In Chapter 4, we discussed the utility of JavaScript, JavaScript and JQuery libraries, and
where to store them. One of the goals of this book is to help you see the utility of bringing
this functionality to your Stored Processes. Now we will talk about how to implement
them as part of your Stored Process Web Application.

Often as part of an application, you will want to run a Stored Process which will then
run other Stored Processes for you. You can link Stored Processes together in a number

266

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

of ways. You can use the window.open method mentioned in the previous section to
enable a JavaScript program to open other pages, which can be Stored Processes if run
via the Stored Process Web Application. Sometimes you might want to run a Stored
Process when a web page opens, so that you can do some processing needed for that
web page before it is used.

The best way I have found to do this is by using the body onload method. The
following code would execute the alert before loading the rest of the web page:

<HTML>

<body onload="alert('hello")">
<h1>Hello World!</h1>

</body>

</HTML>

To run a Stored Process before loading the page, you could use something like this:

<HTML>

<body onload="window.open('http://d351tq92/SASStoredProcess/do? program=%2F
User+Folders%2Fphil%2FMy+Folder%2FpreProcess')">

<h1>Pre-Processing has completed.</h1>

</body>

</HTML>

With JavaScript, you can detect all kinds of events in the page, on forms, and in drag
and drop events, print events, mouse events, and many others. Any of those can be used
to trigger the running of a Stored Process. Since a Stored Process can write any JavaScript
code out, you can use logic from your SAS programs to decide when you need to link to
another Stored Process and then write out the appropriate JavaScript code to do that. Easy.

Stored Process Example

The following Stored Process generates an input form that does client-side validation

of an input field, by checking that the user has entered something for a table name. If
the user doesn’t enter something, then the JavaScript displays an alert and aborts the
submit. When it passes the validation, then the same Stored Process is resubmitted, but
it detects the presence of the table macro variable which indicates that this is the second
call of the Stored Process with a table name being passed in. The server-side validates

267

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

that the table exists, and if it doesn’t, then it uses JavaScript to display an alert and then
uses JavaScript to go back one page to display the original form again. If the table does
exist, then it does a proc print of it.

All this functionality effectively results in a single-page application with some
validation done in the browser by JavaScript and some done on the server by SAS. You
don’t need to enter any values for prompts as you create this stored process.

Here is the Stored Process code:

data lines ;
input ;
line=resolve(_infile) ;
cards4 ;
<HTML>
<head>
<script>
function validateForm() {
var x = document.forms["myForm"]["table"].value;
i (x == ") {
alert("You have to enter a table");
return false;

}

</script>

</head>

<body>

<form method="get" action="http://& srvname:& srvport/& url?"
name="myForm" onsubmit="return validateForm()">

<input type="hidden" name="_program" value="& program">

Enter the name of a table: <input type="text" name="table">

<input type="submit" value="Run">

</form>

<p>Try using sashelp.orsales as the table</p»

</body>

</HTML>

5555

run ;

268

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

%macro logic ;
%if %symexist(table) %then %do ;
%if %sysfunc(exist(&table)) %then %do ;

%stpbegin
proc print data=&table ;
run ;
%stpend
%end ;
%else %do ;
data null_;

file webout ;
put "<script>alert('Table &table does not exist!');" ;
put "window.history.back()</script>" ;
run ;
%end ;
%end ;
%else %do ;
data null ;
file webout ;
set lines ;
put line ;
run ;
%end ;
%mend logic ;
%logic

Figure 8-54 is what is displayed when it is run.

Enter the name of a table: Run

Figure 8-54. Prompt in browser

If this is run without entering a table name, then this alert is displayed (Figure 8-55).

269

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

d351tq92 says:
‘You have to enter a table

OK

Figure 8-55. Alert displayed in browser if you don’t enter a table

If a table name is entered and the Run button pressed, but the table does not exist,
then the message in Figure 8-56 is displayed.

d351tg92 says:
Table x does not exist!

OK

Figure 8-56. Alert displayed in browser if you enter a table that can’t be found

When a table that does exist is entered and Run pressed, then the table in Figure 8-57
is displayed.

Obs Name Sex Age Height Weight

1 Alfred M 14 69.0 1125
2 | Alice F 13 56.5 84.0
3 Barbara F 13 65.3 98.0
4 Carol F 14 62.8 102.5
5 Henry M 14 63.5 102.5
6 James M 12 57.3 83.0
7 | Jane F 12 59.8 84.5
8 | Janet F 15 62.5 112.5
9 Jeffrey M 13 62.5 84.0
10 | John M 12 59.0 99.5
11 Joyce F 1" 51.3 50.5
12 | Judy F 14 64.3 20.0
13 Louise | F 12 56.3 77.0
14 Mary F 15 66.5 112.0
15 | Philip M 16 72.0 150.0
16 Robert M 12 64.8 128.0
17 Ronald M 15 67.0 133.0
18 Thomas M 11 57.5 85.0
19 | William M 15 66.5 112.0

Figure 8-57. Report produced in browser when valid table is entered

270

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Loading a Stored Process into Part of a Web Page

Here is a piece of HTML which will run a Stored Process ® and load its output into part
of a web page when a button is pressed. This technique can form the basis of a web
application as you can prompt the user for things in one part of the screen and then run
a Stored Process to load the results into another part of the screen.

The text shown in bold shows the Stored Process that is being run. Whatever output
that this Stored Process produces will be returned and loaded into the div section called
divl.

The text shown in italics shows the id for the part of the HTML page that will be
populated with the output of the Stored Process. It is a div section, which is generally a
great tag to use to populate with things since it is basically a container for other things.

I have some text in the div section which will be displayed first, but will then be replaced
once the Stored Process has run and its results loaded into the div:

<!DOCTYPE HTML>

<HTML>

<head>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.0/jquery.

min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("#div1").load("http://my_server/SASStoredProcess/do?_program=%2FUser
+Folders%2Fphil%2FMy+Folder%2FExercise+2"); O

};
B

</script>

</head>

<body>

<h1>This is how we can load something to this web page</h2>
<hr>

<div id="divi"><h2>Let jQuery AJAX Change This Text</h2></div>
<button>Get External Content</button>

</body>

</HTML>

271

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

This produces the following page as shown in Figure 8-58.

This is how we can load something to this web page

Let jQuery AJAX Change This Text
Get External Content I

Figure 8-58. Displayed in browser using previous code

Other Recommended JavaScript Libraries

I have used many libraries over the years and have found some to be great ones that I use
over and over again. Here is a list of some libraries to get you started. There are bound

to be other great ones I don’t know about, so you shouldn’t use this as a definitive list
but keep looking and seeing what people are using. A good place to see what people are
using is to search for a list of top JavaScript libraries and read one of the many reviews.
Or you can go to a Content Delivery Network and look at a list of how many times a
library has been used.®

Grids

If you are unfamiliar with web technology, you may wonder what exactly a grid is - it’s
just a table displayed on a web page. We can make a table in HTML and display that;
however, when we scroll down a big table, we leave behind the column headings at the
top and can be left wondering what we are looking at. Same goes for when we scroll to
the right across a wide table and lose row titles. Grids work a bit like EXCEL keeping
row and column titles in place, so we avoid this problem. They can also add a lot of
functionality along the lines of what something like EXCEL can do. So, they might let
us use traffic lighting, create calculated columns, pop up menus of functionality with
the right mouse button, and so on. We can do some of this with a standard HTML table
and by using some CSS with it, but it is limited and quickly becomes overly complex.
But grids can make all this very simple, and if we choose the right one, it can work in a
similar/compatible way as jQuery.

Top 200 link on https://cdnjs.com/

272

https://cdnjs.com/

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION
jqGrid
jqGrid (jQuery grid plug-in) is a JavaScript library which enables creating data grids on
web pages quite easily.

You can see demos and learn all about jqgrid at waw.guriddo.net/demo/guriddojs/.
Their website shows many examples of grids you can display on a web page and the
huge amount of functionality available.

The following code shows an example of using a grid like this in conjunction with

a Stored Process @, which produces JSON-formatted data that is then displayed by the
JavaScript object as a grid:

<!DOCTYPE HTML>

<HTML lang="en">

<head>
<!-- The jQuery library is a prerequisite for all jqSuite products -->
<script type="text/ecmascript” src="http://code.jquery.com/jquery--
2.2.4.min.js"></script>
<!-- This is the JavaScript file of jqGrid -->
<script type="text/ecmascript” src="http://www.guriddo.net/demo/js/
trirand/jquery.jqGrid.min.js"></script>
<!-- This is the localization file of the grid controlling messages,
labels, etc. -->
<!-- We support more than 40 localizations -->
<script type="text/ecmascript" src="http://www.guriddo.net/demo/js/
trirand/i18n/grid.locale-en.js"></script>
<!-- A link to a jQuery UI ThemeRoller theme, more than 22 built-in and
many more custom -->
<link rel="stylesheet" type="text/css" media="screen" href="http://www.
guriddo.net/demo/css/jquery-ui.css" />
<!-- The link to the CSS that the grid needs -->
<link rel="stylesheet" type="text/css" media="screen" href="http://www.
guriddo.net/demo/css/trirand/ui.jqgrid.css" />
<meta charset="utf-8" />
<title>jqGrid Loading Data - JSON</title>

</head>

<body>

273

http://www.guriddo.net/demo/guriddojs/

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

<table id="jqGrid"></table>
<div id="jqGridPager"></div>
<script type="text/JavaScript">

$(document).ready(function () {

$("#jqGrid"). jqGrid({
@ url: 'http://my_server/SASStoredProcess/do?_program=%2FUser+Folders’2F
phil%2FMy+Folder%2Fjson',

datatype: "json",

colModel: [
{ label: 'Year', name: 'Year', width: 75 },
{ label: 'Quarter', name: 'Quarter', width: 90 },
{ label: 'Product Line', name: 'Product Line', width: 100 },
{ label: 'Product Category', name: 'Product Category', width: 100 },
{ label: 'Product Group', name: 'Product Group', width: 100 },
{ label: 'Profit', name: 'Profit', width: 80, sorttype: 'integer' },
{ label: 'Total Retail Price', name: 'Total Retail Price’,

width: 80, sorttype: 'integer' },
// sorttype is used only if the data is loaded locally or loadonce
is set to true
{ label: 'Quantity', name: 'Quantity', width: 80, sorttype:
"number’ }
]J
viewrecords: true, // show the current page, data range and total
records on the toolbar

width: 780,

height: 400,

rowNum: 30,

loadonce: true, // this is just for the demo

pager: "#jqCridPager”

1;
D;

</script>
</body>
</HTML>

274

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

The following SAS code is for the Stored Process (JSON) that delivers the data to
this grid. Here I have looked at the format of the JSON data that the grid needs and used
some nice options available from SAS 9.4 onward that allows me to customize my JSON
data to match what is required exactly:

* create a JSON version of the SAS table ;
proc json out=_webout pretty nosastags ;
write open object ;
write values "rows" ;
write open array ;
export sashelp.orsales ;
write close ;
write close ;
run ;

The grid that this makes will look like Figure 8-59, and you can sort the columns. The
drawback to using this specific technique on large tables is that I am loading the entire
table first and then using the grid to display it.

Year Quarter Product_Line | Product_Category | Product_Group Profit Total_Retall_P Quantity
1999 1999Q1 Children Children Sports ~ A-Team, Kids 4980.15 8990.9 286
1999 1999Q1 Children Children Sports Bathing Suits, Kids 1479.95 2560.4 98
1999 1999Q1 Children Children Sports Eclipse, Kid's Cloth 9348.95 18768.8 588
1999 1999Q1 Children Children Sports Eclipse, Kid's Shoe:7136.8 14337.2 334
1999 1999Q1 Children Children Sports Lucky Guy, Kids 7163 12996.2 303
1999 1999Q1 Children Children Sports N.D. Gear, Kids 19153.05 34250.5 755
1999 1999Q1 Children Children Sports QOlssons, Kids 1975.35 3339.3 209
1999 1999Q1 Children Children Sports Orion Kid's Clothes 288.8 580.4 14
1999 1999Q1 Children Children Sports Osprey, Kids 7334.7 13219.6 454
1999 1999Q1 Children Children Sports Tracker Kid's Cloth 21847.85 40049.5 1243
1999 1999Q1 Children Children Sports Ypsilen, Kids 3020.85 5354.7 139
1999 1999Q1 Clothes & Shoes Clothes Eclipse Clothing 84982.5 170206.1 2938
1999 1999Q1 Clothes & Shoes Clothes Green Tomato 4706.85 7846.2 171
1999 1999Q1 Clothes & Shoes Clothes Knitwear 79951.69 140077.94 1554
1999 199901 Clothes & Shoes Clothes LSF 16878 32535.5 335
1999 199901 Clothes & Shoes Clothes Leisure 14394.3 26047.2 312

Pageu of 31 = = View 1 - 30 of 912

Figure 8-59. Resulting grid

275

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

There are other features that can be used with this JavaScript object to change the
behavior of the grid. For instance, if you have a very large number of rows, then you can
specify a pager, rownum, and page parameter. When data is requested, it will pass these
parameters on the URL call to the Stored Process, which will enable you to modify your
Stored Process to just return the rows that are required for that page, rather than all the
rows in the table. This can make it very efficient to view very large tables.

Highcharts

Highcharts is a JavaScript library which enables you to create powerful charts quite easily
with a relatively small amount of JavaScript. You can feed the graphs with data from a
Stored Process, like all other JavaScript objects we will look at. Many examples are shown
on their website - www.highcharts.com.

Here is some sample code which provides the data for the graph using a Stored
Process @©. Note that I am using a CSV file as input here, although Highcharts supports a
lot of different data formats.

<HTML>
<head>
<meta http-equiv="Content-Type" content="text/HTML; charset=utf-8">
<title>Highcharts Example</title>

<!-- 1. Add these JavaScript inclusions in the head of your

page -->

<script type="text/JavaScript" src="http://code.jquery.com/jquery--
1.9.1.min.js"></script>

<script type="text/JavaScript" src="http://code.highcharts.com/
highcharts.js"></script>

<script type="text/JavaScript" src="http://code.highcharts.com/
modules/data.js"></script>

<!-- 2. Add the JavaScript to initialize the chart on document
ready -->
<script type="text/JavaScript">

276

https://www.highcharts.com

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

$(document).ready(function() {
© $.get("http://d351tq92/SASStoredProcess/do?_program=%2FUser+Foldersi2
Fphil%2FMy+Folder%2Fcsv', function(csv) {
$('#container").highcharts({
chart: { type: 'column' },
data: { csv: csv },
title: { text: 'Sales Data' },
yAxis: { title: { text: 'USD' } }
};
1;
D;

</script>

</head>

<body>
<!-- 3. Add the container -->
<div id="container" style="width: 800px; height: 400px; margin: 0
auto"></div>

</body>

</HTML>

The following SAS code is the Stored Process (csv) which delivers the data to the
Highcharts object:

proc summary data=sashelp.orsales nway ;

class Quarter ;

var Total Retail Price Quantity Profit ;

output out=sum orsales(drop=_type freq) sum= ;
run ;

* create a CSV version of the summary ;
proc export data=sum orsales outfile= webout dbms=csv replace ;
run ;

This code produces a nice vertical bar chart which looks great and has some built-in
functionality. One simple thing you can do is to click the legend and eliminate bars from
the graph or click again to include them.

277

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

D3

D3 is a very powerful and hugely popular JavaScript visualization library. It is reasonably
easy to make use of but is capable of quite complex usage to visualize in almost any way
you can think of. They have many great examples on their website - https://d3js.org.

This code uses the D3 library together with the DC and Crossfilter libraries which
allows you to link objects to create a very powerful visualization. Data is provided using
the Stored Process @.

<!DOCTYPE HTML>

<HTML lang="en">

<head>
<title>dc.js - Number Display Example</title>
<meta charset="UTF-8">
<link rel="stylesheet" type="text/css" href="http://dc-js.github.io/
dc.js/css/dc.css"/>

</head>

<body>

<h1>Stored Process with simple crossfilter</h1>

<div id="chart-ring-Year"></div>

<div id="chart-hist-spend"></div>

<div id="chart-row-spenders"></div>

<script type="text/JavaScript" src="http://dc-js.github.io/dc.js/js/
d3.js"></script>

<script type="text/JavaScript" src="http://dc-js.github.io/dc.js/js/
crossfilter.js"></script>

<script type="text/JavaScript" src="http://dc-js.github.io/dc.js/js/
dc.js"></script>

<script type="text/JavaScript">

var YearRingChart
spendHistChart
spenderRowChart

dc.pieChart("#chart-ring-Year"),
dc.barChart("#chart-hist-spend"),
dc.rowChart("#chart-row-spenders");

® d3.csv("http://d351tq92/SASStoredProcess/do?_program=%2FUser+Folders%2Fp
hil%2FMy+Foldex%2Fcsv2&table=sashelp.orsales”, function(spendData) {

278

https://d3js.org

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

// normalize/parse data
spendData.forEach(function(d) {
d.Quantity = d.Quantity.match(/\d+/);

D

// set crossfilter

var ndx = crossfilter(spendData),
YearDim = ndx.dimension(function(d) {return +d.Year;}),
spendDim = ndx.dimension(function(d) {return Math.floor(d.
Quantity/1000);}),
Product CategoryDim = ndx.dimension(function(d) {return d.Product
Category;}),
spendPerYear = YearDim.group().reduceSum(function(d) {return
+d.Quantity;}),
spendPerProduct Category = Product CategoryDim.group().
reduceSum(function(d) {return +d.Quantity;}),
spendHist = spendDim.group().reduceCount();

YearRingChart
.width(300).height(300)
.dimension(YearDim)
.group(spendPerYear)
.innerRadius(50);

spendHistChart
.width(400).height(300)
.dimension(spendDim)
.group(spendHist)
.x(d3.scale.linear().domain([0,10]))
.elasticY(true);

spendHistChart.xAxis().tickFormat(function(d) {return d*1000}); // convert
back to base unit
spendHistChart.yAxis().ticks(2);

spenderRowChart
.width(700).height(300)
.dimension(Product CategoryDim)

279

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

.group(spendPerProduct Category)
.elasticX(true);

dc.renderAll();
IOk

</script>
</body>
</HTML>

The SAS code in the Stored Process (csv2) which delivers the data is very simple, as
follows:

proc export data=8table outfile= webout dbms=csv replace ;
run ;

The following output in Figure 8-60 is produced by the preceding code. The three
graphs displayed are linked together so that if you click any bar or pie segment, then
that is selected, and the other graphs change to reflect your selection. This enables some
interactive data exploration to be done.

Stored Process with simple crossfilter

|_Swim Spoms |

L]

0 NN0 000 3000 4000 BOOD 6000 7000 BODD WODO 10000 U W00 40000 G000 BOCO0 100000 120,000 13000 MOC00 183,000 200,000 Z0000 210,000 0000

Figure 8-60. Output graphs

Summary

In this chapter, we look at the incredibly useful SAS Stored Process Web Application.
This is provided by SAS to enable stored processes to execute through a web browser and
other RESTful applications. We looked at some of these topics:

o Index page that allows browsing through stored processes available
and running them

280

CHAPTER 8 SAS STORED PROCESS WEB APPLICATION

Sample stored processes available with a SAS installation

Lots of macro variables that can be used with %stpbegin to affect
what the web application returns, for example, _debug=log to return
a SAS log

Using automatic SAS macro variables to detect things about the
environment that the stored process is executing in, for example,
&_metaperson holds the name of the user from metadata

How to use HTML forms to run stored processes from a web page

Process of creating a simple SAS program and converting it into a
stored process-based web application providing flexibility and some
powerful features by using the macro variables available

How to upload files to a server with a stored process

How to use sessions for sharing information between stored
processes

Logs that are available for help with understanding the execution of
stored processes

Linking stored processes so that one will run after another

Some very useful JavaScript libraries that can provide useful
functionality to web applications

281

CHAPTER 9

SAS Procedures

You can use all the power of SAS as you develop Stored Processes, including the many
procedures that provide so much functionality in an easy-to-use package. There are
several procedures that are particularly helpful with developing Stored Processes. In this
chapter, we will cover

o PROC STP, which allows you to run a Stored Process from other SAS
code.

e PROC]JSON, which lets you produce JSON-formatted data that is
used extensively by JavaScript objects used in building web pages.

o PROC STREAM, which will take some text, resolve any macro
variables in it, and send the output on to somewhere, which could be
a file or web page.

e PROC HTTP, which can issue HTTP requests and get the response for
use in SAS.

o PROC EXPORT, which will export SAS data in various formats
including CSV and tab-separated formats.

o PROCIMPORT, which will import data from various supported formats
into a SAS table. This is useful to read CSV and other formats of data.

PROC STP

This procedure allows Stored Processes to be executed from a SAS program. This opens
up a lot more flexibility and power for the use of Stored Processes. You can execute them
in batch, interactively or on servers. It can run locally or on a server, but with its own
execution environment, so it has its own work library and so on. If you want to run it on a

server, then it needs some additional configuration to work that way.

283
© Philip Mason 2020

P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2_9

https://doi.org/10.1007/978-1-4842-5925-2_9#ESM

CHAPTER9 SAS PROCEDURES

The following example code in Listings 9-1 and 9-2 shows how to run a stored
process from a normal SAS program. This could be run in batch overnight or in fact from
anywhere you can execute SAS code.

Listing 9-1. SAS Program to run a stored process from a regular SAS program

* connect to metadata server ;
options metaserver=d351tq92 metaport=8561 metauser=phil metapass=goodnight_
for president ;
* close any open ODS destinations ;
ods _all close;
* run Stored Process and put the ODS results into an ODS Item Store ;
proc stp program='/Products/SAS Intelligence Platform/Samples/Sample:
Cholesterol by Sex and Age Group'
odsout=store;

Tun;
* set the format for graphics we will produce ;
goptions device=png;
* Open an HTML destination ;
ods HTML path="%sysfunc(pathname(work))" file="test.htm' style=HTMLBlue;
* Send the output to the current ODS destination ;
proc document name=& ODSDOC (read);

replay / levels=all;
run;
quit ;
ods HTML close;
%put _0ODSDOC: %superq(_0DSDOC) ;
%put Output has been put into %sysfunc(pathname(work)) ;

Listing 9-2. SAS Log produced from running the program

1 * connect to metadata server ;
options metaserver=d351tq92 metaport=8561 metauser=phil
metapass=XXXXXXXXX;

3 * close any open ODS destinations ;
4 ods all close;

284

CHAPTER9 SAS PROCEDURES

5 * run Stored Process and put the ODS results into an ODS Item Store ;

6 proc stp program='/Products/SAS Intelligence Platform/Samples/Sample:
Cholesterol by Sex and Age

6 ! Group'

7 odsout=store;

8 Tun;

NOTE: The Stored Process will execute locally.
NOTE: PROC_STP: ====== Proc STP Execution Starting ======
NOTE: PROC_STP: ====== Stored Process: /Products/SAS Intelligence
Platform/Samples/Sample:
Cholesterol by Sex and Age Group ======

>>> SAS Macro Variables:

_CLIENT=PROCSTP TKESTP Windows X64 SRV12 X86 64 6.2
_METAPERSON=phil
_METAUSER=phil@!*(generatedpassworddomain)*!
_ODSDEST=DOCUMENT

_ODSDOC=APSWORK. 0dsdoc00000001

_RESULT=STREAM

%STPBEGIN;

2
3
4 proc format;
5
6
7

value AgeAtStart low-35 = '< 36'
36-45 = '36 - 45'
46-55 = '46-55'
NOTE: Format AGEATSTART has been output.
8 56-high = '> 55';
9 run;
NOTE: PROCEDURE FORMAT used (Total process time):
real time 0.04 seconds
cpu time 0.01 seconds
9 ! quit;
10

285

CHAPTER9 SAS PROCEDURES

11 title 'Cholesterol by Sex and Age Group';

12 footnote "Generated %sysfunc(datetime(), datetime19.).";
13

14 proc sgpanel data=sashelp.heart;

15 panelby sex / columns=1

16 novarname;

17 hbox Cholesterol / category=AgeAtStart;

18 format AgeAtStart AgeAtStart.;

19 run;

19 ! quit;

NOTE: There were 5209 observations read from the data set SASHELP.HEART.
NOTE: PROCEDURE SGPANEL used (Total process time):

real time 0.16 seconds

cpu time 0.11 seconds
20
21 %STPEND;
NOTE: PROC_STP: ====== Stored Process: /Products/SAS Intelligence Platform/
Samples/Sample:

Cholesterol by Sex and Age Group Return Status = 0 ======
NOTE: PROC STP: ====== Proc STP Execution Ending ======
NOTE: PROCEDURE STP used (Total process time):

real time 0.60 seconds

cpu time 0.35 seconds

9 * set the format for graphics we will produce ;

10 goptions device=png;

11 * Open an HTML destination ;

12 ods HTML path="%sysfunc(pathname(work))" file="test.htm’
style=HTMLBlue;

NOTE: Writing HTML Body file: test.htm

13 * Send the output to the current ODS destination ;

14 proc document name=& ODSDOC (read);

15 replay / levels=all;

16 run;

286

CHAPTER9 SAS PROCEDURES

NOTE: The data set WORK.DATA1 has 4 observations and 21 variables.
NOTE: Format AGEATSTART has been output.

NOTE: There were 4 observations read from the data set WORK.DATA1.
NOTE: PROCEDURE FORMAT used (Total process time):

real time 0.03 seconds
cpu time 0.00 seconds
17 quit ;
NOTE: PROCEDURE DOCUMENT used (Total process time):
real time 1.59 seconds
cpu time 0.37 seconds

18 ods HTML close;

19 %put _0DSDOC: %superq(_ODSDOC) ;

_0DSDOC: APSWORK._o0dsdoc00000001

20 %put Output has been put into %sysfunc(pathname(work)) ;

Output has been put into
C:\Users\phil\AppData\Local\Temp\2\SAS Temporary Files\ TD11484 D351TQ92

The SAS Output is written to the location shown in the log, and the directory
listing of where PROC STP wrote the output to is also listed in the log. Notice that the
PROC DOCUMENT created a graphic file (Figure 9-1) called SGPanel.png (Figure 9-2).
The type was set by device= on the goptions statement, and the name defaults to the
procedure that was used to produce the graphic. If we have multiple graphics, then they
get a sequence number on the end, for example, SGPanel.png, SGPanell.png, SGPanel2.
png, and so on

287

CHAPTER9 SAS PROCEDURES

Cholesterol by Sex and Age Group
Female

SR 5 E——
36-45-|)—EE—;—-« ° R

46-55- o |

(b f
»55 F = E I { °

Male

Age at Start

36- 45 < d—EE}—hl-coe o0 o]

4655 »—E‘E—| P—

L - : : .
100 200 300 400 500
Cholesteral
Generated 04NOV2017:09:25:48.

Figure 9-1. Output produced by the previous program

|J., v Computer » OS(C:) » Users » phil » AppData » Local » Temp » 2 » SAS Temporary Files

v _TD11484 D351TQ%2_

-

MName Date medified Type Size
L APSWORK1 0471172017 08:25 File folder

4 formats.sasTbeat 04/11/201708:25 54S Catalog 17KB
4 profilesasTheat 04/11/20170%:25 SAS Catalog 5KB
C sasqopt.sasTheat 04/11/2017 09:25 SAS Catalog SKB
4 sasmaci.sasTheat 04/11/201709:25 SAS Catalog 13KB
I:,[sasmacl.sasTbeat 04/11/2017 09:25 545 Catalog 13KB
£} sasmac3.sasTheat 04/11/2017 08:25 SAS Catalog 13K8
| SASMONC.FOT 0471172017 08:25 FOT File 2KB
| SASMONCE.FOT 04/11/2017 09:25 FOT File 2KB
] sastmp-000000001.525Thitm 04/11/2017 09:25 SAS [tem Store 96 KB
3] sastmp-000000009.525Tbitm SAS Item Store 96 KB
M| SGPanel.png PNG image 24K8B
|| test.htm HTM File I6KB

Figure 9-2. Temporary files in work area used by the program run

288

CHAPTER9 SAS PROCEDURES

To read more about the STP procedure in SAS 9.4, you can use this link:
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/
poyy4kd3k4dco3nimcd76hogby2u.htm. Remember that Proc STP is only available from
SAS 9.3 onward.

PROC JSON

In SAS 9.4, there is a new procedure called PROC JSON which will create data in JSON

format from any data that SAS can read. This enables us to create JSON output to be used

in JavaScript objects from virtually any other data source. Some options are provided to

customize the JSON produced, which enables very flexible JSON output to be created.
Figure 9-3 shows a table we will use in an example.

CLASS ~
<1 Filter and Sort &5 Query Builder S Where | Data ~ Describe + Graph
A Neme /) Sex @ Aoe (@ Heigh @ Weight
1 [afed M 14 69 1125
2 |Aice F ' 13 565 | 84
3 |Babam |F 13 653 | 98
4 |Canl F 4] 628/ 1025
5 |Hervy M 1| 635/ 1025
6 |James M 12 573 83
7 | Jane F 12 59.8 845
8 |Janet F 15 625 125
9 |Jefirey M 13| 625 | 8
10 |John M 12 59 995
11 | Joyce [F 1| 513 50.5
12 | Judy IF 14 643)
13 | Louise F 12| 563 7
14 | May I3 15| 665/ 12
15 | Philp M 16| 72| 150
16 | Robert M 12| 648/ 128
17 |Ronaid |M 15| 67| 123
18 |Thomas |M 1| 575 85
19 | Wiliam M 15| 865 | 12

Figure 9-3. sashelp.class table to use in the following example

289

http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/p0yy4kd3k4dc03n1mcd76hog6y2u.htm
http://support.sas.com/documentation/cdl/en/stpug/68399/HTML/default/p0yy4kd3k4dc03n1mcd76hog6y2u.htm

CHAPTER9 SAS PROCEDURES
Here is the Stored Process code to create some JSON:

proc json out=_webout;
export &table / tablename="&table";
Tun;

Here is some of the JSON that is produced by it, when I feed in a parameter of
&table=sashelp.class:

{"SASISONExport":"1.0","SASTableData+sashelp.class":[{"Name":"Alfred","S
'‘M","Age" :14,"Height":69, "Weight":112.5},{"Name": "Alice", "Sex":"F" "Age i1
3,"He1ght" 56.5,"Weight":84},{"Name": "Barbara","Sex":"F","Age":13, "Height":
65.3, "Weight":98},{"Name":"Carol","Sex":"F","Age" :14, "Height":62.8, "Weight"
:102.5},{"Name": "Henry","Sex":"M","Age":14, "Height":63.5, "Weight":102.5},
{"Name" :"James","Sex":"M","Age":12, "Height":57.3, "Weight":83},{"Name":"Jane",

"Sex":"F","Age":12,"Height":59.8, "Weight":84.5}, {"Name"'"Janet" "Sex":"F",
"Age":15,"Height":62.5,"Weight":112.5},{"Name": "Jeffrey", "Sex":"M", "Age":13,
"Height":62.5,"Weight":84},{"Name":"John","Sex":"M ","Age".lZ,"He1ght".59,
"Weight":99.5}, {"Name"'"Joyce","Sex":" F","Age":11,"Height":51.3, "Weight":
50.5},{"Name":"Judy","Sex":"F","Age":14,"Height":64.3, "Weight":90},{"Name":
"Louise","Sex":"F" "Age" 12,"Height":56.3, "Weight":77},{"Name": "Mary",
"Sex":"F","Age":15,"Height":66.5, " "Weight":112},{"Name": "Philip","Sex":"M",
"Age":16, "Height":72, "Weight":150},{"Name": "Robert","Sex":"M","Age":12,

"Height":64.8,"Weight":128},{"Name": "Ronald","Sex":"M","Age":15, "Height":67,
"Weight":133},{"Name": "Thomas","Sex": "M","Age":11, "Height":57.5, "Weight":
85},{"Name":"William","Sex":"M","Age":15,"Height":66.5, "Weight":112}]}

You can trim some extraneous information from the JSON using the nosastags
option on PROC JSON. Here is the output we get if we use NOSASTAGS. Note: In the
previous output, I have bolded what is dropped by using NOSASTAGS.

[{"Name":"Alfred","Sex":"M","Age":14,"Height":69, "Weight":112.5},{"Name":
"Alice","Sex":"F","Age":13,"Height":56.5, "Weight":84},{"Name": "Barbara",
"Sex":"F","Age":13,"Height":65.3, "Weight":98},{"Name": "Carol","Sex":"F",
"Age":14,"Height":62.8, "Weight":102.5},{ "Name": "Henry", "Sex":"M", "Age":14,"
Height":63.5,"Weight":102.5},{"Name":"James", "Sex":"M", "Age" :12, "Height":
57.3,"Weight":83},{"Name":"Jane","Sex":"F","Age":12,"Height":59.8, "Weight":
84.5},{"Name":"Janet","Sex":"F","Age":15, "Height":62.5, "Weight":112.5},

290

CHAPTER9 SAS PROCEDURES

{"Name":"Jeffrey","Sex":"M","Age":13,"Height":62.5, "Weight":84},{"Name":
"John","Sex":"M" "Age" 12,"Height":59, "Weight":99.5},{"Name": "Joyce","Sex":
"F","Age":11,"Height":51.3, "Weight":50.5},{"Name": "Judy","Sex":"F", "Age":
14,"Height":64.3,"Weight":90},{"Name":"Louise","Sex":"F","Age":12,"Height":
56.3, "Weight":77},{"Name": "Mary", "Sex":"F","Age":15, "Height":66.5, "Weight":
112},{"Name":"Philip","Sex":"M","Age":16, "Height":72, "Weight":150},{"Name":

"Robert","Sex":"M","Age":12,"Height":64.8, "Weight":128},{"Name":"Ronald",
"Sex":"M","Age":15,"Height":67, "Weight":133},{"Name": "Thomas","Sex":"M",
"Age":11,"Height":57.5, "Weight":85},{"Name":"William", "Sex":"M","Age":15,
"Height":66.5, "Weight":112}]

You can also lay out the JSON produced in an easier to read form using the pretty
option on PROC JSON. This makes it far easier to read. Here is the first part of the output
produced:

{
"SASISONExport": "1.0 PRETTY",

"SASTableData+class": |
{
"Name": "Alfred",
"Sex": "M",
"Age": 14,
"Height": 69,
"Weight": 112.5

"Name": "Alice",
"Sex": "F",
"Age": 13,
"Height": 56.5,
"Weight": 8

1

291

CHAPTER9 SAS PROCEDURES

If we use the PRETTY and NOSASTAGS options, then here is the first part of the
output produced:

[

{
"Name": "Alfred",
"Sex": "M",
"Age": 14,
"Height": 69,
"Weight": 112.5

})

{
"Name": "Alice",
“Sex": "F",
"Age": 13,
"Height": 56.5,
"Weight": 84

}J

As we know, PROC JSON can produce JSON data, and there are many JavaScript
objects that can use JSON data as input. There is an object called jqGrid which has a
URL parameter which lets you point to a data source that is in JSON format. Here is
a JavaScript snippet of code which would be used to define where the data is for that
object. In this case, I can point the object to the SAS Stored Process Web Application,
which will call a Stored Process to provide the JSON data:

url: 'http://localhost/SASStoredProcess/do? program=%2FUser+Folders%2Fphil%
2FMy+Folder%2Fjson’,

In that Stored Process, I can use PROC JSON to produce the JSON data which is
needed to feed the object. If you need to customize the standard JSON in order to fit
some specific requirements for a JavaScript object, then you are able to use the write
statement to write out extra structure to your JSON. In the case of using the jqGrid object,
it needs a slightly different JSON layout to standard. I used the code here to get my JSON
in the right format for using with the jqGrid object:

292

CHAPTER9 SAS PROCEDURES

proc json out=_webout pretty nosastags;
write open object;
write values "rows";
write open array;
export sashelp.orsales;
write close;
write close;
run;

Notice in the preceding code that we write to _webout, which when used in a Stored
Process with the Stored Process Web Application will stream data directly to the browser.

Another useful thing you might do with PROC JSON is that when you are using some
kind of static HTML, you might want to get a list of variables that exist in the data table
you are using, so you can automatically generate the menus (for instance). The following
code in a stored process would get variable name, type, and label from a table, and then
send it back to the browser where JavaScript could make use of that data:

proc contents data=sashelp.class out=contents noprint;
run;

filename _webout temp;

proc json out=_webout nosastags pretty;
export contents(keep=name type memlabel) ;
run;

The JSON that would be generated is as follows in Listing 9-3.

Listing 9-3. Generated JSON
[

{
"MEMLABEL": "Student Data",
"NAME": "Age",
"TYPE": 1

b

{

"MEMLABEL": "Student Data",
"NAME": "Height",

293

CHAPTER9 SAS PROCEDURES

"TYPE": 1
}s

{
"MEMLABEL": "Student Data",

"NAME": "Name",

"TYPE": 2
})
{
"MEMLABEL": "Student Data",
"NAME": "Sex",
"TYPE": 2
})
{

"MEMLABEL": "Student Data",
"NAME": "Weight",
"TYPE": 1

Here is a full working example in Listing 9-4.

Listing 9-4. Full example

var myfilter = "http://<server>/SASStoredProcess/do? program=<program>%2F
<stored process name>";

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:mso="urn:schemas-
microsoft-com:office:office" xmlns:msdt="uuid:C2F41010-65B3-11d1-A29F-
00AA00C14882">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />

<script type="text/javascript" charset="utf8" src="../../webres/jquery--
3.2.1.min.js"></script>

294

CHAPTER9 SAS PROCEDURES

<script type="text/javascript" charset="utf8" src="../../webres/jquery-
ui-1.12.1/jquery-ui.js"></script>

<link rel="stylesheet" type="text/css" href="../../webres/jquery-ui-
themes-1.9.2/base/jquery-ui.css" />

<link rel="stylesheet" type="text/css" href="../../webres/DT4/datatables.
min.css"/>

<script type="text/javascript" src="../../webres/DT4/datatables.min.js">
</script>

<script type="text/javascript">
var myfilter = "http://<server>/SASStoredProcess/do? program=<program>%2F
<stored process name>";
var call = $.ajax({ url: myfilter,
type: "GET",
dataType: "json",
D;
call.done(function (data,textStatus, jgXHR){
$('#example2 tbody').off('click', 'tr');
table2 = $('#example2').DataTable({
dom: 'lfrtip', //'Bfrtip', /*dtsettings,*/
bLengthChange: true,
buttons: [
"excelHtmls'
]J
"orderCellsTop": true,
"bDestroy": true,
"bProcessing”: true,
"lengthMenu": [[10, 25, 50, -1], [10, 25, 50, "All"]],
"aaData": data,
"scrollX": true,
"aoColumns": [
{ 'sTitle': 'Year','mData': 'Year', ‘'sClass': 'center column' }
,{ 'sTitle': 'Quarter','mData': 'Quarter', 'sClass': 'center_
column' }
,{ 'sTitle': 'Product Line','mData': 'Product Line', ‘'sClass':
"center_column' }

295

CHAPTER9 SAS PROCEDURES

,{ 'sTitle': 'Product_Category','mData': 'Product_
Category', ‘'sClass': 'center_column' }
,{ 'sTitle': 'Product Group','mData': 'Product_
Group', ‘'sClass': 'center _column' }
,{ 'sTitle': 'Quantity','mData': 'Quantity', ‘'sClass':
"center_column' }
,{ 'sTitle': 'Profit','mData': 'Profit', 'sClass': 'center_
column' }
,{ 'sTitle': 'Total Retail Price','mData’: 'Total Retail
Price', 'sClass': 'center column' }

]

,"olLanguage": {
"sSearch": "Search All Columns:

}
1

1s
call.fail(function (jgXHR,textStatus,errorThrown){

alert('unable to obtain data from SAS');
D;
</script>
</head>
<body>
<table id="example2' class='display' width="'100%"'><tfoot><tr></tr>
</tfoot></table>
</body>
</html>

PROC STREAM

There are various ways that we can get code into a web browser. We could just write a
simple file and then load that into the web browser, such as by creating a file report.
HTML and opening it. Usually a better way to do this is to use SAS/Intrnet or a Stored
Process to stream code to the browser. From a Stored Process, you can do this by writing
lines to the webout fileref. This could be done by writing to it from a data step, but
you can also use PROC STREAM to do this.

296

CHAPTER9 SAS PROCEDURES

Streaming with a Data Step

The data step can be used to stream by writing to _webout, when used from a Stored
Process in the SAS Stored Process Web Application. If you use any macro language in what
is streamed, then it would not be resolved. For example, the following Stored Process

%let name=Phil Mason ;
data null ;
file webout ;

input ;
put infile ;
cards ;
<HTML>
<h1>Hello &name</h1>
</HTML>
55
Tun ;

Listing 9-5 would produce this output (Figure 9-4), when run through the SAS Stored
Process Web Application.

Hello &name

Figure 9-4. This is displayed when we view the HTML generated from Listing 9-1

If you want to resolve the macro language before streaming the HTML code out, then
you can use something like the resolve() function. You would then change your Stored
Process code to be like this:

%let name=Phil Mason ;

data null_ ;
file webout ;
input ;
line=resolve(_infile) ;
put line ;
cards ;

<HTML>

297

CHAPTER9 SAS PROCEDURES

<h1>Hello &name</h1>
</HTML>
55

run ;

This will produce the following output (Figure 9-5) in the web browser.

Hello Phil Mason

Figure 9-5. Using resolve function means we see this from the HTML generated

There are some problems using the resolve function in the data step, particularly
that there is a limitation on size. So the text for each line can only ever fit into the size of
a variable, which is 32K maximum. If macro language expands to take more space than
that, then it will be truncated. This can lead to unexpected results and errors. There can
be additional issues with escaped HTML characters such as & which is not a SAS macro
variable, although SAS will think it is.

Streaming with PROC STREAM

Another way to stream data is to use PROC STREAM. The program would look like this:

proc stream outfile= webout;
BEGIN

<HTML>

<h1>Hello &name</h1>

</HTML>

PROC STREAM reads text that appears after the BEGIN statements up to the four
semi-colons which indicate the end of input. It then writes the lines to the webout
filreref. As the lines are written, any macro references are resolved, and unlike the
RESOLVE() function, there is no limit of data size. This is a hugely powerful facility. In
the simplest example, we could have an HTML file where we have a macro variable for
the title, which would be replaced as the HTML is streamed to the browser.

298

CHAPTER9 SAS PROCEDURES

A more complex example shows how macro variables and other macro language

such as macro functions are all resolved when used within PROC STREAM:

%let name=Phil Mason ;

proc stream outfile= webout ;
BEGIN

<HTML>

<h1>Hello &name</h1>

The time is %sysfunc(time(),time.)
</HTML>

3335

run ;

The output produced by this is displayed in Figure 9-6.

Hello Phil Mason

The time is 15:48:30

Figure 9-6. Output with text resolved from macro function call

An even more complex example shows how all macro language is resolved by PROC
STREAM, so even if you use macro programs, they will resolve and what they produce
will be included into the stream. If you have a Stored Process with the following code

%let name=Phil Mason ;

%macro loop(n) ;
%do i=1 %to &n ;

Counting: &i

%end ;

%mend loop ;

proc stream outfile= webout ;

BEGIN

<HTML>

<h1>Hello &name</h1>

The time is %sysfunc(time(),time.)

299

CHAPTER9 SAS PROCEDURES

<p>
%loop(5)
</HTML>

)i

run ;

it produces the following output (Figure 9-7).

Hello Phil Mason

The time is 15:55:52

Counting: 1
Counting: 2
Counting: 3
Counting: 4
Counting: 5

Figure 9-7. HTML produced by macro program looping and generating text

Streaming RTF Files with PROC STREAM

PROC STREAM also works well with other kinds of text files, such as RTF files. You could
make a letter and save it as RTF and replace certain parts with macro variables, and
then by using PROC STREAM, you could effectively carry out a mail merge to produce a
customized letter for a set of macro variables.

So if I go into Microsoft Word and make a document like the one shown in Figure 9-8

Dear Sir,
The date is %sysfunc(date(),date.).

Yours sincerely,
&name

Figure 9-8. Document in Microsoft Word with some macro code

300

CHAPTER9 SAS PROCEDURES

I can then save that as an RTF file. This file will have many lines of RTF code, but the
lines of interest to use are the ones with the macro statements on them. These are

\par The date is %sysfunc(date(),date.).
\par

\par Yours sincerely,

\par &name

The following code can be used to read the RTF file in, resolve any macro language,
and write it to a new RTF file: “&streamdelim;”

%let name=Phil Mason ;

filename oldrtf "F:\letter.rtf" recfm=v lrecl=32767;
filename newrtf "F:\letteri.rtf" recfm=v lrecl=32767;
proc stream outfile=newrtf quoting=both asis;

begin

&streamdelim;

%include oldrtf;

DOSUB

We can also run SAS code while processing the PROC STREAM by using the dosub
function with a %sysfunc. SAS code to be run is pointed to by a fileref, and then the
dosub uses that fileref. If you have some code that you want to run during PROC
STREAM, such as this

filename myHTML "temp.txt";

data null ;
file myHTML;
set sashelp.class end=end ;
if n_=1 then put '<h1>This is my heading</h1><table>’;
put '<tr><td>' name '</td>' '<td>' age '</td></tr>' ;
if end then put '</table>' ;

Tun;

301

CHAPTER9 SAS PROCEDURES

you can run the preceding code by pointing to the file it is in (dosub.sas) and using the
dosub function to run it in PROC STREAM as follows:

filename makeHTML 'c:\test\dosub.sas' ;
filename myHTML "temp.txt";
filename report "report.HTML";

proc stream outfile=report ;

begin

%let abc=%sysfunc(dosub(makeHTML));
%include myHTML;

3355

This runs dosub.sas, which writes HTML to temp.txt. Then in PROC STREAM, we
include temp.txt which writes the HTML that the data step generated out to report.
HTML. Being able to run code on the fly from within PROC STREAM adds a huge
amount of power and flexibility to the use of PROC STREAM.

If you wanted to read a file in to be streamed, without having any macro language
resolved, then you can use the readfile keyword. Often this might be used to get some
content and put it between PRE tags in HTML, since they are used for pre-formatted
content. If you had a log you wanted shown as is in a non-proportional font, then that
would be easily done as shown in the code that follows.

For example, the following code uses readfile to read in some text using the exact
formatting it had in the file. We then use the PRE HTML tags to enclose that text which
indicates that it is pre-formatted text. You can also see that the &name which is inside the
pre-formatted text is not resolved. However, the &name which is inside the text of PROC
STREAM is resolved.

%let name=Phil ;
filename text temp ;
data null ;
file text ;
input ;
put infile ;
cards4 ;
Here is a line
And here is the next line

302

CHAPTER9 SAS PROCEDURES

Here is a macro variable - &name
3535
run ;
filename dest temp ;
proc stream outfile=dest ;
begin
<PRE>
&streamdelim readfile text ;
</PRE>
My name is &name
3555
data null_;
infile dest ;
input ;
put _infile_ ;
run;

The code produces the following output in the log:

341 %let name=Phil ;

342 filename text temp ;
343 data null ;

344 file text ;

345 input ;

346 put _infile_;

347 cards4 ;

NOTE: The file TEXT is:
Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary
Files_TD10384_D351TQ92_\#LN00216,
RECFM=V,LRECL=32767,File Size (bytes)=0,

Last Modified=28 September 2017 21:46:30 o'clock,
Create Time=28 September 2017 21:46:30 o'clock

NOTE: 4 records were written to the file TEXT.
The minimum record length was 80.
The maximum record length was 80.

303

CHAPTER9 SAS PROCEDURES

NOTE:

352
353
354
355
356
357
358
359
NOTE:

360
361
362

363
364
365
366
367
368

NOTE:

<PRE>
Here
And h
Here

304

DATA statement used (Total process time):
real time 0.01 seconds

cpu time 0.01 seconds

5535

run ;

filename dest temp ;
proc stream outfile=dest ;
begin
<PRE>
&streamdelim readfile text ;
PROCEDURE STREAM used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds
</PRE>

My name is &name

)y

data null ;
infile dest ;
input ;
put _infile ;
run;

The infile DEST is:
Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary
Files_TD10384_D351T092_\#LN00217,
RECFM=V,LRECL=32767,File Size (bytes)=358,

Last Modified=28 September 2017 21:46:30 o'clock,

Create Time=28 September 2017 21:46:30 o'clock

is a line
ere is the next line
is a macro variable - &name

CHAPTER9 SAS PROCEDURES

</PRE>My name is Phil

NOTE: 6 records were read from the infile DEST.
The minimum record length was 5.
The maximum record length was 80.

NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

You can force a new line in the streamed output by using newline. You must have
the stream delimiter followed by newline in order to do this. There is no other way to be
absolutely sure of having a line break in a particular place.

For example, the following code redefines the stream delimiter to be _delim_
and then uses that with newline to make it go to a new line in the output.

filename sample temp ;

proc stream outfile=sample resetdelim='_delim_'; begin
Line 1

delim newline;

Line 2

555;data _null_;
infile sample ;
input ;
put _infile_ ;
run ;

The log for this is as follows.

393 filename sample temp ;
394 proc stream outfile=sample resetdelim="_delim_"; begin
395 Line 1
NOTE: PROCEDURE STREAM used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

396 _delim_ newline;
397 Line 2
398 5555

305

CHAPTER9 SAS PROCEDURES

399

400 data null ;

401 infile sample ;
402 input ;

403 put _infile_ ;
404 run ;

NOTE: The infile SAMPLE is:
Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary
Files_TD10384_D351TQ92_\#LN00220,
RECFM=V,LRECL=32767,File Size (bytes)=16,

Last Modified=28 September 2017 21:59:28 o'clock,
Create Time=28 September 2017 21:59:28 o'clock

Line 1

Line 2

NOTE: 2 records were read from the infile SAMPLE.
The minimum record length was 6.
The maximum record length was 6.

NOTE: DATA statement used (Total process time):
real time 0.00 seconds

cpu time 0.00 seconds

If we didn’t redefine the delimiter, then the code would have been like the following
and produced the same result:

filename sample temp ;

proc stream outfile=sample ; begin
Line 1

&streamdelim newline;

Line 2

3555

data null ;
infile sample ;
input ;
put infile ;

run ;

306

If

CHAPTER9 SAS PROCEDURES

we remove the line which forces the newline, then the code will be as follows:

filename sample temp ;

proc
Line
Line
3335

data

stream outfile=sample ; begin
1
2

_null ;

infile sample ;

input ;
put _infile_;

run ;

And this produces the following result:

451
452
NOTE:

453
454
455

456
457
458
459
460
461

NOTE:

filename sample temp ;
proc stream outfile=sample ; begin
PROCEDURE STREAM used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds
Line 1
Line 2
3355
data null ;

infile sample ;

input ;

put infile ;
run ;

The infile SAMPLE is:
Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary
Files_TD10384_D351TQ92_\#LN00225,
RECFM=V,LRECL=32767,File Size (bytes)=14,

Last Modified=28 September 2017 22:07:29 o'clock,

Create Time=28 September 2017 22:07:29 o'clock

307

CHAPTER9 SAS PROCEDURES

Line 1line 2
NOTE: 1 record was read from the infile SAMPLE.

The minimum record length was 12.

The maximum record length was 12.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds

cpu time 0.01 secondsYou should always check the performance
of code using features like dosub, as it can be quite inefficient in some cases and may
require some tuning or careful design. Read more about PROC STREAM in the SAS 9.4
documentation here: http://documentation.sas.com/?docsetId=proc&docsetTarget
=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docset
Version=9.4&locale=en.

PROC HTTP

The HTTP procedure lets you issue HTTP requests. This means that you can make GET
or POST requests as well as other kinds of requests. You send data in the request and can
receive a response. Then you'll be able to effectively make a call to a URL using PROC
HTTP and get the results of it. You can parse the output returned and extract data from

it or do something else with that output. You could call a web service, Stored Process, or
virtually any web page.

Example Accessing a Web Page

The simplest usage of PROC HTTP is simply to open a web page and receive the response,
which will usually be the HTML. The following code in Listings 9-5 and 9-6 opens the SAS
home page and collects the HTML into a temporary file under the fileref resp.

Listing 9-5. SAS Program that opens a web page and writes out response

filename resp TEMP;

proc http
url="http://www.sas.com"
out=resp;

Tun;

308

http://documentation.sas.com/?docsetId=proc&docsetTarget=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetTarget=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetTarget=p06pqn7v5nkz02n0zkpq7832j1yp.htm&docsetVersion=9.4&locale=en

CHAPTER9 SAS PROCEDURES
Listing 9-6. SAS Log of Listing 9-5

73 filename resp TEMP;
74 proc http

75 url="http://www.sas.com"
76 out=resp;
77 1un,

NOTE: PROCEDURE HTTP used (Total process time):

real time 1.87 seconds
cpu time 0.01 seconds
NOTE: 200 OK

Example Using a Web Service

The following code in Listing 9-7 allocates two temporary files, one which is used as
input to a web service and Listing 9-8 is used to receive the output.

Listing 9-7. SAS Program that opens a web service passing in a value

dm 'log;clear’ ;
filename in temp ;
filename out temp ;
data null ;

file in;

input;

put infile ;

datalines4;
Celsius=0

5535

proc http
in=in
out=out

url="https://www.w3schools.com/xml/tempconvert.asmx/CelsiusToFahrenheit"
method="post"

309

CHAPTER9 SAS PROCEDURES

ct="application/x-www-form-urlencoded"
verbose
5
run;
data null_;
infile out ;
input ;
put _infile_;
run ;

Listing 9-8. SAS Log from Listing 9-7 that uses a web service

84 dm 'log;clear’ ;

85

86 filename in temp ;
87 filename out temp ;
88 data _null ;

89 file in;

90 input;

91 put _infile_;
92 datalines4;

NOTE: The file IN is:
Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary Files_
TD15020 D351TQ92 \#LN00044,
RECFM=V, LRECL=32767,File Size (bytes)=0,
Last Modified=05 September 2017 21:45:59 o'clock,
Create Time=05 September 2017 21:45:59 o'clock

NOTE: 1 record was written to the file IN.
The minimum record length was 80.
The maximum record length was 80.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.01 seconds

310

CHAPTER9 SAS PROCEDURES

9% 5555

95

96 proc http

97 in=in

98 out=out

99 url="https://www.w3schools.com/xml/tempconvert.asmx/
CelsiusToFahrenheit"

100 method="post"

101 ct="application/x-www-form-urlencoded"

102 verbose

103 ;

URL = https://www.w3schools.com/xml/tempconvert.asmx/

CelsiusToFahrenheit

METHOD = post

cT = application/x-www-form-urlencoded

In = C:\Users\phil\AppData\Local\Temp\2\SAS Temporary

Files\ TD15020 D351TQ92_\#LN00044
Out = C:\Users\phil\AppData\Local\Temp\2\SAS Temporary
Files_TD15020_D351TQ92_\#LN00045

104 run;

NOTE: PROCEDURE HTTP used (Total process time):

real time 0.30 seconds
cpu time 0.03 seconds

NOTE: 200 OK

105

106 data null ;

107 infile out ;

108 input ;

109 put _infile_ ;

110 run ;

311

CHAPTER9 SAS PROCEDURES

NOTE: The infile OUT is:
Filename=C:\Users\phil\AppData\Local\Temp\2\SAS Temporary Files_
TD15020_D351TQ92_\#LN00045,

RECFM=V,LRECL=32767,File Size (bytes)=98,
Last Modified=05 September 2017 21:45:59 o'clock,
Create Time=05 September 2017 21:45:59 o'clock

<?xml version="1.0" encoding="utf-8"?>
<string xmlns="https://www.w3schools.com/xml/">32</string>
NOTE: 2 records were read from the infile OUT.
The minimum record length was 38.
The maximum record length was 58.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

Note The URL access method on the FILENAME statement provides quite similar
functionality to PROC HTTP. It might be a better option if you are considering PROC
HTTP. You can read about PROC HTTP in SAS 9.4 here: https://support.sas.

com/documentation/cdl/en/proc/68954/HTML/default/viewer.htmin
Obdg5vmrpyi7jnipbgbje2atoov.htm.

PROC EXPORT

PROC EXPORT takes a SAS table and converts to another format supported.
The converted formats could be

o CSV
o EXCEL
o JMP

These are delimited files, like a CSV, but with another delimiter.
The file produced is written to a fileref specified using OUTFILE. From a Stored
Process running through the Stored Process Web Application, we could specify this as

312

https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0bdg5vmrpyi7jn1pbgbje2atoov.htm
https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0bdg5vmrpyi7jn1pbgbje2atoov.htm
https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0bdg5vmrpyi7jn1pbgbje2atoov.htm

CHAPTER9 SAS PROCEDURES

_webout in order to send the exported data directly back to the browser. The REPLACE
parameter can be specified in order to replace any file which is there already. When
streaming to the browser, we always need to specify this. For example, to stream CSV
data from a specific table back to the browser, we could use a PROC EXPORT like this:

proc export data=sashelp.orsales outfile= webout dbms=csv replace;
Tun;

Use Code with a Macro Variable for the Table Name

To generalize this code so it can be used for different tables, we can replace the table
name with a macro variable. Here is that code:

proc export data=&table outfile= webout dbms=csv replace;
run;

Call Stored Process Passing Parameter for Table

If we now create a Stored Process containing the previous SAS code, then we will be able
to call that by using the SAS Stored Process Web Application as follows, remembering to
specify a value for the table to be exported. This will then send the table converted to a
CSV back to the web browser:

http://localhost/SASStoredProcess/do?_program=/User+Folders/phil/My+Folder/
csv8table=sashelp.class

Use Code in JavaScript to Feed Objects

If you needed CSV data to feed to a JavaScript object, then you could use a line of
JavaScript like the following:

$.get("http://localhost/SASStoredProcess/do? program=/User+Folders/phil/
My+Folder/csv8table=sashelp.class', function(csv)

PROC IMPORT

This can be used to read data of various formats into SAS tables. When used with Stored
Processes, you could use this to import the data from files uploaded to the server.

313

CHAPTER9 SAS PROCEDURES

Here is some HTML code which will prompt the user for some files to upload to the
server. Note that we set the method to POST, so that we can handle the files being posted
in the HTTP request; the alternative would be GET but that would not work in all cases.
The enctype is set so that we can send multiple files in the upload.

<HTML>

<form method="post" action="http://d351tq92/SASStoredProcess/do?"
enctype="multipart/form-data"»

<input type="hidden" name="_program" value="/User Folders/phil/My Folder/
upload">

Enter CSV to upload and import <input name="file1" type="file"><p>
Enter CSV to upload and import <input name="file2" type="file"><p>
Enter CSV to upload and import <input name="file3" type="file"><p>
Show this many rows <input name="obs" type="text" value="10"><p>
Debug options <input name='_debug' type='text'><p>

<input type="submit" value="Run">

</form>

</HTML>

Figure 9-9 is what is displayed when the HTML is used. Notice that when you specify

a type of “file”, you get a button which opens a dialog and lets you browse the file system
and select a file. When files are uploaded, we get a bunch of automatic macro variables
populated which all start with _WEBIN_.

Enter CSV to upload and import Choose File |No file chosen

Enter CSV to upload and import Choose File No file chosen

Enter CSV to upload and import Choose File No file chosen

Show this many rows 10

Debug options

Run

Figure 9-9. Displayed in browser from previous HTML

Here is the Stored Process code which the HTML form calls. The PROC SQL at the
start of the code lets us look at the values of the . WEBIN_ macro variables. We get a

314

CHAPTER9 SAS PROCEDURES

count of the number of files uploaded which is in _webin file count, and we use that to

look through each filename to carry out an import on it. We have some code @ to fix up
the file format of the CSV so it is ready for PROC IMPORT. PROC IMPORT imports each
CSVin and assigns it a table name.

proc sql ;
select * from dictionary.macros
where name like ' WEBIN %' ;

quit ;

filename temp temp ;

%macro read loop ;

%if

%do

& webin file count=1 %then %do ;
%let webin_fileref1=8 webin_fileref ;
%let webin filenamel=& webin filename ;
%end ;
i=1 %to & webin file count ;
%let csv_file=%sysfunc(pathname(8& webin fileref8i));
%put &=csv_file ;
* fix the end of line character for Proc Import ;
data _null_; ©
infile "&csv_file" sharebuffers termstr=cr ;

file temp termstr=crlf ;
input ;
line=compress(_infile_, '1a"'x) ;
put line ;
run ;
filename in "&csv_file" ;
proc import datafile=temp
dbms=csv
replace
out=Ffiledi ;
getnames=yes ;
run ;
%let dsid=%sysfunc(open(filedi)) ;

title "%sysfunc(attrn(8dsid,nobs),commai2.) rows imported from CSV

file: &&% webin filename&i" ;

315

CHAPTER9 SAS PROCEDURES

%let dsid=%sysfunc(close(8dsid)) ;
title2 "Table produced: file&i" ;
proc print data=file8i(obs=80obs) ;
run ;
%end ;

%mend read_loop ;

%read_loop

Figure 9-10 is the kind of output you get from the PROC SQL, which shows the
automatic variables that describe the file being uploaded.

Offset into Macro

Macro Scope Macro Variable Name Variable | Macro Variable Value
GLOBAL _WEBIN_CONTENT_LENGTH 0 2597

GCLOBAL _WEBIN_CONTENT_TYPE 0 | text/csv

GLOBAL _WEBIN_FILEEXT 0| csv

GLOBAL _WEBIN_FILENAME 0 | Barclays 2017-10.csv
GLOBAL _WEBIN_FILEREF 0 | #LNCOE31

GLOBAL _WEBIN_FILE_COUNT 0 1

CLOBAL _WEBIN_NAME 0 | file1

GLOBAL _WEBIN_STREAM 0 _int

GLOBAL _WEBIN_STREAM_COUNT 0 1

Figure 9-10. Automatic macro variables available relating to reading files into
stored processes from a web browser

As this section is about using PROC IMPORT, let me describe its use in this instance.
PROC IMPORT specifies the file that is being read in by using the datafile option which
in our case points to a fileref, although it can also point directly at a file. The dbms
option specifies what the file format is, and several formats are supported such as
delimited files, EXCEL, and more. The out option specifies what SAS table to create
when the file is imported. The replace option specifies that a file should be overwritten
if it exists already. You can read about the procedure and options in depth in the
documentation.!

'http://documentation.sas.com/?docsetId=proc8docsetTarget=n18jyszn33umngni4czw2qfwy
thc.htmddocsetVersion=9.4&locale=en

316

http://documentation.sas.com/?docsetId=proc&docsetTarget=n18jyszn33umngn14czw2qfw7thc.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetTarget=n18jyszn33umngn14czw2qfw7thc.htm&docsetVersion=9.4&locale=en

CHAPTER9 SAS PROCEDURES

Summary

In this chapter, we look at some of the most useful SAS procedures for using with stored

processes and building web applications:

Proc STP allows us to run a stored process from a regular SAS
program, meaning it could be run in the background or batch, or we
could run several stored processes from a single SAS program.

Proc JSON allows us to access any data that SAS can access and write
JSON data out. There is quite a lot of flexibility available so we can
even build quite complex JSON structures.

Proc STREAM allows us to take a “stream” of text and send it to a
destination (e.g., the web browser) and resolve all macro variables
and programs as it goes. You can stream all kinds of text, such as
HTML, JavaScript, CSS, RTE, CSV, and so on.

You can use DOSUB to run SAS code while streaming text.

Proc HTTP lets you issue HTTP GET or POST requests and capture
the response for further processing.

Proc EXPORT will convert data the SAS can access into another
format such as CSV or EXCEL.

Proc IMPORT will read in a range of different data and convert it into
a SAS-supported format.

317

Index

A

Action element, 236
_ACTION parameter

background, 207, 208

combining values, 209

data, 208

FORM, 209

INDEX, 208

JSP, 209, 210
Agile approach, 13
Anchor tag, 79
Application programming

interface (API), 81
Architectural concepts, 14, 15
Asynchronous JavaScript and
XML (AJAX), 85

Authentication

error message, 234

HTML Menu, creation

code, 235
parameter value, 236

Automatic macro variables, 245, 316

B

Bespoke tools, 20

Beyond Compare, 26, 27
Body onload method, 267
Browser support, 81

© Philip Mason 2020

C

CDN jQuery, 84
Client-side validation, 77
Code comparison tools
Beyond Compare, 26, 27
FC command, 28, 29
WinMerge, 28
Color prompt, 188
Comma-separated values (CSV)
consecutive commas, 105
data step, 106-110
list of values, 105
PROC EXPORT, 110, 111
SASHELP.SAS, 111
spreadsheet program, 105
Common Development
(CDEV), 18
Component integration
testing (CIT), 18
Concurrent versions
system (CVS), 17
Content delivery
networks (CDNs), 84, 85
Cookies, 60, 61
Crossfilter, 84
Cross-platform support, 81
Custom HTML, 37, 38
macro variables, 46
_webout fileref, 39

319

P. Mason, SAS Stored Processes, https://doi.org/10.1007/978-1-4842-5925-2

https://doi.org/10.1007/978-1-4842-5925-2#ESM

INDEX

D

D3, 278, 280
Data, See also Dynamic data; Static data
JavaScript objects, 101, 104
nosastags, 104
Stored process code, 102, 103
Datafile option, 316
Data Integration Studio, 19, 129
Data Library Manager, 193
Data library prompt, 189
Data source item prompt, 184-186
Data structures, 72
Date prompt, 173, 175
Date range prompt, 175-179
_debug flags, 210, 211
Debugging JavaScript, 68, 69
Dependencies
name prompt, 193
prompt defining, sex, 191
SAS code, 191
stored process, 196
user selects values, 193
values for sex, 192
Developing web applications
environments
SAS, 19
tools, SAS, 19
write our own tools, 20
IDE tools, 23, 24
JavaScript IDE, 24-26
Lint tools, 22, 23
multiple environment system flow, 18
techniques, stored processes, 21, 22
Development models
Agile approach, 13
architectural concepts, 14, 15
documents production, 15
freestyle approach, 11, 12

320

source control systems (see Source
control systems)
V-model, 12, 13

Document Object Model (DOM), 70
dosub function, 301, 302, 304-308
Drop-down menu of choices, 237
Dynamic data

creation, Stored Processes, 100
JSON data, 99
SAS program, 99

ECMAScript, 65
End-user documentation, 15
Enterprise Guide, 19, 21, 39

context menu, Stored Process, 156
data sources and targets, 153, 154
execution options, 152
icon, Stored Process, 155
labelling and saving, Stored
Process, 148
location to run code, 150-152
log, Stored Process run, 157
modifying stored process
context menu, 159
general tab, add new
prompt, 161, 162
menu in left pane, 160
new prompt, creation, 160
prompt type, choosing (see Prompt
types)
new Stored Process wizard, 149
process prompts, 152, 153
prompting system, 157-159
results tab, 156
SAS code, 149, 150
stored process creation, 148
summary page, wizard, 155

Event-handler attributes, 72

Event handlers, 70

eXtensible Markup Language (XML)
create SASHELP.CLASS, 113-115
Proc Print, 113
reading XML data into SAS, 112, 113
text file, 112

F

File/directory prompt, 186-188
fileref, 117
Form attributes
autocomplete, 58
enctype, 58
get, 58
method, 58
name, 58
post, 59
target, 58
FORM tag, 34-36, 236
Freestyle approach, 11, 12
Functionality, 82

G

GitHub, 17
_GOPT_DEVICE, 211
_GOPT_HSIZE, 211
_GOPTIONS, 212
_GOPT_VSIZE, 211
_GOPT_XPIXELS, 211
_GOPT_YPIXELS, 212

H

Handsontable, 84
Hide at runtime box, 162

INDEX

Highcharts, 84, 276, 277
Highmaps, 84
Highstocks, 84
HTDOCS directory, 73, 74
HTML
add HTML to web page
HTML forms, 51-53
macro variables, 46-51
multiple data, 45
template, 44
CSS, 33
form attributes (see Form attributes)
FORM tag, 34-36
generate HTML, stored process
basic ODS, 37
custom HTML, 37, 38
PROC STREAM, 39
STPBEGIN and STPEND
macros, 39-44
head section, 33
menus, Stored Process, 54-57
persistence (see Persistence)
SAS library, 63
simple HTML code, 32
structure, 33
HTMLS5, 31
HTML form, 51-53
Hyperlink prompt, 167, 168

Index page
context menu, 206
link, Stored Process, 205
metadata folder structure, 204
run stored processes, 204
Stored Processes, list of, 204
INPUT/PUT statements, 38

321

INDEX

Input streams, 196
Interactive Development

Environment (IDE), 23, 24

J, K
JavaScript
debugging, 68, 69
description, 65
ECMAScript, 65
event handlers, 70
functions, 77
generate, Stored Processes
feed data to object, 72, 73
load data, 72
running SAS code, 71
HTML
attributes of tags, 69
basic DOM, 70
interactivity to web pages
pop up window, 76, 77
URLs, 79, 80

validating form fields, 77-79

libraries to HTML, 71
limitations, 65
program, 66, 67
web server
directories, 74
libraries, 75
relative paths, 74
writing and testing, 67, 68
JavaScript debuggers
Chrome developer tools, 25
Firefox developer tools, 25
Internet Explorer developer
tools, 25
Safari developer tools, 26
JavaScript dot notation, 88

322

JavaScript libraries

benefits, 81, 82
CDN, 84, 85

cost, 83

D3, 278, 280

ease of use, 83
functionality, 83
grids, 272, 275
Highcharts, 276, 277
jqGrid, 273, 274
jQuery (see jQuery)
popularity, 82
W3Schools, 83

JavaScript Lint tool, 23
JavaScript Object Notation (JSON)

data source for JavaScript objects, 115
data step, 122

example, 116

Lint, 121

Proc Print output, 120

reading, 117-121

SAS data to produce, 122
SASHELP.SAS, 123

W3Schools website, 115

JavaServer Pages (JSP), 22
jqGrid, 83, 273, 274, 292
jQuery, 83

actions, 94-96
AJAX, 85
code, 87
elements selection, 92
class, 91, 92
1D, 90
Tag Name, 89
functionality, 87, 88
function, single and double clicks, 95
hello world program, 86
HTML page, 93

methods, 94

script tag, 86

$ sign, 88

web applications, 85
jQuery JavaScript library, 75

L

Lint tool, 22, 23

Locking, 16

Logs
metadata server, 264, 265
object spawner, 266
pooled workspace server, 262-264
Stored Process Server Logs, 261, 262
workspace server, 262

Macro functions, 299
Macro programs, 49
Macro variables, 46-48, 50, 247, 248, 313
Management Console, 20
application server drop-down
menu, 134
connection profile, SAS metadata
server, 130
context menu, metadata folder, 132
context menu, stored process, 140
editing source code, 136
edit Source Code prompt, 137, 138
folders tab, 131
metadata folders, 131
New Stored Process wizard,
page, 132, 133
prompting, Stored Process
administered
folder icon, metadata folders, 145

INDEX

general tab of properties window, 141
new prompt window, 143
parameters, Enterprise Guide
running, 146
parameters tab of properties
window, 142
prompt type and values window, 144
results tab, 146
screen showing parameter, 144
source code in Metadata, 145
result capabilities, 138
SAS Stored Process servers, 133
server type, selection, 134
source code location, 135
source code repository, 135
Stored Process creation, 139
storing code on disk, 135
Workspace servers, 134
Metadata, 3, 4
Metadata folder structure, 204
Metadata Server Logs, 264, 265
_METAPERSON, 214
_METAUSER, 214
Method element, 236

N

Non-blank value box, 162
Non-matching brackets and quotes, 121
Notepad++, 67

Numeric prompt, 168-172

Numeric range prompt, 172, 173

O

Object Spawner Logs, 266
_ODSDEST, 212, 241
_ODSOPTIONS, 212

323

INDEX

_ODSSTYLE, 212
_ODSSTYLESHEET, 212
Output prompts, 196

P

Persistence
cookies, 60, 61
files/tables, 62
storage, 60
URL, 62

Personal Development (PDEV), 18

Platform differences, 15
Pooled Workspace Server
Logs, 262-264
Procedures, SAS
PROC EXPORT, 312, 313
PROC HTTP, 308-312

PROCIMPORT, 313, 314, 316

PROCJSON, 289-296
PROC STP, 283-289
Process prompts, 152, 153

PROC EXPORT, 110, 312, 313

PROCHTTP

web page, accessing, 308, 309

web service, 309-312

PROC IMPORT, 313, 314, 316

PROCJSON, 289-296

PROC PRINT statements, 120

PROC STP, 283-289
PROC STREAM, 39
data step, 297, 298

DOSUB, 301, 302, 304-308

stream data, 298-300

streaming RTF files, 300, 301

_program, 48, 52, 53
_PROGRAM, 214
Prompt manager, 158

324

Prompt types
color, 188
data library, 189
data source, 184, 185
data source item, 185, 186
date, 173,175
date range, 175-179
file/directory, 186-188
hyperlink, 167, 168
numeric, 168-172
numeric range, 172, 173
text (see Text prompt)
text range, 167
time, 179, 180
time range, 180-182
timestamp, 182, 183
timestamp range, 183, 184
variable, 189, 190

Q

Query Builder, 216

R

Read-only values box, 162
Release management, 17
REPLACE parameter, 313
Requirements documentation, 15
Reserved macro parameters
automatic macro variables
_METAPERSON, 214
_METAUSER, 214
_PROGRAM, 214
_SRVNAME, 214
_SRVPORT, 214
stored process, 215
_STPERROR, 214

_URL, 215
_USERNAME, 215
macro variables, %stpbegin

_ACTION (see _ACTION parameter)
_DEBUG, 210, 211
_GOPT_DEVICE, 211
_GOPT_HSIZE, 211
_GOPTIONS, 212
_GOPT_VSIZE, 211
_GOPT_XPIXELS, 211
_GOPT_YPIXELS, 212
_ODSDEST, 212
_ODSOPTIONS, 212
_ODSSTYLE, 212
_ODSSTYLESHEET, 212
_RESULT, 213

resolve() function, 238, 297, 298

_RESULT, 213

Revision control systems, 16

S

Sample stored processes, 206

SAS background, 1, 2

SAS/ACCESS, 2

SASHELP.CLASS, 114, 123

SAS/IntrNet, 1, 2

SAS Stored Process servers, 133

SAS Stored Process Web Application, 2, 47

HTML forms to run Stored Processes

automatic macro variables, 245
check boxes, 243, 244
drop-down menu of choices, 237
form tag, 236
graphs, display, 241
log, 244
macro variables, 246
menu in web browser, 240

ODS destination drop-down
menu, 242
_ODSSTYLE=SEASIDE, 243
resolve function, 246
RTF choosing, MS Word, 242
SAS code, 239, 240
time taken, 244
web browser menu, 238
reserved macro parameters (see
Reserved macro parameters)
upload files (see Uploading files)
SAS Studio, 19
SAS Workspace servers, 5
Scalability issues, 14
Script tags, 71
Sencha ExtJS, 84
Server-side validation, 77
Servlet container, 62
Sessions
data stored, 256
graphs, 259, 260
macro variable and table
available, 257, 259
Stored Process, 257
stored process error, 259
storing macro variable values, 256
stpsrv_session function, 257
web browser displays, 258
Source code repository, 135
Source control systems
archive and backup, 17
concurrent development, 16
configuration, 16
locking/branches, 16
release management, 17
tracking changes, 16
_SRVNAME, 214
_SRVPORT, 214

INDEX

325

INDEX

Static data Subversion (SVN), 17
CSV (see Comma-separated System Development Life
values (CSV)) Cycle (SDLC), 11, 12
description, 104 System Integration Testing (SIT), 18
JSON (see JavaScript Object
Notation (JSON))
XML (see eXtensible Markup T
Language (XML)) Team Foundation Server (TFS), 17
Stored process Technical documentation, 15
benefits, 6, 7 Text editors, 121
creation Text prompt
Enterprise Guide (see Enterprise getting values, 165
Guide) options, populating values, 164
management console (see sort order, dynamic prompt values, 166
Management Console) specifying number of values, 166
dependencies, 190-196 user selects values, 164
description, 3 Text range prompt, 167
features, 7, 8 Time prompt, 179, 180
fileref, 8 Time range prompt, 180-182
input streams and output Timestamp prompt, 182, 183
prompts, 196-201 Timestamp range prompt type, 183, 184
loading, web page, 271, 272
macros, 39, 40 U
SAS code stored in metadata, 3
SAS code stored on disk, 4 UNIX system, 63
SAS products requirement, 9 Uploading files
SAS program, 3 code prompts, 249
data, 252

SAS program convertion, 128-131
SAS Stored Process servers, 5 macro variables and

server logs, 261, 262 values, 247, 248, 251

skills, 8 passing multiple parameters, 252-256
SAS code, 250, 251

temporary location, 246

web browser displays menu, 249

techniques, building applications, 21, 22
web application, 5
vs. Workspace servers, 4, 5

STPBEGIN and STPEND macros, 8,39-44 ~ -URL, 215
STPERROR, 214 User Acceptance Testing (UAT), 18

stpsrv_session function, 257 _USERNAME, 215

326

Vv

Variable prompt, 189, 190
Version control systems, 16
Virtual DOM frameworks, 70
Visual analytics, 2

V-model, 12,13

W

w3.css CSS3 library, 75
W3Schools online tutorial website, 66
Waterfall model, 12
Web application building, Stored
Processes
access, 228-231
adding graphs, 231, 232
modify stored process, 225, 226

INDEX

parameter, applying, 233-236
Query Builder, 216-218
run Stored Process from Excel, 229
stored process creation, 224-231
Web applications, 4
Web browser, 36, 121
WebDAV server, 101
WEBIN macro variables, 314
_WEBOUT fileref, 39, 40, 297, 298
window.open method, 267
WinMerge, 26, 28
Workspace Server Logs, 262
Workspace servers, 4, 5, 134

XY, Z
XML Mapper, 112
XMLMaps, 112

327

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	Background
	What’s a Stored Process?
	Benefits of Stored Processes
	Other Key Features of Stored Processes
	Skills Needed
	SAS Products Required
	Summary

	Chapter 2: Developing Applications
	Development Models
	Freestyle Approach
	V-Model
	Agile
	Architectural Concepts
	Useful Documents to Produce
	Source Control Systems

	Environments for Developing Web Applications
	Ways to Develop with SAS
	Commonly Used SAS Tools
	Write Your Own Tools in SAS
	Simple Techniques for Building Applications with Stored Processes

	Useful Tools for Building Web Applications
	Lint Tools
	IDE Tools

	Using a JavaScript IDE
	JavaScript Debuggers

	Code Comparison Tools
	Summary

	Chapter 3: HTML
	Importance of Using HTML5
	HTML Basics
	FORM Tag
	Ways to Generate HTML
	Basic ODS
	Custom HTML
	PROC STREAM
	Writing Your Own Custom HTML
	STPBEGIN and STPEND Macros

	General Techniques to Add HTML to a Web Page
	Macro Language
	HTML Forms

	Making a Stored Process Generate Its Own HTML Menu
	Form Attributes

	Persistence – How to Pass Data Between Stored Processes
	Storage
	Cookies
	Files or Tables
	URL

	Where to Put HTML Code, JavaScript Libraries, Images, and More?
	Summary

	Chapter 4: JavaScript
	Basic Example of a JavaScript Program
	Writing and Testing
	Debugging JavaScript
	Using JavaScript with HTML
	Basic DOM

	Using Stored Processes to Generate Pure JavaScript
	How Data Is Stored and Used
	How SAS Stored Processes Can Feed Data to Objects

	More About Where to Put Files on Your Web Server
	Directories
	Relative Paths
	Specifying Libraries

	Building Interactivity with JavaScript
	Pop-Up Windows
	Validating Form Fields
	Linking to One or More Other URLs

	Summary

	Chapter 5: JavaScript Libraries
	Benefits of a Library
	Choosing a JavaScript Library to Use As a Framework
	Recommended Libraries
	Content Delivery Networks (CDNs)
	jQuery

	Getting Started
	Selecting Elements in jQuery
	Selecting by Tag Name
	Selecting by ID
	Selecting by Class
	Other Ways to Select Things

	Fundamental jQuery Techniques
	Actions

	Summary

	Chapter 6: Data
	Dynamic Data
	Using Stored Processes to Create Dynamic Data

	How SAS Stored Processes Can Feed Data to Objects
	Static Data
	CSV
	Making a CSV with a Data Step
	Using PROC EXPORT to Make CSV
	SASHELP.SAS in CSV

	XML
	Reading XML Data into SAS
	Using the XML Engine to Create SASHELP.CLASS in XML

	JSON
	Example of JSON
	Read in JSON
	Using JSON Lint
	Using a Data Step to Make JSON
	Using Proc JSON
	SASHELP.SAS in JSON

	Summary

	Chapter 7: Stored Processes
	Converting a SAS Program into a Stored Process
	Creating a Stored Process
	Creating a Stored Process with Management Console
	Prompting from Management Console

	Using Enterprise Guide to Make a Stored Process
	Prompting in Enterprise Guide
	Modifying a Stored Process
	Choosing a Prompt Type
	1. Text
	2. Text Range
	3. Hyperlink
	4. Numeric
	5. Numeric Range
	6. Date
	7. Date Range
	8. Time
	9. Time Range
	10. Timestamp
	11. Timestamp Range
	12. Data Source
	13. Data Source Item
	14. File or Directory
	15. Color
	16. Data Library
	17. Variable

	Adding Dependencies
	Using Input Streams and Output Prompts

	Summary

	Chapter 8: SAS Stored Process Web Application
	Index Page
	Sample Stored Processes
	Reserved Macro Parameters
	Macro Variables Used with %stpbegin
	_ACTION
	Combining Values on _ACTION
	JSPs Used with _ACTION=FORM

	_DEBUG
	_GOPT_DEVICE
	_GOPT_HSIZE
	_GOPT_VSIZE
	_GOPT_XPIXELS
	_GOPT_YPIXELS
	_GOPTIONS
	_ODSDEST
	_ODSOPTIONS
	_ODSSTYLE
	_ODSSTYLESHEET
	_RESULT

	Automatic Macro Variables in Stored Processes Run via SAS Stored Process Web Application
	_METAPERSON
	_METAUSER
	_PROGRAM
	_SRVNAME
	_SRVPORT
	_STPERROR
	_URL
	_USERNAME

	How to Use Macro Variables
	Step-by-Step Guide to Building a Web Application Using Stored Processes
	Step 1: Query Builder
	Step 2: Convert Query into Stored Process
	Step 3: Modify Stored Process
	Step 4: Access Stored Process Web Application
	Step 5: Run Stored Process from Excel
	Step 6: Adding Graphs
	Step 7: Apply a Parameter

	A Note About Authentication
	Creating an HTML Menu for Our Stored Process
	Step 8: Use HTML Forms to Run Stored Processes

	Uploading Files with a Stored Process
	Example: Uploading Three Files
	Passing Multiple Parameters of the Same Name

	How to Use Sessions
	Sessions with Graphs

	Logs That Record Information About Stored Processes
	Stored Process Server Logs
	Workspace Server Logs
	Pooled Workspace Server Logs
	Metadata Server Logs
	Object Spawner Logs

	Linking Stored Processes
	Stored Process Example

	Loading a Stored Process into Part of a Web Page
	Other Recommended JavaScript Libraries
	Grids
	jqGrid

	Highcharts
	D3

	Summary

	Chapter 9: SAS Procedures
	PROC STP
	PROC JSON
	PROC STREAM
	Streaming with a Data Step
	Streaming with PROC STREAM
	Streaming RTF Files with PROC STREAM
	DOSUB

	PROC HTTP
	Example Accessing a Web Page
	Example Using a Web Service

	PROC EXPORT
	Use Code with a Macro Variable for the Table Name
	Call Stored Process Passing Parameter for Table
	Use Code in JavaScript to Feed Objects

	PROC IMPORT
	Summary

	Index

